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RESUMO

O presente trabalho estuda solucdes cosmoldgicas em modelos de branas do tipo Randall-
Sundrum. Investigam-se, também, alguns modelos de branas espessas nos espacos-tempos de
Minkowski e de Sitter, elucidando as implicacdes fisicas e mateméticas que surgem ao se con-
siderar a gravidade de Rastall. Neste ponto, abordam-se os aspectos da expansao de Hubble na
presenca de uma dimensao extra, dado um modelo cosmolégico do tipo Friedmann-Lemaitre-
Robertson-Walker (FLRW) pentadimensional. Desta maneira, torna-se necessirio, em uma
primeira abordagem, analisar os modelos supracitados sem levar em conta o fator de escala
para, posteriormente, adiciona-lo a métrica ansatz. Neste contexto, destaca-se que uma natu-
reza exponencial da expansdo do fator de escala emerge como uma caracteristica independente
do nimero de dimensdes extras e, além disso, os resultados indicam que a gravidade de Ras-
tall pode fornecer mecanismos alternativos para a aceleracdo cosmica, mesmo na auséncia de

energia escura convencional.

Palavras-chave: mundos brana; dimensdes extras; métrica deformada; cosmologia; gravidade
de Rastall.



ABSTRACT

The present work studies cosmological solutions in Randall-Sundrum type brane models. It
also investigates some thick brane models in Minkowski and de Sitter spacetimes, elucidating
the physical and mathematical implications that arise when considering Rastall gravity. At
this point, aspects of Hubble expansion in the presence of an extra dimension are addressed,
given a five-dimensional Friedmann-Lemaitre-Robertson-Walker (FLRW) type cosmological
model. In this way, it becomes necessary, in a first approach, to analyze the aforementioned
models without taking into account the scale factor, to later add it to the metric ansatz. In this
context, it is highlighted that an exponential nature of the scale factor expansion emerges as
a characteristic independent of the number of extra dimensions, and furthermore, the results
indicate that Rastall gravity can provide alternative mechanisms for cosmic acceleration, even

in the absence of conventional dark energy.

Keywords: brane worlds; extra dimensions; warped metric; cosmology; Rastall gravity.
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1 INTRODUCAO

Albert Einstein publicou a Teoria da Relatividade Geral (TRG) em 1915. Nela, a
gravidade € descrita como a curvatura do espago-tempo causada pela presenga de matéria e ener-
gia. Um de seus fundamentos € o Principio de Equivaléncia, o qual estabelece que, numa regidao
suficientemente pequena, os efeitos de um campo gravitacional sdo indistinguiveis dos efei-
tos de uma acelerac@o uniforme para um observador em queda livre. Assim, um observador em
queda livre localmente ndo percebe a presenga da gravidade [1]. Além disso, a TRG possibilitou
o desenvolvimento da Cosmologia Moderna por meio das equacdes de campo, compreendendo
o Universo como um sistema dindmico.

Até o inicio do século XX, prevalecia a ideia de um Universo estatico, regido pela
mecanica newtoniana. No entanto, esse tipo de suposi¢cao nao conseguia explicar com precisao
os fenomenos observados em larga escala, como a expansdo césmica. Em 1922, Friedmann
encontrou essa expansao a partir de solugdes simplificadas das equagdes de Einstein, conside-
rando um Universo homogéneo e isotropico [2]. Em 1929, E. Hubble confirmou essa previsao
ao detectar o desvio para o vermelho das galédxias [3].

A introducdo de dimensdes extras na Cosmologia surgiu como uma extensao da
Teoria das Cordas e da TRG, especialmente nos modelos de mundos brana. Nessas propostas,
nosso Universo quadridimensional estaria imerso em um espaco-tempo de dimensdes supe-
riores, onde a gravidade se propaga no volume total do chamado bulk, enquanto as demais
interagdes fundamentais permanecem confinadas a brana. Essas dimensoes extras podem ser
compactas e microscopicas, como na teoria de Kaluza-Klein, ou macroscépicas e ndo compac-
tas, como em um dos modelos de Randall-Sundrum (RS). No primeiro caso, a compactificacao
preserva a estrutura do espago-tempo, enquanto, no segundo, a dimensdo extra pode ser fi-
nita (RSI) ou infinita (RSII), estruturada de modo a localizar modos massivos de Kaluza-Klein
proximos a brana. Essas abordagens afetam diretamente a evolu¢do césmica, modificando a
gravidade em grandes escalas e fornecendo possiveis explicacdes para a matéria e energia es-
curas [4-6].

Um dos problemas fundamentais que os modelos com dimensdes extras buscam so-
lucionar € a hierarquia entre a escala gravitacional (energia de Planck) e a escala das interacdes

eletrofracas. Os modelos de Arkani-Hamed, Dimopoulos e Dvali propdem que dimensdes ex-
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tras grandes permitem que a gravidade se espalhe em um volume maior, reduzindo sua escala
fundamental e explicando sua aparente fraqueza na brana observavel [7]. Ja os modelos RS
utilizam uma métrica curva no bulk para suprimir exponencialmente a escala de Planck na
brana visivel, dispensando a necessidade de dimensdes extras grandes. Essas ideias impactam
diretamente a Cosmologia, modificando as equa¢des de Friedmann, a expansdao do Universo
primordial e a inflagdo.

No contexto cosmoldgico, tanto para branas finas quanto espessas, a Gravidade de
Rastall propde uma alternativa a TRG ao postular que o tensor energia-momento nao € estri-
tamente conservado, permitindo interagdo direta entre matéria e geometria [8]. Em cendrios
de Cosmologia de branas, essa modificacdo pode influenciar significativamente a evolu¢ao do
Cosmos, alterando a dindmica da expansao, equacao de estado efetiva e fornecendo um meca-
nismo para a aceleracdo cosmica sem necessidade de um campo escalar adicional. Ademais,
pode impactar a evolu¢@o da radiacdo e da matéria no Universo primordial, afetando previsdes
sobre nucleossintese e formacao de estruturas.

Sendo assim, neste trabalho revisamos os fundamentos da TRG no Capitulo 2. No
Capitulo 3, exploramos sua aplicacdo a Cosmologia em um background FLRW, considerando o
Modelo Cosmologico Padrao (MCP). No Capitulo 4, introduzimos o formalismo de Rastall e o
aplicamos em branas finas (tipo delta de Dirac) e em branas espessas, desconsiderando o fator
de escala em um primeiro momento para, porteriormene, investigarmos as mudancas didmicas
ao introduzirmos o fator de escala nos repectivos elementos de linha.

A notacdo utilizada ao longo do texto é a seguinte: as primeiras letras latinas
mindsculas (a, b, c...) representam tensores na notacdo de indices; letras maidsculas nos indices
(M,N, Q...) representam coordenadas em variedades com dimensdes superiores a quatro; letras
gregas minusculas nos indices (i, V,p...) representam coordenadas em variedades quadridi-
mensionais, em que as letras latinas mindsculas (i, j, k...) se referem as coordenadas do espago
tridimensional e sempre que aparecer indices repetidos contraindo-se e nao for explicitado o so-
matorio, estd implicita uma soma sobre eles (0s que nao se repetem ndo representam somatorios,
mas o nimero de equacdes), ou seja, adotamos aqui a convencao de soma de Einstein. Quando

nao explicitado no texto, estamos trabalhando com unidades naturais (G =c = 1).



14

2 FUNDAMENTOS DA TEORIA DA RELATIVIDADE GERAL

Apresentamos neste capitulo o arcabouco matematico necessario para a constru¢ao
da TRG e, consequentemente, dos modelos de mundos brana sob uma Cosmologia FLRW.
Inicialmente, abordamos o conceito de Variedade Diferencidvel. Em seguida, definimos os
campos e os operadores com os quais iremos trabalhar nas Sec¢des subsequentes, culminando,

assim, nas equacoes de campo de Einstein para um espago-tempo quadridimensional.

2.1 Variedade Diferenciavel

Variedades, de modo geral, formam espacos que se assemelham localmente ao
espaco euclidiano, podendo ter sua estrutura global mais complexa. Em outras palavras, cada
ponto de uma variedade de dimensdo D (D € N)! tem uma vizinhanga que é homeomorfa ao
espaco euclidiano também de dimensdao D, ou seja, hd uma fung¢do bijetiva, continua e com

inversa continua entre a vizinhanga do ponto e o RP. Formalmente, de acordo com Wald[11]:

Definicao 2.1. Uma variedade real Mp, D — dimensional, de classe C* (suave), é um conjunto

com uma cole¢do de subconjuntos {0y} satisfazendo as seguintes propriedades:

(i) Cada ponto p € Mp estd em pelo menos um Oy, isto é, {Oy} cobre Mp;
(ii) Vo, 3y : O —> Uy C RP, onde Qo € chamado de mapa;

(iii) Se quaisquer dois conjuntos Oq e Op se sobrepoem, Oq N Og # &, podemos conside-
rar o mapa ¢g o @g ' que leva pontos em ¢y [0a ﬂOﬁ] C Uy C RP para pontos em
(])B [OaQOﬁ] C Uﬁ C RP.

O par (U,¢) é chamado de carta e o conjunto formado por todas as cartas é cha-
mado de atlas de Mp. As variedades, onde construiremos a TRG mais a frente, sdo espacos
topoldgicos dotados de métrica. Eis, portanto, duas definicdes adaptadas da Ref.[12], com a
observacao de que, no caso de uma variedade D — dimensional, ainda precisamos reformular a

defini¢do de métrica através do que se conhece na literatura como métrica de Riemann.

IExistem estudos que exploram a possibilidade de dimensdes fraciondrias, especialmente em contextos envol-
vendo geometria fractal, gravidade quantica ou teoria de campos em espacos com estrutura nao trivial. Veja, por
exemplo, as Refs. [9,10].
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Definicao 2.2. Um espaco topoldgico (X ,T) consiste de um conjunto X com uma cole¢do T de

subconjuntos de X (chamada de topologia sobre X ) satisfazendo trés propriedades especificas:

(i) Og et (Vo) =) Og € 7/
o

n
(ii) O1,..,0n€T= () O; € T;
i=1

(iii) Todo o conjunto X e o conjunto vazio & estdo em T.

Definicao 2.3. Uma métrica d em um conjunto ndo vazio X é um mapa d : X x X — R que,
YV x,y,z € X, associa um niimero real d(x,y) (chamado de distdncia entre x e y) da seguinte

forma:
(i) d(x,y) >0 (Positividade, com d =0 para x =y);
(ii) d(x,y) =d(y,x) (Simetria);
(iii) d(x,z) <d(x,y)+d(y,z) (Desigualdade triangular).

E interessante destacar que o subconjunto U, descrito na Def.(2.1), também corres-
ponde a um conjunto aberto em RP. Assim, U pode ser expresso como uma unifio de bolas
abertas de modo que, em um espaco métrico (p,d), uma bola aberta de centro p € U e raio
r > 0 é definida como B(p,r) :={q € U | d(p,q) < r} [13]. Além disso, ressaltamos, em con-
formidade com Henriques[14], que os Uy’s constituem uma imagem passivel de representacao
por coordenadas, digamos xV(p) com N = 1,...,D. Ademais, pela condicdo (iii) da mesma
definigo, se p tiver coordenadas x" (p) € Uy e yM (p) € Ug, com M =1, ..., D, existirdo mapas
M [yM(p)] que representardo transformacdes de coordenadas entre dois conjuntos abertos.

Variedades sdo essenciais para generalizar nocdes de curvas e superficies para o
caso de dimensoes arbitrarias, permitindo formalizar o Cdlculo Diferencial em espacos curvos
parametrizados, por exemplo. Mais detalhes conceituais e/ou defini¢des a respeito das varieda-

des diferenciais podem ser encontrados na Ref.[15].
2.1.1 Vetores Tangentes como Derivadas Direcionais

Em RP existe uma bijecio entre vetores e derivadas direcionais. Desta maneira, um
vetor v = (v!,...,vP) define o operador derivada direcional vV % e vice-versa. Derivadas di-
recionais sao descritas por sua linearidade e pela regra de Leibniz para derivadas com relagao

ao produto de funcdes. Logo, com base na Ref.[11]:
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Definicao 2.4. Seja .- ¥ uma colecdo de fungoes de classe C* de uma variedade Mp nos reais.

Definimos o vetor tangente v a um ponto p € Mp como o mapa v : % — R, de modo que:
(i) viaf +bg) =av(f)+bv(g),V f,g € F,Ya,becR (Linearidade);

(ii) v(fg) = f(p)v(g) +8&(p)V(f) (Regrade Leibniz).

Denotamos por V), (espaco tangente em um ponto p) o conjunto formado por todos
os vetores tangentes a p € Mp. Sendo assim, afirmamos que V, tem a estrutura de um espaco
vetorial [16]. Uma segunda propriedade importante de V), € que, para uma dada variedade
diferenciavel D — dimensional Mp, a dimensio de V), € a mesma que a de Mp, ou seja, dimV ), =
D, como demonstrado na Ref.[11].

Sendo V,, um espago vetorial, introduzimos uma base coordenada {Xy}, em que
XN = % = dy. Assim, expressamos um vetor tangente arbitrdrio v como uma soma dos Xy’s
de modo que
2

= WXy =N —.
v N=VION

2.1)

Considerando uma base coordenada diferente para V,,, digamos {Xj,}, e fazendo uso da regra

da cadeia, podemos obter a transformacgao

0
. M~ _ IM
v = Vv XM =V _ax/M
d 0
V/M _ N

=y
ox'M oxN

M
M XM

= = 8xNv . 2.2)

A Eq.(2.2) é conhecida como lei de transformacao vetorial. Note que realizamos esta transformacao
escrevendo o mesmo v em dois sistemas de coordenadas diferentes. A ideia de invariancia, por-
tanto, comeca a tomar forma. Ela € de suma importancia, pois esperamos que as propriedades
de um sistema fisico ou de uma lei da fisica permane¢am inalteradas sob certas transformacoes,
como as grandezas escalares vV}, =My, por exemplo - algo que permeard por todo nosso
estudo sobre a relatividade geral.

Diante do que foi exposto acima, ponderamos que € possivel associar um vetor para
cada ponto de uma variedade arbitrdria e denominamos essa cole¢do de vetores como campo
vetorial. No contexto do espago-tempo, um campo vetorial pode representar a velocidade de

uma particula em cada ponto, ou um vetor de forca em um campo gravitacional. Ademais, ao
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derivarmos uma curva com relagdo aos seus parametros, também obtemos um vetor tangente.
Logo, um campo vetorial € definido como sendo um mapa, de modo que Vv € V,d! p €
Mp;(v,p) € V, X Mp. Por fim, destacamos que os elementos de V, agem como operadores

diferenciais em fun¢des escalares f € .%.
2.1.2 Campos Tensoriais e o Tensor Métrico

Com o intuito de descrever as leis fisicas de forma independente do sistema de coor-
denadas, de acordo com o principio da covariacia geral, devemos construir nosso ferramental
matemadtico com base nos tensores, mantendo assim uma determinada lei invariante para qual-
quer transformacdo de coordenadas. Com esse objetivo, precisamos introduzir uma nocao de
espaco vetorial dual ao espacgo tangente para entdo definirmos os tensores propriamente ditos.

Seja V um espacgo vetorial de dimensdao D sobre R (no contexto deste trabalho, o
objeto de estudo principal € o préprio espaco tangente, V = V). Considere a cole¢do V* de
mapas lineares f : V —— R. Se impusermos a adi¢do e a multiplicacdo por escalar, do mesmo
modo como definimos espagos vetoriais [16], obtemos uma estrutura de espago vetorial para
V* de forma natural. Denominamos V* como espaco vetorial dual a V (ou espaco cotangente,
quando tomado no ponto p) e os elementos de V* sdo chamados de vetores duais (ou covetores).

Se vi,...,vp € uma base de V, entdo podemos definir os elementos vl*, ...,vD* ev*
por V" (vy) = §Y. Desta maneira, segue-se diretamente que {v¥" } é uma base de V*, chamada
de base dual a {vy} de V. Em particular, isso mostra que dimV* = dimV. A correspondéncia bi-
jetiva vy «— VM déd origem ao que denominamos de isomorfismo entre os conjuntos formados

pelos espacos V e V*. Vejamos algumas defini¢des adaptadas da Ref.[11].

Definicao 2.5. Sejam V um espaco vetorial D — dimensional e V* seu espago vetorial dual.

Um tensor T do tipo (k,1) é um mapa multilinear T : V* x ... x V' xV x ... x V+— R,

~~ ~~

k termos [ termos
Em outras palavras, dados k vetores duais e [ vetores ordindrios, T produz um
numero real e o faz de tal maneira que, se fixarmos todos os vetores ou vetores duais, exceto um,
entdo havera uma aplicacdo linear na varidvel restante. Destacamos que vetores e escalares sao
casos particulares de tensores e, além disso, a soma e/ou subtracdo de dois tensores do mesmo

tipo resulta em outro tensor do mesmo tipo.

Definicao 2.6. Sejam 7 (k,1) e 7 (k—1,1— 1) os conjuntos de todos os tensores do tipo (k,l)

e (k—1,1—1), respectivamente. A contragdo com relagdo ao i-ésimo vetor dual e j-ésimo vetor
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ordindrio é um mapa C : 7 (k1) — T (k—1,1—1) em que, se T é um tensor de tipo (k,l),
entdo CT =YL _ T(...v9,..;..,vs,...), onde {vs} é uma base de V e {v° } é sua base dual

e esses vetores sdo inseridos nos i-ésimo e j-ésimo termos de T.

Defini¢do 2.7. Dados dois tensores T e T de tipos (k,1) e (k',1), respectivamente, podemos
construir um novo tensor de tipo (k+k',1+1") a partir do produto tensorial de T e T', de-
notado por T®T', pela seguinte regra: tomando k + k' vetores duais v'", ... V***" e [+ 1’
vetores @y, ..., @y, definimos T ® T agindo sobre esses vetores como sendo o produto de

1* k*. /(k+H1E k+k*.
TO ..V 0, .,@) e T VTR, . @ ).

Assim, de acordo com a Def.(2.7), uma maneira de construir tensores € tomar pro-
. . . . 7 * pd
dutos tensoriais de vetores e vetores duais, ou seja, se {vys} é uma base de Ve {v""} é sua base

dual, um tensor T de tipo (k, 1) pode ser expresso como uma soma de tensores simples:
T =Ty "o, @@y @ .. @V (2.3)

Contraindo o tensor descrito na Eq.(2.3) em termos de componentes e utilizando a Def.(2.6),

obtemos:

Mi..M;_ Mi...0... M, _
(CT)NII...N[fll = TN] IGGNl,kl l' (24)

Aqui, o esta sendo somado em todas as coordenadas de 1 a D. Para S = T ® T’, escrevemos:

— 1"'Mk+k/ . Mlu.Mk /Mk+l"'Mk+k/
S _Sll\\fl~-~Nl+l/ - Nl~~-Nl NZ+1"'NZ+Z/ ° (25)

Voltemos nossa ateng¢@o para o caso em que V =V, isto €, vamos considerar o
espago tangente em um ponto p situado em uma dada variedade Mp, com V), sendo o espago
cotangente em p. Também nos referimos aos elementos de V), como vetores contravariantes
e aos elementos de V), como vetores covariantes. A base dual associada a V;; € usualmente
denotada por {dx"}, de modo que dx"(dy) = 8J). Assim sendo, suponha que um dado @y
representa um covetor @ em termos de componentes, com base dual {dx"}. Como fizemos nas

Egs. (2.1) e (2.2), podemos escrever uma transformacgao de coordenadas da seguinte forma:

o = oyd<" = wpd™

ox

= W)= ST ON- (2.6)
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Além disso, a Eq.(2.3) torna-se:
T =Ty 0" p, ®...® Oy, dxM @ ... @ dx. 2.7)

Das relagdes (2.2) e (2.6), em conformidade com a Eq.(2.7), omitindo-se o simbolo de produto
tensorial, podemos escrever a seguinte generalizacdo para a transformacao de coordenadas de

um tensor arbitrario T de tipo (k,[):

M M,
T/M]...Mk o ax ! ax k axQI ale Py.. P

i = S s e T (2.8)

A atribui¢do de um tensor sobre V,, Vp € Mp, € chamada de campo tensorial.

A nocdo de métrica advém da hipdtese de que distancias infinitesimais quadradas
podem ser associadas a deslocamentos infinitesimais. Desta maneira, uma métrica g deve ser
um mapa linear de V,, x V, — R, ou seja, um tensor do tipo (0,2). Além disso, a métrica
deve ser simétrica e ndo degenerada - matematicamente g(vi,v2) = g(v2,v1),Vvi,v2 € V, e
g(vvi) =0,Yv € V, = v; = 0. Fisicamente falando, a constru¢do de uma métrica em um
espaco arbitrdrio serve para medir distancias, angulos e comprimentos de vetores, o que fornece

ao espago uma estrutura geométrica bem definida.

Definicao 2.8. Seja Mp uma variedade diferencidvel D — dimensional. Uma métrica de Ri-
emann em Mp é um campo tensorial simétrico (positivo-definido) de tipo (0,2), ou seja, um
mapa que associa para cada ponto p € Mp um produto interno no espago tangente V,, -

g:V,xV,— R, onde gp(vi,v2) = gp(v2,v1) € gp(vi,v2) > 0, Yv,v2 € V.

Quanto g ndo € positiva-definida, passa a ser denominada como métrica pseudo-
riemanniana. Assim, em linhas gerais, uma métrica é um produto interno (ndo necessariamente
positivo-definido) no espaco tangente em cada ponto. Em uma base coordenada, podemos

expandir uma métrica g em termos de suas componentes gy/y como

¢ = gund™M @ dx". (2.9)
Vamos representar g pelo elemento de linha dS?, caso em que escrevemos

ds? = gundxMdx", (2.10)

de modo que gy satisfaz as seguintes propriedades: 1) gVgn; = gy gV = M; 2) W =

MN

§"Nvy € 3) vir = g

, com gMN sendo o tensor métrico contravariante.
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2.2 Curvatura do Espaco-Tempo

Precisamos encontrar os tensores que nos auxiliardo na descri¢do da curvatura do
espaco-tempo. Intuitivamente, a curvatura descreve como um espago ou superficie se desvia
de ser plano (ou euclidiano). Na TRG, por exemplo, a curvatura do espaco-tempo esta inti-
mamente relacionada a presenca de matéria/energia e a maneira como ela influencia diversos
sistemas fisicos. Nas linhas que se seguem, definimos precisamente os operadores diferenciais
que iremos aplicar durante todo o restante do texto (as derivadas covariantes); entdo passamos a
deducao dos tensores com os quais calcularemos a curvatura propriamente dita, referente a uma

variedade diferencidvel arbitréria (tensores de Riemann e Ricci, com seu respectivo escalar).
2.2.1 Derivada Covariante

Vamos definir a derivada covariante de acordo com Wald[11]. Para tanto, passamos
agora a escrever os tensores em notagdo de indices, ou seja, T = Tb”il“;f;" € 7 (k,1) (ndo confun-
dir com as coordenadas, que estamos denotando por letras latinas maidsculas, e cujos tensores

tém sido expressos em suas respectivas bases coordenadas).

Definicao 2.9. A derivada covariante, denotada pelo simbolo V, em uma variedade diferencidvel
Mp, é um mapa que leva a cada campo tensorial diferencidvel do tipo (k,l) para um campo

tensorial diferencidvel do tipo (k,l+ 1) e satisfaz as cinco propriedades a seguir:
(i) VA,B€ T (k,l) eVa,B €R, V, (aAZi:::Z;‘ +BBZ1::Z§> = aV Ay T+ BVBy
(Linearidade);
.. C1...Cypt >1.-.Cpt C1...Cpt
(ii) VA T (k1) e VB E T (K1), Ve (AL isBG ) = (VeAgs 56 ) By +Agt v (VoBy.
(Regra de Leibniz);
(iii) VA € T (k,1), Vq4 (AZiEZf) = VdAZiEZ;‘ (Comutatividade com relacdo a contragdo);

(iv) Vf € F eVu* €V, u(f) =u’V,f (Consisténcia com a no¢do de vetores tangentes como

derivadas direcionais em campos escalares);
(v) VfeZ, [Vo,Vul(f) = (VaVp — Vi V) (f) = 0 (Livre de torgao).

Utilizando as propriedades acima, podemos deduzir uma expressao para a derivada
covariante de forma explicita. A principio, pela condi¢do (iv), quaisquer dois operadores di-

ferenciais V, e V, devem concordar nas suas acdes em campos escalares. Desta maneira, seja
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@y, um covetor e considere a diferenga V,(f@,) — V,(f@®,) para um campo escalar arbitério f.

Pelas propriedades (ii) e (iv), temos:
Va(fop) = Va(f@p) = f (Va®y = Va) (2.11)

de modo que a subtragdo entre estes dois operadores depende somente do valor de wy, no ponto
p € Mp. Sendo assim, suponha @, = @, em p. Afirmamos, sem demonstrar, que podemos

encontrar fungdes suaves f(4) (que desaparecem em p) e componentes de covetores suaves

ulga) tais que

W, — Wp = f(a)ub . (2.12)

Substituindo a Eq.(2.12) no resultado encontrado na Eq.(2.11), encontramos:

Va (w}/) - wb) -V (w}/; - wb) = f(a) (va.ujga) - Va.ulsa)> . (2-13)

Desde que f(4) =0,Va em p (o que advém da independ@ncia linear), a Eq.(2.13) torna-se:

V), — Ve, = Ve, — V. (2.14)

Assim, mostramos que V, — V,, define um mapa linear de covetores (em oposi¢io a campos de
vetores duais definidos em uma vizinhanga do ponto p) para um tensor de tipo (0,2) em p. Em

consequéncia, esta subtra¢do define uma conexdo C;;, de modo que
V.o, = V05, — CS) ;. (2.15)

Proposicao 2.1. A conexdo C é simétrica.

Prova. Seja o, =V, f = ﬁbf, com @y, € V}; e f € .F. Assim, de acordo com a Eq.(2.15),
Va(Vif) = Va(Vipf) — C, V. f. (2.16)

Desde que ambos V V), f e V V), f sejam simétricos em a e b, de acordo com a propriedade (v),

segue-se que C¢, deve ter também essa propriedade, isto é,
c __
ab = Cha- (2.17)

Em outras palavras, a simetria de CS, é uma consequéncia direta do espago ser livre de torsao.

]
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Utilizando a propriedade (ii) e a Eq.(2.15) podemos deduzir o seguinte resultado,

Wb e VpeVa, €V

(Va=Va) (0p”) = (Va=Va) (@)’ + @y(Va—Va) ()

= vbcgba)c + wb(ﬁa — Va)(vb)

= Vol =vVal4+chac (2.18)

Continuando de uma maneira similar, apenas construindo produtos tensoriais entre vetores,
podemos derivar uma férmula geral para a acdo de V, num campo tensorial arbitrario, em

termos de V, e C¢,. Para T € 7 (k, 1), encontramos:

by...b b b b, by..d...b
VaTCll-nCzk Tl “+ Z T011-~-Cz - Z acj cl...d...cl (2.19)

Assim, a diferenca entre dois operadores V, e V, é completamente caracterizada por C;,. To-
davia, a aplicacdo mais importante da equacdo acima surge no caso onde V é um operador
diferencial ordinério d,. Neste caso, denotamos C¢, por I, (simbolo de Christoffel). Logo,

como exemplo, podemos escrever:

VP =9 +12 0. (2.20)

Definicao 2.10. O transporte paralelo de um dado tensor Tb1 CIZ”‘, ao longo de uma curva €,

conectando dois espagos tangentes V, e V, nos pontos p e g, respectivamente, é definido como

sendo a relagdo que satisfaz a seguinte derivada covariante (a partir do vetor u® tangente a

%):
uavaTgl_;;-jZ’k =0. (2.21)

b

Diretamente da definicdo acima, concluimos que um vetor v’ em cada ponto da

curva € dito ser transportado paralelamente se

vl =0
= U’ +u'TSH° =0

a
E +u Fbcv =0. (222)

Gostariamos que o produto interno fosse invariante quando o transportamos paralelamente ao
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longo de uma curva €. Dessa forma, suponha v* e @”, de modo que o produto interno seja

expresso por gV @?. Utilizando a definicdo de transporte paralelo, temos:

UVe(gap? o) =0
= 0 pela Def.(2.10) = 0 pela Def.(2.10)

= UV 0OV egap + UV 0" Wigu + 0P g (uV ) =0
= UV Vg =0 < V,.gu = 0. (2.23)

Em outras palavras, para que o produto interno se conserve ao longo de %, a derivada covariante

da métrica deve ser nula. Vamos mostrar que V. € unico.

Proposicao 2.2. Se g, é um tensor métrico, entdo existe um vnico operador V. satisfazendo
chab =0.
Prova. Seja d. um operador diferencial ordindrio associado a um sistema de coordenadas (cujo

estamos representando por V.). Pela Eq.(2.19) (jd substituindo C por I'), temos que

Vegab = 0c8ab—T%8ap —T%8aa =0
= acgab - Fgagdb + nggad - l—‘bca + 1—‘acb- (2-24)

Por substituicdo de indices, podemos escrever

aagcb = l—‘bac‘i_l—‘cab; (225)

abgac = Fc’ba+rabc'- (226)

Finalmente, somando a Eq.(2.24) com a Eq.(2.25), subtraindo a Eq.(2.26) e usando as propri-
edades de simetria de T, encontramos:
1
r‘i‘la = Egdb<&cgab + dugeh — abé’ca)- (2.27)

Esta escolha da conexdo resolve a expressdo (2.23) e ainda é uinica.

Em termos das bases coordenadas, podemos reescrever a Eq.(2.27) como
1
Thy = 3 IZV:gLN(anMN + JdmgoN — INgom)- (2.28)

A conexdo obtida das propriedades de simetria apresentadas acima é denominada conexao de



24

Levi-Civita (ou conexdo afim). Observe que, mesmo quando estdvamos determinando C;, e,
consequentemente, I, , ndo falamos nada a respeito de seu carater tensorial. Isso se justifica
porque I, ndo se transforma como indicado na Eq.(2.8) (omitimos aqui a demonstragio). As-
sim, de acordo com o que foi desenvolvido nesta Secdo, concluimos que podemos calcular a
derivada covariante utilizando a conex@o de Levi-Civita e tomando as derivadas parciais das

componentes das bases coordenadas da métrica.
2.2.2 Tensor de Riemann

Passemos a construir os tensores que determinam a geometria do espaco-tempo. A
curvatura, dada uma variedade diferencidvel, pode ser calculada através do tensor de Riemann,
onde este nos fornece uma medida de como vetores se transportam paralelamente ao longo
de curvas e como o proprio espaco é curvado devido a presenca de matéria e energia. Para
tanto, apresentamos agora algumas propriedades que o tensor de Riemann deve satisfazer e
deduzimos, por conseguinte, sua forma explicita por meio da conexado de Levi-Civita. Ademais,
por contragdo de indices, definimos o tensor e o escalar de Ricci.

Sejam V, e V, operadores diferenciais, . € V), e f € Z. Calculando o comutador

desses operadores atuando no produto f®,, encontramos, pela regra de Leibniz [11]:

[Vaavb] (fwc) = Va(a)cvbf“f‘fvbwc) - Vb(wcvaf+fvawc)

= F(VaVpe — VVatr) = f[Va, Vi (0). (2.29)

O tensor (V,V;, — V,V,)®, no ponto p depende apenas do valor de @, em p. Consequente-
mente, [V, V;] define um mapa linear de um covetor em um tensor de tipo (0,3). Deste modo,

existe um campo tensorial, que denotamos por R‘alb . (tensor de curvatura de Riemann):

[Va, Vpl(@) = RY

abc

ay. (2.30)

Podemos obter, assim, a expressao do comutador de operadores diferenciais num campo tenso-
rial arbitrario em termos do tensor de Riemann. Inicialmente, para um campo vetorial v¢ € V),
a propriedade (v) da Def.(2.9) sugere que

=feZ

c _ c . .C _ c L .C
[Va, Vo] (V@) = Va(@Vpv +vVyp0) — Vi (0Vav +vV,0)
—_—

=0
= V(VoVp=V,Vo) o+ o, (V,Vy — ViV V©

= @[V, Vp] (V) +VRY, .05 =0

abc
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= [Va, V] () = =R, . (2.31)

De modo geral, para um tensor Tdcl1 "';[", encontramos

...0...
Vo, Vol Ty o = ZRabGTdcll Ck+ZRand Ty, o ar (2.32)

Diretamente da construcao do tensor de Riemann Eqs.(2.30) - (2.32), podemos ob-

servar que as seguintes propriedades sdo satisfeitas:

__Rd .

bac’

(i) R4

abc

(if) Rﬁl be] = 0 (Antissimetria nos indices a,b e c);
(iii) Raped = —Rupae (Considerando Vg5 = 0);
(V) Rabed = Redav;

v) V[aRe = 0 (Identidade de Bianchi).

A partir das propriedades antissimétricas (i) e (iii), o traco do tensor de Riemann sobre os dois
primeiros ou dois ultimos indices desaparece. Entretanto, o trago sobre o segundo e o quarto
indices (ou, de forma equivalente, o primeiro e o terceiro) define o que denominamos tensor
de Ricci, ou seja, RS, = Ryp. Além disso, usando a propriedade (iv), temos Ry, = Rp,, com
o escalar de curvatura sendo definido pelo traco do tensor de Ricci, R = R{. Ao calcularmos

explicitamente o tensor de Riemann a partir da Eq.(2.30), encontramos:

R¢ = [Vo, V(o)

abc

= oI, — .19, + T¢I, —T¢, %, (2.33)

ac

O tensor de Ricci pode ser obtido contraindo-se a equagdo acima, ou seja,

Ri=Rb,. = 92 —oJI%, +1¢1%, —T¢

a

2. (2.34)

Também destacamos que a contra¢do da identidade de Bianchi [propriedade (v) desta Sec¢do]

leva a uma equagdo importante para o tensor de Ricci:

V[aRic]d — 0

abc

1
= V¢ (Rab — ERgab> =0, (2.35)
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onde G, = Ryp — %Rgab ¢ denominado tensor de Einstein (note que a divergéncia nula deste
tensor € naturalmente satisfeita devido a estrutura matematica do tensor de Riemann, indepen-
dentemente das equagdes de movimento ou da matéria presente). Mais a frente retornaremos

ao tensor de Einstein através da variacdo na a¢ao de Einstein-Hilbert.
2.2.3 Geodésicas

Geodésicas sao generalizacdes de retas, como definidas no espago euclidiano, para
0 espago-tempo curvo. Desse modo, dada uma superficie inserida numa variedade arbitréria,
a menor distdncia entre dois pontos nesta superficie estd relacionada a uma curva de valor

estaciondrio, que € a propria geodésica [17]. Utilizando a Def.(2.10), de acordo com Wald[11]:

Definicao 2.11. Sejam V, e T® um operador (que representa a derivada covariante) e um vetor
tangente a uma curva arbitrdria €, respectivamente. Uma geodésica é uma curva cujo vetor
tangente ¢ transportado paralelamente ao longo de si mesma. Matematicamente, T satisfaz a

equagdo
T°V,T? = 0. (2.36)

Na verdade, poderiamos considerar a condi¢cao mais fraca em que o vetor tangente
esteja na mesma dire¢do que ele mesmo quando transportado paralelamente ao longo de %,

pOI‘éI’Il, sem manter 0 mesmo comprimento
TV, T = oT?, (2.37)

onde o € uma funcao arbitrdria na curva. Contudo, vamos mostrar que, considerando uma curva

satisfazendo a Eq.(2.37), podemos sempre reparametriza-la para satisfazer a Def.(2.11).

Proposicao 2.3. Sempre é possivel reparametrizar a Eq.(2.37) de modo a satisfazer a Def.(2.11).

Prova. Seja A € R um pardmetro de a. Logo, por (2.37), temos que

TV, T = (1) T

= TY9,T°+12.1¢) = a(A)T?
dr’

—t I 197¢ = o (A)T?. (2.38)
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Como T¢ é um vetor tangente a curva, podemos reescrevé-lo em termos de base coordenada:

ary Ty dxM dx?
dr - M2 gp da

~ dxM
— [a(A)dA N — [a(A)dApN 4 _
= dl( T>+e Do =T =0

d dx dxM dx?
—[a(d)dr —[o(A)dA N —[a(Ad)dA % —fad)drst )
- ) ( A ) 1o (e ) ) (e A ) 0

=aM)TV

onde, definindo dt = el cA)drg) o quadrivetor M = dxM satisfaz N VyuM = 0. O pardmetro

t é chamado de parametro afim. [

Portanto, ao considerarmos um sistema de coordenadas, a geodésica serd mapeada
em uma curva x¥ (t) € RP. Podemos escrever, entdo, as componentes do vetor tangente na base

coordenada de modo que

dT™
— +TNTNTC =0, (2.39)

onde TM = d"M . Logo, a equacgdo da geodésica torna-se:

dBM o dxN dx@

2 tvo =0 (2.40)
Observe que a equagdo acima € um sistema acoplado de D equacdes diferenciais ordindrias
de segunda ordem para D fungdes x¥(¢), de modo que, da teoria das equagdes diferenciais,
sabemos que sempre existe uma solugio tnica para a Eq.(2.40) dado o valor inicial de x¥ e
dxM . Isso significa que Vp € Mp e YTM € V, existe uma tnica geodésica através do ponto p

com tangente 7M.

2.3 Equacoes de Campo Via Acao de Einstein-Hilbert

Antes de deduzirmos as equagdes de campo, facamos duas observagdes sobre o ten-
sor energia-momento, o qual j4 estd bem estabelecido na literatura. Primeiramente, as equacoes
de Einstein requerem um objeto matematico que contenha informacdes sobre o contetido de
matéria e energia contidas em um determinado espaco-tempo, pois, na sua esséncia, a relativi-
dade geral é uma teoria geométrica da gravitacao, isto é, a presenca de matéria e energia distorce
0 espago-tempo e essa curvatura determina como os corpos se movem 2. Em conformidade com

Silva[18], esse objeto pode ser identificado como o tensor energia-momento, considerando o

%Isso substitui a interpretagio newtoniana da gravidade como uma forca agindo 2 distancia.
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fluxo de quadrimomento P* através de uma superficie x¥ constante. A titulo de exemplo, para
o fluido perfeito, expressamos o tensor energia-momento em sua forma contravariante (T*")

CcCOomao.
™ = (p+p)utu’ + pgh", (2.41)

onde, p representa a densidade de matéria/energia, p a pressdo e u* o quadrivetor velocidade,
sendo que T ¢ a densidade de energia, T" representa a quantidade de momento e 7% sdo
as componentes do fluxo de momento. Afirmamos que THY é simétrico e obedece a lei de
conservagdo V,TH*Y = 0 [19]. Mais a frente no texto, relaxamos esta condi¢do ao tratarmos da
gravidade de Rastall.

Em segundo lugar, € possivel definir 7,y por meio de uma derivada funcional da

acdo em relacao a métrica acoplada a matéria, de modo a obtermos a seguinte expressao [20]:
Tuv _ 2 SSmatéria _ J gmatéria

V-8 ogHV dghv

em que .Z representa a densidade lagrangiana. Agora, passemos a deducdo das equacgdes de

- gmatériaguv» (2.42)

campo propriamente ditas.

Definicao 2.12. Seja (My,g) uma variedade suave de dimensdo 4, munida de uma métrica

pseudo-riemanniana gy de assinatura (1,3), cujo determinante denotamos por:

g :=det(guv)- (2.43)

Seja R o escalar de Ricci associado a conexdo de Levi-Civita de g. A agdo de Einstein-Hilbert

é o funcional® Sgy : Met(My) — R definido por:
Ser = Sen [guv] =S¢+ Sm, (2.44)

onde, considerando a € R* e uma regido do espaco-tempo quadridimensional limitada por X,

escrevemos.

S¢=a / d*x\/—g % e Sy = / d*x/—g%u, (2.45)
x x

em que L =R e d*x\/—g é uma quantidade invariante para a transformagcdo geral de coor-

denadas.

30 simbolo Met(M,) representa o conjunto de todas as métricas admissiveis definidas sobre a variedade M.
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Utilizando o principio da minima a¢@o para obtermos um extremo de Sgy, sabemos

que 0Sgy = 0(Sg+ Su) = 0. Assim, variando S, obtemos:
0Sg = a/ d*x8 (\/—gR)

= / d*x { R5g—|—\/_ (Ruv6g™" +g"‘v5Ruv)]. (2.46)

E possivel mostrar, pela formula de Jacobi para matrizes (det B = Tr(B )> que 6g =gguvogh’.

Ademais, a variagao do tensor de Ricci pode ser deduzida explicitamente por:
SRyuy = L%, — 98T %, + 8Tk, +T %585, — ST, —~T%8 5, (2.47)

de modo que podemos reescrever esta expressao em termos de derivadas covariantes, pois a

SFﬁv ¢ a diferenca de duas conexdes de Levi-Civita. Em outras palavras,
ORuy = Va5l“ffv — VV(SFg“. (2.48)
Substituindo os dltimos dois resultados na Eq.(2.46), temos, entdo:
8Sg=a /)E d*x/—gSg" (Ruv . %Rguv) ta /Z d*xy/—gg" (Vaarfjv . Vvsrg”) (2.49)

Rearranjando o segundo termo da equagdo acima (considerando a proposi¢ao 2.2) e realizando

uma troca de indice @ — v no segundo termo da segunda integral, encontramos:

2
1
= a/zd4x\/—g5guv (Ruv — ERguV) —l—ajézdg’xa\/—g (g“VSFffV — g”a5l"¥u> (2.50)

1
05 = a/2d4x\/—g5g“v (Ruv — —Rguv) +a/zd4x\/—gva (g“VSFffv —g““6F3“>

onde utilizamos o teorema de Gauss covariante na segunda integral, sendo d¥ a fronteira de
Y. As condicdes de contorno nos dizem que a integral de superficie acima deve se anular na

fronteira. Logo, a Eq.(2.50) se reduz a

S = a/ d*x/—gbg"" (Ruv - %Rg“v> . (2.51)
>
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Agora, variando Sy, obtemos:
oSy = /d4x5 (V—8%u)
— /d4 ( g3 Nv5g“V+$M6\/_)

0%y 1
4 M

Substitutindo as variagdes calculadas e o tensor energia-momento expresso pela Eq.(2.42), o

extremo das variacdes torna-se:

0Sgr = O0Sg+0Sy=0
1
= /d4x\/—g3g“v (aRuv — gRguv + ETMV) =0
X
1 1

Tomando —% = K e substituindo o lado esquerdo a equagdo acima pelo tensor de Einstein

encontrado na Eq.(2.35), obtemos o seguinte resultado:
G’u_v = KTI*LV' (2.54)

Estas sdo as equacgdes de campo de Einstein para um espaco-tempo quadridimencional. A
constante kK pode ser encontrada ao considerarmos o regime de campo fraco (a partir de uma
perturbacdo em primeira ordem na métrica de Minkowski, ou seja, guy = Nuv + hyuy), de
modo que encontramos k = 87G/c*, com G = 6,6743 x 10~ "'m>kg~'s2 sendo a constante

da gravitacio de Newton e ¢ = 299.792.458 ms~! a velocidade da luz no véicuo.
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3 COSMOLOGIA RELATIVISTICA

A Cosmologia € a ciéncia que investiga a estrutura, evolucdo e composi¢ao do Uni-
verso. Neste contexto, 0 Modelo Cosmoldgico Padrao (MCP) surge como uma solug@o simpli-
ficada das equagdes de campo de Einstein, fundamentado no Principio Cosmolégico, segundo
o qual, em escalas suficientemente grandes (superiores a 100 Mpc)!, o Universo é homogéneo
e isotrépico - isto €, apresenta as mesmas propriedades para todos os observadores, em con-
formidade com Silva[18]. Inserida nesse arcabougo tedrico, a teoria do Big Bang foi desen-
volvida para descrever a origem e a evolucdo inicial do Universo, partindo de um estado de
elevadissimas temperaturas e densidades, associado a uma singularidade primordial, seguida
por um processo de expansao acelerada.

O MCP propde que o Universo seja composto principalmente por energia escura
(cercade 70%), que acelera sua expansao, e matéria escura fria (25%), que influencia a formagao
das galdxias. Apenas 5% do Universo € formado por matéria baridnica. A radiacdo cosmica de
fundo, vestigio do Big Bang, fornece informagdes sobre o inicio do Cosmos. O modelo também
inclui uma fase de inflacdo c6smica nos primeiros instantes do Universo e uma aceleracdo na ex-
pansao atual, ainda impulsionada pela energia escura, o que pode ser incorporado nas equacoes
de campo de Einstein como um termo constante A.

Portanto, nas préximas Secdes, discutimos as implicacdes de se considerar o alto
grau de simetria de um Universo homogéneo e isotropico, deduzimos a dindmica que rege a
expansao acelerada de tal Universo a partir das equagdes de Friedmann, obtidas como solugdes
das equagdes de campo em um espago-tempo quadridimensional e, por fim, apresentamos o
conceito de Inflacdo Césmica e como ele ajuda na resolugdo de alguns problemas encontra-
dos na teoria do Big Bang. Com essa perspectiva, seguimos aqui a constru¢ao abordada por

Baumann[21].

3.1 Geometria do Modelo FLRW

A métrica de Robertson—Walker descreve um espago-tempo homogéneo e isotropico,

cujas secOes espaciais possuem curvatura constante, dado seu alto grau de simetria. Para dedu-

'Mpc, ou megaparsec, é uma unidade de medida utilizada na astronomia para descrever as vastas distancias
entre galdxias e equivale a um milhdo de parsecs, ou seja, aproximadamente 3,26 milhdes de anos-luz (isso se
traduz em cerca de 3,08 x 1022 m).
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zirmos sua forma geral, atentemo-nos a seguinte defini¢ao:

Definicao 3.1. Seja E* C R? 0 espaco euclidiano tridimensional, munido de métrica candnica
0. As distdncias fisicas infinitesimais entre dois pontos arbitrdrios P,Q € E 3, cujas coordena-

das diferem de dx', sdo dadas pelo elemento de linha:
3 . . . .
di* =Y §jdx'dx) = §dx'dx’, (3.1)
ij=1

onde §;j denota o simbolo de Kronecker, definido por:

1, sei=j

5, = . (32)
0, sei#j

Em particular, na base cartesiana usual (x,y,z), temos: dI? = dx* +dy* + dz>.

Considerando coordenadas polares esféricas para descrevermos o elemento de linha,

podemos €screver:

di’ = dr’+r*d6*+r*sen’0d¢>

3
Z gijdx'dx!) = gj;dx'dx/, (3.3)
ij=1

com (x',x?,x*) = (,6,¢9). Observe que a métrica toma a forma g;; = diag (1,72, r%sen’0).

Além do mais, no caso do espago-tempo quadridimensional, com coordenada x* = (ct,x'), o

elemento de linha toma a forma:
dI* — dS* = gyydx*dx", (3.4)

como j& mencionamos anteriormente. Assim, na relatividade especial, para o espaco-tempo de

Minkowski? (Rm) o elemento de linha torna-se:
dS* = —c*dt* + §;jdx‘dx’. (3.5)

A homogeneidade espacial e a isotropia do Universo significam que este pode ser
representado por uma sequéncia ordenada no tempo de hipersuperficies tridimensionais, que

denotamos por ) ;, cada uma das quais € homogénea e isotropica. O elemento de linha quadri-

ZPara mais detalhes sobre relatividade especial, veja, por exemplo, a Ref.[22].
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dimensional pode entdo ser escrito como:
ds? = —c*dr* +V*(t)dI?, (3.6)

onde dI”* = g; j (xk) dx'dx/ é o elemento de linha em ¥, e v(t) é o fator de escala, que descreve
a expansao do Universo. Comecemos, pois, determinando as formas permitidas da métrica
espacial g;; para dai discutirmos como a evoluc¢@o do fator de escala estd relacionada com o
contetido de matéria do Universo. Em suma, espacos homogéneos e isotropicos t€m uma cur-
vatura intrinseca constante e maxima simetria, o que acarreta em trés possibilidades distintas:
curvatura nula (espago-tempo de Minkowski); curvatura positiva (espago-tempo de de-Sitter)
ou curvatura negativa (espagco-tempo anti-de Sitter), veja Fig.(3.1). Dessa forma, passemos a

determinar a métrica para cada caso.

* Curvatura nula: A possibilidade mais simples € o espago-tempo euclidiano tridimensional

[E3. Este é o espaco em que as retas paralelas no se interceptam e
dI? = dx* = §;dx'dx’ (3.7)

¢ invariante sob translagdes espaciais (x' — x' + €') e rotagdes (x; — Rix*), de modo que

8;iRR] = 8.

» Curvatura positiva: Aqui, as retas paralelas acabam por se encontrar. Esta geometria
pode ser representada como uma esfera tridimensional 3 inserida num espaco euclidiano

quadridimensional (IE4 C R4), onde
dI* = dx* 4+ du®, x> + u* = R}, (3.8)
sendo Ry € o raio da esfera. Note que a homegeneidade e a isotropia da superficie da

esfera tridimensional sdo herdadas da simetria do elemento de linha sob rotagdes em

quatro dimensdes.

» Curvatura negativa: Nesta geometria, as retas paralelas divergem. Pode ser representada

como um hiperboloide H? inserido num espaco lorentziano quadridimensional R!-3, onde
dI* = dx* —du?, x> —u* = —R}, (3.9)

sendo R% > 0 uma constante que determina a curvatura do hiperboloide.



Figura 3.1 — Curvaturas das hipersuperficies tridimensionais
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Fonte: Adaptado de Baumann [21].

Combinando os casos esférico e hiperbdlico, obtemos:

34

dI> = dx*+du?, x> +u* = +R}
. dx)?
= udu=Fx.dx < duzzq:%
Ry Fx
. dx)?
42 = dx? + X (3.10)
RyFx
Finalmente, podemos unificar os trés casos, isto é,
. dx)?

dlzzdx2+8%, 3.11)
com € = 0 para curvatura nula, € = 1 para curvatura positiva e € = —1, para curvatura negativa.

Para tornar a simetria do espaco mais aparente € conveniente escrever a métrica em coordenadas

esféricas (r,0,¢), como a seguir:

=dQ?

-~

A’ = drf+17(d6%+ sen? 0d¢?)

2dr2
= dl’ = A+ ve

d 2
= ! 2+r2d§22.
1 — &=
Rj

(3.12)

Ao substituirmos o dI> na Eq.(3.6) encontramos a métrica de Robertson-Walker, expressa no
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seguinte elemento de linha:
2 272, 2 dr? 2102
dS® = —cdt“+v (l) 1—r2+r dQ . (3.13)

Vamos agora a dedugdo das equacdes que descrevem a dinamica, através da Eq.(2.54).

3.2 Dinamica de um Universo Homogéneo e Isotropico

A dinamica em larga escala € constituida pelas chamadas equacdes de Friedmann.
Elas determinam como o Universo se expande ou contrai ao longo do tempo com base no
conteddo de matéria e na curvatura do espaco-tempo, sendo este qualificado como uma vari-
edade quadridimensional. Dito isso, precisamos utilizar a métrica gy - decrita acima - nas
conexoes de Levi-Civita, para entdo substituirmos nas equacoes de campo de Einstein. Assim,

considere & = 1% e ¢ =1 na Eq.(3.13). Logo, temos que:
0

2
guv = diag (—1,1_v—§ﬂ,v2r2,v2rzsen26>, (3.14)
, 1-&72 1 1
¢ = dlag(—l, V2 ’v2r2’v2rzsen29>’ (3.15)

com as seguintes componentes ndo-nulas das conexdes dadas pela Eq.(2.27):

O =w/l—&r, Ty, = vor’sen’ 6, qu):l“(gq):cote,
F}?O:F?(p:l/r? ng):—senecose, gez—r(1_€r2)7
I, =T° ZF?(;, =v/v, Tpy=—r(1-Er*)sen’6, Diyq = wr?. (3.16)
As componentes do tensor de Ricci, calculadas a partir da Eq.(2.34), sdo:
Ry = -3,
%
o 2vivH-28
Re = g
Rgp = FZ(VV+2V—|—2€),
Ryy = r2(vi+2v+2&)sen’ 9, (3.17)

com o respectivo escalar de Ricci expresso por:

. )
R:6(f+v—2+§2). (3.18)
1% 1% 1%
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Ao longo do restante do texto, usamos ponto (-) para representar derivadas tem-
porais e linha (/) para derivadas com relag@o as coordenadas espaciais, incluindo-se a radial.

Como termo de fonte, considere o tensor energia-momento da Eq.(2.41), de modo que:

T+ = diag(—p,p,p,p), (3.19)

tendo o trago T denotado por:
T=guwT" =T} =—p+3p (3.20)
e, apos algumas manipulacdes algébricas na Eq.(2.54), encontramos:

1

A escolha u = v =t nos fornece a seguinte equacao:

V 4G
S= - (p+3p). (3.22)

Jaaescolha u,v =i, jnos leva a:

. )
LS ) (3.23)
1% 1% 1%

Note que podemos substituir a Eq.(3.22) na Eq.(3.23) com o intdito de eliminar o termo de

derivada segunda nesta dltima, o que nos retorna a expressao

2
v- 8nG é

=, s 24
) 3 P (3.24)

onde H(t) = v(t)/v(t) é denominado parametro de Hubble e as expressdes (3.22) e (3.24)
representam as equacgdes de Friedmann. Tomamos ¢ = 1 para avaliar as quantidades no tempo
presente. A densidade critica p. o diz respeito as condi¢des necessarias para que o Universo seja
espacialmente plano. No MCP, observagdes do satélite Planck da Radiagao Césmica de Fundo
(RCF) indicam que p ~ p. o com alta precisdo, o que significa que o Universo € praticamente

plano [23]. Em outras palavras, & = 0 corresponde a seguinte densidade critica hoje:

3Hg —572 3
Peo = S2G = 1,1 x 10~ k" protons/cm”, (3.25)

em que, de acordo com a Ref.[24]:

Hy=H(ty)) =2,1332x 1071 GeV e h =0,72+0,08. (3.26)
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E util escrevermos as demais formas de densidade relacionando-as com a densidade
critica através do parametro de densidade €2, de modo que:

_ Pio

=5 O,j =r,m,A,..- (3.27)
c,

Qjo

Aqui, p, representa a densidade de radiagdo, p,, a densidade de matéria e pp a densidade de
energia escura. Em geral, para um Universo homogéneo e isotrépico, sdo vdlidas as seguintes

relacoes [21]:

Q; > loup;>p.=e=1, (3.28)
Q; = loupj=p.=€=0, (3.29)
Q; < loupj<p.=¢€e=-—1. (3.30)

Em larga escala, o Universo se aproxima de uma variedade plana, ou seja, de um espago-
tempo com curvatura nula, de acordo com a Def.(2.1). Neste ponto, também podemos contorna-
sesiderar um termo de constante cosmoldgica Agyy nas equacgdes de campo de Einstein com a
divergéncia nula da equacdo permanecendo satisfeita. Logo, seguindo os mesmos calculos

anteriores, a Eq.(3.24) torna-se

2
281G & A
= 3.31
) 3 P—at3 (3.31)

onde p representa a densidade total de energia do Universo. A presenca da constante cos-
mologica A implica que o Universo experimenta uma expansdo acelerada, impulsionada por
uma forma de energia escura com pressao negativa constante, o que faz com que, em escalas de
tempo suficientemente longas, a dindmica cosmoldgica tenda a um estado de de Sitter. Nesse
cendrio, o destino do Universo deixa de depender exclusivamente da curvatura espacial, en-
quanto estruturas gravitacionais sao progressivamente suprimidas pela aceleracao. Além disso,
o proprio véacuo passa a desempenhar um papel dindmico nas equacdes gravitacionais, influen-

ciando a evolugao global do espaco-tempo.

3.3 Inflacao Cosmica

A Inflacdo Césmica, proposta por Alan Guth em 1981 [25], postula que o Universo,
no seu momento inicial, passou por uma fase de crescimento exponencial. Ela foi introduzida

com o intuito de solucionar alguns problemas existentes na teoria do Big Bang tais como o pro-
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blema do horizonte e planicidade®. O tamanho de uma drea de espago causalmente conectada
¢ determinado pela distdncia maxima a partir da qual a luz pode ser recebida. Isso € melhor
estudado em coordenadas comdveis (que se expandem junto com o Universo), onde geodésicas
nulas sdo linhas retas e a distincia entre dois pontos € igual a diferenca correspondente no
tempo conforme A1n. Assim, se o Big Bang surgiu como uma singularidade em #; = 0, entdo a
maior distancia comdvel a partir da qual um observador no tempo ¢ serd capaz de receber sinais

viajando a velocidade da luz é o chamado horizonte de particula.

Definicao 3.2. O horizonte de particula de um observador em um ponto p no tempo cos-

mologico ty é o conjunto

onde J~(p) € o dominio causal de p (todos os eventos que podem enviar sinais luminosos a p),

Y,~0 € a hipersuperficie de tempo cosmoldgico constante e d denota a fronteira topoldgica.

Definicao 3.3. A distdncia comével mdxima da qual a luz emitida desde o inicio do Universo

pode ter alcangado um observador até o tempo ty é

o
dh(n)zn—niz/ ! (3.33)

t W’

com M sendo o proprio tempo conforme.

Na Cosmologia convencional do Big Bang, tomamos 1n; = 0 e o horizonte de paticula
sendo simplesmente igual ao tempo conforme. O tamanho do horizonte no termo 1 pode ser
visualizado pela intersec¢do do cone de luz passando por um observador O com a superficie
tipo-espaco em 1;. As influéncias causais tém que vir de dentro dessa regido. Os sinais vin-
dos de fora dela teriam que viajar mais rapido que a velocidade da luz para chegar a O. Desta

maneira, a Eq.(3.33) pode ser reescrita como:

%) dV Invg

dy(n)=n :/v (vH) 'dInv, (3.34)

i W - Inv;
onde (vH)~! é chamado de raio comével de Hubble e v; = 0 corresponde a singularidade do Big

Bang. Acontece que a quantidade de tempo conforme entre a singularidade inicial e a formagao

3Problema do horizonte: pela homogeneidade observada, regides do Universo distantes entre si apresentam
temperaturas quase uniformes da RCF, embora, no modelo padrdo do Big Bang, elas nunca tenham estado conec-
tadas. Planicidade: refere-se ao fato de que observagdes indicam £ ~ 1 hoje - ou seja, um Universo praticamente
plano - porém, pelas equacdes de Friedmann sem inflagdo, qualquer pequeno desvio de Q = 1 no inicio cresceria
rapidamente ao longo do tempo.
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de micro-ondas césmicas de fundo foi muito menor do que a idade conforme do Universo hoje.
A uniformidade dessas micro-ondas se estende por escalas muito maiores do que o horizonte de
particulas da época em que foram emitidas. No MCP, a radia¢do cosmica de fundo € composta
por muitas regides do espaco que, teoricamente, ndo tiveram interacao causal entre si. Como
essas regides nao tiveram tempo suficiente para trocar informacdes, a semelhanga entre elas
representa o que € conhecido como o problema do horizonte, supracitado [21].

Consideremos um Universo plano preenchido apenas por matéria e radiacao. Neste

sentido, as Eqgs.(3.24), (3.25) e (3.27) nos fornecem a seguinte expressao para o fator de Hubble:
H? = Hj (Quov > +Qrov ), (3.35)
sendo 2,0 = v¢4€,, 0, €m que o subscrito eq denota quantidades avaliadas na igualdade matéria-

radiag@o. O raio comodvel de Hubble pode entdo ser escrito como:

S H'—
\/Qmp \/V+Veq

Substituindo o resultado acima na integral (3.34) e resolvendo-a, obtemos:

(vH) ™! (3.36)

2

n=—m=Hy (VVFveg=eg) (337)

Note que este resultado tem os limites corretos: em tempos iniciais (v < veq), obtemos N o< v,
. 1 .
enquanto em tempos tardios (v,, < v), temos 7 o< v2. Os tempos conformes hoje (vo = 1) e na

recombinacdo® (v,e = 1100~1) sdo, respectivamente:

Q

Mo Hy! (3.38)

Hg'[V/1100-74+3400T = /3400 7| ~0,0175m0.  (339)

Nree = /_Qm70

O problema da planicidade esta diretamente relacionado com o problema do horizonte, de modo
que qualquer solucao para este serd também, aparentemente, solucao para aquele. Definimos
a densidade critica dependente do tempo (do Universo) como p.(t) = 3M12,IH 2, de acordo com

Baumann[21]. O parametro de curvatura dependente do tempo serd dado por:

2
Qe 0, (3.40)

4Recombinagio: trata-se do periodo em que o Universo, entio quente e totalmente ionizado, resfria o suficiente
para que elétrons livres se combinem com prétons, formando os primeiros dtomos neutros de hidrogénio. Isso
ocorre cerca de 380 mil anos apds o Big Bang.
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onde usamos p. o< H> e p. — p o v—2. Como o raio comével de Hubble (vH)~! estd crescendo
durante o Big Bang, de acordo com a Eq.(3.36), esperamos que |Q¢(¢)| seja ainda menor no
passado. Ignorando o periodo de curta duracdo de dominacao de energia escura, o raio comovel

de Hubble pode ser substituido na expressao acima, de modo que:

Qg 0 VZ
Qe(t) = —— . 3.41
()= g (3:41)
Todavia, na igualdade matéria-radiacao isso implica em
‘9870} Veq -6
Qe (1g) | = S0, <10 (3.42)

Quando o Universo estava em sua fase a qual era dominado pela radiacao, tinhamos, segundo

as equagoes de Friedmann,
2 2 Veg \*
H* = H; Q. <7> , (3.43)

com Q,., = 0,5. O pardmetro de curvatura entio torna-se:
2 2
(VegHleq) v
Qe(t) = ——7— Q¢ (teg) = 2Q% (1, — ] . 3.44
8( ) (VH)Z £ ( eq) € ( eq) Veq ( )
Uma maneira util de reescrever o problema ¢ em termos do escalar de curvatura

R(t) que estd relacionado com Q,(7) da seguinte forma [21]:

_ 1 1
R(t) = o (1), (3.45)

Assim, vemos que o escalar de curvatura hoje (de acordo com as observagdes) é R (to) > 14H,, L
As restri¢des sobre Q¢ (7) implicam que o escalar de curvatura no inicio do Universo era muitas
ordens de magnitude maior que a taxa de Hubble naquela época. Como, na cosmologia padrao
do Big Bang, a escala de Hubble ¢ da mesma ordem que o horizonte de particulas, isso sugere
um ajuste fino em muitos aspectos aparentemente desconectados. O problema da planicidade
pode, portanto, também ser interpretado como a necessidade de ajustar as velocidades iniciais
de todas as particulas a grandes distancias, que, intuitivamente, nunca estiveram em contato

causal.
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4 MUNDOS BRANA E A GRAVIDADE DE RASTALL

Branas, no contexto deste trabalho, podem ser interpretadas como variedades in-
seridas em um espaco-tempo com dimensao superior, que denominamos bulk, onde as forgas
eletromagnéticas e nucleares ficam confinadas, enquanto a gravidade € a Unica que pode se
propagar através dele'. A Cosmologia estudada em mundos brana surge a partir de teorias e
modelos que consideram dimensdes extras, como a teoria das cordas e o modelo de Randall-
Sundrum, por exemplo [27].

Consideramos um bulk pentadimensional em vez do MCP, descrito anteriormente,
pelos seguintes motivos: (i) a capacidade de resolver o problema da hierarquia, explicando
a discrepancia entre a intensidade do campo gravitacional na escala TeV e o valor esperado
na escala de Planck, da ordem de 10'® GeV'; (ii) a modificacio das equacdes de Friedmann,
permitindo cendrios alternativos para a expansio cosmica e a energia escura; (iii) a introdug@o
de corre¢des gravitacionais em altas energias, capazes de alterar a dindmica inflacionaria; e (iv)
a modificacdo do comportamento da gravidade, resultando em efeitos gravitacionais distintos
em escalas cosmoldgicas.

A gravidade de Rastall, proposta em 1972 [8], constitui uma modificacdo da TRG.
Diferentemente da teoria de Einstein, que assume a conservagdo covariante do tensor energia-
momento, conforme discutido na Secdo (2.3), o formalismo utilizado por Rastall permite um
acoplamento ndo trivial entre a matéria e a geometria do espago-tempo. Nesse contexto, a di-
vergéncia do tensor energia-momento € proporcional a curvatura escalar, levando a equacoes
de campo gravitacional modificadas. Ademais, essa teoria admite solu¢des cosmoldgicas capa-
zes de descrever a aceleragdao do Universo sem a necessidade de uma componente explicita de
energia escura.

Portanto, neste Capitulo, investigamos a aplicacao da gravidade de Rastall em cenarios
de mundos brana, analisando branas finas e espessas, tanto em regimes estiticos quanto em re-

gimes com o fator de escala atuando nas dimensdes espaciais (caso cosmoldgico).

'Existe um estudo interessante sobre formagdo espontinea de branas, que toma como hipétese um bulk hexa-
dimensional, encontrado na Ref.[26].
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4.1 Descricao do Modelo

Motivado pela possibilidade de que, em espagos-tempos curvos, a conservacao local
do tensor energia-momento possa ndo valer na forma usual (V¥ 7y = 0), Rastall postulou um

tensor energia-momento dependente da curvatura escalar, de modo que:
VM Tyn = AVNR, VA € R, 4.1)

com M,N=0,1,2,3,4,...,(D—1). Aqui, A é um pardmetro fenomenoldgico que mede o grau
de violacdo da conservacdo padriao. Como consequéncia, as Eqs.(2.54) sdo modificadas [8].
Desta forma, considerando o resultado obtido por meio da identidade de Bianchi - isto €, com-
binando as Eqgs.(2.35) e (4.1) -, podemos reescrever as equagdes de campo generalizadas da

seguinte forma:

1
Gun = Run — EgMNR + KgunR = KTyn, 4.2)

onde, tomando novamente k¥ = 1, obtemos:

1
Run + (7L — E) guNR = Tun. 4.3)

Assim, por contracdo de indices realizada na equagio acima, encontramos:

1

2T

= =@ nre

4.4)

Observe que A DZ—BZ, onde, para o bulk pentadimensional, a ser proposto na Se¢do subse-

quente, temos A # 13—0. Ainda considerando a Eq.(4.3), podemos escrever:

1
Run = Tun—AgunR+ =gunR

2
o 2T 1 2T
- MNTAEMN DA —1)+2) " 28N\ DA —1)+2
1-2A4
T; —_ T =T; T 4.
MN+D(2/I_1)+28MN mn + ogunT, (4.5)

10
com & = pp7 112
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4.2 Branas Finas com Fator de Deformacao

Iniciemos, pois, com uma breve descricio do modelo de Randall-Sundrum. De
acordo com as Refs.[5] e [27], este modelo considera um espago-tempo anti-de Sitter, no qual a
coordenada extra (que denotamos por y) é compactificada em uma variedade S' /Z,, de acordo

com a Fig.(4.1). Consideremos duas 3-branas? localizadas em y = 0 e y = m. Podemos pensar

Figura 4.1 — Orbifold S' /Z,.

~ 27R ~-7R

. ® >y
0 7R
Fonte: Adaptado de Gabella[5].

nas branas como sendo as fronteiras do bulk, estando nosso Universo situado em y = 7 e a outra
brana em y = 0, com escalas de energia diferentes (o primeiro na escala 7eV e o segundo na

escala GeV'), como mostrado na Fig.(4.2).

Figura 4.2 — Setup do modelo RS.

< | Z|
S| 7
< (1) < (2)
s I Vs I
£ | & |
- Ve
y I 5D blllk ~ I
' | ' |
| 3-brane | | 3-brane |
| y | y
[ 5 i [ > o
[ s A [ s
4D 7 | 4
x e | e
xt ) . v
& & >y
0 L

Fonte: Adaptado de Gabella[5].

2Uma p-brana representa uma brana com p dimensdes espaciais e uma temporal.
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Definicao 4.1. Seja (Ms,gs) uma variedade suave de dimensdo 5, munida de uma métrica

pseudo-riemanniana gy de assinatura (1,4), cujo determinante denotamos por:
g5 = det(gMN). (4.6)

Seja Rs o escalar de Ricci associado a conexdo de Levi-Civita de gs. Definimos a a¢do S :

Met(Ms) — R como sendo
S = S[gmn] = S + Spr + Svis, 4.7)
em que Spj representa a ac¢do referente a brana de Planck e S, refere-se a brana visivel, onde:
S¢ = /d4 / dyﬁ( R5—A5)
Sp1 = /d%@ (Lp1—Vp1),

Svis = /d4 gws Lois Vvis)- (4.8)

Aqui, Lp; e Z,is sdo as densidades lagrangianas nas branas de Planck e visivel, respectiva-
mente, enquanto Vp; e Vs sdo as tensoes nas branas correspondentes. O bulk contém apenas a

constante cosmoldgica As, com M, sendo a escala de massa de Planck pentadimensional.

A geometria do bulk é [M 13 x st/ Zz} com o seguinte ansatz para a métrica:

ds? = gundMdxN
= ¢ 200y, dxtdx’ + bidy?, (4.9)

sendo M,N =0,1,2,3,4, by o raio de S' e y a coordenada angular que vai de 0 a 7. O compri-
mento proprio da dimensdo extra € Ly, = by7. Neste ponto, precisamos encontrar as equagdes
de campo de Einstein em 5 dimensdes e calcular as solu¢des para o(y) via ansatz (4.9). Como o
modelo RS foi inicialmente construido para a gravidade pura, ndo consideramos, a priori, que as
branas possuem matéria. Logo, £p; = %;s = 0. Assim, ao realizarmos o mesmo procedimento
que fizemos na Secdo (2.3) para deduzir as equagdes de campo de Einstein, encontramos aqui

as seguintes variagoes nas agoes (4.8):

5Sc — /d4/ dyS[ (A; R5—A5)}

M3 R
_ / dx / dy8g"N {75\/_—gngN + 58 <RMN - ngN)} . (4.10)
—TT
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5Sp = — / d*x / dyVp8v/—gp8 ()
_ /d4/ dyngN(V L 5“5NVP)5(y) (4.11)

i
0S,is = —/d4x/ dvaissv_gvisé(y_ﬂ:)

= / d*x / dyagMN< —8vis v OOy Vw~5> S(y—m) (4.12)

Por fim, tomando 85 = 0, obtemos o seguinte resultado:

As\/—gsgmn +Vpiv/ —8pi guv6“6N )

+Vais/ = 8isglv Oy NS (y— )| . (4.13)

1
V=85 (RMN - ERSgMN)

3zt

Esta é a equacdo de campo de Einstein pentadimensional para o modelo de brana fina, o tensor
energia-momento serd dado pelo lado direito desta equacao dividido por \/—gs.

O nosso objetivo agora € resolver essa equacdo usando o ansatz para a métrica. A
solucdo desta equacado fornece o(y) que foi proposta na métrica. Ao fazermos a substitui¢go ci-
tada, obtemos duas equagdes de movimento, uma referente a dimensao extra e outra relacionada

com o espaco quadridimensional, a saber:

600 As
b} M3
30 " (y) VPl Vvis
= —T). 4.14
b% M3b05() Mgb()é(y 75) ( )

A solugio para a primeira Eq.(4.14) consistente com a simetria orbifold® y — —y (Z,) sera:

As

o(y) =bo|ylk, k= o3’

(4.15)

3A simetria orbifold é uma identifica¢io discreta que transforma uma dimensdo extra em um intervalo com
branas nas extremidades.
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Note que:

1y B As d B _ As
o' (y) = bo | —6M£—dy|y|—bo —6M$sgn(y)
= 6" (y) = 2, | — 25 [ 8(y) = 8(y— )] (4.16)
y 0 6M£ y y 5 .

onde o aparecimento do termo —J(y — 7) se justifica pela periodicidade da fung@o, ou seja, em
torno de 0 € |y| e em torno de 7 é |y — 27|, o que gera a diferenca entre duas fungdes sinal na

derivada. A Fig.(4.3) mostra o comportamento de o (y), 6’(y) e 6" (y).

Figura 4.3 — Comportamento da fungdo o (y) e suas derivadas.
aly) aly) a’ly)

Fonte: Elaborado pelo autor.

Assim, substituindo 6”(y) na segunda Eq.(4.14), obtemos:

3 A5 VPl Vyis
— 4 2byy | ——=10(y)—O6(y— =—>20 —0(y—m). 4.17
bo{ 0 6M§,[ (y)—6(y ﬂ)]} e (y)+6M£ (y—m) (4.17)
Se tomarmos As = —6M>k? e Vp; = —V,;s = 6M:k a relacdio acima é valida, de modo que:
Vi
k=k = —kp, kizm, (4.18)

com i = 1 representando a brana de Planck e i = 2 representando a brana visivel. A constante

cosmolodgica efetiva da brana visivel quadridimensional é dada por [28]:

kZ k2V2
ATe = 35 (A5 4 3 vis 6V”> : (4.19)

onde k5 estd relacionado a constante gravitacional pentadimensional. Todavia, devido a geome-

tria deformada, a massa na brana visivel sofre uma deformagdo exponencial:
m=e T, (4.20)

Assim, a massa do escalar de Higgs é sempre deformada exponencialmente na brana do modelo
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padrao:

M3
Mg, = - (1 —6*2“’0”) : 4.21)

Passemos agora a considerar um Universo homogéneo, isotrépico e plano em larga
escala (brana visivel). Neste modelo pentadimensional, sua evolu¢do temporal é governada por
um fator de escala R(y,t) = f(y)v(t) que converge suavemente para o modelo RS no limite
estatico apropriado [29]. A acdo para esta configuracdo ¢ dada pela Eq.(4.8) e o elemento de

linha para tal modelo cosmoldgico com deformacao € dado por:
dS? = f2(y) [—dt> +V*(t) §;;dx'dx'] + bidy*. (4.22)

Ao substituirmos a métrica implicita no elemento de linha acima na Eq.(4.13) e introduzirmos
adicionalmente densidades de energia, isto €, p nas 3-branas, encontramos como resultado da

soma das componentes (7¢) e (ii) das equagdes de Einstein:
v(r) = el (4.23)

Da componente (yy), por outro lado, podemos obter a solugdo para f(y) em termos de k e Hy

consistente com a simetria Z, como:
Hy
fy)= v senh (—kbo|y| +do), (4.24)

onde dp € uma constante de integracdo. Portanto, a métrica com deformagdo, substituindo as

expressoes para v(z) e f(y) na Eq.(4.22), torna-se:
Ho\> -
ds? = (70) senh® (—kbo|y| +do) (—dt* + &' §;;dx'dx’) + bidy*. (4.25)

Esta métrica descreve a inflacao das trés dimensdes espaciais. As condi¢des de contorno das

tensoes nas duas 3-branas implicam em:

ki = kcoth (do)

—ky = kcoth(—kbom+dy) (4.26)
que também reproduzem a Eq.(4.18) no limite estatico, pois, observe que:

limg, .o kcoth(do) = klimg e LEES0 = k 5 ky =k

e limy, . kcoth(-kboT + do) = klimg, _,.. ijﬁj’,ﬁ% —kek=—k.  (427)
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Assim, usando as Eqgs.(4.26), o comprimento da dimensao extra Ls pode ser escrito em termos

de ky, k> e k, tendo como expressado resultante:

| [ —ko—k k—k
Ls=bom= 1 . 4.28
STOOT= 0k n< ki —k —k2+k> (428)

Por fim, podemos obter a métrica efetiva quadridimensional da métrica pentadimen-

sional a partir de uma transformac¢do de coordenadas apropriada, tal que:

dS3 = —dr* + 10§ dxidx/ (4.29)
onde o parametro de Hubble é dado agora por:

H(y) = kcosech (—kbg|y| +do) - (4.30)

Logo, nos limites (y = 0ey = m) dos pontos fixos, os valores do pardmetro de

Hubble sdo H(0) = \/k} —k? e H(m) = 1/ k3 — k2. Veja o comportamento de H (y) na Fig.(4.4).
Em outras palavras, na brana do modelo padrao, quando nosso Universo estd evoluindo com
o tempo, seu parametro de Hubble diferente de zero € expresso como um ajuste fino entre a

constante cosmoldgica global e a tensdo da brana visivel.

Figura 4.4 — Parametro de Hubble em funcdo da dimensao extra.
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Fonte: Elaborado pelo autor.

4.2.1 Aplicagdo na Gravidade de Rastall: Caso Estdtico

Com o formalismo do modelo de Randall-Sundrum bem estabelecido, passamos
agora a investigar um modelo formulado diretamente a partir das equagdes de campo modifica-
das. Em particular, consideramos um cendrio de brana fina imersa em um bulk pentadimensio-

nal, no qual a geometria deformada € determinada pela dindmica gravitacional de Rastall, e ndo
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mais pelas equacdes de Einstein usuais, como trabalhadas no inicio desta Secao.
Utilizando-nos do tensor energia-momento representado na Eq.(4.13), relembrando

que as condigdes de contorno sdo gﬁl\,(x“) =gun(x*,y=0) e g‘[fsv(x“) = gun(xt,y = m),

podemos resolver a Eq.(4.3). Ao realizarmos as devidas substituicdes, a partir da métrica (4.9),

encontramos as seguintes expressoes:

Asb?
0%): (6-20)0"0)+826"(y) =~ @3
(uv): (6—201)c"(y)+810"(y)—30"(y)
1
=~ (A +Veibod(y) + Vaishod (y — 1)) - (4.32)
Agora vamos calcular as possiveis solugdes para a Eq.(4.31). Inicialmente, fagamos k* = — 6A_A/;2 ’
de modo que esta equacao tome a forma:
10 4
(1 - ?A> o (y) + glc”(y) = kK’b},
dl/l dy
~ = [ o 433
/3k2b(2)—(3— 100)2  J 4A (4.33)

emque 6'(y) =u. SejaA=3—104. Noteque A >0= 1 < % eA<0=1> 13—0 (lembre-se que
A+ 13—0 em decorréncia da Eq.(4.4)). Assim, ao resolvermos a integral acima usando método de

decomposicao em fragdes parciais para os dois casos distintos, encontramos a mesma solu¢cdo

} , (4.34)

com c¢( sendo uma constante de integracdo. A Fig.(4.5) mostra o comportamento desta fun¢do

explicita, a saber:

3(3— 104)
kaoy+60

o(y) = ﬁln {cosh

e sua respectivas primeira e segunda derivadas. Contudo, observe que 3 — 104 > 0= A1 < 0,3
para manter a raiz real.

O elemento de linha (4.9) agora toma a seguinte forma:

I — cosh? [M

m Nuvdxtdx’ + bdy?, (4.35)

kb()y + ¢

com Y = %. Ao analisarmos o limite A — 0 na Eq.(4.34), encontramos a mesma solucéo
apresentada na Eq.(4.15), isto é, voltamos ao modelo de Randall-Sundrum, sem o termo de

Rastall e com isso todos os resultados ja estabelecidos.
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Figura 4.5 — Comportamento da fun¢do o(y) e suas derivadas paraA = 0,2, k=1e ¢y =0.

2.0 1

1.5

1.0

0.5

0.0 1

Fonte: Elaborado pelo autor.

4.2.2 Aplicagdo na Gravidade de Rastall: Caso Cosmologico

Novamente, considere um Universo homogéneo e isotropico na brana visivel. Con-
sidere também o elemento de linha expresso na Eq.(4.22). A evolugdo temporal é governada
pelo fator de escala R(y,t) = f(y)v(t) e esperamos que 0 mesmo convirja suavemente para o
modelo RS com o termo de Rastall no limite estatico apropriado. Tome f(y) = eA0). Substi-

tuindo a métrica, implicita no elemento de linha citado, na Eq.(4.3), obtemos as expressoes:

o 2A0) (201 —6)A"(y) + (3 —8A)A"(y) N (3—624)v2(t) — 64v(2)ii(t)
b} v2(1)

Voo~ 6A(0) LAA() Ve~ 6A(m) 440)
1€ - e 5(y) + e - e
0 0

(11) :

6@—%4; (4.36)

e 22002 (1)[(6 — 20A)A™ (y) + (84 — 3)A” (y)]
by

Viore—6A(0) p4A() V,ise 0AT) g#A0)

pre i e 5(y) + e e

(i) (6A — 1) () + +2(3A4 — 1)v(2)ii(r)

S(y— n)] L @437

—1)b3(v? v(t)v
5 [(3—6A)f’2(y) At )" ) + 3(22 1)b02(v2((t2))+ (1) (t))] As
(y) 0 =5 (4.38)

Como resultado da soma das componentes (¢) e (ii), temos que:

v(t) = e (4.39)
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onde Hy = v(p)/v(tp) é a constante de Hubble (a mesma expressio apresentada na Sec¢do (3.2)
e na Eq.(4.23)). Sempre teremos esta forma para v(¢), independentemente da quantidade de
dimensdes consideradas no modelo [29]. Portanto, substituindo v(¢) e suas respectivas derivadas

(primeira e segunda) na Eq.(4.38) e rearanjando os termos, encontramos:
4
(1—22)f" - glff”—kzb%fz = (1—2A)b3H3. (4.40)

Esta equagdo diferencial tem como uma possivel solugdo, consistente com a simetria Z,, a

~ [3-101 Hy 3
fO) =1/ 7senh(—,/3_10/11c190|y|+a!o>, (4.41)

onde dy é uma costante de integrac@o e, para 3 — 104 < 0, f(y) passa a ser uma fun¢ao periddica

expressao:

desde que cq seja ajustado de modo a ndo cancelar a oscilacdo. A Fig.(4.6) nos fornece o com-
portamento de f(y). Observe que no limite A — 0 reobtemos os mesmos resultados encontrados
sem levar em conta o termo de Rastall, ou seja, voltamos a Eq.(4.24). Também podemos calcu-
lar os mesmos parametros cosmoldgicos de forma semelhante ao que fizemos na Secdo anterior.
Portanto, o elemento de linha com deformacao, substituindo as novas fungdes para v(z) e f(y)

na Eq.(4.22), torna-se:

3—10A)H? o
ds? = (B 100)Hy senh? | — 3 kboly| + co | [—di* + &0 §;dx'dx'] + bEdy? (4.42)
3k2 3104 / 0

A métrica implicita neste elemento de linha descreve a inflacdo das trés dimensdes espaciais.

Figura 4.6 — Comportamento da fungdo f(y) paraA =0,2, k=1e ¢y = 0.
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Fonte: Elaborado pelo autor.
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4.3 Branas Espessas com Fator de Deformacao

Branas espessas surgem como uma generalizacdo natural dos modelos de branas
finas. Embora a aproximacao do tipo delta de Dirac seja ttil do ponto de vista fenomenolégico,
ela conduz a singularidades geométricas e impoe condi¢des de contorno que podem limitar a
consisténcia dinamica do modelo. Em contraste, nas abordagens com branas espessas, a brana é
descrita como uma regido estendida do espaco-tempo, geralmente gerada por campos escalares
no bulk, o que permite uma descricdo regular da geometria e um controle mais refinado da
dindmica gravitacional.

Do ponto de vista fisico, branas espessas oferecem um cendrio mais realista para a
localizacdo de campos e para a andlise da estabilidade gravitacional, uma vez que a espessura
da brana pode influenciar diretamente a forma do fator de deformacao e o espectro de modos
gravitacionais [6]. Além disso, esses modelos possibilitam o estudo de mecanismos de confi-
namento suaves, evitando descontinuidades abruptas e permitindo a formulacdo de equacdes de
movimento bem definidas em todo o bulk.

No contexto cosmoldgico, branas espessas ampliam o espacgo de solugdes possiveis
ao permitir dependéncias temporais tanto no fator de escala quanto nos campos que compdem
a brana, levando a cendrios cosmoldgicos ricos e menos restritivos do que aqueles obtidos em

modelos de branas finas.
4.3.1 Caso Estdtico
Agora, assumimos o elemento de linha como sendo:

ds? = f(y) (Nuvdx"dx’ +dy*) (4.43)

em que f(y) = A1) ¢ o fator de deformacio que estéd diretamente relacionado com a dimensdo
extra. Seguindo os passos da Ref.[30], considere o campo escalar ¢, com o tensor energia-

momento dado por:

1
Tun = OuPING — gun §9P¢9P¢ +V(9)|, (4.44)
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como a brana é maximamente simétrica, ¢ pode ser assumido como ¢ = ¢(y). Dessa maneira,

substituindo a métrica (4.43) na Eq.(4.3), obtemos as componentes da equacao de campo:

1

502(0) +e40v (9),

(tt): 3(—1+41)A%(y)+(=34+81)A"(y) = 5

(i): (3= 122)4%0) + (- 81)A"() = —30°0) ~ 0V (9)
(m): (6= 12)4%(3) = 824"(5) = 19°(0) ~ IV (9), 449)

onde, somando a componente (7¢) com a (yy), encontramos:

2

34" (y) — 34" (y) — 9" (v) = 0. (4.46)

Por outro lado, realizando a subtracdo da componente (¢#) com a componente (yy), obtemos:

e 2A0)
V(O() =——5—[BE-8M)A%(») + (B -161)A"(y)]. (4.47)

Por fim, calculando explicitamente a hipétese (4.1), ficamos com a seguinte relacao:
—242A% +8ALA" +4A2AA" + ¢' 9" — A'9"? — A9’V = 0. (4.48)

Como solugdo da equagdo diferencial (4.46), encontramos (V3 € R):

1

f) = \/W (4.49)
e
¢(y) = V3arctan(By). (4.50)

A Fig.(4.7) nos fornece o comportamento do fator de deformacgdo f e do campo escalar ¢ como
fungdes da dimensao extra y.

O elemento de linha (4.43) torna-se:
S
(B2y*+1)

Observe que, como a Eq.(4.46) € a mesma que do modelo de brana na TRG [6], a ndo conservagao

ds* = Nuvdxtdx’ +dy*) . 4.51)

do campo escalar tem efeito apenas no potencial. Assim sendo, ao realizarmos as devidas

substituicdes no potencial (4.47) obtemos o seguinte resultado:
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Figura 4.7 — Fator de deformacio f(y) e o campo escalar ¢ (y) no modelo de brana plana.
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Fonte: Elaborado pelo autor.

V(o) :%2 {(15—561)005 (%) —3(3—8&)}, (4.52)

cujo comportamento estd denotado na Fig.(4.8).

Figura 4.8 — Potencial V em fun¢do do campo escalar ¢ no modelo de brana plana.

4 V)

Fonte: Elaborado pelo autor.

Afirmamos, sem demonstrag¢do, que tomar o limite A — 0 nas solu¢des aqui encon-
tradas, nos leva aos mesmos resultados ja bem estabelecidos pela TRG. Ademais, para o modelo
FRLW, € possivel verificar que este modelo de gravidade € equivalente ao que obtemos no MCP
[31], pois, acreditamos que ele seja capaz de descrever um cenario cosmoldgico completo desde
a fase inflaciondria inicial até a fase atual de expansdo acelerada, passando pela era dominada

por matéria, o que deve ser alcangado mediante escolhas apropriadas do parametro de Rastall.
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4.3.2 Caso Cosmologico

Continunando nossa investigacdo sobre modelos de branas planas espessas, falta-
nos implementar o fator de escala no elemento de linha (4.43). Vejamos, portanto, como as
equagdes se modificam ao permanescermos com f(y) = Ab) e v(t) = e, porém, assumindo

o seguinte elemento de linha:
dS? = f2(y) [—dt* +1* (1) &;dx'dx’ + dy?] . (4.53)

Novamente, considere o campo escalar com o tensor energia momento dado pela Eq.(4.44).
Substituindo a métrica implicita no elemento de linha acima na Eq.(4.3), obtemos as compo-

nentes da equacao de campo modificadas da forma:

(tr): 3HZ(1—4L)+3(—1+42)A? () + (=3 +8L)A" (y) = %qﬂ(y) +eX0y (),

(i) & [3H(~1442) + (3 12)42() + (3~ 8A)A"()] = —30°() — OV (9),
()1 6H3(~14+2) + (6~ 120)A(y) ~ 8LA"(y) = 50°(y) ~ OV (9), (454)

onde a soma (t) + (yy) gera a seguinte expressao:
347 (y) = 3A"(y) — 0" (y) — 3H3 = 0. (4.55)

Por outro lado, realizando a subtra¢do da componente (¢7) com a componente (yy), encontramos

V(p(y) =— e_z;@ [3(3—8A)A%(y) + (3 —164)A" (y) —3H;(3 —81)] . (4.56)

Como solucao da equagao diferencial (4.55), encontramos:

f(y) = sech®(By) (4.57)

¢ (y) = ¢parcsen [tanh(By)], (4.58)

onde ¢p = /3a(a—1), B =Hy/ae0 < a < 1. Estas relagdes sao as mesmas encontradas sem
levar em conta o fator de Rastall quando consideramos branas do tipo de Sitter, como revisado
na Ref.[6]. Veja a Fig.(4.9) para uma melhor compreensdo a respeito do comportamento do

fator de deformagdo f e do campo escalar ¢ enquanto fungdes da dimensao extra y.
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Figura 4.9 — Forma do fator f(y) e do campo escalar ¢(y) para o modelo do tipo de Sitter,
com parametros o = 0,5, 0,7 e 0,9, respectivamente.

fiy) ¢ly)
1 # g
—4 -2 ;’J. 2 4y
/}{f
/// =L
Fonte: Elaborado pelo autor.
O elemento de linha (4.53) torna-se, por conseguinte:
dS? = sech®®(By) [—dt* + &2 §;;dx'dx’ + dy*] . (4.59)
O efeito da ndo conservacdo do campo escalar no potencial sugere que:
[Py 21-a) [ 9
V(g) :5[3 o[3+3(3—84)a— 16A]cos e (4.60)
0

cujo comportamento estd denotado na Fig.(4.10) para oo = 0.3, 0.5 e 0.7.

Figura 4.10 — Forma do potencial V em funcdo do campo escalar ¢ para o modelo do tipo de
Sitter, com parametros @ = 0,3, 0,5 e 0,7, respectivamente.

vig)

Fonte: Elaborado pelo autor.

A inflacdo cosmoldgica estudada na Se¢do anterior pode ser (e usualmente €) mo-
delada por meio de um campo escalar efetivo, denominado inflaton, cuja dindmica domina o
contetdo energético do Universo primordial e conduz a uma fase de expansao acelerada expo-

nencialmente. Optamos trabalhar com o campo escalar pala justificativa de que o0 mesmo pode
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gerar, de maneira homogénea e isotropica, uma espécie de pressao efetiva negativa suficiente-
mente grande para sustentar a inflac@o, preservando, assim, a simetria espacial do espago-tempo

tipo FLRW.
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5 CONCLUSAO

Neste trabalho, investigamos cenérios cosmolégicos em modelos de mundos brana
através da gravidade de Rastall, explorando tanto branas finas quanto branas espessas imersas
em um bulk pentadimensional. A motivacdo central consistiu em analisar como a modificagcdo
introduzida pela hip6tese de Rastall (caracterizada pela ndo conservagdo covariante do tensor
energia-momento) pode impactar a dinamica gravitacional e cosmoldgica em espagos-tempos
com dimensoes extras, bem como oferecer mecanismos alternativos para a aceleracao do Uni-
verso. Os resultados expostos aqui mostram que a gravidade de Rastall fornece um arcabougo
consistente para o estudo cosmoldgico em mundos brana.

Inicialmente, foram apresentados os fundamentos matematicos e fisicos da TRG,
seguidos por uma revisao da Cosmologia Relativistica Padrao, com €nfase no modelo de FLRW
e nos problemas cldssicos da Cosmologia, como os problemas do horizonte e da planicidade.
Essa estrutura permitiu contextualizar a necessidade de extensdes tedricas capazes de descrever
regimes de altas energias e o comportamento do Universo primordial, abrindo espago para a
consideragdo de teorias gravitacionais modificadas e modelos com dimensdes extras.

No contexto dos mundos brana, estudamos primeiramente modelos do tipo RS, des-
tacando o papel do fator de deformacao da métrica na resolucao do problema da hierarquia e na
modificacdo das equacdes cosmoldgicas efetivas na brana. Em seguida, incorporamos a gravi-
dade de Rastall a esses cendrios, obtendo equacdes de campo modificadas e investigando suas
consequéncias fisicas tanto no regime estatico, quanto no regime cosmoldgico. Observamos
que o pardmetro A introduz corregdes relevantes na geometria do bulk e na dindmica efetiva da
brana, afetando diretamente o comportamento do parametro de Hubble e a evolugdo do fator de
escala.

Estendemos a andlise para modelos de branas espessas, nos quais a espessura da
brana ¢ gerada dinamicamente por campos escalares acoplados a gravidade. Nesse contexto,
estudamos solugdes em espacos-tempos de Minkowski e de Sitter, evidenciando como a ndo
conservacao do tensor energia-momento influencia a forma do potencial escalar e o perfil do
fator de deformac¢@o. Em particular, no caso cosmoldgico, verificamos que a presenca da gra-
vidade de Rastall permite-nos emergir naturalmente a uma expansao exponencial do fator de

escala, caracteristica tipica de cendrios inflaciondrios.
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Os resultados obtidos indicam que a gravidade de Rastall pode atuar como um me-
canismo efetivo para a aceleracdo cosmica em modelos de mundos brana, mesmo na auséncia
de uma componente explicita de energia escura. Além disso, a modificacdo da conservagdo
padrao da matéria conduz a novos ajustes entre os parametros do modelo, como a constante
cosmoldgica do bulk, a tensdo da brana e o pardmetro fenomenoldgico de Rastall A, ampliando
o espacgo de solugdes cosmologicamente vidveis.

Por fim, este trabalho reforca a relevancia de teorias gravitacionais modificadas
em cendrios com dimensdes extras como alternativas consistentes para a cosmologia moderna.
Como perspectivas futuras, destacamos o estudo da estabilidade das solucdes obtidas, a andlise
de perturbagcdes cosmoldgicas nesses modelos e possiveis vinculos observacionais, bem como
a investigacdo de extensdes da gravidade de Rastall em contextos mais gerais, como teorias
efetivas do tipo f(R,T) ou cendrios com miiltiplas branas. Esses desenvolvimentos podem
contribuir para uma compreensao mais profunda da dindmica gravitacional em regimes de altas

energias e do papel das dimensodes extras na evolu¢cao do Universo.
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