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RESUMO

Esta dissertação apresenta uma introdução conceitual e matemática aos fundamentos da com-

putação quântica topológica, com ênfase na emergência de anyons não abelianos em sistemas

bidimensionais. Partimos da análise do espaço de configurações de partículas idênticas e constru-

ímos a descrição quântica por meio da linguagem de fibrados de Hilbert, conexões e holonomia,

explicitando a transição natural entre conceitos topológicos e sua formulação física. Nesse

enquadramento, mostramos como a teoria de Chern-Simons fornece um modelo eficaz para a

dinâmica topológica dos sistemas anyônicos, capturando as transformações unitárias induzidas

por processos de fusão e braiding. A partir dessa estrutura, discutimos como essas operações

podem ser utilizadas para implementar computação quântica tolerante a falhas. O trabalho tem

caráter essencialmente didático, buscando elucidar a relação entre topologia, geometria e física

anyônica, destacando os elementos fundamentais que sustentam a proposta de computadores

topológicos.

Palavras-chave: anyons; computação quântica topológica; fibrados e conexões de Hilbert; teoria

de Chern-Simons.



ABSTRACT

This dissertation presents a conceptual and mathematical introduction to the foundations of

topological quantum computation, with emphasis on the emergence of non-Abelian anyons in

two-dimensional systems. We start from the analysis of the configuration space of identical

particles and build the quantum description through the language of Hilbert bundles, connections,

and holonomy, making explicit the natural transition between topological concepts and their

physical formulation. Within this framework, we show how Chern-Simons theory provides

an effective model for the topological dynamics of anyonic systems, capturing the unitary

transformations induced by fusion and braiding processes. From this structure, we discuss

how these operations can be used to implement fault-tolerant quantum computation. The work

has an essentially didactic character, aiming to elucidate the relationship between topology,

geometry, and anyonic physics, highlighting the fundamental elements that support the proposal

of topological computers.

Keywords: anyons; topological quantum computation; Hilbert bundles and connections; Chern-

Simons theory.
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1 INTRODUÇÃO

A capacidade humana de manipular informações foi decisiva ao longo da história,

moldando a organização social e impulsionando o progresso tecnológico. Com o advento de com-

putadores com poder de processamento cada vez maior, novos horizontes para o desenvolvimento

científico e tecnológico têm se aberto.

Nesse contexto, a computação quântica surge como uma tecnologia com potencial

revolucionário. Computadores que operam com sistemas regidos pelas leis da mecânica quântica

podem, graças aos fenômenos de superposição e entrelaçamento, superar exponencialmente os

clássicos em determinadas tarefas. Entre os exemplos mais promissores estão a fatoração de

números primos (Shor, 1999; Xiao et al., 2022), álgebra linear (Ayoade et al., 2022), simulação

de sistemas quânticos(Aspuru-Guzik et al., 2005) e machine learning (Peral-García et al., 2024)

.

Normalmente, os computadores quânticos são classificados de acordo com o prin-

cípio físico no qual se baseiam. Entre as principais abordagens, destacam-se os computadores

baseados em fótons, supercondutores, armadilhas de íons e os topológicos. Tais categorias são

abrangentes um vez que, associado a cada uma, podem existir diferentes sistemas que utilizam

distintos graus de liberdade para representar a informação. Em cada um desses sistemas es-

pecíficos a informação é associada aos estados e às fases complexas do mesmo, podendo ser

manipulada por meio de operadores unitários. Computadores fotônicos, por exemplo, pode

utilizar os estados de Fock e associá-los as unidades de informação (qubits), mas também pode

utilizar a polarização vertical ou horizontal dos fótons.

Atualmente, ainda não há computadores quânticos capazes de resolver problemas

de alta complexidade, como a simulação de fármacos ou a quebra da criptografia RSA. Isso se

deve à necessidade de um número extremamente elevado de qubits lógicos para executar tais

tarefas (Dalzell et al., ; Gidney; Ekerå, 2021; Gouzien; Sangouard, 2021). Apesar de avanços

importantes por parte de empresas como a Microsoft (Microsoft, 2024; Microsoft, 2025) e a IBM

(IBM Quantum, 2024), a meta de construir máquinas com baixa taxa de erro e muitos qubits

ainda não foi alcançada.

O funcionamento de um computador quântico depende do controle preciso e da

preservação dos estados físicos que codificam os qubits. Esses sistemas são extremamente

sensíveis e estão sujeitos a múltiplas fontes de erro (Devitt et al., 2013; Terhal, 2015). Entre elas,
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destaca-se a interação inevitável com o ambiente1, além das interações internas entre os próprios

componentes, que provocam processos de decoerência. A taxa e o tipo de erros variam conforme

o sistema físico e sua arquitetura, mas tendem a crescer com o número de qubits, dificultando a

escalabilidade dos dispositivos mantendo taxas de erro toleráveis.

A mitigação de erros é, portanto, um dos principais desafios para a escalabilidade da

computação quântica. Nesse cenário, os computadores quânticos topológicos ganham destaque

por proporem o armazenamento e processamento da informação em subespaços de Hilbert

protegidos topologicamente. Como consequência, perturbações locais, causadas pela interação

com o ambiente ou por imperfeições internas, são naturalmente suprimidas pelo caráter global

das propriedades topológicas2.

A computação quântica topológica baseia-se na manipulação dos estados de quasi-

partículas chamadas anyons. Ao contrário das partículas fundamentais em 3+1 dimensões, os

anyons emergem em sistemas efetivamente bidimensionais (2+1 dimensões), onde a topologia

do espaço permite estatísticas fracionárias que diferem das estatísticas bosônicas e fermiônicas

usuais.

Essas quasipartículas dividem-se em duas classes: anyons abelianos e anyons não

abelianos. Embora os anyons abelianos ofereçam uma introdução útil ao tema3, eles não possuem

estrutura suficiente para computação quântica universal4. Assim, apenas os anyons não abelianos

são relevantes para os objetivos deste trabalho.

O grande interesse nos anyons não abelianos reside na estrutura do estado fundamen-

tal do sistema, que é degenerado e composto por subespaços topologicamente distintos. Cada

subespaço representa um estado global sensível apenas à configuração coletiva das quasipartícu-

las. Trocas adiabáticas entre elas, protegidas por um gap de energia, induzem transformações

unitárias no espaço degenerado que dependem apenas da topologia dos trajetos — as chamadas

holonomias. Esse comportamento permite representar e manipular estados robustos contra

perturbações locais, viabilizando modelos de computação naturalmente resistentes a erros.

Sistemas anyônicos apresentam uma forma de organização chamada ordem topoló-
1 O ambiente pode incluir o aparato de medida e/ou elementos periféricos, como as paredes da câmara de

isolamento, que inevitavelmente interagem com o sistema em análise.
2 É importante ressaltar que grandes pertubações capazes de alterar essas configurações globais do sistema ainda

são fontes de erros possíveis dentro desses sitemas.
3 Os anyons abelianos estão profundamente relacionados com efeitos Aharonov–Bohm (Aharonov; Bohm, 1959)

e as Fases de Berry (Berry, 1984).
4 As operações unitárias associadas à troca de anyons abelianos são densas apenas em U(1), enquanto para a

computação universal é necessário que sejam densas em SU(2).
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gica, que se manifesta, por exemplo, na existência de múltiplos estados fundamentais que não

podem ser distinguidos por observáveis locais. Essa ordem também está associada à presença

de anyons. Uma maneira de identificar essa ordem é por meio da entropia de entrelaçamento,

especialmente através do termo constante conhecido como entropia topológica, que revela a

presença de entrelaçamento de longo alcance no sistema. Experimentalmente, há evidências da

existência de anyons em sistemas como o Efeito Hall Quântico Fracionário e em spin liquids,

que exibem estados altamente correlacionados sem apresentar ordem magnética convencional.

O objetivo deste trabalho é apresentar, de forma clara e acessível, os principais

conceitos físicos e matemáticos relacionados aos anyons, partindo de sua definição e das ideias

topológicas que fundamentam sua existência. Começaremos explorando como sistemas quânticos

bidimensionais permitem a emergência de estatísticas distintas das convencionais, e como a

topologia do espaço desempenha um papel central na descrição dessas quasipartículas. Em

seguida, discutimos a estrutura da evolução quântica desses sistemas, abordando noções como

teorias topológicas de calibre, fibrados e conexões, que fornecem a linguagem matemática

adequada para descrever os estados protegidos e as operações de entrelaçamento. A partir

dessa base conceitual, discutiremos como essas propriedades anyônicas podem ser capazes de

implementar um computador quântico, a partir de suas matrizes de Fusão F e de trança R.

O desenvolvimento do trabalho busca ser principalmente didático envolvendo diver-

sas imagens e explicações detalhadas em tópicos mais complicados os quais muitas das vezes

não são tratados diretamente em materiais introdutórios. Os conceitos principais discutidos nesse

trabalho estão relacionados a topologia, geometria diferencial, teoria de calibre, teoria quântica

de campos topológica, assim como a descrição efetiva da física anyonica.

Apesar das citações ao longo do texto. Vale a pena citar alguns artigos e livros os

quais esse trabalho foi principalmente baseado. Os aspectos topológicos/geométricos discutidos

são baseados principalmente nos livros (Nash; Sen, 1988) e (Nakahara, 2018) enquanto os

aspectos físicos se baseiam no artigo (Leinaas; Myrheim, 1977) e nos livros (Pachos, 2012) e

(Simon, 2023)
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2 COMPUTAÇÃO QUÂNTICA

A essência da computação quântica reside na manipulação inteligente de amplitudes

de probabilidade. Enquanto computadores clássicos processam bits binários (0 ou 1), sistemas

quânticos exploram a superposição, onde um qubit pode existir simultaneamente em múltiplos

estados. Cada estado possível possui uma amplitude complexa associada, que determina sua

probabilidade de ser observado durante uma medição.

O objetivo final da computação quântica é "confinar"a distribuição de probabilidade

resultante em picos estreitos em torno das soluções corretas. Quando o sistema é medido, a alta

probabilidade concentrada nesses estados garante que a resposta útil seja obtida com elevada

confiança. Essa orquestra de amplitudes - direcionando interferência destrutiva para respostas

indesejadas e construtiva para a solução ótima - é o cerne da vantagem quântica em problemas

como fatoração e otimização.

2.1 Portas lógicas universais

Em computação clássica as informações são representadas de forma binaria através

de bits1, os quais podem assumir valores {0,1}. Uma informação, como um número ou uma

letra, por exemplo, pode ser representada por um conjunto de bits. Com 3 bits, podemos ter 23

combinações diferentes. Se associarmos a cada uma dessas combinações um número natural,

podemos representar os números {0,1,2,3,4,5,6,7}

000 −−−−−−−−−−−−−−−−−→ 0

001 −−−−−−−−−−−−−−−−−→ 1

010 −−−−−−−−−−−−−−−−−→ 2

011 −−−−−−−−−−−−−−−−−→ 3

100 −−−−−−−−−−−−−−−−−→ 4

101 −−−−−−−−−−−−−−−−−→ 5

110 −−−−−−−−−−−−−−−−−→ 6

111 −−−−−−−−−−−−−−−−−→ 7

ou qualquer outro conjunto de 8 números (no caso de 3 bits). Da mesma forma, temos a

tabela ASCII a qual associa letras, algarismos e sinais de pontuação e controle a uma possível

combinação de 8 bits2. Com 8 bits, podemos ter 28 = 256 combinações diferentes, permitindo a
1 Existem computadores ternários também, que utilizam trits assumindo valores {−1,0,1}
2 Um conjunto de 8 bits é conhecido com byte
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representação de uma vasta gama de caracteres usados na comunicação textual digital.

Em um computador queremos ser capazes de manipular tais informações da forma

mais ampla possível, como alterar um texto, somar dois números, ou qualquer outra instrução

que leve um conjunto de informações em outro. Matematicamente tais manipulações são

representadas pelo conjunto de todas as funções f : {0,1}n → {0,1}m as quais levam um

conjunto de n bits a um conjunto de m bits. Obviamente existem infinitas funções desse tipo

dados m e n arbitrários.

Obviamente não somos capazes de criar um dispositivo físico para cada possível

função f : {0,1}n →{0,1}m, com tudo, essas funções podem ser obtidas a partir da combinação

de um conjunto finito de funções do tipo g : {0,1}k → {0,1} (Nielsen; Chuang, 2010). Os

dispositivos que implementam fisicamente essas funções são chamados de portas lógicas. Se

esse conjunto é capaz de implementar (dado tempo e recursos suficiente) qualquer função

f : {0,1}n →{0,1}m então ele é um conjunto universal de portas lógicas.

Em computação clássica, existem alguns grupos de portas as quais podem ser

universais, por exemplo {AND,OR,NOT} ou {NAND}. Apesar de existir conjuntos de apenas

uma porta logica que conseguem ser universais, nem sempre é a melhor escolha, um vez que

pode ser muito mais custoso em questão de tempo e recursos implementar funções com apenas

um tipo de porta logica.

2.2 Qubit

Em computação quântica as informações são armazenadas nos estados quânticos

do sistema. A unidade de informação mais simples, com propriedades quânticas, que podemos

ter é o sistema de dois níveis, nesse contexto, chamamos ele de bit quântico ou qubit. Existem

computadores quânticos baseados em sistemas de mais níveis, como por exemplo, os qutrits

(sistemas de tês níveis), no entanto, eles não constituem o foco desse trabalho.

Um sistema quântico onde existe a superposição de dois estados puros {|0⟩, |1⟩} e

dito ser um qubit e seu vetor de estado é dado por

|ψ⟩= α|0⟩+β |1⟩ (2.1)

onde α e β são números complexos. Sabemos da mecânica quântica que |⟨ψ|ψ⟩|2 = 1 de modo
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que |α|2 + |β |2 = 1. Tal estado pode ser representado por uma matriz coluna de duas posições:α

β

≡ α|0⟩+β |1⟩ (2.2)

2.3 Portas lógicas quânticas universais

Todas as possíveis transformações que levam um estado de um qubit à outro |ψ1⟩ →

|ψ2⟩, sem perda de informação3, podem ser representados por uma matriz complexa unitária

2X2. Tais transformações recebem o nome de portas logicas de um qubit.

Uma sucessão de transformações U1, U2 pode ser representada por uma única

matriz unitária U3 através da multiplicação matricial, uma vez que U†
3 U3 = (U1U2)

†U1U2 =

U†
2 U†

1 U1U2 = 1.

O conjunto de todas as matrizes unitárias 2X2 munidos da operação de multiplicação

matricial formam um grupo chamado de U(2):

Operação do Grupo: U1U2 =U3 ∀ U1,U2,U3 ∈U(2) .

Elemento Identidade: U1 =U ∀ U ∈U(2).

Elemento Inverso: U†U = 1 ∀ U ∈U(2).

Do ponto de vista físico, nem todas as transformações unitárias são relevantes. Uma

vez que uma aquisição de uma fase global do sistema é indistinguível, o grupo de transformações

unitárias que nos permite manipular o estado de um qubit sem perda de informação é um subgrupo

de U(2). Esse subgrupo é conhecido como SU(2) e é formado por todas as transformações

U ∈U(2) onde det(U) = 1.

Podemos verificar isso decompondo U em uma fase eiθ/2 e um operador S ∈ SU(2)

de modo que U = eiθ/2S. Para isso utilizamos o fato de que U é um operador unitário e seu

determinante deve ser da forma

det(U) = eiθ (2.3)

O que nos permite verificar diretamente que:

det(S) = det(e−iθ/2U) = e−iθ/2 det(U) = e−iθ/2eiθ/2 = 1 (2.4)
3 A informação de um qubit esta armazenada em sua superposição de estados e em suas amplitudes de pro-

babilidade α e β . Operadores de medida, por exemplo, quebram tal superposição, resultando na perda de
informação.
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e

U†U = (eiθ/2S)†(eiθ/2S) = (e−iθ/2S†)(eiθ/2S) = S†S = I (2.5)

Um conjunto de portas lógicas {V} é universal para um único qubit se o grupo

gerado por {V} (isto é, todas as combinações possíveis de produtos V1V2 . . .Vn) for denso em

SU(2) na topologia padrão. Isso equivale a dizer que, para qualquer operador S ∈ SU(2) e

qualquer ε > 0, existe uma sequência finita de operadores {Vi} tal que:

∥V1V2 . . .Vn −S∥< ε, (2.6)

onde ∥ · ∥ é uma norma apropriada.

Para que um computador quântico seja universal, é preciso que tal ideia seja estendida

para um conjunto de n qubits. É possível mostrar que, dado um conjunto de portas lógicas

{V} que seja denso em SU(2), podemos torná-lo computacionalmente universal para n qubits

adicionando uma porta lógica capaz de gerar entrelaçamento entre os qubits, veja (Nielsen;

Chuang, 2010).

Essa característica é fundamental pois nos permite aferir a viabilidade de um sistema

se comportar como um computador quântico a partir de suas operações acessíveis. A nível

informacional nossa única exigência é:

1. Um conjunto de operações {Vi} o qual seja denso em SU(2).

2. Uma operação que promova entrelaçamento entre os espaços H1 ⊗·· ·⊗Hn individuais de

cada qubit.

Apesar de existir um grande passo entre a realização experimental de um computador

quântico e a teoria a qual o suporta. A análise da sua capacidade de representar informação é

imprescindível.

2.4 Compilação quântica

A ideia de um computador quântico é algo abrangente, no sentido que o termo não

define completamente a arquitetura operacional do mesmo. Qualquer sistema que seja capaz de

satisfazer os requerimentos de densidade e entrelaçamento é um candidato plausível a ser um

computador quântico. Diversas arquiteturas físicas têm sido exploradas para realizar computação

quântica, incluindo:

1. Computadores baseados em íons aprisionados
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2. Sistemas de circuitos supercondutores

3. Pontos quânticos semicondutores

4. Sistemas fotônicos

5. Topologias baseadas em anyons

Cada uma dessas plataformas aproveita os fenômenos de superposição de estados e

entrelaçamento quântico para representar e manipular informação. A linguagem natural para

descrever problemas e operações nesses sistemas é o conjunto padrão de portas quânticas univer-

sais (como portas de Pauli, Hadamard, CNOT e T). Contudo, as operações nativas acessíveis a

cada hardware são distintas, de forma que surge a necessidade de converter entre representações

de circuitos equivalentes.

O teorema que garante a existência dessa correspondência, com complexidade

eficiente, é conhecido como algoritmo de Solovay-Kitaev (Ozols, 2009). Este assegura que

qualquer porta universal pode ser aproximada por uma sequência de portas de um conjunto

discreto, embora a execução sucessiva de portas logicas possam acumular erros.

Para o caso específico de sistemas topológicos baseados em anyons (como modelos

de Ising e Fibonacci), técnicas avançadas de compilação são necessárias para mapear portas

lógicas em operações de braiding. Dois artigos relevantes que abordam essa conversão com

análise de taxa de erro induzida são: (Johansen; Simula, 2021; Long et al., 2025). Ambos

exploram modelos capazes de percorrer grafos de combinações de operadores que sejam capazes

de optimizar a convergência da aproximação.

2.5 Dificuldades de uma computação quântica robusta

Apesar do enorme potencial teórico da computação quântica, sua implementação

prática enfrenta obstáculos consideráveis. O principal deles é a fragilidade dos estados quânticos

diante do ambiente. Um qubit isolado é um sistema idealizado: no mundo real, ele sempre

interage com graus de liberdade externos, o que gera ruído e perda de coerência quântica. Esse

fenômeno é conhecido como decoerência.

Para ilustrar o processo de decoerência suponha HS (espaço de computação/qubits)

e HE (ambiente) espaços de Hilbert finito-dimensionais com bases {|si⟩}ds
i=1 e {|ek⟩}de

k=1. O

sistema total é H = HC ⊗HE .
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Um vetor arbitrário |Ψ⟩ ∈ H pode ser escrito como

|Ψ⟩=
ds

∑
i=1

de

∑
k=1

cik |si⟩⊗ |ek⟩, ∑
i,k

|cik|2 = 1. (2.7)

O operador densidade do estado global (puro) é

ρ = |Ψ⟩⟨Ψ| = ∑
i,k

∑
i′,k′

cik c∗i′k′
(
|si⟩⟨si′|

)
⊗
(
|ek⟩⟨ek′|

)
. (2.8)

A matriz densidade reduzida do espaço de computação C é obtida pelo traço parcial

sobre o ambiente E:

ρC = TrE [ρ] =
dE

∑
k=1

(
IC ⊗⟨ek|

)
ρ
(
IC ⊗|ek⟩

)
= ∑

i,i′

(
∑
k

cik c∗i′k
)
|si⟩⟨si′|. (2.9)

Critério de separabilidade (para estados puros do sistema total): o estado |Ψ⟩ é

separável entre espaço de computação e ambiente se, e somente se, a matriz de coeficientes

C = (cik) tem rank(C) = 1. Ou seja, existem vetores u ∈ CdC e v ∈ CdE tais que

cik = ui vk ⇐⇒ |Ψ⟩=
(
∑

i
ui |si⟩

)
⊗
(
∑
k

vk |ek⟩
)
. (2.10)

Caso contrário, rank(C)≥ 2 e |Ψ⟩ está entrelaçado entre C e E. Equivalentemente, ρC é pura

(ρ2
C = ρC) se e somente se |Ψ⟩ é separável; se ρC é mista, o estado global está entrelaçado.

Esse entrelaçamento entre espaço de computação e ambiente tem consequências

físicas importantes: ao entrelaçar-se com E, o subsistema computacional deixa de estar descrito

por um vetor de estado puro e passa a possuir uma distribuição estatística de estados (estado

misto). Medidas como a pureza Tr[ρ2
C] (que vale 1 para estados puros e < 1 para mistos) e a

entropia de von Neumann

S(ρC) =−Tr
(
ρC logρC

)
quantificam essa perda de coerência local. Na prática isso significa que, embora o espaço de

Hilbert formal HC mantenha dimensão dC, o entrelaçamento com o ambiente reduz os graus de

liberdade efetivamente acessíveis ao controlador quântico: parte da informação quântica ficou

correlacionada com E e não pode ser recuperada sem acesso ao ambiente (muita das vezes esses

processos são irreversíveis).

A computação clássica possui mecanismos bem estabelecidos de correção de erros,

como códigos de redundância. No regime quântico, no entanto, o problema é mais delicado: não

podemos clonar qubits arbitrariamente devido ao teorema da não-clonagem, e qualquer tentativa
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de medir um estado para verificar sua integridade tende a destruir a superposição que carrega a

informação.

Para mitigar esses problemas, surgiram os códigos de correção de erros quânticos

(Steane, 1996), capazes de distribuir a informação de um qubit lógico em muitos qubits físicos4.

Ainda assim, esses esquemas exigem um número muito elevado de qubits auxiliares e operações

adicionais, o que acentua o problema de escalabilidade.

Em resumo, o grande desafio atual não está apenas em conceber algoritmos quânticos

eficientes, mas em garantir que a informação quântica sobreviva tempo suficiente para que eles

sejam executados. A decoerência local continua sendo o principal inimigo a ser superado.É

justamente esse problema que torna os anyons — excitações cujo estado é robusto a perturbações

locais — particularmente promissores para aplicações em computação quântica.

4 Qubits físicos são elementos do sistema real onde ocorrem as interações fisicas, já os lógicos são a representação
teórica ideal a qual muita das vezes necessita multiplos qubits físicos para garantir a confiabilidade.
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3 SISTEMAS BIDIMENSIONAIS

As excitações estudadas neste trabalho possuem, como característica essencial, sua

natureza bidimensional. Para isso, é necessário definir com precisão o que entendemos por um

sistema 2D. Embora não existam partículas fundamentais intrinsecamente bidimensionais, é

possível construir sistemas nos quais a função de onda Ψ(⃗r) esteja efetivamente confinada a duas

dimensões. Nesse regime, as excitações do sistema se comportam como se fossem partículas

intrinsecamente bidimensionais, permitindo a emergência de fenômenos exclusivos de sistemas

2D.

Para exemplificar essa ideia podemos considerar uma função de onda a qual possa

ser colocada na seguinte forma:

Ψ(⃗x) = ψ(x,y) ·φ(z) (3.1)

Essa consideração exige que V (⃗x) =V (x,y)+V (z). Se inserirmos essas relações na equação de

Schrodinger obtemos as soluções:
− h̄2

2m
∇

2
xyψ(x,y)+V (x,y)ψ(x,y) = Exy ψ(x,y),

− h̄2

2m
d2φ(z)

dz2 +V (z)φ(z) = Ez φ(z),

Quando o potencial V (z) confina fortemente a partícula ao plano xy, a função φ(z) se reduz à sua

forma fundamental, e a dinâmica efetiva do sistema é dominada por ψ(x,y). Podemos ver isso

considerando o caso onde V (z) é submetido ao potencial de um poço infinito com uma largura L

pequena:

V (z) =


0, se |z| ≤ L

2 ,

∞, se |z|> L
2 .

(3.2)

As soluções para esse problema são conhecidas e são dadas por:

φn(z) =


√

2
L cos

(nπz
L

)
, n ímpar,√

2
L sin

(nπz
L

)
, n par,

Ez(n) = h̄2
π2n2

2mL2 , n = 1,2,3, . . .

Com isso calculamos o gap de energia entre o estado fundamental e o primeiro estado excitado:

∆Ez = Ez(2)−Ez(1) =
h̄2

π2

2mL2 (2
2 −12) =

3h̄2
π2

2mL2 .
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O qual é inversamente proporcional à L2. Um exemplo típico de sistema bidimensional é

fornecido pelas heterojunturas, formadas na interface entre semicondutores distintos. Nessas

estruturas pode-se confinar os elétrons em um potencial de poço quântico, resultando na formação

de um gás eletrônico bidimensional (2DEG) (Frensley, ). Dentre os fenômenos observados

nesses sistemas formados em heterojunturas, destaca-se o efeito Hall quântico, que se manifesta

sob condições de baixo temperatura e altos campos magnéticos.

De forma geral, para que um sistema tridimensional exiba comportamento efetiva-

mente bidimensional, o elemento crucial é um confinamento energético forte na direção z. Isso

pode ser alcançado quando conseguimos estabelecer um gap ∆Ez muito maior que as escalas

relevantes do problema. De forma que

∆Ez ≫ max
(
kBT, h̄ωc, δεxy

)
,

onde δεxy representa a escala das flutuações e excitações no plano (mini-bandas, modos coletivos,

desordem, etc.). Essa hierarquia garante que flutuações térmicas ou dinâmicas em x,y não

consigam transferir amplitude para os modos excitados em z. Desa forma, φ(z) permanece

essencialmente no estado fundamental e a função efetiva ψ(x,y) descreve com fidelidade a física

observável.
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4 PARTÍCULAS IDÊNTICAS

Na mecânica quântica, partículas que possuem os mesmos números quânticos intrín-

secos (como massa, carga e spin) são consideradas idênticas e, portanto, indistinguíveis. O fato

delas serem indistinguíveis é um princípio fundamental da natureza, no sentido de que a física

descreve a natureza a partir do que é acessível experimentalmente. Essa característica não se

trata apenas de uma questão filosófica sobre os limites do conhecimento, mas tem implicações

práticas diretas na forma como modelamos matematicamente os sistemas físicos. Muitos fenô-

menos coletivos conhecidos, como ferromagnetismo, supercondutividade e o condensado de

Bose-Einstein só emergem quando a teoria incorpora essa característica.

Classicamente, mesmo para partículas idênticas, a distinguibilidade é preservada

pelo rastreamento contínuo de suas trajetórias no espaço de configurações (ou espaço-q das

posições generalizadas) — cada caminho é univocamente determinado pelas condições iniciais.

Entretanto, o caráter ondulatório dos sistemas quânticos dissolve essa noção de trajetória única. O

sistema evolui por uma superposição coerente de caminhos no espaço de configurações clássico,

onde a amplitude de probabilidade associada a cada trajetória interfere com as demais.

A ideia de que todos os caminhos contribuem para a função de onda torna a estrutura

do espaço de configurações — e os tipos de caminhos que ele admite — uma peça central da

descrição quântica. Nesta seção, discutiremos como a indistinguibilidade das partículas pode

ser incorporada de forma fundamental na formulação quântica, por que esperamos que essa

abordagem reflita a realidade física e como essas características abrem espaço para a existência

de excitações exóticas, como os anyons.

O desenvolvimento da mecânica quântica está profundamente enraizado na mecânica

clássica. Essa conexão não é apenas histórica, mas conceitual: espera-se que qualquer teoria

quântica consistente recupere a física clássica em um limite apropriado. Por isso, é natural

que nossas intuições e formulações iniciais partam do formalismo clássico. Formalismos

fundamentais como o de Schrödinger — que derivou sua equação a partir da ideia de ondas de

equi-ação se propagando no espaço de configurações — ou o de Feynman — cuja formulação por

integrais de caminho descreve a dinâmica quântica como uma soma sobre trajetórias clássicas —

evidenciam essa ligação profunda entre os dois domínios.

Como o objetivo de apresentar o surgimento de excitações anyônicas, começaremos

analisando como a simetria de permutação entre partículas idênticas modifica a estrutura do

espaço de configurações. Essa modificação faz com que existam caminhos topologicamente
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não equivalentes para a função de onda, o que, por sua vez, dá origem fenômenos topológicos.

Como veremos, em três dimensões existem apenas duas classes de caminhos inequivalentes os

quais são associados a estatística bosônica e fermiônica. Já em duas dimensões existem infinitas

classes, o que permite evoluções mais complexas na função de onda. O caso de uma dimensão,

embora didático, sua grande restrição em seus graus de liberdade resultam em uma estatística

pouco rica, de modo a não ser discutido nas seções subsequentes.

4.1 Espaço de configurações

Em um sistema clássico, uma partícula livre em d dimensões pode ter suas posições

representadas por um número d de parâmetros independentes que definam unicamente a posição

dela no espaço. Essa representação é feita em um espaço vetorial Ed o qual isomorfo a Rd , ou

seja Ed ≃ Rd . Para o caso de N partículas livres podemos construir um espaço vetorial E N
d que

represente nosso sistema a partir dos espaços individuais dessas partículas E N
d ≃ Ed ×·· ·×Ed︸ ︷︷ ︸

N−vezes

.

Normalmente, denotamos as posições das partículas como

(x⃗1, x⃗2, . . . , x⃗N) ∈ E N
d , com x⃗i ∈ Ed (4.1)

Com tudo, para manter nosso espaço bem definido, precisamos remover os pontos onde duas

partículas ocupam o mesmo local no espaço. O conjunto desses pontos é escrito como:

∆ =
⋃

1≤i< j≤N

{
(x⃗1, . . . , x⃗N) ∈ E N

d | x⃗i = x⃗ j
}

(4.2)

Os valores d e N serão omitidos de ∆ ao longo desse trabalho, uma vez que não haverá ambi-

guidade nos contextos onde a mesma é inserida. Dessa forma podemos escrever o espaço das

posições sem esses pontos da seguinte forma:

C (E N
d ) = E N

d \∆ (4.3)

Perceba que C (E N
d ) é suficiente para descrever as possíveis posições no espaço

de cada partícula, caso nosso foco fosse desenvolver uma teoria quântica para partículas dis-

tinguíveis. Quando consideramos partículas idênticas, entretanto, automaticamente o espaço

das posições se torna redundante, uma vez que estados que diferem por uma permuta como

(x⃗1, x⃗2, . . . , x⃗N) e (x⃗2, x⃗1, . . . , x⃗N) são equivalentes (x⃗1, x⃗2, . . . , x⃗N)∼ (x⃗2, x⃗1, . . . , x⃗N).

Para remover essa redundância em nosso espaço, precisamos identificar e "unificar"os

pontos que representam configurações fisicamente equivalentes. Matematicamente, isso é feito
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por meio de uma operação chamada quociente: a partir de uma relação de equivalência definida

no espaço, construímos um novo espaço onde cada classe de pontos equivalentes é representada

por um único elemento. Essa operação é uma ferramenta geral para eliminar redundâncias e

estruturar espaços a partir de relações de equivalência e pode ser escrita como A/ ∼, onde A

é nosso espaço vetorial1 e ∼ é a relação de equivalência. Dessa maneira, podemos remover a

redundância do nosso espaço C (E N
d ) tomando

C (E N
d ) = (E N

d \∆)/∼ (4.4)

Perceba que a relação de equivalência está diretamente relacionada com a operação

de permutação entre as partículas. E que ao realizar duas permutações sucessivas, sempre existe

uma única permutação resultante equivalente. Essa operação de composição, quando considerada

junto com todas as permutações possíveis, revela uma estrutura algébrica conhecida como grupo:

– Fechamento: A composição de duas permutações é outra permutação válida.

Exemplo: Se σ = (12) (troca das partículas 1 e 2) e τ = (23) (troca das partículas 2 e 3),

então σ ◦ τ = (123) (mapeamento cíclico 1 → 2 → 3 → 1).

– Elemento neutro: Existe uma permutação identidade e que deixa todas as partículas

inalteradas, satisfazendo e◦σ = σ ◦ e = σ para qualquer σ .

– Inverso: Para toda permutação σ , existe uma permutação inversa σ−1 que desfaz sua

ação, tal que σ ◦σ−1 = e.

Exemplo: Se σ = (123), então σ−1 = (132), pois (123)◦ (132) = e.

– Associatividade: A operação de composição é associativa, ou seja, (σ ◦τ)◦ρ =σ ◦(τ ◦ρ).

Exemplo: Para σ = (12), τ = (23), ρ = (13), ambos (σ ◦ τ)◦ρ e σ ◦ (τ ◦ρ) resultam na

mesma permutação (132).

Esse grupo é conhecido como grupo simétrico SN , veja (Rotman, 2005, Seção 2.2),

ou em nosso caso, grupo de permutação.

Simetrias sempre criam uma relação de equivalência e, essa relação por sua vez,

podem ser associadas a um grupo. Muita das vezes utilizamos diretamente esse grupo para

expressar essa relação de equivalência, de forma que a operação de quociente pode ser escrita

como C (E N
d ) = (E N

d \∆)/SN .

O quocientamento do espaço, entretanto, tem um custo: ele atua sobre a topologia

do espaço, e não em sua estrutura vetorial. O resultado que obtemos dessa operação é um novo
1 A operação de quocientamento é definida sobre espaços topológicos e não vetoriais, entretanto, nosso espaço

vetorial possui uma topologia inerente, de modo que estamos considerando tal operação sobre esse espaço
topológico.
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espaço topológico. A topologia é o que descreve a conectividade do espaço, definindo como os

pontos se agrupam em vizinhanças. Espaços vetoriais metrados como RN ou CN possuem uma

topologia natural, induzida pela métrica, que está ligada diretamente a noções como continuidade

de funções e convergência de sequências.

É importante notar que nem toda topologia pode ser induzida por uma estrutura

vetorial. O espaço resultante dessa operação possui, em nosso caso, uma estrutura topológica

mais complexa do que uma que possa ser obtida de um espaço vetorial. Para garantir uma

estrutura vetorial nesse espaço quocientado, precisamos recorrer a uma estrutura matemática

mais geral, conhecida como variedade (manifold).

Uma variedade é construída sobre um espaço topológico de forma que, localmente,

podemos associar os pontos a um espaço euclidiano RN . Enquanto é necessário descartar uma

estrutura que consegue descreve globalmente sistemas com topologia mais simples, ganhamos

a capacidade de descrever um sistema com uma estrutura global mais abrangente. A Figura 1

mostra uma ilustração desse processo. Uma introdução a esse assunto é encontrada em (Nash;

Sen, 1988; Nakahara, 2018; Baez; Muniain, 1994)

Figura 1 – Ilustração de uma variedade

Fonte: Elaborado pelo autor (2025).
Legenda: Podemos mapear pequenas vizinhanças Ui a espaços euclidianos
RN através dos mapas (homeomorfismos) φi. Os conjuntos Ui devem cobrir
todo o espaço T , e os mapas (difeomorfismos) α garantem a coerência e
diferenciabilidade entre as representações em pontos onde há intersecção
dos conjuntos Ui ∩U j.
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O que precisamos fazer agora é entender melhor os espaços resultantes das identifi-

cações que realizamos. Para isso podemos tentar visualizar a geometria do nosso problema. Isso

inicialmente é um problema devido a dimensionalidade do nosso problema, entretanto, podemos

contornar esse problema considerando o caso de duas partículas C (E 2
d ). Esse caso, apesar de

mais simples, preserva todas as características essenciais do problema geral. Mesmo nesse caso

mais simples a dimensão do nosso espaço ainda é grande demais para ser visualizada diretamente.

Continuamos assim contornando nosso problema: introduziremos uma representação que isola

as propriedades fundamentais (permutações e colisões) em um subespaço de dimensão reduzida.

A beleza de um espaço de posições generalizadas E N
d é que o mesmo nos permite

assumir a representação que é mais conveniente para nosso problema, sem perda de generalização,

uma vez que, independente da nossa escolha, garantimos que E N
d ≃ RN . Podemos, dessa forma,

adotar um sistema de coordenadas particular, que nos permita visualizar melhor o nosso espaço,

sem perda de generalidade em nossa análise.

O sistema de coordenadas a se adotar, em nosso caso, é justamente o do centro de

massa, e das coordenadas relativas C (E 2
d )≃ Rd

cm ×Rd
rel ≃ R2d . O centro de massa do sistema

se mantém inalterado sob a permutação de partículas idênticas, o que o torna inalterado também

sob as ações de quocientamento. Nessa representação também não há colisões no espaço que se

refere ao centro de massa do sistema, dessa forma:

C (E 2
d ) = (E 2

d \∆)/S2 ≃ Rd
cm × (Rd

rel \∆)/SN (4.5)

Com isso, nosso problema se separa em uma parte continua, e outra com as singularidades e

identificações, o que nos permite focar nossa analise apenas em (R3
rel \∆)/SN e (R2

rel \∆)/SN .
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Figura 2 – Espaços das posições relativas das partículas

Fonte: Elaborado pelo autor (2025).
Legenda: a) Espaço das posições relativas das partículas em duas dimensões espaciais R2

rel . Observe
que as partículas (P1 e P2) possuem uma posição simétrica com relação à origem e correspondem a
configurações equivalentes. Dessa forma, podemos definir a posição de ambas apenas pelas coordenadas
(x,y). b) Espaço das posições relativas das partículas em três dimensões espaciais R3

rel .

Veja que, nessa representação, os espaços R3
rel \ ∆ e R2

rel \ ∆ são justamente os

espaços relativos de duas partículas distinguíveis, como representado na Figura 2.

Repare principalmente em duas características: A primeira é que as colisões entre as

partículas correspondem à origem do sistema, de modo que ∆ = {⃗0}. A segunda característica é

que as configurações que diferem por uma permuta são simétricas com relação à origem.

A remoção das colisões em cada um desses espaços torna automaticamente a topolo-

gia do nosso espaço não triviais. Em 2D essa característica é mais forte uma vez que existem

caminhos os quais não podem ser transformados continuamente em outros. O que é diferente do

caso 3D onde o grau de liberdade a mais permite contornar a origem. Essa diferença pode ser

vista na Figura 3.
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Figura 3 – Caminhos para permutação de partículas em diferentes dimensões

Fonte: Elaborado pelo autor (2025).
Legenda: Possíveis caminhos para se permutar duas as partículas em R2

rel \∆ e R3
rel \∆. A ação de

permutar as partículas pode ser vista como levá-las ao seu ponto oposto com relação à origem. Em R2
rel \∆

vemos que não é possível transformar o caminho a no b continuamente. Já em R3
rel \∆, é possível fazer

essa transformação entre c em d devido à dimensionalidade superior.

Essa descontinuidade do espaço tem grande impacto na descrição de permutação das

partículas. Essas desconexidades do espaço são evidenciadas quando consideramos essas trans-

formações contínuas, na matemática topológica, chamamos essas transformações de homotopia2.

Caminhos que podem ser transformados continuamente entre si são ditos serem homotópicos

entre si e pertencem a mesma classe de homotopia.

O processo de quocientar um espaço pode ser visto, geometricamente, como deforma-

lo até que os pontos equivalentes se encontrem, dessa forma estamos identificando todas as

equivalências e associando elas a um único ponto, assim como mostrado nas Figuras 4 e 5.

Figura 4 – Espaço das posições relativas em 3D e o processo de identificação

Fonte: Elaborado pelo autor (2025).
Legenda: Espaço das posições relativas em 3D para duas partículas. O processo de identificação pode ser
visto como "amassar"a esfera em pontos opostos, como mostrado na figura do meio. Tal identificação
gera uma forma geométrica quadrimensional, onde cada ponto da semiesfera inferior e o equador são
levados individualmente ao seus opostos. Essa identificação é feita para todos os raios possíveis também.
Cruzar a linha do equador corresponde a ir para o lado oposto da esfera. Esse espaço é conhecido como
espaço projetivo real RP2.

2 Veja seção 4.1 de (Nakahara, 2018)
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Figura 5 – Espaço das posições relativas em 2D e formação do cone

Fonte: Elaborado pelo autor (2025).
Legenda: Espaço das posições relativas em 2D para duas partículas. O processo de identificação pode ser
visto como "cortar"o plano em um segmento de reta que sai da origem, e torcê-lo até que as duas partes
do corte se encontrem, fazendo com que os pontos opostos se sobreponham. Essa construção forma um
cone sem a origem.

Diferente de R3
rel \∆ e R2

rel \∆, permutar duas partículas nos espaços (R3 \∆)/SN

e (R2 \∆)/SN , corresponde a evoluir o sistema no espaço das configurações de modo que a

configuração final seja igual a inicial. Todas as permutas correspondem a um loop em nosso

espaço.

O espaço (R3 \∆)/SN não pode ser visualizado completamente em três dimensões,

uma vez que corresponde a uma hiper-calota esféria com as extremidades do equador coladas em

cada ponto oposto à singularidade. Mas com um pouco de abstração ainda é possível visualizar,

em uma representação tridimensional, as características relevantes do espaço, veja a Figura 6.



32

Figura 6 – Representação de caminhos e permutações no espaço projetivo 3D

Fonte: Elaborado pelo autor (2025).
Legenda: A imagem consiste em uma representação do (R3 \∆)/SN em 3D. Essa representação considera
um conjunto de distância entre as partículas fixo, diferente do espaço completo, contendo a liberdade de
todas as distâncias exceto 0. Os pontos opostos na linha do equador também devem ser vistos como o
mesmo ponto. Os loops a, b e c correspondem a uma das infinitas maneiras de permutar, respectivamente,
0, 1 e 2 vezes um par de partículas idênticas.

Repare que o loop a pode ser continuamente deformado no c, de modo que cruzar

duas vezes o "equador"é homotopicamente equivalente a não cruzar nenhuma vez. Já o loop

b passa apenas uma vez no equador e por mais que deformemos esse caminho, não podemos

desfazer essa volta. Tentar deformar a curva ao longo do equador faz com que seu ponto seja

percorrido em direções opostas no equador, sem se aproximar. Como vemos, o caminho b não

pode ser transformado em a nem em c.

Como um numero par de passagens pelo equador podem ser desfeitas, temos que

homotopicamente existam apenas duas classes distintas, as que passam um número par de vezes

e as que passam um número impar.

Esse caso muda quando analisamos o espaço (R2 \∆)/SN , o qual pode ser completa-

mente visualizado na Figura 5.A dimensionalidade reduzida desse espaço faz com que os loops

a, b e c, dessa figura não sejam equivalentes entre si. Em realidade, os loops que dão N voltas ao

entorno da singularidade só são equivalentes homotópicamente a outros loops que dão o mesmo

número de voltas.
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Figura 7 – Espaço de configuração 2D e classes de homotopia no cone

Fonte: Elaborado pelo autor (2025).
Legenda: Espaço (R2 \∆)/SN . O espaço possui um
formato de um cone sem a sua origem. Os caminhos
a, b e c representam um possível caminho para per-
mutar 0, 1 e 2 vezes um par de partículas. Nesse
espaço apenas os loops com o mesmo número de
voltas ao entorno da singularidade são homotopica-
mente equivalentes.

De maneira geral, para um ponto específico q ∈ M , onde M representa os espaços

quocientes (R2 \∆)/SN ou (R3 \∆)/SN , consideramos os loops baseados em q, isto é, caminhos

fechados que partem e retornam a esse ponto. É possível definir a operação de composição entre

dois desses loops: percorremos o primeiro caminho e, em seguida, imediatamente o segundo,

formando assim um novo loop baseado em q.

Essa operação de composição de loops induz uma operação entre as classes de

homotopia desses loops, uma vez que a deformação contínua (homotopia) respeita a concatenação.

Podemos assim trabalhar com as classes de equivalência formadas por todos os loops que

podem ser continuamente deformados entre si. A composição de classes de homotopia satisfaz

propriedades fundamentais que configuram uma estrutura de grupo:

– Fechamento: A composição de dois loops sempre resulta em outro loop baseado em q,

cuja classe homotópica também pertence ao conjunto.
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Exemplo: Se [γ1] e [γ2] são classes de loops, então [γ1 · γ2] também é uma classe válida.

– Elemento neutro: Existe uma classe de loop trivial — o loop que permanece constante-

mente em q — que atua como elemento neutro, pois sua composição com qualquer outro

loop não altera a classe deste.

Exemplo: O loop constante e(t) = q satisfaz [γ] · [e] = [γ].

– Inverso: Para cada classe de loop, existe outra classe correspondente ao caminho percor-

rido no sentido inverso, de modo que a composição de ambos é homotopicamente trivial.

Exemplo: Se γ(t) é um loop, então γ−1(t) = γ(1− t) representa seu inverso.

– Associatividade: A composição de classes de loops é associativa, ou seja, a ordem de

agrupamento na composição não altera o resultado.

Exemplo: ([γ1] · [γ2]) · [γ3] = [γ1] · ([γ2] · [γ3]).

Essa estrutura é chamada de grupo fundamental do espaço M baseado em q, de-

notado por π1(M ,q)3. O grupo fundamental capta informações essenciais sobre a topologia

do espaço, refletindo, em nosso contexto, as possíveis permutações e a natureza topológica do

sistema.

A razão pela qual nossas conclusões são válidas para qualquer ponto q reside no

fato de que existe um isomorfismo entre os grupos fundamentais baseados em quaisquer dois

pontos do espaço desde que seja conexo por caminhos, veja (Hatcher, 2002, Seção 1.1). Essa

equivalência nos dá a liberdade de falar do grupo fundamental do espaço π1(M ) , como um

invariante topológico que descreve o sistema como um todo.

Para o caso tridimensional temos

π1
(
C (E N

3 )
)
= π1

(
(R3N \∆)/SN

)
≃ SN

Como visto em nossas análises quando N = 2, temos S2 ≃ Z2, onde Z2 é o grupo cíclico de dois

elementos, veja (Laidlaw; DeWitt, 1971). Já o caso bidimensional obtemos π1
(
C (E N

2 )
)
= BN ,

onde BN é conhecido como o grupo de trança, a demonstração detalhada pode ser vista em

(Fadell; Neuwirth, 1962).

A discussão até aqui concentrou-se nas possíveis coordenadas generalizadas que

podem descrever nosso sistema. Essa análise conduz naturalmente à observação de que a

permutação de partículas indistinguíveis corresponde à descrição de um loop no espaço de
3 O subscrito "1"em π1 indica que estamos estudando classes de homotopia de laços, que são mapeamentos da

1-esfera (o círculo, S1) para o manifold M . Essa ideia pode ser generalizada para mapeamentos de esferas de
dimensões superiores (Sn) para M . Os grupos resultantes são chamados de grupos de homotopia superiores e
são denotados por πn(M ,q), onde n é a dimensão da esfera de teste.
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configurações. Tais loops podem ser caracterizados, de forma global e independente do ponto

em M , pelo grupo fundamental π1(M ). Nesse enquadramento, a permutação entre partículas

adquire, de maneira intrínseca, uma natureza topológica.

Para compreender plenamente os efeitos dessa estrutura, é necessário adotar uma

linguagem capaz de representar adequadamente sistemas quânticos. Até este momento, conside-

ramos apenas o espaço de estudo como uma variedade diferenciável (manifold), cujos pontos

codificam as diferentes configurações espaciais do sistema. A descrição quântica, contudo, exige

associar a esse espaço uma função de onda ψ , que vive em um espaço de Hilbert complexo e

cuja evolução temporal é regida pela equação de Schrödinger.

Representar essas características de forma consistente requer uma análise cuidadosa

de aspectos como singularidades, continuidade e evolução temporal da função de onda. Ao

considerar essas propriedades, torna-se natural associar as diferentes classes de homotopia das

permutações de partículas a uma evolução unitária da função de onda. Esse procedimento dá

origem aos possíveis comportamentos estatísticos observados: férmions e bósons em 3+ 1

dimensões, e anyons em 2+1 dimensões.4

4.2 Fibrado de Hilbert

Para alinhar a dinâmica quântica à topologia de M , impõem-se três requisitos

essenciais. Primeiro, as amplitudes de probabilidade devem variar de modo contínuo ao longo

de trajetórias em M , conforme a equação de continuidade quântica garante a conservação local

de probabilidade. Segundo, as funções de onda precisam ser diferenciáveis, permitindo definir

operadores dinâmicos — como o Hamiltoniano — e formular evoluções temporais coerentes.

Por fim, a evolução do sistema deve manter a linearidade das superposições e a unitariedade, em

consonância com os postulados da mecânica quântica.

Atender a essas condições implica associar a cada ponto q ∈ M , que representa uma

configuração espacial, um espaço de estados internos. Esse estado deve ser capaz de oscilar

quanticamente em um espaço de Hilbert, onde suas fases são complexas. Para uma partícula

com spin 1/2, por exemplo, temos temos 2N vetores de base em H , esperamos algo como

q 7−→
2N

∑
i

ci|x1, . . . ,xN⟩⊗ |s1, . . . ,sn⟩i, (4.6)

4 O fato de uma partícula ser bóson ou férmion é uma propriedade fundamental, explicada pelo teorema spin-
estatística. No entanto, as restrições sobre as possíveis transformações unitárias da função de onda estão
enraizadas na topologia do espaço de configurações.
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com |x1, . . . ,xN⟩ fixo, de modo a preservar a relação entre posição e estado quântico da mesma.

Essa associação viabiliza também a superposições e evolução unitária local.

Uma solução intuitiva seria considerar o produto cartesiano M ×H , que satisfaz

naturalmente os critérios exigidos. No entanto, essa construção global só é viável para espaços de

topologia trivial. Em variedades com singularidades ou desconexidades, essa descrição torna-se

inadequada, o que nos conduz à necessidade de desenvolver uma representação válida localmente.

O fibrado vetorial diferenciável configura-se como a estrutura matemática mínima capaz de

realizar esta construção global. Nesta abordagem, associamos a cada ponto q da variedade

base M (espaço de configurações C (E N
d )) um espaço de Hilbert Hq (fibra), garantindo que

localmente, em vizinhanças abertas U ⊂ M , o espaço total seja difeomorfo a um produto

cartesiano U ×Hq. A coerência global exige que, nas regiões de sobreposição Ui ∩U j, as

diferentes representações locais sejam relacionadas por funções de transição diferenciáveis gi j :

Ui∩U j →Aut(H )5. Estas funções atuam como operadores lineares que conectam suavemente as

representações locais das trivializações, preservando a estrutura vetorial e garantindo consistência

topológica em todo o manifold. Podemos dessa forma, manter a simplicidade local do produto

cartesiano sem comprometer a integridade global da estrutura.

5 Aut(H ) representa o conjunto de todos os automorfismos H 7−→ H
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Figura 8 – Ilustração de um fibrado vetorial trivial sobre S1

Fonte: Elaborado pelo autor (2025).
Legenda: Ilustração de um fibrado vetorial trivial (cilindro) sobre S1. O espaço base B ∼= S1 (círculo
inferior) possui fibras F ∼= R (retas verticais). A projeção π : E → B mapeia cada fibra ao ponto
correspondente na base. Para cada aberto U ⊂ B, o homeomorfismo ϕ : π−1(U) → U ×F garante
a trivialidade local. Nas interseções Ui ∩U j, as funções de transição gi j(q) : Fq → Fq agem como
difeomorfismos em cada fibra π−1(q), assegurando coerência global. No cilindro (fibrado trivial),
gi j(q) = IdF .

Para que as funções de transição {gi j} definam um fibrado globalmente consistente,

elas devem satisfazer duas condições fundamentais:

1. Relação de Cociclo: Em toda interseção tripla Ui ∩U j ∩Uk ̸= /0, vale a composição

gi j(q) ·g jk(q) = gik(q), ∀q ∈Ui ∩U j ∩Uk, (4.7)

garantindo que as trivializações locais se encaixem sem ambiguidades.

2. Invertibilidade: Para cada par Ui ∩U j ̸= /0, existe uma inversa bem definida:

g ji(q) = gi j(q)−1. (4.8)

Perceba que a relação de cociclo juntamente com a invertibilidade exigem composi-

ção, associatividade, fechamento e invertibilidade, de modo que precisamos restringir Aut(H ) a

um grupo G ⊂ Aut(H ). Esta restrição garante a consistência algébrica mínima para transições

entre representações da fibras, mas é insuficiente para estruturar um fibrado diferenciável. A

transição entre as representações da fibra no mesmo ponto q precisa ser diferenciável, essa

exigência surge naturalmente por dois motivos fundamentais:
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1. Preservação da suavidade em composições: A relação de cociclo gi j ◦g jk = gik deve

manter a diferenciabilidade em cada estágio. Isto significa que a diferenciabilidade de

cada gi j é necessária para garantir que a aplicação composta gik herde essa propriedade.

2. Estrutura diferenciável global: A aplicação que relaciona duas trivializações locais

φ j ◦ φ
−1
i : (Ui ∩U j)×Hq → (Ui ∩U j)×Hq, só será um difeomorfismo (ou seja, uma

transformação suave com inversa suave) se a função gi j(q) que governa esta transformação

for ela própria diferenciável em relação ao ponto base q ∈Ui ∩U j.

As exigências de ausência de descontinuidades e suavidade nas transições forçam G

a portar uma estrutura que compatibilize operações de grupo com variação suave. Concretamente,

G deve ser uma variedade diferenciável onde multiplicação e inversão são aplicações suaves

(C∞), o que por definição o constitui um grupo de Lie6, veja (Gilmore, 2006). Esta estrutura

é a única que garante que as ações de G nas fibras preservem simultaneamente continuidade,

diferenciabilidade e as propriedades algébricas necessárias para a consistência global de E.

Em livros como (Nakahara, 2018) definem o fibrado vetorial é definido como o conjunto

(E,B,π,F,G).

6 Uma das principais características de um grupo ded lie é que o mesmo constitui um manifold, veja (Gilmore,
2006, Cap. 2)
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Figura 9 – Representação de um fibrado vetorial e funções de transição

Fonte: Elaborado pelo autor (2025).
Legenda: Representação de um fibrado vetorial com fibras F ∼= R3 ao longo de uma base. As fibras
estão representadas como hastes verticais formando uma "escova". A função de transição "traduz"a
representação da fibra entre diferentes abertos U num ponto p.

Em livros como (Nakahara, 2018) definem o fibrado vetorial é definido como o

conjunto (E,B,π,F,G).

O grupo estrutural é de grande importância para as análises geométricas do espaço E,

ele retem informações geométricas sobre o nosso espaço, como as possíveis curvaturas e torções

nas fibras de E. Um exemplo clássico que evidência isso é o dos fibrado (E,B = S1,π,F =R,G),

com G = {I},{I,−I}, representando na Figura 8 para dois G diferentes. Para mais detalhes veja

(Nash; Sen, 1988, Cap. 7).
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Figura 10 – Diferença entre cilindro e fita de Möbius e o papel do grupo estrutural

Fonte: Elaborado pelo autor (2025).
Legenda: Imagem ilustrativa da diferença entre um cilindro e uma fita de Möbius. A
imagem ilustra como o grupo estrutural está relacionado com a torção do espaço, as
transformações gi j podem gerar torções e curvaturas no fibrado. A fita de Möbius da
imagem é apenas ilustrativa, uma vez que a fita da imagem possui uma torção suave.

De maneira geral, em um fibrado vetorial, o grupo de lie mais geral de automorfismos

num espaço complexo é o grupo geral linear complexo GL(n,C). Entretanto, como característica

adicional de que as transformações devem preservar o produto interno do espaço de Hilbert, ou

seja, as probabilidades, exigimos que G ⊂U(n), mais precisamente G ⊂U(dim(H )), uma vez

que n está associado ao numero de vetores que formam uma base em H . Um sistema de apenas

com posição

Perceba que a ação de gi j ∈ G sobre a fibra Hq corresponde a uma mudança de base

entre as trivializações locais. Especificamente, na interseção Ui ∩U j, a base {e j
β
} associada à

trivialização sobre U j é expressa em termos da base {ei
α} sobre Ui mediante:

e j
β
= ∑

α

ei
α [gi j]αβ , (4.9)

Onde [gi j]αβ denota os elementos de uma representação matricial de g ∈ G, podemos definir

uma ação à direita de G sobre o conjunto de bases (ou referenciais) de Hq:

Rg
(
{eα}

)
=
{

∑
β

eβ [g]βα

}
.

A escolha por uma ação à direita é apenas uma convenção que garante consistência com a

condição de cociclo para as funções de transição:

gik = gi j g jk em Ui ∩U j ∩Uk.
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Fixada uma base de referência {e∗} em Hq, obtém-se um isomorfismo entre elemen-

tos g ∈ G e bases de Hq via g 7→ Rg({e∗}). Consequentemente, para cada q ∈ M , o espaço das

bases de Hq é difeomorfo a G. A união disjunta
⊔

q Gq – onde Gq ∼= G – munida da projeção

π : P → M que associa cada g ∈ Gq a q, define um fibrado principal P sobre M . Este fibrado,

denominado fibrado de referenciais, codifica a liberdade de escolha de base em cada fibra Hq.De

certo modo esse fibrado é mais fundamental que nosso fibrado vetorial, no sentido que, um

fibrado diferente com os mesmos M e {gi j} dão origem ao mesmo fibrado principal.

A partir do nosso fibrado principal P com grupo estrutural G e da representação

natural ρ : G→Aut(H ) que descreve a ação unitária sobre a fibra típica H , podemos reconstruir

o fibrado vetorial associado usando

E = P×U(n) H := (P×H )/G , (4.10)

onde (p,ψ)∼ (pg,ρ(g−1)ψ). O mapeamento ρ é de grande importância, pois é responsável

por conectar os elementos de representação entre os dois fibrados. Assim, o fibrado principal

organiza geometricamente a liberdade de escolha de referenciais nas fibras Hq, enquanto o

fibrado vetorial associado mantém explicitamente a estrutura linear e a interpretação física dos

estados quânticos.

Definir uma base ortogonal {e(q)i } ao longo das fibras Hq do nosso fibrado vetorial

consiste em definir um ponto de G para cada q ∈ M em nosso fibrado principal. Explicitamente,

essa escolha pode ser dada por uma aplicação

s : U ⊂ M −→ P (4.11)

com π ◦ s = idU e exigimos que s seja suave para garantir que a escolha de referencial varie

de modo diferenciável com a configuração q — condição necessária para que quantidades

dependentes da base (como amplitudes locais) sejam funções diferenciáveis em q. Essa aplicação

s é precisamente o que chamamos de seção (local) do fibrado principal.

Analogamente, no fibrado vetorial associado, a seção s : U ⊂ M −→ H nos possibi-

lita, escolhido os referenciais, associar à cada ponto da base q um elemento de Hq, ou seja, fixar

as amplitudes de probabilidade c(q)i ∈ C dos elementos dessa base. Dessa maneira, localmente a

seção do fibrado vetorial nos permite, dada uma base, representar a função de onda localmente

como:

ψ(q) =
n

∑
i=1

ci(q)|e(q)i ⟩, ci(q) ∈ C, (4.12)
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4.3 Diferenciação no fibrado: conexões, invariância de calibre, curvatura

Para completar a descrição topológica do sistema de partículas idênticas, falta definir

sua evolução temporal. Essa questão está intrinsecamente ligada ao conceito de derivadas, mas

enfrentamos uma obstrução: nos pontos distintos p,q ∈M , os espaços Hp e Hq são desconexos.

Isso naturalmente exige um método para comparar vetores em espaços diferentes.

A ideia central é examinar como as representações de Hq se rotacionam ao percorrer-

mos uma trajetória na variedade base M . Assim, podemos compensar essas rotações induzidas

pela topologia não trivial do fibrado E. Como as relações entre as representações de Hq são

codificadas no fibrado principal P(E), essa construção deve ser realizada sobre ele.

O problema resume-se a compreender como os referenciais na fibra principal G

(denominado grupo de gauge) rotacionam sob diferenciação ao longo de M . A solução mais

direta é elevar a curva γ(t) ∈U ⊂ M a P(E) via uma seção s(x), gerando um mapeamento entre

as curvas e, consequentemente, entre os espaços tangentes através do pushforward:

ds : TxM → Ts(x)P. (4.13)

Isso permite decompor Ts(x)P em componentes que contribuem para variações na fibra Gs(x) e na

base M . As variações em M são físicas (alteram o estado do sistema), enquanto as em Gs(x)

correspondem a mudanças de referencial - que desejamos anular para comparações entre pontos

distintos:

TxM
Direção
em M

elevação
(via seção s)−−−−−−−→ Ts(x)P

Vetor em
P(E)

ω
(forma de conexão)−−−−−−−−−−→

︸ ︷︷ ︸
s∗ω(v)=ω◦ds(v)

v∈TxM

A ∈ g
variação

em g

(4.14)

Motivados por essa construção, buscamos separar TuP em dois subespaços:

– Vertical (VuP): contém variações ao longo da fibra G;

– Horizontal (HuP): contém variações ao longo da base M .

Assim, temos a decomposição:

TuP =VuP⊕HuP. (4.15)

O espaço vertical é definido por:

VuP = ker(dπu) = {X ∈ TuP | dπu(X) = 0}, (4.16)
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onde dπu : TuP → Tπ(u)M é o diferencial da projeção π : P → M .

Para X ∈ VuP, considere uma curva γ(t) em P com γ(0) = u e γ ′(0) = X . Como

dπu(X) = 0, temos π(γ(t)) = b ∈ M constante, logo γ(t) varia apenas na fibra Gb. Isso garante

VuP ⊆ TuGb
∼= TuG.

Variações direcionais em torno de u ∈ G podem ser mapeadas para a identidade

e ∈ G. Tais variações infinitesimais em TeG - munidas do colchete de Lie [·, ·] - formam a álgebra

de Lie g. A conexão crucial entre g e TeG vem da relação exponencial (Gilmore, 2006, Sec. 4.2):

exp(tK) ∈ G, K ∈ g, t ∈ R, (4.17)

que mapeia K a curvas em G partindo de e:

d
dt

∣∣∣
t=0

exp(tK) = K ∈ g∼= TeG. (4.18)

Elevando essa curva à fibra Gb com origem em u ∈ P(E) (π(u) = b):

t 7→ Rexp(tK)(u) = u · exp(tK), (4.19)

obtemos um vetor tangente K#
u ∈ TuG via derivação:

K#
u =

d
dt

∣∣∣
t=0

(u · exp(tK)) ∈VuP. (4.20)

Esse processo define o mapeamento:

K︸︷︷︸
g

exp−−→ exp(tK) ∈ G
Rexp(tK)(u)−−−−−−→ u · exp(tK) ∈ Gb

d
dt

∣∣
t=0−−−→ K#

u︸︷︷︸
∈VuP

(4.21)

Essa relação nos dá em cada vetor direcional, em um ponto b ∈ M da base, um diferencial que

mede o quanto nosso referencia rotaciona devido a topologia não trivial do sistema.

Para capturar as variações verticais ao diferenciar e integrar ao longo da base,

introduzimos a forma de conexão:

ω ∈ T ∗P⊗g, (4.22)

uma 1-forma em P (T ∗P é o espaço cotangente em P) com valores em g7. Ela nos dá variação

infinitesimal
7 Variações infinitesimais em G são elementos de g∼= TeG. Para identificar TgG com TeG, usa-se o diferencial da

translação (e.g., (Rg−1)∗ : TgG → TeG). Assim, variações em torno de g correspondem a elementos de g, gerados
por {Ti} com [·, ·].
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Aplicando ω a um vetor v ∈ TuP, obtemos:

ω(v) = ∑
i

ω
i(v)Ti ∈ g, (4.23)

onde ω i(v) são escalares. Intuitivamente, ω extrai as componentes infinitesimais da transforma-

ção de gauge associada a v.

Para garantir consistência física, a conexão global ω no fibrado principal P deve

satisfazer dois axiomas fundamentais que respeitem a estrutura de gauge. Primeiramente, ω

precisa identificar corretamente variações puramente verticais (ao longo da fibra G), o que

estabelecemos pelo axioma de normalização vertical:

ω(K#
u ) = K, ∀K ∈ g. (4.24)

Este axioma garante que vetores verticais - gerados pela ação do grupo G através do mapeamento

K 7→ K#
u - sejam precisamente quantificados por ω como elementos da álgebra de Lie g.

Em segundo lugar, a conexão deve comportar-se consistentemente sob mudanças de

referencial (transformações de gauge). Isto é capturado pelo axioma de equivariância:

R∗
gω = Adg−1ω, (4.25)

onde Adg−1 é a ação adjunta do grupo G sobre sua álgebra de Lie g, definida explicitamente

como Adg−1(K) = g−1Kg para todo K ∈ g. Intuitivamente, quando mudamos nosso sistema de

referência via g ∈ G, os elementos da álgebra de Lie (que geram transformações infinitesimais)

conjugam-se por g−1. Esta operação preserva a estrutura algébrica e reflete como quantidades

físicas devem transformar-se coerentemente.

Embora ω viva no espaço abstrato P, objetos físicos (como funções de onda ou

campos quânticos) são definidos na variedade base M . Para conectar a teoria à física, projetamos

ω em M através de uma seção local s : U ⊂ M → P, obtendo a conexão local (ou forma de

gauge):

A ≡ s∗ω. (4.26)

A é uma 1-forma em M com valores em g que age sobre vetores tangentes v ∈ TxM como:

A(v) = ω(ds(v)) ∈ g, (4.27)

onde ds(v) é o vetor em Ts(x)P obtido ao elevarmos v via s. Fisicamente, A(v) mede a componente

de gauge "misturada"ao deslocamento v na base M .
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Vemos em 4.26 que A depende explicitamente da seção local (referencial) escolhida,

como exigimos que nossa conexão ω seja única, precisamos exigir que A se transforme coe-

rentemente quando mudamos nossa escolha de seção local s 7→ s′, tomando g : U ⊂ M → G as

seções se relacionam a partir de:

s′ = Rg(s) = s ·g. (4.28)

Para relacionar A e A′ podemos tomar A′ = (s′)∗ω = ω(ds′(v)) e expandir ds′(v) via regra da

cadeia:

ds′(v) = d(Rg ◦ s)(v) = dRg(ds(v))+(dg(v))#
s(x), (4.29)

onde (dg(v))# é o vetor vertical gerado por dg(v) ∈ Tg(x)G. Aplicando ω e os axiomas:

A′(v) = ω(dRg(ds(v)))︸ ︷︷ ︸
Adg−1(A(v))

+ω((dg(v))#)︸ ︷︷ ︸
dg(v)

. (4.30)

O termo dg(v) é um vetor tangente a G. Para associá-lo a g, usamos a operação:

g−1dg(v)≡ g−1 · ∂g
∂v

, (4.31)

que representa a derivada logarítmica de g na direção v. Geometricamente, ela transporta a

variação infinitesimal de g de volta ao elemento neutro via multiplicação por g−1, ou seja

Tg(x)G 7→ TeG. Combinando os resultados:

A′(v) = g−1A(v)g+g−1dg(v). (4.32)

Esta construção estabelece as bases para derivadas que sejam invariantes sob transformação de

gauge.

4.3.1 Derivada covariante

Podemos agora garantir uma diferenciação que seja invariante de calibre. Para isso

começamos, assim como em (Nash; Sen, 1988, 7.12), definindo uma curva γ(t) sobre M a qual

é escrita nas coordenadas locais do manifold como γ(t) = xµ(t), considerando a representação

local, podemos elevar essa curva através da seção de modo que obtemos

γ̃(t) = (xµ(t),g(t)) γ̃(t) ∈ P (4.33)
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de modo que seu ponto tangente que pertence a TxP é descrito como

d
dt

= ẋµ(t)
∂

∂xµ
+ ġ(t)

∂

∂g
(4.34)

O nosso objetivo é impor que essa derivada fique restrita ao subespaço horizontal

HxP, de forma a garantir a invariância de calibre. Para isso, exigimos que o vetor tangente d/dt

seja proporcional ao vetor de transporte paralelo, de forma que:

d
dt

= ẋµ(t)
∂

∂xµ
+ ġ(t)

∂

∂g
= β

µ

(
∂

∂xµ
−Ai

µ

Ti

2i
g

∂

∂g

)
(4.35)

onde o fator (2i)−1 onde o fator é a normalização necessária para "fechar"a álgebra de Lie,

garantindo sua integridade assim como o i faz na álgebra do momento angular ou na incerteza

de Heisenberg. O valor negativo garante a "rotação"contrária e o vetor dentro do parenteses

definimos como o vetor base principal, de forma que β µ = xµ(t), e automaticamente:

ġ(t) =−β
µAi

µ

Ti

2i
∂

∂g
=−xµAi

µ

Ti

2i
g (4.36)

Essa associação de ġ(t) com A é justamente o que restringe o movimento a ser invariante em G.

Perceba que 4.36 é uma equação diferencial em g de modo que

ġ(t)+ xµAk
µ

Tk

2i
g = 0 (4.37)

Essa equação é chamada e equação do transporte paralelo e apenas transformações g(t) as quais

seguem 4.37 transportam paralelamente nosso vetor. Dessa maneira podemos definir nossa

derivada covariante através do vetor de base de HxP como sendo o vetor β µDµ de 4.36:

Dµ =
∂

∂xµ
−Ak

µ

Tk

2i
g

∂

∂g
(4.38)

O que é justamente nossa derivada covariante.

4.3.2 Curvatura

O fato da derivada covariante ser uma resposta de correção à curvatura do sistema,

podemos entender a falha dos deslocamentos tangentes em comutar pelo operador de lie [Dµ ,Dυ ],

expandindo essa relação temos utilizando 4.38, obtemos:

[Dµ ,Dυ ] =
[ ∂µ︷︸︸︷

∂

∂xµ
−Ak

µ

Tk

2i
g

∂

∂g
,

∂υ︷︸︸︷
∂

∂xυ
−Am

υ

Tm

2i
g

∂

∂g

]
=

=−∂µAm
υ

Tm

2i
g

∂

∂g
+∂υAk

µ

Tk

2i
g

∂

∂g
+

+Ak
µAm

υ

(Tk

2i
g

∂

∂g

)(Tm

2i
g

∂

∂g

)
−Am

υ Ak
µ

(Tm

2i
g

∂

∂g

)(Tk

2i
g

∂

∂g

)
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com um pouco de álgebra e com relação [Ra,Rb] =− fabcRc, podemos mostrar(Nash; Sen, 1988,

p. 180) que a contribuição [Dµ ,Dυ ] =−Fa
µυRa é dada por:

Fa
µυ = ∂µAa

υ −∂υAa
µ + fabcAb

µAc
υ (4.39)

o que dá origem a uma 2-forma do tipo

F = dA+A∧A (4.40)

O qual é conhecido como tensor de curvatura e desempenha um papel fundamental na física,

sendo associado ao campo de força, como no caso do tensor eletromagnético.

4.3.3 Holonomia

Considere a evolução de um elemento estado quântico dada uma curva γ(t) : [0,1]→

M , queremos entender o efeito de transportar paralelamente uma representação g ∈ G ao longo

da evolução de γ(t). Para que g seja transportado paralelamente ele tem que ser uma solução da

equação de transporte paralelo 4.37, de forma que:

ġ =−γ̇Ak
µ

Tk

2i
g, g(0) = I (4.41)

A solução dessa equação é dada por

gγ = P exp

(
−
∫ 1

0
Ak

µ(γ(t))
Tk

2i
γ̇

µ(t)dt

)

= I−
∫ 1

0
dt1 A(t1)+

∫ 1

0
dt1
∫ t1

0
dt2 A(t1)A(t2)+ · · ·

(4.42)

Como os elementos de [A(ti),A(t j)] podem não comutar entre si, a exponencial

precisa ter sua expansão temporal ordenada. Quando gγ é um circulo fechado γ(0) = γ(1),

chamamos gγ de holonomia. Geometricamente a holonomia é um jeito de comparar como um

vetor volta ao mesmo ponto ao ser transportado paralelamente no espaço, como exemplificado

na Figura 11
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Figura 11 – Transporte paralelo e holonomia em uma superfície curva

Fonte: Elaborado pelo autor (2025).
Legenda: Um vetor sendo paralelamente transportado numa superfície curva de uma
esfera. Ao ser transportado em um loop, o vetor volta rotacionado por um ângulo θ .

Veja que se tomarmos Ã → h−1Ah+ h−1dh, nosso transportador paralelo mudar

como algo G = h−1g, se modo que

Ġ =
d
dt
(h−1g)+h−1ġ (4.43)

vemos que

d
dt
(h−1g) = 0 =⇒ d

dt
(h−1)g+h−1ġ =−h−1ḣh−1 +h−1ġ =⇒ d

dt
(h−1) =−h−1ḣh−1 (4.44)

de modo que aplicando em 4.37 obtemos:

Ġ =−(h−1Ah+h−1ḣ)G =⇒ Ġ = ÃG (4.45)

aplicando as condições de contorno G(0) = I vemos que:

G(0) = h−1(0)g(0) = h−1(0) (4.46)

O que não é garantido ser h−1(0) = I, adicionando a constante h(0) a transformação G =

h(0)−1gh(0) não altera as análises anteriores e garante que G(0) = h(0)−1h(0) = I. Isso significa
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que A → Ã nos dá gγ(t)→ h−1(t)gγ(t)h(0) de modo que:

g̃γ = h−1(t)P exp

(
−
∫ 1

0
Ak

µ(γ(t))
Tk

2i
γ̇

µ(t)dt

)
h(0) (4.47)

Isso mostra que gγ não é invariante de calibre. Entretanto, observe que se γ(0) = γ(1), então

temos que

g̃γ = h−1(0)gγh(0) (4.48)

essa relação é conhecida como relação de equivariância e garante que gγ se transforme por

conjugação em nosso fibrado vetorial. Apesar dessa relação não garantir invariância de calibre,

podemos utilizar a propriedade Tr(ABC) = Tr(BCA) = Tr(CAB) e unitariedade de h para obter

um operador

Tr(g̃γ) = Tr(gγhh−1) = Tr(g) (4.49)

o qual é um invariante de calibre. Como esse valor não muda independente do nosso referencial,

esperamos que o mesmo seja um observável físico. Esse observável é conhecido como loop de

Wilson:

wγ = Tr

[
P exp

(
−
∮

γ

Ak
µ(γ(t))

Tk

2i

dxµ︷ ︸︸ ︷
γ̇

µ(t)dt︸ ︷︷ ︸
A

)]
= Tr

[
P exp

(
−
∮

γ

A

)]
(4.50)

Quando g ∈ U(1) a exponencial ordenada Pexp não é importante uma vez que os elementos

comutam e podemos tomar Pexp → exp, o que nos dá uma fase eiθ . Quando g ∈U(n) isso não

é garantido.

Veja que, quando a curva fechada γ é a fronteira de uma superfície orientável S em

nosso manifold (ou seja, γ = ∂S), podemos estabelecer uma relação fundamental conhecida

como teorema de Stokes generalizado para conexões não abelianas. Este teorema relaciona a

holonomia ao longo de γ com a curvatura sobre S:

P exp

(
−
∮

γ

A

)
= P exp

(
−
∫

S
U(s)−1FU(s)dS

)
(4.51)

onde F é a curvatura associada à conexão A e U(s) é o transporte paralelo ao longo da superfície.

Uma demonstração mais detalhada pode ser encontrada em (Nakahara, 2018, cap. 10.3).
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4.4 Permutação de partículas idênticas

Até aqui, mostramos que existe uma fase geométrica observável, que depende da

geometria do fibrado. No entanto, se considerarmos partículas sem graus de liberdade internos, é

natural esperar que, em regiões livres de partículas, a curvatura seja nula, F = 0. Isso implica

que o lado direito de 4.51 deve ser a identidade, de modo que, para um caminho contrátil à um

ponto esperamos que

gγ = I.

Em contraste, quando outro caminho Γ circula uma partícula, esperamos obter um operador

observável gΓ ̸= I. Podemos dessa forma considerar a curva γ ◦Γ de modo que gγ◦Γ = gΓ. Essa

característica implica que a evolução paralela de um estado quântico não depende do caminho γ

e sim de sua classe de homotopia relacionada.

Isso é um aspecto crucial na descrição de anyons e de estatística convencional de

permutação em 3D, uma vez que a evolução unitária do sistema depende apenas das possíveis

permutações que podemos realizar em nosso espaço. Essa característica faz com que as fases

geométricas passem a ter um comportamento totalmente topológico o qual depende do grupo

fundamental π1(M ). Esse ponto torna explicita a relação entre a topologia de M ditada por

π1(M ) e as possíveis representações do grupo de estrutura do nosso sistema.

O efeito de transportar uma estado quântico paralelamente é dado em nosso fibrado

principal por gγ o qual seu traço é um observável Wγ associado. A representação física desses

operadores pode ser obtida facilmente através do mapeamento ρ : G → Aut(H ) discutido

anteriormente, o que nos deixa com

R = ρ(gγ) (4.52)

Wγ = ρ(wγ) (4.53)

como os possíveis valores de R possuem uma correspondência entre os elementos γ ∈ π1(M )

podemos ver essa operação como a representação do grupo fundamenta em nosso fibrado vetorial.

Para duas partículas idênticas em três dimensões π1

(
C (E 2

3 )
)
= Z2 e o que é exa-

tamente o esperado, temos duas representações unitárias de permutação em 3D. Para duas

partículas temos π1

(
C (E 2

2 )
)
= N o que nos permite infinitas representações. Enquanto a fase

específica que cada partícula ganha depende de propriedades intrínsecas delas, o fator que limita

as possíveis fases é puramente topológico.
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4.5 Dinâmica no fibrado

Para discutir as ideias de como a dinâmica é definida em nosso espaço quântico,

podemos começar com uma analise clássica sobre M . Nosso espaço de configurações contém

todos os possíveis estados que o nosso sistema pode se encontrar, quando estamos num ponto

q ∈ M e nosso sistema pode evoluir de maneira continua entre qualquer ponto vizinho. Quando

queremos descrever para onde nosso ponto deve ir, estamos pensando na dinâmica do sistema.

A pergunta então que surge naturalmente é: qual ponto devemos ir em cada mo-

mento?. Sabemos que classicamente a natureza escolhe um caminho, e para escolher esse

caminho ela deve decidir qual é o melhor passo a se dar em cada ponto. Se a natureza fosse uma

entidade, ela seria uma preguiçosa a qual caminha sobre M . Para cada passo dela, ela precisaria

olhar para todos os pontos que ela pode andar e escolher o menos cansativo.

Para definir qual passo será dado em M ela precisa ter um critério de quão cansativo

é andar para cada ponto. A função que avalia esses pontos é conhecida como ação S[γ(t)], e

o seu critério de avaliação é chamado de lagrangiana L . A curva γ menos cansativa é a que

minimiza S[γ(t)], esse principio é conhecido como principio da mínima ação.

A função lagrangiana é o que descreve a dinâmica de nosso sistema, uma vez que

ela é responsável por ranquear cada ponto. O modo como isso é feito depende apenas do dados

de M e de γ(t). Repare nas seguintes ações conhecidas

Slivre =−mc
∫ b

a
ds− q

c

∫ b

a
Aµdxµ (4.54)

SEM =− 1
4µ0c

∫
FµνFµνd4x (4.55)

Essas ações representam a da partícula livre no campo eletromagnético e a outra do

campo eletromagnético livre. Perceba que as ações em geral podem ser vistas como a resposta

de certas características à geometria do próprio espaço M . A energia cinética é uma análise do

elemento tangencial da curva γ(t), a contribuição do campo eletromagnético com uma partícula

carregada é uma análise em cima das rotações do espaço de calibre e o campo eletromagnético

livre depende da curvatura do espaço. O ponto é o modo como pesamos e definimos a evolução

do sistema é em cima da geometria e topologia do sistema.

As interações que descrevemos em nossa ação dependem normalmente de carac-

terísticas locais, como a noção de distancia entre duas configurações. Para termos desse tipo,
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exigimos que nosso sistema tenha uma métrica bem definida a qual dita a física das relações

locais. Entretanto, nada nos impede de analisar as características topológicas do nosso espaço, e

nos perguntar como ela pode refletir no "ranqueamento da natureza".

Seguindo essa analogia, podemos estudar a dinâmica da topologia de nosso espaço

bidimensional através de uma ação que reflita o caráter topológico do nosso espaço. Essa ação é

conhecida como ação de chern-simon:

SCS =
k

4π

∫
M

Tr
(

A∧dA+
2
3

A∧A∧A
)

(4.56)

Se lembrarmos que A assume valores na álgebra de lie, vemos que o termo A∧dA mede como

essa torção se enrosca ao redor de si mesma, criando estruturas helicoidais no espaço. E o termo

antissimétrico A∧A∧A mede a capacidade dessas torções do espaço comutarem, veja que esse

termo é nulo se os geradores T j de A = Aa
µT adxµ comutarem, isso só é possível se o nosso gague

for representado por um grupo U(1). O termo k é um numero inteiro, isso garante que garante

a invariância de calibre de SCS para grandes transformações de gauge. O traço Tr é necessário

porque A é matricial. Ele garante que o integrando seja um escalar, adequado para integração

sobre a variedade M. Além disso, o traço assegura que a ação seja invariante sob transformações

de gauge.

No regime clássico, a natureza parece fazer uma escolha precisa: dentre todas as

trajetórias possíveis em M , ela seleciona aquela que extremiza a ação S[γ]. Essa trajetória única

reflete uma dinâmica determinística, onde a geometria local (métrica, conexões) e a topologia

global (classes características) ditam o caminho "menos cansativo".

Quanticamente, entretanto, a descrição física sofre uma transformação radical: todas

as trajetórias possíveis coexistem em sobreposição coerente. Nosso problema não se reduz mais a

encontrar um único caminho privilegiado, mas sim a somar democraticamente todas as histórias

possíveis, respeitando a geometria e a topologia do espaço de configurações.

Do ponto de vista geométrico, essa passagem possui uma sutileza essencial: embora

em cada carta Ui ⊂ M seja possível trivializar o fibrado, construir espaços de Hilbert locais

HUi e definir superposições de estados, nada garante, a priori, que essas descrições locais se

costurem em uma função de onda global. Em outras palavras, ainda não dispomos de uma

seção ψ : M → H bem definida que associe, de maneira consistente, cada ponto do espaço

de configurações a um estado quântico. A tarefa de promover essa descrição local a uma

representação global — compatível com as transições de carta e com a estrutura topológica do
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fibrado — constitui justamente o problema central da quantização em espaços com topologia

não trivial.

A formulação por integral de caminho de Feynman resolve este impasse através de

uma síntese relacional. Em lugar de buscar uma função de onda global, ela define amplitudes de

transição via soma histórica ponderada

⟨q f | qi⟩ =
∫

γ(T )=q f

γ(0)=qi

Dγ e
i
h̄ S[γ].

Nesta formulação, cada trajetória γ não é apenas uma curva no espaço de configurações: ela

também determina um transporte paralelo ao longo do fibrado, que relaciona as fibras (espaços

de Hilbert locais) nas cartas por onde γ passa. Em particular, ao atravessar uma interseção de

cartas Uα ∩Uβ as descrições locais estão relacionadas por uma transformação de calibre gαβ , e

o transporte paralelo ao longo de γ é representado pelo operador de holonomia

H olγ(A) = P exp
(
−
∫

γ

A
)
,

que atua como um mapa linear entre a fibra em qi e a fibra em q f . Assim, uma expressão mais

explícita da amplitude, que evidencia a ação da conexão sobre os estados locais |ψi⟩ ∈ Hqi e

|ψ f ⟩ ∈ Hq f , é

⟨ψ f ,q f | ψi,qi⟩=
∫

γ(T )=q f

γ(0)=qi

Dγ
〈
ψ f
∣∣P exp

(
−
∫

γ

A
)

e
i
h̄ S[γ] ∣∣ψi

〉
.

Dessa forma, cada trajetória γ fornece simultaneamente (i) a fase dinâmica eiS[γ]/h̄ que pesa a

contribuição clássica da trajetória e (ii) o operador de transporte paralelo P exp(−
∫

γ
A) que

“cola” as descrições locais das fibras ao longo do caminho. Quando γ cruza diferentes cartas, as

transformações de calibre locais aparecem apenas como conjugação do transportador paralelo,

e a integral funcional soma essas contribuições de maneira coerente — isto é, a amplitude

final é independente da escolha de trivialização local, desde que as regras de transição sejam

respeitadas.
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5 O EFEITO AHARONOV–BOHM

O exemplo mais simples de fases topológicas é o efeito Aharonov–Bohm. Embora

não compartilhe a mesma origem física dos anyons, este fenômeno ilustra claramente como

holonomias em fibrados principais geram fases geométricas observáveis, decorrentes da topologia

não trivial do espaço e da invariância de calibre.

Considere uma partícula carregada confinada a um plano R2. Um solenoide infini-

tamente longo, perpendicular ao plano e localizado na origem, confina um campo magnético

B⃗ ̸= 0 em seu interior, enquanto na região acessível à partícula temos B⃗ = 0 (Fig. 12).

Figura 12 – Efeito Aharonov–Bohm e o potencial vetor

Fonte: Elaborado pelo autor (2025).
Legenda: Efeito Aharonov–Bohm. Um elétron move-se em um plano com solenoide
na origem confinando campo magnético B⃗. Na região acessível, B⃗ = 0 mas ∇× A⃗ ̸= 0.

A invariância de calibre na eletrodinâmica implica que o acoplamento mínimo

substitui o momento canônico pelo momento cinético generalizado:

p⃗ −→ π⃗ = p⃗−qA⃗,

correspondente à derivada covariante na equação de Schrödinger:

∇ −→ D = ∇− i
q
h̄

A⃗.

O Hamiltoniano assume então a forma:

H =
1

2m

(
p⃗−qA⃗

)2
.
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Para um caminho fechado γ envolvendo o solenoide, a função de onda adquire uma

fase de holonomia:

gγ = exp
(
−i

q
h̄

∮
γ

A⃗ · d⃗l
)

(5.1)

A curvatura da conexão U(1) é dada pela 2-forma F = dA, correspondente ao tensor campo

eletromagnético. Como F = dA é uma forma exata, temos dF = 0 (fechada). Pelo teorema de

Stokes:∮
γ

A⃗ · d⃗l =
∫∫

S
B⃗ ·dS⃗ = ΦB,

onde S é qualquer superfície com ∂S = γ . A independência topológica manifesta-se na equiva-

lência:∮
γ1

A⃗ · d⃗l =
∮

γ2

A⃗ · d⃗l (5.2)

para caminhos γ1,γ2 homotopicamente equivalentes em R2 \{0}. A fase resultante:

gγ = exp
(
−i

q
h̄

ΦB

)
é um invariante de calibre (loop de Wilson para G =U(1)).

Dessa forma esperamos que nossa função de onda se transforme como

|ψ ′⟩= exp
(
−i

q
h̄

ΦB

)
|ψ⟩, (5.3)

garantindo uma fase que depende da carga de teste q e do fluxo magnético B no solenoide.

Apesar do efeito Aharonov-Bohm ter origem distinta da dos anyons - sendo induzido

por um fluxo magnético externo em contraste com a topologia intrínseca do espaço de configura-

ção de partículas idênticas - ele revela três características fundamentais que antecipam aspectos

essenciais do processo de permutação entre anyons:

1. Topologicidade da fase: A fase adquirida pela função de onda é puramente topológica,

dependendo exclusivamente da classe de homotopia do caminho percorrido. Esta indepen-

dência de deformações contínuas do caminho (desde que não cruze o solenoide) decorre

diretamente da curvatura nula (F = dA = 0) na região acessível e da multiconectividade

do espaço R2 \{0}.

2. Não-trivialidade de conexões planas: Mesmo na ausência local de campos físicos (B⃗= 0),

a conexão Aµ pode induzir holonomias não triviais. Esta aparente contradição resolve-se

pela natureza global da topologia: o fluxo magnético confinado atua como obstáculo

topológico, tornando o grupo fundamental π1(R2 \{0})∼= Z não trivial.
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3. Não-localidade quântica: A fase resulta de uma interação não-local, sendo determinada

inteiramente pelo fluxo magnético total enlaçado, sem qualquer mediação de campos locais

mensuráveis. Esta ação à distância manifesta a natureza da geometria do fibrado principal.

Estas propriedades estão obviamente iterconectadas e prefiguram profundamente o

comportamento de anyons, onde a permutação de partículas gera fases topológicas oriundas da

estrutura não trivial do espaço de configuração.
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6 ANYONS

Nos capítulos anteriores, estabelecemos como a topologia do espaço de configurações

em sistemas bidimensionais dá origem a uma rica estrutura geométrica, descrita por fibrados

onde o transporte paralelo de estados quânticos gera fases observáveis. Agora, exploraremos as

consequências físicas diretas dessa estrutura: as quasipartículas conhecidas como anyons.

Anyons são excitações localizadas, de baixa energia, cujas propriedades são intrin-

secamente ligadas à dimensionalidade do sistema em que habitam. A sua descrição teórica

mais eficaz é realizada por meio de uma teoria de calibre puramente topológica, a teoria de

Chern-Simons1. Para que as propriedades topológicas dominem a física, duas condições são

essenciais. Primeiro, a existência de um gap de energia (∆E) que separa o estado fundamental

degenerado do primeiro estado excitado. Segundo, que a evolução do sistema seja adiabática, ou

seja, lenta o suficiente para não fornecer a energia necessária para cruzar esse gap.

Juntas, essas exigências garantem que o sistema permaneça confinado ao subespaço

do estado fundamental, onde a informação é protegida topologicamente. Embora as propriedades

topológicas existam independentemente da escala de energia, grandes perturbações podem

superar o gap e fazer com que interações locais predominem.

Sob as condições de proteção topológica, a dinâmica governada pela ação de Chern-

Simons revela que as excitações do sistema possuem cargas topológicas conservadas e seguem

regras de permutação e combinação muito particulares. A quantização dessa teoria leva natu-

ralmente a uma estrutura matemática poderosa conhecida como Categoria Tensorial Modular

(MTC), que organiza de forma consistente o comportamento dessas partículas. É nesse contexto

que emergem as teorias de calibre do tipo SU(N)k, onde o nível k é um parâmetro inteiro que

dita as regras específicas de interação.

Dentre as diversas teorias de calibre do tipo SU(N)k, duas classes de anyons merecem

destaque especial devido à sua relevância em computação quântica topológica: os anyons de

Ising e os anyons de Fibonacci.

Os anyons de Ising, descritos pela teoria de Chern-Simons SU(2)2, são fundamentais

para a construção de qubits topológicos. Eles são esperados em sistemas como o estado ν = 5/2

do Efeito Hall Quântico Fracionário (estados do tipo Moore-Read)(Halász, 2023), supercondu-

tores p-wave (como o Sr2RuO4)(Kallin, 2012) e em junções de nanofios semicondutores com
1 Existem teorias as quais abordam a possíbildiade de anyons que não são abrangidos pela teoria Chern-Simons.

Entratando, não existe evidências fortes o suficiente da existência experimental de anyons fora dessa teoria.
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supercondutividade induzida. Estes anyons possuem uma estatística não-abeliana onde suas

operações de trança são densas no grupo de Clifford, o qual não é universal para computação

quântica. Apesar de não serem universais apenas com tranças, existem diferentes abordagens

que permitem a universalização das operações, como a adição de uma porta não-Clifford obtida

via destilação de estados mágicos(Nayak et al., 2008; Bravyi; Kitaev, 2005). No entanto, um

trabalho recente mostra que, ao considerar um Hamiltoniano efetivo que realize uma extensão

não-semissimples do modelo de Ising, as operações de trança por si só podem ser suficientes

para a computação quântica universal(Iulianelli et al., 2025).

Já os anyons de Fibonacci, que emergem da teoria SU(2)3, representam uma plata-

forma ainda mais rica para a computação quântica universal. Eles são previstos em sistemas

de Efeito Hall Quântico Fracionário com fator de preenchimento ν = 12/5 (estados do tipo

Read-Rezayi)(Mong et al., 2017) e em certos líquidos de spin quânticos. A sua estatística de

trança é capaz de gerar qualquer operação unitária, pois suas representações do grupo de trança

têm imagem densa em grupos unitários, tornando-os candidatos ideais para a construção de um

computador quântico tolerante a falhas(Freedman et al., 2002).

Este arcabouço teórico nos permite descrever as duas operações fundamentais que

caracterizam um sistema anyônico. A primeira é a fusão, que dita os possíveis resultados da

combinação de duas ou mais quasipartículas. A segunda é a trança (braiding), que descreve

como os estados quânticos evoluem quando as posições das partículas são permutadas. Essas

operações são precisamente codificadas por um conjunto de dados algébricos: as matrizes F

governam a consistência da fusão, enquanto as matrizes R definem as transformações unitárias

resultantes da trança.

Neste capítulo, nosso foco será detalhar esse formalismo. Analisaremos as regras de

fusão, os espaços de Hilbert resultantes e como as matrizes F e R emergem como as ferramentas

essenciais para descrever a física dos anyons, preparando o caminho para sua aplicação em

informação quântica.

6.1 Fusão

Na teoria de anyons, a fusão representa um processo topológico fundamental que

emerge da interação entre geometria e quantização topológica. Como previamente estabelecido,

anyons são excitações quasipartículas descritas por holonomias não-Abelianas e loops de Wilson

(Wγ = P exp
∮

γ
A), que codificam cargas topológicas através da conexão de gauge Aµ .
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Em sistemas com ação de Chern-Simons

SCS =
k

4π

∫
M

tr
(

A∧dA+
2
3

A∧A∧A
)
,

a quantização impõe restrições globais cruciais: sob condições de contorno periódicas em

superfícies fechadas, o loop de Wilson ao longo de ciclos não contraíveis deve satisfazer Wγ = I,

refletindo a neutralidade topológica global do sistema. Esta condição assegura que a soma

algébrica das cargas topológicas seja trivial, embora a conservação local de carga não se aplique.

A fusão de anyons é definida como a aproximação espacial de duas excitações a

e b a uma distância crítica ξ (comprimento de correlação topológica), onde suas identidades

individuais tornam-se indistinguíveis sob operadores de loop de Wilson. Geometricamente,

quando a separação d entre os anyons satisfaz d ≪ ξ , qualquer curva γ englobando ambos os

pontos não pode acessar suas contribuições individuais, pois as flutuações quânticas do campo

de gauge "misturam"suas propriedades locais.

Contudo, este processo não corresponde a uma simples adição de cargas, mas sim a

uma reconfiguração topológica do espaço de estados. A ausência de conservação local de carga

manifesta-se no fato de que o resultado da fusão é governado por regras combinatórias:

a×b = ∑
i

Nc
abc (6.1)

onde os coeficientes Nc
ab denotam as multiplicidades dos possíveis resultados c, determinados

pela teoria de representação do grupo de gauge com nível k.

O mecanismo subjacente à fusão reside na contração do espaço de configurações

efetivo: ao aproximar a e b abaixo de ξ , o grupo de trança Bn (que descreve o entrelaçamento

de n partículas) reduz-se a Bn−1, e o plano perfurado R2 \{a,b} é topologicamente equivalente

a R2 \ {c}. Fisicamente, observáveis globais (como fases de Berry ou operadores de loop)

tornam-se insensíveis aos detalhes locais, respondendo apenas à carga combinada c.

Esta transição, embora desencadeada por uma operação geométrica, é essencialmente

um fenômeno de não-localidade quântica, onde a escala ξ atua como um limite de resolução

topológica.

Quando especificamos um tipo de sistema anyonico, estamos estabelecendo suas re-

gras de fusões a qual envolve todas as excitações intermediarias possíveis com cargas topológicas

distintas. Se um sistema possui um conjunto de excitações {a,b,c, . . .} escrevemos a relação de

fusão pela equação 6.1. Quando Nc
ab > 1, significa que existem cargas localmente idênticas que

se transformam globalmente de forma distinta, dessa forma os símbolos {a,b,c, . . .} determinam
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a distinguibilidade local entre as partículas e os Nc
ab determinam os graus de liberdade globais de

cada uma dessas partículas. Em nosso caso iremos nos referir apenas a sistemas onde Nc
ab ≤ 1.

Um sistema de anyons simples que exemplifica esse ponto é o {τ,1} o qual é

determinado pelo conjunto essencial de coeficientes de fusão:

N1
ττ = 1, Nτ

ττ = 1, Nτ
τ1 = 1, (6.2)

onde a comutatividade da fusão (a× b = b× a) elimina repetições redundantes. Os anyons

descritos por esse sistema são chamados de Anyons de Fibonacci.

Em nosso exemplo, a multiplicidade N1
ττ = 1 indica que dois anyons τ fundem-se

no vácuo 1 através de um único canal topológico, assim como Nτ
ττ = 1 mostra que os mesmos

anyons podem fundir-se em um único τ com multiplicidade unitária. Finalmente, Nτ
τ1 = 1

estabelece que 1 é elemento neutro: τ fundido com 1 resulta no próprio τ .

Uma representação sintética destas regras é dada por:

τ × τ → τ +1, τ ×1 → τ, (6.3)

onde o símbolo "+"denota superposição de resultados distintos, ambos com multiplicidade 1.

Um modo de construir uma base num espaço que seja gerado através dessa regra é imaginar

nossos vetores de base como um histórico de fusões o qual vai da esquerda para a direita, como

mostrado na Figura 13. Como podemos ver na figura, um conjunto de 4 anyons de Fibonacci

onde a carga total fixada é o vácuo, os possíveis caminhos em que as partículas podem se fundir

são quatro: {|τ,τ,1,1⟩, |τ,1,τ,1⟩, |1,τ,1,1⟩, |1,τ,τ,1⟩}
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Figura 13 – Fusão de cinco anyons de Fibonacci e estados resultantes

Fonte: Elaborado pelo autor (2025).
Legenda: Cinco anyons de Fibonacci se fundem um a um da esquerda para a
direita. A carga topológica total fixada no exemplo é 1; veja que a penúltima fusão
obrigatoriamente precisa ser τ , uma vez que τ ×1 ↛ τ . As possíveis evoluções do
sistema são {|τ,τ,τ,1⟩, |τ,1,τ,1⟩, |1,τ,τ,1⟩}.

Veja que o caráter recurssivo dos anyons de fibonacci faz com que a base de estados

que representam as possíveis evoluções do sistema cresça na proporção aurea:

N = 2 : |τ,1⟩

N = 3 : |τ,τ,1⟩

N = 4 : |τ,1,τ,1⟩, |τ,τ,τ,1⟩

N = 5 : |τ,1,1,τ,1⟩, |τ,1,τ,τ,1⟩, |τ,τ,τ,τ,1⟩

N = 6 : |τ,1,1,1,τ,1⟩, |τ,1,1,τ,τ,1⟩, |τ,1,τ,τ,τ,1⟩, |τ,τ,τ,1,τ,1⟩, |τ,τ,τ,τ,τ,1⟩

Um outro conjunto de anyons conhecido são os anyons de Ising. Eles são definidos

por um conjunto de três cargas topológicas: o vácuo (1), um férmion (ψ) e uma partícula não

abeliana (σ ). As regras de fusão que governam suas interações são:

ψ ×ψ = 1 (6.4)

ψ ×σ = σ (6.5)

σ ×σ = 1+ψ (6.6)

σ ×1 = σ (6.7)

ψ ×1 = ψ (6.8)

A regra mais notável é a da fusão de dois anyons σ , que pode resultar tanto no vácuo (1) quanto

em um férmion (ψ). É essa multiplicidade de resultados que confere o caráter não abeliano ao
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sistema. Veja que considerando 1 como nossa fusão final obtemos para esse caso

N = 2 : |1,1⟩

N = 3 : (nenhum estado com fusão total = 1)

N = 4 : |1, σ , 1, 1⟩, |ψ, σ , 1, 1⟩

N = 5 : (nenhum estado com fusão total = 1)

N = 6 : |1, σ , 1, σ , 1, 1⟩, |1, σ , ψ, σ , 1, 1⟩, |ψ, σ , 1, σ , 1, 1⟩, |ψ, σ , ψ, σ , 1, 1⟩

A primeira coisa que percebemos ao comparar os dois tipos de anyons diferentes é que a dimensão

do espaço de hillbert gerado por esses históricos é diferente. Os anyons de Fibonacci parecem

crescer numa proporção maior que os anyons de Ising.

6.1.1 Dimensão quântica

A característica que determina o tamanho do espaço de Hilbert gerado pelas ope-

rações de fusão é conhecida como dimensão quântica (da) de uma partícula topológica a. Ela

quantifica o crescimento assintótico do número de estados quânticos distinguíveis quando o

número de partículas do tipo a a aumenta, sob restrições topológicas. A dimensão quântica é um

número real algébrico ≥ 1 e pode ser calculada como o autovalor dominante (maior autovalor

real) da matriz de fusão associada à partícula.

Quando dizemos matriz de fusão associada a uma carga fixa a, denotamos por (Na)

a matriz cujas entradas são

(Na)
c
b = Nc

ab, (6.9)

onde a linha indica a carga b que está sendo fundida com a e a coluna indica o resultado c.

Para os anyons de Fibonacci (ordem dos rótulos: {1,τ}) obtemos as matrizes

N1 =

1 τ

1 1 0

τ 0 1

Nτ =

1 τ

1 0 1

τ 1 1

(6.10)

Para os anyons de Ising (ordem dos rótulos: {1,ψ,σ}) as matrizes são

N1 =

1 ψ σ

1 1 0 0

ψ 0 1 0

σ 0 0 1

, Nψ =

1 ψ σ

1 0 1 0

ψ 1 0 0

σ 0 0 1

, Nσ =

1 ψ σ

1 0 0 1

ψ 0 0 1

σ 1 1 0

. (6.11)
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A dimensão quântica da de uma partícula a é o autovalor dominante (por Per-

ron–Frobenius) da matriz Na. Para Fibonacci, os autovalores de Nτ vêm da equação característica

det(Nτ −λ I) =

∣∣∣∣∣∣
−λ 1

1 1−λ

∣∣∣∣∣∣= λ
2 −λ −1 = 0,

cuja raiz positiva é a razão áurea

dτ =
1+

√
5

2
≈ 1.618033989. (6.12)

Para Ising, os autovalores de Nσ são {
√

2, 0,−
√

2}, portanto

dσ =
√

2 ≈ 1.414213562. (6.13)

Esses da controlam o crescimento assintótico do número de estados quando o número

de partículas do tipo a aumenta: o número de estados cresce como ∼ dN
a , veja em (Simon, 2023,

Cap. 8).

6.1.2 Espaço de fusão V

A possibilidade de múltiplos resultados ao fundir duas partículas é o que confere

aos sistemas de anyons a característica de superposição de caminhos de fusão. Cada fusão

intermediária pode ser imaginada como um ramo numa árvore: escolher uma carga resultante

numa fusão é escolher um ramo. O espaço de fusão total V λ
a1...aN

é, portanto, o espaço gerado

por todos os ramos (todos os caminhos) que levam à carga final fixa λ ; a dimensão de V é

exatamente o número desses ramos.

Como nos interessa apenas os caminhos que terminam em uma carga final específica

λ , é conveniente construir a árvore ao contrário: começamos por λ e aplicamos a "divisão"(fusão

reversa) coerentes até chegar às partículas iniciais. Esta construção reversa garante coerência

global — isto é, evita contar sequências locais de fusões que, embora permitidas ponto a ponto,

violam a carga total λ a qual deve ser conservada.

Para três partículas a,b,c fundindo para λ , a descrição tensorial é

V abc
λ

∼=
⊕

d

V ab
d ⊗V dc

λ
, (6.14)

onde o espaço de fusão de a⊗b → d, se funde com o espaço tensorial de d ⊗ c → λ . Ao somar

sobre todos os intermediários d e índices de multiplicidade (µ,ν) obtemos uma base completa
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para V abc
λ

que pode ser escrita da seguinte forma:

|(a,b),dµ⟩⊗ |(d,c),λν⟩ com µ = 1, . . . ,Nd
ab, ν = 1, . . . ,Nλ

dc. (6.15)

Aqui usamos uma notação mais completa explicitando as fusões (a,b)→ c. A dimensão desse

espaço pode ser obtida diretamente pelas dimensões associadas aos Nγ

αβ
:

dimV abc
λ

= ∑
d

Nd
ab Nλ

dc. (6.16)

Figura 14 – Bases do espaço de fusão para quatro anyons

Fonte: Elaborado pelo autor (2025).
Legenda: As bases do espaço de fusão dos anyons para 4 fusões. Para construir
os vetores referentes a esse espaço podemos começar da carga final fixa (1) da
base; cada caminho que leva ao topo τ ⊗ τ é uma possível base de nosso espaço.
O caminho azul representa o vetor |(τ,τ),1⟩⊗ |(1,τ),τ⟩⊗ |(τ,τ),τ⟩⊗ |(τ,τ),1⟩=
|(τ,τ),1;(1,τ),τ;(τ,τ),τ;(τ,τ),1⟩= |1,τ,τ,1⟩.

6.1.3 Matrizes F, relação do pentágono

Apesar do modo como esquematizamos as diferentes fusões ser muito mais intuitivo,

qualquer ordem de fusão deve expandir o mesmo espaço ortonormal de possíveis caminhos.

Escolher uma outra representação é a mesma coisa que mudar nossa base de representação do

problema. Com o objetivo de manter a coerência da teoria, devemos ser capazes de determinar

uma equivalência entre tais espaços através de uma matriz de mudança de base.
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Figura 15 – Representação de diferentes ordens de fusão para quatro anyons

Fonte: Elaborado pelo autor (2025).
Legenda: Quatro anyons de Fibonacci se fundindo em duas maneiras diferen-
tes. Na esquerda, os anyons são fundidos um a um com o resultado ante-
rior. Na direita os anyons são fundidos em pares, depois tem seus resulta-
dos combinados. Obtendo uma base {|(τ,τ),a⟩⊗ |(a,τ),b⟩⊗ |(b,τ),5⟩} e outra
{|(τ,τ),a⟩⊗ |(τ,τ),c⟩⊗ |(a,c),5⟩}.

A Figura 15 mostra duas possíveis representações de base, possíveis caminhos de

cada grafo correspondem aos vetores que expandem nossa base. A matriz que representa essa

mudança de base pode ser escrita como

{|(τ,τ),a⟩⊗ |(a,τ),b⟩⊗ |(b,τ),5⟩} −−−−→
(F5

a34)
c
b

{|(τ,τ),a⟩⊗ |(τ,τ),c⟩⊗ |(a,c),5⟩} (6.17)

Para um conjunto de quatro partículas nos temos um total de cinco representações

diferentes. Essas representações podem ser associadas considerando a equivalência entre dois

conjuntos de transformações distintos que nos levam para a mesma base, como representado na

Figura 16.
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Figura 16 – Relação do pentágono para matrizes de fusão

Fonte: Elaborado pelo autor (2025).
Legenda: Relação do pentágono. As matrizes de transformação
devem ser equivalentes seguindo o caminho inferior e o superior.

A associação acima é representada na seguinte equação(
F5

12c

)d

a

(
F5

a34

)c

b
= ∑

e

(
Fd

234

)c

e

(
F5

1e4

)d

b

(
Fb

123

)e

a
, (6.18)

Essa equação é conhecida como a relação do pentágono e é responsável por garantir a consistên-

cia das transformações de base dentro da teoria. Perceba que por exigência da conservação de

probabilidade essas equações devem ser unitárias.

Em teorias mais simples, é possível encontrar facilmente os valores dessas matrizes

através da relação do pentágono e a imposição da unitariedade, veja (Ahmadi, 2025), o que é

verdade para os casos discutidos nesse trabalho.

6.2 Braiding e equações do hexágono

Em um sistema anyônico, a permutação entre partículas idênticas induz uma trans-

formação unitária dada pela holonomia R = ρ(gγ). Como vimos, essa holonomia realiza uma

representação do grupo de tranças Bn. A figura 17 evidencia, de forma visual, a relação entre as

representações de Bn e o processo de permutação entre as partículas.
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Figura 17 – Representação do trançamento (braiding) de partículas no tempo

Fonte: Elaborado pelo autor (2025).
Legenda: Conjunto de 5 partículas bidimensionais
com posições fixas x1,x2,x3,x4,x5 sendo permutadas
numa superfície ao longo do tempo. A permuta pode
ser vista como o ato de trançar os caminhos de evolu-
ção temporal de cada partícula.

Na representação visual, é importante atentar para as sobreposições (“over/under”)

das tranças, pois elas fixam a orientação do cruzamento: o cruzamento inverso corresponde ao

operador inverso ρ(g−1
γ ) = ρ(gγ)

−1. Embora as linhas pareçam abertas na figura, tratam-se de

partículas idênticas; topologicamente, o processo corresponde a um loop fechado no espaço de

configurações que envolve as partículas pelas quais a trança passou.

Para cada par de tipos de anyons (a,b) e cada canal de fusão c, definimos o operador

de braiding

Rab
c : V ab

c −→ V ba
c ,

que codifica a holonomia associada à permutação de a com b no canal c. Em ausência de

multiplicidades (Nc
ab = 1), Rab

c atua por uma fase. Na presença de multiplicidades, Rab
c possui

componentes matriciais em uma base de V ab
c . Em sistemas com múltiplos tipos de anyons

(σ ,ψ,1), os operadores Rab
c e as transformações de re-associação F satisfazem equações de

consistência topológica (pentágono e hexágono) que garantem a invariância sob deformações

contínuas dos trajetos.

Nosso objetivo nesta seção é entender como as operações de braiding são repre-

sentadas, de forma consistente, em diferentes bases relacionadas por transformações F . Para

isso, consideremos a trança em um sistema de três anyons e imponhamos consistência com os
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F-moves, como ilustrado na figura 18.

Figura 18 – Equações do hexágono e consistência entre trançamento e fusão

Fonte: Elaborado pelo autor (2025).
Legenda: Equações do hexágono — Existem dois caminhos distintos de transforma-
ções que levam da configuração da esquerda à da direita. Podemos imaginar cada
linha como uma corda: a cada fusão damos um “nó” (mudança de associação) e
preservamos a ordem de sobreposição em cada cruzamento.

Vemos que há uma relação de equivalência entre dois conjuntos de transformações,

dada por

∑
b

(
F4

231
)c

b R4
1b
(
F4

123
)b

a = Rc
13
(
F4

213
)c

a Ra
12. (6.19)

Essas relações são as equações do hexágono. Em conjunto com as equações do pentágono, elas

garantem a consistência entre diferentes representações (ou bases) do problema, assegurando

que fusão e trançamento sejam compatíveis.

6.3 Computação com anyons.

A construção de um computador topológico a partir de uma teoria anyônica começa

pela especificação das matrizes de recoupling F e dos operadores de troca R, que determinam

completamente as representações dos geradores do grupo de tranças no espaço de fusão escolhido.
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Como exemplo podemos ver as analisar as matrizes R e F correspondentes aos anyons de Ising e

os anyons de Fibonacci.

No caso dos anyons de Ising, temos três tipos de partículas: {1,σ ,ψ}, com regras

de fusão σ ×σ = 1+ψ , σ ×ψ = σ e ψ ×ψ = 1. As matrizes relevantes são:

Fσσσ
σ =

1√
2

1 1

1 −1

 , Rσσ =

e−iπ/8 0

0 e3iπ/8

 , Rσψ =−i.

Essas transformações geram, por trançamento, apenas o grupo de Clifford, o que limita a

universalidade.

Já os anyons de **Fibonacci**, definidos apenas por {1,τ} com a regra de fusão

τ × τ = 1+ τ , possuem:

Fτττ
τ =

 ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

 , Rττ =

e−4πi/5 0

0 e3πi/5

 ,

onde ϕ = 1+
√

5
2 é a razão áurea. Neste caso, o conjunto de portas obtido pelo trançamento é

universal para computação quântica, tornando os anyons de Fibonacci um modelo de referência

para arquiteturas topológicas.

Escolhendo-se uma codificação lógica, os geradores de braid σi são obtidos por uma

mudança de base (F), aplicação do R-move no canal de fusão relevante e retorno à base original

(F−1); em notação índice-a-índice, essa operação escreve-se convenientemente como

[
U(σi)

] β

α
= ∑

f ,µ,ν

[
F−1] ( f ,µ)

α

[
Rab

f
] ν

µ

[
F
] β

( f ,ν),

onde f percorre os canais intermediários e µ,ν indexam eventuais multiplicidades. A tarefa al-

gorítmica consiste em aproximar portas lógicas Utarget por produtos finitos desses geradores; para

conjuntos geradores densos aplicam-se resultados de compilação (por exemplo Solovay–Kitaev),

e para sequências curtas frequentemente obtêm-se melhores resultados com otimização numérica

direta. A inicialização realiza-se pela criação de pares a, ā do vácuo em canais conhecidos, e a

leitura topológica por fusão, observando o canal resultante.
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7 CONCLUSÃO E PERSPECTIVAS FUTURAS

Ao longo desta dissertação, empreendemos uma jornada pela estrutura matemática e

física que fundamenta a computação quântica topológica, com foco especial na emergência das

propriedades topológicas desses sistemas. Foi apresentado inicialmente as propriedades gerais

esperadas de um sistema para que ele seja capaz de realizar uma computação quântica. Em uma

analogia com a computação clássica, discutimos alguns conceitos de informação, assim como

sua representação e manipulação. Dentro desse aspecto vimos a necessidade de um conjunto

universal de portas lógicas, bem como a dificuldade em preservar a coerência quântica diante de

processos de decoerência e ruído ambiental.

Em seguida, mostramos como sistemas bidimensionais oferecem a arena necessária

para o surgimento de excitações com estatísticas fracionárias — os anyons. A análise da topologia

do espaço de configurações de partículas idênticas revelou a conexão natural com o grupo de

trança, fornecendo a base para entender o braiding como operação unitária. Para descrever de

forma consistente esses estados, recorremos ao formalismo de fibrados e conexões, no qual a

evolução quântica se manifesta como transporte paralelo associado a uma conexão de gauge.

Como premissa para a definição de uma ação topológica, discutimos os aspectos

geométricos presentes nas formulações lagrangianas de sistemas clássicos. A teoria de Chern-

Simons foi então destacada como a formulação efetiva capaz de capturar a natureza puramente

topológica do espaço de configurações a qual, juntamente com o formalismo de integrais de

caminho de feynmann é capaz de descrever essas quasipartículas. Através dessa sequencia de

relações, conseguimos evidenciar o processo de transição entre a descrição geométrica do espaço

de configurações e a representação da natureza.

A partir desse arcabouço, investigamos as operações fundamentais da computação

quântica topológica: fusão e troca de anyons. Essas operações foram formalizadas por meio

das matrizes F e R, que, em conjunto, definem a estrutura de uma categoria tensorial modular.

Esse formalismo não apenas fornece a linguagem matemática adequada, mas também conecta de

maneira natural a física de quasipartículas com a teoria da informação quântica.

Apesar de sua robustez teórica, destacamos também as limitações de certas platafor-

mas, como os anyons de Ising, que não são universais para computação por braiding isoladamente.

Esse ponto abre espaço para a exploração de modelos mais ricos, como os anyons de Fibonacci,

ou para a hibridização com técnicas de correção de erros quânticos convencionais.

Como perspectivas futuras, ressalto a relevância de explorar modelos efetivos da
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matéria condensada (Kitaev, Haldane, Kane-Mele, BHZ), bem como a aplicação de métodos

numéricos e de aprendizado de máquina para a classificação automática de fases topológicas.

Além disso, os recentes avanços experimentais na observação de modos de Majorana e nos

estados fracionários do efeito Hall quântico sugerem que a concretização de computadores

quânticos topológicos pode estar ao nosso alcance em médio prazo.

Em conclusão, este trabalho buscou não apenas apresentar os fundamentos teóricos

e matemáticos da computação quântica topológica, mas também evidenciar como a interação

entre geometria, topologia e física da matéria condensada oferece uma nova perspectiva para o

processamento da informação quântica.
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