Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/18153
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMarques, Aline S.-
dc.contributor.authorMoraes, Edgar P.-
dc.contributor.authorAnsaldi Júnior, Miguel Angel-
dc.contributor.authorMoura, Andrew D.-
dc.contributor.authorAndrade Neto, Valter Ferreira de-
dc.contributor.authorMotta Neto, Renato-
dc.contributor.authorLima, Kássio M. G.-
dc.date.accessioned2016-07-05T15:36:08Z-
dc.date.available2016-07-05T15:36:08Z-
dc.date.issued2015-03-
dc.identifier.citationMARQUES, A. S. et al. Rapid discrimination of klebsiella pneumoniae carbapenemase 2 – producing and non-producing klebsiella pneumoniae strains using near-infrared spectroscopy (NIRS) and multivariate analysis. Talanta, London, v. 134, p. 126-131, mar. 2015.pt_BR
dc.identifier.issn0039-9140 Print-
dc.identifier.issn1873-3573 On line-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/18153-
dc.description.abstractKlebsiella pneumoniae Carbapenemase (KPC–2)-producing and non-producing Klebsiella pneumoniae (KP) have rapidly disseminated worldwide, challenging the diagnostics of Gram-negative infections. We evaluate the potential of a novel non-destructive and rapid method based on Near-Infrared Spectroscopic (NIRS) and multivariate analysis for distinguishing KPC-2 – producing and non-producing KP. Thirty-nine NIRS spectra (24 KPC-2-producing KP, 15 KPC-2 non-producing KP) were acquired; different pre-processing methods such as baseline correction, derivative and Savitzky–Golay smoothing were performed. A spectral region fingerprint was achieved after using genetic algorithm–linear discriminant analysis (GA–LDA) and successive projection algorithm (SPA–LDA) algorithms for variable selection. The variables selected were then used for discriminating the microorganisms.Accuracy test results including sensitivity and specificity were determined. Sensitivity in KPC-2 producing and non-producing KP categories was 66.7% and 75%, respectively, using a SPA-LDA model with 66 wavenumbers. The resulting GA-LDA model successfully classified both microorganisms with respect to their “fingerprints” using only 39 wavelengths. Sensitivity in KPC-2 producing category was moderate(≈66.7%) using a GA-LDA model. However, sensitivity in KPC-2 non-producing category using GA-LDA accurately predicted the correct class (with 100% accuracy). As100% accuracy was achieved, this novel approach identifies potential biochemical markers that may have a relation with microbial functional roles and means of rapid identification of KPC-2 producing and non-producing KP strains.pt_BR
dc.language.isoenpt_BR
dc.publisherTalantapt_BR
dc.subjectKlebsiella pneumoniaept_BR
dc.titleRapid discrimination of klebsiella pneumoniae carbapenemase 2 – producing and non-producing klebsiella pneumoniae strains using near-infrared spectroscopy (NIRS) and multivariate analysispt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DCIR - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_art_asmarques.pdf1,18 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.