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Neste trabalho, estudamos o confinamento de estruturas poliméricas restritas
a uma regido limitada por duas superficies planas, propondo, assim, um
modelo para simula-lo computacionalmente. Desta forma, fazemos uma
aproximagdo estatistica para o problema fundamentada na simulagdo destas
macromoléculas por uma classe de caminhada auto-excludente(SAW),
denominada caminhada de crescimento indefinidamente auto-excludente
(IGSAW). Os resultados obtidos por simulagdo computacional do
confinamento de cadeias poliméricas entre duas superficies planas, ao
considera-las como caminhadas /GSAW, mostram que as dimensdes fractais

obtidas por leis de escalas da fung¢do de correlagdo ¢(7) com a distincia 7

entre os extremos, e da distdncia 7 entre os extremos com o nimero N de

mondmeros estdo em concordancia com os valores obtidos na literatura.
Como também, apresentamos uma lei de escala que relaciona a separagdo 4
entre as paredes de confinamento com o tamanho da macromolécula para o
fendmeno da formacdo de pontes poliméricas entre as superficies planas,
mostrando-se ser um resultado mais consistente do que o obtido

analiticamente por Hong Ji et al®®.



In this work we studied the confinement of polimeric structures restrict in a
region limited by two plane surfaces, proposing a model to simulate this
problem in a computer. Hence we suppose that the statistical approach to the
problem 1s based in a computer simulation of these macromolecules by a
kind of self-avoiding walk(SAW), called indefinitely growing sel-avoiding
walk(IGSAW). The results from the computer simulation of the confinement
of polimeric chains between two plane surfaces considering like a
indefinitely growing SAW show us that the fractal dimension from the

scaling law between the density-density correlation function c(7) and the

distance end-to-end 7 and from the scaling law between the distance end-to-
end 7 and the number of monomers N are in a good agreement with the
literature. Furtermore we establish a scaling law relationship between the
separation 4 of the two plates and the number of monomers N for the
problem of the polymer brigdging between two plane surfaces, our results
give evidence of that they are better than the numeric results obtained by

Hong Ji et al®®.
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Consideracoes Gerais sobre a Conformacéao de uma

Macromolécula

1.1 Introducao

Polimero, palavra que literalmente significa muitas partes, € oriunda do grego
“polus”, que quer dizer muitas, e “meros”, partes ou segmentos. E a denominagao
utilizada para representar todos 0s materiais cujs moléculas sdo constituidas de muitas
unidades, tais unidades, que na maioria das vezes, apresentam-se constituidas por
pequenos grupos de dtomos, podendo também serem constituidas por um tnico dtomo,
que € o caso do polimero denominado enxofre-pldstico, o qual € obtido quando o enxofre
ligliefeito(em uma razodvel temperatura) € entornado de dgua gelada. Sua estrutura pode
ser representada por uma cadeia simples de dtomos conectados por ligagdes quimicas,
podendo ser representada da seguinte forma:

-§=-5-5-§-§-

Neste estado, o enxofre possui propriedades fisicas inteiramente diferentes do
cristal usual de enxofre, agora, apresentando-se de forma maledvel, altamente eldstico e
translicido, nao possuindo um ponto de fusido definido, como outrora na forma cristalina
possufa, de tal modo que ao elevarmos sua temperatura, ele entra em um processo de
derretimento, “escoando como se fosse um liquido, porém com alta viscosidade.
Entretanto, devemos ressaltar que apds alguns dias em temperatura ambiente, tal cadeia
polimérica apresentar-se-d4 com a usual e familiar forma cristalina, em vista da sua alta
instabilidade.

Em muitos polimeros a unidade repetida na estrutura € um pequeno grupo de
dtomos combinados de um modo particular. Um dos mais simples polimeros, do ponto de
vista da estrutura quimica, € o polietileno, no qual a unidade repetida € o grupo CH, (um
dtomo de carbono ligado a dois dtomos de hidrogénio). Estas unidades uma vez

conectadas umas as outras formam uma longa cadeia, como se segue:



como seu préprio nome implica, polietileno, nota-se que € constituido por vdrias
moléculas de etileno
CH, = CH,

que através de um ativador ou catalisador quimico, tem a ligagdo dupla entre os dois
dtomos de carbono quebrada, transformando-a em uma ligagdo simples. tornando cada
dtomo de carbono disponivel para fazer uma outra ligacdo simples com uma outra
molécula de etileno. A molécula original da qual o polimero é formado € chamada de
mondmero(do grego “monos”, que quer dizer uma ou tnica). Como este exemplo nos
mostra, 0 mondmero ndo necessariamente ¢ a mesma unidade que se repete ao longo da
cadeia, no caso presente a unidade original da cadeia polimérica de polietileno € o etileno,
que & constituido por duas unidades repetidas de CH,, mostrando-nos que as unidades
que se repetem no polietileno como no etileno sdo diterenciadas.

Um outro polimero de estrutura similar ao polietileno € o polipropileno, o qual €

constituido pela liga¢do de vdrias moléculas de propileno:

CHo= C‘H
CHs

para formar a seguinte cadeia polimérica

—CHz—CH—CHy— CH—CH;z~ CH—
I | |
CHs CHs CHs

Esta estrutura difere do polietileno por possuir o grupo metil (CHs) no lugar de um dos
dtomos de hidrogénio nos alternados dtomos de carbono da cadeia. Entretanto, no
polipropileno, a unidade que se repete na cadeia corresponde a original molécula
monomérica, ou seja, no polipropileno a unidade que se repete é a prépria molécula de
propileno.

Os exemplos acima mencionados, polietileno e polipropileno, sdo suticientes para
ilustrar a caracteristica que distingue as diversas cadeias poliméricas, que € a estrutura

conformacional da cadeia, a qual € constituida pela adi¢io repetida de sucessivas unidades



monoméricas(end-to-end). Nos exemplos citados, cadia uma destas unidades repetidas é de
idéntica composi¢ao e estrutura. Entretanto. muitos polimeros, dos quais uma das
principais formas é o nylon, sio tormados por reagdes quimicas que envolvem dois
diferentes tipos de mondmeros ou compostos quimicos. Isto resulta em uma estrutura a
qual pode ser representada da seguinte forma:
~[Al-[B]-[A]-[B]-[A]-[B]-
tal que a estrutura final pode ser considerada como tendo a seguinte unidade repetida:
~[Al-[B]-

Em outros polimeros, chamados co-polimeros, as propor¢des das duas diferentes
unidades [A] e [B] podem variar arbitrariamentg, e a sucessdo destas unidades ao longo
da cadeia apresentarem de forma aleatdria, tal que:

~[Al-[B]-[B]-[A]-[A]-[A]-[B]-
que constituem a estrutura bdsica de vdrios tipos de borrachas sintéticas. Uma outra
variagio da mesma torma padrio é obtida se uma das unidades . digamos [B], puder ser
combinada com um grupo [A], ndo somente em cada extremidade, mas também em um
terceiro ponto, originando a possibilidade de ramificacio da cadeia, como pode ser

representada abaixo:

de tal modo que o polimero pode continuar a crescer a partir de cada um dos pontos de
ramificagio, fornecendo-nos estruturas bastantes complicadas em alguns casos, como por
exemplo as cadeias ramificadas de estruturas tridimensional.

No que se refere a quantidade de monOmeros necessdrios para formarmos um
polimero, € estabelecido que a partir de duas unidades jd se tem um polimero. Entretanto,
polimeros contendo pequenas quantidades de mondmeros sao normalmente chamadas por
dimeros, trimeros, tetrameros, etc., 0os quais recebem estas denominac#es de acordo com

o nimero de mondmeros envolvidos, sendo o termo polimero reservado para casos nos



quais o0 nimero de unidades é muito grande. Abaixo relacionamos alguns polimeros que se

destacam por sua importincia e aplicabilidade no mercado tecnolégico:

-R - AR -R™ Mondmeto

-H H H H Etileno
- CH, H H H Propileno
—CeHy H H H Estiteno

H H

I 7
~-C=C H H H Butadicno

B
H
o n
R R" ~-C= C< H H H Isopreno
g >4 ; H
v Dy " -cl H H H Cloreto de vinlia
R R cll
-C= C< H H H Cloropreno
H

~CN o | H H Acrijonltrila
- COOH H H H Acido aciflico
- COOMe H H H Actilato de metila
~ OCOMe H. H H Acctato de vinlla
- CH, —Cll, H H Isobutlleno
— COOMe —CHl, H H Mectacrilato de metila
—cl -Cl H H Cloreto dc vinilideno
_F i -F --F Tetrafluoro<tileno

De um modo geral, taz-se necessdrio apresentarmos algumas caracteristicas e
definigoes importantes da Ciéncia de Polimeros, a fim de que uma vez embasados
possamos adentrar de forma segura no objetivo deste trabalho, que € a andlise do
confinamento de macromoléculas, que tem como pilar mestre o estudo da conformagao de
cadeias poliméricas. No entanto, antecipadamente, saliento que a conformagdo de uma
macromolécula estd diretamente relacionada com o tipo de polimero e solugdo o qual estd
inserido, pois d partir do conhecimento destes dois aspectos € que podemos inferir e
entender a _distribuigdo dos segmentos constituintes da cadeia, os denominados
mondmeros.

Imbuidos deste objetivo € que dividimos este Capitulo 1 da seguinte forma: Na
secdo 1.2 taz-se uma apresentagdo geral das propriedades de um polimero. Nas se¢oes
subseqiientes, 1.3 e 1.4, voltamos nossa atengdo aos tipos de solugdes as quais estdo
sendo sintetizadas as cadeias poliméricas, e conseqiientemente, sua geometria resultante.
Conhecidas as propriedades provenientes das interagdes das solugdes com os polimeros,
secoes 1.3 e 1.4, faz-se necessdrio, agora, conhecer os diversos aspectos de uma

macromolécula no que se refere as suas interagOes internas, ou melhor, as interagdes



mondmero-mondmero. e é com este intuito que surgem as se¢oes 1.5 e 1.6, gue discorrem
sobre cadeias poliméricas consideradas ideais e ndo-ideais. Na secdo 1.7, apresenta-se
algumas metodologias de cdlculo das propriedades e interagdes das diversas interagdes

existentes em uma solugio polimérica.

1.2 Polimeros Lineares

O namero de unidades repetidas N, em uma dada cadeia polimérica é comumente
denominada de grau de polimerizacdo e pode ser surpreendentemente grande. Como
exemplo temos o poliestireno, onde N>10°,

Entretanto, cadeias com 10° operagdes sem erros de seqiiéncia, enfrentam certas
dificuldades em sua construgdo, nas quais duas sdo de grande importincia para estudos

fisicos: a poli-dispersividade e a ramificacao. -

1.2.1 Poli-dispersividade

Informa-nos a dispersdo das cadeias em uma estrutura polimérica. ou seja, nos diz
como estdo distribuidas as cadeias em termos de seus diferentes graus de polimerizagio.
Muitos métodos de preparagdo nos fornecem cadeias com larga distribuicdo de valores
para N, porém, € possivel obtermos, relativamente, distribuigdes pequenas ou por métodos
fisicos, tais como: precipitagio, cromatogratia, etc.”, ou através de métodos especiais de

. . . ~ A 2
sintese, como a pOlllTlGl'lZ'dQélO amomca( ).

1.2.2 Ramificacao

Refere-se a quanto e como a cadeia polimérica subdividiu-se durante todo o seu
processo de formacdo, ou melhor, nos fornece informagdes acerca das diversas diregdes
tomadas pelos mondmeros durante a sintese da cadeia polimérica. Muitas reagdes que
ocorrem durante a sintese do polimero podem nos conduzir a cadeias que nio sio
perfeitamente lineares, mas que contém pontos de ramifica¢do. Por exemplo. o polietileno

industrial possui trés pontos de ramificac¢des do tipo:
C§ H



onde as linhas em zig-zag representam diferentes porgoes da cadeia.

Entretanto, quando a fragao de pontos de ramificagiio na estrutura nio € muito
pequena, estes pontos podem ser detectados por vdrios métodos fisicos, tal como a
espectroscopia infra-vermelha. Por outro lado, se a longa cadeia possui um ou dois pontos
de ramificagio € extremamente dificil provar a sua existéncia ou auséncia.

Em alguns casos um nimero controlado de ramificagSes sdo inseridos
propositadamente ao longo do processo de sintetizagio da cadeia, originando dois tipos

de geometria possiveis, estrela ou pente, como podemos observar logo abaixo:

FEESY

ESTRELA PENTE

1.3 Solventes

Nos modelos desenvolvidos para o estudo dos polimeros, observa-se que um dos
fatores determinantes ao tamanho do polimero € o tipo de liquido o qual ele estd
colocado, ou melhor, dissolvido. Se existe uma grande atinidade com o solvente, entio o
polimero € facilmente dissolvido, promovendo um espichamento da cadeia, ou seja, uma
melhor distribuigdo espacial da macromolécula, neste caso o chamamos de bom solvente.
Por outro lado, quando nio existe uma boa atinidade, o polimero apresentar-se-d de forma
compacta, ou melhor, encaracolada, de tal modo que nesta situagiio temos um solvente
ruim. Para explicarmos esta dependéncia do tamanho do polimero com o tipo de solvente
consideraremos interagdes do tipo: mondmero-mondmero, mondmero-solvente e
solvente-solvente. Por questdes priticas diremos que a molécula do solvente possui o
mesmo tamanho de um mondmero, ocupando um tnico sitio na rede. Como também,
consideraremos que a rede estd inteiramente ocupadas por moléculas, tal que se tivermos
uma concentragdo de mondmeros C (mondmeros por unidade de volume). teremos uma

concentragao de moléculas de solvente C_, tal que:

6



C,=(1-0C) (1.1)
Considerando que estas interagdes sejam do tipo van der Waals e que os segmentos
estejam uniformemente distribuidos na rede, entdo temos que a energia por unidade de

volume, relacionada com os diversos tipos de interagdes, serd da seguinte forma®

T
E_=—y (C?
mm 2 xmm
T
E, = gme(l -C) (1.2)

T
ESS = Ex&f (1 —. C)2

onde y € denominado de pardmetro de interagio de Flory®, sendo adimensional e com
dependéncia com a temperatura T e a pressdo do sistema considerado.

A energia livre possui duas componentes: um termo de entropia que descreve
quantos conjuntos de cadeias podem existir na rede, para uma dada concentragdo de
monOmeros C, e um outro termo que descreve as interagdes entre as moléculas
adjacentes. Em rela¢do ao termo da entropia, considerando que os sitios vizinhos ndo
estejam correlacionados, teremos:

§=-CInC-(1-C)In(1-C) (1.3)
onde o primeiro termo estd relacionado com a entropia translacional da cadeia, enquanto
que o segundo com a entropia translacional das moléculas do solvente.

A energia da solu¢do polimérica (solvente + polimero), por unidade de volume,

serd dada por®™:

Esol = Emm +'Ems + Ess (14)
T
By = Hon O + T2 = C) 3 2,(1-CF
E:I 1 2 ]. 2
2 =~y m(C*+C=C)+,,C(1-C)+ = x,,(1-C)
T 2 2
2 = C=C) = ) O~ O =3 £, C= O+ 2 2, (= O+ £ 2,,C
T ms 2 mm 2 sSs 2 S$S 2 mm
E,, 1 1 } 1
—==C(1-C -— + +C| < - +— 1.5
e=C( ){xm 2(xmm xss)} C[z(xmm Xes) > X (1.5)

fazendo a seguinte substitui¢ao:



1
%= [z = [ x)} (1.6)

onde ) € o parimetro de Flory para a solugdo polimérica, entdo a eq.(1.5) fica da forma:

E
;j” = xC(1- C) + termos lineares em C + const. (1.7)

onde os termos quadrados nos informam o tipo de interagdo efetiva que a solugio
polimérica(mais especificamente cada mondmero) estd submetida, desta forma podemos
sem prejuizo algum desprezar os termos lineares e as constantes que estdo contidas no
cdlculo da energia da solugdo, expressa pela eq.(1.8).

Uma vez (iue a energia livie F de um sistema é expressa da seguinte forma®:
F=E_+TS (1.8)

entdo, substituindo as equagdes (1.3), com as devidas consideragdes com relagdo a

contribui¢do de seus termos, e (1.7) na eq.(1.8), obtemos:
F
?:ClnC+(1—C)ln(l—C)+xC(1—C) (1.9)

considerando a concentragdo C muito pequena, entdo ao expandirmos a eq.(1.9),

teremos:

?=C1nC+(l—C)[—C—

[
O
=
O
+
!
a
[

1
+«CH1-_ - === ...
CInC C(l 5 x)+c(2 3)+

1 1
=C1nC+5C2(1—2x)+EC3+... (1.10)

Nlm Nm N

Através da expressio dada pela eq.(1.10), observamos que o coeficiente do termo C?,
(1 - 2)(), representa o que denominamos interagdo efetiva, uma vez que este coeficiente é
composto por duas contribui¢des: a parte (—- 2 X) relacionada com as interagOes atrativas

do tipo van der Waals entre os sitios vizinhos, e uma outra parte (1) que expressa a

existéncia de interacdes repulsivas, oriundas do efeito estérico. Sendo assim, quando



B o

tivermos ) < % o efeito estérico serd dominante, de tal forma que teremos que o efeito
de exclusdo de volume estard mais evidente, provocando um espichamento do polimero,
neste caso temos um bom solvente; enquanto que y > % as interagdes atrativas entre os

sitios adjacentes terdo maior predominincia, tal que teremos uma tend€ncia maior para
formacdes um pouco mais préximas, ou seja, a cadeia apresentar-se-d mais compacta,
nesta situagdo estaremos tratando de um solvente ruim; porém, quando Y = % teremos
entre 0os mondmeros, uma anulagdo das atragdes do tipo van de Waals com as repulsdes

decorrentes do efeito estérico, e neste caso estaremos tratando do 8-solvente, bastante

conhecido por suas aplicagdes tecnoldgicas. .

1.4 Flexibilidade

Estd relacionada com a forma fisica, ou seja, a geometria que a cadeia polimérica
toma apds o seu processo de sintese. Pode ser entendida tanto pelo aspecto estdtico, como
dinimico. Para entendermos melhor, consideraremos uma cadeia do tipo carbono-

carbono, como o polietileno.

.. —CH2—CHz—CH2— ou |—CHz—|y

O angulo O nas ligagdes entre os carbonos C—C € considerado fixo, porém
quando conectamos a outras unidades sucessivas de dtomos de carbono ( C,,.C,,, C,,_l)

fixos e ligamos a um outro dtomo de carbono C

n?

o qual pode rotacionar com um angulo
@, , em torno de um dado eixo, no entanto que sua ligagdio com o carbono C, ,, com
angulo 6 _permanega fixa, pode-se obter trés pontos de minimo em sua energia E,
correspondentes aos trés tipos de conformag¢do da macromolécula, as quais s3o chamadas

de “trans” e “gauche” , como podemos observar na Fig. 1.1.




Energia E

Cn-3 $:=0 trans
P = 120° gouche (g*)
Y= {20° gouche { g-)

) S 5 o] : ,
O 60 120 180 240 300 360
anglo ¥

v

Fig. 1.1 - Representaciio esquemiitica da dependéncia da Energia E das ligagdes C-C com o dngulo 6 entre

as ligacoes sucessivas de carbono.

E importante notarmos dois parimetros de energia importantes: 1) a diferenca de
energia Ae entre estes pontos de minimo e 2) a barreira de energia AE separando o
minimo.

Considerando que a energia térmica do sistema seja dada por KT, onde T € a
temperatura do sistema, e que possamos escrevé-la em unidades de K, tal que tomemos
K como unitdrio, entdo, podemos observar quando Ae € menor que a energia térmica T,
teremos copcentragdes (uase equivalentes de conformagdes do tipo “gauche” ou
“trans”, conseqiientemente a cadeia apresentar-se-4 como um espiral. Porém, a forma de
como vemos a cadeia polimérica estd intrinsicamente relacionada com um comprimento

4.5 !
P

caracteristico, denominado de comprimento de persisténcia . que € calculado das

energias microscopicas da cadeia. Para o caso do polietileno, [, € uma fungio crescente
da diferenca de energia Ae entre os pontos de minimo, sendo dado por:

A A
l, = loExp(?g) com (Ag)>0 (1.11)

onde [, é da ordem de alguns angstroms. Quando Ae<T teremos o caso de extrema

tlexibilidade, pois com /, pequeno. ou seja , menor que o comprimento da cadeia L,

10



podemos escolher uma escala tal que as porgdes rigidas (l = lp) tornam-se pequenas para

. . Ae
serem vistas, no entanto devemos salientar que quando Ae << T, tal que Exp(? -0,

[, torna-se igual a [,, nos garantindo um limite minimo para o comprimento de

persisténcia, tal que a cadeia nio € reduzida a um ponto. Por outro lado, quando Ae>T
teremos uma conformagio preferencial, tipo “trans”, consegiientemente a cadeia se
apresentard localmente rigida, pois a escala, que antes vinhamos observando toda a
seqliéncia da cadeia, agora se torna grande para a andlise destes pontos, uma vez que o
comprimento /, tem aumentado; como também em alguns destes pontos teremos I,
grande, ou seja, maior que o comprimento L da cadeia, de tal modo que estas partes
geométricas da conformagio da macromolécula se tornam grandes para serem vistas se /,
€ maior que o comprimento da cadeia L. entio teremos cadeias rigidas em todas as
escalas.

Uma outra questdao importante, no que se diz respeito aos tipos de conformagao, é
o tempo T, requerido pela macromolécula para a transi¢ao entre os dois estados “trans” e
“gauche”, pardmetro este que possui dependéncia com a barreira de energia AE que
separa estas configuragdes. Quando AE nio € muito maior do que a energia térmica T, a
barreira se torna irrelevante, tal que a isomerizagao “trans-gauche” toma tempos bastante
pequenos (T~10""s para o polietileno)™™, sendo assim, a cadeia ¢ dita ser dinamicamente
flexivel. Por outro lado, se a barreira AE for grande, o tempo torna-se exponencialmente
longo, pois para o polietileno temos que:

AE

T, = TOExp(?) (1.12)

onde 7, € denominado tempo de persisténcia™®?.

Deste modo, vimos que ao trabalharmos com escalas pequenas, detinhamos nossa
atengdo nas propriedades locais, observando as conformagdes e os movimentos dos
mondmeros dentro da cadeia. Este tipo de informagio se faz necessdrio quando

precisamos fabricar um tipo especifico de polimero, onde € preciso entender a influéncia

11



dos vinculos entre os mondmeros vizinhos, os movimentos locais(mondmeros) € a sua

dependéncia com a temperatura T .

°«a
@]
o
[y gauche
) —F

\

sequencias trans
la) (b)

Fig. 1.2 - (a) Visualizagdo de uma cadeia polimérica com urr 1 escala grande. (b) Visualizagdo de uma

100 A°

cadeia polimérica com uma escala pequena, fornece uma maior riqueza de detalhes com relagdo a

configuragdo da macromolécula.

No caso da analise com escalas grandes extraimos as propriedades globais da
macromolécula , investigando a dependéncia das propriedades fisicas observaveis em
relagio ao tamanho e a concentragdo da cadeia, das quais nos fornecem aspectos
universais , que se tornam verdadeiros para uma determinada classe de cadeias
poliméricas.

Notamgos assim, a importdncia da investigagdo tanto das propriedades globais
como as locais para uma melhor e mais completa informag@o acerca do polimero. isto
evidencia-se quando tentamos estabelecer alguma lei de escala, tal como a estabelecida
por Flory® para o caso de uma solugo polimérica em um bom solvente, que ¢ dada por:
R, =aN" com v=% (1.13)
onde R, € denominado raio de giragdo da cadeia, enquanto que N € o grau de

polimerizagdo. No entanto, se quisermos entender as propriedades de um polimero em um
bom solvente, o primeiro passo € explicar a existéncia e o valor do expoente v, ou seja,
devemos possuir um conhecimento das propriedades globais da cadeia, uma vez que o

expoente v € universal para todas as cadeias dissolutas em um bom solvente; o segundo

12



passo € determinar o valor da constante, a qual ndo é universal, pois depende da escolha
do solvente, como também da estrutura dos mondmeros, ou seja, agora necessitamos

conhecer as propriedades locais da cadeia.

1.5 Cadeias ldeais

Uma das mais simples idealizagdes de uma cadeia polimérica flexivel consiste em
ser representada por uma caminhada aleatéria(Random Walk) em uma rede periodica®,

como pode ser mostrado na Fig. 1.3.

.
kL
2N
I
’ ~ H_
S

Fig. 1.3 - Representagéo grafica de uma caminhada aleatdria em uma rede quadrada.

onde os mondmeros sdo os sitios ocupados da rede e o conjunto destes sitios visitados
constituem a cadeia polimérica. A caminhada inicia-se em um dado ponto «, e ap6s uma
sucessdo de N passos, alcanga-se um ponto final o, (ver Fig. 1.2). No entanto, em cada

passo, pode-se saltar para um dos sitios vizinhos mais proximos com igual probabilidade

para qualquer das dire¢des escolhidas.

-

Considere um vetor R que una as duas pontas do polimero, chamado vetor end-
to-end, onde seu comprimento médio nos possibilite ter uma informag@o acerca da

extensdo da cadeia. Se a cadeia € constituida de N ligagdes, com 7, sendo o vetor

posig@o da n-ésima ligag@o, teremos que:
R=F +F+. 4F, =D F (1.14)

onde cada um dos termos 7, € um vetor de comprimento a com z possiveis orientagdes,

tal que diferentes vetores 7, possuem orientagdes completamente independentes.
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Fig. 1.4 - Macromolécula dividida em N sub-unidadades(mondmeros). onde o vetor i representa a

distincia entre duas sub-unidades sucessivas e R a distAncia entre os pontos extremos da cadei.

Evidentemente, o valor médio <R> € zero, pois foi suposto uma equiprobabilidade para as

possiveis dire¢des em cada passo, tal que a possibilidade do vetor end-to-end ser (R) €a

mesma para ele ser (— R). portanto estas duas contribuigdes se cancelariam. Deste modo,

calcularemos <R2>, a média do quadrado de R, e expressaremos o tamanho do polimero

tomando a raiz quadrada desta quantidade. Sendo assim, temos que:

<’E’>=ii<77> (1.15)

n=1 m=l|

como ndo hd correlagdo entre as dire¢gdes, entdo para n # m temos que

(7, -7)=(7,)(7)=0 (1.16)
e para n=m

()= () (2) = () = () (1.17)

entdo, obtém-se que

<§2>=i(7f)=Na2 (1.18)

n=1

vemos assim, que o tamanho do polimero € proporcional a N%.



Para calcularmos a fungdo distribuigdo de probabilidade de R . assumiremos. por
questdo de simplifica¢lio. que o polimero de N ligagdes, possua uma de suas pontas fixa
na origem. Entdo, P(R,N ) representard a probabilidade de que a outra extremidade do

L, . .~ D (-
polimero esteja na posigio R 7,

N

P(E.N)zjdﬁjd@...jdiﬁ(ﬁ—Zf;,jt//({?,,}) (1.19)

n=1
a qual € reescrita usando a identidade

|
(27)’

NRE J(Hzem (1.20)

como sendo

P(R,N)= : [ dk [ a [ ar,...| aF, Exp[zfi : (ﬁ —ir ﬂu/({ﬁ, N (1.21)

(27)

sabendo que 1//({7,,}) representa a fungdo distribui¢do para a conformagido polimérica e

que € dada por

v({7 ) =T1Tv() (1.22)
n=1

onde 1;/(7',,) denota a distribui¢do aleatdria do vetor 7, de comprimento constante ¢ :

- 1 -
W(",, ) = Pt 5(|r| - a) (1.23)

entdo. obtemos que

P(I—Q,N) - J‘(ZIZeiE'ﬁJ(lﬁj(/@...](lﬁ,ﬁ Exp(— 1/27,,)1,1/(7,,)

(27)
PRN) = [ ake [ rmpl - o )] (124)
T

porém, a integral em 7 € calculada pela introdugido das coordenadas polares (7. 6, ¢),

onde o eixo de referéncia de 6 € tomado ao longo do vetor k

~ 27

J (lf'Exp(— ik -7, )W("—}, ) = 47:a2 J r*dr fd(bit[ (sen8) Exp(— ikr cos0)5(r — a)dB
0

0 0
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Jcl?Exp(— ik - 7”)!/1(7,,) = se;: 54 (1.25)
a

substituindo a eq.(1.25) na eq.(1.24), obtemos

P(R.N)= (2;)3 [ ak[ Explik E)](Sezak“) (1.26)

se considerarmos N muito grande, podemos fazer a seguinte aproximagao:

senka \" o i Nk*a®
=|1- = Exp| -
ka - 6 6

substituindo-a na eq.(1.26) obteremos

P(E,N) = (2]7)1J (ZI;Exp(H; E)E.xp(— N/;f(ﬂcﬁ ] - (1.27)

3

Esta equagdo assemelha-se a uma integral Gaussiana, que € bem conhecida sua

solugdo, onde é dada por(ver Apéndice 1):

@ 4 2
_{OExp(— ax’ +bx)a'x = (%) Exp[%} (1.28)

onde a € uma constante positiva e b € uma varidvel complexa. Porém, se k e R,

representam as componentes dos vetores k e R , entdo obtemos:

. 1 . Nk a*
P(R.N) = ) J(lkl,E.xp[zkaRa = )

27 6
P(RN)=—= [] ( 2 )%E -5
’ = a X L 9
2n) wid \Na? ) TP aNa?
% 3(R2+R2+R3)
— 1 on x v z
= E: - =
P(R.N) (27[)3 |:( Naz) xp NG
A =0
d IR 3R
PR )= 2= Exp| =—— 1.29
(R.N) (mr) ”’{ 2Na') (1.29)

vemos assim que a tungdo distribui¢do do vetor end-to-end é Gaussiana.
Enfim , vimos que foi assumido que as orientagdes de cada ligagdo era aleatdria e
independente da orientagdo das ligagdes anteriores, isto significou que o polimero era

capaz de dobrar-se, cruzando em si mesmo em certas posi¢coes, o qual € fisicamente
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impossivel, pois duas por¢des da macromolécula nio podem ocupar a mesma regido no
espago. Agora, a fim de remediar este fato, consideraremos um modelo modificado para o
polimero, o qual ndo permitird tal situag¢do, onde o vetor de ligagdo mondmero-mondmero
ndo € permitido voltar para o passo anterior, isto €, nio pode tomar a dire¢do do

’lH—l

vetor —7,, devendo tomar uma das (z-1) dire¢cdes remanescentes de modo aleatério.

Sendo assim, o valor médio de 7,,, ndo serd zero para um dado 7,. Denotando a média de

(7- ))

i, .emrelagdo a 7,, por ( ,,+1>_ , teremos

(2= 1DF), —% =0 (E,+1>Fn=( : ]r”' (1.30)

z—1

analogamente obtém-se que:

5 1ot
<’n+2 >,"‘I = (Z__—I)rnﬂ (1 3 ] )

entdo, desenvolvendo a média do produto escalar de 7, ,, e i, obteremos

s 2= (b, 2= 7= N, )

AT (—l—j“az (1.32)

repetindo este processo obtemos um resultado geral da seguinte torma

S e 612
A “ - (1.33)

sendo assim, a média do quadrado de R serd dada por
< > 2 z < n ’”> Z z )|n—m| ( l 34)

n=l m=1 n=l m= 1

tazendo algumas substituigﬁes, teremos

(#)=3 ¥ = 135

k
n=l k=—n+l \Z — 1)‘

considerando N muito grande, entdo podemos refazer os indices do somatério, tal que:
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(®)-33

n=1 k:—m(z = ])IEI

<E2>=Nazzi2 (1.36)

No entanto, vemos que o nosso modelo modificado ndo nos fornece nenhuma
mudanga no resultado final, ou seja, <1—?2> continua proporcional a N , para o caso de N
muito grande. Assim, devemos ressaltar que as interagdes gue ocorrem somente entre
segmentos proximos ao longo da cadeia, sdo chamadas de curto alcance, referindo-se,
somente, s distincias ao longo da cadeia e nio as distincias no espago. Na realidade. dois
mondmeros sO irdo interagir se estiverem -proximos geometricamente, mesmo que

pertengam as porgdes distintas da cadeia.

Fig. 1.5 - Representagiio esquemdtica do tipo de interagio desprezada para o caso de uma cadeia ideal. Os

mondmeros # e m estio proximos geometricamente, no entanto estiio distantes na seqiiéncia da cadeia.

Enquanto que as interagdes das quais dependem, somente, da separagio espacial e ndo das
distincias ao longo da cadeia sao chamadas de longo alcance, porém € necessdrio lembrar
que estas interacoes também se referem as distincias ao longo do polimero. Um exemplo
de interag@o de longo alcance € a intera¢do de volume excluido, a qual previne que dois

segmentos ocupem 0 mesmo ponto na rede, simultaneamente.



Podemos verificar que na distribuigdo estatistica dos vetores end-to-end, eq.(1.29),

a estrutura local da cadeia aparece somente através da ligagdo entre mondmero-

mondmero, de comprimento |7',, = a . ndo afetando de nenhum modo o todo do problema.

Notamos assim que o ponto fraco, porém importante nesta aproximagdo, é o desprezo das
interagdes entre mondmeros n e m, quando |n — | é grande (ver Fig. 1.5). Quando este
tipo de interacio € incluido, a cadeia deixa de ser Gaussiana.

Pode-se, entdo, concluir que o modelo Gaussiano nio descreve completamente a
estrutura local d6é polimero, entretanto isto € feito quando se refere as propriedades
extraidas com iongos comprimentos de escala. onde algumas informagdes locais se tornam

inatingiveis . Porém, o tdcil manuseio matemitico € a grande vantagem deste modelo.

1.5.1 Distribuicdo dos Segmentos da Cadeia

1.5.1.1 Funcéo de Correlacéao
Vimos acima que a cadeia polimérica ocupa, aproximadamente, uma regido

i 52\ 4 . ~
estérica, com didmetro <R2> =+Na. Até agora, temos voltado nossa aten¢io ao

2

tamanho do polimero, mas € necessdrio obtermos informagdes da distribuigdo espacial
destes segmentos na cadeia, a qual a fungio de correlagio g7) nos fornece. Focalizando
atencdio em um segmento, seja um segmento # , diremos que g () representa a densidade

média de segmentos em uma posicio 7 do segmento n. Se R, (1,2....,N) representa 0s

e GeRac .o . 5 P, (3.7-9)
vetores posigoes dos segmentos, entao pOdClTlO.S €SCIrever

g, ()= i<5[7 ~(R, —R, )]> (1.37)

m=1
onde a fungio de correlagio gr) é a média de g(F) sobre todos os valores de n
N

¢(F) =—;72 2, () =%ii<5[f- ~(R.-R,))) (1.38)

n=1 n=1 m=1

¥

sendo k o vetor espalhamento de onda, entdo a transformada de Fourier de ) g(l?) a

qual pode ser medida experimentalmente através de espalhamento de luz. raio X,

espalhamento de néutrons, € expressa da seguinte torma:



N

o(0)=[ e =[S 5 olr - (R - R ) (1.9

n=1 m=l

N N

gk )‘—22<E‘P[’k (R, - R )]> (1.40)

n=1 m=l

1.5.1.2 Raio de Giragéo

Ao trabalharmos na regiio de & muito pequeno, obtemos um certo comprimento
caracteristico R,, denominado raio de giragdo. Sendo assim, assumindo & pequeno na

eq.(1.40), podemos obter uma expansio em rela¢ido a k . tal que

(f):—é—i}ﬁ&l——k (R, -R,) + >
s{k)= <( —15,,,)2>+..} (1.41)

$30
detinindo o pardmetro R, por

R; = 2N222<( ) > (1.42)

n=l m=1

<&

2]~
o\|-

entdo, obtemos uma expressio da fungio de correlagio em termos do raio de gira¢io da

. . 79
seguinte forma”™:

g(E):N(I—%IzzR;’ﬁ..) (1.43)

A vaitagem do raio de giragido R, sobre a distincia entre 0s extremos <R3> € que
o primeiro pode ser medido experimentalmente e abrange nio sé cadeias lineares, mas
também cadeias ramificadas. Agora, se detinirmos o centro de massa da cadeia R, como
sendo

R (1.44)

tendo como R, a posi¢io do segmento n, podemos obter uma nova tormulagdo para o

raio de giragdo R,, tal que
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R =%i<(ﬁ,, = EG)2> (1.45)
n=1

onde nos € possivel facilmente veriticar o retorno fornecida pela eq.(1.45) para a

formulagio dada pela eq.(1.42)

weg £

1, m=|

Entretanto, de modo andlogo a distincia entre os extremos, dada pela eq.(1.18),

podemos inferir que:

= =5 N9 =
<(R" - Rm) >= ln—mla (1.46)
sendo R, e R, os vetores posicoes dos segmentos n e in. respectivamente. Deste modo
teremos

2 N

, ,

R =773 Z|n—m| a (1.47)
2N num=1

para grandes valores de N o somatdrio pode ser substituido por uma integral

1 N N 2 N "
a” u )
2 _ _ _ . _ 1.48)
R’ = . -‘[(ln‘([|n ml| dm e }[dn!(n m) dm (
a* " nt
R*= — |dn
NP 1[( 2 J
R 2=lNa? (1.49)
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utilizando a expressido para <1§2> dada pelaeq.(1.18). obtemos
L

LSpki e e

& .50
T (1.50)
De modo similar. podemos calcular g([) Uma vez que a fungdo distribuigio de

(R,, —Rm) € Gaussiana. o termo em exponencial na eq.(1.40) pode ser expresso da

seguinte forma:

(Explik - (R, ~ fe )])= <Exp[ > ik,-(R,-R,) ]> (1.51)

o=X.9,C

<Exp[i/—<.'(ié,, ~R, )]> = Exp[% >, (f’;a)‘("’;a )<(E~ 5 1?,,,)“ (R, - 13,,,)“ >}

o=x,v,

<Exp[iE (R, - R, )]> = Exp[(— %)0_2 E* <( R,-R,) >} (1.52)
através da eq.(1.18), podemos obter
<(fe,, —ﬁ)>=% (1.53)
entdo, substituindo a eq.(1.53) na eq.(1.52), tem-se que

s, s 1 ~ 5 |I’l—l71|(l2
<Exp[lk .(Rn - Rm )]> o EX[)|:(— Ejazgv‘: ka ( 3 ]}
<Exp[il€ ; ( R,~R, )]> = Epr— %ln = ,nlj Y, EaZ}

o=x,y.Z

. (R — R L .54

<Exp[zk - (R,, - Rm)]> = Exp| — e |n —ml (1.54)

colocando a eq.(l. 54) na eq.(1.40), teremos

N

g(E):IﬁZZExp[—agk_ In— m]} (1.55)

n=l m=1

fazendo N muito grande, podemos transtormar 0s somatdrios em integrais, tal que:
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S —a’k’

k)=—/|dn| Exp n—m| ldm [.56
(0)= o 2l =2 - 156
resolvendo-a, obtemos a seguinte solugio:

A/?):%%;[(EZR;‘ ~ 1)+ Exp - (£*R?)| (1.57)

agora fazendo x = kR, teremos

o(F) =7 [l ) - 1447 (1.5%)

g(k)=Nf(x) (1.59)

onde f(x) € dada por
e 2 D a2 )
f\x):—4[Exp(— x')—]+x‘] (1.60)
X

portanto, podemos extrair a seguinte forma assintdtica para g(k):

(PR
N l——3—- para Ikle {1
ol (1.61)

para |k|R )1

porém, por conveniéncia de cdlculo e através de uma interpolagiio entre estas duas formas
apresentadas acima, a tungio g(k), também chamada de fun¢io de Debye, é aproximada
9.10),

P 'cll"d(

(1.62)

1.6 Cadeias Nao ldeais

No modelo tratado na se¢do anterior, apenas as interagdes entre mondmeros
proximos na seqiiéncia da cadeia foram levadas em consideragio. Deste modo, este
modelo permitia que a cadeia dobrasse em si mesmo, tal que segmentos distantes ao longo

da cadeia ocupasse a mesma regido no espaco, sendo tisicamente impossivel uma vez que
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cada mondmero possui seu proprio volume tinito. No entanto, em cadeias reais, elementos
distantes na seqiiéncia podem se aproximar o suficiente a ponto de comegarem
interagir|tig.(1.18)]. Esta espécie de interagdo produz um rearranjo espacial entre os
monOmeros(eteito estérico) fazendo com que haja um aumento de volume em relagio ao
que seria obtido no modelo da cadeia ideal, o qual ndo possui este tipo interagao.

No caso da modelagem, este efeito é representado pela imposicio da condigiio de
que dois segmentos ndo ocupem o mesmo sitio na rede. Este tipo de condi¢io é chamado
de Efeito de Volume Excluido™'™*', tal que modelando o polimero como sendo uma
caminhada em uma rede, este efeito nos garante que sitios ocupados ndo sejam, de
nenhum modo, novamente visitados, gerando assim uma caminhada a qual denominamos
de Caminhada Auto-excludente(Self-Avoiding Walk - SAW)H12) que pode ser observada
na tig.(1.19). Desta tforma, vemos que uma cadeia ideal € uma caminhada
aleatéria(Rundom Walk), sem o efeito de volume excluido. O polimero assim
representado(SAW) é chamado de Cadeia de Volume Excluido.

Para uma cadeia ideal. devido a existéncia da possibilidade dos segmentos se
justaporem gera-se um polimero comprimido, ou melhor, um polimero bastante
encaracolado; entretanto, se acrescentarmos a restrigio de que nenhuma sobreposi¢dao dos
segmentos € permitida, esperamos que a distribui¢do de tamanho seja alterada para valores
maiores, tal que a cadeia de volume excluido apresenta-se maior do que uma cadeia ideal

com a mesma quantidade N de mondmeros.

o|o]o]o|o|o]o]o|ofo]olo
o|o|o]olo|o]o]o]lo]ololo
olo]o]oletele| olo]o]o]o
o|o[0]| ete|e®| OlOlo]o]o
O |${et2|0|&1®|0|0[o]o]o
olete[Ol|o|o|e| @®|O]|0|O
ol|o|e|o[0O|o]| eté|e[0|0|O
olo|e{e|0|o|o]|o| &jele|o
o|e}et&|o]0]o]O]0]o|e|o
ol|e|olo|o|o|o|o|o|o]olo
o|o]o]olo]o]o]o]o|o|olo
ololoJolo]o]olo]o]o]o]o

Fig. 1.6 - Representaciio grifica de uma caminha auto-excludente(SAW) em uma rede quadrada.
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Na verdade, em polimeros reais, a natureza das interagdes de longo alcance
incluem interagdes do tipo van der Waals. volume excluido e aquelas com as moléculas do
solvente. Mas essencialmente o que conta é a interagdo entre as partes da cadeia que
mesmo estando distanciadas na segiiéncia, se aproximam o suficiente para que uma
interagdo de curto alcance tenha lugar, como podemos verificar na Fig. [.6. Nesta tigura,
observa-se que os elos n e m sdo separados por uma grande distancia na seqiiéncia dos
elos, porém estdo muito préximos geometricamente, de modo que podemos descrever a

. ~ ~ . [$
interagiio entre eles por uma expressio do tipo'™'":

u(7) = vkTS(R, - R,,) (1.63)
onde v € o volume excluido (dimensdo de volume). A energia total de interag¢do € escrita

como:
l N N

U=— vaJ dn.J 5(R,, -R, )dm (1.64)
2 0 0

se considerarmos uma concentraglo local de segmentos dada por:

c(i)= 2 (5(7‘ - R,,,): j 5(7‘ -R, )(//n

m

podemos rescrever a eq.(1.64) de uma forma mais elucidativa como:
[ TP
U= E‘MJ [¢(F)] dn (1.66)
0

O que € importante se tirar como conclusdo da eq.(1.66) € que a interagdo de volume

excluido possui uma dependéncia da concentragio de mondmeros ¢(i*) na solugio.
Cadeias poliméricas reais em bons solventes possuem as mesmas caracteristicas de

uma caminhada auto-excludente(SAW) em uma rede. Os aspectos referentes ao tamanho

da cadeia sdo representados pelo expoente v pela seguinte lei de escala:

<R2>EN2U (1-67)

que ainda hoje ndo se tem uma metodologia de cdlculo que nos leve ao resultado exato,

obtido por simulagtes, sendo o melhor valor obtido para v aquele dado por Grupo de

(12.15-17) (12.15)

Renormalizagao’ . Nesta metodologia de cdlculo tem-se que v=1(0588.

25



s . ~ < : 14
Descreveremos a titulo de ilustragdo o cdlculo do expoente v obtido por Flory“™. uma

vez que se trata de um método bastante ticil de se entender.

1.6.1 Calculo de Flory para o expoente v

P. Flory®*>'" formulou um simples e brilhante método para o cdlculo do expoente
v, fornecendo excelentes valores para todas as dimensdes espaciais. Seu método baseia-
se essencialmente em considerar o balango de dois efeitos: a interagido repulsiva de volume
excluido, a qual. tende a alongar o polimero, e a energia eldstica, origindria da
conectividade - da cadeia, a qual tende a emeolher o polimero. Aqui nesta segdo,
descreveremos resumidamente este método e as aproximagoes envolvidas.

Inicialmente, consideraremos uma cadeia polimérica com certo raio R, constituida
de N mondmeros, tal que possamos estabelecer que sua concentragiio interna de
¢ dada por:

mondmeros c.

mt

N

Cim = |—~

(1.68)

d

que nos dd a informagiio da quantidade de mondmeros contidos dentro do volume da
. =d . ~ ~ ~ . ~ ~
cadeia R". As interagdes entre os mondmeros sdo descritas pelo pardmetro de exclusio
, - - PN d ~
de volume v(T), que é uma fungio do volume de cada mondmero a” e do parimetro de
e (2.5.14) 5 .
interaclo de Flory ¥ . Segundo Flory v(T") é dado por:
d
W(T)=(1-2%) a (1.69)
que no caso de estarmos trabalhando com bons solventes v(T) > 0.
Uma importante aproximagio € feita quando desprezamos todas as correlagdes
- PN . 21 2514, 21
entre 0s mondmeros(Teoria de Campo Médio)*™'*'¥ tal que a média do quadrado da
concentragio € substituida pelo quadrado da média da concentragio, ou seja,
2
(e*)=(e) (1.70)
Agora, considerando que as interagdes entre os mondmeros sejam do tipo van der Waals,
entdo podemos estabelecer que a energia por unidade de volume E,, para um dado par de

2

mondmeros é descrita como fungio da concentragdo de mondomeros ¢?, , tal que:

26



I 5
E= ET\)(T)C' (1.71)

de tal modo que ao integrarmos a expressiao acima, eq.(1.71), sobre todo o volume da
cadeia de raio R, obteremos que a energia total entre os mondmeros da macromolécula
serd dada por:

E, =Tv(T)c*R®

2

E, ETv(T)(%) R®

)

2

E ~T(T)N— (1.72)
1= v Rd .

< : : 25.14 ~ CeA
acrescentando ao cdlculo da energia total da cadeia, Flory™™'" supds a existéncia de uma

interagao do tipo eldstica, da seguinte forma:

TR®
E, = Na? (1.73)
Portanto, a energia total da cadeia serd a soma das energias tipo van der Waals E, e a

energia eldstica E,, tal que:

Tv(T)N* TR*
P v(T) e (1.74)

5 R* Na*

possuindo um minimo quando R = R, . onde teremos

oE

i U] =( (1.75)

H s,

JE,  R* +v(T)N’a’ i

ar na’R* -

R, =v(T)N'd®

R, =[v(T)N*a®]|*

R, = [v(T)a* 7N = (1.76)
(1.77)

R, =N"

2.5.14 .
onde o expoente®™™ ' v serd dado por:
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C2+d

(1.78)

1{2,5.14) l(2.5.|4)

que nos casos uni-dimensiona e tri-dimensiona teremos v=I1 e VL=

.

[ RN

respectivamente. Valores estes que estio em boa concordincia com os obtidos

1 )
numericamente! "'*'%,

1.7 Metodologias de Calculo

1.7.1 Grupo de Renormalizagao™'>"”

A idéia bdsica deste método consiste em transformar um sistema de muitos graus
de liberdade. em um outro equivalente de poucos graus de liberdade, sem que haju
qualquer mudanga qualitativa em suas propriedades. Isto requer que devemos ter um
sistema minimo que represente o todo, isto €, deve existir um comprimento minimo que
contenha todas as informagoes do todo, denominado de comprimento de correlagio . No
entanto, para se estabelecer que uma parte do sistema possua 0 mesmo comportamento
que o todo € estritamente necessdrio que este se encontre “infinitamente” correlacionado.

Um polimero € um sistema com peculiaridades que o classiticam como um bom
candidato a aplicagio da técnica do Grupo de Renormaliza¢do. O fato de se poder
maped-lo por uma caminhada auto-excludente(SAW), significa que ele exibe auto-
similaridade, ou seja, pode-se obter uma fragio do sistema que nos forneca
qualitativamente todas as propriedades do sistema. como um todo.

Consideremos, assim, uma cadeia polimérica linear dissolvida em um bom
solvente, possuindo N mondmeros, cada um de tamanho a, em um espago de dimensao
d , onde o raio de cada mondmero € definido em termos do raio da cadeia ideal R, , tal
que:

RU
N

Fixs (1.79)

As interacoes entre cada mondmero sido descritas pelo pardmetro de exclusio de

volume v(T):
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o(T)=(1-2y) a" - (1.80)

» o . £3 25
onde y é o pardmetro de interagio de Flory"™ S

Como estamos trabalhando com um bom solvente v(T) > (). devido ao fato de que
as interagdes entre mondmero-mondmero, mondmero-solvente, solvente-solvente  sio
atragdes do tipo van der Waals.

Por questdes essencialmente pradticas no formalismo matemdtico introduziremos

uma constante de acoplamento adimensional u(7")

LI(T)ZDCEZ)Z‘I—Z,”( - (1.81)

onde u(T) nos informa que tipo de interagdes a cadeia polimérica possui.

Dividiremos a nossa macromolécula em N/g sub-unidades, agrupando g
consecutivos mondmeros de cada uma destas sub-unidades, podendo ser visto na Fig. 1.7.
g g/'\ ’{' g .
2AFT /.

Fig. 1.7 - Divisdo de uma macromolécula de N mondmeros em g grupos de N/g mondmeros.

Isto significa que a distincia entre as novas unidades passarido a ter um novo valor, sendo
assim, a interagdo entre os mondmeros serd renormalizada, tal que:
3y =¥
U, =,
onde a, € o raio e v, € o parimetro de exclusio de volume para o conjunto de
mondmeros dentro deste sub-grupo.

No entanto, devemos observar que todas as interagdes, ou seja, as interagoes dos
mondmeros dentro e entre os sub-grupos, (ver Fig. 1.8), devem ser levadas em conta no

cdlculo dos novos raio a, e parimetro de exclusao de volume v, .
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Subunidade

. (a) (b)

ig. 1.8 - gpresentacio esquemitica das interacdes entre mondémeros de um mesmo sub-erupo e.
Fig. 1.8 - (a) R tacao esq lica das interag g )

) Representaciio esquemitica das interacdes entre mondmeros de diferentes sub-grupos .
¢ ‘ Zrupos g

No que se refere aos tipos de interagdes, se estivéssemos tratando com cadeias ideais,
terfamos somente o termo:

¢* a, (1.82)

que corresponde as interagoes dentro da sub-unidade( ver Fig. 1.8a). Porém, como todas
as interagdes serdo consideradas, devemos inserir algum termo que represente as
interagdes entre as sub-unidades( ver Fig. 1.8b), tal termo seria composto pela interagio
dentro da sub-unidade multiplicado por uma fungdo h que dependesse do nimero de
mondmeros dentro da sub-unidade g e do tipo de interagao entre estes mondmeros. que €
fornecido pela constante de acoplamento u(T). Portanto, este tipo de interagio seria
.
fornecida pelo fator
a, ¢* h(g.u,) (1.83)
onde a interagdo total da sub-unidade seria dada por:
da, =a“g%[l+h.(g,uo)] (1.84)
Se considerarmos que as sub-unidades estejam bastante proximas, ou seja, 0 caso
da cadeia ideal, terfamos g* interagdes mondmero-mondmero, entre os dois conjuntos
de g mondmeros. Deste modo, as interagdes (sub-unidade)-(sub-unidade) seriam a
quantidade total de interagdo mondmero-mondmero vezes o tipo de interagdo entre eles,

sendo assim, obterfamos que:



u, = g’u, (1.85)

Porém, devemos garantir que as sub-unidades ndo se interpenetrario, como também
devemos nos lembrar que as interagdes sio do tipo van der Waals, onde temos que o
potencial cai com a distdncia da forma ¢, portanto o nimero de pares de interagoes

seria menor do que g* por um fator l(g. u) . que nos garantiria tal estado fisico.

v, = g0 [1-1(g.u, )] (1.86)
De modo andlogo a eq.(l1.81), podemos obter uma nova constante de
acoplamento u,: =
alrad ) (1.87)
a,
substituindo a eq.(1.87) na eq.(1.86), teremos
u, =al_'1gzuo[l—l(g,uo)] (1.88)
substituindo a eq.(1.84) na eq.(1.88), obtemos
—d
", ={aog%[1 + h(g,uo)]} {gzur,[l - l(g,u(,)]}
1-1(g,
u, :(ao—d“ﬂ)gz—% [ (0 ~ )]d
[] + h(g. U, )]
()] |
= u,8 %1 l—[—M (1.89)
’ [l+h(g,un)] J
introduzindo um pariametro K, tal que
1-1(g,u,
k(g.u,)=1- [(_z,u()]d (1.90)
[l + h(g,u.,J )]
e substituindo este termo na eq.(1.89), teremos
w = zvlngg'%[l—k(g,un)] (1.91)

2

A idéia essencial do grupo de renormalizacgio € repetir este tipo de operagio, tal

que na préxima interagio teremos sub-unidades de g® mondmeros, com raio a, e

constante de acoplamento v, . Deste modo, podemos gerar uma seqiiéncia do tipo:
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By <28 =3 8, P2 C,
Uy —> U —> Uy —Deec— U,
onde as operagdes sucessivas podem ser representadas pelas equagdes”:

a, =d,._ g% [l + h(g.u,,,_, )] (1.92)

Uy = Uy gz—% [1 - k(&” Uy )] (1.93)
Como foi admitido interagdes de longo alcance, entdo podemos subdividir a nossa
macromolécula diversas vezes, tal que o niimero de sub-unidades serd grande, valendo
salientar a condigdo de que estas ndo se interpenetrardo, desta forma para o caso tri-
dimensional teremos que estas sub-unidades se comportardo como se fossem esferas, onde

a constante de acoplamento deverd escalar com o volume da sub-unidade a!, de modo

andlogo a eq.(1.81)

y o= (1.94)

porém ao aproximarmos de m — oo, a constante de acoplamento, como também o raio do
monodmero chegardo a um valor limite

U, — u*

a, —a*
que na linguagem de grupo de renormalizagido é denominado de ponto fixo, ou seja, a
particr deste ponto todas as transtormagdes permanecerdo constantes, ou melhor

inalteradas, tal que das equagdes (1.92) e (1.93) , respectivamente, obterfamos:

g%[l +l1(g,um_l)]:l (1.95)

g% [1-k(g.u,.)]=1 (1.96)

No entanto, para cada itera¢io, podemos escrever o raio R do polimero como

func¢do da quantidade N de elos(mondmeros) e da constante de acoplamento u , tal que:
R=af(N,u) (1.97)

de modo semelhante escreve-se

N
R:amf BEL (198)

m?
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N
R == am—] f( J um—l ] (] 99)

g m—|

onde podemos obter que

N N
am. T’ le = am—l f m—1° um—! ( l 2 I ()())
4 8

supondo que a cadeia atinja o ponto fixo na m-ésima transtormaglo, podemos. entio

retirar a constante de acoplamento u do argumento da fun¢io f e chegarmos a

expressio:

N _
4 ;}7_7 .
=2 (1.101)

f[%j _am—l
&

onde uma vez que a cadeia é considerada ideal. a funcdo f deve reproduzir os mesmos

resultados obtidos para uma caminhada auto-excludente(SAW), método Monte Carlo que

simula o crescimento do polimero ideal. Sendo assim, tem-se que:

a,=g'a (1.102)

ni—1
comparando com a eq.(1.92), podemos tirar que:
g’ :g%[l+h(g,um_l)] (1.103)

aplicando o logaritmo natural em ambos os lados, obtemos:

-

]n{ 1+ h(ll:,_)]}

= Ing
- g}’: ln[l + h.(u:,)]
V= In g Y lng 7
(%)ln g ln[l + h(u:,:l )]
T g i Ing
*
v= % + ————m[] ;l]j”’”)] (1.104)
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restando-nos, apenas, obter as funcdes h(u) e k(u) de modo que possamos. de forma
univoca, obter o valor de v. na eq.(1.104). Portanto, vemos a enorme vantagem de
trabalharmos com o grupo de renormalizagio em vez dos métodos cldssicos, tal como
teoria de perturbagdo, onde nos é necessdrio um terramental de informagdes muito maior e

uma matemdtica um pouco mais complexa.

1.7.2 Campo Auto-Consistente'®'®

Consideremos uma cadeia ideal constituida por uma cole¢ao de N “contas” (como

se fosse um  colar), localizadas nos pontos® 7,,5,7,....7y. Seja «a =|F,. —r,._ll 0
comprimento de cada ligagao entre duas contas adjacentes na cadeia, cujas extremidades
estdo localizadas nos pontos 7 e i*’. Supondo que cada mondmero esteja submetido a um
potencial @(i'), entdo podemos definir o parimetro w; como sendo o peso estatistico
para uma dada seqiiéncia em que a i-ésima conta esteja na posi¢io 7, e a j-€ésima na

posi¢do 71;, tal que seja dado por:

W = f(,’: = ;’-J,)e—/’s*(";)

1

wy = f(7; Je (1.105)

U]

onde f(f) ¢ um fator normalizado fornecido pela seguinte expressio:

f(f‘,-,-)— l 5(1‘,»,~—a) (1.106)

= 2s
4dma”
que nos assegura 7; =a e que todas as diregoes dos elos sejam igualmente provdveis.
inindo, assim, a aleatoried: as ligagoes.
definindo, assim, a aleatoriedade das liga¢de
este modo, podemos definir o peso estatistico r,r’) para esta cadeia de N
Dest d d defin tatistico G

ligacdes, como sendo dado por:

N

Gy (F.F')‘—‘HWU com Jj=i+l

i=]

GlF. 7 )= f(r12 )f(r23 ) al f(r,,_l',, )Exp{— ,B[q)(r, )+. p. ¢(;~N )]} (1.107)
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Como a macromolécula cresce de 7 até 7’ entdo podemos analisa a cadeia em duas
partes: o crescimento de 7 até § em um passo e o restante do crescimento que vai de §

’

em N —1 passos, ou seja,
= j f (7 =5)Exp|- Bo(F)]|Gy 5.7")ds (1.108)

Se considerarmos um nimero muito pequeno de moléculas presentes. que é o que ocorre

até 1

em solugdes dilufdas, o potencial ¢(i*) serd também pequeno. o que nos permite fazer:

Exp[- Bo(F)]=1-Bo(7) (1.109)

substituindo este resultado, como também a eq.(1+106), na eq.(1. 108) obtemos:

G, (F.7)= j( 1 Ja(r— ~5)G,_ (5. 7)ds+

4ma~

—f[

Por outro lado se 5 € suficientemente proximo de 7, podemos fazer a seguinte expansao:

a(;N—I
os

(1.110)

ol =B8N 5.7

GN—] (.?, 7,) = GN—I (;‘, "") 2 (’—-/ - .'S.)

[.111
aGN1 ( )

Ly o =
+5(’ _A)“(, )ﬁ s, 05 4 i

substituindo a eq.(1.111) na eq.(1.110) e ap0s realizadas as integragdes para :

G (a *’) Nl(_. _") —[3(2)(7) Nl(_. —.’)"""V GNI(_. _.’) (1.112)
ou ainda, se considerarmos que em uma escala macroscopica

R

et s en (1.113)

= Tim GN( F )= Gy AEF)

AN =0 AN
0 que fornece:

K I B s e n .

———NalN—:—?V‘GN (7. 7))+ Bop(F)Gy_ (7. 77) (1.114)
Portanto, observa-se a semelhanga entre esta Gltima equagio e a seguinte:
h? )
L L T (1.115)
ot 2m



)2 . ~
2020 " de fungio de

que € a equagdo de Schriidinger para uma particula nido relativistica
onda w(7.t). onde # é a constante de Planck e m a massa da particula. Deste modo.

podemos obter as seguintes relagdes:

t = iNh (1.116)
R a’ :

——=t (1.117)
v(r)=@ ‘ (1.118)

onde observa-se que N desempenha o mesmo papel de um tempo imagindrio.

Portanto, podemos concluir que a conformagio de uma determinada cadeia
polimérica corresponde a um caminho particular de uma dada particula. Esta analogia
entre a estatistica de uma cadeia ideal submetida a um potencial externo e o problema de
mecinica quintica é decorrente do fato de termos mais de 50 anos de manipulagio das
(20,21)

equagoOes de Schrédinger, fornecendo-nos uma larga gama de métodos de solugdes

Definindo um operador linear {, tal que seja dado pela seguinte forma:

s
CZ_?V~+¢_T_) (1.119)
como também, introduzindo um conjunto de auto-fungdes, dado por:
u, (F),uz(l—') ..... u, (F),LII*(F),LIQ*(F),...,uk‘(f') (1.120)
podemos estabelecer (i, (¥) é proporcional a u, (7), tal que
lu, 7)=¢g,u, (¥) (1.121)

onde €, representa o estado fundamental. Entdo, pode-se mostrar que u, (i) satistaz as

seguintes relacgoes:

J‘uk’k (7) Uy, (’_.) d}_. = 5km ( l. |22)

Yo, F)u (F)=6GF -7 (1.123)
k

sendo assim, podemos fazer uma expansio em auto-fungdes para a fungio G, (7,7’), que

satisfaca as equagdes (1.114), (1.122) e (1.123), que se apresente da seguinte forma:

Gy (F, i)=Y u," (") u, (¥) Exp(- Ne,) (1.124)
k

36



a substitui¢iio desta ultima equacdo na eq.(1.114), nos fornece:

Z g, (F ), (F)Exp(—- NE, ) = —% 2 % [uk*(f")u.,\. (F)Exp(—- NE, )] +

+,B¢(F)Z e (7 u, (F)Exp(—- Ne, )

(1.125)

que dd finalmente
= %Vzuk (7)+ Bo(F ), (F) = 1, (7) (1.126)

Se ¢(7) representa o potencial que cada conta da cadeia estd submetido, entio se ¢(;i') é
nulo o que telﬁos € um problema semelhante ao de uma particula quintica livre, o que nido
representa um caso de interesse. No entanto, se d)(?) € atrativo, os autovalores g, serdo
todos negativos e teremos, assim, estados ligados, onde o mais baixo estado ligado

corresponde a:
sl
s():—k"? (1.127)

Porém, se ¢(¥) é repulsivo, os autovalores €, serdo todos positivos e veremos que
existird uma boa diferenca entre o estado fundamental e o primeiro estado excitado, em
consegiiéncia do estado fundamental possuir bastante peso na expansio de G, (i',7"”
Utilizando a eq.(1.29), que € a tun¢io distribui¢io de mondmeros para uma cadeia
ideal de N ligagdes, entdo, quando fizéssemos N =1, obterfamos o caso de um sistema
constituido por uma unica ligacio. Sendo assim, podiamos representar a variagdo da

entropia para este sistema obtido da seguinte forma:

3 C ,
AS =kIn Exp(— 2’ 2) com T =iy, — Ty (1.128)
‘ a

como também utilizando a expressdo da energia livie F, dada pela eq.(1.8), podemos

obter:

AF =-TAS

AF = 3T2 £ (1.129)
2a
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tal que utilizando a eq.(1.129) e tazendo uma analogia com a equagio da trajetdria de uma

particula de massa m= 3%a submetida a um campo de for¢a F,, podemos entio interir

que:

F = ST T 1.130)
S | [T (.

onde N desempenha o papel de um tempo umagindrio, equivalente aquele obtido pela

eq.(1.116). Agora, supondo que ﬁ, derive de um potencial ¢(i*), entdo temos:

F, =-V¢(F) - ~ (1.131)
podemos, assim, obter que:

o 3T (FY
o(7) - 7 = constante (1.132)

considerando que a forca F seja do tipo eldstica, portanto quando tivermos uma cadeia
bastante longa, tal que 7 — oo, veremos que a elongacdo serd nula, conseqiientemente a

forca, deste modo vemos que a constante de integrag¢do na eq.(1.132) serd zero, e que

o) =2
(5]
(_l’ij (2L¢( )J (1.133)

como o potencial ¢(7) descreve a repulsio média que um determinado segmento

localizado no ponto 7 sotre devido a presenca dos outros segmentos, entio podemos
defini-lo da seguinte maneira:

o(7)=Tv5(7) (1.134)
onde v representa o volume excluido por mondmero e p5(7) a densidade total de
mondmeros no ponto 7 . Portanto, podemos rescrever a eq.(1.133), tal que:

¥
dN 2 d
((l?) a(?)vp(l)) (1.135)
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como também, € ficil visualizar que uma pequena variagio da quantidade de mondmeros

N pode ser representada do seguinte modo:

dN = p(F)(A)di

onde A € a drea ocupada por esta pequena quantidade, que pode ser dada por:

o2 =7 :
A =4nr col E=T,, =0

entdo, através da eq.(l 136) podemos ter que;

A

substituindo esta dltima equagio na eq.(1.135). tém-s& que:

iﬂﬂ=[M;FPI§vﬁGﬂ%

(BEY* =7 = B =7

colocando a eq.(1.139) na eq.(1.135), teremos:

(((11_];/) - COllst_( ;‘%)‘}é
(ﬂ) = const.( 7%

dr

integrando esta dltima equagdo, obtemos:

#(N) = const. N %

(1.136)

(1.137)

(1.138)

(1.139)

(1.140)

(1.141)

que & o resultadoobtido por Flory"'", que foi comentado na se¢io 1.6.1, sendo que Flory

utilizou um pogo quadrado, onde o potencial ¢(i*) que cada mondmero estava submetido

era constante.
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Confinamento de Macromoléculas

2.1 Introducao

O conhecimento das propriedades de conforma¢lo de uma macromolécula. mais
especificamente de polimeros adsorvidos € de considerdvel importincia tanto para a
ciéncia dos coléides como tecnologicamente. No Que se refere ao lado experimental,
grandes avangos foram feitos, podendo ressaltar-se de modo singular os resultados
obtidos por Vincent®®. No entanto, para este fendmeno dois casos sdo bastantes distintos:
(i) os polimeros adsorvidos podem estar ancorados tanto por uma como ambas as partes
terminais da cadeia (ii) os polimeros podem ser homogéneos, de tal modo que todos os
segmentos da cadeia possuem igual energia livre de adsorgao.

Discussoes acerca da distribuicdo de mondmeros destes polimeros adsorvidos,
cujas terminagdes ancoram-se em superficies, foram, inicialmente, realizadas por
Hesselink®, que considerou estas cadeias como ideais e as modelou através de uma
simples caminhada aleatdria, sendo somente por volta de 1975, que os efeitos de exclusdo
de volume foram incorporados a estes problemas de formagdo de pontes entre as
superficies por macromoléculas®**®,

Dentre as diversas dreas de aplicabilidade do entendimento do comportamento de
macromoléculas entre duas superticies, podemos ressaltar no minimo cinco dreas da
ciéncia de polimeros que tal conhecimento € de fundamental importincia. A primeira trata
do estudo dos efeitos das solugdes poliméricas na estabilidade de colSides®™, onde neste
caso observa-se que a presenga das cadeias poliméricas pode intluenciar nas intensidades
das forcas entre as particulas coloidais. Se a intera¢do entre a macromolécula e as
particulas coloidais € atrativa, entdo as cadeias poliméricas sao adsorvidas nas superticies
das particulas coloidais, de tal modo que a interagdo efetiva entre estas particulas passa a

(34-37)

ser repulsiva . Entretanto, quando a interagdo coldide-polimero € repulsiva ou nula,

ndo hd adsor¢do das cadeias poliméricas nas supertficies, tal que a concentra¢do dos
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mondmeros cresce com a distincia entre estas superticies, contribuindo, desta forma, com
uma energia interfacial positiva e conseqiientemente resultando uma interagdo efetiva do
tipo atrativa. Este efeito tem sido bastante discutido em diversos trabalhos no campo
cientifico , nos quais parimetros como a solubilidade da solugdo e o tipo de polimero
envolvido no problema sio variados, a tim de que se obtenha uma maior e completa

27-3
7D A segunda,

informacgdo acerca deste efeito dos polimeros na estabilidade de coldides
t€m-se observado que no crescimento de cristais poliméricos lamelares, fios de polimeros
conectam, ou melhor, interligam laminas cujas separagdes sao muito maiores do que a raiz

% Sendo bastante

quadrada do valor médio da distincia entre os extretos do polimero
necessdrio conhecermos para este problema a fragdo de mondmeros que interligam as
superticies, como fungio da separagdo existente entre as mesmas, como também devemos
saber o peso molecular da cadeia e a intensidade da atracio das placas pelos mondmeros.
A terceira, a possibilidade de usarmos longas cadeias poliméricas para formarmos uma
ligacdio mais adesiva entre as placas faz a necessidade de conhecermos a natureza da forga
efetiva entre as placas, como também a forma e a extensdo da ponte construida™". A
quarta, em virtude de ndo se conhecer experimentalmente o que vem a ser a separagio
entre as camadas de bilipidios, in vivo, especula-se que exista uma separagdo causada
pelas moléculas entre as camadas dos lipidios, decorréncia da competigdo clissica da
energia com a entropia. De tal modo que a energia aumenta com o decréscimo da
separagdo das placas, em virtude do nimero de interagdes com a superficies ter
aumentado, porém observa-se concomitantemente um decréscimo na entropia
configuracional do sistema. Entretanto, ignorando os efeitos de exclusio de volume, a
teoria ndo prediz a existéncia de alguma separacio intermedidria, de tal modo que as
separagOes preferidas e igualmente provdveis sio zero ou infinita. A quinta, devido a
existéncia de evidéncias de que polimeros podem obstruir poros capilares, cujas dimensoes
sao muito maiores do que as moléculas dos polimeros, nota-se, novamente, que se taz
necessdrio determos um certo conhecimento no que se diz respeito ao comportamento

destas macromoléculas entre superficies, mais especificamente no que se refere a

probabilidade de formacao de pontes poliméricas.
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Portanto, vé-se também que o problema de confinamento de um polimero entre
duas placas constitui, nio somente, um problema de interesse tecnoldgico, mas também
bioldgico. Podemos citar como exemplos: a aderéncia de lipidios nas paredes dos vasos
sangiifneos, a ac¢do das células T“” na membrana de células defeituosas, as enzimas no

fet 44
), a constituicio de membranas™’, etc. Como

sistema imunolégico dos mamiferos'®?

também devemos ressaltar que o emprego de diversas metodologias de andlise para o
. A . . - 2 ~

estudo do fendmeno. tais como: escalonamento de sistemas finitos"’, agrega¢cdo com

19 tem

difusdo limitada@LA)“®, simulagdes Monte Carlo™"™”, campo auto-consistente
nio somente, ampliado o campo da aplicabilidade, mas também explicado diversas
propriedades deste importante processo, que € o confinamento de macromoléculas entre
superticies.

Portanto, motivados pela gama de processos fisicos, quimicos e bioldgicos nos
quais o conhecimento do problema do confinamento de estruturas poliméricas ou
similares, se faz necessdrio para entendermos e explicarmos as diversas propriedades de
comportamento destes sistemas, € que neste Capitulo 2 dedicamos toda atengdo d este
problema, mais especificamente quando acontece entre duas superficies planas. Desta
forma, na se¢do 2.2 descreve-se um fendmeno caracteristico que ocorre nos processos de

confinamento de macromoléculas, que é a formagdo de pontes entre as superticies de

contfinamento, formulando-o matematicamente na se¢io 2.3.

2.2 O Preblema da Formacao de Pontes

De modo geral, quando duas superficies sélidas suficientemente préximas sao
imersas em uma solug¢do polimérica, devido a adsor¢iio de polimeros nas placas, algumas
cadeias poliméricas conectardo estas duas superticies, formando, assim, uma “ponte”
entre estas placas. Este efeito tem sido verificado experimentalmente e utilizado para
justificar alguns fendmenos observados em medidas de forga entre as superticies™ ", Por
exemplo, quando duas superticies sao lentamente aproximadas nesta solugido polimérica.
observa-se que a forga medida cresce monotonicamente com o tamanho da separagao:
enquanto ao aproximd-las rapidamente a curva da forga versus a separacio das superticies

possuird um comportamento diferente do obtido para a situagdo inicial. No primeiro caso.
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no qual a aproximag¢io € realizada em equilibrio a cada instante, o tempo para a
aproximagio € longo o bastante para que os segmentos da ponte estejam relaxados em
cada passo do processo. No segundo caso. o tempo € curto comparado com o tempo de
relaxagdo dos segmentos e em conseqii€ncia a repulsdo existente entre 0s mondmeros serd
maior do que para a situagdo quasi-estdtica. De tal modo, ndo somente, este efeito de
histerese que tem sido observado nestes experimentos acima mencionados, mas também
outros problemas como a atragio™ e a presenca tnica de interagdes repulsivas(para a
situagio de equilibrio)**" entre duas superficies parcialmente submersas em uma solugio
polimérica, tem sido justificadas pela presenga, ou ifelhor, pela formagio de pontes que
interligam estas superticies.

Portanto, vé-se que dois fatores sio de grande relevincia para um melhor
entendimento dos efeitos decorrentes da presenga de pontes poliméricas no cdlculo entre
superticies: 7%) Qual o nimero médio de mondmeros necessdrios para construir uma ponte
entre duas superticies, se estas estio separadas por uma certa distincia d? 2%) Qual a
escala de tempo que se deve utilizar a fim de que haja a criagdo e a relaxagio de pontes
formadas entre as duas superticies?

Estaremos aqui interessados apenas na primeira das questoes formuladas acima.

Na se¢io 2, introduziremos dois pardmetros fundamentais para o estudo deste
problema: N que fornece o comprimento médio da ponte e N que representa o
comprimento médio da cadeia polimérica entre as duas superficies. Trataremos para o
cdlculo destes pardmetros, N e N, o caso do continamento de uma cadeia ideal sujeita a
um potencial, tal que toda a metodologia empregada nestes cdlculos estd baseada no
método desenvolvido por Edwards"®, que utiliza uma versio de campo auto-consistente,
onde a equagdo resultante, equacio do propagador, € uma semelhante a de Schrindinger,
na qual o tempo ¢t € mapeado pelo nimero N de mondmeros que constituem a
macromolécula. Sendo a formulagdo bastante semelhante a do propagador em Mecinica
Quaintica, e o problema de formagdo de pontes entre duas superficies andlogo ao do
tunelamento quintico. Na se¢do 3, aplicaremos este método para o caso de estarmos
tratando de uma longa cadeia ideal e ao final da se¢lo faremos algumas especulagdes para

o caso de uma longa cadeia real, na qual devido a inclusio do efeito de exclusio de
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volume pressentimos uma alteraco nos expoentes das relagdes obtidas quando o caso de
uma cadeia ideal, como também faremos uma andlise de todo o problema pelo ponto de

vista de “blobs pictures”. introduzido por de Gennes™.

2.2.1 Formulacao Matematica
Consideremos uma solugdo polimérica na qual uma cadeia polimérica estd
localizada entre duas superticies planas. Supondo que cada mondmero esteja submetido a

um potencial V(z), onde z € acoordenada perpendicular as superficies.

Fig. 2.1 - Configuracdo tipica do processo de formagio de pontes poliméricas entre duas superficies
planas. O segmento BC representa a ponte polimérica(ligaciio entre dois pontos de dilerentes superficies),

enquanto que AB o trem de polimero(ligacio entre dois pontos distintos de uma mesma superficie).

Se prestarmos bem atengdo nas configuragdes que sao formadas entre estas duas placas,
encontraremos certas cadeias conectando estas duas superficies, formando “pontes’” entre
elas, tal como o segmento BC na Fig. 2.1. O nimero médio N de mondmeros que
constituem a ponte é essencial na determinag¢iio da elasticidade da ponte, e como podemos
observar na Fig. 2.1 corresponde ao segmento BC. Devemos, também, definir o
comprimento N , que nos informa a quantidade de monOmeros entre duas pontes
sucessivas, o qual pode ser representado pelo segmento AC na Fig. 2.1. Tal comprimento
N & constituido pelo comprimento da ponte N acrescentado do comprimento do “trem”
formado entre as pontes sucessivas. Detinimos como “trem” um segmento da cadeia que
liga dois pontos distintos da mesma superficie plana.

Considerando que as configuragdes destas cadeias poliméricas formadas possam
ser modeladas por caminhadas em uma rede, com parimetro de rede igual ao tamanho do
mondmero a e nimero de coordenagdo &, ou seja, nimero de primeiros vizinhos iguais a

¢ . Pode-se, entdo, estabelecer que o peso estatistico associado a todas as configuragdes



com N mon0dmeros, que interligam as duas placas, localizadas nos planos z e z .

. . . S
respectivamente. é proporcional a®":

Gy(z,2) = §'N2Exp{— ,B[V(z])+ V(zz)+ V(z3)+...+V(zN_l)+ V(z’)]} (2.1)

onde a soma € feita sobre todos 0s caminhos possiveis que ligam os planos z e z’. Entre
o conjunto completo destas caminhadas, existem algumas que passam por z* pela primeira
vez ao final da caminhada. De tal modo que o peso estatistico associado as caminhadas
que ligam os planos z e z' em N passos ndo existindo a presenga de “trens” na

contiguragdo € dado por:

-

folz,2) = f_NZExp{'— vz, )+V(z2)+V(23)+...+V(ZN_,)+V(Z')]} (2.2)

onde a linha no somatério indica-nos que este € realizado sobre todos 0s caminhos. 0s
quais ndo alcangam z” antes do final da caminhada. No entanto, podemos estabelecer a
seguinte relagdo entre Gy e f :

N

Gy(z.2) = ZfN,(z,z')GN_N,(z,z’) com G,(z,z) =1 (2.3)

N'=0
O comprimento entre as pontes sucessivas, N, estd associado com estas
configuragdes nas quais as caminhadas que se iniciam numa superficies sao permitidas
voltarem para a superficies qualquer nimero de vezes, antes de alcangar a outra
supertficies pela primeira vez ao final de N passos. Deste modo, a probabilidade de termos

uma primeira passagem no plano z’, oriunda do plano z com N’ passos de um total de

passos N° € proporcional a:

P (Z Z’) B fN'(Z'Z’)JA(IZOGN-_N,(Z’,ZO)
o JKIZOGN.(Z,ZO)

na qual a integral em z, € feita sobre todo o intervalo de z permitido no problema. Como

(2.4)

também, podemos definir:
"

Pe(@)= 3, Bul(e.2) 25)
N’'=0

como sendo a probabilidade total de existir uma ponte entre os planos z e z° com N’

passos, iniciando-se no plano z, tal que N — o, 0 caso de uma cadeia infinitamente



longa, esta probabilidade, eq.(2.4). se aproxima para o valor de um, quando a separagdo
entre as duas placas € considerada tinita. De tal modo que P£,. na eq.(2.4) representa uma
probabilidade normalizada, possibilitando-nos dizer que a média estatistica de N, que

representa o comprimento médio entre as pontes seja dado por:
N = ZPN,(Z,Z’) (2.6)
N'=0

Em principio, uma vez que G, seja conhecido. podemos encontrar o valor de N
através das eqgs.(I1.3) "a (I1.6). Tratando a situagdo usual, quando todas as quantidades
fisicas envolvidas variam suavemente do comprimenf’o do mondmero «, pode-se afirmar
que GN(Z,Z') . 0 peso estatistico para o polimero -deslocar-se de um ponto em z para
outro em z’,em N passos, é dado por uma expressio que € solu¢do de uma equagdo do
(20.21)

tipo Schrondinger

e G=ne 2.7
N 6 T 27

onde V € um potencial externo que atua em cada mondmero.

As condigoes de contorno em N € que GN(F,F’)—>6(F—T-’) no limite N — 0,
enquanto que as condi¢des de contorno espaciais em z, e gz, sdo tformadas pelas
interacdes do polimero com as supertficies planas, no entanto, supondo que a simetria
deste problema seja cilindrica, pode-se separar a dependéncia planar (x,_v) da dependéncia
z em G,(F.7"). tal que o fator de dependéncia em z da funcdo GN(T-,F’) pode ser
eXpresso por:

(2.8)

m

onde ¢, sdo autofunc¢des normalizadas(independentes de xy )do operador Hermitiano H,

com autovalores w,, :

P (2.9)

Wy = H(pm > J(IZ|¢,,,(Z)

De tal modo quando N — oo, na eq.(2.8), devido a dependéncia exponencial em N, a
fungdo G, € dominada pelo primeiro termo na soma, que corresponde ao estado

fundamental de H . Sendo assim, usando este resultado, pode-se obter da eq.(2.4) que:
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Polzz’)= fN,(z,z')Exp(N'w(,) (2.10)
onde w, € a energia do estado fundamental de H.
Agora, detiniremos duas funges geratrizes, F,(z.z) e Q,I(z,z'). yue sio

fornecidas pelas expressoes:

F(z,z") = ZfN (z.2)”

N=0
C (2.11)
0.(z,2") = 2.Gufz.2)a"
N=0
tal que utilizando-as na eq.(2.3) pode-se obter a seguinte relacdo:
F(z.2') = Gutarz) (2.12)

0.(z.2)
mostrando-nos que a fungdo geratriz de f,\,(z,z') pode ser obtida & partir de GN(z,z').
Como também, utilizando a eq.(2.11) na eq.(2.10). obteremos da eq.(2.6) que:

dF, (z, z')

2.13
do ( )

N= ifoN,(z,z')E.x])(N’vvo) =0
N=0

a=Exp(w,)

Escolhendo, por conveniéncia, a origem do sistema localizada no centro da
separacdo das placas, as quais estdo localizadas em z =zh, respectivamente: pode-se.
entdo, utilizar o resultado usual para as autofungoes ¢, , que estabelece paridade par para
¢,,.(z) e paridade fmpar para @,,,,(z), em z. Deste modo, utilizando as egs.(2.8). (2.11)

.
e (2.12) obtemos que:

) R )

K (—— 11,11) . m=0 (2.14)

o ©

z {[¢m (h)]/ [1 - aExp(— w, )]}

m=0
Ainda que F x(— h.h). fornecido pela eq.(2.14), mostrando-se ser uma func¢io bem
comportada. ao fazermos m = (), que corresponde w, = w,, vé-se que tanto o numerador
como o denominador divergem. Portanto, para contornarmos este problema da

divergéncia multiplicaremos a expressdo de Fa(—h,h), eq.(2.14), pelo fator
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[[ - aExp(— W, )] tal que expandindo a expressdo obtida e considerando somente termos

de primeira ordem, obtemos:

B = v|—¢”m- ][ |- Exp—n ]
F(=hh)=1-23 = a1 1-eew(-w,,)] (2.15)

uma vez inserindo-a na eq.(2.13) e definindo Aw,, = w,, — w,, teremos:

=3 : ] { l(h)] (2.16)

— Exp(sz,;,_I -1 & (h)

. b
usando o fato de que Aw << | para diversos valores pequenos de m1, 0s quais dominam o

somatdrio, pode-se expandir a eq.(2.16), obtende:

NT = % 2 ¢2m—-l(h’) ;
s E{AWZrn—l jl[ ¢U(h) :| (2]7)

que para muitas situagoes tisicas, o primeiro termo m =1, no somatério feito em m, é

dominante sobre todos as contribui¢des para N , deste modo, possibilita-nos escrever que:

N = = [%(h)] (2.18)

Supondo que as pontes entre as duas superficies planas sejam realizadas por
cadeias poliméricas ideais, entdo, estabelece-se que as interagoes de exclusiio de volume
entre 0os monOmeros sejam desprezadas, possibilitando-nos re-escrever a eq.(2.7) do
seguinte modo:

- JG a’
—— =—-—V*G=HG 2.19
oN 6 ( )

adicionalmente, assumiremos que a atragdo das placas sejam fracas, de tal modo que a
espessura da camada de adsor¢io do polimero, D = k™', seja muito maior que o tamanho
do mondmero «a, adicionado ao fato de que as interagdes das placas sejam do tipo curto
alcance, tal que estaremos varrendo comprimentos em torno da dimensdo do mondmero.
entdo, A partir destas duas acertivas podemos substituir o efeito do potencial V(¥) por
uma simples condigdo de contorno, a qual foi primeiramente introduzida por de

19
Gennes"™:
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196
G N

=—«(T) (2.20)

z=%h

onde k € uma constante fenomenoldgica que descreve a interagdo entre os mondmeros e
as paredes, tomando valores positivos quando a atragdo domina as interagdes. valores
negativos quando a repulsdo é dominante, e valor nulo para o caso em que hd um certo
equilibrio nas interagdes, ou seja, atragdo e repulsio apresentam-se, em média, com as
mesmas proporgoes.

Portanto, substituindo as eqs.(2.8) e (2.9), que estio relacionadas com as

autofungdes de G,(7,7’) . nas egs.(2.19) e (2.20), obtemos as seguintes expressoes:

_a2 dZ

> dz? = we (2.21)
I d¢
= = 2.22
¢ (IZ z=%h « ( )

deste modo, utilizando as egs.(2.21) e (2.22), obtemos as seguintes solugoes para as

autofungdes ¢ e os autovalores w:

0,(z) = A (e £ e ) 5 ow, =d’0[6 (2.23)

onde A, e A_ sdo fatores de normaliza¢do. Sendo os autovalores w, determinados pelas

seguintes condigdes de contorno:

coth(ex, h) = (e, h/xh) (2.24)

tanh(er_h) = (o /xch) (2.25)
Considerando que as placas nem atraem, nem repelem a cadeia, kK =0, podemos

encontrar o conjunto das autofungdes e autovalores diretamente das eqs.(2.21) e (2.22):
¢ =1/2h ; w,=0

_ [T I_(2m—l)7zz—] . - (2)71.—1)27[2612
A e e R ] R yPe (2.26)

1 mauz m'r’a’
¢2",(Z): ;;COSI: h :l 3 M)'lm =|:—6hT:|

onde m = (1, 2, 3) Entdo, da eq.(2.16) encontramos:
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"

\/ T (2m—)rmh
— sen| ————

h 2h

— 24/ .
N=32 : ]

=l 2m - l

. (2m-1)rx
(9611 \

;kﬂ a* ) @m-1) (2.27)

analisando o termo sen”(2m-— l)ﬂ/2 , vemos que este serd sempre igual a um para todos

os valores de m|1,eo] . Sendo assim, a eq.(2.27) fica da seguinte forma:

i 96h* 1 2.28)
_,,, =\ 7%a* | 2m—1)? (2.

‘. . . = (5
calculando o somatério em 1, obtemos aproximadamente a seguinte solugdo®”:

# = 12(%)2 (2.29)

No entanto, se considerarmos somente o primeiro termo m =1 no somatdrio, estaremos
tazendo uma aproximagdo de dois niveis, que compreendem ao estado fundamental e ao

£(50
primeiro estado excitado, e o resultado para N seri™":

N = 9.7(%)2 (2.30)

tal resultado podg ser obtido tanto pela eq.(2.17) com pela eq.(2.28).

Se considerarmos configuragdes nas quais as caminhadas miciam-se numa
superficie plana localizada na posi¢ao z =—h, e que se deslocam-se a caminho de uma
outra superficie plana localizada na posi¢do z = h—a, conectando estas duas superficies,
somente, ao tinal de passos N ; estaremos deste modo, evitando de todas as maneiras a
formagdo de “trens”. Sendo assim, estarfamos tratando somente com as configuragdes que
contactam uma uGnica vez a outra superficie plana em z=h—-a. Esta situagdo seria
andloga as que foram consideradas no célculo do valor de N . sendo que esta superficie
localizada na posi¢do z = h—a tuncionariam, naquelas configuragdes, como uma camada
virtual de monOmeros, com espessura «. No entanto, como estas caminhadas sé

chegariam nesta superficie virtual ao final de N passos, estarfamos evitando que estas



contactassem com a superficie localizada em z = —h. e consegiientemente a formagiio de
“trens” nesta superticie. Desta forma, possuimos o mesmo problema para o cdlculo de N .
exceto que a distdncia entre as superticies € reduzida por uma unidade monomérica. Em
vista disto, a separa¢do entre as placas é (2h—a) em vez de (2/). Entio, podemos

encontrar o valor de N diretamente. fazendo esta substitui¢do na eq.(2.29). tal que:

— 2hY ) R u= h\ h
N:?{—j =3(—) =12(—) —IQ(—]+3
a a a a

N=12|—| ~12|— (2.31)
a a

Sabendo que o comprimento N, que representa a quantidade total de mondmeros
entre as duas superficies planas, € igual ao somatério da quantidade de mondmeros N
que constituem a ponte com a quantidade de mondmeros que formam os “trens”, ou
melhor, a quantidade de monOmeros que conectam dois pontos diferentes da mesma
superticies. Entdo, podemos obter das eqs.(2.28) e (2.31) que esta quantidade de

mondmeros nos “trens” € % y

Todos estes resultados para N e N, obtidos acima, podem ser, facilmente,

calculados e entendidos pelo ponto de vista de “blobs pictures”, os quais toram

(3.19

introduzidos e exaustivamente discutidos por de Gennes™'”, quando no estudo das

configuragdes de polimeros. A cadeia € analisada como uma seqiiéncia de “blobs”. cada
L]

um de comprimento & , como pode ser melhor entendido através da Fig. 2.2.

- r

~f
BLoOB

Fig. 2.2 - Representaciio esquemiltica do formalismo de blobs para uma cadeia polimérica. Divisdo da

macromolécula em uma série de hlobs de comprimento &, .

Dentro de cada “blob” uma vez escolhido o seu tamanho, contabilizamos os tipos de

interagdes que sdo relevantes para o problema. No caso de possuirmos a distdncia entre 0s
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extremos 7 da fragio da macromolécula menor que o comprimento & do “hloh” e
fazendo uma analogia das formagdes das cadeias com uma trajetoria de um caminhante.
concluirfamos que muitas das diregdes escolhidas em cada posi¢io. foram bastantes
repetidas em relagdo as que foram escolhidas no passado, ocorrendo, no caso da cadeia,
um maior encaracolamento, ou seja, terfamos uma cadeia que niio se espichou muito,
apresentando uma configuragdo bastante compacta que corresponderia a uma cadeia do
tipo ideal, que foi analisada no Capitulo I. No que se refere a situagdo oposta, em que o
comprimento &, de cada “blob” € menor que a distincia entre os extremos 7 . e fazendo
a mesma analogia das formagOes das cadeias com a trajetdria de um caminhante,
concluirfamos que para uma determinada caminhada muitas dire¢cdes diterentes foram
escolhidas para cada posi¢do do caminhante, seria como que o caminhante guardasse a
memoria das dire¢des passadas, evidenciando-se um menor empacotamento, ou seja, a
configuragdo da cadeia polimérica apresentando-se mais espichada, ou melhor, mais
elongada do que o primeiro caso tratado. Evidenciando-se neste tltimo caso o efeito de
exclusdo de volume e conseqiientemente estarfamos tratando a situagio de uma cadeia
real, a qual foi discutida no Capitulo I.

No primeiro caso, onde a distincia entre os extremos 7 de cada parte da

z

macromolécula inserida neste “blob” é considerada maior que o comprimento &, do

“blob”, terfamos uma situagdo em que os vdrios “blobs” que constituem a
macromolécula comportariam-se como se fossem independentes; ji para o segundo caso,
no qual o comprimento &, de cada “blob” é considerado maior que a distincia entre os
extremos 7 da fragdo da cadeia inserida no “blob”, terfamos que levar em consideragio
as interagdes entre os diversos “blobs” que compdem a macromolécula, devido ao tato de
que dentro de um mesmo “blob”, as interagdes entre mondmeros distantes na segiiéncia
da cadeia terem sido consideradas, em vista de estar-se tratando de forma andloga ao caso
da cadeia polimérica real.

(3.19)

De posse deste formalismo de “blobs”, introduzido por de Gennes ', sabe-se

para o caso de uma macromolécula confinada entre duas superficies, as seguintes relagdes:
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N, =— (2.32)

N D (2.33)

onde N, € o nimero de mondmeros continados dentro do “hlob™, N, o nimero de
mondmeros que estdo em contato com o “blob”, a o tamanho do mondmero e D o
tamanho do “blob”(ver Fig. 2.3).

gMONOMEROS

,////////////./’/////4

:///////K////,,7r”>/

BLOBS

Fig. 2.3 - Representaciio esquemitica do formalismo de hlobs para uma cadeia polimérica confinada entre

duas superficies planas. Divisdo da macromolécula em uma série de hlobs de comprimento D .

Para esta mesma situagdo citada acima, se considerarmos que o tamanho do “blob” sej
igual a 2k, estaremos tratando, pelo ponto de vista de “blobs”, o caso de uma cadei
ideal confinada entre suas superticies separadas por uma distincia 2k. E af terfamos

seguintes resultados:

h* '
N, = (2.34
a
h
N, =— (2.3
a

tal que, agora N, representaria a quantidade de mondmeros confinados entre as
superficies e N, 0 nimero de mondmeros os quais estdo ligados & uma mesma superti 2

Portanto, podemos atirmar que os resultados obtidos para o nimero N de mondmen
confinados entre as placas e para o nimero N de mondmeros que ligam dois pon
distintos de uma mesma superficie, fornecidos pelas eqs.(2.28) e (2.31), respectivamen
sio consistentes aos obtidos pelo ponto de vista de “blobs”, expressos pelas eqs.(2.34) 2

(2.35).
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Ademais, ao tratar o problema de confinamento de macromoléculas para o caso de
cadeias poliméricas reais, as quais os efeitos de exclusio de volume devem ser

(3.19)

considerados, de Gennes estabeleceu que o nimero de mondmeros N, inseridos em

um “blob” de tamanho &, ., é dado pela seguinte expressio:

N, =|Z (2.36)

sendo v o expoente de Flory"?.

De tal modo, se considerarmos que o tamanho do#‘blob” seja igual a 2k, para o caso
bidimensional ¢ = 2, obterfamos:

A
N, = (;) (2.37)
onde, agora, N, representaria a quantidade de mondmeros de uma cadeia real confinados
entre duas superticies planas separadas por uma distincia 2h.

Todavia, considerando que as superficies planas estejam bastante separadas, tal
que a quantidade de mondmeros confinados entre as placas seja constituida essencialmente
pela quantidade de mondmeros que interligam estas superticies, ou melhor, pelo
comprimento da ponte que liga estas duas placas, podemos, por conseguinte, considerar a
quantidade de mondmeros que ligam dois distintos pontos da mesma superticie, os
chamados “trens”, muito pequena, tal que comparada com o comprimento da ponte se

~

torne uma quantidade desprezivel. Sendo assim, a quantidade de mondmeros N
confinados entre estas supertficies planas € igual a quantidade de mondmeros N que
interligam estas duas superticies. Desta forma, podemos expressar a seguinte relagio:

Sy 2
N=N=() (2.38)

. 5 .
para o caso de uma cadeia ideal™. Enquanto que para o caso de uma cadeia real, onde o

efeito de exclusio de volume deve ser considerado, obteremos a seguinte relacio’*:

- = 4
F=N=() (2.39)
Portanto, vé-se que o comprimento, ou melhor, a quantidade de mondmeros de

uma ponte para o caso de uma cadeia polimérica real, eq.(2.39), é menor do que o
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encontrado para o caso de uma cadeia ideal, eq.(2.38). tal fato atribui-se a presenga da
repulsdo entre 0os mondmeros, oriunda do efeito de exclusido de volume, pois devido a este
efeito as configuragdes das diversas macromoléculas formadas sdo muito menos
empacotadas, de tal modo que as cadeias reais sio muito menos encaracoladas do que as
cadeias ideais, conseqiientemente a densidade ou a quantidade de mondmeros continados
entre as placas para o tratamento de cadeias reais torna-se menor do que quando tratamos

com cadeias ideais.
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Solucao do Problema da Formacao de Pontes

por Simulacao Computacional

3.1 Introducao

H4d algum tempo a fisica era dividida em duas grandes categorias: fisica teérica e
experimental. Com o advento e ficil utilizagdo dos computadores digitais, principalmente
nas duas dltimas décadas, comegou a surgir uma nova drea da fisica: a fisica
computacional. Nos momentos iniciais, a fisica computacional estava direcionada na
solu¢do de problemas com um nidmero grande de graus de liberdade. Em uma etapa
posterior, a fisica computacional passou a sugerir experimentos. Exemplos sdao o
surgimento dos sistemas criticamente auto-organizados, os modelos de moléculas, entre
outros.

Apesar disso, a grande aplicagdo dos computadores tem sido na simulagio de
muitos corpos. A importéncia da metodologia da simulagdo é que a priori ela forma
resultados, em principio, exatos para muitos Hamiltonianos sob investigacdo,
principalmente no caso de interacdes de longo alcance e de muitos corpos. No entanto, a
simulagdo computacional tem suas limitagOes diretamente relacionadas & memdria a ao
tempo computacional. Nesta diregdo, a simulagdo se apresenta em duas classes, de acordo
com o tipo de problema em andlise. Na primeira categoria estdo o0s problemas
deterministicos que sdo tratados com a metodologia da Dinimica Molecular. A outra
classe trata dos problemas estocdsticos que sdo tratados com os métodos de simulagao
Monte Carlo. Ambas metodologias tazem uso da descri¢do de trajetOrias(por detini¢ao
uma trajetéria € uma seqiiéncia cronolégica de configuragdes), em espagos de fase
caracteristicos do problema considerado. Para a Dindmica Molecular, a metodologia
descreve a trajetéria da particula sujeita ao Hamiltoniano dado ou Lagrangiana ou
mesmo a equagdo de Newton. Enquanto isto, em Monte Carlo, a trajet6ria 4 descrita em

geral por uma seqiiéncia de Markov.
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Em vista disto, da crescente importincia e eficiéncia dos computadores na
caracterizagdo de propriedades dos mais diversos sistemas, é que vemos a necessidade de
analisarmos computacionalmente o problema do continamento de macromoléculas. E com
este objetivo que nos referimos & este Capftulo com bastante cautela e minuciosidade, pois
aqui apresentaremos a base fundamental de nosso trabalho, ou seja, a metodologia
computacional empregada no modelamento do confinamento de macromoléculas entre
duas superticies planas. Desta forma, descrevemos na se¢ido 3.2 a metodologia utilizada
para a descrigdo do- problema, o Método Monte Carlo, expondo de forma bastante
elementar os seus diversos tipos, propriedades e respectivos algoritmos.

Todavia, como ji mencionamos anteriormente, os polimeros podem ser
considerados como longas cadeias compostas de pequenas unidades moleculares
(mondmeros) ligadas umas as outras através de ligacdes, e devido ao fato de que estas
ligacdes possuem alguns graus de liberdade para rotacionar, obtém-se estruturas flexiveis
das mais diversas formas espaciais possiveis. Através desta descrigdo, podemos fazer uma
aproximagio estatistica para o problema, descrevendo-o por simulagdes computacionais,
nas quais as cadeias moleculares(macromoléculas) sio modeladas por caminhadas
aleatdrias em uma rede qualquer. Portanto, na segdo 3.3 descrevemos os diversos tipos de
caminhadas aleat6rias que podem ser utilizadas para o modelamento do problema do
confinamento de polimeros entre duas superficies planas, como também apresentamos
suas respectivas propriedades de escala, obtidas em diversos trabalhos da literatura.

Na segﬁ(; 3.4, apresentamos uma outra forma de tratamento para o estudo das
propriedades dos polimeros, os fractais, que tem como objetivo fazermos compreender
melhor o aspecto conformacional das cadeias poliméricas, através de uma melhor
visualizagdo do problema. Portanto, nessa secdo apresentamos de forma bastante genérica

as caracteristicas destes sistemas, denominados tractais.

3.2 Método Monte Carlo

3.2.1 Método Monte Carlo Candnico

Quando falamos do método Monte Carlo candnico, estamos nos referindo a um

método desenvolvido por Metropolis, Rosenbluth, Rosenbluth, Teller, Teller™" por volta
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de 1953, também denominado método M(RT)2 . O método estd relacionado com o cdlculo
das propriedades de qualquer substincia, sem restrigdes a nenhum intervalo de
temperatura ou densidade, fornecendo-nos valiosas informag¢oes de uma grande variedade
de problemas fisicos, quimicos e biolgicos, que outrora ndao era possivel obté-las. A
dificuldade no estudo dos problemas baseava-se essencialmente no cdlculo da fungio
particdo, que normalmente expressava-se como uma fungdo, bastante complicada. das
coordenadas do sistema. E como veremos neste método, tal problema serd solucionado
por uma normalizagao da fungio parti¢cdo do sistema, que nos possibilitard trabalhar com
intimeros sisteinas, em virtude de nio mais necessitarmos conhecer a fungio particio do
problema em andlise.

Este método foi motivado por uma analogia a0 comportamento de sistemas em
mecinica estatistica que aproximavam a situagdo do equilibrio, cujas propriedades
estatisticas tornavam-se independentes da cinética a qual o sistema possuia. Por sistema
referimo-nos a um ponto X no espago de fase €2, enquanto que por cinética, a uma
transiclo estocdstica que governa a evolugido deste sistema, ou seja, por uma funcio
densidade de probabilidade K(X ) que representa a evolugdo do sistema, que estd no
estado Y e, posteriormente, estard no estado X .

Embora o algoritmo de Metropolis et al®" possa ser implementado em uma grande
variedade de maneiras, o apresentaremos através de um modo bastante simples.

Considere um sistema fisico, o qual possua fixos o nimero N de particulas, o
volume V e a temperatura T, tal que constitua um ensemble candnico®. Sendo assim,

podemos expressar a fungao Z de parti¢cdo deste sistema da seguinte forma:

7 £ JExp[— ,BH(x)]a’x (3.1
Q
onde o termo exponencial € denominado fator de Boltzimann, que é definido como sendo:
1
kT

sendo T a temperatura do sistema. Portanto, pode-se estabelecer a seguinte distribui¢ao

P(X) dos estados acessiveis para este sistema, quando sob banho térmico:
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P(X) =%Exp[— BH(X)] (3.2)

Entretanto, uma vez estabelecida a situaciio de equilibrio, se guisermos que o
sistema permaneca neste estado, devemos impor que o sistema seja reversivel. Em outras
palavras, supondo que o sistema esteja no estado X e mova-se, posteriormente, para o
estado Y, deveremos permitir o sentido contrdrio para a transi¢iio de estado, de tal modo
que o sistema estando no estado Y mova-se, posteriormente, para o estado X . Portanto,
uma vez sabendo que a tungdo densidade de probabilidade representa a evolugio de um
sistema no espaco de fase, podemos representar a evolugiio do sistema do estado Y para
o X por K(X|Y),enquanto que K(Y|X) representa a evolugdo do estado X parao Y.
Como também, utilizando a eq.(3.2), que nos fornece a probabilidade de encontrarmos o
sistema num determinado estado acessivel X, podemos, assim, representar a
reversibilidade do sistema da seguinte forma:

K(X|Y)P(Y)= K(¥| X)P(X) (3.3)
que também € denominada de balango detalhado, o qual nos garante que a probabilidade
do sistema no espaco de fase mover-se do estado X para o estado Y seja igual a
probabilidade de mover-se no sentido oposto, ou seja, de transitar do estado Y parao X .
Deste modo, ao substituirmos a eq.(3.2) na eq.(3.3), obtemos que a razdo das
probabilidades de transicio dependem, unicamente, da variagio AH na energia, oriunda
do deslocamento do sistema de um determinado estado para um outro estado no espago
de fase Q, ou seja,

K(¥|X) P(y)

K(x|r) P(X)

1
k(Y] X) (E)EXP [-pH(Y)] = p-AlH)-H()|

K(x|y) (—%)Exp[— BH(X)]

< )= Exp(- BAH) onde AH=H(Y)-H(X) (3.4)

K(X|Y)
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Baseados essencialmente neste balango detalhado do sistema, podemos montar o
seguinte algoritmo para ensembles candnicos:
1. Escolher aleatoriamente uma configuragio inicial x;
2. Gerar uma nova configuragio x”;
3. Calcular a varia¢do de energia produzida, ou seja, AH = H(x") — H(x) ;
4. Se a energia é mais baixa, AH < 0, entdo, aceita-se 0 novo estado e detine-se x” como
uma nova configuragdo e retorna para o passo 2 ;
5. Se a energia é maior, AH > 0, calcular a valor de Exp(— ﬁAH) ;
6. Gerar um ntimero aleatério R € [O,l];
7. Se R tor menor que Exp(— ﬁAH), entdo e aceita-se o0 novo estado, estabelecendo x’

como uma nova configuragiio. Em caso contrdrio, o sistema nio altera o seu estado
original, permanecendo em seu estado original;
8. Retornar para o passo 2.

No algoritmo acima, estamos assumindo que a temperatura termodindmica seja
positiva. A aplicagdo para o caso de temperaturas negativas foi desenvolvida por
Mouritsen et al®®. Podemos, agora, visualizar melhor a esséncia do modelo proposto, que
estd baseado essencialmente no cdlculo da perturbagio, causada pelo deslocamento do
sistema, em um dado espaco de tase €2, de um determinado estado para um outro. Além
disso, observa-se que a trabalhosa tareta do cdlculo da energia do sistema torna-se
bastante ficil dé ser computada, uma vez que detemos o conhecimento de todos os
estados no espago de fase que o sistema assumiu, como também os seus respectivos pesos
probabilisticos, tendo em vista que o processo ocorre primeiramente com a escolha das
configuragbes, com probabilidade Exp[— ﬁH(x)], e logo depois € calculado o seu peso.
Em vez de escolhé-las aleatoriamente e depois fornecé-la um peso estatistico dado por
Exp[— ﬁH(x)]. Portanto, devido a esta vantagem em seu manuseio, que € a ndo
necessidade do cdlculo de integrais multi-dimensionais, encontramos diversas aplicagdes a
uma gama variada de sistemas tisicos, que vdo desde sistemas cldssicos com interagdes de

(54-56)

curto alcance, passando por sistemas quanticos até sistemas de interages de longo

57
alcance®”.
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3.2.2 Método Monte Carlo Microcandénico

Abrangendo aplicagdes que vio desde o estudo de transigoes de tase em matéria
condensada até o célculo de propriedades de hadrons®®, através da teoria de Gauge, as
simulagdes deste método tem como base, na sua grande maioria, o algoritmo desenvolvido
por Metropolis et al®". Através deste, gera-se uma seqiiéncia de configuracdes através de
um processo Markoviano, tal que a probabilidade de encontrarmos qualquer contiguragio

C na seqiiéncia € proporcional ao peso de Boltzimann,

P(C) = Exp[- BS(O)] (3.5)

tal que a funcio partigiio deste sistema € fornecida pela seguinte expressio:

Z = Expl-Bs(C)] (3.6)
L 94

onde S(C) representa a energia do sistema. No caso de simulagdes de teoria de campo
quantica, S(C) serd a agfio, podendo o somatério da eq.(3.6) ser substituido por uma
integral de caminho.

No entanto, podemos utilizar neste sistema outras técnicas de simulacdo, € o caso
da dindmica molecular ou método Monte Carlo microcandnico®. Basta-nos expressar as
equacoes que representam a evolucdo dindmica do sistema, considerando a energia total
conservativa. Porém, como agora estamos tratando de ensembles microcandnicos®?,
necessitamos reescrever a fungio parti¢do do sistema, que outrora era dada pela eq.(3.6) e

que agora serd fornecida pela seguinte expressao:
Z=Y6[8(C)+K(P)- E] (3.7)
G 1P

onde E € a energia total inicial do sistema e K(P) € a energia cinética associada ao
momento conjugado P associado a coordenada C.

A fim de computarmos a soma da eq.(3.7). consideraremos que o sistema viaje a0
longo de uma superficie de energia E constante de maneira ergddica, ou seja, a simulagio
se processa como uma caminhada aleatéria ao longo desta superficie de energia E
constante. Para o caso de uma superficie subdividida em uma malha quadrada de sitios, na
qual o caminhante inicia sua trajetéria em um dado ponto aleatério da rede o e a finaliza

em um ponto f3, é apresentada uma ilustragdo através da Fig. 3.1.
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F(x)=E

Fig. 3.1 - Representagdo esquemdtica de uma caminhada aleatdria no espago de lase em uma superlicie de

energia E constante. Ao lado, um zoom desta caminhada aleatoria.

Em virtude de que cada estado de uma caminhada aleatéria(Random Walk)
independe da historia da caminhada, garantimos a utilizagdo da cadeia de Markov na
simulagdo destes sistemas. Ademais, introduziremos um grau de liberdade extra, o qual
caracterizamos como um “demdnio”, que viaja no sistema, transterindo energia toda vez
que as varidveis dindmicas do sistema sdo alteradas. Este novo parimetro é andlogo a
energia cinética calculada pelo momento conjugado P na formula¢do microcandnica, no
entanto € importante ressaltar que este “demdnio” nio estd associado com qualquer grau
de liberdade no sistema original. Denominando a energia do “demdnio” por E, e fazendo
as devidas substitui¢des na eq.(3.7), podemos obter uma nova formulagdo para a fungio

parti¢do do sistenra, que serd dada por:

z=338[s(C)+E,-E] (3.8)

C E,
Entretanto, devemos ter bastante cuidado com o “demdnio”, pois ele pode vir a
absorver toda a energia do sistema. Sendo assim, devemos impor uma restri¢do a energia
do demdnio E,, que é realizada quando estabelecemos um valor positivo limite para esta
suaenergia E, .
Deste modo, de forma geral podemos formular um algoritmo para ensembles
microcandnicos, expresso por:

1. Construir um estado, tal que H(x) = S(C):
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2. Selecionar a configuragdo inicial dos sistema. que pode ser representada por uma
fragdo dos sistema;

Detinir a energia E,, do demdnio;

Mudar o estado atual do sistema, tal que x — x”":

Calcular a variagio de energia produzida, ou seja, AH = H(x") — H(x)

A O

Se a nova energia for mais baixa, AH < 0, entdo, aceita-se o novo estado, detfine-se a

nova energia E, _do demdnio, tal que E, = E, = E, —AH ,e por tfim estabelece-se
x’ como uma nova configuragio e retorna para @ passo 3;

7. Se a nova energia tor mais alta, AH >0, entdo, aceita-se o novo estado, se somente se,
o demdnio possuir a energia necessdria para a transigiio para este novo estado. Neste
caso anova energia E, do demonio serd E, = E, = E,+AH .e por fim estabelece-
se x como uma nova configura¢do. Na situa¢do contrdria, o sistema nio muda de
estado, ou seja, perimanece com 0 mesmo estado inicial ;

8. Retornar para o passo 3.

No caso de permitirmos que o demdnio passe por um banho térmico, teremos o
algoritmo convencional desenvolvido por Metropolis et al®”, quando elaborado para
ensembles candnicos. Nesta situacio, a energia £, do demdnio seria trocada por um
novo valor, que seria gerado aleatoriamente pelo algoritmo e possuiria 0 peso de

Boltzmann, e conseqiientemente uma distribuicdo de Boltzmann para a energia E, do

demdnio:

P(E,) = Exp(~ BE,) (3.9)
Portanto, podemos observar neste algoritmo algumas vantagens em relagdo ao
método Monte Carlo usual, ou melhor, a0 método candnico®". Primeira, o demdnio nio
necessita de funcdes transcendentais, visto que sua energia torna-se, automaticamente
distribuida exponencialmente. Segunda, tendo em vista que o sistema € tratado como uma
caminhada aleatdria em uma superficie de energia constante, vemos que ndo é necessirio
uma alta exigéncia no que se refere ao gerador de nimeros aleatdrios, uma vez que o
caminhante nio memoriza 0os passos tomados durante a sua trajetria. Terceira, ao

tratarmos com grupos discretos, toda a aritmética pode ser tfeita com pequenos valores
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inteiros para as diversas varidveis dos sistema. tal que nenhuma operagdo de ponto
flutuante se torna necessdria. Quarta, ao tratarmos com distribui¢des de Boltzmann.
eq.(3.9), para a energia E;, do demdnio, observamos que o demdnio ndo utiliza este peso
de Boltzmann como uma probabilidade, uma vez que ele desconhece o que venha ser o

fator .

3.2.3 Método Monte Carlo Grand-Candnico

Suponha um sistema A de volume V tixo em contato com um grande sistema,
reservatério A, com o qual ele possa variar ndd-somente a sua energia, mas também a
sua quantidade de particulas. Entdo, nem a energia de A, nem o niimero de particulas N

em A sdo tixos, porém a energia total E, e o nimero total de particulas N, do sistema
combinado A, = A+ A’ sio fixos, ou seja,

E, = E+ E’ = constante (3.10)
N, =N + N’ =constante (3.11)

onde E’ e N’ denotam a energia e o niimero de particulas do sistema A’.
Nesta situagdo, podiamos questionar qual a probabilidade no ensemble de

encontrarmos o sistema A em um determinado estado r contendo N, particulas e
possuindo energia E, . Entretanto, devemos ressaltar se o sistema A estd no estado r, o
nimero de estados acessiveis para o sistema combinado € somente o niimero de estados
acessiveis do rgservatdrio, tal que a probabilidade de encontrarmos neste estado seja dado
por:

P(E,,N,) = Q(E, ~E,.N;—N,) (3.12)
onde devemos lembrar que Q(E’,N’) é o nimero de estados acessiveis do reservatério

A’, quando contém N’ particulas e energia E’. Considerando o sistema A muito
pequeno em relagdo ao reservatério A’, tal que

E <<E, > E,=FE’ (3.13)
N,<<N; >N, =N’ (3.14)

podemos obter a seguinte distribuigao de probabilidade
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P, o< Exp|- B(E, + N, )] (3.15)
cujos sistemas que possuem distribuicdes de probabilidade com esta forma sio chamados

(52)

de ensembles grand-candnicos Onde o parimetro [ esti relacionado com a

temperatura do reservatario, tal que

T =(kB)” (3.16)
¢ a temperatura absoluta do reservatério. Enquanto que o pardmetro [ representa o
potencial quimico do reservatdrio.

Portanto, vemos que 0s pardmetros a serem forrigcidos no modelo sdo: o volume V, a
temperatura T e o potencial quimico f. e uma vez determinados sdo considerados
constantes. Porém, no que se refere a quantidade de particulas N, esta variard durante
toda a dinimica do processo de banho térmico do sistema A. Entretanto, esta nio
constincia no nimero N de particulas do sistema é que diferencia, essencialmente, este
modelo dos demais ensembles, pois dentro da evolugdo do sistema ocorrerd criagdo e
aniquilagio de particulas, havendo, assim, flutuagdes na concentragdo de particulas do

ensemble. Desta forma, vé-se que a formulagiio de um algoritmo para o ensemble grand-

(60) )

candnico®” é andlogo ao desenvolvimento para o ensemble candnico™". exceto que agora
devemos permitir que o nimero de particulas possa variar durante toda a evolugio do
sistema. Sendo assim, qualquer algoritmo proposto ao ensembles grand-candnicos deverd
possuir trés passos bdsicos, que sido:

. Mudanga na contfiguragio, no que se refere as coordenadas das particulas:

2. Criagio de particulas;

3. Destruigdo de particulas.

Em relagcio a fungido distribuicio de probabilidade, fornecida pela eq.(3.9).
podemos reescrevé-la de uma forma mais completa, onde a probabilidade de encontrarmos
o ensemble no estado x, contendo N particulas, com um potencial quimico [ e um
volume V, é dada por:

P(x") :% % Exp|- BE(x")] (3.17)

com o pardmetro ¢ sendo detinido do seguinte modo:
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2 A
h” ,
a= [Exp Bu ]{?szkT} (3.18)

e a funcdo de particio Z do sistema expressa por:

Z= Z(N'ijxp[ BE(x" ) jax" (3.19)

entdo, utilizando a eq.(3.17) pode-se estabelecer que a probabilidade de encontrarmos o

ensemble com N +1 particulas é dada por:
N+1 F

P(xN”) 1((]3 )]Exp[ ﬁE(xN“)] (3.20)

como também que a probabilidade para o caso de encontrarmos o ensemble com N —1
particulas é fornecida pela equagdo:

N-1

P(xN 1) 1 ((13 )!jExp[— ﬁE(xN_])] (3.21)

Deste modo, utilizando os mesmcs argumentos teitos no modelo candnico, 0s
quais nos fornecem uma normalizacdo da funcio distribui¢do, proveniente da imposi¢io
da reversibilidade ao sistema, podemos, também, obter para o ensemble grand-candnico o
que denominamos de balango detalhado como no caso do ensemble candnico. Porém,
devemos garantir que a reversibilidade da evolugdo do sistema, ou melhor, que o balago
detalhado acontega tanto processo de criagdo de particulas como na situagio em que
particulas sdo apquiladas. Tal que para o processo de criagio de particulas temos o

seguinte balanco detalhado:

K(x"xV)P(x") =k (x"|x")P(x")
clx*lx)_plx)

Rl | xR P(XN)

K(x™]x") | - Exl’[ pE(X™)]
K(x"[x") %Exp[ BE(x™)]
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K(X N+l IX N 5
K(XN IX”*‘% - (N[jr JExp{— BlE(x™) - B(x")]} (3.22)
e para aniquila¢do de particulas temos:

K(x™|x")P(x")=K(x"|x"")P(x")

K(x™|x")  p(x*)

K(x"[x") P(x")

N

)i
K(XNIXN—I) %Exp[—ﬁE(XN)]
g%zll—)ng)&p {-AE(x )~ 2(x"]] (3.23)

Portanto, de posse das probabilidades de transi¢do dos sistema, fornecidas pelas
equagoes (3.22) e (3.23), que constituem o proprio balango detalhado do ensemble.
podemos, entdo, de um modo geral, escrever o seguinte algoritmo para ensembles grand-
candnicos:

1. Escolher uma configuragio inicial com N particulas, as quais estejam mseridas em um
volume V do sistema;:
2. Selecionar aleatoriamente com eqiiiprobabilidade os seguintes procedimentos:
1) Movimentagio de particulas 2) Criac¢do de particulas 3) Destruigdo de particulas ;
3. Movimentagdo das Particulas:
3.1 Selecionar uma particula inserida no volume e deslocd-la aleatoriamente;
3.2 Calcular a variagdo de energia produzida, ou seja, AE = E(x)-E(x);
3.3 Se AE for negativo, aceitar a configuragio e retornar para o passo 2 :
3.4 Calcular Exp(— ﬁAE) :
3.5 Gerar um nimero aleatério R e [0,1];
3.6 Se R for menor que Exp(— ﬁAE) , aceitar a nova configuragdo e retornar para o

passo 2;

67



3.7 Se R for maior ou igual a E.xp(— BAE). 0 sistema ndo altera sua configuragiio
inicial, permanecendo em seu estado original.
4.0 Criagdo de Particulas:
4.1 Escolher aleatoriamente coordenadas dentro do volume V' para uma nova particula
a ser criada;
4.2 Calcular a variagiio de energia AE = E(xN“)— E(xN) ;
4.3 Calcular [(a/Nw+ 1)Exp(- ,BAE)]
4.4 Se este valor for maior que um, aceitar a mova configuragiio e retornar para o
passo 2;
4.5 Gerar um nimero aleatério R € [0,1];
4.6 Se R for menor que [(a/N + l)Exp(— ﬁAE)] aceitar a criagdo da nova particula e
retornar para o passo 2 ;
4.7 Se R for maior ou igual a [(a/N + l)Exp(—ﬁAE)], rejeitar a criacio da nova
particula e retornar para o passo 2
5.0 Aniquilacio de Particulas:
5.1 Selecionar aleatoriamente uma particula do ensemble, porém que ndo pertenga ao

conjunto das N particulas inseridas no volume V ;

5.2 Calcular a variagdo de energia AE = E(xN"l) - E(x”);

5.3 Calcular [(N/a)Exp(— ﬁAE)]

5.4 Se este valor for maior que um, aceitar a nova configuragiio e retornar para o
passo 2;

5.5 Gerar um ndmero aleatério R e [0,1];

5.6 Se R for menor que [(N/a)Exp(— BAE)] aceitar a destruicdo da particula e
remove-la do volume;

5.7 Se R for maior que [(N /a)Exp(— ,BAE)], rejeitar a destrui¢do e retornar para o

passo 2;
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Como pode-se observar neste algoritmo existe uma enorme semelhanga com o
algoritmo desenvolvido para ensembles candnicos. principalmente na parte em que €
feita toda a dindmica de deslocamento da particula dentro do sistema. porém a tinica
diferenga € que em alguns momentos particulas sdo acrescentadas ou excluidas do
sistema. Portanto, do mesmo modo atirma-se que a convergéncia deste algoritmo
grand-candnico estd relacionado, essencialmente, com a movimentagdo das particulas.
Caso tenhamos pouca movimentagio de particulas necessitaremos de muitas
configuragdes a fim de que o sistema alcance o equilibrio, possuindo assim., uma
convergéncia muito lenta. No entanto, uma elevada movimentagdo de particulas nos
pode resultar em uma alta taxa de rejeicdo a criagdo e a aniquilagdo de particulas. que
também reduz a rapidez de convergéncia do sistema. Entretanto, um outro problema
que o algoritmo detém € o elevado tempo computacional, que € devido o fato de que o
sistema atualiza e contabiliza toda sua nova configuragdo, toda vez que se acrescenta
ou reduz o nimero de particulas no ensemble.

Todavia, apesar destes problemas muitas aplicagoes tem sido realizadas em
diversos campos da ciéncia, principalmente no estudo de solugdes eletroliticas, as quais
o problema da flutuagdao na concentragio € amenizado em decorréncia da baixa
densidade do sistema. Porém, dificuldades encontradas no que se retere ao cilculo da
concentragdo média e da energia do sistema, que sdo grandes barreiras no
desenvolvimento de algoritmos para ensembles grand-candnicos, toram em certo modo
solucionadas ¢om os trabalhos de Norman et al®”, Adams®®, Nicholson et al'®®, que
contribufram de modo quantitativo e qualitativo na exploragdo do método Monte

Carlo grand-candnico.

3.3 Caminhadas Aleatorias

3.3.1 Caminhada Auto-excludente(SAW)

Nos dltimos anos, notamos na literatura que a expressdo caminhada auto-

excludente(Self-Avoiding Walk - SAW) tem sido considerada sindnima ao problema da

fots P : PN . = 4749 .
estatistica de polimeros, no que diz respeito a cadeias com exclusio de volume®™”. Isto é

devido ao fato de que as caminhadas auto-excludentes(SAW), também denominadas
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caminhadas auto-repelentes(Self-Repelling Chain - SRC). tem sido utilizado por décadas
para modelar a estatistica de equilibrio de polimeros lineares em solugdes.

Uma defini¢do simples de caminhada auto-excludente(SAW) seria uma caminhada
em uma rede d-dimensional, na qual o caminhante escolhe o préximo passo entre 0s
vizinhos mais proximos, com exce¢do do sitio precedente, porém se acontecer que o
caminhante escolha um sitio mais proximo que jd tenha sido visitado anteriormente, entio
a caminhada € finalizada. No caso de uma rede quadrada(ver Fig. 3.2), a probabilidade em
cada passo do caminhante saltar para um dado sitio i da rede € fornecida pela seguinte

expressao:

1
== - 3.4
o (2d—1j (320

onde d representa a dimensdo euclidiana, na qual a caminhada estd sendo realizada.

Fig. 3.2 - Representacio grifica de uma caminhada auto-excludente(SAW) em uma rede quadrada

Devido o fato de que na caminhada SAW a trajetdria ndo se intercepta, podemos
utilizd-la para simular o crescimento de cadeias poliméricas reais, nas quais os efeitos de
exclusdo de volume devem ser considerados, pois 0s mondmeros em uma macromolécula
ndo podem, de modo algum, ocuparem a mesma posi¢do no espaco. Baseados nesta
grande aplicabilidade deste modelo, intimeros trabalhos foram realizados no intuito de
desvendar suas propriedades, ou melhor, que expoentes criticos regem tal modelo,
principalmente no que se diz respeito a discretiza¢do do expoente v, obtido da relagdo de

escala entre a distdncia entre 0s extremos <F2> com o nimero de passos N da caminhada,
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=2
F

ou seja, uma relagdo da quantidade N de mondmeros com o parﬁmetm( > Este

expoente nos fornece informagdes d cerca do empacotamento da cadeia polimérica, e é

obtido pela seguinte relagdo:

(Y-

2 para d <4 (3.25)
. de para

3 para d 24

3.3.2 Caminhada Verdadeiramente Auto-excludente(TSAW)"”
Suponha um caminhante em uma rede d-dimensional, iniciando seu movimento na

origem no passo i=(0. Em qualquer iteragio i o caminhante pode mover-se para

qualquer dos 2d vizinhos mais proximos do sitio o qual ele estd localizado. A

probabilidade de saltar para um dado sitio i, depende do niimero de vezes n, que este

sitio jd tenha sido visitado, e é expressa da seguinte forma:
Exp(— gni)

= 24
z Exp(— gn.,.)
i=1

onde a soma ocorre sobre todos 2d vizinhos mais préoximos da posigao corrente do

(3.26)

caminhante e g € um parimetro positivo, o qual mede a intensiduade com que o

caminhante evita cruzar a sua caminhada na rede. Alguns comentirios sio necessdrios:

a) O somatdrio de p, em ¢ é igual a um, significando que o caminhante nunca permanece
no mesmo ponto,

b) Em cada iteragdo o valor de n; é moditicado;

c) Os valores de p;, dependem nido somente do ponto onde ele estd localizado, mas
também de toda a historia da caminhada. Portanto, a probabilidade de uma caminhada
de N passos é o produto dos valores das probabilidades p; para cada passo. Desta
forma, vemos que existe uma dependéncia com a configuragdo da caminhada, como
também do ponto onde a caminhada € iniciada.

Embora, este tipo de caminhada tenha inicialmente gerado grande interesse por

parte dos fisicos, até agora nenhuma aplicagdo tem sido encontrada para este modelo. A
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raziio para isto, deve-se ao tato de que quando temos um altissimo valor de inibi¢do de
cruzamento da caminhada (g - oo), ainda podemos obter caminhadas que se cruzam. Isto
ocorre quando todos os possiveis sitios para um determinado passo da caminhada jd
tenham sido visitados anteriormente pelo caminhante. Tal situagdo pode exemplificada

pelo seguinte esquema:

[
\ 4
[

(a) (b)

Fig. 3.3 - Representaciio esquemditica de uma caminhada 7SAW que se intercepta. Todos os possiveis

sitios para o passo ji foram visitados anteriormente.

Apesar disto, importantes investigaQGesU“'m no TSAW (True Self-Avoinding
Walk) foram realizadas, a fim de se estabelecer uma completa informagdo acerca de seu
comportamento assintdtico e de seus expoentes criticos. Evidencia-se o trabalho realizado
por L. Pietronero, que através do método de campo auto-consistente estabeleceu uma
relagdo entre a distincia entre 0s extremos <F2) e 0 nimero de passos N do caminhante,
para uma caminhada verdadeiramente auto-excludente (TSAW) de N passos em um

. = 5 o . . 2
espaco de dimensio euclideana ¢ . Esta relagdo é expressa da seguinte forma™:

-

=——==-DaK 1< 2
p=1d+2 (3.27)

1
— para d 22
5 Para

3.3.3 Caminhada de Crescimento Auto-excludente(GSAW)
Neste modelo teremos um caminhante descrevendo um movimento em uma rede

d-dimensional, tal que no passo i =0, o caminhante esteja na origem. Em qualquer passo.
o caminhante pode deslocar-se para quaisquer dos vizinhos mais proximos, que nio

tenham sido ocupados anteriormente, com a seguinte probabilidade:
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p, = (l) (3.28)
n

onde n € a quantidade de primeiros vizinhos desocupados. No entanto, quando n =10
para um determinado passo /. ou seja, quando ndo existem vizinhos mais proximos
desocupados, entdo a caminhada é finalizada nesta iteracido i, evitando, deste modo. a

intersecdo da trajetéria do caminhante.

101

[
10] -3 e—
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Fig. 3.4 - Exemplo de uma caminhada GSAW que € finalizada. Probabilidade para o passo ( pi = ()), pois

todos 0s possiveis silios para o passo i ja foram visitados anteriormente.

Um ponto importante que devemos ressaltar neste modelo € o seu cardter
ireversivel, que € conseqiiéncia da dependéncia da probabilidade com a dire¢do que é
tomada pelo caminhante ao longo da sua trajetéria. Este tato pode ser representado pelo

seguinte esquema:

LN ERTRIRI (SIS

Fig. 3.5 - Representic¢ao esquemdtica do cardter irreversivel de uma caminhada GSAW. Os niimeros nos

braquetes nos formecem as probabilidades na diregdo inversa da caminhada.

onde os nimeros que sido listados na figura representam os valores da probabilidade

]

quando esta ditere do valor /3, Enquanto que os nimeros em parénteses nos fornecem as

probabilidades do caminhante quando na dire¢do inversa da caminhada inicialmente
realizada.

Diversos trabalhos abordando métodos de aproximagdes diferentes nos fornecem
uma maior informagdo acerca dos expoentes criticos deste modelo, como também de sua

aplicabilidade ao modelamento de fendmenos. Dentre estes estudos. estabeleceu-se uma
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relagdo entre a distincia entre 0s extremos <F2> e o nimero de passos N do caminhante
para uma caminhada de crescimento auto-excludente (Growing Self-Avoiding
Walk - GSAW) de N passos realizada em um espago euclidiano de dimensio « . expressa

da seguinte maneira:
<72>% ~ Nv

2

—— para d <3 ¢
b d T par (3.29)
5parac)23

B

onde <T'"’> € a distincia entre os extremos da caminhada.
3.3.4 Caminhada de Crescimento Indefinidamente Auto-excludente(IGSAW)

Trata-se de um novo tipo de caminhada auto-excludente(SAW) introduzida por

73y qual € completamente auto-excludente(SAW) e verdadeiramente

Kremer et al
cinética, concomitantemente. Isto significa que embora a caminhada cres¢a para sempre,
nenhum sitio pode ser visitado mais de uma unica vez. Entio, podemos considerar esta
caminhada como sendo uma caminhada auto-excludente(SAW) com uma propriedade
especial de que cresga indefinidamente(verdadeiramente cinética), ou alternativamente
como sendo uma caminhada aleatdria com um vinculo adicional de que possa ocupar um
determinado sitio uma dnica vez(auto-excludente). Este novo modelo € denominado
caminhada de indefinidamente auto-excludente(/ndefinitely Growing Self-Avoiding
Walk - IGSAW)™, o qual baseia-se no fato de que este reconhece e evita “gaiolas”. as
quais foram sendo formadas durante a caminhada na rede, e que causardo uma
interceptagdo da trajetdria futuramente, caso o caminhante adentre nela.

Através dos modelos tratados anteriormente, vimos que o TSAW ¢é
verdadeiramente cinético, porém nido € completamente auto-excludente; enquanto gue o
GSAW ¢ inteiramente auto-excludente, no entanto ndo € verdadeiramente cinético. pois
vimos que a caminhada, para este modelo, podia ser interrompida para o caso em que ndo
existissem primeiros vizinhos desocupados. No que se refere ao cardter irreversivel destas

caminhadas, que é caraterizado pela situagio em que o conjunto das probabilidades de
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cada passo difere do conjunto obtido quando o caminhante executa o seu movimento na
direcdo inversa da caminhada inicial, observamos para o caso usual de SAW gue esta
propriedade nio € encontrada; enquanto que para o caso IGSAW, o cardter irreversivel
estd presente, como podemos observd-lo pela seguinte figura:

(v2) 172

—— a
’ 173 lu/z) (173)
(1)

/73

173 )

-—

4
LI/Z 72
(v3) 73]

Fig. 3.6 - Comparagiio de uma caminhada IGSAW com uma SAW. A linha continua representa a
caminhada IGSAW, enquanto que a linha tracejada representa as dire¢des as quais seriam permitidas
somente para uma caminhada SAW. O cardter irreversivel do IGSAW também ¢€ ilustrado. Os niimeros em

parénteses correspondem as probabilidades na dire¢io inversa da caminhada.

onde os nimeros em parénteses representam as probabilidades para cada passo, quando o
caminhante executa o seu movimento no sentido contrdrio da trajetdria original da

caminhada. Ademais, é importante ressaltar que somente os valores das probabilidades

para cada passo diferentes do usual SAW , (p = %) sao representados na Fig. 3.6.

3.3.4.1 Modelo
Descreveremos o procedimento de construgio da caminhada em uma rede

quadrada”, tendo em vista que a extensdio para outras redes bi-dimensionais é simples e
direta.

Em geral, a probabilidade para o caminhante dar um determinado passo para um
dada diregao, quando executando um usual SAW, € expressa pela seguinte expressio:

gl (3.30)
q

onde g € a guantidade de primeiros vizinhos desocupados. De tal modo, que no primeiro
passo i=1 temos que escolher entre g, =4 diregoes, que nos fornece a seguinte

probabilidade para o passo:
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|
by == (3.31)
4,

Para a préxima iteracdo i=2, temos, trivialmente, a seguinte probabilidade para o
caminhante dar um passo

1 |
P=—|= (3.32)
q d =i

onde tal caminhada € finalizada quando o caminhante tenta violar a condigdao de ndo
interceptagdo de sua trajetria. No caso IGSAW é necessdrio definirmos, em cada passo.
as probabilidades de transi¢do para um dado sitio, analisando de tal forma a entrada ou
ndo do caminhante em “gaiolas”, que posteriormente funcionardo como barreiras para o
caminhante, ou melhor, como possiveis pontos de cruzamento de sua trajetoria.

Para definirmos as probabilidades de transigdo para o IGSAW, primeiramente
contaremos quantos dos primeiros vizinhos ainda ndo foram visitados. Como também, a
fim de evitarmos a entrada do caminhante nestas “gaiolas”, necessitaremos ndo somente
de um conhecimento local sobre a circunvizinhanga do sitio, mas precisaremos de um
conhecimento global da estrutura de conformagdo da cadeia. Tal informagdo adicional nos

é fornecida pelo nimero W, de ligagOes da cadeia para um dado passo ¢
W= w (3.33)
j=1

que como podemos observar € dado por uma soma sobre todos os dngulos w;, onde
varre todos os passos anteriores. Os valores de w; assumem os valores —1 quando
realiza-se um dngulo de 90° no sentido hordrio entre os passos j e ( Jj—= l), sendo iguais a
+ 1 para um dngulo de 90° no sentido anti-hordrio, e zero quando nao hd rotagdo na
caminhada, ou seja, o caminhante prossegue adiante, movendo-se para o sitio a sua trente.
Como também, assumiremos que nos passos iniciais, j =0 e j=1, os valores de w;
sejam ambos iguais a zero.

Quando da estruturagdo de um modelo /GSAW para outros tipos de rede
bidimensionais, necessitaremos tazer uma pequena moditicagdo nesta definicdo dos valores

de w;.

76



-»> / L . [} / o o Y
L X 1 ' §< ‘;<
O;_E—:‘“—_q_l—/:—" 5;2_..:-_-6' 4)(_!4_6
| D=‘|2' ID"é— 1p=1t
) g o 2 o t
(a)

(b)
Fig. 3.7 - (a) Ilustra¢io de uma caminhada /GSAW em uma rede quadrada. Os pontos em circulos abertos
representam os sitios vizinhos analisados na construgiio da caminhada. (h) Os pontos em circulos abertos
representam os sitios & serem analisados para a construgiio de uma caminhada IGSAW para as redes
triangular e favo-de-mel. Note que no caso da rede triangular, varidveis adicionais devem ser

introduzidas, devido ao tato do caminhante possuir, em cada sitio, rés graus de liberdade para rotacionar.

No modelo IGSAW, a cada novo passo, as diregdes sdo primeiramente
selecionadas, e dai o novo passo é tomado de forma aleatdria dentre estas diregoes pré-
selecionadas, onde no caso da rede quadrada a escolha € feita entre no minimo uma ou no
mdximo trés dire¢es. A fim de descretizarmos estas possibilidades, necessitaremos obter
informagdes acerca de quais primeiros vizinhos estio ocupados, como também dentre
estes primeiros vizinhos desocupados, quais levardo o caminhante a entrar em uma
“gaiola”. Para detectarmos a presenca de uma “gaiola”, nos passos posteriores, devemos
checar ndo somente os primeiros vizinhos, mas também se os segundos vizinhos,
localizados 2 frente do sitio onde o caminhante estd posicionado, jd fora ocupado. De tal
modo que os sitios a serem analisados formam uma semi circunferéncia a frente do sitio

onde estd localizado o caminhante(ver Fig. 3.8).
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Se no k-ésimo passo, um dos primeiros ou segundos vizinhos estdo ocupados,
entdo devemos calcular a diferenca AW do ntimero de ligagdes da cadeia, tal que:
AW =W, -W, (3.34)
onde W, representa o niimero de ligagdes da cadeia realizadas do inicio da cadeia, N = (),
até o k-ésimo passo, da mesma forma que W, representa o ndmero de ligagcdes da cadeia
feitas do inicio da cadeia até o sitio i, que corresponde ao segundo vizinho localizado a
frente do sitio o qual o caminhante estd localizado. no k-ésimo passo. Quando AW for
positivo, nenhum passo, ou melhor, nenhuma rotagio no sentido anti-hordrio serd
permitida, enquanto quando AW for negativo, rotagdes no sentido hordrio nio poderdo
ser realizadas. O caso em que AW =@ nido ocorre, pois nesta situagdo “gaiolas” nido
existiriam. Para o caso de redes quadradas analisa-se somente dois segundos vizinhos.

como podemos observar pela figura abaixo.

(b)
(a)

Fig. 3.8 - (a) Exemplo de uma cuninhada /GSAW dc comprimento N =100. Os circulos representam os
-

pontos da rede nos quais a andlise da existéncia de gaiolas foi de fundamental importincia para que o

caminhante néo cruzasse sua propria trajetoria. (b) Hustracdo mais detalhada da andlise da existéncia dec

gaiolas em uma caminhada IGSAW.

Podemos obter diversas configuragdes espaciais para uma caminhada IGSAW, no
entanto para explicarmos o mecanismo de forma mais detalhada, apresentamos uma
caminhada um pouco mais complicada(ver Fig.3.9). Nesta estrutura observamos a
presenga de duas “gaiolas”, localizadas nas adjacéncias do sitio i,. A fim de evitarmos que
o caminhante entre nestas gaiolas, necessitamos, somente, de informagdes acerca dos

sitios representados por circulos abertos, e a partir daf calculamos o valor da diferenca
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AW do numero de ligagdes, deste sitio i,, 0 qual o caminhante estd localizado apds &
passos, com relagdo aos sitios 7, e i,, respectivamente, que correspondem aos dois

segundos vizinhos localizados a sua trente.

—f—v——p—q
|

Y
A

\H
3

-

Yy

3
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-y

Fig. 3.9 - Exemplo de uma conliguragiio IGSAW. Os circulos abertos representam os silios o8 quais sio
analisados e ue siio importanles para o caminhante cvitar a entrada nas gaiolas presentes(uma na diregiio

do sitio #; e outra na dire¢iio do sitio ip).

Analisando, cuidadosamente, ao longo da caminhada os tipos de rotagdes feitas, se foram
hordrias ou anti-hordrias, podemos. para os sitios em andlise - i, , i, e i, - calcular o valor
de W,, que nos informa qual tipo de rotagdo preferencial desde da origem da caminhada

até o sitio 7 :

W’] =+1
sz =3 (3.35)
W, =1

Desta forma de posse destes valores, podemos contabilizarmos a diferenga AW na
caminhada:

AW, =W, =W, ==1~1=-2
AW,y =W, =W, =—1+3=+2

13 l._,

(3.36)

Deste modo, através do valor de AW,,, vé-se que é vetada ao caminhante executar

uma rotagdo de 90° no sentido hordrio, enquanto que o valor de AW,, proibe uma
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rotagdo de 90" no sentido anti-hordrio. Ser:do assim, a tnica possibilidade que nio leva o
caminhante a uma “gaiola” ou uma interceptagiio de sua trajetdria € o sitio localizado a
sua frente, de tal forma que a probabilidade com que o caminhante efetuard este passo

para este sitio serd igual a um.

3.4 Geometria Fractal e suas Leis de Escala

3.4.1. Auto-similaridade

064-67
©+0D “ou

Um dos aspectos gerais de objetos fractais € que eles sido auto-similares
seja, sdo invariantes de escala. Isto quer dizer que se cortarmos uma fragio de um dado
objeto, e entdo ampliarmos esta fra¢do, o objeto resultante(do ponto de vista estatistico)
serd considerado idéntico ao objeto original do qual foi retirado. Por exemplo, se
considerarmos uma linha, que é por definicio um conjunto de pontos no espago, se
alterarmos o seu comprimento escalar, observaremos que recuperaremos o mesmo
conjunto de pontos do que tinhamos antes. Como também, se translacionarmos 0os pontos
deste mesmo conjunto, a linha, veremos gue recobriremos o mesmo conjunto de pontos
que tinhamos originalmente. Portanto, podemos concluir que a linha € invariante com
relagio a translagao e a mudanga de escala, diremos assim, que a linha € um objeto auto-
similar.

Um outro exemplo cldssico que poderfamos citar para ilustrar nossa discussdo € a
linha costeiva de um continente. Suponha que um cartégrato caminhe ao longo de uma
linha costeira. e apds percorré-la completamente trace o mapa desta costa, veremos que
este mapa da linha costeira apresentar-se-d4 de forma bastante similar com uma foto desta
mesma costa quando feita por um satélite. Adicionalmente, observaremos que o mapa
construido no primeiro caso é muito mais rico em detalhes do que o obtido no segundo
caso, e esta resolugdo € uma conseqiiéiacia direta da escala com a qual o mapa é
construido.

De um modo geral, a auto-similaridade estd relacionada com a invariincia do
sistema quando sob uma transformagio isotrdpica, sendo portanto uma propriedade de

simetria do sistema. Sendo assim, se considerarmos um objeto S formado por um
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rotagdo de 90° no sentido anti-horirio. Sendo assim, a tinica possibilidade que nio leva o
caminhante a uma “gaiola™ ou uma interceptagido de sua trajetdria € o sitio localizado a
sua frente, de tal forma que a probabilidade com que o caminhante efetuard este passo

para este sitio serd igual a um.

3.4 Geometria Fractal e suas Leis de Escala

3.4.1. Auto-similaridade
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Um dos aspectos gerais de objetos tractais € que eles sio auto-similares
seja, sdo invariantes de escala. Isto quer dizer que se cortarmos uma fragio de um dado
objeto, e entdo ampliarmos esta frac¢io, o objeto resultante(do ponto de vista estatistico)
serd considerado idéntico ao objeto original do qual foi retirado. Por exemplo, se
considerarmos uma linha, que € por definicdo um conjunto de pontos no espago, se
alterarmos o seu comprimento escalar, observaremos que recuperaremos O mesmo
conjunto de pontos do que tinhamos antes. Como também, se translacionarmos os pontos
deste mesmo conjunto, a linha, veremos gue recobriremos o mesmo conjunto de pontos
que tinhamos originalmente. Portanto, podemos concluir que a linha € invariante com
relagdo a translagio e a mudanga de escala, diremos assim, que a linha € um objeto auto-
similar.

Um outro exemplo cldssico que poderfamos citar para ilustrar nossa discussio € a
linha costeisa de um continente. Suponha que um cartograto caminhe ao longo de uma
linha costeira. e apds percorré-la completamente trace o mapa desta costa, veremos que
este mapa da linha costeira apresentar-se-d de forma bastante similar com uma foto desta
mesma costa quando feita por um satélite. Adicionalmente, observaremos que o mapa
construido no primeiro caso € muito mais rico em detalhes do que o obtido no segundo
caso, e esta resolugdo € uma conseqiiéacia direta da escala com a qual o mapa €
construido.

De um modo geral. a auto-similaridade estd relacionada com a invaridncia do
sistema quando sob uma transformagio isotropica, sendo portanto uma propriedade de

simetria do sistema. Sendo assim, se considerarmos um objeto S formado por um
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conjunto de pontos R = (xl,xz,x],...), tal que sofra uma transformagdo isotrépica com
uma fator de escala b, onde este valor serd o mesmo para todas as dire¢des assumidas
pelo sistema, obteremos que as coordenadas deste sistema transtormado hS serd dada por
DR = (bxl,bxz,bxp...). Se veriticarmos, cuidadosamente, veremos que este sistema
transformado bS apresenta-se de modo bastante similar ao sistema original S, exceto por
um aumento ou diminuigdo uniforme das dimensdes, de tal modo que poderfamos atirmar
que este sistema transformado bS seria nada mais, nada menos do que uma fragdo do
sistema original S, onde o objetoS formado pelo conjunto de pontos R = (.xl,.xz,.xR,...)
serd considerado auto-similar se este conjunto R foi' invariante sob esta transtormagao
realizada. Este tipo de transformac¢do da qual estamos nos referindo, transtormagao
isotrépica. para um melhor entendimento € exempliticada na Fig. 3.10.

s __-_

2 4

Fig. 3.10 - Representaciio do efeito de uma transtormagiio isotropica e anisotropica em um dado objeto.
(a) Caso isotropico: o diimetro é aumentado por um lator dois, tanto na dire¢do horizontal como na
direcio vertical. (b) Caso anisotropico: o didmetro é aumentado por um fator quatro na direg¢iio horizontal,

-
enquanto que na diregiio vertical € aumentado por um fator dois.

3.4.2 Auto-afinidade
A auto similaridade de um objeto € equivalente a invaridncia de suas propriedades

geométricas quando sob uma transformagdo de escala isotropica. Ou seja, uma
transformagdo deste tipo pode aumentar ou diminuir as dimensoes do sistema em qualquer
das dire¢Oes espaciais que o sistema detém. Porém, em muitos problemas importantes na
fisica, a estrutura geométrica do objeto apresenta-se invariante quando sob uma

transformagdo, somente quando reescala-se as suas dimensdes com diferentes fatores de
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escala para cada uma das diregdes que constituem o sistema. Estes sistemas. os quais
sofrem transtormagdes anisotrdpicas para permanecerem invariantes geometricamente. siao
denominados auto-afins'™*?,

De um modo geral, se considerarmos um sistema S formado por um conjunto de
pontos R = (.’cI ,.rz,.r3....); tal que sofra uma transformaglo anisotrépica com uma fator de
escala b, de tal modo que este fator de escala assume diferentes valores para cada uma
das dire¢des do sistema, obteremos que as coordenadas deste sistema transtormado bS
serd dada por bR =(b, X, ,bexz.bax,,...). Se verificarmos. cuidadosamente, veremos que
este sistema transtormado bS apresenta-se de forma bastante similar ao sistema original
S, tal que podemos recuperar o sistema original S, bastando-nos multiplicar as dimensdes
do sistema transtormado por apropriados fatores de escala. Portanto, consideraremos o
sistema S formado pelo conjunto de pontos R = (xl,xz,xg,...) auto-afim se este conjunto
R for invariante sob esta transformacio realizada. A transformagio da qual estamos nos
referindo, transtormag@o anisotrdpica, para uma melhor compreensdo € ilustrada nas

Figs. 3.10 e 3.11.

(a)
1 i )
M)
9} >
Fig. 3.11 - Construcio de um objeto auto-atim deterministico. A diagonal em (a) é dividida

horizontalmente em quatro partes iguais, tormando a estrutura (b). No passo seguinte, repetimos 0 mesmo

procedimento nos quatro segmentos de (b), originando a estrutura (c).
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3.4.3 Dimensé&o Fractal
Afim de caracterizarmos de modo quantitativo a geometria fractal de um sistema,

mais especificamente um objeto auto-similar, necessitaremos definir um parimetro novo,

;;)(64-67)

denominado de dimensdo de preenchimento(“embedding dimension dp. que

representa a menor dimensdo Euclideana do espago o qual um dado objeto pode ser

completamente inserido. Obviamente, se considerarmos um sistema de volume V(/),
podemos determinar o valor desta quantidade se utilizarmos pequenas caixas, bastando-
nos sobrepd-las no objeto até que o volume V(I) esteja completamente preenchido por
estas caixas. Supondo que cada caixa possua uma dimensdo d, e comprimento /, entdo
podemos afirmar que o volume ocupado por cada uma,das bolas seja igual a:

v(l)=1% (3.37)
como também, assumindo que sejam necessdrias N(I) caixas para que possamos cobrir
todo o volume V(I) do objeto, entio podemos afirmar que o volume total do objeto,
V(I), € igual ao nimero total de caixas, N(I), vezes o volume v(I)ocupado por cada
caixa, tal que:

V(1) = N(I)v(I)

V()= N(1)1% (3.38)
Entretanto. devemos ressaltar que N(I) deve ser o menor niimero de caixas com as quais
podemos completamente preencher o volume V(I). Quando variamos os valores dos
comprimentos das caixas, fazendo com que assumam pequenos valores, tal que I — 0,
observamos que €m objetos nio-fractais, V(I) atinge rapidamente um valor constante,
enquanto que para objetos fractais verificamos V(I)— (. Portanto, baseados nesta

particularidade destes objetos, podemos definir, de modo geral, um objeto como fractal se
ao medirmos o seu volume, ou superticie ou comprimento com bolas ¢-dimensionais nio
pudermos obter uma medida finita convergente para estas quantidades. quando se executa
uma variagdo no comprimento / da caixa em diversas ordens de magnitude, mais
especificamente quando diminuimos os seus valores, tazendo | — (). Deste modo, quando

no estudo de objetos fractais os quais possuem dimensdes finitas e ramificactes
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infinitamente pequenas (/ — 0), podemos, baseados na eq.(3.38). fazer uma aproximagio

-6
e obter!™°":

N(l)=17" (3.39)
onde d, € a dimensio destes objetos. denominada dimensido fractal. Sendo assim,
fundamentado na definigdo de fractal realizada acima e nesta dltima equagio. eq.(3.39),
podemos afirmar que sistemas com d, <d, sdo ditos fractais. Todavia, utilizando esta
mesma equagao, eq.(3.39), podemos expressar matematicamente a dimensio fractal deste
(64-67),

sistema, como sendo

InN(!/
=Lim 1 ()

T s ln(%) N

que claramente vemos que ao tratarmos com objetos ndo-fractais, o valor de d, coincide

3 (3.40)

com o préprio valor de d,. que representa a menor dimensdo Euclideana do espago em
que este sistema pode ser completamente i1serido.

Um dos mais simples e conhecido exemplo de fractal é a denominada “Poeira de
Cantor”®%® que é um fractal de tamanho finito constituido de virias partes
desconectadas as quais sdo embutidas completamente dentro do espaco uni-dimensional

(d=1).

(0] e e K5O
L e ] eeesssssss——— K |
(e]l S— — —— m—— K-2
- a» - == - e = e K:=3
s o &l 1= e B ee o= K:=4

URTRENTHT ma  nn [T TETRETRT K=95

Fig. 3.12 - Construcdo da Poeira de Cantor. Dividimos o segmento (a) em trés partes iguais, e
removemos a parte central, originando a estrutura (h). Repetimos 0 mesmo processo para cada uma das
partes da estrutura (h), formando a estrutura (¢). Se continuarmos repetindo este procedimento
indetinidamente, obteremos o que denominamos Poeira de Cantor. Para cada ileragiio associamos um

nimero k.
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Sua construgdo baseia-se em uma divisdo sucessiva dos intervalgs, os quais sdo gerados a
partir de cada segmento do objeto. Inicialmente, no passo i=(, suponhamos um objeto
de comprimento [, de tal modo que o dividimos em tré€s partes iguais e retiramos a fragido
central deste objeto, restando assim, no passo i=1, dois segmentos de dimensoes
idénticas e iguais a % Dividimos. entdo. novamente cada um dos segmentos restantes
em trés partes iguais, retirando sua fragao central, restando, deste modo. no passo i=2,
quatro segmentos, cada um de comprimento igual a 19. E assim continuamos

sucessivamente, obtendo como resultado um fractal deterministico, que pode ser
representado esquematicamente pela Fig.(3.12).

Obviamente, pelas discussoes feitas realizadys acima, podemos. de modo geral,
obter uma relagdo do comprimento ! de cada segmento com a interagdo i. ou melhor,

com o ndmero da itera¢do i correspondente:

1 i
L={=11 3.41
<) o
como também, de modo andlogo obtemos para a quantidade de segmentos N (/) :
N(1,)=2 (3.42)

sendo assim, obtemos a partir da eq.(3.40) a seguinte dimensio fractal para este objeto,
“Poeira de Cantor”:

In 2
d, =——==0639... (3.43)

In3
como d; <dg, vemos assim que a “Poeira de Cantor” é realmente um fractal.

,(64-66
6468 ostrado na

Um outro exemplo de fractal é o “Tuapete de Sierpinski
Fig.(3.13), que é uma das estruturas fractais bi-dimensionais mais estudadas, visto que é
considerado como uma generalizagio para duas dimensoes da “Poeira de Cantor”. como
também € visto como um protStipo de uma rede fractal com uma infinita quantidade
hierdrquica de iteragdes.

Sua construgdo estd centralizada na divisio de um tridngulo equilitero em quatro
outros tridngulos equiliteros de mesma drea. retirando-se o tridngulo central e

conservando os trés triﬁngulos restantes. Nos passSos seguintes executamos 0 Imesmo
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procedimento com os tridngulos que sdo conservados em geracdo em geragdo. De tal
modo, que o objeto resultante da subsequente execugdo deste procedimento € um

fractal(ver Fig. 3.13).

Fig. 3.13 - Construgiio do Tapete de Sierpinski. (a) Iniciamos com um tridngulo totalmente
preenchido. (b) Dividimos o triingulo em quatro triingulos iguais e removemos a parte central. (c¢)
Repetimos o mesmo procedimento para cada um dos tridngulos restantes, originando a estrutura (d). se
continuarmos repetindo este procedimento indefinidamente, formaremos uma estrutura denominada de

Tapete de Sierpinski. Para cada iteragiio associamos um nimero k.

De tal modo que, pelas discussdes realizadas acima, podemos extrair uma relagio do

nimero N (/) de tridngulos com o ntimero da iteragdo i, da seguinte forma:
N(1,)=3' (3.44)

e que cada um des tridngulos gerados terdo como comprimento de lado o seguinte valor:

1 i
I, = (5) ! (3.45)

portanto, utilizando a eq.(3.40), obtemos que a dimensio fractal deste objeto, “Tupete de
Sierpinski”, é dada por:

In3
d, =——=1585... 3.46
7 In2 ( )

que como vemos € menor do que a dimensdo do espago Euclideano o qual este objeto

pode ser completamente embutido, d, =2. Sendo, comprovadamente, um objeto fractal,

pois temos que d; < dp.
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Até agora em nossos exemplos temos tratado de fractais denominados
deterministicos, os quais sdo assim chamados por serem construidos a partr de uma
determinada regra matemadtica, de tal modo que em cada passo do processo existe uma
perfeita simetria do sistema, ndo havendo de modo algum flutuagdes na simetria da
estrutura do objeto em estudo. Porém, as flutuacdes estdo cada vez mais presentes nos
processos tisicos, ndo permitindo que no decorrer do processo de constru¢do de um dado
objeto fractal existam estruturas com simetrias perfeitas. Ademais, devemos ressaltar a
existéncia de uma outra classe de fractais, os fractais randdmicos, que sdo gerados a partir
de processos’ aleatérios, que diferenciam de forma bastante acentuada dos fractais
deterministicos por possuirem um nivel simples de simetria.

No entanto, podemos gerar fractais estocdsticos simples de modo andlogo as

construgdes descritas acima para os fractais = deterministicos. Como exemplo,

consideremos, inicialmente, o fractal mostrado pela Fig. (3.14).

k=0 k=1 k=2 k=3

[ o

Fig. 3.14 - Construgiio de um fractal deterministico. Iniciamos com um pequeno quadrado totalinente
preenchido, dividindo-o em nove partes iguais, ¢u melhor, em nove quadrados idénticos, e removemos

quatro destes quadrados localizados na primeira vizinhanga do quadrado central. Repetimos o processo

indetinidamente com cada um dos cinco quadrados restantes.

Como também, construamos um outro objeto fractal, o qual seja constituido pela divisao
de um quadrado em nove partes iguais, gerando, assim, nove quadrados idénticos, e
deletando aleatoriamente quatro destes quadrados, tenhamos cinco quadrados restantes.
No passo seguinte, facamos o mesmo procedimento para cada um dos quadrados

restantes, de tal modo que podemos representar este objeto apds trés execugdes, iteragdo

[ = ((), 1, 2), pelo seguinte diagrama:
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k=1 k=2

Fig. 3.15 - Construgio de um fractal estocistico. Iniciamos com um quadrado totalmente preenchido,
dividindo-o em .nove quadrados iguais e removemos quatro destes quadrados, cujas localizagGes sio
escolhidas de forma aleatéria. Repetimos este procedimento com cada um dos cinco quadrados restantes.

No entanto, obtemos a mesma dimenséo fractal da obtida pelasestrutura fornecida pela Fig. 3.14,

Se compararmos a aparéncia geométrica dos objetos fractais representados pelas
Figs.(3.14) e (3.15), veremos que sdo completamente diferentes, entretanto suas
dimensdes fractais sdo idénticas e sdo dadas por:

d, =5 _ 465 (3.47)
f_ln3— 0 OIS .

mostrando-nos que necessitamos da mesma quantidade N(/) de caixas para cobrirmos
completamente cada um dos objetos.

Certamente, esta construgdo, descrita acima, representa uma versdo bastante
simples de possiveis fractais randdomicos que podem ser construidos. Diferentes objetos
fractais randomicos seriam obtidos se fizéssemos variar a posi¢io das partes geradas,
como também, .se alterdssemos a quantidade destas unidades ou o parimetro de
escala(quer seja de redugao ou de aumento). No entanto, € importante ressaltar que para
esta classe de fractais, fractais randomicos, ndo € possivel obtermos uma expressio
explicita para a determinagio da dimensao fractal destes objetos de modo andlogo para o
caso de fractais deterministicos, que era representada pela eq.(3.40). Tr€s importantes
técnicas tem sido utilizadas para a determinagdo desta quantidade d,, que sao:
experimental, teérica e computacional.

No que se refere as técnicas experimentais, as mais aplicadas dividem-se nas

seguintes categorias: a) processamento digital de tiguras de objetos bi-dimensionais
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b) experimentos de espalhamento: raios X, luz, néutron, etc. ¢) deposi¢ao de mono-
camadas em estruturas ) medi¢ao direta da dimensdo através de algumas propriedades
fisicas do sistema.

No campo tedrico, observou-se uma estreita relagdo entre fractais e fendmenos
criticos, através de experimentos verificou-se que alguns sistemas, os quais exibiam
transigdes de fase de segunda ordem, apresentavam lei de poténcia dependente da
quantidade fisica a qual estava sendo medida no experimento, e estes expoentes que
caracterizavam a lei de escala destas quantidades assumiam valores nio inteiros, somente
quando na lei'de escala gerada A partir da massa do fractal com o seu raio de giragdo.
Entretanto, notou-se que esta analogia entre os fractais e os fendmenos criticos tinha
como pano de fundo a auto-similaridade, que em ambos os casos justifica a ndo
padronizagdo das leis de escala dentro destes processos, como também a invariincia de
escala destes processos nos pontos criticos do sistema. Contudo esta invariiincia de escala

1617 "4 qual tem sido bastante

tem formado a base da Teoria de Grupo de Renormalizag¢do
utilizada na descrigdo de transi¢cOes de fase continuas, realizando tal descrigdao através do
cdlculo dos expoentes criticos e dos conhecidos diagramas de fase, mostrando-nos a
importincia destes parimetros para a transi¢do de fase do sistema. A idéia principal do
Grupo de Renormalizagio estd no fato de reduzirmos os graus de liberdade de um dado
sistema. No entanto, observa-se que tanto os muitos graus de liberdade de um sistema
como a invariiincia de escala possuem a mesma razdo de ser: no ponto critico o sistema
possui grandes flutuagdes com nenhum comprimento caracteristico.

Entretanto, no campo computacional o que mais tem-se destacado é a simulagdo
de vdrios fendmenos de crescimento de estruturas, valendo ressaltar aqui a importincia do
Método Monte Carlo, que realiza simulagdes de crescimento de determinados sistemas a
partir de dados aleatdrios, através de processos estocdsticos.

Porém, apesar desta dificuldade em explicitar a dimensdo fractal para os fractais
randdmicos, vimos acima diversos métodos que nos possibilitam ndo somente verificar o
cardter fractal destes objetos, mas também de nos informar que valor é assumido para a
dimensdo fractal destes objetos. O fato é que os fractais randdomicos sdo auto-similares

somente em sentido estatistico, ou seja, a invariincia de escala significa que possuem
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somente identidade estatistica, ou melhor, todas as quantidades estatisticas serdo as
mesmas tanto para o Sistema original como para um outro sistema oriundo de uma
transtformagdo de escala do sistema original. Desta forma, torna-se muito mais apropriado
descrevé-los utilizando a invaridncia de escala do que usarmos propriamente a auto-
similaridade. Naturalmente, para demonstrarmos a presenga de uma lei de escala ftractal
podemos, novamente, utilizarmos a definicdo baseada em cobrir totalmente o objeto com
bolas, no entanto, € muito mais eticaz calcularmos a tdo conhecida fungio de correlagdo

c(7), a qual é expressa do seguinte modo ®-67:

()= 3 p(F + Fp(7) (3.48)

=

que representa o valor esperado que dois pontos, separados por uma distincia 7,
pertengam a estrutura. No caso de crescimento de fractais, o volume V do objeto € igual
ao nimero N de particulas no agregadc. De tal modo que a eq.(3.48) nos fornece a
probabilidade de encontrarmos uma particula na posi¢do 7+ 7, uma vez que exista uma
particula situada na posi¢do 7’. Sendo assim, p na eq.(3.48) representa uma densidade
local de particulas, ou seja, p(7¥)=1 quando existe uma particula situada na posi¢do 7 e
p(7)=0 quando ndo tivermos nenhuma particula localizada na posi¢gio 7. Valendo
ressaltar que nos fractais mais comuns a tung@o correlagio independe da dire¢do tomada,
signiticando assim, que a fun¢@o densidade de correlagio dependa unicamente da distincia
r, tal que:
c(7) = c(r) (3.49)
No entanto, para utilizarmos a fungdo de correlagio, introduzida acima. como uma
condi¢do para possuirmos uma geometria fractal, devemos garantir que esta fungdo
expressa pela eq.(3.48) seja invariante quando sob uma reescala do comprimento r, de tal
modo que ao tfazermos uma transformagZo de escala em » por um fator arbitrdrio b,
tenhamos a seguinte propriedade:
elryeb=clr) (3.50)
onde ¢ € um nimero ndo inteiro maior do que zero e menor do que a dimensdo d, que

corresponde a menor dimensdo Euclideana na qual o objeto em estudo pode ser
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completamente inserido. Vemos, deste modo, através das eqs.(3f48) e (3.50), que a
fungdo de correlagdo € na verdade dependente exclusivamente da distincia » que separa
as duas particulas, podendo, assim, estabelecer que a tnica fungdo a qual satistaz a
eq.(3.50) ¢ a seguinte lei de poténcia‘®":

c(r)=r" 3.51)
onde tal relagdo nos serd bastante (til para determinarmos a dimensdo fractal deste objeto
como funcdo do expoente ¢ . Para mostrarmos isto para o caso de crescimento de
fractais, podemos calcular a quantidade N de particulas de uma esfera de raio L a partir
da fungdo densidade de distribuigdo, tal que:
—p+dy [L

N(L)=|(

o'—.h

{4
17 (dr) =
(e '[[ A —a+dEj“

ML) =% (3.52)
onde d, representa a menor dimensido Euclideana na qual podemos incluir completamente

a estrutura em andlise.

Todavia, como estamos tratando de crescimento de estruturas fractais, podemos
utilizar de modo andlogo as discussdes realizadas para a obtengdo da eq.(3.39). De tal
modo que adicionalmente podemos separar dentro deste objeto regides de comprimento

linear L com volume V(L) dependente deste comprimento linear L. No entanto,
atfirmamos acima que esta quantidade V(L), para os fractais randdmicos, é igual a
quantidade N(L) de particulas dentro destas regido, ou seja, igual ao nimero N(L) de
bolas contidas nesta fragcdo deste objeto. Contudo, devemos continuar garantindo a
divergéncia deste parimetro N(L) para determinados valores do raio L da esfera.
Anteriormente, tinhamos N(I), onde [ representava o raio de cada bola, divergindo
quando [ — 0, agora devemos ter N(L) divergindo quando o comprimento linear L da
regido do objeto separada tender para o infinito, L — oo , pois devemos assegurar que

(Z/L) — 0. Sendo assim, podemos obter a seguinte lei de poténcia®®” para N(L):

N(L)=L" (3.53)
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Portanto, a0 compararmos esta ultima equagdo, eq.(3.53), com a equagdo obtida
anteriormente, eq.(3.52), obtemos finalmeate a relagio desejada da dimensido tractal com

0 parimetro ¢ :

d; =d-« (3.54)
0 qual € um resultado amplamente utilizado para a determinagdo da dimensdo fractal o, a

partir da fung¢do densidade de correlagdo para o caso de fractais randomicos.
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Resultados e Discussoes

4.1 Introducao

Muitos trabalhos t€m sido desenvolvidos no intuito de explicar 0 comportamento

@397778 " dentre estes avangos

de macromoléculas em especificos tipos de solventes
ocasionados por ocasido destes estudos, vemos a introdu¢ao do conceito de leis de escalas
para a fisica de polimeros, baseados em analogias a processos criticos. Nesta linha de
pensamento, observa-se que € possivel déscrever polimeros por simples leis de escalas
devido ao seu cardter auto-similar, podendo, deste modo, serem tratados como fractais.
No entanto, devemos ressaltar que o tratamento-por fractais ndo introduz nenhum
conceito novo, porém nos permite, de forma sistemdtica, uma maior compreensio, como
também, uma melhor visualiza¢do do aspecto conformacional dos polimeros. Ademais, em
recentes trabalhos na literatura, advindos da necessidade de simular computacionalmente
estas estruturas(cadeias poliméricas), tem-se criado uma situagdo na qual a expressdo
caminhada auto-excludente(SAW) € considerada sindnima ao problema da estatistica de
polimero, devido o comportamento fractal destes sistemas. Muitos destes trabalhos estdo
concentrados no problema de como (r(N )) o valor médio da distdncia entre 0s extremos
da cadeia, depende do nimero N de mondmeros do polimero, como também no estudo
do comportamento da fungiio correlagio ¢(7) com relagio A (r(N)). Porém, em nosso
trabalho, que consiste no estudo do crescimento e confinamento de uma macromolécula
entre duas superficies planas, separadas por uma distancia &, estamos interessados em
estabelecer também, este comportamento ara estas grandezas supracitadas, no entanto a
esséncia de nosso estudo € a formagdo de pontes(bridging) destas cadeias ocasionadas
pelo confinamento destas macromoléculas, enfatizamos assim. que 0 nosso interesse maior
€ analisar que tipo de comportamento existe entre 0 nimero N de mondmeros da cadeia e
a distdncia h existente entre as superficies nas quais as cadeias poliméricas sdo
confinadas. Imbuidos neste objetivo, comparamos 0s nossos resultados com os resultados

tedricos deste problema, tormagio de pontes de polfmeros, obtidos por Hong Ji et al®”.
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4.2 Modelo

Os resultados obtidos sio prevenientes da simulagdio computacional do
crescimento de cadeias poliméricas por um tipo especifico de caminhada auto-excludente
(SAW) que cresce de forma indetinida, ou melhor, que cresce “para sempre”. A esta
caminhada denominamos Caminhada Auto-excludente de Crescimento
Indefinido(IGSAW )", a qual foi bastante discutida na se¢do 3.3.4 deste nosso trabalho.

O confinamento dos polimeros :foi realizado entre duas superticies planas
perpendiculares ao eixo das ordenadas, uma localizada no ponto x=(0 e a outra em
x=h, de tal modo que a largura da rede € igual a & comprimentos de rede. No que se diz
respeito a altura da rede, impomos que esta esteja limitada pelas retas y=1500 e
y =-1500, fornecendo-nos uma altura de L =3000 comprimentos de rede.

No entanto, ao realizarmos nossa caminhada IGSAW nesta rede bi-dimensional
h x L, assumimos que o crescimento fosse localmente anisotrépico e direcional, tanto por
estarmos interessados no estudo estatistico das caminhadas que formam uma ponte entre
as superticies de confinamento, como tamdém para possibilitar, tuturamente, uma andlise
deste fendmeno comn o problema da percolagdo direcional.

Interpretamos por anisotropia a condi¢io de que a probabilidade para um passo em
um dada direcdio seja diferenciada em relagio as outras, e por direcional como sendo que a
macromolécula possua maior probabilidade para crescer em um sentido especitico. Desta
forma, dividimos nossa rede em trés zonas de probabilidades: /%)Anisotrépica,
2%)Isotrépica, 3%)Anisotrépica. A largura de ambas as zonas de anisotropia € de
10%h (dez por cento da distincia que separa as duas supertficies planas). Ji no que se
refere a diregdo preferencial consideraremos o eixo perpendicular ao plano das superticies
planas. Tal discussdo pode ser melhor entendida e representada pela Fig. 4.1.

Estas duas zonas de anisotropia foram introduzidas em nossa modelagem a fim de
simularmos a interagdo entre as paredes e os mondmeros, com isto podemos simular trés
tipos de interagdes entre as paredes e a macromolécula: 1%) Interagao fraca 2%) Atragio
3%) Repulsdo. Definimos como interagio fraca quando a interagdo entre as paredes e a
macromolécula sio de tipos diferentes, o seja, quando uma superticie exerce forgas do

tipo atrativa a outra exerce forgas repulsivas nos mondmeros, ou caso contririo; de tal
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modo que podemos obter dois tipos de casos: atl'agﬁi)—isotropia—repulsﬁo e
repulsdo-isotropia-atragdo. Ji a situaciio de atragdo. detine-se como o caso em que as
forgas exercidas nos mondmeros em ambas as superficies sdo do tipo atrativa
(atragdo-isotropia-atragdo), enquanto que a situagdo de repulsdo representa o caso em que
as interagdes existentes entre ambas as superficies planas e os mondmeros sdo do tipo

repulsiva(repulsdo-isotropia-repulsio).

Zona de Anisotropia

Py

Zona de Isotropia

=

Z ona de Anisotropia
. Py
P-x Pix P-x et

Py Py

o
=)
e o s B e e | R s » i

Fig. 4.1 - Representagiio geral da rede utilizada na simulagdo do crescimento e confinamento de
macromoléculas, entre duas superficies planas. Nas zonas de anisotropia o somatério das probabilidades
no eixo x € maior do que o somatdrio das probabilidades no eixo y. Nas zonas de isolropia, as

probabilidades em todas as dire¢Oes siio iguaisa p = 025 .

Na realizacio deste trabalho, todas as nossas simulagdes computacionais foram
realizadas para a situagdo descrita como interagdo do tipo atrativa, que € o caso em que as
trés regides de nossa rede apresentam-se na forma atragdo-isotropia-atragio.

Sabendo que comprimento de ambas as superficies planas estd limitado pelas retas
y=1500 e y=-1500, entdo. por uma questdo de simplicidade, escolhemos y =0
dentre os pontos compreendidos neste comprimento; e como uma das superticies estd
localizada em x =0, iniciamos, portanto, o crescimento da cadeia polimérica no ponto

2

(x=0, _v=0). Como o objetivo do problema é a formagdo de pontes entre as duas

superficies planas, entdo, paramos a caminhada JGSAW assim que o caminhante toca pela
primeira vez a outra superficie, localizada em x=h, para um determinado valor fixo da

quantidade N de passos.
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O programa computacional, feito na Linguagem Fortran, para a simulagio do
modelo proposto para o crescimento e confinamento de macromoléculas entre duas

superticies planas, encontra-se no Apéndice A deste trabalho.

4.3 Resultados

Em nosso estudo realizamos, para um determinado valor da distincia h entre as
placas, 30.000 caminhadas /GSAW, ou seja, crescemos 30.000 cadeias poliméricas. Para

cada um destes polimeros calculamos o nimero N de mondmeros, a distincia 7 entre os
dois e a fungdo correlagio c(7). No cdlgulo da quantidade de mondmeros analisamos.
simplesmente, quantos” passos foram realizados na caminhada. Para a determinagdo da
< A . . — e . A . 24
distincia entre os extremos da cadeia #, basta-nos calcularmos a distincia geométrica

entre o ponto inicial e o ponto final da cadeia, que é dada por:

‘=\/(x—xo)2+(y—y0)2 @.1)

No entanto, devemos ressaltar que consideramos o ponto inicial da cadeia como sendo as

coordenadas do ponto em que pela tltima vez o caminhante tocou a superficie de origem,
localizada em x=0. Com isto, queremos excluir qualquer efeito que os denominados
“trens” de polimeros, que constituem os segmentos de cadeias poliméricas que interligam
dois diferentes pontos de uma mesma superticie plana, possam causar ao problema do
confinamento das macromoléculas entre as superficies. No que diz respeito a fungio
correlagio ¢(7), se o sitio estd ocupado consideramos ¢(7) igual a um, porém se o sitio
estd desocupado ¢(¥) € igual a zero.

A fim de obtermos uma boa estatistica de nossas cadeias poliméricas necessitamos
agrupar pontos que possuam a menor dispersio em seus valores, para isto geramos, a
partir do conjunto de pontos com as informagdes dos valores de N, 7 e ¢(7), 100.000
outros conjuntos aleatoriamente e em seguida calculamos a varidncia para cada um destes
100.000 conjuntos e retiramos para trabalharmos aquele que possuir o menor valor para a
variincia. A seguir, de posse deste arquivo de dados de menor varidncia, plotamos o0s
grificos: c¢(F)x7, FxN e Nxh. O interesse nestes grdficos baseia-se no fato de

querermos obter informagdes acerca do co:nportamento assintdtico destas fungdes.
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Fitting Model : p,x"2
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Fig. 4.2 - Os pontos representam os resultados obtidos para a funcio correlagio média (c(?)) versus a
distincia (fe) média entre os extremos. A linha tracejada representa o ajuste( “firting” ) da fungio

f(x)= p, xP> para os resultados apresentados.

Na Fig. 4.2 plotamos a fungiio de correlagio c(7) versus a distincia entre os dois
extremos 7 da cadeia polimérica. Os pontos em preto representam os resultados obtidos a
partir do arquivo de dados de menor varidncia, provindos da simulagdo, enquanto a linha
tracejada em vermelho representa o esbogo de uma curva especifica para determinados
pardmetros. A fungdo na qual fizemos este ajuste(firting) € expressa da seguinte torma:

(4.2)
que foi formulada em analogia com a eq.(3.38), a qual nos fornece uma lei de escala entre
a fungiio correlagdo c(7) e a distincia entre os extremos 7 para sistemas auto-similares,

de tal modo que se quisermos obter o valor da dimensio fractal ¢, basta-nos calcular:

d, =(d+p,) 43)

onde d € a dimensio Euclideana.
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1204 Fitting Model : p,x®2
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Fig. 4.3 - Os pontos representam os resultados obtidos para a distincia <R) média entre os extremos

versus o nimero N de monOmeros. A linha tracejada representa o ajuste( “firring” ) da fungio

f(x)= p; x* para os resultados apresentados.

Em relagiio ao comportamento da distincia entre os dois extremos 7 da cadeia
polimérica com o nimero N de mondmeros, este pode ser analisado através da tig.(4.3),
na qual os pontos pretos representam os valores provindo do conjunto de dados de menor
variincia, enquanto que a linha tracejada em vermelho representa o ajuste(fitting) da curva
expressa pela eq.(42) para determinados valores de seu coeticiente e expoente. Utilizamos
esta mesma equagdo pois se trata de uma expressao andloga as equagdes (1.67) e (3.40),
que estabelecem uma lei de escala entre o nimero N de monOmeros e a distincia entre 0s
dois extremos 7 para sistemas fractais, de tal forma que se desejamos obter o valor da

dimensao tractal P basta-nos calcular:

4y =/p.) @t

que recebe a denominagio de dimensio tractal de Hausdorff-Besicovitch'™*".
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No que se refere a determina¢do das propriedades assintdticas existentes entre o
nimero N de mondmeros e a largura h entre as duas superficies planas € realizada
através da tig.(4.4), onde os pontos pretos representam os valores oriundos do conjunto
de dados de menor varidncia, enquanto que a linha tracejada em vermelho representa o
esbo¢o da curva ajustada, eq.(4.2) para determinados valores de seu coeficiente e
expoente. A justificativa para utilizarmos esta expressao vem do fato de sua semelhanga
com a rela¢do obtida por Hong Ji et al® entre o nimero N de mondmeros e a largura A
entre as duas superficies planas, que foi discutida anteriormente no Capitulo 2, sendo

expressa pela eq.(2.39).

Fitting Model : p,x"2
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Fig. 4.4 - Os pontos representam os resultados obtidos para o nimero N de mondmeros versus 0 a

separaciio A entre as paredes de confinamento. A linha tracejada representa o ajuste( “firting” ) da tungio

f(x)= p, xP2 para os resultados apresentados.

Ademais, através da Fig. 4.5 apresentamos uma amostragem de nossas simulagdes
de crescimento de cadeias poliméricas através de caminhadas /[GSAW. Este exemplo de
macromolécula foi retirado de modo aleatério, tendo como tnico objetivo nos fornecer de

forma alusiva o que realmente construimos com o nosso programa. Além disto,
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aproveitamos para ressaltar o aspecto da alta quantidade de mondmeros nas cadeias

geradas, ou melhor, o longo comprimento das macromoléculas.

a) Cadeia ﬁolimerica de 657 monomeros
40.0

-30.0 ’
0.0 100.0
b) Cadeia Polimerica de 5250 monomeros
225.0

5
e

0 100.0

Fig. 4.5 - Exemplos de cadeia poliméricas confinadas entre duas superficies planas separadas por uma
distancia de 100 unidades de rede, gerados por simulagdo computacional. Ambas as macromoléculas
foram geradas sob as mesmas condi¢des(Fig. 4.6). Note a diferenca da quantidade de mondmeros

existente entre os exemplos.
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4.4 Discussoes

Através das leis de poténcia estabelecidas para estas classes de sistemas. equagdes
(1.67), (3.38) e (3.40), as quais toram obtidas e analisadas para uma gama enorme de
processos fisicos, e fundamentados nos valores dos expoentes obtidos do ajuste das curvas
de nossos resultados, obtemos para o nosso problema em. estudo, que é o crescimento e
confinamento de polimeros entre duas superficies planas, que o valor para a dimensio
fractal deste sistema é dada por:
d, =1,68 (4.5)
onde este resultado € origindrio da expressio:
c(r)=+" (3.38)
que representa a lei de poténcia da fungdo correlagdo ¢(¥) com a distincia entre os dois
extremos 7 da cadeia polimérica. Enquanto que através de nossos resultados expostos
pela Fig. 4.3 e baseados na expressio:
r=NP (3.40)
que € a lei de poténcia da distincia entre os dois extremos 7 com o nimero N de
mondmeros da cadeia polimérica, obtemos a seguinte dimensio tractal:

d, =1,64 (4.6)

que recebe a denominagio de dimensio tractal de Hausdorff-Besicovitch™*”,

Ao compararmos estes resultados citados acima para a dimensdo fractal com o
valor determinado por Kremer et al™, que estabeleceu uma dimensdo fractal d =1,75
para uma caminhdda do tipo /JGSAW, verificamos uma variagdo em torno de 5% . Valendo
ressaltar que o resultado obtido por Kremer et al™ foram para N >100, onde N é a
quantidade de passos da caminhada.

No entanto, verificamos que estes nossos resultados, para a dimensdo fractal,
apresentam uma boa concordincia com os resultados obtidos para uma determinada classe
de modelos de crescimento cinético, mais especitficamente com os processos de agregacio
por difusdo limitada(Diffusion-limited Aggregation - DLA)“*4D g quais apresentam-se

como um bom ensaio das diversas aplicagOes fisicas nas quais podemos utilizar o modelo

IGSAW como ferramenta de simulagdo. Como também, ressaltamos que a comparagdo de
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nossos resultados de confinamento de macromoléculas com os obtidos para DLA, provém
do fato da nio existéncia de uma teoria padrao para o tratamento de processos do tipo
DLA®(dai surge a necessidade da especulagio de uma possivel semelhanca com o
problema estudado neste trabalho), e de que muitas das aproximagdes utilizadas para o
estudo destes processos estio fundamentadas na teoria de campo médio desenvolvida por
Flory® na descrigdo das estruturas de polimeros lineares.

Um outro ponto importante que nos motiva a fazermos uma comparagio de
nossos resultados para o confinamento de polimeros, aqui simulado por caminhadas do
tipo IGSAW, com os resultados obtidos para os processos de crescimento cinético - DLA,
€ que para modelos de caminhada do tipo IGSAW € fundamental conhecermos a histéria
da caminhada ,ou seja, necessitamos saber se o sitio a ser ocupado nos levard ou niio para
dentro de uma “gaiola”, para isto precisamos analisar todos os sitios ocupados
anteriormente. Desta forma. verificamos a existéncia de interagdes de longo alcance entre
os sitios, pois a escolha de um determinado sitio estd vinculada nido somente a sua
vizinhanga mais préxima, mais também a outros sitios, que determinariio a existéncia ou
nao de pontos de intercepta¢do da caminhada, ou seja, a existéncia de gaiolas. No entanto,
observou-se também que em muitos processos de crescimento de estruturas na natureza. a
determinacio do valor de alguns pardmetros importantes do sistema em um dado ponto,
além de sofrerem influéncias de pontos de sua vizinhanga, sdo fortemente intluenciados
por pontos distantes do sistema(interagdes de longo alcance). De tal modo que
poderfamos estudar este efeito bastando-nos utilizar equagdes adequadas que nos
possibilitasse descrever a dependéncia espacial destas grandezas. E € af que surge uma
classe de sistemas de crescimento nos quais tal efeito pode ser regido por equagdes do

tipo Laplace. que sio os denominados Crescimentos de Difusdo Limitada(DLA)™¢+4-2),

(46.81-83)

Diversos trabalhos foram realizados neste campo de pesquisa , entre estes

. . 8 . . . . ~
destaca-se o realizado por Witten et al®", que pioneiramente realizou simulagdes

@D sdo simples: Coloca-se um

computacionais destes sistemas. As regras deste modelo
particula-semente(particulal) na origem da rede, no passo seguinte langa-se uma outra
particula(particula2) distante da origem, permitindo-a caminhar de forma aleatéria até

que alcance qualquer um dos sitios adjacentes i particula-semente. Para-se a
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movimentagdo desta particula e em seguida langa-se uma oufra particula(particula3)
deixando-a caminhar aleatoriamente até que atinja quaisquer dos sitios adjacentes as
particulas 1 ou 2. No préximo passo repetimos o0 mesmo procedimento, de tal modo gue
apds diversas iteragdes notamos que a estrutura gerada é auto-similar, nos possibilitando,
desta forma, utilizar as expressdes de leis de poté€ncia obtidas para os sistemas fractais, as
quais foram expressas pelas eqs.(3.38) e (3.40) quando no estudo destes tipos de
estruturas.

No entanto, no que diz respeito ao resultado obtido através da Fig. 4.4, onde
podemos obter o expoente da lei de poténcia do nimero N de mondmeros do polimero
com a distincia h entre as superticies planas, estabelecemos a seguinte relagao:

N = h'* 4.7)
que a0 compararmos este resultado com o resultado teérico obtido por Hong Ji et al®”,
eq.(2.39), verificamos a existéncia de uma pequena variagio entre estes resultados.

Acreditamos que estas variagcdes nos expoentes de nossas expressdes com relagido
aos estabelecidos na literatura sdo causados essencialmente por trés fatores:
1°) Anisotropia na rede 2%) Tamanho da rede 3%) Limite na quantidade de mondmeros.

Como dissemos anteriormente, em nosso modelo foi suposto a existéncia de duas
zonas de anisotropia, estas zonas foram introduzidas em nossa modelagem a fim de
simularmos a interagdo entre as paredes e os mondmeros, com isto pudemos obter trés
tipos de interagdes entre as paredes e a macromolécula: 1%) Interagdo fraca 2°) Atragdo
3%) Repulsao.

Uma vez que em um sistema fractal, o valor de sua dimensdo fractal estd
estritamente relacionada com a sua geometria configuracional, podemos observar que
dependendo do tipo de situagido assumida para a simulagdo podemos encontrar diferentes
valores para a dimensdo fractal, visto que para cada uma destas situacdes obtemos
distintos tipos de configuragdes para a macromolécula.

Na primeira situagdo(interagdo ftraca), possuimos dois tipos de casos:
atragdo-isotropia-repulsdo e repulsdo-isotropia-atragdo. Na situac¢do atragdo-isotropia-
repulsdo, o mondmero possui uma maior dificuldade para sair da primeira zona de

anisotropia, encaracolando-se bastante, porém ao chegar na segunda zona de anisotropia
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observamos também que o mondmero possui uma maior dificuldade para atravessar esta
zona e consegiientemente para conectar a segunda superficie. ocorrendo encaracolamento
na estrutura da macromolécula. Para a sitiagido repulsdo-isotropia-atra¢iio, o mondmero
rapidamente atravessa esta primeira zona ce anisotropia, observando-se um espichamento
da cadeia dentro desta zona, ao chegar na segunda zona de anisotropia. nota-se que o
monomero rapidamente atravessa esta zona e conecta-se a segunda superticie,
verificando-se assim um espichamento da cadeia dentro desta zona. Portanto, em ambas as
situagdes descritas acima, verificamos acentuadas diferengas de concentragdes de
mondmeros ad longo da rede, devido ao fato de que as zonas de atragdo funcionam como
zonas de empacotamento da cadeia, enquanto que as de repulsio atuam como zonas de
alongamento.

Aproveitando as discussdes realizadas acima, observamos que na segunda
situagdo(atragio) relacionadas com os tipos de interagdes das paredes com a cadeia
polimérica, verificamos que para este caso, atragdo-isotropia-atragiio, a primeira zona de
anisotropia atua como uma zona de empacotamento da cadeia, enquanto que a segunda
zona de anisotropia funciona como um21 zona de espichamento. Ji para a terceira
situacao(repulsdo), repulsdo-isotropia-repulsdo, notamos que a primewra zona de
anisotropia atua como uma zona de esp!ichamento, enquanto que a segunda zona de
anisotropia funciona como uma zona de empacotamento da cadeia.

Se observarmos bem, a situagdo na qual mais rapidamente os mondmeros formam
uma ponte entre as duas superficies planas estd situada dentre os casos obtidos para a
situagdo descrita como interagdo fraca, que € o caso em que as trés regides de nossa rede
apresentam-se na forma repulsdo-isotropia-atracio. No entanto, escolhemos a situagdo
atragdo-isotropia-atracdo para realizarmos todas as nossas simulagdes computacionais,
tendo em vista a sua analogia com o problema encontrado na mecénica quantica, do
confinamento de uma particula em uma barreira de potencial. Lembrando o que ocorre
entre os valores das probabilidades nestas zonas anisotrdpicas € simplesmente uma
variagdo suave, e baseados nesta pequena variagao nos valores das probabilidades dentro
destas zonas é que todas as simulagdes realizadas neste trabalho foram efetuadas para a

situacdo fisica escolhida(ver Fig. 4.6).
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Zonade Repulsdo : Zona de Isotropia : Zono de Atracao

1 ]
! 1

0.21 : 0.25 I 0.21
! |

0.28 0.30}0.25 0.25 !o0.28 0.30

!
! |

0.21 ' 0.25 I 0.21
! I
| 1
' 1

Fig. 4.6 - Representacio do tipo de rede utilizada na simula¢iio do crescimento e confinamento de

macromoléculas, entre duas superficies planas. Rede utilizada para a obteng¢do dos resultados apresentados

neste trabalho. =

Um outro problema que citamos como um dos responsdveis na variagio de nossos
resultados em relagdo aos obtidos na literatura, toi o tamanho da rede. Em nossas
simulagdes variamos os valores da separacilo existente entre as superticies planas desde
10 até 100 comprimentos de rede. O motivo que nos levou a utilizar separagdes bem
pequenas(10 até 100 comprimentos de rede) foi o préprio objetivo de nosso trabalho,
que € de estabelecer, através de simulagGes computacionais, a lei de poténcia estabelecida
por Hong Ji et al® para o nimero N de mondmeros e a distincia entre as superficies
planas. Desta torma, necessitivamos analisar o comportamento desta relagdo para valores
de separagdes com diversas ordens de grandeza. Porém, ao incluirmos estes pequenos
tamanhos de rede na obtengdio de nossas leis de escala, inserimos nas leis de poténcia
efeitos de tamanho.

Um outro tator que mencionames como’um dos causadores da diferenca dos
expoentes em nossas relagcdes com os estabelecidos na literatura, foi o limite na quantidade
de passos da caminhada. Uma vez que a simulagdo do crescimento dos polimeros foi
realizada por um tipo de caminhada auto-excludente(SAW) que crescia indefinidamente,
ou melhor, crescia infinitamente, necessitamos, por uma questio de memdria em nossos
computadores, pois & partir de agora deverfamos definir matrizes muito grandes, ter que
limitar o ndmero mdximo de passos da caminhada, ou melhor, limitar a quantidade mdxima

de mondmeros para a macromolécula conectar as duas superticie planas. Supomos que
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este nimero seria igual a 5.000 mondmeros, e caso a macromolécula apos 5.000 passos
ndo constituisse uma ponte entre as supertficies, ou melhor, nio conseguisse alcangar a
outra superficie localizada em x = &, entdo, descartivamos esta caminhada e inicidvamos
uma outra. Desta forma, portanto, em nossas estatisticas foram levadas em consideragio
somente polimeros com quantidade de mondmeros abaixo deste valor de 5.000
mondmeros, desta forma restringimos em nossas cdlculos os valores que o parimetro N
poderia assumir. Acreditamos assim, que o fato de termos limitado os valores da
quantidade N de mondmeros tenha causado alguma perturbagio na obtencdo dos

expoentes dasleis de poténcia.
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Conclusoes

5.1 Introducao

Muito antes de iniciar-se aplicagdes dos fractais a ciéncia de polimeros, ja se
encontrava estabelecida uma analogia entre as cadeias poliméricas e certas classes de
fendmenos fisicos, inclusos no que denominados processos criticos. O resultado desta
analogia nos trouxe enormes avangos no estudo das propriedades de conformag@o de uma
macromolécula, pois através de alguns trabalhos frutos desta analogia, tornou-se possivel

(5,14)

estabelecer importantes relagdes, e ai citamos a relagdo de Flory que estabeleceu uma

lei de poténcia (r ~N V) entre o numero N de mondmeros e a distdncia 7 entre os

extremos da cadeia. Portanto, devemos ter em mente que a inclusdo dos fractais no estudo
da ciéncia dos polimeros n3o nos traz nenhum conceito novo, ou melhor, ndo
reapresentam qualquer conceito que antes ja ndo tivéssemos conhecido através da analogia
com processos criticos. Entretanto, desempenham um papel bastante importante na
representacdo geométrica das estruturas das macromoléculas, nos fornecendo uma
visualizagdo do que seja verdadeiramente uma cadeia polimérica.

Um outro ponto importante que devemos estabelecer € que neste trabalho
centralizamos toda nossa atengdo ao aspecto estatico do problema de confinamento de
polimeros, tal que ndo realizamos qualquer estudo no que se refere ao carater dindmico
deste problema, que seria o estudo da influéncia ou do comportamento das pontes
formadas entre as superficies quando simulassemos uma aproximagdo ou um afastamentos
das superficies planas.

Contudo, apesar de estudarmos unicamente o aspecto estatico do crescimento e
confinamento de macromoléculas entre duas superficies planas, fazendo a parte de
simulagio do crescimento das cadeias poliméricas através do modelo JGSAW>, achamos
que com este trabalho colaboramos para um melhor entendimento das propriedades

dindmicas deste sistema, uma vez que se torna imperativo para este estudo o
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conhecimento das propriedades estaticas e dos conceitos fisicos apropriados do sistema.
Portanto, de maneira geral podemos sintetizar as conclusdes deste trabalho como sendo:
1% A dimensdo fractal obtida pela lei de poténcia da fungao correlagio c(r) com a

distincia entre os extremos 7, difere do valor estabelecido por Kremer et al™, no

46)

b

entanto apresenta-se com boa concorddncia com o resultado obtido por R. Julien et al'
Witten and Sander™ e P. Meakin®,
2°) Este mesmo pardmetro obtido pela lei de poténcia da distancia entre os
extremos # com o niumero N de mondmeros concorda com o resultado obtido por R.
Julien et al*® e Witten and Sander'™, todavia difere do estabelecido por Kremer et al™.
3%) O expoente obtido da lei de poténcia do niifhero N de mondmeros com a
distincia 4 entre as superficies planas difere do resultado obtido por Hong Ji et al®®,
porém aproxima-se melhor do estabelecido por Flory™'®.
No final do Capitulo, apresentamos uma tabela(Tabela I) comparativa de nossos

resultados para a dimens3o fractal com os encontrados, na literatura, para diversos

modelos.

5.2 Perspectivas

Alguns trabalhos ainda se encontram em aberto no que se relaciona ao estudo de
confinamento de polimeros, um destes seria a analise dos efeitos dos trens de polimeros
nas forcas existentes entre as superficies planas, lembramos que definimos trens de
polimeros como sendo cadeias poliméricas que interligam dois pontos distintos numa
mesma superficie. Um outro caso seria considerarmos, em vez de superficies planas, o
caso de superficies esféricas, e ai partiriamos para uma outra gama de fenOmenos que
poderiam ser simulados, que vdo desde o estudo dos efeitos das solugdes poliméricas em
sistemas coloidais"® até a analise da agdo das células T em nosso sistema imunol6gico’”.

No que se refere ao carater dindmico, podemos ainda simular a movimentag@o das
superficies e determinar, para certas situagdes, as propriedades deste sistema, tal como os
valores das forgas e o tempo de relaxag@o da ponte entre as superficies.

No campo estatico, nossos estudos foram realizados para o caso em que a rede

apresentava-se da seguinte forma: (zona de repulsio)-(zona de isotropia)-(zona de
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atragdo), no entanto, ainda poderiamos realizar estudos para as situagdes: atragdo-

isotopia-atragdo, repulsdo-isotopia-repulsdo, atragdo-isotropia-repulsao.

Uma outra questdo seria analisarmos, no campo computacional, este mesmo

problema para o caso tri-dimensional, uma vez que neste setor tanto a parte de adsorg@o

de polimeros como também a analise do proprio /GSAW ainda se encontram em aberto,

existindo, somente, predi¢des tedricas.

Tabela I - Comparagéo de resultados

C(r)~r“cofiD, =d-a
Presente trabalho 1.68

P

R~N? com Dy =1/p
1,64

DLA: Rede quadrada, processo de C(r)~r“comD, =d-a

difusdo direcional e anisotropica” 1,62

Formagdo de aglomerados de
particulas por DLA, em uma rede | C(r)~7"" com D, =d-e
quadrada(2079-3609 particulas por Lgs7

aglomerado, em média)®".

R~N* com D, =1/B
1,701

Formagdo de  aglomerados de

particulas por DLA, em uma rede | C(r)~7 " com D, =d-a

R~N*comD, =1B

quadrada(5900 particulas por 1,69 1,67
aglomerado, em mézdia 2

IGSAW™ 1,75
Efeitos de exclusdo de volume em solugdes poliméricas, medidos

através de espalhamento de neutrons®?. 1,70
Efeitos de exclus@o de volume em solugdes poliméricas, medidos

através de espalhamento de luz®?. 1,67
Resultado de Flory para cadeias poliméricas reais. 1,67
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Apéndice A

Programa, na Linguagem Fortran, de Simulagdao do
Crescimento e Confinamento de Macromoléculas entre
Duas Surperficies Planas: Adaptacao do Modelo IGSAW



UNIVERSIDADE FEDERAL DO CEARA
DEPARTAMENTO DE FISICA
GRUPO DE PROCESSOS ESTOCASTICOS

SN NeIeINe!

Ch,kkhhkhkhkhkkhhkhhhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhkhkhkhhhhdhhhhhhhhhrrhhdrhik

C CONFINAMENTO DE MACROMOLECULAS POR SUPERFICIES PLANAS
C CRESCIMENTO DE POLIMEROS POR IGSAW
C***'k'k'k'k****'}:'k****'}:'ki:'k****'}:*************************************‘k****
Cc

program pr

implicit real*4 (a-h,o-z)

20000)
-10:5000
0:6000)

dimension
dimension x

z (

x (- -2100:5000)
dimension u3

r3

3

0:6000)

6000)

0:6000)

(0:6000)

6000)

E2(6000),ET (0:6000)

(
dimension (0:6000
dimension (0:6000
3(
1

—~——~

Yy
4
4
4
dimension 0:6000 4

u
), r
),V
), t
dimension 6000) ,d2(
),
)y
)

)
’
’
’
2
dimension E1(0:6000
dimension MMx1 (6000),MMx2 (6000),MMx3(6000),MMx4 (6000)
dimension MMyl(GOOO ,MMy2 (6000) ,MMy3 (6000) ,MMy4 (6000)
dimension dxMax (6000),dxMin(6000)

dimension dyMax (6000),dyMin(6000),VSMinl (4000) =
dimension CRZ (0:6000),CRZT (0:6000),VSMin2 (4000)

real*4 NL(6000),NC(6000),NPT(6000),NPV(6000)

real*4 Cor (6000),Corl (0:6000),GDT1(0:6000)

real*4 3,rl(6000),r2(6000),WTl(-200:6000),WT2(-200:6000)
real*4 wl(-200:6000),w2 (-200:6000),w3 (-200:6000) ,w4 (-200:6000)
real*4 w5(-200:6000),w6(-200:6000),w7 (-200:6000) ,w8 (-200:6000)
real*4 w9(-200:6000),wl0(-200:6000),wll (-200:6000),wl2(-2:6000)
real*4 gdal(0:6000),gdbl(0:6000),gdcl (0:6000),gddl (0:6000)
real*4 gdall(0:6000),gdbll (0:6000),gdcll (0:6000),gdd1l (0:6000)
real*4 gdal2(0:6000),gdbl2(0:6000),gdcl2(0:6000),gdd12(0:6000)
real*4 gdat (0:6000),gdbt (0:6000),gdct (0:6000),gddt (0:6000)
real*4 gdaa(0:6000),gdbb (0:6000),gdcc (0:6000),gddd (0:6000)
real*4 PXp(6000),PX1(6000),PYp(6000),PY1(6000),NCL(6000)
real*4 PXTd(6000),PXTe (6000),PYTc (6000),PYTb (6000)

real*4 Vsdl(6000),VSel (6000),VScl(6000),VSbl (6000)

real*4 Vsd(6000),VSe (6000),VSc(6000),VSb(6000)

real*4 WTM(0:250,-1500:1500)

integer np,iNNal,iNNa2, iNNbl, iNNb2
integer Ibll,Jdbll,Iall,Jall,i,it,Jjt
integer ii, kkd, kke, kkc, kkb

common/block/MT (-10:250,-1500:1500)
open(57,FILE='aa50a.dat")
open (59, FILE='aaf0c.dat')
c********************************************************
nr=50000
idumal=37
xr=0
yr=0
do 600 Ii=1,nr
5 xx11=0
yyll=0
C********************************************************
np=5000
c
iNNal=600
iNNa2=10

iNNb1=30
iNNb2=20

NUMERO MAXIMO DE SITIOS ANALISADOS T1l=(iNNal*iNNa2)
PRIMEIRA ANALISE EH FEITA EM 10 EM 10 SITIOS,RESULTANDO
EM T2=(T1/iNNa2) SITIOS

SEGUNDA ANALISE EH FEITA EM 20 EM 20 SITIOS, RESULTANDO
EM T3=(T2/iNNb2) SITIOS

TERCEIRA ANALISE EH FEITA EM, SOMENTE, 30 SITIOS
1

o000



barl=5

bar2=45
C*************t*rit‘tif TP TTYTETRXTTYTTTTEXTXTETR I T hhkhkhkhkhkhkhkhkkhkhkhkhkkhk
DO 9 it= ,23 -
7

DO 7 "t=-1:CZ,1:z °

WoM(is, -z
7 CONTI UE
9 CONTINUE

C***************r’it‘!itvrr797-—f'i*ifii********************

Vo

DO 20 it=-2 , =
DO 1 3T=-13 I,13°"
MT(it, )=
10 CONT™ J=
20 CONTINGE
c write (*,*) ((MZ(i<,3z,,°%=-2,np),1it=-2,np)

c*****************ttt'**-rt*t*iii**************************
open(ll, P " LE='2a50.4d"]
write(11,*) . , . , ,0.0

C*********************X*fX*******************************

c
call rlea2({z,ng,idcmal)
c
do 150 j=1,np
x(0)=0
y(0)=0
x(-1)=-1 -
y(-1)=0
c-k******************r******************************************
c Preenchimento dos sitios da coluna x=-1
c

do 30 jt=-1500,1500

MT (-1,jt)=1
30 continue
C**************************************************************
40 1f (MT (xx1141,yyll).eq.0.0.0r.MT (xx11-1,yyll).eq.0.0.0r.

* MT (xx11,yyll+1l) .eq.0.0.0r.MT (xx11,yyll-1) .eq.0.0) then
C***********************************************************
(e} DESCRICAO DOS TAMANHOS DAS ZONAS
C

if (x(j-1).ge.0.0.and.x(j-1).1lt.barl)then

pdl1=28

pel=30

pcl=21

pbl=21

endif
C*******

if(x(jJ~1).ge.barl.and.x(j-1).1lt.bar2) then

pd2=25

pe2=25

pc2=25

pb2=25

endif
c*******

if(x(jJ-1).ge.bar2)then

pd3=30

pe3=28

pc3=21

pb3=21

endif
C************************************************************

c CORRECAO PARA INDEFINITELY SELF-AVOIDING WALK
C*'}:***:k+:*****************************************************
NCL (3) =0
FC1=0
FC2=0
FC3=0
FC4=0
C***************
c ZERANDO AS PROBABILIDADES PARA DAR INICIO A CAMINHADA
DO 45 jt=1,5500
gdal(jt)=0
gdbl(jt)=0
gdcl(jt)=0
gddl(jt)=0
gdaa(jt)=0
gdbb (jt)=0
gdcc (jt)=0 2



[oleoNoNe)

O O oo

C
45 CONTINUE
Chhkhkkkkkhhhhkhhhhkkkkkkhkhkhhhhkhkkhkhkhkhhkkkhkhkkkhkhkkkkkk k%
c ANALISE DA QUANTIDADE DE SITIOS VAGOS EM UMA DADA DIRECAO
Vvsdl (1)=0
DO 50 kkd=1, 50
Vsd (kkd)=MT (xx11+kkd, yy1l1l)
vsdl (kkd) =vsdl (kkd-1) +vsd (kkd)
50 CONTINUE

VSel(1l)=0

DO 60 kke=1,50

VSe (kke) =MT (xx11l-kke, yyll)

VSel (kke)=VSel (kke-1)+VSe (kke)
60 CONTINUE

VScl(1l)=0

DO 70 kkc=1,50

VSc (kkc)=MT (xx11, yyll+kkc)

VScl (kkc)=VScl (kkc~1)+VSc (kkc)
70 CONTINUE

VSbl (1)=0

DO 80 kkb=1,50

VSb (kkb)=MT (xx11, yyll-kkb)

VSbl (kkb)=VSbl (kkb-1) +VSb (kkb)
80 CONTINUE

VSMinl (j)=MIN(vsdl (kkd-1),VsSel (kke-1),VScl (kkc-1),
* Vsbl (kkb-1))
VSMin2 (j)=MIN (VScl (kkc-1) ,VSbl (kkb-1))

Ch rhhkkhhkkhhhhdkdhhhdhhhhhddhhhdhhdhdbdhhhdhhdbddhrhhbhhdbdbkh bbb bhdi sk

IF(j.ge.3)THEN

[

c ANALISE QUANDO ESTAH NO SITIO SUPERIOR

2*******
wl(j)=0
w2 (3)=0
w3(3)=0
wd (3)=0
w5 (3)=0
w6 (3)=0
w?(3)=0
w8 (3)=0
w9 (3)=0
w10 (3)=0
wll (3)=0
wl2(3)=0

C*******

o HORARIO

1f((x(J-1).eq.xx1l.and.y(j-1).eq.yyll).and. (x(j-2).eq.xx11.
* and.y(j-2) .eq.yyll-1) .and. (x(3-3) .eq.xx11+1l.and.y(j-3) -
* eqg.yyll-1))then

wl(j)=-1
endif

c

C ANTI-HORARIO
if((x(j-1).eqg.xxll.and.y(j-1).eq.yyll).and. (x(j-2).eq.xx11l.
* and.y(j-2).eq.yyll-1).and. (x(§-3) .eqg.xx11-1.and.y(j-3) .
* - eq.yyll-1)) then
w2 (Jj)=1

3



endif

c SEM ROTACAO
if((x(j-1).eqg-xx11.and.y(j-1) -eq.yyll) .and. (x(j-2) .eq-xx11. _,
* and.y(j-2) .eq.yyll-1).and. (x(j-3) .eq.xx1l.and.y(3~-3).
* eq.yyll-2))then

w3(3)=0
endif
C*******
[od ANALISE QUANDO ESTAH NO SITIO INFERIOR
C
C HORARIO
if((x{j~-1).eqg.xx1l.and.y(3-1).eq.yyll).and. (x(3-2).eq.xx11.
* and.y(31-21.eq.yyll+1).and. (x(3-3).eq.xx11-1.and.vy{(3-3).
* eq.yyll+1l)) then
wd (J)=-1
endif
c
C AMNTI-HORARIO
if((x(j-1)-eqg-xx11_and.y(j-1).eqg-yyll) . and. (x(j-2)-.eqg-xx11.
* and.y(j-2) .eq.yyll+l) .and. (x(J-3) .eq.xx11l+l.and.y(j-3).
* eq.yyll+l))then
wS(3)=1
endif
Cc
C 3P¥ ROTACAO -
if((x{3-2).eq.xx1l.and.y{(3-1).eq.yyll).and. (x{j3-2).eq.xx11.
* and.y(j-2).eq.yvl1l+1l).and. (x(3-3).eq-.-xx1l.and.y(1-3).
* eq.yyll+2))then
w6 (3)=0
endif
C*******
C ANALISE QUANDO ESTAH NO SITIO A DIREITA
Cc
Cc HORARIO
if({x{j-1).eq.xx1l.and.y(3-1).eq.yyll).and. (x(j-2).eq.xx11-1.
* and.y(1-2).eq.yyll).and. (x(i-3).eq.xx11l-1.and.y(i1-3}).
* eq.yyll-1))then
w7l(3)=-1
endif
c
(o} ANTI-HORARIO
if((x(j-1).eqg.-xx11.and.y(j-1) .eq-yyll) .and. (x(j-2) .eq-xx11-1.
* and.y(3-2) .eq.yyll) .and. (x(J-3) .eg.xx11l-1l.and.y(3j-3) .
* eq.yyll+l))then
w8 (j)=1
endif
Cc
C 32 ROTACAO
if((x{(3-1).eqg.xx1l.and.y(j-1).eq.yyll).and. (x({j-2).eq.xx11-1.
* and.y(31-2).eq.yvll).and. (x(3-3).eq.xx11-2.and.y(1-3).
* eq.yyll))then
w3 (3)=0
endif
C*******
c ANALISE QUANDO ESTAH NO SITIO A ESQUERDA
C
C TORARIC
if((x{3-1).eq.xx1l.and.y(j-1).eq.yyll).and. (x(j-2).eq.xx11+1.
* and.y({j-2).eq.yyll).and. (x{]-3).eq.xx11+1l.and.y (1-3).
* eq.yyll+l))then
wl0(j)=-1
endif
c
C ANTI-HORARIO
if((x(j-1)-eqg.xx1l_and.y(j-1).eq-yyll) _and. (x(j-2) -eq-xx11+1.
* and.y(3-2) .eq.yyll) .and. (x(j-3) .eq.xx11l+1l.and.y(3-3).
* eq.yyll-1))then
wll(3)=1
endif
C
C 3T ROTACRO

if(({x{3-1).eqg.xx1l.and.y(j-1).eq.yyll).and. (x{j-2).eq.xx11+1.
* and.y(1-2).eq.yyll).and. {(x(1-3).eq.xx114+2.and.v(3-3).
* eq.yyll) ) then
wl2(j)=0 ~
endif
C*******



WT1(3)=wl(J)+w2 (J)+w3 (J)+w4 (J)+w5 (J) +w6 (J)+w7 (J)+w8 (J) +
* w9 (J)+wl0 (J)+wll (J)+wl2(3J)
C
WT2(J)=WT1(j)+WT2(j-1)
WT3=WT2 (J)
WTM (xx11,yyll)=WT3
C
ENDIF
C*******************************************************************
c ANALISE II
C*******
c SE DW FOR POSITIVO, NENHUM MOVIMENTO ANTI-HORARIO PODE SER FEITO
C SE DW FOR NEGATIVO, NENHUM MOVIMENTO  HORARIO PODE SER FEITO

DW1=WTM (xx11l,yyll)-WTM (xx11+1,yyll+1)

DW2=WTM (xx11, yyll)-WTM (xx11+1,yyll-1)

DW3=WTM (xx11, yyll)-WTM(xx11-1,yyll+1)

DW4=WTM (xx11,yyll)-WTM(xx11-1,yyl1l-1)
C***************************************************************
c VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA X+
C

IF(MT (xx11+1,yyll) .eq.0) THEN

Chrrdrrdhdkhhdhddhdrdhddddrdhddrdddrbhhhdrdrdrdbrdrdrdrdrddrdrdrrdrtrsst
Crrxrddddhdhkddhhhdhddrdddhdrddddrddrddrddddrddrdrdrddrdrdrrdrrdrdrisd

c
IF((x(J-1).eq.xx1l.and.y(J-1) .eq.yyll) .and. -
* (x(J-2).eq.xx1l.and.y(j-2).eq.yyll-1) ) THEN
c
C*********************************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF(MT (xx11+1,yyl1+1) .eq.0) THEN
DWl=1
ENDIF

CHr*x*x k%

IF(MT (xx11-1,yyl1+1) .eq.0) THEN

DW3=1

ENDIF
C*********************************

F((DW1.LT.0) .OR. (DW3.LT.0) ) THEN

gdal(j)=
ENDIF

Cr***xx*x%

IF((DW1.GE.O) .and. (DW3.GE.O0) ) THEN

c
if(x(J-1).ge.0.0.and.x(J-1) .1t.barl) then
gdal (J) =pdl
endif

c
if(x(j~-1).ge.barl.and.x(j-1).1lt.bar2)then
gdal (j) =pd2
endif

c
if(x(J-1).ge.bar2)then
gdal (j)=pd3
endif

c

ENDIF

C*******

ENDIF

Chrrxrkdkhhdkhdhdhdhhhddrhddhddddrddrdddddrddrhdrddrrdrrbdrrbrrbbrrdrst
Crrhdkhhhhhhhhhdhhddrhddrhddrddaxdrdddrhdrddrdhdrhdrddrddrddrrhrrdrrss

IF((x(J-1).eqg.xx1ll.and.y(3j-1) .eq.yyll) .and.

* (x(J-2) .eq.xx11.and.y(j-2) .eq.yyll+1)) THEN
C
c*********************************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF(MT (xx11+1,yyl1-1) .eq.0) THEN
DW2=-1
ENDIF

C*******
IF(MT (xx11-1,yyl1-1) .eq.0) THEN
DW4=-1
ENDIF
C*********************************
~
IF((DW2.GT.0) .OR. (DW4.GT.0) ) THEN
gdal (J)=0
ENDIF

(&)



C*******

IF((DW2.LE.O).and. (DW4.LE.O) ) THEN

c
if(x(j-1).ge.0.0.and.x(j-1) .1lt.barl) then
gdal (j)=pdl
endif

Cc
if(x(j~-1).ge.barl.and.x(j~1).1t.bar2) then
gdal(j)=pd2
endif

c
if(x(j-1) .ge.bar2) then
gdal (j)=pd3
endif

c

ENDIF

C*******

ENDIF

CHrrhhkhkhhdhkhhkhhdhkhkhhhdhhdhhhhhdkrdhhhhkhhhdhhhhhhrdhdkhhkhkhkdrhrsx
AL EEEEEE RS SRR ERE SR ERREREEREEREEREEREEREERRE SR SRR SRR TR

ENDIF
C

c
Cr*xhkkhhhhkhhhhdhhhhhdhhkhhdhhkhhrhhhhhhhhhdrhhhdhhdrdhhrbdhhhkrdhkhrdhd

c PRIMEIRO VIZINHO OCUPADO

C b
IF((MT (xx11+1,yyll).eq.1).and. (x(j-1).eq.xx1l.and.y(j-1) .eq.yyll)
* .and. (x(j-2) .eq.xx1l.and.y(j-2) .eq.yyll-1) ) THEN
Ccx*kkkk*k
Cc QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF (MT (xx11+1,yyl1+1) .eq.0) THEN
DWl=1
ENDIF

Ch **x*k k%

IF(MT(xx11-1,yyll+1).eq.0)THEN
Dw3=1
ENDIF
C*******
ENDIF
C*******
C*******

IF((MT (xx11+41,yyll).eq.1).and. (x(J-1) .eq.xx1l.and.y(j-1).eq.yyll)

* .and. (x(j-2) .eq.xx1l.and.y(j-2) .eq.yyl1l+1) ) THEN
C*******
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF(MT (xx11+1,yy1l1l-1) .eq.0Q) THEN
DW2=-1
ENDIF

C*******
IF(MT(xx11-1,yyl1l-1).eq.0)THEN
DW4=-1
ENDIF

C*******

ENDIF

C*******

CEFx Kk Kk

-

C

SRR R R S R e R S T Y
c VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA X-

C

IF(MT (xx11-1,yyll) .eq.Q)THEN

Crrhkdrkrkhhhhhhhdhhhhdhhhdhhhrhhhhhhhdhhrdhdhhhdrdhhdhdhhdrrrrdrdd
Cr*rrhkkdhhhhdhddhddbhhhdrdddhdhhhdhhdhbdhrdrddbddbdrdrdrbrdhhhhrrdrhdrt

IF((x(jJ-1).eq.xx1l.and.y(J-1) .eq.yyll) .and.

* (x(J-2) .eq.xx1l.and.y(J-2) .eq.yyll-1)) THEN

c
C********************************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C

IF (MT (xx11+1,yyll+1l) .eq.0) THEN

Dwl=-1

ENDIF

CH **x**x k%

IF(MT (xx11-1,yyl1l+41) .eq.0)THEN
DW3=-1 6



ENDIF

%k o s ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
IF((DW1.GT.Q) .OR. (DW3.GT.0) ) THEN
gdbl(3)=0
ENDIF

Chrxr*kkk

IF((DW1.LE.QO) .and. (DW3.LE.Q) ) THEN

c
if(x(3J-1).ge.0.0.and.x(3~-1) .1t.barl) then
gdbl (j)=pel
endif

c
if(x(j-1).ge.barl.and.x(j-1).1lt.bar2)then
gdbl (j)=pe2
endif

c
if(x(j-1) .ge.bar2) then
gdbl (j)=pe3
endif

c

ENDIF

C*******

ENDIF

[t e R R AR SRR SRR SRR SRR EEEEEEEEREEEEEEEEEEEERELEREEEEEEEESES]
Chhxhkhhkhkhhdhhdhhhh kb ddhhdhdh Ak h kb hhhdhdhFhhrhhdhhkhrdrh kb ddhk

IF((x(j-1).eq.xx1l.and.y(j-1) .eq.yyll) .and.
* (x(3-2) .eq.xx1l.and.y(j-2) .eq.yyll+1l) ) THEN
C
c**********************************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF(MT (xx11+1,yyll-1).eq.0)THEN
Dw2=1
ENDIF
C:‘:******
IF(MT (xx11-1,yyl1l-1) .eq.0) THEN
Dw4=1
ENDIF
C***********************************
IF((DW2.LT.0) .OR. (DW4.LT.Q0) ) THEN
gdbl(3j)=0
ENDIF
C*******

IF((DW2.GE.O) .and. (DW4.GE.0) ) THEN

c
if(x(j-1).ge.0.0.and.x(j-1) .1t.barl) then
gdbl(j)=pel
endif
c
if(x(j-1) .ge.barl.and.x(j-1).1lt.bar2)then
gdbl (j)=pe2
endif
c
if(x(j-1) .ge.bar2) then
gdb1 (3) =pe3
endif
c
ENDIF
C*******
ENDIF

Chkk kkdhkhhhhdrhhddhhhhhrddhdrdhhhrdrdhdbrdrhhrrrdrx
[t EEE SRR AR LR EEEEEEEEEEEEEEEESS

ENDIF
C
c
c***********************************************‘k**********************
C PRIMEIRO VIZINHO OCUPADO
C
IF ((MT (xx11-1,yyll).eq-1).AND. (x(j-1).eq.xx1l.and.y(J-1).eq.yyll)
* Land. (x(J-2).eq.xx1ll.and.y(j-2) .eq.yyll-1) ) THEN
C*******
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF(MT (xx11+1,yyl1l+1) .eq.0) THEN
DWl=-1
ENDIF

Crrxkkhk

IF(MT (xx11-1,yyl1l+1l).eq.0)THEN 7



DW3=-1
ENDIF
C*******
ENDIF
Chr*xkkkx*x
c*******
IF((MT (xx11-1,yyll) .eq.1l) .AND. (x(J-1) .eq.xx1l.and.y(J-1) .eq.yyll)
* .and. (x(J-2).eq.xx1ll.and.y(j-2) .eq.yyll+1))THEN
C*******
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF (MT (xx11+1,yyll-1) .eq.0) THEN
Dw2=1
ENDIF
C*{-*****
IF(MT (xx11-1,yyl1-1) .eq.0)THEN
DW4=1
ENDIF
c*******
ENDIF
C*******
C*******

C

C
Crrhkkhhkdhhhdhhhkdhhdhhhhkhhbdhkddhhhhhdbhhdhhdhkhdkbkbkrhdhbbkddhhhddhhdhk

c VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA Y+
c
IF(MT (xx11,yyl1l+1) .eq.0) THEN

C**************************************************************
cc*************************************************************
IF((x(J-1).eqg.xx1l.and.y(Jj-1) .eq.yyll) .and.
*  (x(j-2).eqg.xx1ll-l.and.y(j-2) .eq.yyll))THEN
C
C*******************************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C
IF (MT (xx11+1,yyl1l+1l) .eq.Q)THEN
Dwl=-1
ENDIF
C*******
IF (MT (xx11+1,yyll-1) .eq.0)THEN
Dw2=-1
ENDIF
C***********************************
IF((DW1.GT.0) .OR. (DW2.GT.0) ) THEN
gdcl (j)=0
ENDIF

Cxhxkkx*

IF((DW1.LE.O) .AND. (DW2.LE.O) ) THEN

C
if(x(j-1).ge.0.0.and.x(j-1) .1t.barl)then
gdcl (j)=pcl
endif
c
if(x(j-1).ge.barl.and.x(j-1).lt.bar2)then
gdcl (j)=pc2
endif
c
if(x(J-1) .ge.bar2)then
gdcl (j)=pc3
endif
c
ENDIF
c*******
ENDIF

C************************************************************
IF((x(J)-1).eqg.xx1l.and.y(J-1).eq.yyll).and.
*  (x(j-2).eq.xx1l+l.and.y(j-2) .eq.yyll) ) THEN
C
C**‘k*******t***********************
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
c
IF (MT (xx11~1,yyl1l+1l) .eq.0) THEN
DwW3=1
ENDIF

C*******
IF(MT (xx11-1,yyl1l-1) .eq.0)THEN
Dwd=1 8



ENDIF
Chhhhhhhkkkkk Ak hhhkkkkk kA AR Rk *k Kk * K %

IF((DW3.LT.0) .OR. (DW4.LT.0) ) THEN
gdcl(3)=0
ENDIF

CHr*rxkkk*x

IF((DW3.GE.O) .AND. (DW4.GE.O) ) THEN

C
if(x(j-1).ge.0.0.and.x(3-1).1lt.barl) then
gdcl (j)=pcl
endif
c
if(x(J-1).ge.barl.and.x(j-1).1lt.bar2)then
gdcl (j)=pc2
endif
c
if (x(j-1) .ge.bar2)then
gdcl (j)=pc3
endif
c
ENDIF
C*******
ENDIF

CH**xk**
S R R R R R
R R R R R

ENDIF
c
c
C*********************************************************************
Cc PRIMEIRO VIZINHO OCUPADO
C

IF((MT(xx11,yyll+1l).eqg.1l).AND. (x(j-1).eg.xx1l.and.y(j-1).eq.yyll)

* _and. (x(J-2).eqg.xx1l-1l.and.y(j-2) -eq.yyll))THEN

C*******
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C

IF (MT (xx11+1,yyll+l).eq.0) THEN

DWl=-1

ENDIF
C*******

IF(MT (xx11+1,yyll-1) .eq.0) THEN

DW2=-1

ENDIF
C*******

ENDIF
C*******
C*******

IF( (MT (xx11,yyl1+1).eq.1l) .AND. (x(j-1).eq.xx1l.and.y(j-1) .eq.yyll)

* .and. (x(J-2) .eqg.xx1l+l.and.y(j-2) .eq.yyll) ) THEN
C*******
Cc QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C

IF (MT (xx11-1,yyl1l+1) .eq.0) THEN

DW3=1

ENDIF
C*******

IF(MT (xx11-1,yyll-1).eq.0)THEN

Dw4=1

ENDIF
C*******

ENDIF
c*******
C*******

Cc
c
C**************************************************************
c VERIFICACAO DA POSSIBILIDADE DE MOVIMENTAR-SE PARA Y-
c

IF(MT (xx11,yyll-1) .eq.0) THEN

Ch*xrhhhdhhhhhhhdhhhhhhhhhhhhdhhhhhhdhhhhdhdhdhhhhdhrdhhhhhhhhrhrk
[ E AR L EREEREEREEEEEREEEEEEREEEEEEEEREEEEEEEEEEEEEESEEEEES

IF((x(J-1).eg.xx1l.and.y(j-1) .eq.yyll) .and.
* (x(jJ-2) .eq.xx11-1.and.y(j-2) .eq.yyll) ) THEN
C

Crrdrkkhkhhhhkkhkhhhkkkkhhkkkhkkhkhxk

C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAS VAGOS



IF(MT (%z11+1,yy1l1l+41) . eq. Oy THEN
DW1l:=1
ENDIF

C&k!***\i‘

C.#*-,e—i.**-k:‘r&A—A-i'*************k*x’-*r‘::‘:.\'**ﬁ-
IF((DWL.LT.Q) .OR. (DWZ.LT.Q) ) THEN
add1{3) =0
ENDIF

(;*kkr’r***

IE((DWL GE.Q) .AND. (DW2.GE.Q) ) THENM

LE(%()-1) .ge.0.0.and.#{j-1} .1t .barl) then
gadl {j)=pbl
endifl

C
if(x{j-1).ge.barl.and.x{j-1).1lt.bar2) then
gddl () =ph2
endif

c
1if{x(3-1).ge.bar2)then
addl (j) =pb3
endif

C

ENDIF

,:é.‘érf:**%'}:

ENDIF

R R R R R R R R L R R
R R R R R R R S TR R T R
C Ca50 O PASSO DA FRENTE DO SITIO ZEJA

cC NA HEGIAC DE X NEGATIVO

C
c IF((xx11-1.LT7.0).and. {VSbl {kkb-1) .eq.VSMinZ (j) ) THEN
DW4=-1
c ENDIF
C*“::’r***k“\’i FhAE T XA A XA LA A A2 AT X LA FL AT TEFAL AT LA AT AL LA X
IF((x(3-1).eqg.xxll.and.y{3j-1) .eq.yyll) .and.
*  (x()-2).eg-xx1l+1l.and.y(3-2).eg.yyll] ) THEN
¢
(:***a IR SRR R R E R EREFE R P EFEREEEEEEEEEESES
C CUANDC OS SEGUNDOS VIZINEQOS ANALISADOS ESTAQ VAGOS
-
ITF{MT (xx11~1,yy1ll+1) .eqg.0) THEN
DW3=-1
ENDIF

Cx‘:**‘k***
IF(MT (xx11-1,yy1li-1).eq.Q)THEN
DWa=-1
INDIF -
ci'*-'--ki-ik~l‘-"k*r'.-**:{'**;\'***‘}(*7\'**:“***%*****
IF{{(DW2.5T.Q).0R. (DW4.GT.Q) ) THEN
gdd1 (3) =0
ENDIF
C}:i*****

IF(({DW2.LE.0) .AND. (DW4.LE.(} ) THEN

if(x{3-1).ge.C.0.and.x{j-1) .1t .barl}then
gddl () =pbl
endif

if(x(3-1).ge.barl.and.x{j-1).1lt.bar2)then
gddl (3)=pb2

endif
c
1f(x{3-1).ge.mar2)then
gddl (7)) =pb3
endif
sl
ENDIF
,:11:.* h ok ok F
ENDIF

ok kokk ko ok
IR EEEE SR RS SRR RS R R B RS R Rl R R TR R R SRR N ER SRR TR DX
Ch bk kR Rk h kR E kAR A KRk kA Ak AR A Ak Ak Ak kR k ok hhkh kA kkhhk kA Rk Kk ok h ko Kok

ENDIF 10



c
c
C******************************************t*************************
C PRIMEIRO VIZINHO OCUPADO
¢}
IF((MT(xxll,yyll—l).eq.l).AND.(x(j—l).eq.xxll.and.y(j-l).eq.yyll)
* .and.(x(j—Z).eq.xxll—l.and.y(j—Z).eq.yyll))THEN
ChHkkkhx
C QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
Cc
IF(MT(xx11+1,yy11+1).eq.O)THEN
DWl=1
ENDIF
Chkkdkk*
IF(MT(xx11+1,yy11—1).eq.O)THEN
Dw2=1
ENDIF
CHHkkkhk
ENDIF
Chkkkkk*
C*******
IF((MT(xxll,yyll—l).eq.l).AND.(x(j—l).eq.xxll.and.y(j-l).eq.yyll)
* .and.(x(j—2).eq.xxll+1.and.y(j-2).eq.yyll))THEN
C*******
¢ QUANDO OS SEGUNDOS VIZINHOS ANALISADOS ESTAO VAGOS
C Ay
IF(MT(xxll—l,yy11+1).eq.Q)THEN
DW3=-1
ENDIF
C*******
IF(MT(xxll-l,yyll-l).eq.O)THEN
DW4=-1
ENDIF
c*******
ENDIF
SELEE TS
C*******

c
2**************************************************************
c passo para Frente
gdaa(j)=gdal(3)
gdbb (j)=gdbl (J)
gdcc (j)=gdel (])
gddd (j)=gdd1(3)
CHh*kkkkx
Ch**kkk*x
c  SENTIDO X+
IF((MT(xx11+1,yy11).eq.O).and.(x(j—l).eq.xxll.and.y(j—l).eq.yyll)
* .and.(x(j~2).eq.xxll—l.and.y(j—Z).eq.yyll))THEN
c*******
IF((gdCC(j).EQ.OW.AND.(MT(xx11+1,yy11—l).EQ.l))THEN
gdal(j)=0
gdall(j)=1
ENDIF

Chxkkkk*
IF((gddd(j).EQ.O).AND.(MT(xx11+1,yy11+1).EQ.l))THEN
gdal(3j)=0
gda12(j)=1
ENDIF

Cx*k*k k%
gdat(j)=gda11(j)+gda12(j)

IF((gdat(j) -EQ.2) -OR.
* ((gdcc(j).EQ.O).AND.(MT(xx11+1,yy11—1).EQ.O)).OR.
* ((gddd(j).EQ.O).AND.(MT(xx11+l,yy11+1).EQ.O)).OR.
* ((gdcc(j).GT.O).AND.(gddd(j).GT.O)))THEN

if(x(j—l).ge.0.0.and.x(j-l).lt.barl)thn
gdal (j)=pdl
endif

if(x(j»l).ge.barl.and.x(j—l).1t.bar2)then
gdal(3)=pd2
endif

if (x(3-1) .ge.bar2)then N
gdal (3)=pd3
endif 11



C
ENDIF
c*******
ENDIF
c*******
c*******
c  SENTIDO X-
IF((MT(xx11-1,yyll).eq.0).and. (x(j-1).eqg.xx1l.and.y(j-1).eq.yyll)
*  .and.(x(j-2) .eq.xx1l+l.and.y(j-2) .eq.yyll) ) THEN
c*******
IF((gdcc(j) .EQ.0) .AND. (MT (xx11-1,yyl1l-1).EQ.1))THEN
gdbl (j)=0
gdbll (j) =1
ENDIF
c*******
IF((gddd(j).EQ.0) .AND. (MT (xx11-1,yyl1l+1).EQ.1))THEN
gdbl (j) =0
gdbl2(j)=1
ENDIF
C*k*****
gdbt (j)=gdbll (j)+gdbl2(Jj)
IF((gdbt (j) .EQ.2) .OR.
*  ((gdcc(j).EQ.0) .AND. (MT (xx11-1,yyll-1) .EQ.0)) .OR.
*  ((gddd(j)-EQ.0).AND- (MT (xx11-1,yyll+1l).EQ.0)) .OR.
*  ((gdcc(j) .GT.0) .AND. (gddd (j) -GT.0) ) ) THEN
C -
if(x(j-1).ge.0.0.and.x(j-1).1t.barl)then
gdbl (j)=pel
endif

if(x(j-1).ge.barl.and.x(j-1).1t.bar2)then
gdbl (3)=pe2
endif

if(x(j-1).ge.bar2)then
gdbl (j)=pe3
endif
c
ENDIF
c*******
ENDIF
C*******
C*******

c  SENTIDO Y+
IF((MT(xx11,yyll+1l) .eq.0) .and. (x(j-1) .eq.xx1l.and.y(Jj-1) .eq.yyll)
*  .and.(x(j-2).eq.xx1ll.and.y(j-2) .eq.yyll-1))THEN
c*******
IF((gdaa(j)-EQ.0) .AND. (MT (xx11-1,yyl1l+1).EQ.1))THEN
gdcl (j)=0
gdcll (j)=1
ENDIF
c*******
IF ((gdbb (j).EQ.0) .AND. (MT (xx11+1, yyl1+1) .EQ.1))THEN
gdbl (j)=0
gdcl2(j)=1
ENDIF
c*******
gdct (j)=gdcll(j)+gdcl2(]j)
IF((gdct(j) .EQ.2) .OR.
* ((gdaa(j).EQ.0).AND. (MT (xx11-1,yyll+1l).EQ.0)) .OR.
*  ((gdbb(j).EQ.0).AND. (MT (xx11+1,yyll+1l).EQ.0)) .OR.
* ((gdaa(j).GT.0).AND. (gdbb(j) .GT.0)) ) THEN

if(x(3~1).ge.0.0.and.x(j-1).1lt.barl)then
gdcl (j)=pcl
endif

if(x(j-1).ge.barl.and.x(j-1).1lt.bar2)then
gdcl (j)=pc2
endif

if(x(j-1) .ge.bar2) then
gdcl (3)=pc3
endif

ENDIF

crrrrkk ik

ENDIF
Crr*xr*x
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Chxkdkkkk

e} SENTIDO Y-
F((MT(xx11,yyll-1) .eq.0) .and. (x(j-1) .eqg.xx11l.and.y(j-1)
*  land. (x(j-2) .eqg.xx1ll.and.y(3-2) .eq.yyl1l+1)) THEN
c*******
F((gdaa(j) .EQ.0) .AND. (MT (xx11-1,yyll-1).EQ.1))THEN
gddl(3)=0
gddll(j)=1
ENDIF
c*******
F((gdbb(j).EQ.0) .AND. (MT (xx11+1,yyl1l-1).EQ.1))THEN
gdd1(3)=0
gdd12(j)=1
ENDIF
c*******
gddt(J) =gdd11(j)+gddl2(j)
((gddt j).EQ.2) .OR.
((gdaa(j) -EQ.0) .AND. (MT (xx11-1,yyl1l-1).EQ.0)) .OR.
((gdbb(j) -EQ.0) .AND. (MT (xx11+1,yyll-1).EQ.0)) .OR.
* ((gdaa(j).GT.0).AND. (gdbb(j).GT.0)))THEN

c
if(x(j-1).ge.0.0.and.x(j-1) .1t.barl)then
gdd1l (j) =pbl
endif

c
if(x(j-1).ge.barl.and.x(j-1).1lt.bar2)then =
gddl (3) =pb2
endif

c
if(x(j-1) .ge.bar2)then
gddl (j) =pb3
endif

c

ENDIF

c*******

ENDIF

Crxhkhhkhkkhkhkhkhkhdhhdkhkhdhhhhhhhh bbb hhd bbb hhd bbb b hdhbbhdh bbbk hdk

(o} REAJUSTE DAS PROBABILIDADES

c

100 GDT1(j)=gdal(j)+gdbl(j)+gdcl(j)+gddl(J)

C*******

c PRIMEIRA ZONA
if(x(j-1).ge.0.0.and.x(j-1).1lt.barl) then
prd=(gdal(j)/GDT1(]))

pre=(gdbl(j)/GDT1(]j))
prc=(gdcl(3j)/GDT1(3))
prb=(gddl(j)/GDT1(]))

lpl=(prd)*100
lp2=(prd+pre) *100
1lp3=(prd+pre+prc) *100
lp4=(prd+pre+prc+prk) *100
endif

c**f****

C SEGUNDA ZONA

f(x(j-1).ge.barl.and.x(j-1).1lt.bar2)then

prd=(gdal(j)/GDTL(3))
pre=(gdbl (j)/GDT1(]j))
prc=(gdcl(])/GDT1(J))
prb=(gddl (j)/GDT1(]J))

1pl=(prd)*100
1p2=(prd+pre) *100
1p3=(prd+pre+prc) *100
lpd4=(prd+pre+prc+prb) *100
endif

c*******

Cc TERCEIRA ZONA
if(x(j-1) .ge.bar2)then
prd=(gdal(j)/GDT1(J))
pre=(gdb1(j)/GDT1(j))
prc=(gdcl(j)/GDT1(]))
prb=(gddl(3j)/GDT1(]))

1pl=(prd) *100

1p2=(prd+pre) *100Q

1p3=(prd+pre+prc) *100
1lp4=(prd+pre+prc+prb)*100 13

.eq.yyll)
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endif
c*******

PXTd (3) = (PXp(3))

PXTe (3)=(PX1(3))

PYTc (3)=(PYp(3))

PYTb (3)=(PY1(3))
c************************************************************
110 MT (0,0)=1

x(3)=0

y (3)=0

c PROBABILIDADE E CAMINHADA NO SENTIDO (+X)
((MT (xx11+1,yyl1ll) .eq.0).and. (z(j).1t.1pl)) then

x(3)=x(3-
y(3)=y(3-
xxll X(j)
yyll=y(3)

MT (xx11,yyll)=

1)+
1)

c
ENDIF
c*******
[} PROBABILIDADE E CAMINHADA NO SENTIDO (-X)
c
if ((MT (xx11-1,yyll) .eq.0).and. (z(J).ge.lpl.and.z(j)1t.1p2))then
c

yyll=y
MT (xx11, yyll)=
c
ENDIF
c*******
C PROBABILIDADE E CAMINHADA NA DIRECAO (+Y)
c
1f ((MT (xx11,yyll+1l) .eqg.0).and.(z(j).ge.lp2.and.z(]j).1t.1p3)) then
c

yyll=y(3)
MT (xx11,yyll)=1
c
endif
Cx*xkkkkk
e} PROBABILIDADE E CAMINHADA NA DIRECAO (-Y)
C
1f ((MT (xx11,yyl1l-1).eq.0).and. (z(J).ge.1lp3.and.z(J).1le.1lpd)) then
c
x(j)=x(j-1)
y(3)=y(3-1)-
xx11=x(3)
yyll=y(3)
MT (xx11,yyll)=1
c
endif
c*******
SE EXISTE PROBABILIDADE PARA CAMINHAR EM UMA DADA DIRECAO,
POREM O NUMERO ALEATORIO GERADO NAO ESTAH DENTRO DOS
LIMITES ESTIPULADOS

anoaQan

f(((gdal(j).gt.O).or.(gdbl(j).gt.O).or.(gdcl(j).gt.O) or.
*  (gddl(j).gt.0)).and. ((x(j).eq.0).and.(y(j).eqg.0)))then

@]

idumar5=z(j)
call rlea2(z(j),1,idumar5)
goto 110
c
endif
C*******
C CASO O QUAL X EH NEGATIVO
C
if(x(3).1t.0)then
c
idumarS=z(j)
call rlea2(z(j),1l,idumar5)
goto 40 14



c
endif
c*******

c CASO A POSICAO ESTEJA NA ORIGEM DO EIXO X

C
IF(x(Jj) .eq.0)THEN
xr=0
yr=y(3J)
ENDIF
C******* ¢

c CASO A QUANTIDADE DE PASSOS ULTRAPASSE O LIMITE DE PASSOS

C ESTIPULADO E AINDA NAO TEHNHA CHEGADO A PAREDE

C

F((J.GE.5000) .AND. (x(j).LT.50)) THEN

C
REP=REP+1
write(*,*)'e
1dumar5 =z(3)
call rlea2(z
GOTO 5

‘esgotou o no. de passos e nao chegou na parede’,REP

(3),1,idumar5s)

c
ENDIF
c*******
C CASO EXISTA UM POSSIVEL CRUZAMENTO ANTES DE CHEGAR A PAREDE,
C EH GERADA UMA NOVA CAMINHADA
C
£((gdal(j).eq.0).and. (gdbl{j).eq.0).and. (gdcl (j) .eq.O0)
* _and. (gddl(]) .eq.0).and. (x(J).1%.50)) then

CRZ (ii)=1

idumar5=z(j)

call rlea2(z(Jj),1l,idumar5)

GOTO 5
c

endif
c*************************************************************

write (11,*) j,x(3),y(3),z(3)

Chhxkkkhkdhhhhhkhhhhhhhhhhhhhhrhkhhhhhhhrdhhhhhrhhhrrrhhhhhhrrtk

c CALCULO DA ENTROPIA DE SHANON

c
if(z(j).1t.1lpl) then
El(j)=(-1)*prd*log(prd)

E2(j)=(-1)*((((prd)**2)*log{prd)))
endif

c
if(z(j).ge.lpl.and.z(j).1lt.1p2) then
El(3)=(-1)*pre*log(pre)

E2(J)=(-1)*((((pre)**2)*log(pre)))
endif

c

f(z(j).ge.1lp2.and.z(j).1lt.1p3) then
E1(J)=( 1) *prc*log(prc)

2(3)=(-1)*((((prc)**2)*log(prc)))
endlf

C

( (j).ge.1p3.and.z(j).1lt.1p4) then
J)=(- 1)*prb*log prb)
( )=(-1)*((((Prb)**2) *log(prb)))
endlf
C*******
ET (0)=0.

ET(J)=(E1(J)+ET(J-1))
c******************************************************

[} SE FOI ALCANCADA A PAREDE

C
if ((x(3).ge.50))goto 200
c
c**********************************************************
else
CRZ (ii)=1
idumar5=z(Jj)
¢call rlea2(z(3j),1,idumars)
GOPTO 5
c
endif

C*******
150 continue

< 15



200 close(unit=11)
CRZT (0)=0
CRZT (ii)=CRZT (ii-1)+CRZ (ii)

Ch hkkkkkhkhkkhhkhhhhhhhhhhhdhhhhhhhhhdhhhhdhhdhhdhhdhhdhhdrhhrdhhdhk

[ CALCULO DOS VALORES MAXIMOS E MINIMOS
o R R R e s

C CALCULO DO YMAX

Cc
ADR=(j/10)
DO 240 Iall=1, (iNNal+1)
Jall=(Iall-1)* (iNNa2)
c
DO 220 iia=j+1,6000
.y(iia)=0
220 CONTINUE
C
MMyl (Iall)=MAX(y(1l+Jall) 2+Ja11), (3+Jall),y(4+Jall),
* (5+Ja11) y (6+Jall),y(74+Jall),
* y(8+Ja11),y(9+Ja11),y(lO+Ja11))
240 CONTINUE
c
DO 280 Ibll=1l, (iNNbl+1)
Jbll=(Ibl1l-1)* (iNNb2)
c
DO 260 iib=(ADR+2),600
MMyl (1+iib) =0
260 CONTINUE
c
MMy2 (Ib1l1l)=MAX (MMyl (1+Jbll),MMyl (2+Jbll), MMyl (3+Jbll),
* MMyl (4+Jbl11),MMyl (5+Jb11l) ,MMyl (64+Jb11l),
* MMyl (7+Jb11),MMyl (8+Jb11), MMyl (9+Jbll),
* MMyl (10+Jb11l),MMyl (11+Jb1ll),MMyl (12+Jb1ll),
* MMyl (13+Jb11l),MMyl (144+Jb11),MMyl (15+Jbl1l),
* MMyl (l6+Jbll),MMyl (17+Jb1ll), MMyl (18+Jbll),
* MMyl (19+Jbl11l),MMyl (20+Jbll))
280 CONTINUE
c
dyMax(ll)—MAx(MMyZ(l) MMy2 (2) ,MMy2 (3),MMy2 (4) ,MMy2(5),
MMy2 (6), MMy2(7) MMy2 (8) ,MMy2 (9) ,MMy2(10),
* MMy2 (11),MMy2(12),MMy2(13),MMy2 (14),MMy2 (15),
* MMy2 (le6),MMy2 (17),MMy2(18),MMy2 (19),MMy2 (20),
* MMy2(21) ,MMy2(22) ,MMy2(23),MMy2 (24) ,MMy2 (25),
* MMy2 (26) ,MMy2 (27) ,MMy2 (28) ,MMy2 (29) ,MMy2 (30))

R L L
C CALCULO DO YMIN

C
ADR=(j/10)
DO 320 Iall=1, (iNNal+1l)
Jall=(Iall-1)*(iNNa2)
C
DO 300 iia=3j+1,6000
y(iia)=0
300 CONTINUE -
C
MMy3 (Iall)=MIN(y(1+Jall),y(2+Jall),y(3+Jall),y(4+Jall),
* y(5+Jall),y(6+Jall),y(7+Jall),y(8+Jall),
* .y (9+Jall),y(10+Jall))
320 CONTINUE
Cc
DO 360 Ibl1l=1, (iNNbl+1)
Jbll=(Ibl1l-1)* (iNNDb2)
c
DO 340 iia=(ADR+2), 600
MMy3 (1+iia)=0
340 CONTINUE
c
MMy4 (Ib11)=MIN (MMy3 (1+Jb1l1),MMy3 (2+Jbll),MMy3 (3+Jbll),
* MMy3 (4+Jb11l) ,MMy3 (5+Jb1ll) ,MMy3 (6+Jbll),
* MMy3 (7+Jbl1l),MMy3 (8+Jbll),MMy3 (9+Jbll),
* MMy3 (10+Jb11l),MMy3 (11+Jb1l1l),MMy3(12+Jbll),
* MMy3 (13+Jbl11l) ,MMy3(14+Jbl1l) ,MMy3 (15+Jbll),
* MMy3 (16+Jbl1l) ,MMy3 (17+Jb1l1l),MMy3 (18+Jbll),
* MMy3 (19+Jb11l),MMy3 (20+Jdb1ll))
360 CONTINUE
c

dyM1n(11)—MIN(MMy4(1) MMyd4 (2) ,MMy4 (3) ,MMy4 (4) ,MMy4 (S),
MMy4 (6),MMy4 (7) ,MMy4 (8) ,MMy4 (9) ,MMy4 (10),
* MMy4 (11) , MMy4 ( 12),MMy4(13) MN"4(14),MMy4(15),



* MMy4 (16) ,MMy4 (17) ,MMy4 (18) ,MMy4 (19) ,MMy4 (20),
* MMy4 (21) ,MMy4 (22) ,MMy4 (23) ,MMy4 (24) ,MMy4 (25),
* MMy4 (26) ,MMy4 (27) ,MMy4 (28) ,MMy4(29) ,MMy4 (30))

Chhkkhdkhkhkhkhkhhkhhkhkhkhkhkkhkhkhkhkkkkhkhkhkhkkkkrkhkk*hkh k
c CALCULO DO XMAX

c
ADR=(3/10)
DO 400 Iall=1l, (iNNal+1l)
Jall=(Iall-1)*(iNNa2)
c
DO 380 iia=j+1,6000
®(iia)=0
380 CONTINUE
c
MMx1 (Iall)=MaX(x(1l+Jall),x(2+Jall),x(3+Jall), x(4+Jall),
* x(5+Jall),x(6+Jall),x(7+Jall),x(8+Jall),
* x(9+Jall),x(10+Jall))
400 CONTINUE
C
DO 440 Ibll=1, (iNNbl+1)
Jbll=(Ibl1l-1)* (iNNb2)
C
DO 420 iia=(ADR+2),600
MMx1 (1l+iia)=0
420 CONTINUE
c L3
MMx2 (Ibll)=Max (MMx1 (1+Jbll) ,6 MMx1 (2+Jb1ll),MMx1 (3+Jb1ll),
* MMx1 (4+Jbl11) ,MMx1 (5+Jbll),MMx1 (6+Jb1ll),
* MMx1 (7+Jbll) ,MMx1(8+Jbll) ,MMx1 (9+Jbll),
* MMx1 (10+Jb1ll) ,MMx1 (11+Jb1l1l) ,MMx1(12+Jbll),
* MMx1 (13+Jb11),MMx1(14+Jb11),MMx1(15+Jdb1l1),
* MMx1 (16+Jbl11l),MMx1(17+Jb11),MMx1(18+Jdb1ll),
* MMx1 (19+Jbll) ,MMx1 (20+Jdbll))
440 CONTINUE
C
dxMax (ii)=MAX (MMx2 (1), MMx2(2) ,MMx2 (3),MMx2(4) ,MMx2(5),
* MMx2 (6) ,MMx2 (7) ,MMx2 (8) ,MMx2 (9) ,MMx2 (10),
* MMx2 (11),MMx2(12) ,MMx2 (13),MMx2 (14),MMx2 (15),
* MMx2 (16) ,MMx2(17),MMx2 (18) ,MMx2 (19),MMx2 (20),
* MMx2 (21) ,MMx2 (22) ,MMx2 (23) ,MMx2 (24) ,MMx2 (25),
* MMX2 (26) ,MMx2 (27) ,MMx2 (28) ,MMx2 (29) ,MMx2 (30))

SR R R L T T
c CALCULO DO XMIN

C
ADR=(j/10)
DO 480 Iall=1l, (iNNal+1l)
Jalli=(Iall-1)* (iNNa2)
c
DO 460 iia=j+1,6000
x(iia)=0
460 CONTINUE
c
MMx3 (Iall)=MIN(x(1l+%a1ll),x(2+Jall),x(3+Jall),x(4+Jall),
* x(5+Jall),x(6+Jall), x(7+Jall), x(8+Jall),
* X (9+Jall),x(10+Jall))
480 CONTINUE
C
DO 500 Ibll=1, (1INNbl+1)
Jbll=(Ibl1l-1) * (1iNNb2)
c
DO 520 iia=(ADR+2),600
MMx3 (1+iia)=0
520 CONTINUE
c
MMx4 (Ib11l)=MIN(MMx3 (1+Jbll),MMx3 (2+Jbll),MMx3 (3+Jbll),
* MMx3 (4+Jb1ll),MMx3 (5+Jbll) ,MMx3 (6+Jbll),
* MMx3 (7+Jb11l) ,MMx3 (8+Jbll) ,MMx3 (9+Jbll),
* MMx3 (10+Jbl1l1l) ,MMx3 (11+Jbll) ,MMx3 (12+JIbll),
* MMx3 (13+Jb11),MMx3 (14+Jb11l),MMx3 (15+Jbl1l),
* MMx3(16+Jbl1ll),MMx3 (17+Jb11l),MMx3 (18+Jbll),
* MMx3 (19+Jb1l1l),MMx3 (20+Jb1ll))
500 CONTINUE
c
dxMin (ii)=MIN (MMx4 (1) ,MMx4 (2),MMx4 (3),MMx4 (4) ,MMx4 (5),
* MMx4 (6) ,MMx4 (7),MMx4 (8) ,MMx4 (9) ,MMx4 (10),
* MMx4 (11) ,MMx4 (12) ,MMx4 (13) ,MMx4 (14) ,MMx4 (15),
* MMx4 (16) ,MMx4 (17) ,MMx4 (18) ,MMx4 (19) ,MMx4 (20),
* MMx4 (21),MMx4 (22) ,MMx4 (22), MMx4 (24) ,MMx4 (25),
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* MMx4 (26) ,MMx4 (27) ,MMx4 (28) ,MMx4 (29) ,MMx4 (30) )

Chkkxkhkkhhkhkhkhhkhhhhhhhhkhhhhhhhdhhhhhhhhhhhhdhhhrhhrhhkhrkrrrhx

c CALCULO DO TAMANHO DA GRADE

C E DO

C COMPRIMENTO DE CORRELACAO

Cc
NL(Ii)=((dyMax(Ii ')—dyMin(Ii))+1)
NC (I )=((dxMax( i)-dxMin(Ii))+1)
NPT (I1)=(NL(Ii))* (NC{Ii))
NPV (Ii)=(])
Cor(Ii)=(NPV(Ii)/NPT(Ii))

c

c Somatorio da Funcao Correlacao de Cada Caminhada
Corl (0)=0.

Corl(ii)=Cor(Ii)+Corl (Ii-1)

C****************************************************.*****

idumal=z (j-1)
C********************************************************_*****
P . ¢
c (ii)=numero total de caminhadas
c (J)=numero de passos da caminhada
c*************************************************************

c SOBRE O NUMERO DE PASSOS NAS CAMINHADAS

c
c Somatorio do Numero de Pgssos

u3(0)=0

u3 (ii)=(3j)+u3(ii-1) -
c

c Media (1) do Numero de Passos
ud (ii)="(u3(ii) /1ii)
C***********************************************************/*****
e} SOBRE O RAIO DA CAMINHADA
c
c Raio Quadrado. da Caminhada
rl(ii)=(((X(3)-xr)**2)+((y(J)-yr)**2))

c Raio da Caminhada
r2(ii)=sqrt(rl(ii))

c Somatorio dos Valores do Raio
r3(0)=0
r3(ii)=r2(ii)+r3(ii-1)
c
c Media (1) dos Valores do Raio
rd4 (ii)=(r3(ii)/ii)
c*****************************************************,***********

c SOBRE OS VALORES DE "X"

c
c Somatorio dos Valores de x
v3(0)=0
v3(ii)=x(3)+v3 (ii-1)
c

c Media dos Valores de x
v4 (ii)=(v3(ii)/i1i)
c****************************************************************

c SOBRE OS VALORES DE "Y"

C

c Somatorio dos Valores de y
t3(0)=
t3(ii)=y(J)+t3(ii-1)

c

c Media dos valores de y
t4 (ii)=(t3(ii) /41ii)

Chrhhkkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhrdhhhhdhhhhrrkhhrrdhhk

c SOBRE A DIMENSAO FRACTAL

c

c Dimensao Fractal (1)-Calculada pelo log. do no. de passos

c dividido pelo log. do raio quadrado
dl(ii)=(log(j)/log(rl(ii)))

c Dimensao Fractal (2)-Calculada pelo log do no. de passos

c divido pelo log do raio
d2(ii)=(log(J)/log(r2(ii)))

C********************************************************}r****
write(57,*)1ii,3,x(3),y(3),REP

C

c ESCREVE DADOS PARA: (F.CORRELACAO) vs (RAIO DE GIRACAO)
write(59,*)1ii,j,Cor(ii), rl(ii), r2¢ii),ET(])

Chkhkkhkhkkhhkhkkhhkhkhhkhkkhdhkhkhkdhhkhkhhkhkhhhkhhhkdhhkhkkhhkhkhhkhkhdhkhkhdhrdkhhhhkhdhhkhhkhkhkhhhdi
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600 continue
C*********************************************************_}c****

c FECHAMENTO DOS ARQUIVOS
close(57)
close (59)

c***************************************************************

650 stop
end
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