Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/24227
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorColares, Antonio Gervasio-
dc.contributor.authorPinto, Victor Gomes-
dc.date.accessioned2017-07-24T15:34:13Z-
dc.date.available2017-07-24T15:34:13Z-
dc.date.issued2017-07-06-
dc.identifier.citationPINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/24227-
dc.description.abstractIn this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mⁿ e x: M → Qⁿ⁺¹c a isometric immersion, x(M) is a geodesic sphere in Qⁿ⁺¹c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qⁿ⁺¹c by the totally geodesic hypersurfaces (Qⁿc )p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation Δϕ = σ if, and only if, M is isometric to the n-sphere Sⁿ(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M → Qⁿ⁺¹, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr ≠ 0 and there are nonnegative constants C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi;; then x(M) is a geodesic sphere, where Qⁿ⁺¹ is Rⁿ⁺¹, Hⁿ⁺¹ or Sⁿ⁺¹+ .pt_BR
dc.language.isopt_BRpt_BR
dc.subjectr-ésima curvatura médiapt_BR
dc.subjectEquação de Poissonpt_BR
dc.subjectEsferas geodésicaspt_BR
dc.subjectHipersuperfíciespt_BR
dc.subjectr-mean curvaturept_BR
dc.subjectPoisson's equationpt_BR
dc.subjectGeodesic spherespt_BR
dc.subjectHypersurfacespt_BR
dc.titleCaracterizações da esfera em formas espaciaispt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrNeste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mⁿ e x: M → Qⁿ⁺¹c uma imersão isométrica, onde Qⁿ⁺¹c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Qⁿ⁺¹c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Qⁿ⁺¹c pelas hipersuperfícies totalmente geodésicas (Qⁿc)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano Rⁿ⁺¹, com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera Sⁿ(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Qⁿ⁺¹, onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi; então x(M) é uma esfera geodésica, onde Qⁿ⁺¹ é Rⁿ⁺¹, Hⁿ⁺¹ ou Sⁿ⁺¹+ .pt_BR
dc.title.enCharacterizations of the sphere in space forms.pt_BR
Aparece nas coleções:DMAT - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_dis_vgpinto.pdf1,16 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.