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Neste trabalho, estudamos o confinamento de estruturas poliméricas restritas 

a uma região limitada por duas superfícies planas, propondo, assim, um 

modelo para simulá-lo computacionalmente. Desta forma, fazemos uma 

aproximação estatística para o problema fundamentada na simulação destas 

macromoléculas por uma classe de caminhada auto-excludente(SA W), 

denominada caminhada de crescimento indefinidamente auto-excludente 

(IGSAW). Os resultados obtidos por simulação computacional do 

confinamento de cadeias poliméricas entre duas superfícies planas, ao 

considerá-las como caminhadas IGSAW, mostram que as dimensões fractais 

obtidas por leis de escalas da função de correlação c(r) com a distância r 

entre os extremos, e da distância r entre os extremos com o número N de 

monômeros estão em concordância com os valores obtidos na literatura. 

Como também, apresentamos uma lei de escala que relaciona a separação h 

e:qtre as paredes de confinamento com o tamanho da macromolécula para o 

fenômeno da formação de pontes poliméricas entre as superfícies planas, 

mostrando-se ser um resultado mais consistente do que o obtido 

analiticamente por Hong Ji et af5°)_ 



ln this work we studied the confinement of polimeric structures restrict in a 

region limited by two plane surfaces, proposing a model to simulate this 

problem in a computer. Hence we suppose that the statistical approach to the 

problem is based in a computer simulation of these macromolecules by a 

kind of self-avoiding walk(SA W), called indefinitely growing sel-avoiding 

walk(IGSA W). Tlie results from the computer simulation of the confinement 

of polimeric c4ains between two plane surfaces considering like a 

indefinitely growing SA W show us that ~ the fractal dimension from the 

scaling law between the density-density correlation function c(r) and the 

distance end-to-end f and from the scaling law between the distance end-to­

end r and the number of monomers N are in a good agreement with the 

literature. Furtermore we establish a scaling law relationship between the 

separation h of the two plates and the number of monomers N for the 

problem of the polymer brigdging between two plane surfaces, our results 

give evidence of that they are better than the numeric results obtained by 

Hong Ji et af5°). 
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Considerações Gerais sobre a Conformação de uma 

Macromolécula 

1.1 Introdução 

Polímero, palavra que literalmente significa muitas partes, é oriunda do grego 

"polus", que que1· dizer muitas. e "meros", partes ou segmentos. É a denominação 

utilizada para representar todos os materiais cujtts moléculas são constituídas de muitas 

unidades, tais unldades, que na maioria das_ vezes, apresentam-se constituídas por 

pequenos grupos de átomos, podendo também serem constituídas por um único átomo, 

que é o caso do polímero denominado enxofre-plástico, o qual é obtido quando o enxofre 

liqüefeito(em urna razoável temperatura) é entornado de água gelada. Sua estrutura pode 

ser representada por urna cadeia simples de átomos conectados por ligações quúnicas, 

podendo ser representada da seguinte f01ma: 

-S-S-S-S-S-

Neste estado, o enxofre possui propriedades fisicas inteiramente diferentes do 

cristal usual de enxofre, agora, apresentando-se de forma maleável, altamente elástico e 

translúcido, não possuindo um ponto de fusão definido, como outrora na forma cristalina 

possuía, de tal modo que ao elevarmos sua temperatura, ele entra em um processo de 

derretimento, • escoando como se fosse um líquido, porém com alta viscosidade. 

Entretanto, devemos ressaltar que após alguns dias em temperatura ambiente, tal cadeia 

polimérica apresentar-se-á com a usual e familiar forma cristalina, em vista da sua alta 

instabilidade. 

Em muitos polímeros a unidade repetida na estrutura é um pequeno grupo de 

átomos combinados de um modo particular. Um dos mais simples polímeros, do ponto de 

vista da estrutura quúnica, é o polietileno, no qual a unidade repetida é o grupo CH
2 

(um 

átomo de carbono ligado a dois átomos de hidrogênio). Estas unidades uma vez 

conectadas umas as outras fonnam uma longa cadeia, como se segue: 



--

- CH 
2 

- CH" - CH 
2 

- :--:. • . . . . • - CH 
2 

- ·cH" - CH 
2 

-

como seu próprio nome implica, polietileno, nota-se que é constituído por várias 

moléculas de etileno 

que através de um ativador ou catalisador quúnico, tem a Ugação dupla entre os dois 

átomos de carbono quebrada, transformando-a em uma ligação simples, tornando cada 
átomo de carbono disponível para fazer uma outra ligação simples com uma outra 

molécula de etileno. A molécula original da qual o polúnero é formado é chamada de 

monômero(do ·grego "manos", que quer dizer uma ou única). Como este exemplo nos 

mostra, o monômero não necessariamente é a mesma unidade que se repete ao longo da 
"" 

cadeia, no caso presente a unidade original da cadeia polimérica de polietiJeno é o etileno, 

que é constituído por duas unidades repetidas de CH2 , mostrando-nos que as unidades 

que se repetem no polietileno como no etileno são diferenciadas. 

Um outro polúnero de estrutura similar ao polietileno é o polipropiJeno, o qual é 

constituído pela ligação de várias moléculas de propileno: 

para formar a seguinte cadeia polimérica 

Esta estrutura difere do polietileno por possuir o grupo meti! ( CH
3
) no lugar de um dos 

átomos de hidrogênio nos alternados átomos de carbono da cadeia. Entretanto, no 

polipropileno, a unidade que se repete na cadeia corresponde a original molécula 

monomérica, ou seja, no polipropileno a unidade que se repete é a própria molécula de 

propileno. 

Os exemplos acima mencionados, polietileno e polipropileno, são suficientes para 

ilustrar a característica que distingue as diversas cadeias poliméricas, que é a estrutura 

conformacional da cadeia, a qual é constituída pela adição repetida de sucessivas unidades 
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monoméricas(end-to-encl). Nos exemploÇéitados, cada uma-destas unidades repetidas é de 

idêntica composição e estrutura. Entretanto, muitos polímeros, dos quais uma das 

principais formas é o nylon, são formados por reações quúnicas que envolvem dois 

diferentes tipos de monômeros ou compostos químicos. Isto resulta em uma estrutura a 

qual pode ser representada da seguinte fonna: 

-[A]-[B]-[A]-[B]-[A]-[B]-

tal que a estrutura final pode ser considerada como tendo a seguinte unidade repetida: 

-[A]-[B]-

Em outros polímeros, chamados co-polímeros, as proporções das duas diferentes 

unidades [A] e [B] podem variar arbitrariamentt, e a sucessão destas unidades ao longo 

da cadeia apresentarem de forma aleató1ia, tal que: 

-[A]-[B]-[B]-[A]�1A]-[A]-[B]-

que constituem a estrutura básica de vários tipos de borrachas sintéticas. Uma outra 

variação da mesma forma padrão é obtida se uma das unidades , digamos [B], puder ser 

combinada com um grupo [A], não somente em cada extremidade, mas também em um 

terceiro ponto, originando a possibilidade de ramificação da cadeia, como pode ser 

representada abaixo: 

A-8-

/ 
A-8-A- 8-A- 8

/ "' 
-A-8 A-B-

A-8-A-8-A-

de tal modo que o polímero pode continuar a crescer à partir de cada um dos pontos de 

ramificação, fornecendo-nos estruturas bastantes complicadas em alguns casos, como por 

exemplo as cadeias ramificadas de estruturas tlidimensional. 

No que se refere a quantidade de monômeros necessários para formarmos um 

polúnero, é estabelecido que à partir de duas unidades já se tem um polímero. Entretanto, 

polímeros contendo pequenas quantidades de monômeros são normalmente chamadas por 

dímeros, trímeros, tetrameros, etc., os quais recebem estas denominações de acordo com 

o número de monômeros envolvidos, sendo o termo polúnero reservado para casos nos
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quais o número de unidades é muito grande. Abaixo i:élad�amos alguns polímeros que se 

destacam por sua importância e aplicabilidade no mercado tecnológico: 

-R -11' - R" -R'" 
Munúmcro 

-H H H H Etilcuu 
- CH 1 li H H l'roµilcno 
-C6H, H H H Estireno 

H 
1 / 

IJuÍodicno -C=C H H H 

H 
CH, H 
1 / H -C =C H H lsoprcno 

H 

-CI H H H Cloreto de vlnlla 
CI 

H 1 / 
H H H Cloropreno -C=C 

'-H 
-CN li H H AcrUoultrila 
- ,:ooH ll H H Ácido ocr!llco 
- COOMe li H H Actil�to de metlla 
-OCOMe H. H H Acetato de vlnlla 
-CH1 -Clh H H lsobutlleno 
-COOMe -CII, H H Metacrilalo de mctlla 
-CI -CI H H Cloreto de vlnilideno 
-F -F -F --F Tetraíluoro-ctlleno 

De um modo geral, faz-se necessário apresentarmos algumas características e 

definições importantes da Ciência de Polímeros, a fim de que urna vez embasados 

possamos adentrar de forma segura no objetivo deste trabalho, que é a análise do 

confinamento de macrornoléculas, que tem como pilar mestre o estudo da conformação de 

cadeias poliméricas. No entanto, antecipadamente, saliento que a conformação de uma 

macromolécula está diretamente relacionada com o tipo de polímero e solução o qual está 

inseiido, pois à partir do conhecimento destes dois aspectos é que podemos inferir e 

entender a distribuição dos segmentos constituintes da cadeia, os denominados 
• 

monômeros. 

Imbuídos deste objetivo é que dividimos este Capítulo 1 da seguinte forma: Na 

seção 1.2 faz-se urna apresentação geral das propriedades de um polímero. Nas seções 

subseqüentes, 1.3 e 1.4, voltamos nossa atenção aos tipos de soluções as quais estão 

sendo sintetizadas as cadeias poliméricas, e conseqüentemente, sua geometria resultante. 

Conhecidas as propriedades provenientes das interações das soluções com os polímeros, 

seções 1.3 e 1.4, faz-se necessário, agora, conhecer os diversos aspectos de urna 

macromolécula no que se refere as suas interações internas, ou melhor, as interações 
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monômero-monômero, e é com este intllilo que surgeiÍl as··;ções 1.5 e 1.6, que discorrem 

sobre cadeias poliméricas consideradas ideais e não-ideais. Na seção 1.7, apresenta-se 

algumas metodologias de cálculo das propriedades e interações das diversas interações 

existentes em uma solução polimérica. 

1.2 Polímeros Lineares 

O número de unidades repetidas N, em uma dada cadeia polimérica é comumente 

denominada de grau de polimerização e pode ser surpreendentemente grande. Como 

exemplo temos o poliestireno, onde N> 105
. 

EntretantÕ, cadeias com 105 operações sem erros de seqüência, enfrentam certas 

dificuldades em sua construção, nas quais duas. são de grande importâncja para estudos 

físicos: a poli-dispersividade e a ramificação. - · 

1.2. 1 Poli-dispersividade 

Informa-nos a dispersão das cadeias em urna estrutura polimérica, ou seja, nos diz 

corno estão distribuídas as cadeias em termos de seus diferentes graus de polimerização. 

Muitos métodos de preparação nos fornecem cadeias com larga distribuição de valores 

para N, porém, é possível obtermos, relativamente, distribuições pequenas ou por métodos 

físicos, tais corno: precipitação, cromatografia, etc.° >, ou através de métodos especiais de 

síntese, como a polimerização aniônicé1·>. 

1.2.2 Ramificação 

Refer�-se a quanto e corno a cadeia polirnérica subdividiu-se durante todo o seu 

processo de formação, ou melhor, nos fornece informações acerca das diversas direções 

tomadas pelos monômeros durante a síntese da cadeia polirnérica. Muitas reações que 

ocorrem durante a síntese do polímero podem nos conduzir a cadeias que não são 

perfeitamente lineares, mas que contêm pontos de ramificação. Por exemplo, o polietileno 

industrial possui três pontos de ramificações do tipo: 
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onde as linhas em zig-zag representam diferentes porções éiâ cadeia. 

Entretanto, quando a fração de pontos de ramificação na estrutura não é muito 

pequena, estes pontos podem ser detectados por vários métodos fisicos, tal como a 

espectroscopia infra-vermelha. Por outro lado, se a longa cadeia possui um ou dois pontos 

de ramificação é extremamente difícil provar a sua existência ou ausência. 

Em alguns casos um número controlado de ramificações são inseridos 

propositadamente ao longo do processo de sintetização da cadeia, 01iginando dois tipos 

de geometria possíveis, estrela ou pente, como podemos observar logo abaixo: 

ESTRELA PENTE 

1.3 Solventes 

Nos modelos desenvolvidos para o estudo dos polímeros, observa-se que um dos 

fatores determinantes ao tamanho do polímero é o tipo de líquido o qual ele está 

colocado, ou melhor, dissolvido. Se existe uma grande afinidade com o solvente, então o 

polímero é facilmente dissolvido, promovendo um espichamento da cadeia, ou seja, uma 

melhor dist1ibuição espacial da macromolécula, neste caso o chamamos de bom solvente. 

Por outro lado, quando não existe uma boa afinidade, o polímero apresentar-se-á de forma 

compacta, ou melhor, encaracolada, de tal modo que nesta situação temos um solvente 

ruim. Para explicarmos esta dependência do tamanho do polímero com o tipo de solvente 

consideraremos interações do tipo: monômero-monômero, monômero-solvente e 

solvente-solvente. Por questões práticas diremos que a molécula do solvente possui o 

mesmo tamanho de um monôrnero, ocupando um único sítio na rede. Corno também, 

consideraremos que a rede está inteiramente ocupadas por moléculas, tal que se tivermos 

uma concentração de monômeros C (monômeros por unidade de volume). teremos uma 

concentração de moléculas de solvente C,, tal que: 
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(1.1) 

Considerando que estas interações sejam do tipo van der Waals e que os segmentos

estejam uniformemente distribuídos na rede, então temos que a energia por unidade de

volume, relacionada com os diversos tipos de interações, será da seguinte fonna<3l
:

T 
2 Emm = 2XmmC

T 
Ems = 2 XmsC(l - C)

Ess =: Xss (l-: C)2 

(1.2) 

onde x é denorrtinado de parâmetro de interação de Flor/2>, sendo adimensional e com

dependência com a temperatura T e a pressão do sistema considerado.

A energia livre possui duas componentes: um termo de entropia que descreve

quantos conjuntos de cadeias podem existir na rede, para uma dada concentração de

monômeros C, e um outro termo que descreve as interações entre as moléculas

adjacentes. Em relação ao termo da entropia, considerando que os sítios vizinhos não

estejam correlacionados, teremos:

S =-ClnC- (1-C)ln (l-C) (1.3)

onde o primeiro termo está relacionado com a entropia translacional da cadeia, enquanto

que o segundo com a entropia translacional das moléculas do solvente.

A energia da solução polimérica (solvente + polímero), por unidade de volume,

será dada por<3l :

Esol = Emm +.Ems + Ess (1.4)

E.,01 =: Xm11C
2 + TXmsC(l-C)+: x.J1-C)2 

Esol l 
( 2 ) ( ) 

1 ( )
2

r= 2x,,,,11 C +C-C + X111.C 1- C +2x .. 1- C 

E sol l 1 1 1 r= XmsC(l-C)- 2 Xm,,,C(1-C)-
2
x.. C(l -C)+

2 Xss (l-C)+ 2 X,,,"'C

E sol [ 
1 ] rf 1 ] 1 

T = C(I -C) Xms -2(Xmm + Xss) + t.,L 2(Xmm - Xss) + 2 Xss (1.5) 

fazendo a seguinte substituição:
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( 1.6) 

onde X é o parâmetro de Flory para a solução pofünérica, então a eq.(1.5) fica da forma: 

E sol = xc(l -e)+ termos lineares em e+ const.
T (1.7) 

onde os termos quadrados nos informam o tipo de interação efetiva que a solução 

polimérica (mais especificamente cada monômero) está submetida, desta forma podemos 

sem prejuízo algum desprezar os termos lineares e as constantes que estão contidas no 

cálculo da energia da solução, expressa pela eq.(1.8). 

Uma vez que a energia livre F de um sistema é expressa da seguinte forma(3): 

F = E,ol +TS (1.8) 

então, substituindo as equações (1.3), com ·as devidas considerações com relação a 

contribuição de seus tetmos, e (1.7) na eq.(1.8), obtemos: 

F 
- = Cln C+ (1-C)ln(l-C)+ XC(l-C)
T 

(1.9) 

considerando a concentração C muito pequena, então ao expandirmos a eq.(1.9), 

teremos: 

F ( c
2

c
3

J -= c1n c+(1-c) -e-----... + x(c-c2 ) 
T 2 3 

F 
( 

c2 c3 J ( c3 c4 J -=ClnC+ -e---- - c2 +-+- + x(c-c2)+ ... 
T 2 3 2 3 

F 2( • 
1 

) 
3
(

1 1
) r= ClnC+..C 1-

2 
-X + C 

2-3 
+ ...

F I 1 
-= ClnC+- c2 (1-2x)+-C3+ ... 
T 2 6 

(1.10) 

Através da expressão dada pela eq.(1.10), observamos que o coeficiente do termo C2
, 

(1-2x), representa o que denominamos interação efetiva, uma vez que este coeficiente é 

composto por duas cont1ibuições: a parte (- 2 X) relacionada com as interações atrativas 

do tipo van der Waals entre os sítios vizinhos, e uma outra parte (1) que expressa a 

existência de interações repulsivas, 01iundas do efeito estérico. Sendo assim, quando 

8 



tivermos X<½ o efeito estérico será dominante, d� talTc;rma que teremos que o efeito 

de exclusão de volume estará mais evidente, provocando um espichamento do polímero, 

neste caso temos um bom solvente; enquanto que X > ½ as interações atrativas entre os 

sítios adjacentes terão maior predominância, tal que teremos urna tendência maior para 
formações um pouco mais próximas, ou seja, a cadeia apresentar-se-á mais compacta, 

nesta situação estaremos tratando de um solvente ruim; porém, quando x = ½ teremos 

entre os monômeros, uma anulação das atrações do tipo van de Waals com as repulsões 

decorrentes do efeito esté1i.co, e neste caso estaremos tratando do 0 -solvente, bastante 

conliecido por suas aplicações tecnológicas. ... 

1.4 Flexibilidade 

Está relacionada com a forma física, ou seja, a geometria que a cadeia polimérica 

torna após o seu processo de síntese. Pode ser entendida tanto pelo aspecto estático, como 

dinâmico. Para entendermos melhor, consideraremos uma cadeia do tipo carbono­

carbono, como o polietileno. 

... -CH2-CHrC H2- ou I-CH2-IN 

O ângulo 8 nas ligações entre os carbonos C- C é considerado fixo, porém 

quando conectamos a outras unidades sucessivas de átomos de carbono ( Cn_3
, Cn_2

, Cn-i) 

fixos e ligamos a um outro átomo de carbono C,, , o qual pode rotacionar com um ângulo 

<p,, , em tomo de um dado' eixo, no entanto que sua ligação com o carbono C,,_1 
, com 

angulo 8 _permaneça fixa, pode-se obter três pontos de mínimo em sua energia E, 

correspondentes aos três tipos de conformação da macrornolécula, as quais são chamadas 

de "trans" e "gauche" , como podemos observar na Fig. 1.1. 

rn-1 

n-2 

lo 1 I b 1 
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Cn-3 

e 

'},., 
Cn-2 ,, 

1· = O trons 

Energia E 

'4>= 120" gouche (g+) 
'P= 120"gouche ( g-) 

o 

� 

.-;tt-

+ + +,
g+ trons 

gauche 

trans 

120 180 

g-

t 
gapche 
D..'E 

240 300 360 

anglo'!> 
Fig. 1.1 - Representaçflo esquemútica e.la c.lepenc.lência da Energia E das ligações C-C com o ângulo 0 entre 

as ligações sucessivas de carbono. 

É importante notarmos dois parâmetros de energia importantes: 1) a diferença de 

energia LiE entre estes pontos de mínimo e 2) a barreira de energia LiE separando o 

mítúmo. 

Considerando que a energia térmica do sistema seja dada por KT, onde T é a 

temperatura do sistema, e que possamos escrevê-la em unidades de K, tal que tomemos 

K como mútário, então, podemos observar quando LiE é menor que a energia térmica T, 

teremos coocentrações quase equivalentes de conformações do tipo "gauche" ou 

"trans ", conseqüentemente a cadeia apresentar-se-á como um espiral. Porém, a fonna de 

como vemos a cadeia polimérica está intrinsicamente relacionada com um comprimento 

característico, denominado de comprimento de persistênciac4.
S

l / 
P

, que é calculado das

energias microscópicas da cadeia. Para o caso do polietileno, IP é uma função crescente 

da diferença de energia LiE entre os pontos de múümo, sendo dado por: 

com (LiE) > O (1.11) 

onde 10 é da ordem de alguns angstroms. Quando LiE < T teremos o caso de extrema 

flexibilidade, pois com / 
P 

pequeno, ou seja , menor que o comprimento da cadeia L, 
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podemos escolher uma escala tal que as porções rígidas (t =I
P
) tornam-se pequenas para

serem vistas, no entanto devemos salientar que quando /1ê << T, tal que E.:q{ �) � O.

l
P 

torna-se igual a l
0

, nos garantindo um limite mínimo para o comprimento de

persistência, tal que a cadeia não é reduzida a um ponto. Por outro lado, quando /1ê > T

teremos uma conformação preferenciaJ, tipo "tmn.s ", conseqüentemente a cadeia se

apresentará localmente rígida, pois a escala, que antes vínhamos observando toda a

seqüência da çadeia, agora se torna grande para a análise destes pontos, uma vez que o

comprimento lP tem aumentado; como também em alguns destes pontos teremos I
P

grande, ou seja, maior que o comprimento L da cadeia, de tal modo que estas partes

geométricas da conformação da macromolécula se tornam grandes para serem vistas se l
P

é maior que o comprimento da cadeia L, então teremos cadeias rígidas em todas as

escalas.

Uma outra questão importante, no que se diz respeito aos tipos de conformação, é

o tempo 'Cp requerido pela macromolécula para a transição entre os dois estados "trans" e

"gauche ", parâmetro este que possui dependência com a barreira de energia 11E que

separa estas configurações. Quando M não é muito maior do que a energia térmica T, a

barreira se torna irrelevante, tal que a isomerização "trans-gauche" toma tempos bastante

pequenos ('C- Hr11 s para o polietileno ) (3-
5

\ sendo assim, a cadeia é dita ser dinamicamente

flexível. Poi· outro lado, se a barreira M for grande, o tempo torna-se exponencialmente

longo, pois para o polietileno temos que:

(1.12)

onde rP é denominado tempo de persistência<4
,
5>.

Deste modo, vimos que ao trabalharmos com escalas pequenas. detínhamos nossa

atenção nas propriedades locais, observando as conformações e os movimentos dos

monômeros dentro da cadeia. Este tipo de informação se faz necessário quando

precisamos fabricar um tipo específico de polúnero, onde é preciso entender a influência

11 
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dos vínculos entre os monômeros vizinhos, os movimentos locais(monômeros) e a sua 

dependência com a temperatura T . 

IOOA
º 

lo l 

g 

sequências tra n s 

lbl 

Fig. 1.2 - (a) Visualização de uma cadeia polimérica com urr .1 escala grande. (b) Visualização de uma 

cadeia polimérica com uma escala pequena, fornece uma maior riqueza de detalhes com relação a 

configuração da macromolécula. 

No caso da análise com escalas grandes extraímos as propriedades globais da 

macromolécula , investigando a dependência das propriedades fisicas observáveis em 

relação ao tamanho e a concentração da cadeia, das quais nos fornecem aspectos 

umversa1s , que se tornam verdadeiros para uma determinada classe de cadeias 

poliméricas. 

Nota11,1os assnn, a importância da investigação tanto das propriedades globais 

como as locais para uma melhor e mais completa informação acerca do polímero. isto 

evidencia-se quando tentamos estabelecer alguma lei de escala, tal como a estabelecida 

por Flory<5) para o caso de uma solução poHmérica em um bom solvente, que é dada por: 

R =aN v 

g 
com v = Ys (1.13) 

onde R
g 

é denominado raio de giração da cadeia, enquanto que N é o grau de 

polimerização. No entanto, se quisermos entender as propriedades de um polímero em um 

bom solvente, o primeiro passo é explicar a existência e o valor do expoente v, ou seja, 

devemos possuir um conhecimento das propriedades globais da cadeia, uma vez que o 

expoente v é universal para todas as cadeias dissolutas em um bom solvente; o segundo 
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passo é determinar o valor da constante, a qual não é universal, pois depende- da escolha 

do solvente, como também da estrutura dos monômeros, ou seja, agora necessitamos 

conhecer as propriedades locais da cadeia. 

1.5 Cadeias Ideais 

Uma das mais simples idealizações de uma cadeia polimérica flexível consiste em 

ser representada por uma caminhada aleatória(Random Walk) em uma rede periódica<6>, 

como pode ser mgstrado na Fig. 1.3. 

.. 

G.z Ji "\._ 

... 

<X1 

Fig. 1.3 - Representação gráfica de uma caminhada aleatória em uma rede quadrada. 

onde os monômeros são os sítios ocupados da rede e o conjunto destes sítios visitados 

constituem a cadeia polimérica. A caminhada inicia-se em um dado ponto a, e após uma 

sucessão de N passos, alcança-se um ponto final a
2 

(ver Fig. 1.2). No entanto, em cada 

passo, pode-'Se saltar para um dos sítios vizinhos mais próximos com igual probabilidade 

para qualquer das direções escolhidas. 

Considere um vetor R que una as duas pontas do polímero, chamado vetor end­

to-end, onde seu comprimento médio nos possibilite ter uma informação acerca da 

extensão da cadeia. Se a cadeia é constituída de N ligações, com rn sendo o vetor 

posição da n-ésima ligação, teremos que: 

R=� +i;+ ... +rn = L/n 
( 1. 14) 

n=I 

onde cada um dos termos rn é um vetor de comprimento a com z possíveis orientações, 

tal que diferentes vetores �' possuem orientações completamente independentes. 
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Fig. 1.4 - Macromolécula dividida em N suh-unidadades(monômeros). onde o vetor ,1 representa a 
distância entre duas sub-unidades sucessivas e R a distância entre os pontos extremos da cadeia. 

Evidentemente, o valor médio ( R) é zero, pois foi suposto uma equiprobabilidacle para as

possíveis direções em cada passo, tal que a possibilidade do vetor end-to-end ser ( R) é a

mesma para ele ser (- R), portanto estas duas contribuições se cancelariam. Deste modo,

calcularemos ("i?.2 ), a média do quadrado de R, e expressaremos o tamanho do polímero
tomando a raiz quadrada desta quantidade. Sendo assim, temos que:

( 1.15)
11=1 m=l 

como não há correlação entre as direções, então para n :f: m temos que
( 1. 16) 

e para n = m

( r;, . r;,, ) = ( r;, ) . ( r;, ) = ( ( r;, ) )2 = ( r;,2 ) ( 1. 17) 

então, obtêm-se que

( 1.18)
71=1 

vemos assim, que o tamanho do polímero é proporcional a N½ .

14 



Para calcularmos a função distribuição de probabilidade de R, assumiremos, por 

questão de simplificação. que o pol.únero de N Ugações, possua uma de suas pontas fixa 

na origem. Então, P(R,N) representará a probabilidade de que a outra extremidade do 

polímero esteja na posição R (7-
9

\ 

a qual é reescdta .usando a identidade 

8(r)=-
1-f dke ifr

(2n)' 

como sendo 

P( R, N) = -
1

-
3 f dk f d� f dr

2 • • •  f dr,, Exp[ík • (R -ir,, )]1/f ( { r,, } )
(2n) 11=1 

( l.19) 

( 1.20) 

(1.21) 

sabendo que 1/f( {r,,}) representa a função distribuição para a conformação polimérica e

que é dada por 

1/f({r,,})= TI lfl(r,,) (1.22) 
n=l 

onde lfl( r,,) denota a distribuição aleatória do vetor r,, de comprimento constante a:

lfl(r,,) = 4rr
� 2 8(lrl- a)

então. obtemos que 
N 

(- ) 
1 J - ;Uif 1-J ,- f d-IJE ( .k- - \,,(-)P R,N =--

3 
dke C.tj c12... 1;, xp -l ·1;,ff 1;, 

(2n) 11=1 

P(R,N)=-
1
-3 f dke ikR [f drExp(-ík·r,,)1/f(r,,)r

(2n) 

(1.23) 

(1.24) 

porém, a integral em r é calculada pela introdução das coordenadas polares (r. 8, cp), 

onde o eixo de referência de e é tomado ao longo do vetor k 
_ J eo 2,r n: 

f drExp(- ik • r,, )lfl(r,,) = --2 f r 2 dr f d<fJ f (sen e)Exp(- ikr cos 0)8(r - a )de 
4na o o o 
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f l- ( 
- _ 

) (- ) 
sen ka

l rExp - ik • 1�, 1/f 1�, = ---
ka 

substituindo a eq.(1.25) na eq.(1.24), obtemos 

se considerannos N muito grande, podemos fazer a seguinte aproximação: 

(
senka

)
N =(l-k2 a 2

)
N = 

Exp(-
-Nk 2 a2

J 
ka - 6 6 

substituindo-a.na eq.(1.26) obteremos 
... 

(
-

) 
1 J - ( - _) ( Nk 2 a 2 J . P R, N =-

3 
dkExp ik·R Exp ---

(2n) 6 

( 1.25) 

( 1.26) 

(1.27) 

Esta. equação assemelha-se a urna integral Gaussiana, que é bem conhecida sua 

solução, onde é dada por(ver Apêndice 1): 

(l .28)

onde a é uma constante positiva e b é uma variável complexa. Porém, se k,x e Rª 

representam as componentes dos vetores k e R , então obtemos: 

(
-

) 
1 J ( Nk" a 2

)P R. N =--3 dkª Exp ikªRª -
,x 

(2n) 6 

- 'I
( 

6n )½ 
( 

6R� 
J P(R, N)=-

( )3 
TI -

2 
Exp -- 2 2n a=x,y,z Na 4Na 

(
-

)=-
1 [(�)½]3 

(
-3(R;+R�+R:)

] p R, N 
( 

)1 .,.., 2 Exp 
2-,.., :i.2n 1va 1va 

( 3 )½ ( 3R.
2 

J P(R. N) = -,., Exp ---,., 2na� 2Na-

vemos assim que a função distribuição do vetor end-to-end é Gaussiana. 

( 1.29) 

Enfim , vimos que foi assumido que as orientações de cada ligação era aleatória e 

independente da orientação das ligações anteriores, isto significou que o polúnero era 

capaz de dobrar-se, cruzando em si mesmo em certas posições, o qual é fisicamente 
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impossível, pois duas porções da macromolécula não podem ocupar a mesma região no 
espaço. Agora, a fim de remediar este fato, consideraremos um modelo modificado para o 
polímero, o qual não permitirá tal situação, onde o vetor de ligação monômero-rnonômero 
r,,+i não é permitido voltar para o passo anterior, isto é, não pode tomar a direção do 
vetor - r,,, devendo tomar uma das (z-1) direções remanescentes de modo aleatório. 
Sendo assim o valor médio de r não será zero para um dado r,,. Denotando a média de , n+I 

- l - - (- ) (7-9l r em re açao a r por r teremos •
11+1 , li' 11+1 �! , • 

analogamente obtêm-se que: 

então, desenvolvendo a média do produto escalar de r,,+i e r,, obteremos 
(r,1+2 . r,,) = / (r,,+2); . r,,) = (-1 

1 )(r,,+l • r,,) = (-1 1)/ (r,,+l); . r,,)\ ,a+I Z - Z - . \ 11 

(r . ,: ) = (-1 ) 2

(r . ,: ) = (-1 ) 2

(,: 
2

) = (-1 ) 2 a 2 

11+2 " 
z -1 " " 

z - I " 
z -1

repetindo este processo obtemos um resultado geral da seguinte fonna 

sendo assim, a média do quadrado de R será dada por 

fazendo algumas substituições, teremos 

( 1.30) 

( 1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35) 
considerando N muito grande, então podemos refazer os índices do somatório, tal que: 
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( 1.36) 

No entanto, vemos que o nosso modelo modificado não nos fornece nenhuma 

mudança no resultado final, ou seja, (R.. 2 ) continua proporcional a N , para o caso de N 

muito grande. Assim, devemos ressaltar que as interações que ocorrem somente entre 

segmentos próximos ao longo da cadeia, são chamadas de curto alcance, referindo-se, 

somente, às distâncias ao longo da cadeia e não as distâncias no espaço. Na realidade, dois 

monômeros só irão interagir se estiverem -próximos geometricamente, mesmo que 

pertençam às porções distintas da cadeia. 

Fig. 1.5 - Representação esquemáüca do tipo de interação desprezada para o caso de uma cadeia ideal. Os 

monômeros II e m estão próximos geometricamente, no enumto estão clist.antcs na seqüência ela cadeia. 

Enquanto que as interações das quais dependem, somente, da separação espacial e não das 

distâncias ao longo da cadeia são chamadas de longo alcance, porém é necessário lembrar 

que estas interações também se referem às distâncias ao longo do polúnero. Um exemplo 

de interação de longo alcance é a interação de volume excluído, a qual previne que dois 

segmentos ocupem o mesmo ponto na rede, simultaneamente. 
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Podemos verificar que na distribuição estatística dos vetores end-to-end, eq.( 1.29),
a estrutura local da cadeia aparece somente através da ligação entre monômero-

monômero, de comprimento J�, 1 =a. não afetando de nenhum modo o todo do problema.

Notamos assim que o ponto fraco, porém importante nesta aproximação, é o desprezo das
interações entre monômeros n e rn, quando ln - mi é grande (ver Fig. 1.5). Quando este

tipo de interação é incluído, a cadeia deixa de ser Gaussiana.

Pode-se, então, concluir que o modelo Gaussiano não descreve completamente a
estrutura local dd polímero, entretanto isto é feito quando se refere as propriedades

• � extraídas com longos comprimentos de escala, onde algumas informações locais se tornam
inatingíveis. Porém, o fácil manuseio matemátic0 é a grande vantagem deste modelo.

1.5. 1 Distribuição dos Segmentos da Cadeia 

1.5.1.1 Função de Correlação 

Vimos acima que a cadeia potirnérica ocupa, aproximadamente, urna região

esférica, com diâmetro ("i?.. 2 )½ 
= ✓Na . Até agora, temos voltado nossa atenção ao

tamanho do polímero, mas é necessário obtermos informações da distribuição espacial
destes segmentos na cadeia, a qual a função de correlação 1-,{r) nos fornece. Focalizando

atenção em um segmento, seja um segmento n, diremos que g,,(r) representa a densidade

média de segmentos em uma posição r do segmento n. Se R..,,(1,2, ... ,N) representa os
. - d - d (, 7-9J vetores pos1çoes os segmentos, entao po emos escrever-, 

onde a função de coITelação g.._r) é a média de g,,(r) sobre todos os valores de 11 

(1.37)

( 1.38)

sendo k o vetor espalhamento de onda, então a transformada de Fourier de 6{r), 1:,{ �, a

qual pode ser medida experimentalmente através de espalhamento de luz, raio X,
espalhamento de nêutrons, é expressa da seguinte forma:
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1 ,V ,V 

g(k)= f g(r}, iki'dr=-fLL(a[r-(R111 -R11 )])e;f.;'drN n=I m=I 

( 1.39)

g(k) =-

1 f f (Exp[ik · (R111 - R,, )])N 11=1 m=I 

( 1 .40)

1.5.1.2 Raio de Giração 

Ao trabalharmos na região de k muito pequeno, obtemos um certo comprimento
característico R

g
, denominado raio de giração. Sendo assim, assumindo k pequeno na

eq.(1.40), podemos obter uma expansão em relação a k . tal que

( 1.41)

definindo o parâmetro R
g 

por

( 1.42)

então, obtemos uma expressão da função de correlação em termos do raio de giração da
seguinte forma<7

•
9
l:

(1.43)

A vantagem do raio de giração R
g 

sobre a distância entre os extremos ( R") é que
o primeiro pode ser medido experimentalmente e abrange não só cadeias lineares, mas
também cadeias ramificadas. Agora, se definirmos o centro de massa da cadeia Rc;, como
sendo
- 1 ,V -Rc; =-LR,, N 11=1 

( 1.44)

tendo como R,, a posição do segmento n, podemos obter urna nova formulação para o
raio de giração R

!i
, tal que
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(1.45) 

onde nos é possível facilmente verificar o retorno fornecida pela eq.( 1.45) para a 

fonnulação dada pela eq.(l.42) 

, } N (( - 2 - - - 1 )) R; =-I R11 -2R,, ·RG +Rc;-
N 11=1 

2 1 N\(-2 - (] N_l (1 N_l(l N_)J)Rg =-I R,, -2R11 • -IR,,, + -IR,,, • -IR; 
N 11=1 · N 111=1 N 111=1 ... N t=I 

R;= -IR,,---2
IR,,· IRIII +-3 :E IRlll ·R; 

, \ } N - , 2 N - ( N _ ) 1 N ( N _ _ J) N 11=1 N fl=I m=I N 11=1 m,i=l 

R/i = -I_,R,, -� I R11 . RIII 
2 

(
l N - 2 l N_ -)
N 11=1 N 11,111=1 

7 1 N ((- - )2 ) 
R; =--2 I R,, -R,,, 

2N 11.111=1 

Entretanto, de modo análogo a distância entre os extremos, dada pela eq.(1.18), 

podemos infeiir que: 

( 1.46) 

sendo R,, e R,,, os vetores posições dos segmentos n e m, respectivamente. Deste modo

teremos 
2 N 

2 ª 'I l 2 RI/ 
=--,, k.J n-m a 

2N- 11 ,111=1 

para grandes valores de N o somatório pode ser substituído por uma integral 
, N N o N 11 

R/i :i = 

a
- :i f dnf ln -mi dm = ª-

2 
f dnf (n - m) drn 

2N o o N o n 

R 2 = }__Na 2
li 6 
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( 1.48) 
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utilizando a expressão para ( R.'2 ), dada pela eq.( 1.18), obtemos 

( 1.50) 

De modo similar, podemos calcular i(f). Uma vez que a função distribuição de 

( R,, - R.
111

) é Gaussiana, o termo em exponen<.:ial na eq.( 1.40) pode ser expresso da

seguinte fonna: 

\Exp[ik (R,, - R., )]/ = Exp[ L�F-l (ik. )\(R,, - R,,,). (R,, - R,,,)J] 

{ExP[;k { R,, - R,,,)]/ = Exp[ (-½).IY ({ R,, - R,,.):)] ( 1.52) 

através da eq.(1.18), podemos obter 

((R _ R )
2
) 

= ln- ml a. 2

,, m a 3 

então, substituindo a eq.( l.53) na eq.(1.52), tem-se que 

( [• - ( - - )]) [( 1 J 
- 2 (

ln - mi a 2

J
]

Exp ik • R/1 -Rl/1 = Exp 
-

2 a=�V-� 
ka 3 

colocando a eq.(1. 54) na eq.(1.40), teremos 

g(f)=-1 f f Exp[-a"k" ln- mj]
N 11=l m=I 

6 

( 1.53) 

(1.54) 

( 1.55) 

fazendo N muito grande, podemos transfonnar os somat61ios em integrais, tal que: 

22 



� 

resolvendo-a, obtemos a seguinte solução:

g(k)= f::4 [(PR:-1)+Exp-(k2R:)]
li 

aoora fazendo x = kR teremos
t:, 

• li 

g(k) = 2� [ Exp(-:: x 2 )- 1 + x 2 ]
X 

g(f) = Nf(x).
onde f(x) é dada por

f (x) = � [ Exp(- X 
2 

)- ] + X 
2

]
X 

portanto, podemos extrair a seguinte fonna assintótica para g(f):

N(t- f't: J 
2N 

k2R 2

1/ 

para jkjR11 ))l

( 1.56)

( 1.57)

( 1.58)

( 1.59)

(] .60)

(1.61) 

porém, por conveniência de cálculo e através de uma iJ1terpolação entre estas duas formas
apresentadas acima, a função g(f), também chamada de função de Debye, é aproximada

( 1.62)

1.6 Cadeias Não Ideais 

No modelo tratado na seção anterior, apenas as iJ1terações entre monômeros
próximos na seqüência da cadeia foram levadas em consideração. Deste modo, este
modelo permitia que a cadeia dobrasse em si mesmo, tal que segmentos distantes ao longo
da cadeia ocupasse a mesma região no espaço, sendo fisicamente impossível uma vez que
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cada monômero possui seu próprio volume finito. No entanto, em cadeias reais, elementos 

distantes na seqüência podem se aproximar o suficiente a ponto de começarem 

interagirlfig.( 1.18)]. Esta espécie de interação produz um rearranjo espacial entre os 

monômeros(efeito estérico) fazendo com que haja um aumento de volume em relação ao 

que seria obtido no modelo da cadeia ideal, o qual não possui este tipo interação. 

No caso da modelagem, este efeito é representado pela imposição da condição de 

4ue dois segmentos não ocupem o mesmo sítio na rede. Este tipo de condição é chamado 

de Efeito de Volume Excluído('.!.IJ.l4
l, tal que modelando o polímero como sendo uma

caminhada em uma rede, este efeito nos gara1,1te que sítios ocupados não sejam, de 

nenhum modo, npvamente visitados, gerando assim uma caminhada a qual denominamos 

de Caminhada Auto-excludente(Se(fAvoiding Walk - SAW)° 1
•

1'.!l_ que pode ser observada 

na fig.(1.19). Desta forma, vemos que uma cadeia ideal é urna caminhada 

aleatória(Random. Walk), sem o efeito de volume excluído. O polúnero assim 

representado(SA W) é chamado de Cadeia de Volume Excluído. 

Para uma cadeia ideal, devido a existência da possibilidade dos segmentos se 

justaporem gera-se um polÚ11ero comprimido, ou melhor, um polúnero bastante 

encaracolado; entretanto, se acrescentarmos a restrição de que nenhuma sobreposição dos 

segmentos é permitida, esperamos que a distribuição de tamanho seja alterada para valores 

maiores, tal que a cadeia de volume excluído apresenta-se maior do que uma cadeia ideal 

com a mesma quantidade N de monômeros. 

o o o o o o o o o o o o 

o o o o o o o o o o o o 

o o o o - - - o o o o o ... -

o o o • fe • .. o o o o o 

o 
- - ... o • -O o o o o o - -

o • �- o o o •• • -O o o o 

o o 10 o o o •• fit •• o o o 

o o 4► � o o o o .. -IA o -

o - - ... o o o o o o • o .... - -

o ,. o o o o o o o o o o 
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o o o o o o o o o o o o 

Fig. 1.6 - Representaçflo gráfica de uma caminha auto-excludente(SA W) em uma rede quadrada. 
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Na verdade, em polímeros reais, a natureza das interações de longo alcance 
incluem interações do tipo van der Waals, volume excluído e aquelas com as moléculas do 
solvente. Mas essencialmente o que conta é a interação entre as partes da cadeia que 
mesmo estando distanciadas na .seqüência, se aproximam o suficiente para que uma 
interação de curto alcance tenha lugar, como podemos verificar na Fig. 1.6. Nesta figura. 
observa-se que os elos n e m são separados por uma grande distância na seqüência dos 
elos, porém estão muito próximos geometricamente, de modo que podemos descrever a 
interação entre el�s por uma expressão do tipo<9-

1
ºl:

u(r) = vkT8(R,, - R,,,) (1.63) 

onde v é o volume excluído (dimensão de volume). A energia total de interação é escrita 
como: 

l N N - -

V =-vkT f dnf 8(R,, -R,,,)clm 
2 o o 

( 1.64) 

se considerannos uma concentração local de segmentos dada por: 
N 

c(r) = I 8( r - R,,,) = J o( r - R,,, )t1111 
111 o 

podemos rescrever a eq.(1.64) de uma fonna mais elucidativa como: 
N 

V = J_vkTj[c(r)J2 dn
2 o 

( 1.66) 

O que é importante se tirar como conclusão da eq.( 1.66) é que a interação de volume 
excluído possui uma dependência da concentração de monômeros c(r) na solução. 

Cadeias polirnéricas reais em bons solventes possuem as mesmas características de 
uma caminhada auto-excludente(SA W) em uma rede. Os aspectos referentes ao tamanho 
da cadeia são representados pelo expoente v pela seguinte lei de escala: 

( 1.67) 

que ainda hoje não se tem uma metodologia de cálculo que nos leve ao resultado exato, 
obtido por simulações, sendo o melhor valor obtido para v aquele dado por Grupo de 
Renormalização<12•

15
-
17

l_ Nesta metodologia de cálcu10< 12
·'

5
l tem-se que v = 0.588. 
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Descreveremos a título de ilustração o cálculo do expoente u obtido por F/or/ 141
. uma 

vez que se trata de um método bastante fácil de se entender. 

1.6.1 Cálculo de Flory para o expoente v 

P. Fl01yl2•
5

•14l formulou um simples e brilhante método para o cálculo do expoente

v , fornecendo excelentes valores para todas as dimensões espaciais. Seu método baseia­

se essencialmente em considerar o balanço de dois efeitos: a interação repulsiva de volume 

excluído, a quaL tende a alongar o polímero, e a energia elástica, originária da 

conectividade. da cadeia, a qual tende a en�olher o polímero. Aqui nesta seção, 

descreveremos resumidamente este método e as aproximações envolvidas. 

Inicialmente, consideraremos uma cadeia polimérica com certo raio R, constituída 

de N monômeros, tal que possamos estabelecer que sua concentração interna de 

monômeros e. é dada por: ..._ 
111t 

( l.68) 

que nos dá a informação da quantidade de monômeros contidos dentro do volume da 

cadeia R d . As interações entre os monômeros são descritas pelo parâmetro de exclusão 

de volume v(T), que é uma função do volume de cada monômero e/ e do parâmetro de 

interação de Fl01y X. Segundo FlOJy(25
'

14
) v(T) é dado por: 

( 1.69) 

que no caso de estarmos trabalhando com bons solventes v(T) >O. 

Uma importante aproximação é feita quando desprezamos todas as correlações 

entre os nionômeros(Teoria de Campo Médiof·5•
14

•
18

J, tal que a média do quadrado da 

concentração é substituída pelo quadrado da média da concentração, ou seja, 

( 1.70) 

Agora, considerando que as interações entre os monômeros sejam do tipo van der Waals, 

então podemos estabelecer que a energia por unidade de volume E1 , para um dado par de 

monômeros é descrita como função da concentração de monômeros e 2 
, tal que: 

mi 
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(I.71) 

de tal modo que ao integrarmos a expressão acima, eq.(1.71), sobre todo o volume da 

cadeia de raio R, obteremos que a energia total entre os monômeros da macromolécula

será dada por: 

E
1 
= Tv(T)c2 R d

( 
N 

)
2 

E1 
= Tv(T) -d 

R d

R 
... 

( 1.72) 

acrescentando ao cálculo da energia total da cadeia, Flmy<2-
5

•
14

) supôs a existência de uma 

i nteração do tipo elástica, da seguinte forma: 

TR2 

E=-
2 Na2 ( 1.73) 

Portanto, a energia total da cadeia será a soma das energias tipo van. der Waals E
1 e a

energia elástica E
2

, tal que: 

possuindo um mínimo quando R = R
1

, onde teremos 

;JE1 

aT

R/+d 
= v(T)N 3 a2

1 

R
J 

=[v(T)N 3 a2 ]2+d

[ ]_L. ' R
1 
= v(T)a2 2+d Nº:"

R
1 
= N 11 

onde o expoente<25
.

1 4> v será dado por:
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( 1.76) 

( 1.77) 



v=--

2+ci 
( 1.78) 

que nos casos uni-dimensionat<2 -
5

·'
4 > e tri-dirnensionai<2•

5
•
14

l teremos v = 1 e v = i
5,

respectivamente. Valores estes que estão em boa concordância com os obtidos 

numeticamente0I •12•15>_

1.7 Metodologias de Cálculo 

1.7.1 Grupo·de Renormalizaçãor3,
15

-
17J 

....

A idéia básica deste método consiste em transformar um sistema de muitos graus 

de liberdade, em um outrn equivalente de poucos graus de liberdade, sem que hi.tjn 

qualquer mudança qualitativa em suas propriedades. Isto requer que devemos ter um 

sistema mínimo que represente o todo, isto é, deve existir um comprimento mínimo que

contenha todas as informações do todo, denominado de comprimento de correlação ç. No 

entanto, para se estabelecer que uma parte do sistema possua o mesmo comportamento 

que o todo é estritamente necessário que este se encontre "infinitamente" correlacionado. 

Um polímero é um sistema com pecuLiaridades que o classificam como um bom 

candidato à aplicação da técnica do Grupo de Renormalização. O fato de se poder 

mapeá-lo por uma caminhada auto-excludente(SAW), significa que ele exibe auto­

similaridade, ou seja, pode-se obter uma fração do sistema que nos forneça 

qualitativamente todas as prop1iedades do sistema, como um todo. 

Consideremos, assim, uma cadeia polirnérica linear dissolvida em um bom 

solvente, possuindo N monôrneros, cada um de tamanho a, em um espaço de dimensão 

d , onde o raio de cada monômero é definido em termos do raio da cadeia ideal R
0 

, tal 

que: 

( 1.79) 

As interações entre cada monômero são descritas pelo parâmetro de exclusão de 

volume v(T): 
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( 1.80) 

onde X é o parâmetro de interação de F!01y<25
•
14>_

Como estamos trabalhando com um bom solvente v(T) >O. devido ao fato de que 

as interações entre monômero-monômero, monômero-solvente, solvente-solvente são 

atrações do tipo van der Waals. 

Por questões essencialmente práticas no formalismo matemático introduziremos 

uma constante de acoplamento adimensional u(T) 

v(T) 
u.(r) =-

d
-= 1-2x .. (l.81) 

onde u(T) nos informa que tipo de interações a cadeia polimé1ica possui. 

Dividiremos a nossa macro molécula em N / g sub-unidades, agrupando R 

consecutivos monômeros de cada uma destas sub-unidades, podendo ser visto na Fig. J .7. 

Fig. 1.7 - Divisão de uma macromolécula de N monômeros em g grupos de N /g monômeros. 

Isto significa qqe a distância entre as novas unidades passarão a ter um novo valor, sendo 

assim, a interação entre os monômeros será renormalizada, tal que: 

onde a, é o raio e v
1 

é o parâmetro de exclusão de volume para o conjunto de 

monômeros dentro deste sub-grupo. 

No entanto, devemos observar que todas as interações, ou seja, as interações dos 

monômeros dentro e entre os sub-grupos, (ver Fig. 1.8), devem ser levadas em conta no 

cálculo dos novos raio a
1 

e parâmetro de exclusão de volume v,. 

29 



Subunidod e [ 

(a) (b) 

Fig. 1.8 - (a) Representação esquemática das interações
""
cntre monômeros de um mesmo sub-grupo g. 

(h) Representação esé1uemálica das interações entre mon�meros de diferentes sub-grupos g.

No que se refere aos tipos de interações, se estivéssemos tratando com cadeias ideais, 

teríamos somente o termo: 

(1.82) 

que corresponde as interações dentro da sub-unidade( ver Fig. 1.8a). Porém, como todas 

as interações serão consideradas, devemos inserir algum termo que represente as 

interações entre as sub-unidades( ver Fig. 1.8b), tal termo seria composto pela interação 

dentro da sub-unidade multiplicado por uma função h que dependesse do número de 

monômeros dentro da sub-unidade g e do tipo de interação entre estes monômeros, que é 

fornecido pela constante de acoplamento u(T). Portanto, este tipo de interação seria 

fornecida pelo fator 

a
0 g

½ h(g,u
0

) 

onde a interação total da sub-unidade seria dada por: 

a 1 =a
0 g

½ [1+h(g,u0 )] 

(1.83)

(1.84) 

Se considerarmos que as sub-unidades estejam bastante próximas, ou seja, o caso 

da cadeia ideal, teríamos g 2 interações monômero-monômero, entre os dois conjuntos 

de g monômeros. Deste modo, as interações (sub-unidade)-(sub-unidade) seriam a 

quantidade total de interação monômero-monômero vezes o tipo de interação entre eles, 

sendo assim, obteríamos que: 
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( 1.85) 

Porém, devemos garantir que as sub-unidades não se interpenetrarão, corno também 

devemos nos lembrar que as interações são do tipo van der Waals, onde temos que o 

potencial cai com a distância da forma a-d, portanto o número de pares de interações

se1ia menor do que g 2 por um fator l(g, u.), que nos garantiria tal estado físico.

( 1. 86) 

De moda análogo a eq.(1.81 ), podemos obter urna nova constante de 

acoplamento a1 :

substituindo a eq.(1.87) na eq.(1.86), teremos 

u1 = a�d g2u0 [I- t(g,u0)]

substituindo a eq.(1.84) na eq.(1.88), obtemos 

l/,1 = 
{ao g ½ [ 1 + h.( g, Ua ) ]}-d { g 

2 
LI o [ 1 - l ( g' Uo)]}

_ 
( -d ) 0 

2_½ [ 1 -l ( g , u0 ) ]
U1 - ªº li.o ô d 

[1 + h(g, u0 )] 

2_dl { [ 
[1-l(g, uo)] ]}u = li g 12 1 - 1 - --=-------=--! 0 • [1 + h(g,u0 )r 

introduzindo um parâmetro K, tal que 

( ) 
_ 

-{ [} -/ ( g, Uo)] } k g, U0 -1 ]d 
[1+h(g,u

0
) 

e substituindo este termo na eq. ( 1.89), teremos 

U1 = u
0 g2-½ [1 - k(g, U0)] 

...

(1.87) 

(1.88) 

(1.89) 

( 1.90) 

(1.91)

A idéia essencial do grupo de renormalização é repetir este tipo de operação, tal 

que na próxima interação teremos sub-unidades de g 2 monômeros, com raio a 2 e

constante de acoplamento v2 . Deste modo, podemos gerar uma seqüência do tipo: 
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onde as operações sucessivas podem ser representadas pelas equações<31
: 

a,,, = a,,,_1 g½ [1 + h(g, u,,,_1 )] 

um = um-1 g 2-½ [ 1- k(g' u,,,_1)] 

( 1.92) 

( 1.93) 

Como foi admitido interações de longo alcance, então podemos subdividir a nossa 

macromolécula diversas vezes, tal que o número de sub-unidades será grande, valendo 

salientar a condição de que estas não se interpenetrarão, desta forma para o caso tri­

dimensional teremos que estas sub-unidades se comportarão como se fossem esferas, onde 

a constante de acoplamento deverá escalar com o volume da sub-unidade a:,, de modo 

análogo a eq.(1.81) 

1)111 
Um =-d 

ª111 
(1.94) 

porém ao aproximarmos de m➔ 00, a constante de acoplamento, como também o raio do 

monômero chegarão a um valor limite 

u
m 

➔u*
a

m 
➔a*

que na linguagem de grupo de renormalização é denominado de ponto fixo, ou seja, à 

partir deste ponto todas as transformações permanecerão constantes, ou melhor 

inalteradas, tal que das equações ( 1.92) e ( 1.93) , respectivamente, obteríamos: 

g ½ [ 1 + h(g, u,,,_1)] = 1 

g 2-½[1- k(g, U 111_1 )] = 1 

( 1.95) 

(1.96) 

No entanto, para cada iteração, podemos escrever o raio R do polímero como 

função da quantidade N de elos(monômeros) e da constante de acoplamento u , tal que: 

R=af(N,u) (1.97) 

de modo semelhante escreve-se 

(1.98) 
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( N )R=a • -- 1.1 
111-I .f g 111-I • 111-I 

onde podemos obter que 

(l .99)

supondo que a cadeia atu1ja o ponto fixo na m-ésima transformação, podemos. então 

retirar a constante de acoplamento u do argumento da função f e chegarmos a 

expressão: 

.f( 
0

�-1 J 
ô ª"' 

f(!!_) = ª111-1
• Ili g 

(1.101) 

onde uma vez que a cadeia é considerada ideal, a função .f deve reproduzir os mesmos

resultados obtidos para urna caminhada auto-excludente(SAW), método Monte Carlo que 

simula o crescimento do polímero ideal. Sendo assim, tem-se que: 
V 

am = g 
ª 111 -I 

comparando com a eq.(1.92), podemos tirar que: 

aplicando o logaritmo natural em ambos os lados, obtemos: 

ln g½ • ln[ 1 + h(u,:1)]
V = -- + ---'�--� 

ln g lng 

(½) ln g ln[ 1 + h(u;:'1 )]
V= -'---'---+ 

ln g ln g 
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restando-nos, apenas, obter as funções h(u) e k(u) de modo que possamos, de forma 

unívoca, obter o valor de v, na eq.(1.104). Portanto, vemos a enorme vantagem de 

trabalharmos com o grupo de renormalização em vez dos métodos clássicos, tal como 

teoria de perturbação, onde nos é necessário um ferramental de informações muito maior e 

uma matemática um pouco mais complexa. 

1. 7.2 Campo Auto-Consistenter1ª· 19J

Consideremos uma cadeia ideal constituída por uma coleção de N "contas" (como 

se fosse um· colar), localizadas nos pontos ... �, � ,S , .. . ,i¼. Seja a= Jr; - r;_
1 
J o 

comprimento de cada ligação entre duas contas- adjacentes na cadeia, cujas extremidades 

estão localizadas nos pontos r e r'. Supondo que cada monômero esteja submetido a um 

potencial cp(r), então podemos defü1ir o parâmetro w
ij 

como sendo o peso estatístico 

para uma dada seqüência em que a i-ésima conta esteja na posição "f; e a j-ésima na 

posição ri, tal que seja dado por: 

f·(- - ) -fN(r-) w .. = r. - r. e ' 
lj , 1 } 

(1.105) 

onde .t( �i ) é um fator normalizado fornecido pela seguinte expressão: 

( 1.106) 

que nos assegura lii = a e que todas as direções dos elos sejam igualmente prováveis. 

definindo, assim, a aleat01iedade das ligações. 

Dé.ste modo, podemos definir o peso estatístico G
N 

(r, r') para esta cadeia de N 

ligações, como sendo dado por: 

GN (r,r') = I1 w
ij

i=l 

com j = i+ 1 
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Como a macromolécula cresce de r até r', então podemos ana]jsa a cad�ia em duas 

partes: o crescimento de r até s em um passo e o restante do crescimento que vai de s

até r' em N -1 passos, ou seja, 

(1.108) 

Se considerarmos um número muito pequeno de moléculas presentes, que é o que ocorre 

em soluções diluídas, o potencial <jJ(r) será também pequeno, o que nos pe1111ite fazer: 

Exp[- {34>(r)] = l -_{34>(r) ( 1. 109)

substituindo este resultado, como também a eq.(1 '.'i 06), na eq.( 1.108) obtemos: 

GN (r, r') = J (-
1
-,-)8(r -s)GN-\ (s, r')ds+ 

4n-a 

-J (-1-
2 

)8(r - s)(/3</J(r ))c N-\ (s, r')ds 
4.n:a 

(1. 110) 

Por outro lado se s é suficientemente próximo de r, podemos fazer a seguinte expansão: 

G (- -,) G (- -,) (-, .,..)dGN-11 N-1 s, r = 
N

-1 r' r + r 
-

s ds -<=r

substituindo a eq.(1.111) na eq.(1.1 IO) e após realizadas as integrações para: 
2 

cN (r, r')- G
,v_1 (r, r') = -/3</>(r)cN-\ (rJ') + ª6 

V2G
N_1 (r, r') 

ou ainda, se cd'nsiderarmos que em uma escala macroscópica 

o que fornece:

acN
-1 (rJ') ª 2 

V"G (- -,) /3</>(-)c (- -,) ------=-- r r + r r r 
éJN 6 N , 

N-l , 

Portanto, observa-se a semelhança entre esta última equação e a seguinte: 

dlfl -,,
2 

2 (-) - in.- = -- V lfl + V r lfl
ôt 2m 
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que é a equação de Schrodinger para uma partícula não relativísticé�11-2'l, de função de 

onda lfl(r,t), onde n é a constante de Planck e m a massa da partícula. Deste modo, 

podemos obter as seguintes relações: 

t = iNh 
t,2 

2m 6 

V(r) = cp(r)
T 

onde observa-se que N desempenha o mesmo pàpel de um tempo imaginário. 

( 1.1 16)

( LI 17) 

( L 118) 

Portanto, podemos concluir que a cqnformação de uma determinada cadeia 

polimérica corresponde a um caminho particular de uma dada partícula. Esta analogia 

entre a estatística de uma cadeia ideal submetida a um potencial externo e o problema de 

mecânica quântica é decorrente do fato de termos mais de 50 anos de manipulação das 

equações de Schriidinger, fornecendo-nos uma larga gama de métodos de soluçõe{:11•21 l. 

Definindo um operador linear Ç, tal que seja dado pela seguinte forma: 

como também, introduzindo um conjunto de auto-funções, dado por: 

u, (r), u.
2 
(r),. .. , uk (r), u, * (r), u/ (r), ... , uk • (r) 

podemos estabelecer (u
k (r) é proporcional a u

k (r), tal que 

(1.119) 

( 1.120) 

(1.121) 

onde e0 representa o estado fundamental. Então, pode-se mostrar que u
k (r) satisfaz as 

seguintes relações: 

f uk. (r) ull/ (r) dr= 8km 

L u/ (r') u
k (r) = 8(r - r') 

(1.122) 

( l.123) 

sendo assim, podemos fazer uma expansão em auto-funções para a função GN (r, r'), que 

satisfaça as equações (1.114), (1.122) e (1.123) , que se apresente da seguinte fonna: 

GN (r, r') = L uk * (r') uk (r) Exp(- Nek ) (1.124) 
k 
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a substituição desta última equação na eq.( 1.114), nos fornece:
2 

I. Ek uk. (r')uk (r)Exp(- NEk) = - ª6 I. V 2 [uk. (r')uk (r)Exp(- NEk)] +
k k 

+/3</J(r) I. uk. (r')uk (r)Exp(- NEk)

que dá finalmente

( 1.125)

(1.126)

Se <fJ(r) representà o potencial que cada conta da cadeia está submetido, então se <fJ(r) é
nulo o que temos é um problema semelhante ao dê uma partícula quântica livre, o que não
representa um caso de interesse. No entanto, sg <fJ(r) é atrativo, os autovalores Ek 

serão
todos negativos e teremos, assim, estados ligados, onde o mais baixo estado ligado
co1Tesponde a:

( 1. 127)

Porém, se <fJ(r) é repulsivo, os autovalores Ek 
serão todos positivos e veremos que

existirá urna boa diferença entre o estado fundamental e o primeiro estado excitado, em
conseqüência do estado fundamental possuir bastante peso na expansão de G 

N 
(r, r').

Utilizando a eq.( 1.29), que é a função distribuição de rnonômeros para uma cadeia
ideal de N ligações, então, quando fizéssemos N = 1, obteríamos o caso de um sistema
constituído por uma única ligação. Sendo assim, podíamos representar a variação da
entropia para este sistema obtido da seguinte forma:

- - -com r = rN+i - 'iv (1.128)

como também utilizando a expressão da energia livre F, dada pela eq.( 1.8), podemos
obter:
óF=-TóS 

3T 2 
óF=-r 2a 2

(1.129)
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tal que utilizando a eq.( 1.129) e fazendo uma analogia com a equação da trajetória de uma 
partícula de massa m = 31/a 1 submetida a um campo de força Fe , podemos então inferir
que: 
F- - --

- 3T(d 2r) 
e - - ª1 éJN2 ( 1.130) 

onde N desempenha o papel de um tempo imaginário, equivalente aquele obtido pela 
eq.(1.116). Agora, sup,5;mdo que F, derive de um potencial <p(r), então temos: 

... (1.131) 
podemos, assim, obter que: 

3T ( ;Ji )
2<p(r)- -- -- = constante2a 2 éJN (1.132) 

considerando que a força F seja do tipo elástica, portanto quando tivermos uma cadeia 
bastante longa, tal que r ➔ oo, veremos que a elongação será nula, conseqüentemente a 
força, deste modo vemos que a constante de integração na eq.(1 .132) será zero, e que 

3T ( dr )
2 <p(r) = 2a 

2 dN 
(::)=( 2

3
� wf 

(d�)=(2a 2

</J(r))-½
dr 3T (l .133)

corno o potencial <p(r) descreve a repulsão média que um determinado segmento 
localizado no ponto r sofre devido a presença dos outros segmentos, então podemos 
defini-lo da seguinte maneira: 
<p(r) = Tv p(r) (l.134)
onde v representa o volume excluído por monômero e p(r) a densidade total de 
monômeros no ponto r. Po1tanto, podemos rescrever a eq.(1.133), tal que: 

( ) ( )-½ 
dN 2 ~ _ -
� =a -vp(r) dr 3 (1.135) 
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como também, é fácil visualizar 4ue uma pequena varia�ão da quantidade de monômeros
cfN pode ser representada do seguinte modo:
dN = p(r)(A)dr
onde A é a área ocupada por esta pequena quantidade, que pode ser dada por:

- - -A= 4m--::2 com r = r;+i - r;
então, através da eq.(1. 136) podemos ter que;
d� = 4nj,f [P (r)]dr 

substituindo esta última equação na eq.(1.135). têm-stque:

(~(-)).½ --2 p r = r :. ~(-) _-4/ 
p r =r 7

' 

colocando a eq.(1.139) na eq.(1.135), teremos:
( dN) ( --•1)-½
-=- = const. r " dr 

integrando esta última equação, obtemos:
r(N) = const. N¾ 

( 1.136)

(1.137)

(1.138)

( 1.139)

(1.140)

(1.141)
que é o resultado·obtido por Flo1yc 14

\ que foi comentado na seção 1.6. 1, sendo que Fl01y
utilizou um poço quadrado, onde o potencial <jJ(r) que cada monômero estava submetido
era constante.
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Confinamento de Macromoléculas 

2.1 Introdução 

O conhecimento das propriedades de conformação de uma macromolécula, mais 

especificamente de polímeros adsorvidos é de considerável importância tanto para a 

ciência dos cólóides como tecnologicamente. No que se refere ao lado experimental, 

grandes avanços foram feitos, podendo ressaltar-se de modo singular os resultados 

obtidos por Vinceni22l. No entanto, para este fenômeno dois casos são bastantes distintos: 

(i) os polímeros adsorvidos podem estar ancorados tanto por uma como ambas as partes

terminais da cadeia (ii) os polímeros podem ser homogêneos, de tal modo que todos os 

segmentos da cadeia possuem igual energia livre de adsorção. 

Discussões acerca da distribuição de monômeros destes polímeros adsorvidos, 

cujas terminações ancoram-se em superfícies, foram, inicialmente, realizadas por 

Hesselink(23l, que considerou estas cadeias como ideais e as modelou através de uma 

simples caminhada aleatória, sendo somente por volta de 1975, que os efeitos de exclusão 

de volume foram incorporados a estes problemas de formação de pontes entre as 

superfícies por macromoléculasc24
-
26l. 

Dentre as diversas áreas de aplicabilidade do entendimento do comportamento de 

macromoléculas entre duas superfícies, podemos ressaltar no mínimo cinco áreas da 

ciência de polímeros que tal conhecimento é de fundamental importância. A primeira trata 

do estudo dos efeitos das soluções poliméricas na estabilidade de colóidesC33l, onde neste 

caso observa-se que a presença das cadeias poliméricas pode influenciar nas intensidades 

das forças entre as partículas coloidais. Se a interação entre a macromolécula e as 

partículas coloidais é atrativa, então as cadeias poliméricas são adsorvidas nas superfícies 

das partículas coloidais, de tal modo que a interação efetiva entre estas partículas passa a 

ser repulsivaC34
-
37

l_ Entretanto, quando a interação colóide-polímero é repulsiva ou nula, 

não há adsorção das cadeias poliméricas nas superfícies, tal que a concentração dos 
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monômeros cresce com a distância entre estas superffcies, contribuindo, desta .forma, com 

uma energia interfacial positiva e conseqüentemente resultando uma interação efetiva do 

tipo atrativa. Este efeito tem sido bastante discutido em diversos trabaU1os no campo 

científico , nos quais parâmetros como a solubilidade da solução e o tipo de pol.únero 

envolvido no problema são variados, a fim de que se obtenha uma maior e completa 

informação acerca deste efeito dos polímeros na estabilidade de colóidesm•31 
)_ A segunda,

têm-se observado que no crescimento de cristais poliméricos lamelares, fios de polímeros 

conectam, ou melhor, interligam lâminas cujas separações são muito maiores do que a raiz 

quadrada do valor médio da distância entre os extre'Tnos do polímero <38l
. Sendo bastante 

necessário conhecermos para este problema a fraç_ão de monômeros que interligam as 

superfícies, como função da separação existente entre as mesmas, corno também devemos 

saber o peso molecular da c.;adeia e a intensidade da atração das placas pelos monômeros. 

A terceira, a possibilidade de usarmos longas cadeias poliméricas para formarmos uma 

ligação mais adesiva entre as placas faz a necessidade de conhecermos a natureza da força 

efetiva entre as placas, como também a forma e a extensão da ponte construídan941 l
_ A 

quarta, em virtude de não se conhecer experimenta�nente o que vem a ser a separação 

entre as camadas de bilipídios, in vivo, especula-se que exista uma separação causada 

pelas moléculas entre as camadas dos lipídios, decorrência da competição clássica da 

energia com a entropia. De tal modo que a energia aumenta com o decrésc.:imo da 

separação das placas, em virtude do número de interações com a superfícies ter 

aumentado, porem observa-se concomitantemente um decréscimo na entropia 

configuracional do sistema. Entretanto, ignorando os efeitos de exclusão de volume, a 

teoria não prediz a existência de alguma separação intermediária, de tal modo que as 

separações preferidas e igualmente prováveis são zero ou infinita. A quinta, devido à 

existência de evidênc.;ias de que polúneros podem obstruir poros capilares, cujas dimensões 

são muito maiores do que as moléculas dos polúneros, nota-se, novamente, que se faz 

necessário determos um certo conhecimento no que se diz respeito ao comportamento 

destas macromoléculas entre superfícies, mais especificamente no que se refere a 

probabilidade de fonnação de pontes poliméricas. 
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Portanto, vê-se também que o problema de confinamento de um polímero entre 

duas placas constitui, não somente, um problema de interesse tecnológico, mas também 

biológico. Podemos citar como exemplos: a aderência de lipídios nas paredes dos vasos 

sangüíneos, a ação das células T(42) na membrana de células defeituosas, as enzimas no 

sistema imunológico dos mamíferosc43l, a constituição de membranasl44l, etc. Como 

também devemos ressaltar que o emprego de diversas metodologias de análise para o 

estudo do fenômeno, tais como: escalonamento de sistemas finitol11 . agregação com 

difusão limitada(DLA/46
\ simulações Monte Carü/4749

\ campo auto-consistente(lxl, tem, 

não somente,· ampliado o campo da aplicabilidade, mas também explicado diversas 

propriedades deste importante processo, que é o confinamento de macromoléculas entre 

supedícies. 

Portanto, motivados pela gama de processos físicos, quúnicos e biológicos nos 

quais o conhecimento • do problema do confinamento de estruturas poliméricas ou 

similares, se faz necessário para entendermos e explicarmos as diversas propriedades de 

comportamento destes sistemas, é que neste Capitulo 2 dedicamos toda atenção à este 

problema, mais especificamente quando acontece entre duas superfícies planas. Desta 

forma, na seção 2.2 descreve-se um fenômeno característico que ocorre nos processos de 

confinamento de macromoléculas, que é a formação de pontes entre as superfícies de 

confinamento, formulando-o matematicamente na seção 2.3. 

2.2 O Problema da Formação de Pontes 

De modo geral, quando duas superfícies sólidas suficientemente próximas são 

imersas em uma solução polimérica, devido à adsorção de polúneros nas placas, algumas 

cadeias poliméricas conectarão estas duas superfícies, formando, assim, uma "ponte" 

entre estas placas. Este efeito tem sido verificado experimentalmente e utilizado para 

justificar alguns fenômenos observados em medidas de força entre as superfícieli9
-
411

. Por 

exemplo, quando duas superfícies são lentamente aproximadas nesta solução polimérica, 

observa-se que a força medida cresce monotonicamente com o tamanho da separação; 

enquanto ao aproximá-las rapidamente a curva da força versus a separação das superfícies 

possuirá um comportamento diferente do obtido para a situação inicial. No primeiro caso. 
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no qual a aproximação é realizada em equilfürio à cada instante, o tempo para a 

aproximação é longo o bastante para que os segmentos da ponte estejam relaxados em 

cada passo do processo. No segundo caso, o tempo é curto comparado com o tempo de 

relaxação dos segmentos e em conseqüência a repulsão existente entre os monômeros será 

maior do que para a situação quasi-estática. De tal modo, não somente, este efeito de 

histerese que tem sido observado nestes experimentos acima mencionados, mas também 

outros problemas como a atração<45l e a presença única de interações repulsivas(para a 

situação de equilfüriof41 ' entre duas superfícies parcialmente submersas em uma solução 

poli.mérica, te111 sido justificadas pela presença, ou 1nelhor, pela formação de pontes que 

interligam estas supe1fícies. 

Portanto, vê-se que dois fatores são de grande relevância para um melhor 

entendimento dos efeitos decorrentes da presença de pontes poliméricas no cálculo entre 

superfícies: Jº) Qual o número médio de monômeros necessários para construir uma ponte 

entre duas superfícies, se estas estão separadas por uma certa distância d? 2º) Qual a 

escala de tempo que se deve utilizar a fim de que haja a criação e a relaxação de pontes 

formadas entre as duas superfícies? 

Estaremos aqui interessados apenas na primeira das questões formuladas acima. 

Na seção 2, introduziremos dois parâmetros fundamentais para o estudo deste 

problema: N que fornece o comprimento médio da ponte e N que representa o 

comprimento médio da cadeia polimérica entre as duas superffcies. Trataremos para o 

cálculo destes parâmetros, N e N , o caso do confinamento de uma cadeia ideal sujeita a 

um potencial, tal que toda a metodologia empregada nestes cálculos está baseada no 

método desenvolvido por Edward.�·( 18), que utiliza uma versão de campo auto-consistente,

onde a equação resultante, equação do propagador, é uma semelhante à de Schrondinger, 

na qual o tempo t é mapeado pelo número N de monômeros que constituem a 

macromolécula. Sendo a formulação bastante semelhante a do propagador em Mecânica 

Quântica, e o problema de formação de pontes entre duas superfícies análogo ao do 

tunelamento quântico. Na seção 3, aplicaremos este método para o caso de estarmos 

tratando de uma longa cadeia ideal e ao final da seção faremos algumas especulações para 

o caso de uma longa cadeia real, na qual devido a inclusão do efeito de exclusão de
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volume pressentimos uma alteração nos expoentes das relações obtidas quando o caso de 

uma cadeia ideal, como também faremos uma anáUse de todo o problema pelo ponto de 

vista de "b!obs pictures", introduzido por de Gennes<3l
_ 

2.2. 1 Formulação Matemática 

Consideremos uma solução polimérica na qual uma cadeia polimérica está 

localizada entre duas superfícies planas. Supondo que cada monôrnero esteja submetido a 

um potencial V (z), on�e z é a coordenada perpendicular as superfícies . 

... 

Fig. 2.1 - Configuração típica do processo de formação de ponte.� poliméricas entre duas superfícies 

planas. O segmento BC representa a ponte polimérica(ligação entre dois pontos de diferentes superfícies), 

enquanto que AB o trem de polúnero(ligação entre dois pontos distintos de uma mesma superfície). 

Se prestarmos bem atenção nas cotúigurações que são formadas entre estas duas placas, 

encontraremos certas cadeias conectando estas duas superfícies, formando "pontes" entre 

elas, tal como o segmento BC na Fig. 2.1. O número médio N de monômeros que 

constituem a ponte é essencial na determinação da elasticidade da ponte, e como podemos 

observar na Fig. 2.1 corresponde ao segmento BC. Devemos, também, definir o 
. 

comprimento N , que nos informa a quantidade de monômeros entre duas pontes 

sucessivas, o qual pode ser representado pelo segmento AC na Fig. 2.1. Tal comprimento 

N é constjtuído pelo comprimento da ponte N acrescentado do comprimento do "trem" 

formado entre as pontes sucessivas. Definimos como "trem" um segmento da cadeia que 

liga dois pontos distintos da mesma superfície plana. 

Considerando que as configurações destas cadeias poliméricas formadas possam 

ser modeladas por caminhadas em uma rede, com parâmetro de rede igual ao tamanho do 

monômero a e número de coordenação e;, ou seja, número de primeiros vizinhos iguais a 

e; . Pode-se, então, estabelecer que o peso estatístico associado a todas as configurações 
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com N monômeros, que interligam as duas placas, localizadas nos planos 

respectivamente, é proporcional acsoi :
z e z � 

(2. l) 

onde a soma é feita sobre todos os caminhos possíveis que ligam os planos z e z'. Entre 

o conjunto completo destas caminhadas, existem algumas que passam por z' pela primeira

vez ao final da caminhada. De tal modo que o peso estatístico associado as cami11hadas

que ligam os planos z e z' em N passos não existindo a presença de "trens" na

configuração � dado por:

(2 .2) 

onde a linha no somatório indica-nos que este é realizado sobre todos os caminhos, os 

quais não alcançam z' antes do final da caminhada. No entanto, podemos estabelecer a 

seguinte relação entre GN e .f N: 

GN (z,z') = L,.fN '(z,z')GN-N '(z.z') com Go(z,z) = 1 (2.3) 
N'=O 

O comprimento entre as pontes sucessivas, N . está associado com estas 

configurações nas quais as caminhadas que se iniciam numa superfícies são permitidas 

voltarem para a superfícies qualquer número de vezes, antes de alcançar a outra 

superfícies pela primeira vez ao final de N passos. Deste modo, a probabilidade de termos 

uma primeira passagem no plano z', oriunda do plano z com N' passos de um total de 

passos Nº é proporcional a: 

( ') 
.fN '(z.z')f dz0G

N .-N ,(z',z0) 
PN ' z.z = 

f 
( ) 

.. dz0G N' z.z0 

(2.4) 

na qual a integral em z0 é feita sobre todo o intervalo de z permitido no problema. Corno 

também, podemos definfr: 
N' 

P
N

. (z,z') = I,.PN '(z,z') (2 .5) 
N'=O 

como sendo a probabilidade total de existir uma ponte entre os planos z e z' com N* 

passos, iniciando-se no plano z, tal que N* ➔ 00, o caso de uma cadeia infinitamente 
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longa, esta probabilidade, eq.(2.4), se aproxima para o valor de um, quando a separação 

entre as duas placas é considerada finita. De tal modo que PN , na eq.(2.4) representa uma 

probabilidade normalizada, possibilitando-nos dizer que a média estatística de N', que 

representa o comprimento médio entre as pontes seja dado por: 

N = I,. PN '(z,z') (2.6) 
N'=O 

Em principio, uma vez que GN seja conhecidn. pudernns encontrar tl valur de fJ 

através das eqs.(Il.3) ·à (II.6). Tratando a situação usual, quando todas as quantidades 
• � 

físicas envolvidas variam suavemente do comprimento do monômero a, pode-se afirmar

que GN (z,z'), o peso estatístico para o polímero -deslocar-se de um ponto em z para 

outro em z', em N passos, é dado por uma expressão que é solução de uma equação do 

tipo Schrondinger<2º·11)

- ac a 2 

2 
v 

--=--v' G+-G=HG 
ôN 6 T 

onde V é um potencial externo que atua em cada monômero. 

(2.7) 

As condições de contorno em N é que GN (r,r')➔ô(r-r') no limite N➔O, 

enquanto que as condições de contorno espaciais em z
ª 

e zb são formadas pelas 

interações do polímero com as superfícies planas, no entanto, supondo que a simetria 

deste problema seja cilíndrica, pode-se separar a dependência planar (x,y) da dependência 

z em GN (r,r');tal que o fator de dependência em z da função GN (r.r') pode ser 

expresso por: 

(2.8) 
Ili 

onde </>,,, são autofunções normalizadas(independentes de .xy )do operador Hermitiano H , 

com autovalores w111 : 

w111 = H</>111 ; f dzl</>111 (z)i
2 

= 1 (2.9) 

De tal modo quando N ➔ oo, na eq.(2.8), devido a dependência exponencial em N, a 

função G11 é dominada pelo primeiro termo na soma, que corresponde ao estado 

fundamental de H . Sendo assim, usando este resultado, pode-se obter da eq.(2.4) que: 
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(2. 10) 

onde w
0 

é a energia do estado fundamental de H . 

Agora, definiremos duas funções geratrizes, F;Jz,z') e Q)z,z'), que são 

fornecidas pelas expressões: 

FJz,z') = L,JN (z,z')a N

N=O 

'2a (z,z') = L GN (z,z')aN

N=O 

tal que utilizando-:as na eq.(2.3) pode-se obter a seguinte relação: 

F ( ') 
_ Q)z,z')

ª z,z - '2a(z',z) 

(2.11) 

(2.12) 

mostrando-nos que a função geratriz de fN(z ,z') pode ser obtida à partir de GN(z,z'). 

Como também, utilizando a eq.(2.11) na eq.(2.10), obteremos da eq.(2.6) que: 

- {, , 
( ') ( 

, 
) 

dFJz,z') 
N = L.,.NJN ' z , z Exp N w0 = a-�--1 

N'=º da ( )rx=Exp w
0 

(2.13) 

Escolhendo, por conveniência, a origem do sistema localizada no centro da 

separação das placas, as quais estão localizadas em z = ±h, respectivamente; pode-se. 

então, utilizar o resultado usual para as autofunções </J,,,, que estabelece paridade par para 

</J
2
)z) e paridade ímpar para </)

2111+ 1 
(z), em z. Deste modo, utilizando as eqs.(2.8), (2. 1 1) 

e (2.12) obtemos que: 

f {[(- 1)111 

</J,,, (h) ]/[ 1 -aExp(- w111 )]} 
Fª (- h,h) = ="'--'

=º

;_= ___________ _ 

- I,{[<P,�(h)]/[1-aExp(-w,,,)]}
111=0 

(2.14) 

Ainda que F, ,.(-h,h), fornecido pela eq.(2.14), mostrando-se ser uma função bem 

comportada, ao fazermos m =O, que corresponde w,,, = w
0

, vê-se que tanto o numerador 

como o denominador divergem. Portanto, para contornarmos este problema da 

divergência multiplicaremos a expressão de Fª (-h,h), eq.(2.14), pelo fator 
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[t-aExp(-w
0
)], tal que expandindo a expressão obtida e considerando somente termus 

de primeira ordem, obtemos: 

( )- �[</J2111_1 (h) l
2

[ 
l-aExp(-w0)]

Fª -h,h = 1-2 .k.J 
( ) ( )111=1 </)0 h l -aExp -w2 ,,,_1 

uma vez inserindo-a na eq.(2.13) e definindo llw,,, = w111 
- H-'

1
1, teremos: 

N = i 
2 <P2111-l(h) -

[ ] 

o 

,,,_, Exp(llw,,;_, -1) [ t/Jr,(h) l 
. � 

(2.15) 

(2.16) 

usando o fato de que llw << 1 para diversos valores pequenos de m, os quais dominam o 

somatório, pode-se.expandir a eq.(2.16), obtende: 

(2.17) 

que para muitas situações ffsicas, o primeiro termo m = l , no somatório feito em m, é 

dominante sobre todos as contiibuições para N , deste modo, possibilita-nos escrever que: 

~ 2 ['/Ji (h.) ]
2 

N = W1 - Wa </Jo(h) 
(2.18) 

Supondo que as pontes entre as duas superfícies planas seJam realizadas por 

cadeias polirnéricas ideais, então, estabelece-se que as interações de exclusão de volume 

entre os monômeros sejam desprezadas, possibilitando-nos re-escrever a eq.(2.7) do 

seguinte modo: 

-éJG ª
2 

2 
--=--v' G=HG 
éJN 6 

(2.19) 

adicionalmente, assumiremos que a atração das placas sejam fracas, de tal modo que a 

espessura da camada de adsorção do polúnero, D= k-1
, seja muito maior que o tamanho 

do monômero a, adicionado ao fato de que as interações das placas sejam do tipo curto 

alcance, tal que estaremos varrendo comprimentos em torno da dimensão do monômero, 

então, à partir destas duas acertivas podemos substituir o efeito do potencial V(r) por 

uma simples condição de contorno, a qual foi primeiramente introduzida por de 

Genne/ 19
):
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_!_acl = -K(T)
G dN z=±h 

(2.20) 

onde K é uma constante fenomenológica que descreve a interação entre os monômeros e 

as paredes, tomando valores positivos quando a atração domina as interações. valores 

negativos quando a repulsão é dominante, e valor nulo para o caso em que há um certo 

equilfürio nas interações, ou seja, atração e repulsão apresentam-se, em média, com as 

mesmas proporções. 

Portanto, substituindo as eqs.(2.8) e (2.9), que estão relacionadas com as 

autofunções de G,, ( r ,r') , nas eqs.(2.19) e (2.20), obtemos as seguintes expressões:

_ ª 2 d2
</J

-6-dz 2 
=w</J

J_ 
d

</JI =+K 
<P dz z=±h -

(2.21) 

(2.22) 

deste modo, utilizando as eqs.(2.21) e (2.22), obtemos as seguintes soluções para as 

autofunções </J e os autovalores w :

(2.23) 

onde A+ e A_ são fatores de normalização. Sendo os autovalores w± determinados pelas 

seguintes condições de contorno: 

coth( a+h) = (a)1/Kh) 

tanh( a_h) = ( aJ1/Kh) 

(2.24) 

(2.25) 

Considerando que as placas nem atraem, nem repelem a cadeia, K =O, podemos 

encontrar o conjunto das autofunções e autovalores diretamente das eqs.(2.21) e (2.22): 

( ) = f1 n[(2m- l)nz]<Pi.111-1 z 'Vh 
se 

2h 
(2.26) 

onde m = (1, 2, 3, ... ) . Então, da eq.(2.16) encontramos: 
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[ 2 ] 
/lsen[(2m- l)nh]

2 

-
= 

'{, 24h �h 2h N �2 
:i. 2 2 1 111=1 (2m-1) n a __ 

,[(2m-1)n]sen - _ '{, (96h .• 2) 2 
N-� , ,, 2 

111=1 n~a - (2m-1) 
(2.27) 

analisando o termo sen 2 (2m- l)n/2, vemos que e3te será sempre igual a um para todos 
os valores de m[l,00[. Sendo assim, a eq.(2.27) fica da seguinte forma: 

(2.28) 
calculando o somatório em m, obtemos aproximadamente a seguinte solução(5ºl : 

(2.29) 
No entanto, se considerarmos somente o primeiro termo m = 1 no somatório, estaremos 
fazendo uma aproximação de dois 1úveis, que compreendem ao estado fundamental e ao 
primeiro estado excitado, e o resultado para fJ seráC5ºl : 

(2.30) 
tal resultado poc.4=! ser obtido tanto pela eq.(2.17) com pela eq.(2.28). 

Se considerarmos configurações nas quais as caminhadas uuciam-se numa 
superfície plana localizada na posição z = -h, e que se deslocam-se à caminho de uma 
outra superffcie plana localizada na posição z = h - a , conectando estas duas superfícies, 
somente, ao final de passos N; estaremos deste modo, evitando de todas as maneiras a 
formação de "trens". Sendo assim, estaríamos tratando somente com as configurações que 
contactam uma única vez a outra superfície plana em z = h -a . Esta situação seria 
análoga as que foram consideradas no cálculo do valor de N. sendo que esta superfície 
localizada na posição z = h - a funcionariam, naquelas configurações, como uma camada 
virtual de monômeros, com espessura a. No entanto, como estas caminhadas só 
chegariam nesta superfície virtual ao final de N passos, estaríamos evitando que estas 
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contactassem com a superfície localizada em z = -h, e conseqüentemente a formação de

"trens" nesta superffcie. Desta forma, possuímos o mesmo problema para o cálculo de N,

exceto que a distância entre as superficies é reduzida por uma unidade monomérica. Em

vista disto, a separação entre as placas é (2h- a) em vez de (2h). Então, podemos

encontrar o valor de N diretamente, fazendo esta substituição na eq.(2.29). tal que:

_ (2h)
2 

(2h- ª) 2 (h.) 2 (h) N=3 - =3 -- =12 - -12 - +3
a a a a 

(2.31)

Sabendo que o comprimento N, que representa a quantidade total de monômeros

entre as duas superfícies planas, é igual ao somatório da quantidade de monômeros N

que constituem a ponte com a quantidade de monômeros que formam os "trens", ou

melhor, a quantidade de monômeros que conectam dois pontos diferentes da mesma

superficies. Então, podemos obter das eqs.(2.28) e (2.31) que esta quantidade de

monômeros nos "trens" é % .

Todos estes resultados para N e N, obtidos acIJTia, podem ser, facilmente,

calculados e entendidos pelo ponto de vista de "blobs pictures'', os quais foram

introduzidos e exaustivamente discutidos por de Genne.�·('.U 9l, quando no estudo das

configurações de polímeros. A cadeia é analisada como uma seqüência de "blohs", cada

um de comprimento ç
P 

, como pode ser melhor entendido através da Fig. 2.2.

--------r 

f 

Fig. 2.2 - Represenlação esquemálica do formalismo de blobs para uma cadeia polimérica. Divisão da 

macromolécula em uma série de blobs de comprimento Çp . 

Dentro de cada "blob" uma vez escolhido o seu tamanho, contabilizamos os tipos de

interações que são relevantes para o problema. No caso de possuirmos a distância entre os
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extremos r da fração da macromolécula menor que o comprimento ç" do "hloh" e 

fazendo uma analogia das formações das cadeias com uma trajetória de um caminhante, 

concluiríamos que muitas das direções escollüdas em cada posição, foram bastantes 

repetidas em relação as que foram escolhidas no passado, ocorrendo, no caso da cadeia, 

um maior encaracolamento, ou seja, teríamos uma cadeia que não se espichou muito, 

apresentando uma configuração bastante compacta que corresponderia a uma cadeia do 

tipo ideal, que foi analisada no Capítulo I. No que se refere a situação oposta, em que o 

comprimento ç
P 

de cada "hlob" é menor que a distância entre os extremos r, e fazendo 

a mesma analogia das formações das cadeias com a trajetória de um caminhante, 

concluiríamos que para urna determinada caminhada muitas direções diferentes foram 

escolhidas para cada posição do caminhante, seria como que o caminhante guardasse a 

memória das direções passadas, evidenciando-se um menor empacotamento, ou seja, a 

configuração da cadeia polirnérica apresentando-se mais espichada, ou melhor, mais 

elongada do que o primeiro caso tratado. Evidenciando-se neste último caso o efeito de 

exclusão de volume e conseqüentemente estaríamos tratando a situação de uma cadeia 

real, a qual foi discutida no Capítulo I. 

No primeiro caso, onde a distância entre os extremos r de cada parte da 

rnacrornolécula inserida neste "blob" é considerada maior que o comprimento ç
P 

do 

"blob", teríamos uma situação em que os vários "blobs" que constituem a 

macromolécula comportariam-se como se fossem independentes; já para o segundo caso, 

no qual o comprünento ç
P 

de cada "blob" é considerado maior que a distância entre os 

extremos r da fração da cadeia inserida no "hlob", teríamos que levar em consideração 

as interações entre os diversos "blobs" que compõem a macromolécula, devido ao fato de 

que dentro de um mesmo "bloh", as interações entre rnonômeros distantes na seqüência 

da cadeia terem sido consideradas, em vista de estar-se tratando de forma análoga ao caso 

da cadeia polimética real. 

De posse deste formalismo de "blobs", introduzido por de Genne:/3·' 9 >, sabe-se 

para o caso de urna macrornolécula confinada entre duas superfícies, as seguintes relações: 
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D'.'. 
N =-

1 2 

D 
N =-

2 a 

(2.32) 

(2.33) 

onde N
1 

é o número de monômeros confinados dentro do "blob", N� o número de 

monômeros que estão em contato com o "blob", a o tamanho do monômero e D o 

tamanho do "b/ab"(ver Fig. 2.3). 

gMONÔMEROS 

BLOBS 

l�ig. 2.3 - Representação esquemática do formalismo de blobs para uma cadeia polimérica confinada entre

duas superfícies planas. Divisão da macromolécula em uma série de blobs de comprimento D . 

Para esta mesma situação citada acima, se considerarmos que o tamanho do "blob" sej· 

igual a 2h, estaremos tratando, pelo ponto de vista de "blobs ", o caso de uma cadei· 

ideal confinada entre suas superfícies separadas por uma distância 2h. E aí teríamos 

seguintes resultados: 

h. 2 
N =-

1 ª2 

h 
N =-

2 a 

(2.3..t 

(2.:-

tal que, agora N
1 

representaria a quantidade de monômeros confinados entre as 

supe1ikies e N" o número de monômeros os quais estão ligados à uma mesma supem • �-

Portanto, podemos afirmar que os resultados obtidos para o número N de monômefi 

confinados entre as placas e para o número N de monômeros que ligam dois pon 

distintos de uma mesma superfície, fornecidos pelas eqs.(2.28) e (2.31 ), respectivamen 

são consistentes aos obtidos pelo ponto de vista de "blobs", expressos pelas eqs.(2.34) e 

(2.35). 
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Ademais, ao tratar o problema de confinamento de macromoléculas para o caso de 

cadeias poliméricas reais, as quais os efeitos de exclusão de volume devem ser 

considerados, de Gennesc3'
1 9

) estabeleceu que o número de monômeros N, inseridos em

um "blob" de tamanho çP , é dado pela seguinte expressão: 

(2.36) 

sendo v o expoente de Flor/ 141. 

De tal modo, se considerarmos que o tamanho do "blob" seja igual a 2h, para o caso • -

bidimensional d = 2, obteríamos: 

(2.37) 

onde, agora, N
1 

representaria a quantidade de monômeros de uma cadeia real confinados 

entre duas supe1ficies planas separadas por uma distância 2h. 

Todavia, considerando que as superffcies planas estejam bastante separadas, tal 

que a quantidade de monômeros confinados entre as placas seja constituída essencialmente 

pela quantidade de monômeros que interligam estas superfícies, ou melhor, pelo 

comprimento da ponte que liga estas duas placas, podemos, por conseguinte, considerar a 

quantidade de monômeros que ligam dois distintos pontos da mesma superfície, os 

chamados "trens", muito pequena, tal que comparada com o comprimento da ponte se 

torne uma quantidade desprezível. Sendo assim, a quantidade de monômeros N 

confinados entre estas superfícies planas é igual a quantidade de monômeros N que 

interligam estas duas superfícies. Desta fonna, podemos expressar a seguinte relação: 

(2.38) 

para o caso de uma cadeia ideai<-'1ll_ Enquanto que para o caso de uma cadeia real, onde o

efeito de exclusão de volume deve ser considerado, obteremos a seguinte relação( '4l:

- (h/)½NzNz /a· (2.39) 

Portanto, vê-se que o comprimento, ou melhor, a quantidade de monômeros de 

uma ponte para o caso de uma cadeia polimérica real, eq.(2.39), é menor do que o 

54 



encontrado para o caso de urna cadeia ideal, eq.(2.38), tal fato atribui-se a presença da 

repulsão entre os monômeros, oriunda do efeito de exclusão de volume, pois devido a este 

efeito as configurações das diversas macromoléculas formadas são muito menos 

empacotadas, de tal modo que as cadeias reais são muito menos encaracoladas do que as 

cadeias ideais, conseqüentemente a densidade ou a quantidade de monômeros confinados 

entre as placas para o tratamento de cadeias reais torna-se menor do que quando tratamos 

com cadeias ideais. 
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Solução do Problema da Formação de Pontes 

por Simulação Computacional 

3.1 Introdução 

Há algum tempo a física era dividida em duas grandes categorias: física teórica e 
' 

-

experimental. Com o .advento e fácil utilização dos computadores digitais, principalmente 

nas duas últimas décadas, começou a surgir -uma nova área da física: a física 

computacional. Nos momentos iniciais, a física computacional estava direcionada na 

solução de problemas com um número grande de graus de liberdade. Em uma etapa 

posterior, a física computacional passou a sugerir experimentos. Exemplos são o 

surgimento dos sistemas criticamente auto-organizados, os modelos de moléculas, entre 

outros. 

Apesar disso, a grande aplicação dos computadores tem sido na simulação de 

muitos corpos. A importância da metodologia da simulação é que a priori ela forma 

resultados, em principio, exatos para muitos Hamilton.ianos sob investigação, 

principalmente no caso de interações de longo alcance e de muitos corpos. No entanto, a 

simulação compqtacional tem suas limitações diretamente relacionadas à memória a ao 

tempo computacional. Nesta direção, a simulação se apresenta em duas classes, de acordo 

com o tipo de problema em análise. Na primeira categoria estão os problemas 

determiníst.icos que são tratados com a metodologia da Dinâmica Molecular. A outra 

classe trata dos problemas estocásticos que são tratados com os métodos de simulação 

Monte Cario. Ambas metodologias fazem uso da descrição de trajetórias(por definição 

uma trajetória é uma seqüência cronológica de configurações), em espaços de fase 

característicos do problema considerado. Para a Dinâmica Molecular, a metodologia 

descreve a trajetória da partícula sujeita ao Ham.iltoniano dado ou Lagrangiana ou 

mesmo à equação de Newton. Enquanto isto, em Monte Carla, a trajetória á descrita em 

geral por uma seqüência de Markov. 
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Em vista disto, da crescente importância e eficiência dos computadores na 

caracterização de propriedades dos mais diversos sistemas, é que vemos a necessidade de 

analisarmos computacionalmente o problema do confinamento de macromoléculas. É com 

este objetivo que nos referimos à este Capítulo com bastante cautela e minuciosidade, pois 

aqui apresentaremos a base fundamental de nosso trabalho, ou seja, a metodologia 

computacional empregada no modelamento do confinamento de macromoléculas entre 

duas superfícies planas. Desta forma, descrevemos na seção 3.2 a metodologia utilizada 

para a descrição do- problema, o Método Monte Cario, expondo de forma bastante 

elementar os seus diversos tipos, propriedades e resp-ectivos algoritmos. 

Todavia, como já mencionamos anteriormente, os polúneros podem ser 

considerados como longas cadeias compostas de pequenas unidades moleculares 

(monômeros) ligadas umas às outras através de ligações, e devido ao fato de que estas 

ligações possuem alguns graus de liberdade para rotacionar, obtêm-se estruturas flexíveis 

das mais diversas formas espaciais possíveis. Através desta descrição, podemos fazer uma 

aproximação estatística para o problema, descrevendo-o por simulações computacionais, 

nas quais as cadeias moleculares(macromoléculas) são modeladas por caminhadas 

aleató1ias em uma rede qualquer. Portanto, na seção 3.3 descrevemos os diversos tipos de 

caminhadas aleatórias que podem ser utilizadas para o modelamento do problema do 

confinamento de polúneros entre duas supetiicies planas, como também apresentamos 

suas respectivas propriedades de escala, obtidas em diversos trabalhos da literatura. 

Na seçã� 3.4, apresentamos uma outra forma de tratamento para o estudo das 

propriedades dos polúneros, os fractais, que tem como objetivo fazermos compreendei• 

melhor o aspecto conforrnacional das cadeias poliméricas, através de urna melhor 

visualização do problema. Portanto, nessa seção apresentamos de forma bastante genérica 

as características destes sistemas, denominados fractais. 

3.2 Método Monte Cario 

3.2. 1 Método Monte Cario Canônico 

Quando falamos do método Monte Carla canônico, estamos nos referindo a um 

método desenvolvido por Metropolis, Rosenbluth, Rosenbluth, Teller, Teller<51 l por volta 
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de 1953, também denominado método M(RT/. O método está relacionado com o cálculo 

das propriedades de qualquer substância, sem restrições a nenhum intervalo de 

temperatura ou densidade, fornecendo-nos valiosas informações de uma grande variedade 

de problemas físicos, químicos e biológicos, que outrora não era possível obtê-las. A 

dificuldade no estudo dos problemas baseava-se essencialmente no cálculo da função 

partição, que normalmente expressava-se como uma função, bastante complicada, das 

coordenadas do sistema. E como veremos neste método, tal problema será solucionado 

por uma normalização da função partição do sistema, que nos possibilitará trabalhar com 

inúmeros siste1'nas, em virtude de não mais necessitâi·mos conhecer a função partição do 

problema em análise. 

Este método foi motivado por uma analogia ao comportamento de sistemas em 

mecânica estatística que aproximavam a situação do equihbrio, cujas propriedades 

estatísticas tornavam-se independentes da cinética a qual o sistema possuía. Por sistema 

referimo-nos a um ponto X no espaço de fase Q, enquanto que por cinética, a uma 

transição estocástica que governa a evolução deste sistema, ou seja, por uma função 

densidade de probabilidade K(XIY) que representa a evolução do sistema, que está no 

estado Y e, poste1iormente, estará no estado X . 

Embora o algoritmo de Metropolis et af5 1l possa ser implementado em uma grande

vatiedade de maneiras, o apresentaremos através de um modo bastante simples. 

Considere um sistema físico, o qual possua fixos o número N de partículas, o 

volume V e a temperatura T, tal que constitua um ensemble canônicoC52l
. Sendo assim, 

podemos expressar a função Z de pmtição deste sistema da seguinte forma: 

Z = J Exp[- f3H(x) }lx (3.1) 

onde o termo exponencial é denominado fator de Boltzmann, que é definido como sendo:

1 
/3=-

kT 

sendo T a temperatura do sistema. Portanto, pode-se estabelecer a seguinte distribuição 

P(X) dos estados acessíveis para este sistema, quando sob banho térmico: 
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1 
P(X) = z Exp[- f3H(X)] (3.2) 

Entretanto, urna vez estabelecida a situação de equilfürio, se qmsermos que o 

sistema permaneça neste estado, devemos impor que o sistema seja reversível. Em outras 

palavras, supondo que o sistema esteja no estado X e mova-se. posteriormente. para o 
estado Y, deveremos permitir o sentido contrário para a transiçãÕ de estado, de tal modo 

que o sistema estando no estado Y mova-se, posteriormente, para o estado X . Portanto. 

uma vez sabendo que a função densidade de probabilidade representa a evolução de um 

sistema no espaço de fase, podemos representar a e.i.rolução do sistema do estado Y para 

o X por K(XIY), enquanto que K(YIX) representa a evolução do estado X para o Y.

Como também, utilizando a eq.(3.2), que nos fornece a probabilidade de encontrarmos o

sistema num determinado estado acessível X , podemos, assim, representar a

reversibilidade do sistema da seguinte fonna:

K(XIY)P(Y) = K(YIX)P(X) (3.3)

que também é denominada de balanço detalhado, o qual nos garante que a probabilidade

do sistema no espaço de fase mover-se do estado X para o estado Y seja igual a

probabilidade de mover-se no sentido oposto, ou seja, de transitar do estado Y para o X.

Deste modo, ao substituirmos a eq.(3.2) na eq.(3.3), obtemos que a razão das

probabilidades de transição dependem, unicamente, da variação LiH na energia, oriunda

do deslocamento do sistema de um determinado estado para um outro estado no espaço

de fase Q, ou seja,

K(YIX) 
- P(Y)

K( XIY) 
- P(X)

(_!_)Exp[- f3H(Y)]K(YIX) 
= Z = e-/3IH(Y)-H(x)j

K(XjY) (�)Exp[- f3H(X)]

K(YIX) 
K(XjY) 

= Exp(- f3LiH) onde LiH = H(Y)- H(X)
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Baseados essencialmente neste balanço detalhado do sistema, podemos montar o 

seguinte algoritmo para ensembles canônicos: 

1. Escolher aleat01iamente uma configuração inicial x;

2. Gerar uma nova configuração x' ;

3. Calcular a va1iação de energia produzida, ou seja, LiH = H(x') - H(x) ;

4. Se a energia é mais baixa, LiH < O, então, aceita-se o novo estado e define-se x' como

uma nova configuração e retorna para o passo 2 ;

5. Se a energia é maiÕr, LiH > O, calcular a valor de Exp(- ,BLiH);

6. Gerar um número aleatório R E [0,1];

7. Se R for menor que Exp(- ,BLiH), então e aceita-se o novo estado, estabelecendo x'

como uma nova configuração. Em caso contrário, o sistema não altera o seu estado

01iginal, permanecendo em seu estado original;

8. Retornar para o passo 2.

No algoritmo acima, estamos assumindo que a temperatura termodinâmica seja 

positiva. A aplicação para o caso de temperaturas negativas foi desenvolvida por 

Mouritsen et azC53>
_ Podemos, agora, visualizar melhor a essência do modelo proposto, que 

está baseado essencialmente no cálculo da perturbação, causada pelo deslocamento do 

sistema, em um dado espaço de fase .Q, de um determinado estado para um outro. Além 

disso, observa-se que a trabalhosa tarefa do cálculo da energia do sistema torna-se 

bastante fácil de ser computada, uma vez que detemos o conhecimento de todos os 

estados no espaço de fase que o sistema assumiu, como também os seus respectivos pesos 

probabilísticos, tendo em vista que o processo ocorre primeiramente com a escolha das 

configurações, com probabilidade Exp[- ,BH(x)], e logo depois é calculado o seu peso. 

Em vez de escolhê-las aleatoriamente e depois fornecê-la um peso estatístico dado por 

Exp[- ,BH(x)]. Portanto, devido a esta vantagem em seu manuseio, que é a não 

necessidade do cálculo de integrais multi-dimensionais, encontramos diversas aplicações à 

uma gama variada de sistemas físicos, que vão desde sistemas clássicos com interações de 

curto alcance, passando por sistemas quânticos(54
-
56> até sistemas de interações de longo 

alcance(57l
_ 
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3.2.2 Método Monte Cario Microcanônico 

Abrangendo aplicações que vão desde o estudo de transições de fase em matéria 

condensada até o cálculo de propriedades de hadron:P8J
, através da teoria de Gauge, as 

simulações deste método tem como base, na sua grande maioria, o algoritmo desenvolvido 

por Metropolis et af<S1J
. Através deste, gera-se uma seqüência de configurações através de 

um processo Markoviano, tal que a probabilidade de encontrarmos qualquer configuração 

C na seqüência é proporcional ao peso de Boltzmann, 

P( C) oc Exp[- /3S( C)] (3.5) 
... 

tal que a função partição deste sistema é fornecida pela seguinte expressão: 

z = I. Exp[- /3S( C) l (3.6) 

onde S( C) representa a energia do sistema. No caso de simulações de teoria de campo 

quântica, S( C) será a ação, podendo o somatório da eq.(3.6) ser substituído por uma 

integral de caminho. 

No entanto, podemos utilizar neste sistema outras técnicas de simulação, é o caso 

da dinâmica molecular ou método Monte Carla microcanônico<59l_ Basta-nos expressar as 

equações que representam a evolução dinâmica do sistema, considerando a energia total 

conservativa. Porém, como agora estamos tratando de ensembles microcanônicos<52)
, 

necessitamos reescrever a função partição do sistema, que outrora era dada pela eq.(3.6) e 

que agora será fornecida pela seguinte expressão: 

Z = L,L,ô[S(C) + K(P)- E] 
e P 

(3.7) 

onde E é a energia total inicial do sistema e K(P) é a energia cinética associada ao 

momento conjugado P associado a coordenada C. 

A fim de computarmos a soma da eq.(3.7), consideraremos que o sistema viaje ao 

longo de uma superfície de energia E constante de maneira ergódica, ou seja, a simulação 

se processa como uma caminhada aleatória ao longo desta superficie de energia E 

constante. Para o caso de uma superfície subdividida em uma malha quadrada de sítios, na 

qual o caminhante inicia sua trajetória em um dado ponto aleatório da rede a e a finaliza 

em um ponto /3, é apresentada uma ilustração através da Fig. 3.1. 
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Fig. 3.1 - Representação esquemática de uma caminhada aleatôtia no espaço de fase em uma superfície de 

energia E constante. Ao lado, um zoom desta caminhada aleatória. 

Em virtude de que cada estado de uma caminhada aleatória(Ran.dom Walk) 

independe da história da caminhada, garantimos a utilização da cadeia de Markov na

simulação destes sistemas. Ademais, introduziremos um grau de liberdade extra, o qual 

caracterizamos como um "demônio", que viaja no sistema, transferindo energia toda vez 

que as variáveis dinâmicas do sistema são alteradas. Este novo parâmetro é análogo a 

energia cinética calculada pelo momento conjugado P na formulação microcanônica, no 

entanto é importante ressaltar que este "demônio" não está associado com qualquer grau 

de liberdade no sistema original. Denominando a energia do "demônio" por E
0 

e fazendo 

as devidas substituições na eq.(3.7), podemos obter uma nova formulação para a função 

partição do sistenra, que será dada por: 

Z = LL8[s(c) + Eo -E] (3.8) 
C E0 

Entretanto, devemos ter bastante cuidado com o "demônio", pois ele pode vir a 

absorver toda a energia do sistema. Sendo assim, devemos impor uma restrição a energia 

do demônio E
0

, que é realizada quando estabelecemos um valor positivo limite para esta

sua energia E
0

. 

Deste modo, de fonna geral podemos formular um algoritmo para ensembles 

microcanônicos, expresso por: 

1. Construir um estado, tal que H(x) = S( C);
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2. Selecionar a configuração inicial dos sistema, que pode ser representada por uma

fração dos sistema;

3. Definir a energia E
0 

do demônio;

4. Mudar o estado atual do sistema, tal que x � x';

5. Calcular a vaiiação de energia produzida, ou seja, '1H = H(x') - H(x) ;

6. Se a nova energia for mais baixa, '1H < O, então, aceita-se o novo estado, define-se a

nova energia Ev _ do demônio, tal que E
0 

� E
0 

= ED - '1H ,e por fim estabelece-se

x' como u�a nova configuração e retorna para ,Q passo 3;

7. Se a nova energia for mais alta, '1H > O, então, aceita-se o novo estado, se somente se,

o demônio possuir a energia necessária para a transição para este novo estado. Neste

caso a nova energia E
0 

do demônio será E
0 

� E
0 

= E
0 

+ '1H ,e por fim estabelece-

se x' como uma nova configuração. Na situação contrária, o sistema não muda de 

estado, ou seja, pennanece com o mesmo estado inicial ; 

8. Retomar para o passo 3.

No caso de permitirmos que o demônio passe por um banho térmico, teremos o 

algoritmo convencional desenvolvido por Metropolis et azC5'l, quando elaborado para

ensembles canônicos. Nesta situação, a energia E
0 

do demônio seria trocada por um 

novo valor, que seria gerado aleatoriamente pelo algoritmo e possuiria o peso de 

Boltzmann, e conseqüentemente uma distribuição de Boltzmann. para a energia ED do 

demônio: 

(3.9) 

Portanto, podemos observar neste algoritmo algwnas vantagens em relação ao 

método Monte Cario usual, ou melhor, ao método canônicocsii_ Primeira, o demônio não 

necessita de funções transcendentais, visto que sua energia torna-se, automaticamente 

distribuída exponencialmente. Segunda, tendo em vista que o sistema é tratado como uma 

caminhada aleatória em uma superfície de energia constante, vemos que não é necessário 

uma alta exigência no que se refere ao gerador de números aleatórios, uma vez que o 

caminhante não memoriza os passos tomados durante a sua trajetólia. Terceira, ao 

tratarmos com grupos discretos, toda a aritmética pode ser feita com pequenos valores 
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inteiros para as diversas variáveis dos sistema, tal que nenhuma operação de ponto 

flutuante se torna necessária. Quarta, ao tratarmos com distribuições de Boltzmann. 

eq.(3.9), para a energiaE
0 

do demônio, observamos que o demônio não utiliza este peso 

de Boltzmann como uma probabilidade, uma vez que ele desconhece o que venha ser o 

fator f3. 

3.2.3 Método Monte Cario Grand-Canônico 

Suponha um sistema A de volume V fixo em contato com um grande sistema, 

reservatório A', com o qual ele possa variar nãcr- somente a sua energia, mas também a 

sua quantidade de partículas. Então, nem a energia de A, nem o número de partículas N

em A são fixos, porém a energia total E
r 

e o número total de partículas N r do sistema 

combinado Ar = A+ A' são fixos, ou seja, 

E
T 

= E+ E' = constante

N
T 

= N + N' = constante

onde E' e N' denotam a energia e o número de paitículas do sistema A'.

(3.10)  

(3.11) 

Nesta situação, podíamos questionar qual a probabilidade no ensemble de 

encontrarmos o sistema A em um determinado estado r contendo N,. partículas e 

possuindo energia E,.. Entretanto, devemos ressaltar se o sistema A está no estado r, o 

número de estados acessíveis para o sistema combinado é somente o número de estados 

acessíveis do r�servatório, tal que a probabilidade de encontrarmos neste estado seja dado 

por: 

(3.12) 

onde devemos lembrar que Q'( E', N ') é o número de estados acessíveis do reservatório 

A', quando contém N' partículas e energia E'. Considerando o sistema A muito 

pequeno em relação ao reservatório A', tal que 

E,.<< E
T 

➔ E
T 

=E' 

N,.<<NT ➔NT
=N' 

podemos obter a seguinte distribuição de probabilidade 
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P, = Exp[- f3(Er + µN,.)] (3.15)

cujos sistemas que possuem distribuições de probabilidade com esta forma são chamados 

de ensemhles grand-canônicosC5:!.>. Onde o parâmetro f3 está relacionado com a 

temperatura do reservatório, tal que 

(3.16) 

é a temperatura absoluta do reservatório. Enquanto que o parâmetro µ. representa o 

potencial químico do reservató1io. 

Portanto, vem'os que os parâmetros a serem foniécidos no modelo são: o volume V, a 

temperatura T e o potencial quúnico µ., e u.ma vez determinados são considerados 

constantes. Porém, no que se refere a quantidade de partículas N , esta variará durante 

toda a dinâJnica do processo de banho térmico do sistema A. Entretanto, esta não 

constância no número N de partículas do sistema é que diferencia, essencialmente, este 

modelo dos demais ensembles, pois dentro da evolução do sistema ocorrerá criação e 

aniquilação de partículas, havendo, assim, flutuações na concentração de partículas do 

ensemble. Desta forma, vê-se que a formulação de um algoritmo para o ensemble filw1.d­

canônico<60> é análogo ao desenvolvimento para o ensemble canônico<51l
, exceto que agora 

devemos permitir que o número de partículas possa variar durante toda a evolução do 

sistema. Sendo assim, qualquer algoritmo proposto ao ensembles granel-canônicos deverá 

possuir três passos básicos, que são: 

1. Mudança na configuração, no que se refere as coordenadas das partículas;

2. Criação de partículás;

3. Destruição de partículas.

Eni relação a função distribuição de probabilidade, fornecida pela eq.(3.9), 

podemos reescrevê-la de uma forma mais completa, onde a probabilidade de encontrarmos 

o ensemble no estado x, contendo N partículas, com um potencial quúnico µ. e um

volume V, é dada por:

(3.17) 

com o parâmetro a sendo definido do seguinte modo: 
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a = [ Exp(f3µ.) ][ h
2 

]-½ 2mnkT 
(3.18) 

e a função de partição Z do sistema expressa por: 

(3.19) 

então, utilizando a eq.(3.17) pode-se estabelecer que a probabilidade de encontrarmos o 

ensemble com N + 1 paiiículas é dada por:

(3.20) 

como também que a probabilidade para o caso de- encontrarmos o en.semhle com N - 1

paiiículas é fornecida pela equação: 

(3.21) 

Deste modo, utilizando os mesmos argumentos feitos no modelo canônico, os 

quais nos fornecem uma normalização da função distribuição, proveniente da imposição 

da reversibilidade ao sistema, podemos, também, obter para o ensemble gran.d-canônico o

que denominamos de balanço detalhado como no caso do en.semble canônico. Porém,

devemos garantir que a reversibilidade da evolução do sistema, ou melhor, que o balaço 

detalhado aconteça tanto processo de criação de partículas como na situação em que 

partículas são aoiquiladas. Tal que para o processo de criação de partículas temos o 

seguinte balanço detalhado: 

K( x N+1 jx N )P( x N ) = K( x N lx N+i )P( x N+l ) 

K(x N+ljx N ) P(x N+l ) 

K( x N 1x N+1 ) P( x N ) 
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e para aniquilação de partículas ternos: 

K( x N- 1 jx N )P( x N ) = K( x N jx N-I )P( x N-I)

K(x N-ilx N ) _ P(xN-')
K(xN jx N-,)- P(x N) 

N-1
K( x N-1 lx N )' (; -1) ! 

Exp[- /3E( x N-1 )] 
K( x N lxN-1) -

(3.22) 

(3.23) 

Portanto, de posse das probabilidades de transição dos sistema, fornecidas pelas 

equações (3.22) e (3.23), que constituem o próprio balanço detalhado do ensemhle,

podemos, então, de um modo geral, escrever o seguinte algoritmo para ensemhles irand­

canônicos: 

1. Escolher uma configuração inicial com N partículas, as quais estejam inseridas em um

volume V do sistema:

2. Selecionar aleatoriamente com eqüiprobabilidade os seguintes procedimentos:

1) Movimentação de partículas 2) Cliação de panículas 3) Destruição de panículas ;

3. Movimentação das Partículas:

3.1 Selecionar uma partícula inserida no volume e deslocá-la aleatoriamente;

3.2 Calcular a variação de energia produzida, ou seja, M = E(x') - E(x) ;

3.3 Se M for negativo, aceitar a configuração e retornar para o passo 2;

3.4 Calcular Exp(- f3M);

3.5 Gerar um número aleatório R E (0,1];

3.6 Se R for menor que Exp(- f]M), aceitar a nova configuração e retornar para o

passo 2; 
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3. 7 Se R for maior ou igual a E.rp(- /36..E) . o sistema não altera sua cüntiguração

inicial, permanecendo em seu estado original.

4.0 Criação de Partículas: 

4.1 Escolher aleatoriamente coordenadas dentro do volume V para uma nova partícula 

a ser criada; 

4.2 Calcular a variação de energia 11E = E(x N+i )- E(x N); 

4.3 Calcular [ ( a/ N_ + 1 )Exp(-f3M)]; 

4.4 Se este valor for maior que um, aceitar a rmva configuração e retornar para o 

passo 2; 

4.5 Gerar um número aleatório R E [0,1]; 

4. 6 Se R for menor que [ ( a/ N + 1 )Exp(-/3M)], aceitar a criação da nova partícula e

retornar para o passo 2;

4.7 Se R for maior ou igual a [(a/N+l)Exp(-,BM)], rejeitar a criação da nova 

pmtícula e retornar para o passo 2 ; 

5.0 Aniquilação de Partículas: 

5.1 Selecionar aleatoriamente uma partícula do ensemble, porém que não pertença ao 

conjunto das N partículas inseridas no volume V;

5.2 Calcular a variação de energia 11E = E(x N-i )- E(x N); 

5.3 Calcular [ ( N / a )Exp(-,BM)]; 

5.4 Se este valor for maior que um, aceitar a nova configuração e retornar para o 

passo 2; 

5.5 Gerar um número aleatório R E [0,1]; 

5.6 Se R for menor que [(N/a)Exp(-/3M)], aceitar a destruição da partícula e 

remove-la do volume; 

5.7 Se R for maior que [(N/a)Exp(-f3M)], rejeitar a destruição e retornar para o 

passo 2; 
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Como pode-se observar neste algoritmo existe uma enorme semelhança com o 

algoritmo desenvolvido para ensemhles canônicos, principalmente na parte em que é 

feita toda a dinâmica de deslocamento da partícula dentro do sistema, porém a única 

diferença é que em alguns momentos partículas são acrescentadas ou excluídas do 

sistema. Portanto, do mesmo modo afirma-se que a convergência deste algoritmo 

grand-canônico está relacionado, essencialmente, com a movimentação das partículas. 

Caso tenhamos pouca movimentação de partículas necessitaremos de muitas 

configurações a fim de que o sistema alcance o equilfbrio, possuindo assun, uma 

convergência muito lenta. No entanto, uma elev'tl.da movimentação de partículas nos 

pode resultar em uma alta taxa de rejeição a cri�ção e a aniquilação de partículas, que 

também reduz a rapidez de convergência do sistema. Entretanto, um outro problema 

que o algoritmo detém é o elevado tempo computacional, que é devido o fato de que o 

sistema atualiza e contabiliza toda sua nova configuração, toda vez que se acrescenta 

ou reduz o número de partículas no ensemble. 

Todavia, apesar destes problemas muitas aplicações tem sido realizadas em 

diversos campos da ciência, principalmente no estudo de soluções eletrolíticas, as quais 

o problema da flutuação na concentração é amenizado em decorrência da baixa

densidade do sistema. Porém, dificuldades encontradas no que se refere ao cálculo da 

concentração média e da energia do sistema, que são grandes barreiras no 

desenvolvimento de alg01itmos para ensemhles grand-canônicos, foram em certo modo 

solucionadas com os trabalhos de Nonnan et al6
'l, Adami62l

, Nicholson. et al63 l
, que 

contribufram de modo quantitativo e qualitativo na exploração do método Monte 

Carla grand-canônico. 

3.3 Caminhadas Aleatórias 

3.3. 1 Caminhada Auto-excludente(SA W) 

Nos últimos anos, notamos na literatura que a expressão caminhada auto-

excludente(Self-A voiding Walk - SA W) tem sido considerada sinônima ao problema da 
• lím d' 

• ' 
d • 1 - d 1 <47-49\ I ,

estatística de po eros, no que 1z respeito a ca eias com exc usao e vo urne . sto e

devido ao fato de que as caminhadas auto-excludentes(SAW), também denominadas 
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caminhadas auto-repelentes(Se(f-Repelling Chain - SRC), tem sido utilizado por décadas 

para modelar a estatística de equilíb1io de polímeros lineares em soluções. 

Uma definição simples de caminhada auto-excludente(SAW) seria uma caminhada 

em urna rede d-dimensional, na qual o caminhante escolhe o próximo passo entre os 

vizinhos mais próximos, com exceção do sítio precedente, porém se acontecer que o 

caminhante escolha um sítio mais próximo que já tenha sido visitado anteriormente, então 

a caminhada é finalizada. No caso de uma rede quadrada(ver Fig. 3.2), a probabilidade em 

cada passo do caminhante saltar para um dado sítio i da rede é fornecida pela seguinte 

expressão: 

(3.24) 

onde d representa a dimensão euclidiana, na qual a êarninhada está sendo realizada. 

e UJ 

Fig. 3.2 - Representação gráfica de uma caminhada auto-excludente(SA W) em uma rede quadrada 

Devido o fato de que na caminhada SA W a trajetória não se intercepta, podemos 

utilizá-la para simular o crescimento de cadeias poliméricas reais, nas quais os efeitos de 

exclusão de volume devem ser considerados, pois os rnonômeros em urna macromolécula 

não podem, de modo algum, ocuparem a mesma posição no espaço. Baseados nesta 

grande aplicabilidade deste modelo, inúmeros trabalhos foram realizados no intuito de 

desvendar suas propriedades, ou melhor, que expoentes críticos regem tal modelo, 

principalmente no que se diz respeito a discretização do expoente v, obtido da relação de 

escala entre a distância entre os extremos (r2 ) com o número de passos N da caminhada, 
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ou seja, uma relação da quantidade N de monômeros com o parâmetro (P:). Este 

expoente nos fornece informações à cerca do empacotamento da cadeia polirnérica, e é 

obtido pela seguinte relação: 

(-2)½ Nvr = 

{
� para d<4

} v = d+2 
1 - para d� 4
2

. � 

3.3.2 Caminhada Verdadeiramente Auto-excludente(TSA W/7ºJ 

(3.25) 

Suponha um caminhante em uma rede d-dimensional, iniciando seu movimento na 

origem no passo i =O. Em qualquer iteração i o caminhante pode mover-se para 

qualquer dos 2d vizinhos mais próximos do sítio o qual ele está localizado. A 

probabilidade de saltar para um dado sítio i , depende do número de vezes n; que este 

sítio já tenha sido visitado, e é expressa da seguinte forma: 

Exp(-gn
i ) 

Pi = 
2d (3.26) 
L,Exp(-gnJ 
i=I 

onde a soma ocorre sobre todos 2d vizinhos mais próximos da posição corrente do 

caminhante e g é um parâmetro positivo, o qual mede a intensidade com que o 

caminhante evita cruzar a sua caminhada na rede. Alguns comentários são necessários: 

a) O somatório de p
1 

em i é igual a um, significando que o caminhante nunca permanece

no mesmo ponto;

b) Em cada iteração o valor de 11
1 

é modificado;

c) Os valores de P; dependem não somente do ponto onde ele está localizado, mas

também de toda a história da caminhada. Portanto, a probabilidade de uma caminhada

de N passos é o produto dos valores das probabilidades P; para cada passo. Desta

forma, vemos que existe uma dependência com a configuração da caminhada, como

também do ponto onde a caminhada é iniciada.

Embora, este tipo de caminhada tenha inicialmente gerado grande interesse por 

parte dos físicos, até agora nenhuma aplicação tem sido encontrada para este modelo. A 
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razão para isto, deve-se ao fato de que quando temos um altíssimo valor de. inibi<;ão de cruzamento da caminhada (g � 00), au1da podemos obter caminhadas que se cruzam. Isto ocorre quando todos os possíveis sítios para um determinado passo da camu1hada já tenham sido visitados anteriormente pelo caminhante. Tal situação pode exemplificada pelo seguinte esquema: 
C7 □--...

... =--i ... ==r� 
(a) (b) 

Fig. 3.3 - Representação esquemática de uma caminhada TSA W que se intercepta. Todos os possíveis 

sítios para o passo já foram visitados anterionnente. 

Apesar disto, importantes mvestigações<111
•72l no TSAW (True Sef:f-A voinding

Walk) foram realizadas, a fim de se estabelecer uma completa informação acerca de seu comportamento assintótico e de seus expoentes críticos. Evidencia-se o trabalho realizado por L. Pietronerc/72l, que através do método de campo auto-consistente estabeleceu urna relação entre a distância entre os extremos ( r2) e o número de passos N do caminhante,para urna caminhada verdadeu-amente auto-excludente (TSA W) de N passos em um espaço de di1pensão euclideana d . Esta relação é expressa da seguinte fonna<72
l: 

{-2 para d < 2} V
- d+2-

1 - para d� 2 
2 

3.3.3 Caminhada de Crescimento Auto-excludente(GSA W) 

(3.27) 

Neste modelo teremos um camu1hante descrevendo um movimento em uma rede d-dimensional, tal que no passo i =O, o carnu1hante esteja na origem. Em qualquer passo.o caminhante pode deslocar-se para quaisquer dos vizu1hos mais próximos, que nãotenham sido ocupados anteriormente, com a seguinte probabilidade:
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(3.28) 

onde n é a quantidade de primeiros vizinhos desocupados. No entanto. quando n = O 

para um determinado passo i , ou seja, quando não existem vizinhos mais próximos 

desocupados, então a caminhada é finalizada nesta iteração i , evitando, deste modo. a 

interseção da trajetória do caminhante. 

'º' 

101--
1 1/2 

! 'º'

101 ... 

Fig. 3.4 - Exemplo de uma caminhada GSA W que é linalizé�d_a. Probabilidade para o passo ( /Ji =O), pois 

todos os possíveis sítios para o passo i já foram visitados anteriormente. 

Um ponto importante que devemos ressaltar neste modelo é o seu caráter 

irreversível, que é conseqüência da dependência da probabilidade com a direção que é 

tomada pelo caminhante ao longo da sua trajetória. Este fato pode ser representado pelo 

seguinte esquema: 

11121 

1/4 11121 t 11/41 

Fig. 3.5 - Representàção esquemática do caráter irreversível de uma caminhada GSA W. Os números nos 

braquetes nos fornecem as probabilidades na direção inversa da caminhada. 

onde os números que são listados na figura representam os valores da probabilidade 

quando esta difere do valor ½, Enquanto que os números em parênteses nos fornecem as

probabilidades do caminhante quando na direção inversa da caminhada inicialmente 

realizada. 

Diversos trabalhos abordando métodos de aproximações diferentes nos fornecem 

uma maior informação acerca dos expoentes críticos deste modelo, como também de sua 

aplicabilidade ao modelamento de fenômenos. Dentre estes estudos, estabeleceu-se urna 
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relação entre a distância entre os extremos (r2 ) e o número de passos N do· caminhante 

para uma caminhada de crescimento auto-excludente (Growin� Se(f-A voidin�

Walk - GSA W) de N passos realizada em um espaço euclidiano de dimensão d , expressa 

da seguinte maneira: 

(r2? = N
u 

{ 

2 

} 
-- para d< 3 

v _ d +1 
- � para cl 2 3

(3.29) 

... 

onde (r2 ) é a distância entre os extremos da cai�inhada. 

3.3.4 Caminhada de Crescimento Indefinidamente Auto-excludente(IGSA W) 

Trata-se de um novo tipo de caminhada auto-excludente(SA W) introduzida por 

Kremer et al75l
, a qual é completamente auto-excludente(SAW) e verdadeiramente 

cinética, concomüantemente. Isto significa que embora a caminhada cresça para sempre, 

nenhum sítio pode ser visitado mais de uma única vez. Então, podemos considerar esta 

caminhada como sendo urna caminhada auto-excludente(SAW) com uma propriedade 

especial de que cresça indefinidamente(verdadeiramente cinética), ou alternativamente 

como sendo uma caminhada aleatóda com um vfoculo adicional de que possa ocupar um 

determinado sítio uma única vez(auto-excludente). Este novo modelo é denominado 

caminhada de indefinidamente auto-excludente(lnd�fin.itely Growing Se(f-A voiding

Walk - IGSA W)'75l, o qual baseia-se no fato de que este reconhece e evita "gaiolas". as 

quais foram sendo formadas durante a caminhada na rede, e que causarão uma 

interceptação da trajetória futuramente, caso o caminhante adentre nela. 

Através dos modelos tratados anteriormente, vimos que o TSA W é 

verdadeiramente cinético, porém não é completamente auto-excludente; enquanto que o 

GSA W é inteiramente auto-excludente, no entanto não é verdadeiramente cinético, pois 

vimos que a caminhada, para este modelo, podia ser interrompida para o caso em que não 

existissem primeiros vizinhos desocupados. No que se refere ao caráter irreversível destas 

caminhadas, que é caraterizado pela situação em que o conjunto das probabilidades de 
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cada passo difere do conjunto obtido quando o caminhante executa o seu movimento na 

direção inversa da caminhada inicial, observamos para o caso usual de SA W que esta 

propriedade não é encontrada; enquanto que para o caso IGSA W, o caráter irreversível 

está presente, como podemos observá-lo pela seguinte figura: 
( 1/2) 1/2 

1/31(1/2) ( 1/ 
1/3 ( 1 1 

1/3 
l l /2 1/2

1/3) (1/3

Fig. 3.6 • Comparação de uma cmninhada IGSA W com �a SA W. A linha contínua representa a 

cmninhada !GSA W, enquanto que a linha trac�jada representa as direções as quais serimn permitidas 

somente para uma caminhada SA W. O caráter irreversível do ÍGSA W tmnhém é ilustrado. Os números em 

parênteses correspondem as probabilidades na direção inversa da caminhada. 

onde os números em parênteses representam as probabilidades para cada passo, quando o 

caminhante executa o seu movimento no sentido contrário da trajetória original da 

caminhada. Ademais, é importante ressaltar que somente os valores das probabilidades 

para cada passo diferentes do usual SAW, (P =½),são representados na Fig. 3.6. 

3.3.4.1 Modelo 

Descreveremos o procedimento de construção da caminhada em uma rede 

quadrada(76
\ tendo em vista que a extensão para outras redes bi-dimensionais é simples e 

direta. 

Em geral, a pro habilidade para o caminhante dar um determinado passo para um 

dada direção, quando executando um usual SA W, é expressa pela seguinte expressão: 

(3.30) 

onde q é a quantidade de primeiros vizinhos desocupados. De tal modo, que no primeiro 

passo i = 1 ternos que escolher entre % = 4 direções, que nos fornece a seguinte 

probabilidade para o passo: 
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(3.31) 

Para a próxima iteração i = 2, ternos, trivialmente, a seguinte probabilidade para o 

caminhante dar um passo 

(3.32) 

onde tal caminhada é finalizada quando o caminhante tenta violar a condição de não 

interceptação de sua trajetória. No caso IGSA W é necessário detinfrmos, em cada passo, 

as probabilidades de transição para um dado sítio, analisando de tal forma a entrada ou 

não do caminhante erp "gaiolas", que posteriormente funcionarão como barreiras para o 

caminhante, ou melhor, como possíveis pontos de cruzamento de sua trajetória. 

Para definirmos as probabilidades de transição para o JGSA W, primeiramente 

contaremos quantos dos primeiros vizinhos ainda não foram visitados. Como também, a 

fim de evitarmos a entrada do caminhante nestas "gaiolas", necessitaremos não somente 

de um conhecimento local sobre a circunvizinhança do sítio, mas precisaremos de um 

conhecimento global da estrutura de co1rt·ormação da cadeia. Tal i.Júormação adicional nos 

é fornecida pelo número w; de ligações da cadeia para um dado passo t 

i 

W="w-1 � } 
j-1 

(3.33) 

que como poder12-os observar é dado por uma soma sobre todos os ângulos wi, onde .i

varre todos os passos anteriores. Os valores de w
j 

assumem os valores - 1 quando 

realiza-se um ângulo de 90º no sentido horário entre os passos j e (j - 1), sendo iguais a 

+ l para üm ângulo de 90º no sentido anti-horário, e zero quando não há rotação na

caminhada, ou seja, o caminhante prossegue adiante, movendo-se para o sítio a sua frente.

Como também, assumiremos que nos passos i.Jüciais, j = O e j = 1, os valores de wi

sejam ambos iguais a zero. 

Quando da estruturação de um modelo JGSA W para outros tipos de rede 

bidimensionais, necessitaremos fazer urna pequena modificação nesta definição dos valores 

de w
j

.
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Fig. 3.7 - (a) Uustração de uma caminhada IGSA W em uma rede quadrada. Os pontos em círculos ahertos 

representam os sítios vizinhos analisados na construção da caminhada. (b) Os pontos em círculos abertos 

representmn os sítios à serem analisados para a construção de uma caminhada JGSA W para as redes 

triangular e favo-de-mel. Note que no caso da rede triangular, variáveis adicionai:,; devem ::-;er 

introduzidas, devido ao fato do cmninhante possuir, em cada sítio, três graus de liberdade para rolaciornu·. 

No modelo IGSA W, a cada novo passo, as direções são primeiramente 

selecionadas, e daí o novo passo é tomado de forma aleatória dentre estas direções pré-

selecionadas, onde no caso da rede quadrada a escolha é feita entre no mínimo uma ou no 

máximo três direções. A fim de descretizarmos estas possibilidades, necessitaremos obter 

informações acerca de quais primeiros vizinhos estão ocupados, como também dentre 

estes primeiros vizinhos desocupados, quais levarão o caminhante a entrar em uma 

"gaiola". Para detectarmos a presença de uma "gaiola", nos passos posteriores, devemos 

checar não somente os primeiros vizinhos, mas também se os segundos vizinhos, 

localizados à frente do sítio onde o caminhante está posicionado, já fora ocupado. De tal 

modo que os sítios a serem analisados formam urna semi circunferência à frente do sítio 

onde está localizado o caminhante(ver Fig. 3.8). 
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Se no k-ésimo passo, um dos pnmeJros ou segundos vizinhos estão ocupados, 

então devemos calcular a diferença ó W do número de ligações da cadeia, tal que: 

(3.34) 

onde W., representa o número de ligações da cadeia realizadas do inicio da cadeia, N = (). 

até o k-ésirno passo, e.la mesma forma que W; representa o número de ligações da cadeia 

feitas do inicio da cadeia até o sítio i , que corresponde ao segundo vizinho localizado à 

frente do sítio o qual o caminhante está localizado, no k-ésimo passo. Quando ó W for 

positivo, nenhum passo, ou melhor, nenhuma rotação no sentido anti-horário será 

permitida, enquanto quando ó W for negativo, rotações no sentido horário não poderão 

ser realizadas. O caso em que ó W = O não ocôrre, pois nesta situação "gaiolas" não 

existiriam. Para o caso de redes quadradas analisa-se somente dois segundos vizinhos. 

como podemos observar pela figura abaixo. 

o 

(bl 

Fig. 3.8 - (a) Exemplo de uma caminhada IGSA W de comprimento N = 100. Os círculos repre,�enlaln os 
. 

pontos da rede nos quais à análise da existência de gaiolas foi de fundamental importância para que o 

caminhante não cruzasse sua própria trajetória. (b) Ilustração mais detalhada da análise da existência de 

gaiolas em uma caminhada IGSA W.

Podemos obter diversas configurações espaciais para uma caminhada /GSA W, no 

entanto para explicarmos o mecanismo de forma mais detalhada, apresentamos uma 

caminhada um pouco mais complicada(ver Fig.3.9). Nesta estrutura observamos a 

presença de duas "gaiolas", localizadas nas adjacências do sítio i
3

• A fim de evitarmos que 

o caminhante entre nestas gaiolas, necessitamos, somente, de infotmações acerca dos

sítios representados por círculos abertos, e à partir daí calculamos o valor da diferença 
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Li W do número de ligações, deste sítio i
1

, o qual o caminhante está localizado após k

passos, com relação aos sítios i
1 

e i
2

, respectivamente. que correspondem aos dois 

segundos vizinhos localizados à sua frente. 

l+ +J-3 • , •
B6j o 

11 
1 

P x .=t : 13 
0◄--...---r---.

+ 

+ + 

Fig. 3.9 - Exemplo de uma configuração IGSA W. Os círculos ahertos representmn os sítios os quais são 

analisados e que são importanles para o uuninhante evitar a entrada nas gaiolas prcsent.es(uma na direção 

do sítio i1 e outra na direção do sítio i2 ).

Analisando, cuidadosamente, ao longo da caminhada os tipos de rotações feitas, se foram 

horárias ou anti-horárias, podemos, para os sítios em análise - i
1 

, i
'2 

e i
1 

- calcular o valor 

de W
i , que nos informa qual tipo de rotação preferencial desde da origem da caminhada 

até o sítio i : 

W =+1 
'1 

W =-3 ,, (3.35)

W =-1,, 
Desta forma de posse destes valores, podemos contabilizarmos a diferença Li W na 

caminhada: 

(3.36) 

Deste modo, através do valor de L1 \¾
1

, vê-se que é vetada ao caminhante executar

uma rotação de 90° no sentido horário, enquanto que o valor de Li \¾
2 

proíbe uma
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rotação de 90° no sentido anti-horário. Sendo as.sim, a única possibilidade que não leva o 

caminhante a uma "gaiolà" ou uma interceptação de sua trajetcíria é o sítio localizado a 

sua frente, de tal forma que a probabilidade com que o c.;aminhante efetuará este passo 

para este sítio será igual a um. 

3.4 Geometria Fractal e suas Leis de Escala 

3.4.1. Auto-similaridade 

Um do.s aspectos gerais de objetos fra�ai.s é que eles são auto-similare.•/64
-
67

), ou

seja, são invariantes de escala. Isto quer dizer que se cortarmos uma fração de um dado 

objeto, e então ampliarmos esta fração, o objeto resultante(do ponto de vista estatístico) 

será considerado idêntico ao objeto original do qual foi retirado. Por exemplo, se 

considerarmos uma linha, que é por definição um conjunto de pontos no espaço, se 

alterarmos o seu comprimento escalar, observaremos que recuperaremos o mesmo 

conjunto de pontos do que tú1hamos antes. Como também, se tran.slacionarmos os pontos 

deste mesmo conjunto, a linha, veremos que recobriremos o mesmo conjunto de pontos 

que tínhamos originalmente. Portanto, podemos concluir que a linha é invariante com 

relação a translação e a mudança de escala, diremos assim, que a linha é um objeto auto­

similar. 

Um outro exemplo clássico que poderíamos citar para ilustrar nossa discussão é a 

lli1ha costeirn de um continente. Suponha que um cartógrafo caminhe ao longo de uma 

linha costeira, e após percorrê-la completamente trace o mapa desta costa, veremos que 

este mapa da linha costeira apresentar-se-á de forma bastante similar com uma foto de.sta 

mesma costa quando feita por um satélite. Adicionalmente, observaremos que o mapa 

construído no primeiro caso é muito mais rico em detalhes do que o obtido no segundo 

caso, e esta resolução é uma conseqüêilcia direta da escala com a qual o mapa é 

construído. 

De um modo geral, a auto-similaridade está relacionada com a invariância do 

sistema quando sob uma transformação isotrópica, sendo portanto uma propriedade de 

simetria do sistema. Sendo assim, se considerarmos um objeto S formado por um 
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rotação de 90° no sentido anti-horário. Sendo assim, a única possibilidade que não leva o 

caminhante a uma "gaiola" ou uma interceptação de sua tn�jetcíria é o sítio localizado a 

sua frente, de tal forma que a probabilidade com que o caminhante efetuará este passo 

para este sítio será igual a um. 

3.4 Geometria Fractal e suas Leis de Escala 

3.4.1. Auto-similaridade 

Um do.s aspectos gerais de objetos fra<Jais é que eles são auto-similares(64

·ü
7

\ ou 

seja, são invariantes de escala. Isto quer dizer que se cortarmos uma fração de um dado 

objeto, e então ampliarmos esta fração, o objeto resultante(do ponto de vista estatístico) 

será considerado idêntico ao objeto original do qual foi retirado. Por exemplo, se 

considerarmos uma linha, que é por def,nição um conjunto de pontos no espaço, se 

alterarmos o seu comprimento escalar, observaremos que recuperaremos o mesmo 

conjunto de pontos do que tínhamos antes. Como também, se translacionarmos os pontos 

deste mesmo conjunto, a linha, veremos que recobriremos o mesmo conjunto de pontos 

que tú1hamos originalmente. Portanto, podemos concluir que a linha é invariante com 

relação a translação e a mudança de escala, diremos assim, que a linha é um objeto auto­

sirnilar. 

Um outro exemplo clássico que poderíamos citar para ilustrar nossa discussão é a 

linha costeii.a de um continente. Suponha que um cartógrafo caminhe ao longo de uma 

linha costeira, e após percorrê-la completamente trace o mapa desta costa, veremos que 

este mapa da linha costeira apresentar-se-á de forma bastante similar com uma foto desta 

mesma costa quando feita por um satélite. Adicionalmente, observaremos que o mapa 

construído no primeiro caso é muito mais rico em detalhes do que o obtido no segundo 

caso, e esta resolução é uma conseqüêi.1cia direta da escala com a qual o mapa é 

construído. 

De um modo geral, a auto-similaridade está relacionada com a invariância do 

sistema quando sob uma transformação isotrópica, sendo portanto uma propriedade de 

simetria do sistema. Sendo assim, se considerarmos um objeto S formado por um 
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conjunto de pontos R = (x
1 
,x

2 
,x

3 , ••• ) , tal que sofra uma transformação isotrópica com 

uma fator de escala b, onde este valor será o mesmo para todas as direções assumidas 

pelo sistema, obteremos que as coordenadas deste sistema transformado hS será dada por 

bR == (bx
1 
,bx

2 
,bx

3
,. • . ) . Se vet'ific.:armos, cuidadosamente, veremos que este sistema 

transformado bS apresenta-se de modo bastante similar ao sistema original S, exceto por 

um aumento ou diminuição uniforme das dimensões, de tal modo que poderíamos afirmar 

que este sistema transformado bS seria nada mais, nada menos do que uma fração do 

sistema original S, onde o objeto S formado pelo conjunto de pontos R = (x
1 
,x

2 
,x

3 
, ... ) 

será considerado auto-similar se este conjunto R for invariante sob esta transformação.., 
realizada. Este tipo de transformação da qual estamos nos referindo, transformação 

isotrópica. para um melhor entendimento é exempliffcada na Fig. 3.10. 

2 

2 4 

Fig. 3.10 - Representação do efeito de uma transformação isotrópica e anisotrópica em um dado o�jeto. 

(a) Caso isolrópico: o diâmetro é aumentado por um fator dois, tanto na direção horizontal como na

direção vertical. (h) Caso anisotrópico: o diâmetro é aumentado por um fator quatro na direção horizontal,

enquanto que na direção vertical é aumentado por um fator dois.

3.4.2 Auto-afinidade 

A auto similaridade de um objeto é equivalente a invariância de suas propriedades 

geométricas quando sob uma transformação de escala isotrópica. Ou seja, uma 

transformação deste tipo pode aumentar ou diminuir as dimensões do sistema em qualquer 

das direções espaciais que o sistema detém. Porém, em muitos problemas importantes na 

física, a estrutura geométrica do objeto apresenta-se invariante quando sob uma 

transformação, somente quando reescala-se as suas diinensões com diferentes fatores de 
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escala para cada uma das direções que constituem o sistema. Estes sistemc,ts, os quais 

sofrem transformações anisotrópicas para permanecerem invariantes geometricamente. são 

denominados auto-afü1s<64
-
67

l. 

De um modo geral, se considerarmos um sistema S formado por um conjunto de 

pontos R = (x
1 
,x2 ,x

3 , ••• ) : tal que sofra urna transformação anisotrópica com uma fator de 

escala b, de tal modo que este fator de escala assume diferentes valores para cada uma 

das direções do sistema, obteremos que as coordenadas deste sistema transformado bS 

será dada por bR = (b
1 
x

1
, b

2
x

2
, b

3
x

3 
, ••• ) • Se verificarmos, cuidadosamente, veremos que 

este sistema transformado bS apresenta-se de forma bastante similar ao sistema original 

S, tal que podemos recuperar o sistema original S, bâ'..<;tando-nos multiplicar as dimensões 

do sistema transformado por apropriados fatores de escala. Portanto, consideraremos o 

sistema S formado pelo conjunto de pontos R = (x
1 
,x

2 
,x3 , •.• ) auto-afim se este conjunto 

R for invariante sob esta transformação realizada. A transformação da qual estamos nos 

referindo, transformação anisotrópica, para uma melhor compreensão é ilustrada nas 

Figs. 3.10 e 3.11. 

(o) 

lbl 

lcl ''
1 

''' 
1 
1 .__ ......... _,_ ......... __,.____.__ ___ __. 

➔ 

Fig. 3.11 - Construção de um oqjeto auto-afim determinístico. A diagonal em (a) é dividida 

horizontalmente em quatro partes iguais, formando a estrutura (h). No passo seguinte, repetimos o mesmo 

procedimento nos quatro segmentos de (b), originando a estrutura (e). 
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3.4.3 Dimensão Fractal 

Afim de caracterizarmos de modo quantitativo a geometria fractal de um sistema,

mais especificamente um objeto auto-similar, necessitaremos definir um parâmetro novo, 

denominado de dimensão de preenchimento(" emhedding dimension ")(64
-
67

) d 
E

, que

representa a menor dimensão Euclideana do espaço o qual um dado objeto pode ser 

completamente inserido. Obviamente, se considerarmos um sistema de volume V(!), 

podemos determinar o valor desta quantidade se utilizarmos pequenas caixas, bastando­

nos sobrepô-las no objeto até que o volume V(l) esteja completamente preenchido por 

estas caixas. Supondo 9ue cada caixa possua urna dimensão d 
E 

e comprimento l , então 

podemos afirmar que o volume ocupado por cada urna�das bolas seja igual a: 

(3.37) 

como também, assumindo que sejam necessárias N(l) caixas para que possamos cobrir 

todo o volume V(l) do objeto, então podemos afirmar que o volume total do objeto, 

V(l), é igual ao número total de caixas, N(l), vezes o volume v(l) ocupado por cada 

caixa, tal que: 

V(l) = N(l)v(l) 

v(l) = N(l)t dE (3.38) 

Entretanto, devemos ressaltar que N(l) deve ser o menor número de caixas com as quais 

podemos completamente preencher o volume V(l). Quando variamos os valores dos 

comprimentos das caixas, fazendo com que assumam pequenos valores, tal que l ➔ O, 

observamos que e·m objetos não-fractais, V(l) atinge rapidamente um valor constante, 

enquanto que para objetos fractais verificamos V(l) ➔O. Portanto, baseados nesta 

particularidade destes objetos, podemos definir, de modo geral, um objeto como fractal se 

ao medirmos o seu volume, ou superfície ou comprimento com bolas d-dimensionais não 

pudermos obter urna medida finita convergente para estas quantidades, quando se executa 

uma variação no comprimento l da caixa em diversas ordens de magnitude, mais 

especificamente quando diminuúnos os seus valores, fazendo l ➔ O. Deste modo, quando 

no estudo de objetos fractais os quais possuem dimensões finitas e ramificações 
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_.,, 

infinitamente pequenas U ➔O), podemos, baseados na eq.(3.38), fazer uma aproximação 

e o bter< 64
-
67 >: 

(3.39) 

onde d I é a dimensão destes objetos. denominada dimensão fractal. Sendo assim. 

fundamentado na definição de fractál realizada acima e nesta última equação, eq.(3.39), 

podemos afirmar que sistemas com d 1 < d 
E 

são ditos fractais. Todavia, utilizando esta 

mesma equação, eq.(3.39), podemos expressar matematicamente a dimensão fractal deste 

sistema, como sendo<64
-
67

l:

. 111 N(l)
d

1 
= Lun 

(){)l ➔o ln 
l 

... (3.40) 

que claramente vemos que ao tratarmos com objetos não-fractais, o valor de d 
I 

coincide 

com o próprio valor de d E, que representa a menor dimensão Euclideana do espaço em 

que este sistema pode ser completamente i.1selido. 

Um dos mais simples e conhecido exemplo de fractal é a denominada "Poeira de

Can.tor"(64
-
66>, que é um fractal de tamanho füüto constituído de várias partes 

desconectadas as quais são embutidas completamente dentro do espaço uni-dimensional 

(d= 1). 

lo l 

lbl 

(e) 

- -

-- . .

1111 11 ,, 

- - -

•• . . •• 

li li li li li li 

K=O 

K= 1

K=2 

- - - K=3 

.. • • •• K=4 

li ti lf li U 11 K=5 

Fig. 3.12 - Construção da Poeira de Cantor. Diviclimos o segmento (a) em três partes iguais, e

removemos a parte central, originando a estrutura (h). Repetimos o mesmo processo para cada uma das

partes da estrutura (b), formando a estrutura (e). Se continuarmos repetindo este procedimento

inc.lefinic.lamente, obteremos o que denominamos Poeira de Cantor. Para cada iteração associamos um

número k.
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Sua construção baseia-se em uma divisão sucessiva dos interval_g.s, os quais são gerados à 

partir de cada segmento do objeto. Inicialmente, no passo i =O, suponhamos um objeto 

de comprimento l , de tal modo que o dividimos em três partes iguais e retiramos a fração 

central deste objeto, restando assim, no passo i = 1, dois segmentos de dimensões 

idênticas e iguais a ½. Dividimos, então, novamente cada um dos segmentos restantes 

em três partes iguais, retirando sua fração central, restando, deste modo. no passo i = 2, 

quatro segmentos, cada um de comprimento igual a ¼. E assim continuamos 

sucessivamente, obtendo como resultado um fractal determinístico, que pode ser 

representado esquema;icamente pela Fig.(3.12). 

Obviamente, pelas discussões feitas realizac.J.as acuna, podemos, de modo geral, 

obter uma relação do comprimento l de cada segmento com a interação i, ou melhor, 

com o número da iteração i correspondente: 

(3.41) 

como também, de modo análogo obtemos para a quantidade de segmentos N(l) : 

(3.42) 

sendo assim, obtemos à partir da eq.(3.40) a seguinte dimensão fractal para este objeto, 

"Poeira de Cantor": 

ln 2 
d

1 
=-=0.639 ... 

ln 3 

como d 
1 

< dE
, vemos assim que a "Poeira de Cantor" é realmente um fractal. 

(3.43) 

Um outro exemplo de fractal é o "Tapete de Sie1pinski"<64-
66>, mostrado na

Fig.(3.13), que é uma das estruturas fractais bi-dimensionais mais estudadas, visto que é 

considerado como uma generalização para duas dimensões da "Poeira de Cantor", como 

também é- visto como um protótipo de uma rede fractal com urna infinita quantidade 

hierárquica de iterações. 

Sua construção está centralizada na divisão de um triângulo equilátero em quatro 

outros triângulos equiláteros de mesma área, retirando-se o triângulo central e 

conservando os três triângulos restantes. Nos passos seguintes executamos o mesmo 
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procedimento com os triângulos que são conservados em geração em geração. De tal 

modo, que o objeto resultante da subsequente execução deste procedimento é um 

fractal ( ver Fig. 3.13). 

(e) (d) 

-------- . 
1 
1 

1 

1 

1 
1 
1 

Fig. 3.13 - Construção do Tapete de Sierpinski. (a) Iniciamos com um triângulo totalmente 

preenchido. (h) Dividimos o triângulo em quatro triângulos iguais e removemos a parte central. (e) 

Repetimos o mesmo procedimento para cada um dos triângulos restantes, originando a estrutura (d). se 

continuarmos repetindo este procedimento indefinidamente, formaremos uma estrutura denominada de 

Tapete de Sierpinski. Para cada iteração associamos um número k. 

De tal modo que, pelas discussões realizadas acuna, pode.mos extrair uma relação do 

número N(l) de triângulos com o número da iteração i , da seguinte forma: 

(3.44) 

e que cada um dQS triângulos gerados terão como comprimento de lado o seguinte valor: 

(3.45) 

portanto, utilizando a eq.(3.40), obtemos que a dimensão fractal deste objeto, "Tapete de 

Sie,pinski ", é dada por: 

ln3 
d

1 
=-=1585 ... 

ln 2 
(3.46) 

que corno vemos é menor do que a dimensão do espaço Euclideano o qual este objeto 

pode ser completamente embutido, dE = 2. Sendo, comprovadamente, um objeto fractal, 

pois temos que d
1 

< dE . 
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Até agora em nossos exemplos temos tratado de fractais denominados 

determinísticos, os quais são assim chamados por serem construídos à partir de uma 

determinada regra matemática, de tal modo que em cada passo do processo existe uma 

perfeita simetria do sistema, não havendo de modo algum flutuações na simetria da 

estrutura do objeto em estudo. Porém, as flutuações estão cada vez mais presentes nos 

processos físicos, não permitindo que no decorrer do processo de construção de um dado 

objeto fractal existam estruturas com simetrias perfeitas. Ademais, devemos ressaltar a 

existência de uma outra classe de fractais, os fractais randômicos, que são gerados à partir 

de processos· aleatórios, que diferenciam de forma bastante acentuada dos fractais 

detenninísticos por possuírem um nível simples de simetlia . 

No entanto, podemos gerar fractajs estocásticos simples de modo análogo às 

construções descritas acima para os fractais • determinísticos. Como exemplo, 

consideremos, inicialmente, o fractal mostrado pela Fig. (3.14). 

k=O k = 1 k=2 k=3 

Fig. 3.14 - Construção de um fractal determinístico. lnici;unos com um pequeno quadrado totalmente 

preenchido, dividindo-o em nove parles iguais, ou melhor, em nove quadrados idênticos, e rcmovemo1-

quatro destes quadrados localizados na primeira vizinhança do quadrado central. Repetimos o processo 

indefinidamente com cada um dos cinco quadrados restantes. 

Corno também, construamos um outro objeto fractal, o qual seja constituído pela divisão 

de um quadrado em nove partes iguais, gerando, assim, nove quadrados idênticos, e 

deletando aleatoriamente quatro destes quadrados, tenhamos cinco quadrados restantes. 

No passo seguinte, façamos o mesmo procedimento para cada um dos quadrados 

restantes, de tal modo que podemos representar este objeto após três execuções, iteração 

i = ( O, 1, 2) , pelo seguinte diagrama: 

87 



k = 1 k =2 

Fig. 3.15 - Construção de um fractal estocástico. Iniciamos com um quadrado totalmente preenchido, 

dividindo-o em . nove quadrados iguais e removemos quatro destes quadrados, cujas localizações são 

escolhidas de forma aleatória. Repetimos este procedimento com cada um dos cinco quadrados restantes. 

No entanto, obtemos a mesma dimensão fractal da obtida pela..estrutura fornecida pela Fig. 3.14. 

Se compararmos a aparência geométrica dos objetos fractais representados pelas 

Figs.(3.14) e (3.15), veremos que são completamente diferentes, entretanto suas 

dimensões fractais são idênticas e são dadas por: 

ln5 
d

1 
=-=1.465 ... 

ln3 
(3.47) 

mostrando-nos que necessitamos da mesma quantidade N(l) de caixas para cobrirmos 

completamente cada um dos objetos. 

Certamente, esta construção, descrita acima, representa uma versão bastante 

simples de possíveis fractais randômicos que podem ser construídos. Diferentes objetos 

fractais randômicos seriam obtidos se fizéssemos variar a posição das partes geradas, 

como também, .se alterássemos a quantidade destas unidades ou o parâmetro de 

escala( quer seja de redução ou de aumento). No entanto, é importante ressaltar que para 

esta classe de fractais, fractais randômicos, não é possível obtermos uma expressão 

explícita para a determinação da dimensão fractal destes objetos de modo análogo para o 

caso de fractais determinísticos, que era representada pela eq.(3.40). Três importantes 

técnicas tem sido utilizadas para a determinação desta quantidade d 
1

, que são: 

experimental, teórica e computacional. 

No que se refere as técnicas experimentais, as ma1S aplicadas dividem-se nas 

seguintes categorias: a) processamento digital de figuras de objetos bi-dimensionais 
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b) experimentos de espaJhamento: raios X, luz, nêutron, etc. e) deposição de mono­

camadas em estruturas d) medição direta da dimensão através de algumas propriedades 

físicas do sistema. 

No campo teórico, observou-se uma estreita relação entre fractais e fenômenos 

críticos, através de experimentos verificou-se que alguns sistemas, os quais exibiam 

transições de fase de segunda ordem, apresentavam lei de potência dependente da 

quantidade física a qual estava sendo medida no experimento, e estes expoentes que 

caracterizavam a lei de escala destas quantidades assumiam valores não inteiros, somente 

quando na lei· de escala gerada à partir da massa do fractal com o seu raio de giração. 

Entretanto, notou-se que esta analogia entre os fractais e os fenômenos críticos tinha 

como pano de fundo a auto-similaridade, que em ambos os casos justifica a não 

padronização das leis de escala dentro destes procêssos, como também a invariância de 

escala destes processos nos pontos c1iticos do sistema. Contudo esta invariância de escala 

tem formado a base da Teoria de Grupo de Renormalização<16•17l, a qual tem sido bastante

utilizada na descrição de transições de fase contúmas, realizando tal descrição através do 

cálculo dos expoentes críticos e dos conhecidos diagramas de fase, mostrando-nos a 

importância destes parâmetros para a transição de fase do sistema. A idéia principal do 

Grupo de Renormalização está no fato de reduzirmos os graus de liberdade de um dado 

sistema. No entanto, observa-se que tanto os muitos graus de liberdade de um sistema 

como a invariância de escala possuem a mesma razão de ser: no ponto crítico o sistema 

possui grandes flutuações com nenhum comprimento característico. 

Entretanto., no campo computacional o que mais tem-se destacado é a simulação 

de vários fenômenos de crescimento de estruturas, valendo ressaltar aqui a importância do 

Método Monte Carla, que realiza simulações de crescimento de determinados sistemas à 

partir de dados aleatórios, através de processos estocásticos. 

Porém, apesar desta dificuldade em explicitar a dimensão fractal para os fractais 

randômicos, vimos acima diversos métodos que nos possibilitam não somente verificar o 

caráter fractal destes objetos, mas também de nos informar que valor é assumido para a 

dimensão fractal destes objetos. O fato é que os fractais randômicos são auto-similares 

somente em sentido estatístico, ou seja, a invariância de escala significa que possuem 
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somente identidade estatística, ou melhor, todas as quantidades estatísticas serão as 

mesmas tanto para o sistema original como para um outro sistema oriundo de uma 

transformação de escala do sistema original. Desta forma, torna-se muito mais apropriado 

descrevê-los utilizando a invariância de escala do que usarmos propriamente a auto­

similaridade. Naturahnente, para demonstrarmos a presença de uma lei de escala fractal 

podemos, novamente, utilizarmos a definição baseada em cobrir totabnente o objeto com 

bolas, no entanto, é muito mais eficaz calcularmos a tão conhecida função de correlação 

c(r), a qual é expressa do seguinte modo(64-
67

): 

1 
c(r) = -I,p(r + r')p(r') 

V ,, 
(3.48) 

.. 

que representa o valor esperado que dois pontos, separados por urna distância r,

pertençam a estrutura. No caso de crescimento de fractais, o volume V do objeto é igual 

ao número N de partículas no agregadc. De tal modo que a eq.(3.48) nos fornece a 

probabilidade de encontrarmos uma partícula na posição r + r', uma vez que exista uma 

partícula situada na posição r'. Sendo assim, p na eq.(3.48) representa uma densidade 

local de partículas, ou seja, p(r) = 1 quando existe uma partícula situada na posição r e 

p(r) = O quando não tivermos nenhuma partícula localizada na posição r. Valendo 

ressaltar que nos fractais mais comuns a função correlação independe da direção tomada, 

significando assim, que a função densidade de correlação dependa unicamente da distância 

r, tal que: 

c(r)= c(r) (3.49) 

No entanto, para utilizarmos a função de correlação, introduzida acima, como uma 

condição para possuirmos uma geometria fractal, devemos garantir que esta função 

expressa pela eq.(3.48) seja invariante quando sob uma reescala do comprimento ,. , de tal 

modo que ao fazermos uma transformaçEo de escala em r por um fator arbitrário b , 

tenhamos a seguinte propriedade: 

(3.50) 

onde a é um número não inteiro maior do que zero e menor do que a dimensão d e, que 

corresponde a menor dimensão Euclideana na qual o objeto em estudo pode ser 
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completamente inserido. Vemos, deste modo, através das eqs.(3A8) e (3.50), que a 

função de correlação é na verdade dependente exclusivamente da distância r que separa 

as duas partículas, podendo, assim, estabelecer que a única função a qual satisfaz a 

eq.(3.50) é a seguinte lei de potência<64-
67

): 

c(r):=:r-ª (3.51) 

onde tal relação nos será bastante útil para determinarmos a dimensão fractal deste objeto

como função do expoente a . Para mostrarmos isto para o caso de crescimento de 

fractais, podemos calcular a quantidade N de partículas de uma esfera de raio L à partir 

da função densidade de distribuição, tal que: 

L l -a+d0 l 

N(L) = f (drl c(r) = f (d,fE ,.-e,. = _,_.• --,
º º - a+ dE º

(3.52) 

onde d E representa a menor dimensão Euclideana na qual podemos incluir completamente 

a estrutura em análise. 

Todavia, como estamos tratando de crescimento de estruturas fractais, podemos 

utilizar de modo análogo as discussões realizadas para a obtenção da eq.(3.39). De tal 

modo que adicionalmente podemos separar dentro deste objeto regiões de comprimento 

linear L com volume V(L) dependente deste comprimento linear L. No entanto, 

afirmamos acima que esta quantidade V(L), para os fractais randômicos, é igual a 

quantidade N(L) de partículas dentro destas região, ou seja, igual ao número N(L) de 

bolas contidas nesta fração deste objeto. Contudo, devemos continuar garantindo a 

divergência deste parâmetro N(L) para determinados valores do raio L da esfera. 

Anteriormente, tínhamos N(l), onde l representava o raio de cada bola, divergindo 

quando l ➔ O, agora devemos ter N(L) divergindo quando o comprimento linear L da 

região do objeto separada tender para o infinito, L ➔ 00 , pois devemos assegurar que 

(z/ L) ➔O. Sendo assim, podemos obter a seguinte lei de potência<64-
67

l para N(L):

(3.53) 
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Portanto, ao compararmos esta última equação, eq.(3.53), com a equação obtida 

anteriormente, eq.(3.52), obtemos finalrneate a relação desejada da dimensão fractal com 

o parâmetro a :

(3.54) 

o qual é um resultado amplamente utilizado para a determinação da dimensão fractal d I à

partir da função densidade de coITelação para o caso de fractais randômicos. 
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Resultados e Discussões 

4.1 Introdução 

Muitos trabalhos têm sido desenvolvidos no intuito de explicar o comportamento 

de macromoléculas em específicos tipos de solventes<2
•
3

•
9

•
77

•
78>, dentre estes avanços 

ocasionados por ocasião destes estudos, vemos a introdução do conceito de leis de escalas 

para a física de polímeros, baseados em analogias a processos críticos. Nesta linha de 

pensamento, observa-se que é possível descrever polímeros por simples leis de escalas 

devido ao seu caráter auto-similar, podendo, deste modo, serem tratados como fractais. 

No entanto, devemos ressaltar que o tratamento- por fractais não introduz nenhum 

conceito novo, porém nos permite, de forma sistemática, uma maior compreensão, como 

também, uma melhor visualização do aspecto conformacional dos polímeros. Adernais, em 

recentes trabalhos na literatura, advindos da necessidade de simular computacionalmente 

estas estruturas(cadeias poliméricas), tem-se criado uma situação na qual a expressão 

caminhada auto-excludente(SA W) é considerada sinônima ao pro blerna da estatística de 

polímero, devido o comportamento fractal destes sistemas. Muitos destes trabalhos estão 

concentrados no problema de como (r(N)), o valor médio da distância entre os extremos 

da cadeia, depende do número N de monômeros do polímero, como também no estudo 

do comportamento da função correlação c(r) com relação à (r(N)). Porém, em nosso 

trabalho, que consiste no estudo do crescimento e confinamento de urna macromolécula 

entre duas supedicies planas, separadas por urna distancia h , estamos interessados em 

estabelecer também, este comportamento :_Jara estas grandezas supracitadas, no entanto a 

essência de nosso estudo é a formação d� pontes(bridging) destas cadeias ocasionadas 

pelo confinamento destas macromoléculas, enfatizamos assim, que o nosso interesse maior 

é analisar que tipo de comportamento existe entre o número N de monômeros da cadeia e 

a distância h existente entre as superffcies nas quais as cadeias poliméricas são 

confinadas. Imbuídos neste objetivo, comparamos os nossos resultados com os resultados 

teóricos deste problema, formação de pontes de polímeros, obtidos por Hong li et az<5º>. 
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4.2 Modelo 

Os resultados obtidos são provenientes da simulação computm.:ional do 

crescimento de cadeias poliméricas por um tipo específico de caminhada auto-excludente 

(SA W) que cresce de forma indefinida, ou melhor, que cresce "para sempre". À esta 

caminhada denominamos Caminhada Auto-excludente de Crescimento 

IndefinidoCTGSAW l75l, a qual foi bastante discutida na seção 3.3.4 deste nosso trabalho. 

O confinamento dos polímeros lfoi realizado entre duas superfícies planas 
1 

perpendiculares ao eixo das ordenadas, uma localizada no ponto x = O e a outra em 

x = h, de tal modo que a largura da rede é igual a h comprimentos de rede. No que se diz 

respeito a altura da rede, impomos que esta esteja limitada pelas retas y = 1500 e 

y = -1500, fornecendo-nos uma altura de L = 3000 comprimentos de rede.

No entanto, ao realizarmos nossa caminhàda IGSA W nesta rede bi-dimensional

h x L, assumimos que o crescimento fosse localmente aniso trópico e direcional, tanto por 

estarmos interessados no estudo estatístico das caminhadas que formam uma ponte entre 

as superfícies de confinamento, como tatnJém para possibilitar, futuramente, uma análise 

deste fenômeno cotn o problema da percolação direcional. 

Interpretamos por anisotropia a condição de que a probabilidade para um passo em 

um dada direção seja diferenciada em relação as outras, e por direcional como sendo que a 

macro.molécula possua maior probabilidade para crescer em um sentido específico. Desta 

forma, dividimos nossa rede em três zonas de probabilidades: Jª)Anisotrópica, 

2ª)Isotrópica, JfLJA.nisotrópica. A largura de ambas as zonas de anisotropia é de 

I0%h (dez por cento da distância que separa as duas supettkies planas). Já no que sé 

refere a direção preferencial consideraremos o eixo perpendicular ao plano das superfícies 

planas. Tal discussão pode ser melhor entendida e representada pela Fig. 4.1. 

Estas duas zonas de anisotropia foram introduzidas em nossa modelagem a fim de 

simularmos a interação entre as paredes e os monômeros, com isto podemos simular três 

tipos de interações entre as paredes e a macromolécula: JIL) Interação fraca 2Q) Atração 

3Q) Repulsão. Definimos como interação fraca quando a interação entre as paredes e a 

macromolécula são de tipos diferentes, ou- seja, quando uma superfície exerce forças do 

tipo atrativa a outra exerce forças repulsivas nos monômeros, ou caso contrário; de tal 
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modo que podemos obter dois tipos de casos: atraçifo-isotropia-repulsão e 

repulsão-isotropia-atração. Já a situação de atração, define-se como o caso em que as 

forças exercidas nos monômeros em ambas as superfícies são do tipo atrativa 

(atração-isotropia-atração), enquanto que a situação de repulsão representa o caso em que 

as interações existentes entre ambas as superfícies planas e os monômeros são do tipo 

repulsi va(repulsão-isotropia-repulsão). 

Zona de Anisotropia Zona de lsotro pia l Zona de Anisotropia 
1
, Py 

iP·x+P,x 

- 1 p • 1 y 

1 
1 

Fig. 4.1 - Representação geral da rede utilizada na simulação do crescimento e confinamento de 

macromoléculas, entre duas superfícies planas. Nas zonas de anisotropia o somatório das probabilidades 

no eixo x é maior do que o somatório (las probabilidades no eixo y. Nas zonas de isotropia, as 

probabilidades em todas as direções são iguais a p = 025 . 

Na realização deste trabalho, todas as nossas simulações computacionais foram 

realizadas para a situação descrita como interação do tipo atrativa, que é o caso em que as 

três regiões de nossa rede apresentam-se na fmma atração-isotropia-atração. 

Sabendo que comprimento de ambas as superfícies planas está limitado pelas retas 

y = 1500 __ e y = -1500, então, por uma questão de simplicidade, escolhemos y = O

dentre os pontos compreendidos neste comprimento; e como uma das superffcies está 

localizada em x = O, iniciamos, portanto, o crescimento da cadeia polimérica no ponto 

(x = O, y =O). Como o objetivo do problema é a formação de pontes entre as duas 

superfícies planas, então, paramos a caminhada JGSAW assim que o caminhante toca pela 

primeira vez a outra superfície, localizada em x = h, para um determinado valor fixo da 

quantidade N de passos. 
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O programa computacional, feito na Linguagem Fortran, para a SÍ!nulação do 

modelo proposto para o crescimento e confinamento de macromoléculas entre duas 

supe1ficies planas, encontra-se no Apêndice A deste trabalho . 

4.3 Resultados 

Em nosso estudo realizamos, para um determinado valor da distância h entre as 

placas, 30.000caminhadas !GSAW, ou seja, crescemos 30.000 cadeias poliméricas. Para 

cada um destes polúneros calculamos o nútnero N de monômeros, a distância r entre os 

dois e a função correlação c(r). No cálqulo da quantidade de monômeros anabsamos, 

simplesmente, quantos· passos foram realizados na caminhada. Para a determinação da 

distância entre os extremos da cadeia r, basta-nos êalcularmos a distância geométrica 

entre o ponto inicial e o ponto final da cadeia, que é di:].da por: 

(4.1) 

No entanto, devemos ressaltar que consideramos o ponto inicial da cadeia como sendo as 

coordenadas do ponto em que pela última vez o caminhante tocou a superfície de origem, 

localizada em x =O. Com isto, queremos excluir qualquer efeito que os denominados 

"trens" de polímeros, que constituem os segmentos de cadeias poliméricas que interligam 

dois diferentes pontos de uma mesma su;ierfície plana, possam causar ao problema do 

confinamento das macrornoléculas entre as superfícies . No que diz respeito a função 

correlação c(r), se o sítio está ocupado consideramos c(r) igual a um, porém se o sítio 

está desocupado c(r) é igual a zero. 

A fim de obtermos uma boa estatística de nossas cadeias poliméricas necessitamos 

agrupar pontos que possuam a menor dispersão em seus valores, para isto geramos, à 

partir do conjunto de pontos com as informações dos valores de N, r e c(r), 100.000 

outros conjuntos aleatoriamente e em seguida calculamos a variância para cada um destes 

100.000 conjuntos e retiramos para trabalharmos aquele que possuir o menor valor para a 

variância. À seguir, de posse deste arquivo de dados de menor variância, plotamos os 

gráficos: c(r) x r, r x N e N x h. O interesse nestes gráficos baseia-se no fato de 

querermos obter informações acerca do co:np01tamento assintótico destas funções. 
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Fig. 4.2 - Os pontos representam os resultados obtidos para a função correlação média (c(r)) versus a 

dislância ( i?.) média entre os extremos. A linha trac�jada representa o ajuste( ''.fi.tt.ing" ) da função 

J(x) = p
1 
xP2 para os resultados apresentados. 

Na Fig. 4.2 plotamos a função de correlação c(r) versus a distância entre os dois 

extremos r da cadeia polimérica. Os pontos em preto representam os resultados obtidos à 

partir do arquivo de dados de menor variância, provindos da simulação, enquanto a linha 

tracejada em vermelho representa o esboço de uma curva específica para determinados 

parâmetros. A função na qual fizemos este ajuste(fitting) é expressa da seguinte forma: 

(4.2) 

que foi formulada em analogia com a eq.(3.38), a qual nos fornece uma lei de escala entre 

a função correlação c(r) e a distância entre os extremos r para sistemas auto-similares, 

de tal modo que se quisemrns obter o valor da dimensão fractal dª basta-nos calcular: 

(4.3) 

onde d é a dimensão Euclideana. 
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Fig. 4.3 - Os pontos representun os resultados obtidos para a distância (i?.) média entre os extremos

versus o número N de monômeros. A linha trac�jada representa o ajuste( ''.fitting" ) da função 

f(x) = p1 xP2 para os resultados apresentados.

Em relação ao comportamento da distância entre os dois extremos r da cadeia 

polimérica com o número N de monômeros, este pode ser analisado através da fig.(4.3), 

na qual os pontos pretos representam os valores provindo do conjunto de dados de menor 

variância, enquanto que a linha tracejada em vermelho representa o ajuste(f'itting) da cmva 

expressa pela eq.(4.2) para determinados valores de seu coeficiente e expoente. Utilizamos 

esta mesma equação pois se trata de uma expressão análoga as equações (1.67) e (3.40), 

que estabelecem uma lei de escala entre o número N de monômeros e a distância entre os 

dois extremos r para sistemas fractais, de tal forma que se desejamos obter o valor da 

dimensão fractal d fl basta-nos calcular: 

(4.4) 

que recebe a denominação de dimensão fractal de Hausdo1:ff�Besicovitchc79 •811). 
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No que se refere a determinação das propriedades assintóticas existentes entre o 

número N de monômeros e a largura h entre as duas superfícies planas é realizada 

através da fig.(4.4), onde os pontos pretos representam os valores oriundos do conjunto 

de dados de menor variância, enquanto que a linha tracejada em vermelho representa o 

esboço da curva ajustada, eq.(4.2) para determinados valores de seu coeficiente e 

expoente. A justificativa para utilizarmos esta expressão vem do fato de sua semelhança 

com a relação obtida por Hong li et az<
5°) entre o número N de monômeros e a largura h

entre as duas superfícies planas, que foi discutida anteriormente no Capítulo 2, sendo 

expressa pela eq.(2.39). 
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Fig. 4.4 - Os ponlos representam os resullados obtidos para o número N de monômeros versus o a 

separação h entre as paredes de continarnento. A linha tracejada representa o ajusle( ''.fitting" ) e.la função 

f(x) = p1 xP2 para os resultados apresentados.

Ademais, através da Fig. 4.5 apresentamos uma amostragem de nossas simulações 

de crescimento de cadeias poliméricas através de caminhadas IGSA W. Este exemplo de 

macromolécula foi retirado de modo aleatório, tendo como único objetivo nos fornecer de 

forma alusiva o que realmente construímos com o nosso programa. Além disto, 
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aproveitamos para ressaltar o aspecto da alta quantidade de monômeros nas cadeias 

geradas, ou melhor, o longo comprimento das macromoléculas. 

º' 

a) Cadeia Polimerica de 657 monomeros
40.0 

-30.0 
O.O 100.0 

b) Cadeia Polimerica de 5250 monomeros

225.0 

-15.0 
O.O 100.0 

Fig. 4.5 - Exemplos de cadeia poliméricas confinadas entre duas superfícies planas separadas por uma 

distancia de 100 unidades de rede, gerados por simulação computacional. Ambas as m,_acromoléculas 

foram geradas sob as mesmas condições(Fig. 4.6). Note a diferença da quantidade de monômeros 

existente entre os exemplos. 
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4.4 Discussões 

Através das leis de potência estabelecidas para estas classes de sistemas, equações 

(1.67), (3.38) e (3.40), as quais foram obtidas e analisadas para uma gama enorme de 

processos físicos, e fundamentados nos valores dos expoentes obtidos do ajuste das curvas 

de nossos resultados, obtemos para o nosso problema em. estudo, que é o crescimento e 

confinamento de polúneros entre duas superfícies planas, que o valor para a dimensão 

fractal deste sistema é dada por: 

onde este resultado é Õriginário da expressão: 

c(r) = , .. -u. 

(4.5) 

(3.38) 

que representa a lei de potência da função correlação c(r) com a distância entre os dois 

extremos r da cadeia polimérica. Enquanto que através de nossos resultados expostos 

pela Fig. 4.3 e baseados na expressão: 

(3.40) 

que é a lei de potência da distância entre os dois extremos r com o número N de 

monômeros da cadeia polimédca, obtemos a seguinte dimensão fractal: 

(4.6) 

que recebe a denominação de dimensão fractal de Hausdm:ff-Besicovitchc79
•
80

). 

Ao compararmos estes resultados citados acima para a dimensão fractal com o 

valor determinado por Kremer et at<75>, que estabeleceu uma dimensão fractal d= 1,75

para uma caminhàda do tipo /GSA W, verificamos uma variação em torno de 5%. Valendo 

ressaltar que o resultado obtido por Kremer et al75) foram para N > 100, onde N é a

quantidade de passos da caminhada. 

No entanto, verificamos que estes nossos resultados, para a dimensão fractal, 

apresentam uma boa concordância com os resultados obtidos para uma determinada classe 

de modelos de crescimento cinético, mais especificamente com os processos de agregação 

por difusão li.mitada(Diffusion.-limited Aggregation - DLAt6
•
81

.

82
\ os quais apresentam-se

como um bom ensaio das diversas aplicações físicas nas quais podemos utilizar o modelo 

IGSA W como ferramenta de simulação. Como também, ressaltamos que a comparação de 
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nossos resultados de confinamento de macromoléculas com os obtidos para DLA, provém 

do fato da não existência de uma teoria padrão para o tratamento de processos do tipo 

DLA <64)(daí surge a necessidade da especulação de uma possível semelhança com o 

problema estudado neste trabalho), e de que muitas das aproximações utiJjzadas para o 

estudo destes processos estão fundamentadas na teoria de campo médio desenvolvida por 

Fl01y<2> na desc1ição das estruturas de polímeros ]jneares. 

Um outro ponto importante que nos motiva a fazermos uma comparação de 

nossos resultados para o confinamento de polímeros, aqui simulado por caminhadas do 

tipo IGSA W, com os resultados obtidos para os processos de crescimento cinético - DLA, 

é que para modelos de caminhada do tipo JGSA W é fundamental conhecennos a história 
... 

da caminhada ,ou seja, necessitamos saber se o sítio a ser ocupado nos levará ou não para 

dentro de uma "gaiola", para isto precisamos ànalisar todos os sítios ocupados 

anteriormente. Desta forma, verificamos a existência de interações de longo alcance entre 

os sítios, pois a escolha de um detenni.7ado sítio está vinculada não somente a sua 

vizinhança mais próxima, mais também a outros sítios, que determinarão a existência ou 

não de pontos de interceptação da caminhada, ou seja, a existência de gaiolas. No entanto, 

observou-se também que em muitos processos de crescimento de estruturas na natureza, a 

determinação do valor de alguns parâmetros importantes do sistema em um dado ponto, 

além de sofrerem ilúluências de pontos de sua vizil1hança, são fortemente ilúluenciados 

por pontos distantes do sistema(il1terações de longo alcance). De tal modo que 

poderíamos estudar este efeito bastando-nos utilizar equações adequadas que nos 

possibilitasse des4rever a dependência espacial destas grandezas. E é aí que surge uma 

classe de sistemas de crescilnento nos quais tal efeito pode ser regido por equações do 

tipo Laplâ"ce, que são os denominados Crescimentos de Difusão Lirnitada(DLAl46
•
64

•
8

1.
821

. 

Diversos trabalhos foram realizados neste campo de pesquisa<46
'
8 1

-
83>, entre estes 

destaca-se o realizado por Witten et al"n, que pioneiramente realizou simulações 

computacionais destes sistemas. As regras deste modelo<81 > são simples: Coloca-se um

partícula-semente(partícula 1 ) na origem da rede, no passo segumte lança-se uma outra 

partícula(partícula 2) distante da origem, permitmdo-a camil1har de forma aleatória até 

que alcance qualquer um dos sítios adjacentes à partícula-semente. Para-se a 
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movimentação desta partícula e em seguida lança-se uma mifra partícula(partícula 3 )  

deixando-a caminhar aleatoriamente até que atinja quaisquer dos sítios adjacentes às 

partículas 1 ou 2 .  No próximo passo repetimos o mesmo procedimento, de tal modo que 

após diversas iterações notamos que a estrutura gerada é auto-similar, nos possibilitando, 

desta forma, utilizar as expressões de leis de potência obtidas para os sistemas fractais, as 

quais foram expressas pelas eqs.(3.38) e (3.40) quando no estudo destes tipos de 

estruturas. 

No entanto, no que diz respeito ao resultado obtido através da Fig. 4.4, onde 

podemos obter o expoente da lei de potência do número N de monômeros do polúnero 

com a distância h entre as suped'ícies planas, estabelecemos a seguinte relação: 

N "" hl,
58 (4.7) 

que ao compararmos este resultado com o resultado -teórico obtido por Hong li et al50
\ 

eq.(2.39), ve1i.ficamos a existência de uma pequena variação entre estes resultados.

Acreditamos que estas variações nos expoentes de nossas expressões com relação 

aos estabelecidos na literatura são causados essencialmente por três fatores: 

lrd) Anisotropia na rede 2rd) Tamanho da rede 3rd) Limite na quantidade de monômeros. 

Corno dissemos anteriormente, em nosso modelo foi suposto a existência de duas 

zonas de anisotropia, estas zonas foram introduzidas em nossa modelagem a fim de 

simularmos a interação entre as paredes e os monômeros, com isto pudemos obter três 

tipos de interações entre as paredes e a macromolécula: J!!.) Interação fraca 2Q) Atração 

3rd) Repulsão. 

Uma vez que em um sistema fractal, o valor de sua dimensão fractal está 
. 

estritamente relacionada com a sua geometria configuracional, podemos observar que 

dependendo do tipo de situação assumida para a simulação podemos encontrar diferentes 

valores para a dimensão fractal, visto que para cada uma destas situações obtemos 

distintos tipos de configurações para a macromolécula. 

Na primeira situação(interação fraca), possuímos dois tipos de casos: 

atração-isotropia-repulsão e repulsão-isotropia-atração. Na situação atração-isotropia­

repulsão, o rnonôrnero possui uma maior dificuldade para sair da primeira zona de 

anisotropia, encaracolando-se bastante, porém ao chegar na segunda zona de anisotropia 
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observamos também que o monômero possui uma maior dificuldade para atravessar esta 

zona e conseqüentemente para conectar a segunda superfície, ocorrendo encaracolamento 

na estrutura da macromolécula. Para a siLJação repulsão-isotropia-atração, o monômero 

rapidamente atravessa esta primeira zona G.e anisotropia, observando-se um espichamento 

da cadeia dentro desta zona, ao chegar na segunda zona de anisotropia, nota-se que o 

monômero rapidamente atravessa esta zona e conecta-se a segunda superfície, 

verificando-se assim um espichamento da cadeia dentro desta zona. Portanto, em ambas as 

situações descritas acima, verificamos acentuadas diferenças de concentrações de 

monômeros aó longo da rede, devido ao fato de que as zonas de atração funcionam como 

zonas de empacotamento da cadeia, enquanto que as de repulsão atuam como zonas de 

alongamento. 

Aproveitando as discussões realizadas acuna, observamos que na segunda 

situação(atração) relacionadas com os tipos de interações das paredes com a cadeia 

polimérica, verificamos que para este caso, atração-isotropia-atração, a primeira zona de 

anisotropia atua como uma zona de empacotamento da cadeia, enquanto que a segunda 

zona de anisotropia funciona como um:1 zona de espichamento. Já para a terceira 

situação(repulsão ), repulsão-isotropia-repulsão, notamos que a pruneira zona de 

anisotropia atua como uma zona de esp1ichamento, enquanto que a segunda zona de 

anisotropia funciona como uma zona de empacotamento da cadeia. 

Se observarmos bem, a situação na qual mais rapidamente os monômeros formam 

uma ponte entre as duas superffcies planas está situada dentre os casos obtidos para a 

situação descrita c_omo interação fraca, que é o caso em que as três regiões de nossa rede 

apresentam-se na forma repulsão-isotropia-atração. No entanto, escolhemos a situação 

atração-isõtropia-atração para realizarmos todas as nossas simulações computacionais, 

tendo em vista a sua analogia com o problema encontrado na mecânica quântica, do 

confinamento de uma partícula em uma barreira de potencial. Lembrando o que ocorre 

entre os valores das probabilidades nestas zonas anisotrópicas é simplesmente uma 

variação suave, e baseados nesta pequena variação nos valores das probabilidades dentro 

destas zonas é que todas as simulações realizadas neste trabalho foram efetuadas para a 

situação física escolhida(ver Fig. 4.6). 
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1 
Zona de Repulsão I Zona de lsotropia 

1 
0.21 1 0.25 

028+03+25 +025

0.21 : 0.25 
1 

Zono de At ra çõo 

0.21 

0.28+0.30 

0.21 

Fig. 4.6 - Representação do tipo de rede utilizada na simulação do crescimento e confinmnento de 

macromoléculas, entre duas superfícies planas. Rede utilizada para a obtenção dos resultados apresentados 

neste trabalho. 
... 

Um outro problema que citamos como um dos responsáveis na variação de nossos 

resultados em relação aos obtidos na literatura, foi o tamanho da rede. Em nossas 

simulações variamos os valores da separação existente entre as superficies planas desde 

1 O até 100 comprimentos de rede. O motivo que nos levou a utilizar separações bem 

pequenas(l0 até 100 comprimentos de rede) foi o próprio objetivo de nosso trabalho, 

que é de estabelecer, através de simulações computacionais, a lei de potência estabelecida 

por Hong li et a/<
50) para o número N de monômeros e a distância entre as supetiicies

planas. Desta forma, necessitávamos analisar o comportamento desta relação para valores 

de separações com diversas ordens de grandeza. Porém, ao incluirmos estes pequenos 

tamanhos de rede na obtenção de nossas leis de escala, inserimos nas leis de potência 

efeitos de tamanho. 

Um outro fator que mencionamos como· um dos causadores da diferença dos 

expoentes em nossas relações com os estabelecidos na literatura, foi o limite na quantidade 

de passos da caminhada. Urna vez que a simulação do crescimento dos polúneros foi 

realizada por um tipo de caminhada auto-excludente(SA W) que crescia indefinidamente, 

ou melhor, crescia infinitamente, necessitamos, por urna questão de memória em nossos 

computadores, pois à partir de agora deveríamos definir matrizes muito grandes, ter que 

limitar o número máximo de passos da caminhada, ou melhor, limitar a quantidade máxima 

de rnonôrneros para a macromolécula conectar as duas superfície planas. Supomos que 
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este número seria igual a 5.000 monôrneros, e caso a macromolécula após 5,000 passos 

não constituísse uma ponte entre as superfícies, ou melhor, não conseguisse alcançar a 

outra superfície localizada em x = h, então, descartávamos esta caminhada e iniciávamos 

uma outra. Desta forma, portanto, em nossas estatísticas foram levadas em consideração 

somente polímeros com quantidade de monômeros abaixo deste valor de 5.000 

monômeros, desta forma restringimos em nossas cálculos os valores que o parâmetro N

poderia assumir. Acreditamos assim, que o fato de termos limitado os valores da 

quantidade N de monômeros tenha causado alguma perturbação na obtenção dos 

expoentes das 'leis de potência. 
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Conclusões 

5.1 Introdução 

Muito antes de iniciar-se aplicações dos fractais à ciência de polímeros, já se 

encontrava estabelecida uma analogia entre as cadeias poliméricas e certas classes de 

fenômenos fisicos, inclusos no que denominados processos críticos. O resultado desta 

analogia nos trouxe enormes avanços no estudo das propriedades de conformação de uma 

macromolécula, pois através de alguns trabalhos frutos desta analogia, tomou-se possível 

estabelecer importantes relações, e aí citamos a relação de Flor/5
•

14l que estabeleceu uma 

lei de potência (r � N v) entre o número N de monômeros e a distância r entre os 

extremos da cadeia. Portanto, devemos ter em mente que a inclusão dos fractais no estudo 

da ciência dos polímeros não nos traz nenhum conceito novo, ou melhor, não 

reapresentam qualquer conceito que antes já não tivéssemos conhecido através da analogia 

com processos críticos. Entretanto, desempenham um papel bastante importante na 

representação geométrica das estruturas das macromoléculas, nos fornecendo uma 

visualização do que seja verdadeiramente uma cadeia polimérica. 

Um outro ponto importante que devemos estabelecer é que neste trabalho 

centralizamos toda nossa atenção ao aspecto estático do problema de confinamento de 

polímeros, tal que não realizamos qualquer estudo no que se refere ao caráter dinâmico 

deste problema, que seria o estudo da influência ou do comportamento das pontes 

formadas entre as superfícies quando simulássemos uma aproximação ou um afastamentos 

das superfícies planas. 

Contudo, apesar de estudarmos unicamente o aspecto estático do crescimento e 

confinamento de macromoléculas entre duas superficies planas, fazendo a parte de 

simulação do crescimento das cadeias poliméricas através do modelo IGSA W75l
, achamos 

que com este trabalho colaboramos para um melhor entendimento das propriedades 

dinâmicas deste sistema, uma vez que se toma imperativo para este estudo o 
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conhecimento das propriedades estáticas e dos conceitos físicos apropriados do sistema. 

Portanto, de maneira geral podemos sintetizar as conclusões deste trabalho como sendo: 

Jf!.) A dimensão fractal obtida pela lei de potência da função correlação c(r) com a 

distância entre os extremos r, difere do valor estabelecido por Kremer et aP5l
, no 

entanto apresenta-se com boa concordância com o resultado obtido por R. Julien et af-46
\ 

Witten and Sander<81) e P. Meakin<83)_ 

2º) Este mesmo parâmetro obtido pela lei de potência da distância entre os 

extremos r com o número N de monômeros concorda com o resultado obtido por R. 

Julien et af-46) e Witten and Sandei81l, todavia difere do estabelecido por Kremer et af15l _ 

3ª) O expoente obtido da lei de potência do número N de monômeros com a 

distância h entre as superficies planas difere do resultado obtido por Hong Ji et af-5°), 

porém aproxima-se melhor do estabelecido por FloryC5
•

14
l_

No final do Capítulo, apresentamos uma tabela(Tabela I) comparativa de nossos 

resultados para a dimensão fractal com os encontrados, na literatura, para diversos 

modelos. 

5.2 Perspectivas 

Alguns trabalhos ainda se encontram em aberto no que se relaciona ao estudo de 

confinamento de polímeros, um destes seria a análise dos efeitos dos trens de polímeros 

nas forças existentes entre as superficies planas, lembramos que definimos trens de 

polímeros como sendo cadeias poliméricas que interligam dois pontos distintos numa 

mesma superficie. Urp outro caso seria considerarmos, em vez de superficies planas, o 

caso de superficies esféricas, e aí partiríamos para uma outra gama de fenômenos que 

poderiam ser simulados, que vão desde o estudo dos efeitos das soluções poliméricas em 

sistemas coloidais<14J até a análise da ação das células Tem nosso sistema imunológico<15)
_

No que se refere ao caráter dinâmico, podemos ainda simular a movimentação das 

superficies e determinar, para certas situações, as propriedades deste sistema, tal como os 

valores das forças e o tempo de relaxação da ponte entre as superficies. 

No campo estático, nossos estudos foram realizados para o caso em que a rede 

apresentava-se da seguinte forma: (zona de repulsão )-(zona de isotropia)-(zona de 
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atração), no entanto, ainda poderíamos realizar estudos para as situações: atração­

isotopia-atração, repulsão-isotopia-repulsão, atração-isotropia-repulsão. 

Uma outra questão seria analisarmos, no campo computacional, este mesmo 

problema para o caso tri-dimensional, uma vez que neste setor tanto a parte de adsorção 

de polímeros como também a análise do próprio IGSA W ainda se encontram em aberto, 

existindo, somente, predições teóricas. 

Tabela I - Comparação de resultados 

C(r)~r-ª com Dª =d-a 

Presente trabalho 1,68 

DLA: Rede quadrada, processo de C(r)~r-ª com Dª =d-a 

difusão direcional e anisotrópica<45>
1,62 

Formação de aglomerados de 

partículas por DLA, em uma rede C(r)~r-ª com Dª =d-a 

quadrada(2079-3 609 partículas 1.657 por 

aglomerado, em médiaY81> . 

Formação de aglomerados de 

partículas por DLA, em uma rede C(r)~r-ª com Dª =d-a 

quadrada( 5 900 partículas por 1,69 

aglomerado, em médiai83> . 

IGSAw<75>

Efeitos de exclusão de volume em soluções poliméricas, medidos 

através de espalhamento de neutrons<91> .

Efeitos de exclusão de volume em soluções poliméricas, medidos 

através de espalhamento de luz<92>. 

Resultado de Flory para cadeias poliméricas reais. 
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R ~ N P com D 
p 

= I/ f3

1,64 

R~N/J com D
p 

= I/ /3

1,701 

R~ N/J comD
/J 

=1//J 

1,67 

1,75 

1,70 

1,67 

1,67 
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Apêndic� A 

Programa, na Linguagem Fortran, de Simulação çlo 
Crescimento e Confinamento de Macromoléculas entre 

Duas Surperfícies Planas: Adaptação do Modelo JGSAW 



c 
e 
e 
c 

e 

UNIVERSIDADE FEDERAL DO CEARA 
DEPARTAMENTO DE FISICA 
GRUPO DE PROCESSOS ESTOCASTICOS 

e 
C********************************************************************** 
e CONFINAMENTO DE MACROMOLECULAS POR SUPERFICIES PLANAS 
C CRESCIMENTO DE POLIMEROS POR IGSAW 
C******************************************************************** 
c 

program pr 
implicit real*4 (a-h,o-z) 

e 

e 

e 

e 

dimension z(20000) 
dimension x(-10:5000),y(-2100:5000) 
dimension u3(0:�000),u4(0:6000) 
dimension r3(0:6000),r4(6000) 
dimension v3(0:6000),v4(0:6000} 
dimension t3(0:6000),t4(0:6000) 
dimension dl(6000),d2(6000) 
dimension El(0:6000),E2(6000),ET(0:6000) 
dimension MMxl(6000),MMx2(6000),MMx3(6000) ,MMx4(6000) 
dimensior, MMyl (6000) ,11My2 (6000) ,MMy3 (6000) ,MMy4 (.6000) 
dimension dxMax(6000),dxMin(6000) 
dimension dyMax(6000),dyMin(6000),VSMinl{4000) � 
dimension CRZ(0:6000),CRZT(0:6000),VSMin2(4000) 

real*4 NL(6000),NC(6000),NPT(6000),NPV(6000) 
real*4 Cor(6000) ,Corl(0:6000),GDTl(0:6000) 
real*4 j,r1(6000),r2(6000),WT1(-200:6000),WT2(-200:6000) 
real*4 wl(-200:6000),w2(-200:6000),w3(-200:6000),w4(-200:6000) 
real*4 w5(-200:6000),w6(-200:6000),w7(-200:60�0),w8(�200:6000) 
real*4 w9(-200:6000),wl0(-200:6000),wll(-200:6000),wl2(-2:6000) 
real*4 gdal(0:6000),gdbl(0:6000),gdcl(0:6000),gddl(0:6000) 
real*4 gdall(0:6000),gdbll(0:6000),gdcll(0:6000),gddll(0:6000) 
real*4 gdal2(0:6000),gdb12(0:6000),gdc12(0:6000),gddl2(0:6000) 
real*4 gdat(0:6000) ,gdbt(0:6000),gdct(0:6000},gddt(0:6000) 
real*4 gdaa(0:6000) ,gdbb(0:6000) ,gdcc(0:6000),gddd(0;6000) 
real*4 PXp(6000),PX1(6000),PYp(6000),PY1(6000),NCL(6000) 
real*4 PXTd(6000),PXTe(6000) ,PYTc(6000) ,PYTb(6000) 
real*4 VSdl(6000),VSel(6000),VScl(6000),VSbl(6000) 
real *4 VSd ( 6000), vse ( 6000), VSc ( 6000), VSb ('6000) 
real*4 WTM(0:250,-1500:1500) 

integer np,iNNal,iNNa2,iNNbl,iNNb2 
integer Ibll,Jbll,Iall,Jall,i,it,jt 
integer ii,kkd,kke,kkc,kkb 

common/block/MT(-10:250,-1500:1500} 
open(57,FILE='aa50a.dat') 
open(59,FILE='aa�Oc.dat') 

e********************************************************
nr=SOOOO 
iduma1=37 
xr=O 
yr=O 
do 600 Ii=l,nr 

5 xxll=O 
yyll=O 

e******************************************************** 
np=SOOO 

e 

c 

c 
e 
e 
e 
e 
e 
e 
c 
c 
e 

iNNal=600 
iNNa2=10 

iNNbl=30 
iNNb2=20 

NUMERO MAXIMO DE SITIOS ANALISADOS Tl=(iNNal*iNNa2) 
PRIMEIRA ANALISE EH FEITA EM 10 EM 10 SITIOS,RESU�TANDO 
EM T2=(Tl/iNNa2) SITIOS 

SEGUNDA ANALISE EH FEITA EM 20 EM 20 SITIOS,RESULTANDO 
EM T3=(T2/iNNb2) SITIOS 

TERCEIRA ANALISE EH FEITA EM, SOMENTE, 30 SITIOS 
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bar1=5 
bar2=45 

e*************+*�**%%� �Z%T�¼T�T�%¼%%******************** 

DO 9 it= ,25 -�
DO 7 ·t=-:�c:,:� -

'N:?M(i.t.,.:-::• =-
7 CONTI oE 
9 CONTINUE 

DO 20 it=-: , 5-
DO l jt=-:5 :,�s--

MT(it,-=t)= 

10 CONT- � 
20 CONTINUE 
e write(*,*) ((Mi'(it,j�.,��=-2,np),it=-2,np)
e*******************¾**�**�****************************** 

open(ll,F-
write(ll,*) . , . , ,O.O

e***********************%******************************** 

c 
call rlea2(z,np,idumal} 

c 
do 150 j=l,np 
x(O)=O 
y(O)=O 
x(-1)=-1 
y(-1)=0 

... 

e************************************************************** 
e Preenchimento àos sitios da coluna x=-1 
e 

do 30 jt=-1500,1500 
MT(-1,jt)=l 

30 continue 
e************************************************************** 

40 if(MT(xxll+l,yyll) .eq.0.0.or.MT(xxll-1,yyll) .eq.0.0.or. 
* MT(xxll,yyll+l) .eq.O.O.or.MT(xxll,yyll-1) .eq.0.0)then

C*********************************************************** 

e DESCRICAO DOS TAMANHOS DAS ZONAS 
e 

if (x (j-1) .ge. O. O. and.x (j-1). lt.barl) then 
pdl=28 
pe1=30 
pcl=21 
pbl=21 
endif 

e******* 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar21then 
pd2=25 
pe2=25 
pc2=25 
pb2=25 
endif 

e******* 

if(x(j-1) .ge.bar2)éhen 
pd3=30 
p�3=28 
pc3=21 
pb3=21 
endif 

C************************************************************
e CORRECAO PARA INDEFINITELY SELF-AVOIDING WALK 
C************************************************************ 

NCL(j)=O 
FCl=O 
FC2=0 
FC3=0 
FC4=0 

C***************
e 

e 

ZERANDO AS PROBABILIDADES PARA DAR INICIO A CAMI_NHADA 
DO 45 jt=l,5500 
gdal(jt) =O 
gdbl (jt) =O 
gdcl(jt)=O 
gddl(jt)=O 

gdaa(j_t)=O 
gdbb(jt) =O 
gdcc(jt)=O 
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e 

e 

e 

e 
45 

gddd(jt)=O 

gdall (jt) =O 
gdbll(jt)=O 
gdcll (j t) =O 
gddll (jt) =O 

gda12(jt)=O 
gdb12(jt)=O 
gdcl2(jt)=O 
gddl2 (j t) =O 

gdat(jt)=O 
gdbt{jt)=O 
gdct(jt)=O 
gddt(jt)=O 

CONTINUE 
e***************�******************************************** 

e ANALISE DA QUANTIDADE DE SITIOS VAGOS EM UMA DADA DIRECAO 
VSdl(l} =O 
DO 50 kkd=l,50 
VSd(kkd} =MT(xxll+kkd,yyll) 
VSdl(kkd)=VSdl(kkd-l)+VSd(kkd) 

50 CONTINUE 
e 

60 
e 

70 
e 

80 
e 

VSel(l)=O 
DO 60 kke=l,50 
VSe(kke)=MT(xxll-kke,yyll) 
VSel(kke)=VSel(kke-l)+VSe(kke) 
CONTINUE 

VScl(l)=O 
DO 70 kkc=l,50 
VSc(kkc)=MT(xxll,yyll+kkc) 
VScl(kkc)=VScl(kkc-l)+VSc(kkc) 
CONTlNUE 

VSbl(l)=O 
DO 80 kkb=l,50 
VSb(kkb)=MT(xxll,yyll-kkb) 
VSbl(kkb)=VSbl(kkb-l)+VSb(kkb) 
CONTINUE 

VSMinl(j)=MIN(VSdl(kkd-l),VSel(kke-1),VScl(kkc-1), 
* VSbl(kkb-1))

VSMin2 (j) =MIN (VScl (kkc-1), VSbl (kkb-1))
e************************************************************* 

IF (j. ge.3) THEN 
e*******
e ANALISE QUANDO ESTAR NO SITIO SUPERIOR 
e 

e******* 

wl(j)=O 
w2(j)=O 
w3(j}=O 
w4(j)=O 
w5(j)=O 
w6(j)=O 
w7(j)=O 
w8(j)=O 
w9 ('j) =O 
wlO(j)=O 
wll(j)=O 
wl2(j)=O 

e******* 
c 

e 
e 

HORARIO 
if((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. (x(j-2) .eq.xxll. 

* and.y(j-2) .eq.yyll-1) .anO. (x(j-3) .eq.xxll+l�and.y{j-3).
eq.yyll-l))then*

wl(j)=-1
endif

ANTI-HORARlO 
if((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll).and. (x(j-2).eq.xxll. 

* and.y(j-2) .eq.yyll-1) .and. (x{"j-3) .eq.xxll-1.and.y(j-3).
• eq.yyll-1) )then*

w2(j)=l
3 



endif 
e 
e SEM ROTACAO 

if / {x /j-1) _ eq_xx11 _ and.y /j-1) _ eq.yy11) _ and_ /x /j-2). eq.xx11 .. ,., 
* and.y(j-2) .eq.yyll-1) .and. (x(j-3) .eq.xxll.and.y(j-3).
* eq.yyll-2))then
w3(j)=0
endif

C******* 

e ANALISE QUANDO ESTAH NO SITIO INFERIOR 
e 

e 

e 
e 

e 
e 

fü)RARIO 

if ( {x (j-1). eq. x.xll. and. y (j-1). eq. yyll) . and. (x {j-2). eq. xxll. 
* and.y(j-2) .eq.yyll+l) .and. (x(j-3) .eq_.xxll-1.and.y(j-3).
* eq.yyll+l))then
w4(j)=-l
endif

N>T I -HORARI O

if ( (x (j-1,\ _ eq_xx11 _and_y/j-1). eq.yy11). and_ /x (j-2). eq.xx11. 
* and.y(j-2) .eq.yyll+l) .and. (x(j-3) .eq.xxll+l.and.y(j-3).
* eq.yyll+l))then
wS(j)=l
endif

3El'i. RO'l'ACAO ... 

if ( (x (j-1). eq. xxll. and. y(j-1). eq. yyll). and. (x (j-2) .. eq. x.xll. 
* and.y(j-21 .eq_.yyll+l) .and. (x(j-3) .eq_.xxll.and.y(j-31.
* eq.yy11+2))then
w6(j)=0
endif

C******* 
e ANALISE QUANDO ESTAH NO SITIO A DIREITA 
e 
C ROAAIU.O 

e 

if ( (x (j-1). eq. xxll. and. y/j-1). eq. yyll). and. /x (j-2). eq. xxll-1. 
* and.y(j-2} .eq_.yylll .and. (x(j-3) .eq_.xxll-1.and.y(j-3).
* eq.yyll-l))then
w7(j)=-1
endif

e ANTI-HORARIO 

e 

if ( (x (j-1). e.q_xx1.Land_y {j-1}. eq.yy11). and. /x /j-2) _ eq.xx11-1. 
* and.y(j-2) .eq.yyll) .and. (x(j-3) .eq.xxll-1.and.y(j-3).
* eq.yyll+l))then
w8(j)=l
endif

C 3Bl'i. RO'l'ACAO 

if( (x/j-1) .. eq.xxll.and.y(j-1) .eq.yyll) .and. ('x(j-2) .eq.x.xll-1. 
* and.y(.j-2} .e(l.yyll) .and. (x(j-3) .eq.xxll-2.and.y(.j-3).
* eq.yyll))then
w9(j)=0
endif

C******* 
e ANALISE QUANDO ESTAH NO. SITIO A ESQUERDA 
e 

e 

e 

ROR1iR10 

if ( (,x (j-1). eq. xx11. and. y (j-1) .. eq. yyll) _ and. (.x /j-2). eq. xxll+l. 
* and.y(.j-2) .eq_.yyll) .and. (.x{j-3) .eq_.xxll+l.and.y(j-3).
* eq.yyll+l))then
wl0(j)=-1
endif

C ANTI-HORARIO 

e 
e 

if ( (x {j-1). eq .xx11. and. y /j-1) . eq.yy11) _ ,;md. (x (j-2) . eq.xx11+1. 
* and.y(j-2) .eq.yyll) .and. (x(j-3) .eq.xxll+l.and.y(j-3).
* eq_yyll-l))then
wll(j)=l
endif

3El'i RC/TACAO 

if ( (x (j-1). eq .. xxll. and. y(j-1). eq. yy11). and. (x (j-2). eq. xx11+l. 
* and.y(j-2) .eq_.yyll) .and. (x(j-3) .eq_.xx11+2.and.y(j-3l.
* eq.yyll))then
w12 (j) =O " 
endif

C******* 
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WTl(j)=wl(j)+w2(j)+w3(j)+w4(j)+wS(j)+w6(j)+w7(j)+w8(j)+ 

e 

e 

* w9(j)+wl0(j)+wll(j)+wl2(j)

WT2(j)=WT1(j)+WT2(j-l) 
WT3=WT2(j) 
WTM(xxll,yyll)=WT3 

ENDIF 
e***************�*************************************************** 
e ANALISE II 
C******* 
C SE DW FOR POSITIVO, NENHUM MOVIMENTO ANTI-HORARIO PODE SER FEITO 
C SE DW FOR NEGATIVO, NENHUM MOVIMENTO HORARIO PODE SER FEITO 

DWl=WTM(xxll,yyll)-WTM(xxll+l,yyll+l) 
DW2=WTM(xxll,yyll)-WTM(xxl1+1,yyll-l) 
DW3=WTM(xxll,yy11)-WTM(xxll-1,yyll+l) 
DW4=WTM(xxll,yyll)-WTM(xx11-1,yy11-1) 

C*************************************************************** 
e VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA X+ 
e 

IF(MT(xxll+l,yyll).eq.O)THEN 
e*************************************************************** 
e****************************�********************************** 
e 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll.and.y(j-2).eq.yyll-l))THEN

e 
e********************************* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll+l) .eq.O)THEN 
DWl=l 
ENDIF 

C******* 
IF(MT(xxll-1,yyll+l) .eq.O)THEN 
DW3=1 
ENDIF 

C********************************* 
IF ( (DWl.LT. O) .OR. (DW3 .LT. O)) THEN 
gdal(j)=O 
ENDIF 

C******* 

e 

e 

e 

e 

IF((DWl.GE.O) .and. (DW3.GE.O))THEN 

if(x(j-1) .ge.0.0.and.x(j-1) .lt.barl)then 
gdal(j)=pdl 
endif 

if(x(j�l).ge.barl.and.x(j-1) .lt.bar2)then 
gdal(j)=pd2 
endif 

if(x(j-1) .ge.bar2)then 
gdal(j)=pd3 
endif 

ENDIF 
C******* 

ENDIF 

... 

e************************************************************* 
e************************************************************** 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll+l))THEN

e 

e********************************* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll-1) .eq.O)THEN 
DW2=-l 
ENDIF 

C******* 
IF(MT(xxll-l,yyll-1) .eq.O)THEN 
DW4=-1 
ENDIF 

C********************************* 
IF( (DW2.GT.O) .OR. (DW4.GT.0) )THE!-i° 
gdal(j)=O 
ENDIF 
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C******* 

e 

e 

e 

e 

IF((DW2.LE.O).and. (DW4.LE.O))THEN 

if(x(j-1) .ge.0.0.and.x(j-1) .lt.barl)then 
gdal(j)=pdl 
endif 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
gdal(j)=pd2 
endif 

if(x(j-1) .ge.bar2)then 
gdal(j)=pd3 
endif 

ENDIF 
C******* 

ENDIF 
e*************************�********************************* 
e*********************************************************** 

ENDIF 
e 

e 
e****************************************************************** 
e 
e 

PRIMEIRO VIZINHO OCUPADO 
... 

IF ( (MT (xxll+l, yyll). eq.1). and. (x (j-1). eq. xxll. and. y(j-1) . eq. yyll) 
* .and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll-l))THEN

e******* 

C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll+l) .eq.O)THEN 
DWl=l 
ENDIF 

C******* 

IF(MT(xxll-1,yyll+l) .eq.O)THEN 
DW3=1 
ENDIF 

C******* 

ENDIF 
e******* 
e******* 

IF((MT(xxll+l,yyll) .eq.1) .and. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) 
* .and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll+l))THEN

C******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll-1) .eq.O)THEN 
DW2=-l 
ENDIF 

C******* 

IF{MT(xxll-l,yyll-1).eq.O)THEN 
DW4=-1 
ENDIF 

C******* 

ENDIF 
C******* 
e******* 

e 

e 
C************************************************************ 
e VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA X-
C 

IF(MT(xxll-1,yyll) .eq.O)THEN 
C************************************************************* 
C************************************************************* 

e 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll-l))THEN

e******************************** 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll+l) .eq.O)THEN 
DWl=-1 
ENDIF 

C******* 

IF(MT{xxll-1,yyll+l).eq.O)THEN 
DW3=-1 
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ENDIF 
C********************************* 

IF((DWl.GT.0) .OR. (DW3.GT.O))THEN 
gdbl(j)=O 
ENDIF 

C******* 

e 

e 

e 

e 

IF((DWl.LE.0) .and. (DW3.LE.O))THEN 

if(x(j-1) .ge.O.O.and.x(j-1) .lt.barl)then 
gdbl(j)=pel 
endif 

if(x(j-1).ge.barl.and.x(j-1).lt.bar2)then 
gdbl(j)=pe2 
endif 

if(x(j-1) .ge.bar2)then 
gdbl(j)=pe3 
endif 

ENDIF 
C******* 

ENDIF 
C*****************************�**************************** 
C***************************************�****************** 

e 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll+l))THEN

e********************************** 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll-1) .eq.O)THEN 
DW2=1 
ENDIF 

C******* 
IF(MT(xxll-1,yyll-1) .eq.O)THEN 
DW4=1 
ENDIF 

C*********************************** 
IF((DW2.LT.0) .OR. (DW4.LT.O))THEN 
gdbl(j)=O 
ENDIF 

C******* 
IF((DW2.GE.O) .and. (DW4.GE.O))THEN 

e 
if(x(j-1) .ge.O.O.and.x(j-1) .lt.barl)then 
gdbl(j)=pel 

e 

e 

e 

endif 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
gdbl(j)=pe2 
endif 

if(x(j-1) .ge.bar2)then 
gdbl(j)=pe3 
endif 

ENDIF 
C******* 

ENDIF 
e************************************************* 
C************************************************* 

ENDIF 
e 

e 
e********************************************************************** 
C PRIMEIRO VIZINHO OCUPADO 
e 

IF((MT(xxll-1,yyll) .eq.1) .AND. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) 
* .and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll-l))THEN

C******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll+l) .eq.O)THEN 
DWl=-1 
ENDIF 

C******* 
IF(MT(xxll-1,yyll+l) .eq.O)THEN 7 



DW3=-l 
E;NDIF 

C******* 

ENDIF 
C******* 
e******* 

IF ( (MT (xxll-1, yyll) .eq.1) .AND. (x (j-1). eq.xxll.and.y(j-1) .. eq.yyll) 
* .and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll+l))THEN

e******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll-1) .eq.O)THEN 
DW2=1 
ENDIF 

C******* 

IF(MT(xxll-l,yyll-1) .eq.O)THEN 
DW4=1 
ENDIF 

e******* 

ENDIF 
C******* 
C******* 

e 

e 
e************************************************************* 
e VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA Y+ 
e 

IF(MT(xxll,yyll+l) .eq.O)THEN 
C************************************************************** 
cc************************************************************* 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll-l.and.y(j-2) .eq.yyll))THEN

e 
C******************************* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF (MT (xxll+l, yyll+l). eq._0) THEN 
DWl=-1 
J;:NDIF 

C******* 

IF(MT(xxll+l,yyll-1).eq.O)THEN 
DW2=-l 
ENDIF 

C*********************************** 

IF((DWl.GT.0) .OR. (DW2.GT.0})THEN 
gdcl(j)=O 
ENDIF 

C******* 

IF((DWl.LE.O) .AND. (DW2.LE.O))THEN 
e 

if(x(j-1) .ge.O.O.and.x(j-1) .lt.barl}then 
gdcl(j)=pcl 
endif 

e 

if(x{j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
gdcl(j)=pc2 

e 

e 

endif 

if(x(j�l) .ge.bar2�then 
gdcl(j)=pc3 
endif 

ENDIF 
e******* 

ENDIF 
C************************************************************ 

IF((x(j-1) .eq.xxll.and.y(j-1).eq.yyll) .and. 
* (x(j-2) .eq.xxll+l.and.y(j-2) .eq.yyll))THEN

e 
C********************************** 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll�l,yyll+l) .eq.O)THEN 
DW3=1 
F.;NDIF 

C******* 
IF(MT(xxll-1,yyll-l) .eq.O)THEN 
DW4=1 
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ENDIF 
C*********************************** 

IF((DW3.LT.0) .OR. (DW4.LT.O))THEN 
gdcl(j)=O 
ENDIF 

C******* 

e 

e 

e 

e 

IF ( (DW3.GE. 0) .AND. (DW4 .GE. O)) THEN 

if(x(j-1) .ge.0.0.and.x(j-1) .lt.barl)then 
gdcl(j)=pcl 
endif 

if(x(j-1) .ge.barl.and.x(j-l).lt.bar2)then 
gdcl(j)=pc2 
endif 

if(x(j-1) .ge.bar2}then 
gdcl(j)=pc3 
endif 

ENDIF 
e******* 

ENDIF 
C******* 
C******************************************************•***** 
C************************************************************ 

ENDIF 
e 
e 
C********************************************************************* 
C PRIMEIRO VIZINHO OCUPADO
e 

IF((MT(xxll,yyll+l) .eq.l) .AND. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) 
* .and. (x(j-2) .eq.xxll-l.and.y(j-2) .eq.yyll))THEN

C******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll+l,yyll+l) .eq.O)THEN 
DWl=-1 
ENDIF 

C******* 

IF (MT (xxll+l, yyll-1). eq. 0) THEN 
DW2=-l 
E;NDIF 

C******* 

ENDIF 
C******* 
e******* 

IF ( (MT (xxll, yyll+l). eq.1) .AND. (x (j-1). eq. xxll. and. y(j-1). eq. yyll) 
* .and. (x(j-2) .eq.xxll+l.and.y(j-2) .eq.yyll))THEN

C******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS 
e 

IF(MT(xxll-1,yyll+l) .eq.O)THEN 
DW3=1 
ENDIF 

C******* 

IF(MT(xxll-1,yyll-1) .eq.O)THEN 
DW4=1 
ENDIF 

C******* 
ENDIF 

C******* 
e******* 
e 

e 
C************************************************************** 
e VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA Y­
c 

IF(MT(xxll,yyll-1) .eq.O)THEN 
e**************************************************************
C************************************************************** 

IF((x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) .and. 
* (x(j-2) .eq.xxll-1.and.y(j-2) .eq.yyll))THEN

e 
C********************************** 
C QUANDO OS SEGUNDOS VIZINHOS-ANALISADOS ESTA9 VAGOS



IF(MT(xxll+l,yyll+l) .eq.0)THEN 
Dí,vl"'l 
ENDIF 

C* .,1,•--!. · *·k** 

IF (:MT (xxlHl, yy11-1). eq. O) THKN 
DW2=1 
ENDI!'' 

e•********************************** 

IF( (DWl.LT.0) .. OR. (O.W2 .. LT.0) )THEN 
gddl(jj=0 
ENDIF 

C*·k**�'-** 

IE'( (DW1. GE.0) .AND. (DW2.GB.0) )THEN 

e 

e 

e 

if(x(j-1) .ge.0.0.and.x(j-1) .lt.barl)then 
gddl(j)=pbl 
endif 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
gddl(j)=pb2 
endif 

if(x(j·-1) .c;;e.bar2)the"h 
çiddl {j) =pb3 
endif 

ENDIF 
e;?•*****�}: 

C*********************************************************** 

e**************¼**************************�*****************

C G\Sü O PASSO DA FRENTE DO SITIO SEJA 

ENDIF 

C NA REGII\O DE X NEGATIVO 
e 

e IF ( (xxll-1. LT. O) . and. (VSbl (kkb-1) . eq. V5Min2 ( j))) THEN 
DW4=··1 

e ENDIF 
e***********************************�************************ 

IF ( (x (j-1) . eq. xxll.. and. y (j-1) . eq. yy11) • and. 
* (x(j-2i .eq.xxll+l.and.y(j-2) .eq.yyll) )THEN

e 

C*********************************** 

C QUANDO OS SEGUNDOS VIZINP.O5 ANALISADOS ESTAO VAGOS 
e 

IF' í:MT (xxll-1, yyll+l) . eq. O) THEN 
DW3=-l 
ENDIF 

C******* 

IF(MT(xxll-l,yyll-1) .eq.0)THKN 
DW4=-l 
ENDIF � 

C*************************�********* 

IF ( (DW3 .GT. O) .OR. (DW4 .GT •. O)) THrrn 
gddl (j) ,,Q 
ENDIF 

C*-j,·*·k*** 

IF( (DW3.LE.0) .AND. (DW-1.LE.0) )THEN 

e 

e 

if ( x ( j ·· l) . ge. O . O . and. x. ( j-1) . 1 t. b2.rl i then 
gdd1 (j) �0pb1 
end:i.f 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
gddl(j)=pb2 
endif 

if(x(j-1) .ge.bar2)then 
gddl(j)=pb3 
endif 

ENDIF 

e*+-*;•*** 

ENDIF 
C******* 
c�••t*******************************�**********�**************** 

e*+;,*** Jt** * ** * * ** ** * ** ***·k ·k* * * * •·k •·k **''* * *** ""** * ** ****·k·k-K,* * * **** *

ENDIF 10 



e 
e 
C********************************************************************

PRIMEIRO VIZINHO OCUPADO
e 

e 

IF((MT{xxll,yyll-1) .eq.l) .AND. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll)

* .and.(x(j-2) .eq.xxll-l.and.y(j-2) .eq.yyll))THEN 

C******* 
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS

e 

IF{MT(xxll+l,yyll+l) .eq.0)THEN

DWl=l 
ENDIF 

C******* 
IF(MT(xxll+l,yyll-1) .eq.0)THEN 

DW2=1 
F;NDIF 

C******* 
ENDIF 

e******* 
e*****-** 

IF((MT(xxll,yyll-1) .eq.1) .AND. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll)

* .and. (x(j-2) .eq.x�ll+l.and.y(j-2) .eq.yyll))THEN 

C******* 

e 

e 

QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
.. 

IF{MT(xxll-1,yyll+l) .eq.Q)THEN
DW3=-1 
ENDIF 

C******* 
IF(MT(xxll-l,yyll-1) .eq.0)�HEN
DW4=-l 
JtNDIF 

e******* 
ENDIF 

C**-Ji**** 
C******* 
e 

e 
e**************************************************************

e Passo para Frente 
gdaa(j)=gdal(j) 
gdbb(j)=gçlbl(j) 
gdcc(j)=gdçil(j) 
gddd(j)=gddl(j) 

C******* 
C******* 
e SENTIDO X+ 

IF((MT(xxll+l,yyll) .eq.0) .and. (x{j-1) .eq.xxll.and.y(j-1) .eq.yyll)

* .and.(x(j-2) .eq.xxll-1.and.y(j-2) .eq.yyll))T�EN 

e******* 
IF((gdcc(j) .EQ.�) .AND. (MT(xxll+l,yyll-1) .EQ.l))THEN 

gdal(j)=0 
gdall(j)=l 
:;;NDIF 

e******* 
IF((gddd(jÍ .EQ.0).AND. (MT(xxll+l,yyll+l) .EQ.l))THEN 

gdal(j)=0 
gda12(j)=l 
ENDIF 

C******* 
gdat(j}=gdall(j)+gda12(j)

e 

e 

e 

IF ( ( gda t ( j) . EQ. 2) . OR. 
* ( (gdcc(j) .EQ.0) .AND. (MT(xxll+l,yyll-1) .EQ.0)) .OR.

* ((gddd(j).EQ.0).AND. (MT(xxll+l,yyll+l) .EQ.0)) .OR.

* ( (gdcc(j) .GT.0) .AND. (gddd(j) .GT.0)) )T.HEN 

if(x(j-1) .ge.O.0.and.x(j-1) .lt.barl)then

gdal(j)=pdl
1 

endif

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then

gdal(j.i=pd2
endif

if(x(j-1) .ge.bar2)�hen �

gdal(j)=pd3
endif 11



e 

ENDIF 
e******* 

ENDIF 
e******* 
e******* 
e SENTIDO X-

IF( (MT(xxll-1,yyll) .eq.O) .and. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll) 
* .and. (x(j-2)".eq.xxll+l.and.y(j-2) .eq.yyll) )TflEN

e******* 
IF((gdcc(j) .EQ.0) .AND. (MT(xxll-l,yyll-1).EQ.l))THEN 
gdbl(j)=O 
gdbll (j) =1 
E;NDIF 

e******* 
IF((gddd(j).EQ.0).AND. (MT(xxll-1,yyll+l) .EQ.l))THEN 
gdbl(j)=O 
gdbl2(j)=l 
ENDIF 

C******* 

e 

e 

e 

e 

gdbt(j)=gdbll(j)+gdbl2(j) 
IF((gdbt(j) .EQ.2) .OR. 
* ((gdcc(j).EQ.0) .AND. (MT(xxll-l,yyll-1) .EQ.0)) .OR.
* ((gddd(j).EQ.0).AND� (MT(xxll-1,yyll+l) .EQ.0)) .OR.
* ((gdcc(j) .GT.0) .AND. (gddd(j) .GT.O)))T#EN

if(x(j-1) .ge.O.O.and.x(j-1) .lt.barl1then
gdbl(j)=pel
endif

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then
gdbl(j)=pe2
endif

if(x(j-1) .ge.bar2�then
gdbl(j)=pe3
endif

ENDIF 

.. 

e******* 
.ENDIF 

C******* 
C******* 
e SENTIDO Y+ 

IF((MT(xxll,yyll+l) .eq.O) .and. (x(j-1) .eq.xxll.and.y(j-1).eq.yyll) 
*· .and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll-1) )THEN

e******* 
IF((gdaa(j) .EQ.0) .AND. (MT(xxll-1,yyll+l) .EQ.l))THEN 
gdcl(j)=O 
gdcll(j)=l 
ENDIF 

e******* 
IF ( (gdbb (j) . EQ. O) .MvD. (MT (xxll+l, yyll+l) . EQ. 1) ) -THEN 
gdbl(j)=O 
gdcl2(j)=l 
ENDIF 

e******* 

e 

e 

e 

gdct(j)=gdcll(j)+gdcl2(j) 
IF((gdct(j) .EQ.2).0R. 

* ( (gdaa(j) .EQ.0) .AND. (MT(xxll-1,yyll+l) .EQ.0)) .OR.
* ((gdbb(j).EQ.0).AND. (MT(xxll+l,yyll+l) .EQ.0)).0R.
* ((gdaa(j) .GT.0) .AND. (gdbb(j) .GT.O)))THEN

if(x(j-1) .ge.0.0.and.x(j-1) .lt.barl)t�en
gdcl(j)=pcl
endif

if(x(j-l).ge.barl.and.x(j-l).lt.bar2)then
gdcl(j)=pc2
endif

if(x(j-1) .ge.bar2)�hen
gdcl(j)=pc3
endif

ENDIF 
e******* 

ENDIF: 
C******* 
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C******* 
e SENTIDO Y-

IF( (MT(xxll,yyll-1) .eq.O) .and. (x(j-1) .eq.xxll.and.y(j-1) .eq.yyll)
* .·and. (x(j-2) .eq.xxll.and.y(j-2) .eq.yyll+l) )THEN • .,.

e******* 
IF((gdaa(j) .EQ.0).AND. (MT(xxll-1,yyll-1) .EQ.l))THEN 
gddl(j)=O 
gddll (j) =1 
Ji:NDIF 

e******* 
IF((gdbb(j).EQ.0).AND. (MT(xxll+l,yyll-1) .EQ.l))THEN 
gddl.(j) =O 
gdd12(j)=l 
ENDIF 

e******* 
gddt(j)=gddll(j)+gdd12(j) 
IF((gddt(j) .EQ.2) .OR. 

* ( (gdaa(j) .EQ.0) .AND. (MT(xxll-1,yyll-1) .EQ.0)) .OR.
* ( (gdbb(j) .EQ.0) .AND. (MT(xxll+l,yyll.:..ll .EQ.O)) .OR.

e 

e 

e 

e 

* ((gdaa(j) .GT.0) .AND. (gdbb(j).GT.O)))THEN

if (x (j-1) . ge. O·. O. and. x (j-1) . lt. barl) then
gddl(j)=pbl
endif

if(x(j-1).ge.barl.and.x(j-1).lt.bar2)then
gddl(j)=pb2
endif

if(x(j-1) .ge.bar2)then
gddl(j)=pb3
endif

ENDIF 
e******* 

_ENDIF 

.. 

e********************************************************** 
e REAJUSTE DAS PROBABILIDADES 
e 
100 GDTl(j)=gdal(j)+gdbl(j)+gdcl(j)+gddl(j) 
C******* 
e PRIMEIRA ZONA 

e 

if{x{j-1).ge.O.O.and.x(j-1) .lt.barl)then 
prd=(gdal(j)/GD�l(j)) 
pre=(gdbl(j)/GDTl(j)) 
prc=(gdcl(j)/GDTl(j)) 
prb=(gddl(j)/GDTl(j)) 

lpl=(prd) *100 
lp2=(prd+pre)*100 
lp3=(prd+pre+prc)*100
lp4=(prd+pre+prc+pr�)*l00 
endif 

c**t**** 

C SEGUNDA ZONA 

e 

if(x(j-1) .ge.barl.and.x(j-1) .lt.bar2)then 
prd=(gdal(j)/GD��(j)) 
pre=(gdbl(j)/GDTl(j)) 
prc=(gdcl(j)/GDTl(j)) 
prb=(gddl(j)/GDTl(j)) 

lpl= (prd) .*100
lp2=(prd+pre)*100 
lp3=(prd+pre+prc)*l.OO
lp4=(prd+pre+prc+prb)*100
endif 

e******* 
C TERCEIRA ZONA 

if(x(j-1).ge.bar2lthen 
prd=(gdal(j)/GDTl(j)) 
pre=(gdbl(j)/GDTl(j)) 
prc=(gdcl(j)/GDTl(j)) 
prb=(gddl(j)/GDTl(j)) 

e 
lpl=(prd)*lOO 
lp2=(prd+pre)*10Q
lp3=(prd+pre+prc)�lQO 
lp4=(prd+pre+prc+prb)*l00 13 



endif 
e******* 

PXTd(j)=(PXp(j)) 
PXTe(j)=(PXl(j)) 
PYTc(j)=(PYp(j)) 
PYTb(j)=(PYl(j)) 

e************************************************************ 
llO MT(0,0)=1 

x(j)=O 
y (j) =O 

e PROBABILIDADE E CAMINHADA NO SENTIDO (+X) 
e 

if((MT(xxll+l,yyll) .eq.0) .and. (z(j) .lt.lpl))then 
e 

x(j)=x(j-1)+1 
y ( j ) =y ( j -1 ) 
xxll=x (j) 
yyll=y (j) 
MT (xxll, yyll) =1 

e 
ENDIF 

e******* 
e PROBABILIDADE E CAMINHAD� NO SENTIDO (-X) 
e 

e 
if((MT(xxll-1,yyll) .eq.0) .and. (z(j) .ge.lpl.and.z(j)�lt.lp2))then 

x(j)=x(j-1)-1 
y (j) =y (j-1) 
xxll=x (j) 
yyll=y (jJ 
MT(xxll,yyll)=l 

e 
ENDIF 

e******* 
C PROBABILIDADE E CAMINHADA NA DIRECAO (+Y) 
e 

e 
if((MT(xxll,YYll+l) .eq.0) .and. (z(j) .ge.lp2.and.z(j) .lt.lp3))then 

X ( j ) =x ( j -1 ) 
y(j)=y(j-1)+1 
xxll=x (j) 
yyll=y(j) 
MT (xxll, yyll) =1 

e 
endif 

e******* 
e PROBABILIDADE E CAMINHADA NA DIRECAO (-Y) 
e 

e 
if ( (l1T (xxll, yyll-1) .eq. 0). and. (z (j) .ge. lp3 .and. z (j) .le. lp4)) then 

X ( j ) =X ( j -1) 
y(j)=y(j-1)-1 
xxll=x(j) 
yyl1=y(j) 
MT (xxll, yyll) =l 

e 
endif 

e******* 
e SE EXISTE PROBABILIDADE PARA CAMINHAR EM UMA DADA DIRECAO, 
C POREM O NUMERO ALEATORIO GERADO NAO ESTAH DENTRO DOS 
C LIMITES ESTIPULADOS 
c 

if ( ( (gdal (j) .gt. O) .or. (gdbl (j). gt. 0). or. (gdcl (j). gt. O). or. 
* (gddl (j). gt. O)). and. ( (x (j). eq. O). and. (y (j). eq. O))) then

e 

e 

idumar5=z(j) 
call rlea2(z(j),l,id�ar5) 
goto 110 

endif 
C******* 
C CASO O QUAL X EH NEGATIVO 
e 

e 
if(x(j) .lt.O)then 

idumar5=z(j) 
call rlea2(z(j),l,idumar5) 
goto 40 14 



c 

endif 
c*******· 
c CASO A POSICAO ESTEJA NA ORIGEM DO EIXO X 
c 

IF(x(j) .eq.O)THEN 
xr=O 
yr=y(j) 
ENDIF 

e******* 
f 

e 
e 
c 

CASO A QUANTIDADE DE PASSOS ULTRAPASSE O LIMITE DE P)\-SSOS 
ESTIPULADO E AINDA NAO TEHNHA CHEGADO A PAREDE 

e 
IF ( (j .GE.5000) .AND. (X (j) .LT. 50)) THEN 

REP=REP+l 
wri te ( *, *) 'esgotou o no. de passos e nao chegou na parede.1, REP
idurnar5=z (j) 

c 

call rlea2(z(j),l,idumar5) 
GOTO 5 

ENDIF 
c******* 
e 
c 
e 

CASO EXISTA UM POSSIVEL �RUZAMENTO ANTES DE CHEGAR A P,.AREDE, 
EH GERADA UMA NOVA CAMINHADA 

if ( (gdal (j). eq. O). and. (gdbl {j) .-eq. O). and. (gdcl (j). eq. O) 
* .and. (gddl(j) .eq.0) .and. (x(j) .l�.50) )then

c 

c 

CRZ(ii)=l 
iduruarS=z (j) 
call rlea2(z(j),l,idurnar5) 
GOTO 5 

endif 
e************************************************************* 

write(ll,*) j,x(j),y(j),z(j)
e********************************************************** 
c CALCULO DA ENTROPIA DE SHANON 
e 

c 

e 

c 

if(z(j).lt.lpl) then 
El(j)=(-l)*prd*log(prd)

E2(j)=(-l)*((((prd)**2)*log{prd)))
endif 

if(z(j).ge.1pl.and.z(j).lt.lp2) then 
El(j)=(-l)*pre*log(pre)

E2(j)=(-l)*((((pre)**2)*log(pre)))
endif 

if(z(j).ge.lp2.and.z(j).lt.lp3) then 
El(j)=(-l)*prc*log(prc)
E2(j)={-l)*((t(prc)**2)*log.(prc)))
endif 

if(z(j) .ge.lp3.and.z(j) .lt.lp4) then 
El(j)=(-l)*prb*log(prb)
E2 (j) = (-1) * ( ( ( (prb) **2) *log(prb)))
endíf 

e******* 
ET(O)=O. 
ET(j)=(El(j)+ET(j-1).) 

e****************************************************** 
e SE FOI ALCANCADA A PA,REDE 
e 

if( (x(j) .ge.50) )g'oto 200 
e 
e********************************************************** 

else 

c 

CRZ(ii)=l 
idurnarS=z(j) 
call rlea2(z(j),l,idumar5) 
G9TO 5 

endif 
e******* 
150 continue 
e 
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200 close(unit=ll) 
CRZT(O)=O 
CRZT(ii)=CRZT(ii-l)+CRZ(ii) 

e************************************************************* 
e CALCULO DOS VALORES MAXIMOS E MINIMOS 
C************************************************************* 
C CALCULO DO YMAX 
e 

e 

ADR=(j/10) 
DO 240 Iall=l, (iNNal+l) 
Jall=(Iall-l)*(iNNa2) 

DO 220 iia=j+l,6000 
.y (iia) =O 

220 CONTINUE 
e 

MMyl(Iall)=MAX(y(l+Jall),y(,+Jall),y(3+Jall),y(4+Jall), 
* y(5+Jall),y(6+Jall),y(7+Jall), 
* y(8+Jall),y(9+Jall),y(10+Jall)) 

240 CONTINUE 
e 

e 

260 
e 

DO 280 Ibll=l,· (iNNbl+l) 
Jbll=(Ibll-l)*(iNNb2) 

DO 260 iib=(ADR+2),600 
MMyl(l+iib)=O 
CONTINUE 

MMy2(Ibll)=MAX(MMyl(l+Jbll),MMy1(2+Jbll);MMy1(3+Jbll), 
* MMy1(4+Jbll) ,MMyl(5+Jbll) ,MMyl(6+Jbll), -
* MMyl (7+Jbll) ,MMyl (8+Jbll) ,MMy1(9+Jbll),
* MMy1(10+Jbll),MMyl(ll+Jb11),MMy1(12+Jbll),
* MMy1(13+Jbll),MMyl(14+Jbll),MMyl(15+Jbll),
* MMyl(l6+Jbll),MMy1(17+Jbll),MMyl(l8+Jbll),
* MMyl(19+Jbll),MMy1(20+Jbll))

280 CONTINUE 
e 

dyMax (ii) =MAX (MMy2 (1) ,MMy2 (2) ,MMy2 (3) ,MMy2 (4) ,MMy2 (5), 
* MMy2(6),MMy2(7),MMy2(8),MMy2(9),MMy2(10),
* MMy2 (11) ,MMy2 (12) ,MMy2 (13) ,MMy2 (14) ,M.My2 (.15),
* MMy2(16),MMy2(17),MMy2(18),MMy2(19),MMy2(20),
* MMy2 (21) ,MMy2 (22l ,MMy2123) ,MMy2124) ,MMy2 (Zol,
* MMy2(26),MMy2(27),MMy2(28),MMy2(29),MMy2(30))

e************************************************************ 
C CALCULO DO YMIN 
c 

e 

ADR=(j/10) 
DO 320 Iall=l, (iNNal+l) 
Jall=(Iall-l)*(iNNq2) 

DO 300 iia=j+l,6000 
y(iia)=0 

300 CONTINUE • 
e 

MMy3(Iall)=MtN(y(l+Jall),y(2+Jall),y(3+Jall),y(4+Ja11), 
* y(5+Jall),y(6+Jall),y(7+Jall),y(8+Jall), 
* .y(9+Jall),y(10+Jall)) 

320 CONTINUE 
c 

c 

340 
e 

DO 360 Ibll=l, (iNNbl+l) 
Jbll=(Ibll-l)*(iNNb2) 

DO 340 iia=(ADR+2),600 
MMy3(1+iia)=O 
CONTINUE 

MMy4(Ibll)=MIN(MMy3(l+Jbll),MMy3(2+Jbll),MMy3(3+Jbll), 
* MMy3(4+Jbll) ,MMy3(5+Jbll),MMy3(6+Jbll),
* MMy3 (7+Jbll) ,MMy3 (B+Jbll) ,MMy3 (9+Jbll),
* MMy3(10+Jbll),MMy3(11+Jbll),MMy3{12+Jbll),
* MMy3(13+Jbll),MMy3(14+Jbll),MMy3(15+Jbll),
* MMy3 (16+Jbll) ,MMy3 (17+Jbll) ,MMy3 (18+Jbll),
* MMy3 (19+Jbll) ,MMy3 (20+Jbll))

360 CONTINUE 
e 

dyMin(ii)=MIN(MMy4(1),MMy4(2),MMy4(3),MMy4{4),MMy4(5), 
* MMy4 (6) ,MMy4 (7) ,MMy4 (8) ,MMy4 (9) ,MMy4 (10),
* MMy4 {11) ,MMy4 (12) ,MMy4 (13) ,M!1_'61 (14) ,MMy4 (15),



* MMy4(16),MMy4(17),MMy4(18),MMy4(19),MMy4(20), 
* MMy4(21),MMy4(22),MMy4(23),MMy4(24),MMy4(25), 
* MMy4 (26) ,MMy4 (27) ,MMy4 (28) ,MMy4 (29) ,MMy4 (30)) 

C************************************************************ 
c 
e 

e 

CALCULO DO XMAX 

ADR=(j/10) 
DO 400 Iall=l,. (iNNal+l) 
Jall=(Iall-l)*(iNNa2) 

DO 380 iia=j+l,6000 
X (i�a) =O 

380 CONTINUE 
e 

MMxl(Iall)=MAX(x(l+Jall),x(2+Jall),x(3+Jall),x(4+Jall), 
* x(5+Jall),x(6+Jall),x(7+Jall),x(8+�all), 
* x(9+Jall),K(l0+Jall)) 

400 CONTINUE 
c 

e 

420 
e 

440 
c 

DO 440 Ibll=l, (iNNbl+l) 
Jbll=(Ibll-l)*(iNNb2)

DO 420 iia=(ADR+2),600 
MMxl (l+iia) =O 
CONTINUE 

... 

MMx2(Ibll)=MAX(MMxl(l+Jbll),MMx1(2+Jbll),MMx1(3+Jbll), 
* MMxl(4+Jbll),MMxl(5+Jbll),MMxl(6+Jbll},
* MMxl (7+Jbll) ,MMxl (8+Jbll) ,MMxl (9+Jbll), _
* MMx1(10+Jbll),MMxl(ll+Jbll),MMx1(12+Jbll);
* MMxl (13+Jbll) ,MMxl (14+Jbll) ,.MMxl (15+.;Tbll),
* MMx1(16+Jbll),MMx1(17+Jbll),MMx1(18+Jbll),
* MMx1(19+Jbll),MMx1(20+Jbll))

CONTINUE 

dxMax (ii) =MAX (MMx2 (1) ,MMx2 (2) ,MMx2 (3) ,MMx2 (4) ,MMx2 (5), 
* MMx2(6),MMx2(7),MMx2(8),MMx2(9),MMx2(10), 
* MMx2 (11) ,MMx2 (12) ,MMx2 (13) ,MMx2 (14) ,MMx2 (15) I 

* MMx2(16),MMx2(17),MMx2(18),MMx2(19),MMx2(20), 
* MMx2(21),MMx2(22),MMx2(23),MMx2(24),MMx2(25), 
* MMx2(26),MMx2(27),MMx2(28),MMx2(29),MMx2(30)) 

C*******************************************************�**** 
C CALCULO DO XMIN 
c 

e 

ADR= (j /10) 
DO 480 Iall=l, (iNNal+l) 
Jall=(Iall-l)*(iNNa2) 

DO 460 iia=j+l,6000 
x(iia)=O 

460 CONTINUE 
e 

MMx3(Iall)=MIN{x(l+J.all),x(2+Jall),x(3+Jall),x(4+Jall), 
* x(5+Jall),x(6+Jall},x(7+Jall},x(8+�all), 
* x(9+Jall),x(l0+Jall)) 

480 CONTINUE 
c 

e 

DO 500 Ibll=l, (iNNbl+l) 
Jbll=(Ibll-l)*(iNNb2) 

DO 520 iia=(ADR+2),600 
MMx3(1+iia)=O 

520 CONTINUE 
e 

MMx4(Ibll)=MIN(MMx3(1+Jbll),MMx3(2+Jbll),MMx3(3+Jbll), 
* MMx3 (4+Jbll), MMx3 (S+Jbll), MMx3 ( 6+Jbll),
* MMx3(7+Jbll),MMx3(8+Jbll),MMx3(9+Jbll),
* MMx3(10+Jbll),MMx3(ll+Jbll),MMx3(12+Jbll),
* MMx3(13+Jbll),MMx3(14+Jbll),MMx3(15+Jbll),
* MMx3(16+Jbll),MMx3(17+Jbll),MMx3(18+Jbll),
* MMx3(19+Jbll),MMx3(20+Jbll))

500 CONTINUE 
e 

dxMin(ii)=MIN(MMx4(1),MMx4(2),MMx4(3),MMx4(4),MMx4(5), 
* MMx4(6),MMx4(7) ,MMx4(8) ,MMx4(9) ,MMx4(10), 
* MMx4(11),MMx4(12),MMx4(13),11Mx4(14),MMx4(15), 
* MMx4(16) ,MMx4(17),Ml'ix4(18),MMx4(19),MMx4(20), 
* MMx4(21),MMx4(22),MMx4(217•MMx4(241,MMx4(25), 



* MMx4(26),MMx4(27),MMx4(28),MMx4(29) ,MMx4(30)) 
e************************************************************ 
e CALCULO DO TAMANHO DA GRADE 
C E DO 
c 

c 

e 

COMPRIMENTO DE CORRELACAO 

NL (Ii) = ( (dyMax (Ii) -dy.Min (Ii)) +.1) 
NC(Ii)=((dxMax(Ii)-dxMin(Ii))+l) 
NPT(Ii)=(NL(Ii))*(NC�Ii)) 
NPV(Ii)=(j) 
Cor(Ii)=(NPV(Ii)/NPT(Ii)) 

e Somatorio da Funcao Correlacao de Cada c·aminhada 
Corl(O)=O. 
Corl(ii)=Cor(Ii)+Corl(Ii-1) 

e***************************************************�,**** 
idumal=z(j-1) 

e************************************************************* 
e (ii)=numero total de caminhJdas 
e (j)=numero de passos da caminhada 
e************************************************************* 
e SOBRE O NUMERO DE PASSOS NAS CAMINt,iADAS 
e 
e 

e 
e 

Somatorio do Numero de P��sos 
u3(0)=0 
u3(ii)=(j)+u3(ii-1) 

Media(l) do Numero de Passos 
u4(ii)=1u3(ii)/ii) 

... 

e******************************************************"*****.,***** 
e SOBRE O RAIO DA CAMINHADA 
e 
e Raio Quadrado.da Caminhada 

rl (ii) = ( ( (x (j) -xr) **2) + ( (y (j) -yr) **2) )
e 
e Raio da Caminhada 

r2(ii)=sqrt(rl(ii)) 

e Somatorio dos Valores do Raio 
r3(0)=0 
r3(iii=r2(ii)+r3(ii-1) 

e 
e Media(l) dos Valores do Raio 

r4(ii)=(r3(ii)/ii) 
e**************************************************************** 
e SOBRE OS VALORES DE "X" 
e 
e Somatorio dos Valores de x

v3(0)=0 
v3(ii)=x(j)+v3(j�-1) 

e 
e Media dos Valores de x 

v4(ii)=(v3(ii)/ii) 
e**************************************************************** 
e SOBRE OS VALORES'DE "Y" 
e 

e 

e 

Somatorio dos Valores de y 
t3(0)=0 
t3(ii)=y(j)+t3(ii-1) 

e Media dos valores de y 
t4 (ii) = (t3 (ii) /ii) 

e*************************************************************** 
e SOBRE A DIMENSAO FRACTAL 
e 

e Dimensao Fractal(l)-Calculada pelo log. do no. de passos 
e dividido pelo log. do raio quadrado 

dl(ii)=(log(j)/log(rl(ii))) 

e Dimensao Fractal(2)-Calculada pelo log do no. de passos 
e divido pelo log do raio 

d2(ii)=(log(j)/log(r2(ii))) 
c********************************************************r**** 

write(57,*)ii,j,x(j),y(j),REP
e 
e ESCREVE DADOS PARA: (F.CORRELACAO) vs (RAIO DE GIRACAO) 

write (59, *) ii, j, Cor (ii), rl (ii), r2 fii), ET (j) 
c*********************************************iâ****************



600 continue 
e****************�****************************************�****

e FECHAMENTO DOS ARQUIVOS 
elos_� (57) 
close (59)

e***************************************************************

650 stop 
end 
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