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RESUMO

A segmentação de imagens é fundamental em aplicações de análise automática, pois permite

a identificação e delimitação precisa de estruturas relevantes. No contexto odontológico, essa

tarefa é especialmente importante em radiografias panorâmicas, amplamente utilizadas para

fornecer visão completa da estrutura dentária e óssea. Entretanto, a interpretação manual dessas

imagens é demorada, sujeita à variabilidade entre profissionais e afetada por ruído e baixo

contraste. Avanços recentes em aprendizado profundo, especialmente Redes Neurais Convolu-

cionais (CNNs), têm permitido segmentações mais precisas por meio da extração automática

de características relevantes. Assim, este trabalho tem como objetivo desenvolver um sistema

CAD para realizar a segmentação automática de dentes a partir de radiografias panorâmicas, com

base em uma análise comparativa do desempenho de cinco arquiteturas baseadas na U-Net. O

estudo foi conduzido utilizando o conjunto de dados Children’s Dental Panoramic Radiographs

Dataset, no qual as imagens passaram por uma etapa de pré-processamento e os modelos foram

treinados utilizando validação cruzada K-Fold, combinada com Grid Search para a otimização

dos hiperparâmetros. Os resultados da etapa de validação externa, realizada em dois subconjuntos

do conjunto geral, demonstraram que, no primeiro deles, o Dataset and code, a W-Net apresentou

o melhor desempenho, com Sensibilidade 0,809, E-MEASURE 0,925, IOU 0,785 e DSC 0,879,

aspectos que indicam maior capacidade de segmentação das regiões dentárias. No segundo

subconjunto, Panoramic Radiography Database, a Attention U-Net se sobressaiu, alcançando

Sensibilidade 0,965, E-MEASURE 0,975, IOU 0,858 e DSC 0,924, apresentando maior precisão,

preservação da forma dentária e menor fragmentação das estruturas. O teste de Wilcoxon indicou

que a U-Net++ e a U-Net 3+ apresentaram diferenças significativas em relação à U-Net clássica,

enquanto a W-Net e a Attention U-Net tiveram desempenho equivalente. Por fim, considerando

conjuntamente os resultados das análises quantitativas e qualitativas das máscaras segmentadas,

bem como o tempo de inferência necessário para a geração das segmentações, a Attention U-Net

foi selecionada como a arquitetura final a ser integrada ao sistema CAD.

Palavras-chave: Segmentação de imagens médicas. Sistema CAD. Modelos de segmentação.

Redes Neurais Convolucionais. Aprendizado profundo.



ABSTRACT

Image segmentation is fundamental in automatic analysis applications, as it allows for the precise

identification and delineation of relevant structures. In the dental context, this task is especially

important in panoramic radiographs, which are widely used to provide a comprehensive view

of the dental and bone structures. However, manual interpretation of these images is time-

consuming, subject to inter-professional variability, and affected by noise and low contrast.

Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have

enabled more accurate segmentations through the automatic extraction of relevant features.

Thus, this study aims to develop a CAD system to perform automatic tooth segmentation from

panoramic radiographs, based on a comparative analysis of the performance of five U-Net–based

architectures. The study was conducted using the Children’s Dental Panoramic Radiographs

Dataset, in which the images underwent a preprocessing stage, and the models were trained

using K-Fold cross-validation combined with Grid Search for hyperparameter optimization.

The results of the external validation stage, conducted on two subsets of the overall dataset,

showed that in the first subset, Dataset and code, the W-Net achieved the best performance,

with Sensitivity 0.809, E-MEASURE 0.925, IOU 0.785, and DSC 0.879, indicating a higher

capacity for segmenting dental regions. In the second subset, Panoramic Radiography Database,

the Attention U-Net stood out, reaching Sensitivity 0.965, E-MEASURE 0.975, IOU 0.858,

and DSC 0.924, showing higher accuracy, preservation of tooth shape, and lower fragmentation

of structures. The Wilcoxon test indicated that U-Net++ and U-Net 3+ showed significant

differences compared to the classical U-Net, while W-Net and Attention U-Net had equivalent

performance. Finally, considering the results of both quantitative and qualitative analyses of

the segmented masks, as well as the inference time required to generate the segmentations, the

Attention U-Net was selected as the final architecture to be integrated into the CAD system.

Keywords: Medical image segmentation. CAD system. Segmentation models. Convolutional

Neural Networks. Deep learning.
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1 INTRODUÇÃO

A saúde bucal é definida como o estado da boca, dos dentes e das estruturas orofaciais

que permite aos indivíduos desempenhar funções essenciais, como comer, respirar e falar,

abrangendo também dimensões psicossociais, tais como autoconfiança, bem-estar e a capacidade

de socializar e trabalhar sem dor, desconforto ou constrangimento. Além disso, essa condição

varia ao longo da vida, desde a infância até a velhice, e exerce papel fundamental na saúde geral,

ao auxiliar os indivíduos a participarem da sociedade e a alcançarem seu potencial (WORLD

HEALTH ORGANIZATION, 2022a). Assim, uma boa saúde bucal reflete a capacidade do

indivíduo de se adaptar às mudanças fisiológicas ao longo da vida, o que lhe permite manter a

integridade da boca e dos dentes por meio do autocuidado contínuo e independente (PERES et

al., 2019).

Consequentemente, as doenças bucais abrangem diversas condições, como cáries,

perda de dentes e traumatismos orodentais. Essas alterações estão entre as doenças crônicas não

transmissíveis mais prevalentes no mundo, afetando aproximadamente 3,5 bilhões de pessoas

(WORLD HEALTH ORGANIZATION, 2022b). Desse modo, as doenças dentárias tornaram-se

uma das condições mais comuns na ciência médica contemporânea e têm apresentado crescimento

significativo nos últimos anos. Embora os dentes sejam estruturas altamente resistentes e duráveis,

sujeitos a constante uso, continuam vulneráveis a diversas patologias que afetam diretamente sua

integridade e função. Portanto, o diagnóstico precoce é essencial para prevenir complicações e

preservar a integridade das estruturas dentárias. (ZANNAH et al., 2024).

Para formular o diagnóstico de doenças bucais, as radiografias panorâmicas, conhe-

cidas como ortopantomografia, são ferramentas fundamentais na odontologia. Elas fornecem

imagens abrangentes de toda a arcada dentária, como dentes, maxilares e estruturas adjacentes, o

que as torna cruciais para a identificação de diversas condições, como cáries, fraturas e alterações

ósseas. No entanto, a interpretação manual dessas radiografias pode ser demorada e sujeita a va-

riações entre profissionais da odontologia (SA̧HIN et al., 2024). Além dessas limitações, fatores

técnicos como baixa resolução, contraste inadequado e presença de ruído também dificultam o

processo, tornando-o ainda mais desafiador e propenso a erros diagnósticos. Nesse contexto, a

análise automática dessas imagens surge como uma ferramenta promissora, capaz de aumentar

a precisão diagnóstica, reduzir o tempo de triagem e otimizar os custos clínicos. Entre essas

soluções, destaca-se a segmentação automática de imagens médicas, que consiste em classificar

cada pixel da imagem conforme os objetos de interesse (NADER et al., 2022).
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A segmentação de imagens consiste em dividir uma imagem em partes que tenham

forte correlação com objetos ou áreas do mundo real contidos na cena, chamados segmentos de

pixels conectados, analisando critérios de similaridade (BRAHMI; JDEY, 2024). Esse processo

tem como objetivo identificar o objeto ou região ao qual cada pixel pertence, classificando-os em

diferentes classes (SA̧HIN et al., 2024). No contexto de imagens médicas, a segmentação desem-

penha um papel fundamental no diagnóstico auxiliado por computador e na medicina inteligente,

pois visa tornar as alterações de estruturas anatômicas ou patológicas mais claras nas imagens

(WANG et al., 2022). Nesse cenário, especificamente no diagnóstico de doenças dentárias, como

cárie, lesões periapicais e doença periodontal, a segmentação constitui um elemento-chave ao

auxiliar dentistas no enfrentamento das dificuldades para detectar essas condições a olho nu. Ao

realçar os limites das estruturas dentárias, ela pode facilitar a identificação e distinção entre os

dentes, algo frequentemente dificultado em radiografias devido à sobreposição de estruturas que

compromete a interpretação visual (ZANNAH et al., 2024).

Nesse contexto, o aprendizado profundo tem se consolidado como uma das principais

abordagens na análise de imagens médicas, com ampla aplicação em tarefas de detecção de

objetos, classificação, segmentação e registro (ZHONG et al., 2025). Essa abordagem, que cons-

titui um subconjunto do aprendizado de máquina, utiliza redes neurais artificiais com múltiplas

camadas para aprender e reconhecer padrões em dados. Paralelamente, nos últimos anos as

Redes Neurais Convolucionais (CNNs) transformaram a análise de imagens médicas, alcançando

desempenho notável em tarefas como classificação, segmentação, detecção e reconstrução de

imagens (BRAHMI; JDEY, 2024). Sua capacidade de extrair automaticamente informações

relevantes elimina a dependência de técnicas manuais e pré-processamento excessivo. Conse-

quentemente, as CNNs têm sido amplamente utilizadas na segmentação de imagens médicas,

obtendo resultados expressivos e fortalecendo diagnósticos clínicos e sistemas de apoio à decisão

(LIU et al., 2021).

Portanto, este trabalho visa auxiliar no diagnóstico clínico odontológico ao demons-

trar o potencial do aprendizado profundo e das CNNs na segmentação automática de estruturas

dentárias em radiografias panorâmicas, além de apresentar um sistema CAD que integra o modelo

de segmentação, permitindo a avaliação de seu desempenho em um ambiente computacional

aplicado.
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1.1 Objetivo Geral

Desenvolver um sistema CAD para segmentação automática de dentes em radiogra-

fias panorâmicas, a partir de uma análise comparativa do desempenho de arquiteturas baseadas

na U-Net.

1.2 Objetivos Específicos

Para alcançar o objetivo geral, no contexto deste trabalho, foram estabelecidos os

seguintes objetivos específicos:

• Realizar o pré-processamento das radiografias panorâmicas e aplicar técnicas de aumento

de dados (Data Augmentation).

• Implementar e comparar diferentes modelos baseados na arquitetura U-Net para segmenta-

ção automática das estruturas dentárias.

• Ajustar os hiperparâmetros dos modelos por meio de busca em grade (Grid Search) e

validar o desempenho com validação cruzada (k-fold).

• Aplicar validação externa a fim de avaliar a capacidade de generalização dos modelos

treinados.

• Avaliar o desempenho dos modelos usando métricas quantitativas, como sensibilidade,

acurácia, especificidade, DSC, IOU, E-measure e MAE.

• Comparar os resultados dos modelos usando o teste de Wilcoxon.

• Desenvolver um sistema CAD para envio de radiografias panorâmicas e geração automática

das segmentações pelo modelo treinado.

1.3 Contribuições

Este trabalho apresenta contribuições significativas para a área da odontologia, ao de-

monstrar o potencial das CNNs baseadas na arquitetura U-Net para a segmentação automática de

estruturas dentárias em radiografias panorâmicas. Além disso, contribui com o desenvolvimento

de um sistema CAD, que torna o modelo acessível a profissionais da odontologia, permitindo o

envio de radiografias e a visualização automática dos resultados da segmentação. Essa ferramenta

auxilia na análise das estruturas dentárias, uma vez que algumas delas podem não ser claramente

perceptíveis a olho nu, o que promove diagnósticos mais rápidos, precisos e padronizados, o

qual oferece suporte direto à tomada de decisões diagnósticas diárias.
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1.4 Organização do Trabalho

Este trabalho está organizado de forma que no Capítulo 2 está descrita a funda-

mentação teórica sobre os temas abordados no trabalho. O Capítulo 3 discute os trabalhos

relacionados, com ênfase nas principais abordagens identificadas na literatura. O Capítulo 4

descreve a metodologia adotada com o detalhamento dos experimentos realizados. O Capítulo 5

apresenta e analisa os resultados obtidos, discutindo o desempenho das abordagens avaliadas.

Por fim, o Capítulo 6 sintetiza as conclusões, ressalta as contribuições alcançadas e aponta

perspectivas para trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

No presente capítulo, são apresentados os elementos teóricos que fundamentam o

desenvolvimento deste trabalho. Inicialmente, são abordados conceitos de anatomia mandibular

e anatomia dentária, com destaque para suas estruturas. Em seguida, são apresentados os

fundamentos de Inteligência Artificial (IA), aprendizado profundo e sistemas de apoio à decisão

clínica baseados em inteligência artificial. Posteriormente, discute-se a segmentação de imagens

médicas e as Redes Neurais Convolucionais. Na sequência, são descritos os principais modelos

de segmentação baseados na arquitetura U-Net, ou seja, U-Net, U-Net++, U-Net 3+, Attention

U-Net e W-Net. Por fim, são apresentados os conceitos de validação cruzada, Grid Search, teste

estatístico de Wilcoxon e as métricas de avaliação empregadas neste trabalho. Os tópicos deste

capítulo foram escolhidos para fornecer uma base teórica sólida que apoie a compreensão do

tema deste trabalho.

2.1 Anatomia Mandibular

A mandíbula é o maior osso do crânio humano, formando a linha inferior e moldando

o contorno do terço inferior da face (BREELAND et al., 2019). Além disso, segundo Vollmer et

al. (2000), trata-se de uma estrutura óssea especializada, em complexa sinergia com músculos,

articulações e dentes, cuja forma e função são altamente adaptadas às exigências do sistema

mastigatório. Ao contrário dos demais ossos do crânio, ela não se articula com os ossos adjacentes

por suturas, mas sim por uma articulação sinovial denominada articulação temporomandibular

(CARMO, 2023). Dessa forma, essa articulação, localizada entre a cabeça mandibular e a fossa

temporomandibular, permite o livre movimento, contribuindo para a mastigação e a digestão.

Além disso, seu formato pode variar conforme os estilos de vida e hábitos de mastigação, de

modo que as características morfológicas da mandíbula diferem entre indivíduos de diferentes

idades, origens e comportamentos (IWANAGA; TUBBS, 2022).

2.1.1 Estrutura da Mandíbula

A mandíbula é composta por um corpo em forma de “U”, projetado anteroposterior-

mente, cujas extremidades posteriores formam os ângulos goníacos bilaterais, a partir dos quais

os ramos se estendem verticalmente em direção à articulação com a base do crânio (BREELAND

et al., 2019). A Figura 1 apresenta a mandíbula em três projeções: superior (A), lateral (B)
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e medial (C), evidenciando estruturas como o ramo mandibular, o arco alveolar, os processos

coronóide e condilar, além de fossas e forames de relevância clínica.

Figura 1 – Estrutura da Mandíbula

Fonte: Adaptada de DRAKE et al. (2015)

Conforme ilustrado na Figura 1B, a face superior do corpo da mandíbula sustenta o

arco alveolar, responsável pela fixação dos dentes inferiores e fundamental para a mastigação.

Nessa mesma face externa localiza-se o forame mentual, abertura por onde emerge o nervo

mentual, responsável pela sensibilidade do lábio inferior e da região do mento. Na região

anterior da mandíbula (Figura 1A), observa-se a sínfise mandibular, situada na linha média.

Logo após essa região, na face interna do osso, encontram-se as espinhas genianas superiores e

inferiores (Figura 1C), que servem como pontos de inserção muscular. As espinhas superiores

relacionam-se aos movimentos da língua, enquanto as inferiores conectam músculos ao osso

hioide, contribuindo para a sustentação do assoalho da boca (DRAKE et al., 2015).

A partir dessas estruturas, estende-se a linha milo-hióidea (Figura 1C), ao longo da

face medial da mandíbula até a região inferior ao último molar. Essa linha separa duas áreas

importantes: superiormente localiza-se a fossa sublingual, que abriga a glândula sublingual, e

inferiormente a fossa submandibular, onde se aloja a glândula submandibular. Entre a linha milo-

hióidea e a região posterior do arco alveolar, observa-se um sulco raso para a passagem do nervo

lingual, responsável pela sensibilidade da língua. Posteriormente ao último molar, identifica-se o

trígono retromolar, local de fixação da rafe pterigomandibular, que conecta músculos da cavidade

oral e da faringe. Por fim, conforme apresentado na Figura 1B, o ramo da mandíbula possui

formato aproximadamente quadrangular, destacando-se os processos coronóide e condilar. Em

sua face medial encontra-se o forame mandibular, por onde passam o nervo e os vasos alveolares

inferiores, responsáveis pela sensibilidade e vascularização dos dentes inferiores (DRAKE et al.,

2015).
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2.2 Anatomia Dentária

A anatomia dentária é um campo especializado que se dedica ao estudo da estrutura,

do desenvolvimento e do arranjo dos dentes humanos. Nesse contexto, abrange tanto os dentes

primários (decíduos) quanto os permanentes, contemplando suas diferentes classificações, como

incisivos, caninos, pré-molares e molares, bem como a análise dos principais componentes que

os constituem, como coroa, raiz, esmalte, dentina e polpa. Além disso, envolve o exame das

estruturas de suporte, denominadas periodonto, que englobam gengiva, ligamento periodontal,

cemento e osso alveolar. Assim, compreender a anatomia dentária contribui para a promoção de

melhores cuidados bucais e favorece a valorização da forma e da função dos dentes (ROBERT,

2023).

2.2.1 Estrutura Dentária

Os dentes são apêndices multifuncionais, essenciais para funções humanas básicas,

como a alimentação e a fala. Outrossim, são formados por diferentes tecidos, de densidade

e dureza variadas, o que lhes confere resistência às forças e ao desgaste característicos da

mastigação (MORRIS; TADI, 2023). Por conseguinte, os dentes configuram-se como uma das

estruturas anatômicas e histológicas mais singulares e complexas do corpo, cuja composição

tecidual é exclusiva da cavidade oral e restrita às estruturas dentárias (CARMO; CHAVES, 2023).

No que se refere à anatomia, cada dente divide-se em duas regiões principais: coroa e raiz.

A coroa corresponde à porção visível na cavidade oral, enquanto a raiz encontra-se inserida

no processo alveolar dos maxilares superior e inferior, sendo fixada por meio do ligamento

periodontal (MORRIS; TADI, 2023). A Figura 2 apresenta a estrutura de um dente, evidenciando

a coroa e a raiz em suas porções anatômicas e clínicas.
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Figura 2 – Estrutura do dente

Fonte: Adapatada de FEHRENBACH E POPOWICS (2020)

Conforme observado na figura, a coroa anatômica corresponde à porção do dente

totalmente recoberta por esmalte, independentemente de estar ou não exposta na cavidade oral.

Essa região tende a permanecer relativamente constante ao longo da vida, sofrendo alterações

principalmente em decorrência de atrição ou outros tipos de desgaste físico. Em contraste, a

coroa clínica refere-se à parte da coroa anatômica que se encontra visível na cavidade oral, ou

seja, à porção não recoberta pela gengiva. Diferentemente da coroa anatômica, sua extensão

pode variar ao longo do tempo, acompanhando mudanças na posição gengival, como processos

de retração ou inflamação (FEHRENBACH; POPOWICS, 2020). Além disso, a coloração dessa

região exposta pode variar do branco perolado ao amarelo, dependendo de fatores como idade,

higiene oral e hábitos de vida do indivíduo (CARMO; CHAVES, 2023).

De maneira semelhante, a raiz anatômica corresponde à porção do dente recoberta

por cemento, estrutura responsável por sua fixação ao osso alveolar. Já a raiz clínica designa a

parte da raiz anatômica que se encontra exposta na cavidade oral, cuja extensão pode aumentar

ao longo do tempo em decorrência da recessão gengival (FEHRENBACH; POPOWICS, 2020).

Além dessas distinções, os dentes também apresentam variações quanto ao número de raízes.

Em geral, incisivos, caninos e primeiros pré-molares possuem raiz única, enquanto segundos

pré-molares e molares podem apresentar duas ou até três raízes, como exemplificado pelo dente

posterior ilustrado na figura (CARMO; CHAVES, 2023).

2.3 Inteligência Artificial

Durante décadas, a área de IA era vista como um campo majoritariamente teórico,

aplicado a problemas pequenos e intelectualmente interessantes, mas com pouco impacto prático.
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Nesse período, a maior parte das demandas reais de computação era solucionada por meio

da programação tradicional, com a definição explícita de cada passo. Esse cenário mudou a

partir dos anos 1970, quando técnicas de IA passaram a ser aplicadas a problemas concretos,

especialmente por meio da incorporação do conhecimento de especialistas de áreas como a

medicina em sistemas computacionais. Desse movimento surgiram os Sistemas Especialistas, ou

Sistemas Baseados em Conhecimento, considerados um dos primeiros grandes avanços rumo ao

uso prático da IA (FACELI et al., 2011).

Diante desse contexto histórico, a IA refere-se ao desenvolvimento de sistemas

computacionais capazes de executar tarefas que normalmente exigiriam habilidades humanas,

como raciocínio, tomada de decisão e identificação de padrões. Em essência, trata-se de criar

mecanismos capazes de analisar informações, aprender com dados e agir de forma autônoma

em diferentes situações (RAO et al., 2024). Além disso, a IA encontra-se hoje amplamente

disseminada e integrada a diversos sistemas e tecnologias, pois, mais do que uma ferramenta

isolada, seus métodos constituem a base de muitos processos modernos de automação, análise

de dados e tomada de decisão (COPELAND, 2015).

Concomitantemente, a IA apresenta aplicações em diversas áreas, como agropecuária,

bioinformática, mineração de dados e textos, robótica e saúde. Na agropecuária, ela otimiza o

manejo de cultivos, prevê pragas e aprimora a qualidade da produção, já na bioinformática, apoia

a análise de genes, proteínas e padrões biológicos complexos, na mineração de dados e textos,

identifica padrões relevantes em grandes volumes de informação e, por fim, na saúde, oferece

suporte ao diagnóstico, à análise de exames e ao acompanhamento de pacientes (FACELI et

al., 2011). Diante desse cenário de ampla aplicação da IA em diferentes domínios, torna-se

essencial compreender como esses sistemas aprendem a partir dos dados. A Figura 3 apresenta a

hierarquia dos principais tipos de tarefas de aprendizado.



24

Figura 3 – Hierarquia de Aprendizado

Fonte: Adaptada de FACELI et al. (2011)

Na parte inicial da Figura 3, temos o aprendizado indutivo, cuja função é generalizar

padrões a partir dos dados. Nesse sentido, a partir dele emergem duas modalidades principais de

aprendizado: o supervisionado e o não supervisionado. O primeiro, de natureza preditiva, utiliza

exemplos rotulados para aprender relações que permitam antecipar informações desconhecidas.

Nessa modalidade, a distinção ocorre pelo tipo de rótulo, ou seja, problemas de classificação

envolvem saídas discretas, enquanto problemas de regressão lidam com valores contínuos. Já o

aprendizado não supervisionado, de caráter descritivo, busca identificar estruturas internas nos

dados sem o uso de rótulos. Entre suas tarefas mais comuns estão o agrupamento, que organiza

instâncias por similaridade, a sumarização, que gera representações compactas mantendo a

informação essencial e a associação, que descobre combinações frequentes e relações entre

atributos (FACELI et al., 2011).

2.4 Aprendizado Profundo

O aprendizado profundo é um subconjunto do aprendizado de máquina e uma tecno-

logia poderosa construída sobre redes neurais, caracterizada por uma arquitetura de múltiplas

camadas que permite aprender características complexas e hierárquicas a partir de grandes

volumes de dados, impulsionada por avanços recentes em hardware e pesquisa (SHINDE; SHAH,

2018). O método de aprendizado profundo simula a rede neural humana e, ao combinar múltiplas

camadas de processamento não linear, os dados originais são gradualmente abstraídos, camada

por camada, de modo que diferentes níveis de características são extraídos e utilizados em tarefas
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como detecção, classificação ou segmentação de alvos. Desse modo, a vantagem do aprendizado

profundo reside na substituição da aquisição manual de características por um aprendizado não

supervisionado ou semi supervisionado, além do uso de algoritmos capazes de realizar uma

extração hierárquica eficiente dessas características (CAI et al., 2020).

Nesse contexto, nos últimos anos, as técnicas de aprendizado profundo têm sido

amplamente aplicadas na segmentação de imagens médicas, visto que, ao aprender representações

semânticas das imagens, os modelos conseguem melhorar a precisão da segmentação e se adaptar

de forma flexível a diferentes conjuntos de dados e tarefas (LECUN et al., 2015).

2.5 Sistemas de Apoio à Decisão Clínica com IA

Os Sistemas de Apoio à Decisão Clínica (SADC) são ferramentas computacionais

desenvolvidas para auxiliar profissionais de saúde na tomada de decisões médicas. Seu objetivo

central é fornecer informações acionáveis, recomendações baseadas em evidências e dados

específicos do paciente diretamente no ponto de atendimento. Nos últimos anos, a integração

de técnicas de IA impulsionou esses sistemas, tornando-os mais sofisticados. Entre essas

técnicas, destacam-se o aprendizado de máquina, o processamento de linguagem natural e o

aprendizado profundo, que permitem o processamento e a interpretação de grandes volumes

de dados clínicos com maior precisão. Nessa lógica, algoritmos como redes neurais e árvores

de decisão identificam padrões relevantes e extraem informações essenciais de conjuntos de

dados complexos. Dessa forma, os SADC conseguem oferecer recomendações personalizadas,

ajustadas às necessidades de cada paciente, contribuindo para melhores desfechos assistenciais

(ELHADDAD; HAMAM, 2024).

Por fim, os SADC integrados à IA apresentam vantagens como a melhoria da

qualidade do cuidado e da segurança do paciente, com redução de erros nos diagnósticos, o

processamento ágil de informações e o aprimoramento da análise de imagens médicas. Além

disso, esses sistemas favorecem a identificação precoce de riscos, otimizam o fluxo de trabalho e

automatizam tarefas administrativas, o que possibilita aos profissionais dedicar mais tempo ao

atendimento direto ao paciente. Portanto, a integração entre IA e SADC fortalece a confiabilidade

em todo o processo de assistência médica (ELHADDAD; HAMAM, 2024).
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2.6 Segmentação de Imagens Médicas

Nos últimos anos, o amplo sucesso dos modelos de aprendizagem profunda, im-

pulsionaram o desenvolvimento de novas abordagens de segmentação de imagens, capazes de

explorar representações complexas aprendidas diretamente a partir dos dados. Como resultado,

surgiu uma nova geração de modelos de segmentação que apresenta melhorias de desempenho

notáveis, muitas vezes alcançando níveis de precisão superiores aos obtidos por métodos tradici-

onais (MINAEE et al., 2022). Dessa forma, a segmentação de imagens que é definida como o

particionamento de uma imagem em regiões específicas, desempenha um papel essencial em

diversas aplicações médicas, especialmente quando automatizada, pois otimiza fluxos clínicos,

reduz o tempo de análise e fornece medidas quantitativas relevantes (AZAD et al., 2024).

Nesse contexto, a segmentação de imagens médicas contribui para evidenciar estrutu-

ras anatômicas e patológicas, o que a torna fundamental no diagnóstico assistido por computador

e na medicina inteligente, devido ao aumento da eficiência e precisão diagnóstica. Atualmente, as

tarefas de segmentação são divididas em duas categorias: segmentação semântica, que realiza a

classificação em nível de pixel atribuindo uma categoria a cada ponto da imagem, e segmentação

de instâncias, que além da classificação pixel a pixel, também diferencia objetos individuais

pertencentes à mesma classe (WANG et al., 2022). No presente trabalho, é utilizada a categoria

de segmentação semântica.

No âmbito odontológico, segundo Rocha e Endo (2022), a segmentação de imagens

dentárias tem ganhado destaque por possibilitar avaliações mais claras, auxiliar na definição de

planos de tratamento, favorecer a identificação e a delimitação das estruturas dentárias, além de

oferecer suporte à análise clínica e contribuir para diagnósticos mais precisos.

2.7 Redes Neurais Convolucionais (CNNs)

As CNNs surgiram como uma evolução das Redes Neurais Artificiais (RNAs), ins-

piradas no funcionamento do cérebro humano. Desde o modelo de McCulloch e Pitts (1943)

e o perceptron de Rosenblatt (1958), o desenvolvimento de redes multicamadas com retropro-

pagação permitiu arquiteturas mais complexas. No final dos anos 1980, LeCun apresentou a

LeNet, considerada a primeira CNN aplicada ao reconhecimento de imagens. O avanço decisivo

ocorreu em 2012, com a AlexNet, que evidenciou o potencial das redes profundas no ImageNet

e impulsionou a adoção das CNNs em aplicações de visão computacional (LI et al., 2021).
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Nesse contexto, as CNNs consolidaram-se como um dos modelos mais populares

de aprendizado de máquina, tornando-se amplamente utilizadas em diferentes domínios, como

visão computacional, reconhecimento de fala e processamento de linguagem natural. No campo

da visão computacional, as CNNs destacam-se por alcançar resultados de última geração, desem-

penho que decorre de sua capacidade de capturar padrões espaciais por meio de uma arquitetura

hierárquica de camadas convolucionais, capazes de extrair características em diferentes níveis de

abstração (KRICHEN, 2023).

As CNNs são compostas por três tipos de camadas: camada convolucional (convo-

lutional layer), camada de agrupamento (pooling layer) e camada totalmente conectada (fully

connected layer). Desse modo, quando essas camadas são empilhadas, uma arquitetura CNN

é formada (O’SHEA; NASH, 2015). As duas primeiras camadas realizam a extração de carac-

terísticas, enquanto a terceira, mapeia essas características para a saída final. Por conseguinte,

à medida que a saída de uma camada é passada para a próxima, as características extraídas

organizam-se de forma progressivamente mais complexa (YAMASHITA et al., 2018). A Figura

4 apresenta a ilustração de uma CNN para classificação de imagens.

Figura 4 – Arquitetura Rede Neural Convolucional (CNN)

Fonte: Adaptada de RGUIBI et al. (2022).

A rede recebe uma radiografia panorâmica, que é processada pela primeira camada

convolucional para extrair características iniciais, como contornos e variações de intensidade.

Camadas convolucionais posteriores capturam padrões estruturais mais complexos dos dentes e

tecidos adjacentes, enquanto camadas subsequentes reduzem a dimensionalidade e preservam

as informações mais relevantes. Ao final, as características extraídas são enviadas a camadas

totalmente conectadas, que geram uma distribuição de probabilidade para as classes dente, osso
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e gengiva, definindo a predição pela classe de maior probabilidade. Os parâmetros do modelo

são aprendidos automaticamente por retropropagação, que ajusta os parâmetros para minimizar

o erro entre a saída prevista e o rótulo real (RGUIBI et al., 2022).

2.8 Camada Convolucional (Convolutional Layer)

A camada convolucional é um componente fundamental na arquitetura de uma

CNN, pois é responsável pela extração de características e, geralmente, combina operações

lineares e não lineares, envolvendo a convolução seguida por uma função de ativação. Neste

processo, a convolução é uma operação linear usada para extrair características, na qual um

filtro, pequenas matrizes aplicadas à imagem de entrada, detecta padrões e extrai informações

relevantes. Esse filtro é aplicado sobre a entrada, representada por um tensor, uma estrutura

matemática multidimensional que organiza os dados da imagem em altura, largura e canais de

intensidade (YAMASHITA et al., 2018). A Figura 5 ilustra uma operação de convolução com

um filtro 3×3 que é deslizado sobre o tensor de entrada.

Figura 5 – Operação de convolução

Fonte: Adaptada de YAMASHITA et al. (2018).

Nesse contexto, a Figura 5A ilustra que, em cada posição, realiza-se a multiplicação

elemento a elemento entre os valores do filtro e a sub-região correspondente do tensor de entrada.

Em seguida, a soma desses produtos gera um único valor, o qual é inserido na posição equivalente

do tensor de saída, conhecido como mapa de características (feature map). Por sua vez, a Figura

5B evidencia a repetição desse procedimento ao longo de toda a entrada, resultando na construção

completa do mapa de características. Além disso, o processo é aplicado para cada filtro utilizado,
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o que possibilita a geração de múltiplos mapas, cada um enfatizando propriedades distintas da

entrada. Dessa forma, diferentes filtros atuam como extratores de características específicos

(YAMASHITA et al., 2018).

2.8.0.1 Mapa de Características (Feature Map)

O mapa de características é um componente fundamental das CNNs, pois representa

as características extraídas da imagem de entrada pelas camadas convolucionais, o que possibilita

a execução de diversas tarefas de reconhecimento visual. Além disso, esses mapas organizam

essas características de forma hierárquica, ou seja, nas primeiras camadas, a rede identifica

padrões simples, como bordas e texturas, enquanto nas camadas mais profundas combina

esses elementos para formar representações cada vez mais complexas. Essa capacidade de

transformar gradualmente a imagem em níveis sucessivos de abstração é o que permite às CNNs

reconhecerem objetos, estruturas e padrões de maneira eficiente e robusta (KRICHEN, 2023).

2.8.0.2 Passo (Stride)

O passo é a distância entre as posições sucessivas em que o filtro é aplicado na

entrada e atua como um hiperparâmetro da camada de convolução. Quando o passo é igual a 1,

mais detalhes da imagem são preservados. Por outro lado, valores maiores reduzem a resolução

dos mapas gerados, o que reduz tanto seu tamanho quanto a quantidade de dados processados.

Além disso, essa redução também pode ser obtida por meio das camadas de agrupamento,

que diminuem a altura e a largura dos mapas sem modificar os parâmetros aprendidos. Desse

modo, o passo atua diretamente no equilíbrio entre a preservação de detalhes e a eficiência do

processamento da rede (YAMASHITA et al., 2018).

2.8.0.3 Filtros (Kernel)

Filtros são pequenas matrizes aplicadas à imagem de entrada para gerar os mapas de

características. Esses filtros são aprendidos durante o treinamento, com seus valores ajustados

por retropropagação, e seu tamanho determina o alcance e a complexidade das características

capturadas, funcionando como extratores de padrões que identificam bordas, texturas e formas

à medida que percorrem a imagem. Além disso, cada filtro produz um feature map distinto, o

que permite que a CNN aprenda diferentes tipos de características. Por fim, o tamanho do filtro
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define a extensão da região analisada em cada convolução, sendo, portanto, um hiperparâmetro

essencial da camada convolucional (KRICHEN, 2023).

2.8.0.4 Preenchimento (Padding)

O preenchimento consiste na adição de linhas e colunas de zeros ao redor da imagem

de entrada antes da aplicação dos filtros. Com isso, a técnica permite preservar as dimensões

espaciais da imagem ao longo das camadas convolucionais. Além disso, o uso de preenchimento

possibilita controlar o tamanho dos mapas de características, o que garante, por exemplo, que a

saída mantenha as mesmas dimensões espaciais da entrada (KRICHEN, 2023).

2.8.0.5 Função de Ativação (Activation Function)

As saídas de uma operação linear, como a convolução, são então passadas por uma

função de ativação não linear, sendo a Unidade Linear Retificada (ReLU) a mais utilizada

atualmente (YAMASHITA et al., 2018). Essa etapa introduz não linearidade ao modelo, para

permitir que a rede aprenda padrões mais complexos. Além disso, a popularidade da ReLU

em arquiteturas modernas decorre de sua simplicidade computacional e de sua capacidade de

mitigar o desaparecimento do gradiente, o que permite um melhor aprendizado e ajuda a evitar a

saturação dos neurônios durante o treinamento (KRICHEN, 2023).

A função de ativação ReLU é definida matematicamente como f (x) = max(0,x).Isso

significa que, para valores de entrada menores que zero, a saída é igual a zero, resultando em um

trecho horizontal no gráfico da função no plano cartesiano à esquerda do eixo vertical. Por outro

lado, para valores de entrada maiores ou iguais a zero, a saída cresce linearmente com inclinação

igual a 1 (LI et al., 2021).

2.9 Camada de Agrupamento (Pooling Layer)

A camada de agrupamento é usada para reduzir as dimensões espaciais dos mapas

de características produzidos pela camada convolucional. Nesse processo, ela opera de forma

independente em cada mapa e realiza uma redução espacial ao selecionar o valor máximo ou

médio das regiões não sobrepostas. Assim, o agrupamento não apenas diminui a complexidade

computacional da rede, mas também a torna mais robusta a pequenas translações na imagem de

entrada (KRICHEN, 2023).
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Concomitantemente, essa camada desempenha um papel essencial em uma CNN,

visto que reduz a dimensionalidade das representações internas sem adicionar novos parâmetros

ao modelo. Dessa forma, essa redução espacial torna a rede mais eficiente e reduz o risco de

overfitting, situação em que o modelo memoriza excessivamente o conjunto de treinamento e

perde capacidade de generalização para novos dados e amplia o campo recetivo das camadas

subsequentes, permitindo que a CNN capture padrões mais amplos e complexos na imagem

(WU, 2017).

2.9.0.1 Agrupamento Máximo (Max pooling)

O agrupamento máximo é um método popular de agrupamento que seleciona o maior

valor de cada sub-região do mapa de características, o que resulta em uma matriz reduzida.

Esse processo reduz as dimensões espaciais da entrada e, consequentemente, a complexidade

computacional do modelo. Ao manter apenas um conjunto limitado de informações, o agrupa-

mento máximo preserva os padrões mais relevantes e contribui para o controle do overfitting.

Além disso, essa operação reduz a sensibilidade a variações espaciais, o que permite que a CNN

reconheça um objeto mesmo quando ele se encontra deslocado ou levemente distorcido. Geral-

mente, utiliza-se um filtro 2×2 com passo 2, configuração que reforça a invariância a translações.

Contudo, essa redução dimensional ocorre ao custo da perda de algumas informações (AJIT et

al., 2020).

2.10 Camada Totalmente Conectada (Fully Connected Layer)

A camada totalmente conectada é um componente clássico das CNNs, no qual cada

neurônio de uma camada se conecta a todos os neurônios da camada seguinte. Geralmente

posicionada nas etapas finais da rede, ela tem como função consolidar as informações extraídas

ao longo do processamento para gerar a saída final do modelo (KRICHEN, 2023). De forma

complementar, essa camada transforma as ativações obtidas pelas convoluções em pontuações

de classe, permitindo que o modelo finalize o processo de classificação. Nesse sentido, sua

conectividade total em que cada neurônio se liga aos neurônios das camadas adjacentes, pos-

sibilita combinar de maneira global as representações apreendidas ao longo da rede, para que

seja concluída a etapa decisória do modelo (O’SHEA; NASH, 2015). A Figura 6 apresenta a

estrutura de uma camada totalmente conectada.
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Figura 6 – Camada totalmente conectada

Fonte: Liu et al. (2018).

Como mostrado na Figura 6, a primeira é a camada de entrada, responsável por

receber os dados processados nas etapas anteriores. Em seguida, encontram-se as camadas

intermediárias, conhecidas como camadas ocultas por não manterem ligação direta com os dados

de entrada. Por fim, a camada de saída é encarregada de produzir a predição final da rede (LIU

et al., 2018).

2.11 Modelos de Segmentação

A ampla aceitação e o sucesso da aprendizagem profunda levaram ao desenvolvi-

mento de uma nova geração de modelos de segmentação de imagem, que apresentam melhorias

notáveis no desempenho e, muitas vezes, alcançam as taxas de precisão mais altas nos conjuntos

de avaliação populares. Nesse contexto, esses modelos de segmentação abrangem um espectro

de esforços pioneiros tanto em segmentação semântica quanto em segmentação de instância.

Além disso, muitos desses métodos partilham componentes comuns, como codificadores, des-

codificadores, conexões de salto e arquiteturas multi-escala, os quais contribuem para uma

representação mais rica e detalhada das características da imagem (MINAEE et al., 2022). A

seguir, apresentam-se os modelos adotados neste trabalho.

2.11.1 U-net

A U-Net é uma CNN projetada para segmentação de imagens biomédicas e se destaca

por sua estrutura em formato de “U”, composta por um caminho de contração (encoder), que

extrai o contexto global da imagem, e um caminho de expansão simétrico (decoder), responsável
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por recuperar a resolução espacial e localizar com precisão as estruturas de interesse. Enquanto

o encoder segue o padrão de redes convolucionais tradicionais, o decoder combina informações

de diferentes profundidades para refinar contornos e detalhes das regiões segmentadas. Essa ar-

quitetura alcança alto desempenho mesmo com conjuntos reduzidos de imagens anotadas, graças

ao uso intensivo de técnicas de aumento de dados e também as skip connections, o que permite

superar métodos anteriores em diversos desafios de segmentação médica (RONNEBERGER et

al., 2015). A Figura 7 ilustra a arquitetura dessa rede.

Figura 7 – Arquitetura U-Net

Fonte: Adaptada de RONNEBERGER et al. (2015).

Como podemos observar, no lado esquerdo a rede inicia com a Input Image, ou

seja, a imagem de entrada fornecida ao modelo, e à direita encontra-se o Output Segmentation

Map, que corresponde ao resultado final produzido após o processo de segmentação. Cada

caixa azul na Figura 7 representa um mapa de características, que indica na parte superior a

quantidade de canais e, na borda inferior esquerda, as dimensões espaciais desse mapa. As

caixas brancas correspondem aos mapas copiados do caminho de contração para o caminho de

expansão, o que permite a reutilização das informações de alta resolução durante a reconstrução

da imagem segmentada. Além disso, as setas vermelhas indicam as etapas de max pooling, as

verdes apontam as operações de superamostragem e as setas horizontais cinzas representam as

e também as skip connections que unem as duas metades da U-Net (RONNEBERGER et al.,

2015).



34

2.11.2 Unet ++

A UNet++ é uma arquitetura avançada de CNN voltada à segmentação de imagens

médicas, seguindo o modelo encoder–decoder com supervisão profunda e introduzindo skip

connections aninhadas e densas como principal inovação. Essas vias reorganizam a comunicação

entre codificador e decodificador por meio de caminhos intermediários que refinam progressi-

vamente os mapas de características. Além disso, a arquitetura incorpora um mecanismo de

supervisão profunda que opera em múltiplos níveis da rede, permitindo tanto um modo preciso,

baseado na média das saídas das ramificações, quanto um modo rápido, no qual partes do modelo

podem ser podadas para acelerar a inferência sem comprometer o desempenho (ZHOU et al.,

2018). A arquitetura dessa rede é representada na Figura 8.

Figura 8 – Arquitetura UNet++

Fonte: Zhou et al. (2018).

Como ilustrado na Figura 8, a UNet++ é composta por um codificador e um decodifi-

cador interligados por skip connections redesenhadas. Nessa estrutura, as convoluções presentes

nesses caminhos reduzem a lacuna semântica entre os mapas gerados pelo codificador e pelo

decodificador, enquanto as conexões densas aprimoram o fluxo de gradiente e a propagação das

informações. Além disso, a supervisão profunda favorece um desempenho igual ou superior ao

obtido com apenas uma saída de perda, já que as múltiplas saídas participam do processo de

aprendizagem de maneira conjunta e consistente durante o fluxo de processamento. No fluxo

interno da rede, a etapa de contração (down-sampling) reduz a resolução espacial e aumenta o

número de canais para extrair características mais abstratas, enquanto a etapa de expansão (up-

sampling) reconstrói a resolução da máscara, alinhando-a ao tamanho original da imagem. Por

fim, as skip connections conectam diretamente níveis correspondentes, para recuperar detalhes
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finos e garantir segmentações mais precisas (ZHOU et al., 2018).

2.11.3 Unet 3+

A UNet 3+ é uma evolução das arquiteturas U-Net e U-Net++, projetada para su-

perar limitações na captura de informações em múltiplas escalas. Diferentemente das versões

anteriores, que utilizam conexões de salto simples, aninhadas ou densas, a UNet 3+ emprega skip

connections em escala completa e supervisão profunda. Essas conexões combinam simultanea-

mente detalhes de baixo nível e semântica de alto nível, enquanto a supervisão profunda aprende

representações hierárquicas dos mapas de características. Como resultado, a UNet 3+ melhora a

precisão da segmentação, reduz o número de parâmetros e aumenta a eficiência computacional.

Nesse contexto, para explorar plenamente as características multiescala, a arquitetura redesenha

as interconexões entre codificador e decodificador, bem como entre os níveis do decodificador,

para garantir integração eficaz entre detalhes finos e informações semânticas (HUANG et al.,

2020).

Figura 9 – Arquitetura UNet 3+

Fonte: (HUANG et al., 2020).

A Figura 9 ilustra que a U-Net 3+ reorganiza as conexões entre codificador e

decodificador por meio das full-scale skip connections, representadas pelas setas coloridas, que

integram simultaneamente detalhes de baixo nível e informações semânticas de múltiplas escalas.

Em cada estágio do decodificador, a arquitetura combina mapas provenientes do codificador, de

estágios mais profundos e da própria camada do decodificador, permitindo capturar, ao mesmo

tempo, detalhes finos e contexto global. As cinco resoluções resultantes dessa fusão são então

concatenadas e refinadas por um bloco de agregação composto por uma convolução 3×3 com

320 filtros, seguida de batch normalization e ativação ReLU. A Figura 9 também evidencia o uso
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de supervisão profunda em grande escala, indicado pelos círculos “Sup”, em que cada estágio

do decodificador gera uma saída auxiliar processada por convolução 3×3, interpolação até a

resolução original e ativação sigmoide. Além disso, cada uma dessas saídas laterais é associada

a uma função de perda híbrida, responsável por medir o erro entre a segmentação prevista e a

segmentação real e orientar o ajuste dos parâmetros durante o treinamento. Esse mecanismo

favorece segmentações mais robustas e precisas, especialmente em estruturas que variam em

escala. Com isso, a U-Net 3+ fortalece o aprendizado multiescala e aprimora significativamente

a precisão final da segmentação (HUANG et al., 2020).

2.11.4 Attention U-Net

A Attention U-Net é outra arquitetura de CNN, desenvolvida para a imagiologia

médica, com foco em tarefas de segmentação de imagens. Seu principal objetivo é permitir que

o modelo aprenda a destacar automaticamente as estruturas-alvo e suprimir regiões irrelevantes

da imagem de entrada, sem a necessidade de módulos externos de localização. A principal

inovação da Attention U-Net está na integração dos Attention Gates (AGs) que são módulos

de atenção auto-contidos que filtram as características propagadas pelas skip connections da

arquitetura U-Net, suprimindo respostas irrelevantes e mantendo apenas ativações úteis, o que

aumenta a sensibilidade e a precisão do modelo. Assim, durante a inferência, a rede realça de

forma eficiente as características decisivas e pode ser treinada do zero de maneira convencional

(OKTAY et al., 2018). A Figura 10 mostra a arquitetura da Attention U-Net.

Figura 10 – Arquitetura Attention U-Net

Fonte: Oktay et al. (2018).

No lado esquerdo da arquitetura, o encoder processa a imagem de entrada de forma

progressiva por meio de camadas convolucionais com ativação ReLU e operações de max-pooling,

reduzindo as dimensões espaciais a cada escala. Cada nível, indicado como (F1,H1,W1,D1)
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corresponde a mapas de características definidos pelo número de filtros, altura, largura e profun-

didade. À medida que a rede avança, as dimensões espaciais diminuem enquanto o número de

filtros aumenta, o que permite preservar informações relevantes e capturar características mais

abstratas, incluindo padrões importantes, relações locais e globais da imagem. No lado direito

da arquitetura, o decoder realiza o upsampling para recuperar gradualmente a resolução original,

sendo cada etapa refinada por convoluções seguidas de ReLU. As skip connections transferem

mapas do encoder para o decoder, integrando semântica profunda com detalhes espaciais. Sobre

esses mapas atuam os AGs, que usam um sinal de gating de escalas mais profundas para suprimir

respostas irrelevantes e destacar apenas as características úteis. Após essa filtragem, os mapas

são concatenados aos do decoder e seguem pelas etapas restantes de upsampling até que a rede

produza o mapa final de segmentação (OKTAY et al., 2018).

2.11.5 W-Net

A W-Net é uma arquitetura de CNN profunda proposta para a segmentação de ima-

gens de forma totalmente não supervisionada, surgindo em um contexto em que a segmentação é

um problema central na visão computacional. Sua arquitetura é composta por um autoencoder

duplo em formato de “W”, no qual o encoder realiza a segmentação preliminar enquanto o

decoder reconstrói a imagem, permitindo um processamento eficiente que combina a extração

de detalhes finos com a semântica global. Além disso, todos os módulos utilizam convoluções

separáveis em profundidade, que combinam convolução em profundidade com convolução

pontual, aumentando a eficiência computacional sem expandir o número de parâmetros da rede

(XIA; KULIS, 2017). A arquitetura dessa rede é representada na Figura 11.

Figura 11 – Arquitetura W-Net

Fonte: (XIA; KULIS, 2017).

Como podemos observar na Figura 11, a W-Net apresenta uma estrutura em “W”,
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composta por um encoder (UEnc) à esquerda, responsável pela extração densa de características,

e por um decoder correspondente (UDec) à direita, dedicado à reconstrução da imagem. No

UEnc, há um caminho de contração que processa as imagens de entrada e conecta os módulos por

meio de operações de max-pooling, seguido por um caminho expansivo baseado em convoluções

transpostas, que recupera progressivamente a resolução. O UDec, por sua vez, mantém uma

organização semelhante, pois recebe a saída processada pelo UEnc e finaliza com uma convolução

1×1 que reconstrói a imagem. Além disso, todos os módulos utilizam convoluções separáveis em

profundidade (indicadas por setas vermelhas), que combinam convoluções espaciais e pontuais,

para tornar o processamento mais eficiente sem aumentar o número de parâmetros (XIA; KULIS,

2017).

2.12 Validação Cruzada

A validação cruzada é uma técnica amplamente utilizada no campo do aprendizado

de máquina para avaliar o desempenho de modelos preditivos. Nessa abordagem, o conjunto

de dados original é dividido em k subconjuntos de tamanho aproximadamente igual, denomi-

nados folds, formados de maneira mutuamente exclusiva, de modo que nenhuma amostra seja

compartilhada entre eles. O processo ocorre em k iterações, ou seja, em cada uma delas, um

dos folds é utilizado como conjunto de teste, enquanto os k−1 restantes são combinados para

formar o conjunto de treinamento. O modelo é então treinado com os dados de treinamento e

avaliado no conjunto de teste. Esse procedimento se repete até que cada fold tenha sido utilizado

exatamente uma vez como conjunto de teste. Por fim, os resultados obtidos em todas as iterações

são agregados, geralmente por meio do cálculo da média, o que fornece uma estimativa mais

estável do desempenho do modelo (NTI et al., 2021).

2.13 Grid Search

O Grid Search ou (busca em grade) é um método tradicionalmente utilizado para

a otimização de hiperparâmetros em algoritmos de aprendizado de máquina, cujo objetivo é

identificar a configuração mais adequada de uma rede neural. Seu funcionamento baseia-se em

uma busca sistemática sobre um subconjunto previamente definido do espaço de hiperparâmetros

do modelo, chamado de espaço de busca, no qual se estabelecem antecipadamente os valores

ou intervalos possíveis para cada parâmetro. Considerando que alguns hiperparâmetros podem
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assumir valores contínuos ou teoricamente ilimitados, a definição desses limites torna a aplicação

do método viável na prática e possibilita que o Grid Search realize o treinamento e a avaliação de

todas as combinações possíveis de hiperparâmetros especificadas. Entre as principais vantagens

deste método destacam-se a simplicidade de implementação e a garantia de cobertura do espaço

de busca definido, o que assegura a identificação da melhor configuração dentro desse conjunto

(LIASHCHYNSKYI, 2019).

2.14 Teste Estatístico de Wilcoxon

O teste de Wilcoxon é um método estatístico não paramétrico utilizado para verificar

a existência de diferenças significativas entre duas amostras relacionadas ou emparelhadas.

Diferentemente dos testes paramétricos, esse método não pressupõe que os dados sigam uma

distribuição normal, característica que o torna adequado em situações nas quais essa suposição

não pode ser garantida. Por esse motivo, o teste é amplamente empregado na comparação do

desempenho de dois modelos quando as métricas de avaliação são obtidas a partir dos mesmos

conjuntos de teste ou por meio de procedimentos de validação cruzada, nos quais os resultados

são naturalmente emparelhados (RAINIO et al., 2024).

O funcionamento do teste baseia-se na análise das diferenças entre pares de resul-

tados obtidos sob condições experimentais idênticas. Para cada par de observações, calcula-se

a diferença di entre os valores correspondentes, as quais são ordenadas de acordo com o valor

absoluto |di|, desconsiderando-se o sinal, e recebem postos. Em seguida, os postos associados

às diferenças positivas são somados, resultando em R+, enquanto os postos correspondentes às

diferenças negativas originam R−. A estatística do teste é então definida como T = min{R+,R−}.

Do ponto de vista inferencial, o teste parte da hipótese nula H0, a qual estabelece que a mediana

das diferenças di é igual a zero, o que caracteriza a inexistência de diferença sistemática entre os

desempenhos comparados. Quando o p-value é inferior ao nível de significância adotado, geral-

mente α = 0,05, rejeita-se H0, o que permite inferir a existência de evidências estatisticamente

significativas de diferença entre os modelos (RAINIO et al., 2024).

2.15 Métricas de Avaliação

As métricas de avaliação são fundamentais no desenvolvimento e na validação de

sistemas, pois permitem quantificar sua qualidade e eficácia, para garantir que o desempenho
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esteja alinhado com o propósito real do sistema (FERRER, 2022). Sob essa perspectiva, Müller et

al. (2022) apontam que essas métricas visam avaliar o quão próxima a segmentação predita está

da segmentação real, o que assegura uma análise correta, robusta e padronizada dos algoritmos de

segmentação de imagens médicas, aspecto essencial para a confiabilidade de sistemas de apoio

à decisão clínica. Nesse contexto, apresentam-se a seguir os termos básicos que fundamentam

parte das métricas adotadas neste trabalho:

• Verdadeiro Positivo (TP): Quantidade de instâncias positivas corretamente classificadas

como positivas pelo modelo.

• Verdadeiro Negativo (TN): Quantidade de instâncias negativas corretamente classificadas

como negativas pelo modelo.

• Falso Positivo (FP): Quantidade de instâncias negativas incorretamente classificadas como

positivas pelo modelo.

• Falso Negativo (FN): Quantidade de instâncias positivas incorretamente classificadas

como negativas pelo modelo.

2.15.1 Acurácia

Segundo Hossin e Sulaiman (2015), a acurácia (accuracy) é uma das métricas

mais utilizadas por pesquisadores para avaliar a capacidade de generalização de classificadores.

Ela quantifica a proporção de previsões corretas em relação ao total de instâncias avaliadas,

expressando o percentual de exemplos classificados corretamente durante a etapa de teste com

dados não vistos. A fórmula a seguir descreve o cálculo da acurácia.

Acurácia =
T P+T N

T P+T N +FP+FN
(2.1)

2.15.2 Especificidade

A Especificidade (specificity) mede a proporção de instâncias negativas que foram

corretamente classificadas, correspondendo à taxa de acerto na classe negativa. Uma alta

especificidade indica que o modelo é eficaz em identificar corretamente os casos negativos,

enquanto uma baixa especificidade sugere que muitos negativos estão sendo incorretamente

classificados como positivos (HOSSIN; SULAIMAN, 2015).
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Especificidade =
T N

T N +FP
(2.2)

2.15.3 Sensibilidade

A Sensibilidade (sensitivity) indica a proporção de instâncias positivas corretamente

identificadas em relação ao total real de instâncias positivas no conjunto de dados. O denominador

corresponde à soma entre verdadeiros positivos e falsos negativos. Essa métrica é especialmente

importante em cenários onde o custo de um falso negativo é elevado (TATSAT et al., 2021).

Sensibilidade =
T P

T P+FN
(2.3)

2.15.4 Coeficiente de Similaridade de Dice (DSC)

O Coeficiente de Similaridade de Dice (DSC) é uma métrica amplamente utilizada

para avaliar o desempenho em tarefas de segmentação de imagens (JOSHI, 2024). Ele mede a

similaridade entre os resultados de segmentação e uma "verdade fundamental"( ground truth),

que são segmentações de referência, geralmente criadas por especialistas. Nesse contexto, o

valor do DSC varia de 0 a 1: um valor igual a 0 indica que a imagem segmentada pelo modelo e

a imagem rótulo não apresentam sobreposição, ou seja, não compartilham nenhum pixel; já um

valor igual a 1 representa correspondência perfeita entre a segmentação prevista e a segmentação

de referência. A fórmula a seguir ilustra como o DSC é calculado (ANDREWS; HAMARNEH,

2015):

DSC(y, ŷ) =
2T P

2T P+FP+FN
(2.4)

2.15.5 Erro Médio Absoluto (MAE))

O Erro Médio Absoluto (MAE) mede a média das diferenças absolutas entre os

valores previstos e os valores reais (TERVEN et al., 2025). O MAE é uma medida dependente

da escala dos dados, o que significa que seu valor absoluto não possui um limite superior fixo e

pode variar amplamente de acordo com a magnitude dos dados previstos. Um MAE igual a 0
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indica que todas as previsões corresponderam exatamente aos valores observados (HYNDMAN;

KOEHLER, 2006). A fórmula a seguir ilustra como o MAE é calculado (HODSON, 2022):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2.5)

• n: representa o número total de pixels na imagem.

• yi: valor real (ground truth) do i-ésimo pixel.

• ŷi: valor predito pelo modelo para o i-ésimo pixel.

• |yi − ŷi|: erro absoluto entre o valor real e o valor predito para cada pixel.

2.15.6 Intersecção sobre União (IOU)

Intersecção sobre União (IOU) é uma métrica de avaliação amplamente utilizada em

tarefas de segmentação de imagens. A IOU mede a similaridade entre a máscara de segmentação

prevista e a máscara da verdade fundamental e varia de 0 a 1, onde 0 indica nenhuma sobreposição

e 1 indica sobreposição perfeita (JOSHI, 2024). A fórmula a seguir ilustra como a IOU é calculada

(JOSHI, 2024):

IoU =
Área de Interseção

Área de União
=

|A∩B|
|A∪B|

(2.6)

• A∩B: Corresponde ao número de pixels que são corretamente previstos como pertencentes

aos dentes, tanto na máscara prevista quanto na máscara da verdade fundamental.

• A∪B: Representa o número de pixels classificados como pertencentes aos dentes em

ambas as máscaras: a prevista e a da verdade fundamental.

2.15.7 Medida de Alinhamento Aprimorada (E-MEASURE)

A Medida de Alinhamento Aprimorada (E-MEASURE), é uma nova medida para

avaliar mapas binários de primeiro plano em visão computacional. Esses mapas binários compa-

ram a saída de modelos de segmentação de primeiro plano com um mapa binário de verdade

fundamental rotulado por humanos. O objetivo da E-MEASURE é combinar valores de pixel

locais com o valor médio de nível de imagem em um único termo, capturando conjuntamente

estatísticas de nível de imagem e informações de correspondência de pixel local. A fórmula a

seguir ilustra como a E-MEASURE é calculada (FAN et al., 2018):
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QFM =
1

w×h

w

∑
x=1

h

∑
y=1

ϕFM
(
P(x,y),G(x,y)

)
(2.7)

• QFM é a E-measure final, que mede a similaridade global entre o mapa previsto P e o mapa

de verdade G, combinando informações locais e estatísticas globais.

• 1
w×h é o fator de normalização, que calcula a média dos alinhamentos aprimorados sobre

todos os pixels do mapa, onde w representa a largura e h a altura da imagem.

• ∑
w
x=1 ∑

h
y=1 representa a soma sobre todos os pixels, indicando que o cálculo de ϕFM é

realizado para cada pixel na posição (x,y), percorrendo toda a largura w e altura h do

mapa.

• ϕFM
(
P(x,y),G(x,y)

)
representa o valor de alinhamento aprimorado para o pixel na posição

(x,y), avaliando a correspondência entre o pixel previsto P(x,y) e o da verdade G(x,y).
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3 TRABALHOS RELACIONADOS

Neste capítulo, são apresentados os trabalhos relacionados utilizados como referência

para o desenvolvimento desta pesquisa, com foco em abordagens voltadas à segmentação

automática de dentes em radiografias panorâmicas.

Nader et al. (2022) propõem a Modified U-Net, uma versão da U-Net que incorpora

informações de localização via bounding boxes nas skip connections para melhorar a segmentação

dentária em imagens panorâmicas, especialmente em casos com ruído, sobreposição ou dentes

ausentes. O método ocorre em duas etapas: primeiro, a Mask R-CNN gera as bounding boxes

no conjunto DNS Panoramic, que contém 543 imagens panorâmicas; depois, essas caixas são

usadas como entradas auxiliares no treinamento da Modified U-Net. Testes com bounding boxes

manuais (Optimal U-Net) e automáticas mostraram um aumento de 5% a 10% no DSC em

relação à Modified U-Net. Os resultados mostram que a U-Net ótima alcançou um DSC médio

de 94,5%, seguida pela Modified U-Net com 89,5% e pela U-Net original com 85%. O melhor

desempenho da Modified U-Net foi especialmente evidente na segmentação de molares. Além

disso, ela superou a Mask R-CNN, apresentando segmentações mais precisas e consistentes,

comprovando a eficácia da inclusão das informações espaciais.

De forma semelhante, Joshi (2024) propõe uma metodologia baseada na arquitetura

U-Net para segmentação automática de dentes em radiografias panorâmicas. O conjunto de

dados utilizado neste estudo é o Tufts Dental Dataset (TDD), composto por 1000 radiografias

panorâmicas de raios-X e suas respectivas máscaras dentárias segmentadas por especialistas

odontológicos. A metodologia envolve etapas de pré-processamento das imagens, como nor-

malização, redimensionamento, remoção de ruído, realce de contraste e aumento de dados. O

modelo é treinado com funções de perda como Binary Cross-Entropy e Dice, aplicando técnicas

de regularização para evitar sobreajuste. A avaliação dos resultados, por meio do DSC 88% e do

IOU 79%, indica desempenho satisfatório do modelo na segmentação dentária. As segmentações

geradas são sobrepostas às radiografias com contornos, cores e medições, destacando o potencial

da U-Net para aplicações clínicas e acadêmicas em odontologia.

Buscando uma análise comparativa entre arquiteturas, Zannah et al. (2024) propõem

uma comparação abrangente de desempenho entre seis variantes da arquitetura U-Net aplicadas

à segmentação de imagens odontológicas: Vanilla U-Net, Dense U-Net, Attention U-Net, SE

U-Net, Residual U-Net e R2 U-Net, com o objetivo de identificar a variante com melhor

desempenho, custo e aplicabilidade clínica. O estudo utilizou 389 radiografias obtidas em uma
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clínica odontológica em Bogura, Bangladesh, com ampla variabilidade anatômica, faixas etárias

e qualidade visual. As imagens foram anotadas com Label Studio e pré-processadas por recorte,

redimensionamento e divisão em patches de 256×256 pixels, totalizando 6224 amostras.As redes

foram treinadas por 100 épocas com Dice Loss, otimizador Adam e batch size 16, seguindo a

estrutura clássica da U-Net com quatro blocos e operações padrão como convolução, pooling,

normalização e ativação. Os resultados indicaram que variantes com três camadas convolucionais

por bloco apresentaram desempenho superior, com destaque para a Dense U-Net que obteve

DSC 90,33% e IOU 89,07%, enquanto a R2 U-Net apresentou DSC 90,35%, embora com maior

complexidade e tempo de treinamento. Já a Vanilla U-Net com duas camadas demonstrou bom

equilíbrio entre simplicidade e desempenho, atingindo 88% em DSC e IOU, sendo considerada

mais adequada para aplicações clínicas.

Como desdobramento das investigações sobre variantes da U-Net, Sa̧hin et al. (2024)

propõem uma arquitetura U-Net 3+, baseada na U-Net, com conexões de salto multi-escala e

fusão de características, com o objetivo de desenvolver um modelo de segmentação preciso

e confiável de estruturas dentárias em radiografias panorâmicas. O modelo foi treinado com

radiografias panorâmicas de crianças (2 a 13 anos), do Children’s Dental Panoramic Radiographs

Dataset, incorporando imagens de adultos para diversificar o conjunto de dados. A arquitetura

possui quatro níveis de codificação e decodificação, usando camadas convolucionais, BatchNor-

malization, ReLU, pooling e upsampling com concatenação. Ela integra recursos em múltiplas

escalas para melhorar a extração de detalhes. O desempenho foi avaliado por meio de validação

cruzada com 5 dobras, utilizando 100 épocas de treinamento em cada divisão, o que garantiu

uma análise confiável dos resultados. A avaliação do modelo apresentou métricas robustas,

como Acurácia 97,36%, Precisão 93,25%, Sensibilidade 93,38%, DSC 93,31%, Acurácia por

pixel 97,36%, AUC 96,11%, Mean IOU 91,82% e Loss 0,0667, destacando seu potencial para

aplicações clínicas com segmentação dentária precisa e confiável.

Com uma proposta arquitetural diferenciada, Zhong et al. (2025) apresentam a

GCNet, uma arquitetura voltada para superar desafios comuns na segmentação de radiografias

panorâmicas, como o pequeno tamanho dos datasets, o alto nível de ruído e as fronteiras pouco

definidas entre dentes e tecidos periodontais. O modelo incorpora dois módulos centrais: o Grou-

ped Global Attention (GGA), responsável por capturar dependências globais e destacar regiões

relevantes, e o Cross-Layer Fusion (CLF), que integra informações de diferentes profundidades

para combinar detalhes estruturais e características semânticas. Essa combinação permite melho-
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rar a separação entre dentes e tecidos adjacentes, reduzir a sensibilidade ao ruído e preservar

contornos finos. O estudo utilizou o Dental Panoramic Radiographs Dataset, composto por 106

radiografias pediátricas e mais três conjuntos de adultos, totalizando 3.187 exames com máscaras

de segmentação. O treinamento foi realizado por 200 épocas, com batch size 2, otimizador Adam

e taxa de aprendizagem de 1×10−3 . A GCNet foi comparada com modelos amplamente usados

na literatura: U-Net, SegNet, Attention U-Net, Inf-Net, GT-U-Net e Teeth U-Net e apresentou

desempenho superior em todas as métricas: DSC 93,38%, Sensibilidade 94,26%, Especificidade

98,21%, E-MEASURE 97,12% e MAE 2,59%. A avaliação qualitativa reforçou esses achados,

mostrando contornos mais precisos e contínuos, além de menor variação de desempenho entre

radiografias pediátricas e de adultos, evidenciando maior robustez e capacidade de generalização.

Em um contexto complementar, Zhang et al. (2023) propõem a criação do primeiro

conjunto de dados público internacional de radiografias panorâmicas dentárias de crianças,

criado para apoiar tarefas de segmentação de cáries e detecção de doenças odontológicas por

meio de deep learning. A proposta surge da falta de bases pediátricas adequadas, já que os

datasets existentes concentram-se majoritariamente em adultos, cujas diferenças fisiológicas

limitam o uso clínico de modelos treinados exclusivamente nesses dados.O estudo reuniu 193

radiografias de 106 pacientes pediátricos (2 a 13 anos), anotadas com EISeg e LabelMe, formando

o Children’s Dental Panoramic Radiographs Dataset. Além disso, os autores incorporaram

2692 radiografias de três bases internacionais de adultos, ajustadas para incluir anotações da

estrutura dentária, ampliando a abrangência do conjunto. Para avaliar a aplicabilidade do dataset,

foram treinadas as arquiteturas U-Net, R2 U-Net, PSPNet e DeepLab V3+, todas com o mesmo

protocolo experimental (batch size 4, imagens 512×512 px e loss de entropia cruzada). A U-Net

obteve o melhor desempenho geral no conjunto infantil, com IOU de 83,87%, DSC de 91,20%,

ACC de 97,10%, Recall de 92,00% e Especificidade de 98,03%. Ainda assim, o DeepLab V3+

apresentou o maior Recall médio 94,86%, e o PSPNet atingiu a maior Especificidade 98,56%,

evidenciando a robustez do dataset para diferentes modelos.

Nesse contexto comparativo, Bhat et al. (2025) propõem avaliar e comparar a

eficácia de quatro arquiteturas avançadas de aprendizado profundo para segmentação dentária em

radiografias panorâmicas: U-Net, U-Net++, U-Net com codificador MobileNetV3 e DeepLab.

Essas arquiteturas foram selecionadas devido às suas diferentes capacidades de lidar com aspectos

essenciais da tarefa de segmentação, como a localização precisa dos contornos, a captura de

informações contextuais em múltiplas escalas e a eficiência computacional. Nesse estudo,
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foram utilizados dois conjuntos de dados: o da Faculdade de Tecnologia da Universidade Tufts

(TUFT), que contém 1000 radiografias panorâmicas dentárias com máscaras rotuladas, e o da

Universidade Federal da Bahia–Universidade Estadual de Santa Cruz (UFBA-UESC), disponível

publicamente e composto por 1500 radiografias panorâmicas. O processo de avaliação das redes

foi conduzido em três etapas. Primeiro, cada arquitetura foi testada separadamente nos datasets

TUFT e UFBA, permitindo identificar seu desempenho individual, etapa na qual a U-Net e a

U-Net++ apresentaram os melhores desempenhos. Em seguida, realizou-se a avaliação no dataset

combinado (TUFT + UFBA), totalizando 2500 radiografias, dividido em 80% para treino e 20%

para validação/teste, com as imagens redimensionadas para 512×512 px. Nessa fase, a U-Net++

demonstrou melhor capacidade de generalização e, por esse motivo, foi selecionada para um

treinamento adicional com diferentes configurações de hiperparâmetros. Nesse processo, foram

testados tamanhos de lote de 4, 8 e 16, sendo o batch size 8 o mais eficaz e três otimizadores

(SGD, Adam e Nadam), com o Adam apresentando o melhor desempenho, atingindo precisão

aproximada de 97% durante o treinamento. Após a otimização, a U-Net++ alcançou seus

melhores resultados: IOU de 86%, DSC de 90%, Acurácia de 96%, Precisão de 91% e Recall de

90%, confirmando sua robustez e eficácia na segmentação dentária.

Com foco em modificações estruturais da U-Net, Almalki et al. (2023) propõe uma

abordagem para segmentação dentária em radiografias panorâmicas baseada na U-Net Residual,

que incorpora conexões residuais para fortalecer o fluxo de gradientes e melhorar a segmentação.

A arquitetura inclui um codificador denoised para reduzir ruídos e extrair características mais

limpas. Neste estudo, foi utilizado o conjunto de dados Tufts Dental, composto por 1.000

radiográficas panorâmicas, todas anotadas por especialistas. O treinamento seguiu três etapas:

pré-processamento, configuração da arquitetura e otimização. No pré-processamento, as imagens

foram redimensionadas, valores ausentes tratados, e divisão dos dados em conjuntos de treino e

teste, e técnicas de aumento de dados aplicadas para melhorar a generalização. A arquitetura

utilizou camadas convolucionais duplas e pesos pré-treinados do ResNet50, e a otimização

contou com softmax para classificação pixel a pixel e função de perda por entropia cruzada.

Para avaliar o desempenho, o modelo foi comparado com outras arquiteturas, incluindo SegNet,

U-Net, ResNet, DeepLabV3, DeepLabV3+, U-Net++, PSPNet e FPN. Os resultados demonstram

excelente desempenho, com IOU médio de 98%, DSC médio de 98%, distância de Hausdorff

para o fundo de 1,617 e para a máscara estimada de 1,617. Em relação à segmentação, o

algoritmo implementado conseguiu delimitar com precisão as regiões defeituosas dos dentes,
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evidenciando o seu potencial área de segmentação dentária. Esses resultados indicam que

a abordagem desenvolvida é eficaz, e sua alta precisão e eficiência sugerem potencial para

aplicações na indústria odontológica.

Seguindo na mesma linha de aprimoramento arquitetural, Yaswanth et al. (2025)

propõem um modelo de segmentação dentária baseado em deep learning, utilizando uma U-

Net++ modificada integrada ao mecanismo de atenção ECA-Net, que reforça a extração de

características relevantes em nível de canal e mantém baixo custo computacional. Neste estudo,

utilizou-se o Tufts Dental Dataset, composto por 1.000 radiografias panorâmicas dentárias

anotadas por especialistas com detalhes sobre dentes e anomalias. Inicialmente, as imagens de

entrada foram normalizadas e binarizadas, sendo posteriormente organizadas em grupos para

o processo de treinamento. Concomitantemente, para assegurar consistência entre todos os

modelos avaliados - U-Net, FCNs, ENet, U-Net++, U-Net3+, SwiftNet e o modelo proposto

- foram adotadas as mesmas configurações de parâmetros em todos os experimentos. Dessa

forma, utilizou-se a função de perda Binary Cross-Entropy, o otimizador Adam com taxa de

aprendizagem de 0,0001. Além disso, todos os modelos foram treinados por 100 épocas, com

aplicação de early stopping para reduzir as perdas e evitar overfitting. Após o treinamento, o

desempenho das redes foi avaliado utilizando algumas métricas de segmentação. O modelo

proposto apresentou os melhores resultados, alcançando IOU de 83%, DSC de 90%, PSNR

de 16,77, mAP de 96% e acurácia de 97%. Na tarefa de segmentação dentária, a abordagem

demonstrou elevada eficácia, produzindo contornos consistentes, bem delineados e alinhados às

anotações profissionais. Portanto, os resultados obtidos evidenciam que a U-Net++, aliada ao

mecanismo de atenção ECA-Net, configura uma solução altamente eficiente para a segmentação

automática de dentes.

Por fim, Bouali et al. (2024) propõem investigar e comparar o desempenho de

quatro arquiteturas de redes neurais convolucionais do tipo UNet - UNet clássica, Attention

UNet, UNet3+ e TransUNet - partindo do pressuposto de que essas variantes apresentam

desempenho superior em tarefas de segmentação de imagens médicas quando comparadas a

CNNs tradicionais. Para a realização deste estudo, foram utilizados dois conjuntos de dados:

o New Tufts Dental Dataset, composto por 1.000 radiografias panorâmicas digitais obtidas na

Tufts University School of Dental Medicine e o UFBA-UESC Dental Images Dataset, que reúne

1.500 radiografias panorâmicas. No treinamento das quatro redes, os conjuntos de dados foram

divididos em 80% para treino e 20% para teste, com imagens redimensionadas e normalizadas
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para (256, 256, 3), exceto no TransUNet, que utilizou (64, 64, 3) devido ao maior número de

parâmetros. Empregou-se aprendizagem por transferência com VGG19 e ResNet50 pré-treinados

no ImageNet, atualizando apenas as camadas adicionais. O processo experimental foi conduzido

com o otimizador Adam, taxa de aprendizagem de 1×10−3, Binary Focal Loss, batch size 8

ou 16 e número de épocas ajustado a cada base: 150 para o Tufts e 50 para o UFBA-UESC.

No processo de avaliação, a UNet3+ com VGG19 apresentou o melhor desempenho geral,

alcançando DSC de 96,23% e IOU de 91,82% no Tufts, e DSC de 98,10% e IOU de 94,37%

no UFBA-UESC. O AttUnet com ResNet50 também se destacou em DSC, obtendo 96,98% no

Tufts e 97,16% no UFBA-UESC. O TransUNet-ResNet50 apresentou o melhor valor de IOU no

Tufts, atingindo 94,19%. Além disso, as quatro variantes da UNet superaram outras redes da

literatura, como UNet, UNet++, FCN+UNet, TSASNet e MSLPNet, em ambos os conjuntos de

dados. Esses resultados evidenciam a eficácia das arquiteturas UNet e os benefícios do uso de

modelos pré-treinados na segmentação de radiografias panorâmicas.

De forma geral, os trabalhos analisados evidenciam a ampla adoção de arquiteturas

baseadas na U-Net para a segmentação automática de dentes em radiografias panorâmicas, refle-

tindo avanços relevantes tanto no desenho das arquiteturas quanto nas estratégias de treinamento

e avaliação como observado na Tabela 1. Contudo, observa-se a ausência de procedimentos

fundamentais na literatura analisada, uma vez que não foi identificado o uso de Grid Search

para otimização de hiperparâmetros, não houve aplicação do teste estatístico de Wilcoxon para

verificar a existência de diferenças de desempenho entre as redes e não se verificou a integração

das redes que obtiveram o melhor desmpenho a um sistema CAD para uso prático em contextos

clínicos. Ademais, no que se refere às estratégias de validação, apenas Sa̧hin et al. (2024)

adotaram validação cruzada, enquanto somente Zhang et al. (2023) avaliou o desempenho das

redes em um conjunto externo para verificar a capacidade de generalização dos modelos para

dados não vistossendo que ambos esses procedimentos estiveram ausentes nos demais estudos

analisados. Em contraste, o presente trabalho busca suprir essas lacunas ao adotar um protocolo

experimental mais robusto, alinhado às limitações identificadas na literatura.

Uma comparação resumida entre os trabalhos relacionados e este estudo encontra-se

na Tabela 1.
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Tabela 1 – Comparação entre trabalhos relacionados e este trabalho
Trabalho Base de

Dados
Arquiteturas

Usadas
Métricas de
Avaliação

Teste
Estatístico

Sistema
CAD

Validação
Externa

Validação
Cruzada

Nader et al. (2022)
DNS Panorâmico

images
da IvisionLAB

Modified U-Net DSC ✗ ✗ ✗ ✗

Joshi (2024)
Tufts Dental

Dataset (TDD)
U-Net DSC,

IOU
✗ ✗ ✗ ✗

Zannah et al. (2024)
Conjunto de

dados exclusivo

Vanilla U-Net, Dense U-Net,
Attention U-Net, SE U-Net,
Residual U-Net, R2 U-Net

Acurácia, DSC,
F1 Score, IOU

✗ ✗ ✗ ✗

SAHIN et al. (2024)

Children’s Dental
Panoramic

Radiographs
Dataset

U-Net 3+

Acurácia,
Sensibilidade,

Precisão,
DSC, IOU,
Pixel Acc.,
AUC, Loss

✗ ✗ ✗ ✓

Zhong et al. (2025)

Children’s Dental
Panoramic

Radiographs
Dataset

GCNet,U-Net, SegNet, Attention U-Net,
Inf-Net, GT-U-Net,

Teeth U-Net

DSC, Sensibilidade,
Especificidade,

E-MEASURE, MAE
✗ ✗ ✗ ✗

Zhang et al. (2023)

Children’s Dental
Panoramic

Radiographs
Dataset

U-Net, R2 U-Net,
PSPNet, DeepLab V3

Sensibilidade,
Especificidade,

Acurácia,
Precisão, IOU, DSC

✗ ✗ ✓ ✗

Bhat et al. (2025)

UFBA-UESC Dental
Images Dataset,

Tufts Dental
Dataset (TDD)

U-Net, U-Net++,
U-Net + MobileNetV3,

DeepLab

IOU, DSC,
Acurácia,
Precisão,

Recall

✗ ✗ ✗ ✗

Almalki et al. (2023)
Tufts Dental

Dataset (TDD)

SegNet, U-Net Residual,U-Net, ResNet,
DeepLabV3, DeepLabV3+,

U-Net++, PSPNet, FPN

DSC médio,
IoU médio

✗ ✗ ✗ ✗

Yaswanth et al. (2025)
Tufts Dental

Dataset (TDD)

U-Net, FCNs, ENet,
U-Net++, U-Net 3+,

SwiftNet

IOU, DSC,
PSNR, mAP,

Acurácia
✗ ✗ ✗ ✗

Bouali et al. (2024)

UFBA-UESC Dental
Images Dataset,

Tufts Dental
Dataset (TDD)

U-Net, Attention U-Net,
U-Net 3+, TransUNet

IOU, DSC ✗ ✗ ✗ ✗

Este Trabalho

Children’s Dental
Panoramic

Radiographs
Dataset

U-Net, U-Net++,
U-Net 3+, W-Net,
Attention U-Net

Acurácia,
Especificidade,
Sensibilidade,

IOU, MAE, DSC,
E-MEASURE

✓ ✓ ✓ ✓

Fonte: Elaborada pelo autor.
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4 METODOLOGIA

Neste capítulo, é apresentada a metodologia empregada no desenvolvimento deste

trabalho, contemplando todas as etapas necessárias para a construção do modelo de segmentação

dental baseado em radiografias panorâmicas. Os experimentos seguem um fluxo sistemático que

se inicia com a aquisição do conjunto de dados e finaliza com a implementação do sistema CAD.

4.1 Visão Geral

A metodologia empregada nestre trabalho, incluindo suas principais etapas, está

ilustrada na Figura 12.

Figura 12 – Diagrama da metodologia empregada neste trabalho

Fonte: Elaborado pelo autor.

Primeiramente, estabelece-se o bloco de aquisição do conjunto de dados, composto

por radiografias panorâmicas e suas máscaras de segmentação correspondentes. Em seguida,

essas imagens passam por uma etapa de pré-processamento, a fim de assegurar maior qualidade

aos dados utilizados no treinamento das redes. Após isso, define-se o conjunto de arquiteturas a

serem utilizadas: U-Net, U-Net++, U-Net 3+, W-Net e Attention U-Net. Em seguida, inicia-se

o bloco de treinamento, no qual se aplicam as técnicas de Data Augmentation para ampliar a

diversidade do conjunto de dados, bem como a validação cruzada K-Fold, a fim de garantir

avaliações mais robustas. Além disso, utiliza-se a técnica de Grid Search para otimizar os
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hiperparâmetros de cada arquitetura.

Concluído o treinamento, os modelos são submetidos à validação externa, utilizando

dois subdiretórios do conjunto de dados empregados neste trabalho que não participaram das

etapas de treino, com o objetivo de avaliar sua capacidade de generalização. Em seguida,

o desempenho das arquiteturas é avaliado por meio das seguintes métricas: sensibilidade,

especificidade, acurácia, DSC, MAE, E-MEASURE e IOU. Por fim, foi desenvolvido um

sistema CAD no qual o modelo com melhor desempenho foi integrado, para permitir o envio de

radiografias panorâmicas e a geração automática das segmentações dentárias.

4.2 Aquisição do Conjunto de Dados

O conjunto de dados utilizado neste trabalho é o Children’s Dental Panoramic

Radiographs Dataset, que foi proposto no estudo de Zhang et al. (2023) como o primeiro

conjunto público internacional de radiografias panorâmicas dentárias de crianças, complementado

com imagens de pacientes adultos, para apoiar no processo de segmentação de cáries e a

detecção de condições bucais por meio de modelos de aprendizado profundo. Esse material está

disponibilizado publicamente na plataforma Kaggle, que é uma plataforma online dedicada à

ciência de dados e ao aprendizado de máquina e oferece acesso a conjuntos de dados públicos. A

estrutura geral do banco de dados é ilustrada na Figura 13.

Figura 13 – Estrutura do conjunto de dados

Fonte: Elaborada pelo autor
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No topo, tem-se o Children’s Dental Panoramic Radiographs Dataset, que corres-

ponde ao conjunto de dados completo e é composto por três subconjuntos distintos. O primeiro

é o Children’s Dental Caries Segmentation Dataset, que reúne 193 radiografias panorâmicas

infantis destinadas à segmentação da estrutura dental. O segundo é o Pediatric Dental Dise-

ase Detection Dataset, composto por 100 radiografias pediátricas, utilizado para a detecção

e classificação de dentes afetados por doenças, especialmente cáries. Por fim, tem-se o Adult

Tooth Segmentation Dataset, estruturado em três diretórios: Archive (116 imagens), composto

por radiografias panorâmicas dentárias obtidas no Centro de Imagem Médica Noor (Qom, Irã),

abrangendo uma ampla gama de condições odontológicas; Panoramic Radiography Database

(598 imagens), obtido a partir de pacientes selecionados aleatoriamente para um estudo de

aprimoramento de imagens; e Dataset and Code (1.978 imagens), adquirido em parte no Centro

de Diagnóstico por Imagem da UESB e em parte no Hospital Odontológico Hangzhou Lishui.

4.3 Pré-processamento e Preparação dos Dados

Como observado na Seção 4.2, o conjunto de dados completo é formado por dife-

rentes subconjuntos, contendo radiografias panorâmicas tanto de crianças quanto de adultos.

Entretanto, considerando que o escopo deste trabalho é a segmentação da arcada dentária em

pacientes adultos, cuja morfologia encontra-se completamente desenvolvida, o que reduz a

variabilidade anatômica e favorece a consistência das estruturas a serem segmentadas e, conse-

quentemente, beneficia o treinamento dos modelos, optou-se por selecionar apenas o subconjunto

correspondente a essa faixa etária, ou seja, a pasta Adult Tooth Segmentation Dataset, que

contempla os três diretórios de dados.

A primeira etapa de pré-processamento realizada a partir da escolha do subconjunto

a ser utilizado, consistiu em uma análise detalhada dos diretórios correspondentes. Durante

essa análise, verificou-se que o diretório Dataset and Code, originalmente contendo 1.978

imagens, apresentava 478 imagens duplicadas. A partir dessa identificação, esses dados foram

removidos para garantir a consistência do conjunto de dados e evitar redundâncias que poderiam

comprometer o treinamento e a avaliação dos modelos. Dessa forma, após essa remoção, o

diretório passou a conter 1.500 imagens e, ao se considerar esse quantitativo em conjunto com os

demais diretórios disponibilizados, o número total de imagens disponíveis passou a ser de 2.214.

Na sequência, foram realizadas as etapas de pré-processamento das imagens, a fim

de padronizar os dados para o treinamento das redes de segmentação. Inicialmente, todas as
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imagens foram convertidas para escala de cinza (grayscale), uma vez que a segmentação baseia-

se exclusivamente na intensidade dos pixels. Em seguida, imagens e máscaras, originalmente

com resolução de 2000 × 942 pixels, foram redimensionadas para a resolução de 256 × 512 pixels,

o que garante dimensões consistentes para o processamento pelas redes neurais. Os valores de

pixel das imagens foram então normalizados para a faixa [-1, 1], por meio da aplicação de uma

normalização com média 0,5 e desvio padrão 0,5, o que favorece a estabilidade numérica e a

convergência do processo de treinamento. Posteriormente, imagens e máscaras foram convertidas

em matrizes numéricas e representadas na forma de tensores, os quais são utilizados como entrada

pelos modelos de aprendizado profundo. As máscaras de segmentação foram binarizadas, de

modo que cada pixel assumisse valor 0 ou 1, o que corresponde às classes de fundo e dente, em

conformidade com a formulação da segmentação binária.

4.4 Arquiteturas de Redes Neurais para Segmentação

Com base no objetivo deste trabalho, que consiste em realizar a segmentação auto-

mática de dentes a partir de radiografias panorâmicas, foi realizada uma análise da literatura com

o intuito de identificar arquiteturas de CNN adequadas para executar essa tarefa com precisão e

eficiência. A partir desse levantamento, verificou-se que arquiteturas do tipo encoder–decoder,

especialmente aquelas baseadas na U-Net e suas variações, apresentam desempenho consistente

nessa tarefa, sendo, portanto, as selecionadas para implementação neste estudo.

Dentre as arquiteturas identificadas, foram selecionadas para este trabalho as seguin-

tes redes: U-Net, U-Net++, U-Net 3+, W-Net e Attention U-Net. A escolha desse conjunto de

redes neurais teve como objetivo possibilitar uma análise comparativa entre essas variações,

que se diferenciam principalmente pela forma como exploram conexões entre níveis, fusão

multiescala, mecanismos de atenção e estratégias de aprendizado, a fim de avaliar o impacto

dessas diferenças na segmentação dentária.

4.5 Treinamento dos modelos de segmentação

O processo de treinamento dos modelos de segmentação escolhidos foi conduzido

de forma sistemática, adotando as mesmas configurações, critérios de avaliação e estratégias de

validação para todas as arquiteturas, de modo a garantir uma avaliação consistente do desempenho

entre elas.
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4.5.1 Aumento de Dados

A técnica de aumento de dados foi aplicada exclusivamente ao conjunto de treina-

mento por meio da biblioteca Albumentations, em tempo de execução, abrangendo uma série

de transformações geométricas e fotométricas. As operações geométricas incluíram inversões

horizontais e verticais, rotações aleatórias com limite de até 30 graus e escalonamento aleató-

rio de −20% a +20% do tamanho original, aplicados com 50% de probabilidade, permitindo

simular variações de orientação, posicionamento e escala das radiografias. Foram empregadas

também transformações fotométricas, como ajustes de brilho e contraste, variação controlada

de intensidade, aplicação do método CLAHE para realce de contraste local e suavização por

desfoque Gaussiano, de modo a representar diferentes condições de aquisição e qualidade das

imagens. O uso dessa técnica teve como objetivo reduzir o risco de sobreajuste e melhorar a

capacidade de generalização dos modelos.

4.5.2 Ajuste de Hiperparâmetros e Validação Cruzada

Ao considerar que o Adult Tooth Segmentation Dataset, diretório escolhido para

esse estudo, é formado por três subdiretórios distintos, decidiu-se que para as etapas de ajuste

de hiperparâmetros (Grid Search) e também de treinamento final dos modelos seria utilizado

exclusivamente o diretório Archive que é composto por 116 imagens panorâmicas. A escolha

desse diretório para as etapas descritas anteriormente, esteve relacionada principalmente para

analisar o comportamento das arquiteturas selecionadas quando treinadas com um conjunto

limitado de dados, bem como à sua capacidade de generalização para dados não vistos.

Para cada arquitetura, foi utilizado o mesmo conjunto de hiperparâmetros, definido

com as seguintes configurações: taxas de aprendizado de 1×10−3 e 5×10−4, tamanho do lote

(batch size) igual a 8, e os otimizadores Adam e AdamW. A otimização desses hiperparâmetros

foi conduzida por meio da estratégia de Grid Search, na qual todas as combinações possíveis

dentro do espaço definido são testadas de forma exaustiva. Essa estratégia permitiu verificar de

que forma as diferentes combinações de hiperparâmetros afetavam os resultados das redes, para

garantir comparações justas entre elas e manter um bom equilíbrio entre estabilidade, aprendizado

correto e eficiência. Durante essa etapa, cada configuração foi treinada por 50 épocas, número

considerado suficiente para a convergência inicial dos modelos e para permitir comparação

consistente entre as combinações avaliadas. Além disso, o treinamento foi realizado de forma
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supervisionada, utilizando a função de perda combined loss, que combina BCEWithLogitsLoss e

Dice Loss para penalizar discrepâncias entre as máscaras preditas e as máscaras de referência. Os

pesos das redes foram ajustados por retropropagação do erro, utilizando os otimizadores Adam

ou AdamW, conforme a configuração avaliada.

A avaliação das diferentes configurações foi realizada utilizando validação cruzada

k-fold, com k = 10. Em cada fold, o conjunto de dados do diretório Archive foi dividido em

subconjuntos de treinamento e teste, sendo que o subconjunto de treinamento foi, por sua vez,

dividido em treinamento e validação. Com isso, o pipeline efetivamente utiliza aproximadamente

72% dos dados para treino, 18% para validação e 10% para teste em cada fold. Essa estratégia

garante que todas as amostras sejam aproveitadas tanto para treinamento quanto para validação

ao longo do processo, isso reduz o viés de uma única divisão e fornece uma estimativa mais

confiável da capacidade de generalização dos modelos.

Ao final de cada fold, selecionou-se como melhor configuração aquela que apresentou

o maior valor de DSC no conjunto de validação, e os pesos do modelo correspondentes, bem

como os hiperparâmetros associados, foram armazenados para uso posterior. O conjunto de teste

de cada fold foi utilizado para a avaliação do desempenho da configuração selecionada. Após a

conclusão de todos os folds da validação cruzada, a configuração global final de hiperparâmetros

de cada arquitetura foi definida com base no maior valor médio de DSC obtido no conjunto de

teste, o que garante uma seleção mais robusta e menos dependente de variações específicas do

conjunto de dados.

Após a definição da melhor configuração de cada rede, realizou-se o treinamento

final dos modelos no conjunto completo Archive, utilizando as configurações ótimas de hiperpa-

râmetros. Nessa etapa, os modelos foram treinados por 50 épocas, para garantir consistência

metodológica com a fase de otimização e aplicando as mesmas estratégias adotadas anterior-

mente, ou seja, aumento de dados e otimização por Adam ou AdamW. Ao término do treinamento,

os modelos finais foram armazenados para uma posterior avaliação quantitativa.

4.6 Validação externa

Após o treinamento final dos modelos utilizando o dataset Archive com a melhor

configuração de hiperparâmetros obtida via Grid Search e validação cruzada k-fold, foi utilizada

a técnica de validação externa para avaliar a capacidade de generalização dos modelos em

dados não vistos durante o treinamento. Para isso, foram utilizados os outros dois subdiretórios
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que compõem o conjunto de dados de pacientes adultos: Dataset and code e o Panoramic

Radiography Database. Antes da inferência, todas as imagens e suas respectivas máscaras desses

conjuntos passaram pelo mesmo fluxo de pré-processamento adotado na fase de validação, ou

seja redimensionamento, normalização e conversão para tensores PyTorch, isso visa assegurar

a padronização dos dados de entrada e a consistência com o procedimento utilizado durante o

treinamento dos modelos. Em seguida, os modelos finais, ajustados com a melhor configuração

global de hiperparâmetros, foram carregados para realizar a inferência, o que possibilitou a

avaliação individual de todas as imagens dos datasets externos.

Para verificar o desempenho de cada arquitetura no processo de segmentação das

estruturas dentárias, cada uma das redes gerou 10 máscaras por dataset, armazenadas em

formato PNG. Esse procedimento possibilitou a realização de uma análise qualitativa visual

do comportamento das redes e permitiu a comparação entre as arquiteturas quanto à qualidade

dos contornos segmentados, à coerência das regiões identificadas e à preservação das estruturas

dentárias de interesse. Além disso, a adoção de um número reduzido de máscaras evita o

armazenamento excessivo de arquivos e mantém, ainda assim, uma amostra representativa da

capacidade de generalização dos modelos em dados externos.

4.7 Avaliação de desempenho

Para avaliar o desempenho dos modelos no processo de validação externa utilizando

os dois conjuntos de dados citados na seção 4.6, selecionamos um conjunto de métricas de avalia-

ção que são amplamente utilizadas em tarefas de segmentação de imagens. Essas métricas foram

escolhidas pois quantificam, de forma objetiva, a correspondência entre as regiões segmentadas

pelos modelos e as máscaras de referência, isso permite avaliar tanto a sobreposição quanto os

erros de segmentação. Dessa forma, após uma busca na literatura, as métricas escolhidas foram:

Acurácia, Sensibilidade, Especificidade, Intersecção sobre União (IOU), Coeficiente de Simi-

laridade de Dice (DSC), Erro Médio Absoluto (MAE) e Medida de Alinhamento Aprimorada

(E-MEASURE), as quais estão detalhadamente descritas no Capítulo 2.15 da Fundamentação

Teórica.
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4.8 Ambiente de desenvolvimento

Os experimentos foram realizados em um computador com sistema operacional

Linux, com distribuição Ubuntu, GPU NVIDIA GeForce RTX 3090, com 24 GB de memória

dedicada, processador Intel Core i7 e 32 GB de memória RAM. O ambiente computacional

contou com driver NVIDIA versão 580.95.05 e suporte à CUDA 13.0. A implementação foi

desenvolvida na linguagem de programação Python, tendo como principal biblioteca o PyTorch,

empregado na definição, treinamento e avaliação das arquiteturas de redes neurais. Como suporte

ao pipeline experimental, foram utilizadas bibliotecas auxiliares: Albumentations para aumento

de dados, NumPy e Pandas para manipulação de dados, scikit-learn e imbalanced-learn para

cálculo das métricas de avaliação e validação experimental.

4.9 Análise Estatística: Teste de Wilcoxon

A partir da etapa de avaliação dos modelos com as métricas selecionadas, foi apli-

cado o teste estatístico não paramétrico de Wilcoxon para amostras pareadas, com o objetivo de

verificar se as diferenças observadas no desempenho das arquiteturas avaliadas são estatistica-

mente significativas. Esse teste compara duas amostras relacionadas a partir das diferenças entre

observações correspondentes e foi escolhido por não assumir normalidade dos dados, além de

ser adequado à comparação de desempenhos obtidos a partir dos mesmos conjuntos de dados.

O teste foi conduzido com base nos valores do Coeficiente de Similaridade de Dice (DSC)

obtidos durante o processo de validação cruzada k-fold, com comparações pareadas entre todas

as combinações de arquiteturas avaliadas.

Para cada par de modelos, foram considerados os valores de DSC correspondentes

aos mesmos folds, o que assegurou a comparabilidade direta entre os resultados. O nível de

significância adotado foi de 5% (α = 0,05), sendo consideradas estatisticamente significativas as

diferenças com p-value inferior ou igual a esse limiar. Dessa forma, o teste de Wilcoxon permitiu

identificar se as variações de desempenho observadas entre as arquiteturas refletem diferenças

estatisticamente significativas ou não.

4.10 Desenvolvimento do Sistema CAD

A partir do processo de avaliação dos modelos implementados e da análise dos

resultados gerados por cada um deles, aliado à análise estatística por meio do teste de Wilcoxon,
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selecionou-se o modelo de segmentação que apresentou o melhor desempenho no processo

de segmentação das estruturas dentárias em comparação com as demais arquiteturas avaliadas.

Diante desse resultado, o modelo foi incorporado a um sistema CAD desenvolvido neste trabalho,

com o objetivo de viabilizar a aplicação prática do método proposto. Conforme ilustrado na

Figura 14, o sistema foi desenvolvido de modo a permitir a interação direta do usuário com a

plataforma, de forma a possibilitar a execução automática do modelo previamente treinado.

Figura 14 – Fluxo do Sistema CAD

Fonte: Elaborado pelo autor.

O sistema CAD foi implementado utilizando o Streamlit, uma biblioteca Python de

código aberto que permite o desenvolvimento rápido de aplicações web interativas e visualmente

atrativas com o mínimo de codificação, o que possibilita a criação de interfaces dinâmicas e

facilita a integração entre modelos de aprendizado profundo e aplicações baseadas na web.

Inicialmente, o usuário envia uma radiografia panorâmica por meio da interface

web. Após o envio, o sistema realiza o carregamento do modelo de segmentação selecionado e

executa o processo de inferência sobre a imagem submetida. Como resultado, a rede neural gera

a máscara de segmentação correspondente às estruturas dentárias. O resultado do processamento

é apresentado diretamente ao usuário, com a exibição da máscara de segmentação em conjunto

com a radiografia panorâmica original, o que permite a análise comparativa dos resultados.

Além disso, o sistema oferece a opção de exportação, permitindo o download de um arquivo em

formato PDF que contém a radiografia panorâmica e a segmentação gerada lado a lado. Essa

integração demonstra que o modelo escolhido pode ser aplicado em um ambiente computacional

acessível, o que evidencia a transição de um método experimental para uma solução funcional

baseada na web, com potencial de aplicação em ambientes clínicos controlados.
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5 RESULTADOS E DISCUSSÕES

Neste capítulo, são apresentados e discutidos os resultados obtidos a partir da

metodologia proposta no Capítulo 4. Inicialmente, são exibidas as melhores configurações

de hiperparâmetros de cada arquitetura, obtidas por meio do procedimento de Grid Search e

validação cruzada. Na sequência, são exibidos os resultados obtidos na etapa de validação

externa, referentes ao Dataset and code e ao Panoramic Radiography Database, que mostram o

desempenho das redes nesses conjuntos de dados e permitem a análise de seu comportamento

em ambos. Após essa etapa, é discutida a análise estatística do desempenho das redes, obtida por

meio do teste estatístico de Wilcoxon, para verificar se houve diferenças significativas entre elas.

Por fim, apresenta-se o sistema CAD desenvolvido, com demonstração de seu funcionamento

por meio de exemplos de radiografias panorâmicas e das segmentações geradas, para demonstrar

sua aplicabilidade prática.

5.1 Resultados da seleção de hiperparâmetros por arquitetura

A Tabela 2 apresenta as melhores configurações de hiperparâmetros obtidas para

cada arquitetura. Para cada rede, são exibidos os parâmetros que resultaram no maior valor

médio de DSC durante o processo de seleção, incluindo a learning rate, o tamanho do batch e o

otimizador.

Tabela 2 – Melhor configuração de hiperparâmetros de cada arquitetura
Arquitetura Batch size Learning rate Otimizador

Attention U-Net 8 5×10−4 Adam
U-Net 3+ 8 5×10−4 Adam
U-Net++ 8 5×10−4 AdamW

U-Net 8 5×10−4 AdamW
W-Net 8 5×10−4 Adam

Fonte: Elaborada pelo autor.

Conforme observado na Tabela 2, as arquiteturas diferiram apenas quanto ao oti-

mizador utilizado, indicando que, embora existam hiperparâmetros comuns que favorecem a

convergência, como batch size e learning rate, a estratégia de atualização dos pesos impacta

de forma distinta o desempenho das redes. Em particular, Attention U-Net, U-Net 3+ e W-Net

obtiveram melhores resultados com Adam, enquanto U-Net e U-Net++ apresentaram desem-

penho superior com AdamW. Essa diferença sugere que arquiteturas com blocos de atenção,
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conexões densas aninhadas e maiores níveis de profundidade hierárquica se beneficiam de menor

regularização explícita, permitindo maior flexibilidade na adaptação dos pesos, o que é relevante

em dados clínicos com ruído e variabilidade anatômica elevada.

Por outro lado, redes como U-Net e U-Net++, que dependem fortemente da propaga-

ção de características de baixo nível por meio de skip connections e refinamento progressivo

das representações, se beneficiam de uma regularização mais explícita, como a introduzida pelo

AdamW, o que favorece a estabilidade durante o treinamento e melhor capacidade de genera-

lização. A padronização da learning rate e do batch size para todas as arquiteturas evidencia

que esses hiperparâmetros forneceram equilíbrio adequado entre estabilidade e eficiência no

processo de treinamento. Por fim, as configurações indicadas na Tabela 2 foram utilizadas no

treinamento final das arquiteturas, de modo a assegurar um treinamento mais consistente e o

melhor desempenho possível para cada uma delas.

5.2 Resultados da avaliação no conjunto de teste

Os resultados apresentados na Tabela 3 correspondem ao desempenho das arquite-

turas avaliadas no conjunto de teste durante a etapa de ajuste de hiperparâmetros e validação

cruzada em 10 folds. Em cada fold, as métricas foram calculadas a partir do subconjunto de

teste, e os valores reportados representam a média e o desvio padrão obtidos ao longo das dez

iterações, o que reflete a consistência do desempenho das arquiteturas ao longo do processo de

avaliação.

Tabela 3 – Resultados das métricas no conjunto de teste.
ARQUITETURA ACURÁCIA ESPECIFICIDADE SENSIBILIDADE E-MEASURE MAE IOU DSC

U-Net 0,983±0,002 0,990±0,002 0,950±0,011 0,977±0,002 0,017±0,002 0,905±0,008 0,950±0,004
U-Net++ 000,,,999888555±±±000,,,000000111 000,,,999999111±±±000,,,000000222 000,,,999555222±±±000,,,000111000 000,,,999777999±±±000,,,000000111 000,,,000111555±±±000,,,000000111 000,,,999111333±±±000,,,000000666 000,,,999555444±±±000,,,000000333
U-Net 3+ 0,962±0,002 0,973±0,005 0,906±0,018 0,946±0,004 0,038±0,002 0,801±0,006 0,889±0,004

Attention U-Net 0,983±0,001 0,990±0,002 0,947±0,008 0,977±0,002 0,017±0,001 0,905±0,006 0,950±0,004
W-Net 0,983±0,002 0,990±0,002 0,948±0,010 0,977±0,002 0,017±0,002 0,905±0,008 0,950±0,004

Fonte: Elaborado pelo autor.

Conforme observado na Tabela 3, as arquiteturas U-Net, U-Net++, Attention U-Net

e W-Net apresentaram os melhores desempenhos globais no conjunto de teste, com valores

médios elevados de acurácia, especificidade, sensibilidade, E-MEASURE, IOU e DSC, além

de baixos valores de MAE. Esses resultados indicam elevada capacidade de segmentação das

estruturas dentárias, tanto em termos de classificação pixel a pixel quanto de sobreposição

entre as máscaras preditas e as máscaras de referência. Entre os modelos avaliados, a U-Net++
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destacou-se de forma consistente por apresentar as maiores médias nas métricas de sobreposição

espacial (IOU e DSC), sugerindo melhor delineamento das regiões segmentadas. As arquiteturas

U-Net, Attention U-Net e W-Net, por sua vez, exibiram desempenhos muito próximos entre si

em todas as métricas analisadas, com desvios padrão reduzidos, o que evidencia estabilidade e

baixa variabilidade dos resultados ao longo dos folds.

Em contraste, a arquitetura U-Net 3+ apresentou desempenho inferior em relação

às demais, especialmente nas métricas IOU e DSC, além de maiores valores de MAE, o que

indica menor concordância espacial entre as segmentações preditas e as máscaras da verdade

fundamental. Ainda assim, os desvios padrão relativamente baixos sugerem que esse comporta-

mento foi consistente ao longo das diferentes partições do conjunto de dados. De forma geral, a

combinação de altos valores médios e baixa dispersão das métricas para a maioria das arquite-

turas reforça a confiabilidade dos resultados obtidos, isso indica que os modelos apresentaram

desempenho consistente na segmentação das estruturas dentárias, com comportamento estável e

pouca variação entre as amostras avaliadas.

5.3 Resultados no conjunto de dados Dataset and code

Os resultados referentes ao conjunto Dataset and code estão apresentados na Tabela

4. Neste estudo, cada métrica avalia um aspecto específico da segmentação das estruturas

dentárias. A acurácia indica o percentual total de pixels corretamente classificados como dentes

ou como fundo, a sensibilidade está relacionada à capacidade do modelo de detectar corretamente

as regiões de interesse e mostra o quanto ele identifica os verdadeiros positivos e a especificidade

avalia o quão bem o modelo reconhece as regiões de fundo, refletindo o controle sobre a geração

de falsos positivos. Além disso, o DSC e a IOU quantificam a sobreposição entre a máscara

predita e a referência, sendo a IOU mais rigorosa ao penalizar pequenas diferenças espaciais nas

bordas dentárias. Por sua vez, o MAE indica o desvio médio pixel a pixel entre a predição e a

referência, enquanto a E-MEASURE avalia o alinhamento global da segmentação e analisa a

coerência estrutural da dentição.
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Tabela 4 – Resultados das métricas no Dataset and code
ARQUITETURAS ACURÁCIA ESPECIFICIDADE SENSIBILIDADE E-MEASURE MAE IOU DSC

U-Net 0,952 0,995 0,782 0,914 0,048 0,767 0,868

U-Net++ 0,953 0,994 0,789 0,917 0,047 0,772 0,871

U-Net 3+ 0,946 0,991 0,768 0,906 0,054 0,741 0,851

Attention U-Net 0,951 0,994 0,778 0,912 0,049 0,760 0,864

W-Net 0,955 0,992 0,809 0,925 0,045 0,785 0,879

Fonte: Elaborado pelo autor.

Como mostra a Tabela 4, todas as arquiteturas apresentaram acurácia elevada, eviden-

ciando um desempenho consistente na distinção entre dentes e fundo. De forma complementar, a

alta especificidade indica que os modelos foram eficazes em reconhecer corretamente as regiões

de fundo, reduzindo a ocorrência de falsos positivos. Esse comportamento é particularmente

relevante no contexto clínico, pois evita a identificação indevida de estruturas inexistentes como

dentes, minimizando ruídos na segmentação e aumentando a confiabilidade do sistema CAD

como ferramenta de apoio ao diagnóstico. No detalhamento dos demais resultados, observa-se

que a U-Net apresentou desempenho sólido como modelo base, com IOU de 0,767 e DSC de

0,868. Isso deixa claro que houve uma boa sobreposição entre as máscaras geradas por ela

quando comparada a verdade fundamental, ainda com pequenas imprecisões nos contornos

dentários. A sensibilidade de 0,782 indica recuperação consistente das regiões de interesse, com

baixa perda estrutural. Já em termos de fidelidade local, o MAE de 0,048 e a E-MEASURE de

0,914 sugerem segmentações estáveis e com baixo erro pixel a pixel.

Em paralelo, a U-Net++ apresentou um leve avanço em relação à U-Net, especial-

mente nos contornos dentários. Isso se refletiu quando observado o aumento do IOU 0,772 e

do DSC 0,871, indicando sobreposição mais precisa e melhor preservação dos contornos dentá-

rios. Ademais, a sensibilidade superior 0,789 aponta maior recuperação das regiões dentárias,

enquanto o menor MAE e o maior valor de E-MEASURE reforçam a redução de erros locais

e a maior coerência estrutural, aspecto atribuído às skip connections densas. Por outro lado, a

U-Net 3+ apresentou os menores valores globais, com IOU de 0,741 e DSC de 0,851, revelando

menor sobreposição e maior fragmentação das máscaras. A sensibilidade de 0,768 sugere maior

incidência de falsos negativos, o que resulta em perda de detalhes dentários; o MAE mais elevado

e a menor E-MEASURE corroboram o aumento do erro local e a menor consistência estrutural,

aspecto que evidencia limitações da arquitetura neste conjunto.

De maneira intermediária, a Attention U-Net obteve desempenho situado entre os

modelos anteriores, com IOU de 0,760 e DSC de 0,864, próximos aos da U-Net, indicando
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contornos estáveis, porém sem ganhos expressivos em sobreposição. A sensibilidade de 0,778

reforça sua capacidade moderada de recuperar as regiões dentárias. Em complemento, os valores

de MAE e E-MEASURE indicam precisão local e coerência estrutural semelhantes às da U-Net.

Por fim, a W-Net destacou-se como a melhor arquitetura, com os maiores valores

de IOU 0,785 e DSC 0,879, o que demonstra excelente preservação da forma e dos contornos

dentários, com sobreposição mais consistente entre predição e a verdade fundamental. Sua

sensibilidade foi a mais alta 0,809, para deixar claro sua capacidade de recuperar integralmente

as regiões dentárias. Além disso, apresentou o menor MAE, isso reflete em um menor nível de

erro local, e o maior valor de E-MEASURE, para confirmar o alinhamento estrutural superior e

consolidando a W-Net como o melhor desempenho entre as arquiteturas avaliadas.

5.4 Resultados no conjunto de dados Panoramic Radiography Database

A Tabela 5 apresenta os resultados das métricas obtidas no segundo conjunto da

validação externa Panoramic Radiography Database, para garantir a comparabilidade entre as

arquiteturas avaliadas.

Tabela 5 – Resultados das métricas no Panoramic Radiography Database
ARQUITETURAS ACURÁCIA ESPECIFICIDADE SENSIBILIDADE E-MEASURE MAE IOU DSC

U-Net 0,980 0,983 0,956 0,972 0,020 0,844 0,915

U-Net++ 0,981 0,984 0,963 0,973 0,019 0,852 0,920

U-Net 3+ 0,970 0,978 0,903 0,960 0,030 0,770 0,870

Attention U-Net 0,982 0,984 0,965 0,975 0,018 0,858 0,924
W-Net 0,977 0,980 0,957 0,966 0,023 0,824 0,904

Fonte: Elaborado pelo autor.

Conforme observado na Tabela 5, o desempenho nas métricas de acurácia e especifi-

cidade manteve-se elevado, seguindo o mesmo comportamento verificado no conjunto anterior.

Esse resultado indica que, em ambos os datasets, as arquiteturas foram capazes de generalizar

adequadamente na distinção entre estruturas dentárias e fundo. Além disso, tal comportamento

sugere controle consistente de falsos positivos e boa adequação dos modelos às características

radiográficas deste conjunto externo. Quanto ao desempenho individual, a U-Net apresentou

avanço expressivo em relação ao primeiro conjunto, atingindo IOU de 0,844 e DSC de 0,915,

com máscaras mais bem ajustadas aos contornos dentários. Essa melhora se refletiu também na

recuperação das regiões de interesse, com sensibilidade de 0,956, e no alinhamento estrutural,

dada a redução do MAE e o aumento da E-MEASURE, o que resultou em segmentações mais
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estáveis.

Ao analisar a U-Net++, percebe-se que ela manteve as melhorias previamente

observadas nas métricas de sobreposição, alcançando IOU de 0,852 e DSC de 0,920, valores

que denotam contornos mais refinados e maior aderência espacial. Nesse caso, a capacidade

de captura das regiões dentárias foi ainda maior, uma vez que o modelo alcançou sensibilidade

de 0,963, enquanto os ganhos em MAE e E-MEASURE consolidaram a coerência global e

local das segmentações. Esse conjunto de resultados reforça o papel das skip connections

densas no refinamento estrutural das máscaras. No que concerne à U-Net 3+, observou-se uma

melhora absoluta em todas as métricas, embora a arquitetura tenha permanecido como a de

menor desempenho relativo neste conjunto externo. Com IOU de 0,770 e DSC de 0,870, o

modelo apresentou maior fragmentação nas regiões dentárias, com falhas na continuidade dos

contornos, o que resulta em uma máscara menos fiel à estrutura real dos dentes, enquanto a

sensibilidade de 0,903 ainda denota perda de detalhes dentários; mesmo assim, esses valores

mostram-se suficientes para produzir uma segmentação precisa. O MAE mais elevado e o

menor E-MEASURE entre as arquiteturas confirmam segmentações menos consistentes e maior

incidência de falsos negativos.

Em contraste, a W-Net apresentou desempenho sólido, com maior precisão local,

evidenciada pelo menor MAE entre as arquiteturas, e bom desempenho estrutural. O IOU

de 0,824 e o DSC de 0,904 indicam que as máscaras preditas mantiveram boa sobreposição

com a verdade fundamental, preservando os contornos dentários e a continuidade das regiões

segmentadas. A sensibilidade de 0,957 demonstra elevada capacidade de recuperar integralmente

as regiões dentárias, reduzindo a perda de detalhes. Além disso, manteve-se bom desempenho

na preservação da forma e dos contornos dentários, comportamento já observado no conjunto

anterior.

Por fim, a Attention U-Net apresentou o melhor desempenho global no Panoramic

Radiography Database. Com os maiores valores de IOU 0,858 e DSC 0,924, as máscaras

produzidas pelo modelo demonstraram excelente correspondência com a referência, com contor-

nos dentários mais precisos e continuidade das regiões segmentadas. A sensibilidade de 0,965

evidenciou que quase todas as regiões dentárias foram corretamente identificadas, o que reflete

elevada capacidade de detecção de áreas críticas. Além disso, com o menor MAE 0,018 e o maior

E-MEASURE 0,975, as segmentações apresentaram maior uniformidade e coerência estrutural,

aspecto que evidencia a contribuição efetiva do mecanismo de atenção para realçar as regiões de



66

interesse.

5.5 Análise qualitativa das máscaras segmentadas

Como descrito na Seção 4.6, a avaliação qualitativa do processo de segmentação foi

realizada a partir da inspeção visual das máscaras geradas pelas arquiteturas na etapa de validação

externa. Para exemplificação, foram selecionadas duas amostras de cada rede, mantendo o caráter

ilustrativo da comparação entre os modelos. A Figura 15 apresenta os resultados das máscaras

nos dois conjuntos de dados.

Figura 15 – Resultados qualitativos da segmentação: A - Dataset and code; B - Panoramic Radiography
Database

Fonte: Elaborado pelo autor.

Conforme ilustrado nas Figuras 15 (A) e (B), os resultados qualitativos da segmen-

tação dental evidenciam algumas diferenças entre as arquiteturas avaliadas nos dois conjuntos

de dados. Observa-se que a U-Net apresentou limitações recorrentes em ambos os conjuntos

de dados, evidenciadas principalmente pela fragmentação das regiões dentárias, pela desconti-

nuidade dos arcos e pela inclusão de pequenas áreas indevidas, conforme indicado nas regiões

destacadas. Esses resultados indicam dificuldades do modelo em lidar com variações anatômicas

mais complexas e em manter contornos dentários bem definidos, especialmente em regiões de

sobreposição e baixo contraste. Em contrapartida, a U-Net++ apresentou desempenho qualitativo

consistente nos dois cenários avaliados, pois produziu segmentações mais regulares e visualmente

coerentes. Observa-se melhor preservação da forma dentária, com contornos mais contínuos e
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próximos às máscaras de referência, inclusive em regiões estruturalmente mais complexas, o que

indica maior estabilidade do modelo e menor ocorrência de artefatos.

Por outro lado, a U-Net 3+ demonstrou maior instabilidade visual ao longo das

amostras analisadas. As segmentações exibiram falhas recorrentes na definição das estruturas

dentárias, com regiões irregulares, variações de espessura e perdas de continuidade, o que sugere

dificuldades de generalização quando aplicada a imagens panorâmicas com maior variabilidade

anatômica e presença de ruídos. De forma intermediária, a Attention U-Net apresentou apenas

um refinamento parcial das regiões de interesse. Embora o mecanismo de atenção contribua para

destacar áreas relevantes, ainda foram observadas inconsistências em regiões de sobreposição

dentária e pequenas falhas de segmentação, especialmente nas regiões posteriores, resultando

em ganhos qualitativos limitados em relação à U-Net padrão. Por fim, a W-Net demonstrou

bom desempenho qualitativo, com redução de ruídos e preservação adequada da forma geral

dos dentes. As segmentações mostraram-se mais homogêneas e menos fragmentadas quando

comparadas à U-Net e à U-Net 3+, porém, em comparação direta com a U-Net++, ainda

apresentaram ocorrências pontuais de espessamento excessivo e pequenas imprecisões nos

limites segmentados.

No contexto do atendimento clínico, as falhas qualitativas observadas na segmentação

apresentada na Figura 15 podem induzir interpretações incorretas da imagem radiográfica. Nesse

sentido, a união indevida de dentes adjacentes em uma única estrutura pode levar à interpretação

equivocada de fusão dentária ou ausência de espaço interdentário, enquanto a fragmentação

ou segmentação incompleta das raízes pode sugerir, de forma incorreta, a presença de fraturas

radiculares ou alterações estruturais inexistentes. Assim, esse tipo de erro pode impactar

diretamente o diagnóstico, uma vez que o profissional pode considerar como patológica uma

condição que não está presente na imagem original.

5.6 Análise estatística por meio do teste de Wilcoxon

Para avaliar se as diferenças de desempenho entre as arquiteturas eram estatistica-

mente significativas, foi aplicado o teste de Wilcoxon com base nos valores do DSC obtidos

durante o processo de validação cruzada. A Tabela 6 sintetiza os p-value das comparações

pareadas entre as redes, considerando o nível de significância adotado (α = 0,05).



68

Tabela 6 – Teste de Wilcoxon: comparação entre arquiteturas
Comparação p-value Diferença estatisticamente significativa
U-Net × AttU-Net 1,00 ✗

U-Net × U-Net 3+ 0,01 ✓

U-Net × U-Net++ 0,02 ✓

U-Net × W-Net 1,00 ✗

U-Net 3+ × AttU-Net 0,01 ✓

U-Net++ × AttU-Net 0,01 ✓

U-Net++ × U-Net 3+ 0,01 ✓

W-Net × AttU-Net 0,69 ✗

W-Net × U-Net 3+ 0,01 ✓

W-Net × U-Net++ 0,02 ✓

Fonte: Elaborado pelo autor.

Com base na Tabela 6, a U-Net não apresentou variações relevantes em comparação

à Attention U-Net e à W-Net (p-value = 1,00 em ambos os casos), indicando, portanto, equi-

valência de desempenho entre esses modelos no conjunto de dados avaliado. Entretanto, ao

comparar a U-Net com arquiteturas mais elaboradas, observaram-se diferenças estatísticas, sendo

que a U-Net difere da U-Net 3+ (p-value = 0,01) e da U-Net++ (p = 0,02), o que evidencia

que as modificações arquiteturais desses modelos impactam de forma relevante os resultados de

segmentação.

Adicionalmente, a U-Net 3+ apresentou discrepâncias notáveis na maioria das com-

parações realizadas, o que reforça seu comportamento distinto em relação às demais arquiteturas

e sugerindo que sua estratégia de agregação multiescala e maior complexidade estrutural produ-

zem respostas diferenciadas no contexto avaliado. A U-Net++ também se destacou, apresentando

resultados estatisticamente distintos em relação à Attention U-Net e à U-Net 3+ (p-value= 0,01),

isso indica um padrão de desempenho consistente e superior frente a abordagens menos sofisti-

cadas. No que se refere à W-Net, não houve diferença relevante em relação à Attention U-Net

(p-value = 0,69), o que sugere equivalência de desempenho entre essas redes. Contudo, ao

compará-la à U-Net 3+ e à U-Net++, observaram-se variações significativas (p− value < 0,05),

isso evidencia que, embora a W-Net apresente desempenho competitivo, ela responde de maneira

distinta frente a modelos com estratégias arquiteturais específicas.

De modo geral, o teste de Wilcoxon revela que arquiteturas que empregam estratégias

de agregação mais densas, como a U-Net 3+ e a U-Net++, apresentam resultados superiores

em relação à U-Net, com base nos valores do DSC. Por outro lado, os resultados obtidos com a

W-Net e a Attention U-Net mostram que maior complexidade arquitetural nem sempre se traduz
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em melhorias relevantes em relação à U-Net clássica. Esses achados ressaltam a importância da

análise estatística para confirmar se alterações estruturais efetivamente proporcionam benefícios

práticos no cenário do conjunto de dados analisado.

5.7 Seleção da melhor arquitetura

Com base na análise dos resultados quantitativos, observou-se que, no primeiro

conjunto de dados Dataset and code, a W-Net apresentou o melhor desempenho, enquanto,

no segundo conjunto Panoramic Radiography Database, a Attention U-Net se destacou como

a melhor. Na avaliação estatística por meio do teste de Wilcoxon, as arquiteturas U-Net 3+

e U-Net++ apresentaram diferenças estatisticamente significativas em relação a outras redes,

tornando evidente seu desempenho diferenciado. Além disso, a análise qualitativa das máscaras

segmentadas mostrou que a U-Net++ apresentou melhor preservação estrutural e contornos mais

precisos. Dessa forma, para a seleção da rede mais adequada a ser utilizada no desenvolvimento

do sistema CAD, consideraram-se os resultados quantitativos e qualitativos, bem como o custo

computacional, avaliado pelo tempo necessário para a segmentação de cada imagem. Em

contextos clínicos, a rapidez é um critério essencial, pois o processamento eficiente de grandes

volumes de radiografias permite maior agilidade no atendimento, otimiza o tempo de análise e

facilita decisões mais rápidas durante o diagnóstico.

Para quantificar o custo computacional mencionado anteriormente, cada rede treinada

foi integrada ao sistema e o tempo de predição de cada imagem foi medido em milissegundos

usando time.perf_counter(), considerando apenas o forward pass, ou seja, a etapa do modelo

responsável pela geração da máscara segmentada. Para cada arquitetura, foram segmentadas 50

radiografias panorâmicas, registrando-se o tempo individual de predição para cada imagem. A

média final do tempo e o desvio padrão obtidos após as 50 execuções de cada rede encontram-se

apresentados na Tabela 7.

Tabela 7 – Tempo de inferência das redes
Rede Média (ms) Desvio Padrão (ms)
U-Net ≈ 2798,6 ≈ 110,4

Attention U-Net ≈ 1527,3 ≈ 72,5
W-Net ≈ 3289,8 ≈ 115,6

U-Net 3+ ≈ 1726,8 ≈ 118,9
U-Net++ ≈ 1658,7 ≈ 130,2

Fonte: Elaborado pelo autor.
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Conforme observado na Tabela 7, a rede Attention U-Net apresentou a menor média

de tempo de inferência, aproximadamente 1527,3 ms, indicando que é a arquitetura mais

rápida entre as avaliadas para a tarefa de segmentação. O desvio padrão, de cerca de 72,5 ms,

evidencia que sua performance é estável e pouco variável entre as execuções. Esses resultados

demonstram que a Attention U-Net combina velocidade e consistência, sendo a opção mais

adequada para aplicações odontológicas, o que proporciona ao dentista maior agilidade no

atendimento, otimiza o tempo de análise das radiografias e favorece decisões mais eficientes

durante o diagnóstico. As demais redes apresentaram desempenho satisfatório, mas com tempos

de inferência maiores e menor consistência, podendo ser aplicadas em contextos clínicos com

maior poder computacional.

Dessa forma, a Attention U-Net foi selecionada como arquitetura final do sistema

CAD, uma vez que apresentou desempenho consistente entre as métricas avaliadas, aliado ao

menor tempo de inferência entre as redes analisadas. Embora seu melhor resultado tenha sido

observado no Panoramic Radiography Database, nos demais conjuntos de dados a arquitetura

manteve-se entre as melhores colocações, com pouca variação em relação às redes líderes. Esse

comportamento evidencia sua robustez e capacidade de generalização, reforçando sua adequação

para aplicação em um sistema CAD de apoio ao diagnóstico clínico.

5.8 Sistema CAD

A partir da seleção da Attention U-Net como a arquitetura que obteve os melhores

resultados com base nos critérios estabelecidos, foi realizada a integração dela ao sistema CAD.

A Figura 16 apresenta a interface inicial do sistema, projetado para uso em contextos clínicos,

por meio do qual o profissinal odontológico pode enviar uma radiografia para que a aplicação

gere a máscara segmentada correspondente.
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Figura 16 – Página inicial do Sistema CAD

Fonte: Elaborado pelo autor.

Conforme ilustrado na Figura 16, a interface inicial do sistema CAD foi estruturada

de modo a favorecer uma interação direta e intuitiva com o usuário. À esquerda, encontra-se a

área destinada ao envio da radiografia panorâmica, por meio da qual o denstista pode selecionar

aquela que ele deseja ser processada. Esse componente permite tanto a seleção de arquivos

a partir do explorador do sistema quanto o uso do recurso de arrastar e soltar, o que torna o

procedimento mais ágil e acessível em ambientes clínicos. Além disso, a área de upload exibe

explicitamente os formatos aceitos (PNG, JPG e JPEG) e o limite máximo do tamanho do

arquivo, garantindo clareza quanto às restrições do sistema e evitando erros de submissão. Os

botões “Segmentar” e “Limpar”, posicionados logo abaixo, possibilitam, respectivamente, iniciar

o processamento da radiografia ou redefinir a área de entrada, permitindo que o usuário revise

sua seleção antes da execução da segmentação. Na região central da interface está localizada a

área destinada à visualização dos resultados, onde a segmentação da radiografia é exibida após o

processamento.

Após o usuário clicar na área de upload e selecionar a radiografia panorâmica

desejada, o sistema gera imediatamente uma miniatura da imagem no painel esquerdo, conforme

ilustrado na Figura 17.
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Figura 17 – Upload da radiografia

Fonte: Elaborado pelo autor.

Essa pré-visualização observada na Figura 17, tem a função de confirmar a escolha

do arquivo antes do processamento, para permitir ao profissional verificar visualmente se a

radiografia selecionada é de fato aquela que se pretende segmentar. Esse mecanismo reduz

possíveis erros de entrada e assegura maior controle sobre o fluxo de interação. Em seguida, ao

acionar o botão “Segmentar”, o sistema processa a radiografia carregada e exibe o resultado na

área central da interface, conforme mostrado na Figura 18.

Figura 18 – Resultado da máscara segmentada

Fonte: Elaborado pelo autor.

Nessa etapa descrita na Figura 18, são apresentados lado a lado a radiografia original

e a máscara segmentada gerada pelo modelo, para que possa ser feita uma análise comparativa
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imediata entre ambos os conteúdos. Essa disposição visual facilita a inspeção da estrutura dentária

segmentada, pois possibilita verificar se o contorno extraído corresponde adequadamente às

regiões de interesse presentes na radiografia de entrada. Além de garantir a coerência entre a

imagem original e a máscara inferida pelo modelo, essa visualização também proporciona ao

denstista a oportunidade de avaliar a qualidade da segmentação e identificar padrões anatômicos

relevantes, como a disposição dentária, o alinhamento e a separação das unidades presentes na

arcada. Tal recurso pode auxiliar no suporte ao diagnóstico, uma vez que a segmentação destaca

as estruturas dentárias e elimina áreas não relevantes, tornando mais evidente o foco de análise.

Concomitantemente, o profissional dispõe ainda do botão “Limpar”, por meio do qual

são removidos da interface tanto a radiografia quanto a máscara segmentada. Essa ação permite

reiniciar o processo desde a seleção de uma nova imagem, sem a necessidade de recarregar

ou reiniciar o sistema. Tal funcionalidade facilita a submissão de múltiplas radiografias em

sequência, possibilitando que diversas segmentações sejam geradas em poucos segundos, o que

favorece a análise de um maior volume de exames em um tempo reduzido.

No entanto, caso ele deseje realizar uma análise mais detalhada da segmentação,

o sistema disponibiliza o botão “PDF”, localizado abaixo do resultado exibido. Ao acionar

essa opção, é gerado automaticamente um relatório contendo a radiografia original e a máscara

segmentada lado a lado, conforme ilustrado na Figura 19.

Figura 19 – PDF gerado com a radiografia e a máscara correspondente

Fonte: Elaborado pelo autor.

Esse recurso ilustrado na Figura 19 pode ser útil tanto para fins de documentação

quanto para discussão clínica, uma vez que o relatório preserva as informações visuais essenciais
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para a avaliação da segmentação. Ao disponibilizar a exportação em PDF, o sistema amplia seu

escopo de uso, pois o dentista pode conservar o resultado, compartilhar o arquivo com outros

profissionais ou anexá-lo a registros odontológicos. Além disso, a funcionalidade favorece o

acompanhamento longitudinal de casos, ao possibilitar a documentação de diferentes etapas

de avaliação e tratamento, garantindo consistência entre as imagens observadas e os dados

preditos pelo modelo. Dessa forma, a ferramenta não apenas executa a segmentação automática,

mas também se integra à prática clínica, ao facilitar a comunicação e o armazenamento das

informações geradas.

5.9 Limitações do trabalho

Apesar dos resultados promissores alcançados neste trabalho, algumas limitações

devem ser consideradas. A utilização exclusiva de conjuntos de dados compostos por radiografias

panorâmicas de pacientes adultos limita a capacidade de generalização do modelo para a segmen-

tação de estruturas dentárias em populações pediátricas, considerando as diferenças morfológicas

e fisiológicas associadas às distintas fases de desenvolvimento dentário. Adicionalmente, o sis-

tema CAD proposto deve ser compreendido como uma ferramenta de apoio à decisão clínica, não

substituindo a interpretação final do profissional. Em determinadas situações, o sistema pode não

segmentar integralmente todas as estruturas dentárias com a precisão desejada, especialmente em

casos de sobreposição estrutural ou variações anatômicas acentuadas. Outra limitação relevante

refere-se ao fato de que o sistema não fornece, de forma automatizada, informações diagnósticas

textuais ou laudos interpretativos associados às radiografias analisadas, restringindo-se à etapa

de segmentação das estruturas dentárias.

Por fim, ressalta-se que aspectos de natureza operacional e computacional também

devem ser considerados, uma vez que a disponibilização do sistema em um ambiente de produção

robusto, estável e escalável, capaz de atender a um número elevado de usuários simultaneamente,

impõe desafios relacionados à infraestrutura tecnológica, desempenho e manutenção, o que pode

dificultar sua adoção imediata em larga escala.
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6 CONCLUSÕES E TRABALHOS FUTUROS

Este estudo propôs o desenvolvimento de um sistema CAD para segmentação auto-

mática de dentes a partir de radiografias panorâmicas. Para essa tarefa, foram implementadas

cinco variantes da arquitetura U-Net, as quais foram treinadas e avaliadas por meio de valida-

ção externa, além da análise estatística por meio do teste de Wilcoxon. Os resultados obtidos

demonstraram o grande potencial do aprendizado profundo, especialmente das redes CNNs, para

capturar padrões complexos em imagens médicas, para permitir a extração precisa de estruturas

anatômicas detalhadas e a generalização para diferentes condições clínicas. Além disso, os

resultados principais demonstram que as redes analisadas são capazes de identificar corretamente

as regiões dentárias, tornando-as aptas para a tarefa de segmentação. A Attention U-Net, modelo

com mecanismos de atenção e agregação multiescala, destacou-se com o melhor desempenho

geral, combinando maior precisão, preservação da forma dentária, continuidade dos contornos e

menor complexidade computacional, resultando em tempos de inferência mais rápidos para a

geração das máscaras, sendo ela a escolhida para compor o sistema CAD.

Concomitantemente, observou-se que arquiteturas com maior complexidade com-

putacional, embora possam alcançar bons resultados quantitativos e qualitativos, têm sua com-

plexidade e custo computacional como fatores que devem ser considerados, especialmente em

aplicações clínicas que exigem rapidez e estabilidade no processamento, uma vez que o tempo

de inferência e a eficiência do modelo são determinantes para o uso prático. Nesse contexto,

a análise estatística realizada por meio do teste de Wilcoxon mostrou que algumas redes mais

complexas, como a U-Net++ e a U-Net 3+, apresentaram diferenças estatisticamente significati-

vas em relação à U-Net clássica, evidenciando que alterações arquiteturais podem impactar de

forma relevante a qualidade das segmentações; por outro lado, redes como a W-Net e a Attention

U-Net apresentaram desempenho equivalente à U-Net em alguns casos, reforçando que maior

complexidade nem sempre se traduz em ganhos significativos.

Por fim, o sistema CAD desenvolvido, sendo a principal contribuição deste trabalho,

trouxe importantes avanços para a prática odontológica, pois permite a segmentação automática

dos dentes de forma rápida e precisa, oferecendo visualização comparativa entre a imagem

original e a máscara segmentada, além de gerar relatórios em PDF que podem ser utilizados

para documentação e acompanhamento clínico. Além disso, a ferramenta auxilia no suporte ao

diagnóstico, ao destacar de forma clara as estruturas dentárias e reduzir a necessidade de análise

manual detalhada, promovendo maior eficiência, padronização e confiabilidade na interpretação
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das radiografias, o que pode contribuir para decisões clínicas mais rápidas e fundamentadas.

Para trabalhos futuros, sugere-se explorar novas arquiteturas de segmentação para

avaliar se abordagens recentes podem aprimorar ainda mais a precisão e a preservação estrutural

das regiões dentárias, bem como integrar outras bases de dados maiores e mais diversificadas,

incluindo radiografias pediátricas, de modo a ampliar sua capacidade de generalização para

diferentes faixas etárias e variabilidades anatômicas. Além disso, recomenda-se a integração

de funcionalidades adicionais ao CAD, como a identificação e numeração automática dos

dentes, para permitir que cada unidade dentária seja reconhecida e rotulada corretamente, a

detecção de anomalias ou patologias dentárias, como cáries, fraturas ou outros problemas clínicos,

oferecendo suporte ao diagnóstico, e o planejamento de tratamentos odontológicos com base nas

segmentações geradas, para fortalecer o caráter clínico da ferramenta.
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