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RESUMO

A correção do Trabalho de Conclusão de Curso (TCC) é uma etapa crucial na formação da pesquisa do
aluno de graduação, no entanto, esse processo pode ser cansativo tanto para o aluno em sua pesquisa quanto
para o orientador durante o acompanhamento, devido a fatores como sobrecarga de tarefas e retornos
pouco específicos sobre o conteúdo da pesquisa. A automatização na correção de trabalhos científicos, por
meio de técnicas como Aprendizado de Máquina (AM) e Processamento de Linguagem Natural (PLN),
passou a integrar o cotidiano dos alunos, principalmente após o surgimento dos Large Language Models
(LLMs). Neste trabalho, foi desenvolvido o Academic Review Agents for Methodological Improvements

(ARAMIS), uma ferramenta de análise e correção de TCCs em português, composta por três agentes
especializados: correção gramatical, encadeamento lógico e rigor metodológico, e que integra um LLM
open-source orientado por engenharia de prompt. Foi adotada uma abordagem de análise comparativa
entre a geração de feedback por LLMs proprietários e open-source, visando selecionar o modelo que
operasse com um trade-off satisfatório. A proposta consistiu na integração do melhor modelo de código
aberto avaliado ao ARAMIS, desenvolvido no âmbito deste trabalho, focado em fornecer o feedback dos
TCCs em português analisado, composto por três agentes, pilares da geração da revisão automatizada.
A ferramenta recebe o texto do aluno, que é processado pelo LLM, e retorna uma revisão estruturada,
baseada nas diretrizes definidas nas configurações dos agentes. Neste trabalho, utilizou-se o modelo
System Usability Scale (SUS) para avaliar o nível de usabilidade da ferramenta. Os experimentos foram
conduzidos com usuários reais em processo de escrita de TCC, no qual o questionário SUS foi aplicado
imediatamente após a realização dos testes na ferramenta. Os resultados demonstram que o ARAMIS
obteve 90,5/100 pontos, confirmando que a aplicação atende às expectativas de usabilidade dos estudantes
de graduação, sendo útil e retornando revisões direcionadas e precisas.
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ABSTRACT

The correction of Undergraduate Final Projects is a crucial stage in the academic development of
undergraduate students. However, this process can be time-consuming and exhausting both for students
during their research activities and for advisors during supervision, due to factors such as task overload
and insufficiently specific feedback on research content. The automation of scientific writing correction
using techniques such as Machine Learning (ML) and Natural Language Processing (NLP) has become
increasingly present in students’ daily routines, especially after the emergence of Large Language Models
(LLMs). In this study, Academic Review Agents for Methodological Improvements ARAMIS was
developed, a tool for the analysis and correction of undergraduate theses in portuguese, composed of
three specialized agents: grammatical correction, logical chaining and methodological rigor, integrating
an open-source LLM guided by prompt engineering techniques. A comparative analysis approach was
adopted to evaluate the feedback generation by proprietary and open-source LLMs, with the objective of
selecting a model that operates with a satisfactory trade-off. The proposed solution consisted of integrating
the best-performing evaluated open-source model into ARAMIS, developed within the scope of this study,
focused on returning the analyzed undergraduate theses feedback in portuguese, being composed by the
three agents, which serve as the core pillars of automated revision generation. The tool receives the
student’s text, which is processed by the LLM and returns a structured review based on the guidelines
defined in the agent’s configurations. In this work, the System Usability Scale (SUS) was employed to
assess usability. The experiments were conducted with real users actively engaged in undergraduate thesis
writing, and the SUS questionnaire was applied immediately after tool usage. The results demonstrate that
ARAMIS achieved a score of 90.5/100, confirming that the application meets undergraduate students’s
usability expectations, being useful and achieving precise and targeted feedback.
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1 INTRODUÇÃO

O Trabalho de Conclusão de Curso (TCC) constitui a etapa final do percurso acadê-
mico dos estudantes de graduação, sendo um requisito indispensável em boa parte dos cursos
para a obtenção do grau de bacharel ou licenciado na respectiva área de formação.

Ao elaborar um texto dessa importância, é necessária a atenção contínua ao trabalho,
pois, no processo de avaliação do TCC, observa-se o rigor no desenvolvimento conforme as
normas, o encadeamento lógico das ideias, a profundidade e a apresentação do conhecimento
do tema estudado (CARBONI; NOGUEIRA, 2008). Diante disso, a revisão textual, seja pelo
aluno e/ou orientador, deixou de se limitar apenas a aspectos normativos e passou a observar
aspectos como verossimilhança e encadeamento narrativo (PEREZ; BOENAVIDES, 2017).
Nesse processo, o discente possui um papel fundamental na garantia da qualidade, atuando em
parceria com o orientador — cuja experiência tende a facilitar a identificação de inconsistências
textuais. Contudo, mesmo com o empenho conjunto, a necessidade de sucessivas revisões
persiste, gerando retrabalho e consumo excessivo de tempo. Diante dessas dificuldades, fica
evidente a necessidade de soluções que agilizem a revisão, como sistemas de Inteligência
Artificial (IA) projetados para corrigir textos conforme as particularidades do contexto acadêmico.

No estudo de Srivarsha et al. (2025), argumenta-se que a correção automatizada
aprimora significativamente a experiência do usuário, reduzindo erros tipográficos e linguísticos
no conteúdo escrito. Para isso, são incorporados métodos aos computadores para que estes
compreendam a linguagem humana, chamados de técnicas de Processamento de Linguagem
Natural (PLN) (COPPIN, 2004). Em um estudo anterior, Zhang e Zhang (2023) apresentaram um
enfoque mais específico na precisão da tradução automática para o inglês, embora também vise a
redução de erros gramaticais, empregando técnicas de análise semântica e métodos especializados
de aumento de dados. Tais trabalhos, embora aplicados a domínios ligeiramente diferentes,
convergem para o objetivo comum de melhorar a qualidade do texto por meio da detecção e
correção automatizada de erros. Tais técnicas aplicadas podem ser adaptáveis à revisão de textos
acadêmicos, como os TCCs, visto que em Lunsford e Lunsford (2008) os principais problemas
identificados em trabalhos acadêmicos incluem erros de grafia (13,7% dos casos) e a ausência de
vírgulas após elementos introdutórios (9,6%), entre outros.

Tais exigências de formalidade gramatical e normativa na elaboração de TCCs e
artigos científicos requerem do aluno competências linguísticas bem desenvolvidas. No entanto,
segundo a Organisation for Economic Co-operation and Development (OECD), no estudo
The State of Learning and Equity in Education, estudantes brasileiros de 15 anos de idade
obtiveram 410 pontos em leitura no ranking Programme for International Student Assessment

(PISA), abaixo da média da própria OECD, que é de 476 pontos (OECD, 2023). Esse dado
revela deficiências na formação básica, especialmente em leitura e interpretação, habilidades
fundamentais para a produção textual no ensino superior. Essa deficiência compromete a
autonomia dos estudantes para interpretar textos complexos, realizar pesquisas e aplicar o
método científico — o que reforça a necessidade de suporte específico no processo de escrita
acadêmica.

Embora sistemas de correção automática consigam corrigir a grafia e a pontuação,
nenhuma solução de IA foi ainda treinada em português especificamente para diagnosticar
e orientar aspectos macroestruturais, como o encadeamento argumentativo de capítulos ou a
adequação metodológica de um trabalho de conclusão de curso. Até o momento, essas avaliações
permanecem predominantemente a cargo de orientadores humanos, perpetuando ciclos de



retrabalho que atrasam as defesas e reduzem a qualidade científica dos trabalhos. Essa lacuna
tecnológica sugere a seguinte questão de pesquisa: Como sistemas de Inteligência Artificial

especializados em textos acadêmicos em português podem diagnosticar e orientar a construção

de encadeamentos lógicos e rigor metodológico em Trabalhos de Conclusão de Curso, reduzindo

o número de revisões manuais sem comprometer a autoria e a qualidade científica?

Este trabalho tem como objetivo desenvolver uma ferramenta automatizada de
revisão de TCCs, integrada a um Modelo de Linguagem de Grande Escala ou Large Language

Model (LLM) open-source, que permite receber feedbacks relacionados a aspectos textuais e
estruturais do trabalho, conforme as normas brasileiras vigentes, melhorando a qualidade da
escrita, assegurando a coerência lógica e o rigor metodológico, e diminuindo o número de
revisões enviadas ao orientador. Para tanto, foi conduzida uma pesquisa sobre o estado atual das
abordagens de correção automatizada de trabalhos científicos, especialmente artigos científicos e
TCCs. Em seguida, foi proposta a ideia de concepção da ferramenta, com um workflow de como
o processo de correção deveria operar. A implementação foi realizada na linguagem Python, com
o auxílio de bibliotecas e frameworks de desenvolvimento, apoiada por uma persistência em um
banco de dados MySQL. Por fim, o sistema foi testado pelos próprios usuários por meio de uma
abordagem de avaliação de usabilidade chamada System Usability Scale (SUS). A ferramenta
demonstrou-se viável quanto ao uso por estudantes de graduação, além de apresentar resultados
promissores no uso de LLM open-source para atingir revisões precisas e úteis ao usuário.

As principais contribuições deste trabalho são:
1. A criação de uma ferramenta web integrada com um LLM open-source

para auxiliar a correção de TCCs de estudantes de graduação em português,
reduzindo o número de revisões necessárias do trabalho;

2. O direcionamento feito ao LLM integrado aos agentes que compõem a
ferramenta, utilizando técnicas de engenharia de prompt como o few-shot

prompting.
Este trabalho está estruturado da seguinte maneira: a Seção 2 apresenta os conceitos-

chave do embasamento teórico; a Seção 3 trata dos trabalhos correlatos que apoiam a pesquisa; a
Seção 4 descreve os procedimentos metodológicos e o método de avaliação; a Seção 5 expõe
a concepção da ferramenta e como ela opera; a Seção 6 detalha o perfil dos usuários e discute
os resultados obtidos pela avaliação de usabilidade da ferramenta; por fim, a Seção 7 conclui o
trabalho e aponta direções para estudos futuros.



2 FUNDAMENTAÇÃO TEÓRICA

A presente seção apresentará a base necessária para o entendimento do sistema
proposto neste trabalho. Dentre os assuntos que serão abordados nesta parte do trabalho estão:
Trabalho de Conclusão de Curso (TCC), Processamento de Linguagem Natural (PLN), Modelos
de Linguagem de Grande Escala e Engenharia de prompt.

2.1 Trabalho de conclusão de curso

O TCC integra o grupo de trabalhos acadêmicos presentes na produção científica e,
de acordo com a Associação Brasileira de Normas Técnicas (2024), é constituído por normas
específicas e princípios gerais para a elaboração desses trabalhos, visando a apresentação, ao
final da produção, para a obtenção do grau e do diploma de Bacharel ou Licenciatura. Com isso,
dentre os principais tipos de TCCs, o mais comum é utilizar a denominação de monografia para
referir-se a um trabalho teórico que se objetiva sobre um determinado assunto (SILVA et al.,
2020).

Salomon (2004) defende que a tese principal do curso de graduação é criar uma
mentalidade científica necessária para formar o profissional de nível superior e, baseado no artigo
de Ramos (2011), um TCC pode ser estruturado em três partes principais:

• Parte pré-textual: Identificação e Resumo;
• Parte textual: Introdução, Problema, Hipótese, Justificativa, Objetivos, Metodo-

logia, Cronograma/Fluxograma, Recursos necessários, Resultados, Discussões e
Considerações finais (conclusão);

• Parte referencial: Anexos, Apêndices e Bibliografia.
Por fim, com tais conceitos em mente, Dias e Silva (2009) complementam que

elaborar um trabalho desse escopo exige um planejamento cuidadoso, em que o aluno deve
se conectar a fundo com o que já foi desenvolvido por outros estudiosos, quais foram seus
argumentos e descobrir o que não foi alcançado por eles, além de entender, ao longo do processo,
a relação entre a monografia e a pesquisa científica, em que uma é decorrente da outra, não
havendo a primeira sem a segunda (SALOMON, 2004).

2.2 Processamento de linguagem natural

O Processamento de Linguagem Natural (PLN), em inglês Natural Language Pro-

cessing (NLP) é um ramo da IA que teve início nos anos 1950 e, hoje em dia, é um domínio
complexo e multidisciplinar que busca processar e extrair significado da linguagem humana
(NADKARNI et al., 2011). Chowdhary (2020) conceitua o PLN como uma coleção de técnicas
computacionais para a análise automática e representação da linguagem humana, motivada
pela teoria. Tantos foram os avanços das técnicas adotadas que estas acabaram por resultar na
utilização do Aprendizado Profundo (AP), não exigindo que o programador fornecesse as regras
explícitas para cada tarefa; o próprio algoritmo deduziria o processo de mapeamento da entrada
para a saída (JOHRI et al., 2021).

Qin et al. (2024) adicionam que essas mudanças permitiram que tarefas de PLN
fossem impulsionadas pela chegada dos grandes modelos de linguagem. Além disso, até mesmo
na educação, a aplicação do PLN foi aprimorada, em especial na universidade, por meio da coleta
de feedback dos alunos, podendo retornar uma resposta customizada baseada nas necessidades de
cada um, mostrando que esses LLMs generativos são adaptáveis a inúmeras aplicações no meio
acadêmico, permitindo o desenvolvimento de modelos especializados para tarefas específicas



(FUCHS, 2023).

2.3 Modelos de linguagem de grande escala

Os Modelos de Linguagem de Grande Escala, em inglês Large Language Models

(LLMs), são algoritmos de Aprendizado de Máquina (AM) treinados em grandes conjuntos de
dados de texto para gerar conteúdo semelhante ao que os humanos fariam, traduzir idiomas e
também responder a várias perguntas. Eles representam o mais recente avanço em modelos de
linguagem e no campo de Processamento de Linguagem Natural (PLN) (NAVEED et al., 2023).
Atualmente, a arquitetura mais utilizada nos LLMs é a arquitetura transformer, e Zhao et al.

(2023) explica que, devido à sua excelente paralelização e capacidade, é possível escalar os
modelos para centenas ou milhares de bilhões de parâmetros, permitindo que eles prevejam com
precisão a próxima palavra em uma sentença.

Thirunavukarasu et al. (2023) afirmam que toda essa capacidade de compreensão
de texto não é atribuída a um treinamento específico para entender a linguagem como os
humanos, mas sim a uma abordagem de aprendizado de associações estatísticas entre palavras,
desenvolvendo a capacidade de prever qual palavra melhor completa uma frase, revolucionando
a área de PLN. Apesar disso, é essencial que haja conhecimento sobre os riscos e desafios do
uso, como a geração de textos incorretos e desviados do significado original (alucinações), bem
como equívocos em instruções que levem o modelo a respostas ofensivas e tendenciosas (ZHAO
et al., 2023).

2.4 Engenharia de prompt

A Engenharia de prompt é uma técnica recente usada pelos modelos generativos de
linguagem com o intuito de extrair sua capacidade máxima, utilizando instruções específicas
para a geração de respostas precisas. Heston e Khun (2023) veem como um processo crucial
para maximizar os benefícios dos modelos, envolvendo o design de entrada (prompt) de uma
forma que guie o modelo a produzir a saída desejada.

Existem técnicas que aprimoram a resposta do Large Language Model (LLM), como
o Few-Shot prompting 4, que é baseado em um pequeno número de exemplos resolvidos que
são fornecidos como parte da entrada para o modelo (REYNOLDS; MCDONELL, 2021). No
geral, um prompt pode ser organizado como uma instrução completa, fornecendo contexto e até
mesmo um indicador de formato de saída. Marvin et al. (2023) destaca os principais elementos
em um prompt:

• Instrução: entrada de texto específica que guia o comportamento do modelo;
• Dados de entrada: entrada ou pergunta que se deseja que o modelo processe;
• Contexto: forma de fornecer contexto de fundo ao modelo para respostas mais

relevantes;
• Indicador de saída: tipo ou formato da saída desejada (parágrafo curto, história

de ficção científica).

4 https://www.promptingguide.ai/pt/techniques/fewshot



Figura 1 – Exemplo de processo utilizando Chain-of-thought.

Fonte: Adaptado de (WEI et al., 2022).



3 TRABALHOS RELACIONADOS

O trabalho de Liang et al. (2024) propõe um pipeline automatizado baseado no
GPT-4 para a geração de feedback sobre artigos científicos completos, organizado em quatro
seções: significância e novidade, razões para aceitação, razões para rejeição e sugestões de
melhoria. A metodologia envolveu uma análise empírica em larga escala com dois datasets:
3.096 artigos aceitos de 15 periódicos da Nature e 1.709 artigos da International Conference on

Learning Representations (ICLR), totalizando 6.505 comentários de revisores humanos entre
2022 e 2023. A avaliação contou com 308 pesquisadores de 110 instituições, das áreas de IA
e biologia computacional. Os resultados indicaram sobreposição média de 30,85% (GPT-4 vs.
humano) contra 28,58% (humano vs. humano) nos periódicos da Nature, e de 39,23% contra
35,25% na ICLR. Para artigos rejeitados da ICLR, a sobreposição atingiu 47,09%, sugerindo
maior utilidade do feedback em cenários que demandam revisões substanciais. Os experimentos
também evidenciaram que os feedbacks não são genéricos, identificando questões recorrentes
reconhecidas por múltiplos revisores humanos.

Em Chamoun et al. (2024), é apresentada a ferramenta Scientific WrIting Focused

Feedback Tool (SWIF2T), que utiliza uma arquitetura multiagente composta por planner, in-

vestigator, reviewer e controller, alavancando instâncias do GPT-4 para fornecer comentários
acionáveis durante a escrita de artigos científicos. A avaliação foi conduzida com 300 unida-
des extraídas dos datasets NLPeer, F1000rd e ARIES, contendo revisões humanas completas
e citações de fraquezas em trechos específicos. A principal métrica retrospectiva, a taxa de
sobreposição, mostrou valores de 30,85% para periódicos da Nature e 39,23% para a ICLR,
comparáveis aos observados entre revisores humanos. Em um estudo prospectivo, 57,4% dos
308 pesquisadores consideraram o feedback útil ou muito útil, e 82,4% o avaliaram como mais
benéfico do que o de ao menos alguns revisores humanos. Apesar de tendências recorrentes
nas sugestões, os resultados indicam que o feedback gerado por LLMs pode complementar a
avaliação humana.

O trabalho de D’Arcy et al. (2024) propõe o Multi-Agent Review Generator (MARG),
uma ferramenta multiagente baseada em múltiplas instâncias do GPT-4, composta por agentes
leader, workers e experts, além de uma variante aprimorada, o Multi-Agent Review Generator

with Specialized Agents (MARG-S). Avaliado com 30 artigos do corpus ARIES, o MARG-S
demonstrou maior robustez em relação ao MARG, reduzindo a taxa de comentários genéricos
de 60% para 29%. Foram gerados, em média, 3,7 comentários bons por artigo, com 71%
classificados como precisos e específicos. Na avaliação automatizada, o MARG-S superou
todas as baselines em recall, com valor de 15,84, além de apresentar a maior quantidade de
comentários gerados (19,8 em média), reforçando a eficácia de arquiteturas multiagente em
tarefas complexas de revisão por pares.

Em Idahl e Ahmadi (2025), é apresentado o OpenReviewer, um sistema open-source

baseado no modelo especializado Llama-OpenReviewer-8B, ajustado com 79.000 revisões de
alta qualidade provenientes da ICLR e da Conference on Neural Information Processing Systems

(NeurIPS). O modelo foi treinado a partir de 36.000 artigos e 141.000 revisões, utilizando uma
janela de contexto de até 128.000 tokens e um processo de fine-tuning com duração aproximada de
34 horas. A avaliação considerou 400 artigos de teste e indicou que o OpenReviewer apresentou
maior alinhamento com revisões humanas em 55,5% dos casos. No método LLM-as-a-judge,
utilizando o GPT-4o como avaliador, o sistema obteve taxas de vitória entre 60% e 76% em
comparação com outros LLMs, evidenciando que modelos open-source especializados podem
produzir revisões acadêmicas críticas e realistas, mesmo com um número reduzido de parâmetros.

Após uma apresentação de exemplos de trabalhos que exploram a temática de LLMs



aplicados a artigos científicos para a geração de feedback, agora é possível discernir algumas
nuances e distintas contribuições que cada um desses estudos oferece. O presente trabalho inova
ao utilizar um modelo open-source focado em TCCs em português, optando pelo uso de um
LLM open-source gratuito, totalmente voltado para o uso de alunos de graduação. Além disso, a
ferramenta desenvolvida neste trabalho será avaliada por sua usabilidade, utilizando a métrica de
usabilidade System Usability Scale (SUS). A Tabela 1 apresenta a comparação entre os estudos.

Pontos analisados:
1. Feedback automatizado em trabalhos científicos;
2. Uso de LLM open-source;
3. Uso de prompts especializados;
4. Arquitetura multiagente;
5. Geração de feedback em português brasileiro;

Tabela 1 – Tabela comparativa entre as contribuições deste trabalho em relação aos outros
apresentados.

Autores Solução utilizada Métricas 1 2 3 4 5

Liang et al. (2024) Pipeline automatizada
que gera feedback es-
truturado sobre artigos
científicos utilizando
GPT-4.

Taxa de Sobreposição
Simkiewicz-Simpson,
Índice Jaccard e
Coeficiente
Sørensen–Dice.

Sim Não Sim Não Não

Chamoun et al. (2024) Sistema que gera fe-
edback focado, especí-
fico e acionável, iden-
tificando fraquezas em
artigos científicos.

Similaridade Textual
(METEOR, BLEU@4,

ROUGE-L), Precisão
do rótulo de aspecto e
F1-Score.

Sim Não Sim Sim Não

D’Arcy et al. (2024) Múltiplos agentes de
LLM para gerar feed-

back de revisão por pa-
res específico. Útil
para artigos científicos
longos.

Recall, Precision,
Jaccard, Comentários
considerados
"Bons"por Artigo e
Especificidade de
Comentários.

Sim Não Sim Sim Não

Idahl e Ahmadi (2025) Abordagem com LLM
open-source que gera
revisões críticas e es-
truturadas de artigos
de ML/IA.

Correspondência exata
da recomendação, Erro
absoluto médio,
Pontuação Média
(Criticidade) e Win Rate

em Review Arena.

Sim Sim Sim Não Não

Este trabalho Arquitetura mul-
tiagente com LLM
open-source e prompts

especializados que
geram feedbacks de
TCCs em português.

Métrica de usabilidade
com o SUS e uma
baseline comparativa
entre o feedback gerado
de LLMs com zero-shot

e a abordagem
open-source

aprimorada.

Sim Sim Sim Sim Sim

Fonte: elaborada pelo autor.



4 METODOLOGIA

Este capítulo trata da metodologia que foi utilizada para a construção e avaliação da
ferramenta de revisão automatizada de TCCs em português. A Seção 4.1 apresenta as tecnologias
que a ferramenta possui; a Seção 4.2 explica o conjunto de dados utilizado para a validação das
revisões; a Seção 4.3 justifica os motivos da escolha do modelo open-source e a Seção 4.4 trata
da forma como a ferramenta foi avaliada.

4.1 Tecnologias e implementação da aplicação

Inicialmente, a ferramenta chamada de ARAMIS 5 teve suas telas prototipadas no
Figma6. A implementação focou na linguagem de programação Python, aproveitando-se de
frameworks de desenvolvimento web, manipulação de dados, requisições e também na construção
dos agentes. As tecnologias utilizadas se dividiram em um front-end construído com o Streamlit 7,
um framework que permite criar uma interface gráfica amigável e intuitiva, facilmente integrável
ao back-end, aproveitando-se das chamadas Hypertext Transfer Protocol (HTTP), que foram
elaboradas com a tecnologia FastAPI, auxiliadas pelo framework Agno8 para a construção dos
agentes, que possui suporte à Application Programming Interface (API) do HuggingFace 9,
conectando-se facilmente ao LLM open-source.

O sistema utiliza um banco de dados MySQL, em virtude da simplicidade de confi-
guração, realização de testes e armazenamento dos dados em um banco relacional. O MySQL

armazena os dados dos usuários cadastrados na plataforma e as 10 últimas revisões de cada
usuário — permitindo consulta futura. Ciente de suas limitações, a ferramenta armazena apenas
dados mais simples, como as informações dos usuários e as revisões geradas pelo modelo, não
tendo previsão de alocar além do escopo definido neste trabalho.

Todas as tecnologias citadas anteriormente foram implementadas em suas versões
mais recentes, até o momento em que foi possível manter a compatibilidade e o funcionamento
delas. Portanto, adotou-se o Python 3.11. No front-end, foi utilizado o Streamlit 1.52.2; no
back-end, o FastAPI 0.124.4; O framework Agno foi implementado na versão 2.3.13 e, para
o gerenciamento do banco de dados, o phpMyAdmin 5.2.3, definindo, assim, a construção do
Minimum Viable Product (MVP) do ARAMIS.

4.2 Conjunto de avaliação

Para aprimorar a qualidade da revisão pelos agentes que compõem o ARAMIS, um
conjunto para avaliação foi selecionado, com 8 TCCs aprovados pelos alunos de graduação
da Universidade Federal do Ceará (UFC) do campus de Crateús, especificamente da área de
computação, dos cursos de Ciência da Computação (CC) e Sistemas de Informação (SI), entre o
período de 2024 e 2025. Esses trabalhos foram coletados a partir do Repositório Institucional10

da universidade, devidamente autorizados por seus autores para uso acadêmico.
O conjunto de TCCs foi extraído em formato Portable Document Format (PDF) e

passou por um pré-processamento antes de ser utilizado pelo modelo. O conjunto passou por

5 Disponível em http://enginelab.ufc.br/
6 Disponível em https://figma.com/
7 Documentação do Streamlit - https://docs.streamlit.io/
8 Documentação do Agno - https://docs.agno.com/
9 HuggingFace - https://huggingface.co/
10 Disponível em https://repositorio.ufc.br/



um script Python, convertendo-o por meio da biblioteca Marker para o formato Markdown, um
formato que mantêm uma estrutura com marcadores, preservando a estrutura hierárquica do
documento. A qualidade da conversão foi avaliada manualmente e, da mesma forma, corrigida
(quando necessário) pela separação das seções e pela qualidade das tabelas, de acordo com a
organização padrão dos TCCs. A tentativa foi aderir a uma abordagem mais precisa e, além
disso, que pudesse lidar bem com tabelas e fórmulas matemáticas, o que é o caso do Marker, já
que estas são altamente presentes em TCCs da computação.

A escolha por um corpus de TCCs da área supracitada justifica-se pela afinidade
com o objetivo deste trabalho e pela delimitação de escopo definida no planejamento, visando a
maior precisão nas revisões. Uma pipeline foi definida com a extração e conversão dos TCCs,
comportando o texto por completo, preservando a estrutura de capítulos e seções, destacando
a marcação dessas partes do texto, com o intuito de conferir um peso maior ao rigor de sua
análise pelo modelo, mas ignorando ou removendo algumas informações não pertinentes, como a
identificação dos autores, orientadores, dedicatórias, agradecimentos, entre outros. Essa remoção
foi efetuada após os arquivos concluírem a conversão para o formato com extensão ".md"e,
após isso, uma revisão manual foi feita, identificando algumas inconsistências, como diversas
referências listadas como "(#page-54-4)", capítulos sendo marcados com uma sequência de três
ou quatro cerquilhas, em vez de apenas uma, visto que em Markdown, uma quantidade menor de
"#"indica maior prioridade sobre o texto, e até mesmo figuras que, ao serem convertidas, não
faziam nenhum sentido, virando lixo e tendo que ser removidas.

Figura 2 – Representação do pipeline de extração e limpeza dos TCCs

Fonte: elaborada pelo autor.

Foi efetuado um cálculo a quantidade de tokens que um documento de TCC ocupa
por completo; por haver diferentes tamanhos, a Tabela 2 exibe a quantidade de tokens que
cada um possuía antes e depois do tratamento. A quantidade de tokens foi contada a partir
da plataforma Tokenizer11, pertencente a OpenAI; logo, nota-se que a noção de quantidade
é baseada na contagem realizada nos modelos Generative Pre-Trained Transformers (GPT),
especificamente nas versões 4o e 4o mini. Foram testadas outras plataformas como Token

Calculator12, e a diferença não ultrapassou 5.000 tokens em comparação com o processo de
tokenização utilizado por outros LLMs.

11 Disponível em https://platform.openai.com/tokenizer
12 Disponível em https://token-calculator.net/



Tabela 2 – Quantidade de tokens antes e depois do tratamento nos trabalhos extraídos

Trabalhos Qtd. tokens antes Qtd. tokens depois Redução (%)

Trabalho 1 25.959 20.157 22,35%

Trabalho 2 31.275 21.341 31,76%

Trabalho 3 30.536 20.812 31,84%

Trabalho 4 11.210 6.727 39,99%

Trabalho 5 19.460 11.811 39,31%

Trabalho 6 29.713 18.762 36,86%

Trabalho 7 38.050 22.314 41,36%

Trabalho 8 20.678 11.939 42,26%

Fonte: elaborada pelo autor.

Após o tratamento, obteve-se uma redução média de 35,71% na quantidade de tokens.
Feito isso, seções específicas dos TCCs foram utilizadas para validar a qualidade da revisão
gerada pelos agentes integrados ao LLM open-source, explicados na Seção 4.3.

4.3 Escolha do LLM open-source

A escolha do modelo baseou-se em testes preliminares, comparando modelos propri-
etários e de código aberto (open-source). Foram testados: Gemini 2.5 Pro, GPT-4o, GPT-4o-

mini e os open-source gpt-oss-20b, meta-llama-3.1-8b-instruct e deepseek-r1-distill-qwen-14b.
Realizaram-se testes para validar a saída dos modelos, seguindo um critério de inserção do texto
integral do TCC em formato Markdown, com o modelo identificando, por si só, a parte desejada
do texto (ou seja, o arquivo .md do conjunto de validação foi inserido e o próprio modelo deveria
identificar a seção definida na pré-configuração). Considerou-se se o modelo alucina ao analisar
o conjunto de validação com os TCC pré-processados, o tempo em que a revisão foi gerada e
outros critérios. A opção de comprimento de contexto foi respeitada para estar sempre com
valor máximo, evitando possíveis limitações na janela de contexto. A temperatura (parâmetro
responsável por controlar a aleatoriedade dos textos gerados pelo modelo) foi configurada sempre
com o valor de 0,8 (esse valor costuma variar de 0 até 2, a depender do modelo) quando possível,
para que as revisões sejam coerentes, mas criativas, de certa forma.

O script inicial dos agentes — com o modelo salvando as revisões em arquivo —
rodou em um computador com um processador Intel i7-12650h, 32GB de RAM e um SSD
NVMe de 1TB, com Ubuntu 24.04. Os LLMs proprietários foram conectados a partir de sua API
oficial, e os open-source, por meio de uma conexão local com o aplicativo LM Studio instalado
em outra máquina, esta com um processador AMD Ryzen 7 7700, 64GB de RAM, um SSD
NVMe de 2TB, com Ubuntu 24.04 e duas placas de vídeo NVIDIA RTX 5090, de 32GB de
VRAM, cada.

Após a obtenção dos resultados anteriormente citados, o modelo que apresentou
melhor desempenho foi o gpt-oss-20b13 da OpenAI, integrado à ferramenta por meio da API do
HuggingFace. A Tabela 3 apresenta os dados obtidos nos testes com modelos proprietários e
open-source. Foram realizados 10 testes com cada TCC do conjunto de validação, permitindo
calcular o tempo médio para a geração da revisão, a quantidade média de comentários produzidos
e a taxa média de alucinações observadas. Os testes consistiram em aplicar integralmente os

13 https://lmstudio.ai/models/openai/gpt-oss-20b



TCCs aos modelos, de modo que estes identificassem a seção solicitada no prompt e retornassem
a revisão correspondente.

Tabela 3 – Média obtida pelos modelos proprietários e open-source testados

Modelo Tempo Qtd. comentários Taxa de alucinação
Gemini 2.5 Pro 102.22±45.11 s 8 0
GPT-4o 70.30±22.46 s 7 4
GPT-4o-mini 56.30±25.89 s 7 6
gpt-oss-20b 54.30 ± 23.09 s 10 2
meta-llama-3.1-8b-instruct 28.00±12.80 s 5 8
deepseek-r1-distill-qwen-14b 39.30±15.44 s 6 5

Fonte: elaborada pelo autor.

4.4 Avaliação da ferramenta

A avaliação deste trabalho foi feita sobre a qualidade da usabilidade da ferramenta
produzida. O método foi o System Usability Scale (SUS), desenvolvido por Brooke (1995),
uma métrica escolhida por ser amplamente reconhecida para medir avaliações subjetivas de
usabilidade em uma ampla gama de contextos, inclusive na avaliação de sistemas de informação.
Além disso, conforme Padrini-Andrade et al. (2019), essa possibilidade de avaliar diversos tipos
de contextos deve-se ao fato de que o SUS é tecnologicamente agnóstico, ou seja, possui uma
abordagem neutra e aberta. Os usuários avaliaram a usabilidade do ARAMIS imediatamente
após a conclusão das tarefas no sistema, para que não houvesse discussões ou reflexões que
pudessem enviesar a opinião. O questionário SUS consiste em 10 perguntas, funcionando de
acordo com a Figura 3, onde os usuários responderam em uma escala Likert que varia de 1 a 5
(JOSHI et al., 2015), em que 1 representa "Discordo Completamente" e 5 representa "Concordo

Completamente". A Figura 3 ilustra as perguntas que o questionário contém no processo de
avaliação e exibe a escala de avaliação.



Figura 3 – Exemplo do questionário SUS que será utilizado

Adaptado de (BROOKE, 1995).

As perguntas presentes no artigo original estavam em inglês e foram traduzidas para
o português. Após isso, foram inseridas em um formulário na plataforma Google Forms, com
uma seção para identificação, uma para responder às perguntas do SUS e uma de sugestões sobre
a ferramenta, que foram preenchidas pelos usuários que participaram da pesquisa de avaliação
de usabilidade.

4.4.1 Cálculo do SUS

Após a conclusão do questionário, o SUS avalia a métrica por meio de um cálculo
para consolidar o resultado, que varia de 0 a 100. O método utilizado para a pontuação resultou
em um número único que compõe a usabilidade geral do sistema avaliado. Para consolidar
esse cálculo, ele seguiu a abordagem de seu artigo de origem em Brooke (1995), que envolve
a seguinte metodologia: os itens ímpares (Alternativas Positivas) tem sua nota de atribuição
subtraída por 1, enquanto para os itens pares (Alternativas Negativas), o cálculo é feito subtraindo-
se o valor 5 da nota de atribuição. Após a conclusão, todas as pontuações das dez perguntas são
somadas e o resultado é multiplicado por 2,5. O processo de cálculo do SUS é exemplificado na
Fórmula 1 a seguir.

SUS = 2,5×

{[

∑
i=impar

(xi −1)

]

+

[

∑
i=par

(5− xi)

]}

(1)



em que:
• Para itens ímpares (1, 3, 5, 7, 9): xi −1
• Para itens pares (2, 4, 6, 8, 10): 5− xi

• xi é a nota do usuário para cada item (escala de 1 a 5)
Brooke (1995), em seu artigo, não definiu uma escala concreta de pontuação para

determinar se a usabilidade seria boa ou ruim. Por isso, este trabalho seguiu a interpretação
defendida por Bangor et al. (2009), que resolve essa lacuna deixada pelo trabalho de John Brooke
(BROOKE, 1995). A abordagem apresentada é a seguinte:

• Excelente: Pontuação entre 90 e 100;
• Bom: Pontuação entre 80 e 89;
• Aceitável: Pontuação entre 70 e 79;
• Precisa Melhorar: Pontuação entre 60 e 69;
• Ruim: Pontuação abaixo de 60.



5 PROPOSTA

Neste capítulo, é apresentado o sistema de auxílio à correção de TCCs desenvolvido
neste trabalho, com o objetivo de assegurar a coerência lógica e o rigor metodológico dos textos,
diminuindo o número de revisões enviadas ao orientador.

5.1 ARAMIS

O sistema concebido neste trabalho é chamado de Academic Review Agents for

Methodological Improvements (ARAMIS), uma plataforma direcionada a alunos de graduação
em processo de desenvolvimento do Trabalho de Conclusão de Curso (TCC) em português. É
composta por agentes específicos, permitindo a interação entre o usuário e uma interface de
inserção de dados. Esta interface recebe algumas informações do texto do TCC do aluno, a qual
retorna uma revisão sobre a seção do trabalho inserida. Para que funcione, a aplicação é composta
por agentes integrados a um LLM open-source voltados exclusivamente para tratar de assuntos
ligados ao TCC em questão. O ARAMIS tem agentes que atuam em níveis que se complementam
— correção gramatical, encadeamento lógico e rigor metodológico, com atribuições internas entre
esses três agentes —, ativando-se a partir da configuração do usuário, com a intenção de fornecer
feedbacks precisos e úteis sobre o texto do trabalho em desenvolvimento.

5.1.1 Arquitetura e fluxo do ARAMIS

A seguir, é proposto o modelo da arquitetura do ARAMIS, separado em cinco etapas
principais bem definidas, ilustradas na Figura 4, desde a pré-configuração até a organização final
das revisões feitas pelo LLM.

Figura 4 – A figura apresenta o fluxograma do ARAMIS, detalhando suas principais etapas.

Fonte: elaborada pelo autor.

Para acessar o ARAMIS, o usuário deve ter um cadastro na plataforma. Após o
login, é apresentada a dashboard, exibida na Figura 5, onde há quatro opções de acesso: a
página inicial; o acesso principal à funcionalidade de correção de TCCs; a seção de histórico das
revisões; a seção de gerenciamento do perfil; e a seção de informações úteis sobre a ferramenta.



Figura 5 – A figura apresenta a tela inicial do ARAMIS e as opções disponíveis na sidebar.

Fonte: elaborada pelo autor.

Na seção Nova Correção, como mostra a Figura 6, é exibido um formulário que o
usuário preenche com as informações de seu trabalho, fazendo parte da interface com as opções
de pré-configuração, ilustradas no fluxograma da Figura 4, auxiliando na resposta que o LLM
deve retornar e direcionando-o a fornecer uma resposta precisa e estruturada. São as opções de
pré-configuração:

• Inserir o título e a área de conhecimento do TCC;
• Selecionar a seção a que se refere o texto inserido pelo usuário;
• Definir entre um e três agentes que podem ser acionados para gerar o feedback;
• Definir o nível de rigor a qual o modelo deverá operar

Na terceira etapa, baseada nas informações preenchidas na pré-configuração, o
serviço de análise se responsabiliza por receber os valores inseridos no front-end, processá-los e
preencher os templates de prompts, convertendo-os para o formato JavaScript Object Notation

(JSON) e, assim, enviá-los ao orquestrador Agno, responsável pela comunicação entre o back-end

e a chamada ao serviço do LLM hospedado no Hugging Face, por meio de sua API, iniciando,
assim, o processo de revisão do texto do TCC.



Figura 6 – A figura apresenta o formulário de preenchimento com as informações de pré-
configuração do ARAMIS.

Fonte: elaborada pelo autor.

O framework Agno tem como função coordenar como os agentes são definidos e
como agem. Dessa forma, a definição dos três agentes é semelhante, iniciando sua operação
quando o processamento de recebimento de dados do front-end é concluído, recebendo a escolha
do usuário na pré-configuração e ativando-os conforme selecionados, entre outros. A atividade
operacional de cada agente é sequencial, isto é, caso os três agentes sejam acionados, o próximo
só começará a operar após a conclusão da operação do agente anterior, devido a existência de
apenas um LLM integrado à ferramenta, funcionando para apenas uma consulta por vez. Caso
apenas um agente seja acionado, os demais não deverão operar, permanecendo inativos durante
toda a rodada do fluxo do ARAMIS.

Por fim, o resultado das revisões é sequenciado em uma única saída JSON (caso
apenas um agente seja acionado, há apenas uma revisão, também em uma saída), separado pela
resposta de cada agente e, após isso, as revisões são exibidas na interface do usuário, ilustrado na
Figura 7, onde cada uma é separada em sua própria seção, permitindo a visualização detalhada
da correção feita por cada modelo integrado aos agentes.



Figura 7 – A figura apresenta uma revisão gerada pelo ARAMIS, na seção de revisões do usuário.

Fonte: elaborada pelo autor.

5.2 Função dos agentes do ARAMIS

O ARAMIS, como uma ferramenta multiagente, é composto por um módulo de
agentes, que são funções construídas em Python, auxiliadas pelo framework de orquestração
multiagente Agno, utilizando-o para facilitar a configuração e o comportamento dos agentes que
seriam utilizados em uma rodada de execução do programa, ou seja, de acordo com o fluxo do
ARAMIS, exibido na Figura 4. Dessa forma, dependendo da pré-configuração do usuário, o
Agno decide qual agente é considerado para a função designada, quando necessário, recebendo
uma chamada composta por um corpo de informações passado na requisição.

Por meio do framework Agno, os três agentes são controlados e cada um está
integrado em instâncias semelhantes do mesmo LLM open-source, o gpt-oss-20b, da OpenAI. A
Tabela 4 descreve as características que cada agente possui e o tipo de particularidades textuais
que cada um têm enfoque.

5.3 Modelagem dos prompts

Os prompts foram estruturados de maneira a receber orientações explícitas sobre
quem são, o papel a desempenhar, os detalhes e o tipo de resposta a retornar. Além disso, há
variáveis (placeholders) que o sistema preenche automaticamente com informações inseridas
pelo usuário na etapa anterior à ativação da revisão. Essas variáveis contêm, por exemplo, o
texto da seção submetida, a área específica do trabalho e o tipo de avaliação desejada. Essas
variáveis estão dentro de chaves, onde serão automaticamente substituídas no momento da
execução da LLM, conforme as escolhas do usuário (esclarecido na Subseção 5.1.1). Existirão
variáveis padronizadas em todos os prompts, pois todos seguirão uma estrutura semelhante, com
a diferença do direcionamento imputado a cada um deles. Abaixo, detalhamos quais são essas
variáveis que estarão entre chaves para serem substituídas no momento da entrada do modelo:



Tabela 4 – Resumo das funções dos agentes do sistema ARAMIS

Agente Descrição

Correção gramatical Agente que utiliza técnicas de Engenharia de prompt, como o
few-shot explicado na Seção 2.4, voltado especificamente para
identificar e listar erros ortográficos e possíveis equívocos de acen-
tuação que o texto inserido pode apresentar. Está orientado a não
alterar o estilo de escrita do autor, apenas expor a quantidade de
erros e suas correções; sua saída foi configurada para também
exibir o texto corrigido.

Encadeamento lógico Agente preparado para lidar com a coerência entre sentenças e
seções presentes no trabalho. O modelo realiza uma análise em
nível micro (sentenças adjacentes/parágrafos da seção). Também
é utilizado um prompt direcionado, com a técnica de few-shot,
estruturando e aprimorando a resposta gerada pelo modelo.

Rigor metodológico Agente construído com maior atenção, contendo um prompt pró-
prio direcionado que utiliza técnicas estruturadas por etapas e é tes-
tado com abordagens como o few-shot. Sua atuação concentra-se
em verificar a coerência entre o problema de pesquisa, os objetivos,
o método e a análise de resultados, em especial no capítulo de
Metodologia.

Fonte: elaborada pelo autor.

• secao_desejada: Indica nos prompts a seção que será abrangida para análise. Foi
definido ser apenas uma, após notar-se uma melhoria das revisões ao abarcar
apenas uma seção por vez. Essa variável no prompt ajuda o modelo a ser mais
específico sobre a seção selecionada;

• titulo_tcc: Contém o título do trabalho do aluno. Desta forma, o LLM sabe espe-
cificamente o tema que está tratando e as informações possivelmente atreladas a
ele, adquirindo um contexto mais preciso;

• area_conhecimento_tcc: Representa a área do conhecimento a qual o TCC está
atrelado. Essa variável ajuda o LLM a entender por que este assunto está sendo
escrito com aquele conteúdo e daquela maneira;

• nivel_rigor_modelo: Define o nível de rigor que o modelo deve avaliar aquele
trecho do TCC do aluno. Essa variável serve para apoiar o teor da revisão do
LLM de acordo com o desejo do usuário;

Esse design específico de prompt teve a intenção de explorar a capacidade do LLM
de capturar padrões complexos, como a objetividade e o rigor científico. Esse enfoque é especi-
almente útil para os modelos de linguagem, que possuem um forte potencial de generalização e
podem identificar padrões globais em uma única leitura dos textos.



6 RESULTADOS

Este capítulo caracteriza o perfil das pessoas que participaram dos experimentos
e expõe os resultados dos usuários reais da ferramenta ARAMIS, por meio do método de
avaliação de usabilidade SUS, além dos feedbacks positivos e negativos deixados pelas pessoas
que avaliaram o sistema.

6.1 Perfil dos usuários

A avaliação da ferramenta foi realizada por 10 graduandos da Universidade Federal
do Ceará (UFC), dos cursos de Ciência da Computação (CC) e Sistemas de Informação (SI),
todos em processo de escrita do TCC 1 ou TCC 2. Esses graduandos tiveram a ferramenta à
disposição na web para que inserissem partes de seus TCCs em um horário oportuno e, dessa
forma, obtiveram o resultado da análise dos agentes do ARAMIS. Após os testes, os participantes
responderam a um formulário na plataforma Google Forms, que continha as perguntas de
usabilidade do SUS. Os usuários foram orientados a preencher com o nome, curso e semestre
e, de acordo com a ordem de resposta do formulário, os resultados foram organizados em uma
tabela. Para o relato neste trabalho, os dados sensíveis foram anonimizados, ficando, por exemplo:
Usuário CC 1, Usuário SI 2, etc. A Tabela 5 demonstra o perfil dos participantes da pesquisa de
usabilidade do ARAMIS.

Tabela 5 – Perfil dos usuários que avaliaram o ARAMIS

Participante Gênero Escolaridade Universidade - Campus Semestre

Usuário SI 1 Masculino Ens. Médio Completo UFC - Crateús 12º

Usuário CC 1 Masculino Ens. Médio Completo UFC - Crateús 10º

Usuário SI 2 Masculino Ens. Médio Completo UFC - Crateús 10º

Usuário CC 2 Masculino Ens. Médio Completo UFC - Crateús 12º

Usuário CC 3 Masculino Ens. Médio Completo UFC - Crateús 10º

Usuário SI 3 Feminino Ens. Médio Completo UFC - Crateús 8º

Usuário CC 4 Masculino Ens. Médio Completo UFC - Crateús 10º

Usuário CC 5 Masculino Ens. Médio Completo UFC - Crateús 8º

Usuário SI 4 Masculino Ens. Médio Completo UFC - Crateús 10º

Usuário CC 6 Feminino Ens. Médio Completo UFC - Crateús 8º

Fonte: elaborada pelo autor.

6.2 Resultado dos usuários

A Tabela 6 exibe a nota média das perguntas pares14 e ímpares, e também os
resultados finais da avaliação SUS de acordo com o cálculo explicado na Subseção 4.4.1.

14 Há uma diferença na exibição da média das perguntas pares: quanto mais próximo de 1, melhor avaliada foi a
pergunta, pois são alternativas com teor negativo e, dessa forma, quanto mais próximo de 5, pior seria. Já nas
ímpares, aplica-se a escala Likert normalmente, em virtude das perguntas possuírem teor positivo, e quanto mais
próximo de 5, melhor seria.



Tabela 6 – Resultados obtidos pelos usuários que avaliaram o ARAMIS

Usuários Média perguntas pares Média perguntas ímpares Nota final do usuário

Usuário SI 1 1 4,2 90

Usuário CC 1 1,6 4,2 80

Usuário SI 2 1,2 4,8 95

Usuário CC 2 1,8 5 90

Usuário CC 3 1,2 4,6 92,5

Usuário SI 3 1,8 5 90

Usuário CC 4 1 5 100

Usuário CC 5 1,2 4 85

Usuário CC 6 1,4 4,2 85

Usuário SI 4 1,2 4,8 95

Nota média final da usabilidade: 90,5

Fonte: elaborada pelo autor.

Os resultados apresentados mostram que o ARAMIS, na avaliação dos usuários,
obteve a nota média de 90,5 pontos e, de acordo com a interpretação de Bangor et al. (2009),
a ferramenta foi classificada como excelente. Nenhuma nota final esteve abaixo de 80 pontos,
implicando que nenhum usuário considerou sua usabilidade abaixo da escala considerada boa.
Além disso, as médias de todas as perguntas foram elevadas, o que indica que quase todos os
usuários consideram que o ARAMIS possui uma usabilidade acima da média, em virtude do
que é exibido na lista de perguntas da Figura 3, sendo uma ferramenta útil para todos os que a
avaliaram.

Os usuários, em seu feedback, indicaram a simplicidade de uso da ferramenta, a
boa construção das seções, a qualidade e a precisão das revisões dos agentes, em especial as do
agente de Correção gramatical, além do bom desempenho do LLM integrado aos agentes, que
rapidamente gerou as revisões e identificou corretamente as incoerências, gerando feedbacks

úteis. Alguns participantes relataram que os comentários retornados pelo LLM são fundamentais
para que o usuário possa ter um feedback sobre como está o desenvolvimento do trabalho e
no que ele precisa melhorar. Por fim, aqueles que estavam tanto no TCC 1 quanto no TCC
2 relataram a intenção de continuar utilizando o ARAMIS para revisar seus trabalhos, não se
limitando apenas aos testes anteriormente realizados.

Embora os resultados tenham sido positivos, ressaltam-se algumas inconsistências
identificadas pelos usuários, como problemas pontuais no fluxo de autenticação que exigiram
intervenção administrativa, indicando que a estabilidade do sistema precisa de refinamento para
escala comercial. O modelo apresentou episódios de alucinação leve, sinalizando erros em
palavras inexistentes no texto original ou apontando falhas metodológicas cujas justificativas
estavam presentes em outras seções.

6.3 Limitações

Apesar dos resultados promissores, as principais limitações deste trabalho estão
relacionadas ao número reduzido de modelos open-source analisados, pois apenas seis modelos,
majoritariamente de código aberto, representam uma quantidade baixa de exemplos. O número
restrito de usuários que participaram da avaliação, conduzida com apenas dez participantes de



uma única instituição, pode limitar a generalização dos resultados. Além disso, as limitações da
licença gratuita da API do HuggingFace se esgotaram rapidamente durante as chamadas, e o uso
de APIs externas gratuitas impôs restrições de latência e volume de requisições. Soma-se a isso a
limitação da infraestrutura computacional do servidor onde a ferramenta está hospedada, que não
suporta modelos de grande porte, como o gpt-oss-20b, o que impactou o desempenho e obrigou
a adoção de serviços externos, mesmo tratando-se de modelos gratuitos. Diante desses fatores, é
evidente a necessidade de estudos futuros com maior diversidade de modelos, ampliação da base
de usuários, maior disponibilidade de recursos computacionais, além do fine-tuning de modelos
voltados às normas da ABNT e da adoção de inferência local, visando reduzir a dependência de
serviços externos e preservar a privacidade dos dados.



7 CONCLUSÕES E TRABALHOS FUTUROS

A correção automatizada de TCCs com LLM open-source é importante para otimizar
o fluxo de trabalho do aluno durante a produção de seu trabalho, mas também para aprimorar a
proficiência do aluno durante o processo de pesquisa. Nesse contexto, uma ferramenta web que
possibilita a correção de etapas específicas do TCC em língua portuguesa é apresentada como
uma oportunidade para diversas soluções de problemas referentes à escrita científica.

A presente pesquisa demonstrou que o emprego de LLMs open-source, orquestrados
por uma arquitetura multiagente, em que os agentes foram direcionados a funções diferentes,
constitui uma solução viável e robusta para a revisão automatizada de TCCs em língua portuguesa,
inclusive ao ser integrado à uma ferramenta web para uso institucional. Dessa forma, a questão
de pesquisa proposta, que investigou como sistemas de Inteligência Artificial especializados

em textos acadêmicos em língua portuguesa podem diagnosticar e orientar a construção de

encadeamentos lógicos e o rigor metodológico em Trabalhos de Conclusão de Curso, reduzindo

a necessidade de revisões manuais, foi adequadamente respondida por meio do desenvolvimento
e da avaliação do sistema ARAMIS. Os resultados obtidos demonstram que a arquitetura
multiagente integrada a um LLM open-source permite a geração de revisões consistentes,
cientificamente fundamentadas e direcionadas a aspectos centrais da escrita acadêmica. O
ARAMIS mostrou-se capaz de identificar incoerências textuais, fragilidades metodológicas e
problemas de encadeamento lógico, oferecendo comentários precisos que preservam o estilo
autoral do estudante, ao mesmo tempo em que contribuem para o aumento do rigor metodológico
e da correção gramatical do texto. Assim, a ferramenta se consolida como um assistente
acadêmico eficaz, atuando como suporte qualificado ao processo de revisão e reduzindo a
dependência de intervenções manuais recorrentes por parte dos orientadores.

Os resultados obtidos por meio do score SUS (90,5) confirmam que a ferramenta
atende às expectativas de usabilidade de estudantes de graduação, contribuindo para a redução
do tempo dedicado a revisões de caráter preliminar e para a melhoria das versões iniciais dos
trabalhos acadêmicos. Em suma, este trabalho valida o uso de modelos de linguagem generativa
em tarefas de especialização linguística, reforçando a viabilidade de soluções open-source e
contribuindo para a democratização do acesso a tecnologias de suporte à escrita científica no
contexto brasileiro.

Para trabalhos futuros, sugere-se o uso do fine-tuning em um modelo open-source

para auxiliar na correção de trabalhos científicos em língua portuguesa. Além de:
1. Ampliar a base de usuários para efetuar a avaliação da usabilidade da ferra-

menta, além de utilizar outras métricas específicas para medir a precisão
das revisões geradas pelo LLM;

2. Aplicação de técnicas de recuperação de informação como o Retrieval-

Augmented Generation (RAG) para que as revisões retornadas pelo modelo
tenham uma especificidade mais elevada e confiança maior sobre o assunto
que está tratando;

3. Melhorar o fluxo de autenticação e concorrência no processamento de dados
da ferramenta, permitindo que uma quantidade maior de usuários acesse o
sistema sem que haja inconsistências;

4. Hospedagem em um servidor que suporte um modelo de médio porte como
o gpt-oss-20b, e que suporte o volume de dados demandado;

5. Aprimorar a interface gráfica do sistema, aplicando tecnologias modernas
de interface de usuário que melhorem a experiência de uso e a usabilidade;
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