Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/13355
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSampaio, Rudini Menezes-
dc.contributor.authorAraújo, Rafael Teixeira de-
dc.date.accessioned2015-09-23T16:28:22Z-
dc.date.available2015-09-23T16:28:22Z-
dc.date.issued2014-
dc.identifier.citationARAÚJO, R. T. Convexidades de caminhos e convexidades geométricas. 2014. 51 f. Dissertação (Mestrado em Ciência da Computação) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/13355-
dc.description.abstractIn this dissertation we present complexity results related to the hull number and the convexity number for P3 convexity. We show that the hull number and the convexity number are NP-hard even for bipartite graphs. Inspired by our research in convexity based on paths, we introduce a new convexity, where we defined as convexity of induced paths of order three or P∗ 3 . We show a relation between the geodetic convexity and the P∗ 3 convexity when the graph is a join of a Km with a non-complete graph. We did research in geometric convexity and from that we characterized graph classes under some convexities such as the star florest in P3 convexity, chordal cographs in P∗ 3 convexity, and the florests in TP convexity. We also demonstrated convexities that are geometric only in specific graph classes such as cographs in P4+-free convexity, F free graphs in F-free convexity and others. Finally, we demonstrated some results of geodesic convexity and P∗ 3 in graphs with few P4’s.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectTeoria dos grafospt_BR
dc.subjectGrafos bipartidospt_BR
dc.titleConvexidades de caminhos e convexidades geométricaspt_BR
dc.typeDissertaçãopt_BR
dc.title.enConvexities convexities of paths and geometricpt_BR
Aparece nas coleções:DCOMP - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2014_dis_rtaraujo.pdf973,82 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.