UNIVERSIDADE FEDERAL DO CEARA

CENTRO DE TECNOLOGIA
DEPARTAMENTO DE ENGENHARIA DE TELEINFORMATICA
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA DE TELEINFORMATICA
DOUTORADO EM ENGENHARIA DE TELEINFORMATICA

DOUGLAS DE ARAUJO RODRIGUES

SEMANTIC MULTI-REGION ACTIVE CONTOUR (SEMAC): UMA ABORDAGEM
SEMANTICO-GEOMETRICA PARA SEGMENTACAO DE MULTIRREGIOES

FORTALEZA
2025



DOUGLAS DE ARAUJO RODRIGUES

SEMANTIC MULTI-REGION ACTIVE CONTOUR (SEMAC): UMA ABORDAGEM
SEMANTICO-GEOMETRICA PARA SEGMENTACAO DE MULTIRREGIOES

Tese apresentada ao Programa de Pos-
Graduagdo em Engenharia de Teleinformatica
do Centro de Tecnologia da Universidade
Federal do Ceard, como requisito parcial a
obtencdo do titulo de doutor em Engenharia de
Teleinformdtica. Area de Concentracio: Sinais
e Sistemas.

Orientador: Prof. Dr. Pedro Pedrosa Re-
boucas Filho.

Coorientadora: Prof. Dr. Suane Pires Pinheiro
da Silva.

FORTALEZA
2025



Dados Internacionais de Catalogacdo na Publicacao
Universidade Federal do Ceara
Sistema de Bibliotecas
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

R612s  Rodrigues, Douglas de Aradjo.
SEmantic Multi-Region Active Contour (SEMAC): uma abordagem semantico-geométrica
para segmentacéo de multirregifes / Douglas de Aradjo Rodrigues. — 2025.
117 f. :il. color.

Tese (doutorado) — Universidade Federal do Ceara, Centro de Tecnologia, Programa de
Pés-Graduacao em Engenharia de Teleinformética, Fortaleza, 2025.

Orientacgéo: Prof. Dr. Pedro Pedrosa Reboucas Filho.

Coorientagdo: Profa. Dra. Suane Pires Pinheiro da Silva.

1. Contornos Ativos. 2. Campo de Evidéncia. 3. Segmentacao Multirregides. 4. Lesbes de
Pele. 5. Células Sanguineas. I. Titulo.

CDD 621.38




DOUGLAS DE ARAUJO RODRIGUES

SEMANTIC MULTI-REGION ACTIVE CONTOUR (SEMAC): UMA ABORDAGEM
SEMANTICO-GEOMETRICA PARA SEGMENTACAO DE MULTIRREGIOES

Aprovada em: 27 de Novembro de 2025

Tese apresentada ao Programa de Pos-
Graduacdo em Engenharia de Teleinforma-
tica do Centro de Tecnologia da Universidade
Federal do Ceard, como requisito parcial a
obtencdo do titulo de doutor em Engenharia
de Teleinformética. Area de Concentragio:
Sinais e Sistemas.

BANCA EXAMINADORA

Prof. Dr. Pedro Pedrosa Reboucas
Filho (Orientador)
Universidade Federal do Ceara (UFC)

Prof. Dr. Suane Pires Pinheiro da
Silva (Coorientadora)
Instituto Federal de Educacao, Ciéncia e
Tecnologia do Ceard (IFCE)

Prof. Dr. Victor Hugo Costa de Albuquerque
Universidade Federal do Ceara (UFC)

Prof. Dr. Ajalmar Régo da Rocha Neto
Universidade Federal do Ceara (UFC)

Prof. Dr. Amauri Holanda de Souza Junior
Instituto Federal de Educacao, Ciéncia e
Tecnologia do Ceard (IFCE)

Prof. Dr. Josias Guimaraes Batista
Instituto Federal de Educacgio, Ciéncia e
Tecnologia do Estado do Ceara (IFCE)



AGRADECIMENTOS

A Deus, pela presenca constante, pela luz que guiou meu caminho e pela serenidade
necessdria para enfrentar cada etapa desta trajetoria.

Em especial & minha familia — especialmente Florinda Helena e Wilton Rodrigues
— pelo amor, paciéncia e apoio incondicional. E um agradecimento especial ao Alysson Mendes,
que fez parte importante dessa caminhada.

Ao meu orientador, Prof. Dr. Pedro Pedrosa Rebougas Filho, registro minha profunda
admiragdo e reconhecimento pela orientacio segura, pelo comprometimento e pela generosidade
intelectual. A minha coorientadora, Prof®. Dra. Suane Pires Pinheiro da Silva, expresso sincera
gratidao pela disponibilidade, pelas contribui¢des valiosas e pelo incentivo constante ao longo
do desenvolvimento desta tese.

Ao Laboratério de Processamento de Imagens, Sinais e Computagdo Aplicada
(LAPISCO), pela infraestrutura, pelo ambiente colaborativo e pelas trocas de conhecimento que
enriqueceram de forma significativa esta jornada académica. Aos colegas, amigos e colaboradores
que contribuiram direta ou indiretamente para esta caminhada, seja por meio de discussoes
técnicas, sugestdes construtivas ou simples gestos de encorajamento. Agradeco especialmente
aos colegas Aldisio Medeiros, Roberto Fernandes, Jodao Carlos, Solon Peixoto, Pedro Yuri e
Mabiu Moura, pelo companheirismo e pelas discussdes produtivas que tornaram este percurso
mais leve e inspirador.

A CAPES, pelo apoio financeiro com a manutengio da bolsa de auxilio. O presente
trabalho foi realizado com apoio da Coordenacao de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Cédigo de Financiamento 001.

Por fim, agradeco a todos que acreditaram nesta pesquisa e compartilharam comigo o

valor da persisténcia, da curiosidade e do compromisso com o avango do conhecimento cientifico.



Depois do medo, vem o mundo.

(Clarice Lispector)



RESUMO

A segmentacdo de imagens € essencial na andlise e interpretacdo visual, sobretudo em aplicagdes
que exigem precisdo geométrica e robustez diante da variabilidade de forma, textura, contraste e
artefatos. Este trabalho propde o SEmantic Multi-Region Active Contour (SEMAC), um método
de segmentacdo baseado em contornos ativos, cuja formulagdo multicontorno permite obter
multiplas regides a partir de um tnico contorno inicial. Essa estrutura faz com que o contorno se
divida e se adapte dinamicamente quando o campo energético identifica multiplos nuicleos ou
regides de interesse, resultando em uma segmentag¢do multirregional consistente. O modelo deriva
da formulagao classica dos Active Contour Model (ACM), mas redefine sua energia externa com
base em um campo de evidéncia semantica, responsavel por orientar a evolu¢ao adaptativa dos
contornos em um dominio energético continuo. Essa energia supervisionada substitui o gradiente
fotométrico tradicional, sintetizando contrastes e padrdes estruturais em multiplas escalas e
assegurando estabilidade numérica mesmo em cendrios complexos. O campo de evidéncia
€ obtida a partir de pares de imagem-referéncia, que fornecem ao modelo um mapeamento
continuo refletindo a distribui¢cdo espacial de evidéncias semanticas, tornando-o mais informativo
e robusto a diversas variagdes. A avaliagdo experimental abrangeu trés conjuntos de dados:
um sintético, voltado a andlise sob variacdes de forma, ruido e densidade; e dois clinicos,
com imagens dermatoscopicas de lesdes cutaneas e microscopicas de células sanguineas. As
métricas de desempenho (Acuricia, Precisdo, Sensibilidade, Especificidade, Intersection over
Union (IoU), Dice Similarity Coefficient (Dice) e Matthews Correlation Coefficient (MCC))
foram complementadas por andlises qualitativas de regularidade e estabilidade morfoldgica. Os
resultados demonstram que o SEMAC alcanca desempenho competitivo em relagdo a métodos
classicos e supervisionados de referéncia, mantendo consisténcia e eficiéncia computacional. O
modelo consolida uma abordagem continua e multirregional inspirada na dindmica de multiplos
contornos ativos, integrando aprendizado semantico e evolu¢do geométrica em uma estrutura

interpretdvel e estdvel, adequada a segmentacdo de imagens complexas.

Palavras-chave: contornos ativos; campo de evidéncia; segmentacao multirregides; lesoes de

pele; células sanguineas.



ABSTRACT

Image segmentation is essential for visual analysis and interpretation, especially in applications
that require geometric precision and robustness against variability in shape, texture, contrast,
and artifacts. This work proposes the SEMAC, a segmentation method based on active contours
whose multi-contour formulation enables the extraction of multiple coherent regions from a
single initial contour. This structure allows the contour to divide and adapt dynamically when the
energy field identifies multiple nuclei or regions of interest, resulting in consistent multiregional
segmentation. The model derives from the classical ACM formulation but redefines its external
energy based on a semantic evidence field, which guides the adaptive evolution of contours
within a continuous energy domain. This supervised energy replaces the traditional photometric
gradient, synthesizing contrasts and structural patterns at multiple scales and ensuring numerical
stability even in complex scenarios. The evidence field is obtained from reference image pairs,
providing the model with a continuous mapping that reflects the spatial distribution of semantic
evidence, making it more informative and robust to photometric variations. The experimental
evaluation encompassed three datasets: a synthetic one, aimed at analyzing variations in shape,
noise, and density; and two clinical ones, comprising dermatoscopic images of skin lesions
and microscopic images of blood cells. The performance metrics (Accuracy, Precision, Sensiti-
vity, Specificity, Intersection over Union (IoU), Dice Similarity Coefficient (Dice) e Matthews
Correlation Coefficient (MCC)) were complemented by qualitative analyses of regularity and
morphological stability. The results demonstrate that the SEMAC achieves competitive per-
formance compared to classical and state-of-the-art supervised methods, while maintaining
consistency and computational efficiency. The model establishes a continuous and multiregional
approach inspired by the dynamics of multiple active contours, integrating semantic learning and
geometric evolution within an interpretable and stable framework suitable for the segmentation

of complex images.

Palavras-chave: active contours; semantic evidence field; multi-region segmentation; skin

lesions; blood cells.
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1 INTRODUCAO

O avanco da Inteligéncia Artificial (IA) e da Visao Computacional (VC) tem rede-
finido a forma como dados visuais sdo analisados. Essas tecnologias possibilitam a extracdo
de informacgdes estruturadas, isto é, representacdes quantitativas e semanticamente organizadas
de elementos visuais, como formas, texturas, bordas e padrdes espaciais, a partir de contextos
visuais cada vez mais complexas. No campo da saidde, em particular, elas auxiliam especialistas
na tomada de decisdes mais rdpidas e assertivas (Obuchowicz et al., 2025), contribuindo para
aumentar a precisao diagndstica, otimizar protocolos terapéuticos e oferecer novas ferramentas
de apoio clinico (Rong; Liu, 2024). Nesse cendrio, a comunidade cientifica tem direcionado
esforcos permanentes para o aprimoramento de algoritmos de andlise de imagem em diferentes
dominios, com o objetivo de torni-los mais robustos, acessiveis e eficientes (Pinto-Coelho,
2023).

Entre as aplicacOes relevantes estdo os sistemas de Computer-Aided Diagnosis
(CAD), ou Diagnéstico Auxiliado por Computador, que integram técnicas de Processamento
Digital de Imagens (PDI) e IA para auxiliar especialistas na interpretacdo de exames. Esses siste-
mas seguem um fluxo que inclui aquisi¢do, pré-processamento, segmentagdo, pos-processamento,
extracdo de atributos e classificacdo de padroes (Gonzalez; Woods, 2018).

A segmentacdo de imagens consiste em isolar os objetos de interesse, sejam eles
células, lesdes cutineas, estruturas anatomicas ou outros padrdes visuais especificos ao dominio
analisado, permitindo que os algoritmos concentrem suas andlises nas regides mais relevantes
(Pham et al., 2000; Mittal et al., 2022; Yu et al., 2023). Uma segmentagdo bem executada tende
a reduzir a complexidade computacional, aprimorar a extragdo de caracteristicas e aumentar a
confiabilidade das métricas derivadas, sobretudo quando aplicada a sistemas de andlise automati-
zada. Apesar dos avangos recentes, a delimitacdo precisa das fronteiras ainda é comprometida
por variacdes de contraste, ruidos e artefatos, bem como pela alta diversidade morfolégica dos
objetos, o que mantém a segmentacio de imagens complexas como um dos desafios centrais da
area.

As abordagens cldssicas, como a limiarizacdo e a Crescimento de Regides (CR),
baseiam-se em propriedades de intensidade e conectividade dos pixels. Esses métodos apresentam
desempenho satisfatorio em condi¢des controladas, mas tendem a falhar em contextos com
iluminagcdo ndo uniforme, presenca de ruido ou fronteiras de baixo contraste, nas quais a

distin¢ao entre regides torna-se ambigua. Em resposta a essas limitacdes, surgiram os ACM,
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que formulam a segmenta¢do como um problema de minimizacao de energia (Caselles et al.,
1997; Vasconcelos et al., 2018). Dentro dessa familia, as abordagens variacionais se destacam
por estabelecer um modelo matemaético rigoroso, em que o contorno evolui para um estado de
equilibrio energético, conduzido por forgas internas que impdem suavidade e externas que o
atraem para as fronteiras da imagem. Mesmo com o avanco de modelos como o de Chan—Vese
(Chan; Vese, 2001), que ampliou a robustez a gradientes locais e ruidos, a eficicia dessas técnicas
ainda depende fortemente da condicao inicial e das propriedades fotométricas da imagem.

O advento do Deep Learning (DL), ou Aprendizagem Profunda, introduziu um novo
paradigma para a andlise de imagens, permitindo que as Convolutional Neural Networks (CNNs),
ou Redes Neurais Convolucionais, aprendessem representacoes hierarquicas e discriminativas
diretamente a partir dos dados. Arquiteturas como a U-Net e suas derivacdes consolidaram-se
como referéncia em tarefas de segmentacao, sobretudo no contexto biomédico (Ronneberger et
al.,2015; Wu et al., 2022). Apesar de seu desempenho expressivo, esses modelos ainda enfrentam
limitacdes conhecidas, como a exigéncia de grandes volumes de dados anotados, a sensibilidade
a variacdes morfoldgicas e a perda de coeréncia geométrica em estruturas complexas, o que tem
impulsionado o desenvolvimento de abordagens hibridas que conciliem aprendizado semantico e
regularizagdo geométrica.

A combinacdo entre método classicos e Rede Neural Profunda (DNN) tem sido
investigada como uma estratégia promissora para explorar propriedades complementares de
ambas as abordagens. Esses métodos hibridos buscam integrar a estabilidade geométrica e o
controle de forma caracteristicos dos cldssicos com a capacidade de abstracio e generalizagdo
das redes profundas (Lei ef al., 2018; Okur et al., 2023). De modo geral, essa linha de pesquisa
procura conciliar a interpretabilidade e o rigor mateméatico dos modelos variacionais com a
flexibilidade e o poder de representacdao do aprendizado profundo, avangcando em direcdo a
solugdes mais robustas e semanticamente consistentes para a segmentacao de imagens.

E nesse contexto que este trabalho propde o método SEmantic Multi-Region Active
Contour (SEMAC), um modelo que integra representacdes aprendidas a formulacao variacional
dos contornos ativos, estendendo-a para um cendrio de multiplos contornos interdependentes
voltado a segmentacdo de multiplas regides. O método sintetiza contrastes, formas e relacoes
morfolégicas em um campo de evidéncia continuo que orienta a evolucdo das curvas. A
segmentagdo € formulada em duas etapas complementares: (i) a definicao supervisionada de uma

nova forma de energia externa, representada por um campo de evidéncia semantica que guia o
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processo evolutivo, e (ii) a evolucdo contratil multirregional de contornos paramétricos, regulada
por coeréncia geométrica e conduzida até o equilibrio energético. Essa integracdo permite
que as curvas evoluam de modo adaptativo em dire¢do as fronteiras de interesse, preservando
continuidade morfolédgica e permitindo a separagdo natural de miltiplas regides coerentes em
um Unico processo.

O SEMAC unifica coeréncia geométrica e consisténcia semantica em um Unico
método, no qual um contorno inicial contrai de forma continua e, por meio de ramifica¢des
controladas, se divide para abranger multiplas regides de interesse. Essa formulacdo preserva as
relagdes espaciais entre regides adjacentes e mantém a continuidade das fronteiras, mesmo em
contextos de alta complexidade visual. O SEMAC € avaliado em trés contextos experimentais,
envolvendo conjuntos de dados sintéticos, dermatoscopicos e citoldgicos, com andlises quantita-
tivas e qualitativas baseadas em métricas consolidadas de segmentacgao, verificando sua robustez,

capacidade de generalizacdo e coeréncia geométrica.

1.1 Motivacao

A precisdo na segmentacdo de estruturas visuais constitui um requisito essencial
em aplicacdes biomédicas, uma vez que pequenas imprecisdes podem comprometer etapas
subsequentes de andlise quantitativa, diagndstico assistido ou controle de qualidade. No dominio
clinico, 0 melanoma cutineo constitui um dos maiores desafios da oncologia moderna (Boyle et
al., 2004). Embora represente uma fracdo menor entre os canceres de pele, é responsdvel pela
maioria dos ébitos, totalizando mais de 55 mil mortes anuais em todo o mundo (Schadendorf et al.,
2018). A detecgdo precoce € fundamental para o sucesso terapéutico, mas a ampla variabilidade
morfolégica das lesdes (em forma, textura e coloragdo) torna o diagndstico dependente da
experiéncia do especialista. Nesse contexto, a segmentacdo automdtica de lesdes cutianeas
surge como uma ferramenta essencial para padronizar a andlise e reduzir a subjetividade clinica,
permitindo extrair medidas quantitativas reprodutiveis associadas a progressao das lesdes.

De forma andloga, a andlise de imagens microscOpicas ocupa posi¢ao de destaque
em diversas areas da saude e da biotecnologia, sendo amplamente utilizada no diagndstico de
patologias e no desenvolvimento farmacéutico. O isolamento preciso de nucleos celulares é
indispensavel para tarefas como contagem, classificacdo e extragdo de biomarcadores, uma
vez que suas propriedades morfoldgicas refletem o estado fisioldgico e patoldgico dos tecidos

(Singha; Bhowmik, 2022). Entretanto, a automacao robusta desse processo ainda enfrenta
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barreiras significativas, como heterogeneidade de coloragdo, sobreposicdo de estruturas e ruido
de aquisicao (Narotamo et al., 2019), fatores que comprometem a definicdo das fronteiras e
dificultam a padronizacdo das analises.

Esses cendrios biomédicos exemplificam contextos visuais que compartilham desa-
fios estruturais, como elevada variabilidade morfoldgica, presenca de artefatos de imagem e a
necessidade de preservar a coeréncia geométrica entre regides adjacentes. Tais limitagdes eviden-
ciam que ainda sdo restritas as abordagens capazes de integrar, de forma efetiva, a interpretagao
semantica aprendida com a estabilidade geométrica dos modelos variacionais. E nesse contexto
que se insere o presente trabalho, ao propor o método SEmantic Multi-Region Active Contour
(SEMAC), que combina o aprendizado supervisionado de campos de evidéncia com a evolugdo
contratil de multiplos contornos ativos, possibilitando a segmentagdo simultanea de multiplas

regides de interesse em diferentes tipos de imagem.

1.2 Estado da Arte

Ao longo das ultimas décadas, a segmentacao de imagens tem sido abordada sob dife-
rentes perspectivas metodoldgicas, acompanhando a evolucdo dos paradigmas de processamento
e andlise visual, impulsionada pelo aumento do poder computacional, pela ampla disponibilidade
de conjuntos de dados e pelas novas demandas de precisdo impostas por aplicagdes emergentes.
Inicialmente, predominavam técnicas cldssicas de PDI, como limiariza¢do, detec¢io de bordas
e morfologia matemadtica (Gonzalez; Woods, 2018; Serra, 1982; Canny, 1986; Otsu, 1979),
baseadas em propriedades locais de intensidade e conectividade dos pixels. Essas abordagens,
embora eficientes em contextos controlados e de baixa variabilidade, t€m apresentado desem-
penho limitado em cendrios mais complexos, nos quais fatores como iluminacio heterogénea,
texturas irregulares e sobreposi¢ao de objetos desafiam sua capacidade de generalizagao.

A busca por métodos mais adaptativos levou ao surgimento dos modelos baseados em
energia, como os ACM, introduzidos por Kass et al. (1988). Nesses modelos, o contorno de um
objeto é representado como uma curva eldstica sujeita a forgas internas e externas que controlam,
respectivamente, a suavidade da forma e a atragdo as bordas da imagem. Essa formulagao
introduziu uma abordagem dindmica para a segmentacao, em que o equilibrio entre regularizacdo
geométrica e aderéncia as fronteiras passou a ser ajustado continuamente durante a evolugao do
contorno. Posteriormente, o0 modelo Geodesic Active Contour (GAC), proposto por Caselles

et al. (1997), aprimorou a detec¢do de fronteiras de baixo gradiente ao incorporar a distancia
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geodésica no espacgo de gradientes. J4 o modelo Chan—Vese (Chan; Vese, 2001) ampliou essa
formulacao ao substituir a dependéncia direta de gradientes por critérios de homogeneidade de
intensidade, tornando a segmentagdo mais robusta em regides com baixo contraste ou transi¢oes
suaves.

A evolucdo dos modelos variacionais deu origem a formula¢des mais flexiveis, como
o Fast Morphological Geodesic Active Contour (FGAC) (Vasconcelos et al., 2018) e o FLog
Parzen Level Set (FPLS) (Rebougas et al., 2021), que apresentaram resultados expressivos em
imagens dermatoscépicas (Mendonga et al., 2015). Esses métodos incorporaram operagdes
morfoldgicas e estimativas de densidade para lidar de forma mais robusta com variagcdes de
textura, iluminagdo e contornos irregulares, mantendo alto poder descritivo e interpretabilidade.
Ainda assim, sua eficicia estd condicionada a escolha e ao ajuste das fun¢des de energia que
regem o processo de evolugdo, as quais nem sempre conseguem representar adequadamente
a diversidade estrutural presente nas imagens. Essa limitagdo direciona a pesquisa para a
formulacdo de modelos que integrem informagdes semanticas aprendidas ao processo variacional,
buscando maior adaptabilidade e consisténcia em cendrios visuais complexos.

Paralelamente, outra vertente metodoldgica ganhou destaque na ci€ncia contempora-
nea com o avango do DL, que ampliou significativamente as possibilidades da segmentacio de
imagens ao permitir que redes convolucionais aprendessem representacoes hierarquicas direta-
mente dos dados. Arquiteturas derivadas da U-Net consolidaram o aprendizado supervisionado
como padrado de referéncia, alcangcando resultados notaveis em diferentes dominios visuais.
Entretanto, mesmo com sua expressividade, essas redes tendem a perder coeréncia geométrica
em estruturas de forma irregular e dependem fortemente de grandes volumes de dados anotados.
Essas limitagdes refor¢cam a relevancia de abordagens que integrem aprendizado semantico e
regularizagdo geométrica, principio que fundamenta o método proposto neste trabalho.

Em dermatoscopia, modelos recentes como a GFANet (Qiu et al., 2023), FAT-
Net (Wu et al., 2022), ADF-Net (Huang et al., 2024) e ASP-VMUNet (Bao et al., 2025) obtiveram
resultados expressivos nos conjuntos de dados de lesdes cutaneas ISIC e PH2, ao integrarem
estratégias avancadas de aten¢do e aprendizado multiescala. A GFANet utiliza decodificadores
progressivos para refinar as fronteiras das lesdes, enquanto a FAT-Net combina convolugdes e
transformadores para capturar simultaneamente detalhes locais e contexto global. O ADF-Net
emprega um duplo codificador (CNNs e Transformer) com atengdo focal, buscando equilibrar a

representacio semantica e o contraste interno das lesdes. Por sua vez, a ASP-VMUNet aprimora
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a analise multiescala por meio de convolugdes atrous paralelas e deslocamentos de amostragem,
ampliando a sensibilidade a variacdes de forma e textura.

Essas arquiteturas representam avangos relevantes no refinamento das fronteiras e na
integracao de informag¢des multiescala. Contudo, os préprios autores destacam que, apesar do
uso de mecanismos de atengdo reversa e transformadores visuais, essas redes ainda enfrentam
dificuldades em manter coeréncia geométrica e consisténcia estrutural em contextos reais. Si-
tuacdes com baixo contraste, ruido de fundo ou alta variabilidade morfoldgica frequentemente
resultam em fusdes indevidas, deformagdes de fronteiras ou perda de estabilidade entre regides
adjacentes.

Qiu et al. (Q1u et al., 2023) relatam que a GFANet tende a perder consisténcia global
quando aplicada a bases com distribuicdes distintas. Wu et al. (Wu et al., 2022) observam que a
FAT-Net apresenta falhas na diferenciacio de fronteiras sob baixo contraste. Huang et al. (Huang
et al., 2024) apontam que o ADF-Net permanece sensivel a ruidos e inconsisténcias na fusao
entre caracteristicas locais e globais. De forma semelhante, Bao et al. (Bao et al., 2025) destacam
que a ASP-VMUNet reduz a precisdo em imagens com varia¢do cromdtica acentuada e aumenta
a complexidade computacional conforme cresce o nimero de filtros atrous.

Essas constatacdes indicam que, embora as arquiteturas profundas tenham ampliado
a capacidade de representacdo semantica, elas ainda carecem de mecanismos que assegurem
estabilidade geométrica e coeréncia morfoldgica nas fronteiras segmentadas. Essa limitacdo im-
pacta diretamente a integridade das regides delimitadas e a confiabilidade das medidas extraidas,
especialmente em aplicagdes médicas e biomédicas que exigem precisao e reprodutibilidade.

De modo andlogo, na segmentacao de células sanguineas, os desafios tornam-se
ainda mais complexos devido as caracteristicas intrinsecas das imagens microscopicas, como
a sobreposicdo de estruturas, a coloracdo heterogénea e o baixo contraste entre as bordas
celulares e o fundo. Diversas variantes da U-Net foram avaliadas nesse contexto, incluindo a
U-Net++ (Zhou et al., 2018), R2U-Net (Alom et al., 2018), Attention U-Net (Oktay et al., 2018)
e FCN (Long et al., 2015). Embora apresentem bom desempenho global, anélises qualitativas
revelam limitagcGes persistentes, como a fusdo de estruturas adjacentes, a perda de defini¢do
em bordas de baixo contraste e a supersegmentacdo em regides densamente coradas. Esses
comportamentos refletem uma limitacao recorrente das arquiteturas puramente convolucionais,
cuja auséncia de mecanismos explicitos de controle geométrico faz com que o processo de

segmentacdo dependa apenas da resposta local dos filtros convolucionais, resultando em fronteiras
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instiveis e contornos morfologicamente inconsistentes.

Essas limita¢des evidenciam a necessidade de métodos capazes de integrar repre-
sentacdo aprendida e coeréncia geométrica, preservando a consisténcia semantica ao longo da
segmentacdo. Nos dltimos anos, algumas abordagens hibridas comegaram a explorar a combina-
cdo entre aprendizado profundo e formula¢des energéticas, mas ainda de forma restrita e voltada
a casos especificos. Persistem desafios conceituais e praticos relacionados a integragdo efetiva
entre a dindmica fisica dos contornos ativos e os campos de evidéncia, sobretudo em cendrios
multirregionais com elevada variabilidade morfoldgica e interdependéncia entre estruturas.

O estado da arte atual revela, portanto, uma dupla lacuna: a auséncia de uma formu-
lacdo que una de maneira consistente os principios geométricos € semanticos da segmentacao, e a
caréncia de métodos capazes de lidar, de forma estdvel, com a evoluc¢do simultanea de multiplas
regides em um mesmo dominio energético. Motivado por esse cendrio, o presente trabalho
propde o método SEmantic Multi-Region Active Contour (SEMAC), que integra campos de
evidéncia semantica a modelagem fisica dos contornos ativos, estabelecendo um elo conceitual
entre os dominios geométrico e semantico da segmentagdo. Essa formulacao hibrida busca unir a
estabilidade e interpretabilidade dos modelos variacionais a adaptabilidade e expressividade das
redes profundas, permitindo segmentacdes continuas, coerentes € morfologicamente consistentes

em contextos de alta complexidade visual e multiplas regides de interesse.

1.3 Objetivos

Os objetivos deste trabalho estdo organizados em um objetivo geral e um conjunto
de objetivos especificos que orientam o desenvolvimento, a validacdo e a anélise do método
proposto. O objetivo geral define a meta central da pesquisa, enquanto os objetivos especificos

descrevem as etapas metodoldgicas para sua realizacdo.

1.3.1 Objetivo Geral

Desenvolver o método SEmantic Multi-Region Active Contour (SEMAC), um mé-
todo de segmentagdo que integra campos de evidéncia semantica a formulagdo variacional dos
contornos ativos paramétricos. O método propde uma reformulagdo da energia externa dos
contornos ativos, representada por um campo de evidéncia, e uma dindmica de evolu¢do mul-

ticontorno capaz de gerar segmentacdes multirregido a partir de um tnico contorno inicial. A
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abordagem busca assegurar coeréncia geométrica, consisténcia semantica e estabilidade evolu-
tiva, permitindo que cada contorno se divida, evolua e estabilize de forma independente conforme

a estrutura da imagem.

1.3.2 Objetivos Especificos

Para alcancar o objetivo geral, propdem-se os seguintes objetivos especificos:

— Projetar e implementar o SEMAC, combinando aprendizado supervisionado de campos de
evidéncia com a modelagem fisica e variacional dos contornos ativos paramétricos;

— Formular uma energia externa aprendida para o modelo de contornos ativos para multir-
regides, definida a partir de um campo de evidéncia seméantica supervisionado, capaz de
orientar a contracao dos contornos em regidoes com alta variabilidade de contraste, textura
e forma;

— Propor um mecanismo de evolu¢do multicontorno no qual um unico contorno inicial evolui
adaptativamente sobre o campo energético e, a medida que novas regides de evidéncia sio
identificadas, divide-se em contornos secundarios que passam a evoluir e estabilizar-se de
forma independente, resultando em uma segmentacdao multirregido sem necessidade de
multiplas inicializagdes;

— Definir critérios de parada individuais e adaptativos para cada contorno, assegurando
estabilizacdo independente mesmo em regides de limites difusos ou baixa separabilidade;

— Analisar o comportamento evolutivo do modelo sob diferentes condi¢des experimentais,
verificando sua robustez frente a ruido, baixo contraste e variacdes morfoldgicas;

— Avaliar a coeréncia geométrica e a consisténcia semantica das segmentacgdes realizadas
pelo SEMAC obtidas em imagens clinicas de lesdes cutaneas e células sanguineas;

— Comparar o desempenho do SEMAC com métodos cldssicos e abordagens supervisionadas,
em contextos dermatoscopico e microscopico, por meio de métricas quantitativas e andlises

qualitativas das fronteiras segmentadas;

1.4 Producao Cientifica

Durante o periodo de realizagdo deste doutorado, foram desenvolvidos os seguintes
artigos cientificos:

1. Journal of Real-Time Image Processing - A new approach for the detection of pneumonia
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in children using CXR images based on an real-time IoT system - Qualis A2 (ENG. IV);
2. Conference on Graphics, Patterns and Images - Sistema de Deteccdo e Classificacao de
Residuos Sélidos com Computacdo em Borda Usando Deep Learning; - Qualis A3 (CC);
3. Conference on Graphics, Patterns and Images — Avaliagdo de OCR Embarcado para
Dispositivos Méveis: Desempenho, Privacidade e Usabilidade - Qualis A3 (CC);
4. Measurement - Automated Flow for Vickers Hardness Measurement with Deep Learning
Techniques - Qualis Al (ENG. IV) - (Submetido).
5. Sensors - Semantic Multi-Region Active Contour (SEMAC): A Semantic-Geometric Appro-
ach for Multi-Region Segmentation - Qualis A1 (ENG. IV) - (Submetido).

1.5 Organizacao da Tese

Esta tese estd estruturada de forma a apresentar, de maneira gradual e integrada,
os fundamentos conceituais, o desenvolvimento metodolégico e a validacdo experimental do
método proposto. A organizagdo segue uma progressao logica, conduzindo o leitor desde os
aspectos introdutorios e motivacionais até a consolidag¢do dos resultados e conclusdes finais.

O Capitulo 1 introduz o tema, contextualizando o problema da segmentaciao de
imagens e destacando sua relevancia cientifica e aplicada. Sao discutidas as limitagdes das
abordagens classicas, as lacunas existentes na literatura e as oportunidades de avanco que
motivaram o desenvolvimento do presente trabalho. Além disso, s@o apresentados os objetivos
gerais e especificos, bem como a producdo cientifica realizada durante o periodo do doutorado.

O Capitulo 2 retine a base tedrica necessaria a compreensao do estudo, abordando
0s principais conceitos e técnicas de segmentacdo de imagens, desde os métodos baseados
em limiarizacdo e contornos até os métodos contemporaneos fundamentados em aprendizado
profundo. Sao detalhados os principios dos modelos de contornos ativos, suas formulacoes
energéticas e variagOes, além das abordagens de redes neurais convolucionais e arquiteturas
encoder-decoder.

O Capitulo 3 descreve minuciosamente a metodologia desenvolvida do SEmantic
Multi-Region Active Contour (SEMAC). Sao apresentadas a formulagao matematica do modelo,
a definicdo das forgas internas e externas, e o processo de constru¢do dos campos de evidéncia
semantica. Também € detalhado o mecanismo de integracao dessas evidéncias a dinamica dos
contornos ativos, que permite a segmentacao simultanea e adaptativa de multiplas regides de

interesse, mantendo coeréncia geométrica e consisténcia morfoldgica ao longo da evolugdo.
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O Capitulo 4 apresenta e discute os resultados experimentais obtidos em diferentes
conjuntos de dados, abrangendo tanto cendrios sintéticos quanto clinicos. Sao realizadas anélises
quantitativas e qualitativas do desempenho do método proposto em comparacdo com aborda-
gens de referéncia, considerando métricas consolidadas e avaliagOes visuais da estabilidade e
regularidade dos contornos. O capitulo também inclui uma anélise geral e interpretativa sobre o
comportamento do SEMAC.

Por fim, o Capitulo 5 apresenta a sintese das conclusdes, destacando as contribuigdes
tedricas e praticas alcancadas. Sdo discutidas as implicacdes do método para o avango da
segmentacdo de imagens biomédicas, bem como suas limitacdes atuais e as possiveis extensoes

que poderdo ampliar sua aplicabilidade e desempenho em cendrios mais complexos.
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2  FUNDAMENTACAO TEORICA

Este capitulo apresenta os fundamentos necessarios ao desenvolvimento do método
proposto. Inicialmente, descrevem-se os contextos clinicos de aplicacdo (lesdes cutineas e células
sanguineas) e a motivac¢do para segmentacao automatica. Em seguida, revisam-se os principais
métodos de segmentacdo, dos baseados em similaridade e descontinuidade aos modelos de
contornos ativos. Por fim, discutem-se conceitos de aprendizado profundo, com énfase em

arquiteturas convolucionais e no papel de representacdes aprendidas para a segmentagao.

2.1 Condicoes Médicas Abordadas

Sdo apresentadas as condi¢des médicas escolhidas como estudos de caso para aplica-
¢do do método proposto. O objetivo € evidenciar seu uso em cendrios reais € seu potencial para
apoiar o diagndstico, por meio da segmentacdo automatica de regides de interesse a partir de

anotacgdes de especialistas.
2.1.1 Lesdes Cutdneas

O cancer de pele ¢ uma das doencas malignas mais incidentes no mundo e se divide
em duas categorias principais: melanoma e ndo melanoma. Embora o melanoma represente uma
fracdo menor dos casos, € responsdvel pela maioria das mortes associadas a doenga (Boyle et
al., 2004; Dildar et al., 2021). Ele tem origem na proliferacdao descontrolada dos melandcitos,
células produtoras de pigmento localizadas nas camadas média e superficial da epiderme. A
Figura 1 ilustra essa localizacdo anatdomica, destacando a regido afetada pelo melanoma. As
taxas de incidéncia e mortalidade variam entre regides geograficas, influenciadas por fatores
ambientais e genéticos, mas a deteccdo precoce permanece como o fator mais determinante para
0 sucesso terapéutico e a sobrevida dos pacientes (Schadendorf et al., 2018).

A dermatoscopia € atualmente o principal exame clinico auxiliar para avaliagdo de
lesdes pigmentadas. O método utiliza um dispositivo dptico iluminado que amplia a visualiza¢ao
das estruturas internas da pele, permitindo identificar padrdes morfolégicos indicativos de
malignidade (Mendonga et al., 2015). O diagnostico definitivo, entretanto, ainda depende da
andlise histopatoldgica obtida por bidpsia, procedimento invasivo que fornece a confirmacao da
natureza da lesao.

A heterogeneidade das lesdes cutineas, marcada por variacdes de forma, textura,
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Figura 1 —Representagdo esquemdtica do melanoma cutaneo.

- Melanoma

Fonte: Adaptado de Reboucas et al. (2021).

coloracdo e contraste, torna o diagndstico um desafio mesmo para especialistas experientes.
Essa variabilidade, associada a necessidade de avaliacOes rapidas e reprodutiveis, motivou o
desenvolvimento de técnicas computacionais capazes de apoiar a identificacdo e a delimitagcdao

precisa das lesdes em imagens dermatoscépicas (Dildar et al., 2021).

2.1.2 Células Sanguineas

O exame de células sanguineas ¢ um procedimento de baixo custo e alta relevan-
cia clinica, amplamente utilizado na investigacao e no acompanhamento de diversas doengas
(Nierhaus et al., 2013). A analise morfoldgica de hemdcias, responsaveis pelo transporte de
oxigénio, leucdcitos, que atuam na defesa imunoldgica, e plaquetas, essenciais a coagulacao,
fornece informacdes valiosas sobre o estado geral do paciente e auxilia na deteccao de distirbios
como anemias, leucemias e infeccoes.

A microscopia Optica aplicada a esfregacos sanguineos continua sendo o método
mais empregado para essa avaliacdo. O processo envolve a preparacdo de uma fina camada de
sangue em lamina de vidro, corada com reagentes especificos, o que permite a observacgao e
caracterizacdo das células sob o microscépio de luz. A Figura 2 apresenta de forma esquematica
as etapas desse procedimento, destacando como o método tradicional possibilita a visualizacao
detalhada das estruturas celulares.

Embora amplamente difundido, o método depende fortemente da experiéncia do
examinador, o que pode gerar variacdes interpretativas e inconsisténcias, especialmente em

contextos de alta demanda. Nesse cendrio, a segmentagcdo automadtica e precisa das células no
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Figura 2 —Ilustragdo esquemadtica da anédlise de uma amostra de sangue.
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Fonte: Elaborado pelo autor.

campo microscopico torna-se uma etapa essencial para automatizar tarefas como contagem,
classificacdo e identificacdo de alteracdes morfoldgicas, impactando diretamente a acuricia
diagnostica.

Apesar dos avangos em processamento de imagens e aprendizado profundo, a seg-
mentagdo automatica de células sanguineas ainda representa um desafio consideravel. A di-
versidade morfoldgica das células, as frequentes sobreposi¢des entre estruturas e as variacoes
decorrentes do preparo dos esfregacos aumentam a complexidade do problema. Além disso,
muitos estudos utilizam bases de dados restritas ou focadas em tipos celulares especificos, o que

limita a capacidade de generalizagdo dos modelos propostos para cendrios clinicos mais amplos.

2.2 Segmentacao de Imagens

A segmentagdo de imagens € uma das etapas mais importantes em VC, pois constitui
a base para a andlise e interpretacdo do conteido visual. Seu objetivo € dividir a imagem em
uma ou mais regides de interesse, de modo que cada uma apresente homogeneidade segundo
um critério especifico, como intensidade, textura ou forma, permitindo a andlise individual de
cada componente. Essa etapa € essencial para a extracao de atributos relevantes que servirdo de
suporte as fases posteriores de reconhecimento, classificacdao e tomada de decisdo. Em termos
praticos, segmentar uma imagem significa atribuir um rétulo a cada pixel com base em suas
propriedades locais e em sua relacdo com os vizinhos.

Segundo a abordagem cléssica de Gonzalez e Woods (2018), as técnicas de seg-

mentacdo podem ser agrupadas em duas categorias principais, de acordo com as propriedades
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analisadas nos pixels. A primeira categoria corresponde aos métodos baseados em similaridade,
que agrupam pixels com caracteristicas semelhantes, formando regides internamente homogéneas.
A segunda categoria abrange os métodos baseados em descontinuidade, que identificam variacdes
abruptas nos niveis de intensidade entre pixels adjacentes, sendo amplamente empregados na

deteccao de limites de objetos, como nas técnicas de detecc@o de bordas e contornos.
2.2.1 Segmentagcdo por Similaridade

A segmentacdo por similaridade fundamenta-se na hipdtese de que os elementos
pertencentes a um mesmo objeto ou regido compartilham propriedades visuais semelhantes,
como intensidade, cor ou textura. O objetivo € agrupar pixels que apresentem homogeneidade
segundo um critério predefinido, de forma a construir regides internamente consistentes e
externamente distintas. Entre as abordagens cldssicas dessa categoria destacam-se a limiariza¢ao
e o crescimento de regides, ambas diretamente relacionadas a distribui¢ao de intensidades dos
pixels e a conectividade espacial.

A limiarizagdo consiste em estabelecer um ou mais valores de referéncia (limiares)
que separam a imagem em regides distintas de acordo com o nivel de intensidade. Essa técnica
¢ particularmente eficaz quando o histograma da imagem apresenta picos bem definidos, cor-
respondentes as regides de interesse. No caso mais simples, em que apenas duas regides sao
consideradas, o processo é denominado binarizac¢do, formalmente expresso pela Equagao (2.1),

em que L representa o limiar de decisao:

1, sel(x,y)>L,
B(x,y) = (2.1)
0, caso contrdrio.

Quando muiltiplos limiares sao empregados, o processo € denominado multilimia-
riza¢do, permitindo subdividir o dominio de intensidade da imagem em diferentes intervalos,

conforme ilustrado na Equacdo (2.2):

07 O§I(X,y)<L1,

E(x,y)=41, L; <I(x,y) <L, (2.2)

27 LZ Sl(x7y> SLmaxa
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em que E(x,y) representa a imagem rotulada, L; e L s@o os limiares que definem os intervalos
de intensidade e Ly,x € a intensidade méxima do dominio (por exemplo, 255 em imagens de
8 bits). Essa estratégia € especialmente util em contextos com multiplos objetos ou tecidos
que apresentam propriedades radioldgicas distintas, permitindo associar faixas de intensidade a
classes especificas.

A limiarizacdo pode ser classificada em trés tipos: global, local e adaptativa. Na
limiarizac@o global, um dnico limiar € aplicado a toda a imagem, assumindo ilumina¢do ho-
mogénea. Na versao local, o limiar € calculado em pequenas janelas, ajustando-se a variagdes
regionais de brilho e contraste. J4 a limiarizacao adaptativa emprega estatisticas locais (como
média, variancia ou desvio padrdo) para determinar dinamicamente o limiar em funcdo das
condi¢des de cada regido. Entre os métodos cldssicos, destaca-se o algoritmo de Otsu (Otsu,
1979), que seleciona automaticamente o limiar 6timo pela maximizagao da variancia interclasses,
apresentando bom desempenho em imagens com histogramas bimodais.

Apesar de amplamente utilizada, a limiarizacio apresenta limitacdes notdveis em
imagens com iluminacao desigual, ruido elevado ou objetos de tonalidade heterogénea. Pequenas
variacdes de intensidade podem causar fragmentacao das regides segmentadas ou fusdo indevida
entre classes distintas, 0 que compromete a precisao estrutural da segmentacdo. Para contornar
essas limitagdes, técnicas baseadas em regides e conectividade espacial foram introduzidas.

O método de CR constitui uma dessas alternativas, fundamentando-se na analise
local da vizinhanga dos pixels. O processo inicia-se a partir de um ou mais pixels semente, sele-
cionados manual ou automaticamente, e expande-se iterativamente pela agregacdo de vizinhos
que satisfacam um critério de homogeneidade, como a diferenca absoluta de intensidade inferior

a um limiar 6, formalmente expressa por:

]I(x,-,yi) —](Sx,Syﬂ < 5, 2.3)

em que (sy,Sy) representa o pixel semente. A escolha das sementes e do critério de agregagao é
determinante para a qualidade da segmentacdo, podendo resultar em sobresegmentacao (divisao
excessiva de regides) ou subsegmentagdo (fusdo indevida de estruturas) se mal ajustadas. Em
imagens biomédicas, essas dificuldades sdo agravadas por fatores como ruido, variagdo de
coloragdo e sobreposicao de tecidos.

Extensdes desse paradigma incluem a transformada watershed, amplamente em-

pregada na segmentacdo de imagens médicas. O watershed interpreta a imagem como uma
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superficie topogréfica, na qual as regides homogéneas correspondem a bacias de drenagem. A
partir dos gradientes de intensidade, as fronteiras entre bacias definem as linhas de separacdo
dos objetos. Embora eficiente para realgar estruturas anatomicas, o método € sensivel ao ruido e
frequentemente conduz a supersegmentacgio, exigindo filtragens ou marcadores externos para

refinar o resultado (Beucher; Meyer, 1993).

2.2.2 Segmentagdo por Descontinuidade

Diferentemente dos métodos baseados em similaridade, a segmentacio por desconti-
nuidade identifica regides a partir de variagdes abruptas de intensidade entre pixels vizinhos. O
principio central € que as bordas de um objeto correspondem a locais de transi¢do acentuada nos
niveis de cinza, onde hd uma mudanca brusca na intensidade ou no gradiente da imagem.

Uma formulagao classica € dada pela convolu¢do bidimensional entre a imagem I}

e uma mascara M3 3, conforme a Equacgdo (2.4):

V = M3x3 %1%, (2.4)

em que * representa o operador de convolugdo. A escolha da mdscara determina o tipo de
descontinuidade a ser destacada, permitindo evidenciar pontos, linhas ou bordas em diferentes
direcdes (Gonzalez; Woods, 2018).

Entre os operadores cldssicos estdo Roberts, Prewitt e Sobel, que estimam numerica-
mente as derivadas parciais da imagem. O operador de Sobel, por exemplo, confere maior peso
aos pixels centrais, o que o torna mais robusto ao ruido. Ja o operador de Prewitt utiliza pesos
uniformes, favorecendo simplicidade e menor custo computacional.

Embora amplamente utilizados, esses métodos apresentam limitagcdes em imagens
reais, especialmente nas biomédicas, onde as bordas costumam ser suaves ou pouco contrastadas.
Nesses casos, o gradiente pode gerar bordas fragmentadas ou multiplas respostas falsas. Para
reduzir esses efeitos, aplica-se com frequéncia uma filtragem gaussiana prévia a detec¢do, abor-
dagem que fundamenta o detector de Canny (Canny, 1986). Esse método combina suavizacao,

célculo de gradiente e supressdao de ndo méaximos, produzindo bordas mais finas e continuas.
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2.3 Modelos de Contornos Ativos

Os ACM, ou Active Contour Models, representam um avanco significativo na seg-
mentacdo de imagens por introduzirem uma formulacdo baseada em energia para delinear
automaticamente os limites de um objeto (Kass et al., 1988). Nesses modelos, o contorno é
representado como uma curva deformavel que se ajusta progressivamente as bordas da imagem,
buscando o equilibrio entre suavidade e aderéncia as estruturas de interesse. Cada ponto da curva
evolui iterativamente até atingir uma configuragdo de minima energia, moldando-se a forma do
objeto de maneira semelhante a uma fita eldstica que se deforma conforme as forgas que atuam
sobre ela (REBOUCAS FILHO et al., 2011).

O Snake, proposto por Kass et al. (1988), € o modelo paramétrico classico dos
contornos ativos. A curva é descrita por uma fungéo continua c(s) = [x(s),y(s)], onde s € [0, 1]
parametriza os pontos do contorno. A minimiza¢ao da energia total determina o formato final da

curva, conforme a Equagdo (2.5):

E— /0 (Eunle(s)] + Eoalc(s)]} ds, 2.5)

em que Ej,; é o termo de energia interna, responsavel por impor regularidade geométrica, e Eey;
€ o termo de energia externa, derivado das propriedades da imagem e responsével por atrair o
contorno as bordas.

O termo interno é composto por duas forcas principais: uma de continuidade,
que regula a distdncia entre pontos sucessivos e evita o alongamento excessivo, e outra de
curvatura, que mantém a suavidade da curva e evita deformacdes abruptas (Nixon; Aguado,

2012; REBOUCAS FILHO et al., 2011). Esse termo € expresso pela Equagao (2.6):

2

2
dc : (2.6)

dc
Eint[C(S>] =0 % E

2
+5]

em que o controla a tenso (elasticidade) e 3 a rigidez (resisténcia a curvatura). Esses pardmetros
ajustam o grau de flexibilidade da curva, equilibrando suavidade e aderéncia as bordas.
J4 o termo externo € derivado das informagdes visuais da imagem e pode ser definido

de forma composta, combinando diferentes forcas atrativas ponderadas:

Eext [C(S)] = WiineEline [C<S)] + WgradEgrad [C(S)] + WiermEterm [C(S)] ) (2.7)
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em que Ejjpe estd relacionado a intensidade local (atragdo por linhas ou regides escuras), Egrad
representa o gradiente da imagem (atrac@o por bordas) e Eiery captura terminacao e curvaturas
de contorno (REBOUCAS FILHO et al., 2011). Comumente, aplica-se um filtro Gaussiano G4
antes do cdlculo do gradiente, reduzindo ruidos e suavizando varia¢des abruptas de intensidade.

A dinamica do contorno durante o processo de minimizacao de energia € ilustrada
na Figura 3. Nesse exemplo, observa-se a contracdao progressiva da curva inicial até que ela

se estabilize na fronteira da regido de interesse, ponto de equilibrio entre as forcas internas e

externas.

Figura 3 —Evoluc¢do contratil de um contorno ativo. A curva inicial desloca-se em dire¢do a borda do
objeto, guiada pelas forcas externas, até atingir o equilibrio energético em x—+1.

Regido de interesse

" Curva na iteragdo x

" Curva na iteragcdo x+1

Fonte: Elaborado pelo autor.

A curva € discretizada em um conjunto de pontos de controle conectados entre si,
e a energia é avaliada ponto a ponto. Em cada itera¢do, cada ponto c[s] analisa sua vizinhanga
local, geralmente composta por oito vizinhos, e desloca-se para a posi¢do que minimiza a energia
local (Figura 4). O aumento do tamanho da vizinhanca amplia as possibilidades de solucdo,
mas também eleva o custo computacional. A Figura 4 ilustra o processo iterativo de busca por

equilibrio energético.
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Figura 4 — Vizinhanca de busca para o ponto de controle ¢[s] no modelo de contornos ativos (ACM). O
ponto central (em preto) avalia diferentes posi¢cdes dentro da janela pontilhada (em azul), selecionando
aquela que minimiza a energia local.

cl[s-2]

Fonte: Elaborado pelo autor, adaptado de REBOUCAS FILHO et al. (2011).

Essa estrutura confere ao modelo snake uma natureza autoajustivel, capaz de adaptar-
se a diferentes geometrias de bordas, mesmo em presencga de ruidos moderados. Entretanto, sua
representacdo explicita impede a manipulagdo de multiplas regides simultaneamente e dificulta
eventos como divisdes ou fusdes de contornos. Essas limitagdes motivaram o surgimento de
variacoes e extensdes do modelo cldssico, como o Adaptive Balloon Active Contour Method
(ABACM) (FILHO et al., 2014), que introduz um termo interno adaptativo capaz de otimizar a
dindmica de contragdo e expansdo dos contornos. Diferentemente do modelo balao proposto
por Cohen (1991), em que a pressdo € uniforme ao longo da curva, o termo adaptativo utiliza
informagdes geométricas e topoldgicas locais para ajustar, em cada ponto, a intensidade e a
direcdo da forca de pressao. Essa forca € calculada a partir das posi¢cdes dos nds vizinhos e
da forma global da curva, permitindo deslocamentos independentes, porém coerentes com a
geometria local das bordas. Tal mecanismo € particularmente eficaz em regides homogéneas, nas
quais o gradiente da imagem € fraco e as forcas externas tendem a se anular, assegurando que
a curva continue se movendo em dire¢do as fronteiras de interesse. Como resultado, o modelo
evita a degeneragdo da curva e mantém a convergéncia mesmo em cendrios complexos — como
estruturas ramificadas, tubulares ou com concavidades pronunciadas —, tornando-se robusto
a diferentes inicializa¢gdes e adequado a segmentacao de multiplas regides. Além disso, o uso
dindmico de insercdo e remo¢do de nds durante a evolugdo preserva o espacamento paramétrico

uniforme, prevenindo colapsos topolégicos e reduzindo o tempo de convergéncia.
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Inspirado por esses avangos, 0 método proposto nesta tese estende a formulagao
cldssica dos contornos ativos ao incorporar um campo de evidéncia semantica aprendido, capaz
de orientar a evolug¢do paramétrica por meio de informagdes contextuais de alto nivel e permitir

a segmentacdo simultanea de multiplas regides de forma estavel e coerente.

2.4 Redes Neurais Profundas

As redes neurais profundas sao responsaveis por grande parte dos avancos recentes
em [A, com aplicagdes expressivas em VC, reconhecimento de padrdes e processamento de
linguagem natural. Diferentemente das redes neurais artificiais anteriores, arquiteturas com maior
profundidade aprendem automaticamente caracteristicas discriminativas de alta complexidade,
reduzindo a necessidade de engenharia manual de atributos (LeCun et al., 2015; Goodfellow
et al., 2016). Os fundamentos e o desenvolvimento histérico que viabilizaram esse salto sao
discutidos na Se¢do 2.4.1.

Essas redes impulsionaram de forma decisiva o desempenho de sistemas de reco-
nhecimento e andlise de imagens, nos quais padrdes de textura, forma e estrutura podem ser
representados de maneira robusta e eficiente.

O trabalho de Krizhevsky et al. (2017) apresentou a AlexNet, uma CNNs pro-
funda que superou abordagens convencionais em tarefas de classificacdo de imagens no desafio
ImageNet, ao combinar multiplas camadas convolucionais com funcdes de ativagdo Unidade
Linear Retificada (ReLLU), regularizac¢ao por dropout e aceleracdo em Graphics Processing Unit
(GPU). Essa arquitetura estabeleceu um novo paradigma para o treinamento de redes profundas,
demonstrando a eficicia do aprendizado hierdrquico de caracteristicas visuais em larga escala.

A partir desse avanco, diversas arquiteturas foram desenvolvidas, entre elas as Redes
Residuais (He et al., 2015), que introduziram conexdes de atalho para facilitar o fluxo do
gradiente em modelos muito profundos, reduzindo o problema de degradacao de desempenho.

Além da classificagdo, redes profundas tornaram-se centrais em segmentagcdo seman-
tica. As Fully Convolutional Networks (FCN), ou Redes Totalmente Convolucionais (Long et
al., 2015), estabeleceram as bases para arquiteturas do tipo encoder—decoder, posteriormente
refinadas pela U-Net (Ronneberger ef al., 2015) e pela SegNet (Badrinarayanan ef al., 2016).

Modelos como a U-Net (Ronneberger et al., 2015) e a SegNet (Badrinarayanan et
al., 2016) estabeleceram as bases como referéncias em segmentagdo biomédica, por integrarem

informacdes contextuais e detalhes locais por meio de conexdes entre camadas simétricas.
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Esses desenvolvimentos consolidaram o dominio das redes profundas na andlise
visual de dados, abrindo espaco para métodos que incorporam mecanismos de atencao e apren-
dizado contextual que orientam processos variacionais, favorecendo maior interpretabilidade e

generalizagdo.

2.4.1 Fundamentos do Aprendizado Profundo

O DL € uma vertente do aprendizado de mdquina que emprega arquiteturas com
multiplas camadas para modelar fun¢des altamente nio lineares, aprendendo representacdes
hierdrquicas dos dados: camadas iniciais capturam padrdes locais de baixa abstra¢do, enquanto
camadas mais profundas codificam conceitos de nivel superior (LeCun et al., 2015; Goodfellow
etal., 2016).

Historicamente, o campo das redes neurais artificiais surgiu com o Perceptron,
proposto por Rosenblatt (1958), o primeiro modelo computacional capaz de realizar classificacdes
lineares. Suas limitagGes em lidar com problemas ndo linearmente separaveis, descritas por
Minsky e Papert (1969), levaram a um periodo de estagnacdo na drea. A retomada do interesse
ocorreu com a formulagdo do algoritmo de retropropagagdo do erro por Rumelhart et al. (1986),
que tornou vidvel o treinamento eficiente de redes multicamadas, expandindo a aplicabilidade
desses modelos.

O avango do aprendizado profundo nas dltimas décadas foi impulsionado por trés
fatores principais: (i) o aumento da disponibilidade de grandes bases de dados, (ii) a evolucdo
do hardware, especialmente o uso de GPU, e (iii) o desenvolvimento de func¢des de ativagao
e algoritmos de otimizac@o mais estdveis, capazes de mitigar problemas como o gradiente
desvanecido (LeCun et al., 2015; Goodfellow et al., 2016). A combinagao desses elementos
tornou o aprendizado profundo um componente essencial para aplicagdes contemporaneas,

incluindo a andlise e segmentacao de imagens médicas.

2.4.1.1 Redes Neurais Artificiais

As Rede Neural Artificial (ANN) constituem a base conceitual do aprendizado
profundo, inspirando-se no funcionamento biol6gico dos neurdnios para modelar fun¢des nao
lineares e complexas. Uma rede neural € composta por unidades elementares interconectadas,
denominadas neurdnios artificiais, organizadas em camadas e conectadas por pesos ajustaveis.

Cada neurdnio realiza uma combinacao linear das entradas e aplica uma transformacao nao
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linear denominada fun¢do de ativacio, conforme a Equacdo (2.8):

t=Ywxi+b,  y=0(2), 28)
i=1

im

em que x; representa as entradas, w; 0s pesos sindpticos, b o viés e ¢(-) a funcdo de
ativacdo. Essa formulacao permite que a rede aprenda representagdes complexas dos dados e
realize aproximacdes universais de fun¢des continuas, conforme demonstrado pelo teorema da
aproximacao universal (Hornik ez al., 1989; Haykin, 2009).

As fungdes de ativagdo desempenham papel fundamental ao introduzirem nao li-
nearidade e estabilidade no processo de aprendizado. Entre as mais utilizadas destacam-se a
sigmoide, a tangente hiperbdlica e a ReLU (Glorot et al., 2011), cuja simplicidade e eficiéncia
computacional mitigam o problema do gradiente desvanecido em redes profundas.

O treinamento da ANN € realizado por meio do algoritmo de retropropagacao do
erro (backpropagation) (Rumelhart et al., 1986), que ajusta os pesos de forma iterativa segundo
o gradiente descendente da funcdo de custo J(0). Em cada iteracdo, o erro calculado na
camada de saida € propagado para as camadas anteriores, permitindo o ajuste coordenado dos
parametros. Esse processo € computacionalmente intensivo, mas possibilita a modelagem de
relagdes altamente ndo lineares entre entradas e saidas.

A capacidade de generalizacdo de uma rede neural depende do nimero de camadas
e neurdnios, da funcdo de ativacdo e das técnicas de regularizacdo utilizadas. Desafios cléssicos,
como o sobreajuste e o desaparecimento de gradientes, foram mitigados com o desenvolvimento
de estratégias como o dropout, que reduz a coadaptagdo entre neurdnios, € a normalizacio em lote
(batch normalization), que estabiliza a distribui¢do das ativa¢des durante o treinamento. Além
disso, otimizadores baseados em momento adaptativo, como Adam e RMSProp, contribuiram
para acelerar a convergéncia e melhorar a estabilidade do aprendizado.

O avanco do hardware, especialmente o uso massivo de GPU, associado a dispo-
nibilidade de grandes conjuntos de dados e ao aprimoramento dos algoritmos de otimizagao,
permitiu a expansao das redes neurais para arquiteturas cada vez mais profundas e especializadas.
Esse movimento culminou na consolidagdo das redes neurais profundas (DNN), que hoje consti-
tuem o nucleo das abordagens modernas em visdo computacional, reconhecimento de padrdes e

segmentagdo de imagens.
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2.4.1.2 Redes Convolucionais

As CNNs representam uma das arquiteturas mais transformadoras da area de apren-
dizado profundo, tendo revolucionado o campo da visdo computacional ao combinar principios
de percepg¢do visual humana com propriedades matematicas da convolucao (LeCun et al., 1998;
Krizhevsky et al., 2017). O diferencial central das CNNs € a exploracao da estrutura espa-
cial das imagens por meio de conexdes locais € do compartilhamento de pesos, o que reduz
significativamente o nimero de parametros e aumenta a capacidade de generalizagdo.

A operagio de convolugio bidimensional entre uma imagem I € R¥*W e um filtro

K € RP*4 ¢ definida pela Equacao (2.9):

p—1lg—1
SG.j)=Y, Y I(i+m,j+n)K(m,n), (2.9)
m=0n=0

em que S(i, j) corresponde a resposta convolucional no ponto (i, j). Essa opera¢do
atua como um extrator de caracteristicas locais, detectando bordas, texturas e formas, enquanto
preserva a relagdo espacial entre os pixels. As camadas convolucionais sdo geralmente seguidas
por operacdes de pooling, que reduzem a dimensionalidade espacial, e por camadas de ativagio
nao lineares, como a RelLU, que introduzem capacidade discriminativa.

As primeiras CNNs modernas foram introduzidas por LeCun et al. (1998), com a
LeNet-5, aplicada ao reconhecimento de digitos manuscritos. No entanto, foi com a AlexNet,
proposta por Krizhevsky et al. (2017), que as redes convolucionais alcancaram notoriedade, ao
vencerem de forma expressiva o desafio ImageNet. Essa arquitetura explorou multiplas camadas
convolucionais, regularizacao por dropout € aceleragdao por GPU, demonstrando o potencial das
CNNs em larga escala.

Posteriormente, arquiteturas mais profundas e eficientes, como a VGGNet, a Incep-
tion (Szegedy et al., 2015) e a ResNet (He et al., 2015), introduziram avangos estruturais que
permitiram o treinamento de modelos com centenas de camadas sem degradacdo significativa do
desempenho. A ResNet, em particular, inovou ao empregar conexoes residuais (skip connections)
que facilitaram o fluxo do gradiente e viabilizaram o aprendizado em profundidade extrema.

Esses modelos estabeleceram a base para o desenvolvimento de arquiteturas especia-
lizadas em segmentagdo, como as FCN (Long et al., 2015), a U-Net (Ronneberger et al., 2015)
e a SegNet (Badrinarayanan et al., 2016). Nessas arquiteturas, a convolugdo € utilizada nao

apenas para classificagdo, mas também para reconstrucao espacial e predicao densa, permitindo
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a geracdo de mdscaras precisas que delimitam regides de interesse em imagens médicas. A
posterior incorporacdo de modelos baseados em atencdo a esse paradigma consolidou as CNNs

como a base da segmentacdo semantica moderna.

2.4.2 Segmentacdo Baseada em Aprendizado Profundo

O aprendizado profundo modificou profundamente o campo da segmentacio de
imagens ao integrar extracdo de caracteristicas, modelagem contextual e classificacio em um
processo unificado de otimizagado (Litjens et al., 2017). Essa abordagem eliminou a necessidade
de operadores manuais e permitiu o aprendizado direto das representacdes relevantes para a
tarefa, alcancando resultados mais consistentes e generalizdveis mesmo diante de variagdes de
forma, contraste e textura (Ronneberger et al., 2015; Chen et al., 2018).

As redes neurais convolucionais (CNNSs) sdo a base desse avanco, possibilitando
o aprendizado hierdrquico de representacdes visuais. Nas primeiras camadas, sdo capturados
padrdes locais simples, como bordas e texturas, enquanto nas camadas mais profundas surgem
abstragdes mais complexas, que descrevem formas e relacdes espaciais entre regioes. Esse
comportamento hierdrquico tornou vidvel a segmentacdo densa (pixel-wise) de alta precisdo em
diferentes contextos biomédicos, industriais e naturais.

Entre as arquiteturas mais influentes destacam-se as do tipo encoder—decoder, nas
quais uma sub-rede de codificacdo (encoder) comprime as informagdes da imagem em um
espaco de caracteristicas reduzido, € uma sub-rede de decodificacio (decoder) reconstréi a
segmentacdo por meio de operagdes de upsampling. Essa estrutura, representada na Figura 5,
permite a recuperacdo progressiva de detalhes espaciais enquanto mantém o contexto global da
cena (Badrinarayanan et al., 2016; Ronneberger et al., 2015).

A U-Net (Ronneberger et al., 2015) consolidou esse paradigma ao introduzir cone-
x0es de atalho (skip connections) entre niveis equivalentes do encoder e do decoder, combinando
informagdes de baixo e alto nivel. Desde entdo, uma série de variacdes e aprimoramentos foram
desenvolvidos com o objetivo de otimizar a recuperacdo de detalhes espaciais, a generalizacio e
a eficiéncia computacional.

A U-Net++ aprimorou a arquitetura original ao adicionar conexdes densas entre
camadas intermedidrias, reduzindo a lacuna semantica entre as fases de codificacdo e deco-
dificagdo. A Attention U-Net incorporou médulos de atengdo espacial e de canal, ajustando

dinamicamente a importancia de regides relevantes da imagem. Ja a SegNet (Badrinarayanan
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Figura 5 —Esquema de uma arquitetura Encoder—Decoder. O Encoder comprime os mapas de
caracteristicas, a Ponte processa a informacao de mais alto nivel, e 0 Decoder reconstréi a saida,
recuperando a resolucgdo espacial.

Encoder Decoder

Fonte: Elaborado pelo autor.

et al., 2016) prop0s a reutiliza¢ao dos indices de max-pooling para preservar informagdes de
posicdo durante a reconstrucao.

A FCN (Long et al., 2015) marcou um ponto de virada ao eliminar as camadas
totalmente conectadas, substituindo-as por convolugdes 1 x 1, o que tornou possivel gerar mapas
de segmentacdo com resolucdo varidvel e adaptdvel. Posteriormente, a DeepLabv3+ (Chen et
al., 2018) combinou convolucdes dilatadas e o médulo Atrous Spatial Pyramid Pooling (ASPP),
capturando contextos multiescalares sem perda de resolucdo espacial e refinando as fronteiras
segmentadas por meio de um decodificador leve.

Essas arquiteturas representam diferentes estratégias para equilibrar profundidade,
contexto e resolugdo espacial, aspectos essenciais para o desempenho em segmenta¢do densa.
Entretanto, mesmo os modelos mais avancados ainda enfrentam desafios na preservaciao da
continuidade geométrica das fronteiras e na coeréncia morfolégica entre multiplas regides.
Esse cendrio motiva o desenvolvimento de abordagens hibridas que combinem a capacidade
discriminativa do aprendizado profundo com a estabilidade geométrica de modelos baseados em

contornos ativos, como o proposto neste trabalho.
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3 ABORDAGEM SEMANTICO-GEOMETRICA PARA SEGMENTACAO DE MUL-
TIRREGIOES

Neste capitulo, apresenta-se a metodologia adotada para a implementagdo do SE-
MAC. O método proposto consiste em um modelo de segmentacdo que combina a robustez dos
ACM com uma andlise semantico-geométrica incorporada por meio de um campo de evidéncia,
de modo a preservar a consisténcia geométrica durante o processo de segmentacdo. A formulacao
opera em multiplas escalas e realiza a segmentacdo multirregional a partir de um tinico contorno,
com ramificac¢do controlada, quando o campo indica separa¢des naturais entre 0s componentes.

O capitulo estd organizada em quatro partes principais. Na Se¢do 3.1, descreve-se
a formulagao geral do método, enfatizando o fluxo de processamento e a integrac@o entre os
componentes energéticos e geométricos. A Secdo 3.1.1 detalha a construcdo do campo de
evidéncia. Na Secdo 3.1.2, apresenta-se a modelagem da evolugdo contratil dos contornos
ativos, bem como os mecanismos de estabilizacdo e divisdo automatica de regides. Por fim, as
Secdes 3.2, 3.3 e 3.4 descrevem, respectivamente, os conjuntos de dados utilizados, as métricas

de avaliacao e os procedimentos de treinamento.

3.1 SEmantic Multi-Region Active Contour (SEMAC)

O SEMAC caracteriza-se como um modelo de contornos ativos que integra uma
andlise semantico-geométrica, por meio de um campo de evidéncia, ao processo de evolugao
paramétrica. Essa integrac@o visa preservar a consisténcia geométrica das bordas e viabilizar a
segmentacdo de multiplas regides a partir de um tinico contorno, com ramifica¢io controlada.

Em contraste com abordagens que dependem exclusivamente do gradiente de inten-
sidade ou de fun¢des heuristicas, o método considera um campo de evidéncia que consolida
contrastes e transigoes em diferentes escalas, realgcando as Region of Interest (ROI) a serem
segmentadas e reduzindo ambiguidades em suas fronteiras.

Na pratica, o campo de evidéncia atua como um mapa de compatibilidade espacial:
realca regides coerentes com os objetos de interesse, atenua o fundo e, quando analisado em
multiplas escalas, € incorporado a evolucdo do contorno ativo para priorizar fronteiras estaveis e
detectar estreitamentos que justificam ramificacdes naturais em cendrios com multiplas regides
de interesse. Dessa forma, o modelo lida com imagens contendo uma ou varias regioes de
interesse de forma unificada, superando limitagdes de abordagens tradicionais que requerem

reinicializag¢des sucessivas ou multiplos contornos independentes para cada objeto.
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O campo de evidéncia Eg(x), obtido a partir de pares de entrada e referéncia, sintetiza
contrastes, texturas e indicios estruturais em multiplas escalas, resultando em um mapa continuo
que expressa o grau de compatibilidade semantica de cada ponto com as ROI. Apds a suavizacdo
gaussiana, obtém-se Eq(x), utilizado como energia externa do modelo, cujo gradiente VE4(x)
define a direcdo e a intensidade das for¢as que guiam o contorno ao longo da evolug@o dinamica.

Essa formulacao assegura coeréncia geométrica na preservacao das fronteiras, con-
sisténcia semantica ao alinhar a evolugao a informagdes extraidas e estabilidade evolutiva mesmo
em regides complexas ou visualmente ambiguas. Em conjunto, esses fatores conferem ao SE-
MAC robustez frente a variacdes fotométricas e estruturais, além de favorecer a segmentacao
simultanea e morfologicamente consistente de multiplos objetos.

A Figura 6 apresenta uma visdo geral do fluxo de processamento do SEMAC, desde
a leitura da imagem até a segmentacio final. A esquerda, exemplos intermedidrios ilustram sua
adaptacdo a diferentes contextos; a direita, o fluxograma sintetiza as principais etapas do método,

desde o campo de evidéncia até a estabilizacdo geométrica dos contornos.
3.1.1 Energia Externa Baseada em Campo de Evidéncia Semantica

A energia externa desempenha o papel de conectar o dominio fotométrico das
imagens a modelagem fisica dos contornos ativos. Ela define como as propriedades visuais
da imagem (como cor, textura e intensidade) influenciam o movimento das curvas durante
a segmentacdo. A ideia central € traduzir essas variagdes visuais em um mapa continuo de
evidéncia Eg(x), que expressa, ponto a ponto, o grau de compatibilidade semantica de cada ponto
com as regides de interesse. Esse campo fornece a evolugdo dos contornos uma representacao
contextual aprendida, substituindo as respostas locais de gradiente por informacdes de maior
nivel extraidas diretamente da imagem.

Nos Modelos de Contornos Ativos cldssicos, a energia externa ideal € aquela capaz
de guiar o contorno de forma precisa e estavel até as verdadeiras fronteiras do objeto, oferecendo
gradientes suficientemente informativos para atrai-lo, mas suaves o bastante para evitar oscilagdes
e capturas em regides espurias. Em outras palavras, busca-se um campo energético que combine
seletividade e estabilidade, conduzindo a curva com fidelidade ao limite das regides de interesse.
Inspirado por essa concepcao, o SEMAC propde o campo de evidéncia como uma formulagao
alternativa para o potencial externo, no qual a informacao fotométrica € reinterpretada como um

mapa supervisionado de compatibilidade semantica. Essa representacdo continua e aprendida
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Figura 6 —Fluxo de processamento do método SEMAC. A esquerda, exemplos intermedidrios nos trés
conjuntos de dados (sintético, lesdes cutineas e células sanguineas). A direita, o fluxograma com as
etapas de construciao do campo de evidéncia, evolucdo dos contornos, ramificagdo controlada e
estabilizagdo geométrica.
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Fonte: Elaborado pelo autor.

aproxima o método das propriedades esperadas de uma energia externa ideal, a0 mesmo tempo

em que amplia sua robustez em cendrios complexos e multi-regido, possibilitando estabilidade e
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precisdo mesmo em contextos visuais desafiadores.

No SEMAC, a energia externa é representada por um mapa continuo Eg(x) € [0, 1]
definido sobre o dominio da imagem. Diferentemente das formulacdes cldssicas, que dependem
exclusivamente do gradiente de intensidade, Egy € obtido por uma transformacao paramétrica
supervisionada fy, que projeta a imagem em um espaco de evidéncia semantica, conforme a

Equacao (3.1):

Eg :RTW — [0, 1) Eg(x) = fo(x), 3.1)

em que H e W correspondem, respectivamente, a altura e a largura da imagem, e os
valores em [0, 1] indicam a intensidade de evidéncia associada a cada pixel: sendo O regides de
baixo interesse e 1 regides de alta compatibilidade com o objeto.

O mapeamento fy € implementado por uma rede convolucional profunda que atua
como codificador da imagem, extraindo hierarquicamente os atributos visuais mais relevantes.
Essa etapa aplica sucessivas convolucdes e operacdes de agregacdo para condensar as principais
caracteristicas estruturais (bordas, texturas e variagdes de intensidade) em um mapa de caracteris-
ticas latente que representa, de forma compacta, a distribuicao espacial de padrdes significativos.
Em seguida, esse mapa é expandido por um decodificador, responsdvel por reconstruir uma
mascara continua de evidéncia, onde cada pixel indica sua correspondéncia com as regioes de
interesse. Assim, a rede aprende a projetar diretamente o conteido visual da imagem em um
campo de evidéncia semantica com propriedades adequadas para orientar a evolu¢ao dos contor-
nos. Em alguns casos, o campo resultante apresenta transi¢des suaves ou regides parcialmente
difusas, refletindo a natureza continua da representacdo aprendida. Essas dreas de incerteza ndo
representam falhas, mas indicam ambiguidades visuais que serdo posteriormente refinadas pela
etapa de contracdo paramétrica e pelo mecanismo multirregido do SEMAC, responsdveis por
estabilizar e definir com maior precisdo as fronteiras segmentadas.

Matematicamente, o processo € representado pela composi¢ao entre os operadores

de contracdo % e expansdo &, conforme a Equacdo (3.2):
Eg(x) = &(€ (x)). (3.2)
Durante a etapa de extracdo de caracteristicas, descrita pela Equacao (3.3),

Cgs(x) = G(Wv * 5(655—1 (x)> + bs), CKO(X) =X, (3.3)
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em que W, by sdo os pardmetros da s-ésima convolugdo, o (-) é a funcdo de ativagdo LeakyReLU,
e 8(-) realiza subamostragem (max-pooling 2x2). A funcdo LeakyReLU é empregada por
manter gradientes ndo nulos para entradas negativas, evitando saturacdo em regioes de baixo
contraste. O uso de max-pooling favorece a preservacao de caracteristicas estruturais dominantes,
reduzindo o ruido e a redundancia espacial. Essa operacdo reduz gradualmente a resolugdo
espacial da imagem, mas amplia a profundidade informacional das representagcdes, permitindo
que a rede codifique tanto detalhes locais quanto padrdes semanticos de maior escala.

A reconstru¢do do campo de evidéncia € obtida por meio do operador de expansao

&, definido na Equacdo (3.4):
&(2) = oW/ % (6-1(2) +by),  &(2) =2, (3.4)

em que 7% (-) representa o upsampling bilinear seguido de convolu¢do 3x3. As conexdes
entre niveis de mesma escala preservam detalhes estruturais e asseguram coeréncia geométrica
na reconstrugdo, resultando em um mapa continuo Eg(x) que combina precisdo de borda e
consisténcia contextual.

Concluida a reconstruc¢do do campo de evidéncia, o processo de aprendizado volta-se
para ajustar os pardmetros 0 ¢ ¢ de modo que Eg(x) reproduza, com fidelidade e coeréncia,
as regides de interesse presentes nas referéncias. Esse ajuste é formulado como um problema
supervisionado que combina dois critérios complementares: fidelidade global e coeréncia local,

conforme a Equacdo (3.5).

Z(0,¢) = Eyy [gglob(EG(x)ayn +AE, [ﬁoc(x,EO(X);(P)]a (3.5)

em que A pondera os termos. A fidelidade global, expressa pela Equagdo (3.6),

impde proximidade estrutural a mascara de referéncia y:

1
fgmb(Ee(x)»Y):@ Y |Eo(xij) —yijl- (3.6)
(i,j)eQ

A coeréncia local, definida na Equagdo (3.7), incentiva transi¢cdes semanticamente

plausiveis:

Loc(x,Eg(x);9) = —log¢(@(x),@(E9(x))), (3.7

em que Z(-) extrai patches locais da imagem e do campo de evidéncia.
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Neste ponto, a fun¢do ¢ desempenha um papel central e ainda ndo explicitado. Em-
bora introduzida como parte do termo de coeréncia local, ¢ atua como um moédulo discriminativo
responsdvel por avaliar a plausibilidade semantica entre o conteudo visual real da imagem e a
representacdo continua produzida pelo campo de evidéncia. Em termos conceituais, ela funciona
como um avaliador treindvel capaz de distinguir regides coerentes daquelas estruturalmente
incompativeis.

Mais precisamente, ¢ recebe como entrada dois conjuntos de informacao: os patches
extraidos diretamente da imagem, #?(x), que representam a estrutura fotométrica observada;
e os patches correspondentes extraidos do campo de evidéncia, #(Eg(x)), que representam
a estrutura semantico-geométrica inferida pela rede. Ao comparar esses dois espacos locais,
¢ estima o grau de compatibilidade entre a evidéncia gerada e os padrdes estruturais reais da
imagem. Regides em que o campo de evidéncia reflete adequadamente contrastes, texturas e
transi¢Oes presentes na imagem sao avaliadas como consistentes; regioes incompativeis sao
penalizadas.

Esse mecanismo confere a ¢ uma fun¢do discriminativa essencial dentro da formu-
lagdo minimax da Equacao (3.8). Enquanto os parametros 8 buscam produzir um campo de
evidéncia cada vez mais plausivel em nivel global e local, ¢ procura identificar falhas, inconsis-
téncias ou distor¢des presentes na representacdo gerada. A convergéncia ocorre quando 6 produz
campos Eg(x) para os quais ¢ ja ndo consegue distinguir regides inconsistentes, indicando que a
coeréncia local entre imagem e evidéncia foi alcangada.

Assim, ¢ atua como um mecanismo de fiscalizacdo semantica local, garantindo
que o campo de evidéncia preserve as relacdes estruturais relevantes e apresente transi¢oes
suaves e coerentes. Esse comportamento impede o surgimento de artefatos, evita suavizagoes
excessivas e assegura que a energia externa seja adequadamente informativa para orientar a
evolucdo multirregido dos contornos ativos.

O termo %, da Equacdo (3.5) tem papel essencial na regularizacdo semantica do
aprendizado. A fun¢do ¢ avalia a coeréncia entre o contetido visual original e o mapa de evidéncia
gerado, identificando regides onde as correspondéncias estruturais sdo mais consistentes. Dessa
forma, o modelo é incentivado a produzir campos Eg(x) que preservem a continuidade das
texturas e a integridade das fronteiras, aproximando o comportamento do campo de evidéncia ao
padrio esperado de evidéncia fisica no processo de segmentagdo. Esse equilibrio entre fidelidade

global e coeréncia local € o que permite a rede generalizar padrdes complexos e gerar mapas de



48

evidéncia com significado morfolégico, ainda que com transi¢des suaves em dreas ambiguas.
A solucdo 6tima resulta do equilibrio entre fidelidade e coeréncia, conforme a

Equacdo (3.8):
Ey € argmeinmq?xf(e,q)), (3.8)

Apds o treinamento, o campo Eg(x) é suavizado por convolugdo gaussiana, obtendo-
se Eq(x) = Gg * Eg(x). Essa etapa atua como um processo de difusdo espacial que reduz
ruidos de alta frequéncia e assegura gradientes bem condicionados para a etapa posterior de
evolugdo dos contornos. O vetor gradiente VE4(x), calculado numericamente por operadores
diferenciais, define a direc@o e a intensidade das forgas externas aplicadas as curvas paramétricas,
estabelecendo o acoplamento fisico entre a energia aprendida e a dindmica geométrica.

Como a derivada espacial comuta com a convolucdo gaussiana para funcdes suaves,

tem-se:
V(Gs%Eg) = Go* (VEg), (3.9)

de modo que calcular VE; equivale a suavizar VEy. Na prética, o gradiente VE é estimado
diretamente a partir do campo suavizado E4, 0 que assegura maior estabilidade numérica e reduz
a sensibilidade a ruidos de alta frequéncia nas forgas externas.

Em sintese, Es fornece a evidéncia semantica continua, ainda que com transi¢des
graduais em regides incertas, enquanto VE traduz essa evidéncia em forgas orientadoras para
o processo de segmentacdo, sendo posteriormente refinada pelo MCA, que consolida essas
fronteiras e elimina ambiguidades residuais. Além da informacao fotométrica, 0o SEMAC atua no
dominio de evidéncias por meio de um campo escalar continuo E(x) que consolida indicios de
contraste e transicdo em multiplas escalas. Nesse dominio, regides conectadas de alta evidéncia
representam candidatos a regides de interesse (ROI), enquanto faixas de baixa evidéncia indicam
possiveis fronteiras entre objetos distintos.

Em ACM, a evolug¢do das curvas é conduzida por um equilibrio entre energias (interna
e externa), o que torna o conceito de campo energético uma forma intuitiva de representar o
comportamento dessas forcas ao longo da imagem. Na Figura 7 é considerada essa analogia
energética para ilustrar a distingdo entre o dominio fotométrico e o dominio do campo de

evidéncia, considerando uma amostra do conjunto de dados BBBC041Seg.
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Figura 7 — Analogia visual entre o dominio fotométrico e o dominio do campo de evidéncia a partir de
uma amostra do conjunto de dados BBBC041Seg. De forma conceitual, é ilustrada a transicdo do espago
de intensidades para um espago continuo de coeréncia semantico-geométrica, proposto pelo SEMAC.
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Fonte: Elaborado pelo autor.

Na Figura 7.b, observa-se a superficie do dominio fotométrico, construida a partir
dos tons de cinza da imagem original. Nesse dominio, as variacdes de intensidade refletem
diretamente as flutuacdes de iluminagdo e textura, tornando o campo energético sensivel a ruidos
fotométricos e inconsisténcias visuais.

Na Figura 7.c, € representado o dominio do campo de evidéncia, no qual as regides
de interesse emergem como dreas continuas de alta evidéncia, delimitadas por transicdes bem
definidas em torno dos objetos. Essa formulagdo substitui o gradiente fotométrico tradicional por
uma representacdo semantico-geométrica mais consistente, estabelecendo uma base energética
mais estdvel e informativa para a evolucao dos contornos. Com isso, 0 processo torna-se mais

controlado, permitindo ao SEMAC transcender as limitagdes do gradiente fotométrico e atuar de

forma mais robusta na identificacdo simultanea de multiplas regides de interesse.

Do ponto de vista técnico, os termos estabilidade geométrica e coeréncia geométrica
descrevem propriedades desejaveis na evolucao dos contornos durante o processo de segmen-

tacdo. A estabilidade geométrica refere-se a capacidade do contorno em manter sua forma e
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continuidade mesmo diante de variacdes locais de intensidade ou ruido, assegurando que peque-
nas perturbagdes no campo de energia nao resultem em deformagdes abruptas ou instabilidades.
A coeréncia geométrica, por sua vez, refere-se a manuten¢do de uma relacio espacial consistente
entre as regides segmentadas, assegurando que as fronteiras resultantes permane¢cam compativeis
com a estrutura e a disposicdo dos objetos na imagem.

No contexto do SEMAC, essas propriedades emergem como consequéncia direta
da introduc@o do campo de evidéncia, que proporciona um potencial energético continuo e
semanticamente estruturado, guiando o contorno de forma estdvel e consistente entre multiplas
regides de interesse. Em outras palavras, o campo de evidéncia atua como uma representacao
refinada da imagem, na qual as regides relevantes sdo destacadas enquanto variagdes irrelevantes
sdo atenuadas. Enquanto o dominio fotométrico apresenta um relevo irregular, cheio de picos
e vales induzidos por ruido, o campo de evidéncia suaviza esse cendrio e enfatiza apenas as
estruturas significativas. Assim, a estabilidade geométrica traduz a consisténcia do contorno ao
longo do processo evolutivo, ao passo que a coeréncia geométrica reflete a harmonia entre as

fronteiras segmentadas e a morfologia real dos objetos.
3.1.2 Contragdo Paramétrica e Ramificacao Multirregiao dos Contornos Ativos

O campo de evidéncia Eg(x), descrito na Se¢do 3.1.1, é suavizado por meio de
uma regulariza¢do gaussiana, originando Es(x) = G4 * Eg(x). Esse processo atua como uma
difusdo espacial que reduz variagdes de alta frequéncia, assegura gradientes bem condicionados
e preserva a coeréncia geométrica das fronteiras, fornecendo uma superficie de energia estavel
para a evolucdo dos contornos.

A partir desse campo suavizado, define-se a evolucao dindmica dos contornos ativos,
cuja forma € ajustada iterativamente pela minimizacao de um funcional de energia total que
combina forcas internas e externas. As forcas internas impdem continuidade e suavidade a curva,
enquanto as forgas externas derivam do gradiente direcional da evidéncia Es(x), orientando os
vértices em direcdo as regioes de equilibrio morfoldgico.

Seja C: [0,1) —R? um contorno fechado parametrizado por s, cuja configuracio

minimiza o funcional de energia total definido na Equacdo (3.10):

1 ) 1 5 1
siCl=a [ ICEIPds+p [ ICGPds+ yi0c] + 2 [ Eolclds, @10

7/ ~ .
e e baldo adaptativo - ~~ — .
continuidade suavidade energia externa semantica
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Os dois primeiros termos do funcional correspondem a energia interna cldssica
dos contornos ativos, definida na Se¢ao 2.3. O parametro « controla a continuidade da curva,
impondo tensdo eldstica entre pontos adjacentes, enquanto 8 regula sua suavidade, limitando
variagOes abruptas de curvatura. Esses termos mantém a regularidade geométrica durante a
evolucdo e asseguram que o contorno preserve coesao estrutural mesmo sob a ac@o das forgas
externas.

O Es(x) é o campo continuo de evidéncia e |Q¢| representa a drea delimitada pelo
contorno. O termo externo define a interagdo entre o contorno e a distribuicdo de afinidade
semantica, fazendo com que a curva se desloque para regides de maior compatibilidade contextual.
O termo de baldo (y|Qc|) atua como uma pressdo interna que regula a contra¢do ou expansio da
curva, sendo aqui implementado segundo o modelo ABACM (FILHO et al., 2014).

A partir do funcional em Equacao 3.10, obtém-se a equagdo diferencial que rege a

evoluc¢do do contorno por descida de gradiente, expressa na Equacao (3.11):

€ _aC'(s) - BC(s) + IN(5) - A VE(C(s)) G.11)

em que N(s) é o vetor normal unitdrio ao contorno. Os termos internos de continuidade e
suavidade controlam a regularidade geométrica da curva, enquanto o termo externo —A VE
atua como forga de atracdo semantica.

A implementacao discreta da Equacao (3.11) utiliza uma representacao circular
de nds {xk}gzl, atualizados segundo uma busca local em uma vizinhanga quadrada .4 =
{—z,...,z}%. Cada né avalia uma janela local de deslocamentos candidatos e seleciona aquele
que minimiza o custo energético total. Essa busca adaptativa permite capturar variacdes espaciais
finas sem comprometer a estabilidade global da curva. O deslocamento 6timo (i}, ji) € obtido
conforme a Equacdo (3.12):

(llz];) € arg ,min We q)cont(k;ivj) +wy q)neigh(k;i7j> + We q)ext(k;i7j)7 (3.12)

(i,j)enN

em que os termos de custo sdo definidos pelas Equagdes (3.13)—(3.15):

Dcont (K34, 7) = [Jxk + (6, 7) — k1 || + [lxe + (7, ) — xpep1 ] (3.13)
Dreign(ksi, j) = ||xx + (i, /) — ||, % = projegao do bissetor entre x;_; € Xg41, (3.14)

Dexi(ksi, j) = Eq(xx + (i, 7))- (3.15)
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Com isso, cada no6 se desloca em dire¢do ao ponto de maior evidéncia semantica dentro de sua
vizinhanga, garantindo que a evolucdo da curva siga o relevo de afinidade e se estabilize sobre as
fronteiras estruturais das regides de interesse.

A atualizagdo iterativa dos nds € dada pela Equacdo (3.16):
A =0 i e, (3.16)

seguida por etapas de expansio e filtragem responsdveis por manter a regularidade geométrica e a
estabilidade numérica do contorno. Essas etapas implementam um mecanismo de autorregulacdo
estrutural, no qual a discretizacdo da curva se adapta dinamicamente as variacdes locais do
campo de evidéncia.

Quando a distancia entre dois nds consecutivos excede o limiar dp,x, € inserido um
novo no intermediario conforme a Equacgdo (3.17):

Xk + Xk+1
2 )

assegurando amostragem uniforme ao longo da curva e evitando descontinuidades topoldgicas.

1 = xell > dmax = X1 = (3.17)

Esse processo de expansdo adaptativa preserva a consisténcia da representacdo paramétrica
mesmo em regides de alta curvatura.

Além disso, aplica-se uma filtragem angular definida na Equacao (3.18) para remover
vértices redundantes:

(k-1 —xx) - (g1 —Xk))
1 = x| |1 — x| )

eliminando nés com 6; < O, € preservando a continuidade direcional do contorno. Esse

6 = arccos( (3.18)

mecanismo atua como um filtro morfolégico dindmico, responsavel por suavizar irregularidades

locais e prevenir colapsos topoldgicos durante a evolucdo.

Figura 8 —Representagdo do cédlculo do angulo local 6, entre nés consecutivos de um contorno ativo
paramétrico. O detalhamento ilustra a relagdo geométrica entre os pontos Xi_1, Xg € Xg+1.

Fonte: Elaborado pelo autor.
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As operagdes de expansao e filtragem compdem a etapa de regularizagdo local do
SEMAC, garantindo que a discretizacdo da curva permanega compativel com a escala geométrica
e energética do campo E.

A evolugdo de cada contorno € controlada por critérios complementares de con-

vergéncia e estabilidade local. A condi¢do composta de parada € definida na Equacao (3.19):

(IPY =PI < &) A (N > Nipin) A (f < Trnax), (3.19)

em que PY ¢ o perimetro atual, N (1) o niimero de nés e Tjax 0 limite méximo de iteragoes.
Durante a evolucao, P ea variacdo média das forcas sdo recalculados a cada iteragdo, e o
processo somente € interrompido quando essa regra de parada € satisfeita, garantindo equilibrio
entre forgas internas e externas.

As Figuras 9 e 10 ilustram o processo de evolu¢do multi-regido guiado pelo campo
de forcas adaptativo. Na Figura 9, observam-se os vetores de forca (em verde) orientando-se
para as regides de menor potencial, conduzindo a contragao e a estabilizacdo dos contornos. Esse
mecanismo garante a aderéncia das fronteiras aos objetos de interesse, mantendo a coeréncia
geométrica ao longo das iteracoes.

Ja a Figura 10 evidencia a fase topolégica do processo, em que dois segmentos do
contorno aproximam-se € entram em interse¢ao. Nesse instante, o modelo detecta automatica-
mente o cruzamento entre regides adjacentes e aciona o mecanismo de divisdo (split), originando
dois contornos independentes, cada um delimitando uma regido coerente. Durante a evolugao, o
SEMAC monitora continuamente a geometria e o campo de forgas locais. A divisdo € acionada
quando ocorre uma interse¢ao entre segmentos nao adjacentes do contorno ou quando o gradiente
do campo de evidéncia apresenta dire¢des opostas em nds consecutivos, indicando a presenca de
duas bacias de energia distintas. Nessas condicdes, o contorno € automaticamente decomposto
em dois subconjuntos de nds conectados, os quais passam a evoluir de forma independente,
mantendo a coeréncia geométrica e semantica de cada regido. Esse comportamento demonstra a
capacidade do modelo em ajustar-se a variagdes estruturais sem necessidade de reinicializagcao
manual.

O equilibrio global é alcancado quando o conjunto de contornos {I';} torna-se

invariante ao longo das iteragdes, conforme a Equacdo (3.20):

PO — P < g A T = 01, (3.20)
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Figura 9 —Evolucdo multi-regido orientada pelo campo de forgas. Os vetores em verde indicam a direcdo
de movimento dos nés, guiando o contorno para regides de menor potencial e assegurando a estabilizacdo
das fronteiras. A direita de cada linha temporal é exibido o detalhamento de uma regido especifica, onde
se observa a atuacgao local das forcas e a suavizac@o progressiva das arestas.

»”

.2
-2

Fonte: Elaborado pelo autor.
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Figura 10 — Sequéncia de evolug¢do e divisdo topoldgica do contorno. A primeira coluna mostra a detec¢do
de intersecdo entre segmentos do contorno; na segunda, exibe-se uma ampliag¢ao da regido. Por fim,
formam-se dois contornos independentes, cada um delimitando uma regido distinta, evidenciando a
capacidade do SEMAC em lidar com multiplas regides de forma autdbnoma.

Fonte: Elaborado pelo autor.

O primeiro termo assegura estabilizacdo geométrica (perimetro), enquanto o segundo confirma
estabilizacdo topoldgica, indicando auséncia de novas divisdes. Fisicamente, o campo Es
funciona como uma superficie de potencial sobre a qual o contorno se comporta como uma
membrana elastica tensionada, movendo-se sob a acao das forcas —VEs até atingir equilibrio

sobre as fronteiras naturais das estruturas de interesse.



56
3.2 Conjuntos de Dados

Foram utilizados trés conjuntos de dados distintos: um conjunto sintético, construido
para representar cendrios controlados, e dois conjuntos compostos por dados heterogéneos.
Essa diversidade permitiu avaliar o método proposto tanto em condicdes experimentais, nas
quais todos os parametros sao conhecidos e controlados, quanto em contextos mais complexos,

caracterizados por elevada variabilidade visual e estrutural.
3.2.1 Cenadrio Especialista: Conjunto de Dados Sintéticos

Com o objetivo de avaliar a robustez do método em ambiente controlado e repro-
dutivel, foi construido um conjunto de dados sintético composto por imagens bidimensionais
de 512 x 512 pixels, codificadas em 8 bits. O conjunto totaliza 1.200 amostras, distribuidas em
trés categorias principais: bordas ideais, bordas irregulares e alta densidade de objetos, cada
uma contendo 400 imagens, sendo 200 de referéncia e 200 modificadas geradas sobre a mesma
geometria. Essa estrutura permite examinar, de forma isolada e comparavel, a Sensibilidade do
método a variagdes morfoldgicas e fotométricas que se aproximam de condi¢des observadas em
aplicacdes reais.

A geracdo das imagens baseia-se na composi¢do de K objetos geométricos {Si}lK: |

sobre fundo uniforme B = 255. As imagens de referéncia sao definidas pela Equacdo (3.21):

Iref(x7y) = min{Ba lI:an}( [“AS,-(X,)’) Vit (1 _%Si(xay))B} } ) (321)

em que ¥, denota a funcdo indicadora do objeto S; e v; € {0,30,60,80} representa
o tom de cinza do objeto.
As imagens modificadas introduzem varia¢des fotométricas e estocdsticas sobre a

mesma composi¢cdo geométrica, conforme a Equacgdo (3.22):

Tmoa(,) = elip((@(x,3) et (5,3) + Thp (+.) ) (3:22)

onde o (x,y) modela gradientes de iluminag@o lineares horizontal, vertical ou radiais
em torno de um centro deslocado, com variacao suave tipica no intervalo 0,55 < a < 1,15, ¢

Nsp(x,y) corresponde a ruido impulsivo sal-e-pimenta de baixa densidade, com probabilidade
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por pixel entre 0,5% e 2%. O operador clip(-) limita o resultado ao intervalo [0,255], truncando
valores fora da faixa valida de 8 bits e evitando saturagdes apds as transformacoes.

A Tabela 1 apresenta um resumo das seis categorias do cendrio sintético definidos
para a etapa de avaliacdo, organizados conforme o tipo de estrutura e a presenca de modifica¢des

fotométricas e geométricas.

Tabela 1 —Resumo das seis condi¢des sintéticas utilizadas para avaliacdo do método.

Denominacao Descricao resumida

Bordas ideais Formas geométricas regulares e bem definidas, sem modificagdes.

Bordas ideais com modificacdes Mesmas formas geométricas, porém com variacdes fotométricas e ruido
leve simulando perturbacdes de iluminacéo.

Bordas irregulares Bordas levemente irregulares e deformadas, mantendo condi¢do limpa.

Bordas irregulares com modificagdes Bordas irregulares com inclusio de artefatos e ruido local, representando
deformagdes complexas.

Alta densidade de objetos Muiltiplos objetos proximos ou sobrepostos, sem ruido.

Alta densidade de objetos com modificagdes Mesmo padrdo denso, acrescido de ruido e variagdes de intensidade,
simulando desafios de separacdo de fronteiras.

Fonte: Elaborado pelo autor.

As Figuras 11 e 12 apresentam exemplos representativos do conjunto sintético,
contemplando amostras com bordas lineares, bordas irregulares e alta densidade de objetos, tanto
em condi¢des ideais quanto com a presenca de ruidos ou modificacdes na imagem, utilizadas

para avaliar o desempenho do SEMAC em diferentes contextos geométricos e fotométricos.

Figura 11 — Amostras sintéticas com bordas lineares, bordas irregulares e alta densidade.

X V= @ . X g 0"”""

..‘ n -- ‘*

Fonte: Elaborado pelo autor.
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Figura 12 — Amostras sintéticas com bordas ideais, bordas irregulares e alta densidade.

Fonte: Elaborado pelo autor.

Na categoria de bordas ideais, as imagens sdo compostas por figuras geométricas
regulares, incluindo circulos, elipses, retingulos, quadrados, paralelogramos, trapézios, losangos,
poligonos regulares de trés a dez lados, setores circulares e estrelas de cinco pontas. Os contornos
sdo exatos, sem deformacdes locais, € os objetos sdo posicionados de modo a evitar sobreposi¢do
entre retangulos delimitadores. O nimero de objetos por cena varia entre 3 e 40, com rotagdes e
escalas aleatérias que ampliam a diversidade estrutural. As versdes com modificagdes aplicam os
gradientes de iluminacgdo e o ruido impulsivo descritos anteriormente, degradando parcialmente
o contraste e a uniformidade luminosa.

Na categoria de bordas modificadas, empregam-se as mesmas formas basicas, po-
rém submetidas a irregulariza¢do de contorno de baixa frequéncia e pequena amplitude, com
ondulacdes suaves e microerosodes rasas. As deformacdes preservam conectividade e topologia,
produzindo fronteiras lobuladas que se aproximam de estruturas de origem bioldgica, como
lesdes cutaneas ou coldnias celulares. As versdes com modificacdes adicionam artefatos locais e
perda de nitidez, combinando irregularidade de borda com variagdes fotométricas. A Figura 13
ilustra um exemplo ampliado de um objeto com borda modificada, evidenciando as ondulacgdes e

microerosdes que caracterizam essa categoria.
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Figura 13 —Detalhe ampliado de um objeto sintético com bordas modificadas, evidenciando microerosdes
e deformacdes locais que simulam variagdes morfoldgicas naturais.

Ampliagcédo de uma regido da imagem

Fonte: Elaborado pelo autor.

Na categoria de alta densidade de objetos, busca-se reproduzir situagdes em que
multiplas instincias disputam o espaco da imagem. Cada cena contém entre 80 e 180 objetos de
pequeno porte, distribuidos com margens globais de 0 a 1 pixel e mecanismo de posicionamento
que favorece vizinhangas quase contiguas sem sobreposi¢do, com folgas tipicas menores ou
iguais a 2 pixels. As formas podem apresentar contornos lineares ou levemente irregulares,
mantendo variabilidade morfoldgica interna a categoria. As versdes com modifica¢des aplicam
os mesmos gradientes de iluminagao e ruido impulsivo, intensificando o desafio de separacdo
entre fronteiras adjacentes.

As imagens de referéncia e modificadas sao geradas de forma pareada dentro de
cada categoria, isto €, compartilham a mesma composicdo geométrica e diferem apenas pelas
transformacdes fotométricas e estocdsticas.

Essa construcao em trés eixos de complexidade, aliada ao pareamento entre imagens
de referéncia e modificadas, fornece uma base sélida para a analise do método proposto. O
conjunto permite mensurar, de forma sistemadtica, a influéncia da geometria dos objetos, da mor-
fologia das bordas e da densidade espacial, bem como a resiliéncia do processo de segmentagao
diante de variacOes fotométricas e de ilumina¢do ndo uniforme, antes da aplicagdo em bases reais

heterogéneas.
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3.2.2 Cendrio Generalista: Conjunto de Dados Heterogéneo

Na segunda etapa, o método foi avaliado em um contexto mais desafiador e diversi-
ficado, abrangendo diferentes tipos de dados com variagdes de textura, contraste, iluminagao,
resolucdo e complexidade estrutural. A utilizagdo de multiplas bases possibilita uma anélise
mais ampla, permitindo verificar a capacidade de generalizacdo do método diante de condicdes

heterogéneos.

3.2.2.1 Imagens Dermatoscopicas

O segundo conjunto de imagens utilizado neste trabalho corresponde ao ISIC 2018:
Skin Lesion Analysis Towards Melanoma Detection Challenge, promovido pelo ISIC (Tschandl
et al., 2018). Esse repositdrio retine um conjunto extenso e diversificado de imagens dermatos-
copicas voltadas para o estudo e desenvolvimento de métodos automaéticos de segmentacao e
diagnéstico de lesdes cutineas.

O ISIC 2018 contém 3.694 imagens obtidas em condig¢des clinicas reais, apresentando
ampla variabilidade de textura, coloracdo, iluminagao e ruido. Cada imagem possui uma mascara
bindria de referéncia que delimita manualmente a area da lesdo, fornecendo a base para a
avaliacdo quantitativa da segmentacdo automatica. As amostras foram coletadas em diferentes
instituicdes médicas e com distintos equipamentos de captura, o que confere ao conjunto um
carater heterogéneo e desafiador, especialmente para algoritmos sensiveis a variagdes de dominio.
A Figura 14 apresenta alguns exemplos do conjunto de imagens do ISIC.

As imagens incluem diferentes tipos de lesdes pigmentadas, como melanomas, nevos
e queratoses, cada uma com padrdes morfoldgicos particulares que dificultam a deteccao de
fronteiras precisas. A presenca de sombras, pelos e variacdes de contraste representa outro fator
de complexidade, pois interfere diretamente na definicdo dos contornos e na distin¢do entre
regides de pele sauddvel e dreas lesionadas.

Nesse contexto, o ISIC 2018 foi empregado para avaliar a robustez e a capacidade
de generalizacdo do método proposto frente a situagdes clinicos mais complexos. A diversidade
do conjunto permite testar o comportamento do modelo diante de situacdes em que a coeréncia
geométrica e a estabilidade topoldgica sdo essenciais para evitar sobresegmentagdes e falsos
positivos. Essa base de dados constitui, portanto, um importante parametro de comparagdo com

abordagens consolidadas da literatura, possibilitando validar o desempenho do modelo em um
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Figura 14 —Exemplos de imagens do conjunto ISIC 2018.

Fonte: Elaborado pelo autor.

ambiente realista e desafiador.

3.2.2.2 Imagens Microscopicas de Células Sanguineas

O terceiro conjunto de dados utilizado foi 0 BBBC041Seg: Segmentacdo Automdtica
de Células Sanguineas em Laminas Microscopicas (Depto et al., 2021), um conjunto publico
desenvolvido especificamente para a tarefa de segmentacdo de células sanguineas. Ele é composto

por 1.328 imagens no formato PNG, cada uma acompanhada de sua respectiva mascara bindria
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de referéncia. As imagens possuem dimensdes de 520 x 696 pixels e profundidade de 8 bits. As
anotacdes foram realizadas manualmente por especialistas, assegurando a Precisdo na delimitagdo
dos contornos celulares.

Esse conjunto € particularmente relevante para a avaliacdo de métodos de segmenta-
¢ao, pois reproduz condicdes reais de microscopia e impde multiplos desafios: alta densidade
de células em campo reduzido, presenca de sobreposicao e contato entre objetos, variagdes
sutis de forma e intensidade decorrentes tanto da diversidade bioldgica quanto do processo de
coloracdo, além de artefatos de fundo inerentes a preparacao das laminas. Esses fatores tornam o
BBBC041Seg um cendrio adequado para verificar a capacidade do método em lidar com limites
pouco contrastados e com elevada variabilidade visual.

A diversidade de amostras pode ser observada na Figura 15, que apresenta diferentes
condi¢des de microscopia contempladas pelo conjunto BBBC041Seg. Nota-se a presenca de
campos com baixa e alta densidade celular, variagcdes morfologicas expressivas, diferengas de
coloracdo e intensidade, além de situagdes em que células aparecem isoladas ou em agrupamentos
sobrepostos. Essa heterogeneidade torna o conjunto um recurso valioso para avaliar a capacidade
do método em lidar com limites pouco contrastados, bordas difusas e elevada variabilidade

estrutural.

3.3 Meétricas de Avaliacido para Segmentacio

Esta secdo descreve as métricas utilizadas para avaliar o desempenho do SEMAC
nos diferentes conjuntos de dados empregados: o conjunto sintético controlado, as imagens
dermatoscdpicas de lesdes cutineas e as amostras microscopicas de células sanguineas. A escolha
dos indicadores seguiu critérios amplamente reconhecidos na literatura (Metz, 1978), assegurando
comparabilidade com estudos anteriores e consisténcia na interpretacao dos resultados.

Essas métricas quantificam o grau de concordancia entre a regido segmentada pelo
método (Segmented Region (SR)) e a mascara de referéncia (GT). No conjunto sintético, as
mdscaras foram geradas automaticamente durante a criagdo dos dados, garantindo correspondén-
cia exata entre imagem e referéncia. Nos demais conjuntos, a GT foi obtida manualmente ou
semiautomaticamente, conforme o tipo de dado e o protocolo de anotacao adotado.

Em um cendrio de segmentacao bindria, no qual a imagem € composta apenas por
duas regides, o problema pode ser interpretado como uma tarefa de classificacdo de dois rétulos.

Nessa configuracdo, cada pixel € classificado como pertencente a ROI ou ao fundo (Background
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Figura 15 —Exemplos do conjunto de dados BBBC041Seg, composto por imagens microscépicas de
células sanguineas.

Fonte: Elaborado pelo autor.

Region (BR)), representados respectivamente pelos valores 1 e 0 (Yu et al., 2023). Assim, a ROI
¢ tratada como classe positiva e 0 BR como classe negativa, permitindo que a avaliag@o se baseie
na contagem de pixels corretamente e incorretamente classificados.

O objetivo central é que a SR, também chamada de méscara predita, reproduza com

a maior fidelidade possivel a ROI definida no padrio-ouro. Essa correspondéncia € representada
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por uma matriz de confusdo 2x2, ilustrada na Figura 16, que organiza os pixels de referéncia e
predi¢do em quatro categorias fundamentais: o Verdadeiro Positivo (VP), que corresponde as
regides de concordancia entre o método e a referéncia; o Falso Positivo (FP), que indica areas
detectadas indevidamente; o Falso Negativo (FN), que representa regides reais nao identificadas
pelo modelo; e o Verdadeiro Negativo (VN), que abrange os pixels corretamente reconhecidos
como fundo.

Figura 16 —Matriz de confusdo para segmentacdo bindria, destacando os casos de acerto (verde) e erro

(vermelho). A regido de interesse e a regido de fundo sdo comparadas entre a mdscara de referéncia e a
segmentacao predita, originando os quatro elementos fundamentais: VP, VN, FP e FN.

Predito para a regido Predito para a
de interesse regidao de fundo
Erros
Referéncia para a Verdadeiros Falsos Acertos

regido de interesse Positivos (VP) Negativos (FN)

Referéncia para Falsos Verd?deiros
a regido de fundo Positivos (FP) Negativos (VN)

Fonte: Elaborado pelo autor.

A interpretacdo dessas categorias € essencial para compreender o impacto dos erros
de segmentacao em diferentes contextos. Em imagens médicas, por exemplo, falsos negativos
podem indicar regides de contorno nao reconhecidas, enquanto em aplicagdes industriais podem
corresponder a falhas ndo detectadas em superficies. Ja os falsos positivos podem surgir de
ruidos, sombras ou variagdes de textura interpretadas incorretamente como regides de interesse.
Em qualquer cendrio, esses erros afetam diretamente a confiabilidade das méscaras preditas e,
consequentemente, das métricas derivadas da matriz de confusdo, que expressam o equilibrio
entre detec¢do precisa e controle de classificacdes indevidas.

Para mensurar objetivamente esse comportamento e avaliar a qualidade das segmenta-
coes produzidas pelo modelo, sdo utilizadas métricas consolidadas que traduzem numericamente

o desempenho obtido. Com base nessa formulagdo, as métricas foram agrupadas em duas cate-
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gorias complementares: as métricas baseadas em classificacdo, apresentadas na Subsecao 3.3.1,
voltadas a mensuragdo global de acertos e erros; e as métricas de similaridade, descritas na
Subsec¢do 3.3.2, que analisam a sobreposi¢do geométrica e a fidelidade espacial entre a regido
predita e o padrao-ouro.

Essa organizacao favorece uma andlise abrangente, capaz de capturar tanto a efici-
éncia estatistica do algoritmo quanto sua capacidade de preservar a morfologia das estruturas
segmentadas, o que se mostra especialmente relevante nos experimentos realizados, em que
o0 SEMAC combina inferéncia semantica e refinamento geométrico orientado por campo de

evidéncia.

3.3.1 Meétricas Baseadas em Classificacdo

As métricas baseadas em classifica¢do avaliam a capacidade do algoritmo em distin-
guir corretamente as classes envolvidas na segmentacao, classificando cada pixel como perten-
cente a ROI ou ao fundo (BR). Nesse contexto, cada imagem segmentada pode ser interpretada
como um conjunto de decisdes bindrias, em que o modelo atribui a cada pixel um rétulo positivo
(regido de interesse) ou negativo (fundo). Essa formulac¢ao permite derivar os VP, FP, VN e FN
que compdem a matriz de confusdo e servem como base para o cdlculo das principais métricas
de desempenho: Acurdcia, Precisdo, Sensibilidade e Especificidade.

A Figura 17 apresenta uma representacao visual dessa relacdo, exemplificando como
o processo de segmentacao € traduzido em elementos da matriz de confusdo e destacando a

associacdo direta entre esses componentes e as formulas das métricas correspondentes.

3.3.1.1 Acurdcia

A Acurécia (Acc) expressa a proporcao global de pixels corretamente classificados
em relacdo ao total avaliado, englobando tanto as ROI quanto o BR. Em segmentacao bindria,
cada pixel € tratado como uma instancia independente, podendo pertencer ou nao a estrutura-alvo.
Assim, a Acurécia representa o grau geral de concordancia entre a mascara predita (SR) e o

padrao-ouro (GT), conforme definido na Equacao 3.23.

VP+VN
Acc = i (3.23)
VP+VN+FP+FN

Valores elevados de Acuricia indicam boa correspondéncia global entre a segmen-



66

Figura 17 —Relagdo entre o processo de segmentacgdo e a matriz de confusao, destacando os quatro
desfechos possiveis (VP, FP, VN e FN) e as métricas derivadas.
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Fonte: Elaborado pelo autor.

tacdo gerada e a referéncia, o que pode refletir, por exemplo, a detec¢do correta de uma area
defeituosa em uma superficie industrial, o delineamento preciso de uma estrutura biolégica ou o
isolamento coerente de objetos em um cendrio sintético. Em situacdes clinicas, como na andlise
de lesdes cutineas, a Acurdcia pode representar o alinhamento entre a drea delimitada pelo
modelo e a regido afetada na pele, enquanto em amostras de sangue reflete a identifica¢do correta
das células sem a inclusao de regides do fundo microscépico. Apesar de seu cardter intuitivo, a
Acuricia tende a ser limitada em contextos de forte desbalanceamento entre classes, que podem
favorecer artificialmente os acertos no fundo. Por esse motivo, deve ser analisada em conjunto
com outras métricas mais sensiveis a classe positiva, como Sensibilidade, Precisdo e os indices

de sobreposicao (Dice e IoU) (Zou et al., 2004).
3.3.1.2 Especificidade

A Especificidade (Espec) quantifica a capacidade do modelo em reconhecer cor-
retamente os pixels pertencentes a classe negativa, isto €, ao fundo (BR). Essa métrica indica
o quanto o modelo evita classificar regides neutras ou irrelevantes como pertencentes a ROI,

conforme descrito na Equacao (3.24).

VN
__YN 24
SPe = UN T FP (3:24)
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Altos valores de Especificidade demonstram que o algoritmo minimiza a ocorréncia
de falsos positivos, preservando o fundo original sem incorporar ruidos ou artefatos. Em
contextos clinicos, isso equivale a evitar a marcacdo indevida de areas sauddveis como lesdo ou
estrutura anatomica; em cendrios industriais, significa ndo identificar incorretamente uma regiao
integra como defeituosa. A Especificidade isoladamente, contudo, ndo garante boa segmentacao,
pois um modelo muito conservador pode evitar falsos positivos as custas de ignorar regioes
de interesse. Por isso, deve ser avaliada em conjunto com a Sensibilidade e outras métricas
de equilibrio, assegurando o controle simultaneo entre rejeicao do fundo e deteccio eficaz das

estruturas relevantes (Zou et al., 2004).

3.3.1.3 Sensibilidade

A Sensibilidade (Sens) mede a propor¢ao de pixels positivos corretamente identifica-
dos pelo modelo, refletindo sua capacidade de recuperar integralmente a regido de interesse. Sua

defini¢do € apresentada na Equacdo (3.25).

VP
2
Sens = N (3.25)

Alta Sensibilidade indica que o método cobre adequadamente a regido-alvo, evitando
a omissdo de dreas relevantes. Essa caracteristica € essencial em aplicacdes que exigem detec¢do
completa de estruturas, como identifica¢do de falhas, andlise de componentes visuais ou reconhe-
cimento de padrdes em imagens biologicas. Em um exemplo clinico, alta Sensibilidade pode
indicar que o modelo segmenta toda a drea de uma lesdo, sem deixar regides patoldgicas de fora,
ou que detecta integralmente células sobrepostas em uma amostra sanguinea. Entretanto, priori-
zar apenas a Sensibilidade pode aumentar o nimero de falsos positivos, reduzindo a Precis@o e a
Especificidade. Dessa forma, a andlise integrada dessas métricas é fundamental para verificar se
o modelo mantém equilibrio entre abrangéncia na detecc¢do e fidelidade morfoldgica (Zou et al.,

2004).

3.3.1.4 Precisdo

A Precisao (Prec) avalia a confiabilidade das predi¢des positivas, indicando a pro-
porcao de pixels rotulados como pertencentes a ROI que realmente correspondem a estrutura de

referéncia. Sua formulagdo é dada pela Equagdo (3.26).
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VP

Pre=———
VP+FP

(3.26)

Altos valores de Precisdo indicam que o modelo identifica corretamente as regides
de interesse, reduzindo a ocorréncia de falsos positivos sobre dreas neutras. Essa métrica é
relevante em aplicacdes que exigem alta confiabilidade na detec¢do, como inspecdo de qualidade
em imagens industriais, mapeamento de dreas bioldgicas ou andlise de padrdes geométricos
em dados sintéticos. Em uma situacdo clinica, por exemplo, alta Precisao indica que as regides
marcadas como lesdo correspondem de fato a drea patolégica, minimizando a inclusdo de areas
de pele sauddvel. A Precisdo, no entanto, deve ser interpretada juntamente com a Sensibilidade,
j& que um modelo pode apresentar alta Precisdo ao segmentar apenas as regides mais evidentes,
ignorando partes menos contrastantes. A combinacao dessas duas métricas revela o equilibrio
entre seletividade e abrangéncia da segmentacdo, fatores essenciais para avaliar o desempenho

global do método (Litjens et al., 2017).
3.3.1.5 Coeficiente de Correlagdo de Matthews (MCC)

O MCC ¢ uma métrica abrangente que combina os quatro elementos da matriz de

confusdo em um unico indicador equilibrado. Sua formulacao é apresentada na Equacgao (3.27).

MCC — (VP-VN)—(FP-FN) (3.27)
\V(VP+FP)(VP+FN)(VN+FP)(VN+FN)

O MCC varia no intervalo [—1, 1], em que valores préximos de 1 indicam concordén-
cia perfeita entre predi¢do e referéncia, valores proximos de O representam desempenho aleatorio
e valores negativos apontam correlacdo inversa. Diferentemente da Acurdcia, o MCC leva em
consideracdo o impacto de todas as categorias, sendo menos sensivel ao desbalanceamento
entre classes. Essa propriedade o torna especialmente adequado para avaliar o desempenho do
SEMAC, que combina inferéncia semantica e refinamento geométrico em diferentes condigdes
visuais e estruturais.

Altos valores de MCC indicam que o modelo mantém equilibrio entre deteccao,
rejeicao e consisténcia morfoldgica, refletindo de forma compacta o desempenho global do
sistema em contextos variados. Isso inclui, por exemplo, a identificagdo de anomalias em tecidos,

o reconhecimento de falhas em materiais ou a segmentacdo de padrdes sintéticos com topologia
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complexa (Chicco; Jurman, 2020). Para fins de apresentacdo dos resultados, todos os valores de
MCC foram convertidos para a escala percentual (100 x MCC), de modo que os resultados sao

expressos em %. Assim, valores proximos de 100% correspondem a desempenho excelente.
3.3.2 Métricas Baseadas em Similaridade

As métricas baseadas em similaridade quantificam o grau de correspondéncia espa-
cial entre a segmentagdo predita e a de referéncia, avaliando tanto a proporcao de acertos quanto
a fidelidade geométrica das fronteiras. Tais medidas sdo particularmente adequadas ao SEMAC,
cuja formulacdo combina inferéncia semantica e refinamento geométrico por contornos ativos.
Ambas as etapas dependem diretamente da Precisdo posicional e da coeréncia morfolégica das
regides segmentadas.

Entre as principais métricas empregadas destacam-se o Indice de Jaccard (IoU)
e o Coeficiente de Similaridade de Dice (Dice), amplamente utilizados em segmentagdo por
mensurarem o grau de sobreposicdo entre as regides de interesse. Valores elevados desses
indicadores refletem alta concordancia entre predicao e referéncia, demonstrando a capacidade
do modelo em preservar a forma e a coeréncia estrutural das regidoes segmentadas.

A Figura 18 apresenta uma representacao conceitual dessas métricas, em que a
intersecdo entre as regides A (padrdo-ouro) e B (predi¢cdo) define o grau de similaridade obtido.

Figura 18 —Representacdo esquematica das métricas de similaridade Dice e IoU, que avaliam a
sobreposicdo entre as regides A (padrao-ouro) e B (predicao).

loU (A, B) = D Dice (A, B) = ZXD
-]- -]
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. 2x|AnB|
loU (A, B) = = Dice (A,B) = ———
|A| + |B| - |An B |Au B |A| + 8]
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Fonte: Elaborado pelo autor.

3.3.2.1 Indice de Jaccard

O Indice de Jaccard, também conhecido como Intersection over Union (IoU), é

amplamente empregado para quantificar a similaridade entre a segmentacdo predita e a médscara
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de referéncia (GT). Essa métrica mede a razdo entre a intersecdo e a unido das duas regides,

conforme mostrado na Equacgao (3.28).

ANB
J(A,B) = :AUB: (3.28)

No contexto da matriz de confusao bindria, o cdlculo pode ser expresso conforme a

Equacgdo (3.29).

VP
IoU = (3.29)
VP+FP+FN

O IoU assume valores entre 0 e 1, sendo que valores proximos de 1 indicam elevada
sobreposic¢do entre a predi¢do e o padrao-ouro, enquanto valores baixos refletem discrepancias
espaciais significativas. Essa métrica penaliza igualmente falsos positivos e falsos negativos,
fornecendo uma avaliag@o equilibrada da qualidade da segmentacdo (Rahman; Wang, 2016).

Nos experimentos com lesdes cutaneas, o IoU mede a capacidade do SEMAC em
delinear com Precisdo os contornos irregulares das lesdes, reproduzindo suas bordas reais sem
invadir dreas sauddveis. Nas amostras de células sanguineas, essa métrica quantifica o grau de
concordancia entre os limites previstos e os tracados manuais, sendo especialmente ttil para
verificar a separagcdo adequada entre células em regides de contato. Assim, o IoU fornece uma
medida robusta da fidelidade geométrica e da consisténcia espacial do método proposto em

diferentes condi¢des visuais e morfoldgicas.
3.3.2.2  Coeficiente de Similaridade de Dice

O Coeficiente de Sgrensen—Dice (Dice) é uma métrica amplamente utilizada para
quantificar a correspondéncia espacial entre duas regides segmentadas. Diferentemente de
medidas baseadas apenas em acerto percentual, o Dice enfatiza a drea de sobreposicao entre
predicao e referéncia, atribuindo peso duplo a intersecao das regides. Sua formulagdo geral é

apresentada na Equacdo (3.30).

~ 2/ANB|

Dice = 3.30
= A+ 1B 30

Nessa expressdo, A representa a regido de referéncia (ou padrao-ouro) e B corres-

ponde a predi¢do. O termo |A N B| indica a quantidade de pixels corretamente sobrepostos entre
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as duas mdscaras, enquanto |A| e |B| representam suas dreas totais. O fator 2 no numerador
garante que a intersecdo tenha peso proporcional a soma das dreas, tornando a métrica mais
sensivel a pequenas discrepancias de contorno.

A Equacio (3.30) pode ser reescrita em termos da matriz de confusdo bindria, consi-
derando Verdadeiros Positivos (V P), Falsos Positivos (F'P) e Falsos Negativos (FN), conforme a

Equacao (3.31).

2-VP
Dice = (3.31)
2-VP+FP+FN

Os valores do Dice variam entre O e 1, onde O indica auséncia total de sobreposi¢ao
e 1 representa correspondéncia perfeita entre predi¢do e referéncia. Por atribuir maior peso a
intersecdo, tende a gerar valores ligeiramente superiores aos do IoU, embora ambas as métricas
apresentem comportamentos semelhantes (Dice, 1945; Zou et al., 2004). Essa caracteristica o
torna especialmente ttil em aplicagdes nas quais pequenas variagdes de fronteira influenciam
significativamente a qualidade da segmentacao.

Na prética, o Dice avalia a capacidade do SEMAC de preservar a forma e o tamanho
das regides de interesse, mantendo a coeréncia morfoldgica e o alinhamento geométrico das
fronteiras. E eficaz em cendrios com contornos irregulares, alta densidade de objetos ou oclusdes
parciais — por exemplo, na andlise de lesdes cutaneas, na segmentacao de células sanguineas ou
em tarefas industriais de detecc¢do de falhas em superficies complexas.

Por equilibrar de maneira eficiente os efeitos de falsos positivos e falsos negativos,
o Dice permanece como uma das métricas mais relevantes para avaliagdo de segmentacao
em diferentes dominios, sendo amplamente adotado como referéncia para comparacao entre

métodos.

3.4 Procedimentos de Treinamento

O processo de treinamento do SEMAC foi conduzido de forma supervisionada,
visando o aprendizado do campo de evidéncia seméntico Eg(x) conforme o funcional definido
na Equacao (3.5). O objetivo foi ajustar os parametros 0 e ¢ de modo a equilibrar fidelidade
global e coeréncia local, assegurando que o campo de evidéncia represente adequadamente as
estruturas morfoldgicas das regides de interesse e forneca gradientes contextuais consistentes

para a evolucdo dos contornos ativos.
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As imagens foram normalizadas para o intervalo [—1, 1] e redimensionadas para
512 x 512 pixels. As mascaras bindrias foram redimensionadas com interpolacdo nearest e
normalizadas em [0, 1]. Aplicaram-se rota¢des aleatdrias de até +10°, espelhamentos horizontais
e variacOes sutis de brilho e contraste, assegurando robustez a perturbacdes fotométricas e
geométricas.

A minimizagdo do funcional .# (0, ¢) foi realizada por descida de gradiente estocds-
tica com otimizador adaptativo e taxa de aprendizado inicial de 10~3, decaimento exponencial
de 5 x 10~* e tamanho de lote B = 8. O processo foi executado por até 200 épocas, com parada
antecipada baseada na métrica Dice do conjunto de validacao, interrompendo o treinamento
quando a variacdo média foi inferior a 10~* durante 40 épocas consecutivas. Durante o treina-
mento, foram monitoradas as métricas Acuricia, Precisdo, Sensibilidade, Especificidade, IoU,
Dice e MCC. O modelo final adotado foi aquele que apresentou o maior valor médio de Dice
na validagdo. Apds a convergéncia, o campo Eg(x) foi suavizado por convolugdo gaussiana
para obteng¢do de Eq(x), utilizado como energia externa na evolugdo dos contornos descrita na
Secdo 3.1.2.

A Tabela 2 apresenta a distribuicao média das amostras obtida ap6s o particionamento
estratificado, considerando os trés conjuntos avaliados: (i) o conjunto sintético, construido em
ambiente controlado; (ii) o conjunto dermatoscépico, referente ao ISIC 2018; e (iii) o conjunto

microscopico de células sanguineas (BBBC041Seg).

Tabela 2 — Distribui¢do das imagens entre treino, validacio e teste para cada conjunto de dados.

Conjunto de Dados Total Treino Validacdo Teste

Sintético 1200 840 120 240
LesOes cutaneas 3694 2594 100 1000
Células Sanguineas 1328 930 132 266

Fonte: Elaborado pelo autor.

Os experimentos foram executados em ambiente de nuvem Google Colab, utilizando
GPU NVIDIA A100 com 40 GB de memoéria dedicada, 83 GB de RAM e suporte CUDA/cuDNN
integrado ao TensorFlow 2.x. A escolha dessa configuracdo ocorreu por conveniéncia de

execucdo, ndo sendo requisito especifico para o funcionamento ou reprodutibilidade do SEMAC.
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4 RESULTADOS E DISCUSSOES

Este capitulo apresenta e discute os resultados obtidos com a aplicacdo do SEMAC
em dois contextos experimentais complementares: o cendrio especialista, baseado em um con-
junto sintético desenvolvido para avaliar o comportamento do modelo sob condi¢des controladas,
e o cendrio generalista, composto por imagens clinicas dermatoldgicas e citolégicas utilizadas
para testar sua capacidade de generalizagdo em contextos reais e heterogéneos.

Em ambos os cendrios foram realizadas andlises quantitativas e qualitativas. As
métricas empregadas, como Acurdcia, Sensibilidade, Precisdo, Especificidade, MCC, IoU e Dice,
mensuraram o desempenho do SEMAC quanto a fidelidade das fronteiras e a consisténcia das
regidoes segmentadas. As andlises qualitativas complementaram essa avaliagdo ao evidenciar o
comportamento evolutivo, a coeréncia morfoldgica e a estabilidade da segmentagdo diante de
variagdes estruturais e fotométricas.

As préximas segOes apresentam os resultados obtidos em cada cendrio: a Segado 4.1
descreve os experimentos conduzidos em condicdes controladas com imagens sintéticas, en-
quanto a Sec¢do 4.2 aborda os resultados sobre imagens clinicas reais. Por fim, a Secao 4.3
discute de forma integrada como a formulagdo energética, o campo de evidéncia seméantica e a

dinamica multicontorno influenciam o desempenho global e a estabilidade evolutiva do SEMAC.

4.1 Cenario Especialista

O cendrio especialista foi empregado para examinar o comportamento do SEMAC
em condicdes controladas, permitindo observar seu desempenho diante de variacdes progressivas
de complexidade geométrica e fotométrica. As imagens sintéticas utilizadas abrangem diferentes
configuracdes de bordas lineares, irregulares e de alta densidade, avaliadas tanto em condicdes
ideais quanto com a presenga de ruido e modificagdes na imagem.

Essa etapa experimental permitiu verificar a estabilidade numérica, a precisdao geomé-
trica e a coeréncia topoldgica do método frente a perturbacdes artificiais. As variagcdes planejadas
no conjunto de teste favoreceram a andlise da interac@o entre as forgas internas de suavizacao
e as forcgas externas guiadas pelo campo de evidéncia semantica, destacando a capacidade do
método em ajustar-se a diferentes relevos energéticos sem perda de continuidade morfolégica.

As subsecdes a seguir apresentam os resultados quantitativos e qualitativos obtidos

nesse cendrio, evidenciando o comportamento progressivo do modelo a medida que as condi¢des
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sintéticas se tornam mais complexas e desafiadoras.

4.1.1 Resultados Quantitativos

As avaliagcOes quantitativas do SEMAC sobre o conjunto sintético foram conduzidas
em seis condi¢cdes experimentais que combinam variacdes geométricas e fotométricas. Essas
condi¢des, descritas na Tabela 1, abrangem diferentes arranjos de formas, graus de irregularidade
de bordas, densidade de objetos e presenca de modificagdes fotométricas na imagem.

Os resultados correspondentes estdo apresentados nas Tabelas 3 e 4, que retinem
as médias e os desvios padrdo das métricas de segmentacdo Acurécia, Sensibilidade, Precisao,
Especificidade, MCC, IoU e Dice. Em conjunto, essas andlises permitem avaliar a estabilidade
geométrica, a fidelidade de fronteira e a resposta do método frente a perturbagdes controladas de
forma, densidade e contraste.

Tabela 3 —Resultados médios e desvios padrdo das métricas gerais e de correlacdo em dados sintéticos
sob diferentes condi¢des geométricas e fotométricas.

Condicao Ace (%) Prec (%) Sens (%) Espec (%) MCC (%)
Bordas ideais 99,95+0,03  99,85+0,03  99,80+£0,04 99,97+0,02 99,8240,03
Bordas ideais + Modificacdes na imagem  99,88+0,04  99,604+0,05 99,5540,05 99,93+0,03 99,52+0,04
Bordas irregulares 99,55+0,05 99,10+0,06  99,204+0,06 99,70+£0,05  99,05+0,06
Bordas irregulares + Modificagdes naima-  99,104+0,06  98,70+0,07  98,85+0,07 99,30+0,06  98,65+0,07
gem

Alta densidade de objetos 98,70+£0,07 98,40+0,07 98,504+0,07 99,00£0,06  98,35+0,07
Alta densidade de objetos + Modificagdes  98,354+0,07 98,10+0,08 98,20+0,08 98,80+£0,07 98,05+0,08
na imagem

Fonte: Elaborado pelo autor.

Tabela 4 — Resultados médios e desvios padrdo das métricas de similaridade em dados sintéticos sob
diferentes condi¢des geométricas e fotométricas.

Condicao Dice (%) IoU (%)

Bordas ideais 99,80+0,03 99,45+0,04
Bordas ideais + Modificacdes na imagem 99,554+0,04 99,10+£0,05
Bordas irregulares 99,104+0,05 98,70+0,06
Bordas irregulares + Modificacdes na imagem 98,754+0,06 98,30+0,06
Alta densidade de objetos 98,45+0,07 98,10+£0,07

Alta densidade de objetos + Modificacdes na imagem 98,10+0,08 98,00+0,08

Fonte: Elaborado pelo autor.

Nas condi¢des com bordas ideais, o método apresentou desempenho de altissima
precisdo em todas as métricas, com desvios padrdo inferiores a 0,05%. A Acurécia atingiu

99,95% e a Especificidade, 99,97%, evidenciando a elevada capacidade do método em distinguir
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corretamente as regioes de interesse do fundo da imagem. Esses valores indicam que praticamente
todos os pixels de fundo foram classificados corretamente como negativos, resultando em rejei¢ao
precisa do fundo e ocorréncia minima de falsos positivos. Tal comportamento confirma a eficécia
das forcas internas de suaviza¢do e do mecanismo de regularizacdo geométrica do SEMAC, que
impedem expansdes indevidas dos contornos em dreas homogéneas, garantindo estabilidade
mesmo sob discretizagdes finas.

Com a introdu¢do de modificagdes fotométricas e ruido leve nas imagens ideais, o
desempenho permaneceu acima de 99% em todas as métricas, com reducdes médias inferiores a
0,5% em relagdo a condicao anterior. Essa estabilidade evidencia a robustez da dinamica dos
contornos, na qual a regularizacdo interna preserva a coeréncia estrutural mesmo sob pequenas
perturbacdes externas.

Nos cendrios com bordas irregulares, que introduzem deformacdes locais e irregu-
laridades geométricas, o SEMAC manteve desempenho elevado, com Dice de 99,0% e IoU de
98,7%. A discreta reducdo em relagdo ao caso ideal é compativel com o aumento da complexi-
dade morfoldgica e reflete 0 comportamento esperado de um ACM estdvel, em que as forgas
internas amortecem as oscilagdes provocadas por gradientes externos irregulares. Mesmo sob
perturbacdes fotométricas, o contorno ajusta sua trajetoria de forma adaptativa, aderindo as
bordas dominantes e descartando detalhes espurios, o que explica a pequena variacao (<1%) nas
métricas de similaridade. Esses resultados indicam que o método proposto mantém o equilibrio
energético entre regides vizinhas, assegurando coeréncia geométrica e estabilidade multirregional
mesmo sob ruido local ou descontinuidades.

Nas condi¢des de alta densidade de objetos, o SEMAC demonstrou capacidade
discriminativa consistente, mesmo quando as instancias estavam separadas por margens estreitas
ou apresentavam sobreposicoes parciais. Essa performance decorre da formulacao multirregional
do método, na qual multiplos contornos evoluem simultaneamente sobre um campo energético
compartilhado. Essa estrutura promove interacdo indireta entre fronteiras, de modo que a
aproximacdo de uma curva influencia o gradiente local percebido pelas demais, evitando fusdes
indevidas e preservando a integridade topoldgica das regides. A acdo combinada das forgas
internas e da energia externa aprendida garante separabilidade morfoldgica e continuidade
espacial, mantendo Dice e IoU préximos de 98% mesmo sob sobreposi¢do parcial ou interferéncia
de gradientes.

A Figura 19 apresenta a distribuicdo conjunta das métricas de segmentacao nos
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seis cendrios sintéticos avaliados. O gréfico radar permite observar, de forma integrada, o
equilibrio entre as diferentes métricas de desempenho, sendo que cada eixo representa uma
métrica normalizada em relacdo ao valor mdximo obtido. Assim, quanto mais regular e expandido
for o poligono formado, maior € a uniformidade e a robustez do método nos distintos aspectos

de avaliacdo.

Figura 19 —Distribuicao conjunta das métricas de segmentacdo nos seis cendrios sintéticos avaliados.
Acc

100%

Dice Sens
MCC Espec
Bordas ideais - Bordas irregulares + Modificagdes na imagem
Bordas ideais + Modificag8es naimagem [ Alta densidade de objetos
I Bordas modificadas I Atta densidade de objetos + Modificagdes na imagem

Fonte: Elaborado pelo autor.

Observa-se que o SEMAC mantém desempenho consistente e equilibrado em todos
0s eixos, com valores superiores a 98% em todas as métricas. Nos cendrios com bordas

ideais e irregulares, o radar exibe uma forma hexagonal quase regular e pr6xima ao limite
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maéximo, evidenciando uniformidade de desempenho e estabilidade numérica durante a evolugao
dos contornos. Esse comportamento confirma que o SEMAC preserva coeréncia estrutural
e fidelidade de fronteira mesmo em condi¢Oes regulares ou levemente irregulares, mantendo
variacOes inferiores a 1% entre os eixos avaliados.

Com o aumento da complexidade geométrica e fotométrica, especialmente nos
cendrios de alta densidade de objetos e presenca de ruido, observa-se uma leve contracao do
poligono, concentrada na métricas IoU. Essa tendéncia € comum em tarefas de segmentacao
com multiplas instancias adjacentes, nas quais pequenas imprecisdes de fronteira reduzem o
valor dessas métricas. Ainda assim, o SEMAC atenua esse efeito gracas a sua formulagao
multirregional, que preserva a separabilidade entre curvas e evita fusdes indevidas mesmo sob
alta densidade ou interferéncia local. Como resultado, as redu¢des permanecem inferiores a 2%,
demonstrando consisténcia geométrica e estabilidade energética mesmo sob sobreposicdo parcial
e ruido.

De modo geral, a analise dos seis conjuntos sintéticos demonstra que o SEMAC man-
tém alta precisdo e coeréncia morfologica em diferentes condicdes geométricas e fotométricas.
As forgas internas garantem suavidade e continuidade dos contornos, enquanto a energia externa
derivada do campo de evidéncia fornece orienta¢do contextual que guia a curva para as fronteiras
estruturalmente mais relevantes. Essa integrac@o entre a formulagdo cldssica e a informacao
semantica resulta em segmentacdes robustas, estaveis e morfologicamente consistentes, com

variacao global inferior a 2,0% entre o cendrio ideal e o mais complexo.

4.1.2 Resultados Qualitativos

A anélise qualitativa das segmentacdes em dados sintéticos tem como objetivo
complementar as avaliacOes quantitativas apresentadas na Subsecdo 4.1.1, oferecendo uma
visdo mais detalhada e visual sobre o comportamento evolutivo dos contornos e a dinamica de
equilibrio das forcas internas e externas. Por meio das ilustragdes a seguir, € possivel observar a
forma como o SEMAC responde a diferentes condi¢des geométricas e fotométricas, permitindo
interpretar visualmente os efeitos de regularizagdo, estabilizagdo e adaptagdo morfoldgica ao
longo do processo de evolugao.

A Figura 20 ilustra a evolucao do processo de segmentacdo em amostras com bordas
regulares e fundo uniforme, enquanto a Figura 21 apresenta resultados em amostras irregulares

artificialmente, simulando variagdes estruturais e ruidos locais. Nas duas situa¢des, observa-
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Figura 20 —Evolugdo dos contornos ativos em dados sintéticos com bordas regulares, mostrando amostras
sem modificagdes artificiais. As curvas verdes indicam o contorno evolutivo em diferentes iteracdes,

evidenciando convergéncia estdvel e coeréncia geométrica.
Iteracdo 1 Iteracao 3 Iteracdo 5 Iteracdo 7

.........

Iteracdo 1 Iteragdo 3 Iteracdo 5 ITteracdo 8
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Fonte: Elaborado pelo autor.

se que as curvas verdes representam as posi¢oes sucessivas do contorno ativo ao longo das
iteracOes, evidenciando o processo de contragdo progressiva até o equilibrio energético. A
convergéncia ocorre rapidamente nas primeiras etapas, com retragcao suave das curvas em direcao
as fronteiras dos objetos, demonstrando estabilidade e coeréncia geométrica mesmo sob pequenas
perturbacgdes. Os resultados visuais estdo em conformidade com as métricas quantitativas, nas
quais o desempenho manteve-se alto, confirmando a consisténcia da energia formulada sob
diferentes condi¢des sintéticas.

As Figuras 22 e 23 apresentam exemplos com bordas degradadas e perturbagdes
fotométricas. Mesmo diante dessas irregularidades, o contorno mantém a dire¢do dominante do
gradiente e converge para minimos locais compativeis com as bordas reais, evitando vazamentos
ou desvios para dreas externas, mesmo quando o brilho do fundo se aproxima do interior do
objeto. Em regides com concavidades mais acentuadas, observa-se um ajuste gradual da curva
por etapas sucessivas, até o fechamento completo das reentrincias, sem perda de continuidade
ou coeréncia geométrica.

Essa dinamica explica o discreto aumento de variabilidade nas métricas de Sensibili-
dade e IoU, enquanto a Acurédcia e 0o MCC permanecem elevadas, refletindo a baixa incidéncia

de falsos positivos e a estabilidade geral da segmentacao.



Figura 21 —Evolugao dos contornos ativos em dados sintéticos com bordas regulares, mostrando amostras
com modificagdes artificiais. As curvas verdes indicam o contorno evolutivo em diferentes iteracdes,

evidenciando convergéncia estavel e coeréncia geométrica.
Iteracdo 1 ITteracdo 3 Iteracdo 5 ITteracdo 6
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Fonte: Elaborado pelo autor.

Figura 22 —Evolugdo do processo de segmentagdo em dados sintéticos com bordas irregulares. As
amostras exibem condi¢des sem modificacdes artificiais. As curvas verdes representam o contorno ativo
ao longo das iteracdes, demonstrando convergéncia uniforme e preservacdo da geometria das bordas.
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Fonte: Elaborado pelo autor.
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Figura 23 —Evolucdo do processo de segmentacdo em dados sintéticos com bordas irregulares e
modificagdes artificiais. Observa-se a capacidade do método em manter estabilidade e coeréncia mesmo

sob perturbagdes locais e sobreposicao de fronteiras.
Iteracdo 1 Iteragdo 4 Iteracdo 6 Iteracdo 8
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Fonte: Elaborado pelo autor.

A Figura 24 demonstra o comportamento do SEMAC em condicdes de alta densidade
de objetos, compostas por multiplas instancias proximas. O contorno evolutivo preserva as
fronteiras de separagdo mesmo quando a distancia entre objetos é reduzida e os gradientes se
interferem mutuamente. Em regides de aglomeracdo com gargalos estreitos, observa-se que
a curva aproxima-se simultaneamente de duas bordas e realiza o descolamento apenas apds
o aumento local do contraste, evitando fusdes indesejadas. Nas dreas em que a textura de
fundo introduz ruido pontual, o contorno mantém trajetdria estavel e suprime variagdes isoladas,
indicando que a energia externa penaliza deslocamentos sem suporte espacial consistente.

As Figuras 26, 27 e 28 apresentam amostras representativas do conjunto sintético,
ilustrando a correspondéncia entre as segmentacdes obtidas pelo SEMAC e o respectivo padrao-
ouro. Para cada caso, sdo exibidas: (i) a imagem original, (i1) o GT, (iii) a segmentagdo predita e
(iv) a sobreposicao entre GT e predicdo, evidenciando o grau de coincidéncia entre as regides
segmentadas.

Na Figura 26, referente ao cendrio de bordas regulares, observa-se uma sobreposi¢do
praticamente completa entre as regides de GT e as predi¢des. As formas geométricas sao
reproduzidas com alta fidelidade, sem ocorréncia de falsos positivos ou vazamentos nas fronteiras.

O resultado reforca a estabilidade do SEMAC em condic¢des ideais, nas quais as transi¢oes de
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Figura 24 —Evolugdo dos contornos ativos em dados sintéticos com alta densidade de objetos. As curvas

verdes representam o contorno evolutivo ao longo das iteracdes, evidenciando estabilidade e preservacio
das fronteiras entre regides adjacentes.
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Fonte: Elaborado pelo autor.

Figura 25 —Evolucio dos contornos ativos em dados sintéticos com alta densidade de objetos e
modificacdes artificiais na imagem. Observa-se a capacidade do método em manter estabilidade e

coeréncia mesmo sob perturbacdes locais e sobreposicdo de fronteiras.
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intensidade sdo abruptas e bem definidas. Essa precisdo visual estd em plena concordancia com
as métricas quantitativas superiores a 99% apresentadas na Subsecdo 4.1.1.

A Figura 27 apresenta amostras com bordas deterioradas e ruido fotométrico. Mesmo
diante de variacdes de contraste e gradientes de iluminacio, o método preserva a coeréncia mor-
foldgica e a correspondéncia espacial entre as regides segmentadas e o padrao-ouro. Observa-se,
em particular, que na primeira amostra da Figura 27 o corpo e a cabeca do boneco, posici-
onados em proximidade extrema, sdo corretamente identificados como objetos distintos, em
conformidade com a referéncia. Esse comportamento confirma a capacidade do SEMAC em
lidar com situagdes de contato entre estruturas, aspecto essencial em contextos biomédicos
com células. Além disso, nas demais formas, as bordas exibem leve suavizacdo sem perda
geométrica, demonstrando que o campo energético se adapta as variagdes locais de intensidade
sem comprometer a integridade das regides segmentadas.

Na Figura 28, correspondente ao cendrio de alta densidade de objetos, 0 SEMAC
mantém desempenho consistente mesmo sob sobreposi¢do parcial e interferéncia mutua entre
gradientes. A sobreposi¢do entre GT e predi¢@o evidencia coincidéncia quase integral nas regides
internas, com pequenas divergéncias apenas em zonas de contato muito estreito, onde ocorre
subsegmentacdo discreta. Ainda assim, as fronteiras permanecem bem definidas, e o método
preserva a separacdo entre instancias adjacentes, aspecto particularmente notdvel diante do
elevado nimero de objetos e do ruido visual adicionado. Visualmente, observa-se que o SEMAC
reproduz adequadamente tanto as formas regulares quanto as irregulares, mantendo proporcao,
area e continuidade geométrica compativeis com o padrdo-ouro.

O SEMAC demonstrou quatro propriedades qualitativas essenciais sob condicoes
regulares e perturbadas: (i) estabilidade inicial com rdpida aderéncia as bordas em cendrios
regulares, alcangando convergéncia em poucas iteracdes; (i1) robustez frente a gradientes fotomé-
tricos suaves, com correcao progressiva de oscilacdes intermedidrias até atingir minimos locais
coerentes com as bordas reais; (iii) resisténcia a vazamentos em regides de baixo contraste e
ruido pontual, refletida na manutencgdo de alta precisdo e especificidade; e (iv) preservagao da
separagdo entre objetos adjacentes em contextos de alta densidade, realizando ajustes finos que
evitam fusdes indevidas e asseguram coeréncia morfoldgica. Essas propriedades explicam as
pequenas reducdes observadas nas métricas de sobreposi¢ao sob perturbacdes moderadas.

As evidéncias visuais complementam as andlises quantitativas e confirmam que o

processo de minimizagdo de energia permanece estdvel e eficaz diante de variacdes controladas



Figura 26 — Visualizacio qualitativa da segmentacdo em duas amostras sintéticas.
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Figura 27 — Visualizacdo qualitativa da segmentacdo em duas amostras sintéticas com bordas irregulares,

com e sem modificacdes na imagem.
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Figura 28 — Visualizacdo qualitativa da segmentacdo em duas amostras sintéticas com alta densidade de
objetos, com e sem modificagdes na imagem.
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de geometria, textura e iluminagdo. O método mantém a coeréncia estrutural das segmentacoes
e apresenta correspondéncia espacial consistente com o padriao-ouro, indicando bom potencial
de generalizac@o para imagens biomédicas reais, mesmo na presenga de formas irregulares,
gradientes de iluminac¢do ou ruido de aquisicao.

De forma integrada, os resultados do conjunto sintético demonstram que o SEMAC
apresenta comportamento estavel e coerente do ponto de vista energético em ambientes con-
trolados. A andlise conjunta das Figuras 20 a 28, aliada as métricas quantitativas, evidencia a
capacidade do método de preservar a integridade geométrica e topoldgica das regides de interesse
mesmo sob perturbacdes moderadas.

Esses achados consolidam a etapa de validacdo inicial do método, estabelecendo um
referencial de desempenho sob condi¢des ideais e semi-perturbadas. Essa base experimental
confirma a eficiéncia do mecanismo de minimizacgao de energia e fornece sustentacao tedrica
e empirica para sua aplicacdo em imagens biomédicas reais, nas quais as variacoes de textura,
contraste e artefatos de aquisicao impdem desafios substancialmente maiores a convergéncia e a

estabilidade do processo de segmentacao.

4.2 Cenario Generalista

Concluida a etapa de validagdo em condicdes controladas, esta secdo apresenta
a aplicagdo do SEMAC em imagens reais, provenientes de diferentes dominios biomédicos.
O objetivo € avaliar sua capacidade de generalizacdo diante de variacdes naturais de textura,
contraste e presenca de artefatos, aspectos que tornam a segmentacdo mais desafiadora em
contextos experimentais e clinicos.

As subsecdes seguintes abordam separadamente dois conjuntos representativos:
lesdes cutaneas (Secao 4.2.1) e células sanguineas (Se¢do 4.2.2). Em ambos os casos, sdo
apresentadas andlises quantitativas e qualitativas, com comparagdes frente a métodos de referén-
cia da literatura, a fim de verificar o desempenho e a adaptabilidade do SEMAC em dominios

visualmente distintos.

4.2.1 Segmentacdo de lesoes cutdneas

As lesdes cutaneas constituem um dos desafios mais complexos da VC aplicada a

drea da saude, em razao da ampla diversidade de formas, texturas e contrastes, além da presenca
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de artefatos de aquisi¢cdo como pelos, reflexos e variacdes de iluminagdo. Essas caracteristicas
produzem bordas irregulares e transi¢des sutis entre pele saudavel e lesao, tornando a segmen-
tacdo uma tarefa sensivel a pequenas variacdes fotométricas e estruturais. O SEMAC, por sua
formula¢@o multirregido, permite delinear simultaneamente N regides de interesse, incluindo o
caso particular de uma tnica lesdo (N=1), mantendo coeréncia geométrica e estabilidade durante

0 processo evolutivo.

4.2.1.1 Resultados Quantitativos

Sob essas condi¢des adversas, 0 SEMAC preservou estabilidade evolutiva e boa
aderéncia as fronteiras das lesdes, evitando desvios em regides de baixo gradiente ou bordas
difusas, situagdes em que abordagens puramente cldssicas ou redes neurais supervisionadas
tendem a perder defini¢do ou gerar sobresegmentacoes.

A Tabela 5 apresenta as métricas obtidas no conjunto ISIC 2018, comparadas a
abordagens recentes da literatura. O SEMAC atingiu Acurécia de 95,90%, Sensibilidade de
94,20% e Especificidade de 96,40%, refletindo uma segmentacdo equilibrada, capaz de detectar
adequadamente as regides patologicas sem comprometer a preservacao do fundo. A Precisao
de 90,80% indica que a maioria dos pixels classificados como lesdo corresponde efetivamente
a drea de interesse, enquanto o MCC = 90,87% confirma a correlacdo positiva entre predi¢ao

e referéncia, mesmo sob variagdes de forma e textura. O SEMAC apresentou desempenho

equilibrado, sem sacrificar sensibilidade em prol de especificidade ou vice-versa.

Tabela 5 — Resultados comparativos em métricas quantitativas para segmentacdo em imagens de pele.

Método Referéncia ACC (%) Prec(%) Sens(%) Espec(%) MCC (%)
SEMAC Método proposto 95,90 90,80 94,20 96,40 90,87
GFANet Qiu et al. (2023) 96,29 - 90,75 97,79 -
FAT-Net Wu et al. (2022) 95,78 - 91,00 96,99 -
ADF-Net Huang et al. (2024) 96,70 - 92,34 97,41 -
ASP-VMUNet Bao et al. (2025) 93,83 - 89,97 95,33 -

Fonte: Elaborado pelo Autor.

Em termos quantitativos, 0 SEMAC apresenta desempenho competitivo em relacao
as arquiteturas baseadas em convolugdes profundas e aos modelos hibridos com mecanismos de
atencdo. Embora apresente uma Acurdcia ligeiramente inferior 8 ADF-Net (diferenca de apenas
0,8%), o método proposto demonstra maior consisténcia global (MCC = 90,87%), o que indica
melhor equilibrio entre verdadeiros positivos e negativos € menor propensio a sobresegmentacao.

Esse comportamento decorre da natureza controlada da evolugdo dos contornos, em que as
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forcas internas atuam como um mecanismo de regularizacdo geométrica, impedindo a expansao
indevida sobre regides de fundo com gradiente ambiguo. Com isso, 0 SEMAC tende a formar
fronteiras mais compactas e semanticamente coerentes, limitando o avango dos contornos a dreas
efetivamente suportadas pela evidéncia fotométrica e mantendo estabilidade mesmo em imagens
com contraste difuso.

Entre os métodos comparativos, 0 GFANet (Qiu et al., 2023) integra multiplos
niveis de atencdo reversa para realcar bordas e suprimir ruido de fundo. Essa abordagem obtém
elevada Especificidade (97,79%), indicando forte capacidade de rejeitar regides ndo lesionadas,
mas tende a subsegmentagcdo em dreas de textura irregular. Isso ocorre porque o refinamento
progressivo das bordas, embora eficaz em contornos nitidos, reduz a resposta em gradientes sutis,
levando a omissdo parcial de regides com baixo contraste.

O FAT-Net (Wu et al., 2022), por sua vez, combina convolucdes e transformadores
para capturar dependéncias de longo alcance, o que resulta em maior Sensibilidade (91,00%) e
melhor cobertura da 4rea lesionada. No entanto, esse ganho vem acompanhado de leve queda na
Especificidade e aumento expressivo no custo computacional, devido a sobreposi¢do de multiplos
modulos de atencdo global.

A ADF-Net (Huang et al., 2024) constitui uma evolu¢do direta dessa linha de
pesquisa, ao introduzir mecanismos de aten¢do focal adaptativa e fusdo dual de caracteristicas.
Essa arquitetura alcanca um equilibrio consistente entre contexto local e global, aprimorando
a distin¢do entre bordas e fundo. No entanto, sua eficiéncia depende fortemente do ajuste de
hiperparametros e da disponibilidade de grandes conjuntos de dados rotulados, o que limita sua
capacidade de generalizacdo para dominios distintos.

Por fim, o ASP-VMUNet (Bao et al., 2025) utiliza convolugdes atrous e o médulo
Mamba para ampliar o campo receptivo sem perda de resolucdo espacial. Apesar disso, o
SEMAC nao reproduz o mesmo nivel de desempenho global, sugerindo que a simples expansdo
da drea de contexto ndo € suficiente para resolver ambiguidades topoldgicas ou inconsisténcias
fotométricas nas bordas das lesdes.

Em contraste com as abordagens anteriores aplicadas a esse mesmo conjunto de
dados, o SEMAC adota uma formulacao energética explicita, na qual a evolu¢do dos contornos
€ guiada por um campo de evidéncia a partir dos dados. Essa estrutura combina aprendizado
supervisionado profundo com principios fisicos de otimizagdo, conferindo ao SEMAC maior

interpretabilidade e estabilidade numérica, a0 mesmo tempo em que reduz a dependéncia de
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ajustes empiricos e mecanismos de atencdo complexos. Enquanto as redes puramente neurais
ajustam suas fronteiras com base em correlacdes estatisticas locais, o0 SEMAC realiza uma
otimizagdo fisica sobre o campo de evidéncia, modulando dinamicamente as forcas de contra¢do
e expansdo conforme a coeréncia morfoldgica das regides. O resultado € uma segmentacdo mais
regularizada e semanticamente consistente, capaz de preservar detalhes anatdmicos relevantes
sem comprometer o equilibrio entre fidelidade geométrica e robustez numérica. Essas propri-
edades tornam o método particularmente adequado para aplicagdes biomédicas, nas quais a
precisdo de fronteira e a interpretabilidade do processo sdo tao importantes quanto o desempenho
quantitativo.

A Tabela 6 apresenta as métricas de similaridade, que quantificam o grau de sobre-
posicdo entre as mascaras preditas e as de referéncia. O SEMAC alcancou IoU de 85,90% e
Dice de 92,30%, com ganhos de 3,9% e 3,3% em relacdo ao FAT-Net, e de 2,2% e 2,1% sobre o
GFANet, respectivamente. Esses valores indicam que o campo de evidéncia conduz a evolucdo
dos contornos de forma estdvel e continua, favorecendo segmentagdes coesas € menos sensiveis

a variacoes de textura, contraste e iluminacao.

Tabela 6 —Resultados comparativos em métricas de similaridade para segmentacdo em imagens de pele.

Método Referéncia IoU (%) Dice (%)
SEMAC Método proposto 85,90 92,30
GFANet Qiu et al. (2023) 83,66 90,13
FAT-Net Wu et al. (2022) 82,02 89,03
ADF-Net Huang et al. (2024) 84,52 90,82
ASP-VMUNet Bao et al. (2025) 80,32 89,09

Fonte: Elaborado pelo Autor.

A diferenca entre o desempenho do SEMAC e o das principais arquiteturas do estado
da arte € inferior a 1,5% em IoU, situando-se dentro da variabilidade experimental esperada.
Essa proximidade demonstra que a integracdo entre aprendizado supervisionado e formulagdo
energética € capaz de sustentar altos niveis de similaridade sem recorrer a mecanismos explicitos
de atencdo ou regularizagdes complexas. A estrutura hibrida do SEMAC, ao combinar principios
fisicos de contorno com aprendizado profundo, equilibra generalizacdo e controle morfoldgico,
assegurando estabilidade e reprodutibilidade das segmentagdes.

As arquiteturas puramente neurais, como FAT-Net e ADF-Net, tendem a sobreajustar
em regides de baixo contraste devido a natureza local de seus mapas de atengdo. No SEMAC, a

acdo conjunta das forcas internas e externas suaviza essas oscilagdes e estabiliza a fronteira em
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areas ambiguas. Esse equilibrio entre coeréncia geométrica e orientacao contextual resulta em
segmentagdes mais homogéneas e previsiveis, reduzindo a variabilidade estatistica e preservando
a integridade das bordas.

Do ponto de vista conceitual, o SEMAC integra a formulagado cldssica dos contornos
ativos ao aprendizado profundo supervisionado, realizando uma otimizacao fisica sobre o campo
de evidéncia. Seu comportamento estdvel decorre do ajuste dindmico entre as forcas internas,
que impdem continuidade e suavidade, e a energia externa, que conduz a curva em dire¢ao as
bordas semanticamente consistentes. Essa formulacdo preserva a interpretabilidade geométrica e
assegura robustez diante de ruidos e variacdes estruturais, evidenciando potencial para aplicacdes
clinicas que exigem precisdo morfoldgica e reprodutibilidade.

A Figura 29 apresenta a distribuicao das métricas de desempenho obtidas pelo
método proposto na segmentacio de lesdes cutaneas. Observa-se baixa variabilidade e elevada
consisténcia entre execucoes, com desvios padrdo inferiores a 1,1% nas principais métricas. Esse
comportamento demonstra que o SEMAC mantém estabilidade sob diferentes configuragdes de
inicializacdo e ajustes de hiperparametros, preservando a robustez dos resultados obtidos.

Figura 29 — Distribui¢do das métricas de desempenho na segmentacio de lesdes cutaneas por meio de
boxplots. Cada boxplot representa a dispersdo dos valores obtidos nas imagens do conjunto de teste.

98
==

a1

x 94
S
T
=
g 90 1
IS
g 88 T

86

L
84 Acc Prec Sens Espec MCC loU Dice

Métricas de Desempenho

Fonte: Elaborado pelo autor.

As métricas de Acuricia (95,90%) e Precisao (90,80%) apresentam caixas compactas

e whiskers curtos, evidenciando uma distribui¢do concentrada e alto grau de reprodutibilidade.
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Esse comportamento confirma a capacidade do SEMAC em identificar corretamente as regides
lesionadas, minimizando erros de classificac@o e assegurando resultados consistentes. A Espe-
cificidade, com média de 96,40% e desvio padrao de apenas 0,4%, destaca-se como a métrica
mais estdvel, indicando que o método controla de forma eficiente a expansdo dos contornos e
evita a inclusao de dreas de fundo. Ja a Sensibilidade, embora apresente leve dispersao (¢ =
0,9%), mantém valores médios acima de 94%, refor¢cando a habilidade do SEMAC em capturar
fronteiras difusas sem comprometer a integridade geométrica da segmentacao.

As métricas de similaridade IoU (85,90%) e Dice (92,30%) evidenciam a fidelidade
geométrica das segmentacdes, com sobreposicao elevada entre predicdes e anotacdes de refe-
réncia. A amplitude interquartil moderada indica que 0 SEMAC mantém coeréncia estrutural
mesmo em cendrios visuais adversos. Por fim, o valor de MCC igual a 90,87%, com desvio
padrio o de 0,85, demonstra o equilibrio entre falsos positivos e falsos negativos, validando a
estabilidade global do método proposto.

De modo geral, o SEMAC combina a estrutura geométrica dos contornos ativos com
a expressividade estatistica do campo de evidéncia, alcancando desempenho comparavel ao de
arquiteturas profundas recentes, mas com menor sensibilidade a quantidade de dados e maior
estabilidade interpretivel. Em vez de depender exclusivamente da generalizacdo de redes, o
SEMAC fundamenta sua evolug@o em principios energéticos explicitos, nos quais o campo de

evidéncia atua como modulador contextual das forcas internas e externas.

4.2.1.2 Resultados Qualitativos

A Figura 30 ilustra a evolu¢do do processo de segmentacao em imagens de pele ao
longo das iteracdes do SEMAC. Sdo apresentadas cinco amostras representativas que abrangem
diferentes condicOes visuais, permitindo observar como o SEMAC se adapta a distintos graus de
complexidade. As amostras 4 e 9 exemplificam casos de baixo contraste entre a les@o e o tecido
sauddvel, nas quais o contorno evolui de forma progressiva até estabilizar nas fronteiras reais. A
amostra 15 corresponde a uma borda nitida e bem delimitada, evidenciando convergéncia rapida
e regularidade geométrica. J4 as amostras 86 € 197 ilustram situa¢des de maior irregularidade
morfolégica, com bordas descontinuas e texturas heterogéneas, nas quais o método ajusta o
contorno de modo incremental, mantendo continuidade e coeréncia estrutural ao longo da
evolucao.

Nas iteracdes iniciais, o contorno parte de uma configuragdo retangular que delimita
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Figura 30 —Evolucao do processo de segmentacao em imagens de pele pelo SEMAC. Cada linha
corresponde a uma amostra distinta, enquanto as colunas representam diferentes estagios iterativos.
Observa-se a progressiva adaptagdo das curvas de contorno (em verde) desde a inicializagdo retangular até
a convergéncia final as bordas reais da lesdo.

Amostra 4

Iteracdo 1 Iteragdo 2 Iteracdo 6 Iteracdo 7
Amostra 9

Iteracdo 1 ITteragdo 3 Iteracdo 5 Iteracdo 6
Amostra 15

Iteracdo 1 Iteracdo 4 Iteragdo 6 Iteracdo 8
Amostra 86

Iteracdo 1 ITteracdo 3 Iteracdo 6 Iteracdo 7

Amostra 197

Iteracdo 1 ITteracao 2 Iteracdo 4 Iteracdo 6

Fonte: Elaborado pelo autor.
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de forma ampla a regido suspeita. A medida que o processo evolui, essa forma inicial se deforma
gradualmente, adaptando-se as variacdes fotométricas e morfoldgicas até aderir com precisao as
bordas reais da lesdo. O ritmo de convergéncia varia conforme o tamanho e a complexidade das
estruturas segmentadas. Lesdes extensas, como a Amostra 4, alcancam estabiliza¢do rapidamente,
pois o contorno inicial ja cobre boa parte da drea de interesse, exigindo apenas correcoes
marginais nas fronteiras.

Em contrapartida, em lesdes menores (como nas Amostras 4 e 15), observa-se um
processo mais gradual e refinado. Nessas situacdes, o contorno precisa contrair-se de forma
controlada ao longo das iteragdes para capturar as nuances da regido patoldgica, ajustando a
curvatura local até que a segmentagdo se estabilize de maneira coerente e morfologicamente fiel.

A Figura 31 apresenta uma andlise qualitativa dos resultados obtidos pelo SEMAC
na segmentacdo de lesdes cutineas. Para cada amostra, sdo exibidas: (i) a imagem original;
(i1) a mascara de referéncia anotada manualmente (GT); (iii) a segmentagdo predita; e (iv)
a sobreposi¢do entre GT e predigdo, evidenciando o grau de coincidéncia entre as regides
segmentadas. Observa-se que, nas trés amostras, 0 SEMAC delineia com precisdo as regides de
interesse, mantendo boa aderéncia as bordas reais. As diferencas entre GT e predicdo concentram-
se nas extremidades das lesdes, associadas a pequenas irregularidades geométricas ou a variacoes
sutis de tonalidade, tipicas de imagens dermatoscopicas. Esses resultados demonstram que
o método mantém a integridade morfolégica das lesdes e reduz significativamente erros de
subsegmentacio e supersegmentacao.

Esse comportamento reforca que a formulagdo multicontorno lida de forma eficaz
com heterogeneidade de textura, variacdes de contraste e interferéncias externas, ajustando-se
dinamicamente a complexidade e ao tamanho da lesdo. O nimero distinto de iteracdes até a
convergéncia entre amostras reflete essa adaptabilidade, indicando que o processo evolutivo é
guiado por critérios energéticos locais em vez de depender de um nimero fixo de passos.

A andlise qualitativa complementa as evidéncias quantitativas, mostrando que o
SEMAC ¢€ capaz de evoluir de aproximagdes iniciais amplas até contornos precisos e estaveis,
mesmo sob condicdes desafiadoras. Essa consisténcia visual, aliada ao desempenho numérico
elevado, consolida o método como uma alternativa eficaz e confidvel para a segmentacdo

automadtica de lesoes de pele.
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Figura 31 — Visualizacdo qualitativa de duas amostras de lesdes cutaneas. Para cada caso, sdao
apresentadas: (i) a imagem original; (ii) a sobreposi¢do do GT; (iii) a segmentacao predita pelo SEMAC;
e (iv) a sobreposicdo entre a GT e a predigéo.

Amostra 49

i) Original ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 101

i) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.
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4.2.2 Segmentagdo de Células Sanguineas

ApOs a etapa de avaliacdo em imagens de pele, o SEMAC foi aplicado ao dominio
de células sanguineas, com o objetivo de analisar seu desempenho em estruturas de menor
escala e alta densidade espacial em casos reais. Diferentemente das lesdes cutaneas, que
geralmente apresentam uma Unica regido de interesse bem delimitada, as imagens microscépicas
de sangue contém multiplos objetos préximos e com fronteiras pouco contrastantes. Essas
caracteristicas impdem desafios adicionais ao processo de segmentacido, exigindo que o SEMAC
preserve a individualidade das instancias, mantenha a separacao entre células adjacentes e lide

adequadamente com interferéncias provocadas por ruido e sobreposicao Optica.

4.2.2.1 Resultados Quantitativos

A avaliagcdo quantitativa no dominio das células sanguineas, apresentada na Tabela 7,
evidencia que o SEMAC mantém desempenho elevado mesmo em um cendrio caracterizado
por alta densidade estrutural, sobreposi¢do de instancias e contraste varidvel entre fundo e
objeto. O SEMAC obteve Acurécia de 96,24%, Precisao de 95,60%, Sensibilidade de 93,10%,
Especificidade de 97,90% e MCC de 91,40%, indicando equilibrio consistente entre detec¢ao e
rejeicao de regides, com controle efetivo de falsos positivos e negativos.

Tabela 7 — Resultados comparativos em métricas quantitativas para segmentacao em imagens de células
sanguineas.

Método Referéncia ACC (%) Prec(%) Sens (%) Espec(%) MCC (%)
SEMAC Meétodo proposto 96,24 95,60 93,10 97,90 91,40
CellSegUNet Depto et al. (2021) 97,60 - - - -

Fonte: Elaborado pelo autor.

A formulacdo do SEMAC evita tanto a fusdo indevida de células adjacentes quanto a
fragmentacdo excessiva de estruturas continuas, problemas recorrentes em métodos puramente
convolucionais aplicados a imagens microscopicas. A elevada Especificidade (97,90%) evidencia
que o SEMAC controla de forma eficaz a expansao dos contornos, impedindo a incorporagdo de
areas de fundo, enquanto a Sensibilidade (93,10%) confirma sua capacidade de detectar fronteiras
sutis mesmo sob ruido e baixa definicdo optica. O valor de MCC superior a 90% reforca a
estabilidade global do equilibrio entre verdadeiros e falsos classificadores, demonstrando a
robustez do processo evolutivo diante de varia¢des topoldgicas e heterogeneidade intra-amostra.

Em comparacdo ao CellSegUNet (Metlek, 2024), o SEMAC apresenta desempenho



96

Tabela 8 —Resultados comparativos em métricas de similaridade para segmentacdo em imagens de células
sanguineas. O estudo de Depto et al. (2021) avaliou diversos métodos de segmentacio aplicados ao
mesmo conjunto de dados de células sanguineas, possibilitando uma comparacio direta de desempenho
entre as abordagens.

Método Referéncia Dice (%) 1IoU (%)
SEMAC Método proposto 94,80 90,10
Otsu’s Method Depto et al. (2021) 92,60 86,50
BHT Depto et al. (2021) 52,50 49,48
Watershed Depto et al. (2021) 78,21 68,21
U-Net Depto et al. (2021) 93,09 87,16
U-Net++ Depto et al. (2021) 88,80 81,44
TernausNet Depto et al. (2021) 93,38 87,65
R2U-Net Depto et al. (2021) 86,70 77,70
Attention U-Net Depto et al. (2021) 91,00 83,70
Attention R2U-Net Depto et al. (2021) 78,50 65,20
FCN Depto et al. (2021) 85,40 75,20
DeepLabv3+ Toptas e Hanbay (2023) 96,00 91,00
CellSegUNet Metlek (2024) 97,10 92,70

Fonte: Elaborado pelo autor.

competitivo, alcancando 94,80% de Dice e 90,10% de IoU, valores apenas 2,30 p.p. e 2,60 p.p.
inferiores, respectivamente, aos do modelo supervisionado especializado. Essa proximidade
de resultados € relevante considerando que o SEMAC adota uma formulagdo que engloga
aprendizado profundo e dindmica geométrica, mantendo estrutura explicdvel e estabilidade
fisica mesmo sem ajustes especificos para o0 dominio hematolégico. Enquanto o CellSegUNet
foi projetado exclusivamente para a segmentacdo de células sanguineas, o SEMAC conserva
desempenho semelhante com uma arquitetura mais genérica e interpretavel.

Como mostrado na Tabela 8, 0o SEMAC supera métodos cldssicos como Watershed e
BHT, com ganhos expressivos tanto em Dice e em loU, além de apresentar resultados superiores
a arquiteturas intermedidrias como U-Net (+1,71% em Dice e +2,94% em IoU) e TernausNet
(+1,42% e +2,45%, respectivamente). Em relacdo ao DeepLabv3+ (Toptas; Hanbay, 2023),
modelo de segmentacdo genérica amplamente utilizado, o desempenho do SEMAC difere em
apenas 1,2% em IoU e 1,2% em Dice, mantendo, contudo, maior regularidade e estabilidade
morfoldgica nas fronteiras segmentadas.

A diferenca observada em relacido aos modelos de referéncia reflete a natureza inte-
grada do SEMAC, no qual o campo de evidéncia atua como componente ativo do processo de
evolugdo geométrica. Em vez de operar de forma puramente paramétrica, 0 SEMAC traduz as

informagdes aprendidas pela rede em forcas energéticas continuas, que orientam a contracdo e a



97

expansio dos contornos de acordo com a coeréncia morfoldgica da imagem. Essa formulacdo
confere ao método maior estabilidade e regularidade na convergéncia, permitindo que as frontei-
ras evoluam de maneira controlada mesmo em regides de baixo contraste ou com sobreposi¢ao
de estruturas. Assim, o desempenho alcancado nao decorre apenas da capacidade de aprendizado,
mas da forma como esse aprendizado € incorporado a dinamica fisica da segmentacao, resul-
tando em previsibilidade, robustez e aderéncia geométrica superiores em contextos biomédicos
complexos.

A comparag¢do com modelos puramente neurais evidencia diferencas conceituais
relevantes. Enquanto arquiteturas como U-Net, DeepLabv3+ e CellSegUNet dependem de
mecanismos de atencdo e convolugdes dilatadas para reconstruir o contexto global, o SEMAC
preserva a formulac@o cldssica dos contornos ativos, incorporando o campo de evidéncia como
componente continuo da energia externa. Esse campo orienta as forcas de fronteira com base em
relagdes probabilisticas locais e regionais, reforcando gradientes em dreas ambiguas e conduzindo
a uma convergéncia mais suave e estavel. Como consequéncia, o SEMAC reduz a ocorréncia
de sobresegmentacio em regides densas, mantém coeréncia espacial entre multiplos objetos e
assegura contornos mais regulares mesmo sob ruido fotométrico ou variacdo topolégica.

A Figura 32 apresenta a distribuicdo das métricas de desempenho obtidas na segmen-
tacdo de células sanguineas. Observa-se alta consisténcia entre execugdes, com desvios padrdao
inferiores a 1,2% em todas as métricas, o que evidencia a estabilidade do método diante da
variabilidade morfoldgica das amostras. A Acuricia (96,24%) e a Precisdo (95,60%) concentram-
se em valores elevados, com dispersoes reduzidas (o = 0,65 e ¢ = 0,75, respectivamente),
indicando excelente capacidade do SEMAC em identificar corretamente as regides celulares. A
Especificidade, com média de 97,90% e desvio de apenas 0,45%, destaca-se como a métrica mais
estdvel, refletindo o controle eficaz sobre a delimitagdo das fronteiras e a exclusio de regides de
fundo. A Sensibilidade (93,10%), embora apresente variacdo ligeiramente superior (¢ = 1,10),
mantém desempenho consistente mesmo em dreas de sobreposicao celular.

O coeficiente de Matthews (MCC = 91,40%, ¢ = 1,00) confirma o equilibrio entre
verdadeiros e falsos resultados, reforcando a confiabilidade do processo de segmentagdo. As
métricas de similaridade, IoU (90,10%) e Dice (94,80%), evidenciam elevada sobreposicao entre
as predicdes e as anotacdes de referéncia, com baixa variabilidade interamostral. Essa estabi-
lidade confirma a robustez da integracdo entre o campo de evidéncia e a evolugdo geométrica

dos contornos, favorecendo a obtencao de fronteiras continuas, coerentes e morfologicamente
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Figura 32 —Distribuicdo das métricas de desempenho na segmentacio de células sanguineas por meio de
boxplots. Cada boxplot representa a variacao dos valores obtidos nas imagens do conjunto de teste.
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Fonte: Elaborado pelo autor.

consistentes. Esses resultados consolidam o SEMAC como uma abordagem interpretavel e
generalizdvel para a segmentacio automdtica de células sanguineas em contextos clinicos e
laboratoriais.

Os resultados quantitativos indicam que o SEMAC alcanca um ponto de equilibrio
entre desempenho e interpretabilidade, preservando a robustez geométrica observada nas imagens
de pele e estendendo sua aplicabilidade a dominios microscépicos mais complexos. O SEMAC
demonstra capacidade de generalizacdo compardvel a de arquiteturas supervisionadas de dltima
geracdo, mas com menor dependéncia de dados anotados e maior explicabilidade estrutural,
aspectos desejaveis em contextos biomédicos que demandam transparéncia e confiabilidade nos

processos de segmentacao automatica.

4.2.2.2 Resultados Qualitativos

As Figuras 33 e 34 ilustram a evolugao do processo de segmentacdo em imagens
de células sanguineas, evidenciando a progressiva adaptacdo dos contornos ativos (em verde)
as bordas reais das células ao longo das iteracdes. O comportamento observado demonstra a
capacidade do SEMAC multirregiao de evoluir simultaneamente multiplos contornos (N > 1),

ajustando-os de forma coordenada as diferentes regides de interesse. Em amostras com células
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isoladas ou levemente agrupadas (Figura 33), a convergéncia ocorre rapidamente, uma vez que os
contornos interagem minimamente entre si e aderem as fronteiras verdadeiras em poucas iteragdes.
Por outro lado, em configuracdes mais densas, como nas amostras que estdo na Figura 34, o
processo se torna mais gradual: as curvas competem por regides adjacentes e precisam de
iteracOes adicionais até que as fronteiras sejam devidamente separadas e estabilizadas. Esse
comportamento evidencia o cardter adaptativo do SEMAC, cuja evolucdo iterativa corrige
progressivamente sobreposicdes e ambiguidades locais, preservando a coeréncia morfoldgica e a
independéncia entre as regidoes segmentadas.

A Figura 35 complementa a andlise ao comparar os resultados finais do SEMAC
com as mascaras de referéncia. Nota-se predominancia de acertos e baixa incidéncia de erros
localizados, concentrados principalmente em regides de sobreposi¢ao celular ou de baixo con-
traste fotométrico. Os falsos-negativos ocorrem, em geral, nas bordas parcialmente ocultas por
contato entre células, enquanto pequenos falsos-positivos aparecem em fragmentos residuais
ou em zonas com reflexos Opticos. Ainda assim, a correspondéncia entre predi¢do e referéncia
demonstra preservacdo precisa da morfologia celular, com contornos suaves e aderentes as
fronteiras verdadeiras, evidenciando a efici€ncia da regulacido energética em separar regides
adjacentes sem distorcer sua geometria.

A anélise visual também revela que o processo de evolu¢do multirregido (N > 1)
preserva a independéncia entre os contornos, evitando tanto fusdes indevidas quanto fragmen-
tacoes artificiais. Em dreas de alta densidade celular, os contornos se estabilizam de forma
cooperativa, ajustando suas fronteiras em resposta as forcas de repulsdo mitua e a influéncia do
campo de evidéncia local. Essa dindmica garante a delimita¢do individual das células mesmo em
regides de contato intenso, onde a distin¢gdo morfoldgica € fundamental para andlise quantitativa
posterior. A capacidade do método de manter topologia estdvel e coeréncia geométrica ao longo
da evolucao reforca sua aplicabilidade em cendrios laboratoriais, nos quais pequenas distor¢coes
de fronteira podem comprometer medidas de drea ou forma.

A andlise qualitativa confirma que o SEMAC preserva com precisao a morfologia
circular ou eliptica tipica das células, mantendo estabilidade mesmo sob ruido, variagdes de
contraste e agrupamentos densos. A interacdo entre o processo iterativo de evolugdo e o controle
geométrico das fronteiras assegura segmentagdes coerentes e continuas, com contornos regulares
e auséncia de distor¢Oes estruturais, mesmo em regides de contato ou sobreposicdo parcial.

Esse comportamento indica que o SEMAC regula de forma eficaz a competi¢do entre contornos
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Figura 33 —Evolucgdo do processo de segmentacdo em imagens de células sanguineas bem espagadas,
utilizando o SEMAC. Observa-se a adaptacao suave das curvas de contorno (em verde) desde a
inicializacdo retangular até a convergéncia final sobre as fronteiras reais, evidenciando a precisao na
delimitacdo individual das células.
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Figura 34 —Evolugdo do processo de segmentacdo em imagens de alta densidade celular pelo SEMAC.
Nota-se a capacidade do método em preservar estabilidade topoldgica e coeréncia geométrica mesmo sob
sobreposi¢do e proximidade entre células, assegurando separacdo consistente das fronteiras.
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Figura 35 — Visualizacdo qualitativa de duas amostras de células sanguineas.
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vizinhos, equilibrando repulsdo e aderéncia as bordas reais sem comprometer a integridade das
regides segmentadas.

O desempenho visualmente consistente, aliado a estabilidade morfoldgica observada,
evidencia que o SEMAC constitui uma abordagem confidvel e reprodutivel para segmentacdo
de células sanguineas. Sua formulagdo energética orientada por evidéncia contextual promove
coeréncia geométrica e previsibilidade de resposta, preservando as fronteiras celulares com
fidelidade mesmo diante de ruido e sobreposicao. Essas propriedades reforcam o potencial do
método como uma solucao eficiente e interpretdvel para aplicagdes biomédicas que demandam

precisao de fronteira e consisténcia estrutural nas segmentagdes.

4.3 Analise Geral dos Resultados do SEMAC

Os resultados apresentados ao longo deste capitulo reforcam a consisténcia e a
eficicia do SEMAC, evidenciando sua capacidade de reproduzir o comportamento esperado
de acordo com os objetivos estabelecidos na Secao 1.3. Observa-se que o método mantém
estabilidade evolutiva, precisdo na delimitacdo das fronteiras e coeréncia geométrica entre
multiplas regides, confirmando a adequacgdo da proposta tanto em cendrios sintéticos quanto em

imagens clinicas reais.

4.3.1 Desempenho do SEMAC em Bordas Complexas, Baixo Contraste e Ruido

Os resultados obtidos em regides de baixo contraste, bordas irregulares e presenca de
ruido evidenciam a robustez e a estabilidade do SEMAC em condi¢des adversas de segmentacao.
Tais situacdes sdo particularmente desafiadoras para abordagens baseadas apenas em gradiente,
que tendem a perder precisdo quando as transi¢cdes fotométricas sdo suaves ou quando ha
variagOes internas de tonalidade na regido de interesse.

Na Figura 36 apresenta-se um exemplo representativo de uma lesdo dermatoscopica
caracterizada por bordas pouco definidas e textura heterogénea. Observa-se que, ao longo da
evolugcdo, o SEMAC manteve aderéncia consistente as fronteiras reais da estrutura, ajustando-se
de forma gradual as variagdes locais de intensidade sem ser significativamente afetado pelo ruido,
neste caso decorrente da presenca de gel sobre a superficie cutanea. O contorno final apresentou
elevada correspondéncia com o GT fornecido por especialistas (Figura 36.c), preservando a

coeréncia geométrica mesmo em regides de baixo contraste € em transi¢des sutis entre pele
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saudavel e lesdo.

Figura 36 — Desempenho do SEMAC em uma imagem dermatoscépica caracterizada por baixo contraste,
bordas irregulares e varia¢do interna de tonalidade. (a—b) Evolugao progressiva do contorno ativo sobre a
lesdo, com o campo de forcas adaptativo ajustando-se as transi¢des sutis de intensidade; (c) GT fornecido
por especialistas, utilizado como referéncia; (d) Aderéncia do método as fronteiras reais mesmo em
regides com transigdes suaves e ruido de textura.

(b)

(©) (d)

Fonte: Elaborado pelo autor.

Esse comportamento demonstra a eficiéncia do campo de forcas adaptativo em
redistribuir a energia evolutiva conforme o grau de evidéncia local, refor¢cando fronteiras com
contraste reduzido e atenuando flutuagdes causadas por ruido de textura. Mesmo nas dreas em
que o gradiente fotométrico € insuficiente para definir limites nitidos, o SEMAC manteve a

regularidade e a continuidade das bordas, preservando a forma morfoldgica da regido segmentada.
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Esses resultados refor¢cam a contribui¢do do SEMAC para a segmentacao de regides
complexas, evidenciando que a integracdo entre o campo de evidéncia e o modelo paramétrico
proporciona uma dindmica evolutiva estdvel e semanticamente coerente. A capacidade do método
de preservar a coeréncia estrutural mesmo sob variagdes tonais e presenga de ruido representa
um avango significativo em relag@o as formulacgdes cldssicas de contornos ativos, tornando-o
particularmente adequado para aplicacdes clinicas e cientificas em cendrios de baixa definicao e

alta variabilidade morfolégica.
4.3.2 Evolucao dos Multiplos Contornos Ativos e Divisdo entre Miultiplas Regioes

Uma das principais capacidades do SEMAC € detectar e processar automaticamente
a divisdo entre regides adjacentes durante o processo evolutivo. A medida que dois segmentos
de contorno se aproximam dentro de uma mesma vizinhanga energética, o método identifica
a intersecdo e executa a operacdo de divisdo, resultando na formagdo de novos contornos
autdnomos (Figura 37.c).

Essa propriedade de autoparticionamento representa um avanco em relagdo as for-
mulagdes cldssicas de contornos ativos, nas quais o tratamento de multiplas regides exige
inicializa¢Oes independentes ou heuristicas externas. No SEMAC, a divisdo topologica emerge
naturalmente da interagdo entre o campo de evidéncia e a dindmica fisica do contorno, permitindo
que um unico contorno inicial se propague, fragmente e se estabilize de acordo com a estrutura
real da imagem.

O resultado é um processo continuo no qual divisdo e estabilizacdo ocorrem de forma
integrada, mantendo a coeréncia geométrica e a integridade morfoldgica das regides segmentadas.
Esse comportamento demonstra o potencial do método para aplicagdes clinicas e cientificas que
exigem a segmentacgdo precisa de multiplas regides interconectadas, com fronteiras proximas ou

sobrepostas.
4.3.3 Estabilizacdo Independente e Coeréncia entre Regioes Proximas

Ap6s o particionamento topoldgico descrito anteriormente, os contornos resultantes
evoluem de maneira independente e estdvel, mantendo coeréncia geométrica mesmo quando
permanecem muito proximos.

A Figura 37 também evidencia essa estabilizacdo local: observa-se a reducdo pro-

gressiva do moédulo das forgas externas aplicadas aos pontos do contorno até que o sistema
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Figura 37 —Evolugdo local dos contornos ativos em imagem microscépica de sangue periférico,
ilustrando o processo de divisdo topoldgica e a estabilizacdo subsequente: (a) aproximacgao de duas
fronteiras dentro de uma mesma vizinhancga energética; (b) intersecao e divisdo automdtica; (c) inicio da
evolucdo independente dos contornos recém-divididos; (d) estabilizagc@o local sobre as respectivas
fronteiras de interesse.

©) (d)

Fonte: Elaborado pelo autor.

atinja o equilibrio, momento em que as forcas resultantes se anulam e o contorno cessa sua
movimentacdo. Esse fendmeno € visualmente indicado pelo desaparecimento dos vetores (setas),
mostrando que cada fronteira se ajusta autonomamente a sua regiao de interesse.

Além disso, cada contorno estabiliza-se em momentos distintos, caracterizando o
comportamento de parada independente. Como observado na Figura 37.d, determinadas regides

atingem o equilibrio energético mais rapidamente, enquanto outras continuam ajustando-se
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até alcancar sua configuracdo final. Esse mecanismo confirma que o SEMAC nao depende de
sincronizagdo global entre os contornos, permitindo que cada um evolua e se estabilize de acordo
com sua propria condi¢ao energética local.

O equilibrio entre as forgas internas e externas € alcancado de forma automatica e
adaptativa, garantindo estabilidade numérica e coeréncia geométrica mesmo em regides de alta
densidade estrutural. Essa capacidade de autorregulacdo geométrica constitui um dos diferenciais
mais relevantes da proposta, demonstrando que o SEMAC € capaz de preservar simultaneamente
a independéncia evolutiva e a coeréncia espacial das multiplas fronteiras segmentadas.

A Figura 38 ilustra ainda a capacidade do SEMAC de distinguir e segmentar correta-
mente objetos espacialmente proximos, mesmo sob forte interferéncia de vizinhanga. Observa-se
que, a medida que os contornos evoluem, as forcas adaptativas atuam de modo local e inde-
pendente, impedindo a fusdo entre fronteiras adjacentes e mantendo a delimitacdo precisa das
células, inclusive em regides de contato ou de pequeno espacamento entre membranas. Esse
comportamento demonstra a estabilidade do modelo diante de regides densamente povoadas e
reforca sua habilidade em preservar a coeréncia geométrica de cada instancia, mesmo quando

multiplos objetos coexistem em um mesmo dominio energético.

4.3.4 Validagcao do Campo de Evidéncia e da Proposta Multirregional

Os resultados experimentais apresentados nas subsecdes anteriores validam a for-
mulacdo energética proposta pelo SEMAC, comprovando a coeréncia entre seus componentes
conceituais € o comportamento observado durante a evolugdo dos contornos. A combinagdo
entre o campo de evidéncia, o modelo fisico baseado em contornos ativos paramétricos e a
l6gica de divisao topoldgica adaptativa resultou em um processo evolutivo estivel, coerente e
morfologicamente consistente.

A energia externa aprendida demonstrou desempenhar papel determinante na orien-
tacdo das forcas de atracao, refor¢ando a capacidade do método em lidar com regides de baixo
contraste e ruido, sem comprometer a defini¢ao das fronteiras. Essa evidéncia confirma que o
aprendizado supervisionado contribui para tornar o campo energético mais informativo, atuando
como um guia semantico que complementa as propriedades fisicas do modelo.

Entretanto, os resultados também evidenciam que o desempenho global do SEMAC
ndo depende exclusivamente do termo de energia externa, mas do equilibrio entre todas as forcas

que compodem sua formulacdo. A estrutura de multiplos contornos adaptativos, associada a légica
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Figura 38 —Evolu¢do multirregido em imagem microscopica de sangue, ilustrando a atuacio dos vetores
de forca adaptativos apds a divisdo topoldgica. O SEMAC conduz a contrag@o e a estabilizagdo dos
contornos de forma autdénoma, mantendo separacdo estavel entre fronteiras adjacentes. As colunas a
direita mostram ampliagdes das areas destacadas, evidenciando a orientagéo local das forgas e sua
redugdo progressiva até o equilibrio final.
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Fonte: Elaborado pelo autor.
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de divisdo automatica e a estabiliza¢ao independente, mostrou-se essencial para garantir que a
evolucdo ocorra de forma coordenada e sem interferéncia entre regides adjacentes. Essa sinergia
entre aprendizado, fisica e topologia caracteriza a principal contribui¢io da proposta.

De modo geral, a anélise dos resultados confirma que o SEMAC alcancga segmenta-
cOes multirregionais estaveis e coerentes sem necessidade de multiplas inicializa¢des ou ajustes
manuais. A integracdo entre campo de evidéncia, dindamica MCA e controle adaptativo de energia
produz um modelo capaz de generalizar seu comportamento em diferentes contextos visuais,

mantendo a coeréncia geométrica e a consisténcia semantica das fronteiras segmentadas.
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5 CONCLUSOES E TRABALHOS FUTUROS

Este trabalho apresentou o SEmantic Multi-Region Active Contour (SEMAC), um
método de segmentacido que combina uma formulag@o de energia externa aprendida, responsavel
por orientar a evolugdo semantica dos contornos, com um mecanismo dindmico de divisdo e
estabiliza¢do autbnoma, que permite a formagao e evolucdo de multiplos contornos em paralelo.
A proposta integra a modelagem fisica dos contornos ativos com o aprendizado supervisionado
de campos de evidéncia semantica, resultando em segmentacdes multirregionais com elevada
coeréncia geométrica e consisténcia morfoldgica, mesmo em cendrios complexos e sob condi¢des
adversas de ruido e baixo contraste.

A formulagdo proposta demonstrou que a fusdo entre o campo de evidéncia semantico
e a dinamica dos contornos ativos gera um processo de segmentacdo simultaneamente fisico e
interpretavel. O campo de evidéncia atua como energia externa semantica, traduzindo padrdes
visuais complexos em forgas direcionais que guiam o contorno em dire¢do as fronteiras de
interesse. Em paralelo, a modelagem pardmetrica assegura suavidade, continuidade e coeréncia
topoldgica, prevenindo oscilagdes e colapsos que frequentemente comprometem abordagens
puramente supervisionadas. Essa integracdo entre aprendizado semantico e modelagem de
contornos redefine a segmentacdo multirregional como um processo dindmico, adaptativo e
explicdvel, no qual o comportamento geométrico emerge naturalmente do equilibrio entre as
forgas internas e externas do sistema.

Os experimentos confirmaram a robustez, estabilidade e interpretabilidade do mo-
delo em diferentes contextos. Em imagens sintéticas, 0 SEMAC apresentou comportamento
controlado e previsivel, respondendo de forma coerente a ruidos, irregularidades e perturbacdes
geométricas. Nas imagens clinicas, obteve resultados expressivos em dermatoscopia e citologia
sanguinea, mantendo a fidelidade das fronteiras mesmo em regides de baixo contraste ou de
conectividade estrutural complexa. Os mapas de evolu¢do e campos vetoriais evidenciaram a
coeréncia energética da proposta: as forcas adaptativas concentraram-se progressivamente nas
regides de fronteira até desaparecerem, marcando o instante de equilibrio e estabilizacdo dos
contornos. Essa caracteristica de autorregulacio, observada pelo desaparecimento das setas nas
iteracdes finais, confirma que o método atinge o equilibrio fisico-energético previsto em sua
formulagdo.

Outro aspecto de destaque € a autonomia do processo evolutivo. O método é

capaz de iniciar com um tunico contorno, que se propaga e se divide naturalmente conforme
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a distribuicdo energética, gerando novos contornos que evoluem e estabilizam-se de forma
independente. Essa logica de divisao topoldgica e estabilizacdo autdnoma elimina a necessidade
de multiplas inicializa¢des, permitindo lidar com estruturas complexas e interconectadas sem
perda de coeréncia geométrica. O resultado € uma segmentagdo multirregional fluida, continua e
morfologicamente consistente, na qual cada fronteira se ajusta de modo inteligente a estrutura
real da imagem.

O SEMAC consolida, assim, uma abordagem integrada entre aprendizado supervisi-
onado e modelagem parametrica do ACM, demonstrando que € possivel incorporar informacgao
semantica em modelos variacionais sem comprometer a interpretabilidade ou a estabilidade
numérica. A energia externa, tradicionalmente dependente apenas de gradientes fotométricos,
passa a ser representada por um campo semantico, capaz de generalizar entre diferentes dominios
e de se adaptar as caracteristicas particulares de cada imagem. Essa formulagdo resultou em
um método leve, explicavel e robusto, que combina o raciocinio fisico da evolu¢do de contor-
nos com a flexibilidade do aprendizado supervisionado, oferecendo uma alternativa sélida as
segmentagdes puramente estatisticas ou empiricas.

Apesar dos resultados promissores, 0 SEMAC ainda apresenta limitacdes inerentes
a sua formulagdo continua e natureza iterativa. Em situagdes nas quais dois ou mais objetos
distintos encontram-se estruturalmente conectados por pequenas pontes ou regides de contato, o
modelo tende a interpretd-los como uma tnica estrutura continua, nao realizando a separacao
explicita entre as instancias. Essa limitacdo decorre da prépria coeréncia topolégica imposta pelo
campo de energia, que privilegia a regularidade geométrica e a preservacao da conectividade local
em detrimento da fragmentagdo entre regidoes adjacentes. Além disso, o custo computacional
tende a crescer com o nimero de regides e a resolugcdo das imagens, sugerindo a necessidade
de versodes paralelas e implementacdes otimizadas para execu¢do em GPU. Esses aspectos,
contudo, ndo comprometem a consisténcia dos resultados, mas indicam caminhos naturais para o
aprimoramento futuro do modelo.

De modo geral, o SEMAC apresentou desempenho consistente, comportamento
previsivel e alta coeréncia estrutural em distintos contextos de segmentacdo. Sua formulacdo
continua e semantico-geométrica constitui uma alternativa eficaz e interpretavel para problemas
multirregionais em imagens naturais e biomédicas, refor¢cando a importancia de modelos que
unem aprendizado supervisionado e dindmica fisica como uma direcdo promissora para a

segmentacdo baseada em energia.
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5.1 Trabalhos Futuros

As contribui¢cdes apresentadas neste trabalho abrem diferentes perspectivas de conti-
nuidade e aprimoramento do SEMAC. Entre as dire¢cdes mais promissoras, destacam-se:

— Extensao tridimensional: desenvolvimento de uma versao 3D do SEMAC, incorporando
campos de evidéncia volumétricos e superficies ativas multirregionais, com o objetivo de
ampliar sua aplicabilidade em imagens médicas tomogréficas e microgréficas;

— Generalizacdo para novos dominios: avaliagdo do método em contextos industriais, ambi-
entais e veterindrios, a fim de investigar sua capacidade de adaptacdo a diferentes padroes
de textura, contraste e ruido, bem como sua robustez frente a condi¢des de aquisi¢do
heterogéneas;

— Aprimoramento do controle evolutivo: implementagdo de estratégias de ponderagdo adap-
tativa entre as forgas internas e externas, com base em propriedades locais da imagem e no
estado energético do contorno, permitindo maior autonomia e estabilidade na evolugao;

Essas direcdes representam oportunidades tanto conceituais quanto tecnoldgicas,
capazes de expandir o escopo de aplicacdo do SEMAC e consolidar sua contribui¢do no avango

da segmentacdo semantica explicavel e multirregional.
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