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RESUMO 

Neste trabalho apresentaremos os resultados da primeira tentativa do 
grupo de Física de Nuvens, para simular numericamente algumas etapas do processo 
evolutivo de uma nuvem quente. Principalmente aspectos críticos como as interações 
entre a dinâmica e a microfísica 

Nesta análise uma combinação das equações de conservação da 
massa, momento, energia e outros componentes foram utilizados. 

Nosso trabalho é uma contribuição para os pesquisadores da área de 
técnicas numéricas , que buscam descrever uma nuvem através da solução de equações 
complexas. 

O objetivo é apresentar um modelo de nuvem unidimensionai com 
microfísica detalhada, 

É um modelo Euleriano no sentido em que as equações que garantem o 
balanço de energia, momento, massa e outros são integradas numericamente, para 
determinarmos a evolução dos mesmos campos como função da altura. 

A tese contém uma microfísica detalhada e introduz um termo de 
perturbação da pressão entre o ambiente da nuvem e a vizinhança. Este fato corrige um 
dos maiores defeitos inseridos em outros modelos, quando a perturbação da pressão em 
qualquer ponto no interior da nuvem, é exatamente igual a pressão no ambiente. Isto 
significa que o termo de gradiente de perturbação na pressão, é da mesma ordem de 
granàeza que a força flutuante na equação de velocidade vertical. 
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CAPITULO 1 

INTRODUÇÃO 

As nuvens sempre foram objeto de curiosidade para o homem. Inclusive é fácil 
entender porquê. Os efeitos provocados pela presença ou ausência delas sempre 
determinou a diferença entre a felicidade e a infelicidade de populações inteiras de uma 
região. Chuvas torrenciais prolongadas, além de provocavar perdas materiais, muitas 
vêzes é infortúnio para as vidas de animais e pessoas. Por outro_ lado , a falta de 
precipitação também causa efeitos catastróficos, levando parte da população ao 
desespero. 

O homem, diante da incerteza climática, sempre se preocupou em entender os 
fenômenos que levam à formação das nuvens, das tempestades e outros fenômenos 
atmosféricos. 

Nosso trabalho será dedicado ao estudo das nuvens. Não será uma tarefa 
observacional, mas congregara todos os ingredientes para um amplo entendimento dos 
fenômenos microfísicos, que participam do processo da precipitação. 

O objeto desta . tese é o estudo teórico de uma nuvem . Os mecanismos que 
permeiam sua formação são extraídos basicamente das equações de Conservação do 
Momento, Massa e Energia. 

Entre o século XVII e meados do século XX, as idéias sobre as nuvens eram 
apenas especulativas ou filosóficas. Apôs 1940, a especulação e a filosofia deram lugar à 
pesquisa científica. A Ffsica de Nuvens é uma ciência embrionária em rápida evolução. A 
complexidade dos problemas envolvidos com as suas estruturas, mantém-se ainda sem 
uma resposta satisfatória às várias questões. Vista na óptica experimental, apesar dos 
avanços na utilização de várias técnicas sofis1icadas como satélites, radares e aviões 

instrumentados, muitos dos resultados são ainda de diffcil interpretação. As pesquisas 
neste campo, usualmente são bastante complexas: defíceis de serem realizadas e muito 
dispendiosas. 

O avião laboratório é capaz de medir todos os parâmetros relevantes que permeiam 
a formação da· precipitação, desde os parametros termodinamicos, dinêmicos, até os 
mícroffsicos. 
o radar consegue mapear a água precip�vel em nuvens isoladas ou em sistemas

de Mesoescala tais como: linhas de estabilidade, frentes e outros. 
Com satélites é possível se acompanhar a evolução dos processos convectivos 

numa região maior e com estas observações fazer previsões. Portanto, antes de 1940, a 
pesquisa nesta área da Ciência era uma tarefa muito complicada. 

Todas as observações acerca das partfculas de nuvens ou da precipitação até 1783 
foram feitas do solo. Após este período, estudos foram realizados usando balões 
instrumentados. Inicialmente estes balões foram usados para medidas da temperatura, 
pressão e umidade. Somente entre 1913 e 1930, Wlgand utilizou-se de um balão para 
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estigar a forma dos cristais de gêlo e granizo. As dificuldades para o estudo da 
� rmação de uma nuvem e sua evolução se apresentam através da própria localização 
espacial e a complexidade dos processos físicos que ocorrem em seu interior . 
=enômenos não lineares complexos se manifestam durante todo o processo de formação 
e precipitação de uma nuvem fazendo com que, pela ótica da teoria matemática, 
processos aparentemente simples requeiram explicações muito detalhadas 

Um dos processos mais importantes para a formação das nuvens é o da 
condensação do vapor dágua sobre os núcleos higroscópicos. A condensação 
atmosférica obViamente, só ocorrerá se existir na atmosfera partículas minúsculas 
(aerosóis) capazes de absorver a água. Os núcleos de condenção são classificados em 
marítimos e terrestres. 

Sabe-se que nos oceanos estes núcleos são formados por NaCI (sal), e formam-se 
através da emissão de um número enorme de pequenas gotículas ao ar no processo de 
escape de bolhas, formadas no interior dos oceanos. Tais goticulas levadas pelos ventos, 
evaporam deixando o NaCI e outros aerosóis livres na atmosfera. A quebra das ondas 
também funcionam como um dos mecanismos desta formação. Em terra existem outros 
tipos de núcieos com origens variadas desde os poléns de plantas, fuligens, bactérias, 
poeira, elementos de erupções vulcânicas e outros. 

Apesar da importância dos núcleos de condensação, sem a presença do vapor 
dágua, num estado supersaturado nada ocorreria. A supersaturação além de influênciar o 
processo de ativação dos núcleos de condensação de nuvens (CCN), também participa 
como controlador da razão de crescimento das gotas na nuvem. Assim a avaliação da 
supersaturação é um· fator crrtico para o entendimento da evolução da distribuição do 
tamanho de gotas. Constitui-se em uma tarefa difícil medir a supersaturação no interior 
das nuvens mas é possível deduzi-la a partir do conhecimento da pressão, da 
temperatura, da velocidade do vento ascendente e outros. 

Wegener demonstrou que em temperaturas abaixo de OC gotas de água 
superesfriadas não podem coexistir em equilíbrio com partículas de gelo. 

Da observação das nuvens levou por muito tempo a se pensar que a precipitação 
deVia-se a uma instabilidade coloidal que existe em nuvens, contendo gotas d'água 
superresfriadas e cristais de gêlo. No entando nos idos de 1940, já com o auxílio de 
aviões, pode-se constatar que nuvens com temperatura interior acima de oc produziam 
precipitações razottveis. E_stas informações conduziram os cientistas ao exame de outros 
mecanismos de crescimento das gotas eram importantes e, consequentemente esta 
análise os direcionou ao estudo dos processos de colisão e coalescência de gotas, como 
também da ruptura e outros. 

Após os trabalhos de Shaefer (1947) e Langmulr (1948) com o qual demostraram 
que é possível interferir numa nuvem com o propósito de produzir precipitação, muito 
investimento foi feito, de forma aleatória, pelos governos, notadamente pelos militares. 
Estas aplicações científicas tinham o intuito de dominar uma técnica que parecia ser 
fundamental para a solução de vários problemas que afligem o homem e a sociedade. 
Constatou-se que diagnosticar tais estudos complexos exigia maior domfnio nas análises, 
e mais pesquisas con_, maiores recursos e investimentos. 

As tentativas de modificar a climatologia envolve vultosas somas, tomando-a 
economicamente inviável. Assim só prosperou a moderna pesquisa e� Física de Nuvens 
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que tenta evidenciar as iigaçôes entre as nuvens e os mecanismos de iarga escaia que 
controlam o fenômeno atmosférico. 

O fenômeno microfísico que descreve o processo de formação das gotas ou dos 
cristais de gêlo, passou a ser estudado do ponto de vista teórico experimental. Novos 
equipamentos foram desenvolvidos para ver diretamente na nuvem como as gotas se 
formam, utilizando-se aviões laboratórios, radares e satélites. 

Pela investigação teórica, modêlos de várias acepções foram desenvolvidos com 
intuito de simular todos os processos que possam compor a formação da precipitação. 
Com o advento de novas tecnologias, o computador possibilitou melhor êxito em todas 
estas tentativas. 

Vale salientar que não somente a microfísica é considerada importante como 
também a dinêlmica .Esta última é responsãvel pelos aspectos macroflsicos da formação 
da nuvem. A convecção e a advecção proporcionam as condições ambientais favoráveis 
para a evolução dos processos microfísicos. 

Evidência-se aqui o problema da escala espacial e temporal onae os fenômenos 
microfísicos e macrofísicos acontecem bem como suas interrelações. Sabemos que o 
fenômeno microfísico ocorre numa escala espacial da ordem de 
10-2 micras à 105 micras, enquanto a dinâmica ocorre numa escala que vai desde a 
dimensão de redemoinhos turbulentos capazes de decairem por dissipação viscosa, 
10-2 

cm , à própria ·.dimensão da nuvem 106 
cm. Portanto a interação entre estas 

escalas é de grande importância no processo de formação do precipitado numa nuvem. 
Vários fatores caracterizam a precipitação. Entre eles temos as velocidades 

verticais, o conteúdo· de água líquida, a temperatura da nuvem e, principalmente as 
escalas de tempo da nuvem. 
o objeto da presente tese será o estudo das nuvens convectivas e as várias etapas

que acontecem durante o seu ciclo de vida. Um destes fatores, o flutuante que 
juntamente com as forças mecânicas, é o responsável pelo transporte vertical de energia 
e matéria na atmosfera, é um mecanismo crucial na formação das nuvens. Ele é definido 
como a razão entre a diferença de temperatura entre a parcela e o ambiente e a 
temperatura do ambiente, isto é: 

T-T'
FB =g--r, 
sendo que: 

T' = temperatura do ambiente; 

T = temperatura da parcela; 

g = aceleração gravitad.onal 

I. l

o processo de mistura que também interage com o fator flutuante e ocorre na
fronteira do sistema convectlvo, se deve basicamente a diferença de temperatura entre o 
ambiente mais frio, mais seco e parcela, é também preponderante para a formação dos 
cumulus convectivos. A penetração de massas de ar através do processo de mistura 
favorece a redução da força flutuante e diminui a razão de mistura no interior da parcela. 
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Tanto a estrutura das nuvens convectivas, como os aspectos dinâmicos dos 
pracessos de penetração, ainda são questões abertas na dinâmica e termodinâmica da 
nuvem, Pulach and Baumgardner (1988) e apresentam • relevantes contribuições 

e adicionam importantes dados a estas questões. 
O processo convectivo; mecanismo fundamental para formação de nuvens não 

refundas (Cumulus não profundos) em principio , ocorre de várias formas. A convecção 
fivre também chamada convecção gravitacional, se deve a gradientes de densidade de 
fluido, produzidos por pertubações térmicas e que resultam em instabilidades 
• hidrostáticas. Este fenômeno se deve ao esquentamento na base ou resfriamento no 
topo da nuvem.

Em princf pio a convecção livre na atmosfera aproxima-se do caso ideal de 
convecção celular e é fonte geradora de cumulus e stratus cumulus. 

Processos não-térmicos também influenciam na convecção. A convecção forçada, 
que ocorre devido a efeitos orográficos ou movimentos verticais induzidos por campo de 
vento, é também um fator destacável na formação de cumulus não profundos. 

A Convecção pode ser vista como seca ou úmida. A úmida implica na formação de 
sistemas precipitáveis, onde a liberação de calor latente é fator de suma influência. 
Salientamos ainda que em determinadas situações os sistemas convectivos podem 
passar por vários estágios. Exemplificando: O movimento de uma frente fria que 
favorece a formação de uma linha de nuvens convectivas, que tendem a estágio de 
precipitação com forte liberação de calor latente, se desenvolve para altUras superiores 
como um sistema convectivo livre e persist� no tempo sem a necessidade de qualquer 
sistema forçante. O estágio convectivo passou de um forçante seco para um forçado 
úmido, finalmente chegando num livre úmido. 

Como pode-se ver, estes são apenas alguns dos muitos processos que 
caracterizam a dinâmica de uma nuvem convectiva, além destes uma gama de 
fenômenos microflsicos participam da formação da precipitação e é importante salientar 
suas interações. As velocidades verticais são os fatores determinante para avaliar se a 
água precipitável é mantida suspensa ou não. A temperatura na base da nuvem é outro 
fator predominante na caracterização do precipitável. Se duas nuvens contendo a mesma 
espessura, e uma delas , tendo temperatura na base maior do que a outra, mais água 
precipitével ela conterá. 

Na presente tese é apresentada uma descrição completa de um modelo que 
simula uma nuvem quente. Isto significa dizer: uma nuvem onde encontra-se a água 
somente nas fases líquida e de vapor. O modêlo se baseia nos trabalhos de Tom/o Asai 
e AlcJra Kaaahara (1987), Ogura e Talcahaahl (1973), Takahaahl (1975), Le Can e 
lsaka (1989), onde a nuvem é formada por uma coluna cilfndrica, tendo como vizinhança 
com a qual interage uma outra região cilíndrica concêntrica, permitindo assim a utilização 
de uma simetria radial que simplificará a obtenção das equações que governam tanto a 
dinâmica, a termodinâmica quanto a microfísica. O tratamento microffsico é detalhado e 
utilizamos o modêlo descrito no .trabalho de Le Can e /saira (1989), que difere sutilmente 
daquele descrito por Kovetz e Olund (1969). A supersaturação por sua vez é tratada por 
um método interativo, que de acordo com HaN (1980), utiliza o conhecimento da razão de 
mistura do vapor d'água e temperatura, e é consistente com o tratamento dado à 
termodinâmica. 



O processo de condensação/evaporação segue aproximadamente o esquema de 
aiivação dos núcleos de condensação. numa proporção dada de acordo com a 
supersaturação no interior da nuvem. Após o Inicio do processo as gotas crescem por 
difusão do vapor d'água sobre elas, como podem também evaporá-se. 

O Método de Solução Numérica é analisado considerando-se o· modelo advectlvo 
preposto e estudado por Long and Pepper (1981) e Pumel (1976).De acordo com 
Pumel (1976) , e testado por vários autores , inclusive por Plelke (1984), o método 
numérico da Spline (ver Purnel (1976) , na versão advectiva carrega baixo efeito 
difusional, demonstrando uma boa performace computacional. Esta tese seráo dividida 
como a seguir: 

Nõ capftulõ li utiliza-sê a dinâmica e a termodinâmica para montagem do modelo 
dinãmico. No capítulo Ili introduz-se a parte de microfísica. No capítulo IV inseri-se as 
condições ambientais , iniciais, de contorno. Apresenta-se o .esquema numérico 
completo de solução do conjunto de equações do modelo. No capítulo V relata-se uma 
discussão geral sobre os dados e as conclusões e o conjunto de dezoito figuras relativas 
ao trabalho. 
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11.1 - INTRODUÇÃO 

CAPITULO li 

DINÂMICA DO MODELO 

Neste trabalho apresentaremos os resultados da primeira tentativa do 
�o de Física de Nuvens para simular numericamente algumas et�pas do processo 
e olutivo de uma nuvem quente. Principalmente aspectos críticos como a interação entre 
a dinâmica e a microfísica foram bem estudados e entendidos. Nesta análise uma 
: mbinação das equações de Conservação da Massa, Momento, Energia e outros 
:omponentes foram utilizadas. 

Durante a década de sessenta, muitas tentativas para simular umá nuvem 
.;onvectiva foram realizadas. Ogura e Ph/lNps (1962) com seu trabalho pioneiro , 
naseando em equações anelásticas para processos reversíveis, inspiraram uma das 
:mmeiras tentativas de simulação numérica da evolução de um processo convectivo 
• mido, o qual foi desenvoMdo por Ogura (1963), e que por sua vez utilizou um modelo
simplificado com simetria axial. Nestes trabalhos a precipitação não foi considerada. Com
a mesma abordagem outros pesquisadores avançaram . Entre eles Aaal (1964) e OrvHle
(1965), utilizaram modelos bidimensionais para simular cúmulus convectivos. A
introdução de água precipitável aconteceu nos trabalhos de Das (1964)1 Takeda (1966a,
1966b). Kessler (1967) que parametrizou a Microffsica e obteve resultados excelentes
a simulação de uma nuvem real. 

Ainda em 1967 Srlvastava demostrou , a partir da parametrização de 
Keaaler (1967), que o desenvolvimento de gotas de chuva é um fator preponderante no 
decaimento de um cúmulo isolado. Vârios outros pesquisadores extenderam este tipo de 
tratamento para outros tipos de cúmulus. 

A década de 60 foi portanto o marco dos estudos de grande parte das 
simulações numéricas de nuvens convectivas , notadamente visto pela falta de máquinas 
com vários processadores, que as processasem. Somente foram usados os modelos 
simples do tipo bidimensionais e unidimensionais . Nos idos de 60 modelo� bem mais 
sofisticados são desenvoMdos. Talceda (1971) adotou para a ocasião um modelo 
incomum: bidimensional com as gotas de água discretizadas em sete categorias de raio, 

assumiu a nucleação com uma concentração constante de J oo partículas/ cm -3 . No
cálculo do crescimento de gotas por condensação, utilizou-se um modelo de difusão de 
vapor sobre a gota já formada e garantiu-se que a supersaturação vai a zero após o 
cálculo da condensação. Também foram considerados efeitos microftsicos a 
coalescência e quebra de gotas· . Neste trabalho ficou evidente que o cálculo da 
supersaturação era baseado somente nos aspectos dinâmicos da nuvem. 
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Já Ama.son e Grffflfleld (1972) foram os primeiros a calcular a 
supersaturação em duas dimensões e principalmente basearam seus cálculos na 
interação entre a dinâmica e a microflsica. No trabalho destes cientistas os processos de 
nucleação e crescimento por difusão ficaram bem caracterizados. Entretanto os 
processos microflsicos de crescimento por coalescência e de quebra de gotas foram 
desconsiderados. O modelo de Amason e Greenffeld (1972), simula a fase inicial de 
formação de uma nuvem. Os aspectos que levam a concretização do ciclo completo da 
nuvem foram introduzidos por Clark (1973} . O modelo de Clark é bidimensional. Ele 
considerou os processos microfísicos de nucleação, condensação/evaporação, e também 
os processos de coalescência e quebra de gotas. Neste modelo a fase de nucleação é 
calculada em detalhe. Foi utilizado para o conjunto de CCN uma distribuição com função 
do raio. O problema do modelo foi o tempo gasto para o processamento no computador. 

Ogura e Takahashl (1973) desenvolveram um modelo simplificado com 
uma dimensão e meia, onde a evolução do espectro de gotas levou em conta todos os 
aspectos tais como: nucleação sobre uma distribuição de CCN's, 
condensação/evaporação, coalescência estocástica, sedimentação e quebra de gotas. o
espectro de gotas foi tomado em conta e avaliado entre lµ m e 4mm de raio e o 
mesmo considerou na integração 51 categorias de gotas. 

Os modelos unidimensionais como o de Ogura et AI/ (1973), consomem 
baixo tempo computacional. São capazes de descrever aspectos importantes do ciclo 
completo de uma nuvem. Em geral são derivados com várias simplificações e incluem 
alguns parãmetros empfricos. Por outro lado, não podem conter aspectos importantes 
tais como: evaporação na borda da nuvem, nem modificações que ocorram no ambiente 
próximo à nuvem. Para entender melhor os processos micro físicos um modelo deste 
calibre pode ser usado. Entretanto os modelos Bi e Tridimensionais a menos das 
dificuldades computacionais, produzem resultados mais confiáveis. 

Soong (1914) se utilizou de um modelo bidimensional com simetria axial e 
incorporou todos os processos microflsicos de Ogura e Takahaahl (1973), tais como 
nucleação, condensação/evaporação, coalescência estocástica, sedimentação e quebra 
de gotas. Para diminuir o tempo computacional Soong parametrizou o processo de 
nucleação, prescrevendo um espectro de referência para a formação de gotfculas em 
tomo dos núcleos de Condensação. Buscando resolver a equação de Coalescência 
Estocástica usou um método que conserva a massa e o número de gotas: o método de 
Bleck (1970). Com este trabalho Soong conseguiu investigar vários aspectos que 
diferem entre nuvens marítimas e continentais. 

Talcahashl (1975) desenvolveu um modelo similar ao de Soong com 
pequenas alterações. 

O modelo anelástico bidimensional desenvolvido por Hall (1980) incorporou 
um tratamento detalhado das fases da água e gelo. A fase líquida ele considerou 
condensação/evaporação, coalescência quasí-estocástica, sedimentação e quebra de 
gotas; a fase de gelo incluiu o crescimento das partículas por difusão e agregação. Numa 
primeira instãncia ele assumiu uma atmosfera marítima com uma paramebização 
caracterfstica para o CCN . Neste estudo considerou apenas o processo de chuva 
quente, ele obteve no caso uma supersaturação relativamente alta, por volta de 5%, que 
surgiu decorrentento da precipitação. 
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Para o cálculo da supersaturação ele empregou o método implícito o qual 
foi usado primeiramente por Soong (1974). Este método aproveita a interação entre a 
dinâmica e microfísica para definir a tendência do campo de supersaturação. 

Como pode-se observar nas décadas de 60 e 70 multas foram as tentativas 
para simular o ciclo completo de uma nuvem convectiva. Todas contribuíram de alguma 
forma para que vários processos pudessem ser contemplados assim como as suas 
influências. 

No final dos anos 60 o foco das aplicações buscam o entendimento da 
dinâmica. Já na década de 70 tanto a dinâmica quanto a microfísica foram intensamente 
estudadas e suas interações bastante investigadas. 

Atualmente a tendência é simplificar o tratamento da microftsica e 
compreender melhor os problemas decorrentes da dinamíca. 

Embora os modelos dinâmicos consigam explicar a evolução dinâmica de 
estruturas convectivas profundas, muitas questões estão em aberto. De acordo com 
Kogan (1991) são elas: 

ltl Qual e a regra da microestrutura da Nuvem na dinâmica da Nuvem? 
0 Que fatores controlam a variabilidade do espectro de gotas no 

espaço e no tempo e eventualmente na formação e evolução da precipitação? 
De acordo com Kogan se faz necessário o desenvolvimento de 

parametrizações microfísicas mais realísticas. Tzlvlon et ali (1987, 1992) fez uso de um 
tipo de parametrização tentando resolver a equação estocástica com um número 
reduzidlssimo de categorias de raios de gotas, buscando desta forma a mesma linha de 
raciocínio sugerida por Kogan(1991). 

É imprescindível que os pesquisadores em modelagem de nuvens 
convectivas, adaptem corretamente o tratamento dos processos microfísicos com a 
base dinãmica detalhada. 

As questões básicas são as escalas tanto espacial como temporal. Existem 
fenômenos como a nucleação que ocorre na escala do mícron. Outros como a dinâmica 
dos transportes, surgem na escala dos quilometros. 

A importância da influência dos processos microffsicos sobre a dinâmica 
das nuvens fica evidenciada quando se observa a formação da precipitação em nuvens 
dos tipos continentais e marítimas. O fator predominante que caracteriza a diferença 
entre elas é o espectro de CCN's. Esta diferença é representada por uma chuva pesada 
e rápida para o caso marftimo e uma chuva leve com ciclo de vida longo para o caso 
continental. 

Clark (1973) e Kogan (1991) mostraram que, no caso de nuvens não 
profundas e sem precipitação, a microflsica tem pouca influência sobre a dinãmica, 
estando em completo eonfronto eom os resultados de Amaaon e Greenfleld (1872). 
Este é um resultado que precisa de investigações mais aprofundadas. 

Com a evolução da microinformática, computadores com mais de um 
processador , processadores paralelos e cada vez mais rápidos, consequentemente 
melhor performace, tomaram possível o desenvolvimento de modelos em duas e em 
três dimensões com microfísica completa. Desta feita foi avaliada a 

condensação/evaporação e coalescência. graças ao poder computacional 
emplementado. 
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Neste momento não estamos visando um modelo sofisticado tridimensional 
com microfísica completa. O nosso trabalho é uma contribuição para os Pesquisadores 
da área. de técnicas numéricas, que buscam descrever uma nuvem através da solução 
de equações complexas. 

Para reproduzir as características do desenvolvimento de nuvens 
convectivas é necessário conhecer certos aspectos da interação entre a dinêmica e a 
microfísica. Em geral estas informações são qualitativas. Portanto é muito difícil neste 
presente instante comparar os resultados obtidos com dos outros efeitos dos modelos. 
Em certas ocasiões são as observações com suas características pontuais que não 
podem ser utilizadas. Outras vêzes são os próprios modelos cujos contextos, tanto 
dinâmicos quanto microfísicos, não são realistas. Consequentemente na grande maioria 
das situações, os resultados dos melhores modelos tem confiabilidade limitada. Esta é a 
grande busca dos pesquisadores desta área, procurando cada vêz mais melhor 
entendimento dos detalhes, sejam eles dinâmicos ou microflsicos, e principalmente 
numérico. 

Dentro destas três linhas de conhecimento viu-se que muitas questões 
estão abertas, enquanto que outras são críticas. Fala-se por exemplo hoje, sobre a 
supersaturação molecular, uma situação onde cada hidrometeoro no interior do campo 
de supersaturação teria o seu próprio campo. Hipóteses que ainda estão nos laboratórios 
e que, se confirmadas dificultarão ainda mais os cálculos envolvidos nestes processos. 

Na microfísica todavia, existem possibilidades na coalescência estocástica 
de se minorar tais complexidades. Pesquisas estão sendo realizadas para a obtenção de 
uma solução analítica para a equação estocástica. Pelo menos se cogita uma solução 
numérica cada vez mais eficientes em termos computacionais. 

O objetivo deste trabalho é apresentar um modelo de nuvem 
unidimensional com microflsica detalhada. O modelo é euleriano no sentido em que as 
equações que garantem o balanço de energia, momento, massa e outros são integradas 
numericamente para determinar a evolução dos vários campos como função da altura. 

o nosso modelo , ao contrério do de Ogura e Takahaahl (1971), trabalha
mais próximo daquele desenvolvido por Honon (1973), pois além de conter uma 
microflsica bem detalhada, também introduz um termo de perturbação da pressão entre 
o ambiente da nuvem e a sua vizinhança. Este fato corrige um dos maiores defeitos
inseridos no Modelo de Ogura et ali (1971) e outros, em que a distribuição de pressão
em qualquer ponto no interior da nuvem é exatamente igual a pressão ambiental. Isto
quer dizer que, o termo de gradiente da perturbação na pressão ,é da mesma ordem de
grandeza que a força flutuante na equação da velocidade vertical.
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1 1 . 2 - AS EQUAÇÕES BÁSICAS : 

A base dinâmica na qual os processos microffsicos serão estudados é 
mostrada através das equações que possibilitam a completa formulação numérica de 
uma nuvem. Algumas das técnicas numéricas serão analisadas. 

A metodologia completa será objeto de outros capítulos. 
Ao investigar uma nuvem tem-se em mente que ela pode ser analisada 

como um sistema atmosférico composto por uma série de subsistemas dentro de uma 
vizinhança isolada. O conjunto é composto basicamente do ar seco e vapor d'água, e 
dependendo das condições dinâmicas e termodinâmicas pode ser preparado para 
produzir água precipitável. Obviamente tudo isto é passivei dentro de condições 
microfísicas adequadas. 

Do ponto de vista dinâmico as equações que dominam o movimento na 
escala das nuvens são compressfveis e assim permitem a propagação de ondas de som 
e de ondas de gravidade. Apesar da não importância das ondas de som, sua alta 
velocidade de propagação impõe severas restrições sobre o processo de integração 
numérica, portanto devem ser eliminadas. A técnica de eliminação anelásttca remove 
alguns termos das equações compress(veis e com isto permite-se utilizar tempos de 
integração numérica relativamente maiores do que aqueles para o sistema compressível. 

O modelo aqui desenvolvido segue o esquema de Asai e Kaaaarara 
(1967), que considera a nuvem com uma coluna cilíndrica, cujo raio é independente do 
tempo, e é suposto que o ambiente no qual ela se encontra permanece em repouso. 
Contudo é usada uma aproximação que compensa o efeito do movimento descendente 
sobre o ambiente. 

O modelo é do tipo Euleriano e portanto, pode ser usado para proporcionar 
o perfil vertical dos vários campos durante o ciclo de vida da nuvem.

As equações básicas que governam o movimento na atmosfera estão 
ligadas as equações de conservação local, abrangendo: 

- conservação da massa;
- conservação da energia;
- conservação do momento;
- conservação da água;
- conservação de outros componentes.

A conservação da massa, caracterizada pela equação da continuidade é
por demais conhecida, e descreve a taxa de mudança com o tempo da densidade local, 
como igual ao negativo do fluxo sobre o volume em questão, dada em termos 
matemáticos por: 

t +V• (pV) = O li . 2. 1 

A 2a. equação mais importante é a conservação da Energia que presentada 
pela 1 a. Lei da Termodinamica: 

dQ=dW+dU 

que em forma específica é dada por : 

1T2.21 
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dq=de+dw onde dw = pda.

A pressão p pode ser conectada ao volume específico e a temperatura 
a :avés a Lei dos gases para a mistura do ar seco e vapor d·água. ou seja. para o ar 
... mido suposto como um gás ideal. 

P a = R "T" ou P = p ,::. R" Te· onde T _, e a temperatura virtual e é àadu por 
T

0
, = T (1 + O . 61 q e,) e q u e a razão de mistura . E é dada por 

cujo valor nos trópicos dificilmente excede 22 g í kg. 

Como cf11' = pda. = d(pd: - adp. d-w = R,-1d�. - adP . Usando a ieí especfficc1 
... 

:;; a o ar úmido no caso da energia interna específica ser uma diferenciai exata e função 
=-= T'" e a. isto é : 

- -,..,.. \ d - à: dT.. e - e(1v J , I? - -- ., . c1Iv 
- . . .. ' . . a, 
uai temos au�: ah= {tw+ae = vaa�--. • • 

ôl'i, 

Usando o fato de que: 

de = C cflTv e que : C:: = dS . Sendo que ai = C p, mostramos que:
1v ôl'v 

d-, - e 
dTv Rd dP 'd d uili'bri 0 - -p -- - - . e cons1 eran o que no eq o 
T., p 

dr,• R dJ' d1n1· R • dS = O: então �=_d__=:, \' = _g_dh1P
T..: C

p 
P dTv C p 

dessa forma podemos mostrar que 
R . , d.C.1 

ü-,.,, ( 1000 ) / ;p
u-lv• -- ;

: __ p _/ 
onde 0 é a temperatura potencial, ou seja, a temperatura T� associada com a pressão de 

lOOOmbar. 
É facil a partir dai mostrar que : 
S = C p ln&+ const 

derivanào S com respeito ao tempo obtém - se: 
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dS Cp d0 dB 0 dS 
-=--=, ou melhor - -S dt 0 dt dt - CP dr - 0 • 
aonde S 0 representa as fontes e sumidouros de calor que garantem uma mudanca da entropia

do sistema. 

dB dB 
Portanto 

dt 
= S 0, fornece a 2a. Eq. do modelo. 

dt
do ponto de vista Euleriana fica 

dado por: 

ôB -
-

--=V•VB=Sn 
a º 

ô0 - -

-= -V •VO+S0 II 2. 4 

A 3a. equação importante sal das leis da Mecânica Clàsslca e basicamente é retratada 
pela 2a.Lei de Newton, a qual estabelece que a resultante das forças que atuam sobre 
um objeto, gera uma aceleração dada pela razão entre a força e a massa do objeto.Ao 
tratar com o movimento atmosférico, alguns detalhes devem ser lembrados; a força é 
normalizada através da massa ou seja: f=FIM ; o objeto atmosférico neste estudo, se 
encontra imerso num sistema referencial acelerado, ou não inércia!, e nestas 
circunstâncias para podermos usar as leis de Newton, forças fictícias devem ser 
introduzidas. Estas forças conhecidas como força de Coriolis e força centrípetra. 
contribuem fortemente para os movimentos horizontais, para latitudes médias na terra, 
tendo pouca influência para os trópicos e sobre os movimentos verticais. Neste caso, 
considerando que as principais forças que atuam sobre uma parcela do ar atmosférico, 
sejam a força da gravidade , e aquela devido ao gradiente de pressão, pode-se escrever 
para a conservação do movimento a seguinte equação: 

dJ7 1 - -
-= --VP-gK-2iliV 
dt p 11.2.5 

onde Q é a velocidade angular da terra. 
As outras equações que completam o conjunto, podem representar 

qualquer modelo para o sistema atmosférico . Tratam a conservação da água e outros 
gases , como o conjunto de núcleos higroscópicos necessários à formação da nuvem. 

Para o caso da água, que na atmosfera pode ocorrer nas suas três fases: 
líquida, vapor e gêlo. A equação de conservação é dada por: 

dqn - = S
q 

onde n = 1,2,3 ... N li. 2. 6
dt n 

O termo de fonte sq. refere-se à aqueles processos onde a água permite 

transições entre suas várias fases. Para o modelo aqui descrito onde apenas considera-
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: 

se a água nas fases líquida e vapor, apenas os processos de condensação e evaporação serão 
considerados. faciiítando o tratamento das equações. 

A outra equação que trata da conservação de outros gases, no nosso caso, 
aquelas partículas h1groscópicas. conhecidas como CCN ou núcleos de condensação de 
nuvens. tem um aspecto simiiar ao anterior .. 

As outras equações de balanço envolvenao principalmente a água e outros 
componentes atmosféricos como aerosóis, núcleos de condensação e outros são 
simplesmente dadas por 

11. 2. 7

Aqui o termo de fonte deve incluir mudanças de estado. e também 
transformações químicas. precipitação e sedimentação. 

Usando o fato que o operador diferencial lagrangeano: 

d ó . fr ,,--=--t-•' . V

dt a 

O conjunto de equações assume a forma: 

i3p = -V•(pV) 
ôt 

éiV 1 
= - V• v' V--· - v' P -gK - 2 Q x V

ôt p 

d:Jn ,. n s· -__ - = - • • v qn + qncf 

ÔZm 
a= -V• vxm + Szm

! 1. 2. 8

II. 9a

l I. 9c

II. 9d

l I. 9e

Este conjunto de equações admite todo tipo de solução, que estejam de 
acordo com sua proposta. Entretanto algumas destas soluções são inoportunas e devem 
ser eliminadas. A técnica utilizada para filtragem destas soluções passa por uma 
avaliação da importância de cada têrmo individualmente. Considerando que cada 
fenômeno a ser descrito ocorre em escalas tanto espacial como temporal, bem 
determinados, e muitas vêzes bem distintos. 
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1 1 .3 - ORGANIZAÇÃO DO MODELO 

Como foi escrtto anteriormente o conjunto de equações não lineares, capaz 
::e descrever o fenômeno atmosférico, contém em si um espectro de informações, 
espalhado desde escalas largas, proporcional ao perímetro da terra, até pequenas 
escalas relacionadas com o processo de dissipação molecular. Da impossibilidade de se 
bter uma solução matemática completa para tal problema, recorremos a técnica de 

4nálíse de Escala", como também para filtrar soluções que não são importantes dentro 
:ias escalas em que avaliamos o fenômeno, recorremos à Estatística, buscando auxilio no 

atamento do fenômeno turbulento. 

l;m .,;.,;.,, ,i-, impí"'"i"'ih.llirl-,l'io l"in f',,.nAm.:.r"" +, ,.+., •jon+,-,. pí"'"'"'ní,,. íl0 ,..,.,.,.;Unt-'"' 0'8 1-111 Yló>LQ UQ I 1 1  CYló>IU 11\.IQUC UV ICI VI CI IV LUI UU <wl lLV ,;;;;,>,;;;; 1 ,;;;; 1.,VI IJ I LV 

equações, somos obrigados a tratá-lo através de valores médios que possam descrevê-lo 
de forma aproximadas. 

É óbvio que este tratamento está intimamente ligado à incapacidade dos 
computadores atuais em tratar o problema. Turbilhões a nível molecular ocorrem em 
intervalos de tempo da ordem de 1 seg , e escala espacial de l 0-2 cm. Numa 
situação corno esta um fenômeno de nuvem que considerasse tais efeitos deveria 
trabalhar com uma escala espacial e temporal 

5x, Jy, Jz � 1 cm e 5t � 1 s 

Como uma nuvem individual ocorre na escala de 1 a 10km na horizontal até 
8km vertical, ocorrendo num intervalo de tempo da ordem de até 1 hora , 
qualquer tentativa numérica explodiria a capacidade de qualquer computador atual. 

Nestas circunstâncias uma simplificação das equações, primeiro através de 
ma Análise de Escala, e em seguida fazendo uma mediação estatística sobre as áreas 

e os tempos de interesse é efetuada. 
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11.3.1 - ANÁLISE DE ESCALA 

A utiiização da técnica de análise de escala parte do principio que 
àeterminado fenômeno atmosférico ocorre dentro de uma escala espaço-temporal 
característica. De acordo com esta escala característica . campos e suas flutuações 
como também os termos presentes nas equações são avaliados. 

Esta técnica permite a eliminação de termos , simplificando diretamente o 
tratamento matemático das equações. Este tipo de eliminação é o que facilita a filtragem 
àe fenômenos que não são importantes na escala de nosso interesse. No espectro das 
soluções do conjunto de equações, estão as ondas de som; estas não tem nenhuma 
importância para o movimento, ocorrendo a nível de uma nuvem e portanto devem ser 
euminactãs. usaremos as técnicas de eliminação anelást1ca proposta por Ogura e

Phyllps (1962), que trata a equação da continuidade como uma equação diagnóstica. 
que simplifica o tratamento das outras equações 

Vamos 1nrc1ar este trabalho avalíando exatamente a equação da contu1u1ctacte. Eia e
daoa por: 

Considerando a relação entre a densidade e o volume específico, isto é: 
l 

p= - I l. 3.2 
a 

Tomando a= a
0 
+ o:

Onde a0 representa o ambiente sinótico no qual a nuvem esta imersa 
' 

a = define a pertubação ao nivel da nuvem 
Tanto a como p devem satisfazer um.a equação da continuidade do npo 

.,.,/ \ 

C1\a; . _, 
--·=-'v•Í aV:

ê t
\. ; 

dai temos: 
1 ,'\ 

,..,, 1 

oi ª�+a ! ila ..... d) r i\ a· �---""'-i=-2v •• ,, •• -· - ! ªº+a b:: -
eh 

1 

1 ô.x
i

\ ! i a:i 

A nossa análise de escala, vai ser baseada no fato que ª
e 

é uma função de 
comportamento suave ao nivel da nuvem.o que implica nas seguintes restrições; 

11. 3. 3
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-'-· !/'ª< ·�•:., CC i,;: c:,::1,, •::•:: ! á�: ; /, t:7��,; : ,:}: ; :,,
:_I dt I i ?t , , ex, ox U �1 cy: ! oy !; 

Isto nos leva a : 

CV C'W ôa' ôa" ôa' ôa' óa� . . ,. 
-.- = -u-_--v-_--w-_--w-_--, ta0 + a )a,, ri ex cy o� cz 

-+--i-­

o.J.: cy ôz 

11. 3. 4

11. 3. 5

Vamos agora usar o método da análise de escala para avaliar os outros termos da 
equação acima. 

Considerando que i,; representa um tempo característico no ambiente da nuvem, 
ou melhor, que t

0

.i é uma frequência característica das variações do volume específico 
no interior da nuvem: u. v, w são os valores representativos para as velocidades 
horizontais e vertical; e que L

:r
,L

.v 
e L, são as escalas espaciais áentro da nuvem. Dai: 

ioa
_ 
·'
1
' a'

,--z-· • - ' 
i CC I l�

-' 

: ;:;,,.,, ' a' 
: .,u. 1 iV-- zv-·

: a,, i L , • - 1 y 

e a escala para as variacôes da densidade na atmosfera . 

,- d t' 
ia': 

lu san o o ato que ;-, < <. nota - se que os termos: 
lar: 

ôa' ôa' t3d u -. v-. w- são desprezive1s.
ex ã' a 

Comparando aos termos: 

iJd oa- ôd 
a0 -.• -, a0 -�-, a0 -�- podem ser eliminados na equacão(ll.3.5). 

a a a 
Com isto obtemos: 

ôa I àJ o.· &· \ 
o . . . o'11',-----ao, -,---r- := 

"à: ,,d i3; à1 

usando o fato que os termos ôa,, ôa,. d 
. u--· e v --· são esprezive1s.

à e)! 
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Assim podemos retomá-los a equação acima para obtermos a expressão final que 
- creve a conservação da massa.

II.3.8

Esta expressão é conhecida como aproximação anelástica, elimina as ondas de 
som evitando assim problemas no processo de integração numérica do conjunto de
equações. 

Outra equação importante a ser analizada é a equação de conservação do 
movimento. Contudo dentro do esquema que iremos trabalhar, apenas nos 
pr eocuparemos com a equação que trata do movimento vertical, visto que, no modelo 
cilíndrico o movimento horizontal será tratado de forma diagnóstica e sairá da equação 
da continuidade. Portanto a componente vertical do momento pode ser escrita como:

ôw ôw ôw itw 1 ô P * 
-+u-+v-+w-=----g +2Qucos121 
ôt ôx ôy ôz p ôz 

IL 3,9 

Avaliando os termos do lado esquerdo da equação ( 11.3.9) podemos dizer que: 

e que: 

l&d w L 
!�:::::- onde ( z_x �•
ia l ln ' ,, u 

iaw! wu 

1 i3t 1 � LI , 
II. 3,10

Isto nos diz que todos eles são da mesma ordem de grandeza, daí a necessidade 
de avaliar os termos do lado direito e compará-los com os do lado esquerdo. 

Vamos avaliar primeiro os termos devido ao gradiente de pressão e gravidade para 
estimá-los devemos usar o fato que: 
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ern.iiu 
ri op -a-,- -- g = , ' I ,' -,") • p 1' - 1_ a r - a • _l -·-:- I_ 1 , � > - _µ 

,-. , ..... , 

=- -ia Ta'' 0 

Partindo cto princípio que 
: a ;/11 
:-·-..·,J. 

'ª· 

-aêp -g = -a. cp,, - a' êp(, - a., Cf] -g 
~ e- -- - e :.:l. a: a e::: (_,i.; 

Supondo que a rnvel do ambiente existe Ulll equilíbrio hidrostático ,isto e 

temos que: 

é.p a' êp - a-_-- g = - g - a, ---
c-z ª(· e: 

Com isto, a equação do momento vertical fica dada por 
' . . .

II . 3. ii 

I L 3.11 

11 .3.13 

Lembrando que na equação original tanto o termo do gradiente de pressão quanto o 
da gravidade eram algumas vezes maiores do que a aceleração vertical. Portanto, o que 

! '1 

fez-se foi uma redução dos termos baseado no fato que !�\((1 e permitir que, agora 
lªo!

tanto a aceieração vertical quanto os dois termos do lado direito são da mesma ordem de 
grandeza. Fazendo uma avaiiação do termo relacionado a força de Coriolís. 

Este termo comparado ao do gradiente de pressão ou da gravidade e da ordem de 
lT� vezes menor e pode portanto ser desprezado. 
Dessa forma a equação para o movimento vertical fica dado por: 
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II. 3.14

Existe um outro termo desta equação que não foi considerado e que tem a ver com o 
peso da água condensada e que influi no sentido de reduzir o fator de flutuação da 

parcela do ar dado pelo último termo desta equação. 
usando a Lei dos Gases e o rato que para qualquer variável dinâmica é válido a 

seguinte hipótese , 

efJ = (1 0 + efJ podemos escrever 

P = p RdTv ou melhor 

(P 0 + P ') = (Po + P
1

)Rd ( Tv
0 

+ Tv) ⇒

P O ( 1 + ; 
0

° J = p o [ l + ; ; J R 
d T, 0 r l + ; :� J 

p 
1 + = 1 + .E__+ 

f) o
TV 

T 
V 

O

desprezando o último termo baseado no fato que 
1 

!L.(1,1 então ficamos com: 
if'o

1 1 1 

p -P 1: 
-=-+--

p" PA T,, o 

stlh.Jlndo na equação do movimento vertical obtem-se finalmente 
, 

[
T -T J dw 1 a> V V p 

-=----+g o -g-
dt Po & T,,_, P0 

•. o 

11. 3. 15

11.3.16 

No modelo considerado por Asa/ e Kassahara (1967) e Ogura e Tak.ahashf
(1973) e outros, eles usam a hipótese que a pressão no interior da nuvem é exatamente 

igua1 a pressão no ambiente circundante,dal eles desprezam os termos contendo a
influência da perturbação na pressão. 

Todavia 1 Llst e Lozowsld (1970) mostraram que o efeito do termo do gradiente da 
pertu"bação da pressão é substancial e não pode ser desprezado. 

Honon (1973), considera esta Influência o que também fazemos. Sendo assim a 
equação para o movimento vertical é dada por: 
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11. 3. 17

As outras equações que tratam da conservação da água e do conjunto de 
CCN's não sofrem muitas modificações, uma vez que os termos de fonte 
usualmente são pequenos em comparação com o termo advectido, entretanto devem 
ser consideradas principalmente sob condições em que estes estão ligados a 
mudanças de fases de água. 

Como o nosso modelo vai ser descrito em coordenadas cilfndricas, as duas 
e-.:p.1ações acima são dadas por 

11. 3. 18

onde aqui u é a velocidade radial e w é a velocidade vertical e foi desprezado o 
efeito da velocidade tangencial. A transformação da equação da continuidade nos leva a 

l_ P(�m)+ d�pow)=O II.3.19
r ôr • 

0 
• ôz

com o  auxílio da equação hidrostática, válida para o ambiente externo a nuvem, isto é 

podemos reescrever todas as equações. da seguinte forma 

av 1 ô I - ') ô ( 2) r· � -TV .} éP' 
Po -+--v-,oro +- PoW .. =Po 

O --
a râ & � & 

\. . , 

oF 1 ô
(p 

, ô{ 
Po -+-- 0

rut)+--::;-\PoWt) = ST
c1 rã- a 

II. 3.20

II.3.21

As equações que tratam da conservação da água podem ser desmembradas em 
termos que tratam do vapor e um conjunto que trata da água límpida. 

Dependendo do modelo, uma parametrização pode ser usada e a água pode 
assumir apenas algumas formas, como por exemplo, água de nuvem, churisco e água de 
chuva além de gelo se existir. 

Como vamos considerar uma nuvem quente, ou seja, sem a fase de gelo, e 
vamos considerar um modelo completo, a água assumirá um espectro de gotas 
distribuído por todos os raios entre 1 µm e 4 mm, desta forma teremos para cada 
categoria de raio definido uma equação dinâmica/microfísica.  

A equação para o vapor d'água através da razão de mistura Q" é dada por: 
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-= para a água e outros aerosóis tipo CNN ficam dadas por 

d 1 ô• ô• 
-"1 -+---1n w() ,-trmf)=sr ::i. 1, \ro - 1 • , \ '1 , , Ili 

c-1 r Dr rtz 

i = 1,2 ... 

_j e:: 1,2,3 ... 

II. 3.22

II.3.23

II.3.24

Nas duas últimas equações .h e íf; representam respectivamente a distribuição de
jensidade de gotas para a categoria de raio 'i número de CCNs para a categoria J.
�om isto finalizamos esta primeira parte do processo de organização do modelo e 
emos tentar desenvolver a segunda parte da organização, que está ligada exatamente 

ao processo de suavização do movimento turbulento presente nas equações do modelo. 
=ste processo como foi dito anteriormente está associado ao processo de media das 
ariãveis de campo. 
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já foi dito antes que o processo de cáicuio das médias das equações básicas ào 
modelo é necessário para retirarmos as flutiJações que ocorrem em escalas muito 
pequenas, e que prejudicam na escolha de uma escala espaço/temporal para a 
d1scretlzação do sistema de equações durante o processo de solução numérica. Todavia 
os efeitos devido ao movimento a nível moleculaí. considerados como contribuições de 
escalas menores,sobre as escalas permitíveis à solução do modelo. devem ser tratados 
de forma parametrizadas, desde que consigam representar em termos médios as 
manifestações a nível microcópico. 

Considerando que. as escalas espaciais por nós usadas óx·, L\y e & são muito 
maiores que o espaçamento médio entre as moleculas 8m, ou seja: 

nos podemos escrever para qualquer das variáveis do modelo que; 
tÍ} = � +efi'

onde: 

(r é a flutuação de t/J ao nível da graàe escoihida . 

Algumas simplificações são bastante utéis 
r-_ 

a7p t3dl l Ôtp 0(/J 
-=-

OX. ox_, 1, q; = ql; e efl = O e mais que
41/'l l q511! 

1 

-=-l ::::: 1-· -! < < 1, ef,
0 

é o valor para o ambiente exterior l 
l 4' l l 1101 J 

Reescreveremos a seguir o conjunto de equações do modelo. 
Na seção anterior obtivemos 

22 

T T -� ""'\C-

l l . .).-',Jél. 

II. 3.25b

II. 3.26



@ Para a velocidade vertical: 
a, 1 ::; . - ( T - T \ -= 1 ru t/ , , e __ � :-.·- l-r ·:r...-p,, - T --1.P rum1+-1n ·ww)=p: • •--+Or( -- a _.,_ º -- v--r- º 1· ;;. 
.- ra a ,,, L,,;, 

b1'V estará associada ao peso da água líquida presente no modelo . 
@ Para a temperatura:

éJF ló, , ó: ·, . 
Pü .:i. + --::;-lPnruT) + -::;-\fl<iáJT) = Sr

l·l T CT tZ 

Sr são os termos de fontes e sumidouros de calor presentes na região das nuvens. 
@ Para a Razão de Mistura:

�,. . 1 ô ( O ··1 ô ( .. ..n \ S' Po -_-_-e---:;- -.P�nt __ ,. + --::;-lflo e�.., 1 = º-·
a rcr cz 

11. 3. 28

II. 3.29

0 Para a água líquida presente na nuvem obtivemos um conjunto de equações 
para cada categoria de raio de gota escolhido. 

Então: 
!/; ló· , ô

(p 

· 
Po -' +---::;-(pornft)+- oa/;)=S1, 

i = l,2, ... N II. 3.30a rcr .& 

@ Para o conjunto de CCN's presente na região da nuvem, cuja importância é 
básica para o processo de Iniciação da nuvem, temos também que discretizar 
seus ralos em tamanhos que permitam ser tratados numericamente. 
Sua equação é dada por: 

Ô'r/1 1 é (- ) . ô ( ) II. 3.31
Po -+--_ PonJT'/ i +-_ P0 0JTJ,- = S,,, _ j = 1,2, ... M 

éit r ôr • • 
ct 

· • •j 

@ Além destas equações temos a equação diagnóstica que conecta a velocidade
radial U.com a velocidade vertical m. 

II. 3.32

Calculando a média horizontal para todas estas equações. Basicamente seguimos o 
esquema de Asai e Kasahara(1967}. Como todas as equações são semelhantes, vamos 
tomar uma delas e arbitrar uma variável e determinar o cálculo. 

Considerando a equação: 
ôm lô, 

·) ô- , II3 "' "' Po _, +--lPoTUTJ; <f,+-(Po ax/J) = si
•• _.)j 

â réJr & 
podemos dentro da suposição de que a nuvem é representada por uma coluna cilindríca 
de raio a , contida em uma atmosferica sinôtica de raio b , com b>>a , utilizando a 
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&iuacão (1.3.25a). em coordenadas cilíndrica de acordo com Asai et AI/ (1967>. dizendo 
.: .: ._ r - 1. ,; • 

:;ue, para õ intenõr aa nuvem: 

,_ 1 [ªJ2" 
ef> n = --" _ ef)rdrd <p

:;ra� ,r(r {) 

- l r''-" • rp = - J ef;d <r> em r = a 

n 21C o· • 

! i
1 
! 

<fifi= <Ó - (/)-, i. r. . . r, 

II. 3.34

Para atmosfera sinótica as grandezas se comportam de forma similar e seus valores 
méáios podem ser escrito como seguem. 

- 1 12"
tÍJ = - (/xi@
, a 2:tt O ' 

,/,1 = dJ- 7: 
'f'a , 'f'a 

em r =b 

e IP;= ,p- �ª

a partir dai podemos simplificar as equações do modelo. 

Tomando a eq.11.3.33 e aplicando sobre ela a média, obtemos: 

Vamos analisar termo por termo e todos são divididos por p
0 : 
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Ôt/J P,- - rdrd cn = 
., iJt 

1 

ê r2,, ro 

ê 
= --- - ' - d,rdrd@ 

-rw
.!. t3t ,,,1 Jo à· • •• 

t3 1 f2" •2 
= ---., j dJrdrdm

d ,ra� Jc o • 
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Vamos ter oara o 2o. termo: 

1 
f 2..- íª Ô 

= , . . -:;- ( p O ru t/J ')(ird q:> 
p o tra - • u • G or 

1 i,.,,. , 

= --� au (/Jd q, 
;ra- o 

I !. 3.38 

usando as duas últimas equações do conjunto li . 3.34, podemos mostrar que: 

Un'Pn = iirr iflr. + u�'r/J� 

desta fomia o termo fica dado por : 

-1 Í ��(p rU(/))
7

j' = 2 [ü"ef/,' +u"(J'1lL ... o . , fl. li I! 
J p

0 
r or .... a 

O 3o. termo ficara assim: 

Também é fácil mostrar que: 

m ii = m (/j + m,, G' ".,,," "· r. n'f'n 
Com isto a equação fica simplificada: 
;il. ?r 7 1 tJr Vlf'n - , - -, ,, ,1, • ' ( , -, °A.1 )] s --+-LUnf/Jn +u 'f' J+--lPo OJnf/Jn + mn'f'n, = 
a a n n 

Po & ffJ 
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II. 3.39

II. 3.40

II. 3.41

II. 3.42

11. 3. 43



Mediando a equação àa continuidade, a equação (I!. 3 .19), obtem-se: 

II. 3.44

Com este resultado podemos simplificar a equação (11.3.43) . Para tanto precisamos 
desenvolver o ultimo termo do lado esquerdo para obter: 

Usando a equação(ll.3. 45) obtemos para a equação (!1.3. 43): 
3J. '1-:i; ,., ') 1 ;:)  vff/71 - CJy,11 ,:. [--; - J- ' - ,, ,, (/ r -, , ] -

-- .j_ m
n -�- - - 'P11 - t/Jn Un • -unt/Jn + --::;-- Po mnt/Jn = Snà a- a a Po CC· 

11.3.45 

II. 3.46

Asai e Kasahara (1967) sugerem desprezar o termo relacionado ao fluxo turbulento 
verticaí, responsável peio transporte de calor, momento e massa, caracterizado pela 
correlação m�efl;. O outro termo importante relacionado ao processo de mistura lateral 
turbulenta, o qual descreve o processo de transporte de massa, momento e calor na 
fronteira entre a nuvem e o ambiente é dado pela correlação u�'efl; e pode ser 
parametrizado, aplicando-se a hipotese de troca turbulenta entre as partes, isto é: 
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onde 9 representa o coeficiente cinético da troca turbulema entre a nuvem e o ambienie 

sinótico que o circunda . 8 é definido por: 

onde a "' = O. L. é uma constante empírica. 

Desta forma obtivemos uma expressão fechada para a eq. prognóstica válida para 
todas as variáveis do modelo. ou seja: 

II. 3. 47

Se usarmos o mesmo procedimento realizado para o interior da nuvem 
obtemos um conjunto de equações similares, válido para as variáveis do ambiente 
sinótico exterior à nuvem, porém com pequenas diferenças. Para finalizar este capítulo 
iremos escrever em forma completa o conjunto de equações que descrevem a nuvem em 
questão. Entretanto vamos usar algumas simplificações. O valor médio das variáveis 
no interior da nuvem 41

,, 
= tfi , para o valor efl

.,, 
mediado apenas no contorno da 

nuvem será denominado t/J, e o valor médio da grandeza tÍ'
rr 

definido no ambiente 
será (j;

ª 
. Com estas modificações as equações tomam-se em forma definitiva. 
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11.3.3- EQUAÇÃO PARA A VELOCIDADE VERTICAL: 

f7{i) {1(t) 2 a:-{i) 1 2 ol 

-= -m-, +--!@+-uc[[oJ-mc Jj 
a az a • a

( \ 
1 éP' · Tv - Tv ,

-i----+o, a ! -gQ _, o T' ' áJ 
Po a •. .Lv0 ) 

11. 3. 48

O último termo representa exatamente o peso da água líquida presente no 
modelo, isto é, Qw é a razão de mistura da água líquida dado em (kg I kg). No

segundo termo do lado direito usamos o condição de w:; = O, ou seja, que no ambiente 
sinótico os movimentos importantes ocorrem na escala horizontal. 

11.3.4 - EQUAÇÃO PARA A TEMPERATURA : 

11. 3. 49

Nesta equação o termo de fonte forneceu dois termos. Um esta ligado ao 
processo de ascensão adiabático que provoca uma queda na temperatura. r

d 
é a

razão de esfriamento adiabático seco, isto é T
d 

=.98C /100m. O outro termo está 
associado com o calor latente liberado ou retirado do ambiente da nuvem e associado 

com o processo de condensação e evaporação. @,,f representa exatamente a taxa de 
8t 

água condensada ou evaporada. L é o calor latente , e é dado por 595caVgr.,c
P 

é o 

calor especifico do ar, e C
P 

= .24 cal/g e.
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1;.3.5 - EQUAÇÃO PARA O VAPOR DÁGUA ; 

! 1. 3. 50

11.3.6- EQUAÇÃO PARA ÁGUA LÍQUIDA EM FORMA DE GOTAS: 

As gotas são consideradas através da distribuição de tamanho f(x),
onde x representa a massa das partículas, f(x)dx significa o número de gotas por 
unidade de volume do ar , com massa entre x e x+dx. A grandeza de Qw que 
aparece na primeira equação é dada através de f(x), como segue: 

Q
.;i 

= _l r �f (x)dx
/J.,;;. •c-

desprezamos a água em forma de gotas e trabalhamos com uma discretização no raio 
ao invés da discretização na massa. Assim podemos escrever: 

/if. . êf '"l 

2 

-- -· = - t ca - " ,J -· -' � ,;, a jm j[J -- J. 7 +
ê,f • • OZ O l !J ' ..J 

2 [r f ]+ f, a; ôp a +  dfl 1 + ô/t Ice I1j}l -;-- u ; .. ; - / p n oz ot llll. ot 

+ t3f, jcol + ê!1 lq 1 = 1, 2 , ... N 
CI CI 

Como se vê o termo de fonte desta equação gerou 05 (cinco) termos. Um deles 
esta ligado com a razão de mudança da densidade do ar exterior, os outros estão ligados 
aos processos responsáveis pela formação das gotas. O termo ! i ini representa o
processo de iniciação das gotas pelo processo de condensação do vapor sobre os 
espectros de CCN is presentes na região da nuvem. O termo ;,: \ce se deve a evolução 

a 
do espectro pelo crescimento ou decrescimento do raio devido ao processo de difusao do 
vapor sobre a gota já formada. Neste caso são considerados dois processos: o do 
crescimento por condensação e o do decrescimento por evaporação. Os outros dois 
termos retratam as mudanças no espectro pelos processos de coalescência e quebra de 
gotas. Sabe-se que uma gota com certo tamanho superior a 20µm , consegue cair sob um 
vento ascendente de 5m/s e que cada gota tem uma velocidade terminal que cresce 
com o tamanho da gota. Portanto no processo de queda, as gotas maiores conseguem, 
ao cair, colidir com as gotas menores e assim capturá-las para crescer ou simplesmente 
se partirem em gotas menores. Com isto conseguimos considerar todas as fontes de 
mudança do número de gotas para a categoria í . Um estudo mais detalhado sobre 
estes termos �erá o assunto do próximo capítulo, que nos denominaremos de microfísica 
do níodelo. Existe algo que gostaríamos de chamar atenção. Ê o fato que o termo 
advectivo ficou reduzido pelo fator u onde v é a velocidade terminal das parti cuias. 
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il.3.7- EQUAÇÃO PARA OS CCN's (NÚCLEOS DE CONDENSAÇÃO):

Confoíme Jã dissemos r/._r) é o númern de CCN's poí unidade de volume
do ar para a categoria de raio r. Discretizando r teremos para rJ conforme a seguinte
equação:

i = l, ... Mll.3. 52 

Como se vê temos dois termos extra que são fornecidos pelo termo de
fonte e sumidouro.

Poderemos ter mais, porém vamos apenas considerar estes. �; ) E que

determina o crescimento da concentração da categoria / , pelo processo de evaporação
de uma gotícula liberando totaimente um CCN nesta categoria. o outro termo �; \ma 
representa uma perda de CCN's pelo processo de formação de gotículas através da
condensação do vapor sobre os mesmos, para iniciar o espectro de gotas. 

Com estas observações fechamos o conjunto de equações que permitem
simular uma nuvem, cuja dimensão é dita ser uma e meia. Este nome deve-se ao fato
que apenas o campo de vento vertical é considerado por mudar com o tempo
implicitamente, ou melhor, a velocidade vertical é uma variável prognóstica, enquanto que
a velocidade horizontal, caracterizada pela velocidade radial é uma variável diagnóstica, ·e
esta ligada a w pela equação da continuidade. O último capítulo será dedicado a solução
deste modelo. A seguir iremos discutir os processos microfísicos responsáveis pela
form33ção da precipitação
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CAPÍTULO Ili 

MICROFÍSICA DO MODELO 

l! i. í - INTRODUÇÃO 

A microfísica ào nosso moàeio como ficou caracterizado peio conjunto 
de equações do capítulo anterior, é descrita por duas funções distribuições básicas. Uma 
delas especifica a distribuição de tamanho dos núcleos de condensação n(z,r,.,i) , e 
ficou definida de tal forma que n(z,r

,.
,t)dr,/1 fornece o número de CCNs por unidade de 

volume, na posição z com um raio contido entre r
n 

e r
,. 

+dr
n

. A outra função é aquela 
que representa a distribuição de gotas, a qual pode ser caracterizada pela massa ou pelo 
raio da gota. Aqui nós usaremos considerando sua dependência por raio. Ela é tal que, 
f(z,r

m
,t)dr

m 
é o número de gotas por unidade de volume com raios contido no intervalo 

entre r
.,,., 

e r
m 

+ dr
.,,, 

. No capítulo li tais funções são soluções de equações diferenciais , 
onde além dos termos dinâmicos surgem termos de fontes ligados aos processos 
m1croffsicos, que contribuem para as modificações das funções em si. Também no 
capítulo li -comentamos tais processos, no contexto de suas importãnciasos são 
considerados 

0 Nucleação; 

@Condensação/Evaporação; 

li:I Coalescência de gotas; 

0 Quebra de gotas. 

Posteriormente iremos discutir como cada um desses é tratado em 
nosso modelo, contudo faremos uma exposição resumida sobre a importância que cada 
um deles desempenha sobre a microestrutura das nuvens. 
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iiL2 � A NUCL�ACÃõ fi� GOTAS D� NUV�NS'..... _ ......... - - --- .. "' .. - - - - - - . - -- -- ... - - -· - - .

O estudo sobre a formação de uma gota da água provaveímente vem 
anterior ao estudo da formação de uma nuvem, visto que o conhecimento do último 
depende do primeiro. 

A formação de uma gota por condensação ocorre quando moléculas 
de água em forma de vapor , mais energéticas e mais instáveis, mudam de fase para 
água liquida. Entretanto. o processo não é tão simples assim. Primeiro esta é uma 
situação de não-equiiibrio e portanto irreversível e . somente ocorre se a pressão de vapor 
na vizinhança da gota é bastante alta , a permitir que a forte barreira energética devido a 
tensão superficial na superfície da gota seja vencida. Existem muitas diferenças entre o 
equilibrio das fases liquidas e vapor, quando se considera uma superfície dágua e uma 
gota dágua em contato com o vapor da água. A pressão-de vapor de saturação para uma 
superfície é menor do que para uma gota. A primeira expressa pela equação de 
C/ausius-Chap/eyron, apenas mostra uma acentuada dependência com a temperatura. A 
segunda é dada pela equação de Kelvin, isto é 

P, = P. e>-"P! 2 a/ 1?._,T P
<
,r] 

onde: 

G é a tensão de superficial da interface líquido / vapor; 

R ,, é a constante individual do vapor 

T é a temperatura ; r é o raio da gota ; 

A é a densidade da água ou seja 1 gr / cm 3 
. 

Pela equação de Kelvin, se a pressão de vapor sobre uma gota de raio 
r for menor do que P,., então a gota evapora. Portanto para que uma distribuição de gotas 
formadas de âgua pura seja mantida, é necessário a presença constante de um campo 
de supersaturação. A equação de Kelvin é portanto o suporte para o processo de 
nucleação homogênea, que para ocorrer necessita de condições extremas de 
supersaturação. A observação tem demonstrado que não é necessário valores altos de 
supersaturação para a iniciação de uma nuvem, considerando-a como um sistema 
caracterizado pela presença dos hidrometeoros, ou sejam CCNs higroscópicos e gotas. 
Portanto nca claro que o processo cte nucleaçao homogênea inexiste no interior da 
nuvem. Em contrapartida a presença de CCNs. aerosósis higroscópicos ou também 
p�utículas solúveis, torna-se fundamental para este processo inicial de formação da 
nuv·em. A presença de tais partículas desencadeia um processo de nucleação para 
condições de supersaturação relativamente baixa. Este processo está ligado ao fato que 
o soluto ao ser dissolvido contribui para reduzir a pressão de vapor de equilibrio da água
no caso o solvente. A lei de Raoult estabelece que a pressão de vapor P' sobre uma
solução é proporcional a fração molar do solvente, isto é:
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n- -t-n
·.·• .. .  

111. 2.1
n':- e n" são números das moléculas do solventE(água)e do soluto respectivamente. 

Esta expressão juntamente com a equação de Keivín, que trata da 
dependência da pressão de vapor de saturação com a curvatura da gota, fornecem uma 
expressão fechada para a razão de saturação de equilfbrio sobre uma gotícula de raio r, 
ou seja: 

:Q=·J,...íR Tp '" -v. V 0 
onde: 0 

• ., , 

l b=ip_M r�· /P M ... , � Os. O �
o tc:rmo �-✓/ devido a presenca da curvmurn da !� , contnoui Jx1I11. crcsc<:r a raz.ã() de saturnção sobre a !l,Ofo

quaodo coillJ)lll'Bda a da superficie plana .Já o termo h,/,, expressa a coD1ribnição da presença do s-olut.-, 
_,. r-· 

impondo uma redução na pressão de vapür de saturação 

TtT ;ê. �, 
.!.. � � : -= :"": 

Esta expressao gera a conhecida curva de Konnler, com a qual vê-se 
para cada núcleo de raio r , a razão de saturação alcança um valor critico máximo 
s.: � 2% para um raio critico ,:

_. 
. Para valores de supersaturação esperados no interior 

de uma nuvem da ordem de 1 % implicará que a ativação dos núcleos somente deverá 
ocorrer para raios maiores ou da ordem de 1,5xl02 µm. Outro resultado importante que se 
tira daqui ,é que o termo devido a presença do soluto age com mais eficiência para raios 
bem pequenos, enquanto aquele devido a curvatura impera sobre raios maiores. O efeito 
do soluto realmente perde eficiência quando a gota cresce, pelo fato da diminuição da 
concentração do mesmo. Como pode ser observado, a presença de CCNs são 
fundamentais para o processo de inicialização da nuvem , e portanto faz-se necessário 
conhecer a concentração dos CCNs na atmosfera. Uma forma de se conhecer tais 
concentrações é através do conhecimento da supersaturação. Squires e Twomey(1960) 
sugeriram uma fórmula empírica conectando a concentração de CCNs e a 
supersaturação, isto é 

111. 2. 3
onde C e k são constantes e assumem valores diversos, dependendo se estamos 
avaliando o ar de origem maritima, ou continental. Foi verificado experimentalmente por 
exemplo que, para ar marítimo C varia entre (30 e 300}cm-=. e K=0.3 a 1.0; para ar 
continental C=(300 à 3000) cm-.- e l<=.2 à 2.0. Esta expressão será utilizada por nos e 
voltaremos a falar sobre ela no futuro. Entretanto podemos dizer que o processo de 
iniciação passa pela ativação dos CCNs, dado pela expressão acima. Isto é, alcançada 
a supersaturação o processo de nucleação é ativado; desta forma gerando-se gotas na 
mesma concentração N. A partir dai, além da continuação da nucieação, passa a 
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iniciação passa oeia ativacão dos CCNs: daào peia expressão acima. isto é. aicançaàa 
a supersaturação o processo de nucleação é ativado: desta forma gerando-se gotas na 
mesma concentração N. ,A. partir dai_ além da continuação da nucleação, passa a 
funcionar o segundo processo importante cta fase de formação da nuvem: o processo de 
Condensação/Evaporação de gotas. 

35



111.3 -CONDENSAÇÃO/EVAPORAÇÃO DE GOTA: 

O processo de condensação de gota surge no momento em oue as 
primeiras gotas foram ativadas. É acompanhado por uma forte liberação de calor latente. 
Uma grande competição pelo vapor supersaturado é geraàa entre as jovens gotas de 
nuvens récem produzidas, e este processo tenderá baixar o nível de supersaturação. 
Contudo, a presença do campo vertical de velocidade . realimenta o campo de 
supersaturação. permitindo que a nuvem possa completar seu ciclo de vida. chegando a 
precipitação se. obviamente. as condições ambientais a permitirem. o processo de

crescimento das gotas, por condensação é caracterizado pela difusão das moléculas do 
vapor supersaturado sobre a gotícula já formada. Entretanto. experimentos comprovam 
que a eficiência de tal processo persiste somente enquanto as gotas mantenham-se com 
raios menores do que 20µm. 

No modeío vamos utilizar para o crescimento das gotas por 
condensação, uma fórmula simplificada proposta por Mason(1971). Avalia-se o 
crescimento dos raios das gotas como dada pela expressão: 

,... . a li 
dr 0-1--..,.3

r- = . r r 
dt Pw l F{ + �] 

111. 3. 1

onde os efeitos da curvatura e do soluto foram considerados. Entretanto supondo que a 
gota iá passou da fase de nucieação, tanto o efeito da curvatrua, quanto o do soluto, 
podem ser desprezados, daí a fórmula final é simplificada para 

dr S-1 ------
dt Pw

r[ � +Fã] 
onde: 

L r u1 7 

n 1, J J F =-1--1' 
k K T 1

, RT ! 
d -

é o termo associado à condução de calor em virtude da liberação de calor latente de 
condensação, responsávei pelo crescimento da temperatura da gota , acima da 
temperatura da nuvem. 

K:i é o coeficiente de condutividade temúca do ar . Já : 

F. 
= RT 

" DMe :(T) 

111. 3. 4

é o termo associado com a difusão do vapor. Vê-se que L é o calor latente de
condensação: M é a massa molecular da água; es (T) é a pressão de vapor de saturação; 
D é o coeficiente de difusão do vapor dágua no ar; R é a constante universal dos gases.
Observa-se que esta expressão pode ser usada também para o decrescimento das gotas 
por evaporação, basta que a Razão de saturação S=e (T)I e :;(T), seja menor do que a 
uniàaàe . Neste caso díldt<O. o que caracteriza um decrescimento do raio da gota. o
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Pela fórmuia de Mason (1971) ficou colocado que: 

dr 1 
-oc.-

dt r 

III. 3. S

111. 3. 6

Isto nos diz que quanto maior for o ralo da gota, menor será o seu 
crescimento e desta forma não podemos esperar que este processo seja o único 
responsável pela formação das gotas em tamanho suficiente para iniciar a precipitação. 
Sabe-se que a precipitação ocorre para tempos muito próximos do inf cio da nuvem. 
Neste caso outros processos de crescimento passam a ser importantes para a formação 
de água precipitável. O processo de crescimento por coalescência de gotas, passa a ser 
indispensável para a formação completa do ciclo de vida de uma nuvem quente . 

. -.� 
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111.4. -COALESCÉNCIA DE GOTAS: 

Como foi dito anteriormente uma nuvem quente característica de 
regiões tropicais, basicamente se desenvolve abaixo do nível de zero grau, podendo 
algumas vêzes, ultrapassá-lo, permitindo nestas situações a formação de água 
superresfriada, a qual pode induzir melhor desenvolvimento da mesma. É em torno dos 
processos microfísicos de crescimento condensacional e de colisão/coalescência que a 
precipitação, neste tipo de nuvem é produzida. A importância de cada um destes 
processos pode ser avaliada de forma aproximada, para que tenhamos inicialmente uma 
idéia de suas participações no ciclo de vida da nuvem. Mostramos no item anterior que a 
razão de crescimento no volume de uma gota por condensação era dado por 

4 m-.) De(S- l)t 
onde De é a difusividade eletiva do vapor . Em torno de 10-6 

cm 
2 

s - l ). Veja a equação (II I . 3.2 ). 
Por outro lado, a razão de crescimento com outras gotas por 

coalescência no volume é aproximadado por 4 w3 
k ½ onde n é a concentração de gotas 

e k é o coeficiente de colisão entre as gotas. k é o voiume efetivo por unidade de tempo. 
formado pelas gotas em colisão. 

Assumindo que a velocidade relativa entre gotas caindo corresponde a um fluxo de 
Stokes, garantido pelo balanço entre o gradiente de pressão e o termo viscoso, nós 
podemos ver que: 

K :::: Po gr � III . 4 . 1
p \' 

onde p0 e a densidade da água,ep é a densidade do <I;r v e o coeficiente de viscosidade cinético do.ar 
Se dividirmos o crescimento por coalescência por aquele por condensação iremos obter 

N óa:::: P,., gr III.4.2
p De(S-1) 

e isto demonstra que quando r é pequeno a condensação predomina sobre a 
coalescência. Quando r cresce o contrário acontece. Se considerarmos uma 
concentração da ordem de 1 OOcm-3

, obtém-se a:::: 1 para r=25µm. Um cálculo mais 
apurado demostra que para raios menores de 20µm a condensação é dominante 
perdendo efetividade a partir dai. Desta forma o processo de coalescência passa a ser 
praticamente o maior responsável, pelo crescimento da população de gotas numa nuvem 
quente após este raio ter sido alcançado. 

Outros processos microfisicos também participam do crescimento da nuvem e, 
basicamente estão ligados ao fato de que, as gotas após atingirem um determinado 
tamanho podem se partirem por um processo espontâneo, ou por colisão com outras 
gotas. Nesta seção iremos tratar basicamente do processo de crescimento das gotas por 
colisão/coalescência. Este mecanismo é o mais importante no processo de formação da 
precipitação. Durante o tempo esperado entre o início da atividade da coalescência até o 
inicio da precipitação, um tempo em tomo de 20min, uma concentração de (100 à 150) 
gotas por cm-3 

, com raio médio de 1 0µm, evoluem para_ uma concentração da ordem de 
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1200 gore� per n3 com �mrnetro em torno ct� -� mm. N��t� tempo para �1cançar e�t$
tamanho tipice, esta gota precisou pelos menos àe 10::• colisões com outras gotas. 
Entretanto a colisão em si não é garantia de que a coalescência ocorra. Fatores como o 
tamanho, a trajetória de colisão, a presença de campos elétricos. são determinantes 
neste processo. Um parâmetro importante a ser considerado aqui é o da eficiência àe 
captura; que é àefinido como o produto entre a eficiência de colisão e a eficiência de 
coalescência. Noutros tipos de nuvens a presença de campos elétricos pode vir a crescer 
a eficiência deste processo. 

As causas mais importantes da colisão entre gotas são devido a presença do 
campo gravitacional e aquela do campo de velocidade turbulento, os quais associados 
permitem gotas maiores caírem com velocidades terminais maiores do que gotas 
menores e, portanto serem capturadas. O coeficiente de coleção entre uma gota de raio 
1i por uma de raio r2 é dado por: 

K = r.(_lj -t-rJ
2 

Etiu III. 4. 3
e representa o volume por unidade de iempo, formado pelas gotas en1 colisão. 
E representa a eficiência da colisão; 
6.u e a velocidade terminai relativa entre as gotas; isto e 6.u = U: - V:. 

Para a velocidade terminal nós usaremos a formula de Best (1950): 

( -
�1 �r)=9.58�l-expj-( _r_ /'47 Jr 

� L. 0.885 ; 
III. 4. 4

Para determinar o valor de E é necessário resolver a equação de Navier-Stokes

para o fluxo passando através de duas esferas que caem em um campo gravitacional. 
Soluções aproximadas são válidas e podem ser obtidas. Klett e Davls(1973)
simplificaram os efeitos iniciais não-lineares. Beard e Grave(1974), desprezaram o fluxo 
do campo da gota menor supondo a outra bem maior. Em alguns casos a forma de K sai 
diretamente de uma análise de escala Maton(1974a), de Almeida (1976), considera os 
efeitos não-lineares e obtém resultados mais apurados. Usamos a equação (111.4.3), 
também conhecida como Kemel geométrico , para representar o coeficiente de coleção 
entre gotas e, basicamente fica representado assim, considerando a colisão de duas 
gotas i e j, tal que 
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K(i)j)=r.(r, -;-r
1
/-Ej\..'; -u,) 

ou: 
..... "'I 1 \ 

K(i,j) = itr/y;(i.J)lv: -v
}

i 

aqm y e ( i, j) e a eficiência de colisão linear 

II I 

III 

. De acordo com Beny ( 1967 ) : 

III 

onde: A ,E, D, E, F, e G são funções do raio da gota 
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Hl.5.c QUEBRA OE GOTAS:

Este é outro fator Importante no processo de formação da precipitação. Gotas 

grandes, isto é, gotas com raios maiores de 200µm ao colidirem quase sempre 
coalescem. Para raios maiores do que isto, a tensão superficial cr sobre a gota passa a 
ser um fator importante no processo de coalescência, e vai afetar diretamente na 
eficiência de coalescência após colisão. Se Pc:: (i ,J.) é definido como a probabilidade 

que, toda colisão ocorrendo, durante um certo intervalo de tempo b,. t , resulte em 
coaiescência, o número de gotas n,tPcc U,J)) cresce por coalescência com a razão dada 
por: 

dr i ...-, 

- : �m.X(í ,J) JJ,
dt 4xp

..,
1; ,_1 

onde: m; e a massa da gota de raio 1;; A probabilidade de ruptura é: 

P,,(i,j) = l -P
cc

(iJ) 

Ill5.l 

A probabilidade definida por P
cr:

(i,J) de acordo com Brazier-Smith et ali 

(1973) é dada poí: 

onde r = 3-, ü é a iensão superficial, Pw é a massa específica da água. 
�; 

111. 5. 2

De acordo com Brazler-Smlth a/1(1973) a colisão entre as gotas í e j , num 
processo de quebra produzem três gotas satélites idênticas, cujos raios ficam dados por: 
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Por outro lado; o� rnios dal'1 re�pectivas gotas s.."¼o modificados e ficam dados por

111. ).4

1 i 1. $_) 

Neste traoã!no foi cons,aerndo ti quetirn espomênet'r d.e gota5. E5te fato se 
deve a forma da gota ao cair no campo gravitacionai sobre um fluxo turbulento. A 
formuiação deste processo necessita de duas probabilidades. Kombayasi(1964). definiu 
a probabilidade por unidade de tempo de quebra espontânea de j-ésima gota como 
sendo: 

PU) = 2. 9410-4 exp(34r) 111 . 5 . 6
Já Srivastava(1971), considerando a conservação da água líquida durante a 

quebra espontânea. deduziu a probabilidade Q(i,j) que, um pedaço da gota partida, tenha 
raio r, , isto é: 

111. 5 . 7

Com todos estes processos em mente, podemos montar a equação básica da 
distribuição de gotas no interior da nuvem, isto é, a equação mestre, que trata da 
mudança com o tempo, áa função de distribuição de densidade f(r,t) tal que, f(r,t)dr é o 
número de gotas por unidade de volume com raio entre r e r+dr, e que já ficou descrita no 
capitulo 2. Nesta equação os termos ligados aos processos de colisão/coalescência, 
quebra de gota e quebra espontânea ficam dados por: 

ôf ! ,"V' T ôf li ; 2. rf / r ') f f r -r ') K (r !' r -r I) .X ôt 1 
�- ê)t I Q 2 Jc 1 

• • • • • 

I1cc(r 1• r -r 1)dr 1 -f ( r) f:í ( r ')K(r, r 1) P,..,...(r ,r ')dr'+ 

� J Jocrr.r '.r ").f (r ')f (r ")K( r '.r ") xfl -Pcc( r '.r ") }dr 'dr li -.f (r) fo�f (r ')K(r '. r ") X 

[1 -Pcc(r. r ')]dr'+ J
0
Q(r,r ')P(r ')f (r ')dr' -P(r )f (r)

Nesta equação. o primeiro termo do lado direito representa a razão de 
crescimento na concentração para a categoria de raio r pelo processo de coalescéncia 
com outras gotas com raio menor que r. O segundo termo do lado direito mostra um 
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queda de f(r), devido a uma coalescência de gotas de raio r, com gotas de raio maior do 
que r. O terceiro e o quarto termo são responsãveis peios processos induzidos por colisão 
e posterior quebra da gota. o quinto e o sexto termos, representam o processo de 
desintegração espontânea. Esta é uma equação integrodiferencial não-linear, sem 
solução analítica para Kemeis complexos, como é o caso aqui tratado. Entretanto existem 
aigumas tentativas de soluções numéricas que justificam-se razoãveis, por comprovarem 
os resultados quando analítico. Destacamos os métodos de Berry Reinharc/t(1974a), 
Bleck(1970), TzMon (1987) e Kovetz and Olund(1969). Os métodos de Berry et ali 
(1974a) . EnUkashlvílí (1964) e os métodos dos momentos bons, porém consomem 
muito tempo de computação, o que os tornam poucos competitivos. Entretanto o método 
de Kovetz and Olund (1969), com uma precisão um pouco menor do que os anteriores, 
com perda de no máximo 6% para a água liquida após 20 min de integração, se 
apresenta como uma excelente opção para este tipo de trabalho. O método de Kovetz 
and Olund também conhecido como modelo K-0, na realidade não é estritamente igual 
ªº modelo SCE - (Stochastlc Collectlon Equatlon), porque a redistribuição das novas 
gotas. entre vízinhas próximas. na grade de àíscretização pode provocar um crescimento 
espúno na distríbuíção . Scott and Levín (1975a) contudo. mostram que o método K-0 é 
um bom método oarn ser usado em modelos com microfísica como!eta. com boas 
--� - , • .,._- --- , , • ; : , -.,,. .. -.,. ---=--- r------• ·-· --· --.-, ._.,_.,__.._-: ,., --- --- • • :  • � :  ·-· ,..,.._.,._. --· --· --- , : , , , 1,-_., --- , ,....,,._ •• _._ •� -.-, • �,--,-- •-· --= � --· .._.,,: .,._ • •  _ • .._.,_._ 

chances de daí exceientes resuttados. No próximo capituio voitaíemos a falar com mais 
detalhes do método K-0. 
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CAP!TU!.O IV 

TRATAMENTO NUMÉRICO DO MODELO 

IV.1-INTRODUÇÃO

Este capitulo será dedicado à avaliação numérlca do modelo. Serão 
colocados aqui todos os processos envolvidos com o algoritimo responsável pela solução 
do sistema de equações 11.3 (44. 48. 49, 50, 51. 52), além das equações diagnósticas 
para a perturbação de pressão presente no interior da nuvem. Chamamos a atenção que, 
além destas equações, várias outras equações acopladas e dependentes, basicamente 
apresentadas no capitulo Ili, são fundamentais dentro do processo de solução do 
modelo. São equações ligadas aos processos Microfisicos responsáveis pela formação 
da precipitação. Para resolver numericamente qualquer equação diferencial ou conjunto 
de equações é necessário fornecer as condições iniciais para o modelo, como também 
as condições de contorno. É intenção que posteriormente nossos resultados sejam 
comparados com dados obtidos de observações. No momento tentaremos utilizar um 
conjunto de condições que possa simular razoavelmente condições atmosféricas reais de 
uma região tropical e marítima, com isto tentaremos dentro destas, avaliar o 
desenvolvimento da nuvem quente, com passivei ciclo completo: com precipitação como 
produto final. Tanto as condições iniciais usadas como as de contemo são bem 
próximas daquelas usadas por Ogura and Takahashl (1973). 
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IV.2 - CONDIÇÕES INICIAIS:

Dentro da condição de que o nosso ambiente é marítimo e tropical, vamos 
escolher condições tanto ambientais. como aquelas de contorno, que possibilitem no 
futuro uma comparação com dados obtidos próximo ao litoral do Ceará. As condições 
usadas estarão também próximas daquelas usadas por Ogura e Takahashí (1973), para 
que possamos fazer aigum tipo de comparação. Vamos iniciar pela temperatura. Esta é 
considerada como decrescente adiabaticamente do solo até a altura de 800 metros. 
Após este nível ela decresce sujeita a um gradiente de 5.s· e! km até o nível de 2000 
metros. Acima deste nível até 3km ela decresce com uma taxa de 3· e I km. No nível de 
3km impõe-se uma inversão e eia cresce de 3km a 3 ,41<m ã taxa de 10'" e/ ·km . Após esta 
fase ela decresce adiabaticamente seca até o nível fina! de 4km. A umidade relativa foi 
considerada de tal forma que ela cresce linearmente de 80% à 90% do solo até o nível de 
800 metros. Deste nívei ao nível de 2000 metros ela volta a decrescer até 75%. Do nive! 
óe 2000 metros ao nível de 3000 metros aue é a base da inversão a umidade decresce 
de 75% à 20%: entre is níveis de 3000 à 4000 m decresce 20% e depois permanece 
constante até o nível de 41cm. A velocidade vertical e a distribuição de gotas do ambiente 
são consideradas nulas. Entretanto é bem difícil escolhermos uma distribuição inicial para 
o conjunto de CCN's presentes no ambiente. Isto se deve a grande variação que ela
sofre , considerando-se fatores meteorológicos, como também variações do tempo e
lugar. Mesmo assim, foi escolhido uma situação muito próxima da utilizada por Twomey
e Wojcíechowskí (1969), onde é tomada uma concentração constante de CCN's para
todos os níveis e é dada por :

N(C =Cl 

C=2.108 /m3 ; s =.1 e k=LO 
Estas foram as condições ambientais . 
Vamos agora definir as condições iniciais para o ambiente da nuvem. Neste caso 

oraticamente são utilizadas as mesmas condições ambientais. Usamos uma faixa de 
saturação entre 600 metros e 1250 metros. Este fato é fundamenta! para o 
desenvolvimento da nuvem. O outro forçante importante para este desenvolvimento é a 
distribuição de velocidade vertical que é dada por: 

onde: 

f::.:.w = lmíseg; z
0

=1km. 
As condições de contorno foram usadas de tal forma que na superficie tanto a 

temperatura, a umidade relativa e a velocidade vertical, são mantidas constantes. Para o 
topo, considerado como 4Km, a velocidade vertical é considerada nula, e as outras 
variáveis são mantidas fixas. 
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O esquema de solução numérica segue a seguinte sequência: 

1. A parcela do ar úmicto juntamente com a água são advectadas:

2.A perturbação da pressão é calculada;

3. Os termos de difusão turbulenta e mistura são considerados:

4. Os efeitos dos processos de condensação e evaporação sobre o material
advectado são agora considerados. Aqui é feito o calculo da supersaturação; 

5. Os processos mícrofísicos responsavís pela mudança das funções distribuição
de gotas e CCN's são calculados; 

6. Como o esquema numérico advectivo utilizado apresenta uma perda pequena
por difusão numérica, então ao esquema é acrescentado um termo difusional fraco 
com a intenção de repor a perda. 

Basicamente este é o esquema utilízadõ. A seguir díscutiremos com mais detalhe 
alguns destes processos 
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IV.3- O ESQUEMA ADVECTIVO:

O esquema de solução numérico do conjunto de equação já citado é 
como segue para cada equação: 

t/J(t+ru)= <
r

+ í:F;ru I v. 3. 1 

<f , é a solução do termo advectivo e F; são todos os outros termos presentes 
nas respectivas equações. ,

f

é a solução da seguinte equação: 
Õlii ÔltJ -=-w- IV.3.2
ôt ôz 

Vários são os esquemas existentes para resolver esta equação 
hiperbólica. Pumel/ (1976), propos um esquema de solução baseada no processo de 
interpolação cúbica spline "üpstream". Purnell sugeriu dois esquemas, um conservativo e 
outro advectivo. O esquema conservativo apresenta uma instabilidade e pode gerar 
soluções indesejavéis, já o esquema advectivo apresenta uma maior estabilidade e baixo 
efeito difusional , Long and Pepper (1981) . Este foi portanto o esquema utilizado. 
Como ao modelo só interessava a solução unidimensional, foi escolhido uma grade e 
um Corrant que permitisse critérios de estabilidade. Para as velocidades de ascenção 
esperadas foi passivei usar um espaçamento da grade de 6. z=1 ao m e um intervalo de 
tempo 6. t :;;,4 s, que será o mesmo a ser usado no cálculo dos processos microfísicos. 
Portanto o fato de considerarmos uma microffsica completa define o tamanho da grade 

espaço tempo considerado. ef/ é dado : 
m· > 0'1 ,-

m; <º I 

S( x) é o polinômio interpolador e sua obtenção esta presa a solução de um sistema 

tridiagonal para as derivadas da função r/J , basicamente dada por : 

onde a;, A, e d; são valores dados em funcão do espacamento da grade e da função nos 

pontos da grade para tempo anterior 

IV . 3. 3 

IV .3.4 

A adveccão de todas as variáveis exceto a velocidade é feita numa arade 
< ... 

intermediária com aqueia da veiocidade. Portanto a veiocidaààe é tratada na grade 
zw(i)=(i-1)L1 z, i=1 ... , 41 e as outras variáveis ficam definidas na grade de z(1) = O, 
z(2)=50 e onde z(i)= (i-1)& - !Jz/2 , i=3 ... 41. 

Todos os outros termos diferenciais exceto obviamente aqueles ligados a 
equação de advecção, são calculados através da técnica de diferenças finitas centradas. 
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Dando continuidade ao procedimento utilizado. pode-se dizer que após fazer advecção 
aê w, tãntõ nã grãae õnae eiã é ctenn1âa, Cõiiiõ também na grade das outras varlâveis; 
então calcula-se a velocidade radial de acordo com a equação ( 11.3.42), em ambas as 
grades. Ainda avaliando a parte dinâmica é calculado o termo ligado a perturbação da 
pressão. Após isto calcula-se a pertubação na pressão e, logo a seguir é feito a 
advecção da temperatura e umidade relativa, como também CCN's para o ambiente e 
para a nuvem. Feito isto checa-se a interface nuvem/ambiente e a seguir calcula-se os 
termos de mistura e difusão turbulenta. O mesmo processo é feito para o espectro de 
gotas onde cada categoria de raio descrita por fu:), segue os mesmos passos. Com 
estes valores calculados avaliamos a razão de mistura para T .. , no qual tanto a pressão 
de vapor de saturação foi caiculada através de uma expressão proposta por Prupacher e 
Klett (1978). 
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IV. 4 - MICROFÍSICA:

Neste momento chega-se a microfísica onde iniciaimente vamos avaliar o 
processo de nucleação de gotas. A iniciação das gotículas passa pelo processo de 
ativação dos núcleos de condensação. A razão de ativação dos CCN's é uma função da 
supersaturação. Nós usamos a técnica de ativar gotas na categoria mais baixa de raio. 
Dessa forma a ativação dos CCN's ,caracterizada pelo termo �i l 

in, conforme aparece 
ot 

na equação 11.3.50, participa para diminuir a sua concentração que no momento da 
ativação está produzido. Por outro lado nesse instante, é produzido uma concentração 
inicial de gotas caracterizado pelo termo q( !

111
; conforme equação (11.3 .49.)

dt 

O processo de ativação dos CCN's é tomado de acordo com Hall (1980). Ela é 
parametrizada e considera que 

k T/ = Cs 

C = 2 x 10 s m-3 e k =. 5 e s e a supersa.turaçào e é dada pela razão entre a razão 
de nústura Q :, já advectada , e a razão de mistura àe saturação previamente calculada 

IV. 4. l

O processo de ativação de CCN 's proposto por Hall , compara JJ com o valor anterior rJ. 
e define o número de gotas ativadas como sendo est.a diferença , isto é : 

ro 
6.7] = � 

l 
l TJ- TJª 

17 < 7741 

TJ > TJ. J 

N.4.2 1

o proximo cálculo avalia o crescimento das gotas por condensação/
evaporação, ou melhor por difusão de vapor. O crescimento do raio de uma gota por 
difusão de vapor, já discutido no capitulo Ili, é dado pela equação (Ili .3.2) , Mason

dr. 
(1971). Com o valor de d; , calculado podemos calcular o produto do processo de
condensação/evaporação. Estes estão retratados nas equações li. 3.50 e li . 3.49., isto 
é: 
5M - Prof·4 .2 /(·)r m;l
----,t,..,; mi, 1zi-J' & Pa i�l L dt CE 

onde p m e Pa sã.o as densidades da água e do ar respectivamente 
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Comc1 o processo de condensação/evaporação vem acompanhado por 
Hberaçãoíabsorção de caior latente, sua irrfluéncía sobre a temperatura é dada peio 
úitimo termo da equação (li .3.49), isto é : 

BT \ L 8Af ( - 1 ----
àt Jcg e. 5T

onde C " é o calor específico do ar a pressão constante 

A influência desse processo também pode ser avaliada sobre a função 
distribuição de gotas, pois uma vez que o raio das gotas cresce , elas mudam de 
categoria. Entretanto como trabalhamos com um espectro discreto, obviamente após o 
processo de crescimento , teremos gotas com raios diferentes daqueles definidos pela 
grade inicial utilizada. Nesse momento o usual é utilizar um esquema de interpolação. 
Todavia Kove'tz and Olund (1969), sugeriram um método simples de redistribuição da 
água das novas gotas pelas categorias de raios adjacentes. 

Desta forma a nova concentração para a categoria de raio r, , é calculada como 
segue: 

oude ,r ( r:1 ) é a distribuição já advectada e G cr 6 uma função que faz com que a 

distribuição da �oUa é dada por 

QP r ,- y' < r 
-- .. !-! -- J - ' 

se r <' r' <' r:, ... J ... i+l 

qualquer outra situação 

J 

IV 

IV .4.6 

Dessa forma falta apenas ver a contribuição desse processo para a velocidade, 
equação(ll.3.48), isto é já que existe água condensada precisamos calcular o peso desta 
ãgua. sendo que este é o último termo da equação(ll.3.48). 

Q = P,,, "\' 4 
m:}f+u (r.) IV. 4.7

CP L... _.., • • J 

Pa i j 

O cálculo da supersaturação normalmente é um assunto complexo e, depende do 
tipo de método a ser utilizado. Contudo como a supersaturação está ligada a 
temperatura e a razão de mistura . Seu cálculo deve seguir um esquema adequado com 
a Termodinâmica. Existem três métodos que satisfazem estas condições. Um método 
explícito que requer tempos de integração muito pequenos, não condizentes com os 
intervalos usados para a dinâmica e, portanto participando como gerador de 
instabilidades. Amason and Brown, (1971). O segundo é um método anaHtico 
numérico, primeiramente introduzido por Clark (1973) , e que é bastante útil no caso de 
nuvens auentes. O método utiliza uma solucão analítica da eauacão de supersaturacão 

1 .:t l : 1 .:t 
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similar a de Squire (1952). Com esta supersaturação média calcula-se pele método 
explicito, o crescimento das gotas. 

O método usado é um método impllcito conforme o de Hall (1980). Após a 
advecção das grandezas termodinâmicas. calcula-se a supersaturação como função da 
temperatura e da razão de mistura de saturação. Com este resultado calcula-se a água 
condensada/evaporada e, seus efeitos diabáticos sobre a temperatura. o processo de 
cálculo da supersaturação e seus efeitos sobre o crescimento das gotas, segue os 
seguintes passos: com o valor da supersaturação calculada pelo processo advectivo. 
acrescido das outras contribuições dinâmicas pertinentes ao modelo, calcula-se a média 
de s· (advectada) com 1, isto é: 

s=s·+1 N.4.8

2 

Com este valor avalia-se o crescimento das gotas por condensação/evaporação, 
Manson (1971), ou seja: 

� 1 -
5-1

- 1 cr- r IV . 4 . 9 
dt; 1 L2M RT !rp '---+--, 

j "'! K RT2 • DA-1 J,
I '- D 41, 

dr. -com o valor de -' i cE
calculado , calcula-se a agua condensada/evaporada e seus 

dt 
efeitos diabáticos sobre a temperatura e a razão de mistura. 

aM = p°' i 4r.r,2/(r.) CVi IV. -4. 10
ôi par i=I l I dt

T n+J =Te +!:._ 5AJ 
e

,, 
& 

Q n_+l = o• _ fit L'i),,{" -u 
Ó[ 

com Q :."'1 e T n+i , calcula - se a razão de mistura de saturação Q ::�. 
Desta forma chegamos no primeiro passo para o cálculo da supersaturação, 

ºIH) 

S n+l = _u __ l 
o"+I -c.�,... 

pois: 

e finalmente definimos a supersaturação média que deverá ser utilizada para calcular o 
crescimento das gotas 

-s - 1 / c,l!+l ' S" \
-21.•.J ' ! 

N 4. 11 

N. 4. 12

IV. 4 .13

IV. 4. 14

Aqui está a complexidade. Para resolver IV.4{6. 9 .1 O, 11 . 12 ) é preciso obter a 
supersaturação média s em IV.4.13. Para tanto utiliza-se um método iterativo até que 
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ha_ia convergência. Finaiizadõ esta parte: o especrro de gotas oeio processti de
condensaçao, esta preparado para ser avaliado para a coaiescênc,a e ruptúra de gotas.
Se é o caso; de após algum tempo os processos anteriores gerarem gotas com tamanho
suficiente para permitir-las cairem sobre o campo de vento, e assim participarem dos
processos de colisão/coalescêncía e ruptura; então podemos dizer que a função
distribuição f (,;) irá permitir calcular o crescimento do raio das gotas apenas
considerando o crescimento por colisão e coalescência. Este resultado é dado por:

dr.
1 l 1 

-1..dt :,_!_cc 4 , Lnz![(i,J)f (r) IV .4.15
·rrrp -�-

, • J-• 

onde K(i,j) é o coeficiente de coleção e esta descrito pelas equações IV4.(6 e 4);
m: e a massa da gom j e f (r;) é a distribuicão de densidade de gotas.

J 

Ao cair sobre o campo de vento, uma gota maior. com uma velocidade terminal
maior. equação(IV .4.1 O), colide com outras gotas menores. ocorrendo para o intervalo
de tempo é,. t = 4 s, usado para a integração numérica, multiplas colisões e obviamente
múltiplos processos de coaiescência ou ruptura. . 

Considerando que o número de gotas menores . com raio r; , que participam de
colisões com uma gota maior de raio ri por unidade de tempo é dado por:

Nc(i,j) = K(i,j)f(,;) IV. 4.16
e considerando que P e { i, j) e a probabilidade de que durante uma colisão
entre duas gotas ocorra uma coalescência, então [ l - P cc (i ,j)] define a probabilidade
qu.e nesta c-olisão haja uma rupturn

Brazler Smith e outros, (1972), sugeriu para esta probabilidade a seguinte
expressão:

_ _ 2. 4 a{ 1 + r3 )
1
51 [ 1 -t- r2 - ( 1 + r3 /1 l 

Pcc(l,])= 
p r�Í

J "-Vll
r6(1+r2.)' -aJ \. � J / / 

IV .4.17

r = r, a é a tensão superficial da água e p"' é n densidade da água . Se cousidernmos multiplas
r. 

colisões então a probabilidade de multiplas rupturas e dada por
IV .4.18

Brazier Smtth et ali (1972} sugere que num processo de colisão com ruptura entre
duas gotas , 3 gotas satelites são geradas com raios iguais é dados por:
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,. 'U·' - \ r-3 + r .3·. . 
e também sugerem que as duas gotas modificaram seus raios para 

,_ ' 1_1°"3'h r: - l,; �. _ r11, ,l 

r/ = ( r.: - 1. 5 ,;}, ) X 

IV. 4. 19

IV·. -L 20 

IV ... 4 . 21 

Além destes processos deve-se considerar que as gotas, principalmente as grandes, 
ao cairem sofrem pressões hidrodinâmicas e, podem se romper espontaneamente. 
Komabayas/(1964) e Srlvastava(1971), sugeriram juntos que o processo de ruptura 
espontânea para ser definido, necessita do uso de duas probabilidades. A primeira 
garante a ruptura e a segunda garante a conservação dadas por água no processo, veja 
eq. 111.5.6 e 111.5.7. Dessa forma a equação completa equação ( 111.5.8). que engloba 
toaos estes processos, pode ser reescrita oara uso numérico dentro dq esquema de 
Kovetz-O/und (1969), como segue. A nova distribuição de densidade após os processos 
de colisão/coalescência, colisão/ruptura, ruptura espontânea, considerando que dentro de 
t.\ t, multtplas colisões tenham ocorrido é: 

N j 

-+- .I,; J":Gr;e (i,j,n)f ª(r_)(1 -Pcc (i,j ))/J.t 

N 

+ 3 J;};G,Ji.j . n )f ·(r;)(l -Pcc (i,j))M

-

},Nc(i, ;)/j_t
..:-./ . ,  

IV. 4.22

Nest..<i e:,...-pressão os fi.mc10naís G e:::, G s, e G rn sào os mesmos da eJ>..'J)re-ssào para a condensação 
eq_. IV .4.6, entretanto no momento de aplicá -las, utiliza- se para Gcc o raio definido na 
eq. IV.4.15, para GCB usa-seosraiosdefinidosporN .4. (20 e 21), e para a5 Gs usa-se a 
eq. IV.4.19 

Além destas contribuições devemos também acrescentar as outras contribuições 
devido a quebra espontanea de gotas. Esta é feita de acordo com Srivutava (1971),
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r·�- V;)= a,i 2..,.( (,; )l-'U)QU,j)0.r/1t N.4.23
j=� 

P(i) e Q(i, j) , foram dadas nas eq. III. 5. (6 e 7) 

Com isto encerramos este capítulo e vamos agora analisar no próximo capítulo os 
nossos resultados. 
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CAPÍTULO V 

RESULTADOS E CONCLUSÕES 

V.1 - INTRODUÇÃO

Concluimos nosso trabalho e tentaremos fazer uma avaliação completa dos 
resultados que conseguimos. 

Gostaríamos de adiantar que devido as dificuldades computacionais, e

principalmente de escassez de tempo, não foi possível elaborar muitos os gráficos que 
seriam úteis para a visualização dos fenômenos que participam do desenvolvimento do 
ciclo completo da nuvem simulada. 

Embora o tempo de simulação usado por nós não tenha sido o ideal, os resultados 
obtidos, podem perfeitamente ser comparados com outros modelos desta envergadura, 
como é o caso dos modelos de Ogura e Takahashl (1973), Hollon (1973), Hall (1980) 
e Takahashl (1975). 

Apesar das condições iniciais serem para regiões tropicais, elas não foram toma·das 
para as condições do Ceará ou mesmo de Fortaleza. Foram consideradas de acordo 
com as usadas por outros pesquisadores, e retratam as condições de uma região 
marítima no Caribe. As utilizamos porque precisavamos comparar nossos resultados, 
nem que fosse ligeiramente com outros de simulação , visto que ainda não tínhamos 
condições para compararmos com resultados observacionais obtidos aqui no Ceará. 
Várias dificuldades impediam uma comparação deste tipo, primeiro porque é 
fundamental o conhecimento do campo vertical de velocidade e ainda não temos um 
equipamento que possa medí-lo. Por outro lado vários dos nossos equipamentos 
apresentaram problemas técnicos durante a elaboração do nosso trabalho e não foi 
passivei solucioná-los em tempo. Todavia, tudo indica que eles foram resolvidos e deverá 
ser passivei usar o modelo no futuro para estudar as relações entre a dinâmica e a 
microfísica para uma nuvem no Nordeste Brasileiro. 

Porém uma coisa importante aconteceu. Conseguimos entrar no rol seleto dos 
modeladores de nuvens e outros sistemas de mesoescala. Podemos dizer que 
conhecemos cada passo ou processo formador do ciclo da nuvem, como também os 
métodos numéricos empregados. Tivemos muitas dificuldades inicialmente em fazer o 
modelo funcionar porém com paciência e muita dedicação conseguimos executá-lo e 
gerar bons resultados. 
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V.2 - ANÁL!SF DOS RFSULTADOS:

Vamos iniciar esta seção comentando sobre as condições iniciais , geradoras de 
uma situação preponderante de formação de uma nuvem com material precipitável. 
Estas condições estão principalmente descritas pelas figuras 1 . 2 e 3 (velocidade 
vertical. temperatura e razão de saturação respectívamete). Gostar!amos de resaltar que 
o máximo da velocidade verticial inicial é de 1 mls para uma altitude de 1 km; sendo nula
a 1.2km e no solo.

Para a temperatura incial adotamos um valor de 25.5C no solo. Este valor pode ser 
pensado como a temperatura da superfície em nossa região por volta das 5 horas da 
manhã, que é uma boa hora para formação de nuvens precipitantes, pelo menos em 
tomo do litorai cearense. 

Outro fator importante a ser observado é a inversão na temperatura que foi 
considerada entre 3km e 3.4km. 

A condição inicial para a razão de mistura foi adotada considerando que a umidade 
reíattva do ar ou também a razão de saturação , assumiam uma faixa de saturação 
entre (0.6 e 1.2)km. o que permite para qualquer acréscimo de saturação , o inicio da 
nuvem através da nucleação e condensação . 

Com estas condições podemos agora fazer uma avaliação completa da evolução 
das variáveis dinâmicas e microfísicas, como suas possíveis reiações de interferência. 

Iniciando pela temperatura, mostrada na figura 4, perceber que as modificações que 
ocorrem sao muito pequenas e

1 
basicamente acontecem na faixa de formação do 

material preclpitavet. lstõ é entre a base da nuvem e o topo, que dentro do tempo de 
execução do programa, 40 (quarenta )minutos, ficou entre 750m e 2500 m. Fato este 
facilmente identificado pela curva de supersaturação, figura 6. Isto é esperado , devido ao 
fato que nesta faixa, ocorrem fontes e sumidouros de calor provocados pela liberação 
õU absorção de calor latente , no processo de formação das gotas de condensação . 

Todavia tais valores não podem ser tão grandes que possam efetuar uma mudança 
acentuada no perfil da temperatura , já que a temperatura não varia no tempo. Este é um 
fato observado e portanto esta bem retratado nos nossos resultados. Por dificultades de 
identificação não foi possível mostrar para quais tempos de integração foram tomadas 
as curvas de temperatura, fato que não ocorre com outras variáveis , já que as 
alterações apresentadas são bastante visíveis. 

A seguir vamos analisar a figura 5 que descreve a evoiução da velocidade vertical. 
Chamamos atenção que uma velocidade vertical positiva significa ascendência e será 
negativa quando houver descendência . Em inglês traduzir-se por updraft ou downdraft 
respectivamente. Como estes são termos comuns na área Física da Atmosfera iremos 
utlllzá-los. 

Portanto avaliando a figura 5, onde estão plotadas sete situações temporais 
podemos verificar que um máximo updraft ocorre tomo de 2000 m e ele alcançou uma 
velocidade de 4.2 m/s ou 15,2 km.Ih. Nota-se que este valor ocorreu numa região próxima 
ao topo da nuvem e, que aconteceu em tomo de 28 mín da evolução da nuvem. Para 
esse tempo pode-se verificar pelas figuras 11 , 12 e 13 que é iniciado o processo de 
precipitação ao soio, 
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No inicio da descendência, velocidades verticais negativas, isto é o downdraf, inicia 
em tomo de 28 min e, surge numa faixa prõxima ao topo da nuvem. É esperado que 
com o passar do tempo eie deva ocupar toda a região da nuvem. visto que para tempos 
superiores a 40 min o cicio da nuvem já esta em decadência e a evaporação das gotas 
participará como fator preponderante nesta situação . É um resultado esperado. visto 
que, ocorre em uma nuvem real. na faixa de formação do material precipitável. isto é, 
entre a base da nuvem e o topo; que no modelo em análise no tempo de execução (40
minutos), ficou entre 750 metros e 2500 metros, facilmente identificado pela curva de 
supersaturação (figura 6). 

Quanto a velocidade vertical. observa-se o surgimento de uma descendência numa 
faixa próxima à superfície entre O e 400 metros assumindo um valor da ordem (-1 m/s). 
O surgimento de ve1oc1ctades negativas próximo ao topo da nuvem está associada com 
a camada não saturada acima do topo da nuvem; não confundir o topo da nuvem com o 
limite superior da nossa escala, onde as condições de contorno são definidas. 

Observando a figura 8. que descreve a evolução da velocidade radial, e que esta 
intimamente ligada a velocidade vertical peia equação anelástica, pode-se notar que 
durante o processo de formação da nuvem, o fluxo para o exterior da mesma sempre 
ocorre próximo ao seu topo , acontecendo numa faixa de no máXimo 7 km, enquanto 
que o fluxo para o interior que representa uma velocidade radial negativa, ocorre numa 
faixa bem maior desde o solo até o interior próximo superior a base. Nota-se que isto é 
uma constante para todo o processo de evolução da nuvem, pelo menos foi o que ficou 
retratado pelos vários tempos plotados ( 4, 10 16, 22 , 28, 34 e 40) min. A máXima 
velocidade radial considerada 7m/s, e ocorreu próximo ao pico da velocidade vertical, em 
tomo de 34 mín . Neste instante que inicia a precipitação ao soio, conforme a figura 13. 
Um fato interessante observado é que, o máximo do fluxo para o exterior foi algumas 
ordens de grandeza maior do que o máximo do fluxo para o interior, isto ocorreu 
enquanto o primeiro alcançava 7m/s o outro chegou a (-1. 7) m/s. Vale frisar que este 
último valor ocorreu numa região próXima da base da nuvem, em tomo de 700 metros.
Percebe-se também que com o aumento da intensidade de precipitação ao solo, surge 
uma pequena região próXima ao mesmo com pequeno fluxo para o exterior da nuvem ou 
uma divergência. Este fato também é observado numa nuvem real quando a 
precipitação se aproxima do seu final. A perturbação que ocorre à velocidade radial no 
topo tem a mesma origem daqueia sobre a velocidade vertical. 

Avaliando a evolução do campo de supersaturação figura 6. Dada a condição em 
cujo processo de saturação foi imposto numa faixa de 600 metros, entre 0,6 km e 1,2

,km, a partir ctai nota-se que a supersaturação teve uma evolução razoável para o 
modelo empregado. Observa-se que um máximo de supersaturação aconteceu para 40
mine foi em tomo de 7%, e que este valor aconteceu próximo do topo da nuvem. Apesar 
deste valor ser muito alto p_ara os padrões usuais, Hall (1980), comenta-se que em 
algumas situações já foram observados vaiares semelhantes. Contudo acreditamos que 
este é apenas um defeito da técnica que foi utilizada para efetuar o cálculo, sendo 
possível obter melhores resultados com outra técnica. Nesta figura podemos ter certeza 
que a base e o topo da nuvem ficam bem delineados. ocorrendo, para cada tempo 
observaào em torno de 700 m e 2. 500 m. 
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emitir opinião sobre o processo de finalização da nuvem com a evolução da 
supersaturaçâo para suosaturação em toda a região da nuvem. Como considera-se 
mistura turbulenta lateral. temos dois canais de entrada de CCN's para o interior da 
nuvem, através da base onde eles se formam gotas e pelas laterais onde a penetração 
cto ar ambiental seco carregado de CCN's mais frio, provoca e evaporação de gotas e 
pode ser facilmente identificado experimentalmente. No modelo este fator aparece. mas 
não· é possível notá-!o do ponto de vista espaciaL Em seguida vamos analisa-se os 
resultados ligados a microfísica . isto é, a evolução da formação da água no interior da 
nuvem. Como a água ficou dividida em três tipos de gotas. isto é: 

:i Gotas de nuvens 1 µm <rs40µm (Faixa da saida FSSP) 

:, Gotas de chuvisco ou garoa 4-0µm <r�300µm (Faixa da sonda 200-X) 

:, Gotas de chuva r>300µm (Faixa da sonda 200-Y) 
A água precipitável é a soma de todas estas. Avaliando a figura13 podemos verificar que 

a precipitação inicia-se ao solo em tomo de 28 min, porém numa taxa muito baixa. Após 
este inicio ela tende a crescer aicançando em 40 min uma taxa de 22.5 mm/h ao solo. 

Obviamente a precipitação deve continuar por mais tempo , porém em declínio até o 
ciclo compieto da nuvem. Analisando as figuras: 9, 10, 12 e 11 . pode-se verificar pela 
figura 9 que aparecem as gotas de nuvem e que a água associada a elas fica distribuída 
por toda a região da mesma dentro do tempo observado, desde a base até o topo . Para 
um tempo da ordem de 22 min a água líquida de nuvem alcança um valor máximo de 
l. 7 gr í m3

, entretanto se observa que a medida que o tempo cresce gotas maiores
começam a aparecer e as gotas de nuvem rapidamente tendem a desaparecer. Este
fato é fácil de ser observado olhando a figura 1 O que trata de água de chuvisco ou garoa,
água formada por gotas entre 41 microns e 300 microns. Na figura 1 O podemos ver que
entre 28 mín e 40 mín, o crescimento da intensidade da água nesta fai)(a foi pequena,
porém percebe-se que a presença destas gotas ficam espalhadas em 40 min por toda
a área que vai do solo até o topo da nuvem, estando o seu máximo próximo do topo e

alcançando o vaior de lg / n/ . Pelo gráfico das gotas de chuva mostrados na figura 12
ou pelo gráfico do conteúdo de água líquida da figura 13 tem-se uma idéia de sua
evolução. Da figura 11 , pode-se perceber que enquanto as gotas são pequenas, ou seja,
com ralos menores de 300µm, elas praticamente ficam restritas a faixa da nuvem,o que
ocorre até um tempo de 28 min. A partir dai as gotas maiores começam a predominar
sobre o espectro e rapidamente diminui a intensidade da água de 2,5g/m3 próximo do
topo da nuvem para 1,2g / m3 também próximo do topo. Entretanto observa-se que a
água precipitavel fica espalhada por toda a região do solo ao topo. A outra figura que
reforça esta conclusão é a figura 14 que descreve a refletividade de radar. Da figura 14
pode-se ver que , entre 16 min e 34 min, a refletividade de radar muda de zero db, para
um valor máximo próximo de 50 db com o máximo de refletividade ocorrendo próximo do
topo da nuvem. Para 28 min temos uma refletividade no solo da ordem de 18 db, este
valor de acordo com a relação esperada entre Z a refletividade , e a chuva R., isto é :
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QY sejª, pªra Z:::1 a dbz. oeve-se ter uma precipitação ern tomo de O 6mm/h, que é 
aproximadamente o que se observa na ngura i 3. A medida que o tempo passa a 
refletividade vai crescendo ao solo e diminuindo no topo. Para 40 min podemos ver uma 
reifetividade por volta de 40 Dbz ao solo implicando numa precipitação por volta de 23 
mm/h. Novamente, na figura 13 podemos verificar que isto ocorre. As últimas figuras para 
analise são sobre o espectro oe gotas versus raio oas gotas e foram tomadas em alguns 
níveis. As figuras )15. 16 e 17= representam o espectro de gotas em g,m·:.um. com raio 
dado em µm para os níveis 11 e 15, o que significa 900 metros do solo. Neste caso nota­
se a evoiução do espectro. Para tempos pequenos o espectro está concentrado em raios 
muito pequenos e a medida que o tempo evolui pode-se verificar a formação de uma 
distribuição bimodal. Apesar de não esta completo o gráfico, visto que deveríamos 
observar o que se passa para raios bem pequenos, porém é fácil verificar que para 40 
min há um crescimento na intensidade do espectro de gotas. para gotas grandes em 
tomo de 1,6 mm. As outras figuras são semelhantes, todavia a figura 17 apenas repete a 
figura 16, consideranào todo o espectro. Nesta figura é fácil verificar a evolução da 
distribuição bimodal com urna linha satélite bem espalhada para raios maiores. A técnica 
de Kovetz-Olund para avaiiar o crescimento de gotas por coaiescência, usualmente 
permite um crescimento espúrio para raios maiores. portanto os resultados estão 
razoáveis. bem próximos do que é esperado. 

A penúltima figura , figura 17, foi uma tentativa de mostrarmos através da evolução 
do espectro de gotas.tanto espacial como temporal, a formação da precipitação no 
interior da nuvem. Por dificuldades técnicas a figura apenas fornece uma idéia de como 
este processo ocorreu. Também preparamos para a figura 18 um gráfico desde o qual a 
refletividade de radar e precipitação, e observa-se que o máximo de precipitação da 
ordem de 36mml11 , ocorreu para um máximo de refletividade por volta de 50 db.

Com todas estas informações pode-se concluir que. como uma primeira tentativa de 
dominar uma técnica de simuiação do ciclo completo de uma nuvem quente, os 
resultados apresentados estão muito bons. Comparados com aqueles de Ogura e 
Takahashl (1973). podemos verificar que estão muito próximos, o que nos anima 
bastante apesar das técnicas empregadas em ambos os trabalhos serem bem diferentes. 

Como este assunto é bastante complexo, muita coísa deve ser feita para aperfeiçoar 
õ modelo, o qual utiliza métodos que precisam serem trabalhados. Um deles é o caso do 
cálculo da supersaturação, que na versão utilizada , um pouco diferente daquela usada 
por Hall (1980), produz supersaturnções relativamente altas. 
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