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RESUMO

Este trabalho tem por objetivo investigar a supercondutividade em heteroestruturas semicon-

dutoras bidimensionais. Nesses sistemas, a excitação de elétrons no semicondutor, por campos

elétricos ou fótons de cavidade, pode dar origem a quasi-partículas bosônicas conhecidas como

excitons e exciton-polaritons. Estudamos a viabilidade destes como mediadores de supercon-

dutividade em um gás de elétrons bidimensional. No contexto da teoria BCS, mostramos que

a interação entre eles e elétrons de condução dão origem a uma interação efetiva atrativa entre

os elétrons favorecendo a formação de pares de Cooper, de forma análoga ao mecanismo de

interação efetiva mediada por fônons em metais. Na literatura, sistemas deste tipo são candidatos

para se alcançar a supercondutividade em altas temperaturas em razão de sua baixa massa efetiva

e forte interação. Iniciamos com uma breve introdução sobre a supercondutividade e a teoria

BCS, onde o mecanismo alternativo de mediação por excitons é discutido. Seguimos com a

descrição detalhada da heteroestrutura sob investigação. Um modelo teórico e hamiltoniano

são propostos, e é mostrado que existe interação atrativa efetiva entre elétrons permitindo que

haja supercondutividade. O modelo é aplicado tanto para excitons como para exciton-polaritons.

Descrevemos dois algoritmos para calcular a temperatura crítica TC e o gap supercondutor

∆, assim, mostramos que existe uma relação direta entre o aumento de TC e a densidade de

excitons/exciton-polaritons. O modelo também prevê uma diminuição na temperatura crítica

quando se aumenta a densidade de elétrons Ne. Finalizamos com uma aplicação para uma

heteroestrutura de van der Waals composta por dois dicalcogenetos de metais de transição e

uma bicamada de grafeno (BLG) para hospedar o gás de elétrons. A heteroestrutura tem a

configuração WSe2-hBN-MoSe2-hBN-BLG, que se justifica pelo fato de recentemente ter sido

detectado experimentalmente excitons condensados em temperaturas da ordem de 100 K nesta

combinação de materiais. Mostramos que para esse sistema é esperado uma temperatura crítica

≈ 101.2 K, que a coloca ao lado das de supercondutores de alta temperatura, como os Cupratos,

por exemplo.

Palavras-chave: supercondutividade; exciton-polaritons; teoria BCS; heteroestruturas 2D;

sistemas de baixa dimensionalidade.



ABSTRACT

This work aims to investigate superconductivity in two-dimensional semiconductor heterostruc-

tures. In these systems, electron excitation in the semiconductor, by electric fields or cavity

photons, can give rise to bosonic quasiparticles known as excitons and exciton-polaritons. We

study their feasibility as mediators of superconductivity in a two-dimensional electron gas.

Within the context of BCS theory, we show that the interaction between them and conduction

electrons gives rise to an effective attractive interaction between electrons favoring the formation

of Cooper pairs, analogously to the phonon-mediated effective interaction mechanism in metals.

In the literature, systems of this type are candidates for achieving high-temperature superconduc-

tivity due to their low effective mass and strong interaction. We begin with a brief introduction

to superconductivity and BCS theory, where the alternative exciton-mediated mechanism is

discussed. We proceed with a detailed description of the heterostructure under investigation. A

theoretical model and a Hamiltonian are proposed, and it is shown that there exists an effective

attractive interaction between electrons enabling superconductivity. The model is applied to both

excitons and exciton-polaritons. We describe two algorithms to calculate the critical temperature

TC and the superconducting gap ∆; thus, we show that there is a direct relationship between the

increase in TC and the density of excitons/exciton-polaritons. The model also predicts a decrease

in the critical temperature when the electron density Ne is increased. We conclude with an

application to a van der Waals heterostructure composed of two transition metal dichalcogenides

and a bilayer graphene (BLG) to host the electron gas. The heterostructure has the configuration

WSe2-hBN-MoSe2-hBN-BLG, which is justified by the fact that condensed excitons have been

recently experimentally detected at temperatures of the order of 100 K in this combination of

materials. We show that for this system a critical temperature of ≈ 101.2 K is expected, placing

it alongside high-temperature superconductors, such as Cuprates.

Keywords: superconductivity; exciton–polaritons; BCS theory; 2D heterostructure; low-

dimensional systems.
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1 INTRODUÇÃO

A supercondutividade é um dos fenômenos mais fascinantes da física, não apenas

pelo seu caráter frutífero em aplicações, mas também pela sofisticação teórica necessária para

sua explicação. De fato, desde sua descoberta em 1911, é um dos campos de pesquisa mais

ativos da física da matéria condensada e um grande esforço foi dedicado para obter uma teoria

microscópica que se adequasse às teorias fenomenológicas. A teoria BCS, proposta em 1957, foi

um passo pioneiro nesse sentido, que atribuía aos fônons o papel principal da supercondutividade.

Uma das características mais marcantes da supercondutividade são as baixíssimas

temperaturas em que o estado supercondutor se forma, sendo, na maioria dos metais supercondu-

tores, da ordem de poucos Kelvins acima do zero absoluto (Ginzburg et al., 1987). Isso representa

uma grande dificuldade para aplicações tecnológicas, uma vez que pequenas perturbações na

temperatura podem destruir o seu estado. Por este motivo, a busca por supercondutores de

altas temperaturas se tornou um dos grandes ramos de pesquisa dentro desse tema. Antes de

1986, não se acreditava que fosse possível existir supercondutividade em temperaturas acima

de 30 K. No entanto, em 1986, Befnorz e Muller descobriram supercondutividade em oxido

de lantânio e cobre na temperatura de ≈ 36 K (Bednorz; Müller, 1986) que foi o primeiro de

toda uma nova classe de supercondutores denominados Cupratos. Nas décadas seguintes, novos

supercondutores desse tipo foram descobertos em temperaturas ainda maiores, com até 203 K

(Drozdov et al., 2015).

Neste trabalho iremos investigar outra proposta para um mecanismo gerador de

supercondutividade, que consiste na substituição do papel dos fônons por excitons e exciton-

polaritons. Uma vez que a teoria BCS permitiu uma compreensão profunda dos mecanismos

internos dos supercondutores, diversos mecanismos alternativos podem ser tratados. Iniciamos

com uma breve exposição de resultados fenomenológicos da supercondutividade, onde a teoria

BCS será desenvolvida num contexto geral, e brevemente aplicada no caso convencional de

fônons. Depois disso o mecanismo envolvendo excitons será apresentado. Um modelo teórico

para uma microcavidade com uma heteroestrutura será apresentado, onde mostraremos que na

presença de um condensado de Bose-Einstein de exciton-polaritons, a supercondutividade se

torna possível. Por razões que serão detalhadas nos capítulos seguintes, a baixa massa dessas

partículas junto com as fortes interações induzidas por elas levam a um aumento considerável na

temperatura de formação. Este pode ser um possível caminho para supercondutividade de altas

temperaturas, neste caso, até mesmo controlável por luz ou eletroluminescência.
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2 INTRODUÇÃO À SUPERCONDUTIVIDADE

2.1 História e Fenomenologia

Em 1911 o físico holandês Kamerlingh Onnes, no contexto de um programa de

pesquisa em Leiden sobre o comportamento da resistência elétrica em metais, trabalhava em

experimentos de refrigeração do mercúrio a temperaturas próximas do zero absoluto. Ele

observou que, em temperaturas abaixo de 4.16 K, medidas de resistividade caíam de forma

abrupta para valores não mensuráveis, efetivamente para zero (Onnes, 1911). Embora os modelos

teóricos de condutividade em metais, como o modelo de Drude, impliquem em uma queda na

resistividade com a temperatura, a queda abrupta observada caracterizava um comportamento

anômalo (Delft; Kes, 2010). No ano seguinte, em 1912, o mesmo comportamento de resistência

zero foi observado em metais de transição como o chumbo e estanho.

Figura 1 – Gráfico produzido por Onnes em 1911, que mostra a resistividade (Ω) em função da temperatura (K).
Uma queda abrupta na resistividade ocorre em 4.20 K.

Fonte: Retirado de (Delft; Kes, 2010)

A resistividade nula em um certa temperatura critica TC foi observada em diversos

metais nos anos seguintes com o aprimoramento das técnicas experimentais de medição de
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resistividade e outras grandezas eletrodinâmicas a baixas temperaturas. A ausência de dissipação

no fluxo de portadores de carga tem por consequência as chamadas correntes persistentes, que

não decaem com o tempo e podem persistir por tempos da ordem de 300 anos anos (Kim et

al., 1962). A descontinuidade observada no gráfico da Figura 1 é um dos primeiros indícios

de que o metal sofre um mudança descontinua nas suas propriedades termodinâmicas, assim

caracterizando uma transição de fase. Um material que apresenta as características acima em

uma certa temperatura critica TC é chamado de supercondutor (SC).

2.1.1 Efeito Meissner e Equação de London

Em 1933 Meissner e Ochsenfeld descobriram um novo fenômeno relacionado ao

estado SC (Meissner; Ochsenfeld, 1933). Quando uma amostra de um material supercondutor é

exposta a um campo magnético B⃗ e a sua temperatura é reduzida até a temperatura critica TC, o

campo no interior da amostra é imediatamente expulso. Este é o chamado efeito Meissner e é

ilustrado na figura 2.

Figura 2 – Linhas de um campo magnético B⃗ expulsas de um material no estado supercondutor.

Fonte: Adaptado de (Fujita; Godoy, 2002)

Embora aparente ser uma mera consequência da resistividade zero, este efeito se

diferencia do que se esperaria em um condutor perfeito clássico. Se um material condutor

perfeito exposto a uma campo magnético tiver sua resistividade anulada, o campo magnético em

seu interior não necessariamente se anulará. Com o objetivo de explicar esse efeito anômalo, em

1935 os irmãos F. London e H. London propuseram um modelo fenomenológico que consistia em

supor que dentro de um material supercondutor uma fração dos elétrons com densidade nN tem
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resistividade não nula, e outra com densidade nS são elétrons responsáveis pelas supercorrentes.

Acima de TC temos obviamente nS = 0.

Na ausência de resistência, um campo elétrico constante E⃗ aplicado acelera os

elétrons de supercondutores sem a dissipação de energia proveniente do efeito Joule, assim temos

a equação de movimento:

m
d⃗vS

dt
=−eE⃗. (2.1)

Sendo a supercorrente resultante dada por j⃗ =−enS⃗vS, reescrevemos a equação (2.1)

como:

d j⃗S
dt

=
nSe2

m
E⃗. (2.2)

Substituindo a equação (2.2) na lei de indução da Faraday ∇× E⃗ =−1
c

∂

∂ t B⃗, obtemos:

∂

∂ t

(
∇× j⃗S +

nSe2

mc
B⃗
)
= 0. (2.3)

Figura 3 – Supercorrentes na superfície de um supercondutor. O supercondutor reage ao campo externo B⃗
produzindo uma corrente de superfície que o anula.

Fonte: Adaptado de (Fujita; Godoy, 2002)

Combinando a equação (2.3) com a lei de ampere ∇× B⃗ = 4π

c j⃗S, concluímos que

quaisquer soluções B⃗ e j⃗S independentes do tempo são compatíveis com a equação (2.3). Isso

está de acordo com a condutividade perfeita clássica, mas inclui o caso em que um campo
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magnético não nulo pode existir dentro do material, algo incompatível como efeito Meissner.

Para modelar adequadamente o supercondutor, London impôs a condição adicional de que

∇× j⃗S =−
nSe2

mc
B⃗, (2.4)

ou seja, uma supercorrente superficial induzida j⃗S sempre produz um campo de indução mag-

nética B⃗ que anula do campo aplicado em todo o volume do supercondutor, como mostrado

na figura 3. A equação (2.4) é chamada de equação de London e implica diretamente o efeito

Meissner.

Combinando (2.4) com a lei de ampere, obtemos o conjunto de equações:

∇2B⃗ = 4πnSe2

mc2 B⃗

∇2 j⃗S =
4πnSe2

mc2 j⃗S
, (2.5)

e considerando um supercondutor semi-infinito da direção x, a simetria nas direções y e z implica

que B⃗(⃗r) = B⃗(x). Assim, com a equação (2.5) e as condições de contorno adequadas, obtemos a

solução:

B⃗(x) = B⃗(0)e−
x
Λ , (2.6)

onde Λ =
(

mc2

4πnSe2

)1/2
é chamado de profundidade de penetração de London, pois quando x∼ Λ

o campo decai rapidamente de forma exponencial. Os valores típicos para Λ são da ordem de

103 Å.

2.1.2 Gap de Energia

Em sólidos normais, a capacidade térmica em baixas temperaturas tem contribuição

mais forte dos elétrons próximos à energia de Fermi e da vibração dos íons da rede.

O calor especifico tem a forma CV = αT +βT 3, com o termo de terceiro grau vindo

da dinâmica da rede. Quando a temperatura esta próxima do zero absoluto o termo linear domina:

este vem da contribuição dos elétrons com energia próxima da energia de Fermi. Entretanto, em

um supercondutor, este comportamento de CV se mantêm até a temperatura critica, e abaixo dela

se torna maior de forma descontinua e passa a decair exponencialmente com um termo da ordem

de e−
∆

kbT , que é um comportamento característico de um sistema com gap de energia de 2∆ entre

a energia do estado fundamental e do primeiro estado exitado. Próximo do zero absoluto, o

gap impede que uma fração grande dos elétrons participe da condução de calor o que leva ao

decaimento rápido do calor especifico (Mermin; Ashcroft, 1968).
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Figura 4 – Gráfico do calor especifico do alumínio em função da temperatura. Uma descontinuidade surge em Tc,
com o valor do calor especifico aumentando e em seguida decaindo exponencialmente.

Fonte: Adaptado de (Fujita; Godoy, 2002)

A figura 4 mostra medidas do calor especifico do alumínio que exibe este com-

portamento. A presença do gap de energia tem grande importância na formação do estado

supercondutor, tendo papel central na teoria BCS que será desenvolvida posteriormente. O

gap surge em outros experimentos como espectroscopia de tunelamento e espectroscopia de

micro-ondas.

Figura 5 – Densidade de estados de elétrons g(ε) no estado supercondutor, com εF sendo a energia de Fermi. A
linha tracejada é a densidade de estados de um gás ideal de Fermi. Um gap de energia de valor ∆ se
abre em torno da energia de Fermi εF , com g(ε) divergindo nos pontos εF −∆ e εF +∆.

Fonte: Adaptado de (Annett., 2004)

A figura 5 mostra o comportamento da densidade de estados em um modelo onde



23

há na presença de um gap de energia em torno de εF . Na região (εF −∆,εF +∆) não existem

estados disponíveis no gás de Fermi, nos limites inferior e superior deste intervalo um acumulo

de estados ocorre, um fenômeno que pode ser observado com os métodos experimentais citados

anteriormente.

2.1.3 Efeito Isotópico

A descoberta fenomenológica mais relevante para a compreensão do estado SC

talvez seja a relação entre a massa dos íons da rede do material e a temperatura critica. Em 1950,

Maxwell e Reynolds, descobriram que ao substituir íons de mercúrio por seus isotopos mais

pesados, provocava-se uma diminuição no valor da temperatura critica do supercondutor (Kresin;

Wolf, 1990). Variando a unidade de massa atômica M de 199.5 u para 203.4 u, a temperatura

critica TC se reduz de 4.185 K para 4.146 K. Em seu trabalho, eles estabeleceram a seguinte

relação:

TcMα = const, (2.7)

onde é possível determinar α ≈ 1/2.

Como a massa da rede afeta diretamente as propriedades do supercondutor, sua

dinâmica deve ter um papel relevante. Do modelo de Debye, sabemos que a frequência tipica de

vibração dos íons da rede de um sólido é ωD e que é da ordem de M−1/2, que combinada com a

relação (2.7) nos leva a:

Tc ∝ ωD, (2.8)

que mostra o primeiro caminho para compreender os mecanismos microscópicos por trás

dos supercondutores, que posteriormente será deduzida de um modelo teórico que considera

interações entre elétrons e os fônons da rede. Na próxima seção, nos dedicaremos descrever as

primeiras tentativas de se criar tal modelo.

2.2 Teoria de Bardeen-Cooper-Schriefer (BCS)

Durante mais de 40 anos após a observação experimental dos fenômenos associados

à SC, sua explicação em termos de uma teoria fundamental não havia sido descoberta. Os
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primeiros passos nesse sentido foram dados por Fröhlich (Combescot; Shiau, 2015), que em

1952 sugeriu um mecanismo de atração efetiva entre elétrons intermediado pelos íons da rede

cristalina. Os elétrons de carga negativa atrairiam os íons positivos, aumentando a densidade de

carga efetiva ao seu redor, assim atraindo outros elétrons. Uma vez que esse mecanismo depende

da mobilidade, e por sua vez da massa dos íons, mudanças na proporção entre os isótopos destes

deveriam causar alterações nas propriedades típicas do supercondutor, e de fato era isso que se

observava, como foi mostrado na seção 2.1.3.

Em 1956, Cooper (Combescot; Shiau, 2015) propôs um modelo que consistia em

um par de elétrons em um mar de outros elétrons não interagentes, como os com energia abaixo

da energia de Fermi em um gás degenerado. Ele supôs a existência de um potencial de atração

efetivo fraco entre os elétrons do par, e como o mecanismo de atração entre eles é mediado pelos

movimentos dos íons da rede, supôs também que a energia típica da interação era da ordem da

energia dos fônons do material. Com essas suposições, Cooper mostrou que a formação de um

estado ligado entre os elétrons era possível, este ficou conhecido como par de Cooper. Somente

em 1957, Bardeen e Schriefer melhoraram o modelo de Cooper, e em conjunto publicaram a

solução para um sistema de P = 2N pares (Bardeen et al., 1957), a teoria ficou conhecida como

teoria BCS, levando as iniciais dos nomes de seus criadores.

A abordagem desta teoria usa o método variacional para encontrar o estado fundamen-

tal do sistema de 2N corpos, propondo um vetor variacional que leva em conta o emparelhamento

dos elétrons. No decorrer desta Seção, iremos nos dedicar a desenvolver essa teoria. Tomaremos

como hipótese a existência de um potencial efetivo atrativo entre os elétrons do par, sua origem

será discutida nas próximas Seções.

2.2.1 Operadores de Criação e Aniquilação de Pares de Partículas

A abordagem da teoria BCS é semelhante à da teoria de campo médio para sistemas

de N corpos; nesta, propõe-se um vetor de estado variacional que consiste em N aplicações de

operadores de criação de elétrons σ
†
k⃗,ν

(com momento h̄⃗k e spin ν) sobre o estado de vácuo |0⟩,

o que, após a sua otimização, leva a um potencial externo efetivo que é a média das interações de

uma partícula com as demais, ou seja, um potencial de campo médio. Os operadores obedecem

a álgebra de anti-comutadores férmions, com {σ⃗k,ν ,σ
†
k⃗′,ν ′
} = δ⃗k,⃗k′δν ,ν ′ , {σ⃗k,ν , σ⃗k′,ν ′} = 0 e

{σ†
k⃗,ν

,σ†
k⃗′,ν ′
}= 0 . Embora leve a boas aproximações do estado fundamental do sistema, a forma

mais simples do vetor de estado variacional leva em conta apenas as correlações estatísticas
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entre as partículas, pois, como o movimento de uma partícula afeta todas as demais, o potencial

efetivo não captura as correlações dinâmicas entre elas (Cohen-Tannoudji et al., 2020).

Devido à natureza dos fenômenos da SC, não é possível negligenciar totalmente os

efeitos das correlações dinâmicas, por isso procedemos introduzindo um novo tipo de vetor de

estado variacional que leva em conta não apenas o estado de uma partícula mas o de um par de

partículas. Seja um sistema de duas partículas idênticas com spin S que interagem. Considere que

estão dentro de uma grande caixa cúbica de lado L. Considere o sistema nas coordenadas relativas

r⃗1− r⃗2 e de centro de massa (⃗r1 + r⃗2)/2. Seja |ΦK⃗,χS⟩ o estado do sistema com momento total

K⃗ e |χS⟩ o estado conjunto de spin das partículas. Temos:

|ΦK⃗,χS⟩=
∫

d⃗r1

∫
d⃗r2 ∑

ν1,ν2

|1 : r⃗1,ν1;2 : r⃗2,ν2⟩⟨1 : r⃗1,ν1;2 : r⃗2,ν2|ΦK⃗,χS⟩, (2.9)

onde:

Φ
ν1,ν2
K⃗

(⃗r1,⃗r2) = ⟨1 : r⃗1,ν1;2 : r⃗2,ν2|ΦK⃗,χS⟩

=
(
L
)− 3

2 eiK⃗·(⃗r1+⃗r2)/2
χ (⃗r1− r⃗2)⟨ν1,ν2|χS⟩.

(2.10)

O momento total K⃗ do sistema assume valores num conjunto enumerável, ν1 e ν2

são os valores de spin das partículas. Expandimos a função χ (⃗r1− r⃗2) em termos de sua serie de

Fourier:

χ (⃗r1− r⃗2) =
(
L
)− 3

2 ∑
k⃗

g⃗kei⃗k·(⃗r1−⃗r2). (2.11)

A natureza fermiônica das partículas implica que a função de onda deve ser antissi-

métrica, portanto fazemos g−⃗k = g⃗k e ⟨ν1,ν2|χS⟩ = −⟨ν2,ν1|χS⟩. Além disso a normalização

requer que ∑ |g⃗k|
2 = 1. Finalmente, substituindo (2.11) em (2.10) e reorganizando os termos:

Φ
ν1,ν2
K⃗

(⃗r1,⃗r2) =
(
L
)−3

∑
k⃗

g⃗kei
(

K⃗
2 +⃗k
)
·⃗r1ei
(

K⃗
2 −⃗k
)
·⃗r2⟨ν1,ν2|χS⟩, (2.12)

portanto, ficamos com:

|ΦK⃗ ,χS⟩=
∫

d⃗r1

∫
d⃗r2 ∑

ν1,ν2

⟨ν1,ν2|χS⟩
(
L
)−3

∑
k⃗

g⃗kei
(

K⃗
2 +⃗k
)
·⃗r1ei
(

K⃗
2 −⃗k
)
·⃗r2 |1 : r⃗1,ν1;2 : r⃗2,ν2⟩=

= ∑
k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩
{∫

d⃗r1

∫
d⃗r2
(
L
)−3ei

(
K⃗
2 +⃗k
)
·⃗r1ei
(

K⃗
2 −⃗k
)
·⃗r2 |1 : r⃗1,ν1;2 : r⃗2,ν2⟩

}
,

(2.13)
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o termo entre chaves é simplesmente o estado de duas partículas, onde a primeira tem componente

de spin ν1 e momento h̄
( K⃗

2 + k⃗
)
, e a segunda tem componente de spin ν2 e momento h̄

( K⃗
2 − k⃗

)
,

assim ficamos com:

|ΦK⃗,χS⟩= ∑
k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩

∣∣∣∣∣1 :
(K⃗

2
+ k⃗
)
,ν1;2 :

(K⃗
2
− k⃗
)
,ν2

〉
=

=
1
2 ∑

k⃗

g⃗k

{
∑

ν1,ν2

⟨ν1,ν2|χS⟩

∣∣∣∣∣1 :
(K⃗

2
+ k⃗
)
,ν1;2 :

(K⃗
2
− k⃗
)
,ν2

〉
+

+ ∑
ν1,ν2

⟨ν1,ν2|χS⟩

∣∣∣∣∣1 :
(K⃗

2
+ k⃗
)
,ν1;2 :

(K⃗
2
− k⃗
)
,ν2

〉}
.

(2.14)

Como a variável k⃗ no somatório assume valores positivos e negativos de forma

simétrica, no segundo termo da ultima parte de (2.14) trocamos k⃗ por −⃗k, por consequência

g−⃗k = g⃗k. Também trocamos, no segundo termo, ν1 por ν2. Como ⟨ν1,ν2|χS⟩=−⟨ν2,ν1|χS⟩,

|ΦK⃗,χS⟩ é igual a:

=
1
2 ∑

k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩

{∣∣∣∣∣1 :
( K⃗

2
+ k⃗
)
,ν1;2 :

( K⃗
2
− k⃗
)
,ν2

〉
−

−

∣∣∣∣∣1 :
( K⃗

2
− k⃗
)
,ν2;2 :

( K⃗
2
+ k⃗
)
,ν1

〉}
=

=
1√
2 ∑

k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩σ†
K⃗
2 +⃗k,ν1

σ
†
K⃗
2 −⃗k,ν2

|0⟩,

(2.15)

finalmente:

|ΦK⃗,χS⟩=

{
1√
2 ∑

k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩σ†
K⃗
2 +⃗k,ν1

σ
†
K⃗
2 −⃗k,ν2

}
|0⟩. (2.16)

Definimos o termo entre chaves como o operador de criação de par de partículas

com momento h̄K⃗ e spin S.

A†
K⃗
=

1√
2 ∑

k⃗

g⃗k ∑
ν1,ν2

⟨ν1,ν2|χS⟩σ†
K⃗
2 +⃗k,ν1

σ
†
K⃗
2 −⃗k,ν2

(2.17)

O operador (2.17) cria uma "molécula"com duas partículas. Como os parâmetros

g⃗k são a transformada de Fourier da função χ (⃗r), toda a informação referente a função de onda

está contida nestes parâmetros e no estado conjunto de spin |χS⟩. Queremos que os operadores

A†
K⃗

criem estados de pares de partículas como os pares de Cooper. Antes da teoria BCS, em

seu modelo de um único par, Cooper supôs que, devido ao principio de exclusão de Pauli, os

estados de elétrons emparelhados que teriam probabilidade maior de existir seriam aqueles em
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que suas componentes tem spins opostos (Combescot; Shiau, 2015). Portanto, se no estado de

spin conjunto tivermos S = 1/2, devemos escolher que este seja o estado de singleto:

|χ1/2⟩=
1√
2

[
| ↑,↓⟩− | ↓,↑⟩], (2.18)

portanto ⟨↑,↑ |χ1/2⟩= ⟨↓,↓ |χ1/2⟩= 0 e ⟨↑,↓ |χ1/2⟩= 1/
√

2 ⟨↓,↑ |χ1/2⟩=−1/
√

2, e o ope-

rador em (2.17) fica:

A†
K⃗
=

1
2 ∑

k⃗

g⃗k

[
σ

†
K⃗
2 +⃗k,↑

σ
†
K⃗
2 −⃗k,↓

−σ
†
K⃗
2 +⃗k,↓

σ
†
K⃗
2 −⃗k,↑

]
, (2.19)

no segundo membro de (2.19) trocamos k⃗ por −⃗k e invertemos a ordem dos operadores de

criação. Como σ
†
K⃗
2 +⃗k,↓

σ
†
K⃗
2 −⃗k,↑

=−σ
†
K⃗
2 −⃗k,↑

σ
†
K⃗
2 +⃗k,↓

e g−⃗k = g⃗k ficamos com:

A†
K⃗
= ∑

k⃗

g⃗kσ
†
K⃗
2 +⃗k,↑

σ
†
K⃗
2 −⃗k,↓

, (2.20)

o operador (2.20) cria um par de Cooper com momento total h̄K⃗. Com este operador podemos

construir um vetor de estado variacional da teoria BCS, modificando os parâmetros g⃗k podemos

encontrar uma aproximação para o estado fundamental.

2.2.2 Vetor de Estado Variacional

O par de elétrons é composto por duas partículas de spin semi-inteiro, logo o

momento angular conjunto será o de uma partícula de spin inteiro. Isso sugere que um vetor

variacional seja semelhante ao que é usando na teoria de campo médio para bósons, embora

sejam sistemas de natureza diferente. Assim, em um sistema com P pares de Cooper e N = 2P

elétrons, teríamos:

|ΨP(K⃗)⟩=
[
A†

K⃗

]P|0⟩, (2.21)

onde podemos escolher o momento total do par h̄K⃗ = 0, pois o estado buscado é o de menor

energia.

|ΨP⟩=
[
A†

K⃗=0

]P|0⟩. (2.22)
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Apesar da aparente simplicidade, a forma do estado na equação (2.22) é tremenda-

mente difícil de manipular, uma vez que temos o produto de P somas sobres os vários k⃗s, e não

temos a simplicidade, como no caso de bósons condensados, de que o estado seja um mero

produto tensorial de vários estados individuais (Cohen-Tannoudji et al., 2020). Isso motiva a

definição ad hoc de um outro estado variacional, que será chamado de estado BCS:

|ΨBCS⟩=
∞

∑
P=0

1
P!
[
A†

K⃗=0

]P|0⟩= exp
(
A†

K⃗=0

)
|0⟩. (2.23)

O vetor definido pela equação (2.23) não possui mais um número bem definido

de partículas, no entanto, será mostrado nas próximas seções e no apêndice A que de modo

semelhante ao ensemble grão-canônico, quando sistema é suficientemente grande a flutuação

relativa do número de partículas em relação ao valor médio ⟨N̂⟩ tende para zero (Cohen-Tannoudji

et al., 2020). Continuando, temos ainda:

|ΨBCS⟩= exp
{

∑
k⃗

g⃗kσ
†
k⃗,↑

σ
†
−⃗k,↓

}
|0⟩= ∏

k⃗

exp
(
g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩, (2.24)

e considerando a expansão da exponencial de operador e a anti-simetria dos operadores de

criação:

exp
(
g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
=

∞

∑
n=0

1
n!
(
g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)n
= I+ g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

, (2.25)

portanto, o estado BCS tem a forma final:

|ΨBCS⟩= ∏
k⃗

(
I+ g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩. (2.26)

Definindo |ϕ⃗k⟩ =
(
I+ g⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩, reescrevemos a equação (2.26) como sim-

plesmente um produto tensorial:

|ΨBCS⟩=
⊗

k

|ϕ⃗k⟩. (2.27)
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2.2.3 Normalização

Com a forma (2.27) é imediato obter a condição de normalização para o estado BCS.

Assim:

1 = ⟨ΨBCS|ΨBCS⟩=
[⊗

k

⟨ϕ⃗k|
][⊗

k

|ϕ⃗k⟩
]
= ∏

k⃗

⟨ϕ⃗k|ϕ⃗k⟩, (2.28)

logo, uma condição suficiente para normalização é ⟨ϕ̄⃗k|ϕ̄⃗k⟩ = 1, o que leva a definição das

constantes de normalização u⃗k e v⃗k = u⃗kg⃗k tais que:

|ϕ̄⃗k⟩=
(
u⃗k + v⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩, (2.29)

impondo a condição de normalização:

1 = ⟨ϕ̄⃗k|ϕ̄⃗k⟩= ⟨0|
(
u⋆

k⃗
+ v⋆

k⃗
σ−⃗k,↓σ⃗k,↑

)(
u⃗k + v⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩=

= |u⃗k|
2 + u⃗kv⋆

k⃗
⟨0|σ−⃗k,↓σ⃗k,↑|0⟩+u⋆

k⃗
v⃗k⟨0|σ

†
k⃗,↑

σ
†
−⃗k,↓
|0⟩+ |v⃗k|

2⟨0|σ−⃗k,↓σ⃗k,↑σ
†
k⃗,↑

σ
†
−⃗k,↓
|0⟩,

(2.30)

os termos cruzados se anulam e o termo de |v⃗k|
2 é igual a 1, assim obtemos a condição:

|u⃗k|
2 + |v⃗k|

2 = 1. (2.31)

Definimos uma parametrização nas variáveis de normalização que obedece esta

equação escolhendo as formas complexas u⃗k = cosθ⃗ke−iζ⃗k e v⃗k = senθ⃗keiζ⃗k . O estado BCS

normalizado se escreve então como:

|Ψ̄BCS⟩=
⊗

k⃗

(
cosθ⃗ke−iζ⃗k + senθ⃗keiζ⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩, (2.32)

onde operador σ
†
k⃗,↑

σ
†
−⃗k,↓

cria dois estados com momento e spin (h̄k⃗,↑) e (−h̄k⃗,↓). Assim, uma

interpretação para os parâmetros seria a seguinte: |v⃗k|
2 é a probabilidade de que exista um estado

com (h̄k⃗,↑) e (−h̄k⃗,↓), e |u⃗k|
2 é a probabilidade desse estado estar vazio.

2.2.4 Aproximação de Campo Médio

A utilização do vetor da forma (2.23) permitiu simplificar enormemente as manipu-

lações e cálculos de valores médios, no entanto, introduziu-se uma flutuação no número de pares
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do sistema. Embora, como demonstra (A.14), a flutuação seja pequena no limite termodinâmico,

devemos levar em conta a variação na energia total do sistema devido à variação virtual do

número de pares. Seja o Hamiltoniano do sistema dado por (Combescot; Shiau, 2015):

Ĥ = ∑
k⃗

ε (⃗k)
{

σ
†
k⃗,↑

σ⃗k,↑+σ
†
−⃗k,↓

σ−⃗k,↓
}
+∑

k⃗,⃗k′
V⃗k⃗k′σ

†
k⃗′,↑

σ
†
−⃗k′,↓

σ−⃗k,↓σ⃗k,↑, (2.33)

como o potencial químico µ do sistema representa a taxa de variação da energia total em função

da variação do número de partículas de um sistema, a parcela da energia devido a essa variação é

µN̂, assim definimos o hamiltoniano como o operador:

ĤBCS = ∑
k⃗

ε (⃗k)
{

σ
†
k⃗,↑

σ⃗k,↑+σ
†
−⃗k,↓

σ−⃗k,↓
}
+∑

k⃗,⃗k′
V⃗k⃗k′σ

†
k⃗,↑

σ
†
−⃗k,↓

σ−⃗k,↓σ⃗k,↑−µN̂. (2.34)

Como N̂ = ∑⃗k

{
σ

†
k⃗,↑

σ⃗k,↑+σ
†
k⃗,↓

σ⃗k,↓
}

, definindo ξ⃗k = ε (⃗k)−µ , temos finalmente:

ĤBCS = ∑
k⃗

ξ⃗k

{
σ

†
k⃗,↑

σ⃗k,↑+σ
†
k⃗,↓

σ⃗k,↓
}
+∑

k⃗,⃗k′
V⃗k⃗k′σ

†
k⃗′,↑

σ
†
−⃗k′,↓

σ−⃗k,↓σ⃗k,↑. (2.35)

O hamiltoniano ĤBCS representa a energia livre do sistema descontando parte devido a variação

virtual de pares. Este também é conhecido como hamiltoniano grâo-canônico por sua conexão

com o ensemble grão-canônico.

Sejam dois observáveis Â e B̂, o valor médio operador (Â−⟨Â⟩)(B̂−⟨B̂⟩) pode

ser interpretado, do ponto de vista estatístico, como a correlação entre os observáveis. Se a

correlação entre eles for zero, então:

(Â−⟨Â⟩)(B̂−⟨B̂⟩) = ÂB̂−⟨Â⟩B̂−⟨B̂⟩Â+ ⟨Â⟩⟨B̂⟩= 0, (2.36)

o que nos leva à aproximação de Hartree–Fock:

ÂB̂ = ⟨Â⟩B̂+ ⟨B̂⟩Â−⟨Â⟩⟨B̂⟩. (2.37)

A aproximação de campo médio ignora as correlações dinâmicas entre as partículas.

Ao introduzir os operadores de pares estados, levamos em conta as correlações entre duas

partículas. O operador do tipo σ
†
k⃗′,↑

σ
†
−⃗k′,↓

σ−⃗k,↓σ⃗k,↑, que aparece no termo de interação, aniquila

um par com momento h̄⃗k e cria outro com momento h̄⃗k′, logo este captura a correlação dinâmica
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entre dois pares. Neste ponto, fazemos a aproximação de ignorar quaisquer correlações de ordem

mais alta (três, quatro, cinco partículas e etc), o que nos permite escrever:

(σ†
k⃗′,↑

σ
†
−⃗k′,↓

)(σ−⃗k,↓σ⃗k,↑) = ⟨σ
†
k⃗′,↑

σ
†
−⃗k′,↓
⟩σ−⃗k,↓σ⃗k,↑+ ⟨σ−⃗k,↓σ⃗k,↑⟩σ

†
k⃗′,↑

σ
†
−⃗k′,↓
−⟨σ†

k⃗′,↑
σ

†
−⃗k′,↓
⟩⟨σ−⃗k,↓σ⃗k,↑⟩,

(2.38)

substituindo (2.38) em (2.35), ficamos com:

ĤBCS = ∑
k⃗

ξ⃗k

{
σ

†
k⃗,↑

σ⃗k,↑+σ
†
k⃗,↓

σ⃗k,↓
}
+

+∑
k⃗,⃗k′

V⃗k⃗k′

{
⟨σ†

k⃗′,↑
σ

†
−⃗k′,↓
⟩σ−⃗k,↓σ⃗k,↑+ ⟨σ−⃗k,↓σ⃗k,↑⟩σ

†
k⃗′,↑

σ
†
−⃗k′,↓
−⟨σ†

k⃗′,↑
σ

†
−⃗k′,↓
⟩⟨σ−⃗k,↓σ⃗k,↑⟩

}
.

(2.39)

Definimos o gap, como a quantidade:

∆⃗k =−∑
k⃗′

V⃗k⃗k′⟨σ−⃗k,↓σ⃗k,↑⟩, (2.40)

e reescrevemos a hamiltoniana como:

ĤBCS = ∑
k⃗

ξ⃗k

{
σ

†
k⃗,↑

σ⃗k,↑+σ
†
−⃗k,↓

σ−⃗k,↓
}
−∑

k⃗

{
∆
⋆
k⃗
σ−⃗k,↓σ⃗k,↑+ ∆⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓
− ∆⃗k⟨σ

†
k⃗,↑

σ
†
−⃗k,↓
⟩
}
.

(2.41)

Com isto, é possível mostrar que para um vetor |Ψ̄BCS⟩ ótimo é suficiente escolher

ζ⃗k = 0, logo, u⃗k e v⃗k são parâmetros reais. Após efetuar a otimização (os detalhes são feitos no

apêndice A) obtemos os valores:

u⃗k =

√
1
2

(
1+

ξ⃗k
E⃗k

)
e v⃗k =

√
1
2

(
1−

ξ⃗k
E⃗k

)
, (2.42)

onde E⃗k =
√

ξ 2
k⃗
+∆2

k⃗
.

2.2.5 Transformação de Bogoliubov e Equação do Gap

O ultimo passo para completar a solução é encontrar o valor para o gap (2.40), que

está presente em E⃗k. Para isso reescrevemos o hamiltoniano (2.41):

ĤBCS = ∑
k⃗

{
ξ⃗k

{
σ

†
k⃗,↑

σ⃗k,↑+σ
†
−⃗k,↓

σ−⃗k,↓
}
− ∆⃗kσ−⃗k,↓σ⃗k,↑− ∆⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

}
−∑

k⃗

∆⃗k⟨σ
†
k⃗,↑

σ
†
−⃗k,↓
⟩,

(2.43)
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definimos E0 =− ∑⃗k ∆⃗k⟨σ
†
k⃗,↑

σ
†
−⃗k,↓
⟩, e reescrevemos os termos do hamiltoniano ĤBCS usando as

relações de anti-comutação entre os operadores.

ĤBCS = ∑
k⃗

{
ξ⃗kσ

†
k⃗,↑

σ⃗k,↑+ ξ⃗kσ
†
−⃗k,↓

σ−⃗k,↓− ∆⃗kσ−⃗k,↓σ⃗k,↑− ∆⃗kσ
†
k⃗,↑

σ
†
−⃗k,↓

}
+E0 =

= ∑
k⃗

{
ξ⃗kσ

†
k⃗,↑

σ⃗k,↑+ ∆⃗kσ
†
k⃗,↑

σ
†
−⃗k,↓
− ξ⃗kσ−⃗k,↓σ

†
−⃗k,↓

+ ∆⃗kσ−⃗k,↓σ⃗k,↑

}
+E0 =

= ∑
k⃗

{
σ

†
k⃗,↑
(ξ⃗kσ⃗k,↑+ ∆⃗kσ

†
−⃗k,↓

)+σ−⃗k,↓(∆⃗kσ⃗k,↑− ξ⃗kσ
†
−⃗k,↓

)
}
+E0,

(2.44)

escrevendo em notação matricial:

ĤBCS = ∑
k⃗

{(
σ

†
k⃗,↑

σ−⃗k,↓

)ξ⃗k ∆⃗k

∆⃗k −ξ⃗k

 σ⃗k,↑

σ
†
−⃗k,↓

}+E0. (2.45)

A equação (2.45) evidencia o fato de que ĤBCS é uma forma quadrática nos ope-

radores σ⃗k,↑ de aniquilação e σ
†
−⃗k,↓

de criação, com a matriz que a define sendo chamada de

hamiltoniano de Bogoliubov-de Gennes (Jr, 2010).

HBdG =

ξ⃗k ∆⃗k

∆⃗k −ξ⃗k

 , (2.46)

cujos autovalores são ±
√

ξ 2
k⃗
+∆2

k⃗
, que podemos reconhecer imediatamente como ±E⃗k e seus

autovetores associados normalizados sendo:

v+ =


√

1
2

(
1+

ξ⃗k
E⃗k

)
√

1
2

(
1− ξ⃗k

E⃗k

)
=

u⃗k

v⃗k

 e v− =

−
√

1
2

(
1− ξ⃗k

E⃗k

)
√

1
2

(
1+

ξ⃗k
E⃗k

)
=

−v⃗k

u⃗k

 , (2.47)

assim, podemos escrever (2.46) em uma representação diagonal:

HBdG =

u⃗k −v⃗k

v⃗k u⃗k

T E⃗k 0

0 −E⃗k

u⃗k −v⃗k

v⃗k u⃗k

 . (2.48)

Substituindo isso em (2.45), ficamos com:

ĤBCS = ∑
k⃗

{(
σ

†
k⃗,↑

σ−⃗k,↓

) u⃗k v⃗k

−v⃗k u⃗k

E⃗k 0

0 −E⃗k

u⃗k −v⃗k

v⃗k u⃗k

 σ⃗k,↑

σ
†
−⃗k,↓

}+E0. (2.49)
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Finalmente, definimos os operadores de criação e aniquilação b⃗k,↑ e b†
−⃗k,↓

através da transforma-

ção:  b⃗k,↑

b†
−⃗k,↓

=

u⃗k −v⃗k

v⃗k u⃗k

 σ⃗k,↑

σ
†
−⃗k,↓

 . (2.50)

A relação (2.50) é conhecida como Transformação de Bogoliubov. É imediato

constatar que os operadores assim definidos satsifazem as relações de anti-comutação.

{b⃗k,↑,b−⃗k,↓}= u⃗kv⃗k

[{
σ⃗k,↑,σ

†
k⃗,↑

}
−
{

σ
†
−⃗k,↓

,σ−⃗k,↓

}]
= 0, (2.51)

analogamente, {b†
k⃗,↑
,b†
−⃗k,↓
}= 0, {b⃗k,↑,b

†
−⃗k,↓
}= 0 e {b−⃗k,↑,b

†
k⃗,↓
}= 0, e também:

{b⃗k,↑,b
†
k⃗,↓
}= u2

k⃗

{
σ⃗k,↑,σ

†
k⃗,↑

}
+ v2

k⃗

{
σ

†
−⃗k,↓

,σ−⃗k,↓

}
= u2

k⃗
+ v2

k⃗
= 1. (2.52)

Em resumo, concluímos que os operadores b⃗k,↑ e b†
−⃗k,↓

são operadores de criação fermiônicos:

{b†
k⃗,↑
,b†

k⃗′,↓
}= 0 {b⃗k,↑, b⃗k′,↓}= 0 {b⃗k,↑,b

†
k⃗′,↓
}= δ⃗k,⃗k′. (2.53)

Considere a ação dos operadores de aniquilação b⃗k,↑ e b−⃗k,↓ sobre os estados |ϕ̄⃗k⟩

b⃗k,↑
∣∣ϕ̄⃗k

〉
=
[
u⃗kσ⃗k,↑− v⃗kσ

†
−⃗k,↓

][
u⃗k + v⃗k σ

†
k⃗,↑

σ
†
−⃗k,↓

]
|0⟩ . (2.54)

Como σ⃗k,↑σ
†
k⃗,↑

σ
†
−⃗k,↓
|0⟩= σ

†
−⃗k,↓
|0⟩ temos

b⃗k,↑ |ϕ̄k⟩=
[
u⃗kv⃗kσ

†
−⃗k,↓
− v⃗ku⃗kσ

†
−⃗k,↓

]
|0⟩= 0, (2.55)

da mesma forma, temos b−⃗k,↓ |ϕ̄k⟩= 0. O que implica que:

b⃗k,↑
∣∣Ψ̄BCS

〉
= 0 e b−⃗k,↓

∣∣Ψ̄BCS
〉
= 0. (2.56)

Como o operador de aniquilação anula o estado
∣∣Ψ̄BCS

〉
, este pode ser interpretado

como um estado de vácuo para as excitações criadas por estes operadores. Escrevendo a

hamiltoniana (2.45) com a transformação de Bogoliubov:

ĤBCS = ∑
k⃗

E⃗k

{
b†

k⃗,↑
b⃗k,↑+b†

−⃗k,↑
b−⃗k,↑

}
+E0, (2.57)
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obtemos uma forma que é idêntica à de uma hamiltoniana de partículas não interagentes. Como

b†
k⃗,↑

= u⃗kσ
†
k⃗,↑
− v⃗kσ−⃗k,↓, podemos interpreta-los como criadores de excitações no estado super-

condutor BCS, que consiste numa superposição coerente entre estados de partículas reais e

buracos. Afirmamos que os operadores b†
k⃗,↑

e b†
−⃗k,↓

criam estados de quase-partículas, que são

criadas quando estes atuam sobre o novo vácuo na forma do estado BCS (Combescot; Shiau,

2015). A partir de (2.57) obtemos imediatamente que ĤBCS
∣∣Ψ̄BCS

〉
= E0

∣∣Ψ̄BCS
〉
, logo E0 é a

energia do estado fundamental do sistema, ou a energia do vácuo de quase-partículas.

A transformação de Bogoliubov possui uma inversa: σ⃗k,↑

σ
†
−⃗k,↓

=

 u⃗k v⃗k

−v⃗k u⃗k

 b⃗k,↑

b†
−⃗k,↓

 , (2.58)

portanto, a equação do gap pode ser reescrita em termos dos novos operadores de criação e

aniquilação:

∆⃗k =−∑
k⃗′

V⃗k⃗k′⟨σ−⃗k,↓σ⃗k′,↑⟩=−∑
k⃗′′

V⃗k′⃗k′′

〈(
u⃗k′b−⃗k′,↓− v⃗k′b

†
k⃗′,↑

)(
u⃗k′ b⃗k′,↑+ v⃗k′b

†
−⃗k′,↓

)〉

onde ⟨σ−⃗k′,↓σ⃗k′,↑⟩= u2
k⃗′
⟨b−⃗k′,↓b⃗k′,↑⟩+ u⃗k′ v⃗k′⟨b−⃗k′,↑b

†
−⃗k′,↓
⟩− u⃗k′ v⃗k′⟨b

†
k⃗′,↑

b⃗k′,↑⟩− v2
k⃗′
⟨b†

k⃗′,↑
b†
−⃗k′,↓
⟩,

(2.59)

usando a transformação inversa e os valores médios (A.17), obtemos ⟨b−⃗k′,↓b⃗k′,↑⟩ = u⃗k′ v⃗k′ , o

que leva a:

⟨σ−⃗k′,↓σ⃗k′,↑⟩= u2
k⃗′

u⃗k′ v⃗k′+ u⃗k′ v⃗k′⟨b−⃗k′,↑b
†
−⃗k′,↓
⟩− u⃗k′ v⃗k′⟨b

†
k⃗′,↑

b⃗k′,↑⟩+ v2
k⃗′

u⃗k′ v⃗k′

= u⃗k′ v⃗k′

[
1−⟨b†

−⃗k′,↓
b−⃗k′,↑⟩−⟨b

†
k⃗′,↑

b⃗k′,↑⟩
]
.

(2.60)

Como a hamiltoniana (2.57) tem a forma da de um sistema de partícula livre com energia

E⃗k′ , as ocupações médias seguem a distribuição de Fermi-Dirac ⟨b†
−⃗k′,↓

b−⃗k′,↑⟩ = ⟨b
†
k⃗′,↑

b⃗k′,↑⟩ =

(1+ eβ E⃗k′ )−1 o que implica:

⟨σ−⃗k′,↓σ⃗k′,↑⟩= u⃗k′ v⃗k′

[
1− 2

1+ eβ E⃗k′

]
=

1
2

√√√√(1−
ξ 2

k⃗′

E2
k⃗′

)
tgh
(

β

2
E⃗k′

)
. (2.61)

Finalmente, chegamos na equação do gap.

∆⃗k =−
1
2 ∑

k⃗′
V⃗k⃗k′

 ∆⃗k′√
ξ 2

k⃗′
+∆2

k⃗′

 tgh


√

ξ 2
k⃗′
+∆2

k⃗′

2kbT

 . (2.62)
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A equação (2.62) define ∆ = ∆(ξ⃗k,T ) e permite obter soluções acima da temperatura T do zero

absoluto.

2.2.6 Fônons como Mediadores de Interação entre Elétrons

Os elétrons, sendo partículas de carga negativa, se repelem por interações coulombi-

anas, o que por si só tornaria impossível a formação de qualquer estado ligado entre eles. No

entanto, quando estão em um meio com outras partículas, podem interagir indiretamente através

de interações com elas. Como foi discutido no inicio da seção 2.2, foi teorizado por Cooper

que um elétron que se propaga provoca uma deformação na rede cristalina, e essa deformação

afeta outros elétrons. As deformações em um cristal são quantizadas, e podem ser vistas como

quasi-partículas chamadas de fônons. Investigaremos sob que condições essa interação pode ser

atrativa.

Vamos considerar um sistema de elétrons na aproximação do elétron independente,

mas que interagem com a rede subjacente. Essas interações podem ser vistas como interações

entre elétrons e fônons da rede. Assim, a hamiltoniana do sistema é dada por:

Ĥ = Ĥ0e + Ĥ0 f + Ĥe− f , (2.63)

onde:

Ĥ0e = ∑
k⃗,ν

ε (⃗k)σ†
k⃗,ν

σ⃗k,ν , (2.64)

Ĥ0 f = ∑
q⃗

h̄ω (⃗q)c†
q⃗c⃗q, (2.65)

Ĥe− f = ∑
k⃗,⃗q,ν

T⃗q(c
†
−q⃗ + c⃗q)σ

†
k⃗+q⃗,ν

σ⃗k,ν , (2.66)

com σ
†
k⃗,ν

sendo o operador de criação de um elétron com momento h̄⃗k e spin ν e c†
q⃗ sendo o

operador de criação de um fônon com momento h̄⃗q. Os termos ε (⃗k) e h̄ω (⃗q) são, respectivamente,

as dispersões dos elétrons e dos fônons. A parte Ĥe− f é o termo de interação entre elétrons e

fônons, com T⃗q sendo o potencial de interação na representação do momento (Nolting; Brewer,

2009).
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A partir de uma transformação canônica, vamos obter um termo de interação efetiva

entre elétrons. Assim, seja S um operador, definimos a transformação:

ˆ̄H = e−SĤeS = Ĥ +[Ĥ,S]+
1
2
[[Ĥ,S],S]+ ... (2.67)

Consideramos o termo Ĥe− f como sendo pequeno, também escolhemos S para ser da mesma

ordem. Assim, definindo Ĥ0 = Ĥ0e + Ĥ0 f escrevendo apenas os termos de primeira ordem

ˆ̄H ≈ Ĥ +[Ĥ,S] = Ĥ0 + Ĥe− f +[Ĥ0,S]+ [Ĥe− f ,S]. (2.68)

Queremos escolher S de tal forma que Ĥe− f +[Ĥ0,S] = 0, assim, supomos que seja

da forma:

S = ∑
k⃗,⃗q,ν

T⃗q(yc†
−q⃗ + xc⃗q)σ

†
k⃗+q⃗,ν

σ⃗k,ν , (2.69)

onde as constantes x e y devem ser determinadas. Iniciamos isso calculando o comutador [Ĥ0,S],

em duas partes. Primeiro:

[Ĥ0e,S] = ∑
p⃗,ν ′

∑
k⃗⃗qν

ε(p⃗)T⃗q

[
σ

†
p⃗ν

σp⃗ν ′,(xc⃗q + yc†
−q⃗)σ

†
k⃗+q⃗

σ⃗kν

]
=

= ∑
p⃗,⃗k,⃗q

∑
ν ,ν ′

ε(p⃗)T⃗q(xc⃗q + yc†
−q⃗)
[
σ

†
p⃗ν

σp⃗ν ′,σ
†
k⃗+q⃗

σ⃗kν

]
.

(2.70)

O comutador
[
σ

†
p⃗ν

σ p⃗ν ′,σ
†
k⃗+q⃗

σ⃗kν

]
pode ser calculado usando as relações de comuta-

ção, portanto:

[Ĥ0e,S] = ∑
k⃗⃗q

ε(p⃗)T⃗q(xc⃗q + yc†
−q⃗)δνν ′

(
δp⃗,⃗k+q⃗σ

†
p⃗ν

σ⃗kν
− δ⃗kp⃗σ

†
k⃗+q⃗

σ
†
p⃗ν

)
=

= ∑
k⃗⃗q

T⃗q(ε (⃗k+ q⃗)− ε (⃗k))σ†
k⃗+q⃗

σ⃗
k⃗ν
(xc⃗q + yc†

−q⃗).
(2.71)

Para o segundo termo, de forma análoga, usamos as relações de comutação para
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bósons nos operadores de fônons:

[Ĥ0 f ,S] = ∑
p⃗

∑
k⃗⃗qν

h̄ω(p⃗)T⃗q

[
c†

p⃗cp⃗,(xc p⃗ + yc†
−q⃗)
]

σ
†
k⃗+q⃗ν

σ⃗kν
=

= ∑
p⃗

∑
k⃗⃗qν

h̄ω(p⃗)T⃗q

(
−xδ⃗qp⃗c p⃗ + yδ⃗qp⃗c†

−p⃗

)
σ

†
k⃗+q⃗ν

σ⃗kν
=

= ∑
k⃗⃗qν

T⃗qh̄ω (⃗q)
(
−xc⃗q + yc†

−q⃗

)
σ

†
k⃗+q⃗ν

σ⃗kν
.

(2.72)

Combinando ambos os termos:

[Ĥ0,S] = ∑
k⃗⃗qν

T⃗q

{
x
(

ε (⃗k+ q⃗)− ε (⃗k)− h̄ω (⃗q)
)

c⃗q + y
(

ε (⃗k+ q⃗)− ε (⃗k)+ h̄ω (⃗q)
)

c†
−q⃗

}
σ

†
k⃗+q⃗ν

σ⃗kν
, (2.73)

como devemos ter [Ĥ0,S] =−Ĥe− f , as constantes devem ser:

x =−
(

ε (⃗k+ q⃗)− ε (⃗k)− h̄ω (⃗q)
)−1

,

y =−
(

ε (⃗k+ q⃗)− ε (⃗k)+ h̄ω (⃗q)
)−1

.

(2.74)

Finalmente, devemos calcular o comutador [Ĥe− f ,S]. Iremos nos concentrar apenas

nos termos com operadores de criação de elétrons.

[Ĥe− f ,S] = ∑
k⃗,⃗q,ν ,⃗k′ ,⃗q′,ν ′

T⃗qT⃗q′
[(

c⃗q′+ c†
−q⃗′

)
σ

†
k⃗′+q⃗′ν ′

σ
†
k⃗′ν ′

,
(

xc⃗q + yc+−q⃗

)
σ

†
k⃗+q⃗ν

σ⃗kν

]
, (2.75)

com o comutador sendo:[(
c⃗q′+ c+−q⃗′

)
σ

†
k⃗′+q⃗′ν ′

σ⃗k′ν ′,
(

xc⃗q + yc†
−q⃗

)
σ

†
k⃗+q⃗ν

σ⃗kν

]
=

=
(

c†
q⃗′+ c−q⃗′

)(
xc⃗q + yc†

−q⃗

)[
σ

†
k⃗′+q⃗′ν ′

σ⃗k′ν ′,σ
†
k⃗+q⃗ν

σ⃗kν

]
+

+
[(

c⃗q′+ c†
−q⃗′

)
,
(

xc⃗q + yc†
−q⃗

)]
σ

†
k⃗′+q⃗′ν ′

σ⃗k′ν ′σ
†
k⃗+q⃗ν

σ⃗kν
,

(2.76)

onde usamos a propriedade de que operadores de fônons e elétrons comutam. Descartamos

o primeiro termo termo da soma do lado direito da equação 2.76, o que nos leva a calcular o

comutador envolvendo os operadores dos fônons

[(
c⃗q′+ c†

−q⃗′

)
,
(

xc⃗q + yc†
−q⃗

)]
= x[c†

−q⃗′, c⃗q]+ y[c⃗q′,c
†
−q⃗] = yδ⃗q′,−q⃗− xδ⃗q′,−q⃗, (2.77)

o que leva a
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[Ĥe− f ,S]≈ ∑
k⃗,⃗q,ν ,⃗k′ ,⃗q′,ν ′

T⃗qT⃗q′(y− x)δ−q⃗′ ,⃗qσ
†
k⃗′+q⃗′ν ′

σ⃗k′ν ′σ
†
k⃗+q⃗ν

σ⃗kν

= ∑
k⃗,ν ,⃗k′ ,⃗q′,ν ′

T−q⃗′T⃗q′(y− x)σ†
k⃗′+q⃗′ν ′

σ⃗k′ν ′σ
†
k⃗−q⃗′ν

σ⃗kν

= ∑
k⃗,ν ,⃗k′ ,⃗q′,ν ′

T−q⃗′T⃗q′(y− x)
{

σ
†
k⃗′+q⃗′ν ′

σ
†
k⃗−q⃗′ν

σ⃗k′ν ′σ⃗kν
+ δ⃗k′ ,⃗k+q⃗n⃗k

}
.

(2.78)

Sabendo que T−q⃗ = T⃗q e desprezando o termo δ⃗k′ ,⃗k+q⃗n⃗k, encontramos um potencial efetivo de

interação que envolve apenas elétrons. Assim, definimos

Ĥe−e = ∑
k⃗,p⃗,⃗q,ν ,ν ′

2|T⃗q|2

 h̄ω (⃗q)(
ε (⃗k+ q⃗)− ε (⃗k)

)2
− (h̄ω (⃗q))2

σ
†
p⃗+q⃗ν ′σ

†
k⃗−q⃗ν

σ⃗kν
σp⃗ν ′. (2.79)

Concluímos que uma condição suficiente para que ocorra interação atrativa entre elétrons, é a

desigualdade

(
ε (⃗k+ q⃗)− ε (⃗k)

)2
< (h̄ω (⃗q))2 (2.80)

ser satisfeita.

Como a energia de Debye h̄ωD é a maior energia num solido, temos ε (⃗k+ q⃗)−ε (⃗k)≤

h̄ωD que é a condição para existencia de um potencial efetivo.

O modelo original proposto por Cooper considerava um potencial atrativo fraco entre

elétrons, assim, seu modelo consistia em considerar um potencial da forma:

V⃗k,⃗k′ =

−V0, se |ε (⃗k)− ε (⃗k′)| ≤ h̄ωD

0, caso contrario
, (2.81)

onde V0 é uma constante positiva. Substituindo na equação (2.62), vemos que ∆⃗k = ∆ não

depende de k⃗, assim ficamos com:

1 =
1
2

V0 ∑
ε (⃗k′)≤h̄ωD

 1√
ξ 2

k⃗′
+∆2

 tgh


√

ξ 2
k⃗′
+∆2

2kbT

 . (2.82)
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Sabemos que a energia de Debye é maior do que a energia de Fermi εF , o que leva a

−h̄ωD < εF < h̄ωD. Usando a densidade de estados de energia ρ(ε), reescrevemos o somatório

como a integral:

1 =
1
2

V0

∫ h̄ωD

−h̄ωD

(
ρ(ε)√
ε2 +∆2

)
tgh

(√
ε2 +∆2

2kbT

)
dε. (2.83)

Como a maioria dos estados se concentram próximos à energia de Fermi, podemos aproximar a

densidade de estados ρ(ε)≈ ρ(εF) = ρF , e também sendo a integral de uma função par,

1 =V0ρF

∫ h̄ωD

0

(
1√

ε2 +∆2

)
tgh

(√
ε2 +∆2

2kbT

)
dε. (2.84)

Ao resolver esta equação, obtemos ∆0(T ), que existe apenas como uma função implícita. Vejamos

como a equação se modifica em casos especiais. Se T = 0, então ∆(T = 0) = ∆0 e temos

tgh(x→ ∞)→ 1, o que dá:

1 =V0ρF

∫ h̄ωD

0

dε√
ε2 +∆2

0

=V0ρFsenh−1
(

h̄ωD

∆0

)
, (2.85)

sabemos por medidas experimentais que o gap ∆0 é de apenas alguns meV , portanto é muito

menor do que a energia de Debye. Logo fazemos a aproximação senh−1(x)≈ ln(2x), o que nos

dá:

1
V0ρF

≈ ln
(

2h̄ωD

∆0

)
, (2.86)

e portanto:

∆0 = 2h̄ωDe−
1

V0ρF . (2.87)

A temperatura critica TC é atingida quando o gap é diferente de zero, assim, fazendo

∆ = 0, a equação do gap se torna:

1
V0ρF

=
∫ h̄ωD

0

dε

ε
tanh

(
ε

2kBTC

)
=
∫ h̄ωD

2kBTC

0

dx
x

tanhx =

=
∫ h̄ωD

2kBTc

0

tanhx
x

dx≈ (tanhx lnx)
h̄ωD

2kBTc
0 −

∫
∞

0

lnx
cosh2 x

dx≈

≈ ln
(

h̄ωD

2kBTC

)
− ln

(
π

4eγ

)
= ln

(
2eγ h̄ωD

πkBTC

)
,

(2.88)
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onde γ é a constante de Euler-Mascheroni. Concluímos então que:

TC =
2eγ

π

h̄ωD

kB
e−

1
V0ρF , (2.89)

ou seja, temos TC ∝ ωD ∝ M−1/2, que é exatamente o resultado previsto por Maxwell e Reynolds,

e que confirma a dependência da temperatura crítica com a massa dos íons. Substituindo a

equação (2.87) em (2.89), chegamos em uma relação entre o gap em T = 0 e a temperatura

crítica:

∆0

kBTc
≈ 1.76, (2.90)

ou seja, quanto maior for o gap, maior será a temperatura crítica. Isso permite prever a tempera-

tura crítica de forma a priori para uma grande variedade de supercondutores. Ressaltamos que

uma limitação deste modelo é que os elétrons não podem ter uma energia térmica kBT maior do

que a energia de Fermi εF , pois caso contrario, não há como garantir que estejam próximos ao

nível de Fermi.

2.2.7 Efeito de Retardação

Embora tenhamos mostrado que existe uma atração efetiva fraca entre elétrons, uma

questão que surge é como esta consegue se sobrepor as fortes interações de coulomb. A resposta

para isso está nas escalas de tempo em que essas interações ocorrem. Os elétrons que contribuem

para o estado BCS têm energia próxima a de Fermi, portanto a escala de tempo do seu movimento

na rede é da ordem de ∼ h̄/εF = te. No entanto a ordem de tempo do movimento dos íons é

∼ 1/ωD = tD, e como h̄ω << εF temos te >> tD (Altland; Simons, 2010). Quando um elétron

em movimento distorce a rede, esta demora muito mais tempo para retornar ao equilíbrio, assim

outro elétron pode se aproximar e sentir a influencia da distorção provocada pelo primeiro elétron.

A Fig. 6 mostra um esquema desse processo.

O efeito liquido deste processo é que a interação efetiva ocorre num período de

tempo finito, isto é, a influencia de um elétron leva tempo até alcançar outro, e assim, o alcance

da interação efetiva pode se estender por distancias muito maiores. Em contra partida a interação

de coulomb é praticamente instantânea nas escalas de baixa energia e depende diretamente da

densidade eletrônica por um fator da ondem de ∼ n−1/2, onde n é a densidade.
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Figura 6 – Efeito de retardação. As setas representam o elétron em movimento e o circulo um íon da rede, em
que E−1

F (unidades em que h̄ = 1) é o tempo dos elétrons e ω
−1
D o tempo que o íon leva para retornar

ao equilíbrio.

Fonte: Adaptado de (Altland; Simons, 2010).

A distancia média entre dois elétrons num par de Cooper é definido como o com-

primento de coerência χC = (2π h̄2kF)/me∆(ξ = 0,T = 0) (com me sendo a massa do elétron).

Esta quantidade mede o alcance da interação efetiva (Laussy et al., 2010). Quando n−1/2 >> χC

a atração prevalece sobre a repulsão de coulomb em longas distancias: este é o chamado efeito

de retardação. A abordagem da seção anterior não incorpora diretamente este efeito apesar

de sua importância, uma critica comum na abordagem original de Bardeen, Cooper e Schriefer

(Combescot; Shiau, 2015).

2.3 Mediações Alternativas aos Fônons

2.3.1 Excitons

A compreensão em termos de teorias microscópicas da SC abriu um horizonte

totalmente novo de investigação teórica. Uma ideia que surgiu imediatamente foi a de substituir os

fônons por outras partículas de natureza bosónica que interagem com elétrons. Para esse objetivo

o primeiro tipo de quasi-partícula sugerida foram os excitons, que surgem em semicondutores

quando um elétron na camada de valência salta para banda de condução deixando um estado
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desocupado para trás, que é chamado de buraco. O comportamento o buraco se comporta como

uma partícula com carga positiva e interage com o elétron na banda de condução formando assim

o exciton. Uma carateristiva relevante é que eles se comportam como bósons, e podem interagir

com os elétrons e intermediar interações entre eles.

A primeira proposta desse tipo de mecanismo veio em 1964, quando Little propôs

que a temperatura crítica TC poderia ser elevada em cadeias de polímeros orgânicos quase-

unidimensionais, onde os excitons fossem mediadores das interações entre elétrons (Little, 1964).

Em 1973, John Bardeen, James Bary e David Allender (Allender et al., 1973) propuseram um

modelo teórico pioneiro para uma heteroestrutura que consistia na junção de duas camadas

finas de um metal e um semicondutor, separadas por uma distância pequena. No semicondutor,

excitons virtuais interagem com os elétrons de valência no metal induzindo a formação de pares

de Cooper. Ginzburg (Ginzburg et al., 1987) teorizou que esse mecanismo poderia ser um

possível caminho para a SC em altas temperaturas. Sistemas 2D como este tem as possibilidades

mais promissoras: a Fig. 7 apresenta um desenho de como os elétrons e excitons são posicionados

dentro da heteroestrutura, onde acoplamento entre excitons e elétrons depende fortemente de

características como a distancia L entre as camadas de semicondutor e metal, por exemplo.

Figura 7 – Modelo da heteroestrutura do artigo (Allender et al., 1973). Na camada de cima temos o semicondutor
onde os excitons são formados; na camada de baixo temos o metal onde ficam os elétrons de condução.
Ambas as camadas são separadas por uma distancia L. O vetor d⃗ é o momento de dipolo do exciton.

Fonte: Adaptado de (Laussy et al., 2012).

A interação entre elétrons normalmente ocorre quando um elétron de condução

polariza o meio dielétrico criando assim um exciton, que posteriormente pode interagir com

outro elétron. Assim, os dois trocam momentos de forma indireta. Como apontado por Ginzburg

(Ginzburg et al., 1987), a principal característica dos excitons é que sua energia característica

kBTe é muito maior do que a energia de Debye kBTD. Isso se deve ao fato de que a energia

de Debye depende do inverso da massa dos íons, e como os excitons são muito mais leves, a

energia típica é maior. Se M é a massa do íon e m a massa do excitons, como TD ∼M−1/2 temos

Te ∼
[M

m

]1/2 TD ≤ 100×TD, o que necessariamente implica num temperatura crítica maior.

Embora promissora, a mediação por excitons logo começou a apresentar algumas
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dificuldades, sendo a primeira delas a baixa estabilidade em certos materiais, possuindo um vida

curta ou baixa coerência. Posteriormente, verificou-se que a redução do efeito de retardamento

da interação também é um fator prejudicial (Morel; Anderson, 1962). Os fônons geralmente

possuem uma velocidade muito mais lenta que os elétrons na superfície de Fermi, e isso se reflete

em um forte efeito de retardação na interação mediada por eles, o que resulta num tamanho do

par de Cooper onde os elétrons estão suficientemente afastados para que a interação coulombiana

seja pequena. Em contraste, os excitons são partículas muito rápidas, o que reduz o efeito de

retardação, acarretando num tamanho de par menor e consequentemente num regime em que a

interação repulsiva de Coulomb é não desprezível, o que prejudica a formação de pares de Cooper

(Cherotchenko et al., 2016). Embora o mecanismo éxciton ainda tenha um papel relevante para

explicar a SC de certos sistemas (Cherotchenko et al., 2016; Sun et al., 2021; Milczewski et al.,

2024; Cao; Kavokin, 2025), ele não foi detectado ainda como o mecanismo principal que a torna

possível.

Apesar de todas essas dificuldades, é possível ainda obter interações fortes quando os

excitons estão em um estado de condensado de Bose-Einstein (BEC). O estado SC se caracteriza

por ser coerente e com fase complexa global, como fica evidente na forma do estado BCS. Assim,

quando os mediadores já são coerentes como no caso de um BEC, a mediação é mais eficiente,

pois os estes deixam de ter movimentos aleatórios e desorganizados. Além disso, é teorizado que

excitons com grande momento de dipolo também induzem interações mais fortes. Nesse caso,

os que possuem elétron e buraco distantes espacialmente se destacam: estes são os chamados

excitons indiretos (Laussy et al., 2012), que serão o caso estudado como aplicação do nosso

modelo mais adiante nesta dissertação.

2.3.2 Exciton-Polaritons

A principal dificuldade em se obter BECs de excitons é que estes só ocorrem em

baixíssimas temperaturas. Nesse contexto, surgem os exciton-polaritons como candidatos para

substituir os excitons na mediação da SC. Essas quase-partículas são híbridas, parte exciton e

parte fóton, que surgem quando luz confinada em uma microcavidade interage fortemente com a

matéria, geralmente semicondutores. Estas têm sido grande foco de pesquisa nas últimas décadas,

sendo uma das razões para isso a sua capacidade de formar BECs em temperatura ambiente, fato

que já é confirmado experimentalmente (Houdré et al., 1994; Su et al., 2020; Ghosh et al., 2022;

Alnatah et al., 2025).
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Em 2010, exciton-polaritons foram propostos como possíveis candidatos mediadores

de SC, tendo em destaque sua capacidade de induzir interações atrativas muito mais fortes do

que os mecanismos tradicionais, mesmo em comparação com o mecanismo de excitons (Laussy

et al., 2010). Isso é um caminho para contornar o baixo efeito de retardação inerente à mediação

por bósons leves como este. Entre as principais dificuldades com essas quase-partículas está a

formação de fases exóticas que competem diretamente com a fase SC, como a super sólida e

a onda de densidade de carga (CDW), que surgem espontaneamente à medida que a força da

interação efetiva aumenta. Uma outra vantagem, como será mostrado posteriormente, é que a

força da interação pode ser controlada opticamente, o que abre margem para muitas aplicações

em dispositivos.

A SC de alta temperatura permanece um dos problemas abertos mais desafiadores da

física moderna. Enquanto a teoria BCS explica satisfatoriamente a SC convencional mediada

por fônons, a busca por mecanismos alternativos que permitam TC mais elevadas é intensa. A

mediação pelos bósons do tipo mencionado acima surge como um candidato promissor.

2.4 Escopo da Dissertação

O objetivo principal deste trabalho é obter a temperatura crítica e a função do gap

em um sistema onde a SC é mediada por excitons. Nos próximos capítulos propomos um modelo

teórico para a mediação da SC por quase-partículas bosônicas, tendo como principal foco os

excitons e exciton-polaritons. No capítulo 3 introduzimos o design da heteroestrutura que será

modelada por um hamiltoniano de uma mistura de Bose-Fermi. Usando a aproximação de

campo médio, mostramos que este hamiltoniano pode ser reduzido à mesma forma do de fônons,

assim obtendo o potencial efetivo. O formalismo é desenvolvido tanto para excitons como para

exciton-polaritons. Definindo um potencial médio sob a curva de Fermi de um gás de elétrons

bidimensional (2DEG), obtemos um potencial U0(ω) que depende da energia de troca entre

elétrons h̄ω , o que incorpora um efeito de retardação no modelo. Com a presença de regiões

negativas dessa função, a SC é possível. Finalizamos o capítulo expondo um algoritmo para o

cálculo de TC e outro para o cálculo da função do gap ∆(ξ ,T ). No capítulo 4 passamos para

análise dos resultados, onde se mostra que a força de interação depende diretamente da densidade

de bósons no sistema. A temperatura crítica e o gap são obtidos. Finalizamos o capítulo fazendo

uma aplicação do modelo em um sistema composto por dicalcogenetos de metais de transição

(TMDs) para hospedar os excitons e uma bicamada de grafeno para abrigar o 2DEG. No capítulo
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5 apresentamos as conclusões e perspectivas futuras de pesquisa.
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3 INTERAÇÃO MEDIADA POR EXCITONS E EXCITON-POLARITONS

3.1 Modelo Teórico da Interação Efetiva

Passamos agora à formulação de um modelo teórico que descreve a SC em sistemas

de baixa dimensionalidade, tendo como base a teoria BCS. Mostramos que é possível encontrar

uma hamiltoniana efetiva análoga a para o caso da mediação por fônons.

3.1.1 Descrição da Heteroestrutura

Introduzimos agora um design de heteroestrutura que será a base para nossa formula-

ção teórica, sendo usado em diversos trabalhos envolvendo sistemas análogos ao nosso. (Cotleţ et

al., 2016; Cherotchenko et al., 2016). Trataremos da mediação por excitons e exciton-polaritons

em conjunto. Com o objetivo de formar excitons com momentos de dipolo adotamos um hetero-

estrutura bidimensional com semicondutores onde os elétrons e buracos estejam espacialmente

separados por uma distância d, formando um momento de dipolo explícito. Quanto maior for

esta distância, maior será a força de interação com os elétrons. Espera-se que quanto maior for a

energia de ligação entre elétrons e buracos Eb, maior a força de interação.

Para hospedar o gás de elétrons livres bidimensional (2DEG) escolhemos algum

material bidimensional que possua uma densidade eletrônica controlável. Candidatos mais

diretos são bicamadas de grafeno ou monocamadas de semicondutores dopados com impurezas

que doam ou roubam elétrons. Esta camada é separada dos excitons por algum material isolante

de espessura L.

Para induzir a formação de excitons puros, usamos um campo elétrico ou considera-

mos heteroestruturas semicondutores de tipo-II. No caso de exciton-polaritons, usa-se fótons de

cavidade. Para isso inserimos a heteroestrutura descrita no parágrafo anterior em uma microcavi-

dade composta por dois refletores de Bragg. Na Fig. 8, temos um desenho deste sistema. Os

refletores de Bragg, embora eficientes, ainda possuem alguma perda de energia a medida que um

fóton é refletido varias vezes entre os refletores. Isso se traduz num decaimento na concentração

de fótons com o tempo, o que dá aos exciton-polaritons um tempo de vida finito. Isso pode

ser contornado bombeando constantemente fótons com um laser para manter a concentração

constante, o que deve acarretar num gradual aquecimento do sistema. Em nossa análise, vamos

desprezar o eventual aquecimento do BEC.

A interação com os elétrons na 2DEG se dá de forma predominante com a parte
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Figura 8 – Representação da microcavidade que consiste em dois refletores de Bragg (DBR) montados sobre um
substrato. Em seu interior, uma heteroestrutura composta por uma camada semicondutora em que se
forma um BEC de exctions indiretos com comprimento de dipolo d. Adjacente a uma distância L
desta, há um 2DEG sobre uma segunda camada bidimensional.

Fonte: Adaptado de (Cotleţ et al., 2016)

excitônica dos exitons-polaritons, o que permite tratar ambos os casos de quasi-partículas de

forma muito semelhante.

3.1.2 Hamiltoniana do Sistema

Denotamos os operadores de criação de elétrons e exciton-polaritons com momento

h̄⃗k por σ
†
k⃗

e a†
k⃗
, respectivamente. Em seus operadores de criação/aniquilação, como nos pares de

Cooper, o spin ↑ (↓) só ocorre com k⃗ positivo (negativo), portanto, abreviamos a notação para

σ
†
k⃗,ν

= σ
†
k⃗

. O sistema pode ser modelado pela seguinte hamiltoniana:

Ĥ = ∑
k⃗

[
Epol(⃗k)a

†
k⃗
a⃗k +Eel (⃗k)σ

†
k⃗

σ⃗k

]
+

+ ∑
k⃗,⃗k′ ,⃗q

[
VC(⃗q)σ

†
k⃗1+q⃗

σ
†
k⃗2−q⃗

σ⃗k2
σ⃗k1

+X2VX (⃗q)σ
†
k⃗

σ⃗k′+q⃗a†
k⃗′+q⃗

a⃗k +Ua†
k⃗1

a†
k⃗2+q⃗

a⃗k1+q⃗a⃗k2

]
,

(3.1)

onde na primeira parte Eel (⃗k) = ε (⃗k) = h̄2k2/2me é a dispersão dos elétrons. A primeira parte

do termo de interação se deve à força de Coulomb entre os elétrons, com VC(⃗q) sendo o potencial

de Yukawa com comprimento de blindagem de Coulomb κ:

VC(⃗q) =
e2

2εA
1

|⃗q|+κ
, (3.2)
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onde ε é a constante dielétrica do meio e A é uma área de normalização. O segundo termo

de interação X2VX (⃗k) representa a interação entre os excitons/exciton-polaritons e os elétrons,

onde normalmente a parte excitônica do primeiro predomina na interação. A constante X é o

coeficiente de Hopfield, que quantifica a fração de excitons no BEC. O último termo é a interação

entre os excitons/exciton-polaritons, onde usamos a aproximação s-wave com um potencial

constante dado por U = 6aX EbX4/A.

Como os exiton-polaritons são acoplamentos entre fótons e excitons, usamos o

modelo de Rabi com a dispersão do ramo inferior, assim Epol (⃗k) é escolhida como (Cotleţ et al.,

2016; Laussy et al., 2012):

Epol(⃗k) =
1
2

(
EC(⃗k)+Eex(⃗k)−

√
(Eex(⃗k)−EC(⃗k))2 +(2h̄ΩR)2

)
, (3.3)

onde mX é a massa do excitons, mC é a massa efetiva dos fótons de cavidade e h̄ΩR é a

energia de separação de Rabi. As dispersões Eex(⃗k)≈ h̄2k2/2mX +Eb e EC(⃗k)≈ h̄2k2/2mC são,

respectivamente, a dos excitons e fótons de cavidade. A constante Eb é a energia de ligação

do exciton, que é zero para excitons puros. A Fig. 10 mostra o gráfico da equação (3.3) e na

Fig. 9 vemos o gráfico da dispersão Eex(⃗k). O procedimento que adotaremos é valido tanto para

excitons como exciton-polaritons, bastando apenas trocar a dispersão Epol (⃗k)→ Eex(⃗k), definir

X = 1 e ΩR = 0 para abarcar o caso do primeiro.

Figura 9 – Dispersão dos excitons sozinhos. Assim como a dispersão de uma partícula livre com massa efetiva
mX , a forma do gráfico é a de uma parábola.

Fonte: Elaborado pelo autor.
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Figura 10 – Ramo inferior da dispersão dos exciton-polaritons. A curva se inicia com um comportamento linear,
e para valores de k grandes tem comportamento quadrático. A dependência em |⃗k| vem a forma de
(3.3), que depende das dispersões quadráticas dos excitons e fótons. Em vermelho, as dispersão da
parte do exciton dentro do polariton.

Fonte: Elaborado pelo autor.

O potencial de interação entre elétrons e excitons VX (⃗q) é dado por

VX (⃗q) =
e2

2εA
e−qL

q

{
1

[1+(βeqaX/2)2]
3/2 −

1

[1+(βhqaX/2)2]
3/2

}
+

+
ed

2εA
e−qL

{
βe

[1+(βeqaX/2)2]
3/2 +

βh

[1+(βhqaX/2)2]
3/2

}
,

(3.4)

onde: aX é o raio de Bohr do exciton, βe = me/(me +mh) e βh = mh/(me +mh) são, respectiva-

mente, a frações de massa dos elétrons me e a massa dos buracos mh, e a última parte se refere

ao momento de dipolo d⃗ do exciton. Com ja foi mencionado antes, a constante L se refere a

distancia de separação entre o BEC e 2DEG (Laussy et al., 2012).

Na tabela 1 estão os valores de todas as constantes presentes na hamiltoniana 3.1.

3.1.3 Interação Efetiva

Considerando a parte de interação dos exciton-polaritons:

Ĥpol = ∑
k⃗

Epol (⃗k)a
†
k⃗
a⃗k + ∑

k⃗1 ,⃗k2 ,⃗q

Ua†
k⃗1

a†
k⃗2+q⃗

a⃗k1+q⃗a⃗k2
, (3.5)

e usando a abordagem de campo médio, fazemos a†
k⃗+q⃗

a⃗k ≈ ⟨a
†
k⃗+q⃗
⟩a⃗k+⟨a⃗k⟩a

†
k⃗+q⃗

, seguimos a abor-
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Parâmetro Significado Valor

εr Permissividade relativa 4.5
me Massa do elétron (exciton) ≈ 0.22
mh Massa do buraco ≈ 1.25
L Distância entre 2DEG e BEC 50 Å
κ Blindagem de Coulomb 12 Å−1

mX Massa do exciton (0.22+1.25)me ≈ 1.3×10−30 kg
mC Massa do fóton 10−5me ≈ 9.1×10−36 kg
h̄ΩR Separação de Rabi (polariton) 45 meV
h̄ΩR Separação de Rabi (exciton) 0 meV
X Coeficiente de Hopfield (polariton) 1/

√
2

X Coeficiente de Hopfield (exciton) 1
kF Vetor de onda de Fermi 0.05 Å−1

aX Raio de Bohr do exciton 19.8 Å
Eb Energia de ligação do exciton 32 meV
d Comprimento do momento de dipolo 120 Å

Tabela 1 – Parâmetros físicos relevantes do sistema com excitons/exciton-polaritons, onde esco-
lhemos as unidades de massa do elétron (Laussy et al., 2012).

dagem de Bogoliubov aproximando ⟨a⃗k⟩ ≈
√

N0Aδ⃗k,0, onde N0 é a densidade de excitons/exciton-

polaritons e A é a área de normalização (Laussy et al., 2012). Como o os bósons mediadores

estão condensados em um BEC, a maioria das partículas se concentra no estado fundamental.

Essas aproximações também significam tomar o este último k⃗ = 0 e a partir dele obter os estados

excitados, assim consideramos na soma apenas k⃗ ̸= 0. Com essas considerações, temos:

1
2 ∑

k⃗1 ,⃗k2 ,⃗q

Ua†
k⃗1

a†
k⃗2+q⃗

a⃗k1+q⃗a⃗k2
=

N0AU
2 ∑

k⃗1 ,⃗k2 ,⃗q

{δ⃗k1+q⃗,0a⃗k1
+ δ⃗k1,0

a†
k⃗1+q⃗
}{δ⃗k2+q⃗,0a⃗k2

+ δ⃗k2,0
a†

k⃗2+q⃗
}=

=
N0AU

2 ∑
q̸⃗=0
{a†
−q⃗ + a⃗q}{a−q⃗ +a†

q⃗}=

=
N0AU

2 ∑
k⃗ ̸=0

{a†
−⃗k

a−⃗k + a⃗ka−⃗k +a†
k⃗
a†
−⃗k

+ a⃗ka†
k⃗
},

(3.6)

e como o somatório é simétrico em k⃗, substituímos a†
−⃗k

a−⃗k = a†
k⃗
a⃗k e ficamos com

1
2 ∑

k⃗1 ,⃗k2 ,⃗q

Ua†
k⃗1

a†
k⃗2+q⃗

a⃗k1+q⃗a⃗k2
=

N0AU
2 ∑

k⃗ ̸=0

{2a†
k⃗
a⃗k + a⃗ka−⃗k +a†

k⃗
a†
−⃗k
}, (3.7)

substituindo na equação (3.5), temos:

Ĥpol = ∑
k⃗ ̸=0

{
Epol (⃗k)a

†
k⃗
a⃗k +N0AUa†

k⃗
a⃗k +

N0AU
2

(a⃗ka−⃗k +a†
k⃗
a†
−⃗k
)

}
. (3.8)
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No caso dos exciton-polaritons definimos uma nova dispersão fazendo uma mu-

dança de referencial do zero de energia, medindo-o a partir do estado fundamental, com

Ēpol (⃗k) = Epol (⃗k)−Epol(0). Essa convenção torna a solução numérica mais simples. Defi-

nindo as constantes α⃗k = Ēpol (⃗k)+N0AU e β⃗k = N0AU , temos:

Ĥpol = ∑
k⃗ ̸=0

{
(Ēpol (⃗k)+N0AU)a†

k⃗
a⃗k +

N0AU
2

(a⃗ka−⃗k +a†
k⃗
a†
−⃗k
)

}
+ ∑

k⃗ ̸=0

Epol(0)a
†
k⃗
a⃗k

= ∑
k⃗ ̸=0

{
α⃗ka†

k⃗
a⃗k +

β⃗k
2
(a⃗ka−⃗k +a†

k⃗
a†
−⃗k
)

}
+ ∑

k⃗ ̸=0

Epol(0)a
†
k⃗
a⃗k.

(3.9)

Mudando o zero de energia para Epol(0), a hamiltoniana fica:

Hpol = ∑
k⃗ ̸=0

{
α⃗k
2
(a†

k⃗
a⃗k +a†

−⃗k
a−⃗k)+

β⃗k
2
(a⃗ka−⃗k +a†

k⃗
a†
−⃗k
)

}
= ∑

k⃗ ̸=0

1
2

{
a†

k⃗
(α⃗ka⃗k + β⃗ka†

−⃗k
)+a−⃗k(α⃗ka†

−⃗k
+ β⃗ka⃗k)

}

= ∑
k⃗ ̸=0

1
2

(
a†

k⃗
a−⃗k

)α⃗k β⃗k

β⃗k α⃗k

 a⃗k

a†
−⃗k

 .

(3.10)

Com o objetivo de diagonalizar esta forma quadrática, definimos a seguinte transfor-

mação de Bogoliubov:

 a⃗k

a†
−⃗k

= T⃗k

 b⃗k

b†
−⃗k

 onde se define T⃗k =

u⃗k v⃗k

v⃗k u⃗k

 ,

tal que T †
k⃗

α⃗k β⃗k

β⃗k α⃗k

 T⃗k =

Ebog(⃗k) 0

0 Ebog(⃗k)

 .

(3.11)

Os operadores b⃗k e b†
−⃗k

criam excitações no estado fundamental do BEC. A partir da

relação de comutação para bósons [a⃗k,a
†
k⃗
] = 1 deduzimos u2

k⃗
− v2

k⃗
= 1. Aplicando a condição

para T⃗k, temos:

T †
k⃗

α⃗k β⃗k

β⃗k α⃗k

 T⃗k =

α⃗k(v
2
k⃗
+u2

k⃗
)+ β⃗ku⃗kv⃗k β⃗k(v

2
k⃗
+u2

k⃗
)+ α⃗ku⃗kv⃗k

β⃗k(v
2
k⃗
+u2

k⃗
)+ α⃗ku⃗kv⃗k α⃗k(v

2
k⃗
+u2

k⃗
)+ β⃗ku⃗kv⃗k

=

Ebog(⃗k) 0

0 Ebog(⃗k)

 ,

(3.12)

e assim, deduzimos o sistema de três equações:
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
α⃗k(v

2
k⃗
+u2

k⃗
)+ β⃗ku⃗kv⃗k = Ebog(⃗k)

β⃗k(v
2
k⃗
+u2

k⃗
)+ α⃗ku⃗kv⃗k = 0

u2
k⃗
− v2

k⃗
= 1

, (3.13)

cuja solução determina completamente a matriz T⃗k e é dada por:

Ebog(⃗k) =
√

α⃗k− β⃗k , u⃗k =

√√√√1
2

(
α⃗k

Ebog(⃗k)
+1

)
e v⃗k =

√√√√1
2

(
α⃗k

Ebog(⃗k)
−1

)
, (3.14)

substituindo em (3.10), ficamos com:

Ĥpol = ∑
k⃗ ̸=0

1
2

(
a†

k⃗
a−⃗k

)α⃗k β⃗k

β⃗k α⃗k

 a⃗k

a†
−⃗k

 , (3.15)

logo

Ĥpol = ∑
k⃗ ̸=0

1
2

(
b†

k⃗
b−⃗k

)
T †

k⃗

α⃗k β⃗k

β⃗k α⃗k

 T⃗k

 b⃗k

b†
−⃗k


= ∑

k⃗ ̸=0

1
2

(
b†

k⃗
b−⃗k

)Ebog(⃗k) 0

0 Ebog(⃗k)

 b⃗k

b†
−⃗k


= ∑

k⃗ ̸=0

1
2

Ebog(⃗k){b†
k⃗
b⃗k +b†

−⃗k
b−⃗k}.

(3.16)

Finalmente, encontramos a hamiltoniana dos excitons/exciton-polaritons diagonalizada.

Ĥpol = ∑
k⃗ ̸=0

Ebog(⃗k)b
†
k⃗
b⃗k (3.17)

onde Ebog(⃗k) =
√

Ēpol (⃗k)(Ēpol (⃗k)+2N0AU) é a energia das excitações do estado fundamental

do BEC. Estas excitações podem ser vistas como quase-partículas, que recebem o nome de

bogolons.

Vamos agora escrever o termo de interação entre elétrons e o BEC em termos dos

operadores b⃗k e b†
k⃗
. Usando a aproximação de campo médio:

∑
k⃗,⃗k′ ,⃗q

X2VX (⃗q)σ
†
k⃗

σ⃗k′+q⃗a†
k⃗′+q⃗

a⃗k = ∑
k⃗,⃗k′ ,⃗q

√
N0AX2VX (⃗q)σ

†
k⃗

σ⃗k′+q⃗{δ⃗k+q⃗,0a⃗k + δ⃗k1,0
a†

k⃗+q⃗
}

= ∑
k⃗,⃗q̸=0

√
N0AX2VX (⃗q)σ

†
k⃗

σ⃗k+q⃗{a⃗q +a†
−q⃗},

(3.18)
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usando as transformações de Bogoliubov a⃗q = u⃗qb⃗q + v⃗qb†
−q⃗ e a†

−q⃗ = u⃗qb†
−q⃗ + v⃗qb⃗q o que leva

a {a⃗q + a†
−q⃗} = (u⃗q + v⃗q)(b⃗q + b†

−q⃗). Como (u⃗q + v⃗q)
2 = u2

q⃗ + v2
q⃗ + 2u⃗qv⃗q, a partir do sistema

(3.13) deduzimos

u2
q⃗ + v2

q⃗ =
αq⃗

Ebog(⃗q)

2u⃗qv⃗q =
βq⃗

Ebog(⃗q)
,

(3.19)

o que leva a

u⃗q + v⃗q =

√
αq⃗ +βq⃗

Ebog(⃗q)
=

√
Ēpol (⃗q)+N0AU

Ebog(⃗q)
=

√
Ebog(⃗q)− Ēpol (⃗q)

2N0AU−Ebog(⃗q)+ Ēpol (⃗q)
, (3.20)

portanto:

∑
k⃗,⃗k′ ,⃗q

X2VX (⃗q)σ
†
k⃗

σ⃗k′+q⃗a†
k⃗′+q⃗

a⃗k =

= ∑
k⃗,⃗q̸=0

√
N0AX2VX (⃗q)

√
Ebog(⃗q)− Ēpol (⃗q)

2N0AU−Ebog(⃗q)+ Ēpol (⃗q)
σ

†
k⃗

σ⃗k+q⃗(b⃗q +b†
−q⃗),

(3.21)

definido M(⃗q) =
√

N0AX2VX (⃗q)
√

Ebog(⃗q)−Ēpol (⃗q)
2N0AU−Ebog(⃗q)+Ēpol (⃗q)

, finalmente obtemos a hamiltoniana do

sistema em temos dos operadores de excitação de excitons/exciton-polaritons

Ĥ = ∑
k⃗

Eel (⃗k)σ
†
k⃗

σ⃗k + ∑
k⃗ ̸=0

Ebog(⃗k)b
†
k⃗
b⃗k + ∑

k⃗,⃗q̸=0

M(⃗q)σ†
k⃗

σ⃗k+q⃗(b⃗q +b†
−q⃗)+

+ ∑
k⃗,⃗k′ ,⃗q

[
VC(⃗q)σ

†
k⃗+q⃗

σ
†
k⃗′−q⃗

σ⃗k′σ⃗k

]
,

(3.22)

onde a primeira parte tem a mesma forma da hamiltoniana (2.63), onde o papel dos fônons é

substituído pelo das excitações do "gás de bogolons". Definimos a energia de troca entre elétrons

como h̄ω (⃗q) = Epol (⃗k+ q⃗)−Epol (⃗k), e escrevemos o potencial de interação efetiva:

VA(⃗q,ω) =
2M(⃗q)2Ebog(⃗q)

(h̄ω (⃗q))2−Ebog(⃗q)2 . (3.23)

Finalmente, chegamos à hamiltoniana efetiva do sistema:

Ĥe f f = ∑
k⃗

Eel (⃗k)σ
†
k⃗

σ⃗k + ∑
k⃗,⃗k′ ,⃗q

[
VC(⃗q)+

2M(⃗q)2Ebog(⃗q)
(h̄ω (⃗q))2−Ebog(⃗q)2

]
σ

†
k⃗+q⃗

σ
†
k⃗′−q⃗

σ⃗k′σ⃗k. (3.24)
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3.1.4 Potencial Efetivo Médio

A parte de interação agora se divide em duas partes, uma de caráter coulombiano e

outra sendo a parte que é mediada pelos bósons, que pode ser macroscopicamente controlada.

Notamos que esta última tem uma dependência em relação à frequência ω . Isso evidencia o

caráter retardado da interação induzida por excitons/exciton-polaritons, que também surge na

mediação por fônons e favorece a formação dos pares de Cooper. Neste ponto, chamamos

atenção para o fato de que o potencial (3.23) tem uma dependência linear na densidade N0, ou

seja, a força de interação pode ser controlada apenas modificando a concentração de bósons

no BEC (Laussy et al., 2012). Como já foi discutido, isso permite contornar a dificuldade da

retardação fraca com o aumento na força de interação.

A maioria dos elétrons no gás bidimensional possui energia próxima a energia de

Fermi εF , por isso podemos eliminar a dependência em q⃗ do potencial efetivo aproximando-o

por uma média sobre a curva de Fermi do 2DEG.

Figura 11 – Diagrama de Feynman para a interação efetiva entre elétrons. Dois elétrons com momento h̄⃗k e h̄⃗k′

trocam momento h̄⃗q com a interação e acabam com momento h̄(⃗k− q⃗) e h̄(⃗k′+ q⃗) respectivamente.

Fonte: Elaborado pelo autor.

Pelo diagrama de Feynman da interação na Fig. 11, vemos que q⃗ = k⃗− k⃗′, assim

podemos integrar o potencial efetivo Ve f f (⃗q) =VC(⃗q)+VA(⃗q,ω) mantendo k⃗′ constante e vari-

ando k⃗ na curva de Fermi. Como se trata de um sistema de duas dimensões que esta confinado

num circulo de raio kF , podemos parametriza-lo com o angulo θ entre o semi-eixo positivo y e

o vetor k⃗, a Fig. 12 exibe este desenho. Assim escrevemos |⃗q|2 = |⃗k|2 + |⃗k′|2 +2|⃗k||⃗k′|cosθ , e

como |⃗k′|= |⃗k|= kF , temos q2 = 2k2
F(1+ cosθ). Com a densidade de estados sendo dado por

N = me/(π h̄2), definimos o potencial médio:
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U0(ω) =
AN

2π

∫ 2π

0

[
VC

(√
2k2

F(1+ cosθ)

)
+VA

(√
2k2

F(1+ cosθ),ω

)]
dθ . (3.25)

Figura 12 – Desenho da esfera de Fermi, como estamos num sistema 2D, a esfera se torna um circulo. Mantendo
k⃗′ no eixo x negativo e variamos k⃗ no circulo cujo raio é o vetor de kF , por um angulo θ a partir do
eixo x positivo.

Fonte: Adaptado de (Laussy et al., 2012).

Imediatamente percebemos que o termo do potencial de atração entre elétrons é uma

constante, como VC(⃗q) = e2

2εA
1
|⃗q|+κ

, temos que:

AN

2π

∫ 2π

0
VC

(√
2k2

F(1+ cosθ)

)
dθ =

N e2

2πε

 ln
[

2kF+
√

4k2
F−κ2

2kF−
√

4k2
F−κ2

]
√

4k2
F −κ2

 . (3.26)

Quando N0 é baixo este termo tende a dominar o potencial efetivo e assim a interação

entre elétrons se torna repulsiva novamente, o que torna necessário investigar que condições

devem satisfazer os parâmetros típicos do sistema para que um potencial atrativo seja alcançado.

O termo da média que corresponde à interação mediada por bósons exige um pouco

mais de cuidado, pois a função VA(⃗q(θ),ω) apresenta uma singularidade no ponto em que

Ebog(⃗q(θ)) = h̄ω . A integral em (3.25) diverge nesses pontos. Notamos, primeiramente, que o

sinal do potencial é determinado pelo termo no denominador. Em segundo lugar, por estar em

função de cosθ , o potencial se torna uma função simétrica em torno de π , logo esperamos que

existam pontos de singularidade em ambas as metades do circulo de Fermi.

Escrevendo em termos de θ temos Ebog

(√
2k2

F(1+ cosθ0)

)
= h̄ω , onde θ0 é o

ponto de singularidade no circulo de Fermi, notamos também que este é o ponto que marca
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a divisão entre o regime atrativo e o regime repulsivo do potencial VA(⃗k,ω). Pela simetria

do potencial, podemos calcular a integral no intervalo [0,π]. Na Fig. 13 vemos que duas

regiões atrativas se formam, com uma de repulsão. As divisões entre essas regiões são marcadas

pelos pontos de singularidade. Uma vez que existe o limite limθ→θ0 f (θ) a singularidade é de

primeira ordem, o que permite redefinir (3.25) em termos de uma integral de valor principal de

Cauchy. Entretanto, desejamos encontrar seu valor numericamente, para isso podemos isolar a

singularidade analiticamente definindo a função f (θ) = (θ −θ0)VA(⃗q(θ),ω), assim:

U0(ω) =
AN

π

∫
π

0

(θ −θ0)VA(⃗q(θ),ω)

(θ −θ0)
dθ =

∫
π

0

f (θ)
(θ −θ0)

dθ . (3.27)

Definindo o resíduo limθ→θ0 f (θ) = f (θ0), reescrevemos:

∫
π

0

f (θ)
(θ −θ0)

dθ =
∫

π

0

(
f (θ)

(θ −θ0)
− f (θ0)

(θ −θ0)
+

f (θ0)

(θ −θ0)

)
dθ , (3.28)

portanto,

U0(ω) =
AN

π

∫ 2π

0

f (θ)− f (θ0)

(θ −θ0)
dθ + f (θ0)ln

(
π−θ0

θ0

)
. (3.29)

Figura 13 – Gráfico do potencial efetivo VA(⃗q,ω) (em µeV ), com h̄ω = 40 meV , em função de |⃗q| =√
2kF(1+ cosθ) no intervalo [0,2π]. No centro, em θ = π , uma região atrativa, o zoom no quadro

direito mostra que esta se encontra entre duas singularidades. Nas extremidades, duas regiões atrati-
vas, o zoom no quadro esquerdo mostra um decaimento lento. Os pontos de singularidade separam
todas essas regiões.

Fonte: Adaptado de (Laussy et al., 2012).

A Fig. 14 mostra o gráfico de U0 para alguns valores de N0, a primeira característica

que chama atenção é a presença de uma região negativa: isso é notável, pois a teoria BCS garante
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Figura 14 – Gráfico do potencial U0 mediado por exciton-polaritons para vários valores de N0 em cm−2. Observa-
se uma região de valores negativos, seguida por uma positiva. A medida que N0 cresce, a região
negativa se amplia.

Fonte: Elaborado pelo autor.

que na presença de um potencial atrativo fraco sempre há a formação de pares de Cooper e

portanto, a SC neste modelo é possível. Observamos que há uma tendência de deslocamento da

região negativa para valores mais altos de h̄ω a medida que N0 aumenta, uma característica que

se mostra relevante para o valor da temperatura crítica.

Na Fig. 15 exibimos potencial médio considerando apenas os excitons sem a parte

dos fótons de cavidade. Os parâmetros da Tabela 1 foram usados para este cálculo.

3.2 Equação do Gap

3.2.1 Potencial de Bogoliubov

Uma vez que calculamos a média da energia de interação U0(ω), seguimos os passos

tradicionais da teoria BCS, obtemos a equação do gap (Laussy et al., 2010):

∆(ξ ,T ) =−
∫ +∞

−∞

U0(ξ −ξ ′)∆(ξ ′,T )

2
√

∆(ξ ′,T )2 +(ξ ′)2
tanh

(√
∆(ξ ′,T )2 +(ξ ′)2

2kBT

)
dξ
′, (3.30)

onde U0(ξ −ξ ′) tem uma dependência na diferença entre os níveis de energia. Assim, a função

do gap é obtida ao se solucionar numericamente a equação integral não linear dada por (3.30),
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Figura 15 – Gráfico do potencial U0 quando se tem exclusivamente excitons para alguns valores de N0 em cm−2.
Assim como na Fig. 14 a região negativa também aparece e se desloca para valores altos de h̄ω

com o aumento de N0. Nota-se que a ordem de grandeza da região negativa é menor que no caso da
mediação por excitons-poláritons.

Fonte: Elaborado pelo autor.

que pertence a uma família conhecida como equações de Hammerstein (Kitamura, 1963), e

possuem a forma geral:

∆(ξ ,T ) =
∫

∞

−∞

K(ξ ,ξ ′) f [ξ ′,∆(ξ ′)]dξ
′. (3.31)

Comparando com (3.30), temos

K(ξ ,ξ ′) =−U0(ξ −ξ ′)

2

f [ξ ′,∆(ξ ′,T )] =
1

2
√

∆(ξ ′,T )2 +(ξ ′)2
tanh

(√
∆(ξ ′,T )2 +(ξ ′)2

2kBT

)
,

(3.32)

e quando K(ξ ,ξ ′) > 0 a equação possui soluções não-triviais, o que cai diretamente no caso

onde U0 < 0 é atrativo (Vansevenant, 1985).

Na seção 2.2.6 explanamos brevemente o modelo BCS, que consistia em supor que o

potencial V⃗k,⃗k′ =−Vo se a diferenças de energia era menor do que h̄ω e V⃗k,⃗k′ = 0 caso contrário.

Chamamos atenção para o fato de que o modelo de Cooper considerava apenas o potencial

atrativo, e não o potencial de repulsão entre os elétrons de forma separada, que já era incluído no



59

potencial efetivo. Um modelo um pouco mais refinado, embora ainda simples, é o que considera

um potencial de repulsão entre os elétrons de forma separada, que é o que foi feito no inicio da

seção 3.1.4 quando se definiu Ve f f (⃗q). Seja V̄C o valor médio potencial coulombiano do elétrons,

sendo ξ̄ = ξ −ξ , supomos que o potencial U0(ω) = V̄0 +V̄C seja da forma:

U0(ξ̄ ) =


−Uo se − h̄ω1 ≤ ξ̄ ≤ h̄ω1 (Região 1)

V̄C se − h̄ω2 < ξ̄ <−h̄ω1 e h̄ω1 < ξ̄ < h̄ω2 (Região 2)

0 caso contrário (Região 3)

, (3.33)

onde U0 = V̄0−V̄C e V̄C são constantes positivas e as constantes h̄ω1 e h̄ω2 são energias de corte

para evitar divergências nos potenciais, de forma semelhante a energia de Debye h̄ωD. Outra

hipótese deste modelo é que ω1 ≈ ω2 . Com essa forma, a energia de interação é um potencial

do tipo degrau, em que na Região 2 é repulsivo e na Região 1 atrativo. Este é conhecido como

potencial de Bogoliubov, que é mostrado na Fig. 16.

Figura 16 – O potencial de coulomb V̄C se estende num raio h̄ω2 e o potencial efetivo V̄0 um raio h̄ω1. O potencial
de interação resultante da combinação destes é U0(ξ −ξ ′) e tem a forma de um poço U0 com duas
barreiras de valor V̄C em suas bordas, sendo repulsivo nessas regiões.

Fonte: Adaptado de (Laussy et al., 2012).

Em seguida, aplicamos uma aproximação na função do gap, considerando que esta

também seja uma função do tipo degrau como o potencial em (3.33) (Ketterson; Song, 1999).

Embora seja uma suposição grosseira, ela torna possível obter valores para temperatura crítica

de forma direta. Assim, seja:

∆(ξ ,T ) =


∆1 se − h̄ω1 ≤ ξ ≤ h̄ω1

∆2 se − h̄ω2 < ξ <−h̄ω1 e h̄ω1 < ξ < h̄ω2

0 caso contrário

(3.34)

Como ω1 < ω2, a equação do gap (3.30) fica:
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∆(ξ ,T ) =−
{∫ h̄ω1

−h̄ω1

U0(ξ −ξ ′)∆1

2E
tanh

(
E

2kbT

)
dξ
′+

+
∫ h̄ω2

h̄ω1

U0(ξ −ξ ′)∆2

2E
tanh

(
E

2kbT

)
dξ
′+

+
∫ −h̄ω1

−h̄ω2

U0(ξ −ξ ′)∆2

2E
tanh

(
E

2kbT

)
dξ
′
}
,

(3.35)

onde E =
√

∆(ξ ′,T )2 +ξ ′2. Como o integrando é simétrico,

∆(ξ ,T ) =−
{

∆1

∫ h̄ω1

0

U(ξ −ξ ′)

E
tanh

(
E

2kbT

)
dξ
′+∆2

∫ h̄ω2

h̄ω1

U(ξ −ξ ′)

E
tanh

(
E

2kbT

)
dξ
′
}
.

(3.36)

Considerando os diversos valores de ξ , se ξ ′ está na região 1, temos−h̄ω1≤ ξ−ξ ′≤

h̄ω1 e nesse caso U0(ξ −ξ ′) =−U0. Se ξ ′ está na região 2 então −h̄ω2 < ξ −ξ ′ <−h̄ω1 o que

implica que U0(ξ −ξ ′) = V̄C neste intervalo. Isso nos leva à equação:

∆1 =−
{
−∆1U0

∫ h̄ω1

−h̄ω1

1
E

tanh
(

E
2kbT

)
dξ
′+∆2V̄C

∫ h̄ω2

h̄ω1

1
E

tanh
(

E
2kbT

)
dξ
′
}
. (3.37)

Repetindo esses passos, no caso em que −h̄ω2 < ξ <−h̄ω1 e h̄ω1 < ξ < h̄ω2,

podemos encontrar um certo valor de ξ neste intervalo, tal que a equação do gap fique:

∆2 =−
{

∆1V̄C

∫ h̄ω1

−h̄ω1

1
E

tanh
(

E
2kbT

)
dξ
′+∆2V̄C

∫ h̄ω2

h̄ω1

1
E

tanh
(

E
2kbT

)
dξ
′
}
. (3.38)

Definindo as constantes I1 =
∫ h̄ω1
−h̄ω1

1
E tanh

(
E

2kbT

)
dξ ′ e I2 =

∫ h̄ω2
h̄ω1

1
E tanh

(
E

2kbT

)
dξ ′,

chegamos em um sistema de equações que pode ser posto em uma forma matricial:

∆1

∆2

=−

−U0I1 V̄CI2

V̄CI1 V̄CI2

∆1

∆2

 , (3.39)

que é conhecida com equação do gap linearizada (Ketterson; Song, 1999). Para que exista uma

solução não trivial, devemos ter:

det

U0I1−1 −V̄CI2

−V̄CI1 −V̄CI2−1

= 0, (3.40)

lembrando que U0 = V̄0−V̄C, chegamos na equação:
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I1 =

(
V̄0−

V̄C

1+ I2V̄C

)−1

. (3.41)

A temperatura crítica TC é obtida quando ∆(ξ ,TC) = 0. Fazendo o gap |⃗∆| → 0 na

equação (3.41), e usando as aproximações do final da seção 2.2.6:


I1 = lim

∆1→0

∫ h̄ω1

0

tanh [ξ/(2kBTC)]√
ξ 2 +∆2

1

dξ ≈ ln
(

1.13h̄ω1

kBTC

)

I2 = lim
∆2→0

∫ h̄ω2

h̄ω1

tanh [ξ/(2kBTC)]√
ξ 2 +∆2

2

dξ ≈ ln
(

ω2

ω1

) , (3.42)

o que leva a uma equação para a temperatura crítica:

kbTC ≈ 1,13h̄ω1 exp

−
V̄0−

V̄C

1+ ln
(

ω2
ω1

)
V̄C


−1
 . (3.43)

Comparando a equação (3.43) com a equação (2.89) vemos que considerar um

potencial coulombiano separadamente introduz uma pequena correção na equação da temperatura

crítica. Outro ponto importante é que, mesmo se tivermos um potencial repulsivo, com U0 =

V̄0− V̄C < 0, ainda seria possível que o denominador na exponencial de (3.43) permanecesse

positivo, e portanto, mesmo nesse caso ainda leva a um gap não nulo. (Laussy et al., 2012).
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3.2.2 Algoritmo para o calculo da Temperatura Crítica

A introdução do potencial de Bogoliubov aliado à linearização da equação (3.30)

permitiu o calculo direto da temperatura crítica. Desejamos generalizar esse procedimento para o

caso de um potencial de interação geral. Primeiro, notamos que U0(ξ ) tende a zero rapidamente

quando ξ → ±∞, assim podemos definir uma energia de corte ±ξmax tal que U0(ξ ) = 0 se

|ξ |> ξmax. Logo, (3.30) fica

∆(ξ ,T ) =−
∫ +ξmax

−ξmax

U0(ξ −ξ ′)∆(ξ ′,T )
2E(ξ ,T )

tanh
(

E(ξ ,T )
2kBT

)
dξ
′, (3.44)

onde definimos E(ξ ,T ) =
√

∆(ξ ′,T )2 +(ξ ′)2. A integral em (3.44) pode ser convertida numa

soma: começamos discretizando o intervalo [−ξmax,ξmax] em N pontos igualmente espaçados,

assim a função do gap se converte em um vetor ∆(ξk,T ) = ∆k(T ) com N valores, e o potencial

se transforma em uma matriz N×N definida por U0(ξk−ξk′) =Uk,k′ , o que nos leva à soma

∆k(T ) = ∑
k

{
−

Uk,k′

2Ek′(T )
tanh

(
Ek′(T )
2kBT

)
∆ξ

}
∆k′(T ), (3.45)

com ∆ξ sendo o espaçamento entre os pontos da malha. A discretização do potencial e da função

do gap é uma generalização evidente do procedimento que levou ao potencial de Bogoliubov.

Agora, consideremos o caso em que T → TC. Nesse limite, para cada k temos

∆k(T ) = ∆k→ 0, o que implica limT→TC E(ξk,T ) = |ξk|. Adotamos a aproximação em (3.45)

de que E(ξk,T )≈ |ξk|, e assim obtemos

∆k(T ) = ∑
k

{
−

Uk,k′

2|ξk′|
tanh

(
|ξk′|
2kBT

)
∆ξ

}
∆k′(T ), (3.46)

definindo o elemento de matriz Mk,k′(T ) =−
Uk,k′
2|ξk′ |

tanh
(
|ξk′ |
2kBT

)
∆ξ , chegamos na equação matri-

cial

∆⃗(T ) = M(T )⃗∆(T ), (3.47)

que estabelece ∆⃗(T ) como um autovetor da matriz M(T ) com autovalor λ = 1. Isso mostra que,

a medida que nos aproximamos de TC, a equação de gap discretizada (3.46) se aproxima do
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sistema linear em (3.47), onde M(T ) tem a propriedade de que seus autovalores correspondentes

a autovetores que são soluções devem necessariamente ser próximos de λ = 1 (Tinkham, 2004).

Assim um método para encontrar TC consiste em tomar a matriz M(T ), calcular o seu conjunto de

autovalores σ(M(T )) e obter o seu máximo λmax(T ) = max{σ [M(T )]}, que está bem definido

para cada valor de T . Devemos ter λmax(TC) = 1, logo a temperatura crítica sera determinada

pela raiz da equação λmax(T )−1 = 0. O algoritmo que formaliza esse procedimento é dado a

seguir.

Algoritmo 1: Cálculo de Tc via Equação do gap Linearizada
Data: Parâmetros físicos kB,ξmax, número de pontos N e função de potencial U0.
Result: Temperatura Crítica Tc.
// 1. Discretização e Inicialização

Gerar vetor ξ com N pontos no intervalo [−ξmax,ξmax];
∆ξ ← ξ1−ξ0;
Inicializar matriz U de tamanho N×N com zeros;
// 2. Pré-cálculo do Potencial

for i← 0 to N−1 do
for j← 0 to N−1 do

Ui j←U0(|ξi−ξ j|);
end

end
// 3. Definição da Função de Erro do Autovalor

Function ErroAutovalor(T ):
if T ≤ 0 then

return ∞;
end
Inicializar matriz M(T ) de tamanho N×N com zeros;
for j← 0 to N−1 do

E ′← |ξ j|;
if E ′ < 10−9 then

Θ← 1
4kBT ; // Evita divisão por zero quando ξ → 0

else
Θ← tanh(E ′/2kBT )

2E ′ ;
end
for i← 0 to N−1 do

Mi j←−Vi j ·Θ ·∆ξ ;
end

end
Calcular autovalores σ [M(T )] de M(T );
λmax←max(σ [M(T )]);
return λmax−1;

// 4. Solução Numérica

Definir intervalo de busca [Tmin,Tmax];
Tc← Raiz de ErroAutovalor(T ) no intervalo;
return Tc;
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3.2.3 Algoritmo para o calculo de ∆(ξ ,T )

A equação do gap (3.30) é auto consistente, o que significa que tem a forma ∆= φ(∆),

onde φ é o operador integral não linear definido por:

φ(∆) =
∫ +ξmax

−ξmax

−U0(ξ −ξ ′)∆

2E(ξ ,T )
tanh

(
E(ξ ,T )

2kBT

)
dξ
′, (3.48)

onde já adotamos a aproximação da energia de corte ξmax. Também, notamos que este é um

operador de ponto fixo sobre a solução ∆(ξ ,T ), o que significa que a aplicação repetida de φ

sobre ela não altera seu valor.

Entretanto, a propriedade mais importante deste operador é que, ao aplica-lo sobre

uma função, obtemos uma outra que é mais próxima da solução. Em outras palavras, se

||∆(ξ ,T )|| for a norma da função do gap no espaço de funções das soluções, então, se ∆(ξ ,T )

for a solução exata e ∆0 arbitrário, a função ∆1 definida como:

∆1(ξ ,T ) = φ(∆0(ξ ,T )) =
∫ +ξmax

−ξmax

−U0(ξ −ξ ′)∆0(ξ ,T )
2E(ξ ,T )

tanh
(

E(ξ ,T )
2kBT

)
dξ
′, (3.49)

tem a propriedade ||∆(ξ ,T )−∆1(ξ ,T )|| ≤ ||∆(ξ ,T )−∆0(ξ ,T )||, ou seja, ∆1 é mais próxima

da solução exata do que ∆0. Escolhendo uma função arbitraria (constante ou gaussiana) podemos

repetir esse procedimentos varias vezes de forma a se aproximar arbitrariamente da solução. A

validade desse método esta condicionada a existência de uma solução, algo que nem sempre esta

garantido dado que U0 pode assumir valores negativos e positivos (Laussy et al., 2012).

Para implementar numericamente este procedimento seguimos passos semelhantes ao

da seção anterior. Partimos o intervalo [−ξmax,ξmax] em N pontos e usamos a forma discretizada

da equação do gap (3.45), que agora é não linear. Primeiro, iniciamos a matriz da energia de

interação Ui j = U0(|ξi− ξ j|), a cada iteração obtemos um ∆novo obtido a partir do anterior ∆,

o erro relativo é definido como Erro = |∆novo−∆|/|∆|. Estabelecemos uma tolerância ε tal

que o algoritmo encerra quando Erro ≤ ε . Como a solução pode não existir, é recomendado

estabelecer um numero máximo de iterações.

A convergência para a solução pode ser prejudicada caso a atualização da função

∆ ocorra de forma muito brusca. Para corrigir este problema, geralmente a tornamos mais

suave definindo em cada iteração a combinação linear ∆← α ·∆novo +(1−α) ·∆, onde α ≤ 1 é

chamada de parâmetro de mistura. Assim, atualizamos ∆ com apenas uma fração da ∆novo o que
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suaviza a convergência (Martin, 2020). Se α = 1 não corre mistura e a convergência se torna

instável. Para maioria dos casos, escolhemos α = 0.6, o que torna o algoritmo mais lento, mas

permite uma melhora considerável na convergência.

Algoritmo 2: Solução Iterativa da Equação do gap
Data: T,ξmax,N, função U0(ξ ), iterações máximas nmax, tolerância ε e fator de mistura α .
Result: Função do gap ∆(ξ ).
// 1. Inicialização

Gerar vetor ξ com N pontos em [−ξmax,ξmax];
∆ξ ← ξ1−ξ0;
Inicializa matriz U com N×N elementos;
for i← 0 to N−1 do

for j← 0 to N−1 do
Ui j←U0(|ξi−ξ j|);

end
end
Inicializar vetor ∆ com um valor inicial (ex: constante ou Gaussiana);
Erro← ∞;
// 2. Loop Iterativo Autoconsistente

iter = 0;
while Erro > ε e iter ≤ nmax do

Inicializar vetor ∆novo com zeros;
for i← 0 to N−1 do

Soma← 0;
for j← 0 to N−1 do

E j←
√

ξ 2
j +(∆ j)2

if E j > 0 then
Θ← tanh(E j/2kBT )

2E j
;

end
else

Θ← 1
4kBT ; // Evita divisão por zero quando E→ 0

end
// Implementação da integral

Soma← Soma−Ui j ·Θ ·∆ j ·∆ξ ;
end
∆novo[i]← Soma;

end
// Verificação de Convergência

Erro← |∆novo−∆|/|∆|;
// Atualização com mistura para estabilidade

∆← α ·∆novo +(1−α) ·∆;
iter = iter+1;

end
return ∆;
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4 RESULTADOS

4.1 Função do Gap e TC: Excitons e Excitons-Polaritons

Iniciamos nossa análise comparando o gap ∆ e a temperatura crítica TC dos excitons

sozinhos com as dos excitons-polaritons. Isso é feito facilmente substituindo nas equações

Ēpol (⃗k)→ Eex(⃗k), anulando a constante de Rabi e colocando a fração de excitons nos polaritons

X = 1. Uma vez que o modelo BCS só é valido para elétrons próximos à energia de Fermi, valores

de transição h̄ξ entre estados eletrônicos muito altos possuem pouco significado físico, portanto,

devemos nos concentrar no comportamento de ∆(ξ ,T ) apenas numa vizinhança próxima de

ξ = 0.

A solução do gap em T = 0 para o exciton é dada pela Fig. 17, onde N0 é a densidade

de excitons. Como esperado, escolha de um potencial U0 mais complexo torna ∆ radicalmente

diferente em comparação com a solução tradicional com um potencial atrativo de poço simples.

A presença de regiões atrativas e repulsivas em U0 provoca um comportamento oscilatório

acentuado, seguido por um decaimento a zero quando |h̄ξ | é grande, significando que apenas

elétrons próximos a energia de Fermi podem formar pares de Cooper.

Figura 17 – Gráficos para solução do gap em T=0 e potencial U0(ξ ). Cada gráfico é produzido para um valor da
densidade de excitons N0. A magnitude de ∆ aumenta diretamente com o aumento de N0.

Fonte: Elaborado pelo autor.
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Observamos que o aumento da densidade N0 se reflete em um crescimento na

magnitude e na distancia (em termos de energia) de decaimento do gap.

Para o caso dos excitons-polaritons, o potencial U0 tem duas grande regiões de

repulsão com uma única região atrativa localizada entre dois picos acentuados de máximo e

minimo. Isso dá à solução um caráter bem menos oscilatório, como se pode ver no gráficos

da Fig. 18. Para valores baixos da densidade de excitons-polaritons N0 a magnitude do gap é

extremamente baixa em relação aos de valores maiores de N0: isso se reflete em uma densidade

crítica, abaixo da qual ∆ é extremamente baixo.

Figura 18 – Gráficos para solução do gap em T=0 e potencial U0(ξ ). A forma dos gráficos se caracteriza por um
pico grande acentuado no centro. A ordem de grandeza do decaimento cresce consideravelmente à
medida que a densidade de polaritons aumenta.

Fonte: Elaborado pelo autor.

Os valores de ∆ para os polaritons atingem ordens de grandeza muitos maiores do

que os dos excitons. Em contrapartida, seu decaimento na energia h̄ξ é muito mais lento, o que

torna sua validade, em termos de nosso modelo, restrito à apenas alguns valores em torno de

h̄ξ = 0. A força da interação atrativa mediada por polaritons se torna evidente.
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Nas Fig. 20 e Fig. 19 apresentamos a solução numérica completa da função do gap

∆(ξ ,T ). Os valores foram escolhidos de modo que o valor máximo do gap seja menor do que a

energia de Fermi εF = 43.3 meV . Ambas as funções tem comportamento suave à medida que T

aumenta, caindo abruptamente para zero a partir da temperatura crítica.

Figura 19 – Solução do gap para os excitons com N0 = 0.4× 1011 cm−2, TC = 50.7 K. Em (a) vemos que a
forma de solução é oscilatória em ξ , mas suave em T . Em (b) o gap no ponto ξ = 0 em função da
temperatura.

Fonte: Elaborado pelo autor.

Figura 20 – Solução do gap para os polaritons com N0 = 1.5×1011 cm−2, TC = 107.6 K.

Fonte: Elaborado pelo autor.

Mesmo para densidade de polaritons baixa, vemos na Fig. 20 (a) escalas de energias

muito maiores do que as da Fig. 19 (a).
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4.1.1 Análise da Temperatura Crítica

A diferença na ordem de energia envolvida nos potenciais U0 para excitons e excitons-

polaritons dá a este último temperaturas críticas muito maiores. A Fig. 21 mostra a comparação

entre TC e a densidade N0. A curva dos excitons cresce como uma função da ordem de O(
√

N0),

enquanto que a dos polaritons tem TC = 0 para alguns valores da densidade e em seguida

cresce aproximadamente como uma função da ordem de O(N0). Os polaritons atingem altas

temperaturas críticas de forma muito mais rápida que os excitons à medida que se aumenta a

densidade, reforçando as hipóteses a partir da análise da função do gap. Assim, controlando N0,

controlamos o estado SC.

Figura 21 – Temperatura crítica em função da densidade N0, onde Tamb é a temperatura ambiente.

Fonte: Elaborado pelo autor.

Embora ambos os sistemas atinjam altas temperaturas críticas, deve-se considerar que

a densidade dos polaritons/excitons não pode ser arbitrariamente aumentada devido à transição de

Mott do condensado em um plasma de elétrons e buracos (Cherotchenko et al., 2016), portanto,

servem apenas como ilustração da tendencia robusta de crescimento de TC a medida que se

aumenta a força da interação.

Uma das motivações para a proposta de excitons/polaritons é sua baixa massa efetiva,

que deve levar a uma maior energia característica quando comparado com fônons. Vejamos o

que ocorre quando se altera a massa mX dos excitons. Na Fig. 22 vemos o efeito na temperatura

crítica quando se aumenta em 3 vezes essa massa, onde se constata uma coincidência entre os

valores para densidades pequenas e uma a drástica redução nos valores da temperatura crítica
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para grandes de densidades, uma previsão já esperada no contexto da teoria BCS.

Figura 22 – Gráfico da temperatura crítica comparando excitons de massas distintas. A constante mX é a massa
do éxciton.

Fonte: Elaborado pelo autor.

Ao se aumentar a massa dos polaritons, encontramos um resultado diferente. Na

Fig. 23, observamos que os gráficos se sobrepõe para valores pequenos de N0, mas o gráfico que

corresponde a massa 3 vezes maior se distorce de forma inesperada, assumindo valores maiores

em diversos pontos.

Figura 23 – Gráfico da temperatura crítica comparando polaritons de massas distintas. As constantes mX e mC
são a massa do éxciton e fóton de cavidade, respectivamente.

Fonte: Elaborado pelo autor.

Uma explicação para isso é a natureza mais complexa de U0(ω), que ao contrario
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do potencial BCS (uma função degrau), é dependente de h̄ω . Ali, a temperatura crítica era

proporcional à frequência de Debye ωD, que é tipicamente muito menor do que a energia de

Fermi εF . No caso dos exciton-polaritons, como já foi mencionado anteriormente, o potencial

U0 não esta bem definido para valores muito grandes de h̄ω , ultrapassando o valor de εF , o que

pode levar a resultados inesperados.

4.1.2 TC em Função da Densidade Eletrônica Ne

Na tabela 1 escolhemos a densidade eletrônica Ne ≈ 3.98×1012 cm−2, que corres-

ponde a um vetor de onda de Fermi kF = 0.05 Å−1. Vejamos como a temperatura crítica se

modifica em função de Ne.

Figura 24 – Gráficos de TC em função de Ne para alguns valores de N0 no caso dos polaritons. A temperatura
crítica decai à medida que Ne cresce. A linha horizontal demarca a temperatura ambiente Tamb

Fonte: Elaborado pelo autor.

De forma surpreendente, a temperatura crítica reduz consideravelmente seu valor

à medida que Ne aumenta. Uma explicação para esse comportamento no modelo é que com

o aumento densidade eletrônica, a energia de Fermi também aumenta, o que se reflete num

crescimento na energia dos elétrons na curva de Fermi, logo, a mesma interação efetiva tem que

lidar com partículas mais energéticas, o que prejudica a formação dos pares de Cooper. Isso

mostra que o modelo se adequa melhor em descrever sistemas onde o material que hospeda os

elétrons tem uma baixa densidade deles.
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Além disso, espera-se que esse decréscimo em TC seja ainda menor, já que o tamanho

típico de um par de Cooper ξC (∼ 1/ε2
F ) diminui. Isso torna os elétrons do par mais sensíveis às

interações coulombianas de curto alcance. Esse efeito não é capturado diretamente pela teoria

BCS.

4.2 Aplicação Para uma Estrutura com TMDs e Bicamada de Grafeno

4.2.1 Descrição do Sistema

Uma das maiores limitações para utilização de excitons na mediação da SC é a

vida curta que essas quase-partículas possuem. Em heteroestruturas semicondutoras de poços

quânticos de um mesmo material os elétrons em uma banda de condução rapidamente decaem

aniquilando seu respectivo buraco na banda de valência. Uma forma de estender sua vida é fazer

com que o elétron e seu buraco estejam em camadas separadas espacialmente por algum isolante,

como nitreto de boro hexagonal (h-BN) por exemplo.

Recentemente os autores de (Wang et al., 2019) mostraram experimentalmente

que com esse design é possível obter condensação de excitons intercamada a temperaturas da

ordem de 100 K usando WSe2 e MoSe2, materiais pertencentes à família dos dicalcogenetos

de metais de transição (TMDs). Com base nessas descobertas, propomos um novo tipo de

heretoroestrutua que usa excitons desse tipo para mediar a SC como uma alternativa à mediação

por excitons-polaritons.

Escolhemos uma bicamada de grafeno (BLG) para hospedar o gás de elétrons 2D.

Essa escolha se justifica pela alta capacidade de ajuste da densidade e mobilidade eletrônicas do

grafeno, já bem documentadas na literatura (Neto et al., 2009). A escolha de uma bicamada é

devido à forma parabólica da dispersão de seus elétrons, com massa efetiva m∗ = γ1/2v2
F , onde

vF é a velocidade de Fermi e γ1 ≈ 0.4 eV é uma constante de acoplamento entre camadas (Para

mais detalhes, consulte o APÊNDICE A). Isso permite a aplicação direta de nosso modelo.

Seguindo o design de (Wang et al., 2019), a parte que hospeda os excitons é composta

por duas camadas de WSe2 e MoSe2 atomicamente finas, com uma camada isolante de h-BN de

comprimento d entre ambas, com suas propriedades ajustadas de forma que WSe2 tenha menos

afinidade eletrônica que MoSe2, o que faz os elétrons saltarem a para a banda de condução deste

ultimo. Os excitons assim formados têm momentos de dipolo orientados de forma perpendicular

ao plano, o que aumenta força de interação com os elétrons no grafeno. A bicamada é separada
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desta ultima parte por uma outra camada isolante de h-BN com comprimento L. A Fig. 25

mostra um desenho completo deste sistema.

Figura 25 – Esquema da heteroestrutura. Os elétrons na BLG são separados por uma distancia L dos excitons. Os
elétrons em WSe2 saltam para a camada de MoSe2 formandos excitons intercamada com dipolo d.

Fonte: Elaborado pelo autor.

A característica que motiva o uso dos dois TMDs é a sua elevada energia de ligação

do exciton quando está na forma de monocamada (≈ 0.5 eV ), o que se traduz em uma energia da

ordem de 0.3 eV quando são combinados (Wang et al., 2019). A Tabela 2 tem as constantes que

caracterizam completamente o sistema.

4.2.2 Temperatura Crítica e Função do Gap

Nas condições de formação dos excitons intercamada a densidade eletrônica tipica

de uma BLG é da ordem de 1012 cm−2, onde adotamos o regime de baixas energias, onde a

dispersão pode ser aproximada por uma forma parabólica (McCann et al., 2007). Assim, na Fig.

26 vemos as temperaturas críticas em função da densidade de excitons. Comportamento da curva

é o mesmo da Fig. 22 o que já era esperado.

A condensação de excitons observada ocorre em temperaturas da ordem de 100 K.

Tendo em vista as limitações do modelo e a aproximação de baixas energias feita sobre a



74

Figura 26 – TC em função de N0. Com a escolha para Ne a temperatura crítica ambiente ocorre para valores
maiores de N0 do que os registrados nos gráficos da Fig. 21.

Fonte: Elaborado pelo autor.

Figura 27 – Solução da função do gap para o grafeno, com densidade de excitons N0 = 4×1011 cm−2 e energia
de Fermi εF = 24.8 meV .

Fonte: Elaborado pelo autor.
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Parâmetro Significado Valor

εr Permissividade relativa 4.5
me Massa do elétron ≈ 0.49
mh Massa do buraco ≈ 0.40
L Distância entre elétrons e excitons 3 Å
d Comprimento do momento de dipolo 10 Å
aX Raio de Bohr do exciton 5.3 Å
Ne Densidade eletrônica 1×1012 cm−2

Eb Energia de ligação do éxiton ≈ 0.3 eV
h̄ΩR Separação de Rabi ≈ 46 meV
m∗ Massa efetiva do elétron ≈ 0.096 me

Tabela 2 – Parâmetros físicos para o cálculo envolvendo a heteroestrutura com grafeno mostrada
na Fig. 25. A permissividade está em unidades de permissividade do vácuo (Haastrup
et al., 2018).

dispersão dos elétrons a temperatura crítica máxima que se pode prever com segurança razoável

não deve exceder 100 K. Pelo gráfico da Fig. 26 o valor de N0 que fornece isso é um próximo de

4×1011 cm−2.

Com isso obtemos a solução do gap presente na Fig.27. A parte Fig.27 (b) mostra

um gráfico de ∆(0,T ) com magnitude abaixo do valor da energia de Fermi εF , algo que condiz

com a hipótese do modelo BCS de que um gap se forma em uma vizinhança da superfície de

Fermi. Finalmente, nosso modelo prevê uma temperatura crítica da ordem de 101.2 K para um

sistema de excitons condensados nas condições da referencia (Wang et al., 2019), um valor

que caracteriza uma alta temperatura crítica em relação a TC dos principais supercondutores.

A utilização do grafeno e TMDs proporciona muitas possibilidades para modificar de forma

controlada e reversível propriedades físicas do sistema.

Como já foi discutido anteriormente, embora o modelo não possa prever com segu-

rança TCs próximas à temperatura ambiente, ainda aponta para a possibilidade de se obtê-las

com modelos mais sofisticados, o que deixa aberta uma ampla área de pesquisa.
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5 CONCLUSÕES E PERSPECTIVAS

Neste trabalho, nos dedicamos a investigar a supercondutividade mediada por BECs

de excitons e exciton-polaritons em heteroestruturas bidimensionais. Iniciamos com uma breve

exposição histórica da teoria da supercondutividade. Uma vez que nossa análise teórica segue

a abordagem da teoria BCS, fazemos uma exposição breve desta teoria e obtemos a equação

do gap considerando um potencial atrativo efetivo. O caso dos fônons é analisado brevemente.

Mecanismos alternativos para supercondutividade são apresentados, com a substituição dos

fônons por excitons ou excitons-polaritons como um possível caminho para a supercondutividade

em altas temperaturas. As vantagens e desvantagens destes sistemas são discutidas.

Finalmente, descrevemos um sistema cujo mecanismo é dado por estas quase-

partículas bosônicas: uma heteroestrutura que consiste numa camada semicondutora que abriga

excitons indiretos que formam grandes momentos de dipolo, colocados a uma distância L de

um material que abriga um 2DEG. A formação dos excitons se dá por campos elétricos ou por

excitações de fótons. Neste caso, a heteroestrutura fica dentro de uma microcavidade com dois

refletores de Bragg que criam fótons de cavidade que se acoplam fortemente com os excitons no

semicondutor, assim formando exciton-polaritons. Estes mediam interações entre os elétrons

e possivelmente levam a formação de pares de Cooper. Propomos um modelo teórico que

desconsidera a dissipação dos refletores, e considerado apenas o ramo inferior da dispersão dos

exciton-polaritons.

A partir de uma hamiltoniana efetiva para esse sistema, obtemos um potencial efetivo

U0(ω) que depende da energia de troca h̄ω entre elétrons. Este possui propriedades distintas

do potencial efetivo tradicional da teoria BCS, apresentando uma região atrativa em tempos

longos sucedido por regiões de forte atração e repulsão. Também apresenta uma dependência

linear direta com a densidade de excitons/excitons-polaritons N0. Com o potencial efetivo,

aplicamos a teoria BCS e obtemos a equação do gap. Esta é resolvida numericamente com a

utilização de algoritmos iterativos, de forma que tanto a temperatura crítica como a solução

completa da função do gap são obtidas. Obtemos TC em função da densidade N0, e vemos que

rapidamente alcançamos uma temperatura crítica próxima à temperatura ambiente. A mediação

por exciton-polaritons se mostra muito mais eficiente, algo que já se esperava em vista de sua

maior capacidade de gerar interações efetivas fortes. Embora promissor, este resultado deve

ser observado com cautela, uma vez que o aumento da força de interação pode gerar fases que

competem com a SC. Observou-se também uma queda na temperatura crítica à medida que
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se aumenta a densidade de elétrons no 2DEG, ao mesmo tempo que o modelo exige que a

energia térmica destes esteja abaixo da energia de Fermi. Isso gera uma competição entre dois

processos opostos, o que nos obriga a ajustar a densidade eletrônica com cuidado dentro de

nossas limitações teóricas.

Finalmente, motivados por uma recente descoberta de excitons em um estado de

BEC à temperaturas da ordem de 100 K, aplicamos nosso modelo a este sistema. A camadas dos

excitons é composta de uma heteroestrutura de WSe2 e MoSe2, dois TMDs, separados por uma

camada de h-BN. Para o 2DEG, escolhemos uma bicamada de grafeno, que possui a vantagem

de ter sua densidade eletrônica facilmente ajustável. Com este modelo obtemos uma temperatura

crítica igual a 101.2 K.

O sistema de exciton-polaritons tem se mostrado promissor para o objetivo de se

alcançar altas temperaturas críticas. Este sistema é uma mistura de Bose-Fermi, e por isso,

quando se varia a força de interação entre seus constituintes, transições de fase podem ocorrer.

Em regimes de acoplamento forte a teoria BCS não é adequada, por isso se faz uso da teoria de

Migdal-Eliashberg, uma versão aprimorada da teoria BCS, e técnicas de grupo de renormalização.

De fato, é possível mostrar teoricamente a possibilidade de diferentes formações de fases e

fenômenos coletivos em sistemas desse tipo (Cotleţ et al., 2016; Milczewski et al., 2022; Julku

et al., 2022). Em particular, os autores referência (Cotleţ et al., 2016) mostram que surgem, além

da supercondutividade, estados de onda de densidade de carga (CDW) e supersolidez, e que estas

fases podem ser ajustadas e controladas por paramentos ópticos e no design na microcavidade.

Além disso, mostra-se que estas fases podem competir entre si, o que pode prejudicar a formação

do estado supercondutor.

Uma proposta de pesquisa futura visa aprofundar os trabalhos citados anteriormente,

propondo um novo modelo teórico que descreva o sistema em condições onde seus modelos

antigos não são validos. A possibilidade de alcançar supercondutividade em altas temperaturas

em sistemas desse tipo ainda é um território teórico vasto e pouco explorado na literatura.

Investigar se a troca de excitons-polaritons virtuais pode induzir um emparelhamento de Cooper

robusto seria o foco desta pesquisa.
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APÊNDICE A – VALORES MÉDIOS E PARÂMETROS VARIACIONAIS

Neste apêndice calculamos explicitamente valores médios especiais relacionados ao

estado BCS. Com eles é possível mostrar a validade de nossa abordagem no limite termodinâmico

e também calcular os valores dos parâmetros variacionais.

Valores Médios Anômalos

Uma vez que o estado BCS esta devidamente normalizado, agora é possível calcular vários

valores médios relevantes para a teoria BCS. O primeiro deles é o sobre o número total de partí-

culas, como em cada par tem ou partículas no estado (h̄k⃗,↑) ou no estado (−h̄k⃗,↓), definimos o

operador n̂
(par k⃗) como:

n̂
(par k⃗) = n̂⃗k,↑+ n̂−⃗k,↓ = σ

†
k⃗,↑

σ⃗k,↑+σ
†
−k,↓σ−k,↓, (A.1)

calculando o valor médio ⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩, temos:

⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩= ⟨0|
(
u⋆

k⃗
+ v⋆

k⃗
σ−⃗k,↓σ⃗k,↑

)
n̂
(par k⃗)

(
u⃗k + v⃗kσ

†
k⃗,↑

σ
†
−⃗k,↓

)
|0⟩=

= |u⃗k|
2⟨0|n̂

(par k⃗)|0⟩+ u⃗kv⋆
k⃗
⟨0|σ−⃗k,↓σ⃗k,↑n̂(par k⃗)|0⟩+

+u⋆
k⃗
v⃗k⟨0|n̂(par k⃗)σ

†
k⃗,↑

σ
†
−⃗k,↓
|0⟩+ |v⃗k|

2⟨0|σ−⃗k,↓σ⃗k,↑n̂(par k⃗)σ
†
k⃗,↑

σ
†
−⃗k,↓
|0⟩,

(A.2)

os termos envolvendo |u⃗k|
2, u⃗kv⋆

k⃗
e u⋆

k⃗
v⃗k são nulos. Usando as relações de comutação entre

operadores de criação e aniquilação, o termo de |v⃗k|
2 se reduz a 2:

⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩= |v⃗k|
2⟨0|σ−⃗k,↓σ⃗k,↑

(
σ

†
k⃗,↑

σ⃗k,↑+σ
†
−k,↓σ−k,↓

)
σ

†
k⃗,↑

σ
†
−⃗k,↓
|0⟩= 2|v⃗k|

2 = 2sen2
θ⃗k. (A.3)

Para calcular ⟨ϕ̄⃗k|
[
n̂
(par k⃗)

]2|ϕ̄⃗k⟩ seguimos os mesmos passos, e encontramos:

⟨ϕ̄⃗k|
[
n̂
(par k⃗)

]2|ϕ̄⃗k⟩= 4|v⃗k|
2 = 4sen2

θ⃗k, (A.4)

de posse desses valores médios, iremos calcular o valor médio de N̂ e N̂2. Sendo:

N̂ = ∑
k⃗,ν

n̂⃗k,ν = ∑
k⃗

(n̂⃗k,↑+ n̂−⃗k,↓) = ∑
k⃗

n̂
(par k⃗), (A.5)
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temos, portanto:

⟨N̂⟩= ⟨ΨBCS|N̂|ΨBCS⟩= ∑
k⃗

⟨ΨBCS|n̂(par k⃗)|ΨBCS⟩,

com ⟨ΨBCS|n̂(par k⃗)|ΨBCS⟩=
[⊗

l⃗

⟨ϕ̄⃗l|
]
n̂
(par k⃗)

[⊗
l⃗

|ϕ̄⃗l⟩
]
=

= ⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩∏
l⃗ ̸=⃗k

⟨ϕ̄⃗l|ϕ̄⃗l⟩= ⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩,

(A.6)

substituindo a equação (A.3) em (A.6) :

=⇒ ⟨N̂⟩= ∑
k⃗

⟨ϕ̄⃗k|n̂(par k⃗)|ϕ̄⃗k⟩= 2∑
k⃗

|v⃗k|
2 = 2∑

k⃗

sen2
θ⃗k. (A.7)

Para ⟨N̂2⟩, começamos notando que:

N̂2 =
[
∑
k⃗

n̂
(par k⃗)

][
∑
k⃗′

n̂
(par k⃗′)

]
= ∑

k⃗

(
n̂
(par k⃗)

)2
+ ∑

k⃗ ̸=k⃗′

(
n̂
(par k⃗)

)(
n̂
(par k⃗′)

)
, (A.8)

logo:

⟨N̂2⟩= ⟨ΨBCS|N̂2|ΨBCS⟩=

= ∑
k⃗

⟨ϕ̄⃗k|
(
n̂
(par k⃗)

)2|ϕ̄⃗k⟩+ ∑
k⃗ ̸=k⃗′
⟨ϕ̄⃗k|

(
n̂
(par k⃗)

)
|ϕ̄⃗k⟩⟨ϕ̄k⃗′|

(
n̂
(par k⃗′)

)
|ϕ̄k⃗′⟩,

(A.9)

substituindo da equações (A.3) e (A.4), ficamos com:

⟨N̂2⟩= 4∑
k⃗

|v⃗k|
2 +4 ∑

k⃗ ̸=k⃗′
|v⃗k|

2|vk⃗′|
2. (A.10)

Com essas formulas podemos calcular o desvio quadrático médio para N̂.

∆N2 = ⟨N̂2⟩−⟨N̂⟩2 = 4∑
k⃗

|v⃗k|
2 +4 ∑

k⃗ ̸=k⃗′
|v⃗k|

2|vk⃗′|
2−
(

2∑
k⃗

|v⃗k|
2
)2

=

= 4∑
k⃗

|v⃗k|
2 +4 ∑

k⃗ ̸=k⃗′
|v⃗k|

2|vk⃗′|
2−
(

4∑
k⃗

|v⃗k|
4 +4 ∑

k⃗ ̸=k⃗′
|v⃗k|

2|vk⃗′|
2
)
=

= 4∑
k⃗

(
|v⃗k|

2−|v⃗k|
4)= 4∑

k⃗

|v⃗k|
2(1−|v⃗k|

2),
(A.11)
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o desvio quadrático médio é:

∆N2 = 4∑
k⃗

|v⃗k|
2(1−|v⃗k|

2), (A.12)

como 1−|v⃗k|
2 ≤ 1

∆N2 ≤ 4∑
k⃗

|v⃗k|
2 = 2⟨N̂⟩, (A.13)

o que é equivalente à seguinte desigualdade:

∆N
⟨N̂⟩
≤

√
2
⟨N̂⟩

. (A.14)

A desigualdade (A.14) mostra que a flutuação relativa do número de partículas tende

a zero se ⟨N̂⟩ → ∞, assim desde que estejamos próximos do limite termodinâmico, a utilização

do estado BCS é válida.

Por fim, vamos calcular valores médios de operadores da forma σ−⃗k,↓σ⃗k,↑. Estes

operadores são responsáveis pelas correlações dinâmicas entre duas partículas em um par. O fato

destes serem não nulos se deve a escolha de se usar os estados de duas partículas na construção

do vetor variacional. Assim, seja:

σ−⃗k,↓σ⃗k,↑|ϕ̄K⃗⟩= σ−⃗k,↓σ⃗k,↑(u⃗k + v⃗kσ
†
k⃗,↑

σ
†
−⃗k,↓

)|0⟩= v⃗k|0⟩, (A.15)

logo:

⟨ϕ̄⃗k|σ−⃗k,↓σ⃗k,↑|ϕ̄⃗k⟩= ⟨ϕ̄⃗k|v⃗k|0⟩= v⃗k⟨0|(u
⋆
k⃗
+ v⋆

k⃗
σ

†
k⃗,↑

σ
†
−⃗k,↓

)|0⟩= v⃗ku⋆
k⃗
. (A.16)

Tirando o conjugado hermitiano de (A.16) e usando as relações de anti-comutação, obtemos os

quatro tipo de valores médios, conhecidos valores médios anômalos:

⟨ϕ̄⃗k|σ−⃗k,↓σ⃗k,↑|ϕ̄⃗k⟩= v⃗ku⋆
k⃗

, ⟨ϕ̄⃗k|σ⃗k,↑σ−⃗k,↓|ϕ̄⃗k⟩=−v⃗ku⋆
k⃗
,

⟨ϕ̄⃗k|σ
†
−⃗k,↓

σ
†
k⃗,↑
|ϕ̄⃗k⟩= v⋆

k⃗
u⃗k e ⟨ϕ̄⃗k|σ

†
k⃗,↑

σ
†
−⃗k,↓
|ϕ̄⃗k⟩=−v⋆

k⃗
u⃗k.

(A.17)

Otimização dos Parâmetros Variacionais
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Ao calcular o valor médio de ĤBCS, vemos que o termo de energia cinética é simplesmente

o valor médio de n̂
(par k⃗) que é dado por (A.3), o que dá:

⟨ĤBCS⟩= 2∑
k⃗

ξ⃗k|v⃗k|
2−∑

k⃗

{
∆
⋆
k⃗
⟨σ−⃗k,↓σ⃗k,↑⟩+ ∆⃗k⟨σ

†
k⃗,↑

σ
†
−⃗k,↓
⟩− ∆⃗k⟨σ

†
k⃗,↑

σ
†
−⃗k,↓
⟩
}
=

= 2∑
k⃗

ξ⃗k|v⃗k|
2−∑

k⃗

∆
⋆
k⃗
⟨σ⃗k,↑σ−⃗k,↓⟩.

(A.18)

Usando os valores médios de (A.17), chegamos na equação:

⟨ĤBCS⟩= 2∑
k⃗

ξ⃗k|v⃗k|
2 +∑

k⃗,⃗k′
V⃗k,⃗k′v

⋆
k⃗′

u⃗k′ v⃗ku⋆
k⃗
. (A.19)

Lembrando que u⃗k = cosθ⃗ke−iζ⃗k e v⃗k = senθ⃗keiζ⃗k , o termo de interação fica:

∑
k⃗,⃗k′

V⃗k,⃗k′cosθ⃗k′senθ⃗k′cosθ⃗ksenθ⃗ke2i(ζ⃗k−ζ⃗k′). (A.20)

Analisando os termos da soma, os V⃗k,⃗k′ são negativos devido à natureza atrativa do

potencial efetivo. Os ângulos θ⃗k veriam no intervalo de 0 a π/2, logo os termos de senos e

cossenos são positivos. Para que este termo seja mínimo, a diferença de fase ζ⃗k′− ζ⃗k deve ser

nula. A forma mais simples disso ocorrer é ambas as fases sejam nulas, logo ζ⃗k = 0 cumpre a

condição de otimização. Como consequência disso os parâmetros u⃗k e v⃗k são reais.

Calculando a diferencial da equação (A.19),

d⟨ĤBCS⟩= 4∑
k⃗

ξ⃗kv⃗kdv⃗k +∑
k⃗,⃗k′

V⃗k,⃗k′

{
d(u⃗k′ v⃗k′)u⃗kv⃗k + u⃗k′ v⃗k′d(u⃗kv⃗k)

}
. (A.21)

Trocando os índices mudos k⃗ e k⃗′ no segundo termo, e substituindo a equação do gap:

d⟨ĤBCS⟩= 4∑
k⃗

ξ⃗kv⃗kdv⃗k−∑
k⃗

∆⃗k

{
v⃗kdu⃗k + u⃗kdv⃗k

}
. (A.22)

Pela condição de normalização u2
k⃗
+ v2

k⃗
= 1 temos 2u⃗kdu⃗k +2v⃗kdv⃗k = 0, logo:

d⟨ĤBCS⟩= 4∑
k⃗

ξ⃗kv⃗kdv⃗k−∑
k⃗

∆⃗k

{
u⃗k−

v2
k⃗

u⃗k

}
dv⃗k =

= ∑
k⃗

[
4ξ⃗kv⃗k−2∆⃗k

{
u⃗k−

v2
k⃗

u⃗k

}]
dv⃗k.

(A.23)
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A condição de otimização requer que d⟨ĤBCS⟩= 0 logo:

4ξ⃗kv⃗k−2∆⃗k

{
u⃗k−

v2
k⃗

u⃗k

}
= 0 =⇒ 2ξ⃗ku⃗kv⃗k = ∆⃗k

{
u2

k⃗
− v2

k⃗

}
. (A.24)

Usando identidades trigonométricas, 2u⃗kv⃗k = sen2θ⃗k e u2
k⃗
− v2

k⃗
= cos2θ⃗k, o que implica:

ξ⃗ksen2θ⃗k = ∆⃗kcos2θ⃗k, (A.25)

obtemos:

(cos2θ⃗k)
2 =

ξ 2
k⃗

ξ 2
k⃗
+∆2

k⃗

e (sen2θ⃗k)
2 =

∆2
k⃗

ξ 2
k⃗
+∆2

k⃗

. (A.26)

Definindo E⃗k =
√

ξ 2
k⃗
+∆2

k⃗
, as equações (A.26) são reescritas:

cos2θ⃗k =±
ξ⃗k
E⃗k

e sen2θ⃗k =±
∆⃗k
E⃗k

. (A.27)

Usando v2
k⃗
= (senθ⃗k)

2 = 1/2(1− cos2θ⃗k) e u2
k⃗
= (cosθ⃗k)

2 = 1/2(1+ cos2θ⃗k), logo:

v⃗k =

√√√√1
2

(
1∓

ξ⃗k
E⃗k

)
e u⃗k =

√√√√1
2

(
1±

ξ⃗k
E⃗k

)
. (A.28)

As equações (A.28) determinam várias possibilidades de extremos, no entanto,

estamos interessados nos parâmetros que fornecem o estado fundamental, ou seja, os que tornam

⟨ĤBCS⟩ o menor possível. Observando o comportamento do termo ξ⃗k = (ε (⃗k)−µ) em ⟨ĤBCS⟩,

se ε (⃗k)< µ , o termo |v⃗k|
2 multiplica um fator negativo. Portanto, é racional escolher Vn para ser

o maior possível. Assim, escolhemos o sinal negativo na equação, pois ξ⃗k se torna negativo nesse

caso. Caso ε (⃗k)≫ µ , o termo que v⃗k multiplica se torna positivo, com ξ⃗k se tornando positivo.

Assim, mais uma vez, a escolha do sinal negativo é adequada. Escolher o sinal negativo em v⃗k

implica em escolher o sinal positivo em u⃗k, e assim temos finalmente:

u⃗k =

√
1
2

(
1+

ξ⃗k
E⃗k

)
e v⃗k =

√
1
2

(
1−

ξ⃗k
E⃗k

)
. (A.29)

Os parâmetros (2.42) minimizam o vetor de estado |ΨBCS⟩, assim fornecendo uma

aproximação do estado fundamental do sistema.
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APÊNDICE B – ESTRUTURA DE BANDAS DE UMA BICAMADA DE GRAFENO

O grafeno é uma forma alotrópica bidimensional do carbono onde os átomos se

organizam em padrões hexagonais fortemente compactados. Se tornou grande foco de pesquisa

nas ultimas décadas, embora já tendo suas propriedades eletrônicas conhecidas, isso só ocorreu

após sua descoberta experimental em 2004 (Novoselov et al., 2004). Nesta seção deduziremos

sua estrutura da bandas e dispersão dos elétrons.

Monocamada de Grafeno

Estrutura Cristalina

Embora se organizem em uma estrutura hexagonal os átomos individuais de carbono no grafeno

não formam uma rede de Bravais. Para descrevê-lo em termos de um padrão periódico dividimos

a rede em duas redes de Bravais triangulares bidimensionais A e B como mostra a Fig. 28. Cada

ponto de ambas as redes tem uma base de dois átomos de carbono. Os vetores primitivos são

dados por:

a⃗1 =
a
2
(3,
√

3), a⃗2 =
a
2
(3,−

√
3) (B.1)

onde a constante a≈ 1.42 Å é a distancia entre carbonos em um hexágono na rede. (Neto et al.,

2009).

Os vetores que localizam os três primeiros vizinhos na rede A de cada carbono na

rede B são:

δ⃗1 =
a
2
(1,
√

3), δ⃗2 =
a
2
(1,−

√
3), δ⃗3 = a(−1,0). (B.2)

No espaço recíproco mostrado na Fig. 28 temos também uma rede hexagonal, onde:

b⃗1 =
2π

3a
(1,
√

3), b⃗2 =
2π

3a
(1,−

√
3). (B.3)
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Figura 28 – Na esquerda vemos as redes A e B no espaço de posições. Na direita a primeira zona de Brillouin no
espaço reciproco, onde Γ, M, K⃗ e K⃗′ são os pontos de alta simetria.

Fonte: Adaptado de (Neto et al., 2009).

Hamiltoniano Tight-Binding

A estrutura nos níveis eletrônicos do átomo de carbono é 1s22s22p2. O orbital 1s está for-

temente localizado no núcleo, enquanto os demais orbitais 2s, 2px ,2py e 2pz formam as ligações

covalentes e bandas de condução do Grafeno. Os níveis 2s, 2px e 2py no plano xy hibridizam-se

em um orbital sp2, que dá ao grafeno alta resistência estrutural mas forma níveis inertes do

ponto de vista do transporte eletrônico. Esta é a chamada banda-σ (Grosso; Parravicini, 2013).

O orbital restante, pz, forma a banda-π , que é responsável por formar a banda de valência e

condução, por isso será nosso foco nesta seção.

Para modelar o sistema lançamos mão da aproximação tight-binding, visto que os

elétrons estão fortemente ligados. Consideramos que um elétron nesse orbital so pode saltar para

o primeiro vizinho, assim, definimos a constante de hopping t ≈ 2.8 eV para ser da ordem de

energia da banda-π . Definimos o operador de criação a†
i,σ (b†

j,σ ) para um elétron com spin σ no

i-ésimo(j-ésimo ) sitio da rede A (B). Assim, o hamiltoniano é escrito como:

H =−t ∑
⟨i, j⟩,σ

(
a†

i,σ b j,σ +b†
j,σ ai,σ

)
, (B.4)

onde ⟨i, j⟩ significa que para cada sitio i da rede A o índice j varia apenas nos sítios da rede B

que são primeiro vizinhos do sitio em i.

Passamos para representação no espaço reciproco desses operadores. Definimos a

partir da transformada Fourier sobre as ondas planas da rede:
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ai,σ =
1√
N ∑

k⃗

ei⃗k·R⃗i a⃗k,σ b j,σ =
1√
N ∑

k⃗

ei⃗k·R⃗ j b⃗k,σ , (B.5)

com N sendo o numero de sítios na rede total e Ri (R j) sendo o vetor na rede de Bravais da rede A

(B). Com a restrição dos índices j em B.4, para cada vetor Ri só a três vetores primeiros vizinhos

de B na forma Ri +δ j, com j = {1,2,3}. Assim, substituindo B.5 em B.4, ficamos com:

H = ∑
k⃗,σ

(
φ (⃗k)a†

k⃗,σ
b⃗k,σ +φ

∗(⃗k)b†
k⃗,σ

a⃗k,σ

)
(B.6)

onde definimos a função φ (⃗k) =−t ∑
3
j=1 ei⃗k·⃗δ j .

Usando a notação matricial para operadores usado na seção 2.2.5 podemos escrever

o Hamiltoniano em uma forma compacta definindo ψ
†
k⃗,σ

=
(

a†
k⃗,σ

b†
k⃗,σ

)
:

H = ∑
k⃗,σ

(
a†

k⃗,σ
b†

k⃗,σ

) 0 φ (⃗k)

φ∗(⃗k) 0

a⃗k,σ

b⃗k,σ

 . (B.7)

Para encontrar as energias, diagonalizamos a matriz 2×2 usando as transformações

de Bogoliubov em termos das excitações. Os dois autovalores que correspondem as energias são:

E±(⃗k) =±|φ (⃗k)|, (B.8)

que, substituindo B.2 nesta equação chegamos na relação de dispersão:

E±(⃗k) =±t

√√√√1+4cos
(

3kxa
2

)
cos

(√
3kya
2

)
+4cos2

(√
3kya
2

)
. (B.9)

Naturalmente, surgem duas bandas, sinal (+) caracteriza a banda-π∗ e o sinal (-) a

banda-π (Neto et al., 2009). Os pontos em que ambas se anulam correspondem precisamente aos

chamados pontos Dirac. Dois destes são posições de alta simetria na primeira zona de Brillouin,

que podem ser vistos na Fig. 28, e são:

K⃗ =
2π

3a
(1,

1√
3
), K⃗′ =

2π

3a
(1,− 1√

3
). (B.10)
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Aproximação de Baixas Energias

Desejamos expandir a função φ (⃗k) em torno do ponto K⃗. Definindo q⃗ = k⃗− K⃗, encontramos

imediatamente:

φ (⃗q)≈ 2at
2

(qx + iqy)(1+O(q/K)2), (B.11)

onde definimos a velocidade de fermi vF = 2at
2h̄ , o que leva imediatamente a relações de dispersão

E±(q) = ±h̄vF |⃗q|+O(q/K)2 que define a equação de um cone. Isso pode ser visualizado

claramente nos pontos de Dirac na Fig. 29. Para baixas energias, isso nos permite calcular a

energia de fermi de forma direta.

Figura 29 – Gráfico da banda-π∗ e banda-π . Em cada ponto de Dirac a dispersão assume uma forma aproximada-
mente cônica, característica de partículas com massa zero.

Fonte: Adaptado de (Neto et al., 2009).

Bicamada de Grafeno

A estrutura eletrônica da monocamada de grafeno se comporta como um gás de partículas

com massa zero semelhantes as soluções da equação de Dirac, onda a dispersão característica

é cônica. Quando adicionamos uma segunda camada, veremos que a dispersão volta a ser

parabólica como a de um gás 2D tradicional. Enumeramos as sub-redes em 1 para a de baixo e 2

para a de cima. Os átomos de rede da sub-rede 1 são A1 e B1, e dos da sub-rede 2 são A2 e B2.
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O empilhamento é escolhido para ser o de Bernal (ou AB), em que os átomos da

sub-rede A2 estão localizados diretamente acima dos átomos da sub-rede B1. Os átomos A1 (B2)

estão localizados acima (abaixo) dos centros dos hexágonos da outra camada. Esta configuração

também favorece a formação de um gap na estrutura de bandas do grafeno, algo que não ocorria

na monocamada (McCann et al., 2007). Na Fig. 30 vemos o desenho da estrutura.

Figura 30 – Bicamada de Grafeno com empilhamento Bernal (AB). Os átomos A2 (cinza claro) estão ligados
fortemente aos átomos B1.

Fonte: Adaptado de (McCann et al., 2007).

Hamiltoniano Tight-Binding Duplo

Adotamos novamente o modelo Tight-Binding para as duas sub-redes, onde assumimos que

ambas interagem fortemente entre si através dos pontos em A2 e B1. Assim, os hamiltonianos

das duas sub-redes são:

H1 =−t ∑
⟨i, j⟩,σ

(
a†

1,i,σ b1, j,σ +a1,i,σ b†
1, j,σ

)
(B.12)

H2 =−t ∑
⟨i, j⟩,σ

(
a†

2,i,σ b2, j,σ +a2,i,σ b†
2, j,σ

)
, (B.13)

que segue as mesmas definições adotadas na seção anterior. Para o termo de interação entre

sub-redes, consideramos que seja localizada e forte, assim definimos:
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H⊥ = γ1 ∑
i,σ

(
a†

2,i,σ b1,i,σ +a2,i,σ b†
1,i,σ

)
, (B.14)

onde definimos uma outra constante hopping γ1 (≈ 0.4 eV ) entre camadas. O subscrito ⊥ no

hamiltoniano se dá pelo fato da interação ocorrer perpendicularmente entre planos.

Assim o hamiltoniano total é H = H1 +H2 +H⊥, onde mais uma vez fazemos a

transformada de Fourier como no caso da monocamada. Definimos um vetor dos operadores de

criação dos estados de momento Ψ⃗k,σ =
(

a1,⃗k,σ ,b1,⃗k,σ ,a2,⃗k,σ ,b2,⃗k,σ

)
, e a matriz:

H (⃗k) =


0 φ (⃗k) 0 0

φ∗(⃗k) 0 γ1 0

0 γ1 0 φ (⃗k)

0 0 φ∗(⃗k) 0

 , (B.15)

com φ (⃗k) =−t ∑
3
j=1 ei⃗k·⃗δ j , assim reescrevemos H como:

H = ∑
k⃗,σ

Ψ
†
k⃗,σ

H (⃗k)Ψ⃗k,σ . (B.16)

Diagonalizamos H (⃗k) para encontrar a relação de dispersão E(k), resolvemos a

equação secular det(H (⃗k)−EI) = 0 :

det


−E φ 0 0

φ∗ −E γ1 0

0 γ1 −E φ

0 0 φ∗ −E

= 0 (B.17)

o que leva a dispersão:

Eα,β (⃗k) = β

√
|φ (⃗k)|2 +

γ2
1
2
+α

γ1

2

√
γ2

1 +4|φ (⃗k)|2, (B.18)

onde β = ± indica a banda de condução ou valência, e α = ± as bandas internas de alta ou

baixa energia (Rozhkov et al., 2016).
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Aproximação de Baixas Energias para Bicamada

No caso da monocamada, quando |φ (⃗k)| ≪ γ1 perto do ponto K⃗, sendo γ1 ≈ t, temos |φ (⃗k)|=

h̄vFk. Escolhemos β =+ e α =− nas dispersão, definindo q⃗ = k⃗− K⃗, e expandindo em série

de Taylor para q⃗ pequeno:

E (⃗k)≈±|φ (⃗q)|
2

γ1
, (B.19)

e substituindo |φ (⃗q)| ≈ h̄vFq:

E (⃗k)≈ h̄2v2
Fk2

γ1
. (B.20)

Assim, a dispersão nesta aproximação volta a ter um formato parabólico do gás de

elétrons 2D tradicional. Isso nos motiva a reescrever essa expressão na forma da de uma partícula

massiva convencional E = h̄2q2/2m∗, onde definimos a massa efetiva como:

m∗ =
γ1

2v2
F
. (B.21)
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