Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/34925
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLira, Jorge Herbert Soares de-
dc.contributor.authorHeinonen, Esko Antero-
dc.date.accessioned2018-08-20T14:56:55Z-
dc.date.available2018-08-20T14:56:55Z-
dc.date.issued2018-03-06-
dc.identifier.citationHEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/34925-
dc.description.abstractThe unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles.pt_BR
dc.language.isoenpt_BR
dc.subjectCartan-Hadamard manifoldspt_BR
dc.subjectMean curvaturept_BR
dc.subjectp-Laplacianpt_BR
dc.subjectAsymptotic problempt_BR
dc.subjectNonlinear partial differential equationspt_BR
dc.subjectVariedades de Cartan-Hadamardpt_BR
dc.subjectCurvatura médiapt_BR
dc.subjectp-laplacianopt_BR
dc.subjectProblema assintóticopt_BR
dc.subjectEquações diferenciais parciais não-linearespt_BR
dc.titleDirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.pt_BR
dc.typeTesept_BR
dc.contributor.co-advisorHolopainen, Ilkka Olavi-
dc.description.abstract-ptbrO tema que dá unidade aos artigos [A,B,C,D,E] que compõem esta dissertação é a existência e não-existência de soluções contínuas, inteiras, de equações diferenciais não-lineares em uma variedade Riemanniana M. Os resultados de existência de tais soluções são demonstrados estudando-se o problema de Dirichlet assintótico sob diversas hipóteses relativas a geometria da variedade. Funções que definem gráficos mínimos são estudadas nos artigos [A] e [D]. O artigo [A] lida com um resultado de existˆencia, ao passo que, em [D], obtemos tanto resultados de existˆencia quanto de n˜ao-existˆencia com respeito a curvatura de M. Al´em disso, fun¸c˜oes p-harmˆonicas s˜ao tamb´em estudadas em [D]. O artigo [B] lida com a existˆencia de fun¸c˜oes A -harmˆonicas sob hip´oteses de curvatura similares `aquelas em [A]. No artigo [C], estudamos a existˆencia de gr´aficos f- m´ınimos, os quais generalizam os gr´aficos m´ınimos usuais. Por fim, no artigo [E], tratamos de gr´aficos de Killing em produtos warped. Antes de passar `as ideias e resultados dos artigos de pesquisa. apresentamos alguns conceitos fundamentais da tese e um breve hist´orico das contribui¸c˜oes ao problema de Dirichlet assint´otico. Dada a similaridade das t´ecnicas em [A] e [B], tratamo-as con- juntamente na se¸c˜ao 3. O artigo [C] ´e, ent˜ao, considerado na se¸c˜ao 4, o artigo [D] na se¸c˜ao 5 e, por fim, o artigo [E] na se¸c˜ao 6. No in´ıcio das se¸c˜oes 3 – 6, descrevemos brevemente os m´etodos e t´ecniicas usados nos artigos correspondentes.pt_BR
dc.title.enDirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.pt_BR
Aparece nas coleções:DMAT - Teses defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_tese_eaheinonen.pdf1,26 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.