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RESUMO

O Problema de Alocação de Salas (PAS) consiste na construção de uma grade horária que associe,

de forma consistente, turmas, professores, horários e salas, respeitando um conjunto de restrições

institucionais e operacionais. Devido à sua natureza combinatória, o PAS pode ser abordado por

meio de modelos matemáticos de otimização. Neste contexto, o presente trabalho tem como

objetivo analisar o modelo matemático proposto por Sousa (2019) para o PAS no âmbito da

UFC — Campus Crateús, bem como propor aprimoramentos que assegurem maior consistência

estrutural e viabilidade prática das soluções obtidas. A partir de uma análise detalhada do

modelo original, foi identificada uma inconsistência que permite a alocação simultânea de uma

mesma turma para o mesmo dia e horário em salas distintas, resultando em soluções inviáveis

do ponto de vista prático. Para mitigar esse problema, foi proposta a inclusão de uma nova

restrição ao modelo matemático, garantindo que, para cada par (dia, horário), uma turma esteja

associada a, no máximo, uma sala. Experimentos computacionais foram realizados utilizando o

solver SCIP, por meio do framework OR-Tools, considerando diferentes grupos de instâncias

e configurações do modelo. Os resultados demonstram que a restrição proposta é eficaz na

eliminação da inconsistência identificada, promovendo maior coerência estrutural do modelo.

Contudo, observou-se que sua inclusão aumenta o rigor do problema, refletindo em maior

esforço computacional. Adicionalmente, foi conduzida uma análise de sensibilidade em relação

ao parâmetro de dias preferidos dos professores. Os resultados indicam que o relaxamento

dessa restrição amplia significativamente a resolubilidade do modelo, permitindo que o solver

conclua um maior número de instâncias, seja por meio da obtenção de soluções ótimas ou pela

certificação de inviabilidade. De modo geral, o estudo evidencia a importância do equilíbrio entre

consistência estrutural e desempenho computacional, além de apontar direções para trabalhos

futuros voltados à escalabilidade e ao aprofundamento da análise de parâmetros do problema.

Palavras-chave: Otimização combinatória; Alocação de salas; Modelagem matemática; Elabo-

ração de horários.



ABSTRACT

The Classroom Assignment Problem (CAP) consists of constructing a timetable that consistently

assigns classes, professors, time slots, and rooms while satisfying a set of institutional and

operational constraints. Due to its combinatorial nature, the CAP can be addressed through

mathematical optimization models. In this context, this work aims to analyze the mathematical

model proposed by Sousa (2019) for the CAP in the scope of the Federal University of Ceará —

Crateús Campus, as well as to propose improvements that ensure greater structural consistency

and practical feasibility of the obtained solutions. A detailed analysis of the original model

revealed an inconsistency that allows a single class to be simultaneously assigned to the same

day and time slot in different rooms, leading to impractical solutions. To address this issue, a new

constraint is introduced into the mathematical model, ensuring that, for each (day, time slot) pair,

a class is associated with at most one room. Computational experiments were conducted using

the SCIP solver through the OR-Tools framework, considering different groups of instances

and model configurations. The results demonstrate that the proposed constraint is effective in

eliminating the identified inconsistency, thereby enhancing the structural coherence of the model.

However, its inclusion increases the strictness of the problem, resulting in higher computational

effort. Additionally, a sensitivity analysis was performed with respect to the professors’ preferred

teaching days parameter. The results indicate that relaxing this constraint significantly improves

the model’s resolvability, enabling the solver to conclude a larger number of instances either

by finding optimal solutions or by certifying infeasibility. Overall, the study highlights the

importance of balancing structural consistency and computational performance, and points to

future research directions focused on scalability and deeper investigation of problem parameters.

Keywords: Combinatorial optimization; Classroom assignment; Mathematical modeling; Time-

tabling.
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1 INTRODUÇÃO

A construção de grades horárias acadêmicas eficientes é uma tarefa fundamental para

instituições de ensino superior. Nesse contexto, o Problema de Alocação de Salas (PAS) destaca-

se como um desafio relevante, pois envolve a distribuição adequada de recursos como salas,

professores e turmas, respeitando simultaneamente um conjunto de requisitos e restrições insti-

tucionais. Trata-se, portanto, de um problema de otimização combinatória, cuja complexidade

cresce de acordo com o número de elementos envolvidos e com a interação entre eles.

Uma abordagem amplamente utilizada para tratar problemas dessa natureza é a

modelagem matemática, capaz de representar formalmente as relações e restrições do sistema.

No âmbito da Universidade Federal do Ceará – Campus Crateús, Sousa (2019) propôs um modelo

matemático voltado à formalização do PAS, contemplando características específicas do campus,

como cargas horárias, disponibilidade de salas, preferências de professores e demais parâmetros

pertinentes ao processo de construção da grade.

Embora o modelo de Sousa (2019) represente adequadamente o problema em seu

contexto geral, uma análise aprofundada revela aspectos que podem ser aprimorados para ampliar

a consistência e a eficiência das soluções geradas. Em particular, certas configurações permitidas

pelo modelo original podem levar a alocações inviáveis na prática, o que motiva a necessidade

de ajustes, revisões estruturais e, eventualmente, a inclusão de novas restrições.

Dessa forma, o presente trabalho tem como objetivo analisar o modelo matemático

proposto por Sousa (2019), identificar limitações que impactam a coerência das soluções e

propor melhorias que contribuam para aumentar sua robustez. Além disso, busca-se avaliar o

comportamento do modelo antes e após as modificações sugeridas, por meio de experimentos

computacionais conduzidos com diferentes instâncias do PAS, incluindo uma análise de sen-

sibilidade em relação ao parâmetro de dias preferidos pelos professores, a fim de investigar

seu impacto na resolubilidade e no desempenho computacional do modelo. Assim, pretende-se

oferecer uma contribuição para a evolução da modelagem do problema no contexto da UFC –

Campus Crateús, bem como para o entendimento de seus desafios e potenciais extensões.

1.1 Objetivo Geral

Aprimorar o modelo matemático para o Problema de Alocação de Salas (PAS) no

contexto da UFC — Campus Crateús, identificando limitações relacionadas à consistência
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estrutural das soluções, de modo a garantir maior viabilidade prática.

1.2 Objetivos Específicos

• Analisar o modelo matemático proposto por Souza (2019) para o Problema de Alocação

de Salas, identificando suas principais características, hipóteses e limitações estruturais;

• Identificar e formalizar uma inconsistência presente no modelo original, relacionada à

possibilidade de alocação simultânea de uma mesma turma para o mesmo dia e horário em

salas distintas;

• Formalizar uma nova restrição matemática capaz de eliminar a inconsistência identificada,

garantindo maior coerência estrutural e viabilidade prática das soluções obtidas;

• Avaliar experimentalmente o impacto da restrição proposta sobre o desempenho computa-

cional do modelo, considerando métricas como tempo de resolução, esforço computacional

e resolubilidade;

• Realizar uma análise de sensibilidade em relação ao parâmetro de dias preferidos dos

professores, investigando sua influência no comportamento do modelo e na capacidade do

solver em concluir as instâncias.

1.3 Estrutura do Trabalho

O presente trabalho está organizado em oito capítulos. O Capítulo 1 apresenta a

introdução, os objetivos e a estrutura do trabalho. O Capítulo 2 aborda a fundamentação teórica

necessária ao desenvolvimento do estudo. O Capítulo 3 descreve o Problema de Alocação de

Salas, enquanto o Capítulo 4 apresenta o modelo matemático adotado para o PAS no contexto da

UFC — Campus Crateús.

No Capítulo 5 são discutidas melhorias propostas ao modelo. O Capítulo 6 descreve

os experimentos computacionais realizados. O Capítulo 7 apresenta e discute os resultados

obtidos. Por fim, o Capítulo 8 reúne as conclusões e sugestões para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os conceitos teóricos fundamentais para a compreensão do

Problema de Alocação de Salas e do modelo matemático analisado neste trabalho. Inicialmente,

são abordados os princípios da modelagem matemática e da otimização combinatória, que

fornecem a base para a formulação de problemas com variáveis discretas e múltiplas restrições.

Em seguida, são discutidos os conceitos de Programação Matemática, com ênfase em

Programação Linear, Programação Inteira e na forma-padrão dos modelos. Por fim, apresentam-

se as noções de ótimo global e ótimo local, essenciais para a interpretação das soluções obtidas e

para a análise dos resultados apresentados nos capítulos posteriores.

2.1 Modelagem Matemática

O modelo matemático é uma representação idealizada e simplificada de um sistema

real, utilizada com o objetivo de analisar, compreender e apoiar a tomada de decisão em pro-

blemas complexos. Modelos matemáticos são empregados em diversas áreas do conhecimento,

permitindo estudar o comportamento de sistemas reais, bem como buscar soluções e prever

resultados sob diferentes condições (HILLIER; LIEBERMAN, 2015; TAHA, 2017).

Além disso, os modelos auxiliam na identificação dos dados de entrada necessários,

na explicitação dos objetivos do problema e na quantificação das decisões envolvidas, tornando

explícitas as relações entre variáveis e restrições (ARENALES et al., 2015).

O processo de construção de um modelo matemático é, de modo geral, constituído

por três etapas principais (HILLIER; LIEBERMAN, 2015; ARENALES et al., 2015):

1. Identificar as variáveis de decisão do modelo.

2. Listar as restrições do modelo.

3. Identificar a função objetivo que deve ser maximizada ou minimizada.

As variáveis de decisão são normalmente representadas por símbolos algébricos,

como x e y, ou ainda x1, x2, entre outros. As restrições são expressas por meio de equações

ou inequações, geralmente lineares, que delimitam o conjunto de soluções viáveis. A função

objetivo, por sua vez, representa matematicamente o critério a ser otimizado pelo modelo Bazaraa

et al. (2010).



16

Como exemplo, considere o seguinte modelo matemático:

min q(x) = 4x3
1 −2x2

2 + x3 −10x4 +5x5 (2.1)

s.a: x2 +7x3 × x4 −3x5 ≥ 16 (2.2)

2x1 × x2 −3x4 +2x5 ≤ 57 (2.3)

5x1 + x2 −9x4 ≥ 18 (2.4)

x1, x2, x3, x4, x5 ≥ 0 (2.5)

No modelo apresentado, a função objetivo está definida em (2.1) como uma função

de minimização, cujo objetivo é encontrar os valores das variáveis que conduzam ao menor valor

possível da função. O conjunto de valores admissíveis para as variáveis é determinado pelas

restrições, representadas pelas inequações (2.2) a (2.5).

2.2 Problema de Otimização Combinatória

Um problema de otimização consiste em determinar os valores extremos — mínimo

ou máximo — de uma função objetivo definida sobre um determinado domínio. Quando as

variáveis envolvidas assumem valores discretos, o problema é classificado como um Problema de

Otimização Combinatória (NEMHAUSER; WOLSEY, 1988; PAPADIMITRIOU; STEIGLITZ,

1998).

De forma geral, um modelo de otimização pode ser descrito como:

min f (x) max f (x) (2.6)

sujeito a x ∈ X sujeito a x ∈ X (2.7)

Na formulação acima, f (x) representa a função objetivo a ser minimizada ou maxi-

mizada sobre o conjunto X , denominado conjunto factível, que contém todas as soluções que

satisfazem as restrições do problema. Uma solução x é dita factível quando pertence ao conjunto

X ; caso contrário, é considerada infactível (AHUJA et al., 1993).

Assim, a otimização combinatória envolve o processo de busca por soluções factíveis

dentro de um conjunto finito ou enumerável de alternativas, até que nenhuma solução melhor

possa ser encontrada, considerando o critério definido pela função objetivo (GOLDBARG;

LUNA, 2005).
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2.3 Programação Matemática

O termo programação matemática, também conhecido como otimização matemática,

refere-se ao conjunto de técnicas utilizadas para a minimização ou maximização de uma função

objetivo envolvendo múltiplas variáveis, sujeita a um conjunto de restrições (BAZARAA et al.,

2010; BERTSIMAS; TSITSIKLIS, 1997).

Nos modelos de programação matemática, a estrutura do problema é caracterizada

por uma função objetivo expressa de forma algébrica e por restrições formuladas como equações

ou desigualdades, que delimitam o espaço de soluções viáveis. Dependendo da natureza das

variáveis e das expressões envolvidas, esses modelos podem ser classificados como lineares,

inteiros, não lineares ou mistos (ARENALES et al., 2015).

2.3.1 Programação Linear

A representação de determinado sistema em modelos matemáticos, geralmente se dá

por um conjunto de equações ou expressões matemáticas. Se o objetivo é uma função linear e as

restrições são igualdades ou desigualdades lineares, tal problema é denominado problema linear,

e o processo de formulação e resolução deste é chamado programação linear.

O algoritmo simplex consiste em um algoritmo geral extremamente eficiente para a

solução de sistemas lineares. Visto que o modelo de programação linear reduz um sistema real a

um conjunto de equações e inequações lineares em que se pretende otimizar uma função objetivo,

este algoritmo pode ser usado para a resolução de problemas desta natureza (GOLDBARG;

LUNA, 2005).

Um outro algoritmo, o método do elipsoide, foi originalmente desenvolvido para a

resolução de problemas de otimização não linear. Em 1979, Khachiyan demonstrou que esse

método poderia ser adaptado para resolver problemas de otimização linear em tempo polinomial.

Entretanto, apesar de sua relevância teórica, o método apresenta desempenho computacional

insatisfatório na prática, caracterizado por lenta convergência e elevado custo por iteração, o que

limita sua utilização em aplicações práticas (KORTE; VYGEN, 2012).

2.3.2 Forma-padrão

Um modelo é dito está na forma-padrão se possui as seguintes características:

1. Função objetivo é do tipo minimização.
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2. Todas as restrições são equações.

3. Todas as variáveis são não-negativas.

4. A constante no lado direito das restrições é não-negativa.

Uma representação de modelo na forma-padrão:

min f (x1, . . . ,xn) = c1x1 + . . .+ cnxn (2.8)

s.a: a11x1 +a12x2 + . . .+a1nxn = b1 (2.9)

a21x1 +a22x2 + . . .+a2nxn = b2 (2.10)

... (2.11)

am1x1 +am2x2 + . . .+amnxn = bm (2.12)

x1, . . . , xn ≥ 0 (2.13)

Nem sempre os modelos são formulados em formato padrão, porém, existem formas

de converter um modelo para a forma-padrão.

Pode-se usar as seguintes equivalências:

1. No caso da função objetivo ser de maximização.

max f (x) = (−1) × min − f (x) (2.14)

2. Geralmente as restrições tendem a aparecer no formato de inequações. Para

converter uma inequação em equação pode-se usar dois tipos de variáveis: as

variáveis de folga e as variáveis de excesso.

–Variáveis de folga: são utilizadas para converter inequações do tipo ≤ em =.

a11x1 + . . .+ a1nxn ≤ b1 ⇒ a11x1 + . . .+ a1nxn + xa
1 = b1, sendo xa

1 ≥ 0 uma

variável de folga;

Por exemplo, 7x1 +5x2 ≤ 6 ⇒ 7x1 +5x2 + x3 = 6, x3 ≥ 0.

–Variáveis de excesso: são utilizadas para converter inequações do tipo ≥ em =.

a21x1 + . . .+ a2nxn ≥ b2 ⇒ a21x1 + . . .+ a2nxn − xa
2 = b2, sendo xa

2 ≥ 0 uma

variável de excesso);

Por exemplo, 2x1 +5x2 ≥ 10 ⇒ 2x1 +5x2 − x3 = 10, x3 ≥ 0.

3. Ocorrência de bi < 0.

Se algum bi < 0, multiplicamos a restrição por −1:

ai1x1 + . . .+ainxn ≤ bi ⇒−ai1x1 − . . .−ainxn ≥−bi;

Por exemplo, 2x1 −7x2 =−4 ⇒−2x1 +7x2 = 4.
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4. Variável não positiva.

Neste caso basta substituir a variável por sua simétrica. Por exemplo, x j ≤ 0,

basta fazer x′j =−x j, e substituir x j por x′j em todas as equações do problema.

2.3.3 Programação Inteira

Em um modelo de otimização onde qualquer variável não puder assumir valores

contínuos, isto é, estando condicionadas a assumir valores discretos, é dito que este modelo

constitui um problema de Programação Inteira (GOLDBARG; LUNA, 2005).

Segundo Maculan e Fampa (2006), quando nos problemas de programação linear

obrigarmos algumas ou todas as variáveis de decisão a só admitirem valores inteiros, estaremos

diante de um problema de programação linear inteira. Quando nem todas as variáveis são restritas

a valores inteiros, é denominado um problema de programação linear mista.

A seguir, um modelo de Maculan e Fampa (2006):

max z = x1 −3x2 +4x3 (2.15)

s.a: 2x1 + x2 − x3 ≤ 4 (2.16)

4x1 −3x2 ≤ 2 (2.17)

3x1 +2x2 + x3 ≤ 3 (2.18)

x1, x2, x3 ≥ 0 (2.19)

x2 e x3 inteiros. (2.20)

No modelo acima, as variáveis x2 e x3 estão restringidas a valores inteiros e não

negativos, x1 é um real qualquer não negativo. Assim, o modelo acima pode ser classificado

como um Problema de Programação Linear Mista.

2.4 Ótimo Global

Como visto na seção 2.2, em um problema de otimização temos uma função objetivo,

variáveis de decisão, e um conjunto de restrições que por sua vez delimitam os valores que

as variáveis podem asssumir, formando assim um conjunto discreto de soluções factíveis do

problema. Dentre as soluções factíveis, a solução ótima, isto é, o ótimo global, é a que induz a

função objetivo à assumir o menor (ou maior) valor possível.
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Como pode ser visto na Figura 1 a seguir, o ponto em vermelho indica o ótimo global,

uma vez que esse ponto leva a função objetivo ao menor valor possível.

Figura 1 – Representação gráfica para um problema de mini-
mização.

Fonte: Sousa (2019).

2.5 Ótimo Local

Durante o processo de exploração do espaço de busca em problemas de otimização,

é possível encontrar soluções que minimizam a função objetivo apenas em uma região específica

desse espaço. Essas soluções, embora apresentem valores da função objetivo inferiores aos

de suas vizinhas imediatas, não correspondem necessariamente à melhor solução global do

problema, sendo caracterizadas como ótimos locais.

Na Figura 1, observa-se que os pontos em verde representam soluções que mini-

mizam a função objetivo em determinados pontos do espaço de busca. No entanto, existem

soluções associadas a valores ainda menores da função objetivo, evidenciando que tais pontos

não correspondem a um ótimo global, mas sim a ótimos locais.

Diante dos conceitos apresentados neste capítulo, no próximo capítulo será apresen-

tada a formalização do Problema de Alocação de Salas, abordando suas definições, características

e fundamentos teóricos.
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3 PROBLEMA DA ALOCAÇÃO DE SALAS

O processo de construção da grade de horários é realizado de tempos em tempos

pelas instituições de ensino, podendo ser semestralmente, anualmente, ou em qualquer outro

intervalo de tempo segundo as regras da instituição. O processo consiste em alocar de forma

combinada diversos recursos, como salas de aula, professores, etc., tendo em vista restrições

impostas, como por exemplo a disponibilidade de professores. Dada suas características, este

processo consiste em um problema combinatório.

Naturalmente, se imagina que uma possível forma de achar a melhor solução de um

problema combinatório seja enumerar todas as possíveis soluções para este problema. Entretanto,

quanto maior o problema, maior o número de soluções possíveis, e em aplicações reais, como no

caso do problema da alocação de salas, pode-se apresentar um número muito elevado de recursos

e restrições, assim, não sendo possível enumerar todas as soluções possíveis em um tempo hábil.

Como pôde ser visto durante o capítulo anterior, existem diferentes estratégias de modelagem,

bem como diferentes métodos de resolução dadas as características do problema.

Na necessidade de explorar e encontrar uma boa configuração de horários para a

Universidade Federal do Ceará - Campus Crateús, Sousa (2019) apresenta em seu trabalho um

modelo matemático construído em termos de Otimização Combinatória, na qual foi denominado

como Problema de Alocação de Salas (PAS), e aplicação de um procedimento heurístico para

sua solução.

A concepção do modelo matemático não linear, que posteriormente foi linearizado,

é dada por um conjunto de recursos — professores, turmas, dias e horários da semana — que

devem ser alocados a um conjunto de salas. É considerada uma solução factível aquela em que

todas as turmas são devidamente alocadas, cumprindo suas cargas horárias prática e teórica,

respeitando a carga horária de trabalho dos professores.

O modelo também contempla como restrições fortes, isto é, restrições que devem ser

obrigatoriamente satisfeitas, que toda turma esteja associada a exatamente um professor, que não

ocorram conflitos na alocação de turmas e que, para turmas com cargas horárias teórica e prática,

as atividades teóricas sejam alocadas em dias anteriores às atividades práticas.

Quanto às restrições fracas, ou seja, aquelas cujo atendimento é desejável, mas não

obrigatório, considera-se que os professores devem ser alocados preferencialmente em seus

dias de preferência e que as alocações professor–turma respeitem o perfil de formação de cada

docente.
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Como se trata de um problema real do Campus da UFC em Crateús, apenas sete

configurações para alocação poderiam ser pontuadas, uma vez que dada a operacionalização do

campus em questão, até o momento do desenvolvimento do estudo, só poderiam ser referenciados

os períodos letivos de 2016.1 a 2019.1. Frente a isso, o autor se utilizou de um gerador de

instâncias próprio desenvolvido exclusivamente para o contexto do problema, baseado nos

parâmetros extraídos das instâncias reais, de forma a manter-se na realidade do cenário.

Os experimentos computacionais se deram por meio de duas estratégias: a primeira

com o algoritmo Branch and Bound, e a segunda com o método heurístico Busca Tabu. Os testes

foram aplicados em execução única com o algoritmo Branch and Bound para a validação do

modelo e análise do comportamento das instâncias reais e parte das instâncias geradas. Dada

análise dos resultados obtidos, foi validada a qualidade das instâncias geradas, e também o

modelo computacional proposto.

Ainda analisando os resultados obtidos por meio da execução do Branch and Bound,

notou-se um crescimento do tempo computacional gasto para a resolução de instâncias maiores,

assim, justificando procedimentos heurísticos com o objetivo de reduzir o tempo computacional

gasto na garantia de soluções com boas qualidades. Os testes realizados também foram aplicados

em execução única com o procedimento heurístico Busca Tabu. A análise dos dados obtidos

foi realizada de duas formas: a verificação da qualidade das soluções produzidas e a análise da

composição da função objetivo, com ênfase nas restrições do tipo hard, que são prioritárias e

devem ser obrigatoriamente atendidas pelo modelo.

A partir disso, é demostrado pela taxa de qualidade, o encontro de soluções viáveis

para o problema, com altas porcentagens de soluções factíveis encontradas para os quatro

cenários de testes experimentados e com a análise da composição da função objetivo, é visto que

o algoritmo se mostra promissor na geração de soluções com baixa porcentagem de erro.

Um outro estudo, Bucco et al. (2017) também aborda a problemática da construção

de grades horárias em universidades. Neste artigo, é objetivado desenvolver um modelo de

programação linear para o problema, a fim de apoiar os gestores de uma universidade na

construção das grades horárias das aulas.

Na abordagem da problemática da construção das grades horárias, os autores se

baseiam no conceito de master timetabling, por Carter e Laporte (1998), que consiste em alocar

primeiramente disciplinas, professores, salas e demais recursos materiais e pedagógicos, para

que então, os alunos escolham as disciplinas que lhe convenham de acordo com as grades já
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prontas.

Devido a isso, o modelo não conta com o conjunto de estudantes. Assumindo que

cada turma já tem um professor associado a ela, o conjunto de professores se faz presente para

evitar conflitos de horários, uma vez que professores não podem ministrar mais de uma aula ao

mesmo tempo. Em relação aos espaços físicos, apenas salas de aula são consideradas para a

modelagem, após isso, são identificadas as restrições fracas e fortes.

Foram realizados testes a partir de um conjunto de dados coletados de uma insti-

tuição real, e devido a complexidade do problema, como resultado, se viu a impossibilidade

de solucionar a instância completa de forma ótima. Para contornar isso, o problema principal

foi dividido em dois subproblemas: O subproblema I, e o subproblema II. O subproblema I

consiste na construção das grades horárias semanais, com o objetivo de distribuir uniformemente

os encontros entre todos os horários. O subproblema II consiste na atribuição de salas de aula às

turmas, tendo como objetivo a restrição fraca de minimizar o custo com a utilização de unidades.

Os modelos matemáticos foram resolvidos pelo pacote de otimização IBM ILOG

CPLEX Optimization Studio v12.5.1 com as configurações default. Como resultado, demonstrou-

se que é possível construir grades horárias factíveis, diminuindo a demanda por salas de aula,

possibilitada por uma distribuição de aulas mais equilibrada ao longo da semana. Em relação as

restrições horárias dos professores, este estudo pressupôs que cada professor estava disponível

em todos os horários do turno indicado para suas turmas, entretanto, dado o ganho de 57% de

eficiência de distribuição de salas, os autores indicam que há muita margem para que mesmo

essas restrições fossem consideradas, os ganhos permaneçam elevados.

A partir da caracterização do Problema de Alocação de Salas apresentada neste

capítulo, o próximo capítulo dedica-se à apresentação detalhada do modelo matemático adotado,

originalmente proposto por Sousa (2019) no contexto da Universidade Federal do Ceará —

Campus Crateús, no qual são descritas e explicadas suas variáveis, restrições e função objetivo.
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4 PAS DA UNIVERSIDADE FEDERAL DO CEARÁ, CAMPUS CRATEÚS

Como já visto no Capítulo 3, o modelo conta com três restrições fortes. A primeira

consiste em que toda turma deve estar associada a exatamente um professor; a segunda, em que

duas turmas não podem apresentar conflitos em sua alocação; e a terceira estabelece que, para

turmas com carga horária teórica e prática, as atividades teóricas devem ser alocadas em dias

anteriores às atividades práticas.

Quanto às restrições fracas, são duas: a primeira determina que os professores devem

ser alocados preferencialmente em seus dias preferidos, informação esta tomada como dado de

entrada do problema; e a segunda estabelece que as alocações professor–turma devem respeitar

o perfil de formação de cada docente, sendo esses perfis também considerados como dados de

entrada.

Os parâmetros de entradas do modelo são: P, o conjunto de professores; T , o con-

junto de turmas; Tp ⊆ T , representando para cada p ∈ P, o subconjunto das turmas que compõem

o perfil acadêmico do professor p; D, o conjunto de dias da semana; Dp ⊆ D, representando para

cada p ∈ P, o subconjunto dos dias em que o professor p prefere lecionar; D′ ⊆ D, que contém

os dias da semana com incidência de feriados do semestre; H, o conjunto de slots de horários; S,

o conjunto de salas; chT
t ∈ Z+, representando a carga horária teórica da turma t ∈ T ; chP

t ∈ Z+,

representando a carga horária prática da turma t ∈ T ; chp ∈ Z+, representando a carga horária

do professor p ∈ P. Ressalta-se que o modelo considera um horizonte de planejamento semanal,

no qual as alocações de turmas, professores, dias, horários e salas se repetem a cada semana do

período letivo.

O modelo conta com as seguintes variáveis: zpi representando a associação entre

um professor e um dia da semana; xpt representando a associação entre um professor e uma

turma; yP
ti jk representando a associação de uma turma t ∈ T com carga horária prática a um i ∈ D,

j ∈ H e k ∈ S; yT
ti jk representando a associação de uma turma t ∈ T com carga horária teórica

a um dia i ∈ D, um horário j ∈ H e uma sala k ∈ S; yti jk representando a carga horária total da

turma sem distinção entre carga horária prática e teórica; ap representando a penalidade a um

professor quando é associado a uma turma fora do subconjunto Tp das turmas que compõem o

perfil acadêmico do professor em questão; bp representando a penalidade a um professor quando

é associado a um dia fora do subconjunto Dp de dias em que o professor em questão prefere

lecionar. As variáveis xpt , yP
ti jk, yT

ti jk, yti jk e zpi são tomadas como binárias. ap, e bp são tomadas

como inteiras e não-negativas.
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A seguir a apresentação completa do modelo, bem como a descrição das restrições e

função objetivo.

min z(α,β ) = α · ∑
p∈P

ap +β · ∑
p∈P

bp (4.1)

∑
p∈P

xpt = 1,∀t ∈ T (4.2)

∑
T\Tp

xpt ≤ ap,∀p ∈ P (4.3)

∑
t∈T

(chT
t + chP

t )xpt = chp,∀p ∈ P (4.4)

∑
i∈D

∑
j∈H

∑
k∈S

yT
ti jk =

chT
t

2
,∀t ∈ T (4.5)

∑
i∈D

∑
j∈H

∑
k∈S

yP
ti jk =

chP
t

2
,∀t ∈ T (4.6)

∑
t∈T

yti jk ≤ 1,∀i ∈ D,∀ j ∈ H,∀k ∈ S (4.7)

yti jk = yT
ti jk + yP

ti jk,∀t ∈ T,∀i ∈ D,∀ j ∈ H,∀k ∈ S (4.8)

xpt · yti jk ≤ zpi,∀p ∈ P,∀t ∈ T,∀i ∈ D,∀ j ∈ H,∀k ∈ S (4.9)

∑
i∈D\Dp

zpi ≤ bp,∀p ∈ P (4.10)

yP
ti jk ≤ 1− yT

ti
′
j
′
k
′ ,∀t ∈ T,∀i ∈ D,∀i

′
∈ D

′
: i < i

′
,∀ j, j

′
∈ H,∀k,k

′
∈ S. (4.11)

xpt ∈ {0,1},∀p ∈ P,∀t ∈ T (4.12)

yP
ti jk ∈ {0,1},∀t ∈ T,∀i ∈ D,∀ j ∈ H,∀k ∈ S (4.13)

yT
ti jk ∈ {0,1},∀t ∈ T,∀i ∈ D,∀ j ∈ H,∀k ∈ S. (4.14)

yti jk ∈ {0,1},∀t ∈ T,∀i ∈ D,∀ j ∈ H,∀k ∈ S. (4.15)

zpi ∈ {0,1},∀p ∈ P,∀i ∈ D (4.16)

ap ∈ B
|P| (4.17)

bp ∈ B
|P| (4.18)

α ∈ Z
∗
+ (4.19)

β ∈ Z
∗
+ (4.20)

Em (4.1) está a função objetivo, que trata da penalização de dois parâmetros, α e
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β . α representa a atribuição de um professor a uma turma fora de seu perfil. β , por sua vez,

representa a associação entre um professor p ∈ P e um dia fora de Dp. A restrição (4.2) garante

que toda turma deve estar associada a exatamente um professor. A restrição (4.3) descreve

quando um professor é associado a uma turma fora de seu perfil. A restrição (4.5) assegura que

toda turma cumpra sua carga horária teórica, enquanto a restrição (4.6) assegura que toda turma

cumpra sua carga horária prática, sendo adotada, no modelo, a convenção de que cada slot de

horário corresponde a uma hora-aula com duração de 2 horas.

A restrição (4.7) assegura que para qualquer dia, o slot de horário e sala, estarão

associados a apenas uma turma. A restrição (4.8) representa a associação entre yT
ti jk e yP

ti jk, para

que seja atribuído o valor de yti jk. A restrição (4.9) assegura que um professor esteja associado

a uma turma com mesmo dia, slot de horário e sala. A restrição (4.10) descreve a associação

de um professor a um dia fora do conjunto de seus dias preferenciais para lecionar. A restrição

(4.11) mantém o controle sobre uma turma teórica anteceder uma turma prática.
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5 MELHORIAS

O modelo matemático proposto por Sousa (2019) foi definido com o propósito de

formalizar o Problema de Alocação de Salas (PAS). Contudo, sua resolução não foi conduzida por

meio de métodos exatos, mas sim por abordagens heurísticas aplicadas ao problema formalizado.

Uma análise mais detalhada, entretanto, permite identificar uma inconsistência no modelo

original, a qual é discutida na Seção 5.1 por meio de um exemplo mínimo que a evidencia na

Seção 5.2. Em seguida, na Seção 5.3, apresenta-se a solução proposta neste trabalho, que consiste

na introdução de uma nova restrição ao modelo, visando mitigar o problema identificado.

5.1 Inconsistência

O modelo proposto por Sousa (2019) permite alocações em que uma mesma turma

seja designada, simultaneamente, para o mesmo dia e horário em diferentes salas. Esse tipo

de alocação é considerado, neste trabalho, uma inconsistência, uma vez que inviabiliza o

aproveitamento integral da turma, dado que não é possível que ela esteja presente em duas salas

ao mesmo tempo.

Em outras palavras, para cada par (dia, horário), uma turma deve estar associada a,

no máximo, uma sala, de modo a garantir a consistência e a viabilidade prática da solução. A

seguir, apresenta-se uma ilustração da ocorrência dessa inconsistência, construída a partir de um

exemplo de instância simplificada do problema.

5.2 Ilustração da Inconsistência

Para ilustrar a inconsistência definida, considere a seguinte instância simplificada:

• Conjuntos principais:

– P (Professores): [1]

– T (Turmas): [1]

– D (Dias da semana): [1, 2, 3, 4, 5]

– D′ (Dias com feriado): [5]

– H (Horários): [1315]

– S (Salas): [1, 2]

• Parâmetros por turma:

– chT
t (Carga horária teórica): Turma 1: 4 horas
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– chP
t (Carga horária prática): Turma 1: 0 horas

• Parâmetros por professor:

– chp (Carga horária máxima): Professor 1: 4 horas

• Preferências dos professores:

– Tp (Turmas preferidas): Professor 1: [1]

– Dp (Dias preferidos): Professor 1: [1]

A partir dessa instância simplificada, obtém-se uma valoração das variáveis em que

a associação entre professor e turma é ativada, bem como a seleção de um único dia para o

professor. As variáveis correspondentes à carga horária prática permanecem desativadas, uma

vez que a instância considera apenas carga horária teórica.

Observa-se que a alocação da carga horária teórica atribui a mesma turma ao mesmo

par (dia, horário) em mais de uma sala simultaneamente, o que se reflete diretamente nas

variáveis agregadas de alocação. As variáveis auxiliares associadas a penalizações assumem

valor nulo nessa instância. A valoração completa das variáveis é apresentada nos anexos para

fins de referência.

Por se tratar de uma instância simplificada com o objetivo de evidenciar a inconsis-

tência apresentada, a turma não possui carga horária prática, apenas teórica. Conforme descrito

no Capítulo 4, a variável yT
ti jk representa a associação de uma turma t ∈ T , com carga horária

teórica, a um dia i ∈ D, horário j ∈ H e sala k ∈ S. A seguir, apresenta-se a disposição da variável

yT
ti jk para a Turma 1 em forma de tabela.

Tabela 1 – Disponibilidade de salas por dia e horário (com inconsistência).
Dia i Horário j Sala 1 Sala 2

1 13:15 1 1
2 13:15 0 0
3 13:15 0 0
4 13:15 0 0
5 13:15 0 0

Fonte: Próprio autor.

Observa-se, na primeira linha da Tabela 1— que representa o par (dia, horário) (1,

1315) — que as colunas correspondentes às Salas 1 e 2 recebem o valor 1. Isso indica que a

turma está alocada simultaneamente em ambas as salas para essa combinação.

A solução completa é dada da seguinte forma:

• Função objetivo (valor): 0,0
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• Atribuições professor → turma: Professor 1 atribuído à Turma 1

• Dias de aula por professor: Professor 1 trabalha no dia 1

• Penalidades: ap[1] = 0,0 bp[1] = 0,0

• Cronograma de alocação (Dia → Horário → Sala → Turma):

– Dia 1 → Horário 1315 → Sala 1 → Turma 1 (teórica)

– Dia 1 → Horário 1315 → Sala 2 → Turma 1 (teórica)

A solução apresenta valor ótimo igual a 0,0 na função objetivo e atribui corretamente

o Professor 1 à Turma 1, alocando suas aulas no dia 1, com ausência de penalidades tanto na

atribuição de turmas quanto em relação aos dias preferidos. Entretanto, ao analisar o cronograma

resultante, verifica-se que a Turma 1 foi alocada simultaneamente, no mesmo dia e horário, em

duas salas distintas.

Define-se, portanto, uma inconsistência como a alocação simultânea de uma mesma

turma para o mesmo dia e horário, independentemente da sala atribuída. A fim de evitar esse tipo

de ocorrência, este trabalho propõe a introdução de uma nova restrição ao modelo matemático,

especificamente voltada ao tratamento dessa inconsistência.

5.3 Nova Restrição

A seguir, apresenta-se a restrição proposta:

∑
j∈H

∑
k∈S

yti jk ≤ 1, ∀i ∈ D, ∀t ∈ T

Para cada dia i e para cada turma t, o número de combinações ( j,k) — ou seja, pares

horário/sala — atribuídas à turma nesse dia deve ser, no máximo, igual a 1. Em outras palavras:

admite-se, no máximo, uma alocação por dia para cada turma. Essa restrição impede que uma

mesma turma seja alocada em mais de um horário e/ou sala no mesmo dia, limitando os slots

ocupados por uma turma t no dia i.

Com a incorporação da nova restrição ao modelo, a inconsistência anteriormente

identificada é eliminada. A nova valoração das variáveis passa a garantir que, para cada par (dia,

horário), a turma seja associada a uma única sala, respeitando a viabilidade prática da alocação.

Observa-se que a associação entre professor e turma permanece válida, bem como a

seleção dos dias atribuídos ao professor. As variáveis correspondentes à carga horária prática

continuam desativadas, uma vez que a instância considera apenas carga horária teórica. Dife-
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rentemente da solução anterior, a alocação da carga horária teórica não ocorre simultaneamente

em mais de uma sala, refletindo o efeito direto da restrição adicionada ao modelo. As variáveis

auxiliares associadas a penalizações assumem valores compatíveis com essa nova configuração,

uma vez que o professor foi alocado em um dia fora do seu conjunto de dias preferidos.

Novamente, apresenta-se a disposição da variável yT
ti jk para a Turma 1 em forma de

tabela.

Tabela 2 – Disponibilidade de salas por dia e horário (sem inconsistência).
Dia i Horário j Sala 1 Sala 2

1 13:15 1 0
2 13:15 0 0
3 13:15 0 0
4 13:15 1 0
5 13:15 0 0

Fonte: Próprio autor.

Observa-se que, para cada par (dia, horário), apenas uma sala recebe o valor 1. A

solução completa apresenta-se da seguinte forma:

• Função objetivo (valor): 1,0

• Atribuições professor → turma: Professor 1 atribuído à Turma 1

• Dias de aula por professor: Professor 1 trabalha no dia 1

• Dias de aula por professor: Professor 1 trabalha no dia 4

• Penalidades: ap[1] = 0,0 bp[1] = 1,0

• Cronograma de alocação (Dia → Horário → Sala → Turma):

– Dia 1 → Horário 1315 → Sala 1 → Turma 1 (teórica)

– Dia 4 → Horário 1315 → Sala 1 → Turma 1 (teórica)
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6 EXPERIMENTOS

Neste capítulo, apresenta-se o ambiente computacional utilizado para a realização dos

experimentos com os modelos matemáticos desenvolvidos. Também são descritas as instâncias

consideradas nos testes, bem como a definição dos diferentes casos experimentais adotados para

a análise do desempenho do modelo e do solver.

6.1 Ambiente de Testes

A implementação do modelo matemático foi realizada utilizando a linguagem de

programação Python, versão 3.13.2. Para a resolução do modelo, empregou-se o solver SCIP

(Solving Constraint Integer Programs)1 , um solver de otimização gratuito e de código aberto,

acessado por meio do framework OR-Tools2 , versão 9.12.4544, desenvolvido pelo Google.

Os experimentos foram executados em um ambiente computacional composto por

um processador Intel Core i5-10400F, 16 GB de memória RAM (2 × 8 GB DDR4 a 2666 MHz)

e sistema operacional Microsoft Windows 11, versão 10.0.26100.4351, com arquitetura de 64

bits. Para cada instância, foi estabelecido um limite máximo de tempo de execução de 2 horas

(7,200 segundos) para o processo de resolução.

6.2 Instâncias

As instâncias contêm, entre outros elementos, conjuntos de professores, turmas,

horários e salas disponíveis, além de relações específicas, como preferências de dias por professor,

associações entre professores e turmas e exigências de carga horária para cada turma. A seguir,

apresenta-se a estrutura geral de uma instância, bem como a forma como elas foram organizadas

para os experimentos.

6.2.1 Exemplo de Instância

Na Figura 2, apresenta-se a estrutura de uma instância do problema. As oito primeiras

linhas correspondem aos conjuntos principais: a primeira e a segunda linhas representam,

respectivamente, o conjunto de professores e o conjunto de turmas; as duas linhas seguintes

indicam as cargas horárias prática e teórica, associadas às turmas na mesma ordem definida na

1 Disponível em: <https://www.scipopt.org>.
2 Disponível em: <https://developers.google.com/optimization>.
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segunda linha. Em seguida, são apresentados os conjuntos de dias, dias com feriados, horários e

salas disponíveis.

As linhas 9 a 16 descrevem as preferências de turmas por professor, indicadas pelo

símbolo “-”, seguido do código do professor e das turmas correspondentes. As linhas 17 a 24

representam as preferências de dias por professor, indicadas pelo símbolo “*”, seguido do código

do professor e dos dias preferidos. Por fim, as linhas 25 a 32 especificam a carga horária total de

cada professor, indicada pelo símbolo “>”, seguido do código do professor e da quantidade de

horas atribuídas.

Figura 2 – Representação de uma instância.

Fonte: Próprio autor.

6.2.2 Grupos de Instâncias

Inicialmente, os experimentos foram conduzidos utilizando as mesmas 50 instâncias

apresentadas por Souza em seu trabalho, algumas das quais representam cenários reais de

semestres da UFC — Campus Crateús. Ao longo desse conjunto, observam-se variações tanto

no número de elementos envolvidos — como professores e turmas — quanto em parâmetros

específicos, como preferências individuais e a definição de feriados. Essas variações resultam

em instâncias com diferentes níveis de complexidade, possibilitando avaliar o desempenho do
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modelo matemático e do solver.

No decorrer da análise, constatou-se uma diferença significativa no tempo de resolu-

ção de duas instâncias específicas, que diferem apenas quanto ao conjunto de dias preferidos

pelos professores. Essa disparidade evidenciou a relevância desse parâmetro, tornando promis-

sora a realização de uma análise de sensibilidade com o objetivo de investigar seu impacto no

desempenho do modelo. Para tanto, as 50 instâncias originais foram replicadas, mantendo-se

inalterados todos os demais parâmetros, com exceção dos dias preferidos pelos professores.

6.3 Casos de Testes

Considerando a divisão das instâncias em dois grupos — instâncias originais e

instâncias com todos os dias definidos como preferidos — e a inclusão da nova restrição proposta

no Capítulo 5, foram definidos quatro casos de teste:

• Caso 1: Instância original;

• Caso 2: Instância original com a inclusão da nova restrição;

• Caso 3: Instância com todos os dias definidos como preferidos;

• Caso 4: Instância com todos os dias definidos como preferidos, com a inclusão da nova

restrição.

Os casos de teste definidos nesta seção servem de base para a análise comparativa

apresentada no capítulo seguinte, no qual são discutidos os impactos da nova restrição proposta

e do relaxamento do critério de dias preferidos sobre o desempenho do modelo e do solver.
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7 RESULTADOS E DISCUSSÕES

Neste capítulo são apresentados e discutidos os resultados obtidos a partir dos experi-

mentos computacionais descritos no capítulo anterior. A análise concentra-se no desempenho do

modelo matemático sob diferentes configurações, considerando tanto a inclusão da nova restrição

proposta quanto variações em parâmetros relevantes do problema. São avaliados aspectos como

tempo de resolução, resolubilidade das instâncias e impacto das modificações estruturais sobre o

comportamento do solver, permitindo uma análise crítica dos efeitos das escolhas de modelagem

adotadas.

Os resultados apresentados neste capítulo baseiam-se em dados consolidados obtidos

a partir dos experimentos computacionais, cujas informações detalhadas — incluindo tabelas

completas de desempenho e saídas do solver — encontram-se organizadas nos Apêndices 4, 5, 6

e 7.

7.1 Motivação da Análise de Sensibilidade

A partir dos casos de teste definidos no Capítulo 6, a análise dos resultados revelou

uma diferença significativa no tempo de resolução de duas instâncias específicas cujos parâmetros

diferem exclusivamente quanto ao conjunto de dias preferidos pelos professores. Essa observação

motivou a investigação do impacto desse parâmetro sobre o desempenho do modelo matemático.

Diante desse comportamento, considerou-se promissora a realização de uma análise

de sensibilidade. Para tanto, as 50 instâncias originais foram replicadas, mantendo-se todos os

seus parâmetros inalterados, com exceção dos dias preferidos pelos professores. No conjunto

de instâncias modificadas, todos os dias da semana foram considerados preferidos, eliminando

penalidades associadas à relação professor–dia e, consequentemente, o impacto desse critério no

processo de resolução.

7.2 Análise de Sensibilidade

A análise de sensibilidade concentrou-se na avaliação do efeito do parâmetro refe-

rente aos dias preferidos dos professores sobre o desempenho do modelo. Ao considerar todos os

dias como preferidos, observou-se maior flexibilidade na alocação, o que se refletiu diretamente

na capacidade do solver em encontrar soluções dentro do tempo limite estabelecido.

De modo geral, essa modificação reduziu o grau de restrição do modelo, facilitando
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o processo de busca por soluções e resultando em tempos de execução inferiores quando

comparados às instâncias originais. Além disso, permitiu que instâncias anteriormente não

resolvidas fossem concluídas dentro do tempo estipulado, motivando a análise comparativa

apresentada nas subseções seguintes.

7.2.1 Impacto da Nova Restrição (Caso 1 × Caso 2)

No que se refere ao tempo de resolução, observa-se que a inclusão da nova restrição,

proposta no Capítulo 5, aumentou significativamente a dificuldade do problema. Enquanto no

Caso 1 o solver foi capaz de resolver 12 instâncias dentro do limite de tempo estabelecido, no

Caso 2 apenas 10 instâncias foram solucionadas, sendo que as demais atingiram o tempo máximo

permitido.

Esse comportamento indica que, embora a restrição proposta elimine completamente

as inconsistências do modelo, ela impõe maior rigor à busca por soluções, refletindo em um

aumento do esforço computacional necessário para a resolução.

7.2.2 Impacto do Relaxamento dos Dias Preferidos (Caso 1 × Caso 3)

Ao relaxar a restrição referente aos dias preferidos dos professores (Caso 3), observou-

se um aumento expressivo no número de instâncias resolvidas pelo solver. Enquanto no Caso 1

apenas 12 das 50 instâncias foram solucionadas — todas com soluções ótimas —, no Caso 3

esse número aumentou para 33 instâncias.

Dentre essas, 20 apresentaram soluções ótimas, enquanto 13 não admitiram soluções

viáveis, indicando que, mesmo com o relaxamento do critério de dias preferidos, as restrições

obrigatórias do modelo não puderam ser satisfeitas em determinados casos. Esse resultado evi-

dencia que o relaxamento amplia significativamente o espaço de busca por soluções, facilitando

a convergência do modelo, ainda que nem todas as instâncias admitam soluções viáveis.

7.2.3 Restrição Nova sob Relaxamento (Caso 3 × Caso 4)

Após o relaxamento da restrição referente aos dias preferidos dos professores (Caso

3), observou-se maior flexibilidade do modelo, resultando em um aumento no número de

instâncias resolvidas. Entretanto, mesmo nesse cenário, ainda foram identificadas inconsistências

nas soluções obtidas.
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Com a inclusão da nova restrição no modelo relaxado (Caso 4), verificou-se nova-

mente a eliminação dessas inconsistências nas instâncias resolvidas, indicando que a restrição

proposta mantém sua efetividade mesmo em um ambiente de maior liberdade de alocação. Esse

resultado evidencia a robustez da nova restrição proposta, uma vez que sua aplicação contribui

para a consistência estrutural do modelo tanto na formulação original quanto sob relaxamento.

7.2.4 Análise da Resolubilidade do Modelo

A análise da resolubilidade do modelo evidencia de forma clara o impacto das

diferentes configurações consideradas nos experimentos. A classificação das instâncias quanto à

obtenção de soluções ótimas, viáveis ou inviáveis baseia-se nos status retornados pelo solver

conforme descrito no Apêndice 3. Os dados completos referentes à resolubilidade das instâncias

em cada caso experimental encontram-se apresentados no Apêndice 8.

No Caso 1, correspondente às instâncias originais, o solver foi capaz de resolver

12 das 50 instâncias analisadas, o que representa uma taxa de resolubilidade de 24%. Com a

inclusão da nova restrição (Caso 2), observou-se uma redução na resolubilidade do modelo, com

apenas 10 instâncias solucionadas, correspondendo a 20% do total. Dentre essas, 2 instâncias

apresentaram soluções ótimas, enquanto as demais 8 resultaram em soluções viáveis, indicando

o aumento do rigor imposto ao modelo e, consequentemente, maior dificuldade no processo de

resolução.

Por outro lado, o relaxamento da restrição referente aos dias preferidos dos professo-

res (Caso 3) resultou em um aumento expressivo da resolubilidade, com 33 instâncias resolvidas,

o que corresponde a 66% do total. Nesse cenário, 20 instâncias apresentaram soluções ótimas,

enquanto 13 foram resolvidas com certificação de inviabilidade, evidenciando que a flexibilização

da restrição amplia significativamente a capacidade do solver em concluir as instâncias, seja por

meio da obtenção de soluções viáveis, seja pela comprovação formal de inviabilidade.

Finalmente, ao combinar o relaxamento dos dias preferidos com a inclusão da

restrição nova (Caso 4), a resolubilidade manteve-se elevada, com 32 instâncias resolvidas,

correspondendo a 64% do total. Dentre essas, 19 instâncias apresentaram soluções ótimas,

enquanto 13 foram resolvidas com certificação de inviabilidade, indicando que, embora a nova

restrição imponha maior rigor ao modelo, seu impacto sobre a resolubilidade é significativamente

atenuado quando aplicada em conjunto com o relaxamento da restrição de dias preferidos.
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7.3 Síntese dos Resultados

De modo geral, os resultados obtidos evidenciam que a restrição proposta no Capí-

tulo 5 é eficaz na eliminação das inconsistências identificadas no modelo, ainda que sua inclusão

implique um aumento do esforço computacional necessário para a resolução das instâncias. A

análise de sensibilidade e, em especial, a avaliação da resolubilidade do modelo — baseada

nos status retornados pelo solver, conforme descrito no Apêndice 3 — demonstram que parâ-

metros relacionados às preferências dos professores exercem influência significativa sobre a

complexidade do problema.

Observa-se que o relaxamento desse critério amplia substancialmente a capacidade

do solver em concluir as instâncias, seja por meio da obtenção de soluções viáveis, seja pela

certificação de inviabilidade, ao passo que a nova restrição mantém sua efetividade mesmo nesse

cenário. Esses resultados reforçam a relevância das modificações propostas e fornecem subsídios

consistentes para as conclusões apresentadas no capítulo seguinte.
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8 CONCLUSÕES E TRABALHOS FUTUROS

Este trabalho teve como objetivo analisar o modelo matemático proposto por Souza

(2019) para o Problema de Alocação de Salas (PAS), conforme delineado na Introdução, bem

como propor aprimoramentos que garantissem maior consistência estrutural e viabilidade prática

das soluções obtidas. Para isso, foi conduzido um estudo detalhado do modelo original, seguido

da identificação de limitações e da avaliação experimental das modificações propostas.

A principal contribuição deste estudo consiste na identificação de uma inconsistência

presente no modelo original, a qual permitia alocações inviáveis do ponto de vista prático, em

que uma mesma turma poderia ser designada simultaneamente para o mesmo dia e horário em

salas distintas. Essa situação compromete a interpretação e a aplicabilidade das soluções geradas,

uma vez que viola restrições implícitas do problema real. Para mitigar essa inconsistência, foi

proposta a inclusão de uma nova restrição ao modelo matemático, garantindo que, para cada dia,

uma turma pode estar associada a, no máximo, uma sala e um horário.

Os experimentos computacionais realizados demonstraram que a restrição proposta é

eficaz na eliminação da inconsistência identificada, preservando a coerência estrutural do modelo

mesmo sob diferentes configurações de entrada. Entretanto, os resultados também evidenciaram

que a inclusão dessa restrição torna o modelo mais restritivo, refletindo-se em aumento do esforço

computacional necessário para a obtenção de soluções, em função do maior rigor imposto ao

modelo pela restrição adicional.

Adicionalmente, foi conduzida uma análise de sensibilidade em relação ao parâmetro

de dias preferidos dos professores. Os resultados mostraram que o relaxamento dessa restrição

amplia significativamente o espaço de soluções viáveis, aumentando a resolubilidade do modelo

e permitindo que o solver conclua um número maior de instâncias, seja por meio da obtenção

de soluções ótimas, seja pela certificação de inviabilidade. Observou-se ainda que, quando

combinada com esse relaxamento, a restrição proposta mantém sua efetividade na eliminação

das inconsistências, sem comprometer de forma significativa a resolubilidade do modelo.

De modo geral, os resultados obtidos indicam que a restrição introduzida contribui

para a robustez e a consistência do modelo matemático, tornando-o mais aderente às condições

reais do problema de alocação de salas. Ao mesmo tempo, a análise experimental reforça a

importância do tratamento adequado dos parâmetros do modelo, uma vez que estes exercem

influência direta tanto sobre o desempenho computacional quanto sobre a capacidade de resolução

das instâncias.
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Como trabalhos futuros, sugere-se a investigação de estratégias que conciliem a

consistência estrutural do modelo com melhorias em sua escalabilidade, como a adoção de

técnicas de decomposição, métodos heurísticos ou abordagens híbridas. Além disso, os resultados

experimentais indicam a necessidade de um estudo mais aprofundado sobre outras dimensões do

problema que impactam o desempenho computacional.

Observou-se que instâncias com características aparentemente semelhantes — como

número de professores, turmas e configuração de dias preferidos — podem apresentar compor-

tamentos significativamente distintos em termos de tempo de resolução e número de iterações

exigidas pelo solver. Tal evidência sugere a existência de fatores estruturais adicionais — possi-

velmente relacionados à interação entre restrições e parâmetros do modelo — que merecem ser

explorados, contribuindo para uma compreensão mais abrangente da complexidade do problema

e para o aprimoramento das estratégias de resolução.

Por fim, ressalta-se que, em trabalhos futuros, pode ser explorada a flexibilização

da modelagem temporal adotada no modelo. Atualmente, considera-se que cada slot de horário

possui duração fixa de duas horas, hipótese adequada para a maioria das disciplinas analisadas.

Entretanto, observa-se que existem disciplinas cujas aulas são organizadas em blocos de duração

distinta, como três horas. A incorporação dessa flexibilidade na definição dos horários pode

tornar o modelo ainda mais aderente à realidade acadêmica, ainda que implique um aumento

na complexidade da formulação matemática e no esforço computacional necessário para sua

resolução.
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APÊNDICE A – ESTADOS DE RETORNO DO SOLVER

Tabela 3 – Estados de retorno do solver conforme a documentação oficial do OR-Tools.

Constante Valor / Status Significado

pywraplp.Solver.OPTIMAL 0 Solução ótima encontrada

pywraplp.Solver.FEASIBLE 1 Solução viável (não necessaria-

mente ótima)

pywraplp.Solver.INFEASIBLE 2 Nenhuma solução viável encontrada

pywraplp.Solver.UNBOUNDED 3 Modelo sem limites

pywraplp.Solver.ABNORMAL 4 Solver retornou estado anormal

pywraplp.Solver.MODEL_INVALID 5 Modelo inválido

pywraplp.Solver.NOT_SOLVED 6 Solver não foi resolvido

Fonte: Próprio autor.
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APÊNDICE B – RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 1

Tabela 4: Resultados experimentais completos — Caso 1: Instância original.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

1 8 13 14.82 6776 0 11 0

2 8 13 9.65 6163 0 10 0

3 11 18 21.90 8357 0 14 0

4 12 19 40.88 10980 0 15 0

5 13 21 35.51 11134 0 16 0

6 20 31 229.41 16765 0 25 0

7 20 31 193.10 14882 0 25 0

8 21 33 278.92 18619 0 29 0

9 22 34 307.65 22882 0 28 0

10 25 39 575.83 28591 0 31 0

11 28 44 1745.99 107896 0 35 0

12 28 44 781.01 35500 0 33 0

13 31 49 7194.79 665818 NaN NaN 6

14 32 50 7194.58 809015 NaN NaN 6

15 33 52 7201.01 711047 NaN NaN 6

16 40 62 7201.49 294702 NaN NaN 6

17 40 62 7137.08 349152 NaN NaN 6

18 41 64 7206.55 312775 NaN NaN 6

19 42 65 7250.15 265241 NaN NaN 6

20 45 70 7203.16 95913 NaN NaN 6

21 48 75 7333.28 73518 NaN NaN 6

22 48 75 7315.88 58402 NaN NaN 6

23 51 80 7203.91 0 NaN NaN 6

24 52 81 7203.70 0 NaN NaN 6

25 53 83 7203.82 0 NaN NaN 6

26 60 93 7204.84 0 NaN NaN 6

Continua na próxima página
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Tabela 4: Resultados experimentais completos — Caso 1: Instância original.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

27 60 93 7205.32 0 NaN NaN 6

28 61 95 7205.20 0 NaN NaN 6

29 62 96 7205.55 0 NaN NaN 6

30 65 101 7206.09 0 NaN NaN 6

31 68 106 7206.65 0 NaN NaN 6

32 68 106 7206.05 0 NaN NaN 6

33 71 111 7207.44 0 NaN NaN 6

34 72 112 7207.05 0 NaN NaN 6

35 73 114 7208.10 0 NaN NaN 6

36 80 124 7210.48 0 NaN NaN 6

37 80 124 7210.01 0 NaN NaN 6

38 81 126 7212.23 0 NaN NaN 6

39 82 127 7228.63 0 NaN NaN 6

40 85 132 7416.67 0 NaN NaN 6

41 88 137 7710.36 0 NaN NaN 6

42 88 137 7219.19 0 NaN NaN 6

43 91 142 7468.19 0 NaN NaN 6

44 92 143 7283.74 0 NaN NaN 6

45 93 145 7511.49 0 NaN NaN 6

46 100 155 7406.49 0 NaN NaN 6

47 100 155 7421.48 0 NaN NaN 6

48 101 157 7484.27 0 NaN NaN 6

49 102 158 7358.77 0 NaN NaN 6

50 105 163 7550.79 0 NaN NaN 6

Fonte: Próprio autor.
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APÊNDICE C – RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 2

Tabela 5: Resultados experimentais completos — Caso 2: Instância original com a inclusão da

nova restrição.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

1 8 13 829.49 654862 9 0 0

2 8 13 2208.39 2507114 11 0 0

3 11 18 7236.40 4580580 14 0 1

4 12 19 7200.11 3195487 15 0 1

5 13 21 7200.70 3785140 16 0 1

6 20 31 7204.13 955463 30 0 1

7 20 31 7204.45 1622191 32 0 1

8 21 33 7208.21 874564 28 0 1

9 22 34 7198.00 853000 36 0 1

10 25 39 7202.20 851455 53 0 1

11 28 44 7202.95 424401 NaN NaN 6

12 28 44 7200.02 712939 NaN NaN 6

13 31 49 7206.12 469229 NaN NaN 6

14 32 50 7228.87 633383 NaN NaN 6

15 33 52 7263.85 489161 NaN NaN 6

16 40 62 7201.73 288282 NaN NaN 6

17 40 62 7285.69 344427 NaN NaN 6

18 41 64 7209.42 292876 NaN NaN 6

19 42 65 7172.55 278459 NaN NaN 6

20 45 70 7340.57 120149 NaN NaN 6

21 48 75 7468.36 92011 NaN NaN 6

22 48 75 7417.82 61434 NaN NaN 6

23 51 80 7203.84 0 NaN NaN 6

24 52 81 7204.04 0 NaN NaN 6

25 53 83 7203.47 0 NaN NaN 6

Continua na próxima página
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Tabela 5: Resultados experimentais completos — Caso 2: Instância original com a inclusão da

nova restrição.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

26 60 93 7204.76 0 NaN NaN 6

27 60 93 7205.29 0 NaN NaN 6

28 61 95 7205.45 0 NaN NaN 6

29 62 96 7205.40 0 NaN NaN 6

30 65 101 7206.35 0 NaN NaN 6

31 68 106 7206.60 0 NaN NaN 6

32 68 106 7206.44 0 NaN NaN 6

33 71 111 7207.39 0 NaN NaN 6

34 72 112 7207.11 0 NaN NaN 6

35 73 114 7207.76 0 NaN NaN 6

36 80 124 7211.10 0 NaN NaN 6

37 80 124 7211.18 0 NaN NaN 6

38 81 126 7211.67 0 NaN NaN 6

39 82 127 7211.63 0 NaN NaN 6

40 85 132 7252.06 0 NaN NaN 6

41 88 137 7261.90 0 NaN NaN 6

42 88 137 7228.32 0 NaN NaN 6

43 91 142 7265.24 0 NaN NaN 6

44 92 143 7280.96 0 NaN NaN 6

45 93 145 7246.63 0 NaN NaN 6

46 100 155 7304.16 0 NaN NaN 6

47 100 155 7392.06 0 NaN NaN 6

48 101 157 7298.20 0 NaN NaN 6

49 102 158 7337.93 0 NaN NaN 6

50 105 163 7432.36 0 NaN NaN 6

Fonte: Próprio autor.
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APÊNDICE D – RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 3

Tabela 6: Resultados experimentais completos — Caso 3: Instância com todos os dias definidos

como preferidos.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

1 8 13 14.62 5623 0 10 0

2 8 13 6.10 4191 0 8 0

3 11 18 10.95 6219 0 11 0

4 12 19 20.43 6283 0 13 0

5 13 21 16.40 6544 0 11 0

6 20 31 267.41 28608 0 22 0

7 20 31 52.04 10870 0 25 0

8 21 33 275.67 34730 0 17 0

9 22 34 291.94 40053 0 18 0

10 25 39 213.65 20819 0 20 0

11 28 44 609.62 44579 0 23 0

12 28 44 290.50 15679 0 26 0

13 31 49 670.13 46196 0 28 0

14 32 50 466.60 36120 0 31 0

15 33 52 355.68 39262 0 30 0

16 40 62 2189.79 100352 0 26 0

17 40 62 725.14 25583 0 34 0

18 41 64 847.55 32666 0 37 0

19 42 65 2420.44 125915 0 33 0

20 45 70 2786.76 92990 0 45 0

21 48 75 1760.02 38123 NaN NaN 2

22 48 75 1669.75 37535 NaN NaN 2

23 51 80 1574.56 24171 NaN NaN 2

24 52 81 2695.99 28718 NaN NaN 2

25 53 83 2809.37 26568 NaN NaN 2

Continua na próxima página
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Tabela 6: Resultados experimentais completos — Caso 3: Instância com todos os dias definidos

como preferidos.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

26 60 93 4930.35 16894 NaN NaN 2

27 60 93 4566.75 21571 NaN NaN 2

28 61 95 4418.67 19661 NaN NaN 2

29 62 96 4128.00 10339 NaN NaN 2

30 65 101 4891.57 19213 NaN NaN 2

31 68 106 6841.94 24656 NaN NaN 2

32 68 106 6636.06 15951 NaN NaN 2

33 71 111 7206.90 0 NaN NaN 6

34 72 112 6723.06 14049 NaN NaN 2

35 73 114 7207.27 0 NaN NaN 6

36 80 124 7215.87 0 NaN NaN 6

37 80 124 7209.41 0 NaN NaN 6

38 81 126 7209.75 0 NaN NaN 6

39 82 127 7209.83 0 NaN NaN 6

40 85 132 7220.56 0 NaN NaN 6

41 88 137 7378.65 0 NaN NaN 6

42 88 137 7216.19 0 NaN NaN 6

43 91 142 7226.64 0 NaN NaN 6

44 92 143 7565.09 0 NaN NaN 6

45 93 145 7402.40 0 NaN NaN 6

46 100 155 7434.64 0 NaN NaN 6

47 100 155 7368.02 0 NaN NaN 6

48 101 157 7293.31 0 NaN NaN 6

49 102 158 7351.16 0 NaN NaN 6

50 105 163 7443.42 0 NaN NaN 6

Fonte: Próprio autor.
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APÊNDICE E – RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 4

Tabela 7: Resultados experimentais completos — Caso 4: Instância com todos os dias definidos

como preferidos, com a inclusão da nova restrição.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

1 8 13 11.48 4761 0 0 0

2 8 13 6.48 5126 0 0 0

3 11 18 11.49 6424 0 0 0

4 12 19 20.52 6134 0 0 0

5 13 21 16.66 6884 0 0 0

6 20 31 209.66 35720 0 0 0

7 20 31 66.00 12601 0 0 0

8 21 33 297.96 46849 0 0 0

9 22 34 308.02 59160 0 0 0

10 25 39 182.80 16536 0 0 0

11 28 44 702.63 52529 0 0 0

12 28 44 288.89 15510 0 0 0

13 31 49 745.16 65187 0 0 0

14 32 50 444.31 37886 0 0 0

15 33 52 495.22 47005 0 0 0

16 40 62 4196.57 215417 0 0 0

17 40 62 800.79 29152 0 0 0

18 41 64 828.12 30860 0 0 0

19 42 65 3469.05 194853 0 0 0

20 45 70 7216.78 347247 NaN NaN 6

21 48 75 1930.01 56458 NaN NaN 2

22 48 75 1871.79 50990 NaN NaN 2

23 51 80 1682.49 29343 NaN NaN 2

24 52 81 2568.67 29333 NaN NaN 2

25 53 83 2826.73 27653 NaN NaN 2

Continua na próxima página
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Tabela 7: Resultados experimentais completos — Caso 4: Instância com todos os dias definidos

como preferidos, com a inclusão da nova restrição.

Instância Professores Turmas Tempo (s) Iterações FO Inconsistências Status

26 60 93 4736.32 13776 NaN NaN 2

27 60 93 4568.48 15255 NaN NaN 2

28 61 95 4194.81 14037 NaN NaN 2

29 62 96 4196.96 17412 NaN NaN 2

30 65 101 4893.97 17553 NaN NaN 2

31 68 106 6698.31 13945 NaN NaN 2

32 68 106 6651.62 7783 NaN NaN 2

33 71 111 7207.77 0 NaN NaN 6

34 72 112 6850.36 23900 NaN NaN 2

35 73 114 7208.80 0 NaN NaN 6

36 80 124 7209.53 0 NaN NaN 6

37 80 124 7211.21 0 NaN NaN 6

38 81 126 7210.60 0 NaN NaN 6

39 82 127 7211.93 0 NaN NaN 6

40 85 132 7223.11 0 NaN NaN 6

41 88 137 7553.25 0 NaN NaN 6

42 88 137 7221.79 0 NaN NaN 6

43 91 142 7223.19 0 NaN NaN 6

44 92 143 7229.55 0 NaN NaN 6

45 93 145 7291.14 0 NaN NaN 6

46 100 155 7428.08 0 NaN NaN 6

47 100 155 7336.78 0 NaN NaN 6

48 101 157 7323.81 0 NaN NaN 6

49 102 158 7378.29 0 NaN NaN 6

50 105 163 7379.35 0 NaN NaN 6

Fonte: Próprio autor.
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APÊNDICE F – RESOLUBILIDADE

Tabela 8: Resumo da resolubilidade do modelo por caso experimental.

Caso Ótimas Viáveis Inviáveis Total de instâncias Resolubilidade (%)

1 12 0 0 12 24

2 2 8 0 10 20

3 20 0 13 33 66

4 19 0 13 32 64

Fonte: Próprio autor.
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