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RESUMO

Este trabalho tem por objetivo investigar a supercondutividade em heteroestruturas semicon-
dutoras bidimensionais. Nesses sistemas, a excitacdao de elétrons no semicondutor, por campos
elétricos ou fotons de cavidade, pode dar origem a quasi-particulas bosdnicas conhecidas como
excitons e exciton-polaritons. Estudamos a viabilidade destes como mediadores de supercon-
dutividade em um gas de elétrons bidimensional. No contexto da teoria BCS, mostramos que
a interacao entre eles e elétrons de conducdo ddo origem a uma interagdo efetiva atrativa entre
os elétrons favorecendo a formacao de pares de Cooper, de forma andloga ao mecanismo de
interacdo efetiva mediada por fonons em metais. Na literatura, sistemas deste tipo sdo candidatos
para se alcancar a supercondutividade em altas temperaturas em razao de sua baixa massa efetiva
e forte interagdo. Iniciamos com uma breve introducao sobre a supercondutividade e a teoria
BCS, onde o mecanismo alternativo de mediag@o por excitons € discutido. Seguimos com a
descri¢ao detalhada da heteroestrutura sob investigacdo. Um modelo tedérico e hamiltoniano
sdo propostos, e € mostrado que existe interacdo atrativa efetiva entre elétrons permitindo que
haja supercondutividade. O modelo € aplicado tanto para excitons como para exciton-polaritons.
Descrevemos dois algoritmos para calcular a temperatura critica Tc € o gap supercondutor
A, assim, mostramos que existe uma relacdo direta entre o aumento de 7¢ e a densidade de
excitons/exciton-polaritons. O modelo também prevé uma diminui¢do na temperatura critica
quando se aumenta a densidade de elétrons N,. Finalizamos com uma aplicacdo para uma
heteroestrutura de van der Waals composta por dois dicalcogenetos de metais de transi¢do e
uma bicamada de grafeno (BLG) para hospedar o gas de elétrons. A heteroestrutura tem a
configuracao WSe,-hBN-MoSe,;-hBN-BLG, que se justifica pelo fato de recentemente ter sido
detectado experimentalmente excitons condensados em temperaturas da ordem de 100 K nesta
combinagdo de materiais. Mostramos que para esse sistema € esperado uma temperatura critica
~ 101.2 K, que a coloca ao lado das de supercondutores de alta temperatura, como os Cupratos,

por exemplo.

Palavras-chave: supercondutividade; exciton-polaritons; teoria BCS; heteroestruturas 2D;

sistemas de baixa dimensionalidade.



ABSTRACT

This work aims to investigate superconductivity in two-dimensional semiconductor heterostruc-
tures. In these systems, electron excitation in the semiconductor, by electric fields or cavity
photons, can give rise to bosonic quasiparticles known as excitons and exciton-polaritons. We
study their feasibility as mediators of superconductivity in a two-dimensional electron gas.
Within the context of BCS theory, we show that the interaction between them and conduction
electrons gives rise to an effective attractive interaction between electrons favoring the formation
of Cooper pairs, analogously to the phonon-mediated effective interaction mechanism in metals.
In the literature, systems of this type are candidates for achieving high-temperature superconduc-
tivity due to their low effective mass and strong interaction. We begin with a brief introduction
to superconductivity and BCS theory, where the alternative exciton-mediated mechanism is
discussed. We proceed with a detailed description of the heterostructure under investigation. A
theoretical model and a Hamiltonian are proposed, and it is shown that there exists an effective
attractive interaction between electrons enabling superconductivity. The model is applied to both
excitons and exciton-polaritons. We describe two algorithms to calculate the critical temperature
Tc and the superconducting gap A; thus, we show that there is a direct relationship between the
increase in T¢ and the density of excitons/exciton-polaritons. The model also predicts a decrease
in the critical temperature when the electron density N, is increased. We conclude with an
application to a van der Waals heterostructure composed of two transition metal dichalcogenides
and a bilayer graphene (BLG) to host the electron gas. The heterostructure has the configuration
WSe,-hBN-MoSe,-hBN-BLG, which is justified by the fact that condensed excitons have been
recently experimentally detected at temperatures of the order of 100 K in this combination of
materials. We show that for this system a critical temperature of ~ 101.2 K is expected, placing

it alongside high-temperature superconductors, such as Cuprates.

Keywords: superconductivity; exciton—polaritons; BCS theory; 2D heterostructure; low-

dimensional systems.
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1 INTRODUCAO

A supercondutividade € um dos fendmenos mais fascinantes da fisica, nao apenas
pelo seu carater frutifero em aplicacdes, mas também pela sofisticac@o tedrica necessdria para
sua explicacdo. De fato, desde sua descoberta em 1911, € um dos campos de pesquisa mais
ativos da fisica da matéria condensada e um grande esfor¢o foi dedicado para obter uma teoria
microscopica que se adequasse as teorias fenomenoldgicas. A teoria BCS, proposta em 1957, foi
um passo pioneiro nesse sentido, que atribuia aos fonons o papel principal da supercondutividade.

Uma das caracteristicas mais marcantes da supercondutividade s@o as baixissimas
temperaturas em que o estado supercondutor se forma, sendo, na maioria dos metais supercondu-
tores, da ordem de poucos Kelvins acima do zero absoluto (Ginzburg et al., 1987). Isso representa
uma grande dificuldade para aplicagdes tecnoldgicas, uma vez que pequenas perturbacoes na
temperatura podem destruir o seu estado. Por este motivo, a busca por supercondutores de
altas temperaturas se tornou um dos grandes ramos de pesquisa dentro desse tema. Antes de
1986, ndo se acreditava que fosse possivel existir supercondutividade em temperaturas acima
de 30 K. No entanto, em 1986, Befnorz e Muller descobriram supercondutividade em oxido
de lantanio e cobre na temperatura de ~ 36 K (Bednorz; Miiller, 1986) que foi o primeiro de
toda uma nova classe de supercondutores denominados Cupratos. Nas décadas seguintes, novos
supercondutores desse tipo foram descobertos em temperaturas ainda maiores, com até 203 K
(Drozdov et al., 2015).

Neste trabalho iremos investigar outra proposta para um mecanismo gerador de
supercondutividade, que consiste na substitui¢cdo do papel dos fonons por excitons e exciton-
polaritons. Uma vez que a teoria BCS permitiu uma compreensao profunda dos mecanismos
internos dos supercondutores, diversos mecanismos alternativos podem ser tratados. Iniciamos
com uma breve exposi¢do de resultados fenomenoldgicos da supercondutividade, onde a teoria
BCS sera desenvolvida num contexto geral, e brevemente aplicada no caso convencional de
fonons. Depois disso o mecanismo envolvendo excitons serd apresentado. Um modelo tedrico
para uma microcavidade com uma heteroestrutura serd apresentado, onde mostraremos que na
presenca de um condensado de Bose-Einstein de exciton-polaritons, a supercondutividade se
torna possivel. Por razdes que serdo detalhadas nos capitulos seguintes, a baixa massa dessas
particulas junto com as fortes interacdes induzidas por elas levam a um aumento considerdvel na
temperatura de formacgdo. Este pode ser um possivel caminho para supercondutividade de altas

temperaturas, neste caso, até mesmo controldvel por luz ou eletroluminescéncia.
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2 INTRODUCAO A SUPERCONDUTIVIDADE

2.1 Historia e Fenomenologia

Em 1911 o fisico holandés Kamerlingh Onnes, no contexto de um programa de
pesquisa em Leiden sobre o comportamento da resisténcia elétrica em metais, trabalhava em
experimentos de refrigeracdo do mercurio a temperaturas proximas do zero absoluto. Ele
observou que, em temperaturas abaixo de 4.16 K, medidas de resistividade caiam de forma
abrupta para valores ndo mensuraveis, efetivamente para zero (Onnes, 1911). Embora os modelos
tedricos de condutividade em metais, como o modelo de Drude, impliquem em uma queda na
resistividade com a temperatura, a queda abrupta observada caracterizava um comportamento

anomalo (Delft; Kes, 2010). No ano seguinte, em 1912, 0 mesmo comportamento de resisténcia

zero foi observado em metais de transicdo como o chumbo e estanho.

Figura 1 — Gréfico produzido por Onnes em 1911, que mostra a resistividade (Q) em fungdo da temperatura (K)
Uma queda abrupta na resistividade ocorre em 4.20 K.

0,15

(¥} =
|

o1 0
'

40?.5 . )

0,08

0025
10‘512;

6,00 :
" 4% ©10 470 3% 20

Fonte: Retirado de (Delft; Kes, 2010)

A resistividade nula em um certa temperatura critica T¢ foi observada em diversos

metais nos anos seguintes com o aprimoramento das técnicas experimentais de medi¢ao de
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resistividade e outras grandezas eletrodindmicas a baixas temperaturas. A auséncia de dissipacao
no fluxo de portadores de carga tem por consequéncia as chamadas correntes persistentes, que
nao decaem com o tempo e podem persistir por tempos da ordem de 300 anos anos (Kim et
al., 1962). A descontinuidade observada no grifico da Figura 1 é um dos primeiros indicios
de que o metal sofre um mudanca descontinua nas suas propriedades termodinamicas, assim
caracterizando uma transi¢cdo de fase. Um material que apresenta as caracteristicas acima em

uma certa temperatura critica 7¢ € chamado de supercondutor (SC).
2.1.1 Efeito Meissner e Equacdo de London

Em 1933 Meissner e Ochsenfeld descobriram um novo fend6meno relacionado ao
estado SC (Meissner; Ochsenfeld, 1933). Quando uma amostra de um material supercondutor é
exposta a um campo magnético Beasua temperatura € reduzida até a temperatura critica T¢, 0
campo no interior da amostra é imediatamente expulso. Este é o chamado efeito Meissner e é

ilustrado na figura 2.

Figura 2 — Linhas de um campo magnético B expulsas de um material no estado supercondutor.

Fonte: Adaptado de (Fujita; Godoy, 2002)

Embora aparente ser uma mera consequéncia da resistividade zero, este efeito se
diferencia do que se esperaria em um condutor perfeito cldssico. Se um material condutor
perfeito exposto a uma campo magnético tiver sua resistividade anulada, o campo magnético em
seu interior ndo necessariamente se anulard. Com o objetivo de explicar esse efeito andmalo, em
1935 os irmaos F. London e H. London propuseram um modelo fenomenoldgico que consistia em

supor que dentro de um material supercondutor uma fragao dos elétrons com densidade ny tem
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resistividade ndo nula, e outra com densidade ng sdo elétrons responsdveis pelas supercorrentes.
Acima de T¢ temos obviamente ng = 0.

Na auséncia de resisténcia, um campo elétrico constante £ aplicado acelera os
elétrons de supercondutores sem a dissipacao de energia proveniente do efeito Joule, assim temos
a equacdo de movimento:

dl-/)S =
m— = —ek. 2.1)
dt

Sendo a supercorrente resultante dada por j = —engVg, reescrevemos a equacgio (2.1)
como:

d jS n 562 -

=—F. 2.2
dt m (2:2)

Substituindo a equacgdo (2.2) na lei de indugd@o da Faraday V x E= —%%E obtemos:

8 - nsez—» .
§<V><JS+% >_0. 2.3)

Figura 3 — Supercorrentes na superficie de um supercondutor. O supercondutor reage ao campo externo B
produzindo uma corrente de superficie que o anula.

Fonte: Adaptado de (Fujita; Godoy, 2002)

Combinando a equacdo (2.3) com a lei de ampere V x B = 4%}5, concluimos que
quaisquer solucdes Be js independentes do tempo sdo compativeis com a equagdo (2.3). Isso

estd de acordo com a condutividade perfeita cldssica, mas inclui o caso em que um campo
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magnético nao nulo pode existir dentro do material, algo incompativel como efeito Meissner.

Para modelar adequadamente o supercondutor, London imp0s a condicao adicional de que

VX js= —m—cB, (2.4)

ou seja, uma supercorrente superficial induzida Js sempre produz um campo de indu¢do mag-
nética B que anula do campo aplicado em todo o volume do supercondutor, como mostrado
na figura 3. A equacdo (2.4) € chamada de equagdo de London e implica diretamente o efeito
Meissner.

Combinando (2.4) com a lei de ampere, obtemos o conjunto de equagdes:

Vzg _ 47'L'n3262§’
me (2.5

27 47rnse2 2’
Vijs = e IS

e considerando um supercondutor semi-infinito da dire¢@o x, a simetria nas dire¢des y e z implica
que B(7) = B(x). Assim, com a equagio (2.5) e as condi¢es de contorno adequadas, obtemos a

solucdo:

>l=

B(x) = B(0)e A, (2.6)

1/2
onde A = < ) 7’{';;2» ¢ chamado de profundidade de penetracdo de London, pois quando x ~ A

o campo decai rapidamente de forma exponencial. Os valores tipicos para A sdo da ordem de

103 A.
2.1.2 Gap de Energia

Em so6lidos normais, a capacidade térmica em baixas temperaturas tem contribui¢cdo
mais forte dos elétrons préximos a energia de Fermi e da vibrag@o dos fons da rede.

O calor especifico tem a forma Cy = aT + BT, com o termo de terceiro grau vindo
da dinadmica da rede. Quando a temperatura esta proxima do zero absoluto o termo linear domina:
este vem da contribui¢do dos elétrons com energia proxima da energia de Fermi. Entretanto, em
um supercondutor, este comportamento de Cy se mantém até a temperatura critica, e abaixo dela
se torna maior de forma descontinua e passa a decair exponencialmente com um termo da ordem

_ A
de e %', que é um comportamento caracteristico de um sistema com gap de energia de 2A entre
a energia do estado fundamental e do primeiro estado exitado. Proximo do zero absoluto, o
gap impede que uma fracdo grande dos elétrons participe da conducao de calor o que leva ao

decaimento rapido do calor especifico (Mermin; Ashcroft, 1968).



22

Figura 4 — Gréfico do calor especifico do aluminio em fungio da temperatura. Uma descontinuidade surge em T,
com o valor do calor especifico aumentando e em seguida decaindo exponencialmente.
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Fonte: Adaptado de (Fujita; Godoy, 2002)

A figura 4 mostra medidas do calor especifico do aluminio que exibe este com-
portamento. A presenca do gap de energia tem grande importincia na formacao do estado
supercondutor, tendo papel central na teoria BCS que serd desenvolvida posteriormente. O
gap surge em outros experimentos como espectroscopia de tunelamento e espectroscopia de

micro-ondas.

Figura 5 — Densidade de estados de elétrons g(€) no estado supercondutor, com & sendo a energia de Fermi. A
linha tracejada € a densidade de estados de um gés ideal de Fermi. Um gap de energia de valor A se
abre em torno da energia de Fermi &, com g(€) divergindo nos pontos € — A e € +A.

g(e)

EF+A

Fonte: Adaptado de (Annett., 2004)

A figura 5 mostra o comportamento da densidade de estados em um modelo onde
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hé na presenga de um gap de energia em torno de &r. Na regido (&r — A, € + A) ndo existem
estados disponiveis no gas de Fermi, nos limites inferior e superior deste intervalo um acumulo
de estados ocorre, um fendmeno que pode ser observado com os métodos experimentais citados

anteriormente.

2.1.3 Efeito Isotopico

A descoberta fenomenoldgica mais relevante para a compreensao do estado SC
talvez seja a relacdo entre a massa dos fons da rede do material e a temperatura critica. Em 1950,
Maxwell e Reynolds, descobriram que ao substituir fons de mercurio por seus isotopos mais
pesados, provocava-se uma diminui¢do no valor da temperatura critica do supercondutor (Kresin;
Wolf, 1990). Variando a unidade de massa atdmica M de 199.5 u para 203.4 u, a temperatura
critica T¢ se reduz de 4.185 K para 4.146 K. Em seu trabalho, eles estabeleceram a seguinte

relagdo:

T.M* = const, 2.7)

onde é possivel determinar o ~ 1/2.
Como a massa da rede afeta diretamente as propriedades do supercondutor, sua
dindmica deve ter um papel relevante. Do modelo de Debye, sabemos que a frequéncia tipica de

1/2

vibragdo dos ions da rede de um sélido € wp e que € da ordem de M~ '/“, que combinada com a

relagdo (2.7) nos leva a:

T¢. =< wp, (2.8)

que mostra o primeiro caminho para compreender os mecanismos microscOpicos por trds
dos supercondutores, que posteriormente serd deduzida de um modelo tedrico que considera
interacoes entre elétrons e os fonons da rede. Na proxima secao, nos dedicaremos descrever as

primeiras tentativas de se criar tal modelo.

2.2 Teoria de Bardeen-Cooper-Schriefer (BCS)

Durante mais de 40 anos apds a observagdo experimental dos fendmenos associados

a SC, sua explicacdo em termos de uma teoria fundamental ndo havia sido descoberta. Os
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primeiros passos nesse sentido foram dados por Frohlich (Combescot; Shiau, 2015), que em
1952 sugeriu um mecanismo de atracao efetiva entre elétrons intermediado pelos ions da rede
cristalina. Os elétrons de carga negativa atrairiam os ions positivos, aumentando a densidade de
carga efetiva ao seu redor, assim atraindo outros elétrons. Uma vez que esse mecanismo depende
da mobilidade, e por sua vez da massa dos fons, mudangas na propor¢do entre os isétopos destes
deveriam causar altera¢des nas propriedades tipicas do supercondutor, e de fato era isso que se
observava, como foi mostrado na secdo 2.1.3.

Em 1956, Cooper (Combescot; Shiau, 2015) propds um modelo que consistia em
um par de elétrons em um mar de outros elétrons nao interagentes, como os com energia abaixo
da energia de Fermi em um gas degenerado. Ele sup0s a existéncia de um potencial de atragdo
efetivo fraco entre os elétrons do par, e como o mecanismo de atracdo entre eles € mediado pelos
movimentos dos fons da rede, supds também que a energia tipica da interacao era da ordem da
energia dos fonons do material. Com essas suposi¢cdes, Cooper mostrou que a formacdo de um
estado ligado entre os elétrons era possivel, este ficou conhecido como par de Cooper. Somente
em 1957, Bardeen e Schriefer melhoraram o modelo de Cooper, e em conjunto publicaram a
solugdo para um sistema de P = 2N pares (Bardeen et al., 1957), a teoria ficou conhecida como
teoria BCS, levando as iniciais dos nomes de seus criadores.

A abordagem desta teoria usa o método variacional para encontrar o estado fundamen-
tal do sistema de 2N corpos, propondo um vetor variacional que leva em conta o emparelhamento
dos elétrons. No decorrer desta Secdo, iremos nos dedicar a desenvolver essa teoria. Tomaremos
como hipétese a existéncia de um potencial efetivo atrativo entre os elétrons do par, sua origem

serd discutida nas proéximas Sec¢des.
2.2.1 Operadores de Criacao e Aniquilacdo de Pares de Particulas

A abordagem da teoria BCS € semelhante a da teoria de campo médio para sistemas
de N corpos; nesta, propde-se um vetor de estado variacional que consiste em N aplicacdes de
operadores de criagdo de elétrons 673 y (com momento 7ik e spin V) sobre o estado de vécuo |0),
0 que, apds a sua otimizacao, leva a um potencial externo efetivo que é a média das interacdes de
uma particula com as demais, ou seja, um potencial de campo médio. Os operadores obedecem
a algebra de anti-comutadores férmions, com {G;’v, Gg’w’} = 5,;},5%% {67{*_‘\/, Gz,y,} =0e
{G{ v Ggl’v,} = 0. Embora leve a boas aproximagdes do estado fundamental do sistema, a forma

mais simples do vetor de estado variacional leva em conta apenas as correlagdes estatisticas
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entre as particulas, pois, como o movimento de uma particula afeta todas as demais, o potencial
efetivo ndo captura as correlagdes dinamicas entre elas (Cohen-Tannoudji et al., 2020).

Devido a natureza dos fendmenos da SC, ndo € possivel negligenciar totalmente os
efeitos das correlacdes dindmicas, por isso procedemos introduzindo um novo tipo de vetor de
estado variacional que leva em conta ndo apenas o estado de uma particula mas o de um par de
particulas. Seja um sistema de duas particulas idénticas com spin S que interagem. Considere que
estdo dentro de uma grande caixa ctibica de lado L. Considere o sistema nas coordenadas relativas
71 — 72 e de centro de massa (71 +72)/2. Seja | P, xs) o estado do sistema com momento total
K e |xs) o estado conjunto de spin das particulas. Temos:

|Dg, xs) = /dm /drz Y IR v2: B, i) (17 V2 B, | P xs),  (2.9)
Vi,V)

onde:

CI)I‘;bVZ(rl 7’2) <] ;717V1;2272,V2‘q)[_{';x5>

LR (2.10)
(L) 2RIy (7 =) (vi, va xs)-

O momento total K do sistema assume valores num conjunto enumeravel, v; e v,
sdo os valores de spin das particulas. Expandimos a fung¢@o (7 —72) em termos de sua serie de

Fourier:

X (71 —T2) Zg~ 172) (2.11)

A natureza fermidnica das particulas implica que a fun¢do de onda deve ser antissi-

métrica, portanto fazemos g -, = g; € (V1,V2|Xs) = —(Vv2, V1| xs). Além disso a normalizagio

requer que Y. | gk|2 = 1. Finalmente, substituindo (2.11) em (2.10) e reorganizando os termos:

m\ =i

d),vel Y2(71,7h) = ng 971 k)'?2<V17V2|%S>7 (2.12)

portanto, ficamos com:

|q>K,XS /drl/dl”z Z V1,V2|%S ) 3Zg%ei(§+z)'?]ei(§_z)'?2|1 :71,V1;2:72,V2> =

Vi, V2 %

= Zg% Z <V1,V2|Xs>{/d71/d72(L)3ei(§+ﬁ)'?lei(§z)'72l :?I,V1;2272,V2>},
k

Vi,V2

(2.13)
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o termo entre chaves é simplesmente o estado de duas particulas, onde a primeira tem componente
de spin v| e momento h( +%), e a segunda tem componente de spin v, e momento h(K k),

assim ficamos com:

—

k

|Pg. xs) = Y8z Z Vi, Valxs) |1
1,V2

l: <§+7€>,v1;2: (g—%),vz>—|— (2.14)

I? — E —
1:(- k), ;2:(——k), .
2+ Vi > %)

Como a varidvel k no somatério assume valores positivos e negativos de forma

—%Z {Z (vi,va|Xs)
i

Vi,V2

+ Y (vi,valxs)
Vi,V2

simétrica, no segundo termo da ultima parte de (2.14) trocamos k por —k, por consequéncia
g_7 = &;- Também trocamos, no segundo termo, V| por v,. Como (Vi, Va|xs) = —(V2, V1| Xs),

[Pz, xs) € igual a:

1 K K -
:22822<V17V2|%s>{ 1 <+k>,v1;2:(2—k>,vz>_
% Vi, V2
K’ d Kv =4
- 1¢(2k>,Vz;2:(2+k>,vl>}: (2.15)
ZLZ(% (vi,mlxs)ol - ol . |0)
2 7 kV],Vz ’ g-‘r%,\/] %—Evz ’

finalmente:
D, VI,V Pool . 30). 2.16
|Pg, xs) = {\/—ngvgv,z 1, Valxs)ol T g_k7v2}| ) (2.16)
Definimos o termo entre chaves como o operador de criacao de par de particulas
com momento /iK e spin S.

1 1 2.17
Z,gk Y vl,Vz\xS>G§+MG§ : (2.17)

Vi,V —k,v2

O operador (2.17) cria uma "molécula"com duas particulas. Como os parametros
gz sao a transformada de Fourier da fungdo x (7), toda a informag@o referente a fung¢do de onda
estd contida nestes parametros e no estado conjunto de spin |xs). Queremos que os operadores
A;% criem estados de pares de particulas como os pares de Cooper. Antes da teoria BCS, em
seu modelo de um unico par, Cooper supds que, devido ao principio de exclusao de Pauli, os

estados de elétrons emparelhados que teriam probabilidade maior de existir seriam aqueles em
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que suas componentes tem spins opostos (Combescot; Shiau, 2015). Portanto, se no estado de

spin conjunto tivermos S = 1/2, devemos escolher que este seja o estado de singleto:

1

X1/2) = ﬂ[l 4 =14, (2.18)

portanto (1,1 |x1/2) = (L4 [X12) =0e (1,4 [x12) = 1/vV2 {4, 1 121/2) = —1/V2, e 0 ope-
rador em (2.17) fica:

1
At == H[thgiq S e A 2.19
K 2§gk SN S A ST e & &1

o oh ot P ot :
criagdo. Comoo, . 0, . =—0, , O, ., eg 7= gy ficamos com:
B4kl "5k B—kp Keky Ok Ok
AL =Y g0l . ol . 2.20
K ;gk g‘f“k,/l\ %*k,i, ( )

o operador (2.20) cria um par de Cooper com momento total hK. Com este operador podemos
construir um vetor de estado variacional da teoria BCS, modificando os parametros g; podemos

encontrar uma aproximagao para o estado fundamental.
2.2.2 Vetor de Estado Variacional

O par de elétrons é composto por duas particulas de spin semi-inteiro, logo o
momento angular conjunto serd o de uma particula de spin inteiro. Isso sugere que um vetor
variacional seja semelhante ao que € usando na teoria de campo médio para bésons, embora
sejam sistemas de natureza diferente. Assim, em um sistema com P pares de Cooper e N = 2P

elétrons, terfamos:
- P
[®p(K)) = [A%]"10), (2.21)

onde podemos escolher o momento total do par hK =0, pois o estado buscado € o de menor

energia.

wp) = [AL_]710). (2.22)
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Apesar da aparente simplicidade, a forma do estado na equagdo (2.22) é tremenda-
mente dificil de manipular, uma vez que temos o produto de P somas sobres 0s varios ks, e ndo
temos a simplicidade, como no caso de bésons condensados, de que o estado seja um mero
produto tensorial de vérios estados individuais (Cohen-Tannoudji et al., 2020). Isso motiva a

definicao ad hoc de um outro estado variacional, que serd chamado de estado BCS:

Waes) = Y, 5 [Ar_o]"10) = exp(al,_)l0). (2.23)

O vetor definido pela equagdo (2.23) ndo possui mais um nimero bem definido
de particulas, no entanto, serd mostrado nas préximas secoes e no apéndice A que de modo
semelhante ao ensemble grao-candnico, quando sistema € suficientemente grande a flutuacao
relativa do niimero de particulas em relagio ao valor médio (V) tende para zero (Cohen-Tannoudji

et al., 2020). Continuando, temos ainda:
_ P ot _ T ot
Pacs) = exp{ %gz%o_;@ H10) = Igexp (297,07 )10}, (2.24)

e considerando a expansdo da exponencial de operador e a anti-simetria dos operadores de

criagdo:

exp(g Z ,,26”' kﬁ L) I[—l—gk T iy (2.25)
portanto, o estado BCS tem a forma final:
T
|Wpes) = H (JIJrgzo-zT 77(,#) 0). (2.26)
*

Definindo |@;) = (I+ g;0;

- ch% i) |0), reescrevemos a equagdo (2.26) como sim-

plesmente um produto tensorial:

[¥scs) = Q) 9p)- (2.27)
k
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2.2.3 Normalizagdo

Com a forma (2.27) € imediato obter a condi¢ao de normalizacio para o estado BCS.

Assim:

1 = (¥es|Waes) = [ Q9] [®|‘Pf( | = H ®:lop), (2.28)

k

logo, uma condicdo suficiente para normalizagdo é <(I),;|q'>,~€> =1, o que leva a definicao das

constantes de normalizacio up € vy = up8y tais que:

@) = (g +v~oz . _k¢)‘0> (2.29)

impondo a condicao de normalizacdo:

1=(p|¢;) = <0](uﬂ+vcfki kT)( —i—vazT ki)‘0>

(2.30)
2
= |uz +ukv~<0|c7 GET|O> +“£"%<0|G§T k¢| )+ |vk| (0o 715i1C kT 7k¢|0)
os termos cruzados se anulam e o termo de |v; | é igual a 1, assim obtemos a condigio:
juz|? + v = 1. (2.31)

Definimos uma parametriza¢do nas varidveis de normalizacdo que obedece esta

equagdo escolhendo as formas complexas u; = cose%e*ig% eV = senG;{eiC%. O estado BCS

normalizado se escreve entdo como:

[Waes) = X (cosbre™ G+ seneﬂe’CkGﬂ

k

£49.:)00), (2.32)

T aT

onde operador G 1401 cria dois estados com momento e spin (hij) e (—hk?L). Assim, uma

interpretacdo para os parametros seria a seguinte: \v~ ]2 ¢ a probabilidade de que exista um estado

com (7k, 1) e (—hk, 1), e |z |? é a probabilidade desse estado estar vazio.
2.2.4 Aproximacgdo de Campo Médio

A utilizagdo do vetor da forma (2.23) permitiu simplificar enormemente as manipu-

lacdes e célculos de valores médios, no entanto, introduziu-se uma flutuacdo no nimero de pares
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do sistema. Embora, como demonstra (A.14), a flutuacdo seja pequena no limite termodinamico,
devemos levar em conta a variacdo na energia total do sistema devido a variacdo virtual do

numero de pares. Seja o Hamiltoniano do sistema dado por (Combescot; Shiau, 2015):
B o AT, i oot
— Z e(k) {GETGET + G_mo_m} + ; Viw9 0 1 9 %1% (2.33)
k k&

como o potencial quimico u do sistema representa a taxa de variacao da energia total em fungao
da variacdo do nimero de particulas de um sistema, a parcela da energia devido a essa variacao €

WN, assim definimos o hamiltoniano como o operador:

e — T i
HBcs—Ze(k){GMGMjLG k¢}+2 k,cLT —ki 71074 —un. (2.34)
k

Como N = Y10 Gk 4t G~ i i} definindo &; = e(k ) — U, temos finalmente:

Hpcs = Zék{aT ,(T+<Li H}+/§ G k’T im 215 (2.35)

O hamiltoniano Hpcs representa a energia livre do sistema descontando parte devido a variacio
virtual de pares. Este também é conhecido como hamiltoniano grao-candnico por sua conexao
com o ensemble grao-candnico.

Sejam dois observéveis A e B, o valor médio operador (A — (A))(B — (B)) pode
ser interpretado, do ponto de vista estatistico, como a correlagdo entre os observdveis. Se a

correlacdo entre eles for zero, entdo:
(A—(A))(B~(B)) =AB—(A)B— (B)A+(A)(B) =0, (2.36)

0 que nos leva a aproximacdo de Hartree—Fock:

A A A

AB = (AB+ (B)A - (A)(B). (2.37)

A aproximacdo de campo médio ignora as correlagdes dindmicas entre as particulas.

Ao introduzir os operadores de pares estados, levamos em conta as correlagdes entre duas

particulas. O operador do tipo Gj, ch%' L

um par com momento 7k e cria outro com momento 7k, logo este captura a correlacdo dinAmica

G_; O 4> que aparece no termo de interagdo, aniquila
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entre dois pares. Neste ponto, fazemos a aproximacgao de ignorar quaisquer correlacdes de ordem

mais alta (tr€s, quatro, cinco particulas e etc), o que nos permite escrever:

ot P WY R | Lo R Tt Tt R
(Gk/ TG k,,J,) (G—k”LGk’T) - <G%/,TG_%/7¢>G—](7\LG](_’T + <G_k7J,Gk7T>G£/7TG_%/7‘L <Gk/ TG k,7i> <G_k7¢6k"|‘>’
(2.38)
substituindo (2.38) em (2.35), ficamos com:
3 _ il il
Hpcs = Z &{ G, Ojpt 67(»46;#}4—
o o (2.39)
Z kk’{ o G 1) 074 %p T (0 £1%%1)9%, 195, (00 0y kT>}
[
Definimos o gap, como a quantidade:
A= _ZVM 7..5%4); (2.40)
k/
e reescrevemos a hamiltoniana como:
) * of ot
Hpcs = Zék kT kT+G —Ei} _Z{A%G—MG%PLAIFM il A§<G§,TG—Z,¢>}'
k
(2.41)

Com isto, é possivel mostrar que para um vetor [Ppcs) 6timo € suficiente escolher
(:k 0, logo, uy e vy sdo parametros reais. Apos efetuar a otimizagao (os detalhes sdo feitos no

apendlce A) obtemos os valores:
1 k 1 k A
up = 2(1—|— _‘) e V= 2(1 _’), (2.42)

— 2 2
onde E; = , /5% +A

2.2.5 Transformacdo de Bogoliubov e Equacdo do Gap

O ultimo passo para completar a solu¢ao € encontrar o valor para o gap (2.40), que

esta presente em E7. Para isso reescrevemos o hamiltoniano (2.41):

HBCS_Z{ék k1 kT—’_G —%7¢}_A%G—%,¢G?T AkG}T —ki} Z kT —kJ,

k
(2.43)
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definimos Ep = —} ¢ A~<Gﬂ o' e reescrevemos os termos do hamiltoniano Hpcg usando as

s
relagdes de anti-comutagao entre os operadores.

Tscs = i .
Ancs = L{ &0} 0+ 6017 01, 40 1,01, — 40 0y | Fo =
k

T
{ GkTJFA i1C _5k6 [ +A o k¢6k¢}+E0— (2.44)

%
Z{ ék kT+A o k¢>+6—?7¢(A%GET_gzcim)} + Ey,
k

escrevendo em notacdo matricial:

- E A Loy
me=x{(e, o) (5 0) (S )yem e
k N 75 77{’7\L

A equagio (2.45) evidencia o fato de que Hpcs é uma forma quadritica nos ope-

radores Oy P de aniquilagdo e GT% . de criacdo, com a matriz que a define sendo chamada de

9

hamiltoniano de Bogoliubov-de Gennes (Jr, 2010).

LA
Hpic=|% "% |, (2.46)

A %

cujos autovalores sdo =+, /ézz + A%, que podemos reconhecer imediatamente como +E7 e seus

autovetores associados normalizados sendo:

S
Ve = %<1+ k) — " e V.= = ) (2.47)

() L

assim, podemos escrever (2.46) em uma representacio diagonal:

1
|
=
/N
|
1)
=1 |w-x
N———
|
=T

1
=
VRS
(SN
+

S
——
<
k)

T
up; —vy E; 0 up —vg
Hpig=| * * g LR (2.48)
V% Lt% 0 —E% Vz I/t%
Substituindo isso em (2.45), ficamos com:
Uz vy E.: O Uz —Vvz (0}
= {(e, o) () (% 0V (5 ) (20 )) e e
7 ’ v ug) \O B\ w ) \%
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Finalmente, definimos os operadores de criac@o e aniquilagdo b~ e bT atraves da transforma-

¢ao:
by u; —vy o;
Tva — k k ;GT ) (250)
b—an Vi ug G—El

A relagio (2.50) é conhecida como Transformacéo de Bogoliubov. E imediato

constatar que os operadores assim definidos satsifazem as relacdes de anti-comutacao.

~ R Tl il . _
{bpb g} =gy [{cm,ch} {G_M,G_MH—O, (2.51)

analogamente, {b kai} 0, {ka,bT } Oe{b_ kT’b* } =0, e também:

12 of — 2 2 _
{0} Y =i{o ol fet{o’ o g f=ud i1 (2.52)

Em resumo, concluimos que os operadores by, e b‘L i sdo operadores de criagdo fermidnicos:

(%

Considere a agdo dos operadores de aniquilagdo by 46 b_z sobre os estados |(p,;>

by 4 |(Z),;> = [“%G%,T — V%G;%J [w +v; GgT 7“} 0). (2.54)
Como GkTGH —k¢|0> = G ; |O> temos
by 100) = [veo”  —vago ™y | 10) =0, (2.55)
da mesma forma, temos b_7 | |@) = 0. O que implica que:
brs|¥ees) =0 e by |¥aes) =0. (2.56)

Como o operador de aniquilagdo anula o estado }‘?Bc5>, este pode ser interpretado
como um estado de vacuo para as excitagdes criadas por estes operadores. Escrevendo a

hamiltoniana (2.45) com a transformacdo de Bogoliubov:

HBCS—ZE{ i +b' b Es, (2.57)
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obtemos uma forma que € idéntica a de uma hamiltoniana de particulas ndo interagentes. Como

bg =u kcz 4 —ViO g podemos interpreta-los como criadores de excitagdes no estado super-

condutor BCS, que consiste numa superposi¢ao coerente entre estados de particulas reais e

buracos. Afirmamos que os operadores bﬂ it e bT il criam estados de quase-particulas, que sdo

criadas quando estes atuam sobre o novo viacuo na forma do estado BCS (Combescot; Shiau,
2015). A partir de (2.57) obtemos imediatamente que Hpcs “?BCS> =E “?BCS>, logo Ep € a
energia do estado fundamental do sistema, ou a energia do vicuo de quase-particulas.

A transformacdo de Bogoliubov possui uma inversa:

P A B G (258)

T i ’

portanto, a equacdo do gap pode ser reescrita em termos dos novos operadores de criacao e

aniquilacgdo:

il T
Z kk’ 7&& k’ Z k’k”<( 71 H/ Vz/bz,7,r) (uz/bz/ﬁ+vjé/b_%,ht)>

k//
(2.59)

— 2 t i 2t Bt
onde <G_z,7i6;,‘¢) =u, <b—?'7ibﬁ’ﬁ> +uy vy <b—?’-,Tb7E/,¢> — Uy vy <b}/,¢bﬁ’7T> -V <b}/7¢bi’,¢>’
usando a transformacao inversa e os valores médios (A.17), obtemos <b77£' ¢b@ T> = Uz vy, O

que leva a:

_ 2 T
<G—%/,$G%’7T> = Uz U Vi + U Vi <b—7c”,Tb_*/ $> UV <b7<‘/ Tbk’ T> + V Y Vi (2.60)

— i i
= uz,vic*, 1— <b_%/’¢b_ > <bk’ Tbk, T>
Como a hamiltoniana (2.57) tem a forma da de um sistema de particula livre com energia

as ocupacgdes médias seguem a distribuicao de Fermi-Dirac <bT o b ) (bT by ) =

E; v KA K

k/’
(14 ¢PEi)=1 o que implica:

2 1
(0 15010 = upvy {1 - —E} "2

5 B
h| =E7 |. 2.61
o k/)tg (2 k) (2.61)

Finalmente, chegamos na equacao do gap.

(2.62)
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A equagdo (2.62) define A = A(é%, T) e permite obter solu¢des acima da temperatura 7' do zero

absoluto.
2.2.6 Foénons como Mediadores de Interacdo entre Elétrons

Os elétrons, sendo particulas de carga negativa, se repelem por interacdes coulombi-
anas, o que por si so tornaria impossivel a formag¢do de qualquer estado ligado entre eles. No
entanto, quando estdo em um meio com outras particulas, podem interagir indiretamente através
de interacdes com elas. Como foi discutido no inicio da se¢do 2.2, foi teorizado por Cooper
que um elétron que se propaga provoca uma deformacao na rede cristalina, e essa deformacao
afeta outros elétrons. As deformagdes em um cristal sdo quantizadas, e podem ser vistas como
quasi-particulas chamadas de fonons. Investigaremos sob que condic¢des essa interagdo pode ser
atrativa.

Vamos considerar um sistema de elétrons na aproximacao do elétron independente,
mas que interagem com a rede subjacente. Essas interagdes podem ser vistas como intera¢des

entre elétrons e fonons da rede. Assim, a hamiltoniana do sistema é dada por:

H=Ho.+Hor+H,—y, (2.63)
onde:

Ho. = ) e(k)o; 07, (2.64)

k,v
Hoy = Y ho(§)cle;, (2.65)

g
Her= Y Ty(c'j+eq)ol, o, (2.66)

k,g,v

com Gg y sendo o operador de criagdo de um elétron com momento 7ik € spin vV e cg, sendo o

operador de criagdo de um fonon com momento /ig. Os termos € (k) e i () sdo, respectivamente,
as dispersdes dos elétrons e dos fénons. A parte H,_ r € o termo de interagdo entre elétrons e
fonons, com T; sendo o potencial de interacao na representacdo do momento (Nolting; Brewer,

2009).
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A partir de uma transformacao canodnica, vamos obter um termo de interagdo efetiva

entre elétrons. Assim, seja S um operador, definimos a transformacao:

A

~ . N 1, 4
H=e¢SHe’ =H+[H,S)+ SUA,S],8]+ .. (2.67)

Consideramos o termo H,_ s como sendo pequeno, também escolhemos § para ser da mesma

ordem. Assim, definindo Hy = Ho, + I-AIof escrevendo apenas os termos de primeira ordem
H~H+[H,S|=Hy+H, ;+[Ho,S| +[H._1,5). (2.68)

Queremos escolher S de tal forma que H,_ r+ [Hy,S] = 0, assim, supomos que seja

da forma:

— ol

S= ) Tq(yc 5 T*¢5)0 i Oy (2.69)
kg,v

onde as constantes x e y devem ser determinadas. Iniciamos isso calculando o comutador [Hy, S],

em duas partes. Primeiro:

5] = LT €T [oivoﬁw (xeg +3e! o] oy, | =
p;v
(2.70)
z z Tylaeg +yel ) [0},0p0.0] o,
V

O comutador |0 O3y ol o pode ser calculado usando as relacdes de comuta-
pv PV k+q kv

¢do, portanto:

(Foe. S = Y (P Ty(xcg +ye' )8y (5ﬁk+46ﬁvczv—5,;ﬁak+ a;v>:

»LM
)

(2.71)

— " (e(T _ Al . i
=) T;(e(k+q) e(k))o %z G%V(xcq—i—yc_q.).

1
Q|

Para o segundo termo, de forma analoga, usamos as relagdes de comutagdo para
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boésons nos operadores de fonons:

[Hor,S) _ZZhw [ ﬂcp,(xcp+yc )} Ggﬂwaﬁv =

P kqv

— ol —

_Zzhw ( —x8g¢5+y¢ *) gy Oy = (2.72)
P kqv

— = -+

_Z T;ho(g) ( xcg+yc q) S avOiv-
kqv

Combinando ambos os termos:

[Ao, S| ZTﬁ{ ( (k+3)—elk)— hw(é’))c5+y<e(%+21)—8(75)+h0)(c7)>cT_q}Gngqvczv, (2.73)
kqv

como devemos ter [Hy, S| = —H,_ r, as constantes devem ser:

—

x=— (s(k+?j) —e(k) —hw(?}’)>_l :
’ ) . (2.74)
y=(eE+a) e +10@) .

Finalmente, devemos calcular o comutador [H,_ f,S]. Iremos nos concentrar apenas

nos termos com operadores de criacdo de elétrons.

3 _ o . il T T . + T g
AerS)= Y Ty [CE" O} O (1weq +ye™) amvokv} . (275)
k7(_j7v7k/7q,7vl

com o comutador sendo:
cotct ol oy (xeityel D)ol o | =
7 TCq ) gy Ok M4 YC5) O gy Ok
Y N . il g T g
= (ca,—l—c_q/) (xc +yc ) [ k’+ v/Gk’V”G%ﬁvaV] + (2.76)

. T . T . T .

onde usamos a propriedade de que operadores de fonons e elétrons comutam. Descartamos
o primeiro termo termo da soma do lado direito da equagao 2.76, o que nos leva a calcular o

comutador envolvendo os operadores dos fonons

((cq+ely) (xeqtye )| =xle! goed +yleg et J=v8p -2 3 @D

o que levaa
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3 ~ T (y - . i .
[He—ﬂs]’\“ﬂ Z, TiTy (y x)6*61’7616§/+;]vv/Gk’v’Gz+vakv
k767v7k,7q,7v,
= Z T -’/T-*/(y—)C)GT (04 G-T (04
4 -4'q Vigv RV gy kv (2.78)
k.v.K.q V'
= Z T oTs(y—x) {0 o . 6,,0. +8, 7 n:
. 4 4 K+q v k—gv KV Tkv K kG k[
k.v.K.q v
Sabendo que T_; = T; e desprezando o termo &;, 7 , -nz, encontramos um potencial efetivo de
g —1q kK k+q 'k

interagc@o que envolve apenas elétrons. Assim, definimos

A

H, ,= 2|T§’2 . N2 5
Y (e®+4)—e®)) ~ (h0(@)

ho(q) t ¥
By’ G%—q’v G%v Gﬁv" (279)
Concluimos que uma condicao suficiente para que ocorra interacao atrativa entre elétrons, é a

desigualdade

- S\ 2
(eG+a)—e(®) < (h0@))’ (2.80)

ser satisfeita.
Como a energia de Debye 7iwp € a maior energia num solido, temos 6(7& +4)—¢ (%) <
hwp que € a condicdo para existencia de um potencial efetivo.
O modelo original proposto por Cooper considerava um potencial atrativo fraco entre
elétrons, assim, seu modelo consistia em considerar um potencial da forma:
Vo, se |e(k)—e(F)| < hop

Vip = , (2.81)
’ 0, caso contrario

onde Vj € uma constante positiva. Substituindo na equagdo (2.62), vemos que A; = A ndo

depende de k, assim ficamos com:

[£2 2
=i ¥ : N s (2.82)
=V | 1gh | | :
2 e(K)<hwp \ \/ zz/_i_Az 2k T
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Sabemos que a energia de Debye ¢ maior do que a energia de Fermi €r, o que leva a
—hop < € < hop. Usando a densidade de estados de energia p (€), reescrevemos o somatdrio

como a integral:

hap 2 AZ
/ ( )tgh VETAT) ge. (2.83)
2 nop \ V€2 + A2 2k, T

Como a maioria dos estados se concentram proximos a energia de Fermi, podemos aproximar a

densidade de estados p (&) ~ p(€r) = pr, e também sendo a integral de uma fungio par,

haop 1 Ve +A?
1:V0pF/ (—) tgh| ——— | de.
0 VEer+A? 2k, T

Ao resolver esta equacdo, obtemos Ag(T'), que existe apenas como uma fungdo implicita. Vejamos

(2.84)

como a equagdo se modifica em casos especiais. Se 7 = 0, entdo A(T = 0) = A e temos

tgh(x — o) — 1, 0 que da:

haop
1= VOPF/ ——

sabemos por medidas experimentais que o gap Ag € de apenas alguns meV, portanto é muito

h
— Voprsenh™! (A%D) , (2.85)

menor do que a energia de Debye. Logo fazemos a aproximagio senh ™! (x) ~ In(2x), o que nos

da:

| 2h
~In < wD) : (2.86)
Vopr Ao
c pOrtantO:
_ 1
Ao = 2hape Vobr . (2.87)

A temperatura critica 7¢ € atingida quando o gap € diferente de zero, assim, fazendo

A =0, a equagdo do gap se torna:

! = /th d—gtanh £ = /2ZBTC d_x tanhx =
Vopr  Jo € 2kpTc 0 x

hCOD

hCOD
- tanh < 1
_ el MY g~ (tanhxlnx)ékBTC —/ nx2 dx ~ (2.88)
X 0 cosh”x

hop T Zeyha)p
~ In —In (—) =In )
2kpTc 4e¥ mkplc
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onde Y é a constante de Euler-Mascheroni. Concluimos entdo que:

2eVhop — 1
T = 20D o~ Vonr | (2.89)
T kB

ou seja, temos T o< @p o< M~ 1/2

, que é exatamente o resultado previsto por Maxwell e Reynolds,
e que confirma a dependéncia da temperatura critica com a massa dos ions. Substituindo a
equagdo (2.87) em (2.89), chegamos em uma relacdo entre o gap em 7T = 0 e a temperatura

critica:

~ 1.76 (2.90)
kpT: ’

ou seja, quanto maior for o gap, maior serd a temperatura critica. Isso permite prever a tempera-

tura critica de forma a priori para uma grande variedade de supercondutores. Ressaltamos que

uma limitag@o deste modelo é que os elétrons ndo podem ter uma energia térmica kg7 maior do

que a energia de Fermi €, pois caso contrario, ndo ha como garantir que estejam proximos ao

nivel de Fermi.
2.2.7 Efeito de Retardagcao

Embora tenhamos mostrado que existe uma atracio efetiva fraca entre elétrons, uma
questdo que surge € como esta consegue se sobrepor as fortes interacdes de coulomb. A resposta
para isso estd nas escalas de tempo em que essas interagdes ocorrem. Os elétrons que contribuem
para o estado BCS t€ém energia préxima a de Fermi, portanto a escala de tempo do seu movimento
na rede é da ordem de ~ i/er = t,. No entanto a ordem de tempo do movimento dos fons é
~ 1/op =tp, e como hw << € temos f, >> tp (Altland; Simons, 2010). Quando um elétron
em movimento distorce a rede, esta demora muito mais tempo para retornar ao equilibrio, assim
outro elétron pode se aproximar e sentir a influencia da distor¢do provocada pelo primeiro elétron.
A Fig. 6 mostra um esquema desse processo.

O efeito liquido deste processo € que a interagdo efetiva ocorre num periodo de
tempo finito, isto é, a influencia de um elétron leva tempo até alcancar outro, e assim, o alcance
da interagao efetiva pode se estender por distancias muito maiores. Em contra partida a interacao
de coulomb € praticamente instantanea nas escalas de baixa energia e depende diretamente da

densidade eletronica por um fator da ondem de ~ n~1/2, onde n ¢ a densidade.
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Figura 6 — Efeito de retardacdo. As setas representam o elétron em movimento e o circulo um {on da rede, em
que E ! (unidades em que 7 = 1) é o tempo dos elétrons e oy !0 tempo que o fon leva para retornar
ao equilibrio.

Ep

O ©

9 D

v &

e O

Fonte: Adaptado de (Altland; Simons, 2010).

A distancia média entre dois elétrons num par de Cooper é definido como o com-
primento de coeréncia yc = (2nh*kr) /m.A(E = 0,T = 0) (com m, sendo a massa do elétron).
Esta quantidade mede o alcance da interagdo efetiva (Laussy et al., 2010). Quando 12 >> e
a atracdo prevalece sobre a repulsdo de coulomb em longas distancias: este é o chamado efeito
de retardacdo. A abordagem da se¢do anterior ndo incorpora diretamente este efeito apesar
de sua importancia, uma critica comum na abordagem original de Bardeen, Cooper e Schriefer

(Combescot; Shiau, 2015).

2.3 Mediagoes Alternativas aos Fonons
2.3.1 Excitons

A compreensdo em termos de teorias microscopicas da SC abriu um horizonte
totalmente novo de investigacdo tedérica. Uma ideia que surgiu imediatamente foi a de substituir os
fonons por outras particulas de natureza bosonica que interagem com elétrons. Para esse objetivo
o primeiro tipo de quasi-particula sugerida foram os excitons, que surgem em semicondutores

quando um elétron na camada de valéncia salta para banda de condu¢do deixando um estado
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desocupado para trds, que € chamado de buraco. O comportamento o buraco se comporta como
uma particula com carga positiva e interage com o elétron na banda de condu¢ao formando assim
o exciton. Uma carateristiva relevante € que eles se comportam como bdsons, e podem interagir
com os elétrons e intermediar interacdes entre eles.

A primeira proposta desse tipo de mecanismo veio em 1964, quando Little propds
que a temperatura critica T¢ poderia ser elevada em cadeias de polimeros organicos quase-
unidimensionais, onde os excitons fossem mediadores das interacdes entre elétrons (Little, 1964).
Em 1973, John Bardeen, James Bary e David Allender (Allender ef al., 1973) propuseram um
modelo tedrico pioneiro para uma heteroestrutura que consistia na jun¢ao de duas camadas
finas de um metal e um semicondutor, separadas por uma distancia pequena. No semicondutor,
excitons virtuais interagem com os elétrons de valéncia no metal induzindo a formacao de pares
de Cooper. Ginzburg (Ginzburg et al., 1987) teorizou que esse mecanismo poderia ser um
possivel caminho para a SC em altas temperaturas. Sistemas 2D como este tem as possibilidades
mais promissoras: a Fig. 7 apresenta um desenho de como os elétrons e excitons sdo posicionados
dentro da heteroestrutura, onde acoplamento entre excitons e elétrons depende fortemente de
caracteristicas como a distancia L entre as camadas de semicondutor e metal, por exemplo.
Figura "7 — Modelo da heteroestrutura do artigo (Allender et al., 1973). Na camada de cima temos o semicondutor

onde os excitons sdo formados; na camada de baixo temos o metal onde ficam os elétrons de condug@o.
Ambas as camadas sdo separadas por uma distancia L. O vetor d é o momento de dipolo do exciton.

Fonte: Adaptado de (Laussy et al., 2012).

A interacdo entre elétrons normalmente ocorre quando um elétron de conducao
polariza o meio dielétrico criando assim um exciton, que posteriormente pode interagir com
outro elétron. Assim, os dois trocam momentos de forma indireta. Como apontado por Ginzburg
(Ginzburg et al., 1987), a principal caracteristica dos excitons € que sua energia caracteristica
kpT, € muito maior do que a energia de Debye kgTp. Isso se deve ao fato de que a energia
de Debye depende do inverso da massa dos fons, € como os excitons sdo muito mais leves, a
energia tipica é maior. Se M € a massa do fon e m a massa do excitons, como Tp ~ M ~1/2 temos

M

1/2 . . . e .
T, ~ [E] / Tp <100 x Tp, o que necessariamente implica num temperatura critica maior.

Embora promissora, a mediagdo por excitons logo comecou a apresentar algumas
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dificuldades, sendo a primeira delas a baixa estabilidade em certos materiais, possuindo um vida
curta ou baixa coeréncia. Posteriormente, verificou-se que a reducdo do efeito de retardamento
da interacdo também € um fator prejudicial (Morel; Anderson, 1962). Os fonons geralmente
possuem uma velocidade muito mais lenta que os elétrons na superficie de Fermi, e isso se reflete
em um forte efeito de retardacdo na interacdo mediada por eles, o que resulta num tamanho do
par de Cooper onde os elétrons estdo suficientemente afastados para que a interacdo coulombiana
seja pequena. Em contraste, os excitons sdo particulas muito rdpidas, o que reduz o efeito de
retardacao, acarretando num tamanho de par menor e consequentemente num regime em que a
interacdo repulsiva de Coulomb € ndo desprezivel, o que prejudica a formagao de pares de Cooper
(Cherotchenko et al., 2016). Embora o mecanismo éxciton ainda tenha um papel relevante para
explicar a SC de certos sistemas (Cherotchenko et al., 2016; Sun et al., 2021; Milczewski et al.,
2024; Cao; Kavokin, 2025), ele nao foi detectado ainda como o mecanismo principal que a torna
possivel.

Apesar de todas essas dificuldades, € possivel ainda obter interacdes fortes quando os
excitons estdo em um estado de condensado de Bose-Einstein (BEC). O estado SC se caracteriza
por ser coerente e com fase complexa global, como fica evidente na forma do estado BCS. Assim,
quando os mediadores j4 sdo coerentes como no caso de um BEC, a mediacio € mais eficiente,
pois os estes deixam de ter movimentos aleatorios e desorganizados. Além disso, € teorizado que
excitons com grande momento de dipolo também induzem intera¢des mais fortes. Nesse caso,
os que possuem elétron e buraco distantes espacialmente se destacam: estes sdao os chamados
excitons indiretos (Laussy et al., 2012), que serdo o caso estudado como aplicacdo do nosso

modelo mais adiante nesta dissertacao.

2.3.2 Exciton-Polaritons

A principal dificuldade em se obter BECs de excitons é que estes sé ocorrem em
baixissimas temperaturas. Nesse contexto, surgem os exciton-polaritons como candidatos para
substituir os excitons na mediacdo da SC. Essas quase-particulas sao hibridas, parte exciton e
parte féton, que surgem quando luz confinada em uma microcavidade interage fortemente com a
matéria, geralmente semicondutores. Estas tém sido grande foco de pesquisa nas tltimas décadas,
sendo uma das razdes para isso a sua capacidade de formar BECs em temperatura ambiente, fato
que ja € confirmado experimentalmente (Houdré ef al., 1994; Su et al., 2020; Ghosh et al., 2022;
Alnatah et al., 2025).
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Em 2010, exciton-polaritons foram propostos como possiveis candidatos mediadores
de SC, tendo em destaque sua capacidade de induzir interacdes atrativas muito mais fortes do
que os mecanismos tradicionais, mesmo em compara¢do com o mecanismo de excitons (Laussy
et al., 2010). Isso € um caminho para contornar o baixo efeito de retardacdo inerente a media¢ao
por bésons leves como este. Entre as principais dificuldades com essas quase-particulas esté a
formacao de fases exoticas que competem diretamente com a fase SC, como a super sélida e
a onda de densidade de carga (CDW), que surgem espontaneamente a medida que a for¢a da
interacdo efetiva aumenta. Uma outra vantagem, como serd mostrado posteriormente, € que a
forca da interagdo pode ser controlada opticamente, o que abre margem para muitas aplicacoes
em dispositivos.

A SC de alta temperatura permanece um dos problemas abertos mais desafiadores da
fisica moderna. Enquanto a teoria BCS explica satisfatoriamente a SC convencional mediada
por fonons, a busca por mecanismos alternativos que permitam 7¢ mais elevadas € intensa. A

mediacio pelos bésons do tipo mencionado acima surge como um candidato promissor.

2.4 Escopo da Dissertacao

O objetivo principal deste trabalho € obter a temperatura critica e a funcao do gap
em um sistema onde a SC é mediada por excitons. Nos proximos capitulos propomos um modelo
tedrico para a mediacdo da SC por quase-particulas bosonicas, tendo como principal foco os
excitons e exciton-polaritons. No capitulo 3 introduzimos o design da heteroestrutura que sera
modelada por um hamiltoniano de uma mistura de Bose-Fermi. Usando a aproximacgao de
campo médio, mostramos que este hamiltoniano pode ser reduzido a mesma forma do de fonons,
assim obtendo o potencial efetivo. O formalismo é desenvolvido tanto para excitons como para
exciton-polaritons. Definindo um potencial médio sob a curva de Fermi de um gés de elétrons
bidimensional (2DEG), obtemos um potencial Up(®) que depende da energia de troca entre
elétrons @, o que incorpora um efeito de retardagdo no modelo. Com a presenca de regides
negativas dessa func¢do, a SC é possivel. Finalizamos o capitulo expondo um algoritmo para o
célculo de T¢ e outro para o célculo da fung¢do do gap A(E,T). No capitulo 4 passamos para
andlise dos resultados, onde se mostra que a for¢a de interacdo depende diretamente da densidade
de bésons no sistema. A temperatura critica e o gap sao obtidos. Finalizamos o capitulo fazendo
uma aplicacao do modelo em um sistema composto por dicalcogenetos de metais de transicao

(TMDs) para hospedar os excitons e uma bicamada de grafeno para abrigar o 2DEG. No capitulo



5 apresentamos as conclusodes e perspectivas futuras de pesquisa.
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3 INTERACAO MEDIADA POR EXCITONS E EXCITON-POLARITONS
3.1 Modelo Teoérico da Interacao Efetiva

Passamos agora a formulacao de um modelo teérico que descreve a SC em sistemas
de baixa dimensionalidade, tendo como base a teoria BCS. Mostramos que € possivel encontrar

uma hamiltoniana efetiva andloga a para o caso da mediagdo por fonons.
3.1.1 Descrigdo da Heteroestrutura

Introduzimos agora um design de heteroestrutura que serd a base para nossa formula-
c¢do tedrica, sendo usado em diversos trabalhos envolvendo sistemas andlogos ao nosso. (Cotlef et
al., 2016; Cherotchenko et al., 2016). Trataremos da mediacao por excitons e exciton-polaritons
em conjunto. Com o objetivo de formar excitons com momentos de dipolo adotamos um hetero-
estrutura bidimensional com semicondutores onde os elétrons e buracos estejam espacialmente
separados por uma distancia d, formando um momento de dipolo explicito. Quanto maior for
esta distancia, maior serd a forca de interacdo com os elétrons. Espera-se que quanto maior for a
energia de ligacdo entre elétrons e buracos Ej, maior a for¢a de interagdo.

Para hospedar o gas de elétrons livres bidimensional (2DEG) escolhemos algum
material bidimensional que possua uma densidade eletronica controldvel. Candidatos mais
diretos sdo bicamadas de grafeno ou monocamadas de semicondutores dopados com impurezas
que doam ou roubam elétrons. Esta camada € separada dos excitons por algum material isolante
de espessura L.

Para induzir a formacao de excitons puros, usamos um campo elétrico ou considera-
mos heteroestruturas semicondutores de tipo-II. No caso de exciton-polaritons, usa-se fotons de
cavidade. Para isso inserimos a heteroestrutura descrita no pardgrafo anterior em uma microcavi-
dade composta por dois refletores de Bragg. Na Fig. 8, temos um desenho deste sistema. Os
refletores de Bragg, embora eficientes, ainda possuem alguma perda de energia a medida que um
foton € refletido varias vezes entre os refletores. Isso se traduz num decaimento na concentragao
de fétons com o tempo, o que déd aos exciton-polaritons um tempo de vida finito. Isso pode
ser contornado bombeando constantemente fétons com um laser para manter a concentracao
constante, o que deve acarretar num gradual aquecimento do sistema. Em nossa andlise, vamos
desprezar o eventual aquecimento do BEC.

A interacdo com os elétrons na 2DEG se da de forma predominante com a parte
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Figura 8 — Representagdo da microcavidade que consiste em dois refletores de Bragg (DBR) montados sobre um
substrato. Em seu interior, uma heteroestrutura composta por uma camada semicondutora em que se
forma um BEC de exctions indiretos com comprimento de dipolo d. Adjacente a uma distancia L
desta, hd um 2DEG sobre uma segunda camada bidimensional.

Fonte: Adaptado de (Cotlet et al., 2016)

excitonica dos exitons-polaritons, o que permite tratar ambos os casos de quasi-particulas de

forma muito semelhante.
3.1.2 Hamiltoniana do Sistema

Denotamos os operadores de criacdo de elétrons e exciton-polaritons com momento

hk por Gg e a% , respectivamente. Em seus operadores de criacao/aniquilagdo, como nos pares de

Cooper, o spin 1 ({) s6 ocorre com k positivo (negativo), portanto, abreviamos a notagao para

il

L, Gg . O sistema pode ser modelado pela seguinte hamiltoniana:
[:I = Z [Epol(k)‘%a} +E, (k) Gng -+

k
oot 2 t i P G-b
onde na primeira parte E,; (k) = €(k) = 7%k /2m, é a dispersdo dos elétrons. A primeira parte
do termo de interagdo se deve a forca de Coulomb entre os elétrons, com V¢ (g) sendo o potencial
de Yukawa com comprimento de blindagem de Coulomb x:

2

e 1

Ve(q) = —

(3.2)
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onde € € a constante dielétrica do meio e A é uma drea de normalizacdo. O segundo termo
de interaciio X2Vx (k) representa a interacdo entre os excitons/exciton-polaritons e os elétrons,
onde normalmente a parte excitonica do primeiro predomina na interacao. A constante X € o
coeficiente de Hopfield, que quantifica a fracio de excitons no BEC. O tltimo termo € a interacao
entre os excitons/exciton-polaritons, onde usamos a aproximagao s-wave com um potencial
constante dado por U = 6axE,X*/A.

Como os exiton-polaritons sdo acoplamentos entre fotons e excitons, usamos o

modelo de Rabi com a dispersao do ramo inferior, assim E,,,; (k) € escolhida como (Cotlet et al.,

2016; Laussy et al., 2012):

Epo(k) = % (EC(%) + E(k) — \/ (Eox(k) — Ec(k))?+ (ZhQR)2> : (3.3)

onde my é a massa do excitons, m¢c € a massa efetiva dos fotons de cavidade e iQ2p € a
energia de separagio de Rabi. As dispersdes Eey(k) ~ 12k? /2my + Ej, e Ec(k) ~ h%k> /2mc sio,
respectivamente, a dos excitons e fétons de cavidade. A constante Ej, € a energia de ligacdo
do exciton, que € zero para excitons puros. A Fig. 10 mostra o grafico da equacgdo (3.3) e na
Fig. 9 vemos o grafico da dispersdo E,, (k). O procedimento que adotaremos é valido tanto para
excitons como exciton-polaritons, bastando apenas trocar a dispersao £, (7&) — Eex(z), definir
X =1e Qg = 0 para abarcar o caso do primeiro.

Figura 9 — Dispersdo dos excitons sozinhos. Assim como a dispersdo de uma particula livre com massa efetiva
my, a forma do gréfico € a de uma parébola.
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Fonte: Elaborado pelo autor.
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Figura 10 — Ramo inferior da dispersdo dos exciton-polaritons. A curva se inicia com um comportamento linear,
e para valores de k grandes tem comportamento quadratico. A dependéncia em \l;| vem a forma de
(3.3), que depende das dispersdes quadraticas dos excitons e fétons. Em vermelho, as dispersao da
parte do exciton dentro do polariton.
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=== Eex(k)
4
4
100 -
>
Q
g
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Fonte: Elaborado pelo autor.

O potencial de interagdo entre elétrons e excitons Vx(g) é dado por

Vx(4) = _—— 1 1
x(4) =54 4 [1+(ﬁean/2)2]3/2 [1+(ﬁhqax/2)2]3/2 (3.4)
L e + P
2eA (14 (Begax /2)2**  [1+ (Bugax /2)2?

onde: ax € o raio de Bohr do exciton, B, = m,/(m, +my) e B, = my/(m, + my,) sdo, respectiva-
mente, a fragcdes de massa dos elétrons m, e a massa dos buracos m;,, e a Gltima parte se refere
ao momento de dipolo d do exciton. Com ja fol mencionado antes, a constante L se refere a
distancia de separagdo entre o0 BEC e 2DEG (Laussy et al., 2012).

Na tabela 1 estdo os valores de todas as constantes presentes na hamiltoniana 3.1.
3.1.3 Interacdo Efetiva

Considerando a parte de interagdo dos exciton-polaritons:

pO,_ZEPO, Jata; + )3 Uakl N (3.5)
ki k2,4

o + + .
e usando a abordagem de campo médio, fazemos 4 a~{d ar+{la)d , seguimos a abor-
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Parametro Significado Valor

& Permissividade relativa 4.5

me Massa do elétron (exciton) ~0.22

my, Massa do buraco ~1.25

L Distancia entre 2DEG e BEC 50 A

K Blindagem de Coulomb 12 A1

myx Massa do exciton (0.22 4 1.25)m, ~ 1.3 x 10~ kg
me Massa do féton 105m, ~ 9.1 x 10736 kg
hQg Separagao de Rabi (polariton) 45 meV

hQp Separacdo de Rabi (exciton) 0 meV

X Coeficiente de Hopfield (polariton) 1/ V2

X Coeficiente de Hopfield (exciton) 1

kr Vetor de onda de Fermi 0.05 A1

ax Raio de Bohr do exciton 19.8 A

E, Energia de ligacdo do exciton 32 meV

d Comprimento do momento de dipolo 120 A

Tabela 1 — Parametros fisicos relevantes do sistema com excitons/exciton-polaritons, onde esco-
lhemos as unidades de massa do elétron (Laussy et al., 2012).

dagem de Bogoliubov aproximando (a~) VINoAS; 07 onde Ny € a densidade de excitons/exciton-
polaritons e A € a drea de normalizagdo (Laussy et al., 2012). Como o os bosons mediadores
estdo condensados em um BEC, a maioria das particulas se concentra no estado fundamental.
Essas aproximacdes também significam tomar o este tltimo k=0eca partir dele obter os estados

excitados, assim consideramos na soma apenas k %= 0. Com essas considerac¢des, temos:

1 N()AU
Eﬂ Z Uaiél 22+q k1—|—q k2 Z {& k1+4,0 k1 k1 0 k _|_“}{ ky+4,0 k2 kz 0 k2_|_“} -
ki k2, ki.k2.g
NOAU
Z{ f “+aq}{afq+a-r} =
G#0
Z{(l -a "+a“ +a7éa_—k‘+aza‘k‘}7
k40
3.6)
€ como o somatorio € simétrico em %, substituimos aiza_§ = aga% e ficamos com
! _ NoAU i Pt
5 L Ve e ap o, =—— Y 2aa+aa g +ad ), (3.7)
ki k.G k#0
substituindo na equacdo (3.5), temos:
N - NoAU
Hpyp = Z {Epol (k)a%a% +N0AUa£a% + > (aga_ 3+ agai%)} - (3.8)

k40
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No caso dos exciton-polaritons definimos uma nova dispersdo fazendo uma mu-
danca de referencial do zero de energia, medindo-o a partir do estado fundamental, com
E ol (k) =E pol (k) —E po1(0). Essa convencdo torna a solugdo numérica mais simples. Defi-

nindo as constantes &g = E (k) + NoAU e B; = NoAU, temos:

. . NoAU .
Hyp = Z {(Epal(k) +N0AU)a£a7€—|— > (aza_z—l—a;aiz)} +Z Epol(O)aia%

k40 k£0
? 5 ? (3.9)
.‘. . .‘. o
= Z {ocza%a; + ?k (aza_7+ a%a_z) } + Z Ep,,l(O)a%az.
k#0 k#0
Mudando o zero de energia para E p{,l(O), a hamiltoniana fica:
B:
Hpol - _‘Z { —* (C%a% + ai}a 7;) + 7k<a%a % + aiaiz)
k0
v e Bal (" -+ Boas
_%#OE az(akak%— kaiz)+a7k(ockai%+ 2az) (3.10)

Com o objetivo de diagonalizar esta forma quadrética, definimos a seguinte transfor-

macdo de Bogoliubov:

a- b+ u; vy
k] = T; k onde se define  T; = kR
- - . (3.11)
. E, .(k 0
ﬁ]; OCE 0 Ebog (k>

Os operadores by e biz criam excitagdes no estado fundamental do BEC. A partir da

relacdo de comutagdo para bosons [az,ag] = 1 deduzimos u% — v% = 1. Aplicando a condicao
para T%, temos:
o (% B\ (o0 By Bl ) o\ _ [ BragR) 0
k ko 2,2 24,2 a YA
B o Belvp +up) + oy o (v +up) + By 0 Evoelh)

(3.12)

e assim, deduzimos o sistema de trés equacoes:
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0% (vF +142) + ity = Epog (K)

[3~(v~+u~)+ upvy =0 ; (3.13)
u% — V% =1

cuja soluc@o determina completamente a matriz 7; e € dada por:

- 1 oz 1 oz
Ebog(k) = (xz —ﬁ]—(‘ , Uy = \J 5 <Eb k(ié) + 1) e = \J 5 <E'bk(7€) — 1), (314)
08 08

substituindo em (3.10), ficamos com:

. 1 o B a
Hy =Y, 3 (az a_z) kTR T" : (3.15)
k40 7

logo

_ %<T b_}) Epog (k) 0# by (3.16)
2Nk 0 Epgk)) \b'.

= Z Ehog {bjb +bT z}
k;éO
Finalmente, encontramos a hamiltoniana dos excitons/exciton-polaritons diagonalizada.

p()l Z Eb()g " (317)
£#£0
onde Eb(,g \/ pol ) +2NoAU) € a energia das excitagdes do estado fundamental

do BEC. Estas excitagdes podem ser vistas como quase-particulas, que recebem o nome de
bogolons.
Vamos agora escrever o termo de interagdo entre elétrons e o BEC em termos dos

operadores by e b.. Usando a aproximacgao de campo médio:
k

2 / 2 T
HZ X VX Gk’+q k’+ HZ 0AX VX Gﬂ o-k’+67{ k+q0 6121 ,Oa}+gl}
k.k'.q kk'.g

(3.18)

= Y VNoAX?Vx(§)o] oy +q{aq+a b

k.g#0
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T
-4
a{az+ aiq} = (uz +vg)(bg + biq). Como (uz+vz)* = uq + vq + 2ugvg, a partir do sistema
(3.13) deduzimos

usando as transformagdes de Bogoliubov az = ugzb; + vzibT ~ea .= uqu ;T vgbz 0 que leva

a—»
2 2 q
uq * Vq - Ebog (q)
B (3.19)
2uzgvg = 1 -,
9 Epog(q)

o que leva a

. . (X*-I-ﬁq Epol(q) + NoAU Ebog(Q) _p (q) 390
“q + Ya = \/Ebog (Q) \/ Ebog (q) \/2N0AU Ebog(q) ( ) (20

portanto:

2 T _
Z X*Vx(q)o! o, =
K g

-

(3.21)

= Epo (CI) ) (Ei)
= /NoAX?V, g ol ISR
%%ﬁo " X(q)\/ZNoAU Epog(§) + Epor(G )GkG"“I( athly),

definido M(g) = /NoAX?Vx (g )\/ G fgfgi;é‘l)):ﬁ gjﬂl L finalmente obtemos a hamiltoniana do

sistema em temos dos operadores de excitagdo de excitons/exciton-polaritons

A=YE, CLG + ZEbog babﬂ—k Y M(G)o! 6z+q(bg+biq)+
k k40 kG40

ol 3
Z’ [ G - *Gk’ak]’
K,

(3.22)

% —
onde a primeira parte tem a mesma forma da hamiltoniana (2.63), onde o papel dos fénons é
substituido pelo das excitagdes do "gds de bogolons". Definimos a energia de troca entre elétrons

como h(g) = Epol (k+q)—E pol (k), e escrevemos o potencial de interagdo efetiva:

(3.23)

Finalmente, chegamos a hamiltoniana efetiva do sistema:

2M(§)?Evog (4) it
El o: o; + Ve(q) + —5 |0 0
eff Z e Z ( ())2 Ebog(q)2 kg K —

S0 (324
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3.1.4 Potencial Efetivo Médio

A parte de interacao agora se divide em duas partes, uma de carater coulombiano e
outra sendo a parte que € mediada pelos bosons, que pode ser macroscopicamente controlada.
Notamos que esta tltima tem uma dependéncia em relacdo a frequéncia . Isso evidencia o
carater retardado da interag¢do induzida por excitons/exciton-polaritons, que também surge na
mediacdo por fonons e favorece a formacdo dos pares de Cooper. Neste ponto, chamamos
atencdo para o fato de que o potencial (3.23) tem uma dependéncia linear na densidade Ny, ou
seja, a forca de interacdo pode ser controlada apenas modificando a concentracdao de bésons
no BEC (Laussy et al., 2012). Como ja foi discutido, isso permite contornar a dificuldade da
retardacdo fraca com o aumento na for¢a de interagdo.

A maioria dos elétrons no géas bidimensional possui energia préxima a energia de
Fermi &F, por isso podemos eliminar a dependéncia em g do potencial efetivo aproximando-o
por uma média sobre a curva de Fermi do 2DEG.

Figura 11 — Diagrama de Feynman para a interacio efetiva entre elétrons. Dois elétrons com momento fik e 7k’
trocam momento /g com a interagfio e acabam com momento i(k — g) e (k' + §) respectivamente.

— —

K—4q K'+4q

W
q

=
e

Fonte: Elaborado pelo autor.

Pelo diagrama de Feynman da interacdo na Fig. 11, vemos que g = k—K, assim
podemos integrar o potencial efetivo V. r(¢) = Vc(§) + Va(4g, @) mantendo K constante e vari-
ando k na curva de Fermi. Como se trata de um sistema de duas dimensdes que esta confinado
num circulo de raio kr, podemos parametriza-lo com o angulo 6 entre o semi-eixo positivo y e
o vetor k, a Fig. 12 exibe este desenho. Assim escrevemos |g|2 = [k|2 + |K'|2 + 2|k||K|cos0, e
como [K'| = [k| = kg, temos > = 2k%(1+ cos6). Com a densidade de estados sendo dado por

N =m,/(nh?), definimos o potencial médio:
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AN

2r
Up(w) = ?/0 {VC( 2k%(1+cos9)) +VA< 2k%(1+c039),w)] do. (325

Figura 12 — Desenho da esfera de Fermi, como estamos num sistema 2D, a esfera se torna um circulo. Mantendo
k' no eixo x negativo e variamos k no circulo cujo raio é o vetor de kg, por um angulo 6 a partir do
eixo x positivo.

AX

0 a

2D

Fonte: Adaptado de (Laussy et al., 2012).

Imediatamente percebemos que o termo do potencial de atrac@o entre elétrons é uma

1

W, temos que:

. 2
constante, como Ve (§) = 525

n [2kF+\/W1
A:/V 21 JV 2 e — 4k27 2
_/ VC< 2k%(1+cos@))d9: ¢ i
0

(3.26)

Quando N € baixo este termo tende a dominar o potencial efetivo e assim a interacao
entre elétrons se torna repulsiva novamente, o que torna necessario investigar que condi¢des
devem satisfazer os parametros tipicos do sistema para que um potencial atrativo seja alcancado.

O termo da média que corresponde a interacdo mediada por bosons exige um pouco
mais de cuidado, pois a fungdo V4(g(0),®) apresenta uma singularidade no ponto em que
Epog(4(0)) = ho. A integral em (3.25) diverge nesses pontos. Notamos, primeiramente, que o
sinal do potencial € determinado pelo termo no denominador. Em segundo lugar, por estar em
func¢do de cos0, o potencial se torna uma fungdo simétrica em torno de 7, logo esperamos que
existam pontos de singularidade em ambas as metades do circulo de Fermi.

Escrevendo em termos de 6 temos Ej,, (\/ Zk%(l + cos 90)) = hw, onde 6 é o

ponto de singularidade no circulo de Fermi, notamos também que este € o ponto que marca
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a divisdo entre o regime atrativo e o regime repulsivo do potencial Vy (75, o). Pela simetria
do potencial, podemos calcular a integral no intervalo [0,7]. Na Fig. 13 vemos que duas
regides atrativas se formam, com uma de repulsdo. As divisdes entre essas regioes sdo marcadas
pelos pontos de singularidade. Uma vez que existe o limite limg_,q, f(0) a singularidade é de
primeira ordem, o que permite redefinir (3.25) em termos de uma integral de valor principal de
Cauchy. Entretanto, desejamos encontrar seu valor numericamente, para isso podemos isolar a

singularidade analiticamente definindo a func@o f(6) = (6 — 6y)V4(g(0), w), assim:

Up(o) = A;V /07r (6 - 9(02":‘2()9)7 ) 16 — /07r (eff—ego)de. (3.27)

Definindo o residuo limg_,g, f(0) = f(6p), reescrevemos:

[ o [ (L0 S S8 a8)

(0 —6o) (0—6) (0—6) (6060
portanto,
AN 27 £(6) — f(6o) T — 6
Uo(w) = T A Wd@ +f(90)ln( o ) . (3.29)

Figura 13 — Grifico do potencial efetivo V4(g,®) (em weV), com h® = 40 meV, em fungdo de |G| =
\/2kp (14 cos6) no intervalo [0,27]. No centro, em 6 = &, uma regido atrativa, o zoom no quadro
direito mostra que esta se encontra entre duas singularidades. Nas extremidades, duas regides atrati-
vas, 0 zoom no quadro esquerdo mostra um decaimento lento. Os pontos de singularidade separam
todas essas regides.

2
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Fonte: Adaptado de (Laussy et al., 2012).

A Fig. 14 mostra o grafico de Uy para alguns valores de Ny, a primeira caracteristica

que chama aten¢do € a presenga de uma regido negativa: isso € notavel, pois a teoria BCS garante
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Figura 14 — Grifico do potencial Uy mediado por exciton-polaritons para varios valores de Ny em cm 2. Observa-
se uma regido de valores negativos, seguida por uma positiva. A medida que N, cresce, a regiao
negativa se amplia.

90k l‘ —=- Ny=2x10"em=2 |
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o
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Fonte: Elaborado pelo autor.

que na presenga de um potencial atrativo fraco sempre ha a formacdo de pares de Cooper e
portanto, a SC neste modelo € possivel. Observamos que hd uma tendéncia de deslocamento da
regido negativa para valores mais altos de i@ a medida que Ny aumenta, uma caracteristica que
se mostra relevante para o valor da temperatura critica.

Na Fig. 15 exibimos potencial médio considerando apenas os excitons sem a parte

dos fétons de cavidade. Os parametros da Tabela 1 foram usados para este calculo.

3.2 Equacao do Gap

3.2.1 Potencial de Bogoliubov

Uma vez que calculamos a média da energia de intera¢do Uy (®), seguimos os passos

tradicionais da teoria BCS, obtemos a equacdo do gap (Laussy et al., 2010):

aEr)=— [T E_EINELT) oy ((VARLTEE(E

—oo 2\/A(§',T)2+(§’)2 2kpT d€’, (3.30)

onde Uy (& — &') tem uma dependéncia na diferenga entre os niveis de energia. Assim, a fungdo

do gap € obtida ao se solucionar numericamente a equacao integral ndo linear dada por (3.30),
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Figura 15 — Grifico do potencial Uy quando se tem exclusivamente excitons para alguns valores de No em cm 2.

Assim como na Fig. 14 a regido negativa também aparece e se desloca para valores altos de i@
com o aumento de Ny. Nota-se que a ordem de grandeza da regido negativa € menor que no caso da
mediagdo por excitons-poldritons.
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Fonte: Elaborado pelo autor.

que pertence a uma familia conhecida como equagdes de Hammerstein (Kitamura, 1963), e

possuem a forma geral:

AT = [ KEENFE A (331

Comparando com (3.30), temos

K(§,€I> _ _U0(§2_ él)

! VAE T+ &P (332
= tanh )
2 /AT (€ 2T

e quando K(&,&’) > 0 a equag@o possui solugdes nao-triviais, o que cai diretamente no caso

fIE.A(E,T)]

onde Uj < 0 ¢ atrativo (Vansevenant, 1985).
Na se¢do 2.2.6 explanamos brevemente o modelo BCS, que consistia em supor que o

potencial —V, se a diferengas de energia era menor do que 7@ e V; 7, = 0 caso contrario.

[y
Chamamos atencao para o fato de que o modelo de Cooper considerava apenas o potencial

atrativo, e nao o potencial de repulsdo entre os elétrons de forma separada, que j4 era incluido no
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potencial efetivo. Um modelo um pouco mais refinado, embora ainda simples, € o que considera
um potencial de repulsdo entre os elétrons de forma separada, que é o que foi feito no inicio da
secdo 3.1.4 quando se definiu V,s(g). Seja V¢ o valor médio potencial coulombiano do elétrons,

sendo & = & — &, supomos que o potencial Uop(®) = Vo + V¢ seja da forma:

—U, se —ho < &<hw (Regido 1)
UE)={ Ve se —hom<E<—-hw e ho <E&<hom (Regido2) ,  (3.33)
0 caso contrario (Regiao 3)

onde Uy = V) — V¢ e V sdo constantes positivas e as constantes A®, e /i, sdo energias de corte
para evitar divergéncias nos potenciais, de forma semelhante a energia de Debye fiwp. Outra
hipdtese deste modelo € que @ ~ @, . Com essa forma, a energia de interagdo € um potencial
do tipo degrau, em que na Regiao 2 € repulsivo e na Regiao 1 atrativo. Este € conhecido como
potencial de Bogoliubov, que € mostrado na Fig. 16.

Figura 16 — O potencial de coulomb V¢ se estende num raio i@, e o potencial efetivo Vj um raio ;. O potencial

de interagdo resultante da combinagdo destes é Up(E — &') e tem a forma de um pogo Uy com duas
barreiras de valor V¢ em suas bordas, sendo repulsivo nessas regides.

TeF il

hw

]

Vo Uy

Fonte: Adaptado de (Laussy et al., 2012).

Em seguida, aplicamos uma aproximag¢do na fun¢do do gap, considerando que esta
também seja uma funcdo do tipo degrau como o potencial em (3.33) (Ketterson; Song, 1999).
Embora seja uma suposicdo grosseira, ela torna possivel obter valores para temperatura critica

de forma direta. Assim, seja:

Al se —ha)lgéghwl
AET)=S A se —hwy<E&<—ho e ho <&<hwo (3.34)

0 caso contrario

Como w; < @, a equacdo do gap (3.30) fica:
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AET) = — {/_h::l UO(gz_Eé/Ml canh (ZkLZT) dE'+

hor Up(E = &) As E n
+/hw1 — oy tanh (Zk;, )dﬁ (3.35)

*/hzl%t “h(Zka>d5 }

onde E = \/A(E’,T)2+ &2, Como o integrando é simétrico,

A(E,T)=— {Al /Ohwl U@E ¢) tanh <2ka> d&' + A, hT U(éE_ &) tanh <2/<E,,T> d&’} .
(3.36)

Considerando os diversos valores de &, se &’ estd naregido 1, temos —hm; <& — &' <
i, e nesse caso Up(§ — &) = —Ujp. Se &’ estd na regido 2 entdo —hiw, < & — &' < —hw; o que

implica que Up(& — &) = V- neste intervalo. Isso nos leva a equagio:

A Ao M Liann (“E Y aer+ anve [ L tanh d 3.37
=t [ g (o g ot [ g (57 )ag'f 630

Repetindo esses passos, no caso em que —hw, <& < —hw, e ho <& < hawy,

podemos encontrar um certo valor de & neste intervalo, tal que a equagio do gap fique:

A Ao [ Lann (“E N aer v aie ML ann d 3.38
— —t —t .
’ { 1 C/—rzle " (2ka) A C/hwl E (2ka) é} 339

Definindo as constantes I} = hw‘ £ tanh (2k T> d§'e b = [ ht 1 % tanh <2k T) dé’,
chegamos em um sistema de equacdes que pode ser posto em uma forma matricial:
A ~Uoly V¢l A
o ) 1 _C 1 7 (3.39)
AY) Veli  Veh) \ A2
que € conhecida com equacdo do gap linearizada (Ketterson; Song, 1999). Para que exista uma
solugdo ndo trivial, devemos ter:
Uoli — 1 —Vclz

det | ] =0, (3.40)
Ve, —Veh—1

lembrando que Uy = V — V¢, chegamos na equagao:
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L= (V- Ve )" (3.41)
R A2 '

A temperatura critica T¢ € obtida quando A(&, T¢) = 0. Fazendo o gap |K| — O na

equacdo (3.41), e usando as aproximacdes do final da se¢do 2.2.6:

ho
ltanh g/ 2kBTC>] d& ~In <1.13h0)1>

AﬁO 0 /g2 + A2 kgTc
, 3.42
< oy tanh [ /( ZkBTc)] ~In ((1)2) (042)
A2‘>0 ho /52 +A2 1
\
o que leva a uma equacdo para a temperatura critica:
_ —1
_ v
kpTe ~ 1,13hwyexp | = Vo— —— (3.43)
1 +1n ( ) Ve

Comparando a equacgdo (3.43) com a equacgdo (2.89) vemos que considerar um
potencial coulombiano separadamente introduz uma pequena corre¢do na equacao da temperatura
critica. Outro ponto importante € que, mesmo se tivermos um potencial repulsivo, com Uy =
Vo — Ve < 0, ainda seria possivel que o denominador na exponencial de (3.43) permanecesse

positivo, e portanto, mesmo nesse caso ainda leva a um gap nao nulo. (Laussy et al., 2012).
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3.2.2 Algoritmo para o calculo da Temperatura Critica

A introducao do potencial de Bogoliubov aliado a linearizacao da equagao (3.30)
permitiu o calculo direto da temperatura critica. Desejamos generalizar esse procedimento para o
caso de um potencial de interag@o geral. Primeiro, notamos que Up(& ) tende a zero rapidamente
quando & — +oo, assim podemos definir uma energia de corte +&,,, tal que Up(E) = 0 se

|§’ > &max- Logo, (3.30) fica

gmux ozl /
AE,T) = —/+ U‘)(gzé;’i{f ) tanh (%BTT)) de', (3.44)

émax

onde definimos E(&,T) = \/A(E/,T)% + (E')2. A integral em (3.44) pode ser convertida numa
soma: comegamos discretizando o intervalo [—&qx, Emax] €m N pontos igualmente espagados,
assim a fun¢do do gap se converte em um vetor A(&, T) = Ay(T) com N valores, e o potencial

se transforma em uma matriz N x N definida por Up(&x — &) = Uy x» 0 que nos leva a soma

A(T) = Z{ — %tanh (glf})) A& }Ak/(T), (3.45)

com A& sendo o espagamento entre os pontos da malha. A discretizagio do potencial e da fungio

do gap € uma generalizagdo evidente do procedimento que levou ao potencial de Bogoliubov.
Agora, consideremos o caso em que 7' — T¢. Nesse limite, para cada k temos

A (T) = Ay — 0, o que implica lim7_,7,. E (&, T) = |&|. Adotamos a aproximagdo em (3.45)

de que E(&,T) =~ |&], e assim obtemos

A(T) = Z{ - Z’%ﬁ tanh < 2‘2;) AE }Ak/(T), (3.46)

k

Uk,k’

definindo o elemento de matriz M (T ) = — 28] tanh <2|1§§}> A&, chegamos na equacdo matri-

cial

A(T) = M(T)A(T), (3.47)

que estabelece A(T') como um autovetor da matriz M(T') com autovalor A = 1. Isso mostra que,

a medida que nos aproximamos de T¢, a equacdo de gap discretizada (3.46) se aproxima do
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sistema linear em (3.47), onde M(T) tem a propriedade de que seus autovalores correspondentes
a autovetores que sdo solugdes devem necessariamente ser préximos de A = 1 (Tinkham, 2004).
Assim um método para encontrar T¢ consiste em tomar a matriz M(7T'), calcular o seu conjunto de
autovalores o(M(T)) e obter o seu maximo A, (T) = max{c[M(T)]}, que estd bem definido
para cada valor de T. Devemos ter A,.c(Tc) = 1, logo a temperatura critica sera determinada
pela raiz da equac@o Ay, (T) — 1 = 0. O algoritmo que formaliza esse procedimento é dado a

seguir.

Algoritmo 1: Célculo de 7; via Equagao do gap Linearizada

Data: ParAmetros fisicos kg, &,qx, nimero de pontos N e fungdo de potencial Uy.
Result: Temperatura Critica 7.
// 1. Discretizagdo e Inicializagéo
Gerar vetor & com N pontos no intervalo [—&ax, Emaxls
A& < &1 — So;
Inicializar matriz U de tamanho N X N com zeros;
// 2. Pré-cidlculo do Potencial
fori<— OtoN—1do
for j« OtoN—1do
| Uiy Un(|& = &)
end

end
// 3. Definig8o da Funcdo de Erro do Autovalor
Function ErroAutovalor(T ):
if T <0 then

‘ return oo;
end
Inicializar matriz M(T) de tamanho N x N com zeros;
for j«~ OtoN—1do
E'+|5);
if £’ < 10~° then
// Evita divis8o por zero quando & — 0

tanh(E’ /2kpT) |
‘ Che 2E’ ’

fori<OtoN—1do
| Mij < =V 0 AL
end

end
Calcular autovalores c[M(T)] de M(T);
return A, — 1;

// 4. Solucdo Numérica

Definir intervalo de busca [Tyin, Tinax);

T. + Raiz de ErroAutovalor(T) no intervalo;
return 7,;
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3.2.3 Algoritmo para o calculo de A(E,T)

A equagdo do gap (3.30) € auto consistente, o que significa que tem a forma A = ¢ (A),

onde ¢ € o operador integral ndo linear definido por:

émax — — /
O(A) = /+ %tanh <E2(IEB’77:)) dé&’, (3.48)

émax

onde ja adotamos a aproximacéo da energia de corte &,,,,. Também, notamos que este é um
operador de ponto fixo sobre a solugdo A(&,T), o que significa que a aplicagdo repetida de ¢
sobre ela ndo altera seu valor.

Entretanto, a propriedade mais importante deste operador € que, ao aplica-lo sobre
uma funcdo, obtemos uma outra que € mais proxima da solucdo. Em outras palavras, se
||A(&,T)]|| for a norma da fungéo do gap no espago de fungdes das solugdes, entdo, se A(E,T)

for a solugdo exata e Ay arbitrario, a funcdo A; definida como:

o —Up(§ —ENM(E.T) (E(&,T)

Ai(E,T)=¢(Ao(E,T)) :/ ZE(é T) 2kgT

) dé&’, (3.49)
_!émax

tem a propriedade ||A(§,T) —A(E,T)|| < ||A(E,T) — Ao(E,T)|], ou seja, A} é mais préxima
da solugdo exata do que Ag. Escolhendo uma funcao arbitraria (constante ou gaussiana) podemos
repetir esse procedimentos varias vezes de forma a se aproximar arbitrariamente da solugdo. A
validade desse método esta condicionada a existéncia de uma solucdo, algo que nem sempre esta
garantido dado que Uy pode assumir valores negativos e positivos (Laussy et al., 2012).

Para implementar numericamente este procedimento seguimos passos semelhantes ao
da segdo anterior. Partimos o intervalo [—&qyx, Emax] €m N pontos e usamos a forma discretizada
da equacao do gap (3.45), que agora € ndo linear. Primeiro, iniciamos a matriz da energia de
interagdo U;; = Up(|&; — &;]), a cada iteragdo obtemos um A, obtido a partir do anterior A,
o erro relativo é definido como Erro = |Apove — A|/|A|. Estabelecemos uma tolerancia € tal
que o algoritmo encerra quando Erro < €. Como a solu¢do pode ndo existir, € recomendado
estabelecer um numero méximo de iteracdes.

A convergéncia para a solucdo pode ser prejudicada caso a atualiza¢do da funcao
A ocorra de forma muito brusca. Para corrigir este problema, geralmente a tornamos mais
suave definindo em cada iteragéio a combinag@o linear A <— ot - A0 + (1 — @) - A, onde @ < 1 é

chamada de parametro de mistura. Assim, atualizamos A com apenas uma fragao da A, 0 que
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suaviza a convergéncia (Martin, 2020). Se @ = 1 ndo corre mistura e a convergéncia se torna
instavel. Para maioria dos casos, escolhemos o = 0.6, o que torna o algoritmo mais lento, mas

permite uma melhora considerdavel na convergéncia.

Algoritmo 2: Solugdo Iterativa da Equagao do gap

Data: T, &,q., N, fungdo Up(&), iteragdes maximas n,,y, tolerdncia € e fator de mistura a.
Result: Fun¢io do gap A(&).
// 1. 1Inicializagio
Gerar vetor & com N pontos em [—&pax, Emax];
A& & —&o;
Inicializa matriz U com N x N elementos;
fori< OtoN—1do

for j<~OtoN—1do

Uij < Uo(1&i — &)

end
end
Inicializar vetor A com um valor inicial (ex: constante ou Gaussiana);
Erro + oo
// 2. Loop Iterativo Autoconsistente
iter = 0;
while Erro > € e iter < ny,, do
Inicializar vetor A,,,, com zeros;
fori< OtoN—1do
Soma < 0;
for j< OtoN—1do

Ej< /& +(4))?

if £; > 0 then
tanh(E;/2kpT) .
‘ 0« ZjEj =

‘ O 75 // Evita divisdo por zero quando E — 0

// Implementagdo da integral
Soma < Soma —U;;-©-A;-AL;

end
Avovoli] < Soma;

end

// Verificag8o de Convergéncia

Erro < |Apovo — Al/|Al;

// Atualizag8o com mistura para estabilidade
A a-Appyo+ (1 — ) - A

iter = iter + 1;

end
return A;
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4 RESULTADOS
4.1 Funcao do Gap e 7¢: Excitons e Excitons-Polaritons

Iniciamos nossa andlise comparando o gap A e a temperatura critica T¢ dos excitons
sozinhos com as dos excitons-polaritons. Isso € feito facilmente substituindo nas equacgdes
E ol (k) — Eex(k), anulando a constante de Rabi e colocando a fragdo de excitons nos polaritons
X = 1. Uma vez que o modelo BCS s6 € valido para elétrons proximos a energia de Fermi, valores
de transi¢do h& entre estados eletrdnicos muito altos possuem pouco significado fisico, portanto,
devemos nos concentrar no comportamento de A(&,7T) apenas numa vizinhanga préxima de
E=0.

A solucdo do gap em T = 0 para o exciton € dada pela Fig. 17, onde Ny € a densidade
de excitons. Como esperado, escolha de um potencial Uy mais complexo torna A radicalmente
diferente em compara¢@o com a solug¢do tradicional com um potencial atrativo de pogo simples.
A presenca de regides atrativas e repulsivas em Uy provoca um comportamento oscilatdrio
acentuado, seguido por um decaimento a zero quando |i&| é grande, significando que apenas
elétrons proximos a energia de Fermi podem formar pares de Cooper.

Figura 17 — Gréficos para solugdo do gap em T=0 e potencial Uy (). Cada grafico é produzido para um valor da
densidade de excitons Ny. A magnitude de A aumenta diretamente com o aumento de N.

— A, 0 === U — A, 0 === Uy
. (£ 0) ® || 0 W | 40
35 L20 =
i~
A -
3 o AHAEHH A o £
= V v :
Bl i E
i E
-35 1 i 20
!
-70 4 ! . , -40
No=2x10""¢m2 No=4x10""e¢m2
—_ A0 - U, —_ A0 - U
i & 0) ﬂ 0® || &0 ﬂ m m W 40
35:] 1 F20 =
i~
S
Y 4 M 1 I [
2 oAy =t - - b4 o £
£ Vi e 2
= It e i3
H i 3
-35 4 i . i F—20<
U ::U U i U
" "
H i
-70 ! . U ' U —40
No=6x101cm=2 No=8x10"cm—2

-70 -35 0 35 70 -7IO -3IS 0 3I5 7I0
h& (meV) hE (meV)

Fonte: Elaborado pelo autor.
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Observamos que o aumento da densidade Ny se reflete em um crescimento na
magnitude e na distancia (em termos de energia) de decaimento do gap.

Para o caso dos excitons-polaritons, o potencial Uy tem duas grande regides de
repulsdo com uma Unica regido atrativa localizada entre dois picos acentuados de méaximo e
minimo. Isso dd a solu¢do um cardter bem menos oscilatério, como se pode ver no gréficos
da Fig. 18. Para valores baixos da densidade de excitons-polaritons Ny a magnitude do gap é
extremamente baixa em relagdo aos de valores maiores de Ny: isso se reflete em uma densidade
critica, abaixo da qual A € extremamente baixo.
Figura 18 — Grificos para solugdo do gap em T=0 e potencial Up(&). A forma dos gréficos se caracteriza por um

pico grande acentuado no centro. A ordem de grandeza do decaimento cresce consideravelmente a
medida que a densidade de polaritons aumenta.
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Fonte: Elaborado pelo autor.

Os valores de A para os polaritons atingem ordens de grandeza muitos maiores do
que os dos excitons. Em contrapartida, seu decaimento na energia & € muito mais lento, o que
torna sua validade, em termos de nosso modelo, restrito a apenas alguns valores em torno de

hE = 0. A forga da interagdo atrativa mediada por polaritons se torna evidente.
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Nas Fig. 20 e Fig. 19 apresentamos a solu¢do numérica completa da fun¢do do gap
A(E,T). Os valores foram escolhidos de modo que o valor maximo do gap seja menor do que a
energia de Fermi €r = 43.3 meV. Ambas as fungdes tem comportamento suave a medida que T

aumenta, caindo abruptamente para zero a partir da temperatura critica.

Figura 19 — Solugdo do gap para os excitons com Ny = 0.4 x 10'! ¢m™2, Tc = 50.7 K. Em (a) vemos que a
forma de solug@o € oscilatéria em &, mas suave em 7. Em (b) o gap no ponto & = 0 em fungéo da

temperatura.
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Fonte: Elaborado pelo autor.

Figura 20 — Solugio do gap para os polaritons com No = 1.5 x 10'! em=2, Tr = 107.6 K.
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Fonte: Elaborado pelo autor.

Mesmo para densidade de polaritons baixa, vemos na Fig. 20 (a) escalas de energias

muito maiores do que as da Fig. 19 (a).
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4.1.1 Anadlise da Temperatura Critica

A diferenca na ordem de energia envolvida nos potenciais U para excitons e excitons-
polaritons d4 a este ultimo temperaturas criticas muito maiores. A Fig. 21 mostra a comparacao
entre T¢ e a densidade Ny. A curva dos excitons cresce como uma fungio da ordem de &'(v/Ny),
enquanto que a dos polaritons tem 7 = 0 para alguns valores da densidade e em seguida
cresce aproximadamente como uma fungdo da ordem de &'(Ny). Os polaritons atingem altas
temperaturas criticas de forma muito mais rdpida que os excitons a medida que se aumenta a
densidade, reforcando as hipdteses a partir da andlise da funcdo do gap. Assim, controlando Ny,

controlamos o estado SC.

Figura 21 — Temperatura critica em funcdo da densidade Ny, onde T,,,,;, é a temperatura ambiente.
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Fonte: Elaborado pelo autor.

Embora ambos os sistemas atinjam altas temperaturas criticas, deve-se considerar que
a densidade dos polaritons/excitons nao pode ser arbitrariamente aumentada devido a transi¢ao de
Mott do condensado em um plasma de elétrons e buracos (Cherotchenko et al., 2016), portanto,
servem apenas como ilustracdo da tendencia robusta de crescimento de 7¢ a medida que se
aumenta a forca da interacao.

Uma das motivagdes para a proposta de excitons/polaritons € sua baixa massa efetiva,
que deve levar a uma maior energia caracteristica quando comparado com fonons. Vejamos o
que ocorre quando se altera a massa my dos excitons. Na Fig. 22 vemos o efeito na temperatura
critica quando se aumenta em 3 vezes essa massa, onde se constata uma coincidéncia entre os

valores para densidades pequenas e uma a dréstica reducao nos valores da temperatura critica
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para grandes de densidades, uma previsdo ja esperada no contexto da teoria BCS.

Figura 22 — Grifico da temperatura critica comparando excitons de massas distintas. A constante my € a massa
do éxciton.
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Fonte: Elaborado pelo autor.

Ao se aumentar a massa dos polaritons, encontramos um resultado diferente. Na
Fig. 23, observamos que os graficos se sobrepde para valores pequenos de Ny, mas o grafico que
corresponde a massa 3 vezes maior se distorce de forma inesperada, assumindo valores maiores
em diversos pontos.

Figura 23 — Gréfico da temperatura critica comparando polaritons de massas distintas. As constantes nx € mc
s@o a massa do éxciton e féton de cavidade, respectivamente.
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Fonte: Elaborado pelo autor.

Uma explicagdo para isso é a natureza mais complexa de Up(®), que ao contrario
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do potencial BCS (uma func¢do degrau), é dependente de i®. Ali, a temperatura critica era
proporcional a frequéncia de Debye wp, que € tipicamente muito menor do que a energia de
Fermi €. No caso dos exciton-polaritons, como ji foi mencionado anteriormente, o potencial
Up ndo esta bem definido para valores muito grandes de 7@, ultrapassando o valor de €r, o que

pode levar a resultados inesperados.
4.1.2 Tc em Fungdo da Densidade Eletronica N,

Na tabela 1 escolhemos a densidade eletronica N, ~ 3.98 x 1012 cm =2, que corres-
ponde a um vetor de onda de Fermi kg = 0.05 AL Vejamos como a temperatura critica se

modifica em func¢do de N,.

Figura 24 — Gréficos de T em fungdo de N, para alguns valores de Ny no caso dos polaritons. A temperatura
critica decai a medida que N, cresce. A linha horizontal demarca a temperatura ambiente T,
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Fonte: Elaborado pelo autor.

De forma surpreendente, a temperatura critica reduz consideravelmente seu valor
a medida que N, aumenta. Uma explicac@o para esse comportamento no modelo é que com
o aumento densidade eletronica, a energia de Fermi também aumenta, o que se reflete num
crescimento na energia dos elétrons na curva de Fermi, logo, a mesma interacdo efetiva tem que
lidar com particulas mais energéticas, o que prejudica a formacao dos pares de Cooper. Isso
mostra que o modelo se adequa melhor em descrever sistemas onde o material que hospeda os

elétrons tem uma baixa densidade deles.
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Além disso, espera-se que esse decréscimo em T¢ seja ainda menor, ja que o tamanho
tipico de um par de Cooper Ec (~ 1/ 8%) diminui. Isso torna os elétrons do par mais sensiveis as
interagcdes coulombianas de curto alcance. Esse efeito ndo € capturado diretamente pela teoria

BCS.

4.2 Aplicacao Para uma Estrutura com TMDs e Bicamada de Grafeno
4.2.1 Descrigdo do Sistema

Uma das maiores limitagdes para utilizacdo de excitons na mediagdo da SC € a
vida curta que essas quase-particulas possuem. Em heteroestruturas semicondutoras de pocos
quanticos de um mesmo material os elétrons em uma banda de conducao rapidamente decaem
aniquilando seu respectivo buraco na banda de valéncia. Uma forma de estender sua vida € fazer
com que o elétron e seu buraco estejam em camadas separadas espacialmente por algum isolante,
como nitreto de boro hexagonal (h-BN) por exemplo.

Recentemente os autores de (Wang et al., 2019) mostraram experimentalmente
que com esse design é possivel obter condensacdo de excitons intercamada a temperaturas da
ordem de 100 K usando WSe; e MoSe,, materiais pertencentes a familia dos dicalcogenetos
de metais de transicdo (TMDs). Com base nessas descobertas, propomos um novo tipo de
heretoroestrutua que usa excitons desse tipo para mediar a SC como uma alternativa a mediacao
por excitons-polaritons.

Escolhemos uma bicamada de grafeno (BLG) para hospedar o gas de elétrons 2D.
Essa escolha se justifica pela alta capacidade de ajuste da densidade e mobilidade eletronicas do
grafeno, ja bem documentadas na literatura (Neto et al., 2009). A escolha de uma bicamada é
devido a forma parabdlica da dispersdo de seus elétrons, com massa efetiva m* = 7y, / 2\/%, onde
vr € a velocidade de Fermi e y; =~ 0.4 ¢V € uma constante de acoplamento entre camadas (Para
mais detalhes, consulte o APENDICE A). Isso permite a aplicagio direta de nosso modelo.

Seguindo o design de (Wang et al., 2019), a parte que hospeda os excitons é composta
por duas camadas de W Se; e MoSe, atomicamente finas, com uma camada isolante de h-BN de
comprimento d entre ambas, com suas propriedades ajustadas de forma que W Se; tenha menos
afinidade eletronica que MoSe,, o que faz os elétrons saltarem a para a banda de condugdo deste
ultimo. Os excitons assim formados t€ém momentos de dipolo orientados de forma perpendicular

ao plano, o que aumenta forca de interacdo com os elétrons no grafeno. A bicamada € separada
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desta ultima parte por uma outra camada isolante de h-BN com comprimento L. A Fig. 25

mostra um desenho completo deste sistema.

Figura 25 — Esquema da heteroestrutura. Os elétrons na BLG sdo separados por uma distancia L dos excitons. Os
elétrons em W Se, saltam para a camada de MoSe, formandos excitons intercamada com dipolo d.

Bicamada
de
Grafeno

h-BN {
WSez {
h-BN

MoSe, {

Fonte: Elaborado pelo autor.

A caracteristica que motiva o uso dos dois TMDs € a sua elevada energia de ligacdo
do exciton quando estd na forma de monocamada (= 0.5 V), o que se traduz em uma energia da
ordem de 0.3 eV quando sd@o combinados (Wang et al., 2019). A Tabela 2 tem as constantes que

caracterizam completamente o sistema.
4.2.2 Temperatura Critica e Fungdo do Gap

Nas condicdes de formagdo dos excitons intercamada a densidade eletronica tipica
de uma BLG ¢é da ordem de 10'? ¢m—2, onde adotamos o regime de baixas energias, onde a
dispersdo pode ser aproximada por uma forma parabdlica (McCann et al., 2007). Assim, na Fig.
26 vemos as temperaturas criticas em fun¢do da densidade de excitons. Comportamento da curva
¢ o mesmo da Fig. 22 o que j4 era esperado.

A condensacdo de excitons observada ocorre em temperaturas da ordem de 100 K.

Tendo em vista as limitacdes do modelo e a aproximacao de baixas energias feita sobre a
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Figura 26 — T¢ em fungio de Ny. Com a escolha para N, a temperatura critica ambiente ocorre para valores
maiores de Ny do que os registrados nos graficos da Fig. 21.
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Figura 27 — Solugio da fungio do gap para o grafeno, com densidade de excitons Ny = 4 x 10" ¢cm =2 e energia
de Fermi &g = 24.8 meV'.
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Parametro Significado Valor

& Permissividade relativa 4.5

Me Massa do elétron ~ 0.49

my, Massa do buraco ~ 0.40

L Distancia entre elétrons e excitons 3A

d Comprimento do momento de dipolo 10 A

ax Raio de Bohr do exciton 53 A

N, Densidade eletronica 1x 102 em—2
E, Energia de ligagdo do éxiton ~03eV
hQpg Separacdo de Rabi ~ 46 meV
m* Massa efetiva do elétron ~ 0.096 m,

Tabela 2 — Parametros fisicos para o calculo envolvendo a heteroestrutura com grafeno mostrada
na Fig. 25. A permissividade estd em unidades de permissividade do vacuo (Haastrup
et al., 2018).

dispersao dos elétrons a temperatura critica maxima que se pode prever com seguranga razodvel
nao deve exceder 100 K. Pelo grafico da Fig. 26 o valor de Ny que fornece isso € um préximo de
4 x 10" em=2.

Com isso obtemos a soluc@o do gap presente na Fig.27. A parte Fig.27 (b) mostra
um grafico de A(0,7T) com magnitude abaixo do valor da energia de Fermi &f, algo que condiz
com a hipétese do modelo BCS de que um gap se forma em uma vizinhanca da superficie de
Fermi. Finalmente, nosso modelo prevé uma temperatura critica da ordem de 101.2 K para um
sistema de excitons condensados nas condi¢des da referencia (Wang et al., 2019), um valor
que caracteriza uma alta temperatura critica em relacdo a T¢ dos principais supercondutores.
A utilizacdo do grafeno e TMDs proporciona muitas possibilidades para modificar de forma
controlada e reversivel propriedades fisicas do sistema.

Como ja foi discutido anteriormente, embora o modelo ndo possa prever com segu-
ranca T¢s proximas a temperatura ambiente, ainda aponta para a possibilidade de se obté-las

com modelos mais sofisticados, o que deixa aberta uma ampla area de pesquisa.
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5 CONCLUSOES E PERSPECTIVAS

Neste trabalho, nos dedicamos a investigar a supercondutividade mediada por BECs
de excitons e exciton-polaritons em heteroestruturas bidimensionais. Iniciamos com uma breve
exposicao histérica da teoria da supercondutividade. Uma vez que nossa andlise tedrica segue
a abordagem da teoria BCS, fazemos uma exposicao breve desta teoria e obtemos a equagao
do gap considerando um potencial atrativo efetivo. O caso dos fonons € analisado brevemente.
Mecanismos alternativos para supercondutividade sdo apresentados, com a substituicdo dos
fonons por excitons ou excitons-polaritons como um possivel caminho para a supercondutividade
em altas temperaturas. As vantagens e desvantagens destes sistemas sdo discutidas.

Finalmente, descrevemos um sistema cujo mecanismo € dado por estas quase-
particulas bosonicas: uma heteroestrutura que consiste numa camada semicondutora que abriga
excitons indiretos que formam grandes momentos de dipolo, colocados a uma distancia L de
um material que abriga um 2DEG. A formacdo dos excitons se d4 por campos elétricos ou por
excitacoes de fotons. Neste caso, a heteroestrutura fica dentro de uma microcavidade com dois
refletores de Bragg que criam fétons de cavidade que se acoplam fortemente com os excitons no
semicondutor, assim formando exciton-polaritons. Estes mediam intera¢des entre os elétrons
e possivelmente levam a formacdo de pares de Cooper. Propomos um modelo tedrico que
desconsidera a dissipacdo dos refletores, e considerado apenas o ramo inferior da dispersao dos
exciton-polaritons.

A partir de uma hamiltoniana efetiva para esse sistema, obtemos um potencial efetivo
Up(®) que depende da energia de troca ho entre elétrons. Este possui propriedades distintas
do potencial efetivo tradicional da teoria BCS, apresentando uma regido atrativa em tempos
longos sucedido por regides de forte atracao e repulsdo. Também apresenta uma dependéncia
linear direta com a densidade de excitons/excitons-polaritons Ny. Com o potencial efetivo,
aplicamos a teoria BCS e obtemos a equacao do gap. Esta é resolvida numericamente com a
utilizacdo de algoritmos iterativos, de forma que tanto a temperatura critica como a solucao
completa da fun¢do do gap sdo obtidas. Obtemos 7¢ em func¢do da densidade Ny, e vemos que
rapidamente alcangamos uma temperatura critica proxima a temperatura ambiente. A mediacio
por exciton-polaritons se mostra muito mais eficiente, algo que ja se esperava em vista de sua
maior capacidade de gerar interacdes efetivas fortes. Embora promissor, este resultado deve
ser observado com cautela, uma vez que o aumento da for¢a de interacdo pode gerar fases que

competem com a SC. Observou-se também uma queda na temperatura critica 2 medida que
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se aumenta a densidade de elétrons no 2DEG, ao mesmo tempo que o modelo exige que a
energia térmica destes esteja abaixo da energia de Fermi. Isso gera uma competicao entre dois
processos opostos, 0o que nos obriga a ajustar a densidade eletronica com cuidado dentro de
nossas limita¢des tedricas.

Finalmente, motivados por uma recente descoberta de excitons em um estado de
BEC a temperaturas da ordem de 100 K, aplicamos nosso modelo a este sistema. A camadas dos
excitons é composta de uma heteroestrutura de WSe, e MoSe,, dois TMDs, separados por uma
camada de h-BN. Para o 2DEG, escolhemos uma bicamada de grafeno, que possui a vantagem
de ter sua densidade eletronica facilmente ajustavel. Com este modelo obtemos uma temperatura
critica igual a 101.2 K.

O sistema de exciton-polaritons tem se mostrado promissor para o objetivo de se
alcancar altas temperaturas criticas. Este sistema € uma mistura de Bose-Fermi, e por isso,
quando se varia a for¢a de interacdo entre seus constituintes, transi¢des de fase podem ocorrer.
Em regimes de acoplamento forte a teoria BCS ndo € adequada, por isso se faz uso da teoria de
Migdal-Eliashberg, uma versio aprimorada da teoria BCS, e técnicas de grupo de renormalizacao.
De fato, € possivel mostrar teoricamente a possibilidade de diferentes formacdes de fases e
fendmenos coletivos em sistemas desse tipo (Cotlet et al., 2016; Milczewski et al., 2022; Julku
et al.,2022). Em particular, os autores referéncia (Cotlet et al., 2016) mostram que surgem, além
da supercondutividade, estados de onda de densidade de carga (CDW) e supersolidez, e que estas
fases podem ser ajustadas e controladas por paramentos dpticos e no design na microcavidade.
Além disso, mostra-se que estas fases podem competir entre si, o que pode prejudicar a formagdo
do estado supercondutor.

Uma proposta de pesquisa futura visa aprofundar os trabalhos citados anteriormente,
propondo um novo modelo tedrico que descreva o sistema em condi¢des onde seus modelos
antigos ndo sao validos. A possibilidade de alcangar supercondutividade em altas temperaturas
em sistemas desse tipo ainda é um territorio tedrico vasto e pouco explorado na literatura.
Investigar se a troca de excitons-polaritons virtuais pode induzir um emparelhamento de Cooper

robusto seria o foco desta pesquisa.
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APENDICE A - VALORES MEDIOS E PARAMETROS VARIACIONAIS

Neste apéndice calculamos explicitamente valores médios especiais relacionados ao
estado BCS. Com eles € possivel mostrar a validade de nossa abordagem no limite termodindmico

e também calcular os valores dos parametros variacionais.
Valores Médios Anémalos

Uma vez que o estado BCS esta devidamente normalizado, agora € possivel calcular varios
valores médios relevantes para a teoria BCS. O primeiro deles € o sobre o niumero total de parti-
culas, como em cada par tem ou particulas no estado (7k, 1) ou no estado (—7k, }), definimos o

operador 7 (» como:

ar k)

7T+G kic ks (A.l)

calculando o valor médio (@;|i (par ) @), temos:

o L N . ot _
(Pel ey 1) P) = (O (5 47201, O 1)t 1y (05 + 70 k? o3 )10 =
= |u7§|2<0| park |0> +u <O|G k\L kT park |O> (Az)
N + Tt
+ufve( \n(par%)%a 10) + [vg[*(0lo_z 074 A par 1191, 10);

os termos envolvendo |uk|2 v% e u% 7 sdo nulos. Usando as relagbes de comutagdo entre

operadores de criacao e aniquilagdo, o termo de \v~\2 se reduz a 2:

A _ $ Fot
(el 1y P2) = Vi (010 g 03 (0] 07, + 07y 0i))0) 0T, 0) =20 f* =2sem’6;. (A3)

_ra 2, : '
Para calcular (@] [n(par %)} |@;) seguimos os mesmos passos, e encontramos:

_ ~ 2
((p];|[n(pmz)}| @) = 4l |2 4sen297€, (A4)

de posse desses valores médios, iremos calcular o valor médio de N e N 2. Sendo:

anv Z”kﬁ’” m) Zﬁ(par%)v (A.5)
3 k
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temos, portanto:

(N) = (¥pcs|N|[Ppes) = Z,(‘I'Bcslﬁ(par z)l‘PBCS%
3

. ~ 1A _ A.6
com (Wgesli,,, 7 ¥acs) = [®<‘Pzﬂn(par % (R 1e)] = (8.6)
T I
- <(Plz|ﬁ(par %)|%>H<@’%> - <¢7<’A(par %)’@>
Ik
substituindo a equacao (A.3) em (A.6) :
= (V) :Z@),;\A park 2Z|v 2 ZZZsen (A.7)

-

k

Para (N?), comegamos notando que:

"2 _ ~ A ~ A A
N = [Zn(par _k‘):| [Zn(par K ] Z n park + Z n (par k)) (n(par /?))7 (A.8)
k K k [y
logo:
(N?) = (Ppes| N |Whes) =
. = A _ (A.9)
:Z<(plz|(n(park |(P]; + Z par%))|(pi><(pl?|<n(par 1?))|(P/€'>’
k kK
substituindo da equagdes (A.3) e (A.4), ficamos com:
4Z|vz\2+4 Z v v |? (A.10)
kK
Com essas formulas podemos calcular o desvio quadritico médio para N.
AN? = (%) — 4Zyv 244 Y Iugllvgl? (2Z|v ) -
[y
=4yl 4 L il - (42|vk|4+4 Y viPhval?) = (A1D)

Kk [

=43 (vl = el ") =4 X I (1= [v?)
k

k
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o desvio quadratico médio é:

AN? =4 Y Iy (1= ),
k

(A.12)
como 1 — |vz[2 <1
AN? < 42 vi|* =2(), (A.13)
o que € equivalente a seguinte desigualdade:
AN % (A.14)
® =\ @

A desigualdade (A.14) mostra que a flutuagdo relativa do nimero de particulas tende

a zero se (N) — oo, assim desde que estejamos proximos do limite termodinimico, a utiliza¢do
do estado BCS ¢ valida.
Por fim, vamos calcular valores médios de operadores da forma ¢

5104 Estes
operadores sdo responsdveis pelas correlagdes dinamicas entre duas particulas em um par. O fato

destes serem ndo nulos se deve a escolha de se usar os estados de duas particulas na construgcao
do vetor variacional. Assim, seja:

O 1,011 |P) = 0 1, 04 (g + o) o', )I0) =v[0), (A.15)
logo:

<(7),—(»|sz7¢6%¢|(/')];) = (@v|0) = v (0] (1 —I—va“ y i)|0> = vkuz. (A.16)
Tirando o conjugado hermitiano de (A.16) e usando as relacdes de anti-comutacdo, obtemos os

quatro tipo de valores médios, conhecidos valores médios andmalos

<¢1}’G 2¢GZT‘¢fC> v

i (Plog 0 g @) = —vpg
(Frlo’ o 13) =i

T (A.17)

Otimizacao dos Parametros Variacionais



84

Ao calcular o valor médio de Hpcg, vemos que o termo de energia cinética é simplesmente

o valor médio de 7 (par ) 4U€ ¢ dado por (A.3), o que da:

N o 2 oot T _
<HBCS> = 2%6}’\%‘ ;{A*< & kT> +AZ<G£,TG—E¢> _AE<GETG_E¢>} =

(A.18)
_ 2
= ZZ §%|VE| — ZA£<O-7<‘,TG*E¢>'
k k
Usando os valores médios de (A.17), chegamos na equacao:
HBCS 225k|vk’2—|—ZVH%,V~ Uz, vyu z (A.19)
kK
Lembrando que u; = coste_i % e V= senelzei‘:%, o termo de interagao fica:
Z VM,cos@;{,sen@lz,cos%senezezi(cfc%’). (A.20)

kK

Analisando os termos da soma, os Vi 2 s@o negativos devido a natureza atrativa do

potencial efetivo. Os angulos 6;

k veriam no intervalo de 0 a /2, logo os termos de senos e

cossenos sdo positivos. Para que este termo seja minimo, a diferenca de fase C%, — C% deve ser
nula. A forma mais simples disso ocorrer € ambas as fases sejam nulas, logo C% =0 cumpre a
condigdo de otimiza¢do. Como consequéncia disso os parametros u; e v; sdo reais.

Calculando a diferencial da equacao (A.19),

d{Hpcs) 4Z§kv~dv + Z Z k,{ up Vi Jugvy + g v d (g vy) } (A.21)
Trocando os indices mudos & e £’ no segundo termo, e substituindo a equacgado do gap:
d(I:IBcs> = 42 é}\/%dv% - ZA}{V%CZM}' + uzd\/z} . (A.22)
k k
Pela condi¢do de normalizag¢ao uﬂ + vﬂ = 1 temos 2uzduz +2v;dvy = 0, logo:

2
d<[:IBCS> = 425??0’\/7(‘ — ZAz{uk — —k}dv
k k

U

=L 46— 24— e
k

k

(A.23)
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A condigio de otimizacio requer que d(Hpcs) = 0 logo:

2
| =
4y — 280w - u—;} =0 = 2upy = {22}, (A.24)
Usando identidades trigonométricas, 2uzv; = sen26; e u% — % = c0s26;, o que implica:
&ysen26; = Aycos26;, (A.25)
obtemos: 2 A2
(005267()2 = k 5 € (sen297c)2 == k 5 (A.26)
AR R

Definindo E; = /5%2 + A%, as equacdes (A.26) sdo reescritas:
k Ay
cos260; = = e sen29,; =+-=. (A.27)

£y

Usando v% = (sen@z)2 =1/2(1—cos26;) e u% = (cos@,;)2 =1/2(1 + cos28;), logo:

(A.28)

As equagdes (A.28) determinam varias possibilidades de extremos, no entanto,
estamos interessados nos parametros que fornecem o estado fundamental, ou seja, os que tornam
(Hpcs) o menor possivel. Observando o comportamento do termo & = (e(k) —u) em (H, BCS)>
se (k) < U, o termo |v;|2 multiplica um fator negativo. Portanto, € racional escolher V,, para ser
o maior possivel. Assim, escolhemos o sinal negativo na equagao, pois 5% se torna negativo nesse
caso. Caso (k) > u, o termo que v; multiplica se torna positivo, com 5% se tornando positivo.
Assim, mais uma vez, a escolha do sinal negativo € adequada. Escolher o sinal negativo em vy

implica em escolher o sinal positivo em uz, € assim temos finalmente:

(1 - %) (A.29)

| =

1 5%

Os parametros (2.42) minimizam o vetor de estado |¥pcs), assim fornecendo uma

aproximacao do estado fundamental do sistema.
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APENDICE B - ESTRUTURA DE BANDAS DE UMA BICAMADA DE GRAFENO

O grafeno € uma forma alotrdpica bidimensional do carbono onde os atomos se
organizam em padrdes hexagonais fortemente compactados. Se tornou grande foco de pesquisa
nas ultimas décadas, embora ja tendo suas propriedades eletronicas conhecidas, isso s6 ocorreu
apos sua descoberta experimental em 2004 (Novoselov et al., 2004). Nesta secao deduziremos

sua estrutura da bandas e dispersao dos elétrons.
Monocamada de Grafeno
Estrutura Cristalina

Embora se organizem em uma estrutura hexagonal os dtomos individuais de carbono no grafeno
ndo formam uma rede de Bravais. Para descrevé-lo em termos de um padrao periddico dividimos
a rede em duas redes de Bravais triangulares bidimensionais A e B como mostra a Fig. 28. Cada
ponto de ambas as redes tem uma base de dois 4tomos de carbono. Os vetores primitivos sao

dados por:
. a L a
a :5(3,\/5), a2:§(3,—\/§) (B.1)

onde a constante a ~ 1.42 A € a distancia entre carbonos em um hexagono na rede. (Neto et al.,
2009).
Os vetores que localizam os trés primeiros vizinhos na rede A de cada carbono na

rede B sdo:

a

— a — —
61=§(1,\/§), 62:5(1,—\/5), 8 = a(—1,0). (B.2)
No espago reciproco mostrado na Fig. 28 temos também uma rede hexagonal, onde:

- 27 - 27
bi=2-(1,V3), hy=7-(1,-V3). (B.3)
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Figura 28 — Na esquerda vemos as redes A e B no espago de posi¢des. Na direita a primeira zona de Brillouin no
espaco reciproco, onde I', M, K e K’ sd0 os pontos de alta simetria.

b, A
kyA S
K \\\
T \
M k.
J/ X
K
b2 /’

Fonte: Adaptado de (Neto et al., 2009).

Hamiltoniano Tight-Binding

A estrutura nos niveis eletronicos do dtomo de carbono é 1522s?2p>. O orbital 1s estd for-
temente localizado no ntcleo, enquanto os demais orbitais 2s, 2py ,2py € 2p, formam as ligacoes
covalentes e bandas de conducdo do Grafeno. Os niveis 2s, 2p, € 2py, no plano xy hibridizam-se
em um orbital sp?, que dd ao grafeno alta resisténcia estrutural mas forma niveis inertes do
ponto de vista do transporte eletronico. Esta é a chamada banda-c (Grosso; Parravicini, 2013).
O orbital restante, p., forma a banda-7, que € responsavel por formar a banda de valéncia e
conducio, por isso serd nosso foco nesta secao.

Para modelar o sistema lancamos mao da aproximagao tight-binding, visto que os
elétrons estdo fortemente ligados. Consideramos que um elétron nesse orbital so pode saltar para
o primeiro vizinho, assim, definimos a constante de hopping ¢ ~ 2.8 eV para ser da ordem de
energia da banda-7. Definimos o operador de criacao az o (b; &) para um elétron com spin ¢ no

i-€simo(j-ésimo ) sitio da rede A (B). Assim, o hamiltoniano € escrito como:

H=—t ¥ (alohjo+b)gaic), (B.4)
(i.j).,0
onde (i, j) significa que para cada sitio i da rede A o indice j varia apenas nos sitios da rede B
que sdo primeiro vizinhos do sitio em i.
Passamos para representacao no espago reciproco desses operadores. Definimos a

partir da transformada Fourier sobre as ondas planas da rede:
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7<‘I_é lkij_’

1
alo—TZ bj,azﬁz - (B.5)
k k

com N sendo o numero de sitios na rede total e R; (R ) sendo o vetor na rede de Bravais da rede A
(B). Com a restri¢ao dos indices j em B.4, para cada vetor R; s6 a trés vetores primeiros vizinhos

de B na forma R; + 5j, com j = {1,2,3}. Assim, substituindo B.5 em B.4, ficamos com:

H= Z( Jal by o+ 9" (0] ai, ) (B.6)

onde definimos a fungdo ¢ (k) = —tY k9.
Usando a notag¢do matricial para operadores usado na secdo 2.2.5 podemos escrever

o Hamiltoniano em uma forma compacta definindo l;lg .= <ag b% ) :
) 76 ’G

H:Z<ai7 T,) 0 4k Yo (B.7)

Para encontrar as energias, diagonalizamos a matriz 2 X 2 usando as transformagdes

de Bogoliubov em termos das excitacdes. Os dois autovalores que correspondem as energias sao:

Ex(k) = £|9(k)], (B.8)

que, substituindo B.2 nesta equacdo chegamos na rela¢do de dispersao:

- 3k 3k 3k
Ei(k) ==t,|1+4cos (Txa) cos<\/_2ya> +4cos? (\/;ya) (B.9)

Naturalmente, surgem duas bandas, sinal (+) caracteriza a banda-7* e o sinal (-) a

banda-m (Neto et al., 2009). Os pontos em que ambas se anulam correspondem precisamente aos
chamados pontos Dirac. Dois destes sdo posi¢Oes de alta simetria na primeira zona de Brillouin,

que podem ser vistos na Fig. 28, e sdo:

L 21 1 Y 1
K=="(1,—), K ===(1.,——). B.10
3a( ’\@)’ 3a(, \/g) ( )
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Aproximacao de Baixas Energias

Desejamos expandir a fungdo (])(75) em torno do ponto K. Definindo § = k — K, encontramos

imediatamente:

2at

0(@) ~ = (gx+igy)(1+0(g/K)?), (B.11)

onde definimos a velocidade de fermi vp = %, o que leva imediatamente a relacdes de dispersao
E.(q) = +hvr|g| + O(q/K)? que define a equacio de um cone. Isso pode ser visualizado
claramente nos pontos de Dirac na Fig. 29. Para baixas energias, isso nos permite calcular a
energia de fermi de forma direta.

Figura 29 — Grifico da banda-7* e banda-7. Em cada ponto de Dirac a dispersdo assume uma forma aproximada-
mente cOnica, caracteristica de particulas com massa zero.

Fonte: Adaptado de (Neto er al., 2009).

Bicamada de Grafeno

A estrutura eletronica da monocamada de grafeno se comporta como um gés de particulas
com massa zero semelhantes as solu¢des da equacdo de Dirac, onda a dispersdo caracteristica
€ conica. Quando adicionamos uma segunda camada, veremos que a dispersdo volta a ser
parabdlica como a de um gas 2D tradicional. Enumeramos as sub-redes em 1 para a de baixo e 2

para a de cima. Os dtomos de rede da sub-rede 1 sdo A| e By, e dos da sub-rede 2 sdo A; e B».
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O empilhamento ¢é escolhido para ser o de Bernal (ou AB), em que os dtomos da
sub-rede A; estdo localizados diretamente acima dos dtomos da sub-rede B;. Os dtomos A (B>)
estdo localizados acima (abaixo) dos centros dos hexdgonos da outra camada. Esta configuracdo
também favorece a formacdo de um gap na estrutura de bandas do grafeno, algo que ndo ocorria

na monocamada (McCann et al., 2007). Na Fig. 30 vemos o desenho da estrutura.

Figura 30 — Bicamada de Grafeno com empilhamento Bernal (AB). Os dtomos A, (cinza claro) estdo ligados

fortemente aos atomos Bj.
A2 B2
@,

6l

Al Bl

Fonte: Adaptado de (McCann et al., 2007).

Hamiltoniano Tight-Binding Duplo

Adotamos novamente o modelo Tight-Binding para as duas sub-redes, onde assumimos que
ambas interagem fortemente entre si através dos pontos em A; e B. Assim, os hamiltonianos

das duas sub-redes sdo:

Hy=—t ), (af,i,abl,j,o +ariob] j,o> (B.12)
(i,j),0

Hy=—tY <a;7i76b27 jo T aziobl ,-,a> , (B.13)
(i,J),0

que segue as mesmas definicdes adotadas na sec@o anterior. Para o termo de interagao entre

sub-redes, consideramos que seja localizada e forte, assim definimos:
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Hi =1 Y (adobrio+aiob] ) (B.14)
i,o
onde definimos uma outra constante hopping ¥, (= 0.4 eV) entre camadas. O subscrito L no
hamiltoniano se d4 pelo fato da interacdo ocorrer perpendicularmente entre planos.
Assim o hamiltoniano total € H = H| + H> + H |, onde mais uma vez fazemos a

transformada de Fourier como no caso da monocamada. Definimos um vetor dos operadores de

criacdo dos estados de momento ‘Pz_c = <al i G,bl Oy G,bz Z G), € a matriz:
0 ¢k O 0
. “k) 0 0
Hi = | ? ®) el (B.15)
0 7 0 ¢(k)
0 0 ¢*k) 0
com ¢ (%) —t 23:1 eF:d; , assim reescrevemos H como:
H= leq SHE)W - (B.16)

Diagonalizamos H (k) para encontrar a relacio de dispersdo E(k), resolvemos a

equacio secular det(H (k) — EI) =0 :

E ¢ 0 0
« _E 0
det| ? " —0 (B.17)
0O n —-E ¢

0 0 ¢ —E

o que leva a dispersao:

\/|¢ !2+ +06—\/Y1+4|¢( )2, (B.18)

onde B = =+ indica a banda de condugdo ou valéncia, e @ = + as bandas internas de alta ou

baixa energia (Rozhkov et al., 2016).
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Aproximacao de Baixas Energias para Bicamada

No caso da monocamada, quando |¢ (k)| < ¥ perto do ponto K, sendo y; ~ ¢, temos |¢ (k)| =
hvpk. Escolnemos B = + e a = — nas dispersdo, definindo § = k—K , € expandindo em série

de Taylor para g pequeno:

N
E(k) ziM, (B.19)
4!
e substituindo |¢(§)| ~ hvrg:
2,212
EG) ~" ;Fk . (B.20)
|

Assim, a dispersdo nesta aproximacao volta a ter um formato parabdlico do gas de
elétrons 2D tradicional. Isso nos motiva a reescrever essa expressao na forma da de uma particula
massiva convencional E = h?¢*/2m*, onde definimos a massa efetiva como:

* N

m* =

= ) (B.21)
2\/%7
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