Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/1186
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMuniz Neto, Antônio Caminha-
dc.contributor.authorTargino, Renato Oliveira-
dc.date.accessioned2011-11-21T11:54:05Z-
dc.date.available2011-11-21T11:54:05Z-
dc.date.issued2011-
dc.identifier.citationTARGINO, Renato Oliveira. A Curvatura de Gauss-Kronecker de hipersuperfícies mínimas em formas espaciais 4-dimensionais. 2011. 54 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/1186-
dc.description.abstractIn this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectGeometria riemanianapt_BR
dc.subjectImersões (Matemática)pt_BR
dc.subjectGeometria diferencialpt_BR
dc.titleA Curvatura de Gauss-Kronecker de hipersuperfícies mínimas em formas espaciais 4-dimensionaispt_BR
dc.typeDissertaçãopt_BR
dc.description.abstract-ptbrNeste trabalho estudamos hipersuperfícies mínimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o ínfimo do valor absoluto da curvatura de Gauss-Kronecker de uma hipersuperfície mínima completa em Q4(c); c ≤ 0; na qual a curvatura de Ricci é limitado inferiormente, é igual a zero. Além disso, estudamos hipersuperfícies mínimas conexas M3 em uma forma espacial Q4(c) com curvatura de Gauss-Kronecker K constante. Para o caso c ≤ 0, provamos, por um argumento local, que se K é constante, então K deve ser igual a zero. Também apresentamos uma classificação de hipersuperfícies completas mínimas em Q4 com K constante. Exemplos de hipersuperfícies mínimas que não são totalmente geodésicas no espaço Euclidiano e no espaço hiperbólico com curvatura de Gauss-Kronecker nula são apresentados.pt_BR
dc.title.enThe Gauss-Kronecker curvature of minimal hypersurfaces in four dimensional space formspt_BR
Aparece nas coleções:DMAT - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2011_dis_rotargino.pdf458,09 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.