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RESUMO

O presente trabalho estuda soluç ̃oes cosmológicas em modelos de branas do tipo Randall-

Sundrum. Investigam-se, também, alguns modelos de branas espessas nos espaços-tempos de 
Minkowski e de Sitter, elucidando as implicaç ̃oes fı́sicas e matemáticas que surgem ao se con-

siderar a gravidade de Rastall. Neste ponto, abordam-se os aspectos da expansão de Hubble na 
presença de uma dimensão extra, dado um modelo cosmológico do tipo Friedmann-Lemaı̂tre-

Robertson-Walker (FLRW) pentadimensional. Desta maneira, torna-se necessário, em uma 
primeira abordagem, analisar os modelos supracitados sem levar em conta o fator de escala 
para, posteriormente, adicioná-lo à métrica ansatz. Neste contexto, destaca-se que uma natu-

reza exponencial da expansão do fator de escala emerge como uma caracterı́stica independente 
do número de dimensões extras e, além disso, os resultados indicam que a gravidade de Ras-

tall pode fornecer mecanismos alternativos para a aceleração cósmica, mesmo na ausência de 
energia escura convencional.

Palavras-chave: mundos brana; dimensões extras; métrica deformada; cosmologia; gravidade 
de Rastall.



ABSTRACT

The present work studies cosmological solutions in Randall-Sundrum type brane models. It

also investigates some thick brane models in Minkowski and de Sitter spacetimes, elucidating

the physical and mathematical implications that arise when considering Rastall gravity. At

this point, aspects of Hubble expansion in the presence of an extra dimension are addressed,

given a five-dimensional Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) type cosmological

model. In this way, it becomes necessary, in a first approach, to analyze the aforementioned

models without taking into account the scale factor, to later add it to the metric ansatz. In this

context, it is highlighted that an exponential nature of the scale factor expansion emerges as

a characteristic independent of the number of extra dimensions, and furthermore, the results

indicate that Rastall gravity can provide alternative mechanisms for cosmic acceleration, even

in the absence of conventional dark energy.

Keywords: brane worlds; extra dimensions; warped metric; cosmology; Rastall gravity.



LISTA DE FIGURAS

Figura 3.1 – Curvaturas das hipersuperfı́cies tridimensionais . . . . . . . . . . . . . . . 34

Figura 4.1 – Orbifold S1/Z2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figura 4.2 – Setup do modelo RS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figura 4.3 – Comportamento da função σ(y) e suas derivadas. . . . . . . . . . . . . . . 46
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Ω Parâmetro de densidade
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1 INTRODUÇÃO

Albert Einstein publicou a Teoria da Relatividade Geral (TRG) em 1915. Nela, a

gravidade é descrita como a curvatura do espaço-tempo causada pela presença de matéria e ener-

gia. Um de seus fundamentos é o Princı́pio de Equivalência, o qual estabelece que, numa região

suficientemente pequena, os efeitos de um campo gravitacional são indistinguı́veis dos efei-

tos de uma aceleração uniforme para um observador em queda livre. Assim, um observador em

queda livre localmente não percebe a presença da gravidade [1]. Além disso, a TRG possibilitou

o desenvolvimento da Cosmologia Moderna por meio das equações de campo, compreendendo

o Universo como um sistema dinâmico.

Até o inı́cio do século XX, prevalecia a ideia de um Universo estático, regido pela

mecânica newtoniana. No entanto, esse tipo de suposição não conseguia explicar com precisão

os fenômenos observados em larga escala, como a expansão cósmica. Em 1922, Friedmann

encontrou essa expansão a partir de soluções simplificadas das equações de Einstein, conside-

rando um Universo homogêneo e isotrópico [2]. Em 1929, E. Hubble confirmou essa previsão

ao detectar o desvio para o vermelho das galáxias [3].

A introdução de dimensões extras na Cosmologia surgiu como uma extensão da

Teoria das Cordas e da TRG, especialmente nos modelos de mundos brana. Nessas propostas,

nosso Universo quadridimensional estaria imerso em um espaço-tempo de dimensões supe-

riores, onde a gravidade se propaga no volume total do chamado bulk, enquanto as demais

interações fundamentais permanecem confinadas à brana. Essas dimensões extras podem ser

compactas e microscópicas, como na teoria de Kaluza-Klein, ou macroscópicas e não compac-

tas, como em um dos modelos de Randall-Sundrum (RS). No primeiro caso, a compactificação

preserva a estrutura do espaço-tempo, enquanto, no segundo, a dimensão extra pode ser fi-

nita (RSI) ou infinita (RSII), estruturada de modo a localizar modos massivos de Kaluza-Klein

próximos à brana. Essas abordagens afetam diretamente a evolução cósmica, modificando a

gravidade em grandes escalas e fornecendo possı́veis explicações para a matéria e energia es-

curas [4–6].

Um dos problemas fundamentais que os modelos com dimensões extras buscam so-

lucionar é a hierarquia entre a escala gravitacional (energia de Planck) e a escala das interações

eletrofracas. Os modelos de Arkani-Hamed, Dimopoulos e Dvali propõem que dimensões ex-



13

tras grandes permitem que a gravidade se espalhe em um volume maior, reduzindo sua escala

fundamental e explicando sua aparente fraqueza na brana observável [7]. Já os modelos RS

utilizam uma métrica curva no bulk para suprimir exponencialmente a escala de Planck na

brana visı́vel, dispensando a necessidade de dimensões extras grandes. Essas ideias impactam

diretamente a Cosmologia, modificando as equações de Friedmann, a expansão do Universo

primordial e a inflação.

No contexto cosmológico, tanto para branas finas quanto espessas, a Gravidade de

Rastall propõe uma alternativa à TRG ao postular que o tensor energia-momento não é estri-

tamente conservado, permitindo interação direta entre matéria e geometria [8]. Em cenários

de Cosmologia de branas, essa modificação pode influenciar significativamente a evolução do

Cosmos, alterando a dinâmica da expansão, equação de estado efetiva e fornecendo um meca-

nismo para a aceleração cósmica sem necessidade de um campo escalar adicional. Ademais,

pode impactar a evolução da radiação e da matéria no Universo primordial, afetando previsões

sobre nucleossı́ntese e formação de estruturas.

Sendo assim, neste trabalho revisamos os fundamentos da TRG no Capı́tulo 2. No

Capı́tulo 3, exploramos sua aplicação à Cosmologia em um background FLRW, considerando o

Modelo Cosmológico Padrão (MCP). No Capı́tulo 4, introduzimos o formalismo de Rastall e o

aplicamos em branas finas (tipo delta de Dirac) e em branas espessas, desconsiderando o fator

de escala em um primeiro momento para, porteriormene, investigarmos as mudanças diâmicas

ao introduzirmos o fator de escala nos repectivos elementos de linha.

A notação utilizada ao longo do texto é a seguinte: as primeiras letras latinas

minúsculas (a,b,c...) representam tensores na notação de ı́ndices; letras maiúsculas nos ı́ndices

(M,N,Q...) representam coordenadas em variedades com dimensões superiores a quatro; letras

gregas minúsculas nos ı́ndices (µ,ν ,ρ...) representam coordenadas em variedades quadridi-

mensionais, em que as letras latinas minúsculas (i, j,k...) se referem as coordenadas do espaço

tridimensional e sempre que aparecer ı́ndices repetidos contraindo-se e não for explicitado o so-

matório, está implı́cita uma soma sobre eles (os que não se repetem não representam somatórios,

mas o número de equações), ou seja, adotamos aqui a convenção de soma de Einstein. Quando

não explicitado no texto, estamos trabalhando com unidades naturais (G = c = 1).
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2 FUNDAMENTOS DA TEORIA DA RELATIVIDADE GERAL

Apresentamos neste capı́tulo o arcabouço matemático necessário para a construção

da TRG e, consequentemente, dos modelos de mundos brana sob uma Cosmologia FLRW.

Inicialmente, abordamos o conceito de Variedade Diferenciável. Em seguida, definimos os

campos e os operadores com os quais iremos trabalhar nas Seções subsequentes, culminando,

assim, nas equações de campo de Einstein para um espaço-tempo quadridimensional.

2.1 Variedade Diferenciável

Variedades, de modo geral, formam espaços que se assemelham localmente ao

espaço euclidiano, podendo ter sua estrutura global mais complexa. Em outras palavras, cada

ponto de uma variedade de dimensão D (D ∈ N)1 tem uma vizinhança que é homeomorfa ao

espaço euclidiano também de dimensão D, ou seja, há uma função bijetiva, contı́nua e com

inversa contı́nua entre a vizinhança do ponto e o R
D. Formalmente, de acordo com Wald[11]:

Definição 2.1. Uma variedade real MD, D−dimensional, de classe C∞ (suave), é um conjunto

com uma coleção de subconjuntos {Oα} satisfazendo as seguintes propriedades:

(i) Cada ponto p ∈ MD está em pelo menos um Oα , isto é, {Oα} cobre MD;

(ii) ∀α , ∃φα : Oα 7−→Uα ⊂ R
D, onde φα é chamado de mapa;

(iii) Se quaisquer dois conjuntos Oα e Oβ se sobrepõem, Oα ∩Oβ ̸= ∅, podemos conside-

rar o mapa φβ ◦ φ−1
α que leva pontos em φα

[
Oα ∩Oβ

]
⊂ Uα ⊂ R

D para pontos em

φβ

[
Oα ∩Oβ

]
⊂Uβ ⊂ R

D.

O par (U,φ) é chamado de carta e o conjunto formado por todas as cartas é cha-

mado de atlas de MD. As variedades, onde construiremos a TRG mais à frente, são espaços

topológicos dotados de métrica. Eis, portanto, duas definições adaptadas da Ref.[12], com a

observação de que, no caso de uma variedade D−dimensional, ainda precisamos reformular a

definição de métrica através do que se conhece na literatura como métrica de Riemann.

1Existem estudos que exploram a possibilidade de dimensões fracionárias, especialmente em contextos envol-

vendo geometria fractal, gravidade quântica ou teoria de campos em espaços com estrutura não trivial. Veja, por

exemplo, as Refs. [9, 10].
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Definição 2.2. Um espaço topológico (X ,τ) consiste de um conjunto X com uma coleção τ de

subconjuntos de X (chamada de topologia sobre X) satisfazendo três propriedades especı́ficas:

(i) Oα ∈ τ (∀α)⇒
⋃

α

Oα ∈ τ;

(ii) O1, ...,On ∈ τ ⇒
n⋂

i=1

Oi ∈ τ;

(iii) Todo o conjunto X e o conjunto vazio ∅ estão em τ .

Definição 2.3. Uma métrica d em um conjunto não vazio X é um mapa d : X ×X 7−→ R que,

∀ x,y,z ∈ X, associa um número real d(x,y) (chamado de distância entre x e y) da seguinte

forma:

(i) d(x,y)≥ 0 (Positividade, com d = 0 para x = y);

(ii) d(x,y) = d(y,x) (Simetria);

(iii) d(x,z)≤ d(x,y)+d(y,z) (Desigualdade triangular).

É interessante destacar que o subconjunto U , descrito na Def.(2.1), também corres-

ponde a um conjunto aberto em R
D. Assim, U pode ser expresso como uma união de bolas

abertas de modo que, em um espaço métrico (p,d), uma bola aberta de centro p ∈ U e raio

r > 0 é definida como B(p,r) := {q ∈U | d(p,q)< r} [13]. Além disso, ressaltamos, em con-

formidade com Henriques[14], que os Uα ’s constituem uma imagem passı́vel de representação

por coordenadas, digamos xN(p) com N = 1, ...,D. Ademais, pela condição (iii) da mesma

definição, se p tiver coordenadas xN(p) ∈Uα e yM(p) ∈Uβ , com M = 1, ...,D, existirão mapas

xN [yM(p)] que representarão transformações de coordenadas entre dois conjuntos abertos.

Variedades são essenciais para generalizar noções de curvas e superfı́cies para o

caso de dimensões arbitrárias, permitindo formalizar o Cálculo Diferencial em espaços curvos

parametrizados, por exemplo. Mais detalhes conceituais e/ou definições a respeito das varieda-

des diferenciais podem ser encontrados na Ref.[15].

2.1.1 Vetores Tangentes como Derivadas Direcionais

Em R
D existe uma bijeção entre vetores e derivadas direcionais. Desta maneira, um

vetor v = (v1, ...,vD) define o operador derivada direcional vN ∂
∂xN e vice-versa. Derivadas di-

recionais são descritas por sua linearidade e pela regra de Leibniz para derivadas com relação

ao produto de funções. Logo, com base na Ref.[11]:
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Definição 2.4. Seja F uma coleção de funções de classe C∞ de uma variedade MD nos reais.

Definimos o vetor tangente v a um ponto p ∈ MD como o mapa v : F 7−→ R, de modo que:

(i) v(a f +bg) = av( f )+bv(g), ∀ f ,g ∈ F ,∀ a,b ∈ R (Linearidade);

(ii) v( f g) = f (p)v(g)+g(p)v( f ) (Regra de Leibniz).

Denotamos por Vp (espaço tangente em um ponto p) o conjunto formado por todos

os vetores tangentes a p ∈ MD. Sendo assim, afirmamos que Vp tem a estrutura de um espaço

vetorial [16]. Uma segunda propriedade importante de Vp é que, para uma dada variedade

diferenciável D−dimensional MD, a dimensão de Vp é a mesma que a de MD, ou seja, dimVp =

D, como demonstrado na Ref.[11].

Sendo Vp um espaço vetorial, introduzimos uma base coordenada {XN}, em que

XN = ∂
∂xN = ∂N . Assim, expressamos um vetor tangente arbitrário v como uma soma dos XN’s

de modo que

v = vNXN = vN ∂

∂xN
. (2.1)

Considerando uma base coordenada diferente para Vp, digamos {X ′
M}, e fazendo uso da regra

da cadeia, podemos obter a transformação

v = v′MX ′
M = v′M

∂

∂x′M

⇒ v′M
∂

∂x′M
= vN ∂

∂xN

⇒ v′M =
∂x′M

∂xN
vN . (2.2)

A Eq.(2.2) é conhecida como lei de transformação vetorial. Note que realizamos esta transformação

escrevendo o mesmo v em dois sistemas de coordenadas diferentes. A ideia de invariância, por-

tanto, começa a tomar forma. Ela é de suma importância, pois esperamos que as propriedades

de um sistema fı́sico ou de uma lei da fı́sica permaneçam inalteradas sob certas transformações,

como as grandezas escalares v′Mv′M = vMvM, por exemplo - algo que permeará por todo nosso

estudo sobre a relatividade geral.

Diante do que foi exposto acima, ponderamos que é possı́vel associar um vetor para

cada ponto de uma variedade arbitrária e denominamos essa coleção de vetores como campo

vetorial. No contexto do espaço-tempo, um campo vetorial pode representar a velocidade de

uma partı́cula em cada ponto, ou um vetor de força em um campo gravitacional. Ademais, ao
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derivarmos uma curva com relação aos seus parâmetros, também obtemos um vetor tangente.

Logo, um campo vetorial é definido como sendo um mapa, de modo que ∀ v ∈ Vp ∃! p ∈
MD;(v, p) ∈ Vp ×MD. Por fim, destacamos que os elementos de Vp agem como operadores

diferenciais em funções escalares f ∈ F .

2.1.2 Campos Tensoriais e o Tensor Métrico

Com o intuito de descrever as leis fı́sicas de forma independente do sistema de coor-

denadas, de acordo com o princı́pio da covariâcia geral, devemos construir nosso ferramental

matemático com base nos tensores, mantendo assim uma determinada lei invariante para qual-

quer transformação de coordenadas. Com esse objetivo, precisamos introduzir uma noção de

espaço vetorial dual ao espaço tangente para então definirmos os tensores propriamente ditos.

Seja V um espaço vetorial de dimensão D sobre R (no contexto deste trabalho, o

objeto de estudo principal é o próprio espaço tangente, V = Vp). Considere a coleção V
∗ de

mapas lineares f : V 7−→ R. Se impusermos a adição e a multiplicação por escalar, do mesmo

modo como definimos espaços vetoriais [16], obtemos uma estrutura de espaço vetorial para

V
∗ de forma natural. Denominamos V∗ como espaço vetorial dual a V (ou espaço cotangente,

quando tomado no ponto p) e os elementos de V∗ são chamados de vetores duais (ou covetores).

Se v1, ...,vD é uma base de V, então podemos definir os elementos v1∗ , ...,vD∗ ∈ V
∗

por vM∗
(vN) = δ M

N . Desta maneira, segue-se diretamente que
{

vM∗}
é uma base de V∗, chamada

de base dual a {vN} de V. Em particular, isso mostra que dimV
∗ = dimV. A correspondência bi-

jetiva vM ←→ vM∗
dá origem ao que denominamos de isomorfismo entre os conjuntos formados

pelos espaços V e V
∗. Vejamos algumas definições adaptadas da Ref.[11].

Definição 2.5. Sejam V um espaço vetorial D− dimensional e V
∗ seu espaço vetorial dual.

Um tensor T do tipo (k, l) é um mapa multilinear T : V∗× ...×V
∗

︸ ︷︷ ︸

k termos

×V× ...×V
︸ ︷︷ ︸

l termos

7−→ R.

Em outras palavras, dados k vetores duais e l vetores ordinários, T produz um

número real e o faz de tal maneira que, se fixarmos todos os vetores ou vetores duais, exceto um,

então haverá uma aplicação linear na variável restante. Destacamos que vetores e escalares são

casos particulares de tensores e, além disso, a soma e/ou subtração de dois tensores do mesmo

tipo resulta em outro tensor do mesmo tipo.

Definição 2.6. Sejam T (k, l) e T (k−1, l −1) os conjuntos de todos os tensores do tipo (k, l)

e (k−1, l−1), respectivamente. A contração com relação ao i-ésimo vetor dual e j-ésimo vetor
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ordinário é um mapa C : T (k, l) 7−→ T (k− 1, l − 1) em que, se T é um tensor de tipo (k, l),

então CT = ∑
D
σ=1 T(...,vσ∗

, ...; ...,vσ , ...), onde {vσ} é uma base de V e {vσ∗} é sua base dual

e esses vetores são inseridos nos i-ésimo e j-ésimo termos de T.

Definição 2.7. Dados dois tensores T e T′ de tipos (k, l) e (k′, l′), respectivamente, podemos

construir um novo tensor de tipo (k + k′, l + l′) a partir do produto tensorial de T e T′, de-

notado por T ⊗ T′, pela seguinte regra: tomando k + k′ vetores duais v1∗ , ...,vk+k′∗ e l + l′

vetores ω1, ...,ωl+l′ , definimos T ⊗ T′ agindo sobre esses vetores como sendo o produto de

T(v1∗ , ...,vk∗;ω1, ...,ωl) e T′(vk+1∗ , ...,vk+k∗;ωl+1, ...,ωl+l′).

Assim, de acordo com a Def.(2.7), uma maneira de construir tensores é tomar pro-

dutos tensoriais de vetores e vetores duais, ou seja, se {vM} é uma base de V e {vN∗} é sua base

dual, um tensor T de tipo (k, l) pode ser expresso como uma soma de tensores simples:

T = T
M1...Mk

N1...Nl
vM1

⊗ ...⊗ vMk
vN∗

1 ⊗ ...⊗ vN∗
l . (2.3)

Contraindo o tensor descrito na Eq.(2.3) em termos de componentes e utilizando a Def.(2.6),

obtemos:

(CT )
M1...Mk−1

N1...Nl−1
= T

M1...σ ...Mk−1

N1...σ ...Nl−1
. (2.4)

Aqui, σ está sendo somado em todas as coordenadas de 1 a D. Para S = T⊗T′, escrevemos:

S = S
M1...Mk+k′
N1...Nl+l′

= T
M1...Mk

N1...Nl
T
′Mk+1...Mk+k′

Nl+1...Nl+l′
. (2.5)

Voltemos nossa atenção para o caso em que V = Vp, isto é, vamos considerar o

espaço tangente em um ponto p situado em uma dada variedade MD, com V
∗
p sendo o espaço

cotangente em p. Também nos referimos aos elementos de Vp como vetores contravariantes

e aos elementos de V
∗
p como vetores covariantes. A base dual associada a V

∗
p é usualmente

denotada por {dxN}, de modo que dxN(∂M) = δ N
M . Assim sendo, suponha que um dado ωN

representa um covetor ω em termos de componentes, com base dual {dxN}. Como fizemos nas

Eqs. (2.1) e (2.2), podemos escrever uma transformação de coordenadas da seguinte forma:

ω = ωNdxN = ω ′
Mdx′M

⇒ ω ′
M =

∂xN

∂x′M
ωN . (2.6)
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Além disso, a Eq.(2.3) torna-se:

T = T
M1...Mk

N1...Nl
∂M1

⊗ ...⊗∂Mk
⊗dxN1 ⊗ ...⊗dxNl . (2.7)

Das relações (2.2) e (2.6), em conformidade com a Eq.(2.7), omitindo-se o sı́mbolo de produto

tensorial, podemos escrever a seguinte generalização para a transformação de coordenadas de

um tensor arbitrário T de tipo (k, l):

T
′M1...Mk

N1...Nl
=

∂x′M1

∂xP1
...

∂x′Mk

∂xPk

∂xQ1

∂x′N1
...

∂xQl

∂x′Nl
T

P1...Pk

Q1...Ql
. (2.8)

A atribuição de um tensor sobre Vp, ∀p ∈ MD, é chamada de campo tensorial.

A noção de métrica advém da hipótese de que distâncias infinitesimais quadradas

podem ser associadas a deslocamentos infinitesimais. Desta maneira, uma métrica g deve ser

um mapa linear de Vp ×Vp 7−→ R, ou seja, um tensor do tipo (0,2). Além disso, a métrica

deve ser simétrica e não degenerada - matematicamente g(v1,v2) = g(v2,v1),∀v1,v2 ∈ Vp e

g(v,v1) = 0,∀v ∈ Vp ⇒ v1 = 0. Fisicamente falando, a construção de uma métrica em um

espaço arbitrário serve para medir distâncias, ângulos e comprimentos de vetores, o que fornece

ao espaço uma estrutura geométrica bem definida.

Definição 2.8. Seja MD uma variedade diferenciável D− dimensional. Uma métrica de Ri-

emann em MD é um campo tensorial simétrico (positivo-definido) de tipo (0,2), ou seja, um

mapa que associa para cada ponto p ∈ MD um produto interno no espaço tangente Vp -

g : Vp ×Vp 7−→ R, onde gp(v1,v2) = gp(v2,v1) e gp(v1,v2)≥ 0, ∀v1,v2 ∈ Vp.

Quanto g não é positiva-definida, passa a ser denominada como métrica pseudo-

riemanniana. Assim, em linhas gerais, uma métrica é um produto interno (não necessariamente

positivo-definido) no espaço tangente em cada ponto. Em uma base coordenada, podemos

expandir uma métrica g em termos de suas componentes gMN como

g = gMNdxM ⊗dxN . (2.9)

Vamos representar g pelo elemento de linha dS2, caso em que escrevemos

dS2 = gMNdxMdxN , (2.10)

de modo que gMN satisfaz as seguintes propriedades: 1) gMNgNL = gNLgMN = δ M
L ; 2) vM =

gMNvN e 3) vM = gMNvN , com gMN sendo o tensor métrico contravariante.
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2.2 Curvatura do Espaço-Tempo

Precisamos encontrar os tensores que nos auxiliarão na descrição da curvatura do

espaço-tempo. Intuitivamente, a curvatura descreve como um espaço ou superfı́cie se desvia

de ser plano (ou euclidiano). Na TRG, por exemplo, a curvatura do espaço-tempo está inti-

mamente relacionada à presença de matéria/energia e à maneira como ela influencia diversos

sistemas fı́sicos. Nas linhas que se seguem, definimos precisamente os operadores diferenciais

que iremos aplicar durante todo o restante do texto (as derivadas covariantes); então passamos à

dedução dos tensores com os quais calcularemos a curvatura propriamente dita, referente a uma

variedade diferenciável arbitrária (tensores de Riemann e Ricci, com seu respectivo escalar).

2.2.1 Derivada Covariante

Vamos definir a derivada covariante de acordo com Wald[11]. Para tanto, passamos

agora a escrever os tensores em notação de ı́ndices, ou seja, T = T
a1...ak

b1...bl
∈ T (k, l) (não confun-

dir com as coordenadas, que estamos denotando por letras latinas maiúsculas, e cujos tensores

têm sido expressos em suas respectivas bases coordenadas).

Definição 2.9. A derivada covariante, denotada pelo sı́mbolo ∇, em uma variedade diferenciável

MD, é um mapa que leva a cada campo tensorial diferenciável do tipo (k, l) para um campo

tensorial diferenciável do tipo (k, l +1) e satisfaz as cinco propriedades a seguir:

(i) ∀A,B ∈ T (k, l) e ∀α,β ∈ R, ∇c

(

αA
a1...ak

b1...bl
+βB

a1...ak

b1...bl

)

= α∇cA
a1...ak

b1...bl
+β∇cB

a1...ak

b1...bl

(Linearidade);

(ii) ∀A∈T (k, l) e ∀B∈T (k′, l′), ∇e

(

A
a1...ak

b1...bl
B

c1...ck′
d1...dl′

)

=
(

∇eA
a1...ak

b1...bl

)

B
c1...ck′
d1...dl′

+A
a1...ak

b1...bl

(

∇eB
c1...ck′
d1...dl′

)

(Regra de Leibniz);

(iii) ∀A ∈T (k, l), ∇d

(

A
a1...c...ak

b1...c...bl

)

= ∇dA
a1...c...ak

b1...c...bl
(Comutatividade com relação a contração);

(iv) ∀ f ∈F e ∀ua ∈Vp, u( f ) = ua∇a f (Consistência com a noção de vetores tangentes como

derivadas direcionais em campos escalares);

(v) ∀ f ∈ F , [∇a,∇b]( f ) = (∇a∇b −∇b∇a)( f ) = 0 (Livre de torção).

Utilizando as propriedades acima, podemos deduzir uma expressão para a derivada

covariante de forma explı́cita. A princı́pio, pela condição (iv), quaisquer dois operadores di-

ferenciais ∇a e ∇̃a devem concordar nas suas ações em campos escalares. Desta maneira, seja
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ωb um covetor e considere a diferença ∇̃a( f ωb)−∇a( f ωb) para um campo escalar arbitário f .

Pelas propriedades (ii) e (iv), temos:

∇̃a( f ωb)−∇a( f ωb) = f
(
∇̃aωb −∇aωb

)
, (2.11)

de modo que a subtração entre estes dois operadores depende somente do valor de ωb no ponto

p ∈ MD. Sendo assim, suponha ω ′
b = ωb em p. Afirmamos, sem demonstrar, que podemos

encontrar funções suaves f(α) (que desaparecem em p) e componentes de covetores suaves

µ
(α)
b tais que

ω ′
b −ωb = f(α)µ

(α)
b . (2.12)

Substituindo a Eq.(2.12) no resultado encontrado na Eq.(2.11), encontramos:

∇̃a

(
ω ′

b −ωb

)
−∇a

(
ω ′

b −ωb

)
= f(α)

(

∇̃aµ
(α)
b −∇aµ

(α)
b

)

. (2.13)

Desde que f(α) = 0,∀α em p (o que advém da independência linear), a Eq.(2.13) torna-se:

∇̃aω ′
b −∇aω ′

b = ∇̃aωb −∇aωb. (2.14)

Assim, mostramos que ∇̃a −∇a define um mapa linear de covetores (em oposição a campos de

vetores duais definidos em uma vizinhança do ponto p) para um tensor de tipo (0,2) em p. Em

consequência, esta subtração define uma conexão Cc
ab de modo que

∇aωb = ∇̃aωb −Cc
abωc. (2.15)

Proposição 2.1. A conexão Cc
ab é simétrica.

Prova. Seja ωb = ∇b f = ∇̃b f ,com ωb ∈ V
∗
p e f ∈ F . Assim, de acordo com a Eq.(2.15),

∇a(∇b f ) = ∇̃a(∇̃b f )−Cc
ab∇c f . (2.16)

Desde que ambos ∇a∇b f e ∇̃a∇̃b f sejam simétricos em a e b, de acordo com a propriedade (v),

segue-se que Cc
ab deve ter também essa propriedade, isto é,

Cc
ab =Cc

ba. (2.17)

Em outras palavras, a simetria de Cc
ab é uma consequência direta do espaço ser livre de torsão.
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Utilizando a propriedade (ii) e a Eq.(2.15) podemos deduzir o seguinte resultado,

∀vb ∈ Vp e ∀ωb ∈ V
∗
p:

(∇̃a −∇a)

= f ∈ F
︷ ︸︸ ︷

(ωbvb)
︸ ︷︷ ︸

= 0

= (∇̃a −∇a)(ωb)v
b +ωb(∇̃a −∇a)(v

b)

= vbCc
abωc +ωb(∇̃a −∇a)(v

b)

⇒ ∇avb = ∇̃avb +Cb
acvc. (2.18)

Continuando de uma maneira similar, apenas construindo produtos tensoriais entre vetores,

podemos derivar uma fórmula geral para a ação de ∇a num campo tensorial arbitrário, em

termos de ∇̃a e Cc
ab. Para T ∈ T (k, l), encontramos:

∇aT b1...bk
c1...cl

= ∇̃aT b1...bk
c1...cl

+∑
i

C
bi

adT b1...d...bk
c1...cl

−∑
j

Cd
ac j

T
b1...bk

c1...d...cl
. (2.19)

Assim, a diferença entre dois operadores ∇a e ∇̃a é completamente caracterizada por Cc
ab. To-

davia, a aplicação mais importante da equação acima surge no caso onde ∇̃ é um operador

diferencial ordinário ∂a. Neste caso, denotamos Cc
ab por Γc

ab (sı́mbolo de Christoffel). Logo,

como exemplo, podemos escrever:

∇avb = ∂avb +Γb
acvc. (2.20)

Definição 2.10. O transporte paralelo de um dado tensor T
b1...bk

c1...cl
, ao longo de uma curva C ,

conectando dois espaços tangentes Vp e Vq nos pontos p e q, respectivamente, é definido como

sendo a relação que satisfaz a seguinte derivada covariante (a partir do vetor ua tangente a

C ):

ua∇aT b1...bk
c1...cl

= 0. (2.21)

Diretamente da definição acima, concluı́mos que um vetor vb em cada ponto da

curva é dito ser transportado paralelamente se

ua∇avb = 0

⇒ ua∂avb +uaΓc
abvc = 0

⇒ dva

dt
+ubΓa

bcvc = 0. (2.22)

Gostarı́amos que o produto interno fosse invariante quando o transportamos paralelamente ao
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longo de uma curva C . Dessa forma, suponha va e ωb, de modo que o produto interno seja

expresso por gabvaωb. Utilizando a definição de transporte paralelo, temos:

uc∇c(gabvaωb) = 0

⇒ ucvaωb∇cgab +

= 0 pela Def.(2.10)
︷ ︸︸ ︷

(uc∇cωb)vagab+

= 0 pela Def.(2.10)
︷ ︸︸ ︷

ωbgab(u
c∇cva ) = 0

⇒ ucvaωb∇cgab = 0 ⇐⇒ ∇cgab = 0. (2.23)

Em outras palavras, para que o produto interno se conserve ao longo de C , a derivada covariante

da métrica deve ser nula. Vamos mostrar que ∇c é único.

Proposição 2.2. Se gab é um tensor métrico, então existe um único operador ∇c satisfazendo

∇cgab = 0.

Prova. Seja ∂c um operador diferencial ordinário associado a um sistema de coordenadas (cujo

estamos representando por ∇̃c). Pela Eq.(2.19) (já substituindo C por Γ), temos que

∇cgab = ∂cgab −Γd
cagdb −Γd

cbgad = 0

⇒ ∂cgab = Γd
cagdb +Γd

cbgad = Γbca +Γacb. (2.24)

Por substituição de ı́ndices, podemos escrever

∂agcb = Γbac +Γcab, (2.25)

∂bgac = Γcba +Γabc. (2.26)

Finalmente, somando a Eq.(2.24) com a Eq.(2.25), subtraindo a Eq.(2.26) e usando as propri-

edades de simetria de Γb
ca encontramos:

Γd
ca =

1

2
gdb(∂cgab +∂agcb −∂bgca). (2.27)

Esta escolha da conexão resolve a expressão (2.23) e ainda é única.

Em termos das bases coordenadas, podemos reescrever a Eq.(2.27) como

ΓL
QM =

1

2
∑
N

gLN(∂QgMN +∂MgQN −∂NgQM). (2.28)

A conexão obtida das propriedades de simetria apresentadas acima é denominada conexão de
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Levi-Civita (ou conexão afim). Observe que, mesmo quando estávamos determinando Cc
ab e,

consequentemente, Γc
ab, não falamos nada a respeito de seu caráter tensorial. Isso se justifica

porque Γc
ab não se transforma como indicado na Eq.(2.8) (omitimos aqui a demonstração). As-

sim, de acordo com o que foi desenvolvido nesta Seção, concluı́mos que podemos calcular a

derivada covariante utilizando a conexão de Levi-Civita e tomando as derivadas parciais das

componentes das bases coordenadas da métrica.

2.2.2 Tensor de Riemann

Passemos a construir os tensores que determinam a geometria do espaço-tempo. A

curvatura, dada uma variedade diferenciável, pode ser calculada através do tensor de Riemann,

onde este nos fornece uma medida de como vetores se transportam paralelamente ao longo

de curvas e como o próprio espaço é curvado devido à presença de matéria e energia. Para

tanto, apresentamos agora algumas propriedades que o tensor de Riemann deve satisfazer e

deduzimos, por conseguinte, sua forma explı́cita por meio da conexão de Levi-Civita. Ademais,

por contração de ı́ndices, definimos o tensor e o escalar de Ricci.

Sejam ∇a e ∇b operadores diferenciais, ωc ∈V
∗
p e f ∈F . Calculando o comutador

desses operadores atuando no produto f ωc, encontramos, pela regra de Leibniz [11]:

[∇a,∇b]( f ωc) = ∇a(ωc∇b f + f ∇bωc)−∇b(ωc∇a f + f ∇aωc)

= f (∇a∇bωc −∇b∇aωc) = f [∇a,∇b](ωc). (2.29)

O tensor (∇a∇b −∇b∇a)ωc no ponto p depende apenas do valor de ωc em p. Consequente-

mente, [∇a,∇b] define um mapa linear de um covetor em um tensor de tipo (0,3). Deste modo,

existe um campo tensorial, que denotamos por Rd
abc (tensor de curvatura de Riemann):

[∇a,∇b](ωc) = Rd
abcωd. (2.30)

Podemos obter, assim, a expressão do comutador de operadores diferenciais num campo tenso-

rial arbitrário em termos do tensor de Riemann. Inicialmente, para um campo vetorial vc ∈ Vp,

a propriedade (v) da Def.(2.9) sugere que

[∇a,∇b]

= f ∈ F
︷ ︸︸ ︷

(vcωc)
︸ ︷︷ ︸

= 0

= ∇a(ωc∇bvc + vc∇bωc)−∇b(ωc∇avc + vc∇aωc)

= vc(∇a∇b −∇b∇a)ωc +ωc(∇a∇b −∇b∇a)v
c

= ωc[∇a,∇b](v
c)+ vcRd

abcωd = 0
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⇒ [∇a,∇b](v
c) =−Rc

abdvd. (2.31)

De modo geral, para um tensor T
c1...ck

d1...dl
, encontramos

[∇a,∇b]T
c1...ck

d1...dl
=−

k

∑
i=1

R
ci

abσ T
c1...σ ...ck

d1...dl
+

l

∑
j=1

Rσ
and j

T
c1...ck

d1...σ ...dl
. (2.32)

Diretamente da construção do tensor de Riemann Eqs.(2.30) - (2.32), podemos ob-

servar que as seguintes propriedades são satisfeitas:

(i) Rd
abc =−Rd

bac;

(ii) Rd
[abc] = 0 (Antissimetria nos ı́ndices a,b e c);

(iii) Rabcd =−Rabdc (Considerando ∇agbc = 0);

(iv) Rabcd = Rcdab;

(v) ∇[aRe
bc]d = 0 (Identidade de Bianchi).

A partir das propriedades antissimétricas (i) e (iii), o traço do tensor de Riemann sobre os dois

primeiros ou dois últimos ı́ndices desaparece. Entretanto, o traço sobre o segundo e o quarto

ı́ndices (ou, de forma equivalente, o primeiro e o terceiro) define o que denominamos tensor

de Ricci, ou seja, Rc
acb = Rab. Além disso, usando a propriedade (iv), temos Rab = Rba, com

o escalar de curvatura sendo definido pelo traço do tensor de Ricci, R = Ra
a. Ao calcularmos

explicitamente o tensor de Riemann a partir da Eq.(2.30), encontramos:

Rd
abcωd = [∇a,∇b](ωc)

= ∂bΓd
ac −∂cΓd

ab +Γe
acΓd

be −Γe
abΓd

ce. (2.33)

O tensor de Ricci pode ser obtido contraindo-se a equação acima, ou seja,

Rac = Rb
abc = ∂bΓb

ac −∂cΓb
ab +Γe

acΓb
eb −Γe

abΓb
ce. (2.34)

Também destacamos que a contração da identidade de Bianchi [propriedade (v) desta Seção]

leva a uma equação importante para o tensor de Ricci:

∇[aRe
bc]d = 0

⇒ ∇aRe
bdc +∇bRe

dac +∇dRe
abc = 0

⇒ ∇a

(

Rab −
1

2
Rgab

)

= 0, (2.35)
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onde Gab = Rab − 1
2
Rgab é denominado tensor de Einstein (note que a divergência nula deste

tensor é naturalmente satisfeita devido à estrutura matemática do tensor de Riemann, indepen-

dentemente das equações de movimento ou da matéria presente). Mais à frente retornaremos

ao tensor de Einstein através da variação na ação de Einstein-Hilbert.

2.2.3 Geodésicas

Geodésicas são generalizações de retas, como definidas no espaço euclidiano, para

o espaço-tempo curvo. Desse modo, dada uma superfı́cie inserida numa variedade arbitrária,

a menor distância entre dois pontos nesta superfı́cie está relacionada a uma curva de valor

estacionário, que é a própria geodésica [17]. Utilizando a Def.(2.10), de acordo com Wald[11]:

Definição 2.11. Sejam ∇a e T a um operador (que representa a derivada covariante) e um vetor

tangente a uma curva arbitrária C , respectivamente. Uma geodésica é uma curva cujo vetor

tangente é transportado paralelamente ao longo de si mesma. Matematicamente, T a satisfaz a

equação

T a∇aT b = 0. (2.36)

Na verdade, poderı́amos considerar a condição mais fraca em que o vetor tangente

esteja na mesma direção que ele mesmo quando transportado paralelamente ao longo de C ,

porém, sem manter o mesmo comprimento

T a∇aT b = αT b, (2.37)

onde α é uma função arbitrária na curva. Contudo, vamos mostrar que, considerando uma curva

satisfazendo a Eq.(2.37), podemos sempre reparametrizá-la para satisfazer a Def.(2.11).

Proposição 2.3. Sempre é possı́vel reparametrizar a Eq.(2.37) de modo a satisfazer a Def.(2.11).

Prova. Seja λ ∈ R um parâmetro de α . Logo, por (2.37), temos que

T a∇aT b = α(λ )T b

⇒ T a(∂aT b +Γb
acT c) = α(λ )T b

⇒ dT b

dλ
+Γb

acT aT c = α(λ )T b. (2.38)
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Como T a é um vetor tangente à curva, podemos reescrevê-lo em termos de base coordenada:

dT N

dλ
+ΓN

MQ

dxM

dλ

dxQ

dλ
= α(λ )T N

⇒ d

dλ

(

e−
∫

α(λ )dλ T N
)

+ e−
∫

α(λ )dλ ΓN
MQ

dxM

dλ
T Q = 0

⇒ e−
∫

α(λ )dλ d

dλ

(

e−
∫

α(λ )dλ dxN

dλ

)

+ΓN
MQ

(

e−
∫

α(λ )dλ dxM

dλ

)(

e−
∫

α(λ )dλ dxQ

dλ

)

= 0,

onde, definindo dt = e
∫

α(λ )dλ dλ , o quadrivetor uM = dxM

dt
satisfaz uN∇NuM = 0. O parâmetro

t é chamado de parâmetro afim.

Portanto, ao considerarmos um sistema de coordenadas, a geodésica será mapeada

em uma curva xM(t) ∈R
D. Podemos escrever, então, as componentes do vetor tangente na base

coordenada de modo que

dT M

dt
+ΓM

NQT NT Q = 0, (2.39)

onde T M = dxM

dt
. Logo, a equação da geodésica torna-se:

d2xM

dt2
+ΓM

NQ

dxN

dt

dxQ

dt
= 0. (2.40)

Observe que a equação acima é um sistema acoplado de D equações diferenciais ordinárias

de segunda ordem para D funções xM(t), de modo que, da teoria das equações diferenciais,

sabemos que sempre existe uma solução única para a Eq.(2.40) dado o valor inicial de xM e

dxM

dt
. Isso significa que ∀p ∈ MD e ∀T M ∈ Vp existe uma única geodésica através do ponto p

com tangente T M.

2.3 Equações de Campo Via Ação de Einstein-Hilbert

Antes de deduzirmos as equações de campo, façamos duas observações sobre o ten-

sor energia-momento, o qual já está bem estabelecido na literatura. Primeiramente, as equações

de Einstein requerem um objeto matemático que contenha informações sobre o conteúdo de

matéria e energia contidas em um determinado espaço-tempo, pois, na sua essência, a relativi-

dade geral é uma teoria geométrica da gravitação, isto é, a presença de matéria e energia distorce

o espaço-tempo e essa curvatura determina como os corpos se movem 2. Em conformidade com

Silva[18], esse objeto pode ser identificado como o tensor energia-momento, considerando o

2Isso substitui a interpretação newtoniana da gravidade como uma força agindo à distância.
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fluxo de quadrimomento Pµ através de uma superfı́cie xν constante. A tı́tulo de exemplo, para

o fluido perfeito, expressamos o tensor energia-momento em sua forma contravariante (T µν)

como:

T µν = (ρ + p)uµuν + pgµν , (2.41)

onde, ρ representa a densidade de matéria/energia, p a pressão e uµ o quadrivetor velocidade,

sendo que T 00 é a densidade de energia, T 0i representa a quantidade de momento e T i j são

as componentes do fluxo de momento. Afirmamos que T µν é simétrico e obedece a lei de

conservação ∇µT µν = 0 [19]. Mais à frente no texto, relaxamos esta condição ao tratarmos da

gravidade de Rastall.

Em segundo lugar, é possı́vel definir Tµν por meio de uma derivada funcional da

ação em relação à métrica acoplada à matéria, de modo a obtermos a seguinte expressão [20]:

Tµν =
2√−g

δSmatéria

δgµν
= 2

∂Lmatéria

∂gµν
−Lmatériagµν , (2.42)

em que L representa a densidade lagrangiana. Agora, passemos à dedução das equações de

campo propriamente ditas.

Definição 2.12. Seja (M4,g) uma variedade suave de dimensão 4, munida de uma métrica

pseudo-riemanniana gµν de assinatura (1,3), cujo determinante denotamos por:

g := det
(
gµν

)
. (2.43)

Seja R o escalar de Ricci associado à conexão de Levi-Civita de g. A ação de Einstein-Hilbert

é o funcional3 SEH : Met(M4) 7−→ R definido por:

SEH = SEH

[
gµν

]
= SG +SM, (2.44)

onde, considerando a ∈ R
∗ e uma região do espaço-tempo quadridimensional limitada por Σ,

escrevemos:

SG = a

∫

Σ
d4x

√−gLG e SM =
∫

Σ
d4x

√−gLM, (2.45)

em que LG = R e d4x
√−g é uma quantidade invariante para a transformação geral de coor-

denadas.

3O sı́mbolo Met(M4) representa o conjunto de todas as métricas admissı́veis definidas sobre a variedade M4.
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Utilizando o princı́pio da mı́nima ação para obtermos um extremo de SEH , sabemos

que δSEH = δ (SG +SM) = 0. Assim, variando SG, obtemos:

δSG = a

∫

Σ
d4xδ

(√−gR
)

= a

∫

Σ
d4x

[

− 1

2
√−g

Rδg+
√−g

(
Rµνδgµν +gµνδRµν

)
]

. (2.46)

É possı́vel mostrar, pela fórmula de Jacobi para matrizes
(

det eB = eTr(B)
)

que δg= ggµνδgµν .

Ademais, a variação do tensor de Ricci pode ser deduzida explicitamente por:

δRµν = ∂αδΓα
µν −∂νδΓα

αµ +δΓα
αβ Γ

β
µν +Γα

αβ δΓ
β
µν −δΓα

νβ Γ
β
αµ −Γα

νβ δΓ
β
αµ , (2.47)

de modo que podemos reescrever esta expressão em termos de derivadas covariantes, pois a

δΓα
µν é a diferença de duas conexões de Levi-Civita. Em outras palavras,

δRµν = ∇αδΓα
µν −∇νδΓα

αµ . (2.48)

Substituindo os últimos dois resultados na Eq.(2.46), temos, então:

δSG = a

∫

Σ
d4x

√−gδgµν

(

Rµν −
1

2
Rgµν

)

+a

∫

Σ
d4x

√−ggµν
(

∇αδΓα
µν −∇νδΓα

αµ

)

.(2.49)

Rearranjando o segundo termo da equação acima (considerando a proposição 2.2) e realizando

uma troca de ı́ndice α → ν no segundo termo da segunda integral, encontramos:

δSG = a

∫

Σ
d4x

√−gδgµν

(

Rµν −
1

2
Rgµν

)

+a

∫

Σ
d4x

√−g∇α

(

gµνδΓα
µν −gµαδΓν

νµ

)

= a

∫

Σ
d4x

√−gδgµν

(

Rµν −
1

2
Rgµν

)

+a

∮

∂Σ
d3xα

√−g
(

gµνδΓα
µν −gµαδΓν

νµ

)

,(2.50)

onde utilizamos o teorema de Gauss covariante na segunda integral, sendo ∂Σ a fronteira de

Σ. As condições de contorno nos dizem que a integral de superfı́cie acima deve se anular na

fronteira. Logo, a Eq.(2.50) se reduz a

δSG = a

∫

Σ
d4x

√−gδgµν

(

Rµν −
1

2
Rgµν

)

. (2.51)
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Agora, variando SM, obtemos:

δSM =
∫

Σ
d4xδ

(√−gLM

)

=
∫

Σ
d4x

(√−g
∂LM

∂gµν
δgµν +LMδ

√−g

)

=
∫

Σ
d4x

√−gδgµν

(
∂LM

∂gµν
− 1

2
LMgµν

)

. (2.52)

Substitutindo as variações calculadas e o tensor energia-momento expresso pela Eq.(2.42), o

extremo das variações torna-se:

δSEH = δSG +δSM = 0

=
∫

Σ
d4x

√−gδgµν

(

aRµν −
a

2
Rgµν +

1

2
Tµν

)

= 0

⇒ Rµν −
1

2
Rgµν =− 1

2a
Tµν . (2.53)

Tomando − 1
2a

= κ e substituindo o lado esquerdo a equação acima pelo tensor de Einstein

encontrado na Eq.(2.35), obtemos o seguinte resultado:

Gµν = κTµν . (2.54)

Estas são as equações de campo de Einstein para um espaço-tempo quadridimencional. A

constante κ pode ser encontrada ao considerarmos o regime de campo fraco (a partir de uma

perturbação em primeira ordem na métrica de Minkowski, ou seja, gµν = ηµν + hµν ), de

modo que encontramos κ = 8πG/c4, com G = 6,6743× 10−11m3kg−1s−2 sendo a constante

da gravitação de Newton e c = 299.792.458 ms−1 a velocidade da luz no vácuo.
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3 COSMOLOGIA RELATIVÍSTICA

A Cosmologia é a ciência que investiga a estrutura, evolução e composição do Uni-

verso. Neste contexto, o Modelo Cosmológico Padrão (MCP) surge como uma solução simpli-

ficada das equações de campo de Einstein, fundamentado no Princı́pio Cosmológico, segundo

o qual, em escalas suficientemente grandes (superiores a 100 Mpc)1, o Universo é homogêneo

e isotrópico - isto é, apresenta as mesmas propriedades para todos os observadores, em con-

formidade com Silva[18]. Inserida nesse arcabouço teórico, a teoria do Big Bang foi desen-

volvida para descrever a origem e a evolução inicial do Universo, partindo de um estado de

elevadı́ssimas temperaturas e densidades, associado a uma singularidade primordial, seguida

por um processo de expansão acelerada.

O MCP propõe que o Universo seja composto principalmente por energia escura

(cerca de 70%), que acelera sua expansão, e matéria escura fria (25%), que influencia a formação

das galáxias. Apenas 5% do Universo é formado por matéria bariônica. A radiação cósmica de

fundo, vestı́gio do Big Bang, fornece informações sobre o inı́cio do Cosmos. O modelo também

inclui uma fase de inflação cósmica nos primeiros instantes do Universo e uma aceleração na ex-

pansão atual, ainda impulsionada pela energia escura, o que pode ser incorporado nas equações

de campo de Einstein como um termo constante Λ.

Portanto, nas próximas Seções, discutimos as implicações de se considerar o alto

grau de simetria de um Universo homogêneo e isotrópico, deduzimos a dinâmica que rege a

expansão acelerada de tal Universo a partir das equações de Friedmann, obtidas como soluções

das equações de campo em um espaço-tempo quadridimensional e, por fim, apresentamos o

conceito de Inflação Cósmica e como ele ajuda na resolução de alguns problemas encontra-

dos na teoria do Big Bang. Com essa perspectiva, seguimos aqui a construção abordada por

Baumann[21].

3.1 Geometria do Modelo FLRW

A métrica de Robertson–Walker descreve um espaço-tempo homogêneo e isotrópico,

cujas seções espaciais possuem curvatura constante, dado seu alto grau de simetria. Para dedu-

1Mpc, ou megaparsec, é uma unidade de medida utilizada na astronomia para descrever as vastas distâncias

entre galáxias e equivale a um milhão de parsecs, ou seja, aproximadamente 3,26 milhões de anos-luz (isso se

traduz em cerca de 3,08×1022 m).
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zirmos sua forma geral, atentemo-nos à seguinte definição:

Definição 3.1. Seja E3 ⊂ R
3 o espaço euclidiano tridimensional, munido de métrica canônica

δi j. As distâncias fı́sicas infinitesimais entre dois pontos arbitrários P,Q ∈ E3, cujas coordena-

das diferem de dxi, são dadas pelo elemento de linha:

dl2 =
3

∑
i, j=1

δi jdxidx j = δi jdxidx j, (3.1)

onde δi j denota o sı́mbolo de Kronecker, definido por:

δi j =







1, se i = j

0, se i ̸= j

. (3.2)

Em particular, na base cartesiana usual (x,y,z), temos: dl2 = dx2 +dy2 +dz2.

Considerando coordenadas polares esféricas para descrevermos o elemento de linha,

podemos escrever:

dl2 = dr2 + r2dθ 2 + r2 sen2 θdφ 2

≡
3

∑
i, j=1

gi jdxidx j = gi jdxidx j, (3.3)

com
(
x1,x2,x3) = (r,θ ,φ

)
. Observe que a métrica toma a forma gi j = diag

(
1,r2,r2sen2θ

)
.

Além do mais, no caso do espaço-tempo quadridimensional, com coordenada xµ = (ct,xi), o

elemento de linha toma a forma:

dl2 → dS2 = gµvdxµdxν , (3.4)

como já mencionamos anteriormente. Assim, na relatividade especial, para o espaço-tempo de

Minkowski2
(
R

1,3
)

o elemento de linha torna-se:

dS2 =−c2dt2 +δi jdxidx j. (3.5)

A homogeneidade espacial e a isotropia do Universo significam que este pode ser

representado por uma sequência ordenada no tempo de hipersuperfı́cies tridimensionais, que

denotamos por ∑t , cada uma das quais é homogênea e isotrópica. O elemento de linha quadri-

2Para mais detalhes sobre relatividade especial, veja, por exemplo, a Ref.[22].
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dimensional pode então ser escrito como:

dS2 =−c2dt2 + v2(t)dl2, (3.6)

onde dl2 ≡ gi j

(
xk
)

dxidx j é o elemento de linha em ∑t e v(t) é o fator de escala, que descreve

a expansão do Universo. Comecemos, pois, determinando as formas permitidas da métrica

espacial gi j para daı́ discutirmos como a evolução do fator de escala está relacionada com o

conteúdo de matéria do Universo. Em suma, espaços homogêneos e isotrópicos têm uma cur-

vatura intrı́nseca constante e máxima simetria, o que acarreta em três possibilidades distintas:

curvatura nula (espaço-tempo de Minkowski); curvatura positiva (espaço-tempo de de-Sitter)

ou curvatura negativa (espaço-tempo anti-de Sitter), veja Fig.(3.1). Dessa forma, passemos a

determinar a métrica para cada caso.

• Curvatura nula: A possibilidade mais simples é o espaço-tempo euclidiano tridimensional

E
3. Este é o espaço em que as retas paralelas não se interceptam e

dl2 = dx2 = δi jdxidx j (3.7)

é invariante sob translações espaciais
(
xi → xi + ε i

)
e rotações

(
xi → Ri

kxk
)
, de modo que

δi jR
i
kR

j
l = δkl .

• Curvatura positiva: Aqui, as retas paralelas acabam por se encontrar. Esta geometria

pode ser representada como uma esfera tridimensional S3 inserida num espaço euclidiano

quadridimensional
(
E

4 ⊂ R
4
)
, onde

dl2 = dx2 +du2, x2 +u2 = R2
0, (3.8)

sendo R0 é o raio da esfera. Note que a homegeneidade e a isotropia da superfı́cie da

esfera tridimensional são herdadas da simetria do elemento de linha sob rotações em

quatro dimensões.

• Curvatura negativa: Nesta geometria, as retas paralelas divergem. Pode ser representada

como um hiperboloide H3 inserido num espaço lorentziano quadridimensional R1,3, onde

dl2 = dx2 −du2, x2 −u2 =−R2
0, (3.9)

sendo R2
0 > 0 uma constante que determina a curvatura do hiperboloide.
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Figura 3.1 – Curvaturas das hipersuperfı́cies tridimensionais

Fonte: Adaptado de Baumann [21].

Combinando os casos esférico e hiperbólico, obtemos:

dl2 = dx2 ±du2, x2 ±u2 =±R2
0

⇒ udu =∓x . dx ⇐⇒ du2 =∓(x . dx)2

R2
0 ∓x2

∴ dl2 = dx2 ± (x . dx)2

R2
0 ∓x2

(3.10)

Finalmente, podemos unificar os três casos, isto é,

dl2 = dx2 + ε
(x . dx)2

R2
0 − εx2

, (3.11)

com ε = 0 para curvatura nula, ε = 1 para curvatura positiva e ε =−1, para curvatura negativa.

Para tornar a simetria do espaço mais aparente é conveniente escrever a métrica em coordenadas

esféricas (r,θ ,φ), como a seguir:

dx2 = dr2 + r2

= dΩ2

︷ ︸︸ ︷
(
dθ 2 + sen2 θdφ 2

)

⇒ dl2 = dr2 + r2dΩ2 + ε
r2dr2

R2
0 − εr2

=
dr2

1− εr2

R2
0

+ r2dΩ2. (3.12)

Ao substituirmos o dl2 na Eq.(3.6) encontramos a métrica de Robertson-Walker, expressa no
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seguinte elemento de linha:

dS2 =−c2dt2 + v2(t)




dr2

1− εr2

R2
0

+ r2dΩ2



 . (3.13)

Vamos agora à dedução das equações que descrevem a dinâmica, através da Eq.(2.54).

3.2 Dinâmica de um Universo Homogêneo e Isotrópico

A dinâmica em larga escala é constituı́da pelas chamadas equações de Friedmann.

Elas determinam como o Universo se expande ou contrai ao longo do tempo com base no

conteúdo de matéria e na curvatura do espaço-tempo, sendo este qualificado como uma vari-

edade quadridimensional. Dito isso, precisamos utilizar a métrica gµν - decrita acima - nas

conexões de Levi-Civita, para então substituirmos nas equações de campo de Einstein. Assim,

considere ξ = ε
R2

0

e c = 1 na Eq.(3.13). Logo, temos que:

gµν = diag

(

−1,
v2

1−ξ r2
,v2r2,v2r2 sen2 θ

)

, (3.14)

gµν = diag

(

−1,
1−ξ r2

v2
,

1

v2r2
,

1

v2r2 sen2 θ

)

, (3.15)

com as seguintes componentes não-nulas das conexões dadas pela Eq.(2.27):

Γt
rr = vv̇/1−ξ r2, Γt

φφ = vv̇r2 sen2 θ , Γ
φ
θφ = Γ

φ
θφ = cotθ ,

Γθ
rθ = Γ

φ
rφ = 1/r, Γθ

φφ =−senθ cosθ , Γr
θθ =−r

(
1−ξ r2

)
,

Γr
rt = Γtθ

θ = Γ
φ
tφ = v̇/v, Γr

φφ =−r
(
1−ξ r2

)
sen2 θ , Γt

θθ = vv̇r2. (3.16)

As componentes do tensor de Ricci, calculadas a partir da Eq.(2.34), são:

Rtt = −3
v̈

v
,

Rrr =
2vv̈v̇+2ξ

1−ξ r2
,

Rθθ = r2(vv̈+2v̇+2ξ ),

Rφφ = r2(vv̈+2v̇+2ξ )sen2 θ , (3.17)

com o respectivo escalar de Ricci expresso por:

R = 6

(
v̈

v
+

v̇2

v2
+

ξ

v2

)

. (3.18)
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Ao longo do restante do texto, usamos ponto (·) para representar derivadas tem-

porais e linha ( ′ ) para derivadas com relação as coordenadas espaciais, incluindo-se a radial.

Como termo de fonte, considere o tensor energia-momento da Eq.(2.41), de modo que:

T µν = diag(−ρ, p, p, p) , (3.19)

tendo o traço T denotado por:

T = gµνT µν = T
µ

µ =−ρ +3p (3.20)

e, após algumas manipulações algébricas na Eq.(2.54), encontramos:

Rµν = 8πG

(

Tµν −
1

2
gµνT

)

. (3.21)

A escolha µ = ν = t nos fornece a seguinte equação:

v̈

v
=−4πG

3
(ρ +3p) . (3.22)

Já a escolha µ,ν = i, j nos leva à:

v̈

v
+2

v̇2

v2
+2

ξ

v2
= 4πG(ρ − p). (3.23)

Note que podemos substituir a Eq.(3.22) na Eq.(3.23) com o intúito de eliminar o termo de

derivada segunda nesta última, o que nos retorna a expressão

H2 ≡ v̇2

v2
=

8πG

3
ρ − ξ

v2
, (3.24)

onde H(t) = v̇(t)/v(t) é denominado parâmetro de Hubble e as expressões (3.22) e (3.24)

representam as equações de Friedmann. Tomamos t = t0 para avaliar as quantidades no tempo

presente. A densidade crı́tica ρc,0 diz respeito às condições necessárias para que o Universo seja

espacialmente plano. No MCP, observações do satélite Planck da Radiação Cósmica de Fundo

(RCF) indicam que ρ ≈ ρc,0 com alta precisão, o que significa que o Universo é praticamente

plano [23]. Em outras palavras, ξ = 0 corresponde a seguinte densidade crı́tica hoje:

ρc,0 =
3H2

0

8πG
= 1,1×10−5h2 protons/cm3, (3.25)

em que, de acordo com a Ref.[24]:

H0 = H(t0) = 2,1332×10−42h GeV e h = 0,72±0,08. (3.26)
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É útil escrevermos as demais formas de densidade relacionando-as com a densidade

crı́tica através do parâmetro de densidade Ω, de modo que:

Ω j,0 ≡
ρ j,0

ρc,0
, j = r, m, Λ, ...· (3.27)

Aqui, ρr representa a densidade de radiação, ρm a densidade de matéria e ρΛ a densidade de

energia escura. Em geral, para um Universo homogêneo e isotrópico, são válidas as seguintes

relações [21]:

Ω j > 1 ou ρ j > ρc ⇒ ε = 1, (3.28)

Ω j = 1 ou ρ j = ρc ⇒ ε = 0, (3.29)

Ω j < 1 ou ρ j < ρc ⇒ ε =−1. (3.30)

Em larga escala, o Universo se aproxima de uma variedade plana, ou seja, de um espaço-

tempo com curvatura nula, de acordo com a Def.(2.1). Neste ponto, também podemos contorna-

sesiderar um termo de constante cosmológica Λgµν nas equações de campo de Einstein com a

divergência nula da equação permanecendo satisfeita. Logo, seguindo os mesmos cálculos

anteriores, a Eq.(3.24) torna-se

v̇2

v2
=

8πG

3
ρ − ξ

v2
+

Λ

3
, (3.31)

onde ρ representa a densidade total de energia do Universo. A presença da constante cos-

mológica Λ implica que o Universo experimenta uma expansão acelerada, impulsionada por

uma forma de energia escura com pressão negativa constante, o que faz com que, em escalas de

tempo suficientemente longas, a dinâmica cosmológica tenda a um estado de de Sitter. Nesse

cenário, o destino do Universo deixa de depender exclusivamente da curvatura espacial, en-

quanto estruturas gravitacionais são progressivamente suprimidas pela aceleração. Além disso,

o próprio vácuo passa a desempenhar um papel dinâmico nas equações gravitacionais, influen-

ciando a evolução global do espaço-tempo.

3.3 Inflação Cósmica

A Inflação Cósmica, proposta por Alan Guth em 1981 [25], postula que o Universo,

no seu momento inicial, passou por uma fase de crescimento exponencial. Ela foi introduzida

com o intuito de solucionar alguns problemas existentes na teoria do Big Bang tais como o pro-
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blema do horizonte e planicidade3. O tamanho de uma área de espaço causalmente conectada

é determinado pela distância máxima a partir da qual a luz pode ser recebida. Isso é melhor

estudado em coordenadas comóveis (que se expandem junto com o Universo), onde geodésicas

nulas são linhas retas e a distância entre dois pontos é igual a diferença correspondente no

tempo conforme ∆η . Assim, se o Big Bang surgiu como uma singularidade em ti = 0, então a

maior distância comóvel a partir da qual um observador no tempo t será capaz de receber sinais

viajando à velocidade da luz é o chamado horizonte de partı́cula.

Definição 3.2. O horizonte de partı́cula de um observador em um ponto p no tempo cos-

mológico t0 é o conjunto

Hp(t0)≡ ∂ [J−(p)∩Σt>0], (3.32)

onde J−(p) é o domı́nio causal de p (todos os eventos que podem enviar sinais luminosos a p),

Σt>0 é a hipersuperfı́cie de tempo cosmológico constante e ∂ denota a fronteira topológica.

Definição 3.3. A distância comóvel máxima da qual a luz emitida desde o inı́cio do Universo

pode ter alcançado um observador até o tempo t0 é

dh(η) = η −ηi =
∫ t0

ti

dt

v(t)
, (3.33)

com η sendo o próprio tempo conforme.

Na Cosmologia convencional do Big Bang, tomamos ηi = 0 e o horizonte de patı́cula

sendo simplesmente igual ao tempo conforme. O tamanho do horizonte no termo η pode ser

visualizado pela intersecção do cone de luz passando por um observador O com a superfı́cie

tipo-espaço em ηi. As influências causais têm que vir de dentro dessa região. Os sinais vin-

dos de fora dela teriam que viajar mais rápido que a velocidade da luz para chegar a O. Desta

maneira, a Eq.(3.33) pode ser reescrita como:

dh(η) = η =
∫ v0

vi

dv

vv̇
=

∫ lnv0

lnvi

(vH)−1d lnv, (3.34)

onde (vH)−1 é chamado de raio comóvel de Hubble e vi = 0 corresponde a singularidade do Big

Bang. Acontece que a quantidade de tempo conforme entre a singularidade inicial e a formação

3Problema do horizonte: pela homogeneidade observada, regiões do Universo distantes entre sı́ apresentam

temperaturas quase uniformes da RCF, embora, no modelo padrão do Big Bang, elas nunca tenham estado conec-

tadas. Planicidade: refere-se ao fato de que observações indicam Ω ≈ 1 hoje - ou seja, um Universo praticamente

plano - porém, pelas equações de Friedmann sem inflação, qualquer pequeno desvio de Ω = 1 no inı́cio cresceria

rapidamente ao longo do tempo.
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de micro-ondas cósmicas de fundo foi muito menor do que a idade conforme do Universo hoje.

A uniformidade dessas micro-ondas se estende por escalas muito maiores do que o horizonte de

partı́culas da época em que foram emitidas. No MCP, a radiação cósmica de fundo é composta

por muitas regiões do espaço que, teoricamente, não tiveram interação causal entre si. Como

essas regiões não tiveram tempo suficiente para trocar informações, a semelhança entre elas

representa o que é conhecido como o problema do horizonte, supracitado [21].

Consideremos um Universo plano preenchido apenas por matéria e radiação. Neste

sentido, as Eqs.(3.24), (3.25) e (3.27) nos fornecem a seguinte expressão para o fator de Hubble:

H2 = H2
0

(
Ωm,0v−3 +Ωr,0v−4

)
, (3.35)

sendo Ωr,0 = veqΩm,0, em que o subscrito eq denota quantidades avaliadas na igualdade matéria-

radiação. O raio comóvel de Hubble pode então ser escrito como:

(vH)−1 =
1

√
Ωm,0

H−1
0

v√
v+ veq

. (3.36)

Substituindo o resultado acima na integral (3.34) e resolvendo-a, obtemos:

η =
2

√
Ωm,0

H−1
0

(√
v+ veq −

√
veq

)
. (3.37)

Note que este resultado tem os limites corretos: em tempos iniciais (v ≪ veq), obtemos η ∝ v,

enquanto em tempos tardios (veq ≪ v), temos η ∝ v
1
2 . Os tempos conformes hoje (v0 = 1) e na

recombinação4 (vrec = 1100−1) são, respectivamente:

η0 ≈ 2
√

Ωm,0
H−1

0 (3.38)

ηrec =
2

√
Ωm,0

H−1
0

[√

1100−1 +3400−1 −
√

3400−1
]

≈ 0,0175η0. (3.39)

O problema da planicidade está diretamente relacionado com o problema do horizonte, de modo

que qualquer solução para este será também, aparentemente, solução para aquele. Definimos

a densidade crı́tica dependente do tempo (do Universo) como ρc(t) = 3M2
PlH

2, de acordo com

Baumann[21]. O parâmetro de curvatura dependente do tempo será dado por:

Ωε(t) =
ρc −ρ

ρc
=

(v0H0)
2

(vH)2
Ωε,0, (3.40)

4Recombinação: trata-se do perı́odo em que o Universo, então quente e totalmente ionizado, resfria o suficiente

para que elétrons livres se combinem com prótons, formando os primeiros átomos neutros de hidrogênio. Isso

ocorre cerca de 380 mil anos após o Big Bang.
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onde usamos ρc ∝ H2 e ρc −ρ ∝ v−2. Como o raio comóvel de Hubble (vH)−1 está crescendo

durante o Big Bang, de acordo com a Eq.(3.36), esperamos que |Ωε(t)| seja ainda menor no

passado. Ignorando o perı́odo de curta duração de dominação de energia escura, o raio comóvel

de Hubble pode ser substituido na expressão acima, de modo que:

Ωε(t) =
Ωε,0

Ωm,0

v2

v+ veq
. (3.41)

Todavia, na igualdade matéria-radiação isso implica em

∣
∣Ωε

(
teq

)∣
∣=

∣
∣Ωε,0

∣
∣veq

2Ωm,0
< 10−6. (3.42)

Quando o Universo estava em sua fase a qual era dominado pela radiação, tinhamos, segundo

as equações de Friedmann,

H2 = H2
eqΩr,eq

(veq

v

)4

, (3.43)

com Ωr,eq = 0,5. O parâmetro de curvatura então torna-se:

Ωε(t) =

(
veqHeq

)2

(vH)2
Ωε

(
teq

)
= 2Ωε

(
teq

)
(

v

veq

)2

. (3.44)

Uma maneira útil de reescrever o problema é em termos do escalar de curvatura

R(t) que está relacionado com Ωε(t) da seguinte forma [21]:

R(t) =
1

√

|Ωε(t)|
H−1(t). (3.45)

Assim, vemos que o escalar de curvatura hoje (de acordo com as observações) é R(t0)> 14H−1
0 .

As restrições sobre Ωε(t) implicam que o escalar de curvatura no inı́cio do Universo era muitas

ordens de magnitude maior que a taxa de Hubble naquela época. Como, na cosmologia padrão

do Big Bang, a escala de Hubble é da mesma ordem que o horizonte de partı́culas, isso sugere

um ajuste fino em muitos aspectos aparentemente desconectados. O problema da planicidade

pode, portanto, também ser interpretado como a necessidade de ajustar as velocidades iniciais

de todas as partı́culas a grandes distâncias, que, intuitivamente, nunca estiveram em contato

causal.
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4 MUNDOS BRANA E A GRAVIDADE DE RASTALL

Branas, no contexto deste trabalho, podem ser interpretadas como variedades in-

seridas em um espaço-tempo com dimensão superior, que denominamos bulk, onde as forças

eletromagnéticas e nucleares ficam confinadas, enquanto a gravidade é a única que pode se

propagar através dele1. A Cosmologia estudada em mundos brana surge a partir de teorias e

modelos que consideram dimensões extras, como a teoria das cordas e o modelo de Randall-

Sundrum, por exemplo [27].

Consideramos um bulk pentadimensional em vez do MCP, descrito anteriormente,

pelos seguintes motivos: (i) a capacidade de resolver o problema da hierarquia, explicando

a discrepância entre a intensidade do campo gravitacional na escala TeV e o valor esperado

na escala de Planck, da ordem de 1018 GeV ; (ii) a modificação das equações de Friedmann,

permitindo cenários alternativos para a expansão cósmica e a energia escura; (iii) a introdução

de correções gravitacionais em altas energias, capazes de alterar a dinâmica inflacionária; e (iv)

a modificação do comportamento da gravidade, resultando em efeitos gravitacionais distintos

em escalas cosmológicas.

A gravidade de Rastall, proposta em 1972 [8], constitui uma modificação da TRG.

Diferentemente da teoria de Einstein, que assume a conservação covariante do tensor energia-

momento, conforme discutido na Seção (2.3), o formalismo utilizado por Rastall permite um

acoplamento não trivial entre a matéria e a geometria do espaço-tempo. Nesse contexto, a di-

vergência do tensor energia-momento é proporcional a curvatura escalar, levando à equações

de campo gravitacional modificadas. Ademais, essa teoria admite soluções cosmológicas capa-

zes de descrever a aceleração do Universo sem a necessidade de uma componente explı́cita de

energia escura.

Portanto, neste Capı́tulo, investigamos a aplicação da gravidade de Rastall em cenários

de mundos brana, analisando branas finas e espessas, tanto em regimes estáticos quanto em re-

gimes com o fator de escala atuando nas dimensões espaciais (caso cosmológico).

1Existe um estudo interessante sobre formação espontânea de branas, que toma como hipótese um bulk hexa-

dimensional, encontrado na Ref.[26].
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4.1 Descrição do Modelo

Motivado pela possibilidade de que, em espaços-tempos curvos, a conservação local

do tensor energia-momento possa não valer na forma usual
(
∇MTMN = 0

)
, Rastall postulou um

tensor energia-momento dependente da curvatura escalar, de modo que:

∇MTMN = λ∇NR, ∀λ ∈ R, (4.1)

com M,N = 0,1,2,3,4, ...,(D−1). Aqui, λ é um parâmetro fenomenológico que mede o grau

de violação da conservação padrão. Como consequência, as Eqs.(2.54) são modificadas [8].

Desta forma, considerando o resultado obtido por meio da identidade de Bianchi - isto é, com-

binando as Eqs.(2.35) e (4.1) -, podemos reescrever as equações de campo generalizadas da

seguinte forma:

GMN = RMN − 1

2
gMNR+κgMNR = κTMN , (4.2)

onde, tomando novamente κ = 1, obtemos:

RMN +

(

λ − 1

2

)

gMNR = TMN . (4.3)

Assim, por contração de ı́ndices realizada na equação acima, encontramos:

gMNRMN +

(

λ − 1

2

)

gMNgMNR = gMNTMN

⇒ R =
2T

D(2λ −1)+2
. (4.4)

Observe que λ ̸= D−2
2D

, onde, para o bulk pentadimensional, a ser proposto na Seção subse-

quente, temos λ ̸= 3
10

. Ainda considerando a Eq.(4.3), podemos escrever:

RMN = TMN −λgMNR+
1

2
gMNR

= TMN −λgMN

(
2T

D(2λ −1)+2

)

+
1

2
gMN

(
2T

D(2λ −1)+2

)

= TMN +
1−2λ

D(2λ −1)+2
gMNT = TMN +αgMNT, (4.5)

com α = 1−2λ
D(2λ−1)+2

.
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4.2 Branas Finas com Fator de Deformação

Iniciemos, pois, com uma breve descrição do modelo de Randall-Sundrum. De

acordo com as Refs.[5] e [27], este modelo considera um espaço-tempo anti-de Sitter, no qual a

coordenada extra (que denotamos por y) é compactificada em uma variedade S1/Z2, de acordo

com a Fig.(4.1). Consideremos duas 3-branas2 localizadas em y = 0 e y = π . Podemos pensar

Figura 4.1 – Orbifold S1/Z2.

Fonte: Adaptado de Gabella[5].

nas branas como sendo as fronteiras do bulk, estando nosso Universo situado em y = π e a outra

brana em y = 0, com escalas de energia diferentes (o primeiro na escala TeV e o segundo na

escala GeV ), como mostrado na Fig.(4.2).

Figura 4.2 – Setup do modelo RS.

Fonte: Adaptado de Gabella[5].

2Uma p-brana representa uma brana com p dimensões espaciais e uma temporal.
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Definição 4.1. Seja (M5,g5) uma variedade suave de dimensão 5, munida de uma métrica

pseudo-riemanniana gMN de assinatura (1,4), cujo determinante denotamos por:

g5 := det(gMN). (4.6)

Seja R5 o escalar de Ricci associado à conexão de Levi-Civita de g5. Definimos a ação S :

Met(M5) 7−→ R como sendo

S = S [gMN ] = SG +SPl +Svis, (4.7)

em que SPl representa a ação referente a brana de Planck e Svis refere-se a brana visı́vel, onde:

SG =
∫

d4x

∫ π

−π
dy
√−g5

(
M3

∗
2

R5 −Λ5

)

,

SPl =
∫

d4x
√−gPl (LPl −VPl) ,

Svis =
∫

d4x
√−gvis (Lvis −Vvis) . (4.8)

Aqui, LPl e Lvis são as densidades lagrangianas nas branas de Planck e visı́vel, respectiva-

mente, enquanto VPl e Vvis são as tensões nas branas correspondentes. O bulk contém apenas a

constante cosmológica Λ5, com M∗ sendo a escala de massa de Planck pentadimensional.

A geometria do bulk é
[
M1,3 ×S1/Z2

]
com o seguinte ansatz para a métrica:

dS2 = gMNdxMdxN

= e−2σ(y)ηµνdxµdxν +b2
0dy2, (4.9)

sendo M,N = 0,1,2,3,4, b0 o raio de S1 e y a coordenada angular que vai de 0 a π . O compri-

mento próprio da dimensão extra é Ly = b0π . Neste ponto, precisamos encontrar as equações

de campo de Einstein em 5 dimensões e calcular as soluções para σ(y) via ansatz (4.9). Como o

modelo RS foi inicialmente construido para a gravidade pura, não consideramos, a priori, que as

branas possuem matéria. Logo, LPl =Lvis = 0. Assim, ao realizarmos o mesmo procedimento

que fizemos na Seção (2.3) para deduzir as equações de campo de Einstein, encontramos aqui

as seguintes variações nas ações (4.8):

δSG =
∫

d4x

∫ π

−π
dyδ

[√−g5

(
M3

∗
2

R5 −Λ5

)]

=
∫

d4x

∫ π

−π
dyδgMN

[
Λ5

2

√−g5gMN +
M3

∗
2

√−g5

(

RMN − R5

2
gMN

)]

, (4.10)
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δSPl = −
∫

d4x

∫ π

−π
dyVPlδ

√−gPlδ (y)

=
∫

d4x

∫ π

−π
dyδgMN

(√−gPl

2
gPl

µνδ
µ
Mδ ν

NVPl

)

δ (y) (4.11)

e

δSvis = −
∫

d4x

∫ π

−π
dyVvisδ

√−gvisδ (y−π)

=
∫

d4x

∫ π

−π
dyδgMN

(√−gvis

2
gvis

µνδ
µ
Mδ ν

NVvis

)

δ (y−π) (4.12)

Por fim, tomando δS = 0, obtemos o seguinte resultado:

√−g5

(

RMN − 1

2
R5gMN

)

=− 1

M3∗

[

Λ5

√−g5gMN +VPl

√−gPlg
Pl
µνδ

µ
Mδ ν

N δ (y)

+Vvis

√−gvisg
vis
µνδ

µ
Mδ ν

N δ (y−π)
]

. (4.13)

Esta é a equação de campo de Einstein pentadimensional para o modelo de brana fina, o tensor

energia-momento será dado pelo lado direito desta equação dividido por
√−g5.

O nosso objetivo agora é resolver essa equação usando o ansatz para a métrica. A

solução desta equação fornece σ(y) que foi proposta na métrica. Ao fazermos a substituição ci-

tada, obtemos duas equações de movimento, uma referente à dimensão extra e outra relacionada

com o espaço quadridimensional, a saber:

6 [σ ′(y)]2

b2
0

= − Λ5

M3∗
,

3σ ′′(y)

b2
0

=
VPl

M3∗b0
δ (y)+

Vvis

M3∗b0
δ (y−π). (4.14)

A solução para a primeira Eq.(4.14) consistente com a simetria orbifold3 y →−y (Z2) será:

σ(y) = b0|y|k, k =

√

− Λ5

6M3∗
. (4.15)

3A simetria orbifold é uma identificação discreta que transforma uma dimensão extra em um intervalo com

branas nas extremidades.
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Note que:

σ ′(y) = b0

√

− Λ5

6M3∗

d

dy
|y|= b0

√

− Λ5

6M3∗
sgn(y)

⇒ σ ′′(y) = 2b0

√

− Λ5

6M3∗
[ δ (y)−δ (y−π)], (4.16)

onde o aparecimento do termo −δ (y−π) se justifica pela periodicidade da função, ou seja, em

torno de 0 é |y| e em torno de π é |y− 2π|, o que gera a diferença entre duas funções sinal na

derivada. A Fig.(4.3) mostra o comportamento de σ(y), σ ′(y) e σ ′′(y).

Figura 4.3 – Comportamento da função σ(y) e suas derivadas.

Fonte: Elaborado pelo autor.

Assim, substituindo σ ′′(y) na segunda Eq.(4.14), obtemos:

3

b0

{

2b0

√

− Λ5

6M3∗
[ δ (y)−δ (y−π)]

}

=
VPl

6M3∗
δ (y)+

Vvis

6M3∗
δ (y−π). (4.17)

Se tomarmos Λ5 =−6M3
∗k2 e VPl =−Vvis = 6M3

∗k a relação acima é válida, de modo que:

k = k1 =−k2, ki =
Vi

6M3∗
, (4.18)

com i = 1 representando a brana de Planck e i = 2 representando a brana visı́vel. A constante

cosmológica efetiva da brana visı́vel quadridimensional é dada por [28]:

Λ
e f e
4 =

k2
5

2

(

Λ5 +
k2

5V 2
vis

6

)

, (4.19)

onde k5 está relacionado à constante gravitacional pentadimensional. Todavia, devido a geome-

tria deformada, a massa na brana visı́vel sofre uma deformação exponencial:

m = e−kb0πm0. (4.20)

Assim, a massa do escalar de Higgs é sempre deformada exponencialmente na brana do modelo
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padrão:

M2
Pl =

M3
∗

k

(

1− e−2kb0π
)

. (4.21)

Passemos agora a considerar um Universo homogêneo, isotrópico e plano em larga

escala (brana visı́vel). Neste modelo pentadimensional, sua evolução temporal é governada por

um fator de escala R(y, t) = f (y)v(t) que converge suavemente para o modelo RS no limite

estático apropriado [29]. A ação para esta configuração é dada pela Eq.(4.8) e o elemento de

linha para tal modelo cosmológico com deformação é dado por:

dS2 = f 2(y)
[
−dt2 + v2(t)δi jdxidx j

]
+b2

0dy2. (4.22)

Ao substituirmos a métrica implı́cita no elemento de linha acima na Eq.(4.13) e introduzirmos

adicionalmente densidades de energia, isto é, ρ nas 3-branas, encontramos como resultado da

soma das componentes (tt) e (ii) das equações de Einstein:

v(t) = eH0t . (4.23)

Da componente (yy), por outro lado, podemos obter a solução para f (y) em termos de k e H0

consistente com a simetria Z2 como:

f (y) =
H0

k
senh(−kb0|y|+d0) , (4.24)

onde d0 é uma constante de integração. Portanto, a métrica com deformação, substituindo as

expressões para v(t) e f (y) na Eq.(4.22), torna-se:

dS2 =

(
H0

k

)2

senh2 (−kb0|y|+d0)
(
−dt2 + e2H0tδi jdxidx j

)
+b2

0dy2. (4.25)

Esta métrica descreve a inflação das três dimensões espaciais. As condições de contorno das

tensões nas duas 3-branas implicam em:

k1 = k coth(d0)

−k2 = k coth(−kb0π +d0) (4.26)

que também reproduzem a Eq.(4.18) no limite estático, pois, observe que:

limd0→∞ k coth(d0) = k limd0→∞
1+e−2d0

1−e−2d0
= k ⇔ k1 = k

e limd0→∞ k coth(-kb0π +d0) = k limd0→∞
1+e−2kb0π−2d0

1−e−2kb0π−2d0
= k ⇔ k =−k2. (4.27)
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Assim, usando as Eqs.(4.26), o comprimento da dimensão extra L5 pode ser escrito em termos

de k1, k2 e k, tendo como expressão resultante:

L5 = b0π =
1

2k
ln

(−k2 − k

k1 − k

k1 − k

−k2 + k

)

. (4.28)

Por fim, podemos obter a métrica efetiva quadridimensional da métrica pentadimen-

sional a partir de uma transformação de coordenadas apropriada, tal que:

dS2
4 =−dt2 + e2H(y)tδi jdxidx j, (4.29)

onde o parâmetro de Hubble é dado agora por:

H(y) = k cosech(−kb0|y|+d0) . (4.30)

Logo, nos limites (y = 0 e y = π) dos pontos fixos, os valores do parâmetro de

Hubble são H(0) =
√

k2
1 − k2 e H(π) =

√

k2
2 − k2. Veja o comportamento de H(y) na Fig.(4.4).

Em outras palavras, na brana do modelo padrão, quando nosso Universo está evoluindo com

o tempo, seu parâmetro de Hubble diferente de zero é expresso como um ajuste fino entre a

constante cosmológica global e a tensão da brana visı́vel.

Figura 4.4 – Parâmetro de Hubble em função da dimensão extra.

Fonte: Elaborado pelo autor.

4.2.1 Aplicação na Gravidade de Rastall: Caso Estático

Com o formalismo do modelo de Randall-Sundrum bem estabelecido, passamos

agora a investigar um modelo formulado diretamente a partir das equações de campo modifica-

das. Em particular, consideramos um cenário de brana fina imersa em um bulk pentadimensio-

nal, no qual a geometria deformada é determinada pela dinâmica gravitacional de Rastall, e não
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mais pelas equações de Einstein usuais, como trabalhadas no inı́cio desta Seção.

Utilizando-nos do tensor energia-momento representado na Eq.(4.13), relembrando

que as condições de contorno são gPl
µν(x

µ) ≡ gMN(x
µ ,y = 0) e gvis

µν(x
µ) ≡ gMN(x

µ ,y = π),

podemos resolver a Eq.(4.3). Ao realizarmos as devidas substituições, a partir da métrica (4.9),

encontramos as seguintes expressões:

(yy) : (6−20λ )σ ′2(y)+8λσ ′′(y) =−Λ5b2
0

M3∗
(4.31)

(µν) : (6−20λ )σ ′2(y)+8λσ ′′(y)−3σ ′′(y)

= − 1

M3∗

(
Λ5b2

0 +VPlb0δ (y)+Vvisb0δ (y−π)
)
. (4.32)

Agora vamos calcular as possı́veis soluções para a Eq.(4.31). Inicialmente, façamos k2 =− Λ5

6M3∗
,

de modo que esta equação tome a forma:

(

1− 10

3
λ

)

σ ′2(y)+
4

3
λσ ′′(y) = k2b2

0

⇒
∫

du

3k2b2
0 − (3−10λ )u2

=
∫

dy

4λ
, (4.33)

em que σ ′(y)= u. Seja A= 3−10λ . Note que A> 0⇒ λ < 3
10

e A< 0⇒ λ > 3
10

(lembre-se que

λ ̸= 3
10

em decorrência da Eq.(4.4)). Assim, ao resolvermos a integral acima usando método de

decomposição em frações parciais para os dois casos distintos, encontramos a mesma solução

explı́cita, a saber:

σ(y) =
4λ

(3−10λ )
ln

{

cosh

[√

3(3−10λ )

4λ
kb0y+ c0

]}

, (4.34)

com c0 sendo uma constante de integração. A Fig.(4.5) mostra o comportamento desta função

e sua respectivas primeira e segunda derivadas. Contudo, observe que 3−10λ > 0 ⇒ λ < 0,3

para manter a raiz real.

O elemento de linha (4.9) agora toma a seguinte forma:

dS2 = coshγ

[√

3(3−10λ )

4λ
kb0y+ c0

]

ηµνdxµdxν +b2
0dy2, (4.35)

com γ = 8λ
10λ−3

. Ao analisarmos o limite λ → 0 na Eq.(4.34), encontramos a mesma solução

apresentada na Eq.(4.15), isto é, voltamos ao modelo de Randall-Sundrum, sem o termo de

Rastall e com isso todos os resultados já estabelecidos.
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Figura 4.5 – Comportamento da função σ(y) e suas derivadas para λ = 0,2, k = 1 e c0 = 0.

Fonte: Elaborado pelo autor.

4.2.2 Aplicação na Gravidade de Rastall: Caso Cosmológico

Novamente, considere um Universo homogêneo e isotrópico na brana visı́vel. Con-

sidere também o elemento de linha expresso na Eq.(4.22). A evolução temporal é governada

pelo fator de escala R(y, t) = f (y)v(t) e esperamos que o mesmo convirja suavemente para o

modelo RS com o termo de Rastall no limite estático apropriado. Tome f (y) = e−A(y). Substi-

tuindo a métrica, implı́cita no elemento de linha citado, na Eq.(4.3), obtemos as expressões:

(tt) : e−2A(y) (20λ −6)A′2(y)+(3−8λ )A′′(y)

b2
0

+
(3−6λ )v̇2(t)−6λv(t)v̈(t)

v2(t)

=− 1

M3∗

[

Λ5e−2A(y)+
VPle

−6A(0)e4A(y)

b0
δ (y)+

Vvise
−6A(π)e4A(y)

b0
δ (y−π)

]

; (4.36)

(ii) : (6λ −1)v̇2(t)+
e−2A(y)v2(t)[(6−20λ )A′2(y)+(8λ −3)A′′(y)]

b2
0

+2(3λ −1)v(t)v̈(t)

= −v2(t)

M3∗

[

Λ5e−2A(y)+
VPle

−6A(0)e4A(y)

b0
δ (y)+

Vvise
−6A(π)e4A(y)

b0
δ (y−π)

]

; (4.37)

(yy) :
2
[

(3−6λ ) f ′2(y)−4λ f (y) f ′′(y)+ 3(2λ−1)b2
0(v̇

2(2)+v(t)v̈(t))

2v2(t)

]

f 2(y)
=−Λ5b2

0

M3∗
. (4.38)

Como resultado da soma das componentes (tt) e (ii), temos que:

v(t) = eH0t , (4.39)
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onde H0 = v̇(t0)/v(t0) é a constante de Hubble (a mesma expressão apresentada na Seção (3.2)

e na Eq.(4.23)). Sempre teremos esta forma para v(t), independentemente da quantidade de

dimensões consideradas no modelo [29]. Portanto, substituindo v(t) e suas respectivas derivadas

(primeira e segunda) na Eq.(4.38) e rearanjando os termos, encontramos:

(1−2λ ) f ′2 − 4

3
λ f f ′′− k2b2

0 f 2 = (1−2λ )b2
0H2

0 . (4.40)

Esta equação diferencial tem como uma possı́vel solução, consistente com a simetria Z2, a

expressão:

f (y) =

√

3−10λ

3

H0

k
senh

(

−
√

3

3−10λ
kb0|y|+d0

)

, (4.41)

onde d0 é uma costante de integração e, para 3−10λ < 0, f (y) passa a ser uma função periódica

desde que c0 seja ajustado de modo a não cancelar a oscilação. A Fig.(4.6) nos fornece o com-

portamento de f (y). Observe que no limite λ → 0 reobtemos os mesmos resultados encontrados

sem levar em conta o termo de Rastall, ou seja, voltamos à Eq.(4.24). Também podemos calcu-

lar os mesmos parâmetros cosmológicos de forma semelhante ao que fizemos na Seção anterior.

Portanto, o elemento de linha com deformação, substituindo as novas funções para v(t) e f (y)

na Eq.(4.22), torna-se:

dS2 =
(3−10λ )H2

0

3k2
senh2

(

−
√

3

3−10λ
kb0|y|+ c0

)

[
−dt2 + e2H0tδi jdxidxi

]
+b2

0dy2.(4.42)

A métrica implı́cita neste elemento de linha descreve a inflação das três dimensões espaciais.

Figura 4.6 – Comportamento da função f (y) para λ = 0,2, k = 1 e c0 = 0.

Fonte: Elaborado pelo autor.
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4.3 Branas Espessas com Fator de Deformação

Branas espessas surgem como uma generalização natural dos modelos de branas

finas. Embora a aproximação do tipo delta de Dirac seja útil do ponto de vista fenomenológico,

ela conduz a singularidades geométricas e impõe condições de contorno que podem limitar a

consistência dinâmica do modelo. Em contraste, nas abordagens com branas espessas, a brana é

descrita como uma região estendida do espaço-tempo, geralmente gerada por campos escalares

no bulk, o que permite uma descrição regular da geometria e um controle mais refinado da

dinâmica gravitacional.

Do ponto de vista fı́sico, branas espessas oferecem um cenário mais realista para a

localização de campos e para a análise da estabilidade gravitacional, uma vez que a espessura

da brana pode influenciar diretamente a forma do fator de deformação e o espectro de modos

gravitacionais [6]. Além disso, esses modelos possibilitam o estudo de mecanismos de confi-

namento suaves, evitando descontinuidades abruptas e permitindo a formulação de equações de

movimento bem definidas em todo o bulk.

No contexto cosmológico, branas espessas ampliam o espaço de soluções possı́veis

ao permitir dependências temporais tanto no fator de escala quanto nos campos que compõem

a brana, levando a cenários cosmológicos ricos e menos restritivos do que aqueles obtidos em

modelos de branas finas.

4.3.1 Caso Estático

Agora, assumimos o elemento de linha como sendo:

dS2 = f 2(y)
(
ηµνdxµdxν +dy2

)
, (4.43)

em que f (y) = eA(y) é o fator de deformação que está diretamente relacionado com a dimensão

extra. Seguindo os passos da Ref.[30], considere o campo escalar φ , com o tensor energia-

momento dado por:

TMN = ∂Mφ∂Nφ −gMN

[
1

2
∂ Pφ∂Pφ +V (φ)

]

, (4.44)
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como a brana é maximamente simétrica, φ pode ser assumido como φ = φ(y). Dessa maneira,

substituindo a métrica (4.43) na Eq.(4.3), obtemos as componentes da equação de campo:

(tt) : 3(−1+4λ )A′2(y)+(−3+8λ )A′′(y) =
1

2
φ ′2(y)+ e2A(y)V (φ),

(ii) : (3−12λ )A′2(y)+(3−8λ )A′′(y) =−1

2
φ ′2(y)− e2A(y)V (φ),

(yy) : (6−12λ )A′2(y)−8λA′′(y) =
1

2
φ ′2(y)− e2A(y)V (φ), (4.45)

onde, somando a componente (tt) com a (yy), encontramos:

3A′2(y)−3A′′(y)−φ ′2(y) = 0. (4.46)

Por outro lado, realizando a subtração da componente (tt) com a componente (yy), obtemos:

V (φ(y)) =−e−2A(y)

2

[
3(3−8λ )A′2(y)+(3−16λ )A′′(y)

]
. (4.47)

Por fim, calculando explicitamente a hipótese (4.1), ficamos com a seguinte relação:

−24λA′3 +8λA′′′+4A′2λA′′+φ ′φ ′′−A′φ ′2 − e2Aφ ′V ′ = 0. (4.48)

Como solução da equação diferencial (4.46), encontramos (∀β ∈ R):

f (y) =
1

√

β 2y2 +1
(4.49)

e

φ(y) =
√

3arctan(βy). (4.50)

A Fig.(4.7) nos fornece o comportamento do fator de deformação f e do campo escalar φ como

funções da dimensão extra y.

O elemento de linha (4.43) torna-se:

dS2 =
1

(β 2y2 +1)

(
ηµνdxµdxν +dy2

)
. (4.51)

Observe que, como a Eq.(4.46) é a mesma que do modelo de brana na TRG [6], a não conservação

do campo escalar tem efeito apenas no potencial. Assim sendo, ao realizarmos as devidas

substituições no potencial (4.47) obtemos o seguinte resultado:
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Figura 4.7 – Fator de deformação f (y) e o campo escalar φ(y) no modelo de brana plana.

Fonte: Elaborado pelo autor.

V (φ) =
β 2

4

[

(15−56λ )cos

(
2φ√

3

)

−3(3−8λ )

]

, (4.52)

cujo comportamento está denotado na Fig.(4.8).

Figura 4.8 – Potencial V em função do campo escalar φ no modelo de brana plana.

Fonte: Elaborado pelo autor.

Afirmamos, sem demonstração, que tomar o limite λ → 0 nas soluções aqui encon-

tradas, nos leva aos mesmos resultados já bem estabelecidos pela TRG. Ademais, para o modelo

FRLW, é possı́vel verificar que este modelo de gravidade é equivalente ao que obtemos no MCP

[31], pois, acreditamos que ele seja capaz de descrever um cenário cosmológico completo desde

a fase inflacionária inicial até a fase atual de expansão acelerada, passando pela era dominada

por matéria, o que deve ser alcançado mediante escolhas apropriadas do parâmetro de Rastall.
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4.3.2 Caso Cosmológico

Continunando nossa investigação sobre modelos de branas planas espessas, falta-

nos implementar o fator de escala no elemento de linha (4.43). Vejamos, portanto, como as

equações se modificam ao permanescermos com f (y) = eA(y) e v(t) = eH0t , porém, assumindo

o seguinte elemento de linha:

dS2 = f 2(y)
[
−dt2 + v2(t)δi jdxidx j +dy2

]
. (4.53)

Novamente, considere o campo escalar com o tensor energia momento dado pela Eq.(4.44).

Substituindo a métrica implı́cita no elemento de linha acima na Eq.(4.3), obtemos as compo-

nentes da equação de campo modificadas da forma:

(tt) : 3H2
0 (1−4λ )+3(−1+4λ )A′2(y)+(−3+8λ )A′′(y) =

1

2
φ ′2(y)+ e2A(y)V (φ),

(ii) : e2H0t
[
3H2

0 (−1+4λ )+(3−12λ )A′2(y)+(3−8λ )A′′(y)
]
=−1

2
φ ′2(y)− e2A(y)V (φ),

(yy) : 6H2
0 (−1+2λ )+(6−12λ )A′2(y)−8λA′′(y) =

1

2
φ ′2(y)− e2A(y)V (φ), (4.54)

onde a soma (tt)+(yy) gera a seguinte expressão:

3A′2(y)−3A′′(y)−φ ′2(y)−3H2
0 = 0. (4.55)

Por outro lado, realizando a subtração da componente (tt) com a componente (yy), encontramos

V (φ(y)) =−e−2A(y)

2

[
3(3−8λ )A′2(y)+(3−16λ )A′′(y)−3H2

0 (3−8λ )
]
. (4.56)

Como solução da equação diferencial (4.55), encontramos:

f (y) = sechα(βy) (4.57)

e

φ(y) = φ0 arcsen [tanh(βy)], (4.58)

onde φ0 =
√

3α(α −1), β =H0/α e 0<α < 1. Estas relações são as mesmas encontradas sem

levar em conta o fator de Rastall quando consideramos branas do tipo de Sitter, como revisado

na Ref.[6]. Veja a Fig.(4.9) para uma melhor compreensão a respeito do comportamento do

fator de deformação f e do campo escalar φ enquanto funções da dimensão extra y.
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Figura 4.9 – Forma do fator f (y) e do campo escalar φ(y) para o modelo do tipo de Sitter,
com parâmetros α = 0,5, 0,7 e 0,9, respectivamente.

Fonte: Elaborado pelo autor.

O elemento de linha (4.53) torna-se, por conseguinte:

dS2 = sech2α(βy)
[
−dt2 + e2H0tδi jdxidx j +dy2

]
. (4.59)

O efeito da não conservação do campo escalar no potencial sugere que:

V (φ) =
1

2
β 2α[3+3(3−8λ )α −16λ ]cos2(1−α)

(
φ

φ0

)

, (4.60)

cujo comportamento está denotado na Fig.(4.10) para α = 0.3, 0.5 e 0.7.

Figura 4.10 – Forma do potencial V em função do campo escalar φ para o modelo do tipo de
Sitter, com parâmetros α = 0,3, 0,5 e 0,7, respectivamente.

Fonte: Elaborado pelo autor.

A inflação cosmológica estudada na Seção anterior pode ser (e usualmente é) mo-

delada por meio de um campo escalar efetivo, denominado ı́nflaton, cuja dinâmica domina o

conteúdo energético do Universo primordial e conduz a uma fase de expansão acelerada expo-

nencialmente. Optamos trabalhar com o campo escalar pala justificativa de que o mesmo pode
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gerar, de maneira homogênea e isotrópica, uma espécie de pressão efetiva negativa suficiente-

mente grande para sustentar a inflação, preservando, assim, a simetria espacial do espaço-tempo

tipo FLRW.
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5 CONCLUSÃO

Neste trabalho, investigamos cenários cosmológicos em modelos de mundos brana

através da gravidade de Rastall, explorando tanto branas finas quanto branas espessas imersas

em um bulk pentadimensional. A motivação central consistiu em analisar como a modificação

introduzida pela hipótese de Rastall (caracterizada pela não conservação covariante do tensor

energia-momento) pode impactar a dinâmica gravitacional e cosmológica em espaços-tempos

com dimensões extras, bem como oferecer mecanismos alternativos para a aceleração do Uni-

verso. Os resultados expostos aqui mostram que a gravidade de Rastall fornece um arcabouço

consistente para o estudo cosmológico em mundos brana.

Inicialmente, foram apresentados os fundamentos matemáticos e fı́sicos da TRG,

seguidos por uma revisão da Cosmologia Relativı́stica Padrão, com ênfase no modelo de FLRW

e nos problemas clássicos da Cosmologia, como os problemas do horizonte e da planicidade.

Essa estrutura permitiu contextualizar a necessidade de extensões teóricas capazes de descrever

regimes de altas energias e o comportamento do Universo primordial, abrindo espaço para a

consideração de teorias gravitacionais modificadas e modelos com dimensões extras.

No contexto dos mundos brana, estudamos primeiramente modelos do tipo RS, des-

tacando o papel do fator de deformação da métrica na resolução do problema da hierarquia e na

modificação das equações cosmológicas efetivas na brana. Em seguida, incorporamos a gravi-

dade de Rastall a esses cenários, obtendo equações de campo modificadas e investigando suas

consequências fı́sicas tanto no regime estático, quanto no regime cosmológico. Observamos

que o parâmetro λ introduz correções relevantes na geometria do bulk e na dinâmica efetiva da

brana, afetando diretamente o comportamento do parâmetro de Hubble e a evolução do fator de

escala.

Estendemos a análise para modelos de branas espessas, nos quais a espessura da

brana é gerada dinamicamente por campos escalares acoplados à gravidade. Nesse contexto,

estudamos soluções em espaços-tempos de Minkowski e de Sitter, evidenciando como a não

conservação do tensor energia-momento influencia a forma do potencial escalar e o perfil do

fator de deformação. Em particular, no caso cosmológico, verificamos que a presença da gra-

vidade de Rastall permite-nos emergir naturalmente a uma expansão exponencial do fator de

escala, caracterı́stica tı́pica de cenários inflacionários.
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Os resultados obtidos indicam que a gravidade de Rastall pode atuar como um me-

canismo efetivo para a aceleração cósmica em modelos de mundos brana, mesmo na ausência

de uma componente explı́cita de energia escura. Além disso, a modificação da conservação

padrão da matéria conduz a novos ajustes entre os parâmetros do modelo, como a constante

cosmológica do bulk, a tensão da brana e o parâmetro fenomenológico de Rastall λ , ampliando

o espaço de soluções cosmologicamente viáveis.

Por fim, este trabalho reforça a relevância de teorias gravitacionais modificadas

em cenários com dimensões extras como alternativas consistentes para a cosmologia moderna.

Como perspectivas futuras, destacamos o estudo da estabilidade das soluções obtidas, a análise

de perturbações cosmológicas nesses modelos e possı́veis vı́nculos observacionais, bem como

a investigação de extensões da gravidade de Rastall em contextos mais gerais, como teorias

efetivas do tipo f (R,T ) ou cenários com múltiplas branas. Esses desenvolvimentos podem

contribuir para uma compreensão mais profunda da dinâmica gravitacional em regimes de altas

energias e do papel das dimensões extras na evolução do Universo.
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