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RESUMO

Esta dissertacdo apresenta uma introdugao conceitual e matematica aos fundamentos da com-
putacdo quantica topoldgica, com énfase na emergéncia de anyons nao abelianos em sistemas
bidimensionais. Partimos da andlise do espaco de configuracdes de particulas idénticas e constru-
imos a descricdo quantica por meio da linguagem de fibrados de Hilbert, conexdes e holonomia,
explicitando a transic@o natural entre conceitos topoldgicos e sua formulagdo fisica. Nesse
enquadramento, mostramos como a teoria de Chern-Simons fornece um modelo eficaz para a
dinamica topoldgica dos sistemas anydnicos, capturando as transformacdes unitdrias induzidas
por processos de fusao e braiding. A partir dessa estrutura, discutimos como essas operacoes
podem ser utilizadas para implementar computagdo quantica tolerante a falhas. O trabalho tem
carater essencialmente didético, buscando elucidar a relacao entre topologia, geometria e fisica
anyOnica, destacando os elementos fundamentais que sustentam a proposta de computadores

topoldgicos.

Palavras-chave: anyons; computacdo quantica topoldgica; fibrados e conexdes de Hilbert; teoria

de Chern-Simons.



ABSTRACT

This dissertation presents a conceptual and mathematical introduction to the foundations of
topological quantum computation, with emphasis on the emergence of non-Abelian anyons in
two-dimensional systems. We start from the analysis of the configuration space of identical
particles and build the quantum description through the language of Hilbert bundles, connections,
and holonomy, making explicit the natural transition between topological concepts and their
physical formulation. Within this framework, we show how Chern-Simons theory provides
an effective model for the topological dynamics of anyonic systems, capturing the unitary
transformations induced by fusion and braiding processes. From this structure, we discuss
how these operations can be used to implement fault-tolerant quantum computation. The work
has an essentially didactic character, aiming to elucidate the relationship between topology,
geometry, and anyonic physics, highlighting the fundamental elements that support the proposal

of topological computers.

Keywords: anyons; topological quantum computation; Hilbert bundles and connections; Chern-

Simons theory.
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1 INTRODUCAO

A capacidade humana de manipular informacdes foi decisiva ao longo da histéria,
moldando a organizag¢do social e impulsionando o progresso tecnologico. Com o advento de com-
putadores com poder de processamento cada vez maior, novos horizontes para o desenvolvimento
cientifico e tecnoldégico tém se aberto.

Nesse contexto, a computagdo quantica surge como uma tecnologia com potencial
revoluciondrio. Computadores que operam com sistemas regidos pelas leis da mecanica quantica
podem, gragas aos fendmenos de superposicao e entrelacamento, superar exponencialmente os
cldssicos em determinadas tarefas. Entre os exemplos mais promissores estdo a fatoragdo de
nimeros primos (Shor, 1999; Xiao et al., 2022), dlgebra linear (Ayoade et al., 2022), simula¢do

de sistemas quanticos(Aspuru-Guzik et al., 2005) e machine learning (Peral-Garcia et al., 2024)

Normalmente, os computadores quanticos sdo classificados de acordo com o prin-
cipio fisico no qual se baseiam. Entre as principais abordagens, destacam-se os computadores
baseados em fétons, supercondutores, armadilhas de ions e os topoldgicos. Tais categorias sdo
abrangentes um vez que, associado a cada uma, podem existir diferentes sistemas que utilizam
distintos graus de liberdade para representar a informacdo. Em cada um desses sistemas es-
pecificos a informacao € associada aos estados e as fases complexas do mesmo, podendo ser
manipulada por meio de operadores unitarios. Computadores fotdnicos, por exemplo, pode
utilizar os estados de Fock e associa-los as unidades de informacao (qubits), mas também pode
utilizar a polarizacdo vertical ou horizontal dos f6tons.

Atualmente, ainda ndo ha computadores quanticos capazes de resolver problemas
de alta complexidade, como a simulagdo de farmacos ou a quebra da criptografia RSA. Isso se
deve a necessidade de um nimero extremamente elevado de qubits 16gicos para executar tais
tarefas (Dalzell et al., ; Gidney; Ekera, 2021; Gouzien; Sangouard, 2021). Apesar de avangos
importantes por parte de empresas como a Microsoft (Microsoft, 2024; Microsoft, 2025) e a IBM
(IBM Quantum, 2024), a meta de construir maquinas com baixa taxa de erro e muitos qubits
ainda nao foi alcangada.

O funcionamento de um computador quantico depende do controle preciso e da
preservacdo dos estados fisicos que codificam os qubits. Esses sistemas sdo extremamente

sensiveis e estdo sujeitos a multiplas fontes de erro (Devitt ef al., 2013; Terhal, 2015). Entre elas,
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destaca-se a interacdo inevitdvel com o ambiente!, além das interagdes internas entre os proprios
componentes, que provocam processos de decoeréncia. A taxa e o tipo de erros variam conforme
o sistema fisico e sua arquitetura, mas tendem a crescer com o nimero de qubits, dificultando a
escalabilidade dos dispositivos mantendo taxas de erro toleraveis.

A mitigagdo de erros €, portanto, um dos principais desafios para a escalabilidade da
computacao quantica. Nesse cendrio, os computadores quanticos topoldgicos ganham destaque
por proporem o0 armazenamento e processamento da informagdo em subespacos de Hilbert
protegidos topologicamente. Como consequéncia, perturbagdes locais, causadas pela interagdo
com o ambiente ou por imperfei¢cdes internas, sdo naturalmente suprimidas pelo carater global
das propriedades topolégicas?.

A computagdo quantica topoldgica baseia-se na manipulagcdo dos estados de quasi-
particulas chamadas anyons. Ao contrério das particulas fundamentais em 3+1 dimensoes, 0s
anyons emergem em sistemas efetivamente bidimensionais (2+1 dimensdes), onde a topologia
do espago permite estatisticas fraciondrias que diferem das estatisticas bosonicas e fermidnicas
usuais.

Essas quasiparticulas dividem-se em duas classes: anyons abelianos e anyons nao
abelianos. Embora os anyons abelianos oferecam uma introdugo ttil ao tema?, eles nio possuem
estrutura suficiente para computagio quantica universal®. Assim, apenas os anyons nio abelianos
sao relevantes para os objetivos deste trabalho.

O grande interesse nos anyons ndo abelianos reside na estrutura do estado fundamen-
tal do sistema, que é degenerado e composto por subespacos topologicamente distintos. Cada
subespaco representa um estado global sensivel apenas a configuracio coletiva das quasiparticu-
las. Trocas adiabdticas entre elas, protegidas por um gap de energia, induzem transformagdes
unitdrias no espaco degenerado que dependem apenas da topologia dos trajetos — as chamadas
holonomias. Esse comportamento permite representar € manipular estados robustos contra
perturbagdes locais, viabilizando modelos de computacdo naturalmente resistentes a erros.

Sistemas anyOnicos apresentam uma forma de organizacdo chamada ordem topol6-

'O ambiente pode incluir o aparato de medida e/ou elementos periféricos, como as paredes da cAmara de

isolamento, que inevitavelmente interagem com o sistema em andlise.

E importante ressaltar que grandes pertubacdes capazes de alterar essas configuracdes globais do sistema ainda
s@o fontes de erros possiveis dentro desses sitemas.

Os anyons abelianos estdo profundamente relacionados com efeitos Aharonov—Bohm (Aharonov; Bohm, 1959)
e as Fases de Berry (Berry, 1984).

As operagdes unitdrias associadas a troca de anyons abelianos sdo densas apenas em U(1), enquanto para a
computagdo universal € necessario que sejam densas em SU(2).

4
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gica, que se manifesta, por exemplo, na existéncia de multiplos estados fundamentais que ndao
podem ser distinguidos por observaveis locais. Essa ordem também esta associada a presenca
de anyons. Uma maneira de identificar essa ordem € por meio da entropia de entrelacamento,
especialmente através do termo constante conhecido como entropia topoldgica, que revela a
presenca de entrelacamento de longo alcance no sistema. Experimentalmente, ha evidéncias da
existéncia de anyons em sistemas como o Efeito Hall Quantico Fracionario e em spin liquids,
que exibem estados altamente correlacionados sem apresentar ordem magnética convencional.

O objetivo deste trabalho € apresentar, de forma clara e acessivel, os principais
conceitos fisicos e matemaéticos relacionados aos anyons, partindo de sua defini¢do e das ideias
topoldgicas que fundamentam sua existéncia. Comecaremos explorando como sistemas quanticos
bidimensionais permitem a emergéncia de estatisticas distintas das convencionais, € como a
topologia do espaco desempenha um papel central na descri¢do dessas quasiparticulas. Em
seguida, discutimos a estrutura da evolug¢do quantica desses sistemas, abordando no¢des como
teorias topoldgicas de calibre, fibrados e conexdes, que fornecem a linguagem matemaética
adequada para descrever os estados protegidos e as operagdes de entrelacamento. A partir
dessa base conceitual, discutiremos como essas propriedades anydnicas podem ser capazes de
implementar um computador quantico, a partir de suas matrizes de Fusdo F e de tranca R.

O desenvolvimento do trabalho busca ser principalmente didédtico envolvendo diver-
sas imagens e explicacdes detalhadas em tdpicos mais complicados os quais muitas das vezes
ndo sdo tratados diretamente em materiais introdutérios. Os conceitos principais discutidos nesse
trabalho estdo relacionados a topologia, geometria diferencial, teoria de calibre, teoria quantica
de campos topoldgica, assim como a descri¢do efetiva da fisica anyonica.

Apesar das citagdes ao longo do texto. Vale a pena citar alguns artigos e livros os
quais esse trabalho foi principalmente baseado. Os aspectos topoldgicos/geométricos discutidos
sdo baseados principalmente nos livros (Nash; Sen, 1988) e (Nakahara, 2018) enquanto os
aspectos fisicos se baseiam no artigo (Leinaas; Myrheim, 1977) e nos livros (Pachos, 2012) e

(Simon, 2023)
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2 COMPUTACAO QUANTICA

A esséncia da computagdo quantica reside na manipulacio inteligente de amplitudes
de probabilidade. Enquanto computadores classicos processam bits binarios (0 ou 1), sistemas
quanticos exploram a superposi¢do, onde um qubit pode existir simultaneamente em multiplos
estados. Cada estado possivel possui uma amplitude complexa associada, que determina sua
probabilidade de ser observado durante uma medicao.

O objetivo final da computagdo quantica € "confinar"a distribui¢do de probabilidade
resultante em picos estreitos em torno das solugdes corretas. Quando o sistema é medido, a alta
probabilidade concentrada nesses estados garante que a resposta util seja obtida com elevada
confianca. Essa orquestra de amplitudes - direcionando interferéncia destrutiva para respostas
indesejadas e construtiva para a solucdo 6tima - € o cerne da vantagem quantica em problemas

como fatoragdo e otimizagao.

2.1 Portas logicas universais

Em computagdo cléssica as informagdes sdo representadas de forma binaria através
de bits', os quais podem assumir valores {0, 1}. Uma informago, como um niimero ou uma
letra, por exemplo, pode ser representada por um conjunto de bits. Com 3 bits, podemos ter 23
combinacdes diferentes. Se associarmos a cada uma dessas combina¢des um nimero natural,

podemos representar os nimeros {0,1,2,3,4,5,6,7}

000 >0
001 > 1
010 2
011 >3
100 >4
101 5
110 6
111 7

ou qualquer outro conjunto de 8 nimeros (no caso de 3 bits). Da mesma forma, temos a
tabela ASCII a qual associa letras, algarismos e sinais de pontuacdo e controle a uma possivel

combinagio de 8 bits?. Com 8 bits, podemos ter 28 = 256 combinagdes diferentes, permitindo a

1
2

Existem computadores terndrios também, que utilizam trits assumindo valores {—1,0,1}
Um conjunto de 8 bits é conhecido com byte
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representacio de uma vasta gama de caracteres usados na comunicacao textual digital.

Em um computador queremos ser capazes de manipular tais informacdes da forma
mais ampla possivel, como alterar um texto, somar dois nimeros, ou qualquer outra instru¢cao
que leve um conjunto de informagdes em outro. Matematicamente tais manipulacdes sao
representadas pelo conjunto de todas as fungdes f : {0,1}" — {0,1}" as quais levam um
conjunto de n bits a um conjunto de m bits. Obviamente existem infinitas fun¢des desse tipo
dados m e n arbitrérios.

Obviamente ndo somos capazes de criar um dispositivo fisico para cada possivel
fungdo f: {0,1}" — {0, 1}, com tudo, essas fun¢des podem ser obtidas a partir da combinago
de um conjunto finito de fungdes do tipo g : {0,1}* — {0,1} (Nielsen; Chuang, 2010). Os
dispositivos que implementam fisicamente essas fungdes sdo chamados de portas 16gicas. Se
esse conjunto € capaz de implementar (dado tempo e recursos suficiente) qualquer funcao
f:{0,1}" — {0,1}" entdo ele € um conjunto universal de portas l6gicas.

Em computagdo cldssica, existem alguns grupos de portas as quais podem ser
universais, por exemplo {AND, OR,NOT } ou {NAND}. Apesar de existir conjuntos de apenas
uma porta logica que conseguem ser universais, nem sempre ¢ a melhor escolha, um vez que
pode ser muito mais custoso em questdo de tempo e recursos implementar fungdes com apenas

um tipo de porta logica.

2.2 Qubit

Em computac@o quantica as informagdes sdo armazenadas nos estados quanticos
do sistema. A unidade de informag¢do mais simples, com propriedades quanticas, que podemos
ter € o sistema de dois niveis, nesse contexto, chamamos ele de bit qudntico ou qubit. Existem
computadores quanticos baseados em sistemas de mais niveis, como por exemplo, 0s qutrits
(sistemas de tés niveis), no entanto, eles ndo constituem o foco desse trabalho.

Um sistema quantico onde existe a superposicao de dois estados puros {|0),[1)} e

dito ser um qubit e seu vetor de estado é dado por

ly) = a|0) + B[1) 2.1)

onde o e f3 sdo niimeros complexos. Sabemos da mecanica quantica que |{(w|y)|> = 1 de modo
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que |c|? + |B|* = 1. Tal estado pode ser representado por uma matriz coluna de duas posicdes:

= al0)+B1) 22

2.3 Portas légicas quanticas universais

Todas as possiveis transformagoes que levam um estado de um qubit a outro |y;) —
|y), sem perda de informagio®, podem ser representados por uma matriz complexa unitaria
2X?2. Tais transformagdes recebem o nome de portas logicas de um qubit.

Uma sucessao de transformacdes U, U, pode ser representada por uma unica
matriz unitdria Uz através da multiplicacdo matricial, uma vez que U3T U; = (U Uz)TUl U, =
Ujuiu i, =1.

O conjunto de todas as matrizes unitdrias 2X2 munidos da operacdo de multiplicacao
matricial formam um grupo chamado de U(2):

Operacao do Grupo: U U, =U;3 YV U, U, U3 € U(2) .
Elemento Identidade: U1 =U VYU € U(2).
Elemento Inverso: U'U =1V U € U(2).

Do ponto de vista fisico, nem todas as transformagdes unitdrias sao relevantes. Uma
vez que uma aquisi¢do de uma fase global do sistema € indistinguivel, o grupo de transformagdes
unitdrias que nos permite manipular o estado de um qubit sem perda de informagao € um subgrupo
de U(2). Esse subgrupo é conhecido como SU(2) e € formado por todas as transformagdes
U € U(2) onde det(U) = 1.

Podemos verificar isso decompondo U em uma fase ¢'®/2 ¢ um operador S € SU(2)
de modo que U = ¢'9/2S. Para isso utilizamos o fato de que U € um operador unitdrio e seu

determinante deve ser da forma
det(U) = €' (2.3)
O que nos permite verificar diretamente que:

det(S) = det(e 0/2U) = e 0/ det(U) = e 70/2610/%2 = | (2.4)

3

A informacao de um qubit esta armazenada em sua superposicdo de estados e em suas amplitudes de pro-
babilidade o e . Operadores de medida, por exemplo, quebram tal superposi¢io, resultando na perda de
informac@o.
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UTU = (£/9/25)7(¢9/28) = (¢710/287) (9/285) = STS =1 (2.5)

Um conjunto de portas l6gicas {V} é universal para um tnico qubit se o grupo
gerado por {V'} (isto é, todas as combinagdes possiveis de produtos ViV, ...V,) for denso em
SU(2) na topologia padrdo. Isso equivale a dizer que, para qualquer operador S € SU(2) e

qualquer € > 0, existe uma sequéncia finita de operadores {V;} tal que:
HV1V2...Vn—SH <E, (2.6)

onde || - || € uma norma apropriada.

Para que um computador quéntico seja universal, é preciso que tal ideia seja estendida
para um conjunto de n qubits. E possivel mostrar que, dado um conjunto de portas 16gicas
{V'} que seja denso em SU (2), podemos tornd-lo computacionalmente universal para n qubits
adicionando uma porta l6gica capaz de gerar entrelacamento entre os qubits, veja (Nielsen;
Chuang, 2010).

Essa caracteristica € fundamental pois nos permite aferir a viabilidade de um sistema
se comportar como um computador quantico a partir de suas operacdes acessiveis. A nivel
informacional nossa Unica exigéncia é:

1. Um conjunto de operagdes {V;} o qual seja denso em SU(2).
2. Uma operacdo que promova entrelacamento entre os espagcos H; ® - - - ® H,, individuais de
cada qubit.

Apesar de existir um grande passo entre a realizacdo experimental de um computador
quantico e a teoria a qual o suporta. A andlise da sua capacidade de representar informacao é

imprescindivel.
2.4 Compilacao quantica

A ideia de um computador quantico € algo abrangente, no sentido que o termo nao
define completamente a arquitetura operacional do mesmo. Qualquer sistema que seja capaz de
satisfazer os requerimentos de densidade e entrelagamento € um candidato plausivel a ser um
computador quantico. Diversas arquiteturas fisicas tém sido exploradas para realizar computacao
quantica, incluindo:

1. Computadores baseados em fons aprisionados
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2. Sistemas de circuitos supercondutores
3. Pontos quanticos semicondutores

4. Sistemas fotOnicos

5. Topologias baseadas em anyons

Cada uma dessas plataformas aproveita os fendmenos de superposi¢ao de estados e
entrelacamento quantico para representar € manipular informacdo. A linguagem natural para
descrever problemas e operagdes nesses sistemas € o conjunto padrdo de portas quanticas univer-
sais (como portas de Pauli, Hadamard, CNOT e T). Contudo, as operacdes nativas acessiveis a
cada hardware sao distintas, de forma que surge a necessidade de converter entre representacoes
de circuitos equivalentes.

O teorema que garante a existéncia dessa correspondéncia, com complexidade
eficiente, € conhecido como algoritmo de Solovay-Kitaev (Ozols, 2009). Este assegura que
qualquer porta universal pode ser aproximada por uma sequéncia de portas de um conjunto
discreto, embora a execucao sucessiva de portas logicas possam acumular erros.

Para o caso especifico de sistemas topoldgicos baseados em anyons (como modelos
de Ising e Fibonacci), técnicas avangadas de compilagdo sao necessdrias para mapear portas
l6gicas em operacgdes de braiding. Dois artigos relevantes que abordam essa conversdo com
andlise de taxa de erro induzida sdo: (Johansen; Simula, 2021; Long et al., 2025). Ambos
exploram modelos capazes de percorrer grafos de combina¢des de operadores que sejam capazes

de optimizar a convergéncia da aproximagao.

2.5 Dificuldades de uma computacio quantica robusta

Apesar do enorme potencial tedrico da computacdo quintica, sua implementacao
prética enfrenta obstaculos considerdveis. O principal deles € a fragilidade dos estados quanticos
diante do ambiente. Um qubit isolado é um sistema idealizado: no mundo real, ele sempre
interage com graus de liberdade externos, o que gera ruido e perda de coeréncia quantica. Esse
fendmeno € conhecido como decoeréncia.

Para ilustrar o processo de decoeréncia suponha 775 (espaco de computagao/qubits)
e % (ambiente) espacos de Hilbert finito-dimensionais com bases {‘Si>}?;1 e {|ek>}ge: - O

sistema total é 77 = At Q HE.
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Um vetor arbitrario |¥) € .7 pode ser escrito como

dy d,
W)=Y Y ciclsi) @ |ex), Y Jeal* = 1. o
i=1k=1 ik

O operador densidade do estado global (puro) é
p = PN =YY cicip (Isi)(si]) @ (Jex) (ew]). (2.8)
ik i K
A matriz densidade reduzida do espaco de computacdo C é obtida pelo traco parcial

sobre o0 ambiente E:

dg

pc = Trelp] = ) (Ie®{exl) p (Ie®ler)) = Z/,(;Cikcf/k> i) (s . (2.9)

k=1
Critério de separabilidade (para estados puros do sistema total): o estado |¥) é

separavel entre espaco de computagdo e ambiente se, e somente se, a matriz de coeficientes

C = (ci) tem rank(C) = 1. Ou seja, existem vetores u € C9 e v € C% tais que
Cik = Ujvp <— |lP> = (Zul |S,‘>> & (ka |€k>>. (2.10)
i k

Caso contrdrio, rank(C) > 2 e |¥) estd entrelacado entre C e E. Equivalentemente, p¢c € pura
(pg = pc) se e somente se |V) é separdvel; se pc € mista, o estado global estd entrelagado.
Esse entrelacamento entre espaco de computacdo e ambiente tem consequéncias
fisicas importantes: ao entrelacar-se com E, o subsistema computacional deixa de estar descrito
por um vetor de estado puro e passa a possuir uma distribui¢cdo estatistica de estados (estado
misto). Medidas como a pureza Tr[pg] (que vale 1 para estados puros e < 1 para mistos) e a

entropia de von Neumann

S(pc) = —Tr(pclogpc)

quantificam essa perda de coeréncia local. Na prdtica isso significa que, embora o espago de
Hilbert formal .7#¢ mantenha dimensao d¢, o entrelagamento com o ambiente reduz os graus de
liberdade efetivamente acessiveis ao controlador quantico: parte da informacao quantica ficou
correlacionada com E e ndo pode ser recuperada sem acesso ao ambiente (muita das vezes esses
processos sdo irreversiveis).

A computacdo cldssica possui mecanismos bem estabelecidos de correcdo de erros,
como cddigos de redundancia. No regime quantico, no entanto, o problema é mais delicado: nao

podemos clonar qubits arbitrariamente devido ao teorema da ndo-clonagem, e qualquer tentativa
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de medir um estado para verificar sua integridade tende a destruir a superposi¢do que carrega a
informacao.

Para mitigar esses problemas, surgiram os cddigos de correcdo de erros quanticos
(Steane, 1996), capazes de distribuir a informagio de um qubit I6gico em muitos qubits fisicos®*.
Ainda assim, esses esquemas exigem um nimero muito elevado de qubits auxiliares e operacdes
adicionais, o que acentua o problema de escalabilidade.

Em resumo, o grande desafio atual ndo estd apenas em conceber algoritmos quanticos
eficientes, mas em garantir que a informagdo qudntica sobreviva tempo suficiente para que eles
sejam executados. A decoeréncia local continua sendo o principal inimigo a ser superado.E

justamente esse problema que torna os anyons — excitacdes cujo estado € robusto a perturbagdes

locais — particularmente promissores para aplicagdes em computacao quantica.

4 Qubits fisicos sdo elementos do sistema real onde ocorrem as interacdes fisicas, jd os 16gicos sio a representagio

tedrica ideal a qual muita das vezes necessita multiplos qubits fisicos para garantir a confiabilidade.
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3 SISTEMAS BIDIMENSIONAIS

As excitagdes estudadas neste trabalho possuem, como caracteristica essencial, sua
natureza bidimensional. Para isso, € necessdrio definir com precisdo o que entendemos por um
sistema 2D. Embora ndo existam particulas fundamentais intrinsecamente bidimensionais, é
possivel construir sistemas nos quais a fun¢do de onda ¥ (7) esteja efetivamente confinada a duas
dimensodes. Nesse regime, as excitagdes do sistema se comportam como se fossem particulas
intrinsecamente bidimensionais, permitindo a emergéncia de fendmenos exclusivos de sistemas
2D.

Para exemplificar essa ideia podemos considerar uma fungdo de onda a qual possa

ser colocada na seguinte forma:

Y(X) = y(x,y) 0(z) (3.1)

Essa consideragdo exige que V(X) = V(x,y) + V(z). Se inserirmos essas relagdes na equagio de

Schrodinger obtemos as solucdes:

2
o VA +V (63) W) = Eg Y(x.y),
n* d*
~E D L ve6) =B,

Quando o potencial V(z) confina fortemente a particula ao plano xy, a funcéo ¢ (z) se reduz a sua
forma fundamental, e a dinAmica efetiva do sistema é dominada por y(x,y). Podemos ver isso
considerando o caso onde V(z) é submetido ao potencial de um poco infinito com uma largura L

pequena:

0, selz| <%,
V()= (32)

oo, selz|>L.
As solugdes para esse problema sdo conhecidas e sdo dadas por:
2 nxz :
I COS (T) , himpar, 222
— _ nn _
0n(z) = E.(n) = S, n=1,23...

% sin (“),  n par,

Com isso calculamos o gap de energia entre o estado fundamental e o primeiro estado excitado:

K22

B 22 _ 3n*n?
_2mL2( -1

AEz:EZ(z)_EZ(l) - Yml2
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O qual é inversamente proporcional 2 L?>. Um exemplo tipico de sistema bidimensional é
fornecido pelas heterojunturas, formadas na interface entre semicondutores distintos. Nessas
estruturas pode-se confinar os elétrons em um potencial de poco quantico, resultando na formagao
de um gés eletronico bidimensional (2DEG) (Frensley, ). Dentre os fendmenos observados
nesses sistemas formados em heterojunturas, destaca-se o efeito Hall quantico, que se manifesta
sob condi¢des de baixo temperatura e altos campos magnéticos.

De forma geral, para que um sistema tridimensional exiba comportamento efetiva-
mente bidimensional, o elemento crucial é um confinamento energético forte na direc¢do z. Isso
pode ser alcangado quando conseguimos estabelecer um gap AE, muito maior que as escalas

relevantes do problema. De forma que
AE, > max (kBT, ha,, 68xy),

onde S¢&,, representa a escala das flutuacdes e excitagdes no plano (mini-bandas, modos coletivos,
desordem, etc.). Essa hierarquia garante que flutuacdes térmicas ou dindmicas em x,y nao
consigam transferir amplitude para os modos excitados em z. Desa forma, ¢(z) permanece
essencialmente no estado fundamental e a funcéo efetiva y(x,y) descreve com fidelidade a fisica

observavel.
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4 PARTICULAS IDENTICAS

Na mecanica quantica, particulas que possuem 0s mesmos nimeros quanticos intrin-
secos (como massa, carga e spin) sdo consideradas idénticas e, portanto, indistinguiveis. O fato
delas serem indistinguiveis é um principio fundamental da natureza, no sentido de que a fisica
descreve a natureza a partir do que é acessivel experimentalmente. Essa caracteristica ndo se
trata apenas de uma questao filosofica sobre os limites do conhecimento, mas tem implicacdes
préticas diretas na forma como modelamos matematicamente os sistemas fisicos. Muitos fend-
menos coletivos conhecidos, como ferromagnetismo, supercondutividade e o condensado de
Bose-Einstein s6 emergem quando a teoria incorpora essa caracteristica.

Classicamente, mesmo para particulas idénticas, a distinguibilidade é preservada
pelo rastreamento continuo de suas trajetdrias no espago de configuracdes (ou espaco-q das
posicdes generalizadas) — cada caminho € univocamente determinado pelas condi¢des iniciais.
Entretanto, o cardter ondulatério dos sistemas quénticos dissolve essa no¢do de trajetdria tinica. O
sistema evolui por uma superposi¢do coerente de caminhos no espaco de configuracdes cléssico,
onde a amplitude de probabilidade associada a cada trajetdria interfere com as demais.

A ideia de que todos os caminhos contribuem para a funcdo de onda torna a estrutura
do espaco de configuragdes — e os tipos de caminhos que ele admite — uma peca central da
descric¢do quantica. Nesta secao, discutiremos como a indistinguibilidade das particulas pode
ser incorporada de forma fundamental na formulagcdo quantica, por que esperamos que essa
abordagem reflita a realidade fisica e como essas caracteristicas abrem espaco para a existéncia
de excitagdes exdticas, como 0s anyons.

O desenvolvimento da mecanica quantica estd profundamente enraizado na mecanica
classica. Essa conexdo ndo € apenas historica, mas conceitual: espera-se que qualquer teoria
quantica consistente recupere a fisica cldssica em um limite apropriado. Por isso, é natural
que nossas intuicdes e formulacdes iniciais partam do formalismo cldssico. Formalismos
fundamentais como o de Schrodinger — que derivou sua equacao a partir da ideia de ondas de
equi-acdo se propagando no espaco de configuracdes — ou o de Feynman — cuja formulagdo por
integrais de caminho descreve a dindmica quantica como uma soma sobre trajetorias cldssicas —
evidenciam essa ligac@o profunda entre os dois dominios.

Como o objetivo de apresentar o surgimento de excitagdes anydnicas, comecgaremos
analisando como a simetria de permutagdo entre particulas idénticas modifica a estrutura do

espaco de configuragdes. Essa modificagdo faz com que existam caminhos topologicamente
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ndo equivalentes para a fun¢do de onda, o que, por sua vez, dd origem fendmenos topolégicos.
Como veremos, em trés dimensodes existem apenas duas classes de caminhos inequivalentes os
quais sdo associados a estatistica bosonica e fermiodnica. J4 em duas dimensodes existem infinitas
classes, o que permite evolu¢des mais complexas na fung¢do de onda. O caso de uma dimensao,
embora didatico, sua grande restricdo em seus graus de liberdade resultam em uma estatistica

pouco rica, de modo a ndo ser discutido nas se¢Oes subsequentes.

4.1 Espaco de configuracoes

Em um sistema cldssico, uma particula livre em d dimensdes pode ter suas posi¢des
representadas por um nimero d de parametros independentes que definam unicamente a posicao
dela no espaco. Essa representacio é feita em um espaco vetorial &; o qual isomorfo a R?, ou
seja & ~ R?. Para o caso de N particulas livres podemos construir um espaco vetorial é”év que

represente nosso sistema a partir dos espacos individuais dessas particulas éﬁv ~ &y X Xy
—_———

N—vezes
Normalmente, denotamos as posi¢des das particulas como

(%1,%3,...,%v) €&V, com ¥ € & 4.1

Com tudo, para manter nosso espaco bem definido, precisamos remover os pontos onde duas

particulas ocupam o mesmo local no espago. O conjunto desses pontos € escrito como:

A= |J {&,...5n) €& |x=x} (4.2)
1<i<j<N

Os valores d e N serdo omitidos de A ao longo desse trabalho, uma vez que nao havera ambi-

guidade nos contextos onde a mesma € inserida. Dessa forma podemos escrever o espaco das

posicdes sem esses pontos da seguinte forma:
C(6)) = \A (4.3)

Perceba que ‘g(éoév ) € suficiente para descrever as possiveis posi¢des no espago
de cada particula, caso nosso foco fosse desenvolver uma teoria quantica para particulas dis-
tinguiveis. Quando consideramos particulas idénticas, entretanto, automaticamente o espago
das posic¢des se torna redundante, uma vez que estados que diferem por uma permuta como
(X1,X2,...,XN) € (X3,X1,...,Xy) sdo equivalentes (X7,X3,...,xXy) ~ (X2,X,...,XN).

Para remover essa redundancia em nosso espago, precisamos identificar e "unificar"os

pontos que representam configuragdes fisicamente equivalentes. Matematicamente, isso € feito
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por meio de uma operacdo chamada qguociente: a partir de uma relacdo de equivaléncia definida
no espaco, construimos um novo espago onde cada classe de pontos equivalentes € representada
por um unico elemento. Essa operacdo € uma ferramenta geral para eliminar redundancias e
estruturar espacos a partir de relagdes de equivaléncia e pode ser escrita como A/ ~, onde A
é nosso espaco vetorial! e ~ é a relagdo de equivaléncia. Dessa maneira, podemos remover a

redundéncia do nosso espago %' (&7 ) tomando
G0 = (&7 \8)/ ~ (44)

Perceba que a relacdo de equivaléncia esté diretamente relacionada com a operagado
de permutacdo entre as particulas. E que ao realizar duas permutacdes sucessivas, sempre existe
uma Unica permutacao resultante equivalente. Essa operacdo de composi¢ao, quando considerada
junto com todas as permutacdes possiveis, revela uma estrutura algébrica conhecida como grupo:

— Fechamento: A composiciao de duas permutagdes € outra permutacao valida.

Exemplo: Se o = (12) (troca das particulas 1 e 2) e T = (23) (troca das particulas 2 e 3),
entdo o o T = (123) (mapeamento ciclico 1 -2 — 3 — 1).

— Elemento neutro: Existe uma permutacio identidade e que deixa todas as particulas
inalteradas, satisfazendo e o 0 = 0 o e = ¢ para qualquer ©.

— Inverso: Para toda permutacio o, existe uma permutacio inversa 6! que desfaz sua
acdo, talque coo ! =e.

Exemplo: Se 6 = (123), entdo 6! = (132), pois (123) 0 (132) =e.

— Associatividade: A operagio de composigio € associativa, ou seja, (GoT)op =co(Top).
Exemplo: Parac = (12), 1= (23), p = (13), ambos (coT)op e 6o (Top) resultam na
mesma permutagdo (132).

Esse grupo € conhecido como grupo simétrico Sy, veja (Rotman, 2005, Secdo 2.2),
ou em nosso caso, grupo de permutagao.

Simetrias sempre criam uma relacdo de equivaléncia e, essa relagdo por sua vez,
podem ser associadas a um grupo. Muita das vezes utilizamos diretamente esse grupo para
expressar essa relacao de equivaléncia, de forma que a operagao de quociente pode ser escrita
como € (&N) = (EV\ A)/Sw.

O quocientamento do espago, entretanto, tem um custo: ele atua sobre a topologia

do espago, e ndo em sua estrutura vetorial. O resultado que obtemos dessa operagcdao € um novo
1

A operacdo de quocientamento é definida sobre espacos topoldgicos e ndo vetoriais, entretanto, nosso espago
vetorial possui uma topologia inerente, de modo que estamos considerando tal operacdo sobre esse espagco
topolégico.
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espaco topoldgico. A topologia é o que descreve a conectividade do espago, definindo como os
pontos se agrupam em vizinhancas. Espacos vetoriais metrados como RY ou CV possuem uma
topologia natural, induzida pela métrica, que estd ligada diretamente a no¢des como continuidade
de fun¢des e convergéncia de sequéncias.

E importante notar que nem toda topologia pode ser induzida por uma estrutura
vetorial. O espaco resultante dessa operacao possui, em nosso caso, uma estrutura topolégica
mais complexa do que uma que possa ser obtida de um espaco vetorial. Para garantir uma
estrutura vetorial nesse espaco quocientado, precisamos recorrer a uma estrutura matematica
mais geral, conhecida como variedade (manifold).

Uma variedade € construida sobre um espaco topoldgico de forma que, localmente,
podemos associar os pontos a um espago euclidiano RY. Enquanto é necessdrio descartar uma
estrutura que consegue descreve globalmente sistemas com topologia mais simples, ganhamos
a capacidade de descrever um sistema com uma estrutura global mais abrangente. A Figura 1
mostra uma ilustragdo desse processo. Uma introducdo a esse assunto € encontrada em (Nash;

Sen, 1988; Nakahara, 2018; Baez; Muniain, 1994)

Figura 1 —Ilustracdo de uma variedade

RN 1 RN

Fonte: Elaborado pelo autor (2025).

Legenda: Podemos mapear pequenas vizinhangas U; a espagos euclidianos
RN através dos mapas (homeomorfismos) ¢;. Os conjuntos U; devem cobrir
todo o espacgo T, e os mapas (difeomorfismos) ¢ garantem a coeréncia e
diferenciabilidade entre as representa¢des em pontos onde hd interseccio
dos conjuntos U; N U;.
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O que precisamos fazer agora € entender melhor os espacos resultantes das identifi-
cacdes que realizamos. Para isso podemos tentar visualizar a geometria do nosso problema. Isso
inicialmente é um problema devido a dimensionalidade do nosso problema, entretanto, podemos
contornar esse problema considerando o caso de duas particulas ‘K(é"dz) Esse caso, apesar de
mais simples, preserva todas as caracteristicas essenciais do problema geral. Mesmo nesse caso
mais simples a dimensao do nosso espac¢o ainda € grande demais para ser visualizada diretamente.
Continuamos assim contornando nosso problema: introduziremos uma representagdo que isola
as propriedades fundamentais (permutacdes e colisdes) em um subespaco de dimensado reduzida.

A beleza de um espaco de posicdes generalizadas @@f' € que 0 mesmo nos permite
assumir a representacdo que € mais conveniente para nosso problema, sem perda de generalizacdo,
uma vez que, independente da nossa escolha, garantimos que é’é\’ ~ RN, Podemos, dessa forma,
adotar um sistema de coordenadas particular, que nos permita visualizar melhor o nosso espaco,
sem perda de generalidade em nossa andlise.

O sistema de coordenadas a se adotar, em nosso caso, € justamente o do centro de
d ~

d ~R?. O centro de massa do sistema

massa, e das coordenadas relativas €' (&£7) ~R%, xR
se mantém inalterado sob a permutagao de particulas idénticas, o que o torna inalterado também
sob as agdes de quocientamento. Nessa representacdo também nao ha colisdes no espaco que se

refere ao centro de massa do sistema, dessa forma:

C(67) = (67 \A)/S2 = Rey, x (R \A) /Sy (4.5)

rel

Com isso, nosso problema se separa em uma parte continua, e outra com as singularidades e

identificagdes, o que nos permite focar nossa analise apenas em (R?,\ A)/Sy e (R2,,\ A)/Sw.
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Figura 2 — Espacos das posicoes relativas das particulas
a) b)

P (XI Y) :/____i._ e
I

———T———s

/
| ’
1 7/
1 e

/
:

(-X, _y) P

(-X, Y, _Z)

Fonte: Elaborado pelo autor (2025).

Legenda: a) Espaco das posigdes relativas das particulas em duas dimensdes espaciais ]Rfel. Observe
que as particulas (P; e P») possuem uma posi¢do simétrica com relacdo a origem e correspondem a
configuracdes equivalentes. Dessa forma, podemos definir a posi¢cdo de ambas apenas pelas coordenadas
(x,y). b) Espaco das posi¢des relativas das particulas em trés dimensdes espaciais Rfd.

3

3 \AeR2 \A sio justamente os

Veja que, nessa representacdo, os espacos R
espacos relativos de duas particulas distinguiveis, como representado na Figura 2.

Repare principalmente em duas caracteristicas: A primeira é que as colisdes entre as
particulas correspondem a origem do sistema, de modo que A = {6} A segunda caracteristica é
que as configuracdes que diferem por uma permuta sdao simétricas com relagdo a origem.

A remocdo das colisdes em cada um desses espacos torna automaticamente a topolo-
gia do nosso espago nio triviais. Em 2D essa caracteristica € mais forte uma vez que existem
caminhos os quais ndo podem ser transformados continuamente em outros. O que € diferente do

caso 3D onde o grau de liberdade a mais permite contornar a origem. Essa diferenca pode ser

vista na Figura 3.
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Figura 3 — Caminhos para permutacdo de particulas em diferentes dimensdes

Fonte: Elaborado pelo autor (2025).

Legenda: Possiveis caminhos para se permutar duas as particulas em Rfel \Ae ]Rfel \A. A agdo de
permutar as particulas pode ser vista como leva-las ao seu ponto oposto com relacdo a origem. Em Rfe \A
vemos que nao € possivel transformar o caminho a no b continuamente. Ja em ]Rfel \ A, é possivel fazer
essa transformacao entre ¢ em d devido a dimensionalidade superior.

Essa descontinuidade do espaco tem grande impacto na descri¢do de permutacio das
particulas. Essas desconexidades do espaco sdo evidenciadas quando consideramos essas trans-
formagdes continuas, na matematica topolégica, chamamos essas transformagdes de homotopia?.
Caminhos que podem ser transformados continuamente entre si sao ditos serem homotépicos
entre si e pertencem a mesma classe de homotopia.

O processo de quocientar um espaco pode ser visto, geometricamente, como deforma-
lo até que os pontos equivalentes se encontrem, dessa forma estamos identificando todas as

equivaléncias e associando elas a um unico ponto, assim como mostrado nas Figuras 4 e 5.

Figura 4 —Espaco das posi¢des relativas em 3D e o processo de identificacao

Fonte: Elaborado pelo autor (2025).

Legenda: Espaco das posigdes relativas em 3D para duas particulas. O processo de identificacdo pode ser
visto como "amassar"a esfera em pontos opostos, como mostrado na figura do meio. Tal identificacdo
gera uma forma geométrica quadrimensional, onde cada ponto da semiesfera inferior e o equador sdo
levados individualmente ao seus opostos. Essa identificacdo € feita para todos os raios possiveis também.
Cruzar a linha do equador corresponde a ir para o lado oposto da esfera. Esse espago é conhecido como
espaco projetivo real RP2,

2 Veja segio 4.1 de (Nakahara, 2018)
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{ }
1, 2

Fonte: Elaborado pelo autor (2025).

Legenda: Espaco das posicdes relativas em 2D para duas particulas. O processo de identificacdo pode ser
visto como "cortar"o plano em um segmento de reta que sai da origem, e torcé-lo até que as duas partes
do corte se encontrem, fazendo com que os pontos opostos se sobreponham. Essa construciao forma um
cone sem a origem.

Diferente de R? ,\ A e R2,\ A, permutar duas particulas nos espagos (R*\ A)/Sy
e (R?\ A)/Sy, corresponde a evoluir o sistema no espaco das configuragdes de modo que a
configuragdo final seja igual a inicial. Todas as permutas correspondem a um loop em nosso
espaco.

O espaco (R3\ A)/Sy ndo pode ser visualizado completamente em trés dimensdes,
uma vez que corresponde a uma hiper-calota esféria com as extremidades do equador coladas em

cada ponto oposto a singularidade. Mas com um pouco de abstracao ainda é possivel visualizar,

em uma representacdo tridimensional, as caracteristicas relevantes do espago, veja a Figura 6.
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Figura 6 — Representacdo de caminhos e permutagdes no espago projetivo 3D

Fonte: Elaborado pelo autor (2025).

Legenda: A imagem consiste em uma representacio do (R3\ A) /Sy em 3D. Essa representacio considera
um conjunto de distincia entre as particulas fixo, diferente do espaco completo, contendo a liberdade de
todas as distancias exceto 0. Os pontos opostos na linha do equador também devem ser vistos como o
mesmo ponto. Os loops a, b e ¢ correspondem a uma das infinitas maneiras de permutar, respectivamente,
0, 1 e 2 vezes um par de particulas idénticas.

Repare que o loop a pode ser continuamente deformado no ¢, de modo que cruzar
duas vezes o "equador"é homotopicamente equivalente a ndo cruzar nenhuma vez. J4 o loop
b passa apenas uma vez no equador e por mais que deformemos esse caminho, ndo podemos
desfazer essa volta. Tentar deformar a curva ao longo do equador faz com que seu ponto seja
percorrido em dire¢des opostas no equador, sem se aproximar. Como vemos, o caminho b nao
pode ser transformado em a nem em c.

Como um numero par de passagens pelo equador podem ser desfeitas, temos que
homotopicamente existam apenas duas classes distintas, as que passam um nimero par de vezes
€ as que passam um numero impar.

Esse caso muda quando analisamos o espaco (R?\ A)/Sy, o qual pode ser completa-
mente visualizado na Figura 5.A dimensionalidade reduzida desse espaco faz com que os loops
a, b e ¢, dessa figura ndo sejam equivalentes entre si. Em realidade, os loops que dao N voltas ao
entorno da singularidade sé sdo equivalentes homotdpicamente a outros loops que ddo 0 mesmo

ndmero de voltas.
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Figura 7 — Espaco de configuracio 2D e classes de homotopia no cone

Fonte: Elaborado pelo autor (2025).

Legenda: Espago (R?\ A)/Sy. O espago possui um
formato de um cone sem a sua origem. Os caminhos
a, b e ¢ representam um possivel caminho para per-
mutar 0, 1 e 2 vezes um par de particulas. Nesse
espago apenas os loops com o mesmo nimero de
voltas ao entorno da singularidade sdo homotopica-
mente equivalentes.

De maneira geral, para um ponto especifico ¢ € .#, onde .# representa os espagos
quocientes (R?\ A) /Sy ou (R3\ A)/Sy, consideramos os loops baseados em ¢, isto é, caminhos
fechados que partem e retornam a esse ponto. E possivel definir a operagio de composicio entre
dois desses loops: percorremos o primeiro caminho e, em seguida, imediatamente o segundo,
formando assim um novo loop baseado em g.

Essa operacdo de composi¢ao de loops induz uma operagao entre as classes de
homotopia desses loops, uma vez que a deformacado continua (homotopia) respeita a concatenacao.
Podemos assim trabalhar com as classes de equivaléncia formadas por todos os loops que
podem ser continuamente deformados entre si. A composicao de classes de homotopia satisfaz
propriedades fundamentais que configuram uma estrutura de grupo:

— Fechamento: A composicao de dois loops sempre resulta em outro loop baseado em g,

cuja classe homotdpica também pertence ao conjunto.
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Exemplo: Se 1] e [y»] sdo classes de loops, entdo [; - 7»] também € uma classe valida.

— Elemento neutro: Existe uma classe de loop trivial — o loop que permanece constante-
mente em ¢ — que atua como elemento neutro, pois sua composi¢ao com qualquer outro
loop ndo altera a classe deste.

Exemplo: O loop constante e(t) = g satisfaz [y] - [¢] = [7].

— Inverso: Para cada classe de loop, existe outra classe correspondente ao caminho percor-
rido no sentido inverso, de modo que a composi¢ao de ambos € homotopicamente trivial.
Exemplo: Se y(t) é um loop, entdo ! (¢) = (1 —t) representa seu inverso.

— Associatividade: A composi¢ao de classes de loops € associativa, ou seja, a ordem de
agrupamento na composi¢do ndo altera o resultado.

Exemplo: ([n]-[n])-[n] = n]- (%] [n]).

Essa estrutura é chamada de grupo fundamental do espago .# baseado em ¢, de-
notado por 7 (A ,q)3. O grupo fundamental capta informagdes essenciais sobre a topologia
do espaco, refletindo, em nosso contexto, as possiveis permutagdes e a natureza topoldgica do
sistema.

A razdo pela qual nossas conclusdes sao validas para qualquer ponto g reside no
fato de que existe um isomorfismo entre os grupos fundamentais baseados em quaisquer dois
pontos do espaco desde que seja conexo por caminhos, veja (Hatcher, 2002, Secao 1.1). Essa
equivaléncia nos dé a liberdade de falar do grupo fundamental do espago 7;(.#) , como um
invariante topoldgico que descreve o sistema como um todo.

Para o caso tridimensional temos
m (€ (&) = m (RN \ A)/Sy) ~ Sy

Como visto em nossas andlises quando N = 2, temos S, ~ Z,, onde Z, é o grupo ciclico de dois
elementos, veja (Laidlaw; DeWitt, 1971). J4 o caso bidimensional obtemos 7, (¢'(&3')) = By,
onde By € conhecido como o grupo de tranga, a demonstracdo detalhada pode ser vista em
(Fadell; Neuwirth, 1962).

A discussdo até aqui concentrou-se nas possiveis coordenadas generalizadas que
podem descrever nosso sistema. Essa andlise conduz naturalmente a observacao de que a

permutacdo de particulas indistinguiveis corresponde a descri¢do de um loop no espaco de

3 O subscrito "1"em 7 indica que estamos estudando classes de homotopia de lacos, que sdo mapeamentos da
1-esfera (o circulo, S') para o manifold .#. Essa ideia pode ser generalizada para mapeamentos de esferas de
dimensdes superiores (S") para .. Os grupos resultantes sdo chamados de grupos de homotopia superiores ¢
sdo denotados por 7,(.# ,q), onde n é a dimenséo da esfera de teste.
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configuragdes. Tais loops podem ser caracterizados, de forma global e independente do ponto
em .Z, pelo grupo fundamental 7; (.#'). Nesse enquadramento, a permutacdo entre particulas
adquire, de maneira intrinseca, uma natureza topoldgica.

Para compreender plenamente os efeitos dessa estrutura, € necessario adotar uma
linguagem capaz de representar adequadamente sistemas quanticos. Até este momento, conside-
ramos apenas o espago de estudo como uma variedade diferencidvel (manifold), cujos pontos
codificam as diferentes configuragcdes espaciais do sistema. A descricao quantica, contudo, exige
associar a esse espaco uma func¢do de onda y, que vive em um espago de Hilbert complexo e
cuja evolugao temporal € regida pela equagao de Schrodinger.

Representar essas caracteristicas de forma consistente requer uma andlise cuidadosa
de aspectos como singularidades, continuidade e evoluc¢ao temporal da funcdo de onda. Ao
considerar essas propriedades, torna-se natural associar as diferentes classes de homotopia das
permutacoes de particulas a uma evolugdo unitdria da fungdo de onda. Esse procedimento dd
origem aos possiveis comportamentos estatisticos observados: férmions e bosons em 3 + 1

dimensdes, e anyons em 2 + 1 dimensdes.*

4.2 Fibrado de Hilbert

Para alinhar a dindmica quantica a topologia de .#, impdem-se trés requisitos
essenciais. Primeiro, as amplitudes de probabilidade devem variar de modo continuo ao longo
de trajetérias em .#, conforme a equagdo de continuidade quantica garante a conservagao local
de probabilidade. Segundo, as fun¢des de onda precisam ser diferencidveis, permitindo definir
operadores dindmicos — como o Hamiltoniano — e formular evolugdes temporais coerentes.
Por fim, a evolucdo do sistema deve manter a linearidade das superposicdes e a unitariedade, em
consonancia com os postulados da mecanica quantica.

Atender a essas condig¢des implica associar a cada ponto g € .Z , que representa uma
configuracio espacial, um espaco de estados internos. Esse estado deve ser capaz de oscilar
quanticamente em um espaco de Hilbert, onde suas fases sdo complexas. Para uma particula
com spin 1/2, por exemplo, temos temos 2V vetores de base em .77, esperamos algo como

N
gr— Y cilxt, .. xn) @ st )i, (4.6)
i

4 O fato de uma particula ser béson ou férmion é uma propriedade fundamental, explicada pelo teorema spin-

estatistica. No entanto, as restricdes sobre as possiveis transformacdes unitdrias da funcdo de onda estio
enraizadas na topologia do espago de configuragoes.
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com |xp,...,xy) fixo, de modo a preservar a relacdo entre posi¢ao e estado quintico da mesma.
Essa associagao viabiliza também a superposi¢des e evolucao unitdria local.

Uma solugdo intuitiva seria considerar o produto cartesiano .# x .7, que satisfaz
naturalmente os critérios exigidos. No entanto, essa constru¢do global sé € vidvel para espagos de
topologia trivial. Em variedades com singularidades ou desconexidades, essa descri¢do torna-se
inadequada, o que nos conduz a necessidade de desenvolver uma representacao valida localmente.
O fibrado vetorial diferencidvel configura-se como a estrutura matematica minima capaz de
realizar esta constru¢do global. Nesta abordagem, associamos a cada ponto ¢ da variedade
base ./ (espago de configuragdes ¢'(£7)) um espago de Hilbert .7 (fibra), garantindo que
localmente, em vizinhangas abertas U C .#, o espago total seja difeomorfo a um produto
cartesiano U x J7;. A coeréncia global exige que, nas regides de sobreposi¢do U; N Uj, as
diferentes representagdes locais sejam relacionadas por fungdes de transi¢do diferencidveis g;;
UiNU; — Aut(sZ )5. Estas fungdes atuam como operadores lineares que conectam suavemente as
representacdes locais das trivializacdes, preservando a estrutura vetorial e garantindo consisténcia
topolégica em todo o manifold. Podemos dessa forma, manter a simplicidade local do produto

cartesiano sem comprometer a integridade global da estrutura.

> Aut(#) representa o conjunto de todos os automorfismos . +—
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Figura 8 —Ilustragiio de um fibrado vetorial trivial sobre S’

(EI BI nl F)

(V) LUXF

L8 J/ )
proj

U

U.nU:

Fonte: Elaborado pelo autor (2025).

Legenda: Ilustracio de um fibrado vetorial trivial (cilindro) sobre S'. O espaco base B = S! (circulo
inferior) possui fibras F =2 R (retas verticais). A projecdo 7 : E — B mapeia cada fibra ao ponto
correspondente na base. Para cada aberto U C B, o homeomorfismo ¢ : 77! (U) — U x F garante
a trivialidade local. Nas intersecoes U; NU;, as funcdes de transi¢do g;i(q) : F, — F, agem como
difeomorfismos em cada fibra 77!(g), assegurando coeréncia global. No cilindro (fibrado trivial),

8ij(CI) = Idr.

Para que as fungdes de transigdo {g;;} definam um fibrado globalmente consistente,
elas devem satisfazer duas condi¢des fundamentais:

1. Relagio de Cociclo: Em toda intersegdo tripla U; N U; N Uy # 0, vale a composigdo

gij(q)-gjx(q) = gi(q), VqeUnU;NU, 4.7)

garantindo que as trivializacdes locais se encaixem sem ambiguidades.

2. Invertibilidade: Para cada par U; N U; # 0, existe uma inversa bem definida:

gii(q) = gij(q) " (4.8)

Perceba que a relacdo de cociclo juntamente com a invertibilidade exigem composi-
¢do, associatividade, fechamento e invertibilidade, de modo que precisamos restringir Aut(#) a
um grupo G C Aut(.77). Esta restri¢do garante a consisténcia algébrica minima para transicdes
entre representacdes da fibras, mas € insuficiente para estruturar um fibrado diferencidvel. A
transi¢cdo entre as representacdes da fibra no mesmo ponto g precisa ser diferencidvel, essa

exigéncia surge naturalmente por dois motivos fundamentais:
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1. Preservacio da suavidade em composi¢oes: A relagdo de cociclo g;jo gjx = gix deve
manter a diferenciabilidade em cada estdgio. Isto significa que a diferenciabilidade de
cada g;; € necessdria para garantir que a aplicacdo composta g;; herde essa propriedade.

2. Estrutura diferenciavel global: A aplicacido que relaciona duas trivializa¢des locais
¢;o¢. 1 (UiNU;) x Ay — (U;NU;) x H#;, s6 serd um difeomorfismo (ou seja, uma
transformagao suave com inversa suave) se a fungao g;;(¢) que governa esta transformacao
for ela propria diferencidvel em relacdo ao ponto base g € U;NU;.

As exigéncias de auséncia de descontinuidades e suavidade nas transi¢des forcam G
a portar uma estrutura que compatibilize operagdes de grupo com variacio suave. Concretamente,
G deve ser uma variedade diferenciavel onde multiplicacdo e inversdo sao aplicacOes suaves
(C*), o que por definicdo o constitui um grupo de Lie®, veja (Gilmore, 2006). Esta estrutura
€ a unica que garante que as acdes de G nas fibras preservem simultaneamente continuidade,
diferenciabilidade e as propriedades algébricas necessdrias para a consisténcia global de E.
Em livros como (Nakahara, 2018) definem o fibrado vetorial € definido como o conjunto

(E,B,n,F,G).

®  Uma das principais caracteristicas de um grupo ded lie é que o mesmo constitui um manifold, veja (Gilmore,

2006, Cap. 2)
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Figura 9 —Representacdo de um fibrado vetorial e funcdes de transi¢cao

Fonte: Elaborado pelo autor (2025).

Legenda: Representacio de um fibrado vetorial com fibras F = R3 ao longo de uma base. As fibras
estdo representadas como hastes verticais formando uma "escova". A funcfo de transicdo "traduz'"a
representagdo da fibra entre diferentes abertos U num ponto p.

Em livros como (Nakahara, 2018) definem o fibrado vetorial € definido como o
conjunto (E,B, 7, F,G).

O grupo estrutural € de grande importancia para as andlises geométricas do espago E,
ele retem informagdes geométricas sobre o nosso espaco, como as possiveis curvaturas e tor¢des
nas fibras de E. Um exemplo clédssico que evidéncia isso € o dos fibrado (E,B =S U n,F=R, G),
com G = {I},{I, —I}, representando na Figura 8 para dois G diferentes. Para mais detalhes veja

(Nash; Sen, 1988, Cap. 7).



40

Figura 10 — Diferenga entre cilindro e fita de Mobius e o papel do grupo estrutural

G={1)

k}tal

G={1-1)

Fonte: Elaborado pelo autor (2025).

Legenda: Imagem ilustrativa da diferenca entre um cilindro e uma fita de Mobius. A
imagem ilustra como o grupo estrutural esta relacionado com a tor¢ao do espago, as
transformacgoes g;; podem gerar tor¢des e curvaturas no fibrado. A fita de Mobius da
imagem é apenas ilustrativa, uma vez que a fita da imagem possui uma tor¢ao suave.

De maneira geral, em um fibrado vetorial, o grupo de lie mais geral de automorfismos
num espago complexo é o grupo geral linear complexo GL(n,C). Entretanto, como caracteristica
adicional de que as transformagdes devem preservar o produto interno do espaco de Hilbert, ou
seja, as probabilidades, exigimos que G C U (n), mais precisamente G C U (dim(.7¢)), uma vez
que n estd associado ao numero de vetores que formam uma base em 7. Um sistema de apenas
com posi¢cao

Perceba que a a¢do de g;; € G sobre a fibra J7; corresponde a uma mudanga de base
entre as trivializagdes locais. Especificamente, na intersecao U; N U, a base {eé} associada a

trivializag@o sobre U; € expressa em termos da base {ef,} sobre U; mediante:
e =) ulijlap: (9
[0

Onde [g;j]¢p denota os elementos de uma representagdo matricial de g € G, podemos definir

uma agdo a direita de G sobre o conjunto de bases (ou referenciais) de J75:

Re({ea}) = {Zeﬁ }

A escolha por uma acdo a direita € apenas uma convencdo que garante consisténcia com a

condi¢ao de cociclo para as funcdes de transi¢ao:

gik=2gij&jx em U;NU;NU.
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Fixada uma base de referéncia {e, } em .77, obtém-se um isomorfismo entre elemen-
tos g € G e bases de J7 via g — Rg({e.}). Consequentemente, para cada g € .#, o espaco das
bases de .77 € difeomorfo a G. A unido disjunta | |, G, — onde G, = G — munida da projegéo
7 : P — ./ que associa cada g € G, a g, define um fibrado principal P sobre .# . Este fibrado,
denominado fibrado de referenciais, codifica a liberdade de escolha de base em cada fibra J7;.De
certo modo esse fibrado € mais fundamental que nosso fibrado vetorial, no sentido que, um
fibrado diferente com os mesmos .# e {g;;} ddo origem ao mesmo fibrado principal.

A partir do nosso fibrado principal P com grupo estrutural G e da representacao
natural p : G — Aut (7¢) que descreve a a¢do unitdria sobre a fibra tipica .7, podemos reconstruir

o fibrado vetorial associado usando
E:PXU(,,)L%”Z: (Px )]G, (4.10)

onde (p,y) ~ (pg,p(g~")w). O mapeamento p é de grande importancia, pois é responsdvel
por conectar os elementos de representacdo entre os dois fibrados. Assim, o fibrado principal
organiza geometricamente a liberdade de escolha de referenciais nas fibras 7, enquanto o
fibrado vetorial associado mantém explicitamente a estrutura linear e a interpretagdo fisica dos
estados quanticos.

Definir uma base ortogonal {el@} ao longo das fibras .77 do nosso fibrado vetorial
consiste em definir um ponto de G para cada g € .# em nosso fibrado principal. Explicitamente,

essa escolha pode ser dada por uma aplicagao
st:UcCcH# — P 4.11)

com mwos = idy e exigimos que s seja suave para garantir que a escolha de referencial varie
de modo diferencidvel com a configuracdo ¢ — condicdo necessdria para que quantidades
dependentes da base (como amplitudes locais) sejam func¢des diferencidveis em g. Essa aplica¢ao
s é precisamente o que chamamos de secdo (local) do fibrado principal.

Analogamente, no fibrado vetorial associado, a se¢do s: U C .# — H nos possibi-

lita, escolhido os referenciais, associar a cada ponto da base g um elemento de H,, ou seja, fixar

as amplitudes de probabilidade cl@ € C dos elementos dessa base. Dessa maneira, localmente a
secdo do fibrado vetorial nos permite, dada uma base, representar a funcao de onda localmente

COmo:

w(g) = Y cilg)le”), eilq) €C, (4.12)
i=1
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4.3 Diferenciacao no fibrado: conexoées, invariancia de calibre, curvatura

Para completar a descri¢cdo topoldgica do sistema de particulas idénticas, falta definir
sua evolucdo temporal. Essa questdo estd intrinsecamente ligada ao conceito de derivadas, mas
enfrentamos uma obstrugdo: nos pontos distintos p,q € .# , os espagos 7, e 7, sdo desconexos.
Isso naturalmente exige um método para comparar vetores em espacgos diferentes.

A ideia central é examinar como as representagdes de 77 se rotacionam ao percorrer-
mos uma trajetoria na variedade base .. Assim, podemos compensar essas rotacdes induzidas
pela topologia ndo trivial do fibrado E. Como as relagdes entre as representacdes de 7 sdo
codificadas no fibrado principal P(E), essa construgdo deve ser realizada sobre ele.

O problema resume-se a compreender como os referenciais na fibra principal G
(denominado grupo de gauge) rotacionam sob diferenciacdo ao longo de .#. A solugdo mais
direta é elevar a curva y(t) € U C .# a P(E) via uma sec¢do s(x), gerando um mapeamento entre

as curvas e, consequentemente, entre os espacos tangentes através do pushforward:
ds: Ty M — TS(X)P. (4.13)

Isso permite decompor 7, P em componentes que contribuem para variagdes na fibra G, e na
base ./ . As variagdes em .# sdo fisicas (alteram o estado do sistema), enquanto as em Gy,

correspondem a mudancas de referencial - que desejamos anular para comparagdes entre pontos

distintos:
elevagdo o
(via se¢do ) (forma de conexao)
M Ts(x)P Aeg (4.14)
Direcdo Vetor em variacdo
em . A P(E) em g

s*o(v)=wods(v)
vel M

Motivados por essa constru¢do, buscamos separar 7, P em dois subespacos:
— Vertical (V,,P): contém variagdes ao longo da fibra G;
— Horizontal (H,P): contém variagdes ao longo da base .7 .

Assim, temos a decomposicao:
.Pp=V,P®H,P 4.15)
O espaco vertical € definido por:

VP =ker(dm,) = {X € T,P | dm,(X) = 0}, (4.16)
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onde dm : TP — Ty, # € o diferencial da projecdo 7 : P — ./ .

Para X € V, P, considere uma curva ¥(¢) em P com ¥(0) =u e ¥(0) = X. Como
dm,(X) =0, temos w(y(t)) = b € .4 constante, logo y(¢) varia apenas na fibra G, Isso garante
ViP C T,G, = T,G.

Variagdes direcionais em torno de u € G podem ser mapeadas para a identidade
e € G. Tais variagdes infinitesimais em 7,G - munidas do colchete de Lie [, -] - formam a dlgebra

de Lie g. A conexio crucial entre g e 7,G vem da relacao exponencial (Gilmore, 2006, Sec. 4.2):

exp(tK) € G, Keg, teR, 4.17)
que mapeia K a curvas em G partindo de e:

d
— K)=K =T.G. 4.1
dt =0 exp(t ) €9 G (4.18)

Elevando essa curva a fibra G, com origem em u € P(E) (n(u) = b):
t = Rexpik) (u) = u-exp(tK), (4.19)

obtemos um vetor tangente K € T,,G via derivagio:

d
K*==| (u-exp(tK)) € V,P. (4.20)
dt 1t=0

Esse processo define o mapeamento:

Resp(irc) (1) il
K 2% exp(iK) € G 20 i exp(tK) € G =0 K 4.21)
~— Ny
g ev,P

Essa relacdo nos dd em cada vetor direcional, em um ponto b € .# da base, um diferencial que
mede o quanto nosso referencia rotaciona devido a topologia nio trivial do sistema.
Para capturar as variacdes verticais ao diferenciar e integrar ao longo da base,

introduzimos a forma de conexao:
weT*PRg, (4.22)

uma I-forma em P (T*P é o espaco cotangente em P) com valores em g’. Ela nos d4 variacio

infinitesimal

7 Variagdes infinitesimais em G sdo elementos de g = 7,G. Para identificar T,G com T,G, usa-se o diferencial da

translacdo (e.g., (Rg—l )« : T,G — T,G). Assim, variagdes em torno de g correspondem a elementos de g, gerados
por {T;} com [, -].
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Aplicando @ a um vetor v € T, P, obtemos:

o)=Y o'(nTieg, (4.23)
i

onde ®'(v) sdo escalares. Intuitivamente, @ extrai as componentes infinitesimais da transforma-
¢do de gauge associada a v.

Para garantir consisténcia fisica, a conexdo global m no fibrado principal P deve
satisfazer dois axiomas fundamentais que respeitem a estrutura de gauge. Primeiramente, ®
precisa identificar corretamente variacdes puramente verticais (ao longo da fibra G), o que

estabelecemos pelo axioma de normalizagdo vertical:
oK' =K, VKecg. (4.24)

Este axioma garante que vetores verticais - gerados pela acdo do grupo G através do mapeamento
K + K - sejam precisamente quantificados por @ como elementos da dlgebra de Lie g.
Em segundo lugar, a conexdo deve comportar-se consistentemente sob mudancas de

referencial (transformacdes de gauge). Isto € capturado pelo axioma de equivariancia:
R;ﬁw =Ad, 10, (4.25)

onde Ad,-1 € a agdo adjunta do grupo G sobre sua algebra de Lie g, definida explicitamente
como Ad,- (K) = g~ 'Kg para todo K € g. Intuitivamente, quando mudamos nosso sistema de
referéncia via g € G, os elementos da dlgebra de Lie (que geram transformacdes infinitesimais)
conjugam-se por g~ . Esta operagdo preserva a estrutura algébrica e reflete como quantidades
fisicas devem transformar-se coerentemente.

Embora @ viva no espago abstrato P, objetos fisicos (como fun¢des de onda ou
campos quanticos) sdo definidos na variedade base .# . Para conectar a teoria a fisica, projetamos

o em . através de uma secdo local s : U C .# — P, obtendo a conexao local (ou forma de

gauge):

A=s5"o. (4.26)
A éuma 1-forma em .# com valores em g que age sobre vetores tangentes v € Ty.Z como:
A(v) = 0(ds(v)) € g, (4.27)

onde ds(v) € o vetor em Ty, P obtido ao elevarmos v via s. Fisicamente, A(v) mede a componente

de gauge "misturada”ao deslocamento v na base ./ .
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Vemos em 4.26 que A depende explicitamente da secdo local (referencial) escolhida,
como exigimos que nossa conexao @ seja unica, precisamos exigir que A se transforme coe-
rentemente quando mudamos nossa escolha de se¢do local s — ', tomando g: U C .#Z — G as

secOes se relacionam a partir de:
s =Ry(s) =s5-g. (4.28)

Para relacionar A e A’ podemos tomar A’ = (s')*@ = @(ds'(v)) e expandir ds'(v) via regra da

cadeia:
ds'(v) = d(Rgo5)(v) = dRq(ds(v)) + (dg(v))iy)s (4.29)
onde (dg(v))* é o vetor vertical gerado por dg(v) € Ty(x)G- Aplicando o e os axiomas:

A'(v) = 0(dRy(ds(v))) + o((dg(v))"). (4.30)

Ad1(A()) dg(v)

O termo dg(v) é um vetor tangente a G. Para associd-lo a g, usamos a operagao:

71,078

g 5y (4.31)

g 'dg(v)

que representa a derivada logaritmica de g na direcdo v. Geometricamente, ela transporta a
1

variacao infinitesimal de g de volta ao elemento neutro via multiplicacdo por g~ ', ou seja
Ty(x)G — T.G. Combinando os resultados:
Al(v) =g 'A(v)g+g ™ dg(v). (4.32)

Esta construcdo estabelece as bases para derivadas que sejam invariantes sob transformacao de

gauge.
4.3.1 Derivada covariante

Podemos agora garantir uma diferenciacdo que seja invariante de calibre. Para isso
comegamos, assim como em (Nash; Sen, 1988, 7.12), definindo uma curva y(z) sobre .# a qual
é escrita nas coordenadas locais do manifold como y(f) = x,(¢), considerando a representagio

local, podemos elevar essa curva através da se¢cdo de modo que obtemos

7(t) = (xu(0),8(0))  ¥(t) € P (4.33)
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de modo que seu ponto tangente que pertence a 7P € descrito como

d 0 d
TP YA
=X (t)axﬂ +g(f)ag

O nosso objetivo € impor que essa derivada fique restrita ao subespaco horizontal

(4.34)

H,P, de forma a garantir a invariancia de calibre. Para isso, exigimos que o vetor tangente d /dt

seja proporcional ao vetor de transporte paralelo, de forma que:
d d T, 0

— =M= — .u( >

a7 ( )8)6“ +al ) =b oxt “21g8g

onde o fator (2i)~! onde o fator é a normalizacdo necessdria para "fechar"a dlgebra de Lie,

(4.35)

garantindo sua integridade assim como o i faz na dlgebra do momento angular ou na incerteza
de Heisenberg. O valor negativo garante a "rotagdo"contrdria e o vetor dentro do parenteses

definimos como o vetor base principal, de forma que B* = x*(¢), e automaticamente:

i T 8 1;
—_ _ l.t ,u it
§) = =Py 50 =~ Ay, (4.36)

Essa associacdo de g(#) com A é justamente o que restringe 0 movimento a ser invariante em G.

Perceba que 4.36 € uma equagao diferencial em g de modo que
T
(1) +xHAN g =0 4.37

Essa equacdo é chamada e equagdo do transporte paralelo e apenas transformagdes g(¢) as quais
seguem 4.37 transportam paralelamente nosso vetor. Dessa maneira podemos definir nossa

derivada covariante através do vetor de base de H,P como sendo o vetor B#D,, de 4.36:

PR
dxH “21g8g

O que € justamente nossa derivada covariante.

D, = (4.38)

4.3.2 Curvatura

O fato da derivada covariante ser uma resposta de correc¢do a curvatura do sistema,
podemos entender a falha dos deslocamentos tangentes em comutar pelo operador de lie [Dy,, Dy),

expandindo essa relacdo temos utilizando 4.38, obtemos:
en dy
d T, 0 0 Tn 0

- Ak Tk, P 9 pm }

dxH 'g8g78x“ v 2zg8g

v ga a"Aﬂzzga +

+A2Aﬁ(%g%) (Greze) 4 (Grez,) (ie,)

Dy Dol = |
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com um pouco de dlgebra e com rela¢do [R,,Rp| = — fupcRc, podemos mostrar(Nash; Sen, 1988,

p. 180) que a contribuigdo [Dy, Dy] = —F{,,R, € dada por:

Ffly = 0uAS — OuAS, + fapcApAS, (4.39)
0 que dé origem a uma 2-forma do tipo

F=dA+ANA (4.40)

O qual € conhecido como tensor de curvatura e desempenha um papel fundamental na fisica,

sendo associado ao campo de for¢a, como no caso do tensor eletromagnético.
4.3.3 Holonomia

Considere a evolucdo de um elemento estado quantico dada uma curva y(¢) : [0, 1] —
M , queremos entender o efeito de transportar paralelamente uma representagdo g € G ao longo
da evolugao de y(z). Para que g seja transportado paralelamente ele tem que ser uma solucdo da

equacdo de transporte paralelo 4.37, de forma que:
: ok Tk
g= -8 g(0)=I (4.41)

A solucdo dessa equacdo é dada por

Ty

1
&= @exp(— JRACOIE"

7 (1) dt)
(4.42)

1 1 I
:]I—/O dt1A(t1)+/O dll/o di A(t)A(t2) + -

Como os elementos de [A(7;),A(t;)] podem ndo comutar entre si, a exponencial
precisa ter sua expansio temporal ordenada. Quando gy é um circulo fechado y(0) = ¥(1),
chamamos gy de holonomia. Geometricamente a holonomia € um jeito de comparar como um
vetor volta a0 mesmo ponto ao ser transportado paralelamente no espaco, como exemplificado

na Figura 11
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Figura 11 — Transporte paralelo e holonomia em uma superficie curva

Fonte: Elaborado pelo autor (2025).
Legenda: Um vetor sendo paralelamente transportado numa superficie curva de uma
esfera. Ao ser transportado em um loop, o vetor volta rotacionado por um angulo 6.

Veja que se tomarmos A — h~'Ah + h~'dh, nosso transportador paralelo mudar

como algo G = h~!g, se modo que

. d
G= E(h_lg) +hlg (4.43)
vEemos que

d

E(h_lg) =0 = %(h‘l)g—i-h_lg: —h Y el = %(h_l) = —h YhhT! (4.44)

de modo que aplicando em 4.37 obtemos:

G=—(h"'An+n'h)G = G=A4G (4.45)
aplicando as condi¢des de contorno G(0) = I vemos que:

G(0)=h""(0)g(0) =h(0) (4.46)

O que ndo é garantido ser 4~!(0) = I, adicionando a constante 4(0) a transformagio G =

h(0)~'gh(0) nio altera as andlises anteriores e garante que G(0) = 2(0)~'h(0) = 1. Isso significa
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que A — A nos dd g,(t) — h~!(t)g,(t)h(0) de modo que:

1 T;
gy=h"1(t)Pexp ( - /0 Aﬁ (y(1)) 2—’; 7 (1) dt) h(0) (4.47)
Isso mostra que gy ndo € invariante de calibre. Entretanto, observe que se ¥(0) = y(1), entdo
temos que
gy="h""(0)g,h(0) (4.48)

essa relagdo € conhecida como relagdo de equivaridncia e garante que gy se transforme por
conjugacao em nosso fibrado vetorial. Apesar dessa relagdo ndo garantir invariancia de calibre,
podemos utilizar a propriedade Tr(ABC) = Tr(BCA) = Tr(CAB) e unitariedade de / para obter

um operador
Tr(gy) =Tr(gyhh™") =Tr(g) (4.49)

o qual é um invariante de calibre. Como esse valor ndo muda independente do nosso referencial,

esperamos que 0 mesmo seja um observavel fisico. Esse observavel é conhecido como loop de

Wilson:
dxt
' T ——
wy=Tr| Pexp| — fak () 2 0 | | =Tr| Pexp| - j{ A (4.50)
1 _ Y

A
Quando g € U(1) a exponencial ordenada Pexp ndo é importante uma vez que os elementos
comutam e podemos tomar Pexp — exp, o que nos d4 uma fase ¢’. Quando g € U(n) isso nio
€ garantido.
Veja que, quando a curva fechada y € a fronteira de uma superficie orientavel S em
nosso manifold (ou seja, ¥ = dS), podemos estabelecer uma relacdo fundamental conhecida
como teorema de Stokes generalizado para conexodes nao abelianas. Este teorema relaciona a

holonomia ao longo de y com a curvatura sobre S:

@exp<—7€A> _ @exp(—/SU(s)—lFU(s)dS) 4.51)

onde F é a curvatura associada a conexdo A e U (s) é o transporte paralelo ao longo da superficie.

Uma demonstragdo mais detalhada pode ser encontrada em (Nakahara, 2018, cap. 10.3).
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4.4 Permutacio de particulas idénticas

Até aqui, mostramos que existe uma fase geométrica observavel, que depende da
geometria do fibrado. No entanto, se considerarmos particulas sem graus de liberdade internos, é
natural esperar que, em regides livres de particulas, a curvatura seja nula, F = 0. Isso implica
que o lado direito de 4.51 deve ser a identidade, de modo que, para um caminho contritil a um

ponto esperamos que

Em contraste, quando outro caminho I' circula uma particula, esperamos obter um operador
observavel gr # I. Podemos dessa forma considerar a curva yoI" de modo que gyor = gr. Essa
caracteristica implica que a evolucdo paralela de um estado quantico ndo depende do caminho y
e sim de sua classe de homotopia relacionada.

Isso € um aspecto crucial na descricdo de anyons e de estatistica convencional de
permutacao em 3D, uma vez que a evolucao unitdria do sistema depende apenas das possiveis
permutagdes que podemos realizar em nosso espaco. Essa caracteristica faz com que as fases
geomeétricas passem a ter um comportamento totalmente topoldgico o qual depende do grupo
fundamental 7 (.#). Esse ponto torna explicita a relacdo entre a topologia de .# ditada por
m () e as possiveis representacdes do grupo de estrutura do nosso sistema.

O efeito de transportar uma estado quantico paralelamente € dado em nosso fibrado
principal por gy 0 qual seu traco € um observavel W), associado. A representacdo fisica desses
operadores pode ser obtida facilmente através do mapeamento p : G — Aut () discutido

anteriormente, o que nos deixa com

R=p(g,) (4.52)
Wy = p(wy) (4.53)

como os possiveis valores de R possuem uma correspondéncia entre os elementos y € ) (A4)
podemos ver essa operagdo como a representacdo do grupo fundamenta em nosso fibrado vetorial.

Para duas particulas idénticas em trés dimensdes 7 <‘€(£’32)> = Zy e o que € exa-
tamente o esperado, temos duas representacOes unitarias de permutacdo em 3D. Para duas
particulas temos 7 (‘5(6”5)) = N o que nos permite infinitas representacdes. Enquanto a fase
especifica que cada particula ganha depende de propriedades intrinsecas delas, o fator que limita

as possiveis fases € puramente topologico.
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4.5 Dinamica no fibrado

Para discutir as ideias de como a dindmica € definida em nosso espagco quantico,
podemos comecar com uma analise cldssica sobre .# . Nosso espago de configuracdes contém
todos os possiveis estados que o nosso sistema pode se encontrar, quando estamos num ponto
q € # e nosso sistema pode evoluir de maneira continua entre qualquer ponto vizinho. Quando
queremos descrever para onde nosso ponto deve ir, estamos pensando na dindmica do sistema.

A pergunta entdo que surge naturalmente é: qual ponto devemos ir em cada mo-
mento?. Sabemos que classicamente a natureza escolhe um caminho, e para escolher esse
caminho ela deve decidir qual é o melhor passo a se dar em cada ponto. Se a natureza fosse uma
entidade, ela seria uma preguigosa a qual caminha sobre .. Para cada passo dela, ela precisaria
olhar para todos os pontos que ela pode andar e escolher 0 menos cansativo.

Para definir qual passo serd dado em . ela precisa ter um critério de quao cansativo
¢ andar para cada ponto. A fungdo que avalia esses pontos é conhecida como agdo S[y(t)], e
o seu critério de avaliacdo é chamado de lagrangiana .#. A curva ¥ menos cansativa é a que
minimiza S[y(¢)], esse principio é conhecido como principio da minima agdo.

A funcao lagrangiana € o que descreve a dindmica de nosso sistema, uma vez que
ela é responsavel por ranquear cada ponto. O modo como isso € feito depende apenas do dados

de . e de y(t). Repare nas seguintes acdes conhecidas

b q b
Slivie = —mc/ ds— —/ Audx“ (4.54)
a CJa

1
Sem = e / FuyF*Vd*x (4.55)

Essas acoes representam a da particula livre no campo eletromagnético e a outra do
campo eletromagnético livre. Perceba que as agdes em geral podem ser vistas como a resposta
de certas caracteristicas a geometria do préprio espaco .Z . A energia cinética é uma andlise do
elemento tangencial da curva ¥(¢), a contribuicdo do campo eletromagnético com uma particula
carregada € uma andlise em cima das rotacdes do espaco de calibre e o campo eletromagnético
livre depende da curvatura do espaco. O ponto é 0 modo como pesamos e definimos a evolucao
do sistema ¢ em cima da geometria e topologia do sistema.

As interagdes que descrevemos em nossa acao dependem normalmente de carac-

teristicas locais, como a nog¢do de distancia entre duas configuracdes. Para termos desse tipo,
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exigimos que nosso sistema tenha uma métrica bem definida a qual dita a fisica das relacdes
locais. Entretanto, nada nos impede de analisar as caracteristicas topoldgicas do nosso espaco, e
nos perguntar como ela pode refletir no "ranqueamento da natureza".

Seguindo essa analogia, podemos estudar a dindmica da topologia de nosso espaco
bidimensional através de uma acdo que reflita o caréter topoldgico do nosso espacgo. Essa acdo é

conhecida como ac¢ao de chern-simon:
k 2
SCS:—/ Tr(ANdA+SANANA) (4.56)
ar Jm 3

Se lembrarmos que A assume valores na dlgebra de lie, vemos que o termo A A dA mede como
essa tor¢do se enrosca ao redor de si mesma, criando estruturas helicoidais no espago. E o termo
antissimétrico A A A A A mede a capacidade dessas tor¢des do espaco comutarem, veja que esse
termo é nulo se os geradores T/ de A = Al T%dx* comutarem, isso s6 é possivel se 0 nosso gague
for representado por um grupo U(1). O termo k é um numero inteiro, isso garante que garante
a invariancia de calibre de Scg para grandes transformagdes de gauge. O tragco Tr € necessario
porque A € matricial. Ele garante que o integrando seja um escalar, adequado para integragao
sobre a variedade M. Além disso, o traco assegura que a a¢do seja invariante sob transformacdes
de gauge.

No regime cldssico, a natureza parece fazer uma escolha precisa: dentre todas as
trajetérias possiveis em ., ela seleciona aquela que extremiza a agéo S[y|. Essa trajetdria Gnica
reflete uma dindmica deterministica, onde a geometria local (métrica, conexdes) e a topologia
global (classes caracteristicas) ditam o caminho "menos cansativo".

Quanticamente, entretanto, a descri¢ao fisica sofre uma transformacao radical: todas
as trajetdrias possiveis coexistem em sobreposi¢do coerente. Nosso problema nao se reduz mais a
encontrar um Unico caminho privilegiado, mas sim a somar democraticamente todas as historias
possiveis, respeitando a geometria e a topologia do espaco de configuragdes.

Do ponto de vista geométrico, essa passagem possui uma sutileza essencial: embora
em cada carta U; C .4 seja possivel trivializar o fibrado, construir espagos de Hilbert locais
£y, e definir superposi¢des de estados, nada garante, a priori, que essas descri¢des locais se
costurem em uma fung¢ao de onda global. Em outras palavras, ainda ndo dispomos de uma
secdo Y : ./ — 7 bem definida que associe, de maneira consistente, cada ponto do espago
de configuracdes a um estado quantico. A tarefa de promover essa descricdo local a uma

representacdo global — compativel com as transicdes de carta e com a estrutura topoldgica do
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fibrado — constitui justamente o problema central da quantiza¢do em espagos com topologia
ndo trivial.

A formulacdo por integral de caminho de Feynman resolve este impasse através de
uma sintese relacional. Em lugar de buscar uma funcio de onda global, ela define amplitudes de
transi¢do via soma histérica ponderada
arlay = [ oy

Y(0)=qi
Nesta formulacao, cada trajetoria y nao € apenas uma curva no espago de configuracoes: ela
também determina um transporte paralelo ao longo do fibrado, que relaciona as fibras (espacos
de Hilbert locais) nas cartas por onde Yy passa. Em particular, ao atravessar uma intersecao de
cartas U NUg as descrigdes locais estdo relacionadas por uma transformag@o de calibre g4, €

o transporte paralelo ao longo de 7y é representado pelo operador de holonomia

Aol (A) = Pexp (— /y A) ,

que atua como um mapa linear entre a fibra em g; e a fibra em g¢. Assim, uma expressao mais
explicita da amplitude, que evidencia a agdo da conexao sobre os estados locais |y;) € 77, e
lwr) € %f’ ¢

(Wr.ar| Vingi) = /Y(T)_qf-@ﬂll’f\ QZGXP(—/A) e#S |y,

Y(0)=q: Y

Dessa forma, cada trajetéria y fornece simultaneamente (i) a fase dindmica e’ M/ que pesa a
contribuic@o cldssica da trajetdria e (ii) o operador de transporte paralelo & exp(— fyA) que
“cola” as descrigdes locais das fibras ao longo do caminho. Quando Y cruza diferentes cartas, as
transformagdes de calibre locais aparecem apenas como conjugacio do transportador paralelo,
e a integral funcional soma essas contribui¢des de maneira coerente — isto €, a amplitude
final € independente da escolha de trivializacdo local, desde que as regras de transi¢cao sejam

respeitadas.
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S O EFEITO AHARONOV-BOHM

O exemplo mais simples de fases topoldgicas € o efeito Aharonov—Bohm. Embora
nao compartilhe a mesma origem fisica dos anyons, este fendmeno ilustra claramente como
holonomias em fibrados principais geram fases geométricas observaveis, decorrentes da topologia
nao trivial do espaco e da invariancia de calibre.

Considere uma particula carregada confinada a um plano R?. Um solenoide infini-
tamente longo, perpendicular ao plano e localizado na origem, confina um campo magnético

B = (0 em seu interior, enquanto na regiao acessivel a particula temos B=0 (Fig. 12).

Figura 12 — Efeito Aharonov—Bohm e o potencial vetor

J

Fonte: Elaborado pelo autor (2025).
Legenda: Efeito Aharonov—Bohm. Um elétron move-se em um plano com solenoide
na origem confinando campo magnético B. Na regido acessivel, B=0mas V x A # 0.

A invariancia de calibre na eletrodindmica implica que o acoplamento minimo

substitui o momento candnico pelo momento cinético generalizado:
P — T=pP—qA,

correspondente a derivada covariante na equacao de Schrodinger:

vV D:V—i%*.

O Hamiltoniano assume entio a forma:

1 %
H:—(*— )
(P
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Para um caminho fechado y envolvendo o solenoide, a fun¢do de onda adquire uma

fase de holonomia:

gyzexp<—i% ﬁﬁ-df) (5.1)

A curvatura da conexdo U(1) é dada pela 2-forma F = dA, correspondente ao tensor campo
eletromagnético. Como F = dA é uma forma exata, temos dF = 0 (fechada). Pelo teorema de

Stokes:

fﬁ-d?z//§~d§:q>3,
Y S

onde S é qualquer superficie com dS = y. A independéncia topoldgica manifesta-se na equiva-
léncia:

Adl=¢ A-dl (5.2)
N y7l

para caminhos 7;, 7> homotopicamente equivalentes em R? \ {0}. A fase resultante:

gy = €xp (—i%dDB)

¢ um invariante de calibre (loop de Wilson para G = U(1)).

Dessa forma esperamos que nossa fun¢ao de onda se transforme como

) =exp(—ides)v), (53)

garantindo uma fase que depende da carga de teste g e do fluxo magnético B no solenoide.

Apesar do efeito Aharonov-Bohm ter origem distinta da dos anyons - sendo induzido
por um fluxo magnético externo em contraste com a topologia intrinseca do espaco de configura-
cdo de particulas idénticas - ele revela trés caracteristicas fundamentais que antecipam aspectos
essenciais do processo de permutacio entre anyons:

1. Topologicidade da fase: A fase adquirida pela funcdo de onda € puramente topolégica,
dependendo exclusivamente da classe de homotopia do caminho percorrido. Esta indepen-
déncia de deformacdes continuas do caminho (desde que nio cruze o solenoide) decorre
diretamente da curvatura nula (F = dA = 0) na regido acessivel e da multiconectividade
do espaco R?\ {0}.

2. Nao-trivialidade de conexodes planas: Mesmo na auséncia local de campos fisicos (B=0),
a conexdo Ay pode induzir holonomias ndo triviais. Esta aparente contradi¢do resolve-se
pela natureza global da topologia: o fluxo magnético confinado atua como obstaculo

topolégico, tornando o grupo fundamental 7r; (R? \ {0}) = Z nio trivial.
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3. Nao-localidade quantica: A fase resulta de uma interagdo ndo-local, sendo determinada
inteiramente pelo fluxo magnético total enlagado, sem qualquer mediacao de campos locais
mensuraveis. Esta acdo a distincia manifesta a natureza da geometria do fibrado principal.

Estas propriedades estdo obviamente iterconectadas e prefiguram profundamente o
comportamento de anyons, onde a permutagdo de particulas gera fases topoldgicas oriundas da

estrutura ndo trivial do espaco de configuragao.
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6 ANYONS

Nos capitulos anteriores, estabelecemos como a topologia do espaco de configuracdes
em sistemas bidimensionais dd origem a uma rica estrutura geométrica, descrita por fibrados
onde o transporte paralelo de estados quanticos gera fases observadveis. Agora, exploraremos as
consequéncias fisicas diretas dessa estrutura: as quasiparticulas conhecidas como anyons.

Anyons sdo excitagdes localizadas, de baixa energia, cujas propriedades sdo intrin-
secamente ligadas a dimensionalidade do sistema em que habitam. A sua descri¢do tedrica
mais eficaz € realizada por meio de uma teoria de calibre puramente topoldgica, a teoria de
Chern-Simons'. Para que as propriedades topolégicas dominem a fisica, duas condicdes sio
essenciais. Primeiro, a existéncia de um gap de energia (AE) que separa o estado fundamental
degenerado do primeiro estado excitado. Segundo, que a evolugdo do sistema seja adiabdtica, ou
seja, lenta o suficiente para ndo fornecer a energia necessdria para cruzar esse gap.

Juntas, essas exigéncias garantem que o sistema permaneca confinado ao subespago
do estado fundamental, onde a informacao € protegida topologicamente. Embora as propriedades
topoldgicas existam independentemente da escala de energia, grandes perturbagcdes podem
superar o gap e fazer com que interagdes locais predominem.

Sob as condicdes de protecdo topoldgica, a dinamica governada pela acdo de Chern-
Simons revela que as excitacdes do sistema possuem cargas topoldgicas conservadas e seguem
regras de permutacdo e combinagdo muito particulares. A quantizacdo dessa teoria leva natu-
ralmente a uma estrutura matematica poderosa conhecida como Categoria Tensorial Modular
(MTC), que organiza de forma consistente o comportamento dessas particulas. E nesse contexto
que emergem as teorias de calibre do tipo SU(N)y, onde o nivel k£ € um pardmetro inteiro que
dita as regras especificas de interagao.

Dentre as diversas teorias de calibre do tipo SU (N ), duas classes de anyons merecem
destaque especial devido a sua releviancia em computagdo quantica topoldgica: os anyons de
Ising e os anyons de Fibonacci.

Os anyons de Ising, descritos pela teoria de Chern-Simons SU (2),, sdo fundamentais
para a construcdo de qubits topoldgicos. Eles sdo esperados em sistemas como o estado v =5/2
do Efeito Hall Quantico Fraciondrio (estados do tipo Moore-Read)(Haldsz, 2023), supercondu-

tores p-wave (como o SroRuQO4)(Kallin, 2012) e em jungdes de nanofios semicondutores com

' Existem teorias as quais abordam a possibildiade de anyons que ndo sio abrangidos pela teoria Chern-Simons.

Entratando, ndo existe evidéncias fortes o suficiente da existéncia experimental de anyons fora dessa teoria.
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supercondutividade induzida. Estes anyons possuem uma estatistica ndo-abeliana onde suas
operacdes de tranca sdao densas no grupo de Clifford, o qual nao € universal para computacao
quantica. Apesar de ndo serem universais apenas com trangas, existem diferentes abordagens
que permitem a universaliza¢do das operagdes, como a adicao de uma porta nao-Clifford obtida
via destilacao de estados magicos(Nayak et al., 2008; Bravyi; Kitaev, 2005). No entanto, um
trabalho recente mostra que, ao considerar um Hamiltoniano efetivo que realize uma extensao
nao-semissimples do modelo de Ising, as operacdes de trancga por si s6 podem ser suficientes
para a computagdo quantica universal(Tulianelli et al., 2025).

Jd os anyons de Fibonacci, que emergem da teoria SU(2)3, representam uma plata-
forma ainda mais rica para a computagdo quantica universal. Eles sdo previstos em sistemas
de Efeito Hall Quantico Fraciondrio com fator de preenchimento v = 12/5 (estados do tipo
Read-Rezayi)(Mong et al., 2017) e em certos liquidos de spin quanticos. A sua estatistica de
tranca € capaz de gerar qualquer operagdo unitdria, pois suas representacdes do grupo de tranca
tém imagem densa em grupos unitarios, tornando-os candidatos ideais para a constru¢ao de um
computador quantico tolerante a falhas(Freedman et al., 2002).

Este arcabouco tedrico nos permite descrever as duas operagdes fundamentais que
caracterizam um sistema anyOnico. A primeira € a fusdo, que dita os possiveis resultados da
combinacao de duas ou mais quasiparticulas. A segunda € a tranca (braiding), que descreve
como os estados quanticos evoluem quando as posi¢des das particulas sao permutadas. Essas
operagdes sdo precisamente codificadas por um conjunto de dados algébricos: as matrizes F
governam a consisténcia da fus@o, enquanto as matrizes R definem as transformacdes unitdrias
resultantes da tranca.

Neste capitulo, nosso foco serd detalhar esse formalismo. Analisaremos as regras de
fusdo, os espacos de Hilbert resultantes € como as matrizes F e R emergem como as ferramentas
essenciais para descrever a fisica dos anyons, preparando o caminho para sua aplicagdo em

informacdo quantica.
6.1 Fusao

Na teoria de anyons, a fusdo representa um processo topoldgico fundamental que
emerge da interacdo entre geometria e quantizacdo topoldgica. Como previamente estabelecido,
anyons sdo excitagdes quasiparticulas descritas por holonomias ndo-Abelianas e loops de Wilson

(Wy = Pexp fyA), que codificam cargas topoldgicas através da conexdo de gauge A,.
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Em sistemas com acdo de Chern-Simons

k 2
Scs=— [ r| ANdA+-ANANA
cs 47r/M r( +3 ),

a quantizagdo impoe restricdes globais cruciais: sob condi¢des de contorno periddicas em
superficies fechadas, o loop de Wilson ao longo de ciclos ndo contraiveis deve satisfazer Wy =1,
refletindo a neutralidade topolédgica global do sistema. Esta condi¢do assegura que a soma
algébrica das cargas topoldgicas seja trivial, embora a conservacdo local de carga nio se aplique.

A fusdo de anyons € definida como a aproximacdo espacial de duas excitagdes a
e b a uma distincia critica & (comprimento de correlag¢do topolégica), onde suas identidades
individuais tornam-se indistinguiveis sob operadores de loop de Wilson. Geometricamente,
quando a separagdo d entre os anyons satisfaz d < &, qualquer curva y englobando ambos os
pontos ndo pode acessar suas contribui¢des individuais, pois as flutuacdes quanticas do campo
de gauge "misturam"suas propriedades locais.

Contudo, este processo ndo corresponde a uma simples adi¢cao de cargas, mas sim a
uma reconfiguragdo topolédgica do espaco de estados. A auséncia de conservacdo local de carga

manifesta-se no fato de que o resultado da fusdo € governado por regras combinatorias:
axb=Y Nyc (6.1)
i

onde os coeficientes N7, denotam as multiplicidades dos possiveis resultados ¢, determinados
pela teoria de representacdo do grupo de gauge com nivel k.

O mecanismo subjacente a fusao reside na contragdo do espago de configuracoes
efetivo: ao aproximar a e b abaixo de &, o grupo de tranca B, (que descreve o entrelagamento
de n particulas) reduz-se a B,,_1, e o plano perfurado R?\ {a,b} é topologicamente equivalente
a R?\ {c}. Fisicamente, observiveis globais (como fases de Berry ou operadores de loop)
tornam-se insensiveis aos detalhes locais, respondendo apenas a carga combinada c.

Esta transicdo, embora desencadeada por uma operagdo geométrica, € essencialmente
um fendmeno de ndo-localidade quéntica, onde a escala & atua como um limite de resolugio
topoldgica.

Quando especificamos um tipo de sistema anyonico, estamos estabelecendo suas re-
gras de fusdes a qual envolve todas as excitagcdes intermediarias possiveis com cargas topoldgicas
distintas. Se um sistema possui um conjunto de excitagdes {a,b,c,...} escrevemos a relagdo de
fusdo pela equagdo 6.1. Quando N;, > 1, significa que existem cargas localmente idénticas que

se transformam globalmente de forma distinta, dessa forma os simbolos {a,b,c, ...} determinam
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a distinguibilidade local entre as particulas e os N, determinam os graus de liberdade globais de
cada uma dessas particulas. Em nosso caso iremos nos referir apenas a sistemas onde NJ, < 1.
Um sistema de anyons simples que exemplifica esse ponto é o {7,1} o qual é

determinado pelo conjunto essencial de coeficientes de fusdo:
Nl.=1, NI =1, Nf=1, (6.2)

onde a comutatividade da fusdo (a X b = b X a) elimina repeti¢des redundantes. Os anyons
descritos por esse sistema sao chamados de Anyons de Fibonacci.

Em nosso exemplo, a multiplicidade N. = 1 indica que dois anyons 7 fundem-se
no vdcuo 1 através de um unico canal topoldgico, assim como Nf, = 1 mostra que 0s mesmos
anyons podem fundir-se em um tnico T com multiplicidade unitdria. Finalmente, N, = 1
estabelece que 1 € elemento neutro: 7 fundido com 1 resulta no proprio 7.

Uma representacao sintética destas regras é dada por:
TXT—>T+1, TxX1—r1, (6.3)

onde o simbolo "+"denota superposic¢ao de resultados distintos, ambos com multiplicidade 1.
Um modo de construir uma base num espaco que seja gerado através dessa regra € imaginar
nossos vetores de base como um histérico de fusdes o qual vai da esquerda para a direita, como
mostrado na Figura 13. Como podemos ver na figura, um conjunto de 4 anyons de Fibonacci
onde a carga total fixada € o vicuo, os possiveis caminhos em que as particulas podem se fundir

sao quatro: {|77T7171>7|T71,Tv1>7|1777171>7|1777T71>}
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Figura 13 —Fusao de cinco anyons de Fibonacci e estados resultantes

T T T T

® ~

{17,2,2,1),]1,2,2,1)}

{lz,z,2,1),|t,1,2,1),[1,7,2,1)}
{lz,7,7,1),|7,L,7,1),|l,7,7,1)}

1
Fonte: Elaborado pelo autor (2025).
Legenda: Cinco anyons de Fibonacci se fundem um a um da esquerda para a
direita. A carga topoldgica total fixada no exemplo € 1; veja que a pendltima fusio
obrigatoriamente precisa ser 7, uma vez que T X 1 -» 7. As possiveis evolugdes do
sistema sdo {|7,7,7,1),|7,1,7,1),|1,7,7,1)}.

Veja que o cardter recurssivo dos anyons de fibonacci faz com que a base de estados

que representam as possiveis evolucdes do sistema cresca na propor¢ao aurea:

=2: |1,1)

=3: |t,1,1)

=4: |t,1,7,1), |t,7,7,1)

N=5: |t,1,1,7,1), |7, 1,7,1,1), |t,7,7,7,1)

=6: |t,1,1,1,7,1), |t,1,1,7,7,1), |t,1,7,7,7,1), |T,7,7,1,7,1), |t,7,7,7,7,1)

Um outro conjunto de anyons conhecido s@o os anyons de Ising. Eles sdo definidos
por um conjunto de trés cargas topoldgicas: o vacuo (1), um férmion (y) e uma particula nao

abeliana (o). As regras de fusdo que governam suas interagdes sao:

yxy=1 (6.4)
YXO0=0 (6.5)
oxo=1+vy (6.6)
ocxl=o (6.7)
yxl=y (6.8)

A regra mais notdvel € a da fusao de dois anyons o, que pode resultar tanto no vacuo (1) quanto

em um férmion (y). E essa multiplicidade de resultados que confere o caréter ndo abeliano ao
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sistema. Veja que considerando 1 como nossa fusdo final obtemos para esse caso
N=2: |I,1)
N =3: (nenhum estado com fusao total = 1)
N=4: |l,0,1,1), |y,0,1,1)
N =5: (nenhum estado com fusio total = 1)
N=6: |l,0,1,0,1,1),|1,0,vy,0,1,1),|y,0,1,0,1,1), |y,0,y,0,1,1)
A primeira coisa que percebemos ao comparar os dois tipos de anyons diferentes é que a dimensdo

do espaco de hillbert gerado por esses historicos € diferente. Os anyons de Fibonacci parecem

crescer numa propor¢do maior que os anyons de Ising.
6.1.1 Dimensdo quantica

A caracteristica que determina o tamanho do espaco de Hilbert gerado pelas ope-
racOes de fusdo € conhecida como dimensdo quantica (d,) de uma particula topoldgica a. Ela
quantifica o crescimento assintético do nimero de estados quanticos distinguiveis quando o
nimero de particulas do tipo @ a aumenta, sob restricdes topoldgicas. A dimensdo quantica € um
numero real algébrico > 1 e pode ser calculada como o autovalor dominante (maior autovalor
real) da matriz de fusdo associada a particula.

Quando dizemos matriz de fusdo associada a uma carga fixa a, denotamos por (N,)

a matriz cujas entradas sdo
(Na)y = Ny, (6.9)

onde a linha indica a carga b que estd sendo fundida com a e a coluna indica o resultado c.

Para os anyons de Fibonacci (ordem dos rétulos: {1,7}) obtemos as matrizes

1 7 1 7
Ni= 1|10 Ne= 110 1 (6.10)
7|0 1 7|1 1

Para os anyons de Ising (ordem dos rétulos: {1, y,6}) as matrizes sdo

1 v o 1 v o 1 v o
11 0 O 10 1 O 110 0 1

N] - y NII/ — 5 NG - . (611)
vy 0 1 0 vil 0 O vy 0 0 1
c|l0 0 1 c|0 0 1 c|ll 1 0
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A dimensdo quantica d, de uma particula a € o autovalor dominante (por Per-

ron—Frobenius) da matriz N,. Para Fibonacci, os autovalores de N; vém da equacao caracteristica

A1
det(N; — A1) = —A2-A-1=0,
1 1-2

cuja raiz positiva € a razao durea

C1+V5
2

d; ~ 1.618033989. (6.12)

Para Ising, os autovalores de Ny sdo {1/2, 0, —v/2}, portanto
ds = V2~ 1.414213562. (6.13)

Esses d, controlam o crescimento assint6tico do nimero de estados quando o nimero
de particulas do tipo @ aumenta: o nimero de estados cresce como ~ d”, veja em (Simon, 2023,

Cap. 8).
6.1.2 Espaco de fusao V

A possibilidade de multiplos resultados ao fundir duas particulas é o que confere
aos sistemas de anyons a caracteristica de superposicdo de caminhos de fusdo. Cada fusao
intermedidria pode ser imaginada como um ramo numa arvore: escolher uma carga resultante
numa fusio € escolher um ramo. O espaco de fusdo total ”I/af“aN é, portanto, o espaco gerado
por todos os ramos (todos os caminhos) que levam a carga final fixa A; a dimensdo de ¥ é
exatamente o numero desses ramos.

Como nos interessa apenas os caminhos que terminam em uma carga final especifica
A, é conveniente construir a arvore ao contrdrio: comegamos por A e aplicamos a "divisdo"(fusao
reversa) coerentes até chegar as particulas iniciais. Esta construcao reversa garante coeréncia
global — isto é, evita contar sequéncias locais de fusdes que, embora permitidas ponto a ponto,
violam a carga total A a qual deve ser conservada.

Para trés particulas a, b, c fundindo para A, a descri¢do tensorial é
%abc g @ 7/dab ® /Vdc, (6.14)
d

onde o espago de fusdo de a ® b — d, se funde com o espago tensorial de d ® ¢ — A. Ao somar

sobre todos os intermedidrios d e indices de multiplicidade (u, v) obtemos uma base completa
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para ”f//{’b" que pode ser escrita da seguinte forma:
(a,b),dy) ®|(d,c),Ay)  comp=1,....N4 ~v=1,.. N\ (6.15)

Aqui usamos uma notagdo mais completa explicitando as fusdes (a,b) — ¢. A dimensdo desse

espaco pode ser obtida diretamente pelas dimensdes associadas aos Ng: B’

dim 7% = Y N% NJ.. (6.16)
d

Figura 14 —Bases do espacgo de fusdo para quatro anyons

ToT

L

T

N
T 1
N/
T

1 T
£
)T

Fonte: Elaborado pelo autor (2025).

Legenda: As bases do espago de fusdo dos anyons para 4 fusdes. Para construir
os vetores referentes a esse espaco podemos comecar da carga final fixa (1) da
base; cada caminho que leva ao topo T ® T € uma possivel base de nosso espago.
O caminho azul representa o vetor |(7,7),1) ®|(1,7),7) ®|(7,7),7) ®|(7,7),1) =
I(t,7),1;(1,7),7;(7,7), 75 (7, 7), 1) = |1, 7,7, 1).

QT

QT

QT

'-I\“"-I—\‘/

@>’H\r-l —_—

6.1.3 Matrizes F, relacao do pentdgono

Apesar do modo como esquematizamos as diferentes fusdes ser muito mais intuitivo,
qualquer ordem de fusao deve expandir o mesmo espago ortonormal de possiveis caminhos.
Escolher uma outra representacdo ¢ a mesma coisa que mudar nossa base de representa¢ao do
problema. Com o objetivo de manter a coeréncia da teoria, devemos ser capazes de determinar

uma equivaléncia entre tais espagos através de uma matriz de mudanga de base.
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Figura 15 —Representacdo de diferentes ordens de fusdo para quatro anyons
1 2 3 4 } 2 3 4

5
Fonte: Elaborado pelo autor (2025).

Legenda: Quatro anyons de Fibonacci se fundindo em duas maneiras diferen-
tes. Na esquerda, os anyons sdo fundidos um a um com o resultado ante-
rior. Na direita os anyons sdo fundidos em pares, depois tem seus resulta-
dos combinados. Obtendo uma base {|(7,7),a) ®|(a,1),b) ®|(b,7),5)} e outra
{I(7,7),a)® |(7,7),¢) ®(a,0),5)}.

A Figura 15 mostra duas possiveis representacdes de base, possiveis caminhos de
cada grafo correspondem aos vetores que expandem nossa base. A matriz que representa essa
mudanca de base pode ser escrita como

{I(z,7),a) ©|(a,7),0) ®[(b,7),5)} —— {l(7,7),0) ©|(7,7),¢) ®](a,¢),5)} (6.17)

5
Fa34)lCJ

Para um conjunto de quatro particulas nos temos um total de cinco representagcdes
diferentes. Essas representacdes podem ser associadas considerando a equivaléncia entre dois
conjuntos de transformacdes distintos que nos levam para a mesma base, como representado na

Figura 16.
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Figura 16 —Relacdo do pentdgono para matrizes de fusdo
12 3 4

( ]20

W W

(Fiss).

d

(Fa)e

12 3 4 1 2 3 4
[ ] [ ]  J [ ] [ ) [ ] [ ] [ ]
)e/ \
b d
5 \d
(F'le4)b

Fonte: Elaborado pelo autor (2025).
Legenda: Relagdo do pentdgono. As matrizes de transformacio
devem ser equivalentes seguindo o caminho inferior e o superior.

A associacdo acima € representada na seguinte equacao

<F12c> (Fa34>b Y (deszt)c <F15e4)z (F1bz3>ea (6.18)

e e a

Essa equacdo é conhecida como a relacdo do pentdgono e € responsavel por garantir a consistén-
cia das transformacdes de base dentro da teoria. Perceba que por exigéncia da conservagao de
probabilidade essas equacdes devem ser unitdrias.

Em teorias mais simples, € possivel encontrar facilmente os valores dessas matrizes
através da relacdo do pentdgono e a imposi¢ao da unitariedade, veja (Ahmadi, 2025), o que é

verdade para os casos discutidos nesse trabalho.

6.2 Braiding e equacgoes do hexagono

Em um sistema anyOnico, a permutagdo entre particulas idénticas induz uma trans-
formagdo unitdria dada pela holonomia R = p(gy). Como vimos, essa holonomia realiza uma
representagdo do grupo de trancas B,,. A figura 17 evidencia, de forma visual, a relag@o entre as

representacdes de B, e o processo de permutacdo entre as particulas.
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Figura 17 —Representacdo do trangamento (braiding) de particulas no tempo

Fonte: Elaborado pelo autor (2025).

Legenda: Conjunto de 5 particulas bidimensionais
com posicdes fixas x1,x7,x3,x4,X5 sendo permutadas
numa superficie ao longo do tempo. A permuta pode
ser vista como o ato de trangar os caminhos de evolu-
¢do temporal de cada particula.

Na representacao visual, é importante atentar para as sobreposicoes (‘“over/under”)
das trancas, pois elas fixam a orientagdo do cruzamento: o cruzamento inverso corresponde ao
operador inverso p(g; 1) = p(gy)_l. Embora as linhas parecam abertas na figura, tratam-se de
particulas idénticas; topologicamente, o processo corresponde a um loop fechado no espago de
configuracdes que envolve as particulas pelas quais a tranga passou.

Para cada par de tipos de anyons (a,b) e cada canal de fusdo ¢, definimos o operador

de braiding
b . b b
R V& — 7,

que codifica a holonomia associada a permutacdo de a com b no canal c. Em auséncia de
multiplicidades (N, = 1), R% atua por uma fase. Na presenca de multiplicidades, R% possui
componentes matriciais em uma base de 7/c“b . Em sistemas com multiplos tipos de anyons
(o,y,1), os operadores Rf:’b e as transformacdes de re-associagdo F satisfazem equacdes de
consisténcia topoldgica (pentdgono e hexdgono) que garantem a invariancia sob deformagdes
continuas dos trajetos.

Nosso objetivo nesta secdo € entender como as operacdes de braiding sao repre-
sentadas, de forma consistente, em diferentes bases relacionadas por transformacdes F. Para

isso, consideremos a tranca em um sistema de trés anyons € imponhamos consisténcia com os
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F-moves, como ilustrado na figura 18.

Figura 18 —Equacdes do hexégono e consisténcia entre trangamento e fusdo

L3 U
(E / ( 31)b

)

a — .
Rl2 4 \c 13
(F213 )a
a c

Fonte: Elaborado pelo autor (2025).

Legenda: Equacdes do hexdgono — Existem dois caminhos distintos de transforma-
¢Oes que levam da configurag@o da esquerda a da direita. Podemos imaginar cada
linha como uma corda: a cada fusdo damos um “né” (mudanga de associagdo) e
preservamos a ordem de sobreposicao em cada cruzamento.

Vemos que hd uma relacdo de equivaléncia entre dois conjuntos de transformacoes,
dada por
(Fh )5 RY, (Fibs)! = RSy () SRS (6.19)
Z 231)p fp \I123), = K93 213 12 .
b
Essas relacdes sdo as equacoes do hexdagono. Em conjunto com as equagdes do pentdgono, elas
garantem a consisténcia entre diferentes representacdes (ou bases) do problema, assegurando

que fusdo e trancamento sejam compativeis.

6.3 Computacio com anyons.

A construciao de um computador topoldgico a partir de uma teoria anyonica comega
pela especificagdo das matrizes de recoupling F' e dos operadores de troca R, que determinam

completamente as representacdes dos geradores do grupo de trangas no espaco de fusdo escolhido.
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Como exemplo podemos ver as analisar as matrizes R e F' correspondentes aos anyons de Ising e
os anyons de Fibonacci.
No caso dos anyons de Ising, temos trés tipos de particulas: {1,0,y}, com regras

defusioo xo=14+y,o0x y=0¢e Y x y=1. As matrizes relevantes sao:

1 (1 1 e T8

Foo0 _ , RO9% = , RV =—i.
° V2 \1 0 din/8
Essas transformacdes geram, por trangamento, apenas o grupo de Clifford, o que limita a
universalidade.
Jd os anyons de **Fibonacci**, definidos apenas por {1,7} com a regra de fusdo

TXT=14 7, possuem:

~1 ~1/2 —4ri/5
FT’L’T — (p (p R’CT — e 0
K o 12 _p! ’ 0 Ami/5
onde ¢ = HT\E € a razdo durea. Neste caso, o conjunto de portas obtido pelo trangcamento é

universal para computagdo quantica, tornando os anyons de Fibonacci um modelo de referéncia
para arquiteturas topolégicas.

Escolhendo-se uma codificagdo 1dgica, os geradores de braid o; sdo obtidos por uma
mudancga de base (F), aplicagdo do R-move no canal de fusdo relevante e retorno a base original
(F~1); em notacdo fndice-a-indice, essa operagiio escreve-se convenientemente como
U]y =X [F1 MR F)

v
onde f percorre os canais intermedidrios e 1,V indexam eventuais multiplicidades. A tarefa al-
goritmica consiste em aproximar portas 16gicas Uarger por produtos finitos desses geradores; para
conjuntos geradores densos aplicam-se resultados de compilagdo (por exemplo Solovay—Kitaev),
e para sequéncias curtas frequentemente obtém-se melhores resultados com otimiza¢ao numérica
direta. A inicializacao realiza-se pela criacao de pares a,a do vacuo em canais conhecidos, e a

leitura topoldgica por fusdo, observando o canal resultante.
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7 CONCLUSAO E PERSPECTIVAS FUTURAS

Ao longo desta dissertacdo, empreendemos uma jornada pela estrutura matematica e
fisica que fundamenta a computacio quantica topoldgica, com foco especial na emergéncia das
propriedades topoldgicas desses sistemas. Foi apresentado inicialmente as propriedades gerais
esperadas de um sistema para que ele seja capaz de realizar uma computagdo quantica. Em uma
analogia com a computacgdo cléssica, discutimos alguns conceitos de informacao, assim como
sua representacdo e manipulacdo. Dentro desse aspecto vimos a necessidade de um conjunto
universal de portas 16gicas, bem como a dificuldade em preservar a coeréncia quantica diante de
processos de decoeréncia e ruido ambiental.

Em seguida, mostramos como sistemas bidimensionais oferecem a arena necessaria
para o surgimento de excitacdes com estatisticas fraciondrias — os anyons. A andlise da topologia
do espaco de configuracdes de particulas idénticas revelou a conexao natural com o grupo de
tranca, fornecendo a base para entender o braiding como operacao unitdria. Para descrever de
forma consistente esses estados, recorremos ao formalismo de fibrados e conexdes, no qual a
evolucdo quantica se manifesta como transporte paralelo associado a uma conexao de gauge.

Como premissa para a definicdo de uma acao topoldgica, discutimos os aspectos
geométricos presentes nas formulacoes lagrangianas de sistemas cladssicos. A teoria de Chern-
Simons foi entdo destacada como a formulagdo efetiva capaz de capturar a natureza puramente
topoldgica do espago de configuracdes a qual, juntamente com o formalismo de integrais de
caminho de feynmann € capaz de descrever essas quasiparticulas. Através dessa sequencia de
relacdes, conseguimos evidenciar o processo de transicao entre a descri¢do geométrica do espaco
de configuracgdes e a representacdo da natureza.

A partir desse arcabougo, investigamos as operacdes fundamentais da computacao
quantica topoldgica: fusdo e troca de anyons. Essas operacdes foram formalizadas por meio
das matrizes F e R, que, em conjunto, definem a estrutura de uma categoria tensorial modular.
Esse formalismo nao apenas fornece a linguagem matematica adequada, mas também conecta de
maneira natural a fisica de quasiparticulas com a teoria da informacdo quantica.

Apesar de sua robustez tedrica, destacamos também as limitagdes de certas platafor-
mas, como os anyons de Ising, que nao sao universais para computacao por braiding isoladamente.
Esse ponto abre espaco para a exploragdo de modelos mais ricos, como os anyons de Fibonacci,
ou para a hibridiza¢do com técnicas de correcdo de erros quanticos convencionais.

Como perspectivas futuras, ressalto a relevancia de explorar modelos efetivos da
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matéria condensada (Kitaev, Haldane, Kane-Mele, BHZ), bem como a aplicacdo de métodos
numéricos e de aprendizado de maquina para a classificacdo automadtica de fases topoldgicas.
Além disso, os recentes avangos experimentais na observagdo de modos de Majorana e nos
estados fraciondrios do efeito Hall quéntico sugerem que a concretizacdo de computadores
quanticos topoldgicos pode estar ao nosso alcance em médio prazo.

Em conclusdo, este trabalho buscou nio apenas apresentar os fundamentos tedricos
e matemdticos da computagdo quantica topoldgica, mas também evidenciar como a interacdo
entre geometria, topologia e fisica da matéria condensada oferece uma nova perspectiva para o

processamento da informagao quantica.
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