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RESUMO

A segmentacao de imagens € fundamental em aplicacdes de andlise automadtica, pois permite
a identificacao e delimitacdo precisa de estruturas relevantes. No contexto odontoldgico, essa
tarefa € especialmente importante em radiografias panoramicas, amplamente utilizadas para
fornecer visdo completa da estrutura dentdria e 6ssea. Entretanto, a interpretacdo manual dessas
imagens é demorada, sujeita a variabilidade entre profissionais e afetada por ruido e baixo
contraste. Avancos recentes em aprendizado profundo, especialmente Redes Neurais Convolu-
cionais (CNNs), tém permitido segmentacdes mais precisas por meio da extracao automética
de caracteristicas relevantes. Assim, este trabalho tem como objetivo desenvolver um sistema
CAD para realizar a segmenta¢do automatica de dentes a partir de radiografias panoramicas, com
base em uma andlise comparativa do desempenho de cinco arquiteturas baseadas na U-Net. O
estudo foi conduzido utilizando o conjunto de dados Children’s Dental Panoramic Radiographs
Dataset, no qual as imagens passaram por uma etapa de pré-processamento e os modelos foram
treinados utilizando validagdo cruzada K-Fold, combinada com Grid Search para a otimizagdo
dos hiperparametros. Os resultados da etapa de validagdo externa, realizada em dois subconjuntos
do conjunto geral, demonstraram que, no primeiro deles, o Dataset and code, a W-Net apresentou
o melhor desempenho, com Sensibilidade 0,809, E-MEASURE 0,925, 10U 0,785 e DSC 0,879,
aspectos que indicam maior capacidade de segmentacdo das regides dentdrias. No segundo
subconjunto, Panoramic Radiography Database, a Attention U-Net se sobressaiu, alcangando
Sensibilidade 0,965, E-MEASURE 0,975, 10U 0,858 e DSC 0,924, apresentando maior precisao,
preservacdo da forma dentéria e menor fragmentagdo das estruturas. O teste de Wilcoxon indicou
que a U-Net++ e a U-Net 3+ apresentaram diferengas significativas em relagdo a U-Net cléssica,
enquanto a W-Net e a Attention U-Net tiveram desempenho equivalente. Por fim, considerando
conjuntamente os resultados das andlises quantitativas e qualitativas das méscaras segmentadas,
bem como o tempo de inferéncia necessario para a geragdo das segmentacdes, a Attention U-Net

foi selecionada como a arquitetura final a ser integrada ao sistema CAD.

Palavras-chave: Segmentacdo de imagens médicas. Sistema CAD. Modelos de segmentacao.

Redes Neurais Convolucionais. Aprendizado profundo.



ABSTRACT

Image segmentation is fundamental in automatic analysis applications, as it allows for the precise
identification and delineation of relevant structures. In the dental context, this task is especially
important in panoramic radiographs, which are widely used to provide a comprehensive view
of the dental and bone structures. However, manual interpretation of these images is time-
consuming, subject to inter-professional variability, and affected by noise and low contrast.
Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have
enabled more accurate segmentations through the automatic extraction of relevant features.
Thus, this study aims to develop a CAD system to perform automatic tooth segmentation from
panoramic radiographs, based on a comparative analysis of the performance of five U-Net-based
architectures. The study was conducted using the Children’s Dental Panoramic Radiographs
Dataset, in which the images underwent a preprocessing stage, and the models were trained
using K-Fold cross-validation combined with Grid Search for hyperparameter optimization.
The results of the external validation stage, conducted on two subsets of the overall dataset,
showed that in the first subset, Dataset and code, the W-Net achieved the best performance,
with Sensitivity 0.809, E-MEASURE 0.925, IOU 0.785, and DSC 0.879, indicating a higher
capacity for segmenting dental regions. In the second subset, Panoramic Radiography Database,
the Attention U-Net stood out, reaching Sensitivity 0.965, E-MEASURE 0.975, IOU 0.858,
and DSC 0.924, showing higher accuracy, preservation of tooth shape, and lower fragmentation
of structures. The Wilcoxon test indicated that U-Net++ and U-Net 3+ showed significant
differences compared to the classical U-Net, while W-Net and Attention U-Net had equivalent
performance. Finally, considering the results of both quantitative and qualitative analyses of
the segmented masks, as well as the inference time required to generate the segmentations, the

Attention U-Net was selected as the final architecture to be integrated into the CAD system.

Keywords: Medical image segmentation. CAD system. Segmentation models. Convolutional

Neural Networks. Deep learning.
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1 INTRODUCAO

A saude bucal € definida como o estado da boca, dos dentes e das estruturas orofaciais
que permite aos individuos desempenhar fungdes essenciais, como comer, respirar e falar,
abrangendo também dimensdes psicossociais, tais como autoconfianca, bem-estar e a capacidade
de socializar e trabalhar sem dor, desconforto ou constrangimento. Além disso, essa condi¢cao
varia ao longo da vida, desde a infancia até a velhice, e exerce papel fundamental na satude geral,
ao auxiliar os individuos a participarem da sociedade e a alcangarem seu potencial (WORLD
HEALTH ORGANIZATION, 2022a). Assim, uma boa satde bucal reflete a capacidade do
individuo de se adaptar as mudangas fisioldgicas ao longo da vida, o que lhe permite manter a
integridade da boca e dos dentes por meio do autocuidado continuo e independente (PERES et
al., 2019).

Consequentemente, as doencas bucais abrangem diversas condi¢des, como céries,
perda de dentes e traumatismos orodentais. Essas alteracdes estdo entre as doengas cronicas nao
transmissiveis mais prevalentes no mundo, afetando aproximadamente 3,5 bilhdes de pessoas
(WORLD HEALTH ORGANIZATION, 2022b). Desse modo, as doengas dentdrias tornaram-se
uma das condi¢des mais comuns na ciéncia médica contemporanea e t€m apresentado crescimento
significativo nos ultimos anos. Embora os dentes sejam estruturas altamente resistentes e duraveis,
sujeitos a constante uso, continuam vulnerdveis a diversas patologias que afetam diretamente sua
integridade e funcdo. Portanto, o diagndstico precoce é essencial para prevenir complicacoes e
preservar a integridade das estruturas dentarias. (ZANNAH et al., 2024).

Para formular o diagnéstico de doengas bucais, as radiografias panoramicas, conhe-
cidas como ortopantomografia, sdo ferramentas fundamentais na odontologia. Elas fornecem
imagens abrangentes de toda a arcada dentdria, como dentes, maxilares e estruturas adjacentes, o
que as torna cruciais para a identificacio de diversas condi¢des, como cdries, fraturas e alteragdes
Osseas. No entanto, a interpretacdo manual dessas radiografias pode ser demorada e sujeita a va-
riacdes entre profissionais da odontologia (SAHIN et al., 2024). Além dessas limitacdes, fatores
técnicos como baixa resolugdo, contraste inadequado e presenca de ruido também dificultam o
processo, tornando-o ainda mais desafiador e propenso a erros diagndsticos. Nesse contexto, a
andlise automdtica dessas imagens surge como uma ferramenta promissora, capaz de aumentar
a precisao diagndstica, reduzir o tempo de triagem e otimizar os custos clinicos. Entre essas
solugdes, destaca-se a segmentacio automadtica de imagens médicas, que consiste em classificar

cada pixel da imagem conforme os objetos de interesse (NADER et al., 2022).
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A segmentacdo de imagens consiste em dividir uma imagem em partes que tenham
forte correlagao com objetos ou dreas do mundo real contidos na cena, chamados segmentos de
pixels conectados, analisando critérios de similaridade (BRAHMI; JDEY, 2024). Esse processo
tem como objetivo identificar o objeto ou regido ao qual cada pixel pertence, classificando-os em
diferentes classes (SAHIN et al., 2024). No contexto de imagens médicas, a segmentacao desem-
penha um papel fundamental no diagnéstico auxiliado por computador e na medicina inteligente,
pois visa tornar as alteragdes de estruturas anatdmicas ou patolégicas mais claras nas imagens
(WANG et al., 2022). Nesse cendrio, especificamente no diagndstico de doencas dentdrias, como
cérie, lesdes periapicais e doenga periodontal, a segmentagao constitui um elemento-chave ao
auxiliar dentistas no enfrentamento das dificuldades para detectar essas condi¢des a olho nu. Ao
real¢ar os limites das estruturas dentdrias, ela pode facilitar a identificagc@o e distincdo entre os
dentes, algo frequentemente dificultado em radiografias devido a sobreposicdo de estruturas que
compromete a interpretacao visual (ZANNAH et al., 2024).

Nesse contexto, o aprendizado profundo tem se consolidado como uma das principais
abordagens na andlise de imagens médicas, com ampla aplicacdo em tarefas de detec¢do de
objetos, classificacdo, segmentacdo e registro (ZHONG et al., 2025). Essa abordagem, que cons-
titui um subconjunto do aprendizado de mdquina, utiliza redes neurais artificiais com multiplas
camadas para aprender e reconhecer padroes em dados. Paralelamente, nos ultimos anos as
Redes Neurais Convolucionais (CNNs) transformaram a anélise de imagens médicas, alcancando
desempenho notdvel em tarefas como classificagdo, segmentacdo, detec¢cdo e reconstrucdo de
imagens (BRAHMI; JDEY, 2024). Sua capacidade de extrair automaticamente informacoes
relevantes elimina a dependéncia de técnicas manuais e pré-processamento excessivo. Conse-
quentemente, as CNNs tém sido amplamente utilizadas na segmentacdo de imagens médicas,
obtendo resultados expressivos e fortalecendo diagndsticos clinicos e sistemas de apoio a decisdao
(LIU et al., 2021).

Portanto, este trabalho visa auxiliar no diagndstico clinico odontolégico ao demons-
trar o potencial do aprendizado profundo e das CNNs na segmentacao automdtica de estruturas
dentdrias em radiografias panoramicas, além de apresentar um sistema CAD que integra o modelo
de segmentacgdo, permitindo a avaliacdao de seu desempenho em um ambiente computacional

aplicado.
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1.1 Objetivo Geral

Desenvolver um sistema CAD para segmentagdo automatica de dentes em radiogra-
fias panoramicas, a partir de uma andlise comparativa do desempenho de arquiteturas baseadas

na U-Net.

1.2 Objetivos Especificos

Para alcancar o objetivo geral, no contexto deste trabalho, foram estabelecidos os
seguintes objetivos especificos:

* Realizar o pré-processamento das radiografias panoramicas e aplicar técnicas de aumento
de dados (Data Augmentation).

* Implementar e comparar diferentes modelos baseados na arquitetura U-Net para segmenta-
¢do automatica das estruturas dentdrias.

* Ajustar os hiperparametros dos modelos por meio de busca em grade (Grid Search) e
validar o desempenho com validacdo cruzada (k-fold).

* Aplicar validagdo externa a fim de avaliar a capacidade de generalizacdo dos modelos
treinados.

* Avaliar o desempenho dos modelos usando métricas quantitativas, como sensibilidade,
acurécia, especificidade, DSC, IOU, E-measure e MAE.

* Comparar os resultados dos modelos usando o teste de Wilcoxon.

* Desenvolver um sistema CAD para envio de radiografias panoramicas e gera¢ao automatica

das segmentagdes pelo modelo treinado.

1.3 Contribuicoes

Este trabalho apresenta contribuicdes significativas para a drea da odontologia, ao de-
monstrar o potencial das CNNs baseadas na arquitetura U-Net para a segmentagdo automatica de
estruturas dentdrias em radiografias panoramicas. Além disso, contribui com o desenvolvimento
de um sistema CAD, que torna o modelo acessivel a profissionais da odontologia, permitindo o
envio de radiografias e a visualizacdo automética dos resultados da segmentacdo. Essa ferramenta
auxilia na andlise das estruturas dentdrias, uma vez que algumas delas podem n@o ser claramente
perceptiveis a olho nu, o que promove diagndsticos mais rapidos, precisos e padronizados, o

qual oferece suporte direto a tomada de decisdes diagnésticas didrias.
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1.4 Organizacao do Trabalho

Este trabalho estd organizado de forma que no Capitulo 2 esta descrita a funda-
mentacdo tedrica sobre os temas abordados no trabalho. O Capitulo 3 discute os trabalhos
relacionados, com énfase nas principais abordagens identificadas na literatura. O Capitulo 4
descreve a metodologia adotada com o detalhamento dos experimentos realizados. O Capitulo 5
apresenta e analisa os resultados obtidos, discutindo o desempenho das abordagens avaliadas.

Por fim, o Capitulo 6 sintetiza as conclusdes, ressalta as contribui¢des alcangadas e aponta

perspectivas para trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

No presente capitulo, sdo apresentados os elementos tedricos que fundamentam o
desenvolvimento deste trabalho. Inicialmente, sdo abordados conceitos de anatomia mandibular
e anatomia dentdria, com destaque para suas estruturas. Em seguida, sdo apresentados os
fundamentos de Inteligéncia Artificial (IA), aprendizado profundo e sistemas de apoio a decisao
clinica baseados em inteligéncia artificial. Posteriormente, discute-se a segmentagdo de imagens
médicas e as Redes Neurais Convolucionais. Na sequéncia, sdo descritos os principais modelos
de segmentagdo baseados na arquitetura U-Net, ou seja, U-Net, U-Net++, U-Net 3+, Attention
U-Net e W-Net. Por fim, sdo apresentados os conceitos de validacdo cruzada, Grid Search, teste
estatistico de Wilcoxon e as métricas de avaliacdo empregadas neste trabalho. Os topicos deste
capitulo foram escolhidos para fornecer uma base tedrica sdlida que apoie a compreensao do

tema deste trabalho.

2.1 Anatomia Mandibular

A mandibula é o maior osso do cranio humano, formando a linha inferior e moldando
o contorno do ter¢o inferior da face (BREELAND et al., 2019). Além disso, segundo Vollmer et
al. (2000), trata-se de uma estrutura dssea especializada, em complexa sinergia com musculos,
articulagdes e dentes, cuja forma e fun¢do sdo altamente adaptadas as exigéncias do sistema
mastigatério. Ao contrario dos demais 0ssos do cranio, ela ndo se articula com os ossos adjacentes
por suturas, mas sim por uma articulacao sinovial denominada articulagdo temporomandibular
(CARMO, 2023). Dessa forma, essa articulagao, localizada entre a cabeca mandibular e a fossa
temporomandibular, permite o livre movimento, contribuindo para a mastigacao e a digestdo.
Além disso, seu formato pode variar conforme os estilos de vida e hibitos de mastigacao, de
modo que as caracteristicas morfoldgicas da mandibula diferem entre individuos de diferentes

idades, origens e comportamentos (IWANAGA; TUBBS, 2022).
2.1.1 Estrutura da Mandibula

A mandibula é composta por um corpo em forma de “U”, projetado anteroposterior-
mente, cujas extremidades posteriores formam os angulos goniacos bilaterais, a partir dos quais
os ramos se estendem verticalmente em direcao a articulagdo com a base do cranio (BREELAND

et al., 2019). A Figura 1 apresenta a mandibula em trés projecOes: superior (A), lateral (B)
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e medial (C), evidenciando estruturas como o ramo mandibular, o arco alveolar, os processos

corondide e condilar, além de fossas e forames de relevancia clinica.

Figura 1 — Estrutura da Mandibula
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Fonte: Adaptada de DRAKE et al. (2015)

Conforme ilustrado na Figura 1B, a face superior do corpo da mandibula sustenta o
arco alveolar, responsdvel pela fixacdo dos dentes inferiores e fundamental para a mastigacao.
Nessa mesma face externa localiza-se o forame mentual, abertura por onde emerge o nervo
mentual, responsdvel pela sensibilidade do labio inferior e da regido do mento. Na regido
anterior da mandibula (Figura 1A), observa-se a sinfise mandibular, situada na linha média.
Logo apds essa regido, na face interna do osso, encontram-se as espinhas genianas superiores e
inferiores (Figura 1C), que servem como pontos de inser¢ao muscular. As espinhas superiores
relacionam-se aos movimentos da lingua, enquanto as inferiores conectam musculos ao 0sso
hioide, contribuindo para a sustentacio do assoalho da boca (DRAKE et al., 2015).

A partir dessas estruturas, estende-se a linha milo-hiéidea (Figura 1C), ao longo da
face medial da mandibula até a regido inferior ao ultimo molar. Essa linha separa duas dreas
importantes: superiormente localiza-se a fossa sublingual, que abriga a glandula sublingual, e
inferiormente a fossa submandibular, onde se aloja a glandula submandibular. Entre a linha milo-
hididea e a regido posterior do arco alveolar, observa-se um sulco raso para a passagem do nervo
lingual, responsavel pela sensibilidade da lingua. Posteriormente ao tltimo molar, identifica-se o
trigono retromolar, local de fixacdo da rafe pterigomandibular, que conecta musculos da cavidade
oral e da faringe. Por fim, conforme apresentado na Figura 1B, o ramo da mandibula possui
formato aproximadamente quadrangular, destacando-se os processos corondide e condilar. Em
sua face medial encontra-se o forame mandibular, por onde passam o nervo e os vasos alveolares
inferiores, responsaveis pela sensibilidade e vascularizaciao dos dentes inferiores (DRAKE et al.,

2015).
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2.2 Anatomia Dentaria

A anatomia dentéria € um campo especializado que se dedica ao estudo da estrutura,
do desenvolvimento e do arranjo dos dentes humanos. Nesse contexto, abrange tanto os dentes
primédrios (deciduos) quanto os permanentes, contemplando suas diferentes classificagdes, como
incisivos, caninos, pré-molares e molares, bem como a andlise dos principais componentes que
0s constituem, como coroa, raiz, esmalte, dentina e polpa. Além disso, envolve o exame das
estruturas de suporte, denominadas periodonto, que englobam gengiva, ligamento periodontal,
cemento e 0sso alveolar. Assim, compreender a anatomia dentdria contribui para a promocao de
melhores cuidados bucais e favorece a valorizagdo da forma e da fun¢do dos dentes (ROBERT,

2023).

2.2.1 Estrutura Dentdria

Os dentes sdo apéndices multifuncionais, essenciais para fungdes humanas bésicas,
como a alimentagdo e a fala. Outrossim, s@o formados por diferentes tecidos, de densidade
e dureza variadas, o que lhes confere resisténcia as forgcas e ao desgaste caracteristicos da
mastigacdo (MORRIS; TADI, 2023). Por conseguinte, os dentes configuram-se como uma das
estruturas anatdomicas e histoldgicas mais singulares e complexas do corpo, cuja composicao
tecidual é exclusiva da cavidade oral e restrita as estruturas dentarias (CARMO; CHAVES, 2023).
No que se refere a anatomia, cada dente divide-se em duas regides principais: coroa € raiz.
A coroa corresponde a por¢ao visivel na cavidade oral, enquanto a raiz encontra-se inserida
no processo alveolar dos maxilares superior e inferior, sendo fixada por meio do ligamento
periodontal (MORRIS; TADI, 2023). A Figura 2 apresenta a estrutura de um dente, evidenciando

a coroa € a raiz em suas porcdes anatomicas e clinicas.
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Figura 2 — Estrutura do dente
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Conforme observado na figura, a coroa anatdomica corresponde a porcdo do dente
totalmente recoberta por esmalte, independentemente de estar ou nao exposta na cavidade oral.
Essa regido tende a permanecer relativamente constante ao longo da vida, sofrendo altera¢des
principalmente em decorréncia de atricdo ou outros tipos de desgaste fisico. Em contraste, a
coroa clinica refere-se a parte da coroa anatdbmica que se encontra visivel na cavidade oral, ou
seja, a por¢ao nao recoberta pela gengiva. Diferentemente da coroa anatomica, sua extensao
pode variar ao longo do tempo, acompanhando mudancgas na posi¢do gengival, como processos
de retracdo ou inflamag¢dao (FEHRENBACH; POPOWICS, 2020). Além disso, a coloracio dessa
regido exposta pode variar do branco perolado ao amarelo, dependendo de fatores como idade,
higiene oral e hébitos de vida do individuo (CARMO; CHAVES, 2023).

De maneira semelhante, a raiz anatdmica corresponde a por¢ao do dente recoberta
por cemento, estrutura responsavel por sua fixacao ao osso alveolar. J4 a raiz clinica designa a
parte da raiz anatdmica que se encontra exposta na cavidade oral, cuja extensdo pode aumentar
ao longo do tempo em decorréncia da recessdo gengival (FEHRENBACH; POPOWICS, 2020).
Além dessas distingdes, os dentes também apresentam variacdes quanto ao nimero de raizes.
Em geral, incisivos, caninos e primeiros pré-molares possuem raiz tnica, enquanto segundos
pré-molares e molares podem apresentar duas ou até trés raizes, como exemplificado pelo dente

posterior ilustrado na figura (CARMO; CHAVES, 2023).

2.3 Inteligéncia Artificial

Durante décadas, a area de IA era vista como um campo majoritariamente tedrico,

aplicado a problemas pequenos e intelectualmente interessantes, mas com pouco impacto pratico.
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Nesse periodo, a maior parte das demandas reais de computagdo era solucionada por meio
da programacdo tradicional, com a defini¢do explicita de cada passo. Esse cendrio mudou a
partir dos anos 1970, quando técnicas de IA passaram a ser aplicadas a problemas concretos,
especialmente por meio da incorporacdo do conhecimento de especialistas de dreas como a
medicina em sistemas computacionais. Desse movimento surgiram os Sistemas Especialistas, ou
Sistemas Baseados em Conhecimento, considerados um dos primeiros grandes avangos rumo ao
uso pratico da IA (FACELI et al., 2011).

Diante desse contexto historico, a IA refere-se ao desenvolvimento de sistemas
computacionais capazes de executar tarefas que normalmente exigiriam habilidades humanas,
como raciocinio, tomada de decisdo e identificacdo de padrdoes. Em esséncia, trata-se de criar
mecanismos capazes de analisar informagdes, aprender com dados e agir de forma autdonoma
em diferentes situagdes (RAO et al., 2024). Além disso, a IA encontra-se hoje amplamente
disseminada e integrada a diversos sistemas e tecnologias, pois, mais do que uma ferramenta
isolada, seus métodos constituem a base de muitos processos modernos de automacao, anélise
de dados e tomada de decisdo (COPELAND, 2015).

Concomitantemente, a [A apresenta aplicacdes em diversas dreas, como agropecudria,
bioinformaética, mineracdo de dados e textos, robdtica e saide. Na agropecudria, ela otimiza o
manejo de cultivos, prevé pragas e aprimora a qualidade da producao, ja na bioinformatica, apoia
a andlise de genes, proteinas e padrdes bioldgicos complexos, na mineracdo de dados e textos,
identifica padrdes relevantes em grandes volumes de informacdo e, por fim, na saude, oferece
suporte ao diagndstico, a anélise de exames e ao acompanhamento de pacientes (FACELI et
al., 2011). Diante desse cendrio de ampla aplicacdo da IA em diferentes dominios, torna-se
essencial compreender como esses sistemas aprendem a partir dos dados. A Figura 3 apresenta a

hierarquia dos principais tipos de tarefas de aprendizado.
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Figura 3 — Hierarquia de Aprendizado
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Na parte inicial da Figura 3, temos o aprendizado indutivo, cuja fun¢do € generalizar
padrdes a partir dos dados. Nesse sentido, a partir dele emergem duas modalidades principais de
aprendizado: o supervisionado e o ndo supervisionado. O primeiro, de natureza preditiva, utiliza
exemplos rotulados para aprender relacdes que permitam antecipar informagdes desconhecidas.
Nessa modalidade, a distin¢c@o ocorre pelo tipo de rétulo, ou seja, problemas de classificacdo
envolvem saidas discretas, enquanto problemas de regressao lidam com valores continuos. J4 o
aprendizado ndo supervisionado, de caréter descritivo, busca identificar estruturas internas nos
dados sem o uso de rétulos. Entre suas tarefas mais comuns estdo o agrupamento, que organiza
instancias por similaridade, a sumarizacdo, que gera representacdes compactas mantendo a
informacgdo essencial e a associacdo, que descobre combinagdes frequentes e relagdes entre

atributos (FACELI et al., 2011).

2.4 Aprendizado Profundo

O aprendizado profundo é um subconjunto do aprendizado de mdquina e uma tecno-
logia poderosa construida sobre redes neurais, caracterizada por uma arquitetura de multiplas
camadas que permite aprender caracteristicas complexas e hierdrquicas a partir de grandes
volumes de dados, impulsionada por avangos recentes em hardware e pesquisa (SHINDE; SHAH,
2018). O método de aprendizado profundo simula a rede neural humana e, a0 combinar multiplas
camadas de processamento nao linear, os dados originais sdo gradualmente abstraidos, camada

por camada, de modo que diferentes niveis de caracteristicas sdo extraidos e utilizados em tarefas
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como deteccio, classificagdo ou segmentacao de alvos. Desse modo, a vantagem do aprendizado
profundo reside na substitui¢cao da aquisi¢do manual de caracteristicas por um aprendizado ndo
supervisionado ou semi supervisionado, além do uso de algoritmos capazes de realizar uma
extracdo hierdrquica eficiente dessas caracteristicas (CAl et al., 2020).

Nesse contexto, nos dltimos anos, as técnicas de aprendizado profundo t€m sido
amplamente aplicadas na segmentacao de imagens médicas, visto que, ao aprender representacoes
semanticas das imagens, os modelos conseguem melhorar a precisdo da segmentacdo e se adaptar

de forma flexivel a diferentes conjuntos de dados e tarefas (LECUN et al., 2015).

2.5 Sistemas de Apoio a Decisao Clinica com IA

Os Sistemas de Apoio a Decisdo Clinica (SADC) sdo ferramentas computacionais
desenvolvidas para auxiliar profissionais de satide na tomada de decisdes médicas. Seu objetivo
central é fornecer informacdes aciondveis, recomendacdes baseadas em evidéncias e dados
especificos do paciente diretamente no ponto de atendimento. Nos tltimos anos, a integracao
de técnicas de IA impulsionou esses sistemas, tornando-os mais sofisticados. Entre essas
técnicas, destacam-se o aprendizado de maquina, o processamento de linguagem natural e o
aprendizado profundo, que permitem o processamento € a interpretacdo de grandes volumes
de dados clinicos com maior precisido. Nessa ldgica, algoritmos como redes neurais e drvores
de decisdo identificam padrdes relevantes e extraem informagdes essenciais de conjuntos de
dados complexos. Dessa forma, os SADC conseguem oferecer recomendacdes personalizadas,
ajustadas as necessidades de cada paciente, contribuindo para melhores desfechos assistenciais
(ELHADDAD; HAMAM, 2024).

Por fim, os SADC integrados a IA apresentam vantagens como a melhoria da
qualidade do cuidado e da seguranca do paciente, com reducao de erros nos diagndsticos, o
processamento 4gil de informacdes e o aprimoramento da andlise de imagens médicas. Além
disso, esses sistemas favorecem a identificacdo precoce de riscos, otimizam o fluxo de trabalho e
automatizam tarefas administrativas, o que possibilita aos profissionais dedicar mais tempo ao
atendimento direto ao paciente. Portanto, a integrac@o entre IA e SADC fortalece a confiabilidade

em todo o processo de assisténcia médica (ELHADDAD; HAMAM, 2024).
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2.6 Segmentacao de Imagens Médicas

Nos ultimos anos, o amplo sucesso dos modelos de aprendizagem profunda, im-
pulsionaram o desenvolvimento de novas abordagens de segmentacdo de imagens, capazes de
explorar representacdes complexas aprendidas diretamente a partir dos dados. Como resultado,
surgiu uma nova geracdo de modelos de segmentacdo que apresenta melhorias de desempenho
notdveis, muitas vezes alcancando niveis de precisdo superiores aos obtidos por métodos tradici-
onais (MINAEE et al., 2022). Dessa forma, a segmentacao de imagens que € definida como o
particionamento de uma imagem em regides especificas, desempenha um papel essencial em
diversas aplicacdes médicas, especialmente quando automatizada, pois otimiza fluxos clinicos,
reduz o tempo de andlise e fornece medidas quantitativas relevantes (AZAD et al., 2024).

Nesse contexto, a segmentacdo de imagens médicas contribui para evidenciar estrutu-
ras anatomicas e patoldgicas, o que a torna fundamental no diagndstico assistido por computador
e na medicina inteligente, devido ao aumento da efici€ncia e precisdo diagnostica. Atualmente, as
tarefas de segmentacgdo sdo divididas em duas categorias: segmentagdo semantica, que realiza a
classificacdo em nivel de pixel atribuindo uma categoria a cada ponto da imagem, e segmentacao
de instancias, que além da classificacdo pixel a pixel, também diferencia objetos individuais
pertencentes a mesma classe (WANG et al., 2022). No presente trabalho, € utilizada a categoria
de segmentacdo semantica.

No ambito odontolégico, segundo Rocha e Endo (2022), a segmentac¢do de imagens
dentdrias tem ganhado destaque por possibilitar avaliacdes mais claras, auxiliar na definicao de
planos de tratamento, favorecer a identificacdo e a delimitagcdo das estruturas dentdrias, além de

oferecer suporte a andlise clinica e contribuir para diagndsticos mais precisos.

2.7 Redes Neurais Convolucionais (CNNs)

As CNNs surgiram como uma evolucdo das Redes Neurais Artificiais (RNAs), ins-
piradas no funcionamento do cérebro humano. Desde o modelo de McCulloch e Pitts (1943)
e o perceptron de Rosenblatt (1958), o desenvolvimento de redes multicamadas com retropro-
pagacdo permitiu arquiteturas mais complexas. No final dos anos 1980, LeCun apresentou a
LeNet, considerada a primeira CNN aplicada ao reconhecimento de imagens. O avanco decisivo
ocorreu em 2012, com a AlexNet, que evidenciou o potencial das redes profundas no ImageNet

e impulsionou a ado¢@o das CNNs em aplicacdes de visao computacional (LI et al., 2021).
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Nesse contexto, as CNNs consolidaram-se como um dos modelos mais populares
de aprendizado de méaquina, tornando-se amplamente utilizadas em diferentes dominios, como
visdo computacional, reconhecimento de fala e processamento de linguagem natural. No campo
da visdo computacional, as CNNs destacam-se por alcancar resultados de dltima geracdo, desem-
penho que decorre de sua capacidade de capturar padrdes espaciais por meio de uma arquitetura
hierdrquica de camadas convolucionais, capazes de extrair caracteristicas em diferentes niveis de
abstracao (KRICHEN, 2023).

As CNNs sdo compostas por trés tipos de camadas: camada convolucional (convo-
lutional layer), camada de agrupamento (pooling layer) e camada totalmente conectada (fully
connected layer). Desse modo, quando essas camadas sdo empilhadas, uma arquitetura CNN
¢ formada (O’SHEA; NASH, 2015). As duas primeiras camadas realizam a extracao de carac-
teristicas, enquanto a terceira, mapeia essas caracteristicas para a saida final. Por conseguinte,
a medida que a saida de uma camada € passada para a proxima, as caracteristicas extraidas
organizam-se de forma progressivamente mais complexa (YAMASHITA et al., 2018). A Figura

4 apresenta a ilustracdo de uma CNN para classificagdo de imagens.

Figura 4 — Arquitetura Rede Neural Convolucional (CNN)
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Fonte: Adaptada de RGUIBI et al. (2022).

A rede recebe uma radiografia panoramica, que € processada pela primeira camada
convolucional para extrair caracteristicas iniciais, como contornos e variacdes de intensidade.
Camadas convolucionais posteriores capturam padrdes estruturais mais complexos dos dentes e
tecidos adjacentes, enquanto camadas subsequentes reduzem a dimensionalidade e preservam
as informacoes mais relevantes. Ao final, as caracteristicas extraidas sdo enviadas a camadas

totalmente conectadas, que geram uma distribuicao de probabilidade para as classes dente, 0sso



28

e gengiva, definindo a predicdo pela classe de maior probabilidade. Os pardmetros do modelo
sao aprendidos automaticamente por retropropagacao, que ajusta os parametros para minimizar

o erro entre a saida prevista e o rétulo real (RGUIBI et al., 2022).

2.8 Camada Convolucional (Convolutional Layer)

A camada convolucional é um componente fundamental na arquitetura de uma
CNN, pois € responsavel pela extracao de caracteristicas e, geralmente, combina operagdes
lineares e ndo lineares, envolvendo a convolugio seguida por uma funcao de ativagdo. Neste
processo, a convolu¢do é uma operacao linear usada para extrair caracteristicas, na qual um
filtro, pequenas matrizes aplicadas a imagem de entrada, detecta padrdes e extrai informagdes
relevantes. Esse filtro € aplicado sobre a entrada, representada por um tensor, uma estrutura
matemaética multidimensional que organiza os dados da imagem em altura, largura e canais de
intensidade (YAMASHITA et al., 2018). A Figura 5 ilustra uma operagao de convolugido com

um filtro 3x3 que € deslizado sobre o tensor de entrada.

Figura 5 — Operagéo de convolugédo
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Fonte: Adaptada de YAMASHITA et al. (2018).

Nesse contexto, a Figura 5A ilustra que, em cada posi¢do, realiza-se a multiplicag@o
elemento a elemento entre os valores do filtro e a sub-regido correspondente do tensor de entrada.
Em seguida, a soma desses produtos gera um tnico valor, o qual € inserido na posi¢ao equivalente
do tensor de saida, conhecido como mapa de caracteristicas (feature map). Por sua vez, a Figura
5B evidencia a repeticao desse procedimento ao longo de toda a entrada, resultando na construgdo

completa do mapa de caracteristicas. Além disso, o processo € aplicado para cada filtro utilizado,
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0 que possibilita a geracdo de multiplos mapas, cada um enfatizando propriedades distintas da
entrada. Dessa forma, diferentes filtros atuam como extratores de caracteristicas especificos

(YAMASHITA et al., 2018).

2.8.0.1 Mapa de Caracteristicas (Feature Map)

O mapa de caracteristicas € um componente fundamental das CNNs, pois representa
as caracteristicas extraidas da imagem de entrada pelas camadas convolucionais, o que possibilita
a execugdo de diversas tarefas de reconhecimento visual. Além disso, esses mapas organizam
essas caracteristicas de forma hierdrquica, ou seja, nas primeiras camadas, a rede identifica
padrdes simples, como bordas e texturas, enquanto nas camadas mais profundas combina
esses elementos para formar representagdes cada vez mais complexas. Essa capacidade de
transformar gradualmente a imagem em niveis sucessivos de abstracao é o que permite as CNNs

reconhecerem objetos, estruturas e padroes de maneira eficiente e robusta (KRICHEN, 2023).

2.8.0.2 Passo (Stride)

O passo € a distancia entre as posicdes sucessivas em que o filtro € aplicado na
entrada e atua como um hiperparametro da camada de convolucao. Quando o passo € igual a 1,
mais detalhes da imagem sdo preservados. Por outro lado, valores maiores reduzem a resolugdo
dos mapas gerados, o que reduz tanto seu tamanho quanto a quantidade de dados processados.
Além disso, essa reducdo também pode ser obtida por meio das camadas de agrupamento,
que diminuem a altura e a largura dos mapas sem modificar os pardmetros aprendidos. Desse
modo, o passo atua diretamente no equilibrio entre a preservagdo de detalhes e a eficiéncia do

processamento da rede (YAMASHITA et al., 2018).

2.8.0.3 Filtros (Kernel)

Filtros sdo pequenas matrizes aplicadas a imagem de entrada para gerar os mapas de
caracteristicas. Esses filtros s@o aprendidos durante o treinamento, com seus valores ajustados
por retropropagacio, e seu tamanho determina o alcance e a complexidade das caracteristicas
capturadas, funcionando como extratores de padrdes que identificam bordas, texturas e formas
a medida que percorrem a imagem. Além disso, cada filtro produz um feature map distinto, o

que permite que a CNN aprenda diferentes tipos de caracteristicas. Por fim, o tamanho do filtro
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define a extensdo da regido analisada em cada convolug¢do, sendo, portanto, um hiperparametro

essencial da camada convolucional (KRICHEN, 2023).

2.8.0.4 Preenchimento (Padding)

O preenchimento consiste na adi¢do de linhas e colunas de zeros ao redor da imagem
de entrada antes da aplicacao dos filtros. Com isso, a técnica permite preservar as dimensoes
espaciais da imagem ao longo das camadas convolucionais. Além disso, o uso de preenchimento
possibilita controlar o tamanho dos mapas de caracteristicas, o que garante, por exemplo, que a

saida mantenha as mesmas dimensdes espaciais da entrada (KRICHEN, 2023).
2.8.0.5 Funcdo de Ativagdo (Activation Function)

As saidas de uma operacao linear, como a convolucdo, sao entdao passadas por uma
funcdo de ativacdo ndo linear, sendo a Unidade Linear Retificada (ReLU) a mais utilizada
atualmente (YAMASHITA et al., 2018). Essa etapa introduz ndo linearidade ao modelo, para
permitir que a rede aprenda padrdoes mais complexos. Além disso, a popularidade da ReLU
em arquiteturas modernas decorre de sua simplicidade computacional e de sua capacidade de
mitigar o desaparecimento do gradiente, o que permite um melhor aprendizado e ajuda a evitar a
saturacao dos neurdnios durante o treinamento (KRICHEN, 2023).

A fung@o de ativagdo ReLU é definida matematicamente como f(x) = max(0,x).Isso
significa que, para valores de entrada menores que zero, a saida € igual a zero, resultando em um
trecho horizontal no grifico da funcao no plano cartesiano a esquerda do eixo vertical. Por outro
lado, para valores de entrada maiores ou iguais a zero, a saida cresce linearmente com inclina¢ao

igual a 1 (LI et al., 2021).

2.9 Camada de Agrupamento (Pooling Layer)

A camada de agrupamento € usada para reduzir as dimensdes espaciais dos mapas
de caracteristicas produzidos pela camada convolucional. Nesse processo, ela opera de forma
independente em cada mapa e realiza uma redugdo espacial ao selecionar o valor maximo ou
médio das regides ndo sobrepostas. Assim, o agrupamento ndo apenas diminui a complexidade
computacional da rede, mas também a torna mais robusta a pequenas translagdes na imagem de

entrada (KRICHEN, 2023).
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Concomitantemente, essa camada desempenha um papel essencial em uma CNN,
visto que reduz a dimensionalidade das representacdes internas sem adicionar novos parametros
ao modelo. Dessa forma, essa reducdo espacial torna a rede mais eficiente e reduz o risco de
overfitting, situagdo em que o modelo memoriza excessivamente o conjunto de treinamento e
perde capacidade de generalizagcdo para novos dados e amplia o campo recetivo das camadas

subsequentes, permitindo que a CNN capture padrdes mais amplos e complexos na imagem

(WU, 2017).

2.9.0.1 Agrupamento Mdximo (Max pooling)

O agrupamento maximo € um método popular de agrupamento que seleciona o maior
valor de cada sub-regido do mapa de caracteristicas, o que resulta em uma matriz reduzida.
Esse processo reduz as dimensdes espaciais da entrada e, consequentemente, a complexidade
computacional do modelo. Ao manter apenas um conjunto limitado de informacdes, o agrupa-
mento maximo preserva os padrdes mais relevantes e contribui para o controle do overfitting.
Além disso, essa operacdo reduz a sensibilidade a variacdes espaciais, o que permite que a CNN
reconheca um objeto mesmo quando ele se encontra deslocado ou levemente distorcido. Geral-
mente, utiliza-se um filtro 2x2 com passo 2, configuracdo que refor¢a a invariancia a translagdes.
Contudo, essa reducio dimensional ocorre ao custo da perda de algumas informacdes (AJIT et

al., 2020).

2.10 Camada Totalmente Conectada (Fully Connected Layer)

A camada totalmente conectada € um componente classico das CNNs, no qual cada
neurdnio de uma camada se conecta a todos os neur6nios da camada seguinte. Geralmente
posicionada nas etapas finais da rede, ela tem como fun¢@o consolidar as informacdes extraidas
ao longo do processamento para gerar a saida final do modelo (KRICHEN, 2023). De forma
complementar, essa camada transforma as ativacdes obtidas pelas convolucdes em pontuacdes
de classe, permitindo que o modelo finalize o processo de classificacdo. Nesse sentido, sua
conectividade total em que cada neurdnio se liga aos neurdnios das camadas adjacentes, pos-
sibilita combinar de maneira global as representacdes apreendidas ao longo da rede, para que
seja concluida a etapa deciséria do modelo (O’SHEA; NASH, 2015). A Figura 6 apresenta a

estrutura de uma camada totalmente conectada.
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Figura 6 — Camada totalmente conectada
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Fonte: Liu et al. (2018).

Como mostrado na Figura 6, a primeira é a camada de entrada, responséavel por
receber os dados processados nas etapas anteriores. Em seguida, encontram-se as camadas
intermedidrias, conhecidas como camadas ocultas por ndo manterem ligagcdo direta com os dados
de entrada. Por fim, a camada de saida € encarregada de produzir a predicao final da rede (LIU

etal.,2018).

2.11 Modelos de Segmentaciao

A ampla aceitacdo e o sucesso da aprendizagem profunda levaram ao desenvolvi-
mento de uma nova geracdo de modelos de segmentacio de imagem, que apresentam melhorias
notdveis no desempenho e, muitas vezes, alcancam as taxas de precisdo mais altas nos conjuntos
de avaliac@o populares. Nesse contexto, esses modelos de segmentacao abrangem um espectro
de esfor¢os pioneiros tanto em segmentacdo semantica quanto em segmentacao de instancia.
Além disso, muitos desses métodos partilham componentes comuns, como codificadores, des-
codificadores, conexdes de salto e arquiteturas multi-escala, os quais contribuem para uma
representacao mais rica e detalhada das caracteristicas da imagem (MINAEE et al., 2022). A

seguir, apresentam-se os modelos adotados neste trabalho.

2.11.1 U-net

A U-Net é uma CNN projetada para segmentacdo de imagens biomédicas e se destaca
por sua estrutura em formato de “U”, composta por um caminho de contragdo (encoder), que

extrai o contexto global da imagem, e um caminho de expansao simétrico (decoder), responsavel
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por recuperar a resolucdo espacial e localizar com precisdo as estruturas de interesse. Enquanto
o encoder segue o padrao de redes convolucionais tradicionais, o decoder combina informacdes
de diferentes profundidades para refinar contornos e detalhes das regides segmentadas. Essa ar-
quitetura alcanga alto desempenho mesmo com conjuntos reduzidos de imagens anotadas, gracas
ao uso intensivo de técnicas de aumento de dados e também as skip connections, o que permite
superar métodos anteriores em diversos desafios de segmentacdo médica (RONNEBERGER et

al., 2015). A Figura 7 ilustra a arquitetura dessa rede.

Figura 7 — Arquitetura U-Net
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Fonte: Adaptada de RONNEBERGER et al. (2015).

Como podemos observar, no lado esquerdo a rede inicia com a Input Image, ou
seja, a imagem de entrada fornecida ao modelo, e a direita encontra-se o Qutput Segmentation
Map, que corresponde ao resultado final produzido apds o processo de segmentacdo. Cada
caixa azul na Figura 7 representa um mapa de caracteristicas, que indica na parte superior a
quantidade de canais e, na borda inferior esquerda, as dimensdes espaciais desse mapa. As
caixas brancas correspondem aos mapas copiados do caminho de contragdo para o caminho de
expansao, o que permite a reutilizacdo das informagdes de alta resolu¢io durante a reconstru¢ao
da imagem segmentada. Além disso, as setas vermelhas indicam as etapas de max pooling, as
verdes apontam as operacdes de superamostragem e as setas horizontais cinzas representam as
e também as skip connections que unem as duas metades da U-Net (RONNEBERGER et al.,
2015).
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2.11.2 Unet ++

A UNet++ € uma arquitetura avangada de CNN voltada a segmentacao de imagens
médicas, seguindo o modelo encoder—decoder com supervisao profunda e introduzindo skip
connections aninhadas e densas como principal inovag@o. Essas vias reorganizam a comunicac¢ao
entre codificador e decodificador por meio de caminhos intermedidrios que refinam progressi-
vamente os mapas de caracteristicas. Além disso, a arquitetura incorpora um mecanismo de
supervisdo profunda que opera em multiplos niveis da rede, permitindo tanto um modo preciso,
baseado na média das saidas das ramifica¢des, quanto um modo répido, no qual partes do modelo
podem ser podadas para acelerar a inferéncia sem comprometer o desempenho (ZHOU et al.,

2018). A arquitetura dessa rede € representada na Figura 8.

Figura 8 — Arquitetura UNet++
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Como ilustrado na Figura 8, a UNet++ € composta por um codificador € um decodifi-
cador interligados por skip connections redesenhadas. Nessa estrutura, as convolucdes presentes
nesses caminhos reduzem a lacuna semantica entre os mapas gerados pelo codificador e pelo
decodificador, enquanto as conexdes densas aprimoram o fluxo de gradiente e a propagacdo das
informacdes. Além disso, a supervisdo profunda favorece um desempenho igual ou superior ao
obtido com apenas uma saida de perda, ja que as multiplas saidas participam do processo de
aprendizagem de maneira conjunta e consistente durante o fluxo de processamento. No fluxo
interno da rede, a etapa de contragdo (down-sampling) reduz a resolucdo espacial e aumenta o
nimero de canais para extrair caracteristicas mais abstratas, enquanto a etapa de expansao (up-
sampling) reconstréi a resolucao da mascara, alinhando-a ao tamanho original da imagem. Por

fim, as skip connections conectam diretamente niveis correspondentes, para recuperar detalhes
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finos e garantir segmentacdes mais precisas (ZHOU et al., 2018).
2.11.3 Unet 3+

A UNet 3+ ¢ uma evolucao das arquiteturas U-Net e U-Net++, projetada para su-
perar limitagOes na captura de informacdes em multiplas escalas. Diferentemente das versdes
anteriores, que utilizam conexdes de salto simples, aninhadas ou densas, a UNet 3+ emprega skip
connections em escala completa e supervisao profunda. Essas conexdes combinam simultanea-
mente detalhes de baixo nivel e semantica de alto nivel, enquanto a supervisio profunda aprende
representacoes hierdrquicas dos mapas de caracteristicas. Como resultado, a UNet 3+ melhora a
precisdo da segmentacdo, reduz o nimero de parametros e aumenta a eficiéncia computacional.
Nesse contexto, para explorar plenamente as caracteristicas multiescala, a arquitetura redesenha
as interconexoes entre codificador e decodificador, bem como entre os niveis do decodificador,
para garantir integracio eficaz entre detalhes finos e informacdes semanticas (HUANG et al.,

2020).

Figura 9 — Arquitetura UNet 3+
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A Figura 9 ilustra que a U-Net 3+ reorganiza as conexdes entre codificador e
decodificador por meio das full-scale skip connections, representadas pelas setas coloridas, que
integram simultaneamente detalhes de baixo nivel e informa¢des semanticas de multiplas escalas.
Em cada estdgio do decodificador, a arquitetura combina mapas provenientes do codificador, de
estdgios mais profundos e da prépria camada do decodificador, permitindo capturar, a0 mesmo
tempo, detalhes finos e contexto global. As cinco resolugdes resultantes dessa fusdo sdo entao
concatenadas e refinadas por um bloco de agregacdo composto por uma convolu¢io 3x3 com

320 filtros, seguida de batch normalization e ativagdo ReLLU. A Figura 9 também evidencia o uso
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de supervisao profunda em grande escala, indicado pelos circulos “Sup”, em que cada estigio
do decodificador gera uma saida auxiliar processada por convolugao 3x3, interpolacdo até a
resolucdo original e ativacao sigmoide. Além disso, cada uma dessas saidas laterais € associada
a uma funcao de perda hibrida, responsédvel por medir o erro entre a segmentacao prevista e a
segmentacao real e orientar o ajuste dos parametros durante o treinamento. Esse mecanismo
favorece segmentagdes mais robustas e precisas, especialmente em estruturas que variam em
escala. Com isso, a U-Net 3+ fortalece o aprendizado multiescala e aprimora significativamente

a precisdo final da segmentacdo (HUANG et al., 2020).

2.11.4 Attention U-Net

A Attention U-Net € outra arquitetura de CNN, desenvolvida para a imagiologia
médica, com foco em tarefas de segmentacao de imagens. Seu principal objetivo € permitir que
o modelo aprenda a destacar automaticamente as estruturas-alvo e suprimir regides irrelevantes
da imagem de entrada, sem a necessidade de mddulos externos de localizacdo. A principal
inovagdo da Attention U-Net estd na integracdo dos Attention Gates (AGs) que s@ao médulos
de atengdo auto-contidos que filtram as caracteristicas propagadas pelas skip connections da
arquitetura U-Net, suprimindo respostas irrelevantes € mantendo apenas ativagoes uteis, o que
aumenta a sensibilidade e a precisdo do modelo. Assim, durante a inferéncia, a rede realca de
forma eficiente as caracteristicas decisivas e pode ser treinada do zero de maneira convencional

(OKTAY et al., 2018). A Figura 10 mostra a arquitetura da Attention U-Net.

Figura 10 — Arquitetura Attention U-Net
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No lado esquerdo da arquitetura, o encoder processa a imagem de entrada de forma
progressiva por meio de camadas convolucionais com ativacdo ReLU e operacdes de max-pooling,

reduzindo as dimensdes espaciais a cada escala. Cada nivel, indicado como (Fy,H,W;,Dy)
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corresponde a mapas de caracteristicas definidos pelo nimero de filtros, altura, largura e profun-
didade. A medida que a rede avanca, as dimensdes espaciais diminuem enquanto o nimero de
filtros aumenta, o que permite preservar informacdes relevantes e capturar caracteristicas mais
abstratas, incluindo padrdes importantes, relacdes locais e globais da imagem. No lado direito
da arquitetura, o decoder realiza o upsampling para recuperar gradualmente a resolucdo original,
sendo cada etapa refinada por convolugdes seguidas de ReLLU. As skip connections transferem
mapas do encoder para o decoder, integrando semantica profunda com detalhes espaciais. Sobre
esses mapas atuam os AGs, que usam um sinal de gating de escalas mais profundas para suprimir
respostas irrelevantes e destacar apenas as caracteristicas tteis. Apds essa filtragem, os mapas
sdo concatenados aos do decoder e seguem pelas etapas restantes de upsampling até que a rede

produza o mapa final de segmentacdo (OKTAY et al., 2018).
2.11.5 W-Net

A W-Net € uma arquitetura de CNN profunda proposta para a segmentacdo de ima-
gens de forma totalmente ndo supervisionada, surgindo em um contexto em que a segmentacao ¢
um problema central na visdo computacional. Sua arquitetura € composta por um autoencoder
duplo em formato de “W”, no qual o encoder realiza a segmentacdo preliminar enquanto o
decoder reconstréi a imagem, permitindo um processamento eficiente que combina a extracao
de detalhes finos com a semantica global. Além disso, todos os médulos utilizam convolugdes
separdveis em profundidade, que combinam convolucdo em profundidade com convolugao
pontual, aumentando a eficiéncia computacional sem expandir o nlimero de parametros da rede

(XTA; KULIS, 2017). A arquitetura dessa rede é representada na Figura 11.

Figura 11 — Arquitetura W-Net
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Como podemos observar na Figura 11, a W-Net apresenta uma estrutura em “W”,
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composta por um encoder (UEnc) a esquerda, responsdvel pela extracdo densa de caracteristicas,
e por um decoder correspondente (UDec) a direita, dedicado a reconstru¢ao da imagem. No
UEnc, hd um caminho de contracdo que processa as imagens de entrada e conecta os modulos por
meio de operacdes de max-pooling, seguido por um caminho expansivo baseado em convolugdes
transpostas, que recupera progressivamente a resolucdo. O UDec, por sua vez, mantém uma
organizacao semelhante, pois recebe a saida processada pelo UEnc e finaliza com uma convolugdo
Ix1 que reconstrdi a imagem. Além disso, todos os mddulos utilizam convolugdes separdveis em
profundidade (indicadas por setas vermelhas), que combinam convolu¢des espaciais e pontuais,
para tornar o processamento mais eficiente sem aumentar o nimero de parametros (XIA; KULIS,

2017).

2.12 Validacao Cruzada

A validagdo cruzada é uma técnica amplamente utilizada no campo do aprendizado
de maquina para avaliar o desempenho de modelos preditivos. Nessa abordagem, o conjunto
de dados original é dividido em k subconjuntos de tamanho aproximadamente igual, denomi-
nados folds, formados de maneira mutuamente exclusiva, de modo que nenhuma amostra seja
compartilhada entre eles. O processo ocorre em k iteracdes, ou seja, em cada uma delas, um
dos folds € utilizado como conjunto de teste, enquanto os k — 1 restantes sdo combinados para
formar o conjunto de treinamento. O modelo € entdo treinado com os dados de treinamento e
avaliado no conjunto de teste. Esse procedimento se repete até que cada fold tenha sido utilizado
exatamente uma vez como conjunto de teste. Por fim, os resultados obtidos em todas as iteragdes
sdo agregados, geralmente por meio do cdlculo da média, o que fornece uma estimativa mais

estdvel do desempenho do modelo (NTI ez al., 2021).

2.13 Grid Search

O Grid Search ou (busca em grade) € um método tradicionalmente utilizado para
a otimizacdo de hiperparametros em algoritmos de aprendizado de maquina, cujo objetivo é
identificar a configuragdo mais adequada de uma rede neural. Seu funcionamento baseia-se em
uma busca sistemdtica sobre um subconjunto previamente definido do espaco de hiperpardmetros
do modelo, chamado de espaco de busca, no qual se estabelecem antecipadamente os valores

ou intervalos possiveis para cada parametro. Considerando que alguns hiperparametros podem
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assumir valores continuos ou teoricamente ilimitados, a definicao desses limites torna a aplicagdo
do método vidvel na prética e possibilita que o Grid Search realize o treinamento e a avaliagao de
todas as combinacdes possiveis de hiperparametros especificadas. Entre as principais vantagens
deste método destacam-se a simplicidade de implementacao e a garantia de cobertura do espago
de busca definido, o que assegura a identificacdo da melhor configura¢do dentro desse conjunto

(LIASHCHYNSKYT, 2019).

2.14 Teste Estatistico de Wilcoxon

O teste de Wilcoxon € um método estatistico ndo paramétrico utilizado para verificar
a existéncia de diferencas significativas entre duas amostras relacionadas ou emparelhadas.
Diferentemente dos testes paramétricos, esse método nao pressupde que os dados sigam uma
distribui¢do normal, caracteristica que o torna adequado em situagdes nas quais essa suposi¢ao
ndo pode ser garantida. Por esse motivo, o teste € amplamente empregado na comparagao do
desempenho de dois modelos quando as métricas de avaliagao sao obtidas a partir dos mesmos
conjuntos de teste ou por meio de procedimentos de validacao cruzada, nos quais os resultados
sao naturalmente emparelhados (RAINIO et al., 2024).

O funcionamento do teste baseia-se na andlise das diferencas entre pares de resul-
tados obtidos sob condi¢Oes experimentais idénticas. Para cada par de observagdes, calcula-se
a diferenca d; entre os valores correspondentes, as quais s@o ordenadas de acordo com o valor
absoluto |d;|, desconsiderando-se o sinal, e recebem postos. Em seguida, os postos associados
as diferencas positivas sdo somados, resultando em R, enquanto os postos correspondentes as
diferengas negativas originam R™. A estatistica do teste é entdo definida como 7= min{R",R™ }.
Do ponto de vista inferencial, o teste parte da hipdtese nula Hy, a qual estabelece que a mediana
das diferencas d; € igual a zero, o que caracteriza a inexisténcia de diferenca sistemética entre os
desempenhos comparados. Quando o p-value € inferior ao nivel de significancia adotado, geral-
mente o = 0,05, rejeita-se Hy, o que permite inferir a existéncia de evidéncias estatisticamente

significativas de diferenca entre os modelos (RAINIO et al., 2024).

2.15 Métricas de Avaliacao

As métricas de avaliacdo sdo fundamentais no desenvolvimento e na validacao de

sistemas, pois permitem quantificar sua qualidade e eficdcia, para garantir que o desempenho
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esteja alinhado com o propdsito real do sistema (FERRER, 2022). Sob essa perspectiva, Miiller et
al. (2022) apontam que essas métricas visam avaliar o quao proxima a segmentacao predita esta
da segmentacdo real, o que assegura uma andlise correta, robusta e padronizada dos algoritmos de
segmentacdo de imagens médicas, aspecto essencial para a confiabilidade de sistemas de apoio
a decisao clinica. Nesse contexto, apresentam-se a seguir os termos basicos que fundamentam
parte das métricas adotadas neste trabalho:
* Verdadeiro Positivo (TP): Quantidade de instancias positivas corretamente classificadas
como positivas pelo modelo.
* Verdadeiro Negativo (TN): Quantidade de instancias negativas corretamente classificadas
como negativas pelo modelo.
* Falso Positivo (FP): Quantidade de instancias negativas incorretamente classificadas como
positivas pelo modelo.
* Falso Negativo (FN): Quantidade de instincias positivas incorretamente classificadas

como negativas pelo modelo.

2.15.1 Acurdcia

Segundo Hossin e Sulaiman (2015), a acurécia (accuracy) é uma das métricas
mais utilizadas por pesquisadores para avaliar a capacidade de generalizacdo de classificadores.
Ela quantifica a propor¢do de previsdes corretas em relacdo ao total de instincias avaliadas,
expressando o percentual de exemplos classificados corretamente durante a etapa de teste com

dados ndo vistos. A férmula a seguir descreve o cdlculo da acuricia.

TP+TN
Acuracia = + 2.1
TP+TN-+FP+FN

2.15.2 Especificidade

A Especificidade (specificity) mede a proporcao de instancias negativas que foram
corretamente classificadas, correspondendo a taxa de acerto na classe negativa. Uma alta
especificidade indica que o modelo € eficaz em identificar corretamente os casos negativos,
enquanto uma baixa especificidade sugere que muitos negativos estdo sendo incorretamente

classificados como positivos (HOSSIN; SULAIMAN, 2015).
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TN
Especificidade = ———— 2.2)
TN+FP

2.15.3 Sensibilidade

A Sensibilidade (sensitivity) indica a propor¢do de instancias positivas corretamente
identificadas em relagdo ao total real de instancias positivas no conjunto de dados. O denominador
corresponde a soma entre verdadeiros positivos e falsos negativos. Essa métrica é especialmente

importante em cendrios onde o custo de um falso negativo € elevado (TATSAT et al., 2021).

TP
Sensibilidade = ——— 2.3)
TP+FN

2.15.4 Coeficiente de Similaridade de Dice (DSC)

O Coeficiente de Similaridade de Dice (DSC) € uma métrica amplamente utilizada
para avaliar o desempenho em tarefas de segmentacao de imagens (JOSHI, 2024). Ele mede a
similaridade entre os resultados de segmentacdo e uma "verdade fundamental"( ground truth),
que sdo segmentagdes de referéncia, geralmente criadas por especialistas. Nesse contexto, o
valor do DSC varia de 0 a 1: um valor igual a 0 indica que a imagem segmentada pelo modelo e
a imagem rétulo ndo apresentam sobreposi¢do, ou seja, nao compartilham nenhum pixel; ja um
valor igual a 1 representa correspondéncia perfeita entre a segmentagdo prevista e a segmentacao
de referéncia. A férmula a seguir ilustra como o DSC € calculado (ANDREWS; HAMARNEH,
2015):

2TP
DSC(y, §) = 2.4
03 = 7P FPLEN 24

2.15.5 Erro Médio Absoluto (MAE))

O Erro Médio Absoluto (MAE) mede a média das diferencas absolutas entre os
valores previstos e os valores reais (TERVEN et al., 2025). O MAE € uma medida dependente
da escala dos dados, o que significa que seu valor absoluto nao possui um limite superior fixo e

pode variar amplamente de acordo com a magnitude dos dados previstos. Um MAE igual a 0
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indica que todas as previsdes corresponderam exatamente aos valores observados (HYNDMAN;

KOEHLER, 2006). A féormula a seguir ilustra como o MAE € calculado (HODSON, 2022):

1 & .
MAE =~ Y lvi— il (2.5)
i=1

* n: representa o nimero total de pixels na imagem.
* y;: valor real (ground truth) do i-ésimo pixel.
* ¥;: valor predito pelo modelo para o i-ésimo pixel.

* |yi — Ji|: erro absoluto entre o valor real e o valor predito para cada pixel.
2.15.6 Interseccdo sobre Unido (IOU)

Intersec¢do sobre Unido (IOU) € uma métrica de avaliacdo amplamente utilizada em
tarefas de segmentacao de imagens. A IOU mede a similaridade entre a méascara de segmentacao
prevista e a mascara da verdade fundamental e varia de O a 1, onde 0 indica nenhuma sobreposi¢ao
e 1 indica sobreposicao perfeita (JOSHI, 2024). A férmula a seguir ilustra como a IOU € calculada

(JOSHI, 2024):

IoU — Area de Intersecdio  |ANB|
~ Areade Unido  |AUB]

(2.6)

* ANB: Corresponde ao niimero de pixels que sdo corretamente previstos como pertencentes
aos dentes, tanto na mascara prevista quanto na mascara da verdade fundamental.
* AUB: Representa o numero de pixels classificados como pertencentes aos dentes em

ambas as mdscaras: a prevista e a da verdade fundamental.
2.15.7 Medida de Alinhamento Aprimorada (E-MEASURE)

A Medida de Alinhamento Aprimorada (E-MEASURE), € uma nova medida para
avaliar mapas bindrios de primeiro plano em visdo computacional. Esses mapas bindrios compa-
ram a saida de modelos de segmentagdo de primeiro plano com um mapa bindrio de verdade
fundamental rotulado por humanos. O objetivo da E-MEASURE € combinar valores de pixel
locais com o valor médio de nivel de imagem em um tnico termo, capturando conjuntamente
estatisticas de nivel de imagem e informagdes de correspondéncia de pixel local. A férmula a

seguir ilustra como a E-MEASURE € calculada (FAN et al., 2018):
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1

wXh Zl Zl Prm (P(X7Y)’G(x7y)) (2.7)
x=1ly=

Orm =

* Orum € a E-measure final, que mede a similaridade global entre o mapa previsto P € o mapa

de verdade G, combinando informacdes locais e estatisticas globais.

1
wxh

€ o fator de normalizagdo, que calcula a média dos alinhamentos aprimorados sobre
todos os pixels do mapa, onde w representa a largura e £ a altura da imagem.

YV, ):;’:1 representa a soma sobre todos os pixels, indicando que o cdlculo de @gys é
realizado para cada pixel na posi¢do (x,y), percorrendo toda a largura w e altura i do
mapa.

* Orm (P(x,y) , G(x,y)) representa o valor de alinhamento aprimorado para o pixel na posicao

(x,y), avaliando a correspondéncia entre o pixel previsto P(x,y) e o da verdade G(x,y).
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3 TRABALHOS RELACIONADOS

Neste capitulo, sdo apresentados os trabalhos relacionados utilizados como referéncia
para o desenvolvimento desta pesquisa, com foco em abordagens voltadas a segmentagdo
automadtica de dentes em radiografias panoramicas.

Nader et al. (2022) propdem a Modified U-Net, uma versao da U-Net que incorpora
informacdes de localizacao via bounding boxes nas skip connections para melhorar a segmentacao
dentdria em imagens panoramicas, especialmente em casos com ruido, sobreposi¢ao ou dentes
ausentes. O método ocorre em duas etapas: primeiro, a Mask R-CNN gera as bounding boxes
no conjunto DNS Panoramic, que contém 543 imagens panoramicas; depois, essas caixas sao
usadas como entradas auxiliares no treinamento da Modified U-Net. Testes com bounding boxes
manuais (Optimal U-Net) e autométicas mostraram um aumento de 5% a 10% no DSC em
relagdao a Modified U-Net. Os resultados mostram que a U-Net 6tima alcancou um DSC médio
de 94,5%, seguida pela Modified U-Net com 89,5% e pela U-Net original com 85%. O melhor
desempenho da Modified U-Net foi especialmente evidente na segmentagdo de molares. Além
disso, ela superou a Mask R-CNN, apresentando segmentagdes mais precisas e consistentes,
comprovando a eficdcia da inclusdo das informacdes espaciais.

De forma semelhante, Joshi (2024) propde uma metodologia baseada na arquitetura
U-Net para segmentacdo automaética de dentes em radiografias panoramicas. O conjunto de
dados utilizado neste estudo € o Tufts Dental Dataset (TDD), composto por 1000 radiografias
panoramicas de raios-X e suas respectivas mdascaras dentdrias segmentadas por especialistas
odontolégicos. A metodologia envolve etapas de pré-processamento das imagens, como nor-
malizacao, redimensionamento, remocao de ruido, realce de contraste e aumento de dados. O
modelo € treinado com fung¢des de perda como Binary Cross-Entropy e Dice, aplicando técnicas
de regularizag@o para evitar sobreajuste. A avaliagcdo dos resultados, por meio do DSC 88% e do
10U 79%, indica desempenho satisfatério do modelo na segmentacio dentdria. As segmentagdes
geradas sdo sobrepostas as radiografias com contornos, cores e medicdes, destacando o potencial
da U-Net para aplicacdes clinicas e académicas em odontologia.

Buscando uma andlise comparativa entre arquiteturas, Zannah et al. (2024) propdem
uma comparagio abrangente de desempenho entre seis variantes da arquitetura U-Net aplicadas
a segmentacdo de imagens odontoldgicas: Vanilla U-Net, Dense U-Net, Attention U-Net, SE
U-Net, Residual U-Net e R2 U-Net, com o objetivo de identificar a variante com melhor

desempenho, custo e aplicabilidade clinica. O estudo utilizou 389 radiografias obtidas em uma
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clinica odontolégica em Bogura, Bangladesh, com ampla variabilidade anatomica, faixas etarias
e qualidade visual. As imagens foram anotadas com Label Studio e pré-processadas por recorte,
redimensionamento e divisdo em patches de 256x256 pixels, totalizando 6224 amostras.As redes
foram treinadas por 100 épocas com Dice Loss, otimizador Adam e batch size 16, seguindo a
estrutura classica da U-Net com quatro blocos e operacdes padrao como convolucdo, pooling,
normalizac¢do e ativagdo. Os resultados indicaram que variantes com trés camadas convolucionais
por bloco apresentaram desempenho superior, com destaque para a Dense U-Net que obteve
DSC 90,33% e 10U 89,07%, enquanto a R2 U-Net apresentou DSC 90,35%, embora com maior
complexidade e tempo de treinamento. Ja a Vanilla U-Net com duas camadas demonstrou bom
equilibrio entre simplicidade e desempenho, atingindo 88% em DSC e IOU, sendo considerada
mais adequada para aplicacdes clinicas.

Como desdobramento das investigacdes sobre variantes da U-Net, Sahin et al. (2024)
propdem uma arquitetura U-Net 3+, baseada na U-Net, com conexdes de salto multi-escala e
fusdo de caracteristicas, com o objetivo de desenvolver um modelo de segmentagdo preciso
e confidvel de estruturas dentdrias em radiografias panoramicas. O modelo foi treinado com
radiografias panoramicas de criancas (2 a 13 anos), do Children’s Dental Panoramic Radiographs
Dataset, incorporando imagens de adultos para diversificar o conjunto de dados. A arquitetura
possui quatro niveis de codificacdo e decodificacdo, usando camadas convolucionais, BatchNor-
malization, ReLU, pooling e upsampling com concatenagdo. Ela integra recursos em multiplas
escalas para melhorar a extracao de detalhes. O desempenho foi avaliado por meio de validagao
cruzada com 5 dobras, utilizando 100 épocas de treinamento em cada divisdo, o que garantiu
uma andlise confidvel dos resultados. A avaliacdo do modelo apresentou métricas robustas,
como Acurécia 97,36%, Precisao 93,25%, Sensibilidade 93,38%, DSC 93,31%, Acurécia por
pixel 97,36%, AUC 96,11%, Mean IOU 91,82% e Loss 0,0667, destacando seu potencial para
aplicacdes clinicas com segmentacdo dentdria precisa e confidvel.

Com uma proposta arquitetural diferenciada, Zhong et al. (2025) apresentam a
GCNet, uma arquitetura voltada para superar desafios comuns na segmentacao de radiografias
panoramicas, como o pequeno tamanho dos datasets, o alto nivel de ruido e as fronteiras pouco
definidas entre dentes e tecidos periodontais. O modelo incorpora dois médulos centrais: o Grou-
ped Global Attention (GGA ), responsavel por capturar dependéncias globais e destacar regides
relevantes, e o Cross-Layer Fusion (CLF), que integra informacdes de diferentes profundidades

para combinar detalhes estruturais e caracteristicas semanticas. Essa combinag@o permite melho-
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rar a separacao entre dentes e tecidos adjacentes, reduzir a sensibilidade ao ruido e preservar
contornos finos. O estudo utilizou o Dental Panoramic Radiographs Dataset, composto por 106
radiografias pedidtricas e mais trés conjuntos de adultos, totalizando 3.187 exames com mdéscaras
de segmentacdo. O treinamento foi realizado por 200 épocas, com batch size 2, otimizador Adam
e taxa de aprendizagem de 1 x 1073 . A GCNet foi comparada com modelos amplamente usados
na literatura: U-Net, SegNet, Attention U-Net, Inf-Net, GT-U-Net e Teeth U-Net e apresentou
desempenho superior em todas as métricas: DSC 93,38%, Sensibilidade 94,26%, Especificidade
98,21%, E-EMEASURE 97,12% e MAE 2,59%. A avaliacdo qualitativa reforcou esses achados,
mostrando contornos mais precisos e continuos, além de menor variagdo de desempenho entre
radiografias pediétricas e de adultos, evidenciando maior robustez e capacidade de generalizacgdo.

Em um contexto complementar, Zhang et al. (2023) propdem a criacio do primeiro
conjunto de dados publico internacional de radiografias panoramicas dentérias de criancas,
criado para apoiar tarefas de segmentacao de céries e detec¢ao de doencas odontoldgicas por
meio de deep learning. A proposta surge da falta de bases pedidtricas adequadas, ja que os
datasets existentes concentram-se majoritariamente em adultos, cujas diferencas fisioldgicas
limitam o uso clinico de modelos treinados exclusivamente nesses dados.O estudo reuniu 193
radiografias de 106 pacientes pedidtricos (2 a 13 anos), anotadas com ElSeg e LabelMe, formando
0 Children’s Dental Panoramic Radiographs Dataset. Além disso, os autores incorporaram
2692 radiografias de trés bases internacionais de adultos, ajustadas para incluir anotagcdes da
estrutura dentdria, ampliando a abrangéncia do conjunto. Para avaliar a aplicabilidade do dataset,
foram treinadas as arquiteturas U-Net, R2 U-Net, PSPNet e DeepLab V3+, todas com 0 mesmo
protocolo experimental (batch size 4, imagens 512x512 px e loss de entropia cruzada). A U-Net
obteve o melhor desempenho geral no conjunto infantil, com IOU de 83,87%, DSC de 91,20%,
ACC de 97,10%, Recall de 92,00% e Especificidade de 98,03%. Ainda assim, o DeepLab V3+
apresentou o maior Recall médio 94,86%, e o PSPNet atingiu a maior Especificidade 98,56%,
evidenciando a robustez do dataset para diferentes modelos.

Nesse contexto comparativo, Bhat er al. (2025) propdem avaliar e comparar a
eficdcia de quatro arquiteturas avangadas de aprendizado profundo para segmentagdo dentdria em
radiografias panoramicas: U-Net, U-Net++, U-Net com codificador MobileNetV3 e DeepLab.
Essas arquiteturas foram selecionadas devido as suas diferentes capacidades de lidar com aspectos
essenciais da tarefa de segmentagdo, como a localizacio precisa dos contornos, a captura de

informacgdes contextuais em multiplas escalas e a eficiéncia computacional. Nesse estudo,
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foram utilizados dois conjuntos de dados: o da Faculdade de Tecnologia da Universidade Tufts
(TUFT), que contém 1000 radiografias panoramicas dentdrias com madscaras rotuladas, e o da
Universidade Federal da Bahia—Universidade Estadual de Santa Cruz (UFBA-UESC), disponivel
publicamente e composto por 1500 radiografias panoramicas. O processo de avaliacdo das redes
foi conduzido em trés etapas. Primeiro, cada arquitetura foi testada separadamente nos datasets
TUFT e UFBA, permitindo identificar seu desempenho individual, etapa na qual a U-Net e a
U-Net++ apresentaram os melhores desempenhos. Em seguida, realizou-se a avaliagdo no dataset
combinado (TUFT + UFBA), totalizando 2500 radiografias, dividido em 80% para treino e 20%
para validagao/teste, com as imagens redimensionadas para 512x512 px. Nessa fase, a U-Net++
demonstrou melhor capacidade de generalizacao e, por esse motivo, foi selecionada para um
treinamento adicional com diferentes configuracdes de hiperparametros. Nesse processo, foram
testados tamanhos de lote de 4, 8 e 16, sendo o batch size 8 o mais eficaz e trés otimizadores
(SGD, Adam e Nadam), com o Adam apresentando o melhor desempenho, atingindo precisdao
aproximada de 97% durante o treinamento. Apds a otimizagdo, a U-Net++ alcangou seus
melhores resultados: IOU de 86%, DSC de 90%, Acuracia de 96%, Precisao de 91% e Recall de
90%, confirmando sua robustez e eficicia na segmentacao dentdria.

Com foco em modificagdes estruturais da U-Net, Almalki ef al. (2023) propde uma
abordagem para segmenta¢do dentdria em radiografias panoramicas baseada na U-Net Residual,
que incorpora conexdes residuais para fortalecer o fluxo de gradientes e melhorar a segmentacao.
A arquitetura inclui um codificador denoised para reduzir ruidos e extrair caracteristicas mais
limpas. Neste estudo, foi utilizado o conjunto de dados Tufts Dental, composto por 1.000
radiogréaficas panoramicas, todas anotadas por especialistas. O treinamento seguiu trés etapas:
pré-processamento, configuracao da arquitetura e otimizagdo. No pré-processamento, as imagens
foram redimensionadas, valores ausentes tratados, e divisdo dos dados em conjuntos de treino e
teste, e técnicas de aumento de dados aplicadas para melhorar a generalizacdo. A arquitetura
utilizou camadas convolucionais duplas e pesos pré-treinados do ResNet50, e a otimizacdo
contou com softmax para classificacao pixel a pixel e fun¢do de perda por entropia cruzada.
Para avaliar o desempenho, o modelo foi comparado com outras arquiteturas, incluindo SegNet,
U-Net, ResNet, DeepLabV3, DeepLabV3+, U-Net++, PSPNet e FPN. Os resultados demonstram
excelente desempenho, com IOU médio de 98%, DSC médio de 98%, distancia de Hausdorff
para o fundo de 1,617 e para a mascara estimada de 1,617. Em relacdo a segmentacdo, o

algoritmo implementado conseguiu delimitar com precisao as regides defeituosas dos dentes,



48

evidenciando o seu potencial drea de segmentacdo dentdria. Esses resultados indicam que
a abordagem desenvolvida é eficaz, e sua alta precisdo e eficiéncia sugerem potencial para
aplicacdes na industria odontolégica.

Seguindo na mesma linha de aprimoramento arquitetural, Yaswanth et al. (2025)
propdem um modelo de segmentacdo dentdria baseado em deep learning, utilizando uma U-
Net++ modificada integrada ao mecanismo de atencdo ECA-Net, que reforca a extracdo de
caracteristicas relevantes em nivel de canal e mantém baixo custo computacional. Neste estudo,
utilizou-se o Tufts Dental Dataset, composto por 1.000 radiografias panoramicas dentérias
anotadas por especialistas com detalhes sobre dentes e anomalias. Inicialmente, as imagens de
entrada foram normalizadas e binarizadas, sendo posteriormente organizadas em grupos para
o processo de treinamento. Concomitantemente, para assegurar consisténcia entre todos os
modelos avaliados - U-Net, FCNs, ENet, U-Net++, U-Net3+, SwiftNet e o modelo proposto
- foram adotadas as mesmas configura¢des de parametros em todos os experimentos. Dessa
forma, utilizou-se a fun¢do de perda Binary Cross-Entropy, o otimizador Adam com taxa de
aprendizagem de 0,0001. Além disso, todos os modelos foram treinados por 100 épocas, com
aplicagdo de early stopping para reduzir as perdas e evitar overfitting. Apos o treinamento, o
desempenho das redes foi avaliado utilizando algumas métricas de segmentacdo. O modelo
proposto apresentou os melhores resultados, alcancando IOU de 83%, DSC de 90%, PSNR
de 16,77, mAP de 96% e acurécia de 97%. Na tarefa de segmentacdo dentéria, a abordagem
demonstrou elevada eficdcia, produzindo contornos consistentes, bem delineados e alinhados as
anotagdes profissionais. Portanto, os resultados obtidos evidenciam que a U-Net++, aliada ao
mecanismo de aten¢do ECA-Net, configura uma solug@o altamente eficiente para a segmentag¢ao
automadtica de dentes.

Por fim, Bouali ef al. (2024) propdem investigar e comparar o desempenho de
quatro arquiteturas de redes neurais convolucionais do tipo UNet - UNet cldssica, Attention
UNet, UNet3+ e TransUNet - partindo do pressuposto de que essas variantes apresentam
desempenho superior em tarefas de segmentacdao de imagens médicas quando comparadas a
CNNs s tradicionais. Para a realizag@o deste estudo, foram utilizados dois conjuntos de dados:
o New Tufts Dental Dataset, composto por 1.000 radiografias panoramicas digitais obtidas na
Tufts University School of Dental Medicine e o UFBA-UESC Dental Images Dataset, que reuine
1.500 radiografias panoramicas. No treinamento das quatro redes, os conjuntos de dados foram

divididos em 80% para treino e 20% para teste, com imagens redimensionadas e normalizadas
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para (256, 256, 3), exceto no TransUNet, que utilizou (64, 64, 3) devido ao maior nimero de
parametros. Empregou-se aprendizagem por transferéncia com VGG19 e ResNet50 pré-treinados
no ImageNet, atualizando apenas as camadas adicionais. O processo experimental foi conduzido
com o otimizador Adam, taxa de aprendizagem de 1 x 102, Binary Focal Loss, batch size 8
ou 16 e numero de épocas ajustado a cada base: 150 para o Tufts e 50 para o UFBA-UESC.
No processo de avaliagdo, a UNet3+ com VGG19 apresentou o melhor desempenho geral,
alcangando DSC de 96,23% e IOU de 91,82% no Tufts, e DSC de 98,10% e IOU de 94,37%
no UFBA-UESC. O AttUnet com ResNet50 também se destacou em DSC, obtendo 96,98% no
Tufts € 97,16% no UFBA-UESC. O TransUNet-ResNet50 apresentou o melhor valor de IOU no
Tufts, atingindo 94,19%. Além disso, as quatro variantes da UNet superaram outras redes da
literatura, como UNet, UNet++, FCN+UNet, TSASNet e MSLPNet, em ambos os conjuntos de
dados. Esses resultados evidenciam a eficicia das arquiteturas UNet e os beneficios do uso de
modelos pré-treinados na segmentagao de radiografias panoramicas.

De forma geral, os trabalhos analisados evidenciam a ampla ado¢do de arquiteturas
baseadas na U-Net para a segmentagdo automdtica de dentes em radiografias panoramicas, refle-
tindo avancos relevantes tanto no desenho das arquiteturas quanto nas estratégias de treinamento
e avaliacdo como observado na Tabela 1. Contudo, observa-se a auséncia de procedimentos
fundamentais na literatura analisada, uma vez que ndo foi identificado o uso de Grid Search
para otimizagdo de hiperparametros, nao houve aplicacdo do teste estatistico de Wilcoxon para
verificar a existéncia de diferencas de desempenho entre as redes e ndo se verificou a integracao
das redes que obtiveram o melhor desmpenho a um sistema CAD para uso pratico em contextos
clinicos. Ademais, no que se refere as estratégias de validac@o, apenas Sahin et al. (2024)
adotaram validagdo cruzada, enquanto somente Zhang et al. (2023) avaliou o desempenho das
redes em um conjunto externo para verificar a capacidade de generalizacdo dos modelos para
dados ndo vistossendo que ambos esses procedimentos estiveram ausentes nos demais estudos
analisados. Em contraste, o presente trabalho busca suprir essas lacunas ao adotar um protocolo
experimental mais robusto, alinhado as limita¢cdes identificadas na literatura.

Uma comparagdo resumida entre os trabalhos relacionados e este estudo encontra-se

na Tabela 1.



Tabela 1 — Comparacao entre trabalhos relacionados e este trabalho

Trabalho Base de Arquiteturas Métricas de Teste Validacio | Validaca
Dados Usadas Avaliacio Estatistico | CAD Externa | Cruzada
DNS Panoramico
Nader et al. (2022) images Modified U-Net DSC X X X X
da IvisionLAB
. Tufts Dental DSC,
Joshi (2024) Dataset (TDD) U-Net 10U X X X X
. Vanilla U-Net, Dense U-Net, .
Zannah et al. (2024) da(r?l(())z-]::cli)ugicvo Attention U-Net, SE U-Net, ?;iu;i;l:\e' I])g[CJ, X X X X
Residual U-Net, R2 U-Net ’
Acurécia,
Children’s Dental Sensibilidade,
Panoramic Precisao,
SAHIN et al. (2024) Radiographs U-Net 3+ DSC. 10U, X X X v
Dataset Pixel Acc.,
AUC, Loss
Chl:;::rzn?iimal GCNet,U-Net, SegNet, Attention U-Net, | DSC, Sensibilidade,
Zhong et al. (2025) Radiographs Inf-Net, GT-U-Net, Especificidade, X X X X
Teeth U-Net E-MEASURE, MAE
Dataset
Children’s Dental Sensibilidade,
Panoramic U-Net, R2 U-Net, Especificidade,
Zhang etal. (2023) Radiographs PSPNet, DeepLab V3 ]A’Acurécia, X X / X
Dataset Precisao, IOU, DSC
UFBA-UESC Dental 10U, DSC,
Images Dataset. U-Net, U-Net++, Acuricia
Bhat et al. (2025) ) U-Net + MobileNetV3, o X X X X
Tufts Dental DeepLab Precisdo,
Dataset (TDD) Recall
. ) SegNet, U-Net Residual, U-Net, ResNet, .
Almalki et al. (2023) DE‘:;;ZSCTYI‘;‘]‘;) DeepLabV3, DeepLabV3+, ]?;CJ 2:;1‘;’ x x X x
U-Net++, PSPNet, FPN
Tufts Dental U-Net, FCNs, ENet, 10U, DSC,
Yaswanth et al. (2025) U-Net++, U-Net 3+, PSNR, mAP, X X X X
Dataset (TDD) X L.
SwiftNet Acurdcia
UFBA-UESC Dental
. Images Dataset, U-Net, Attention U-Net,
Bouali et al. (2024) Tufts Dental U-Net 3+, TransUNet 10U, DSC X X X X
Dataset (TDD)
. . ) Acurécia,
Chl;z;zrgizmdl U-Net, U-Net++, Especificidade,
Este Trabalho Radiographs U-Net 3+, W-Net, Sensibilidade, v v v v
Dataset ) Attention U-Net 10U, MAE, DSC,
E-MEASURE

Fonte: Elaborada pelo autor.

50



4 METODOLOGIA

Neste capitulo, é apresentada a metodologia empregada no desenvolvimento deste
trabalho, contemplando todas as etapas necessdrias para a construcao do modelo de segmentacao
dental baseado em radiografias panoramicas. Os experimentos seguem um fluxo sistematico que

se inicia com a aquisi¢do do conjunto de dados e finaliza com a implementagao do sistema CAD.
4.1 Visao Geral

A metodologia empregada nestre trabalho, incluindo suas principais etapas, estd

ilustrada na Figura 12.

Figura 12 — Diagrama da metodologia empregada neste trabalho
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Fonte: Elaborado pelo autor.

Primeiramente, estabelece-se o bloco de aquisi¢cao do conjunto de dados, composto
por radiografias panoramicas e suas mascaras de segmentagdo correspondentes. Em seguida,
essas imagens passam por uma etapa de pré-processamento, a fim de assegurar maior qualidade
aos dados utilizados no treinamento das redes. Apds isso, define-se o conjunto de arquiteturas a
serem utilizadas: U-Net, U-Net++, U-Net 3+, W-Net e Attention U-Net. Em seguida, inicia-se
o bloco de treinamento, no qual se aplicam as técnicas de Data Augmentation para ampliar a
diversidade do conjunto de dados, bem como a validacdo cruzada K-Fold, a fim de garantir

avaliacdes mais robustas. Além disso, utiliza-se a técnica de Grid Search para otimizar os
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hiperparametros de cada arquitetura.

Concluido o treinamento, os modelos sao submetidos a validacdo externa, utilizando
dois subdiretdrios do conjunto de dados empregados neste trabalho que ndo participaram das
etapas de treino, com o objetivo de avaliar sua capacidade de generalizacdao. Em seguida,
o desempenho das arquiteturas € avaliado por meio das seguintes métricas: sensibilidade,
especificidade, acurdcia, DSC, MAE, E-MEASURE e IOU. Por fim, foi desenvolvido um
sistema CAD no qual o modelo com melhor desempenho foi integrado, para permitir o envio de

radiografias panordmicas e a geracao automatica das segmentagdes dentdrias.

4.2 Aquisicao do Conjunto de Dados

O conjunto de dados utilizado neste trabalho é o Children’s Dental Panoramic
Radiographs Dataset, que foi proposto no estudo de Zhang et al. (2023) como o primeiro
conjunto publico internacional de radiografias panoramicas dentdrias de criancas, complementado
com imagens de pacientes adultos, para apoiar no processo de segmentacdo de cdries e a
deteccdo de condicdes bucais por meio de modelos de aprendizado profundo. Esse material esta
disponibilizado publicamente na plataforma Kaggle, que € uma plataforma online dedicada a
ciéncia de dados e ao aprendizado de maquina e oferece acesso a conjuntos de dados publicos. A

estrutura geral do banco de dados € ilustrada na Figura 13.

Figura 13 — Estrutura do conjunto de dados
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No topo, tem-se o Children’s Dental Panoramic Radiographs Dataset, que corres-
ponde ao conjunto de dados completo e € composto por trés subconjuntos distintos. O primeiro
€ o Children’s Dental Caries Segmentation Dataset, que reune 193 radiografias panoramicas
infantis destinadas a segmentacdo da estrutura dental. O segundo € o Pediatric Dental Dise-
ase Detection Dataset, composto por 100 radiografias pedidtricas, utilizado para a deteccao
e classificacdo de dentes afetados por doengas, especialmente céries. Por fim, tem-se o Adult
Tooth Segmentation Dataset, estruturado em trés diretorios: Archive (116 imagens), composto
por radiografias panoramicas dentérias obtidas no Centro de Imagem Médica Noor (Qom, Ird),
abrangendo uma ampla gama de condi¢des odontoldgicas; Panoramic Radiography Database
(598 imagens), obtido a partir de pacientes selecionados aleatoriamente para um estudo de
aprimoramento de imagens; e Dataset and Code (1.978 imagens), adquirido em parte no Centro

de Diagnéstico por Imagem da UESB e em parte no Hospital Odontolégico Hangzhou Lishui.

4.3 Pré-processamento e Preparacao dos Dados

Como observado na Sec¢ao 4.2, o conjunto de dados completo € formado por dife-
rentes subconjuntos, contendo radiografias panoramicas tanto de criangas quanto de adultos.
Entretanto, considerando que o escopo deste trabalho € a segmentacdo da arcada dentdria em
pacientes adultos, cuja morfologia encontra-se completamente desenvolvida, o que reduz a
variabilidade anatdmica e favorece a consisténcia das estruturas a serem segmentadas e, conse-
quentemente, beneficia o treinamento dos modelos, optou-se por selecionar apenas o subconjunto
correspondente a essa faixa etdria, ou seja, a pasta Adult Tooth Segmentation Dataset, que
contempla os trés diretérios de dados.

A primeira etapa de pré-processamento realizada a partir da escolha do subconjunto
a ser utilizado, consistiu em uma andlise detalhada dos diretérios correspondentes. Durante
essa andlise, verificou-se que o diretério Dataset and Code, originalmente contendo 1.978
imagens, apresentava 478 imagens duplicadas. A partir dessa identificacdo, esses dados foram
removidos para garantir a consisténcia do conjunto de dados e evitar redundancias que poderiam
comprometer o treinamento e a avaliacdo dos modelos. Dessa forma, apds essa remog¢ao, o
diretorio passou a conter 1.500 imagens e, ao se considerar esse quantitativo em conjunto com 0s
demais diretérios disponibilizados, o nimero total de imagens disponiveis passou a ser de 2.214.

Na sequéncia, foram realizadas as etapas de pré-processamento das imagens, a fim

de padronizar os dados para o treinamento das redes de segmentacao. Inicialmente, todas as
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imagens foram convertidas para escala de cinza (grayscale), uma vez que a segmentacao baseia-
se exclusivamente na intensidade dos pixels. Em seguida, imagens e mdscaras, originalmente
com resolugdo de 2000 x 942 pixels, foram redimensionadas para a resolugdo de 256 x 512 pixels,
0 que garante dimensdes consistentes para o processamento pelas redes neurais. Os valores de
pixel das imagens foram entdo normalizados para a faixa [-1, 1], por meio da aplicacdo de uma
normalizacdo com média 0,5 e desvio padrao 0,5, o que favorece a estabilidade numérica e a
convergéncia do processo de treinamento. Posteriormente, imagens e mdscaras foram convertidas
em matrizes numéricas e representadas na forma de tensores, os quais sdo utilizados como entrada
pelos modelos de aprendizado profundo. As méscaras de segmentacao foram binarizadas, de
modo que cada pixel assumisse valor 0 ou 1, o que corresponde as classes de fundo e dente, em

conformidade com a formulagdo da segmentacao bindria.

4.4 Arquiteturas de Redes Neurais para Segmentacao

Com base no objetivo deste trabalho, que consiste em realizar a segmentagao auto-
matica de dentes a partir de radiografias panoramicas, foi realizada uma andlise da literatura com
o intuito de identificar arquiteturas de CNN adequadas para executar essa tarefa com precisao e
eficiéncia. A partir desse levantamento, verificou-se que arquiteturas do tipo encoder—decoder,
especialmente aquelas baseadas na U-Net e suas variacOes, apresentam desempenho consistente
nessa tarefa, sendo, portanto, as selecionadas para implementagdo neste estudo.

Dentre as arquiteturas identificadas, foram selecionadas para este trabalho as seguin-
tes redes: U-Net, U-Net++, U-Net 3+, W-Net e Attention U-Net. A escolha desse conjunto de
redes neurais teve como objetivo possibilitar uma andlise comparativa entre essas variagoes,
que se diferenciam principalmente pela forma como exploram conexdes entre niveis, fusdo
multiescala, mecanismos de atencdo e estratégias de aprendizado, a fim de avaliar o impacto

dessas diferencas na segmentacao dentdria.

4.5 Treinamento dos modelos de segmentacao

O processo de treinamento dos modelos de segmentagdo escolhidos foi conduzido
de forma sistemadtica, adotando as mesmas configuracoes, critérios de avaliacdo e estratégias de
validacdo para todas as arquiteturas, de modo a garantir uma avaliacio consistente do desempenho

entre elas.
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4.5.1 Aumento de Dados

A técnica de aumento de dados foi aplicada exclusivamente ao conjunto de treina-
mento por meio da biblioteca Albumentations, em tempo de execugdo, abrangendo uma série
de transformacgdes geométricas e fotométricas. As operagdes geométricas incluiram inversdes
horizontais e verticais, rotagdes aleatérias com limite de até 30 graus e escalonamento aleatd-
rio de —20% a +20% do tamanho original, aplicados com 50% de probabilidade, permitindo
simular variagdes de orientacdo, posicionamento e escala das radiografias. Foram empregadas
também transformacdes fotométricas, como ajustes de brilho e contraste, variacao controlada
de intensidade, aplicagdo do método CLAHE para realce de contraste local e suavizaciao por
desfoque Gaussiano, de modo a representar diferentes condi¢cdes de aquisicao e qualidade das
imagens. O uso dessa técnica teve como objetivo reduzir o risco de sobreajuste e melhorar a

capacidade de generalizacao dos modelos.
4.5.2 Ajuste de Hiperpardmetros e Validacdo Cruzada

Ao considerar que o Adult Tooth Segmentation Dataset, diretorio escolhido para
esse estudo, é formado por trés subdiretorios distintos, decidiu-se que para as etapas de ajuste
de hiperparametros (Grid Search) e também de treinamento final dos modelos seria utilizado
exclusivamente o diretério Archive que é composto por 116 imagens panoramicas. A escolha
desse diretdrio para as etapas descritas anteriormente, esteve relacionada principalmente para
analisar o comportamento das arquiteturas selecionadas quando treinadas com um conjunto
limitado de dados, bem como a sua capacidade de generaliza¢do para dados ndo vistos.

Para cada arquitetura, foi utilizado o mesmo conjunto de hiperparametros, definido
com as seguintes configuracdes: taxas de aprendizado de 1 x 1073 e 5 x 10~#, tamanho do lote
(batch size) igual a 8, e os otimizadores Adam e AdamW. A otimizagdo desses hiperparametros
foi conduzida por meio da estratégia de Grid Search, na qual todas as combinagdes possiveis
dentro do espaco definido sdo testadas de forma exaustiva. Essa estratégia permitiu verificar de
que forma as diferentes combinagdes de hiperpardmetros afetavam os resultados das redes, para
garantir comparagoes justas entre elas e manter um bom equilibrio entre estabilidade, aprendizado
correto e eficiéncia. Durante essa etapa, cada configuracao foi treinada por 50 épocas, nimero
considerado suficiente para a convergéncia inicial dos modelos e para permitir comparacao

consistente entre as combinagdes avaliadas. Além disso, o treinamento foi realizado de forma
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supervisionada, utilizando a fun¢do de perda combined loss, que combina BCEWithLogitsLoss e
Dice Loss para penalizar discrepancias entre as mdscaras preditas e as mdscaras de referéncia. Os
pesos das redes foram ajustados por retropropagacgdo do erro, utilizando os otimizadores Adam
ou AdamW, conforme a configuracdo avaliada.

A avaliacdo das diferentes configuracdes foi realizada utilizando validacao cruzada
k-fold, com k = 10. Em cada fold, o conjunto de dados do diretério Archive foi dividido em
subconjuntos de treinamento e teste, sendo que o subconjunto de treinamento foi, por sua vez,
dividido em treinamento e validacao. Com isso, o pipeline efetivamente utiliza aproximadamente
72% dos dados para treino, 18% para validacao e 10% para teste em cada fold. Essa estratégia
garante que todas as amostras sejam aproveitadas tanto para treinamento quanto para validagao
ao longo do processo, isso reduz o viés de uma dnica divisdo e fornece uma estimativa mais
confidvel da capacidade de generalizagao dos modelos.

Ao final de cada fold, selecionou-se como melhor configuracio aquela que apresentou
o maior valor de DSC no conjunto de validacao, e os pesos do modelo correspondentes, bem
como os hiperparametros associados, foram armazenados para uso posterior. O conjunto de teste
de cada fold foi utilizado para a avaliacdo do desempenho da configuragao selecionada. Apds a
conclusao de todos os folds da validagdo cruzada, a configuracio global final de hiperparametros
de cada arquitetura foi definida com base no maior valor médio de DSC obtido no conjunto de
teste, o que garante uma selecao mais robusta e menos dependente de variagdes especificas do
conjunto de dados.

Ap6s a definicdo da melhor configuragdo de cada rede, realizou-se o treinamento
final dos modelos no conjunto completo Archive, utilizando as configuracdes 6timas de hiperpa-
rametros. Nessa etapa, os modelos foram treinados por 50 épocas, para garantir consisténcia
metodoldgica com a fase de otimizagdo e aplicando as mesmas estratégias adotadas anterior-
mente, ou seja, aumento de dados e otimiza¢do por Adam ou AdamW. Ao término do treinamento,

os modelos finais foram armazenados para uma posterior avaliagdo quantitativa.

4.6 Validacao externa

Ap0s o treinamento final dos modelos utilizando o dataset Archive com a melhor
configuracdo de hiperparametros obtida via Grid Search e validacdo cruzada k-fold, foi utilizada
a técnica de validagdo externa para avaliar a capacidade de generalizacdo dos modelos em

dados ndo vistos durante o treinamento. Para isso, foram utilizados os outros dois subdiretorios



57

que compdem o conjunto de dados de pacientes adultos: Dataset and code e o Panoramic
Radiography Database. Antes da inferéncia, todas as imagens e suas respectivas mascaras desses
conjuntos passaram pelo mesmo fluxo de pré-processamento adotado na fase de validacao, ou
seja redimensionamento, normaliza¢ao e conversdo para tensores PyTorch, isso visa assegurar
a padronizacdo dos dados de entrada e a consisténcia com o procedimento utilizado durante o
treinamento dos modelos. Em seguida, os modelos finais, ajustados com a melhor configuracao
global de hiperpardmetros, foram carregados para realizar a inferéncia, o que possibilitou a
avaliacdo individual de todas as imagens dos datasets externos.

Para verificar o desempenho de cada arquitetura no processo de segmentagao das
estruturas dentérias, cada uma das redes gerou 10 madscaras por dataset, armazenadas em
formato PNG. Esse procedimento possibilitou a realizacdo de uma andlise qualitativa visual
do comportamento das redes e permitiu a comparagdo entre as arquiteturas quanto a qualidade
dos contornos segmentados, a coeréncia das regides identificadas e a preservacdo das estruturas
dentdrias de interesse. Além disso, a ado¢do de um nimero reduzido de mascaras evita o
armazenamento excessivo de arquivos e mantém, ainda assim, uma amostra representativa da

capacidade de generalizacao dos modelos em dados externos.

4.7 Avaliacao de desempenho

Para avaliar o desempenho dos modelos no processo de validag¢do externa utilizando
os dois conjuntos de dados citados na secdo 4.6, selecionamos um conjunto de métricas de avalia-
cdo que sao amplamente utilizadas em tarefas de segmentacao de imagens. Essas métricas foram
escolhidas pois quantificam, de forma objetiva, a correspondéncia entre as regidoes segmentadas
pelos modelos e as méscaras de referéncia, isso permite avaliar tanto a sobreposicao quanto os
erros de segmentacdo. Dessa forma, apds uma busca na literatura, as métricas escolhidas foram:
Acurécia, Sensibilidade, Especificidade, Intersec¢do sobre Unido (IOU), Coeficiente de Simi-
laridade de Dice (DSC), Erro Médio Absoluto (MAE) e Medida de Alinhamento Aprimorada
(E-MEASURE), as quais estao detalhadamente descritas no Capitulo 2.15 da Fundamentacao

Tedrica.
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4.8 Ambiente de desenvolvimento

Os experimentos foram realizados em um computador com sistema operacional
Linux, com distribuicao Ubuntu, GPU NVIDIA GeForce RTX 3090, com 24 GB de memdria
dedicada, processador Intel Core 17 e 32 GB de memdria RAM. O ambiente computacional
contou com driver NVIDIA versao 580.95.05 e suporte 8 CUDA 13.0. A implementagdo foi
desenvolvida na linguagem de programacdo Python, tendo como principal biblioteca o PyTorch,
empregado na definicdo, treinamento e avaliagc@o das arquiteturas de redes neurais. Como suporte
ao pipeline experimental, foram utilizadas bibliotecas auxiliares: Albumentations para aumento
de dados, NumPy e Pandas para manipulacdo de dados, scikit-learn e imbalanced-learn para

célculo das métricas de avaliacdo e validacdo experimental.

4.9 Analise Estatistica: Teste de Wilcoxon

A partir da etapa de avaliagao dos modelos com as métricas selecionadas, foi apli-
cado o teste estatistico ndo paramétrico de Wilcoxon para amostras pareadas, com o objetivo de
verificar se as diferencgas observadas no desempenho das arquiteturas avaliadas sdo estatistica-
mente significativas. Esse teste compara duas amostras relacionadas a partir das diferencas entre
observagdes correspondentes e foi escolhido por nao assumir normalidade dos dados, além de
ser adequado a comparac¢do de desempenhos obtidos a partir dos mesmos conjuntos de dados.
O teste foi conduzido com base nos valores do Coeficiente de Similaridade de Dice (DSC)
obtidos durante o processo de validagao cruzada k-fold, com comparagdes pareadas entre todas
as combinacdes de arquiteturas avaliadas.

Para cada par de modelos, foram considerados os valores de DSC correspondentes
aos mesmos folds, o que assegurou a comparabilidade direta entre os resultados. O nivel de
significancia adotado foi de 5% (a = 0,05), sendo consideradas estatisticamente significativas as
diferencas com p-value inferior ou igual a esse limiar. Dessa forma, o teste de Wilcoxon permitiu
identificar se as variagdes de desempenho observadas entre as arquiteturas refletem diferencas

estatisticamente significativas ou nao.

4.10 Desenvolvimento do Sistema CAD

A partir do processo de avaliagdo dos modelos implementados e da andlise dos

resultados gerados por cada um deles, aliado a anélise estatistica por meio do teste de Wilcoxon,
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selecionou-se 0 modelo de segmentacido que apresentou o melhor desempenho no processo
de segmentacgdo das estruturas dentdrias em comparagdo com as demais arquiteturas avaliadas.
Diante desse resultado, o modelo foi incorporado a um sistema CAD desenvolvido neste trabalho,
com o objetivo de viabilizar a aplicagdo pratica do método proposto. Conforme ilustrado na
Figura 14, o sistema foi desenvolvido de modo a permitir a interacao direta do usudrio com a

plataforma, de forma a possibilitar a execug¢do automatica do modelo previamente treinado.

Figura 14 — Fluxo do Sistema CAD
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Fonte: Elaborado pelo autor.

O sistema CAD foi implementado utilizando o Streamlit, uma biblioteca Python de
codigo aberto que permite o desenvolvimento rapido de aplicacdes web interativas e visualmente
atrativas com o minimo de codificac¢do, o que possibilita a criacdo de interfaces dindmicas e
facilita a integracdo entre modelos de aprendizado profundo e aplicagdes baseadas na web.

Inicialmente, o usudrio envia uma radiografia panoramica por meio da interface
web. Apds o envio, o sistema realiza o carregamento do modelo de segmentacao selecionado e
executa o processo de inferéncia sobre a imagem submetida. Como resultado, a rede neural gera
a mascara de segmentacdo correspondente as estruturas dentarias. O resultado do processamento
¢ apresentado diretamente ao usudrio, com a exibi¢do da méscara de segmentagdo em conjunto
com a radiografia panoramica original, o que permite a andlise comparativa dos resultados.
Além disso, o sistema oferece a op¢do de exportacdo, permitindo o download de um arquivo em
formato PDF que contém a radiografia panoramica e a segmentacdo gerada lado a lado. Essa
integracdo demonstra que o modelo escolhido pode ser aplicado em um ambiente computacional
acessivel, o que evidencia a transi¢ao de um método experimental para uma solu¢do funcional

baseada na web, com potencial de aplicagdo em ambientes clinicos controlados.
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5 RESULTADOS E DISCUSSOES

Neste capitulo, sdo apresentados e discutidos os resultados obtidos a partir da
metodologia proposta no Capitulo 4. Inicialmente, sdo exibidas as melhores configuracdes
de hiperparametros de cada arquitetura, obtidas por meio do procedimento de Grid Search e
validacdo cruzada. Na sequéncia, sdo exibidos os resultados obtidos na etapa de validagao
externa, referentes ao Dataset and code e ao Panoramic Radiography Database, que mostram o
desempenho das redes nesses conjuntos de dados e permitem a andlise de seu comportamento
em ambos. Apds essa etapa, € discutida a andlise estatistica do desempenho das redes, obtida por
meio do teste estatistico de Wilcoxon, para verificar se houve diferencas significativas entre elas.
Por fim, apresenta-se o sistema CAD desenvolvido, com demonstracao de seu funcionamento
por meio de exemplos de radiografias panoramicas e das segmentacdes geradas, para demonstrar

sua aplicabilidade prética.

5.1 Resultados da selecao de hiperparametros por arquitetura

A Tabela 2 apresenta as melhores configuracdes de hiperpardmetros obtidas para
cada arquitetura. Para cada rede, sdo exibidos os pardmetros que resultaram no maior valor
médio de DSC durante o processo de selecdo, incluindo a learning rate, o tamanho do batch e o

otimizador.

Tabela 2 — Melhor configuracdo de hiperparametros de cada arquitetura

Arquitetura | Batch size | Learning rate | Otimizador
Attention U-Net 8 5% 1077 Adam
U-Net 3+ 8 5x107% Adam
U-Net++ 8 5x107% AdamW
U-Net 8 5x107% AdamW
W-Net 8 5x107% Adam

Fonte: Elaborada pelo autor.

Conforme observado na Tabela 2, as arquiteturas diferiram apenas quanto ao oti-
mizador utilizado, indicando que, embora existam hiperparametros comuns que favorecem a
convergéncia, como batch size e learning rate, a estratégia de atualizacao dos pesos impacta
de forma distinta o desempenho das redes. Em particular, Attention U-Net, U-Net 3+ e W-Net
obtiveram melhores resultados com Adam, enquanto U-Net e U-Net++ apresentaram desem-

penho superior com AdamW. Essa diferenca sugere que arquiteturas com blocos de atengao,
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conexdes densas aninhadas e maiores niveis de profundidade hierdrquica se beneficiam de menor
regularizacdo explicita, permitindo maior flexibilidade na adaptacdo dos pesos, o que € relevante
em dados clinicos com ruido e variabilidade anatdmica elevada.

Por outro lado, redes como U-Net e U-Net++, que dependem fortemente da propaga-
¢ao de caracteristicas de baixo nivel por meio de skip connections e refinamento progressivo
das representacoes, se beneficiam de uma regularizacao mais explicita, como a introduzida pelo
AdamW, o que favorece a estabilidade durante o treinamento e melhor capacidade de genera-
lizagdo. A padronizacdo da learning rate e do batch size para todas as arquiteturas evidencia
que esses hiperparametros forneceram equilibrio adequado entre estabilidade e eficiéncia no
processo de treinamento. Por fim, as configura¢des indicadas na Tabela 2 foram utilizadas no
treinamento final das arquiteturas, de modo a assegurar um treinamento mais consistente e 0

melhor desempenho possivel para cada uma delas.

5.2 Resultados da avaliacao no conjunto de teste

Os resultados apresentados na Tabela 3 correspondem ao desempenho das arquite-
turas avaliadas no conjunto de teste durante a etapa de ajuste de hiperpardmetros e validacdo
cruzada em 10 folds. Em cada fold, as métricas foram calculadas a partir do subconjunto de
teste, e os valores reportados representam a média e o desvio padrdo obtidos ao longo das dez
iteragdes, o que reflete a consisténcia do desempenho das arquiteturas ao longo do processo de

avaliagdo.

Tabela 3 — Resultados das métricas no conjunto de teste.

ARQUITETURA | ACURACIA | ESPECIFICIDADE | SENSIBILIDADE | E-MEASURE MAE 10U DSC
U-Net 0,983 +0,002 0,990+ 0,002 0,950+0,011 | 0,977+0,002 | 0,017+0,002 | 0,905=+0,008 | 0,950+ 0,004
U-Net++ 0,985+0,001 | 0,991 +0,002 0,952+0,010 | 0,979+0,001 | 0,015+0,001 | 0,913 +0,006 | 0,954 £ 0,003
U-Net 3+ 0,962 + 0,002 0,973 +0,005 0,906+0,018 | 0,946+0,004 | 0,038+0,002 | 0,801=0,006 | 0,889 +0,004
Attention U-Net | 0,983 +0,001 0,990 £ 0,002 0,947+0,008 | 0,977+0,002 | 0,017+0,001 | 0,905-+0,006 | 0,950+ 0,004
W-Net 0,983 +0,002 0,990 0,002 0,948+0,010 | 0,977+0,002 | 0,017+0,002 | 0,905=+0,008 | 0,950+ 0,004

Fonte: Elaborado pelo autor.

Conforme observado na Tabela 3, as arquiteturas U-Net, U-Net++, Attention U-Net
e W-Net apresentaram os melhores desempenhos globais no conjunto de teste, com valores
médios elevados de acuricia, especificidade, sensibilidade, E-FMEASURE, IOU e DSC, além
de baixos valores de MAE. Esses resultados indicam elevada capacidade de segmentagao das
estruturas dentdrias, tanto em termos de classificacdo pixel a pixel quanto de sobreposicdo

entre as mascaras preditas e as mascaras de referéncia. Entre os modelos avaliados, a U-Net++
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destacou-se de forma consistente por apresentar as maiores médias nas métricas de sobreposi¢ao
espacial (IOU e DSC), sugerindo melhor delineamento das regides segmentadas. As arquiteturas
U-Net, Attention U-Net e W-Net, por sua vez, exibiram desempenhos muito préximos entre si
em todas as métricas analisadas, com desvios padrao reduzidos, o que evidencia estabilidade e
baixa variabilidade dos resultados ao longo dos folds.

Em contraste, a arquitetura U-Net 3+ apresentou desempenho inferior em relacao
as demais, especialmente nas métricas IOU e DSC, além de maiores valores de MAE, o que
indica menor concordancia espacial entre as segmentacdes preditas e as mascaras da verdade
fundamental. Ainda assim, os desvios padrao relativamente baixos sugerem que esse comporta-
mento foi consistente ao longo das diferentes parti¢des do conjunto de dados. De forma geral, a
combinagdo de altos valores médios e baixa dispersdao das métricas para a maioria das arquite-
turas reforga a confiabilidade dos resultados obtidos, isso indica que os modelos apresentaram
desempenho consistente na segmentacao das estruturas dentdrias, com comportamento estivel e

pouca variagdo entre as amostras avaliadas.

5.3 Resultados no conjunto de dados Dataset and code

Os resultados referentes ao conjunto Dataset and code estdo apresentados na Tabela
4. Neste estudo, cada métrica avalia um aspecto especifico da segmentagdo das estruturas
dentdrias. A acurdcia indica o percentual total de pixels corretamente classificados como dentes
ou como fundo, a sensibilidade estd relacionada a capacidade do modelo de detectar corretamente
as regides de interesse e mostra o quanto ele identifica os verdadeiros positivos e a especificidade
avalia o qudo bem o modelo reconhece as regides de fundo, refletindo o controle sobre a geragdo
de falsos positivos. Além disso, o DSC e a IOU quantificam a sobreposi¢ao entre a miscara
predita e a referéncia, sendo a IOU mais rigorosa ao penalizar pequenas diferengas espaciais nas
bordas dentdrias. Por sua vez, o MAE indica o desvio médio pixel a pixel entre a predi¢do e a
referéncia, enquanto a E-MEASURE avalia o alinhamento global da segmentagdo e analisa a

coeréncia estrutural da denticdo.
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Tabela 4 — Resultados das métricas no Dataset and code

ARQUITETURAS | ACURACIA | ESPECIFICIDADE | SENSIBILIDADE | E-MEASURE | MAE | IOU | DSC
U-Net 0,952 0,995 0,782 0,914 0,048 | 0,767 | 0,868
U-Net++ 0,953 0,994 0,789 0,917 0,047 | 0,772 | 0,871
U-Net 3+ 0,946 0,991 0,768 0,906 0,054 | 0,741 | 0,851
Attention U-Net 0,951 0,994 0,778 0,912 0,049 | 0,760 | 0,864
W-Net 0,955 0,992 0,809 0,925 0,045 | 0,785 | 0,879

Fonte: Elaborado pelo autor.

Como mostra a Tabela 4, todas as arquiteturas apresentaram acurdcia elevada, eviden-
ciando um desempenho consistente na distin¢do entre dentes e fundo. De forma complementar, a
alta especificidade indica que os modelos foram eficazes em reconhecer corretamente as regides
de fundo, reduzindo a ocorréncia de falsos positivos. Esse comportamento é particularmente
relevante no contexto clinico, pois evita a identificagdo indevida de estruturas inexistentes como
dentes, minimizando ruidos na segmentagdo e aumentando a confiabilidade do sistema CAD
como ferramenta de apoio ao diagndstico. No detalhamento dos demais resultados, observa-se
que a U-Net apresentou desempenho s6lido como modelo base, com IOU de 0,767 e DSC de
0,868. Isso deixa claro que houve uma boa sobreposi¢cdo entre as mascaras geradas por ela
quando comparada a verdade fundamental, ainda com pequenas imprecisdes nos contornos
dentérios. A sensibilidade de 0,782 indica recuperagdo consistente das regides de interesse, com
baixa perda estrutural. J4 em termos de fidelidade local, o MAE de 0,048 e a E-MEASURE de
0,914 sugerem segmentacdes estaveis e com baixo erro pixel a pixel.

Em paralelo, a U-Net++ apresentou um leve avanco em relagdo a U-Net, especial-
mente nos contornos dentdrios. Isso se refletiu quando observado o aumento do IOU 0,772 e
do DSC 0,871, indicando sobreposi¢do mais precisa e melhor preservacio dos contornos denté-
rios. Ademais, a sensibilidade superior 0,789 aponta maior recuperacao das regides dentdrias,
enquanto o menor MAE e o maior valor de E-EMEASURE reforcam a redugao de erros locais
e a maior coeréncia estrutural, aspecto atribuido as skip connections densas. Por outro lado, a
U-Net 3+ apresentou os menores valores globais, com IOU de 0,741 e DSC de 0,851, revelando
menor sobreposicdo e maior fragmentacdo das mascaras. A sensibilidade de 0,768 sugere maior
incidéncia de falsos negativos, o que resulta em perda de detalhes dentédrios; 0 MAE mais elevado
e a menor E-MEASURE corroboram o aumento do erro local e a menor consisténcia estrutural,
aspecto que evidencia limitagdes da arquitetura neste conjunto.

De maneira intermedidria, a Attention U-Net obteve desempenho situado entre os

modelos anteriores, com IOU de 0,760 e DSC de 0,864, préximos aos da U-Net, indicando
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contornos estdveis, porém sem ganhos expressivos em sobreposi¢cdo. A sensibilidade de 0,778
reforca sua capacidade moderada de recuperar as regides dentdrias. Em complemento, os valores
de MAE e E-MEASURE indicam precisdo local e coeréncia estrutural semelhantes as da U-Net.

Por fim, a W-Net destacou-se como a melhor arquitetura, com os maiores valores
de IOU 0,785 e DSC 0,879, o que demonstra excelente preservacdo da forma e dos contornos
dentérios, com sobreposicao mais consistente entre predicdo e a verdade fundamental. Sua
sensibilidade foi a mais alta 0,809, para deixar claro sua capacidade de recuperar integralmente
as regides dentdrias. Além disso, apresentou o menor MAE, isso reflete em um menor nivel de
erro local, e o maior valor de E-EMEASURE, para confirmar o alinhamento estrutural superior e

consolidando a W-Net como o melhor desempenho entre as arquiteturas avaliadas.

5.4 Resultados no conjunto de dados Panoramic Radiography Database

A Tabela 5 apresenta os resultados das métricas obtidas no segundo conjunto da
validagdo externa Panoramic Radiography Database, para garantir a comparabilidade entre as

arquiteturas avaliadas.

Tabela 5 — Resultados das métricas no Panoramic Radiography Database

ARQUITETURAS | ACURACIA | ESPECIFICIDADE | SENSIBILIDADE | E-MEASURE | MAE | I0U | DSC
U-Net 0,980 0,983 0,956 0,972 0,020 | 0,844 | 0915
U-Net++ 0,981 0,984 0,963 0,973 0,019 | 0,852 | 0,920
U-Net 3+ 0,970 0,978 0,903 0,960 0,030 | 0,770 | 0,870
Attention U-Net 0,982 0,984 0,965 0,975 0,018 | 0,858 | 0,924
W-Net 0,977 0,980 0,957 0,966 0,023 | 0,824 | 0,904

Fonte: Elaborado pelo autor.

Conforme observado na Tabela 5, o desempenho nas métricas de acurécia e especifi-
cidade manteve-se elevado, seguindo 0 mesmo comportamento verificado no conjunto anterior.
Esse resultado indica que, em ambos os datasets, as arquiteturas foram capazes de generalizar
adequadamente na distin¢do entre estruturas dentdrias e fundo. Além disso, tal comportamento
sugere controle consistente de falsos positivos e boa adequacdo dos modelos as caracteristicas
radiograficas deste conjunto externo. Quanto ao desempenho individual, a U-Net apresentou
avanco expressivo em relag@o ao primeiro conjunto, atingindo IOU de 0,844 e DSC de 0,915,
com madscaras mais bem ajustadas aos contornos dentdrios. Essa melhora se refletiu também na
recuperacao das regides de interesse, com sensibilidade de 0,956, e no alinhamento estrutural,

dada a reducdo do MAE e o aumento da E-MEASURE, o que resultou em segmentagdes mais
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estaveis.

Ao analisar a U-Net++, percebe-se que ela manteve as melhorias previamente
observadas nas métricas de sobreposi¢do, alcancando IOU de 0,852 e DSC de 0,920, valores
que denotam contornos mais refinados e maior aderéncia espacial. Nesse caso, a capacidade
de captura das regides dentdrias foi ainda maior, uma vez que o modelo alcancou sensibilidade
de 0,963, enquanto os ganhos em MAE e E-MEASURE consolidaram a coeréncia global e
local das segmentagcdes. Esse conjunto de resultados refor¢ca o papel das skip connections
densas no refinamento estrutural das méscaras. No que concerne a U-Net 3+, observou-se uma
melhora absoluta em todas as métricas, embora a arquitetura tenha permanecido como a de
menor desempenho relativo neste conjunto externo. Com IOU de 0,770 e DSC de 0,870, o
modelo apresentou maior fragmentacao nas regides dentdrias, com falhas na continuidade dos
contornos, o que resulta em uma mascara menos fiel a estrutura real dos dentes, enquanto a
sensibilidade de 0,903 ainda denota perda de detalhes dentdrios; mesmo assim, esses valores
mostram-se suficientes para produzir uma segmentacdo precisa. O MAE mais elevado e o
menor E-MEASURE entre as arquiteturas confirmam segmentagdes menos consistentes € maior
incidéncia de falsos negativos.

Em contraste, a W-Net apresentou desempenho sélido, com maior precisao local,
evidenciada pelo menor MAE entre as arquiteturas, € bom desempenho estrutural. O IOU
de 0,824 e o DSC de 0,904 indicam que as mdscaras preditas mantiveram boa sobreposicao
com a verdade fundamental, preservando os contornos dentdrios e a continuidade das regides
segmentadas. A sensibilidade de 0,957 demonstra elevada capacidade de recuperar integralmente
as regides dentdrias, reduzindo a perda de detalhes. Além disso, manteve-se bom desempenho
na preservagao da forma e dos contornos dentarios, comportamento ja observado no conjunto
anterior.

Por fim, a Attention U-Net apresentou o melhor desempenho global no Panoramic
Radiography Database. Com os maiores valores de IOU 0,858 e DSC 0,924, as mdscaras
produzidas pelo modelo demonstraram excelente correspondéncia com a referéncia, com contor-
nos dentdrios mais precisos e continuidade das regides segmentadas. A sensibilidade de 0,965
evidenciou que quase todas as regides dentdrias foram corretamente identificadas, o que reflete
elevada capacidade de detec¢do de areas criticas. Além disso, com o menor MAE 0,018 e o maior
E-MEASURE 0,975, as segmentacOes apresentaram maior uniformidade e coeréncia estrutural,

aspecto que evidencia a contribui¢do efetiva do mecanismo de aten¢@o para realcar as regides de
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interesse.

5.5 Analise qualitativa das mascaras segmentadas

Como descrito na Secdo 4.6, a avaliacdo qualitativa do processo de segmentagdo foi
realizada a partir da inspe¢@o visual das mdscaras geradas pelas arquiteturas na etapa de validacao
externa. Para exemplificacdo, foram selecionadas duas amostras de cada rede, mantendo o caréter
ilustrativo da comparacgao entre os modelos. A Figura 15 apresenta os resultados das mascaras
nos dois conjuntos de dados.

Figura 15 — Resultados qualitativos da segmentacdo: A - Dataset and code; B - Panoramic Radiography
Database

IMAGEM ORIGINAL MASCARA ORIGINAL UNET 3+ ATTUNET

P
ey

ATTUNET

Fonte: Elaborado pelo autor.

Conforme ilustrado nas Figuras 15 (A) e (B), os resultados qualitativos da segmen-
tacdo dental evidenciam algumas diferencas entre as arquiteturas avaliadas nos dois conjuntos
de dados. Observa-se que a U-Net apresentou limitagcdes recorrentes em ambos 0s conjuntos
de dados, evidenciadas principalmente pela fragmentacdo das regides dentdrias, pela desconti-
nuidade dos arcos e pela inclusdo de pequenas dreas indevidas, conforme indicado nas regides
destacadas. Esses resultados indicam dificuldades do modelo em lidar com varia¢des anatdmicas
mais complexas e em manter contornos dentdrios bem definidos, especialmente em regides de
sobreposi¢do e baixo contraste. Em contrapartida, a U-Net++ apresentou desempenho qualitativo
consistente nos dois cendrios avaliados, pois produziu segmenta¢des mais regulares e visualmente

coerentes. Observa-se melhor preservacao da forma dentaria, com contornos mais continuos e
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proximos as mdscaras de referéncia, inclusive em regides estruturalmente mais complexas, o que
indica maior estabilidade do modelo e menor ocorréncia de artefatos.

Por outro lado, a U-Net 3+ demonstrou maior instabilidade visual ao longo das
amostras analisadas. As segmentacdes exibiram falhas recorrentes na defini¢do das estruturas
dentdrias, com regides irregulares, variagdes de espessura e perdas de continuidade, o que sugere
dificuldades de generalizacdo quando aplicada a imagens panoramicas com maior variabilidade
anatomica e presenga de ruidos. De forma intermedidria, a Attention U-Net apresentou apenas
um refinamento parcial das regides de interesse. Embora o mecanismo de atenc¢do contribua para
destacar areas relevantes, ainda foram observadas inconsisténcias em regides de sobreposicao
dentaria e pequenas falhas de segmentacgdo, especialmente nas regides posteriores, resultando
em ganhos qualitativos limitados em relagdo a U-Net padrdao. Por fim, a W-Net demonstrou
bom desempenho qualitativo, com reducao de ruidos e preservacdo adequada da forma geral
dos dentes. As segmentacdes mostraram-se mais homogéneas e menos fragmentadas quando
comparadas a U-Net e a U-Net 3+, porém, em comparagdo direta com a U-Net++, ainda
apresentaram ocorréncias pontuais de espessamento excessivo € pequenas imprecisdes nos
limites segmentados.

No contexto do atendimento clinico, as falhas qualitativas observadas na segmentagao
apresentada na Figura 15 podem induzir interpretagdes incorretas da imagem radiogréfica. Nesse
sentido, a unido indevida de dentes adjacentes em uma tnica estrutura pode levar a interpretagcdo
equivocada de fusdo dentdria ou auséncia de espaco interdentdrio, enquanto a fragmentacao
ou segmentagdo incompleta das raizes pode sugerir, de forma incorreta, a presenga de fraturas
radiculares ou alteracOes estruturais inexistentes. Assim, esse tipo de erro pode impactar
diretamente o diagndstico, uma vez que o profissional pode considerar como patolégica uma

condi¢do que ndo estd presente na imagem original.

5.6 Analise estatistica por meio do teste de Wilcoxon

Para avaliar se as diferencas de desempenho entre as arquiteturas eram estatistica-
mente significativas, foi aplicado o teste de Wilcoxon com base nos valores do DSC obtidos
durante o processo de validacdo cruzada. A Tabela 6 sintetiza os p-value das comparacdes

pareadas entre as redes, considerando o nivel de significancia adotado (o = 0,05).
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Tabela 6 — Teste de Wilcoxon: comparacgdo entre arquiteturas

Comparacao p-value Diferenca estatisticamente significativa
U-Net x AttU-Net 1,00 X
U-Net x U-Net 3+ 0,01 4
U-Net x U-Net++ 0,02 v
U-Net x W-Net 1,00 X
U-Net 3+ x AttU-Net 0,01 v
U-Net++ x AttU-Net 0,01 4
U-Net++ x U-Net 3+ 0,01 4
W-Net x AttU-Net 0,69 X
W-Net x U-Net 3+ 0,01 v
W-Net x U-Net++ 0,02 Ve

Fonte: Elaborado pelo autor.

Com base na Tabela 6, a U-Net ndo apresentou variacdes relevantes em comparacao
a Attention U-Net e a W-Net (p-value = 1,00 em ambos os casos), indicando, portanto, equi-
valéncia de desempenho entre esses modelos no conjunto de dados avaliado. Entretanto, ao
comparar a U-Net com arquiteturas mais elaboradas, observaram-se diferencas estatisticas, sendo
que a U-Net difere da U-Net 3+ (p-value = 0,01) e da U-Net++ (p = 0,02), o que evidencia
que as modificac¢Oes arquiteturais desses modelos impactam de forma relevante os resultados de
segmentacao.

Adicionalmente, a U-Net 3+ apresentou discrepancias notdveis na maioria das com-
paragdes realizadas, o que refor¢ca seu comportamento distinto em rela¢do as demais arquiteturas
e sugerindo que sua estratégia de agregacdo multiescala e maior complexidade estrutural produ-
zem respostas diferenciadas no contexto avaliado. A U-Net++ também se destacou, apresentando
resultados estatisticamente distintos em relacio a Attention U-Net e a U-Net 3+ (p-value =0,01),
isso indica um padrdo de desempenho consistente e superior frente a abordagens menos sofisti-
cadas. No que se refere a W-Net, ndo houve diferenca relevante em relacdo a Attention U-Net
(p-value = 0,69), o que sugere equivaléncia de desempenho entre essas redes. Contudo, ao
compard-la a U-Net 3+ e a U-Net++, observaram-se variagdes significativas (p — value < 0,05),
isso evidencia que, embora a W-Net apresente desempenho competitivo, ela responde de maneira
distinta frente a modelos com estratégias arquiteturais especificas.

De modo geral, o teste de Wilcoxon revela que arquiteturas que empregam estratégias
de agregacao mais densas, como a U-Net 3+ e a U-Net++, apresentam resultados superiores
em relacdo a U-Net, com base nos valores do DSC. Por outro lado, os resultados obtidos com a

W-Net e a Attention U-Net mostram que maior complexidade arquitetural nem sempre se traduz



69

em melhorias relevantes em relacdo a U-Net cldssica. Esses achados ressaltam a importancia da
andlise estatistica para confirmar se alteracdes estruturais efetivamente proporcionam beneficios

praticos no cendrio do conjunto de dados analisado.

5.7 Selecdo da melhor arquitetura

Com base na andlise dos resultados quantitativos, observou-se que, no primeiro
conjunto de dados Dataset and code, a W-Net apresentou o melhor desempenho, enquanto,
no segundo conjunto Panoramic Radiography Database, a Attention U-Net se destacou como
a melhor. Na avaliacdo estatistica por meio do teste de Wilcoxon, as arquiteturas U-Net 3+
e U-Net++ apresentaram diferencas estatisticamente significativas em relacdo a outras redes,
tornando evidente seu desempenho diferenciado. Além disso, a andlise qualitativa das mdscaras
segmentadas mostrou que a U-Net++ apresentou melhor preservagdo estrutural e contornos mais
precisos. Dessa forma, para a selecdo da rede mais adequada a ser utilizada no desenvolvimento
do sistema CAD, consideraram-se os resultados quantitativos e qualitativos, bem como o custo
computacional, avaliado pelo tempo necessdrio para a segmentacdo de cada imagem. Em
contextos clinicos, a rapidez € um critério essencial, pois o processamento eficiente de grandes
volumes de radiografias permite maior agilidade no atendimento, otimiza o tempo de andlise e
facilita decisdes mais rapidas durante o diagndstico.

Para quantificar o custo computacional mencionado anteriormente, cada rede treinada
foi integrada ao sistema e o tempo de predicdo de cada imagem foi medido em milissegundos
usando time.perf_counter (), considerando apenas o forward pass, ou seja, a etapa do modelo
responsavel pela geracdo da mascara segmentada. Para cada arquitetura, foram segmentadas 50
radiografias panoramicas, registrando-se o tempo individual de predi¢do para cada imagem. A
média final do tempo e o desvio padrao obtidos apds as 50 execugdes de cada rede encontram-se

apresentados na Tabela 7.

Tabela 7 — Tempo de inferéncia das redes

Rede Média (ms) Desvio Padrao (ms)
U-Net ~ 2798,6 ~ 1104
Attention U-Net ~ 1527,3 ~172,5
W-Net ~ 3289,8 ~115,6
U-Net 3+ ~ 1726,8 ~ 118,9
U-Net++ ~ 1658,7 ~ 130,2

Fonte: Elaborado pelo autor.
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Conforme observado na Tabela 7, a rede Attention U-Net apresentou a menor média
de tempo de inferéncia, aproximadamente 1527,3 ms, indicando que € a arquitetura mais
rapida entre as avaliadas para a tarefa de segmentacdo. O desvio padrdo, de cerca de 72,5 ms,
evidencia que sua performance € estavel e pouco varidvel entre as execucdes. Esses resultados
demonstram que a Attention U-Net combina velocidade e consisténcia, sendo a op¢ao mais
adequada para aplicacdes odontoldgicas, o que proporciona ao dentista maior agilidade no
atendimento, otimiza o tempo de andlise das radiografias e favorece decisdes mais eficientes
durante o diagndstico. As demais redes apresentaram desempenho satisfatério, mas com tempos
de inferéncia maiores e menor consisténcia, podendo ser aplicadas em contextos clinicos com
maior poder computacional.

Dessa forma, a Attention U-Net foi selecionada como arquitetura final do sistema
CAD, uma vez que apresentou desempenho consistente entre as métricas avaliadas, aliado ao
menor tempo de inferéncia entre as redes analisadas. Embora seu melhor resultado tenha sido
observado no Panoramic Radiography Database, nos demais conjuntos de dados a arquitetura
manteve-se entre as melhores colocacdes, com pouca variacdo em relagcdo as redes lideres. Esse
comportamento evidencia sua robustez e capacidade de generalizagado, refor¢cando sua adequagao

para aplica¢do em um sistema CAD de apoio ao diagnoéstico clinico.

5.8 Sistema CAD

A partir da selecdo da Attention U-Net como a arquitetura que obteve os melhores
resultados com base nos critérios estabelecidos, foi realizada a integracdo dela ao sistema CAD.
A Figura 16 apresenta a interface inicial do sistema, projetado para uso em contextos clinicos,
por meio do qual o profissinal odontolégico pode enviar uma radiografia para que a aplicagcdo

gere a mascara segmentada correspondente.
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Figura 16 — Pégina inicial do Sistema CAD
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Fonte: Elaborado pelo autor.

Conforme ilustrado na Figura 16, a interface inicial do sistema CAD foi estruturada
de modo a favorecer uma interacio direta e intuitiva com o usudrio. A esquerda, encontra-se a
area destinada ao envio da radiografia panoramica, por meio da qual o denstista pode selecionar
aquela que ele deseja ser processada. Esse componente permite tanto a selecdo de arquivos
a partir do explorador do sistema quanto o uso do recurso de arrastar e soltar, o que torna o
procedimento mais 4agil e acessivel em ambientes clinicos. Além disso, a drea de upload exibe
explicitamente os formatos aceitos (PNG, JPG e JPEG) e o limite maximo do tamanho do
arquivo, garantindo clareza quanto as restri¢des do sistema e evitando erros de submissdo. Os
botdes “Segmentar” e “Limpar”, posicionados logo abaixo, possibilitam, respectivamente, iniciar
o processamento da radiografia ou redefinir a drea de entrada, permitindo que o usudrio revise
sua selecdo antes da execugdo da segmentagdo. Na regido central da interface estd localizada a
area destinada a visualizacdo dos resultados, onde a segmentacdo da radiografia € exibida apds o
processamento.

ApOs o usudrio clicar na drea de upload e selecionar a radiografia panoramica
desejada, o sistema gera imediatamente uma miniatura da imagem no painel esquerdo, conforme

ilustrado na Figura 17.
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Figura 17 — Upload da radiografia
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Fonte: Elaborado pelo autor.

Essa pré-visualizacdo observada na Figura 17, tem a func@o de confirmar a escolha
do arquivo antes do processamento, para permitir ao profissional verificar visualmente se a
radiografia selecionada é de fato aquela que se pretende segmentar. Esse mecanismo reduz
possiveis erros de entrada e assegura maior controle sobre o fluxo de interagdo. Em seguida, ao
acionar o botdo “Segmentar”, o sistema processa a radiografia carregada e exibe o resultado na

area central da interface, conforme mostrado na Figura 18.

Figura 18 — Resultado da méscara segmentada
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Fonte: Elaborado pelo autor.

Nessa etapa descrita na Figura 18, sdo apresentados lado a lado a radiografia original

e a mdscara segmentada gerada pelo modelo, para que possa ser feita uma andlise comparativa
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imediata entre ambos os contetddos. Essa disposi¢do visual facilita a inspec¢ao da estrutura dentdria
segmentada, pois possibilita verificar se o contorno extraido corresponde adequadamente as
regides de interesse presentes na radiografia de entrada. Além de garantir a coeréncia entre a
imagem original e a mdscara inferida pelo modelo, essa visualizacdo também proporciona ao
denstista a oportunidade de avaliar a qualidade da segmentacao e identificar padrdes anatdmicos
relevantes, como a disposicdo dentdria, o alinhamento e a separacdo das unidades presentes na
arcada. Tal recurso pode auxiliar no suporte ao diagndstico, uma vez que a segmentacao destaca
as estruturas dentarias e elimina areas nao relevantes, tornando mais evidente o foco de analise.

Concomitantemente, o profissional dispde ainda do botao “Limpar”, por meio do qual
sdo removidos da interface tanto a radiografia quanto a mascara segmentada. Essa acdo permite
reiniciar o processo desde a selecio de uma nova imagem, sem a necessidade de recarregar
ou reiniciar o sistema. Tal funcionalidade facilita a submissdo de multiplas radiografias em
sequéncia, possibilitando que diversas segmentacdes sejam geradas em poucos segundos, o que
favorece a andlise de um maior volume de exames em um tempo reduzido.

No entanto, caso ele deseje realizar uma andlise mais detalhada da segmentacao,
o sistema disponibiliza o botao “PDF”, localizado abaixo do resultado exibido. Ao acionar
essa opcdo, é gerado automaticamente um relatério contendo a radiografia original e a mascara

segmentada lado a lado, conforme ilustrado na Figura 19.

Figura 19 — PDF gerado com a radiografia e a méscara correspondente

ODONTOr)
oy 1/

Radiografia Original Mascara Segmentada

i —

Relatério gerado automaticamente — OdontoVision © 2025

Fonte: Elaborado pelo autor.

Esse recurso ilustrado na Figura 19 pode ser ttil tanto para fins de documentagao

quanto para discussdo clinica, uma vez que o relatorio preserva as informacdes visuais essenciais



74

para a avaliagdo da segmentacdo. Ao disponibilizar a exportacdo em PDF, o sistema amplia seu
escopo de uso, pois o dentista pode conservar o resultado, compartilhar o arquivo com outros
profissionais ou anexd-lo a registros odontoldgicos. Além disso, a funcionalidade favorece o
acompanhamento longitudinal de casos, ao possibilitar a documentacio de diferentes etapas
de avaliacdo e tratamento, garantindo consisténcia entre as imagens observadas e os dados
preditos pelo modelo. Dessa forma, a ferramenta ndo apenas executa a segmentagao automatica,
mas também se integra a prética clinica, ao facilitar a comunicacdo e o armazenamento das

informacdes geradas.

5.9 Limitac¢oes do trabalho

Apesar dos resultados promissores alcancados neste trabalho, algumas limitagdes
devem ser consideradas. A utilizacdo exclusiva de conjuntos de dados compostos por radiografias
panoramicas de pacientes adultos limita a capacidade de generalizacdo do modelo para a segmen-
tacdo de estruturas dentdrias em populacdes pediatricas, considerando as diferencas morfoldgicas
e fisioldgicas associadas as distintas fases de desenvolvimento dentario. Adicionalmente, o sis-
tema CAD proposto deve ser compreendido como uma ferramenta de apoio a decisdo clinica, ndo
substituindo a interpretacao final do profissional. Em determinadas situagdes, o sistema pode ndo
segmentar integralmente todas as estruturas dentédrias com a precisdo desejada, especialmente em
casos de sobreposicao estrutural ou variacOes anatdmicas acentuadas. Outra limitagdo relevante
refere-se ao fato de que o sistema nao fornece, de forma automatizada, informacdes diagndsticas
textuais ou laudos interpretativos associados as radiografias analisadas, restringindo-se a etapa
de segmentacdo das estruturas dentdrias.

Por fim, ressalta-se que aspectos de natureza operacional e computacional também
devem ser considerados, uma vez que a disponibiliza¢do do sistema em um ambiente de producao
robusto, estavel e escaldvel, capaz de atender a um nimero elevado de usudrios simultaneamente,
impoe desafios relacionados a infraestrutura tecnoldgica, desempenho e manutengdo, o que pode

dificultar sua adocao imediata em larga escala.
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6 CONCLUSOES E TRABALHOS FUTUROS

Este estudo prop06s o desenvolvimento de um sistema CAD para segmentacdo auto-
maética de dentes a partir de radiografias panoramicas. Para essa tarefa, foram implementadas
cinco variantes da arquitetura U-Net, as quais foram treinadas e avaliadas por meio de valida-
¢ao externa, além da andlise estatistica por meio do teste de Wilcoxon. Os resultados obtidos
demonstraram o grande potencial do aprendizado profundo, especialmente das redes CNNs, para
capturar padrdes complexos em imagens médicas, para permitir a extragdo precisa de estruturas
anatomicas detalhadas e a generalizacdo para diferentes condicdes clinicas. Além disso, os
resultados principais demonstram que as redes analisadas sdo capazes de identificar corretamente
as regides dentdrias, tornando-as aptas para a tarefa de segmentagdo. A Attention U-Net, modelo
com mecanismos de atencao e agregacao multiescala, destacou-se com o melhor desempenho
geral, combinando maior precisao, preservacao da forma dentéria, continuidade dos contornos e
menor complexidade computacional, resultando em tempos de inferéncia mais rdpidos para a
geracdo das mdscaras, sendo ela a escolhida para compor o sistema CAD.

Concomitantemente, observou-se que arquiteturas com maior complexidade com-
putacional, embora possam alcangar bons resultados quantitativos e qualitativos, t€ém sua com-
plexidade e custo computacional como fatores que devem ser considerados, especialmente em
aplicacdes clinicas que exigem rapidez e estabilidade no processamento, uma vez que o tempo
de inferéncia e a eficiéncia do modelo sdao determinantes para o uso pratico. Nesse contexto,
a andlise estatistica realizada por meio do teste de Wilcoxon mostrou que algumas redes mais
complexas, como a U-Net++ e a U-Net 3+, apresentaram diferengas estatisticamente significati-
vas em relacdo a U-Net classica, evidenciando que alteragdes arquiteturais podem impactar de
forma relevante a qualidade das segmentagdes; por outro lado, redes como a W-Net e a Attention
U-Net apresentaram desempenho equivalente a U-Net em alguns casos, refor¢ando que maior
complexidade nem sempre se traduz em ganhos significativos.

Por fim, o sistema CAD desenvolvido, sendo a principal contribui¢do deste trabalho,
trouxe importantes avangos para a pritica odontoldgica, pois permite a segmentacdo automatica
dos dentes de forma rdpida e precisa, oferecendo visualizacdo comparativa entre a imagem
original e a mdscara segmentada, além de gerar relatérios em PDF que podem ser utilizados
para documentacdo e acompanhamento clinico. Além disso, a ferramenta auxilia no suporte ao
diagnostico, ao destacar de forma clara as estruturas dentérias e reduzir a necessidade de andlise

manual detalhada, promovendo maior eficiéncia, padronizagdo e confiabilidade na interpretagao
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das radiografias, o que pode contribuir para decisdes clinicas mais rdpidas e fundamentadas.
Para trabalhos futuros, sugere-se explorar novas arquiteturas de segmentacao para
avaliar se abordagens recentes podem aprimorar ainda mais a precisdo e a preservacao estrutural
das regides dentdrias, bem como integrar outras bases de dados maiores e mais diversificadas,
incluindo radiografias pediatricas, de modo a ampliar sua capacidade de generalizacdo para
diferentes faixas etérias e variabilidades anatdomicas. Além disso, recomenda-se a integracao
de funcionalidades adicionais ao CAD, como a identificagdo e numeragdo automatica dos
dentes, para permitir que cada unidade dentdria seja reconhecida e rotulada corretamente, a
detec¢ao de anomalias ou patologias dentdrias, como cdries, fraturas ou outros problemas clinicos,
oferecendo suporte ao diagndstico, e o planejamento de tratamentos odontoldgicos com base nas

segmentacoes geradas, para fortalecer o cardter clinico da ferramenta.
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