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RESUMO

O Problema de Alocagao de Salas (PAS) consiste na constru¢do de uma grade horaria que associe,
de forma consistente, turmas, professores, horarios e salas, respeitando um conjunto de restri¢des
institucionais e operacionais. Devido a sua natureza combinatoria, o PAS pode ser abordado por
meio de modelos matematicos de otimizagdo. Neste contexto, o presente trabalho tem como
objetivo analisar o modelo matemético proposto por Sousa (2019) para o PAS no ambito da
UFC — Campus Crateus, bem como propor aprimoramentos que assegurem maior consisténcia
estrutural e viabilidade prética das solugdes obtidas. A partir de uma anélise detalhada do
modelo original, foi identificada uma inconsisténcia que permite a alocac@o simultanea de uma
mesma turma para o mesmo dia e hordrio em salas distintas, resultando em solu¢des invidveis
do ponto de vista prético. Para mitigar esse problema, foi proposta a inclusdo de uma nova
restri¢do ao modelo matematico, garantindo que, para cada par (dia, horédrio), uma turma esteja
associada a, no maximo, uma sala. Experimentos computacionais foram realizados utilizando o
solver SCIP, por meio do framework OR-Tools, considerando diferentes grupos de instancias
e configuracdes do modelo. Os resultados demonstram que a restricdo proposta € eficaz na
eliminacao da inconsisténcia identificada, promovendo maior coeréncia estrutural do modelo.
Contudo, observou-se que sua inclusdo aumenta o rigor do problema, refletindo em maior
esfor¢co computacional. Adicionalmente, foi conduzida uma anélise de sensibilidade em relagdao
ao parametro de dias preferidos dos professores. Os resultados indicam que o relaxamento
dessa restricao amplia significativamente a resolubilidade do modelo, permitindo que o solver
conclua um maior nimero de instancias, seja por meio da obten¢do de solugdes 6timas ou pela
certificacdo de inviabilidade. De modo geral, o estudo evidencia a importancia do equilibrio entre
consisténcia estrutural e desempenho computacional, além de apontar dire¢des para trabalhos

futuros voltados a escalabilidade e ao aprofundamento da andlise de parametros do problema.

Palavras-chave: Otimizacdo combinatéria; Alocagdo de salas; Modelagem matematica; Elabo-

racao de hordrios.



ABSTRACT

The Classroom Assignment Problem (CAP) consists of constructing a timetable that consistently
assigns classes, professors, time slots, and rooms while satisfying a set of institutional and
operational constraints. Due to its combinatorial nature, the CAP can be addressed through
mathematical optimization models. In this context, this work aims to analyze the mathematical
model proposed by Sousa (2019) for the CAP in the scope of the Federal University of Ceard —
Crateus Campus, as well as to propose improvements that ensure greater structural consistency
and practical feasibility of the obtained solutions. A detailed analysis of the original model
revealed an inconsistency that allows a single class to be simultaneously assigned to the same
day and time slot in different rooms, leading to impractical solutions. To address this issue, a new
constraint is introduced into the mathematical model, ensuring that, for each (day, time slot) pair,
a class is associated with at most one room. Computational experiments were conducted using
the SCIP solver through the OR-Tools framework, considering different groups of instances
and model configurations. The results demonstrate that the proposed constraint is effective in
eliminating the identified inconsistency, thereby enhancing the structural coherence of the model.
However, its inclusion increases the strictness of the problem, resulting in higher computational
effort. Additionally, a sensitivity analysis was performed with respect to the professors’ preferred
teaching days parameter. The results indicate that relaxing this constraint significantly improves
the model’s resolvability, enabling the solver to conclude a larger number of instances either
by finding optimal solutions or by certifying infeasibility. Overall, the study highlights the
importance of balancing structural consistency and computational performance, and points to

future research directions focused on scalability and deeper investigation of problem parameters.

Keywords: Combinatorial optimization; Classroom assignment; Mathematical modeling; Time-

tabling.
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1 INTRODUCAO

A construcdo de grades horarias académicas eficientes € uma tarefa fundamental para
institui¢des de ensino superior. Nesse contexto, o Problema de Alocacdo de Salas (PAS) destaca-
se como um desafio relevante, pois envolve a distribuicdo adequada de recursos como salas,
professores e turmas, respeitando simultaneamente um conjunto de requisitos e restricoes insti-
tucionais. Trata-se, portanto, de um problema de otimiza¢do combinatdria, cuja complexidade
cresce de acordo com o nimero de elementos envolvidos e com a interag@o entre eles.

Uma abordagem amplamente utilizada para tratar problemas dessa natureza € a
modelagem matemdtica, capaz de representar formalmente as relacdes e restricdes do sistema.
No ambito da Universidade Federal do Ceara — Campus Cratets, Sousa (2019) prop6s um modelo
matemadtico voltado a formaliza¢do do PAS, contemplando caracteristicas especificas do campus,
como cargas hordrias, disponibilidade de salas, preferéncias de professores e demais parametros
pertinentes ao processo de constru¢do da grade.

Embora o modelo de Sousa (2019) represente adequadamente o problema em seu
contexto geral, uma andlise aprofundada revela aspectos que podem ser aprimorados para ampliar
a consisténcia e a eficiéncia das solugdes geradas. Em particular, certas configura¢des permitidas
pelo modelo original podem levar a alocagdes invidveis na pratica, o que motiva a necessidade
de ajustes, revisoes estruturais e, eventualmente, a inclusio de novas restri¢des.

Dessa forma, o presente trabalho tem como objetivo analisar o modelo matematico
proposto por Sousa (2019), identificar limitacdes que impactam a coeréncia das solucdes e
propor melhorias que contribuam para aumentar sua robustez. Além disso, busca-se avaliar o
comportamento do modelo antes e apds as modificacdes sugeridas, por meio de experimentos
computacionais conduzidos com diferentes instancias do PAS, incluindo uma andlise de sen-
sibilidade em relacdo ao parametro de dias preferidos pelos professores, a fim de investigar
seu impacto na resolubilidade e no desempenho computacional do modelo. Assim, pretende-se
oferecer uma contribuig¢do para a evolucdo da modelagem do problema no contexto da UFC —

Campus Cratets, bem como para o entendimento de seus desafios e potenciais extensoes.

1.1 Objetivo Geral

Aprimorar o modelo matematico para o Problema de Alocacao de Salas (PAS) no

contexto da UFC — Campus Crateus, identificando limitagdes relacionadas a consisténcia



14

estrutural das solugdes, de modo a garantir maior viabilidade pratica.

1.2 Objetivos Especificos

* Analisar o modelo matematico proposto por Souza (2019) para o Problema de Alocagdo
de Salas, identificando suas principais caracteristicas, hipdteses e limitagdes estruturais;

* Identificar e formalizar uma inconsisténcia presente no modelo original, relacionada a
possibilidade de alocacdo simultanea de uma mesma turma para o mesmo dia e hordrio em
salas distintas;

» Formalizar uma nova restricdo matematica capaz de eliminar a inconsisténcia identificada,
garantindo maior coeréncia estrutural e viabilidade pratica das solugdes obtidas;

* Avaliar experimentalmente o impacto da restricao proposta sobre o desempenho computa-
cional do modelo, considerando métricas como tempo de resolucdo, esfor¢co computacional
e resolubilidade;

* Realizar uma andlise de sensibilidade em relacdo ao parametro de dias preferidos dos
professores, investigando sua influéncia no comportamento do modelo e na capacidade do

solver em concluir as instancias.

1.3 Estrutura do Trabalho

O presente trabalho estd organizado em oito capitulos. O Capitulo 1 apresenta a
introducdo, os objetivos e a estrutura do trabalho. O Capitulo 2 aborda a fundamentagdo tedrica
necessaria ao desenvolvimento do estudo. O Capitulo 3 descreve o Problema de Alocagdo de
Salas, enquanto o Capitulo 4 apresenta o0 modelo mateméatico adotado para o PAS no contexto da
UFC — Campus Cratets.

No Capitulo 5 sdo discutidas melhorias propostas ao modelo. O Capitulo 6 descreve
0s experimentos computacionais realizados. O Capitulo 7 apresenta e discute os resultados

obtidos. Por fim, o Capitulo 8 retine as conclusdes e sugestdes para trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os conceitos tedricos fundamentais para a compreensao do
Problema de Alocacao de Salas e do modelo matemético analisado neste trabalho. Inicialmente,
sdo abordados os principios da modelagem matematica e da otimizacdo combinatéria, que
fornecem a base para a formulacdo de problemas com varidveis discretas e multiplas restricoes.

Em seguida, sdo discutidos os conceitos de Programacido Matematica, com €nfase em
Programacdo Linear, Programacdo Inteira e na forma-padrdo dos modelos. Por fim, apresentam-
se as nocdes de 6timo global e 6timo local, essenciais para a interpretacdo das solugdes obtidas e

para a andlise dos resultados apresentados nos capitulos posteriores.

2.1 Modelagem Matematica

O modelo matematico é uma representagdo idealizada e simplificada de um sistema
real, utilizada com o objetivo de analisar, compreender e apoiar a tomada de decisao em pro-
blemas complexos. Modelos matemaéticos sao empregados em diversas dreas do conhecimento,
permitindo estudar o comportamento de sistemas reais, bem como buscar solucdes e prever
resultados sob diferentes condi¢des (HILLIER; LIEBERMAN, 2015; TAHA, 2017).

Além disso, os modelos auxiliam na identificacdo dos dados de entrada necessérios,
na explicitacdo dos objetivos do problema e na quantificagdao das decisdes envolvidas, tornando
explicitas as relacOes entre varidveis e restricoes (ARENALES et al., 2015).

O processo de constru¢do de um modelo matematico €, de modo geral, constituido
por trés etapas principais (HILLIER; LIEBERMAN, 2015; ARENALES et al., 2015):

1. Identificar as varidveis de decis@o do modelo.

2. Listar as restri¢des do modelo.

3. Identificar a funcao objetivo que deve ser maximizada ou minimizada.

As varidveis de decisdo sdo normalmente representadas por simbolos algébricos,
como x e y, ou ainda xj, xp, entre outros. As restricdes sdo expressas por meio de equagdes
ou inequagdes, geralmente lineares, que delimitam o conjunto de solugdes vidveis. A funcdo
objetivo, por sua vez, representa matematicamente o critério a ser otimizado pelo modelo Bazaraa

et al. (2010).
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Como exemplo, considere o seguinte modelo matemaético:

min  g(x) = 4x? — Zx% +x3 — 10x4 + 5x5 2.1
s.a: xp+7x3 Xx4—3x5> 16 2.2)
2x1 X xp — 3x4 + 2x5 < 57 2.3)
Sx14+xp —9x4 > 18 2.4)
X1, X2, X3, X4, X5 >0 (2.5

No modelo apresentado, a funcdo objetivo estd definida em (2.1) como uma funcio
de minimizacdo, cujo objetivo € encontrar os valores das varidveis que conduzam ao menor valor
possivel da fun¢@o. O conjunto de valores admissiveis para as varidveis € determinado pelas

restri¢des, representadas pelas inequagdes (2.2) a (2.5).

2.2 Problema de Otimizacao Combinatéria

Um problema de otimizac¢do consiste em determinar os valores extremos — minimo
ou maximo — de uma funcdo objetivo definida sobre um determinado dominio. Quando as
varidveis envolvidas assumem valores discretos, o problema € classificado como um Problema de
Otimizac¢ao Combinatéria (NEMHAUSER; WOLSEY, 1988; PAPADIMITRIOU; STEIGLITZ,
1998).

De forma geral, um modelo de otimizagdo pode ser descrito como:

min  f(x) max  f(x) (2.6)

sujeitoa xe€X sujeitoa x € X 2.7)

Na formulagdo acima, f(x) representa a func¢do objetivo a ser minimizada ou maxi-
mizada sobre o conjunto X, denominado conjunto factivel, que contém todas as solu¢des que
satisfazem as restri¢gdes do problema. Uma solug@o x € dita factivel quando pertence ao conjunto
X; caso contrario, é considerada infactivel (AHUIJA et al., 1993).

Assim, a otimizagao combinatdria envolve o processo de busca por solugdes factiveis
dentro de um conjunto finito ou enumeravel de alternativas, até que nenhuma solu¢ao melhor
possa ser encontrada, considerando o critério definido pela fung¢do objetivo (GOLDBARG;

LUNA, 2005).
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2.3 Programaciao Matematica

O termo programacao matematica, também conhecido como otimizacao matematica,
refere-se ao conjunto de técnicas utilizadas para a minimiza¢do ou maximizacao de uma fungio
objetivo envolvendo multiplas varidveis, sujeita a um conjunto de restricdes (BAZARAA et al.,
2010; BERTSIMAS; TSITSIKLIS, 1997).

Nos modelos de programacao matemadtica, a estrutura do problema € caracterizada
por uma fung¢do objetivo expressa de forma algébrica e por restricdes formuladas como equagdes
ou desigualdades, que delimitam o espago de solucdes vidveis. Dependendo da natureza das
varidveis e das expressdes envolvidas, esses modelos podem ser classificados como lineares,

inteiros, ndo lineares ou mistos (ARENALES et al., 2015).

2.3.1 Programacao Linear

A representacdo de determinado sistema em modelos matematicos, geralmente se d4
por um conjunto de equacdes ou expressdes matemadticas. Se o objetivo é uma funcao linear e as
restricdes sdo igualdades ou desigualdades lineares, tal problema é denominado problema linear,
e o processo de formulacao e resolucio deste € chamado programacao linear.

O algoritmo simplex consiste em um algoritmo geral extremamente eficiente para a
solugdo de sistemas lineares. Visto que o modelo de programacao linear reduz um sistema real a
um conjunto de equacdes e inequagdes lineares em que se pretende otimizar uma fungdo objetivo,
este algoritmo pode ser usado para a resolugdo de problemas desta natureza (GOLDBARG;
LUNA, 2005).

Um outro algoritmo, o método do elipsoide, foi originalmente desenvolvido para a
resolucdo de problemas de otimizagdo ndo linear. Em 1979, Khachiyan demonstrou que esse
método poderia ser adaptado para resolver problemas de otimizagdo linear em tempo polinomial.
Entretanto, apesar de sua relevancia tedrica, o método apresenta desempenho computacional
insatisfatorio na pratica, caracterizado por lenta convergéncia e elevado custo por iteracdo, o que

limita sua utilizacdo em aplicacOes préticas (KORTE; VYGEN, 2012).

2.3.2 Forma-padrao

Um modelo € dito estd na forma-padrdo se possui as seguintes caracteristicas:

1. Funcio objetivo é do tipo minimizacao.
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2. Todas as restri¢des sdo equagdes.
3. Todas as varidveis sdo nao-negativas.
4. A constante no lado direito das restricdes € ndo-negativa.

Uma representacdao de modelo na forma-padrao:

min  f(xp,...,x,) =c1x1+ ...+ CpXp (2.8)
s.a: apx)+apx+...+apx, =b 2.9)
ar1x1+axpxo+...+ayx, = b (2.10)
(2.11)

AmiX1 + amaxo + ...+ aupXxn = by, (2.12)

X1y ooey X >0 (2.13)

Nem sempre os modelos sdo formulados em formato padrio, porém, existem formas

de converter um modelo para a forma-padrao.

Pode-se usar as seguintes equivaléncias:

1. No caso da fun¢ao objetivo ser de maximizacao.

max f(x) =(—1) x min —f(x) (2.14)

. Geralmente as restricdes tendem a aparecer no formato de inequacdes. Para

converter uma inequacao em equacao pode-se usar dois tipos de varidveis: as
varidveis de folga e as varidveis de excesso.

—Varidveis de folga: s@o utilizadas para converter inequacdes do tipo < em =.
anxy + ... +apx, < by = apxy + ... +apx, +x{ = by, sendo x{ > 0 uma
varidvel de folga;

Por exemplo, 7x; 4+ 5x; < 6 = 7x; +5x3 +x3 =6, x3 > 0.

—Varidveis de excesso: sdo utilizadas para converter inequagdes do tipo > em =.
ax1x1 + ...+ axyxn > by = axixy + ... +ayx, — x5 = by, sendo x5 > 0 uma
variavel de excesso);

Por exemplo, 2x; 4+ 5x; > 10 = 2x1 +5x, —x3 = 10, x3 > 0.

. Ocorréncia de b; < 0.

Se algum b; < 0, multiplicamos a restri¢do por —1:
apnXx1+...+aipxn < bi = —ajix;1 — ... — ajpxy, > —by;

Por exemplo, 2x; — 7x; = —4 = —2x1 +7x, = 4.
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4. Varidvel ndo positiva.
Neste caso basta substituir a varidvel por sua simétrica. Por exemplo, x; <0,

basta fazer x} = —X;j, € substituir x; por x} em todas as equacdes do problema.
2.3.3 Programacgao Inteira

Em um modelo de otimiza¢do onde qualquer varidvel nao puder assumir valores
continuos, isto é, estando condicionadas a assumir valores discretos, € dito que este modelo
constitui um problema de Programacao Inteira (GOLDBARG; LUNA, 2005).

Segundo Maculan e Fampa (2006), quando nos problemas de programagao linear
obrigarmos algumas ou todas as varidveis de decisdo a s6 admitirem valores inteiros, estaremos
diante de um problema de programacao linear inteira. Quando nem todas as varidveis sdo restritas
a valores inteiros, ¢ denominado um problema de programacao linear mista.

A seguir, um modelo de Maculan e Fampa (2006):

max z=x1—3x3+4x3 (2.15)
sa: 2x;+x—x3<4 (2.16)
4x;1 —3x, <2 (2.17)
3x1+2x+x3 <3 (2.18)

X1, x2, x3 >0 (2.19)

X7 € X3 inteiros. (2.20)

No modelo acima, as varidveis x, e x3 estdo restringidas a valores inteiros € nao
negativos, x; ¢ um real qualquer ndo negativo. Assim, o modelo acima pode ser classificado

como um Problema de Programacdo Linear Mista.

2.4 Otimo Global

Como visto na se¢@o 2.2, em um problema de otimizac¢do temos uma fung¢do objetivo,
varidveis de decisdo, e um conjunto de restricdes que por sua vez delimitam os valores que
as varidveis podem asssumir, formando assim um conjunto discreto de solu¢des factiveis do
problema. Dentre as solugdes factiveis, a solu¢do 6tima, isto é, o 6timo global, € a que induz a

funcdo objetivo a assumir o menor (ou maior) valor possivel.
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Como pode ser visto na Figura 1 a seguir, o ponto em vermelho indica o 6timo global,

uma vez que esse ponto leva a funcao objetivo ao menor valor possivel.

Figura 1 — Representagdo grafica para um problema de mini-
mizacao.

@ Otimo local
@ Otimo Global

Fonte: Sousa (2019).

2.5 Otimo Local

Durante o processo de exploracio do espago de busca em problemas de otimizagao,
¢ possivel encontrar solu¢des que minimizam a fun¢do objetivo apenas em uma regido especifica
desse espaco. Essas solucdes, embora apresentem valores da fung¢do objetivo inferiores aos
de suas vizinhas imediatas, ndo correspondem necessariamente a melhor solu¢do global do
problema, sendo caracterizadas como 6timos locais.

Na Figura 1, observa-se que os pontos em verde representam solu¢des que mini-
mizam a funcdo objetivo em determinados pontos do espaco de busca. No entanto, existem
solucdes associadas a valores ainda menores da fun¢do objetivo, evidenciando que tais pontos
nao correspondem a um 6timo global, mas sim a 6timos locais.

Diante dos conceitos apresentados neste capitulo, no préximo capitulo sera apresen-
tada a formalizagdo do Problema de Alocagdo de Salas, abordando suas defini¢des, caracteristicas

e fundamentos tedricos.
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3 PROBLEMA DA ALOCACAO DE SALAS

O processo de construcao da grade de horéarios € realizado de tempos em tempos
pelas institui¢des de ensino, podendo ser semestralmente, anualmente, ou em qualquer outro
intervalo de tempo segundo as regras da institui¢cdo. O processo consiste em alocar de forma
combinada diversos recursos, como salas de aula, professores, etc., tendo em vista restri¢des
impostas, como por exemplo a disponibilidade de professores. Dada suas caracteristicas, este
processo consiste em um problema combinatdrio.

Naturalmente, se imagina que uma possivel forma de achar a melhor solu¢do de um
problema combinatdrio seja enumerar todas as possiveis solugdes para este problema. Entretanto,
quanto maior o problema, maior o nimero de solu¢des possiveis, e em aplicacdes reais, como no
caso do problema da alocacdo de salas, pode-se apresentar um nimero muito elevado de recursos
e restri¢des, assim, ndo sendo possivel enumerar todas as solugdes possiveis em um tempo habil.
Como pdde ser visto durante o capitulo anterior, existem diferentes estratégias de modelagem,
bem como diferentes métodos de resolucao dadas as caracteristicas do problema.

Na necessidade de explorar e encontrar uma boa configuracdo de hordrios para a
Universidade Federal do Ceara - Campus Crateus, Sousa (2019) apresenta em seu trabalho um
modelo matematico construido em termos de Otimizacdo Combinatdria, na qual foi denominado
como Problema de Alocagdo de Salas (PAS), e aplicagdo de um procedimento heuristico para
sua solucdo.

A concepc¢do do modelo matemaético ndo linear, que posteriormente foi linearizado,
¢ dada por um conjunto de recursos — professores, turmas, dias e horarios da semana — que
devem ser alocados a um conjunto de salas. E considerada uma solugio factivel aquela em que
todas as turmas sdo devidamente alocadas, cumprindo suas cargas horarias pratica e tedrica,
respeitando a carga hordria de trabalho dos professores.

O modelo também contempla como restri¢des fortes, isto é, restricdes que devem ser
obrigatoriamente satisfeitas, que toda turma esteja associada a exatamente um professor, que nao
ocorram conflitos na alocagdo de turmas e que, para turmas com cargas hordrias tedrica e pratica,
as atividades tedricas sejam alocadas em dias anteriores as atividades praticas.

Quanto as restri¢des fracas, ou seja, aquelas cujo atendimento € desejavel, mas ndo
obrigatdrio, considera-se que os professores devem ser alocados preferencialmente em seus
dias de preferéncia e que as alocacdes professor—turma respeitem o perfil de formacgdo de cada

docente.
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Como se trata de um problema real do Campus da UFC em Crateus, apenas sete
configuragdes para alocacdo poderiam ser pontuadas, uma vez que dada a operacionalizagao do
campus em questdo, até o momento do desenvolvimento do estudo, s poderiam ser referenciados
os periodos letivos de 2016.1 a 2019.1. Frente a isso, o autor se utilizou de um gerador de
instincias proprio desenvolvido exclusivamente para o contexto do problema, baseado nos
parametros extraidos das instancias reais, de forma a manter-se na realidade do cendrio.

Os experimentos computacionais se deram por meio de duas estratégias: a primeira
com o algoritmo Branch and Bound, e a segunda com o método heuristico Busca Tabu. Os testes
foram aplicados em execucao tnica com o algoritmo Branch and Bound para a validagao do
modelo e andlise do comportamento das instancias reais e parte das instancias geradas. Dada
andlise dos resultados obtidos, foi validada a qualidade das instancias geradas, e também o
modelo computacional proposto.

Ainda analisando os resultados obtidos por meio da execu¢ao do Branch and Bound,
notou-se um crescimento do tempo computacional gasto para a resoluc¢do de instancias maiores,
assim, justificando procedimentos heuristicos com o objetivo de reduzir o tempo computacional
gasto na garantia de solucdes com boas qualidades. Os testes realizados também foram aplicados
em execucao Unica com o procedimento heuristico Busca Tabu. A andlise dos dados obtidos
foi realizada de duas formas: a verificagdo da qualidade das solucdes produzidas e a andlise da
composicao da fungdo objetivo, com énfase nas restri¢cdes do tipo hard, que sdo prioritarias e
devem ser obrigatoriamente atendidas pelo modelo.

A partir disso, € demostrado pela taxa de qualidade, o encontro de solucdes vidveis
para o problema, com altas porcentagens de solucdes factiveis encontradas para os quatro
cendrios de testes experimentados e com a andlise da composi¢ao da fungdo objetivo, € visto que
o0 algoritmo se mostra promissor na geracao de solu¢des com baixa porcentagem de erro.

Um outro estudo, Bucco ef al. (2017) também aborda a problemética da construcao
de grades hordrias em universidades. Neste artigo, € objetivado desenvolver um modelo de
programacdo linear para o problema, a fim de apoiar os gestores de uma universidade na
constru¢do das grades hordrias das aulas.

Na abordagem da problematica da constru¢do das grades hordrias, os autores se
baseiam no conceito de master timetabling, por Carter e Laporte (1998), que consiste em alocar
primeiramente disciplinas, professores, salas e demais recursos materiais e pedagdgicos, para

que entdo, os alunos escolham as disciplinas que lhe convenham de acordo com as grades ja
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prontas.

Devido a isso, 0 modelo ndo conta com o conjunto de estudantes. Assumindo que
cada turma ja tem um professor associado a ela, o conjunto de professores se faz presente para
evitar conflitos de hordrios, uma vez que professores ndo podem ministrar mais de uma aula ao
mesmo tempo. Em relagcdo aos espacos fisicos, apenas salas de aula sdo consideradas para a
modelagem, apds isso, sdo identificadas as restri¢des fracas e fortes.

Foram realizados testes a partir de um conjunto de dados coletados de uma insti-
tuicdo real, e devido a complexidade do problema, como resultado, se viu a impossibilidade
de solucionar a instancia completa de forma 6tima. Para contornar isso, o problema principal
foi dividido em dois subproblemas: O subproblema I, e o subproblema II. O subproblema I
consiste na constru¢do das grades hordrias semanais, com o objetivo de distribuir uniformemente
os encontros entre todos os horérios. O subproblema II consiste na atribuicdo de salas de aula as
turmas, tendo como objetivo a restricao fraca de minimizar o custo com a utilizagdao de unidades.

Os modelos matemaéticos foram resolvidos pelo pacote de otimizacdo IBM ILOG
CPLEX Optimization Studio v12.5.1 com as configuracdes default. Como resultado, demonstrou-
se que € possivel construir grades horérias factiveis, diminuindo a demanda por salas de aula,
possibilitada por uma distribuicdo de aulas mais equilibrada ao longo da semana. Em relagdo as
restri¢des hordrias dos professores, este estudo pressupds que cada professor estava disponivel
em todos os hordrios do turno indicado para suas turmas, entretanto, dado o ganho de 57% de
eficiéncia de distribuicdo de salas, os autores indicam que hd muita margem para que mesmo
essas restri¢oes fossem consideradas, os ganhos permanegam elevados.

A partir da caracterizacdo do Problema de Alocacdo de Salas apresentada neste
capitulo, o préximo capitulo dedica-se a apresentacdo detalhada do modelo matemaético adotado,
originalmente proposto por Sousa (2019) no contexto da Universidade Federal do Ceara —

Campus Crateus, no qual sio descritas e explicadas suas varidveis, restricoes e funcdo objetivo.



24
4 PAS DA UNIVERSIDADE FEDERAL DO CEARA, CAMPUS CRATEUS

Como ja visto no Capitulo 3, o modelo conta com trés restri¢des fortes. A primeira
consiste em que toda turma deve estar associada a exatamente um professor; a segunda, em que
duas turmas ndo podem apresentar conflitos em sua alocacao; e a terceira estabelece que, para
turmas com carga horéria tedrica e prética, as atividades tedricas devem ser alocadas em dias
anteriores as atividades préticas.

Quanto as restri¢des fracas, sdo duas: a primeira determina que os professores devem
ser alocados preferencialmente em seus dias preferidos, informagao esta tomada como dado de
entrada do problema; e a segunda estabelece que as alocacOes professor—turma devem respeitar
o perfil de formagdo de cada docente, sendo esses perfis também considerados como dados de
entrada.

Os parametros de entradas do modelo sao: P, o conjunto de professores; T, 0 con-
junto de turmas; 7, C T', representando para cada p € P, o subconjunto das turmas que compdem
o perfil académico do professor p; D, o conjunto de dias da semana; D,, C D, representando para
cada p € P, o subconjunto dos dias em que o professor p prefere lecionar; D' C D, que contém
os dias da semana com incidéncia de feriados do semestre; H, o conjunto de slots de hordrios; S,
o conjunto de salas; ch! € Z+, representando a carga horéria teérica da turma ¢ € T; ch? € Z+,
representando a carga hordria pratica da turma ¢ € T'; ch), € Z+, representando a carga horaria
do professor p € P. Ressalta-se que o modelo considera um horizonte de planejamento semanal,
no qual as alocagdes de turmas, professores, dias, hordrios e salas se repetem a cada semana do
periodo letivo.

O modelo conta com as seguintes varidveis: z,; representando a associagdo entre
um professor € um dia da semana; x,, representando a associa¢do entre um professor e uma
turma; yZ i representando a associa¢do de uma turma ¢ € T com carga hordria praticaaumi € D,
jeEHekeS; ytTi ik representando a associagdo de uma turma ¢t € T com carga hordria tedrica
aumdiai € D, um horério j € H e uma sala k € §; y;; jx representando a carga hordria total da
turma sem distingdo entre carga hordria pratica e tedrica; a, representando a penalidade a um
professor quando € associado a uma turma fora do subconjunto 7, das turmas que compdem o
perfil académico do professor em questdo; b, representando a penalidade a um professor quando
€ associado a um dia fora do subconjunto D, de dias em que o professor em questdo prefere
lecionar. As varidveis x,, yﬁ ik ytTl- o Vrijk © Zpi sdo tomadas como bindrias. a,, € b, sdo tomadas

como inteiras e ndo-negativas.
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A seguir a apresentacdo completa do modelo, bem como a descri¢do das restricdes e

funcao objetivo.

min  z(a,f)=0-Y ap,+B-) by (4.1)
peP peP
Y xp=1vieT (4.2)
pEP
Z Xpt < ap,Vp €P 4.3)
T\T,,
Y (ch] +chf)xp = chy,Vp € P (4.4)
teT
Y'Y Yolau= ’ VieT (4.5)
ieD jeH keS
Z Z Zytz]k Vt erT (46)
i€D jeH keS
Y vix<1VieDVjcHNVkeS 4.7)
teT
Viijk = Vi + YVt € T,Vi € D,Yj € H,Vk € S 48)
Xpt - Viijk < Zpin VP €PNt € TNie D,Vj e HVke S (4.9)
Y %i<byVpeP (4.10)

i€D\D,
Vi S 1=yl Ve TVie DYNi eD :i<iVj,je€HNVkk€S. 4.11)
xp €{0,1},Ype PVt €T (4.12)
Vix €401}, ¥t €T.Vie DVj € HVkeS (4.13)
i €{0,1},Vt€T,Vie D,Vj € HVKES. (4.14)
yijk €{0,1},Vt € T,Vie D,Yj € H,Vk € S. (4.15)
zpi €{0,1},Yp e PVie D (4.16)
ap € B 4.17)
by € B (4.18)
o€zl (4.19)
BeZi (4.20)

Em (4.1) esta a funcdo objetivo, que trata da penalizacdo de dois parametros, o e
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B. o representa a atribui¢cdo de um professor a uma turma fora de seu perfil. B, por sua vez,
representa a associagdo entre um professor p € P ¢ um dia fora de D,. A restri¢do (4.2) garante
que toda turma deve estar associada a exatamente um professor. A restricao (4.3) descreve
quando um professor € associado a uma turma fora de seu perfil. A restri¢do (4.5) assegura que
toda turma cumpra sua carga hordria tedrica, enquanto a restricao (4.6) assegura que toda turma
cumpra sua carga hordria pratica, sendo adotada, no modelo, a convencao de que cada slot de
horério corresponde a uma hora-aula com duragdo de 2 horas.

A restri¢do (4.7) assegura que para qualquer dia, o slot de horério e sala, estardo
associados a apenas uma turma. A restricao (4.8) representa a associacao entre ytTl. ik © yﬁ k> Para
que seja atribuido o valor de y;; ;. A restrigdo (4.9) assegura que um professor esteja associado
a uma turma com mesmo dia, slot de horario e sala. A restri¢ao (4.10) descreve a associa¢ao
de um professor a um dia fora do conjunto de seus dias preferenciais para lecionar. A restricao

(4.11) mantém o controle sobre uma turma tedrica anteceder uma turma pratica.
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S MELHORIAS

O modelo matematico proposto por Sousa (2019) foi definido com o propdsito de
formalizar o Problema de Alocagdo de Salas (PAS). Contudo, sua resolu¢do nao foi conduzida por
meio de métodos exatos, mas sim por abordagens heuristicas aplicadas ao problema formalizado.
Uma andlise mais detalhada, entretanto, permite identificar uma inconsisténcia no modelo
original, a qual é discutida na Se¢do 5.1 por meio de um exemplo minimo que a evidencia na
Secdo 5.2. Em seguida, na Secdo 5.3, apresenta-se a solucio proposta neste trabalho, que consiste

na introducdo de uma nova restricao ao modelo, visando mitigar o problema identificado.

5.1 Inconsisténcia

O modelo proposto por Sousa (2019) permite alocagcdes em que uma mesma turma
seja designada, simultaneamente, para o mesmo dia e hordrio em diferentes salas. Esse tipo
de alocacao € considerado, neste trabalho, uma inconsisténcia, uma vez que inviabiliza o
aproveitamento integral da turma, dado que ndo € possivel que ela esteja presente em duas salas
a0 mesmo tempo.

Em outras palavras, para cada par (dia, hordrio), uma turma deve estar associada a,
no maximo, uma sala, de modo a garantir a consisténcia e a viabilidade pratica da solugdo. A
seguir, apresenta-se uma ilustracdo da ocorréncia dessa inconsisténcia, construida a partir de um

exemplo de instancia simplificada do problema.

5.2 Tlustracido da Inconsisténcia

Para ilustrar a inconsisténcia definida, considere a seguinte instancia simplificada:

* Conjuntos principais:

— P (Professores): [1]

— T (Turmas): [1]

— D (Dias da semana): [1, 2, 3, 4, 5]

— D’ (Dias com feriado): [5]

— H (Horarios): [1315]

— S (Salas): [1, 2]
* Parametros por turma:

- ch,T (Carga hordria tedrica): Turma 1: 4 horas
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— ch? (Carga hordria pratica): Turma 1: 0 horas
* Parametros por professor:

— chy (Carga hordria maxima): Professor 1: 4 horas
* Preferéncias dos professores:

— T, (Turmas preferidas): Professor 1: [1]

— D, (Dias preferidos): Professor 1: [1]

A partir dessa instancia simplificada, obtém-se uma valoracio das varidveis em que
a associacao entre professor e turma € ativada, bem como a selecao de um tnico dia para o
professor. As varidveis correspondentes a carga hordria pratica permanecem desativadas, uma
vez que a instancia considera apenas carga hordria tedrica.

Observa-se que a alocacdo da carga hordria tedrica atribui a mesma turma ao mesmo
par (dia, hordrio) em mais de uma sala simultaneamente, o que se reflete diretamente nas
varidveis agregadas de alocagdo. As varidveis auxiliares associadas a penalizacdes assumem
valor nulo nessa instancia. A valoragdo completa das varidveis € apresentada nos anexos para
fins de referéncia.

Por se tratar de uma instancia simplificada com o objetivo de evidenciar a inconsis-
téncia apresentada, a turma nao possui carga hordria pratica, apenas tedérica. Conforme descrito
no Capitulo 4, a varidvel ytTi ik Tepresenta a associacdo de uma turma ¢t € T, com carga hordria
tedrica, aum diai € D, hordrio j € H e sala k € S. A seguir, apresenta-se a disposi¢ao da varidvel

y[Tl. jk para a Turma 1 em forma de tabela.

Tabela 1 — Disponibilidade de salas por dia e horério (com inconsisténcia).

Dia i | Horario j | Salal | Sala 2
1 13:15 1 1
2 13:15 0 0
3 13:15 0 0
4 13:15 0 0
5 13:15 0 0

Fonte: Préprio autor.

Observa-se, na primeira linha da Tabela 1— que representa o par (dia, hordrio) (1,
1315) — que as colunas correspondentes as Salas 1 e 2 recebem o valor 1. Isso indica que a
turma estd alocada simultaneamente em ambas as salas para essa combinagao.

A solucao completa é dada da seguinte forma:

* Funciao objetivo (valor): 0,0
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Atribuicoes professor — turma: Professor 1 atribuido a Turma 1

Dias de aula por professor: Professor 1 trabalha no dia 1

Penalidades: a,[1] =0,0 b,[1]=0,0

* Cronograma de alocaciao (Dia — Horario — Sala — Turma):
— Dia 1 — Horario 1315 — Sala 1 — Turma 1 (tedrica)
— Dia 1 — Horério 1315 — Sala 2 — Turma 1 (tedrica)
A solugdo apresenta valor 6timo igual a 0,0 na fungdo objetivo e atribui corretamente
o Professor 1 a Turma 1, alocando suas aulas no dia 1, com auséncia de penalidades tanto na
atribui¢do de turmas quanto em relacdo aos dias preferidos. Entretanto, ao analisar o cronograma
resultante, verifica-se que a Turma 1 foi alocada simultaneamente, no mesmo dia e hordrio, em
duas salas distintas.
Define-se, portanto, uma inconsisténcia como a alocac¢do simultanea de uma mesma
turma para o mesmo dia e hordrio, independentemente da sala atribuida. A fim de evitar esse tipo
de ocorréncia, este trabalho propde a introdu¢io de uma nova restricao ao modelo matematico,

especificamente voltada ao tratamento dessa inconsisténcia.

5.3 Nova Restricao

A seguir, apresenta-se a restri¢do proposta:

Y Y i <1, VieDVteT
JEH keS

Para cada dia i e para cada turma ¢, o nimero de combinagdes (j,k) — ou seja, pares
horério/sala — atribuidas a turma nesse dia deve ser, no maximo, igual a 1. Em outras palavras:
admite-se, no maximo, uma alocacao por dia para cada turma. Essa restricio impede que uma
mesma turma seja alocada em mais de um horério e/ou sala no mesmo dia, limitando os slots
ocupados por uma turma ¢ no dia i.

Com a incorporacdo da nova restricdo ao modelo, a inconsisténcia anteriormente
identificada € eliminada. A nova valoracdo das varidveis passa a garantir que, para cada par (dia,
hordrio), a turma seja associada a uma unica sala, respeitando a viabilidade pratica da alocacgdo.

Observa-se que a associacdo entre professor e turma permanece vdlida, bem como a
selecdo dos dias atribuidos ao professor. As varidveis correspondentes a carga hordria pratica

continuam desativadas, uma vez que a instancia considera apenas carga hordria tedrica. Dife-
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rentemente da solugdo anterior, a alocac@o da carga hordria tedrica ndo ocorre simultaneamente
em mais de uma sala, refletindo o efeito direto da restri¢do adicionada ao modelo. As varidveis
auxiliares associadas a penaliza¢Oes assumem valores compativeis com essa nova configuracao,
uma vez que o professor foi alocado em um dia fora do seu conjunto de dias preferidos.
Novamente, apresenta-se a disposi¢ao da varidvel y[Tl. jx para a Turma 1 em forma de

tabela.

Tabela 2 — Disponibilidade de salas por dia e hordrio (sem inconsisténcia).

Dia i | Horario j | Salal | Sala 2
1 13:15 1 0
2 13:15 0 0
3 13:15 0 0
4 13:15 1 0
5 13:15 0 0

Fonte: Préprio autor.

Observa-se que, para cada par (dia, hordrio), apenas uma sala recebe o valor 1. A
solucdo completa apresenta-se da seguinte forma:
* Funcio objetivo (valor): 1,0
* Atribuicoes professor — turma: Professor 1 atribuido a Turma 1

* Dias de aula por professor: Professor 1 trabalha no dia 1

Dias de aula por professor: Professor 1 trabalha no dia 4

Penalidades: a,[1] =0,0 b,[1]=1,0

* Cronograma de alocaciao (Dia — Horario — Sala — Turma):
— Dia 1 — Horario 1315 — Sala 1 — Turma 1 (tedrica)

— Dia4 — Horéario 1315 — Sala 1 — Turma 1 (tedrica)
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6 EXPERIMENTOS

Neste capitulo, apresenta-se o ambiente computacional utilizado para a realizagdo dos
experimentos com os modelos matemaéticos desenvolvidos. Também sdo descritas as instancias
consideradas nos testes, bem como a defini¢do dos diferentes casos experimentais adotados para

a andlise do desempenho do modelo e do solver.

6.1 Ambiente de Testes

A implementacdo do modelo matematico foi realizada utilizando a linguagem de
programacdo Python, versdo 3.13.2. Para a resolu¢do do modelo, empregou-se o solver SCIP
(Solving Constraint Integer Programs)! , um solver de otimizagio gratuito e de c6digo aberto,
acessado por meio do framework OR-Tools? , versio 9.12.4544, desenvolvido pelo Google.

Os experimentos foram executados em um ambiente computacional composto por
um processador Intel Core 15-10400F, 16 GB de memdria RAM (2 x 8 GB DDR4 a 2666 MHz)
e sistema operacional Microsoft Windows 11, versdao 10.0.26100.4351, com arquitetura de 64
bits. Para cada instincia, foi estabelecido um limite maximo de tempo de execucao de 2 horas

(7,200 segundos) para o processo de resolucao.

6.2 Instancias

As instancias contém, entre outros elementos, conjuntos de professores, turmas,
hordrios e salas disponiveis, além de relagdes especificas, como preferéncias de dias por professor,
associagdes entre professores e turmas e exigéncias de carga hordria para cada turma. A seguir,
apresenta-se a estrutura geral de uma instancia, bem como a forma como elas foram organizadas

para os experimentos.
6.2.1 Exemplo de Instancia

Na Figura 2, apresenta-se a estrutura de uma instancia do problema. As oito primeiras
linhas correspondem aos conjuntos principais: a primeira e a segunda linhas representam,
respectivamente, o conjunto de professores e o conjunto de turmas; as duas linhas seguintes

indicam as cargas hordrias prética e tedrica, associadas as turmas na mesma ordem definida na

Disponivel em: <https://www.scipopt.org>.

2 Disponivel em: <https://developers.google.com/optimization>.
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segunda linha. Em seguida, sdo apresentados os conjuntos de dias, dias com feriados, horérios e
salas disponiveis.
As linhas 9 a 16 descrevem as preferéncias de turmas por professor, indicadas pelo

[Tl

simbolo “-”, seguido do cédigo do professor e das turmas correspondentes. As linhas 17 a 24
representam as preferéncias de dias por professor, indicadas pelo simbolo “*”, seguido do c6digo
do professor e dos dias preferidos. Por fim, as linhas 25 a 32 especificam a carga hordria total de
cada professor, indicada pelo simbolo “>”, seguido do c6digo do professor e da quantidade de

horas atribuidas.

Figura 2 — Representacdo de uma instancia.

1 0,60,70,80
By G T, B TS
B A R
P B A

1315,1517,171930,192130
152 3:458; 6. 7:8:9:10

Oai—-10,1
10 |-20,2
ISaE—30 ;3
12 |-40,4,5

13 |-50,6,7
14 |-60,8,9

s O

Conjuntos Principais

Relagio Professor x Turma

15 |-70,10,11
80, 12,13

17 |*10,4,3

18 |*20,4,3

19 |*30,2,4

20 |*40,3,2

21 |*50,4,3

22 |*60,3,4,2

23 [*70,2,3

24 |*80,2,3

25 |>10,2
26 |>20,4
27 |>30,4
28 |>40,10

29 |>50,12
30 |>60,12
|
32 |>80,14

Fonte: Préprio autor.

Relagdo Professor x Dia

Carga Horaria do Professor

6.2.2 Grupos de Instancias

Inicialmente, os experimentos foram conduzidos utilizando as mesmas 50 instancias
apresentadas por Souza em seu trabalho, algumas das quais representam cendrios reais de
semestres da UFC — Campus Crateus. Ao longo desse conjunto, observam-se variacdes tanto
no ndmero de elementos envolvidos — como professores e turmas — quanto em parametros
especificos, como preferéncias individuais e a defini¢cao de feriados. Essas variagdes resultam

em instancias com diferentes niveis de complexidade, possibilitando avaliar o desempenho do



33

modelo matematico e do solver.

No decorrer da anélise, constatou-se uma diferenca significativa no tempo de resolu-
¢do de duas instancias especificas, que diferem apenas quanto ao conjunto de dias preferidos
pelos professores. Essa disparidade evidenciou a relevancia desse parametro, tornando promis-
sora a realizacdo de uma andlise de sensibilidade com o objetivo de investigar seu impacto no
desempenho do modelo. Para tanto, as 50 instancias originais foram replicadas, mantendo-se

inalterados todos os demais parametros, com excecao dos dias preferidos pelos professores.

6.3 Casos de Testes

Considerando a divisao das instancias em dois grupos — instancias originais e
instancias com todos os dias definidos como preferidos — e a inclusio da nova restricdo proposta
no Capitulo 5, foram definidos quatro casos de teste:

* Caso 1: Instancia original;

* Caso 2: Instancia original com a inclusdo da nova restri¢ao;

* Caso 3: Instancia com todos os dias definidos como preferidos;

* Caso 4: Instancia com todos os dias definidos como preferidos, com a inclusdo da nova
restri¢ao.

Os casos de teste definidos nesta secao servem de base para a andlise comparativa
apresentada no capitulo seguinte, no qual s@o discutidos os impactos da nova restri¢ao proposta

e do relaxamento do critério de dias preferidos sobre o desempenho do modelo e do solver.
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7 RESULTADOS E DISCUSSOES

Neste capitulo sdo apresentados e discutidos os resultados obtidos a partir dos experi-
mentos computacionais descritos no capitulo anterior. A andlise concentra-se no desempenho do
modelo matematico sob diferentes configuracdes, considerando tanto a inclusdo da nova restri¢ao
proposta quanto variacdes em parametros relevantes do problema. Sao avaliados aspectos como
tempo de resolucao, resolubilidade das instancias e impacto das modificacdes estruturais sobre o
comportamento do solver, permitindo uma andlise critica dos efeitos das escolhas de modelagem
adotadas.

Os resultados apresentados neste capitulo baseiam-se em dados consolidados obtidos
a partir dos experimentos computacionais, cujas informacgdes detalhadas — incluindo tabelas
completas de desempenho e saidas do solver — encontram-se organizadas nos Apéndices 4, 5, 6

e’7.

7.1 Motivacao da Analise de Sensibilidade

A partir dos casos de teste definidos no Capitulo 6, a analise dos resultados revelou
uma diferenca significativa no tempo de resolucio de duas instancias especificas cujos parametros
diferem exclusivamente quanto ao conjunto de dias preferidos pelos professores. Essa observac¢ao
motivou a investigacdo do impacto desse parametro sobre o desempenho do modelo matemaético.

Diante desse comportamento, considerou-se promissora a realizacdo de uma anélise
de sensibilidade. Para tanto, as 50 instancias originais foram replicadas, mantendo-se todos os
seus parametros inalterados, com excecdo dos dias preferidos pelos professores. No conjunto
de instancias modificadas, todos os dias da semana foram considerados preferidos, eliminando
penalidades associadas a relac@o professor—dia e, consequentemente, o impacto desse critério no

processo de resolucao.

7.2 Analise de Sensibilidade

A andlise de sensibilidade concentrou-se na avaliagdo do efeito do parametro refe-
rente aos dias preferidos dos professores sobre o desempenho do modelo. Ao considerar todos 0s
dias como preferidos, observou-se maior flexibilidade na alocagao, o que se refletiu diretamente
na capacidade do solver em encontrar solucdes dentro do tempo limite estabelecido.

De modo geral, essa modificacdo reduziu o grau de restricdo do modelo, facilitando
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o processo de busca por solucdes e resultando em tempos de execucdo inferiores quando
comparados as instancias originais. Além disso, permitiu que instncias anteriormente nao
resolvidas fossem concluidas dentro do tempo estipulado, motivando a andlise comparativa

apresentada nas subsecdes seguintes.

7.2.1 Impacto da Nova Restrigcdo (Caso 1 x Caso 2)

No que se refere ao tempo de resolugdo, observa-se que a inclusdo da nova restricao,
proposta no Capitulo 5, aumentou significativamente a dificuldade do problema. Enquanto no
Caso 1 o solver foi capaz de resolver 12 instancias dentro do limite de tempo estabelecido, no
Caso 2 apenas 10 instancias foram solucionadas, sendo que as demais atingiram o tempo maximo
permitido.

Esse comportamento indica que, embora a restri¢do proposta elimine completamente
as inconsisténcias do modelo, ela impde maior rigor a busca por solugdes, refletindo em um

aumento do esfor¢co computacional necessdrio para a resolugao.

7.2.2 Impacto do Relaxamento dos Dias Preferidos (Caso 1 x Caso 3)

Ao relaxar a restricdo referente aos dias preferidos dos professores (Caso 3), observou-
se um aumento expressivo no nimero de instancias resolvidas pelo solver. Enquanto no Caso 1
apenas 12 das 50 instancias foram solucionadas — todas com solucdes 6timas —, no Caso 3
esse numero aumentou para 33 instancias.

Dentre essas, 20 apresentaram solugdes 6timas, enquanto 13 ndo admitiram solucdes
vidveis, indicando que, mesmo com o relaxamento do critério de dias preferidos, as restricdes
obrigatdrias do modelo ndo puderam ser satisfeitas em determinados casos. Esse resultado evi-
dencia que o relaxamento amplia significativamente o espago de busca por solucdes, facilitando

a convergéncia do modelo, ainda que nem todas as instancias admitam solugdes vidveis.

7.2.3 Restricao Nova sob Relaxamento (Caso 3 x Caso 4)

Ap6s o relaxamento da restric@o referente aos dias preferidos dos professores (Caso
3), observou-se maior flexibilidade do modelo, resultando em um aumento no nimero de
instancias resolvidas. Entretanto, mesmo nesse cenario, ainda foram identificadas inconsisténcias

nas solucdes obtidas.
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Com a inclusdo da nova restricdo no modelo relaxado (Caso 4), verificou-se nova-
mente a eliminacdo dessas inconsisténcias nas instancias resolvidas, indicando que a restricao
proposta mantém sua efetividade mesmo em um ambiente de maior liberdade de alocacio. Esse
resultado evidencia a robustez da nova restricao proposta, uma vez que sua aplicacdo contribui

para a consisténcia estrutural do modelo tanto na formulacdo original quanto sob relaxamento.

7.2.4 Analise da Resolubilidade do Modelo

A andlise da resolubilidade do modelo evidencia de forma clara o impacto das
diferentes configuracdes consideradas nos experimentos. A classificacdo das instancias quanto a
obtencdo de solugdes Gtimas, vidveis ou invidveis baseia-se nos status retornados pelo solver
conforme descrito no Apéndice 3. Os dados completos referentes a resolubilidade das instancias
em cada caso experimental encontram-se apresentados no Apéndice 8.

No Caso 1, correspondente as instancias originais, o solver foi capaz de resolver
12 das 50 instancias analisadas, o que representa uma taxa de resolubilidade de 24%. Com a
inclusdo da nova restricio (Caso 2), observou-se uma reducdo na resolubilidade do modelo, com
apenas 10 instancias solucionadas, correspondendo a 20% do total. Dentre essas, 2 instancias
apresentaram solugdes 6timas, enquanto as demais 8 resultaram em solucdes vidveis, indicando
0 aumento do rigor imposto ao modelo e, consequentemente, maior dificuldade no processo de
resolucao.

Por outro lado, o relaxamento da restricao referente aos dias preferidos dos professo-
res (Caso 3) resultou em um aumento expressivo da resolubilidade, com 33 instincias resolvidas,
o que corresponde a 66% do total. Nesse cendrio, 20 instancias apresentaram solu¢des Gtimas,
enquanto 13 foram resolvidas com certificacdo de inviabilidade, evidenciando que a flexibiliza¢ao
da restri¢cdo amplia significativamente a capacidade do solver em concluir as instancias, seja por
meio da obtencdo de solucdes vidveis, seja pela comprovacao formal de inviabilidade.

Finalmente, ao combinar o relaxamento dos dias preferidos com a inclusdo da
restricdo nova (Caso 4), a resolubilidade manteve-se elevada, com 32 instancias resolvidas,
correspondendo a 64% do total. Dentre essas, 19 instancias apresentaram solucdes Otimas,
enquanto 13 foram resolvidas com certificacdo de inviabilidade, indicando que, embora a nova
restricdo imponha maior rigor ao modelo, seu impacto sobre a resolubilidade € significativamente

atenuado quando aplicada em conjunto com o relaxamento da restri¢ao de dias preferidos.
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7.3 Sintese dos Resultados

De modo geral, os resultados obtidos evidenciam que a restri¢do proposta no Capi-
tulo 5 € eficaz na eliminacdo das inconsisténcias identificadas no modelo, ainda que sua inclusio
implique um aumento do esforco computacional necessério para a resolucdo das instancias. A
andlise de sensibilidade e, em especial, a avaliagdao da resolubilidade do modelo — baseada
nos status retornados pelo solver, conforme descrito no Apéndice 3 — demonstram que para-
metros relacionados as preferéncias dos professores exercem influéncia significativa sobre a
complexidade do problema.

Observa-se que o relaxamento desse critério amplia substancialmente a capacidade
do solver em concluir as instancias, seja por meio da obtengdo de solucdes viaveis, seja pela
certificacdo de inviabilidade, ao passo que a nova restricdo mantém sua efetividade mesmo nesse
cendrio. Esses resultados reforcam a relevancia das modifica¢des propostas e fornecem subsidios

consistentes para as conclusdes apresentadas no capitulo seguinte.
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8 CONCLUSOES E TRABALHOS FUTUROS

Este trabalho teve como objetivo analisar 0 modelo matematico proposto por Souza
(2019) para o Problema de Alocagdo de Salas (PAS), conforme delineado na Introdugdo, bem
como propor aprimoramentos que garantissem maior consisténcia estrutural e viabilidade prética
das solugdes obtidas. Para isso, foi conduzido um estudo detalhado do modelo original, seguido
da identificacdo de limitacdes e da avaliagdo experimental das modificacdes propostas.

A principal contribui¢do deste estudo consiste na identificagdo de uma inconsisténcia
presente no modelo original, a qual permitia alocagdes invidveis do ponto de vista pratico, em
que uma mesma turma poderia ser designada simultaneamente para o mesmo dia e horario em
salas distintas. Essa situacdo compromete a interpretacio e a aplicabilidade das solugdes geradas,
uma vez que viola restri¢des implicitas do problema real. Para mitigar essa inconsisténcia, foi
proposta a inclusdo de uma nova restricdo ao modelo matemadtico, garantindo que, para cada dia,
uma turma pode estar associada a, no maximo, uma sala e um horério.

Os experimentos computacionais realizados demonstraram que a restri¢cao proposta é
eficaz na eliminacdo da inconsisténcia identificada, preservando a coeréncia estrutural do modelo
mesmo sob diferentes configuracdes de entrada. Entretanto, os resultados também evidenciaram
que a inclusdo dessa restricao torna o modelo mais restritivo, refletindo-se em aumento do esfor¢o
computacional necessdrio para a obtencdo de solucdes, em fun¢do do maior rigor imposto ao
modelo pela restri¢ao adicional.

Adicionalmente, foi conduzida uma andlise de sensibilidade em relacdo ao parametro
de dias preferidos dos professores. Os resultados mostraram que o relaxamento dessa restri¢ao
amplia significativamente o espaco de solucdes vidveis, aumentando a resolubilidade do modelo
e permitindo que o solver conclua um nimero maior de instancias, seja por meio da obtencdo
de solugdes Otimas, seja pela certificacdo de inviabilidade. Observou-se ainda que, quando
combinada com esse relaxamento, a restri¢ao proposta mantém sua efetividade na eliminacdo
das inconsisténcias, sem comprometer de forma significativa a resolubilidade do modelo.

De modo geral, os resultados obtidos indicam que a restricao introduzida contribui
para a robustez e a consisténcia do modelo matemadtico, tornando-o mais aderente as condi¢des
reais do problema de alocacdo de salas. Ao mesmo tempo, a andlise experimental reforca a
importancia do tratamento adequado dos parametros do modelo, uma vez que estes exercem
influéncia direta tanto sobre o desempenho computacional quanto sobre a capacidade de resolug¢ao

das instancias.
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Como trabalhos futuros, sugere-se a investigacao de estratégias que conciliem a
consisténcia estrutural do modelo com melhorias em sua escalabilidade, como a ado¢ao de
técnicas de decomposi¢do, métodos heuristicos ou abordagens hibridas. Além disso, os resultados
experimentais indicam a necessidade de um estudo mais aprofundado sobre outras dimensdes do
problema que impactam o desempenho computacional.

Observou-se que instancias com caracteristicas aparentemente semelhantes — como
nimero de professores, turmas e configuracio de dias preferidos — podem apresentar compor-
tamentos significativamente distintos em termos de tempo de resolucdo e nimero de iteracdes
exigidas pelo solver. Tal evidéncia sugere a existéncia de fatores estruturais adicionais — possi-
velmente relacionados a interacd@o entre restricdes e parametros do modelo — que merecem ser
explorados, contribuindo para uma compreensao mais abrangente da complexidade do problema
e para o aprimoramento das estratégias de resolucao.

Por fim, ressalta-se que, em trabalhos futuros, pode ser explorada a flexibilizacao
da modelagem temporal adotada no modelo. Atualmente, considera-se que cada slot de horério
possui duragdo fixa de duas horas, hipétese adequada para a maioria das disciplinas analisadas.
Entretanto, observa-se que existem disciplinas cujas aulas sdo organizadas em blocos de durag¢ao
distinta, como trés horas. A incorporagdo dessa flexibilidade na definicao dos horarios pode
tornar o modelo ainda mais aderente a realidade académica, ainda que implique um aumento
na complexidade da formulacdo matematica e no esforco computacional necessario para sua

resolugdo.
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ESTADOS DE RETORNO DO SOLVER

Tabela 3 — Estados de retorno do solver conforme a documentagao oficial do OR-Tools.

Constante Valor / Status  Significado
pywraplp.Solver.OPTIMAL 0 Solucdo 6tima encontrada
pywraplp.Solver.FEASIBLE 1 Solu¢do vidvel (ndo necessaria-
mente otima)
pywraplp.Solver.INFEASIBLE 2 Nenhuma solugdo vidvel encontrada
pywraplp.Solver.UNBOUNDED 3 Modelo sem limites
pywraplp.Solver.ABNORMAL 4 Solver retornou estado anormal
pywraplp.Solver.MODEL_INVALID 5 Modelo invalido
pywraplp.Solver.NOT_SOLVED 6 Solver nio foi resolvido

Fonte: Préprio autor.
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RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 1

Tabela 4: Resultados experimentais completos — Caso 1: Instancia original.
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Instancia Professores Turmas Tempo (s) Iteracdbes FO Inconsisténcias Status
1 8 13 14.82 6776 0 11 0
2 8 13 9.65 6163 0 10 0
3 11 18 21.90 8357 0 14 0
4 12 19 40.88 10980 0 15 0
5 13 21 35.51 11134 0 16 0
6 20 31 22941 16765 0 25 0
7 20 31 193.10 14882 0 25 0
8 21 33 278.92 18619 0 29 0
9 22 34 307.65 22882 0 28 0
10 25 39 575.83 28591 0 31 0
11 28 44 1745.99 107896 0 35 0
12 28 44 781.01 35500 0 33 0
13 31 49 719479 665818 NaN NaN 6
14 32 50 7194.58 809015 NaN NaN 6
15 33 52 7201.01 711047 NaN NaN 6
16 40 62 7201.49 294702 NaN NaN 6
17 40 62 7137.08 349152 NaN NaN 6
18 41 64 7206.55 312775 NaN NaN 6
19 42 65 7250.15 265241 NaN NaN 6

20 45 70 7203.16 95913  NaN NaN 6
21 48 75 7333.28 73518  NaN NaN 6
22 48 75 7315.88 58402  NaN NaN 6
23 51 80 7203.91 0 NaN NaN 6
24 52 81 7203.70 0 NaN NaN 6
25 53 83 7203.82 0 NaN NaN 6
26 60 93 7204.84 0 NaN NaN 6

Continua na proxima pagina
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Instancia Professores Turmas Tempo (s) Iteracdes FO Inconsisténcias Status
27 60 93 7205.32 0 NaN NaN 6
28 61 95 7205.20 0 NaN NaN 6
29 62 96 7205.55 0 NaN NaN 6
30 65 101 7206.09 0 NaN NaN 6
31 68 106 7206.65 0 NaN NaN 6
32 68 106 7206.05 0 NaN NaN 6
33 71 111 7207.44 0 NaN NaN 6
34 72 112 7207.05 0 NaN NaN 6
35 73 114 7208.10 0 NaN NaN 6
36 80 124 7210.48 0 NaN NaN 6
37 80 124 7210.01 0 NaN NaN 6
38 81 126 7212.23 0 NaN NaN 6
39 82 127 7228.63 0 NaN NaN 6
40 85 132 7416.67 0 NaN NaN 6
41 88 137 7710.36 0 NaN NaN 6
42 88 137 7219.19 0 NaN NaN 6
43 91 142 7468.19 0 NaN NaN 6
44 92 143 7283.74 0 NaN NaN 6
45 93 145 7511.49 0 NaN NaN 6
46 100 155 7406.49 0 NaN NaN 6
47 100 155 7421.48 0 NaN NaN 6
48 101 157 7484.27 0 NaN NaN 6
49 102 158 7358.77 0 NaN NaN 6
50 105 163 7550.79 0 NaN NaN 6

Fonte: Préprio autor.
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RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 2

Tabela 5: Resultados experimentais completos — Caso 2: Instancia original com a inclusdo da

nova restri¢ao.

Instancia Professores Turmas Tempo (s) Iteracdes FO Inconsisténcias Status
1 8 13 829.49 654862 9 0 0
2 8 13 2208.39 2507114 11 0 0
3 11 18 7236.40 4580580 14 0 1
4 12 19 7200.11 3195487 15 0 1
5 13 21 7200.70 3785140 16 0 1
6 20 31 7204.13 955463 30 0 1
7 20 31 7204.45 1622191 32 0 1
8 21 33 7208.21 874564 28 0 1
9 22 34 7198.00 853000 36 0 1
10 25 39 7202.20 851455 53 0 1
11 28 44 7202.95 424401 NaN NaN 6
12 28 44 7200.02 712939 NaN NaN 6
13 31 49 7206.12 469229 NaN NaN 6
14 32 50 7228.87 633383 NaN NaN 6
15 33 52 7263.85 489161 NaN NaN 6
16 40 62 7201.73 288282 NaN NaN 6
17 40 62 7285.69 344427 NaN NaN 6
18 41 64 7209.42 292876 NaN NaN 6
19 42 65 7172.55 278459 NaN NaN 6

20 45 70 7340.57 120149 NaN NaN 6
21 48 75 7468.36 92011  NaN NaN 6
22 48 75 7417.82 61434  NaN NaN 6
23 51 80 7203.84 0 NaN NaN 6
24 52 81 7204.04 0 NaN NaN 6
25 53 83 7203.47 0 NaN NaN 6

Continua na proxima pagina
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Tabela 5: Resultados experimentais completos — Caso 2: Instincia original com a inclusdo da

nova restri¢ao.

Instancia Professores Turmas Tempo (s) Iteragdes FO Inconsisténcias Status
26 60 93 7204.76 0 NaN NaN 6
27 60 93 7205.29 0 NaN NaN 6
28 61 95 7205.45 0 NaN NaN 6
29 62 96 7205.40 0 NaN NaN 6
30 65 101 7206.35 0 NaN NaN 6
31 68 106 7206.60 0 NaN NaN 6
32 68 106 7206.44 0 NaN NaN 6
33 71 111 7207.39 0 NaN NaN 6
34 72 112 7207.11 0 NaN NaN 6
35 73 114 7207.76 0 NaN NaN 6
36 80 124 7211.10 0 NaN NaN 6
37 80 124 7211.18 0 NaN NaN 6
38 81 126 7211.67 0 NaN NaN 6
39 82 127 7211.63 0 NaN NaN 6
40 85 132 7252.06 0 NaN NaN 6
41 88 137 7261.90 0 NaN NaN 6
42 88 137 7228.32 0 NaN NaN 6
43 91 142 7265.24 0 NaN NaN 6
44 92 143 7280.96 0 NaN NaN 6
45 93 145 7246.63 0 NaN NaN 6
46 100 155 7304.16 0 NaN NaN 6
47 100 155 7392.06 0 NaN NaN 6
48 101 157 7298.20 0 NaN NaN 6
49 102 158 7337.93 0 NaN NaN 6
50 105 163 7432.36 0 NaN NaN 6

Fonte: Préprio autor.
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Tabela 6: Resultados experimentais completos — Caso 3: Instdncia com todos os dias definidos

como preferidos.

Instancia Professores Turmas Tempo (s) Iteracdes FO Inconsisténcias Status
1 8 13 14.62 5623 0 10 0
2 8 13 6.10 4191 0 8 0
3 11 18 10.95 6219 0 11 0
4 12 19 20.43 6283 0 13 0
5 13 21 16.40 6544 0 11 0
6 20 31 267.41 28608 0 22 0
7 20 31 52.04 10870 0 25 0
8 21 33 275.67 34730 0 17 0
9 22 34 291.94 40053 0 18 0
10 25 39 213.65 20819 0 20 0
11 28 44 609.62 44579 0 23 0
12 28 44 290.50 15679 0 26 0
13 31 49 670.13 46196 0 28 0
14 32 50 466.60 36120 0 31 0
15 33 52 355.68 39262 0 30 0
16 40 62 2189.79 100352 0 26 0
17 40 62 725.14 25583 0 34 0
18 41 64 847.55 32666 0 37 0
19 42 65 2420.44 125915 0 33 0

20 45 70 2786.76 92990 0 45 0
21 48 75 1760.02 38123  NaN NaN 2
22 48 75 1669.75 37535 NaN NaN 2
23 51 80 1574.56 24171  NaN NaN 2
24 52 81 2695.99 28718  NaN NaN 2
25 53 83 2809.37 26568  NaN NaN 2

Continua na proxima pagina
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Tabela 6: Resultados experimentais completos — Caso 3: Instancia com todos os dias definidos

como preferidos.

Instancia Professores Turmas Tempo (s) Iteragdes FO Inconsisténcias Status
26 60 93 4930.35 16894  NaN NaN 2
27 60 93 4566.75 21571  NaN NaN 2
28 61 95 4418.67 19661  NaN NaN 2
29 62 96 4128.00 10339  NaN NaN 2
30 65 101 4891.57 19213  NaN NaN 2
31 68 106 6841.94 24656  NaN NaN 2
32 68 106 6636.06 15951 NaN NaN 2
33 71 111 7206.90 0 NaN NaN 6
34 72 112 6723.06 14049  NaN NaN 2
35 73 114 7207.27 0 NaN NaN 6
36 80 124 7215.87 0 NaN NaN 6
37 80 124 7209.41 0 NaN NaN 6
38 81 126 7209.75 0 NaN NaN 6
39 82 127 7209.83 0 NaN NaN 6
40 85 132 7220.56 0 NaN NaN 6
41 88 137 7378.65 0 NaN NaN 6
42 88 137 7216.19 0 NaN NaN 6
43 91 142 7226.64 0 NaN NaN 6
44 92 143 7565.09 0 NaN NaN 6
45 93 145 7402.40 0 NaN NaN 6
46 100 155 7434.64 0 NaN NaN 6
47 100 155 7368.02 0 NaN NaN 6
48 101 157 7293.31 0 NaN NaN 6
49 102 158 7351.16 0 NaN NaN 6
50 105 163 7443.42 0 NaN NaN 6

Fonte: Préprio autor.
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RESULTADOS EXPERIMENTAIS COMPLETOS — CASO 4

Tabela 7: Resultados experimentais completos — Caso 4: Instancia com todos os dias definidos

como preferidos, com a inclusdao da nova restrigao.

Instancia Professores Turmas Tempo (s) Iteracdes FO Inconsisténcias Status
1 8 13 11.48 4761 0 0 0
2 8 13 6.48 5126 0 0 0
3 11 18 11.49 6424 0 0 0
4 12 19 20.52 6134 0 0 0
5 13 21 16.66 6884 0 0 0
6 20 31 209.66 35720 0 0 0
7 20 31 66.00 12601 0 0 0
8 21 33 297.96 46849 0 0 0
9 22 34 308.02 59160 0 0 0
10 25 39 182.80 16536 0 0 0
11 28 44 702.63 52529 0 0 0
12 28 44 288.89 15510 0 0 0
13 31 49 745.16 65187 0 0 0
14 32 50 44431 37886 0 0 0
15 33 52 495.22 47005 0 0 0
16 40 62 4196.57 215417 0 0 0
17 40 62 800.79 29152 0 0 0
18 41 64 828.12 30860 0 0 0
19 42 65 3469.05 194853 0 0 0

20 45 70 7216.78 347247 NaN NaN 6
21 48 75 1930.01 56458  NaN NaN 2
22 48 75 1871.79 50990 NaN NaN 2
23 51 80 1682.49 29343  NaN NaN 2
24 52 81 2568.67 29333  NaN NaN 2
25 53 83 2826.73 27653  NaN NaN 2

Continua na proxima pagina
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Tabela 7: Resultados experimentais completos — Caso 4: Instancia com todos os dias definidos

como preferidos, com a inclusdo da nova restri¢ao.

Instancia Professores Turmas Tempo (s) Iteragdes FO Inconsisténcias Status
26 60 93 4736.32 13776  NaN NaN 2
27 60 93 4568.48 15255 NaN NaN 2
28 61 95 4194.81 14037  NaN NaN 2
29 62 96 4196.96 17412 NaN NaN 2
30 65 101 4893.97 17553  NaN NaN 2
31 68 106 6698.31 13945  NaN NaN 2
32 68 106 6651.62 7783 NaN NaN 2
33 71 111 7207.77 0 NaN NaN 6
34 72 112 6850.36 23900 NaN NaN 2
35 73 114 7208.80 0 NaN NaN 6
36 80 124 7209.53 0 NaN NaN 6
37 80 124 7211.21 0 NaN NaN 6
38 81 126 7210.60 0 NaN NaN 6
39 82 127 7211.93 0 NaN NaN 6
40 85 132 7223.11 0 NaN NaN 6
41 88 137 7553.25 0 NaN NaN 6
42 88 137 7221.79 0 NaN NaN 6
43 91 142 7223.19 0 NaN NaN 6
44 92 143 7229.55 0 NaN NaN 6
45 93 145 7291.14 0 NaN NaN 6
46 100 155 7428.08 0 NaN NaN 6
47 100 155 7336.78 0 NaN NaN 6
48 101 157 7323.81 0 NaN NaN 6
49 102 158 7378.29 0 NaN NaN 6
50 105 163 7379.35 0 NaN NaN 6

Fonte: Préprio autor.
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APENDICE F - RESOLUBILIDADE

Tabela 8: Resumo da resolubilidade do modelo por caso experimental.

Caso Otimas Vidveis Invidveis Total de instncias Resolubilidade (%)

1 12 0 0 12 24
2 2 8 0 10 20
3 20 0 13 33 66
4 19 0 13 32 64

Fonte: Préprio autor.
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