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RESUMO

A segmentação de imagens é essencial na análise e interpretação visual, sobretudo em aplicações

que exigem precisão geométrica e robustez diante da variabilidade de forma, textura, contraste e

artefatos. Este trabalho propõe o SEmantic Multi-Region Active Contour (SEMAC), um método

de segmentação baseado em contornos ativos, cuja formulação multicontorno permite obter

múltiplas regiões a partir de um único contorno inicial. Essa estrutura faz com que o contorno se

divida e se adapte dinamicamente quando o campo energético identifica múltiplos núcleos ou

regiões de interesse, resultando em uma segmentação multirregional consistente. O modelo deriva

da formulação clássica dos Active Contour Model (ACM), mas redefine sua energia externa com

base em um campo de evidência semântica, responsável por orientar a evolução adaptativa dos

contornos em um domínio energético contínuo. Essa energia supervisionada substitui o gradiente

fotométrico tradicional, sintetizando contrastes e padrões estruturais em múltiplas escalas e

assegurando estabilidade numérica mesmo em cenários complexos. O campo de evidência

é obtida a partir de pares de imagem-referência, que fornecem ao modelo um mapeamento

contínuo refletindo a distribuição espacial de evidências semânticas, tornando-o mais informativo

e robusto a diversas variações. A avaliação experimental abrangeu três conjuntos de dados:

um sintético, voltado à análise sob variações de forma, ruído e densidade; e dois clínicos,

com imagens dermatoscópicas de lesões cutâneas e microscópicas de células sanguíneas. As

métricas de desempenho (Acurácia, Precisão, Sensibilidade, Especificidade, Intersection over

Union (IoU), Dice Similarity Coefficient (Dice) e Matthews Correlation Coefficient (MCC))

foram complementadas por análises qualitativas de regularidade e estabilidade morfológica. Os

resultados demonstram que o SEMAC alcança desempenho competitivo em relação a métodos

clássicos e supervisionados de referência, mantendo consistência e eficiência computacional. O

modelo consolida uma abordagem contínua e multirregional inspirada na dinâmica de múltiplos

contornos ativos, integrando aprendizado semântico e evolução geométrica em uma estrutura

interpretável e estável, adequada à segmentação de imagens complexas.

Palavras-chave: contornos ativos; campo de evidência; segmentação multirregiões; lesões de

pele; células sanguíneas.



ABSTRACT

Image segmentation is essential for visual analysis and interpretation, especially in applications

that require geometric precision and robustness against variability in shape, texture, contrast,

and artifacts. This work proposes the SEMAC, a segmentation method based on active contours

whose multi-contour formulation enables the extraction of multiple coherent regions from a

single initial contour. This structure allows the contour to divide and adapt dynamically when the

energy field identifies multiple nuclei or regions of interest, resulting in consistent multiregional

segmentation. The model derives from the classical ACM formulation but redefines its external

energy based on a semantic evidence field, which guides the adaptive evolution of contours

within a continuous energy domain. This supervised energy replaces the traditional photometric

gradient, synthesizing contrasts and structural patterns at multiple scales and ensuring numerical

stability even in complex scenarios. The evidence field is obtained from reference image pairs,

providing the model with a continuous mapping that reflects the spatial distribution of semantic

evidence, making it more informative and robust to photometric variations. The experimental

evaluation encompassed three datasets: a synthetic one, aimed at analyzing variations in shape,

noise, and density; and two clinical ones, comprising dermatoscopic images of skin lesions

and microscopic images of blood cells. The performance metrics (Accuracy, Precision, Sensiti-

vity, Specificity, Intersection over Union (IoU), Dice Similarity Coefficient (Dice) e Matthews

Correlation Coefficient (MCC)) were complemented by qualitative analyses of regularity and

morphological stability. The results demonstrate that the SEMAC achieves competitive per-

formance compared to classical and state-of-the-art supervised methods, while maintaining

consistency and computational efficiency. The model establishes a continuous and multiregional

approach inspired by the dynamics of multiple active contours, integrating semantic learning and

geometric evolution within an interpretable and stable framework suitable for the segmentation

of complex images.

Palavras-chave: active contours; semantic evidence field; multi-region segmentation; skin

lesions; blood cells.
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1 INTRODUÇÃO

O avanço da Inteligência Artificial (IA) e da Visão Computacional (VC) tem rede-

finido a forma como dados visuais são analisados. Essas tecnologias possibilitam a extração

de informações estruturadas, isto é, representações quantitativas e semanticamente organizadas

de elementos visuais, como formas, texturas, bordas e padrões espaciais, a partir de contextos

visuais cada vez mais complexas. No campo da saúde, em particular, elas auxiliam especialistas

na tomada de decisões mais rápidas e assertivas (Obuchowicz et al., 2025), contribuindo para

aumentar a precisão diagnóstica, otimizar protocolos terapêuticos e oferecer novas ferramentas

de apoio clínico (Rong; Liu, 2024). Nesse cenário, a comunidade científica tem direcionado

esforços permanentes para o aprimoramento de algoritmos de análise de imagem em diferentes

domínios, com o objetivo de torná-los mais robustos, acessíveis e eficientes (Pinto-Coelho,

2023).

Entre as aplicações relevantes estão os sistemas de Computer-Aided Diagnosis

(CAD), ou Diagnóstico Auxiliado por Computador, que integram técnicas de Processamento

Digital de Imagens (PDI) e IA para auxiliar especialistas na interpretação de exames. Esses siste-

mas seguem um fluxo que inclui aquisição, pré-processamento, segmentação, pós-processamento,

extração de atributos e classificação de padrões (Gonzalez; Woods, 2018).

A segmentação de imagens consiste em isolar os objetos de interesse, sejam eles

células, lesões cutâneas, estruturas anatômicas ou outros padrões visuais específicos ao domínio

analisado, permitindo que os algoritmos concentrem suas análises nas regiões mais relevantes

(Pham et al., 2000; Mittal et al., 2022; Yu et al., 2023). Uma segmentação bem executada tende

a reduzir a complexidade computacional, aprimorar a extração de características e aumentar a

confiabilidade das métricas derivadas, sobretudo quando aplicada a sistemas de análise automati-

zada. Apesar dos avanços recentes, a delimitação precisa das fronteiras ainda é comprometida

por variações de contraste, ruídos e artefatos, bem como pela alta diversidade morfológica dos

objetos, o que mantém a segmentação de imagens complexas como um dos desafios centrais da

área.

As abordagens clássicas, como a limiarização e a Crescimento de Regiões (CR),

baseiam-se em propriedades de intensidade e conectividade dos pixels. Esses métodos apresentam

desempenho satisfatório em condições controladas, mas tendem a falhar em contextos com

iluminação não uniforme, presença de ruído ou fronteiras de baixo contraste, nas quais a

distinção entre regiões torna-se ambígua. Em resposta a essas limitações, surgiram os ACM,
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que formulam a segmentação como um problema de minimização de energia (Caselles et al.,

1997; Vasconcelos et al., 2018). Dentro dessa família, as abordagens variacionais se destacam

por estabelecer um modelo matemático rigoroso, em que o contorno evolui para um estado de

equilíbrio energético, conduzido por forças internas que impõem suavidade e externas que o

atraem para as fronteiras da imagem. Mesmo com o avanço de modelos como o de Chan–Vese

(Chan; Vese, 2001), que ampliou a robustez a gradientes locais e ruídos, a eficácia dessas técnicas

ainda depende fortemente da condição inicial e das propriedades fotométricas da imagem.

O advento do Deep Learning (DL), ou Aprendizagem Profunda, introduziu um novo

paradigma para a análise de imagens, permitindo que as Convolutional Neural Networks (CNNs),

ou Redes Neurais Convolucionais, aprendessem representações hierárquicas e discriminativas

diretamente a partir dos dados. Arquiteturas como a U-Net e suas derivações consolidaram-se

como referência em tarefas de segmentação, sobretudo no contexto biomédico (Ronneberger et

al., 2015; Wu et al., 2022). Apesar de seu desempenho expressivo, esses modelos ainda enfrentam

limitações conhecidas, como a exigência de grandes volumes de dados anotados, a sensibilidade

a variações morfológicas e a perda de coerência geométrica em estruturas complexas, o que tem

impulsionado o desenvolvimento de abordagens híbridas que conciliem aprendizado semântico e

regularização geométrica.

A combinação entre método clássicos e Rede Neural Profunda (DNN) tem sido

investigada como uma estratégia promissora para explorar propriedades complementares de

ambas as abordagens. Esses métodos híbridos buscam integrar a estabilidade geométrica e o

controle de forma característicos dos clássicos com a capacidade de abstração e generalização

das redes profundas (Lei et al., 2018; Okur et al., 2023). De modo geral, essa linha de pesquisa

procura conciliar a interpretabilidade e o rigor matemático dos modelos variacionais com a

flexibilidade e o poder de representação do aprendizado profundo, avançando em direção a

soluções mais robustas e semanticamente consistentes para a segmentação de imagens.

É nesse contexto que este trabalho propõe o método SEmantic Multi-Region Active

Contour (SEMAC), um modelo que integra representações aprendidas à formulação variacional

dos contornos ativos, estendendo-a para um cenário de múltiplos contornos interdependentes

voltado à segmentação de múltiplas regiões. O método sintetiza contrastes, formas e relações

morfológicas em um campo de evidência contínuo que orienta a evolução das curvas. A

segmentação é formulada em duas etapas complementares: (i) a definição supervisionada de uma

nova forma de energia externa, representada por um campo de evidência semântica que guia o
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processo evolutivo, e (ii) a evolução contrátil multirregional de contornos paramétricos, regulada

por coerência geométrica e conduzida até o equilíbrio energético. Essa integração permite

que as curvas evoluam de modo adaptativo em direção às fronteiras de interesse, preservando

continuidade morfológica e permitindo a separação natural de múltiplas regiões coerentes em

um único processo.

O SEMAC unifica coerência geométrica e consistência semântica em um único

método, no qual um contorno inicial contrai de forma contínua e, por meio de ramificações

controladas, se divide para abranger múltiplas regiões de interesse. Essa formulação preserva as

relações espaciais entre regiões adjacentes e mantém a continuidade das fronteiras, mesmo em

contextos de alta complexidade visual. O SEMAC é avaliado em três contextos experimentais,

envolvendo conjuntos de dados sintéticos, dermatoscópicos e citológicos, com análises quantita-

tivas e qualitativas baseadas em métricas consolidadas de segmentação, verificando sua robustez,

capacidade de generalização e coerência geométrica.

1.1 Motivação

A precisão na segmentação de estruturas visuais constitui um requisito essencial

em aplicações biomédicas, uma vez que pequenas imprecisões podem comprometer etapas

subsequentes de análise quantitativa, diagnóstico assistido ou controle de qualidade. No domínio

clínico, o melanoma cutâneo constitui um dos maiores desafios da oncologia moderna (Boyle et

al., 2004). Embora represente uma fração menor entre os cânceres de pele, é responsável pela

maioria dos óbitos, totalizando mais de 55 mil mortes anuais em todo o mundo (Schadendorf et al.,

2018). A detecção precoce é fundamental para o sucesso terapêutico, mas a ampla variabilidade

morfológica das lesões (em forma, textura e coloração) torna o diagnóstico dependente da

experiência do especialista. Nesse contexto, a segmentação automática de lesões cutâneas

surge como uma ferramenta essencial para padronizar a análise e reduzir a subjetividade clínica,

permitindo extrair medidas quantitativas reprodutíveis associadas à progressão das lesões.

De forma análoga, a análise de imagens microscópicas ocupa posição de destaque

em diversas áreas da saúde e da biotecnologia, sendo amplamente utilizada no diagnóstico de

patologias e no desenvolvimento farmacêutico. O isolamento preciso de núcleos celulares é

indispensável para tarefas como contagem, classificação e extração de biomarcadores, uma

vez que suas propriedades morfológicas refletem o estado fisiológico e patológico dos tecidos

(Singha; Bhowmik, 2022). Entretanto, a automação robusta desse processo ainda enfrenta
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barreiras significativas, como heterogeneidade de coloração, sobreposição de estruturas e ruído

de aquisição (Narotamo et al., 2019), fatores que comprometem a definição das fronteiras e

dificultam a padronização das análises.

Esses cenários biomédicos exemplificam contextos visuais que compartilham desa-

fios estruturais, como elevada variabilidade morfológica, presença de artefatos de imagem e a

necessidade de preservar a coerência geométrica entre regiões adjacentes. Tais limitações eviden-

ciam que ainda são restritas as abordagens capazes de integrar, de forma efetiva, a interpretação

semântica aprendida com a estabilidade geométrica dos modelos variacionais. É nesse contexto

que se insere o presente trabalho, ao propor o método SEmantic Multi-Region Active Contour

(SEMAC), que combina o aprendizado supervisionado de campos de evidência com a evolução

contrátil de multiplos contornos ativos, possibilitando a segmentação simultânea de múltiplas

regiões de interesse em diferentes tipos de imagem.

1.2 Estado da Arte

Ao longo das últimas décadas, a segmentação de imagens tem sido abordada sob dife-

rentes perspectivas metodológicas, acompanhando a evolução dos paradigmas de processamento

e análise visual, impulsionada pelo aumento do poder computacional, pela ampla disponibilidade

de conjuntos de dados e pelas novas demandas de precisão impostas por aplicações emergentes.

Inicialmente, predominavam técnicas clássicas de PDI, como limiarização, detecção de bordas

e morfologia matemática (Gonzalez; Woods, 2018; Serra, 1982; Canny, 1986; Otsu, 1979),

baseadas em propriedades locais de intensidade e conectividade dos pixels. Essas abordagens,

embora eficientes em contextos controlados e de baixa variabilidade, têm apresentado desem-

penho limitado em cenários mais complexos, nos quais fatores como iluminação heterogênea,

texturas irregulares e sobreposição de objetos desafiam sua capacidade de generalização.

A busca por métodos mais adaptativos levou ao surgimento dos modelos baseados em

energia, como os ACM, introduzidos por Kass et al. (1988). Nesses modelos, o contorno de um

objeto é representado como uma curva elástica sujeita a forças internas e externas que controlam,

respectivamente, a suavidade da forma e a atração às bordas da imagem. Essa formulação

introduziu uma abordagem dinâmica para a segmentação, em que o equilíbrio entre regularização

geométrica e aderência às fronteiras passou a ser ajustado continuamente durante a evolução do

contorno. Posteriormente, o modelo Geodesic Active Contour (GAC), proposto por Caselles

et al. (1997), aprimorou a detecção de fronteiras de baixo gradiente ao incorporar a distância
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geodésica no espaço de gradientes. Já o modelo Chan–Vese (Chan; Vese, 2001) ampliou essa

formulação ao substituir a dependência direta de gradientes por critérios de homogeneidade de

intensidade, tornando a segmentação mais robusta em regiões com baixo contraste ou transições

suaves.

A evolução dos modelos variacionais deu origem a formulações mais flexíveis, como

o Fast Morphological Geodesic Active Contour (FGAC) (Vasconcelos et al., 2018) e o FLog

Parzen Level Set (FPLS) (Rebouças et al., 2021), que apresentaram resultados expressivos em

imagens dermatoscópicas (Mendonça et al., 2015). Esses métodos incorporaram operações

morfológicas e estimativas de densidade para lidar de forma mais robusta com variações de

textura, iluminação e contornos irregulares, mantendo alto poder descritivo e interpretabilidade.

Ainda assim, sua eficácia está condicionada à escolha e ao ajuste das funções de energia que

regem o processo de evolução, as quais nem sempre conseguem representar adequadamente

a diversidade estrutural presente nas imagens. Essa limitação direciona a pesquisa para a

formulação de modelos que integrem informações semânticas aprendidas ao processo variacional,

buscando maior adaptabilidade e consistência em cenários visuais complexos.

Paralelamente, outra vertente metodológica ganhou destaque na ciência contemporâ-

nea com o avanço do DL, que ampliou significativamente as possibilidades da segmentação de

imagens ao permitir que redes convolucionais aprendessem representações hierárquicas direta-

mente dos dados. Arquiteturas derivadas da U-Net consolidaram o aprendizado supervisionado

como padrão de referência, alcançando resultados notáveis em diferentes domínios visuais.

Entretanto, mesmo com sua expressividade, essas redes tendem a perder coerência geométrica

em estruturas de forma irregular e dependem fortemente de grandes volumes de dados anotados.

Essas limitações reforçam a relevância de abordagens que integrem aprendizado semântico e

regularização geométrica, princípio que fundamenta o método proposto neste trabalho.

Em dermatoscopia, modelos recentes como a GFANet (Qiu et al., 2023), FAT-

Net (Wu et al., 2022), ADF-Net (Huang et al., 2024) e ASP-VMUNet (Bao et al., 2025) obtiveram

resultados expressivos nos conjuntos de dados de lesões cutâneas ISIC e PH2, ao integrarem

estratégias avançadas de atenção e aprendizado multiescala. A GFANet utiliza decodificadores

progressivos para refinar as fronteiras das lesões, enquanto a FAT-Net combina convoluções e

transformadores para capturar simultaneamente detalhes locais e contexto global. O ADF-Net

emprega um duplo codificador (CNNs e Transformer) com atenção focal, buscando equilibrar a

representação semântica e o contraste interno das lesões. Por sua vez, a ASP-VMUNet aprimora
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a análise multiescala por meio de convoluções atrous paralelas e deslocamentos de amostragem,

ampliando a sensibilidade a variações de forma e textura.

Essas arquiteturas representam avanços relevantes no refinamento das fronteiras e na

integração de informações multiescala. Contudo, os próprios autores destacam que, apesar do

uso de mecanismos de atenção reversa e transformadores visuais, essas redes ainda enfrentam

dificuldades em manter coerência geométrica e consistência estrutural em contextos reais. Si-

tuações com baixo contraste, ruído de fundo ou alta variabilidade morfológica frequentemente

resultam em fusões indevidas, deformações de fronteiras ou perda de estabilidade entre regiões

adjacentes.

Qiu et al. (Qiu et al., 2023) relatam que a GFANet tende a perder consistência global

quando aplicada a bases com distribuições distintas. Wu et al. (Wu et al., 2022) observam que a

FAT-Net apresenta falhas na diferenciação de fronteiras sob baixo contraste. Huang et al. (Huang

et al., 2024) apontam que o ADF-Net permanece sensível a ruídos e inconsistências na fusão

entre características locais e globais. De forma semelhante, Bao et al. (Bao et al., 2025) destacam

que a ASP-VMUNet reduz a precisão em imagens com variação cromática acentuada e aumenta

a complexidade computacional conforme cresce o número de filtros atrous.

Essas constatações indicam que, embora as arquiteturas profundas tenham ampliado

a capacidade de representação semântica, elas ainda carecem de mecanismos que assegurem

estabilidade geométrica e coerência morfológica nas fronteiras segmentadas. Essa limitação im-

pacta diretamente a integridade das regiões delimitadas e a confiabilidade das medidas extraídas,

especialmente em aplicações médicas e biomédicas que exigem precisão e reprodutibilidade.

De modo análogo, na segmentação de células sanguíneas, os desafios tornam-se

ainda mais complexos devido às características intrínsecas das imagens microscópicas, como

a sobreposição de estruturas, a coloração heterogênea e o baixo contraste entre as bordas

celulares e o fundo. Diversas variantes da U-Net foram avaliadas nesse contexto, incluindo a

U-Net++ (Zhou et al., 2018), R2U-Net (Alom et al., 2018), Attention U-Net (Oktay et al., 2018)

e FCN (Long et al., 2015). Embora apresentem bom desempenho global, análises qualitativas

revelam limitações persistentes, como a fusão de estruturas adjacentes, a perda de definição

em bordas de baixo contraste e a supersegmentação em regiões densamente coradas. Esses

comportamentos refletem uma limitação recorrente das arquiteturas puramente convolucionais,

cuja ausência de mecanismos explícitos de controle geométrico faz com que o processo de

segmentação dependa apenas da resposta local dos filtros convolucionais, resultando em fronteiras
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instáveis e contornos morfologicamente inconsistentes.

Essas limitações evidenciam a necessidade de métodos capazes de integrar repre-

sentação aprendida e coerência geométrica, preservando a consistência semântica ao longo da

segmentação. Nos últimos anos, algumas abordagens híbridas começaram a explorar a combina-

ção entre aprendizado profundo e formulações energéticas, mas ainda de forma restrita e voltada

a casos específicos. Persistem desafios conceituais e práticos relacionados à integração efetiva

entre a dinâmica física dos contornos ativos e os campos de evidência, sobretudo em cenários

multirregionais com elevada variabilidade morfológica e interdependência entre estruturas.

O estado da arte atual revela, portanto, uma dupla lacuna: a ausência de uma formu-

lação que una de maneira consistente os princípios geométricos e semânticos da segmentação, e a

carência de métodos capazes de lidar, de forma estável, com a evolução simultânea de múltiplas

regiões em um mesmo domínio energético. Motivado por esse cenário, o presente trabalho

propõe o método SEmantic Multi-Region Active Contour (SEMAC), que integra campos de

evidência semântica à modelagem física dos contornos ativos, estabelecendo um elo conceitual

entre os domínios geométrico e semântico da segmentação. Essa formulação híbrida busca unir a

estabilidade e interpretabilidade dos modelos variacionais à adaptabilidade e expressividade das

redes profundas, permitindo segmentações contínuas, coerentes e morfologicamente consistentes

em contextos de alta complexidade visual e múltiplas regiões de interesse.

1.3 Objetivos

Os objetivos deste trabalho estão organizados em um objetivo geral e um conjunto

de objetivos específicos que orientam o desenvolvimento, a validação e a análise do método

proposto. O objetivo geral define a meta central da pesquisa, enquanto os objetivos específicos

descrevem as etapas metodológicas para sua realização.

1.3.1 Objetivo Geral

Desenvolver o método SEmantic Multi-Region Active Contour (SEMAC), um mé-

todo de segmentação que integra campos de evidência semântica à formulação variacional dos

contornos ativos paramétricos. O método propõe uma reformulação da energia externa dos

contornos ativos, representada por um campo de evidência, e uma dinâmica de evolução mul-

ticontorno capaz de gerar segmentações multirregião a partir de um único contorno inicial. A
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abordagem busca assegurar coerência geométrica, consistência semântica e estabilidade evolu-

tiva, permitindo que cada contorno se divida, evolua e estabilize de forma independente conforme

a estrutura da imagem.

1.3.2 Objetivos Específicos

Para alcançar o objetivo geral, propõem-se os seguintes objetivos específicos:

– Projetar e implementar o SEMAC, combinando aprendizado supervisionado de campos de

evidência com a modelagem física e variacional dos contornos ativos paramétricos;

– Formular uma energia externa aprendida para o modelo de contornos ativos para multir-

regiões, definida a partir de um campo de evidência semântica supervisionado, capaz de

orientar a contração dos contornos em regiões com alta variabilidade de contraste, textura

e forma;

– Propor um mecanismo de evolução multicontorno no qual um único contorno inicial evolui

adaptativamente sobre o campo energético e, à medida que novas regiões de evidência são

identificadas, divide-se em contornos secundários que passam a evoluir e estabilizar-se de

forma independente, resultando em uma segmentação multirregião sem necessidade de

múltiplas inicializações;

– Definir critérios de parada individuais e adaptativos para cada contorno, assegurando

estabilização independente mesmo em regiões de limites difusos ou baixa separabilidade;

– Analisar o comportamento evolutivo do modelo sob diferentes condições experimentais,

verificando sua robustez frente a ruído, baixo contraste e variações morfológicas;

– Avaliar a coerência geométrica e a consistência semântica das segmentações realizadas

pelo SEMAC obtidas em imagens clínicas de lesões cutâneas e células sanguíneas;

– Comparar o desempenho do SEMAC com métodos clássicos e abordagens supervisionadas,

em contextos dermatoscópico e microscópico, por meio de métricas quantitativas e análises

qualitativas das fronteiras segmentadas;

1.4 Produção Científica

Durante o período de realização deste doutorado, foram desenvolvidos os seguintes

artigos científicos:

1. Journal of Real-Time Image Processing - A new approach for the detection of pneumonia
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in children using CXR images based on an real-time IoT system - Qualis A2 (ENG. IV);

2. Conference on Graphics, Patterns and Images - Sistema de Detecção e Classificação de

Resíduos Sólidos com Computação em Borda Usando Deep Learning; - Qualis A3 (CC);

3. Conference on Graphics, Patterns and Images – Avaliação de OCR Embarcado para

Dispositivos Móveis: Desempenho, Privacidade e Usabilidade - Qualis A3 (CC);

4. Measurement - Automated Flow for Vickers Hardness Measurement with Deep Learning

Techniques - Qualis A1 (ENG. IV) - (Submetido).

5. Sensors - Semantic Multi-Region Active Contour (SEMAC): A Semantic-Geometric Appro-

ach for Multi-Region Segmentation - Qualis A1 (ENG. IV) - (Submetido).

1.5 Organização da Tese

Esta tese está estruturada de forma a apresentar, de maneira gradual e integrada,

os fundamentos conceituais, o desenvolvimento metodológico e a validação experimental do

método proposto. A organização segue uma progressão lógica, conduzindo o leitor desde os

aspectos introdutórios e motivacionais até a consolidação dos resultados e conclusões finais.

O Capítulo 1 introduz o tema, contextualizando o problema da segmentação de

imagens e destacando sua relevância científica e aplicada. São discutidas as limitações das

abordagens clássicas, as lacunas existentes na literatura e as oportunidades de avanço que

motivaram o desenvolvimento do presente trabalho. Além disso, são apresentados os objetivos

gerais e específicos, bem como a produção científica realizada durante o período do doutorado.

O Capítulo 2 reúne a base teórica necessária à compreensão do estudo, abordando

os principais conceitos e técnicas de segmentação de imagens, desde os métodos baseados

em limiarização e contornos até os métodos contemporâneos fundamentados em aprendizado

profundo. São detalhados os princípios dos modelos de contornos ativos, suas formulações

energéticas e variações, além das abordagens de redes neurais convolucionais e arquiteturas

encoder-decoder.

O Capítulo 3 descreve minuciosamente a metodologia desenvolvida do SEmantic

Multi-Region Active Contour (SEMAC). São apresentadas a formulação matemática do modelo,

a definição das forças internas e externas, e o processo de construção dos campos de evidência

semântica. Também é detalhado o mecanismo de integração dessas evidências à dinâmica dos

contornos ativos, que permite a segmentação simultânea e adaptativa de múltiplas regiões de

interesse, mantendo coerência geométrica e consistência morfológica ao longo da evolução.
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O Capítulo 4 apresenta e discute os resultados experimentais obtidos em diferentes

conjuntos de dados, abrangendo tanto cenários sintéticos quanto clínicos. São realizadas análises

quantitativas e qualitativas do desempenho do método proposto em comparação com aborda-

gens de referência, considerando métricas consolidadas e avaliações visuais da estabilidade e

regularidade dos contornos. O capítulo também inclui uma análise geral e interpretativa sobre o

comportamento do SEMAC.

Por fim, o Capítulo 5 apresenta a síntese das conclusões, destacando as contribuições

teóricas e práticas alcançadas. São discutidas as implicações do método para o avanço da

segmentação de imagens biomédicas, bem como suas limitações atuais e as possíveis extensões

que poderão ampliar sua aplicabilidade e desempenho em cenários mais complexos.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os fundamentos necessários ao desenvolvimento do método

proposto. Inicialmente, descrevem-se os contextos clínicos de aplicação (lesões cutâneas e células

sanguíneas) e a motivação para segmentação automática. Em seguida, revisam-se os principais

métodos de segmentação, dos baseados em similaridade e descontinuidade aos modelos de

contornos ativos. Por fim, discutem-se conceitos de aprendizado profundo, com ênfase em

arquiteturas convolucionais e no papel de representações aprendidas para a segmentação.

2.1 Condições Médicas Abordadas

São apresentadas as condições médicas escolhidas como estudos de caso para aplica-

ção do método proposto. O objetivo é evidenciar seu uso em cenários reais e seu potencial para

apoiar o diagnóstico, por meio da segmentação automática de regiões de interesse a partir de

anotações de especialistas.

2.1.1 Lesões Cutâneas

O câncer de pele é uma das doenças malignas mais incidentes no mundo e se divide

em duas categorias principais: melanoma e não melanoma. Embora o melanoma represente uma

fração menor dos casos, é responsável pela maioria das mortes associadas à doença (Boyle et

al., 2004; Dildar et al., 2021). Ele tem origem na proliferação descontrolada dos melanócitos,

células produtoras de pigmento localizadas nas camadas média e superficial da epiderme. A

Figura 1 ilustra essa localização anatômica, destacando a região afetada pelo melanoma. As

taxas de incidência e mortalidade variam entre regiões geográficas, influenciadas por fatores

ambientais e genéticos, mas a detecção precoce permanece como o fator mais determinante para

o sucesso terapêutico e a sobrevida dos pacientes (Schadendorf et al., 2018).

A dermatoscopia é atualmente o principal exame clínico auxiliar para avaliação de

lesões pigmentadas. O método utiliza um dispositivo óptico iluminado que amplia a visualização

das estruturas internas da pele, permitindo identificar padrões morfológicos indicativos de

malignidade (Mendonça et al., 2015). O diagnóstico definitivo, entretanto, ainda depende da

análise histopatológica obtida por biópsia, procedimento invasivo que fornece a confirmação da

natureza da lesão.

A heterogeneidade das lesões cutâneas, marcada por variações de forma, textura,



28

Figura 1 – Representação esquemática do melanoma cutâneo.

Melanoma

Fonte: Adaptado de Rebouças et al. (2021).

coloração e contraste, torna o diagnóstico um desafio mesmo para especialistas experientes.

Essa variabilidade, associada à necessidade de avaliações rápidas e reprodutíveis, motivou o

desenvolvimento de técnicas computacionais capazes de apoiar a identificação e a delimitação

precisa das lesões em imagens dermatoscópicas (Dildar et al., 2021).

2.1.2 Células Sanguíneas

O exame de células sanguíneas é um procedimento de baixo custo e alta relevân-

cia clínica, amplamente utilizado na investigação e no acompanhamento de diversas doenças

(Nierhaus et al., 2013). A análise morfológica de hemácias, responsáveis pelo transporte de

oxigênio, leucócitos, que atuam na defesa imunológica, e plaquetas, essenciais à coagulação,

fornece informações valiosas sobre o estado geral do paciente e auxilia na detecção de distúrbios

como anemias, leucemias e infecções.

A microscopia óptica aplicada a esfregaços sanguíneos continua sendo o método

mais empregado para essa avaliação. O processo envolve a preparação de uma fina camada de

sangue em lâmina de vidro, corada com reagentes específicos, o que permite a observação e

caracterização das células sob o microscópio de luz. A Figura 2 apresenta de forma esquemática

as etapas desse procedimento, destacando como o método tradicional possibilita a visualização

detalhada das estruturas celulares.

Embora amplamente difundido, o método depende fortemente da experiência do

examinador, o que pode gerar variações interpretativas e inconsistências, especialmente em

contextos de alta demanda. Nesse cenário, a segmentação automática e precisa das células no
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Figura 2 – Ilustração esquemática da análise de uma amostra de sangue.

Fonte: Elaborado pelo autor.

campo microscópico torna-se uma etapa essencial para automatizar tarefas como contagem,

classificação e identificação de alterações morfológicas, impactando diretamente a acurácia

diagnóstica.

Apesar dos avanços em processamento de imagens e aprendizado profundo, a seg-

mentação automática de células sanguíneas ainda representa um desafio considerável. A di-

versidade morfológica das células, as frequentes sobreposições entre estruturas e as variações

decorrentes do preparo dos esfregaços aumentam a complexidade do problema. Além disso,

muitos estudos utilizam bases de dados restritas ou focadas em tipos celulares específicos, o que

limita a capacidade de generalização dos modelos propostos para cenários clínicos mais amplos.

2.2 Segmentação de Imagens

A segmentação de imagens é uma das etapas mais importantes em VC, pois constitui

a base para a análise e interpretação do conteúdo visual. Seu objetivo é dividir a imagem em

uma ou mais regiões de interesse, de modo que cada uma apresente homogeneidade segundo

um critério específico, como intensidade, textura ou forma, permitindo a análise individual de

cada componente. Essa etapa é essencial para a extração de atributos relevantes que servirão de

suporte às fases posteriores de reconhecimento, classificação e tomada de decisão. Em termos

práticos, segmentar uma imagem significa atribuir um rótulo a cada pixel com base em suas

propriedades locais e em sua relação com os vizinhos.

Segundo a abordagem clássica de Gonzalez e Woods (2018), as técnicas de seg-

mentação podem ser agrupadas em duas categorias principais, de acordo com as propriedades



30

analisadas nos pixels. A primeira categoria corresponde aos métodos baseados em similaridade,

que agrupam pixels com características semelhantes, formando regiões internamente homogêneas.

A segunda categoria abrange os métodos baseados em descontinuidade, que identificam variações

abruptas nos níveis de intensidade entre pixels adjacentes, sendo amplamente empregados na

detecção de limites de objetos, como nas técnicas de detecção de bordas e contornos.

2.2.1 Segmentação por Similaridade

A segmentação por similaridade fundamenta-se na hipótese de que os elementos

pertencentes a um mesmo objeto ou região compartilham propriedades visuais semelhantes,

como intensidade, cor ou textura. O objetivo é agrupar pixels que apresentem homogeneidade

segundo um critério predefinido, de forma a construir regiões internamente consistentes e

externamente distintas. Entre as abordagens clássicas dessa categoria destacam-se a limiarização

e o crescimento de regiões, ambas diretamente relacionadas à distribuição de intensidades dos

pixels e à conectividade espacial.

A limiarização consiste em estabelecer um ou mais valores de referência (limiares)

que separam a imagem em regiões distintas de acordo com o nível de intensidade. Essa técnica

é particularmente eficaz quando o histograma da imagem apresenta picos bem definidos, cor-

respondentes as regiões de interesse. No caso mais simples, em que apenas duas regiões são

consideradas, o processo é denominado binarização, formalmente expresso pela Equação (2.1),

em que L representa o limiar de decisão:

B(x,y) =

1, se I(x,y)> L,

0, caso contrário.
(2.1)

Quando múltiplos limiares são empregados, o processo é denominado multilimia-

rização, permitindo subdividir o domínio de intensidade da imagem em diferentes intervalos,

conforme ilustrado na Equação (2.2):

E(x,y) =


0, 0 ≤ I(x,y)< L1,

1, L1 ≤ I(x,y)< L2,

2, L2 ≤ I(x,y)≤ Lmax,

(2.2)
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em que E(x,y) representa a imagem rotulada, L1 e L2 são os limiares que definem os intervalos

de intensidade e Lmax é a intensidade máxima do domínio (por exemplo, 255 em imagens de

8 bits). Essa estratégia é especialmente útil em contextos com múltiplos objetos ou tecidos

que apresentam propriedades radiológicas distintas, permitindo associar faixas de intensidade a

classes específicas.

A limiarização pode ser classificada em três tipos: global, local e adaptativa. Na

limiarização global, um único limiar é aplicado a toda a imagem, assumindo iluminação ho-

mogênea. Na versão local, o limiar é calculado em pequenas janelas, ajustando-se a variações

regionais de brilho e contraste. Já a limiarização adaptativa emprega estatísticas locais (como

média, variância ou desvio padrão) para determinar dinamicamente o limiar em função das

condições de cada região. Entre os métodos clássicos, destaca-se o algoritmo de Otsu (Otsu,

1979), que seleciona automaticamente o limiar ótimo pela maximização da variância interclasses,

apresentando bom desempenho em imagens com histogramas bimodais.

Apesar de amplamente utilizada, a limiarização apresenta limitações notáveis em

imagens com iluminação desigual, ruído elevado ou objetos de tonalidade heterogênea. Pequenas

variações de intensidade podem causar fragmentação das regiões segmentadas ou fusão indevida

entre classes distintas, o que compromete a precisão estrutural da segmentação. Para contornar

essas limitações, técnicas baseadas em regiões e conectividade espacial foram introduzidas.

O método de CR constitui uma dessas alternativas, fundamentando-se na análise

local da vizinhança dos pixels. O processo inicia-se a partir de um ou mais pixels semente, sele-

cionados manual ou automaticamente, e expande-se iterativamente pela agregação de vizinhos

que satisfaçam um critério de homogeneidade, como a diferença absoluta de intensidade inferior

a um limiar δ , formalmente expressa por:

|I(xi,yi)− I(sx,sy)|< δ , (2.3)

em que (sx,sy) representa o pixel semente. A escolha das sementes e do critério de agregação é

determinante para a qualidade da segmentação, podendo resultar em sobresegmentação (divisão

excessiva de regiões) ou subsegmentação (fusão indevida de estruturas) se mal ajustadas. Em

imagens biomédicas, essas dificuldades são agravadas por fatores como ruído, variação de

coloração e sobreposição de tecidos.

Extensões desse paradigma incluem a transformada watershed, amplamente em-

pregada na segmentação de imagens médicas. O watershed interpreta a imagem como uma
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superfície topográfica, na qual as regiões homogêneas correspondem a bacias de drenagem. A

partir dos gradientes de intensidade, as fronteiras entre bacias definem as linhas de separação

dos objetos. Embora eficiente para realçar estruturas anatômicas, o método é sensível ao ruído e

frequentemente conduz à supersegmentação, exigindo filtragens ou marcadores externos para

refinar o resultado (Beucher; Meyer, 1993).

2.2.2 Segmentação por Descontinuidade

Diferentemente dos métodos baseados em similaridade, a segmentação por desconti-

nuidade identifica regiões a partir de variações abruptas de intensidade entre pixels vizinhos. O

princípio central é que as bordas de um objeto correspondem a locais de transição acentuada nos

níveis de cinza, onde há uma mudança brusca na intensidade ou no gradiente da imagem.

Uma formulação clássica é dada pela convolução bidimensional entre a imagem Il×c

e uma máscara M3×3, conforme a Equação (2.4):

V = M3×3 ∗ Il×c, (2.4)

em que ∗ representa o operador de convolução. A escolha da máscara determina o tipo de

descontinuidade a ser destacada, permitindo evidenciar pontos, linhas ou bordas em diferentes

direções (Gonzalez; Woods, 2018).

Entre os operadores clássicos estão Roberts, Prewitt e Sobel, que estimam numerica-

mente as derivadas parciais da imagem. O operador de Sobel, por exemplo, confere maior peso

aos pixels centrais, o que o torna mais robusto ao ruído. Já o operador de Prewitt utiliza pesos

uniformes, favorecendo simplicidade e menor custo computacional.

Embora amplamente utilizados, esses métodos apresentam limitações em imagens

reais, especialmente nas biomédicas, onde as bordas costumam ser suaves ou pouco contrastadas.

Nesses casos, o gradiente pode gerar bordas fragmentadas ou múltiplas respostas falsas. Para

reduzir esses efeitos, aplica-se com frequência uma filtragem gaussiana prévia à detecção, abor-

dagem que fundamenta o detector de Canny (Canny, 1986). Esse método combina suavização,

cálculo de gradiente e supressão de não máximos, produzindo bordas mais finas e contínuas.



33

2.3 Modelos de Contornos Ativos

Os ACM, ou Active Contour Models, representam um avanço significativo na seg-

mentação de imagens por introduzirem uma formulação baseada em energia para delinear

automaticamente os limites de um objeto (Kass et al., 1988). Nesses modelos, o contorno é

representado como uma curva deformável que se ajusta progressivamente às bordas da imagem,

buscando o equilíbrio entre suavidade e aderência às estruturas de interesse. Cada ponto da curva

evolui iterativamente até atingir uma configuração de mínima energia, moldando-se à forma do

objeto de maneira semelhante a uma fita elástica que se deforma conforme as forças que atuam

sobre ela (REBOUÇAS FILHO et al., 2011).

O Snake, proposto por Kass et al. (1988), é o modelo paramétrico clássico dos

contornos ativos. A curva é descrita por uma função contínua c(s) = [x(s),y(s)], onde s ∈ [0,1]

parametriza os pontos do contorno. A minimização da energia total determina o formato final da

curva, conforme a Equação (2.5):

E =
∫ 1

0
{Eint[c(s)]+Eext[c(s)]}ds, (2.5)

em que Eint é o termo de energia interna, responsável por impor regularidade geométrica, e Eext

é o termo de energia externa, derivado das propriedades da imagem e responsável por atrair o

contorno às bordas.

O termo interno é composto por duas forças principais: uma de continuidade,

que regula a distância entre pontos sucessivos e evita o alongamento excessivo, e outra de

curvatura, que mantém a suavidade da curva e evita deformações abruptas (Nixon; Aguado,

2012; REBOUÇAS FILHO et al., 2011). Esse termo é expresso pela Equação (2.6):

Eint[c(s)] = α

∣∣∣∣dc
ds

∣∣∣∣2 +β

∣∣∣∣d2c
ds2

∣∣∣∣2 , (2.6)

em que α controla a tensão (elasticidade) e β a rigidez (resistência à curvatura). Esses parâmetros

ajustam o grau de flexibilidade da curva, equilibrando suavidade e aderência às bordas.

Já o termo externo é derivado das informações visuais da imagem e pode ser definido

de forma composta, combinando diferentes forças atrativas ponderadas:

Eext[c(s)] = wlineEline[c(s)]+wgradEgrad[c(s)]+wtermEterm[c(s)], (2.7)
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em que Eline está relacionado à intensidade local (atração por linhas ou regiões escuras), Egrad

representa o gradiente da imagem (atração por bordas) e Eterm captura terminação e curvaturas

de contorno (REBOUÇAS FILHO et al., 2011). Comumente, aplica-se um filtro Gaussiano Gσ

antes do cálculo do gradiente, reduzindo ruídos e suavizando variações abruptas de intensidade.

A dinâmica do contorno durante o processo de minimização de energia é ilustrada

na Figura 3. Nesse exemplo, observa-se a contração progressiva da curva inicial até que ela

se estabilize na fronteira da região de interesse, ponto de equilíbrio entre as forças internas e

externas.

Figura 3 – Evolução contrátil de um contorno ativo. A curva inicial desloca-se em direção à borda do
objeto, guiada pelas forças externas, até atingir o equilíbrio energético em x+1.

Curva na iteração x

Curva na iteração x+1

Região de interesse

Fonte: Elaborado pelo autor.

A curva é discretizada em um conjunto de pontos de controle conectados entre si,

e a energia é avaliada ponto a ponto. Em cada iteração, cada ponto c[s] analisa sua vizinhança

local, geralmente composta por oito vizinhos, e desloca-se para a posição que minimiza a energia

local (Figura 4). O aumento do tamanho da vizinhança amplia as possibilidades de solução,

mas também eleva o custo computacional. A Figura 4 ilustra o processo iterativo de busca por

equilíbrio energético.
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Figura 4 – Vizinhança de busca para o ponto de controle c[s] no modelo de contornos ativos (ACM). O
ponto central (em preto) avalia diferentes posições dentro da janela pontilhada (em azul), selecionando
aquela que minimiza a energia local.

Fonte: Elaborado pelo autor, adaptado de REBOUÇAS FILHO et al. (2011).

Essa estrutura confere ao modelo snake uma natureza autoajustável, capaz de adaptar-

se a diferentes geometrias de bordas, mesmo em presença de ruídos moderados. Entretanto, sua

representação explícita impede a manipulação de múltiplas regiões simultaneamente e dificulta

eventos como divisões ou fusões de contornos. Essas limitações motivaram o surgimento de

variações e extensões do modelo clássico, como o Adaptive Balloon Active Contour Method

(ABACM) (FILHO et al., 2014), que introduz um termo interno adaptativo capaz de otimizar a

dinâmica de contração e expansão dos contornos. Diferentemente do modelo balão proposto

por Cohen (1991), em que a pressão é uniforme ao longo da curva, o termo adaptativo utiliza

informações geométricas e topológicas locais para ajustar, em cada ponto, a intensidade e a

direção da força de pressão. Essa força é calculada a partir das posições dos nós vizinhos e

da forma global da curva, permitindo deslocamentos independentes, porém coerentes com a

geometria local das bordas. Tal mecanismo é particularmente eficaz em regiões homogêneas, nas

quais o gradiente da imagem é fraco e as forças externas tendem a se anular, assegurando que

a curva continue se movendo em direção às fronteiras de interesse. Como resultado, o modelo

evita a degeneração da curva e mantém a convergência mesmo em cenários complexos — como

estruturas ramificadas, tubulares ou com concavidades pronunciadas —, tornando-se robusto

a diferentes inicializações e adequado à segmentação de múltiplas regiões. Além disso, o uso

dinâmico de inserção e remoção de nós durante a evolução preserva o espaçamento paramétrico

uniforme, prevenindo colapsos topológicos e reduzindo o tempo de convergência.
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Inspirado por esses avanços, o método proposto nesta tese estende a formulação

clássica dos contornos ativos ao incorporar um campo de evidência semântica aprendido, capaz

de orientar a evolução paramétrica por meio de informações contextuais de alto nível e permitir

a segmentação simultânea de múltiplas regiões de forma estável e coerente.

2.4 Redes Neurais Profundas

As redes neurais profundas são responsáveis por grande parte dos avanços recentes

em IA, com aplicações expressivas em VC, reconhecimento de padrões e processamento de

linguagem natural. Diferentemente das redes neurais artificiais anteriores, arquiteturas com maior

profundidade aprendem automaticamente características discriminativas de alta complexidade,

reduzindo a necessidade de engenharia manual de atributos (LeCun et al., 2015; Goodfellow

et al., 2016). Os fundamentos e o desenvolvimento histórico que viabilizaram esse salto são

discutidos na Seção 2.4.1.

Essas redes impulsionaram de forma decisiva o desempenho de sistemas de reco-

nhecimento e análise de imagens, nos quais padrões de textura, forma e estrutura podem ser

representados de maneira robusta e eficiente.

O trabalho de Krizhevsky et al. (2017) apresentou a AlexNet, uma CNNs pro-

funda que superou abordagens convencionais em tarefas de classificação de imagens no desafio

ImageNet, ao combinar múltiplas camadas convolucionais com funções de ativação Unidade

Linear Retificada (ReLU), regularização por dropout e aceleração em Graphics Processing Unit

(GPU). Essa arquitetura estabeleceu um novo paradigma para o treinamento de redes profundas,

demonstrando a eficácia do aprendizado hierárquico de características visuais em larga escala.

A partir desse avanço, diversas arquiteturas foram desenvolvidas, entre elas as Redes

Residuais (He et al., 2015), que introduziram conexões de atalho para facilitar o fluxo do

gradiente em modelos muito profundos, reduzindo o problema de degradação de desempenho.

Além da classificação, redes profundas tornaram-se centrais em segmentação semân-

tica. As Fully Convolutional Networks (FCN), ou Redes Totalmente Convolucionais (Long et

al., 2015), estabeleceram as bases para arquiteturas do tipo encoder–decoder, posteriormente

refinadas pela U-Net (Ronneberger et al., 2015) e pela SegNet (Badrinarayanan et al., 2016).

Modelos como a U-Net (Ronneberger et al., 2015) e a SegNet (Badrinarayanan et

al., 2016) estabeleceram as bases como referências em segmentação biomédica, por integrarem

informações contextuais e detalhes locais por meio de conexões entre camadas simétricas.
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Esses desenvolvimentos consolidaram o domínio das redes profundas na análise

visual de dados, abrindo espaço para métodos que incorporam mecanismos de atenção e apren-

dizado contextual que orientam processos variacionais, favorecendo maior interpretabilidade e

generalização.

2.4.1 Fundamentos do Aprendizado Profundo

O DL é uma vertente do aprendizado de máquina que emprega arquiteturas com

múltiplas camadas para modelar funções altamente não lineares, aprendendo representações

hierárquicas dos dados: camadas iniciais capturam padrões locais de baixa abstração, enquanto

camadas mais profundas codificam conceitos de nível superior (LeCun et al., 2015; Goodfellow

et al., 2016).

Historicamente, o campo das redes neurais artificiais surgiu com o Perceptron,

proposto por Rosenblatt (1958), o primeiro modelo computacional capaz de realizar classificações

lineares. Suas limitações em lidar com problemas não linearmente separáveis, descritas por

Minsky e Papert (1969), levaram a um período de estagnação na área. A retomada do interesse

ocorreu com a formulação do algoritmo de retropropagação do erro por Rumelhart et al. (1986),

que tornou viável o treinamento eficiente de redes multicamadas, expandindo a aplicabilidade

desses modelos.

O avanço do aprendizado profundo nas últimas décadas foi impulsionado por três

fatores principais: (i) o aumento da disponibilidade de grandes bases de dados, (ii) a evolução

do hardware, especialmente o uso de GPU, e (iii) o desenvolvimento de funções de ativação

e algoritmos de otimização mais estáveis, capazes de mitigar problemas como o gradiente

desvanecido (LeCun et al., 2015; Goodfellow et al., 2016). A combinação desses elementos

tornou o aprendizado profundo um componente essencial para aplicações contemporâneas,

incluindo a análise e segmentação de imagens médicas.

2.4.1.1 Redes Neurais Artificiais

As Rede Neural Artificial (ANN) constituem a base conceitual do aprendizado

profundo, inspirando-se no funcionamento biológico dos neurônios para modelar funções não

lineares e complexas. Uma rede neural é composta por unidades elementares interconectadas,

denominadas neurônios artificiais, organizadas em camadas e conectadas por pesos ajustáveis.

Cada neurônio realiza uma combinação linear das entradas e aplica uma transformação não
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linear denominada função de ativação, conforme a Equação (2.8):

z =
n

∑
i=1

wixi +b, y = φ(z), (2.8)

em que xi representa as entradas, wi os pesos sinápticos, b o viés e φ(·) a função de

ativação. Essa formulação permite que a rede aprenda representações complexas dos dados e

realize aproximações universais de funções contínuas, conforme demonstrado pelo teorema da

aproximação universal (Hornik et al., 1989; Haykin, 2009).

As funções de ativação desempenham papel fundamental ao introduzirem não li-

nearidade e estabilidade no processo de aprendizado. Entre as mais utilizadas destacam-se a

sigmoide, a tangente hiperbólica e a ReLU (Glorot et al., 2011), cuja simplicidade e eficiência

computacional mitigam o problema do gradiente desvanecido em redes profundas.

O treinamento da ANN é realizado por meio do algoritmo de retropropagação do

erro (backpropagation) (Rumelhart et al., 1986), que ajusta os pesos de forma iterativa segundo

o gradiente descendente da função de custo J(θ). Em cada iteração, o erro calculado na

camada de saída é propagado para as camadas anteriores, permitindo o ajuste coordenado dos

parâmetros. Esse processo é computacionalmente intensivo, mas possibilita a modelagem de

relações altamente não lineares entre entradas e saídas.

A capacidade de generalização de uma rede neural depende do número de camadas

e neurônios, da função de ativação e das técnicas de regularização utilizadas. Desafios clássicos,

como o sobreajuste e o desaparecimento de gradientes, foram mitigados com o desenvolvimento

de estratégias como o dropout, que reduz a coadaptação entre neurônios, e a normalização em lote

(batch normalization), que estabiliza a distribuição das ativações durante o treinamento. Além

disso, otimizadores baseados em momento adaptativo, como Adam e RMSProp, contribuíram

para acelerar a convergência e melhorar a estabilidade do aprendizado.

O avanço do hardware, especialmente o uso massivo de GPU, associado à dispo-

nibilidade de grandes conjuntos de dados e ao aprimoramento dos algoritmos de otimização,

permitiu a expansão das redes neurais para arquiteturas cada vez mais profundas e especializadas.

Esse movimento culminou na consolidação das redes neurais profundas (DNN), que hoje consti-

tuem o núcleo das abordagens modernas em visão computacional, reconhecimento de padrões e

segmentação de imagens.
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2.4.1.2 Redes Convolucionais

As CNNs representam uma das arquiteturas mais transformadoras da área de apren-

dizado profundo, tendo revolucionado o campo da visão computacional ao combinar princípios

de percepção visual humana com propriedades matemáticas da convolução (LeCun et al., 1998;

Krizhevsky et al., 2017). O diferencial central das CNNs é a exploração da estrutura espa-

cial das imagens por meio de conexões locais e do compartilhamento de pesos, o que reduz

significativamente o número de parâmetros e aumenta a capacidade de generalização.

A operação de convolução bidimensional entre uma imagem I ∈ RH×W e um filtro

K ∈ Rp×q é definida pela Equação (2.9):

S(i, j) =
p−1

∑
m=0

q−1

∑
n=0

I(i+m, j+n)K(m,n), (2.9)

em que S(i, j) corresponde à resposta convolucional no ponto (i, j). Essa operação

atua como um extrator de características locais, detectando bordas, texturas e formas, enquanto

preserva a relação espacial entre os pixels. As camadas convolucionais são geralmente seguidas

por operações de pooling, que reduzem a dimensionalidade espacial, e por camadas de ativação

não lineares, como a ReLU, que introduzem capacidade discriminativa.

As primeiras CNNs modernas foram introduzidas por LeCun et al. (1998), com a

LeNet-5, aplicada ao reconhecimento de dígitos manuscritos. No entanto, foi com a AlexNet,

proposta por Krizhevsky et al. (2017), que as redes convolucionais alcançaram notoriedade, ao

vencerem de forma expressiva o desafio ImageNet. Essa arquitetura explorou múltiplas camadas

convolucionais, regularização por dropout e aceleração por GPU, demonstrando o potencial das

CNNs em larga escala.

Posteriormente, arquiteturas mais profundas e eficientes, como a VGGNet, a Incep-

tion (Szegedy et al., 2015) e a ResNet (He et al., 2015), introduziram avanços estruturais que

permitiram o treinamento de modelos com centenas de camadas sem degradação significativa do

desempenho. A ResNet, em particular, inovou ao empregar conexões residuais (skip connections)

que facilitaram o fluxo do gradiente e viabilizaram o aprendizado em profundidade extrema.

Esses modelos estabeleceram a base para o desenvolvimento de arquiteturas especia-

lizadas em segmentação, como as FCN (Long et al., 2015), a U-Net (Ronneberger et al., 2015)

e a SegNet (Badrinarayanan et al., 2016). Nessas arquiteturas, a convolução é utilizada não

apenas para classificação, mas também para reconstrução espacial e predição densa, permitindo
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a geração de máscaras precisas que delimitam regiões de interesse em imagens médicas. A

posterior incorporação de modelos baseados em atenção a esse paradigma consolidou as CNNs

como a base da segmentação semântica moderna.

2.4.2 Segmentação Baseada em Aprendizado Profundo

O aprendizado profundo modificou profundamente o campo da segmentação de

imagens ao integrar extração de características, modelagem contextual e classificação em um

processo unificado de otimização (Litjens et al., 2017). Essa abordagem eliminou a necessidade

de operadores manuais e permitiu o aprendizado direto das representações relevantes para a

tarefa, alcançando resultados mais consistentes e generalizáveis mesmo diante de variações de

forma, contraste e textura (Ronneberger et al., 2015; Chen et al., 2018).

As redes neurais convolucionais (CNNs) são a base desse avanço, possibilitando

o aprendizado hierárquico de representações visuais. Nas primeiras camadas, são capturados

padrões locais simples, como bordas e texturas, enquanto nas camadas mais profundas surgem

abstrações mais complexas, que descrevem formas e relações espaciais entre regiões. Esse

comportamento hierárquico tornou viável a segmentação densa (pixel-wise) de alta precisão em

diferentes contextos biomédicos, industriais e naturais.

Entre as arquiteturas mais influentes destacam-se as do tipo encoder–decoder, nas

quais uma sub-rede de codificação (encoder) comprime as informações da imagem em um

espaço de características reduzido, e uma sub-rede de decodificação (decoder) reconstrói a

segmentação por meio de operações de upsampling. Essa estrutura, representada na Figura 5,

permite a recuperação progressiva de detalhes espaciais enquanto mantém o contexto global da

cena (Badrinarayanan et al., 2016; Ronneberger et al., 2015).

A U-Net (Ronneberger et al., 2015) consolidou esse paradigma ao introduzir cone-

xões de atalho (skip connections) entre níveis equivalentes do encoder e do decoder, combinando

informações de baixo e alto nível. Desde então, uma série de variações e aprimoramentos foram

desenvolvidos com o objetivo de otimizar a recuperação de detalhes espaciais, a generalização e

a eficiência computacional.

A U-Net++ aprimorou a arquitetura original ao adicionar conexões densas entre

camadas intermediárias, reduzindo a lacuna semântica entre as fases de codificação e deco-

dificação. A Attention U-Net incorporou módulos de atenção espacial e de canal, ajustando

dinamicamente a importância de regiões relevantes da imagem. Já a SegNet (Badrinarayanan
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Figura 5 – Esquema de uma arquitetura Encoder–Decoder. O Encoder comprime os mapas de
características, a Ponte processa a informação de mais alto nível, e o Decoder reconstrói a saída,
recuperando a resolução espacial.

Fonte: Elaborado pelo autor.

et al., 2016) propôs a reutilização dos índices de max-pooling para preservar informações de

posição durante a reconstrução.

A FCN (Long et al., 2015) marcou um ponto de virada ao eliminar as camadas

totalmente conectadas, substituindo-as por convoluções 1×1, o que tornou possível gerar mapas

de segmentação com resolução variável e adaptável. Posteriormente, a DeepLabv3+ (Chen et

al., 2018) combinou convoluções dilatadas e o módulo Atrous Spatial Pyramid Pooling (ASPP),

capturando contextos multiescalares sem perda de resolução espacial e refinando as fronteiras

segmentadas por meio de um decodificador leve.

Essas arquiteturas representam diferentes estratégias para equilibrar profundidade,

contexto e resolução espacial, aspectos essenciais para o desempenho em segmentação densa.

Entretanto, mesmo os modelos mais avançados ainda enfrentam desafios na preservação da

continuidade geométrica das fronteiras e na coerência morfológica entre múltiplas regiões.

Esse cenário motiva o desenvolvimento de abordagens híbridas que combinem a capacidade

discriminativa do aprendizado profundo com a estabilidade geométrica de modelos baseados em

contornos ativos, como o proposto neste trabalho.
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3 ABORDAGEM SEMÂNTICO-GEOMÉTRICA PARA SEGMENTAÇÃO DE MUL-

TIRREGIÕES

Neste capítulo, apresenta-se a metodologia adotada para a implementação do SE-

MAC. O método proposto consiste em um modelo de segmentação que combina a robustez dos

ACM com uma análise semântico-geométrica incorporada por meio de um campo de evidência,

de modo a preservar a consistência geométrica durante o processo de segmentação. A formulação

opera em múltiplas escalas e realiza a segmentação multirregional a partir de um único contorno,

com ramificação controlada, quando o campo indica separações naturais entre os componentes.

O capítulo está organizada em quatro partes principais. Na Seção 3.1, descreve-se

a formulação geral do método, enfatizando o fluxo de processamento e a integração entre os

componentes energéticos e geométricos. A Seção 3.1.1 detalha a construção do campo de

evidência. Na Seção 3.1.2, apresenta-se a modelagem da evolução contrátil dos contornos

ativos, bem como os mecanismos de estabilização e divisão automática de regiões. Por fim, as

Seções 3.2, 3.3 e 3.4 descrevem, respectivamente, os conjuntos de dados utilizados, as métricas

de avaliação e os procedimentos de treinamento.

3.1 SEmantic Multi-Region Active Contour (SEMAC)

O SEMAC caracteriza-se como um modelo de contornos ativos que integra uma

análise semântico-geométrica, por meio de um campo de evidência, ao processo de evolução

paramétrica. Essa integração visa preservar a consistência geométrica das bordas e viabilizar a

segmentação de múltiplas regiões a partir de um único contorno, com ramificação controlada.

Em contraste com abordagens que dependem exclusivamente do gradiente de inten-

sidade ou de funções heurísticas, o método considera um campo de evidência que consolida

contrastes e transições em diferentes escalas, realçando as Region of Interest (ROI) a serem

segmentadas e reduzindo ambiguidades em suas fronteiras.

Na prática, o campo de evidência atua como um mapa de compatibilidade espacial:

realça regiões coerentes com os objetos de interesse, atenua o fundo e, quando analisado em

múltiplas escalas, é incorporado à evolução do contorno ativo para priorizar fronteiras estáveis e

detectar estreitamentos que justificam ramificações naturais em cenários com múltiplas regiões

de interesse. Dessa forma, o modelo lida com imagens contendo uma ou várias regiões de

interesse de forma unificada, superando limitações de abordagens tradicionais que requerem

reinicializações sucessivas ou múltiplos contornos independentes para cada objeto.
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O campo de evidência Eθ (x), obtido a partir de pares de entrada e referência, sintetiza

contrastes, texturas e indícios estruturais em múltiplas escalas, resultando em um mapa contínuo

que expressa o grau de compatibilidade semântica de cada ponto com as ROI. Após a suavização

gaussiana, obtém-se Eσ (x), utilizado como energia externa do modelo, cujo gradiente ∇Eσ (x)

define a direção e a intensidade das forças que guiam o contorno ao longo da evolução dinâmica.

Essa formulação assegura coerência geométrica na preservação das fronteiras, con-

sistência semântica ao alinhar a evolução a informações extraídas e estabilidade evolutiva mesmo

em regiões complexas ou visualmente ambíguas. Em conjunto, esses fatores conferem ao SE-

MAC robustez frente a variações fotométricas e estruturais, além de favorecer a segmentação

simultânea e morfologicamente consistente de múltiplos objetos.

A Figura 6 apresenta uma visão geral do fluxo de processamento do SEMAC, desde

a leitura da imagem até a segmentação final. À esquerda, exemplos intermediários ilustram sua

adaptação a diferentes contextos; à direita, o fluxograma sintetiza as principais etapas do método,

desde o campo de evidência até a estabilização geométrica dos contornos.

3.1.1 Energia Externa Baseada em Campo de Evidência Semântica

A energia externa desempenha o papel de conectar o domínio fotométrico das

imagens à modelagem física dos contornos ativos. Ela define como as propriedades visuais

da imagem (como cor, textura e intensidade) influenciam o movimento das curvas durante

a segmentação. A ideia central é traduzir essas variações visuais em um mapa contínuo de

evidência Eθ (x), que expressa, ponto a ponto, o grau de compatibilidade semântica de cada ponto

com as regiões de interesse. Esse campo fornece à evolução dos contornos uma representação

contextual aprendida, substituindo as respostas locais de gradiente por informações de maior

nível extraídas diretamente da imagem.

Nos Modelos de Contornos Ativos clássicos, a energia externa ideal é aquela capaz

de guiar o contorno de forma precisa e estável até as verdadeiras fronteiras do objeto, oferecendo

gradientes suficientemente informativos para atraí-lo, mas suaves o bastante para evitar oscilações

e capturas em regiões espúrias. Em outras palavras, busca-se um campo energético que combine

seletividade e estabilidade, conduzindo a curva com fidelidade ao limite das regiões de interesse.

Inspirado por essa concepção, o SEMAC propõe o campo de evidência como uma formulação

alternativa para o potencial externo, no qual a informação fotométrica é reinterpretada como um

mapa supervisionado de compatibilidade semântica. Essa representação contínua e aprendida
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Figura 6 – Fluxo de processamento do método SEMAC. À esquerda, exemplos intermediários nos três
conjuntos de dados (sintético, lesões cutâneas e células sanguíneas). À direita, o fluxograma com as
etapas de construção do campo de evidência, evolução dos contornos, ramificação controlada e
estabilização geométrica.
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aproxima o método das propriedades esperadas de uma energia externa ideal, ao mesmo tempo

em que amplia sua robustez em cenários complexos e multi-região, possibilitando estabilidade e
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precisão mesmo em contextos visuais desafiadores.

No SEMAC, a energia externa é representada por um mapa contínuo Eθ (x) ∈ [0,1]

definido sobre o domínio da imagem. Diferentemente das formulações clássicas, que dependem

exclusivamente do gradiente de intensidade, Eθ é obtido por uma transformação paramétrica

supervisionada fθ , que projeta a imagem em um espaço de evidência semântica, conforme a

Equação (3.1):

Eθ : RH×W −→ [0,1]H×W , Eθ (x) = fθ (x), (3.1)

em que H e W correspondem, respectivamente, à altura e à largura da imagem, e os

valores em [0,1] indicam a intensidade de evidência associada a cada pixel: sendo 0 regiões de

baixo interesse e 1 regiões de alta compatibilidade com o objeto.

O mapeamento fθ é implementado por uma rede convolucional profunda que atua

como codificador da imagem, extraindo hierarquicamente os atributos visuais mais relevantes.

Essa etapa aplica sucessivas convoluções e operações de agregação para condensar as principais

características estruturais (bordas, texturas e variações de intensidade) em um mapa de caracterís-

ticas latente que representa, de forma compacta, a distribuição espacial de padrões significativos.

Em seguida, esse mapa é expandido por um decodificador, responsável por reconstruir uma

máscara contínua de evidência, onde cada pixel indica sua correspondência com as regiões de

interesse. Assim, a rede aprende a projetar diretamente o conteúdo visual da imagem em um

campo de evidência semântica com propriedades adequadas para orientar a evolução dos contor-

nos. Em alguns casos, o campo resultante apresenta transições suaves ou regiões parcialmente

difusas, refletindo a natureza contínua da representação aprendida. Essas áreas de incerteza não

representam falhas, mas indicam ambiguidades visuais que serão posteriormente refinadas pela

etapa de contração paramétrica e pelo mecanismo multirregião do SEMAC, responsáveis por

estabilizar e definir com maior precisão as fronteiras segmentadas.

Matematicamente, o processo é representado pela composição entre os operadores

de contração C e expansão E , conforme a Equação (3.2):

Eθ (x) = E
(
C (x)

)
. (3.2)

Durante a etapa de extração de características, descrita pela Equação (3.3),

Cs(x) = σ
(
Ws ∗δ (Cs−1(x))+bs

)
, C0(x) = x, (3.3)
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em que Ws,bs são os parâmetros da s-ésima convolução, σ(·) é a função de ativação LeakyReLU,

e δ (·) realiza subamostragem (max-pooling 2×2). A função LeakyReLU é empregada por

manter gradientes não nulos para entradas negativas, evitando saturação em regiões de baixo

contraste. O uso de max-pooling favorece a preservação de características estruturais dominantes,

reduzindo o ruído e a redundância espacial. Essa operação reduz gradualmente a resolução

espacial da imagem, mas amplia a profundidade informacional das representações, permitindo

que a rede codifique tanto detalhes locais quanto padrões semânticos de maior escala.

A reconstrução do campo de evidência é obtida por meio do operador de expansão

E , definido na Equação (3.4):

Es(z) = σ
(
W ′

s ∗U (Es−1(z))+b′s
)
, E0(z) = z, (3.4)

em que U (·) representa o upsampling bilinear seguido de convolução 3×3. As conexões

entre níveis de mesma escala preservam detalhes estruturais e asseguram coerência geométrica

na reconstrução, resultando em um mapa contínuo Eθ (x) que combina precisão de borda e

consistência contextual.

Concluída a reconstrução do campo de evidência, o processo de aprendizado volta-se

para ajustar os parâmetros θ e φ de modo que Eθ (x) reproduza, com fidelidade e coerência,

as regiões de interesse presentes nas referências. Esse ajuste é formulado como um problema

supervisionado que combina dois critérios complementares: fidelidade global e coerência local,

conforme a Equação (3.5).

L (θ ,φ) = Ex,y
[
Lglob(Eθ (x),y)

]
+λ Ex

[
Lloc(x,Eθ (x);φ)

]
, (3.5)

em que λ pondera os termos. A fidelidade global, expressa pela Equação (3.6),

impõe proximidade estrutural à máscara de referência y:

Lglob(Eθ (x),y) =
1
|Ω| ∑

(i, j)∈Ω

∣∣Eθ (xi j)− yi j
∣∣. (3.6)

A coerência local, definida na Equação (3.7), incentiva transições semanticamente

plausíveis:

Lloc(x,Eθ (x);φ) =− logφ
(
P(x),P(Eθ (x))

)
, (3.7)

em que P(·) extrai patches locais da imagem e do campo de evidência.



47

Neste ponto, a função φ desempenha um papel central e ainda não explicitado. Em-

bora introduzida como parte do termo de coerência local, φ atua como um módulo discriminativo

responsável por avaliar a plausibilidade semântica entre o conteúdo visual real da imagem e a

representação contínua produzida pelo campo de evidência. Em termos conceituais, ela funciona

como um avaliador treinável capaz de distinguir regiões coerentes daquelas estruturalmente

incompatíveis.

Mais precisamente, φ recebe como entrada dois conjuntos de informação: os patches

extraídos diretamente da imagem, P(x), que representam a estrutura fotométrica observada;

e os patches correspondentes extraídos do campo de evidência, P(Eθ (x)), que representam

a estrutura semântico-geométrica inferida pela rede. Ao comparar esses dois espaços locais,

φ estima o grau de compatibilidade entre a evidência gerada e os padrões estruturais reais da

imagem. Regiões em que o campo de evidência reflete adequadamente contrastes, texturas e

transições presentes na imagem são avaliadas como consistentes; regiões incompatíveis são

penalizadas.

Esse mecanismo confere à φ uma função discriminativa essencial dentro da formu-

lação minimax da Equação (3.8). Enquanto os parâmetros θ buscam produzir um campo de

evidência cada vez mais plausível em nível global e local, φ procura identificar falhas, inconsis-

tências ou distorções presentes na representação gerada. A convergência ocorre quando θ produz

campos Eθ (x) para os quais φ já não consegue distinguir regiões inconsistentes, indicando que a

coerência local entre imagem e evidência foi alcançada.

Assim, φ atua como um mecanismo de fiscalização semântica local, garantindo

que o campo de evidência preserve as relações estruturais relevantes e apresente transições

suaves e coerentes. Esse comportamento impede o surgimento de artefatos, evita suavizações

excessivas e assegura que a energia externa seja adequadamente informativa para orientar a

evolução multirregião dos contornos ativos.

O termo Lloc da Equação (3.5) tem papel essencial na regularização semântica do

aprendizado. A função φ avalia a coerência entre o conteúdo visual original e o mapa de evidência

gerado, identificando regiões onde as correspondências estruturais são mais consistentes. Dessa

forma, o modelo é incentivado a produzir campos Eθ (x) que preservem a continuidade das

texturas e a integridade das fronteiras, aproximando o comportamento do campo de evidência ao

padrão esperado de evidência física no processo de segmentação. Esse equilíbrio entre fidelidade

global e coerência local é o que permite à rede generalizar padrões complexos e gerar mapas de
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evidência com significado morfológico, ainda que com transições suaves em áreas ambíguas.

A solução ótima resulta do equilíbrio entre fidelidade e coerência, conforme a

Equação (3.8):

E∗
θ ∈ argmin

θ
max

φ
L (θ ,φ), (3.8)

Após o treinamento, o campo Eθ (x) é suavizado por convolução gaussiana, obtendo-

se Eσ (x) = Gσ ∗Eθ (x). Essa etapa atua como um processo de difusão espacial que reduz

ruídos de alta frequência e assegura gradientes bem condicionados para a etapa posterior de

evolução dos contornos. O vetor gradiente ∇Eσ (x), calculado numericamente por operadores

diferenciais, define a direção e a intensidade das forças externas aplicadas às curvas paramétricas,

estabelecendo o acoplamento físico entre a energia aprendida e a dinâmica geométrica.

Como a derivada espacial comuta com a convolução gaussiana para funções suaves,

tem-se:

∇
(
Gσ ∗Eθ

)
= Gσ ∗

(
∇Eθ

)
, (3.9)

de modo que calcular ∇Eσ equivale a suavizar ∇Eθ . Na prática, o gradiente ∇Eσ é estimado

diretamente a partir do campo suavizado Eσ , o que assegura maior estabilidade numérica e reduz

a sensibilidade a ruídos de alta frequência nas forças externas.

Em síntese, Eσ fornece a evidência semântica contínua, ainda que com transições

graduais em regiões incertas, enquanto ∇Eσ traduz essa evidência em forças orientadoras para

o processo de segmentação, sendo posteriormente refinada pelo MCA, que consolida essas

fronteiras e elimina ambiguidades residuais. Além da informação fotométrica, o SEMAC atua no

domínio de evidências por meio de um campo escalar contínuo Eσ (x) que consolida indícios de

contraste e transição em múltiplas escalas. Nesse domínio, regiões conectadas de alta evidência

representam candidatos a regiões de interesse (ROI), enquanto faixas de baixa evidência indicam

possíveis fronteiras entre objetos distintos.

Em ACM, a evolução das curvas é conduzida por um equilíbrio entre energias (interna

e externa), o que torna o conceito de campo energético uma forma intuitiva de representar o

comportamento dessas forças ao longo da imagem. Na Figura 7 é considerada essa analogia

energética para ilustrar a distinção entre o domínio fotométrico e o domínio do campo de

evidência, considerando uma amostra do conjunto de dados BBBC041Seg.



49

Figura 7 – Analogia visual entre o domínio fotométrico e o domínio do campo de evidência a partir de
uma amostra do conjunto de dados BBBC041Seg. De forma conceitual, é ilustrada a transição do espaço
de intensidades para um espaço contínuo de coerência semântico-geométrica, proposto pelo SEMAC.

(a) Imagem Original

(b) Domínio Fotométrico (c) Domínio do Campo de Evidência

Fonte: Elaborado pelo autor.

Na Figura 7.b, observa-se a superfície do domínio fotométrico, construída a partir

dos tons de cinza da imagem original. Nesse domínio, as variações de intensidade refletem

diretamente as flutuações de iluminação e textura, tornando o campo energético sensível a ruídos

fotométricos e inconsistências visuais.

Na Figura 7.c, é representado o domínio do campo de evidência, no qual as regiões

de interesse emergem como áreas contínuas de alta evidência, delimitadas por transições bem

definidas em torno dos objetos. Essa formulação substitui o gradiente fotométrico tradicional por

uma representação semântico-geométrica mais consistente, estabelecendo uma base energética

mais estável e informativa para a evolução dos contornos. Com isso, o processo torna-se mais

controlado, permitindo ao SEMAC transcender as limitações do gradiente fotométrico e atuar de

forma mais robusta na identificação simultânea de múltiplas regiões de interesse.

Do ponto de vista técnico, os termos estabilidade geométrica e coerência geométrica

descrevem propriedades desejáveis na evolução dos contornos durante o processo de segmen-

tação. A estabilidade geométrica refere-se à capacidade do contorno em manter sua forma e
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continuidade mesmo diante de variações locais de intensidade ou ruído, assegurando que peque-

nas perturbações no campo de energia não resultem em deformações abruptas ou instabilidades.

A coerência geométrica, por sua vez, refere-se à manutenção de uma relação espacial consistente

entre as regiões segmentadas, assegurando que as fronteiras resultantes permaneçam compatíveis

com a estrutura e a disposição dos objetos na imagem.

No contexto do SEMAC, essas propriedades emergem como consequência direta

da introdução do campo de evidência, que proporciona um potencial energético contínuo e

semanticamente estruturado, guiando o contorno de forma estável e consistente entre múltiplas

regiões de interesse. Em outras palavras, o campo de evidência atua como uma representação

refinada da imagem, na qual as regiões relevantes são destacadas enquanto variações irrelevantes

são atenuadas. Enquanto o domínio fotométrico apresenta um relevo irregular, cheio de picos

e vales induzidos por ruído, o campo de evidência suaviza esse cenário e enfatiza apenas as

estruturas significativas. Assim, a estabilidade geométrica traduz a consistência do contorno ao

longo do processo evolutivo, ao passo que a coerência geométrica reflete a harmonia entre as

fronteiras segmentadas e a morfologia real dos objetos.

3.1.2 Contração Paramétrica e Ramificação Multirregião dos Contornos Ativos

O campo de evidência Eθ (x), descrito na Seção 3.1.1, é suavizado por meio de

uma regularização gaussiana, originando Eσ (x) = Gσ ∗Eθ (x). Esse processo atua como uma

difusão espacial que reduz variações de alta frequência, assegura gradientes bem condicionados

e preserva a coerência geométrica das fronteiras, fornecendo uma superfície de energia estável

para a evolução dos contornos.

A partir desse campo suavizado, define-se a evolução dinâmica dos contornos ativos,

cuja forma é ajustada iterativamente pela minimização de um funcional de energia total que

combina forças internas e externas. As forças internas impõem continuidade e suavidade à curva,

enquanto as forças externas derivam do gradiente direcional da evidência Eσ (x), orientando os

vértices em direção às regiões de equilíbrio morfológico.

Seja C : [0,1)→R2 um contorno fechado parametrizado por s, cuja configuração

minimiza o funcional de energia total definido na Equação (3.10):

E [C] = α

∫ 1

0
∥C′(s)∥2 ds︸ ︷︷ ︸

continuidade

+β

∫ 1

0
∥C′′(s)∥2 ds︸ ︷︷ ︸

suavidade

+ γ |ΩC|︸ ︷︷ ︸
balão adaptativo

+ λ

∫ 1

0
Eσ (C(s))ds︸ ︷︷ ︸

energia externa semântica

, (3.10)
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Os dois primeiros termos do funcional correspondem à energia interna clássica

dos contornos ativos, definida na Seção 2.3. O parâmetro α controla a continuidade da curva,

impondo tensão elástica entre pontos adjacentes, enquanto β regula sua suavidade, limitando

variações abruptas de curvatura. Esses termos mantêm a regularidade geométrica durante a

evolução e asseguram que o contorno preserve coesão estrutural mesmo sob a ação das forças

externas.

O Eσ (x) é o campo contínuo de evidência e |ΩC| representa a área delimitada pelo

contorno. O termo externo define a interação entre o contorno e a distribuição de afinidade

semântica, fazendo com que a curva se desloque para regiões de maior compatibilidade contextual.

O termo de balão (γ|ΩC|) atua como uma pressão interna que regula a contração ou expansão da

curva, sendo aqui implementado segundo o modelo ABACM (FILHO et al., 2014).

A partir do funcional em Equação 3.10, obtém-se a equação diferencial que rege a

evolução do contorno por descida de gradiente, expressa na Equação (3.11):

∂C
∂ t

= α C′′(s)−β C(4)(s)+ γ N(s)−λ ∇Eσ (C(s)), (3.11)

em que N(s) é o vetor normal unitário ao contorno. Os termos internos de continuidade e

suavidade controlam a regularidade geométrica da curva, enquanto o termo externo −λ ∇Eσ

atua como força de atração semântica.

A implementação discreta da Equação (3.11) utiliza uma representação circular

de nós {xk}N
k=1, atualizados segundo uma busca local em uma vizinhança quadrada N =

{−z, . . . ,z}2. Cada nó avalia uma janela local de deslocamentos candidatos e seleciona aquele

que minimiza o custo energético total. Essa busca adaptativa permite capturar variações espaciais

finas sem comprometer a estabilidade global da curva. O deslocamento ótimo (i∗k , j∗k) é obtido

conforme a Equação (3.12):

(i∗k , j∗k) ∈ arg min
(i, j)∈N

wc Φcont(k; i, j)+wn Φneigh(k; i, j)+we Φext(k; i, j), (3.12)

em que os termos de custo são definidos pelas Equações (3.13)–(3.15):

Φcont(k; i, j) = ∥xk +(i, j)− xk−1∥+∥xk +(i, j)− xk+1∥, (3.13)

Φneigh(k; i, j) = ∥xk +(i, j)− tk∥, tk = projeção do bissetor entre xk−1 e xk+1, (3.14)

Φext(k; i, j) = Eσ (xk +(i, j)). (3.15)
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Com isso, cada nó se desloca em direção ao ponto de maior evidência semântica dentro de sua

vizinhança, garantindo que a evolução da curva siga o relevo de afinidade e se estabilize sobre as

fronteiras estruturais das regiões de interesse.

A atualização iterativa dos nós é dada pela Equação (3.16):

x(t+1)
k = x(t)k +(i∗k , j∗k), (3.16)

seguida por etapas de expansão e filtragem responsáveis por manter a regularidade geométrica e a

estabilidade numérica do contorno. Essas etapas implementam um mecanismo de autorregulação

estrutural, no qual a discretização da curva se adapta dinamicamente às variações locais do

campo de evidência.

Quando a distância entre dois nós consecutivos excede o limiar dmax, é inserido um

novo nó intermediário conforme a Equação (3.17):

∥xk+1 − xk∥> dmax ⇒ xk+ 1
2
=

xk + xk+1

2
, (3.17)

assegurando amostragem uniforme ao longo da curva e evitando descontinuidades topológicas.

Esse processo de expansão adaptativa preserva a consistência da representação paramétrica

mesmo em regiões de alta curvatura.

Além disso, aplica-se uma filtragem angular definida na Equação (3.18) para remover

vértices redundantes:

θk = arccos
(
(xk−1 − xk) · (xk+1 − xk)

∥xk−1 − xk∥ ∥xk+1 − xk∥

)
, (3.18)

eliminando nós com θk < θmin e preservando a continuidade direcional do contorno. Esse

mecanismo atua como um filtro morfológico dinâmico, responsável por suavizar irregularidades

locais e prevenir colapsos topológicos durante a evolução.

Figura 8 – Representação do cálculo do ângulo local θk entre nós consecutivos de um contorno ativo
paramétrico. O detalhamento ilustra a relação geométrica entre os pontos xk−1, xk e xk+1.

x
k-1

x
k+1

x
k θ

k

Fonte: Elaborado pelo autor.
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As operações de expansão e filtragem compõem a etapa de regularização local do

SEMAC, garantindo que a discretização da curva permaneça compatível com a escala geométrica

e energética do campo Eσ .

A evolução de cada contorno é controlada por critérios complementares de con-

vergência e estabilidade local. A condição composta de parada é definida na Equação (3.19):

(
|P(t)−P(t−1)|< ε

)
∧

(
N(t) > Nmin

)
∧

(
t < Tmax

)
, (3.19)

em que P(t) é o perímetro atual, N(t) o número de nós e Tmax o limite máximo de iterações.

Durante a evolução, P(t) e a variação média das forças são recalculados a cada iteração, e o

processo somente é interrompido quando essa regra de parada é satisfeita, garantindo equilíbrio

entre forças internas e externas.

As Figuras 9 e 10 ilustram o processo de evolução multi-região guiado pelo campo

de forças adaptativo. Na Figura 9, observam-se os vetores de força (em verde) orientando-se

para as regiões de menor potencial, conduzindo a contração e a estabilização dos contornos. Esse

mecanismo garante a aderência das fronteiras aos objetos de interesse, mantendo a coerência

geométrica ao longo das iterações.

Já a Figura 10 evidencia a fase topológica do processo, em que dois segmentos do

contorno aproximam-se e entram em interseção. Nesse instante, o modelo detecta automatica-

mente o cruzamento entre regiões adjacentes e aciona o mecanismo de divisão (split), originando

dois contornos independentes, cada um delimitando uma região coerente. Durante a evolução, o

SEMAC monitora continuamente a geometria e o campo de forças locais. A divisão é acionada

quando ocorre uma interseção entre segmentos não adjacentes do contorno ou quando o gradiente

do campo de evidência apresenta direções opostas em nós consecutivos, indicando a presença de

duas bacias de energia distintas. Nessas condições, o contorno é automaticamente decomposto

em dois subconjuntos de nós conectados, os quais passam a evoluir de forma independente,

mantendo a coerência geométrica e semântica de cada região. Esse comportamento demonstra a

capacidade do modelo em ajustar-se a variações estruturais sem necessidade de reinicialização

manual.

O equilíbrio global é alcançado quando o conjunto de contornos {Γi} torna-se

invariante ao longo das iterações, conforme a Equação (3.20):

|P(t)−P(t−1)|< ε ∧ |Γ(t)|= |Γ(t−1)|. (3.20)
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Figura 9 – Evolução multi-região orientada pelo campo de forças. Os vetores em verde indicam a direção
de movimento dos nós, guiando o contorno para regiões de menor potencial e assegurando a estabilização
das fronteiras. À direita de cada linha temporal é exibido o detalhamento de uma região específica, onde
se observa a atuação local das forças e a suavização progressiva das arestas.

Fonte: Elaborado pelo autor.
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Figura 10 – Sequência de evolução e divisão topológica do contorno. A primeira coluna mostra a detecção
de interseção entre segmentos do contorno; na segunda, exibe-se uma ampliação da região. Por fim,
formam-se dois contornos independentes, cada um delimitando uma região distinta, evidenciando a
capacidade do SEMAC em lidar com múltiplas regiões de forma autônoma.

Fonte: Elaborado pelo autor.

O primeiro termo assegura estabilização geométrica (perímetro), enquanto o segundo confirma

estabilização topológica, indicando ausência de novas divisões. Fisicamente, o campo Eσ

funciona como uma superfície de potencial sobre a qual o contorno se comporta como uma

membrana elástica tensionada, movendo-se sob a ação das forças −∇Eσ até atingir equilíbrio

sobre as fronteiras naturais das estruturas de interesse.
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3.2 Conjuntos de Dados

Foram utilizados três conjuntos de dados distintos: um conjunto sintético, construído

para representar cenários controlados, e dois conjuntos compostos por dados heterogêneos.

Essa diversidade permitiu avaliar o método proposto tanto em condições experimentais, nas

quais todos os parâmetros são conhecidos e controlados, quanto em contextos mais complexos,

caracterizados por elevada variabilidade visual e estrutural.

3.2.1 Cenário Especialista: Conjunto de Dados Sintéticos

Com o objetivo de avaliar a robustez do método em ambiente controlado e repro-

dutível, foi construído um conjunto de dados sintético composto por imagens bidimensionais

de 512×512 pixels, codificadas em 8 bits. O conjunto totaliza 1.200 amostras, distribuídas em

três categorias principais: bordas ideais, bordas irregulares e alta densidade de objetos, cada

uma contendo 400 imagens, sendo 200 de referência e 200 modificadas geradas sobre a mesma

geometria. Essa estrutura permite examinar, de forma isolada e comparável, a Sensibilidade do

método a variações morfológicas e fotométricas que se aproximam de condições observadas em

aplicações reais.

A geração das imagens baseia-se na composição de K objetos geométricos {Si}K
i=1

sobre fundo uniforme B = 255. As imagens de referência são definidas pela Equação (3.21):

Iref(x,y) = min
{

B, min
i=1..K

[
⊮Si(x,y)vi +

(
1−⊮Si(x,y)

)
B
]}

, (3.21)

em que ⊮Si denota a função indicadora do objeto Si e vi ∈ {0,30,60,80} representa

o tom de cinza do objeto.

As imagens modificadas introduzem variações fotométricas e estocásticas sobre a

mesma composição geométrica, conforme a Equação (3.22):

Imod(x,y) = clip
(

α(x,y) Iref(x,y)+ηsp(x,y)
)
, (3.22)

onde α(x,y) modela gradientes de iluminação lineares horizontal, vertical ou radiais

em torno de um centro deslocado, com variação suave típica no intervalo 0,55 ≤ α ≤ 1,15, e

ηsp(x,y) corresponde a ruído impulsivo sal-e-pimenta de baixa densidade, com probabilidade
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por pixel entre 0,5% e 2%. O operador clip(·) limita o resultado ao intervalo [0,255], truncando

valores fora da faixa válida de 8 bits e evitando saturações após as transformações.

A Tabela 1 apresenta um resumo das seis categórias do cenário sintético definidos

para a etapa de avaliação, organizados conforme o tipo de estrutura e a presença de modificações

fotométricas e geométricas.

Tabela 1 – Resumo das seis condições sintéticas utilizadas para avaliação do método.
Denominação Descrição resumida

Bordas ideais Formas geométricas regulares e bem definidas, sem modificações.
Bordas ideais com modificações Mesmas formas geométricas, porém com variações fotométricas e ruído

leve simulando perturbações de iluminação.
Bordas irregulares Bordas levemente irregulares e deformadas, mantendo condição limpa.
Bordas irregulares com modificações Bordas irregulares com inclusão de artefatos e ruído local, representando

deformações complexas.
Alta densidade de objetos Múltiplos objetos próximos ou sobrepostos, sem ruído.
Alta densidade de objetos com modificações Mesmo padrão denso, acrescido de ruído e variações de intensidade,

simulando desafios de separação de fronteiras.

Fonte: Elaborado pelo autor.

As Figuras 11 e 12 apresentam exemplos representativos do conjunto sintético,

contemplando amostras com bordas lineares, bordas irregulares e alta densidade de objetos, tanto

em condições ideais quanto com a presença de ruídos ou modificações na imagem, utilizadas

para avaliar o desempenho do SEMAC em diferentes contextos geométricos e fotométricos.

Figura 11 – Amostras sintéticas com bordas lineares, bordas irregulares e alta densidade.

Fonte: Elaborado pelo autor.
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Figura 12 – Amostras sintéticas com bordas ideais, bordas irregulares e alta densidade.

Fonte: Elaborado pelo autor.

Na categoria de bordas ideais, as imagens são compostas por figuras geométricas

regulares, incluindo círculos, elipses, retângulos, quadrados, paralelogramos, trapézios, losangos,

polígonos regulares de três a dez lados, setores circulares e estrelas de cinco pontas. Os contornos

são exatos, sem deformações locais, e os objetos são posicionados de modo a evitar sobreposição

entre retângulos delimitadores. O número de objetos por cena varia entre 3 e 40, com rotações e

escalas aleatórias que ampliam a diversidade estrutural. As versões com modificações aplicam os

gradientes de iluminação e o ruído impulsivo descritos anteriormente, degradando parcialmente

o contraste e a uniformidade luminosa.

Na categoria de bordas modificadas, empregam-se as mesmas formas básicas, po-

rém submetidas a irregularização de contorno de baixa frequência e pequena amplitude, com

ondulações suaves e microerosões rasas. As deformações preservam conectividade e topologia,

produzindo fronteiras lobuladas que se aproximam de estruturas de origem biológica, como

lesões cutâneas ou colônias celulares. As versões com modificações adicionam artefatos locais e

perda de nitidez, combinando irregularidade de borda com variações fotométricas. A Figura 13

ilustra um exemplo ampliado de um objeto com borda modificada, evidenciando as ondulações e

microerosões que caracterizam essa categoria.
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Figura 13 – Detalhe ampliado de um objeto sintético com bordas modificadas, evidenciando microerosões
e deformações locais que simulam variações morfológicas naturais.

Ampliação de uma região da imagem

Fonte: Elaborado pelo autor.

Na categoria de alta densidade de objetos, busca-se reproduzir situações em que

múltiplas instâncias disputam o espaço da imagem. Cada cena contém entre 80 e 180 objetos de

pequeno porte, distribuídos com margens globais de 0 a 1 pixel e mecanismo de posicionamento

que favorece vizinhanças quase contíguas sem sobreposição, com folgas típicas menores ou

iguais a 2 pixels. As formas podem apresentar contornos lineares ou levemente irregulares,

mantendo variabilidade morfológica interna à categoria. As versões com modificações aplicam

os mesmos gradientes de iluminação e ruído impulsivo, intensificando o desafio de separação

entre fronteiras adjacentes.

As imagens de referência e modificadas são geradas de forma pareada dentro de

cada categoria, isto é, compartilham a mesma composição geométrica e diferem apenas pelas

transformações fotométricas e estocásticas.

Essa construção em três eixos de complexidade, aliada ao pareamento entre imagens

de referência e modificadas, fornece uma base sólida para a análise do método proposto. O

conjunto permite mensurar, de forma sistemática, a influência da geometria dos objetos, da mor-

fologia das bordas e da densidade espacial, bem como a resiliência do processo de segmentação

diante de variações fotométricas e de iluminação não uniforme, antes da aplicação em bases reais

heterogêneas.
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3.2.2 Cenário Generalista: Conjunto de Dados Heterogêneo

Na segunda etapa, o método foi avaliado em um contexto mais desafiador e diversi-

ficado, abrangendo diferentes tipos de dados com variações de textura, contraste, iluminação,

resolução e complexidade estrutural. A utilização de múltiplas bases possibilita uma análise

mais ampla, permitindo verificar a capacidade de generalização do método diante de condições

heterogêneos.

3.2.2.1 Imagens Dermatoscópicas

O segundo conjunto de imagens utilizado neste trabalho corresponde ao ISIC 2018:

Skin Lesion Analysis Towards Melanoma Detection Challenge, promovido pelo ISIC (Tschandl

et al., 2018). Esse repositório reúne um conjunto extenso e diversificado de imagens dermatos-

cópicas voltadas para o estudo e desenvolvimento de métodos automáticos de segmentação e

diagnóstico de lesões cutâneas.

O ISIC 2018 contém 3.694 imagens obtidas em condições clínicas reais, apresentando

ampla variabilidade de textura, coloração, iluminação e ruído. Cada imagem possui uma máscara

binária de referência que delimita manualmente a área da lesão, fornecendo a base para a

avaliação quantitativa da segmentação automática. As amostras foram coletadas em diferentes

instituições médicas e com distintos equipamentos de captura, o que confere ao conjunto um

caráter heterogêneo e desafiador, especialmente para algoritmos sensíveis a variações de domínio.

A Figura 14 apresenta alguns exemplos do conjunto de imagens do ISIC.

As imagens incluem diferentes tipos de lesões pigmentadas, como melanomas, nevos

e queratoses, cada uma com padrões morfológicos particulares que dificultam a detecção de

fronteiras precisas. A presença de sombras, pelos e variações de contraste representa outro fator

de complexidade, pois interfere diretamente na definição dos contornos e na distinção entre

regiões de pele saudável e áreas lesionadas.

Nesse contexto, o ISIC 2018 foi empregado para avaliar a robustez e a capacidade

de generalização do método proposto frente a situações clínicos mais complexos. A diversidade

do conjunto permite testar o comportamento do modelo diante de situações em que a coerência

geométrica e a estabilidade topológica são essenciais para evitar sobresegmentações e falsos

positivos. Essa base de dados constitui, portanto, um importante parâmetro de comparação com

abordagens consolidadas da literatura, possibilitando validar o desempenho do modelo em um
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Figura 14 – Exemplos de imagens do conjunto ISIC 2018.

Fonte: Elaborado pelo autor.

ambiente realista e desafiador.

3.2.2.2 Imagens Microscópicas de Células Sanguíneas

O terceiro conjunto de dados utilizado foi o BBBC041Seg: Segmentação Automática

de Células Sanguíneas em Lâminas Microscópicas (Depto et al., 2021), um conjunto público

desenvolvido especificamente para a tarefa de segmentação de células sanguíneas. Ele é composto

por 1.328 imagens no formato PNG, cada uma acompanhada de sua respectiva máscara binária
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de referência. As imagens possuem dimensões de 520 × 696 pixels e profundidade de 8 bits. As

anotações foram realizadas manualmente por especialistas, assegurando a Precisão na delimitação

dos contornos celulares.

Esse conjunto é particularmente relevante para a avaliação de métodos de segmenta-

ção, pois reproduz condições reais de microscopia e impõe múltiplos desafios: alta densidade

de células em campo reduzido, presença de sobreposição e contato entre objetos, variações

sutis de forma e intensidade decorrentes tanto da diversidade biológica quanto do processo de

coloração, além de artefatos de fundo inerentes à preparação das lâminas. Esses fatores tornam o

BBBC041Seg um cenário adequado para verificar a capacidade do método em lidar com limites

pouco contrastados e com elevada variabilidade visual.

A diversidade de amostras pode ser observada na Figura 15, que apresenta diferentes

condições de microscopia contempladas pelo conjunto BBBC041Seg. Nota-se a presença de

campos com baixa e alta densidade celular, variações morfológicas expressivas, diferenças de

coloração e intensidade, além de situações em que células aparecem isoladas ou em agrupamentos

sobrepostos. Essa heterogeneidade torna o conjunto um recurso valioso para avaliar a capacidade

do método em lidar com limites pouco contrastados, bordas difusas e elevada variabilidade

estrutural.

3.3 Métricas de Avaliação para Segmentação

Esta seção descreve as métricas utilizadas para avaliar o desempenho do SEMAC

nos diferentes conjuntos de dados empregados: o conjunto sintético controlado, as imagens

dermatoscópicas de lesões cutâneas e as amostras microscópicas de células sanguíneas. A escolha

dos indicadores seguiu critérios amplamente reconhecidos na literatura (Metz, 1978), assegurando

comparabilidade com estudos anteriores e consistência na interpretação dos resultados.

Essas métricas quantificam o grau de concordância entre a região segmentada pelo

método (Segmented Region (SR)) e a máscara de referência (GT). No conjunto sintético, as

máscaras foram geradas automaticamente durante a criação dos dados, garantindo correspondên-

cia exata entre imagem e referência. Nos demais conjuntos, a GT foi obtida manualmente ou

semiautomaticamente, conforme o tipo de dado e o protocolo de anotação adotado.

Em um cenário de segmentação binária, no qual a imagem é composta apenas por

duas regiões, o problema pode ser interpretado como uma tarefa de classificação de dois rótulos.

Nessa configuração, cada pixel é classificado como pertencente à ROI ou ao fundo (Background
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Figura 15 – Exemplos do conjunto de dados BBBC041Seg, composto por imagens microscópicas de
células sanguíneas.

Fonte: Elaborado pelo autor.

Region (BR)), representados respectivamente pelos valores 1 e 0 (Yu et al., 2023). Assim, a ROI

é tratada como classe positiva e o BR como classe negativa, permitindo que a avaliação se baseie

na contagem de pixels corretamente e incorretamente classificados.

O objetivo central é que a SR, também chamada de máscara predita, reproduza com

a maior fidelidade possível a ROI definida no padrão-ouro. Essa correspondência é representada
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por uma matriz de confusão 2×2, ilustrada na Figura 16, que organiza os pixels de referência e

predição em quatro categorias fundamentais: o Verdadeiro Positivo (VP), que corresponde às

regiões de concordância entre o método e a referência; o Falso Positivo (FP), que indica áreas

detectadas indevidamente; o Falso Negativo (FN), que representa regiões reais não identificadas

pelo modelo; e o Verdadeiro Negativo (VN), que abrange os pixels corretamente reconhecidos

como fundo.

Figura 16 – Matriz de confusão para segmentação binária, destacando os casos de acerto (verde) e erro
(vermelho). A região de interesse e a região de fundo são comparadas entre a máscara de referência e a
segmentação predita, originando os quatro elementos fundamentais: VP, VN, FP e FN.

Verdadeiros 

Positivos (VP)

Verdadeiros

Negativos (VN)

Erros

Predito para a região

de interesse

Predito para a 

região de fundo

Referência para a 

região de interesse

Referência para

a região de fundo

AcertosFalsos 

Negativos (FN)

Falsos 

Positivos (FP)

Fonte: Elaborado pelo autor.

A interpretação dessas categorias é essencial para compreender o impacto dos erros

de segmentação em diferentes contextos. Em imagens médicas, por exemplo, falsos negativos

podem indicar regiões de contorno não reconhecidas, enquanto em aplicações industriais podem

corresponder a falhas não detectadas em superfícies. Já os falsos positivos podem surgir de

ruídos, sombras ou variações de textura interpretadas incorretamente como regiões de interesse.

Em qualquer cenário, esses erros afetam diretamente a confiabilidade das máscaras preditas e,

consequentemente, das métricas derivadas da matriz de confusão, que expressam o equilíbrio

entre detecção precisa e controle de classificações indevidas.

Para mensurar objetivamente esse comportamento e avaliar a qualidade das segmenta-

ções produzidas pelo modelo, são utilizadas métricas consolidadas que traduzem numericamente

o desempenho obtido. Com base nessa formulação, as métricas foram agrupadas em duas cate-
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gorias complementares: as métricas baseadas em classificação, apresentadas na Subseção 3.3.1,

voltadas à mensuração global de acertos e erros; e as métricas de similaridade, descritas na

Subseção 3.3.2, que analisam a sobreposição geométrica e a fidelidade espacial entre a região

predita e o padrão-ouro.

Essa organização favorece uma análise abrangente, capaz de capturar tanto a efici-

ência estatística do algoritmo quanto sua capacidade de preservar a morfologia das estruturas

segmentadas, o que se mostra especialmente relevante nos experimentos realizados, em que

o SEMAC combina inferência semântica e refinamento geométrico orientado por campo de

evidência.

3.3.1 Métricas Baseadas em Classificação

As métricas baseadas em classificação avaliam a capacidade do algoritmo em distin-

guir corretamente as classes envolvidas na segmentação, classificando cada pixel como perten-

cente à ROI ou ao fundo (BR). Nesse contexto, cada imagem segmentada pode ser interpretada

como um conjunto de decisões binárias, em que o modelo atribui a cada pixel um rótulo positivo

(região de interesse) ou negativo (fundo). Essa formulação permite derivar os VP, FP, VN e FN

que compõem a matriz de confusão e servem como base para o cálculo das principais métricas

de desempenho: Acurácia, Precisão, Sensibilidade e Especificidade.

A Figura 17 apresenta uma representação visual dessa relação, exemplificando como

o processo de segmentação é traduzido em elementos da matriz de confusão e destacando a

associação direta entre esses componentes e as fórmulas das métricas correspondentes.

3.3.1.1 Acurácia

A Acurácia (Acc) expressa a proporção global de pixels corretamente classificados

em relação ao total avaliado, englobando tanto as ROI quanto o BR. Em segmentação binária,

cada pixel é tratado como uma instância independente, podendo pertencer ou não à estrutura-alvo.

Assim, a Acurácia representa o grau geral de concordância entre a máscara predita (SR) e o

padrão-ouro (GT), conforme definido na Equação 3.23.

Acc =
V P+V N

V P+V N +FP+FN
(3.23)

Valores elevados de Acurácia indicam boa correspondência global entre a segmen-
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Figura 17 – Relação entre o processo de segmentação e a matriz de confusão, destacando os quatro
desfechos possíveis (VP, FP, VN e FN) e as métricas derivadas.

VP

VN

Precisão =

+

FN FP

Sensibilidade =

+

Acurácia =

+

+

Especificidade =

+

Positivo

Real

Negativo

Real

Fonte: Elaborado pelo autor.

tação gerada e a referência, o que pode refletir, por exemplo, a detecção correta de uma área

defeituosa em uma superfície industrial, o delineamento preciso de uma estrutura biológica ou o

isolamento coerente de objetos em um cenário sintético. Em situações clínicas, como na análise

de lesões cutâneas, a Acurácia pode representar o alinhamento entre a área delimitada pelo

modelo e a região afetada na pele, enquanto em amostras de sangue reflete a identificação correta

das células sem a inclusão de regiões do fundo microscópico. Apesar de seu caráter intuitivo, a

Acurácia tende a ser limitada em contextos de forte desbalanceamento entre classes, que podem

favorecer artificialmente os acertos no fundo. Por esse motivo, deve ser analisada em conjunto

com outras métricas mais sensíveis à classe positiva, como Sensibilidade, Precisão e os índices

de sobreposição (Dice e IoU) (Zou et al., 2004).

3.3.1.2 Especificidade

A Especificidade (Espec) quantifica a capacidade do modelo em reconhecer cor-

retamente os pixels pertencentes à classe negativa, isto é, ao fundo (BR). Essa métrica indica

o quanto o modelo evita classificar regiões neutras ou irrelevantes como pertencentes à ROI,

conforme descrito na Equação (3.24).

Spe =
V N

V N +FP
(3.24)
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Altos valores de Especificidade demonstram que o algoritmo minimiza a ocorrência

de falsos positivos, preservando o fundo original sem incorporar ruídos ou artefatos. Em

contextos clínicos, isso equivale a evitar a marcação indevida de áreas saudáveis como lesão ou

estrutura anatômica; em cenários industriais, significa não identificar incorretamente uma região

íntegra como defeituosa. A Especificidade isoladamente, contudo, não garante boa segmentação,

pois um modelo muito conservador pode evitar falsos positivos às custas de ignorar regiões

de interesse. Por isso, deve ser avaliada em conjunto com a Sensibilidade e outras métricas

de equilíbrio, assegurando o controle simultâneo entre rejeição do fundo e detecção eficaz das

estruturas relevantes (Zou et al., 2004).

3.3.1.3 Sensibilidade

A Sensibilidade (Sens) mede a proporção de pixels positivos corretamente identifica-

dos pelo modelo, refletindo sua capacidade de recuperar integralmente a região de interesse. Sua

definição é apresentada na Equação (3.25).

Sens =
V P

V P+FN
(3.25)

Alta Sensibilidade indica que o método cobre adequadamente a região-alvo, evitando

a omissão de áreas relevantes. Essa característica é essencial em aplicações que exigem detecção

completa de estruturas, como identificação de falhas, análise de componentes visuais ou reconhe-

cimento de padrões em imagens biológicas. Em um exemplo clínico, alta Sensibilidade pode

indicar que o modelo segmenta toda a área de uma lesão, sem deixar regiões patológicas de fora,

ou que detecta integralmente células sobrepostas em uma amostra sanguínea. Entretanto, priori-

zar apenas a Sensibilidade pode aumentar o número de falsos positivos, reduzindo a Precisão e a

Especificidade. Dessa forma, a análise integrada dessas métricas é fundamental para verificar se

o modelo mantém equilíbrio entre abrangência na detecção e fidelidade morfológica (Zou et al.,

2004).

3.3.1.4 Precisão

A Precisão (Prec) avalia a confiabilidade das predições positivas, indicando a pro-

porção de pixels rotulados como pertencentes à ROI que realmente correspondem à estrutura de

referência. Sua formulação é dada pela Equação (3.26).
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Pre =
V P

V P+FP
(3.26)

Altos valores de Precisão indicam que o modelo identifica corretamente as regiões

de interesse, reduzindo a ocorrência de falsos positivos sobre áreas neutras. Essa métrica é

relevante em aplicações que exigem alta confiabilidade na detecção, como inspeção de qualidade

em imagens industriais, mapeamento de áreas biológicas ou análise de padrões geométricos

em dados sintéticos. Em uma situação clínica, por exemplo, alta Precisão indica que as regiões

marcadas como lesão correspondem de fato à área patológica, minimizando a inclusão de áreas

de pele saudável. A Precisão, no entanto, deve ser interpretada juntamente com a Sensibilidade,

já que um modelo pode apresentar alta Precisão ao segmentar apenas as regiões mais evidentes,

ignorando partes menos contrastantes. A combinação dessas duas métricas revela o equilíbrio

entre seletividade e abrangência da segmentação, fatores essenciais para avaliar o desempenho

global do método (Litjens et al., 2017).

3.3.1.5 Coeficiente de Correlação de Matthews (MCC)

O MCC é uma métrica abrangente que combina os quatro elementos da matriz de

confusão em um único indicador equilibrado. Sua formulação é apresentada na Equação (3.27).

MCC =
(V P ·V N)− (FP ·FN)√

(V P+FP)(V P+FN)(V N +FP)(V N +FN)
(3.27)

O MCC varia no intervalo [−1,1], em que valores próximos de 1 indicam concordân-

cia perfeita entre predição e referência, valores próximos de 0 representam desempenho aleatório

e valores negativos apontam correlação inversa. Diferentemente da Acurácia, o MCC leva em

consideração o impacto de todas as categorias, sendo menos sensível ao desbalanceamento

entre classes. Essa propriedade o torna especialmente adequado para avaliar o desempenho do

SEMAC, que combina inferência semântica e refinamento geométrico em diferentes condições

visuais e estruturais.

Altos valores de MCC indicam que o modelo mantém equilíbrio entre detecção,

rejeição e consistência morfológica, refletindo de forma compacta o desempenho global do

sistema em contextos variados. Isso inclui, por exemplo, a identificação de anomalias em tecidos,

o reconhecimento de falhas em materiais ou a segmentação de padrões sintéticos com topologia
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complexa (Chicco; Jurman, 2020). Para fins de apresentação dos resultados, todos os valores de

MCC foram convertidos para a escala percentual (100×MCC), de modo que os resultados são

expressos em %. Assim, valores próximos de 100% correspondem a desempenho excelente.

3.3.2 Métricas Baseadas em Similaridade

As métricas baseadas em similaridade quantificam o grau de correspondência espa-

cial entre a segmentação predita e a de referência, avaliando tanto a proporção de acertos quanto

a fidelidade geométrica das fronteiras. Tais medidas são particularmente adequadas ao SEMAC,

cuja formulação combina inferência semântica e refinamento geométrico por contornos ativos.

Ambas as etapas dependem diretamente da Precisão posicional e da coerência morfológica das

regiões segmentadas.

Entre as principais métricas empregadas destacam-se o Índice de Jaccard (IoU)

e o Coeficiente de Similaridade de Dice (Dice), amplamente utilizados em segmentação por

mensurarem o grau de sobreposição entre as regiões de interesse. Valores elevados desses

indicadores refletem alta concordância entre predição e referência, demonstrando a capacidade

do modelo em preservar a forma e a coerência estrutural das regiões segmentadas.

A Figura 18 apresenta uma representação conceitual dessas métricas, em que a

interseção entre as regiões A (padrão-ouro) e B (predição) define o grau de similaridade obtido.

Figura 18 – Representação esquemática das métricas de similaridade Dice e IoU, que avaliam a
sobreposição entre as regiões A (padrão-ouro) e B (predição).
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2 x |A ∩ B|
|A| + |B|

Fonte: Elaborado pelo autor.

3.3.2.1 Índice de Jaccard

O Índice de Jaccard, também conhecido como Intersection over Union (IoU), é

amplamente empregado para quantificar a similaridade entre a segmentação predita e a máscara
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de referência (GT). Essa métrica mede a razão entre a interseção e a união das duas regiões,

conforme mostrado na Equação (3.28).

J(A,B) =
|A∩B|
|A∪B|

(3.28)

No contexto da matriz de confusão binária, o cálculo pode ser expresso conforme a

Equação (3.29).

IoU =
V P

V P+FP+FN
(3.29)

O IoU assume valores entre 0 e 1, sendo que valores próximos de 1 indicam elevada

sobreposição entre a predição e o padrão-ouro, enquanto valores baixos refletem discrepâncias

espaciais significativas. Essa métrica penaliza igualmente falsos positivos e falsos negativos,

fornecendo uma avaliação equilibrada da qualidade da segmentação (Rahman; Wang, 2016).

Nos experimentos com lesões cutâneas, o IoU mede a capacidade do SEMAC em

delinear com Precisão os contornos irregulares das lesões, reproduzindo suas bordas reais sem

invadir áreas saudáveis. Nas amostras de células sanguíneas, essa métrica quantifica o grau de

concordância entre os limites previstos e os traçados manuais, sendo especialmente útil para

verificar a separação adequada entre células em regiões de contato. Assim, o IoU fornece uma

medida robusta da fidelidade geométrica e da consistência espacial do método proposto em

diferentes condições visuais e morfológicas.

3.3.2.2 Coeficiente de Similaridade de Dice

O Coeficiente de Sørensen–Dice (Dice) é uma métrica amplamente utilizada para

quantificar a correspondência espacial entre duas regiões segmentadas. Diferentemente de

medidas baseadas apenas em acerto percentual, o Dice enfatiza a área de sobreposição entre

predição e referência, atribuindo peso duplo à interseção das regiões. Sua formulação geral é

apresentada na Equação (3.30).

Dice =
2|A∩B|
|A|+ |B|

(3.30)

Nessa expressão, A representa a região de referência (ou padrão-ouro) e B corres-

ponde à predição. O termo |A∩B| indica a quantidade de pixels corretamente sobrepostos entre
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as duas máscaras, enquanto |A| e |B| representam suas áreas totais. O fator 2 no numerador

garante que a interseção tenha peso proporcional à soma das áreas, tornando a métrica mais

sensível a pequenas discrepâncias de contorno.

A Equação (3.30) pode ser reescrita em termos da matriz de confusão binária, consi-

derando Verdadeiros Positivos (V P), Falsos Positivos (FP) e Falsos Negativos (FN), conforme a

Equação (3.31).

Dice =
2 ·V P

2 ·V P+FP+FN
(3.31)

Os valores do Dice variam entre 0 e 1, onde 0 indica ausência total de sobreposição

e 1 representa correspondência perfeita entre predição e referência. Por atribuir maior peso à

interseção, tende a gerar valores ligeiramente superiores aos do IoU, embora ambas as métricas

apresentem comportamentos semelhantes (Dice, 1945; Zou et al., 2004). Essa característica o

torna especialmente útil em aplicações nas quais pequenas variações de fronteira influenciam

significativamente a qualidade da segmentação.

Na prática, o Dice avalia a capacidade do SEMAC de preservar a forma e o tamanho

das regiões de interesse, mantendo a coerência morfológica e o alinhamento geométrico das

fronteiras. É eficaz em cenários com contornos irregulares, alta densidade de objetos ou oclusões

parciais — por exemplo, na análise de lesões cutâneas, na segmentação de células sanguíneas ou

em tarefas industriais de detecção de falhas em superfícies complexas.

Por equilibrar de maneira eficiente os efeitos de falsos positivos e falsos negativos,

o Dice permanece como uma das métricas mais relevantes para avaliação de segmentação

em diferentes domínios, sendo amplamente adotado como referência para comparação entre

métodos.

3.4 Procedimentos de Treinamento

O processo de treinamento do SEMAC foi conduzido de forma supervisionada,

visando o aprendizado do campo de evidência semântico Eθ (x) conforme o funcional definido

na Equação (3.5). O objetivo foi ajustar os parâmetros θ e φ de modo a equilibrar fidelidade

global e coerência local, assegurando que o campo de evidência represente adequadamente as

estruturas morfológicas das regiões de interesse e forneça gradientes contextuais consistentes

para a evolução dos contornos ativos.
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As imagens foram normalizadas para o intervalo [−1,1] e redimensionadas para

512× 512 pixels. As máscaras binárias foram redimensionadas com interpolação nearest e

normalizadas em [0,1]. Aplicaram-se rotações aleatórias de até ±10◦, espelhamentos horizontais

e variações sutis de brilho e contraste, assegurando robustez a perturbações fotométricas e

geométricas.

A minimização do funcional L (θ ,φ) foi realizada por descida de gradiente estocás-

tica com otimizador adaptativo e taxa de aprendizado inicial de 10−3, decaimento exponencial

de 5×10−4 e tamanho de lote B = 8. O processo foi executado por até 200 épocas, com parada

antecipada baseada na métrica Dice do conjunto de validação, interrompendo o treinamento

quando a variação média foi inferior a 10−4 durante 40 épocas consecutivas. Durante o treina-

mento, foram monitoradas as métricas Acurácia, Precisão, Sensibilidade, Especificidade, IoU,

Dice e MCC. O modelo final adotado foi aquele que apresentou o maior valor médio de Dice

na validação. Após a convergência, o campo Eθ (x) foi suavizado por convolução gaussiana

para obtenção de Eσ (x), utilizado como energia externa na evolução dos contornos descrita na

Seção 3.1.2.

A Tabela 2 apresenta a distribuição média das amostras obtida após o particionamento

estratificado, considerando os três conjuntos avaliados: (i) o conjunto sintético, construído em

ambiente controlado; (ii) o conjunto dermatoscópico, referente ao ISIC 2018; e (iii) o conjunto

microscópico de células sanguíneas (BBBC041Seg).

Tabela 2 – Distribuição das imagens entre treino, validação e teste para cada conjunto de dados.

Conjunto de Dados Total Treino Validação Teste

Sintético 1 200 840 120 240
Lesões cutâneas 3 694 2 594 100 1 000
Células Sanguíneas 1 328 930 132 266

Fonte: Elaborado pelo autor.

Os experimentos foram executados em ambiente de nuvem Google Colab, utilizando

GPU NVIDIA A100 com 40 GB de memória dedicada, 83 GB de RAM e suporte CUDA/cuDNN

integrado ao TensorFlow 2.x. A escolha dessa configuração ocorreu por conveniência de

execução, não sendo requisito específico para o funcionamento ou reprodutibilidade do SEMAC.
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4 RESULTADOS E DISCUSSÕES

Este capítulo apresenta e discute os resultados obtidos com a aplicação do SEMAC

em dois contextos experimentais complementares: o cenário especialista, baseado em um con-

junto sintético desenvolvido para avaliar o comportamento do modelo sob condições controladas,

e o cenário generalista, composto por imagens clínicas dermatológicas e citológicas utilizadas

para testar sua capacidade de generalização em contextos reais e heterogêneos.

Em ambos os cenários foram realizadas análises quantitativas e qualitativas. As

métricas empregadas, como Acurácia, Sensibilidade, Precisão, Especificidade, MCC, IoU e Dice,

mensuraram o desempenho do SEMAC quanto à fidelidade das fronteiras e à consistência das

regiões segmentadas. As análises qualitativas complementaram essa avaliação ao evidenciar o

comportamento evolutivo, a coerência morfológica e a estabilidade da segmentação diante de

variações estruturais e fotométricas.

As próximas seções apresentam os resultados obtidos em cada cenário: a Seção 4.1

descreve os experimentos conduzidos em condições controladas com imagens sintéticas, en-

quanto a Seção 4.2 aborda os resultados sobre imagens clínicas reais. Por fim, a Seção 4.3

discute de forma integrada como a formulação energética, o campo de evidência semântica e a

dinâmica multicontorno influenciam o desempenho global e a estabilidade evolutiva do SEMAC.

4.1 Cenário Especialista

O cenário especialista foi empregado para examinar o comportamento do SEMAC

em condições controladas, permitindo observar seu desempenho diante de variações progressivas

de complexidade geométrica e fotométrica. As imagens sintéticas utilizadas abrangem diferentes

configurações de bordas lineares, irregulares e de alta densidade, avaliadas tanto em condições

ideais quanto com a presença de ruído e modificações na imagem.

Essa etapa experimental permitiu verificar a estabilidade numérica, a precisão geomé-

trica e a coerência topológica do método frente a perturbações artificiais. As variações planejadas

no conjunto de teste favoreceram a análise da interação entre as forças internas de suavização

e as forças externas guiadas pelo campo de evidência semântica, destacando a capacidade do

método em ajustar-se a diferentes relevos energéticos sem perda de continuidade morfológica.

As subseções a seguir apresentam os resultados quantitativos e qualitativos obtidos

nesse cenário, evidenciando o comportamento progressivo do modelo à medida que as condições
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sintéticas se tornam mais complexas e desafiadoras.

4.1.1 Resultados Quantitativos

As avaliações quantitativas do SEMAC sobre o conjunto sintético foram conduzidas

em seis condições experimentais que combinam variações geométricas e fotométricas. Essas

condições, descritas na Tabela 1, abrangem diferentes arranjos de formas, graus de irregularidade

de bordas, densidade de objetos e presença de modificações fotométricas na imagem.

Os resultados correspondentes estão apresentados nas Tabelas 3 e 4, que reúnem

as médias e os desvios padrão das métricas de segmentação Acurácia, Sensibilidade, Precisão,

Especificidade, MCC, IoU e Dice. Em conjunto, essas análises permitem avaliar a estabilidade

geométrica, a fidelidade de fronteira e a resposta do método frente a perturbações controladas de

forma, densidade e contraste.

Tabela 3 – Resultados médios e desvios padrão das métricas gerais e de correlação em dados sintéticos
sob diferentes condições geométricas e fotométricas.

Condição Acc (%) Prec (%) Sens (%) Espec (%) MCC (%)

Bordas ideais 99,95±0,03 99,85±0,03 99,80±0,04 99,97±0,02 99,82±0,03
Bordas ideais + Modificações na imagem 99,88±0,04 99,60±0,05 99,55±0,05 99,93±0,03 99,52±0,04
Bordas irregulares 99,55±0,05 99,10±0,06 99,20±0,06 99,70±0,05 99,05±0,06
Bordas irregulares + Modificações na ima-
gem

99,10±0,06 98,70±0,07 98,85±0,07 99,30±0,06 98,65±0,07

Alta densidade de objetos 98,70±0,07 98,40±0,07 98,50±0,07 99,00±0,06 98,35±0,07
Alta densidade de objetos + Modificações
na imagem

98,35±0,07 98,10±0,08 98,20±0,08 98,80±0,07 98,05±0,08

Fonte: Elaborado pelo autor.

Tabela 4 – Resultados médios e desvios padrão das métricas de similaridade em dados sintéticos sob
diferentes condições geométricas e fotométricas.

Condição Dice (%) IoU (%)

Bordas ideais 99,80±0,03 99,45±0,04
Bordas ideais + Modificações na imagem 99,55±0,04 99,10±0,05
Bordas irregulares 99,10±0,05 98,70±0,06
Bordas irregulares + Modificações na imagem 98,75±0,06 98,30±0,06
Alta densidade de objetos 98,45±0,07 98,10±0,07
Alta densidade de objetos + Modificações na imagem 98,10±0,08 98,00±0,08

Fonte: Elaborado pelo autor.

Nas condições com bordas ideais, o método apresentou desempenho de altíssima

precisão em todas as métricas, com desvios padrão inferiores a 0,05%. A Acurácia atingiu

99,95% e a Especificidade, 99,97%, evidenciando a elevada capacidade do método em distinguir
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corretamente as regiões de interesse do fundo da imagem. Esses valores indicam que praticamente

todos os pixels de fundo foram classificados corretamente como negativos, resultando em rejeição

precisa do fundo e ocorrência mínima de falsos positivos. Tal comportamento confirma a eficácia

das forças internas de suavização e do mecanismo de regularização geométrica do SEMAC, que

impedem expansões indevidas dos contornos em áreas homogêneas, garantindo estabilidade

mesmo sob discretizações finas.

Com a introdução de modificações fotométricas e ruído leve nas imagens ideais, o

desempenho permaneceu acima de 99% em todas as métricas, com reduções médias inferiores a

0,5% em relação à condição anterior. Essa estabilidade evidencia a robustez da dinâmica dos

contornos, na qual a regularização interna preserva a coerência estrutural mesmo sob pequenas

perturbações externas.

Nos cenários com bordas irregulares, que introduzem deformações locais e irregu-

laridades geométricas, o SEMAC manteve desempenho elevado, com Dice de 99,0% e IoU de

98,7%. A discreta redução em relação ao caso ideal é compatível com o aumento da complexi-

dade morfológica e reflete o comportamento esperado de um ACM estável, em que as forças

internas amortecem as oscilações provocadas por gradientes externos irregulares. Mesmo sob

perturbações fotométricas, o contorno ajusta sua trajetória de forma adaptativa, aderindo às

bordas dominantes e descartando detalhes espúrios, o que explica a pequena variação (<1%) nas

métricas de similaridade. Esses resultados indicam que o método proposto mantém o equilíbrio

energético entre regiões vizinhas, assegurando coerência geométrica e estabilidade multirregional

mesmo sob ruído local ou descontinuidades.

Nas condições de alta densidade de objetos, o SEMAC demonstrou capacidade

discriminativa consistente, mesmo quando as instâncias estavam separadas por margens estreitas

ou apresentavam sobreposições parciais. Essa performance decorre da formulação multirregional

do método, na qual múltiplos contornos evoluem simultaneamente sobre um campo energético

compartilhado. Essa estrutura promove interação indireta entre fronteiras, de modo que a

aproximação de uma curva influencia o gradiente local percebido pelas demais, evitando fusões

indevidas e preservando a integridade topológica das regiões. A ação combinada das forças

internas e da energia externa aprendida garante separabilidade morfológica e continuidade

espacial, mantendo Dice e IoU próximos de 98% mesmo sob sobreposição parcial ou interferência

de gradientes.

A Figura 19 apresenta a distribuição conjunta das métricas de segmentação nos
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seis cenários sintéticos avaliados. O gráfico radar permite observar, de forma integrada, o

equilíbrio entre as diferentes métricas de desempenho, sendo que cada eixo representa uma

métrica normalizada em relação ao valor máximo obtido. Assim, quanto mais regular e expandido

for o polígono formado, maior é a uniformidade e a robustez do método nos distintos aspectos

de avaliação.

Figura 19 – Distribuição conjunta das métricas de segmentação nos seis cenários sintéticos avaliados.
Acc

Prec

Sens

EspecMCC

Dice

IoU

98,0%

98,5%

99,0%

99,5%

100%

Bordas ideais

Bordas ideais + Modificações na imagem

Bordas modificadas

Bordas irregulares + Modificações na imagem

Alta densidade de objetos

Alta densidade de objetos + Modificações na imagem

Fonte: Elaborado pelo autor.

Observa-se que o SEMAC mantém desempenho consistente e equilibrado em todos

os eixos, com valores superiores a 98% em todas as métricas. Nos cenários com bordas

ideais e irregulares, o radar exibe uma forma hexagonal quase regular e próxima ao limite
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máximo, evidenciando uniformidade de desempenho e estabilidade numérica durante a evolução

dos contornos. Esse comportamento confirma que o SEMAC preserva coerência estrutural

e fidelidade de fronteira mesmo em condições regulares ou levemente irregulares, mantendo

variações inferiores a 1% entre os eixos avaliados.

Com o aumento da complexidade geométrica e fotométrica, especialmente nos

cenários de alta densidade de objetos e presença de ruído, observa-se uma leve contração do

polígono, concentrada na métricas IoU. Essa tendência é comum em tarefas de segmentação

com múltiplas instâncias adjacentes, nas quais pequenas imprecisões de fronteira reduzem o

valor dessas métricas. Ainda assim, o SEMAC atenua esse efeito graças à sua formulação

multirregional, que preserva a separabilidade entre curvas e evita fusões indevidas mesmo sob

alta densidade ou interferência local. Como resultado, as reduções permanecem inferiores a 2%,

demonstrando consistência geométrica e estabilidade energética mesmo sob sobreposição parcial

e ruído.

De modo geral, a análise dos seis conjuntos sintéticos demonstra que o SEMAC man-

tém alta precisão e coerência morfológica em diferentes condições geométricas e fotométricas.

As forças internas garantem suavidade e continuidade dos contornos, enquanto a energia externa

derivada do campo de evidência fornece orientação contextual que guia a curva para as fronteiras

estruturalmente mais relevantes. Essa integração entre a formulação clássica e a informação

semântica resulta em segmentações robustas, estáveis e morfologicamente consistentes, com

variação global inferior a 2,0% entre o cenário ideal e o mais complexo.

4.1.2 Resultados Qualitativos

A análise qualitativa das segmentações em dados sintéticos tem como objetivo

complementar as avaliações quantitativas apresentadas na Subseção 4.1.1, oferecendo uma

visão mais detalhada e visual sobre o comportamento evolutivo dos contornos e a dinâmica de

equilíbrio das forças internas e externas. Por meio das ilustrações a seguir, é possível observar a

forma como o SEMAC responde a diferentes condições geométricas e fotométricas, permitindo

interpretar visualmente os efeitos de regularização, estabilização e adaptação morfológica ao

longo do processo de evolução.

A Figura 20 ilustra a evolução do processo de segmentação em amostras com bordas

regulares e fundo uniforme, enquanto a Figura 21 apresenta resultados em amostras irregulares

artificialmente, simulando variações estruturais e ruídos locais. Nas duas situações, observa-
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Figura 20 – Evolução dos contornos ativos em dados sintéticos com bordas regulares, mostrando amostras
sem modificações artificiais. As curvas verdes indicam o contorno evolutivo em diferentes iterações,
evidenciando convergência estável e coerência geométrica.

Iteração 1 Iteração 3 Iteração 5 Iteração 7

Iteração 1 Iteração 3 Iteração 5 Iteração 8

Fonte: Elaborado pelo autor.

se que as curvas verdes representam as posições sucessivas do contorno ativo ao longo das

iterações, evidenciando o processo de contração progressiva até o equilíbrio energético. A

convergência ocorre rapidamente nas primeiras etapas, com retração suave das curvas em direção

às fronteiras dos objetos, demonstrando estabilidade e coerência geométrica mesmo sob pequenas

perturbações. Os resultados visuais estão em conformidade com as métricas quantitativas, nas

quais o desempenho manteve-se alto, confirmando a consistência da energia formulada sob

diferentes condições sintéticas.

As Figuras 22 e 23 apresentam exemplos com bordas degradadas e perturbações

fotométricas. Mesmo diante dessas irregularidades, o contorno mantém a direção dominante do

gradiente e converge para mínimos locais compatíveis com as bordas reais, evitando vazamentos

ou desvios para áreas externas, mesmo quando o brilho do fundo se aproxima do interior do

objeto. Em regiões com concavidades mais acentuadas, observa-se um ajuste gradual da curva

por etapas sucessivas, até o fechamento completo das reentrâncias, sem perda de continuidade

ou coerência geométrica.

Essa dinâmica explica o discreto aumento de variabilidade nas métricas de Sensibili-

dade e IoU, enquanto a Acurácia e o MCC permanecem elevadas, refletindo a baixa incidência

de falsos positivos e a estabilidade geral da segmentação.
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Figura 21 – Evolução dos contornos ativos em dados sintéticos com bordas regulares, mostrando amostras
com modificações artificiais. As curvas verdes indicam o contorno evolutivo em diferentes iterações,
evidenciando convergência estável e coerência geométrica.

Iteração 1 Iteração 3 Iteração 5 Iteração 6

Iteração 1 Iteração 3 Iteração 5 Iteração 6

Fonte: Elaborado pelo autor.

Figura 22 – Evolução do processo de segmentação em dados sintéticos com bordas irregulares. As
amostras exibem condições sem modificações artificiais. As curvas verdes representam o contorno ativo
ao longo das iterações, demonstrando convergência uniforme e preservação da geometria das bordas.

Iteração 1 Iteração 4 Iteração 6 Iteração 8

Iteração 1 Iteração 3 Iteração 5 Iteração 8

Fonte: Elaborado pelo autor.
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Figura 23 – Evolução do processo de segmentação em dados sintéticos com bordas irregulares e
modificações artificiais. Observa-se a capacidade do método em manter estabilidade e coerência mesmo
sob perturbações locais e sobreposição de fronteiras.

Iteração 1 Iteração 4 Iteração 6 Iteração 8

Iteração 1 Iteração 3 Iteração 5 Iteração 7

Fonte: Elaborado pelo autor.

A Figura 24 demonstra o comportamento do SEMAC em condições de alta densidade

de objetos, compostas por múltiplas instâncias próximas. O contorno evolutivo preserva as

fronteiras de separação mesmo quando a distância entre objetos é reduzida e os gradientes se

interferem mutuamente. Em regiões de aglomeração com gargalos estreitos, observa-se que

a curva aproxima-se simultaneamente de duas bordas e realiza o descolamento apenas após

o aumento local do contraste, evitando fusões indesejadas. Nas áreas em que a textura de

fundo introduz ruído pontual, o contorno mantém trajetória estável e suprime variações isoladas,

indicando que a energia externa penaliza deslocamentos sem suporte espacial consistente.

As Figuras 26, 27 e 28 apresentam amostras representativas do conjunto sintético,

ilustrando a correspondência entre as segmentações obtidas pelo SEMAC e o respectivo padrão-

ouro. Para cada caso, são exibidas: (i) a imagem original, (ii) o GT, (iii) a segmentação predita e

(iv) a sobreposição entre GT e predição, evidenciando o grau de coincidência entre as regiões

segmentadas.

Na Figura 26, referente ao cenário de bordas regulares, observa-se uma sobreposição

praticamente completa entre as regiões de GT e as predições. As formas geométricas são

reproduzidas com alta fidelidade, sem ocorrência de falsos positivos ou vazamentos nas fronteiras.

O resultado reforça a estabilidade do SEMAC em condições ideais, nas quais as transições de
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Figura 24 – Evolução dos contornos ativos em dados sintéticos com alta densidade de objetos. As curvas
verdes representam o contorno evolutivo ao longo das iterações, evidenciando estabilidade e preservação
das fronteiras entre regiões adjacentes.

Iteração 1 Iteração 3 Iteração 4 Iteração 6

Iteração 1 Iteração 3 Iteração 5 Iteração 7

Fonte: Elaborado pelo autor.

Figura 25 – Evolução dos contornos ativos em dados sintéticos com alta densidade de objetos e
modificações artificiais na imagem. Observa-se a capacidade do método em manter estabilidade e
coerência mesmo sob perturbações locais e sobreposição de fronteiras.

Iteração 1 Iteração 3 Iteração 5 Iteração 8

Iteração 1 Iteração 3 Iteração 5 Iteração 7

Fonte: Elaborado pelo autor.
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intensidade são abruptas e bem definidas. Essa precisão visual está em plena concordância com

as métricas quantitativas superiores a 99% apresentadas na Subseção 4.1.1.

A Figura 27 apresenta amostras com bordas deterioradas e ruído fotométrico. Mesmo

diante de variações de contraste e gradientes de iluminação, o método preserva a coerência mor-

fológica e a correspondência espacial entre as regiões segmentadas e o padrão-ouro. Observa-se,

em particular, que na primeira amostra da Figura 27 o corpo e a cabeça do boneco, posici-

onados em proximidade extrema, são corretamente identificados como objetos distintos, em

conformidade com a referência. Esse comportamento confirma a capacidade do SEMAC em

lidar com situações de contato entre estruturas, aspecto essencial em contextos biomédicos

com células. Além disso, nas demais formas, as bordas exibem leve suavização sem perda

geométrica, demonstrando que o campo energético se adapta às variações locais de intensidade

sem comprometer a integridade das regiões segmentadas.

Na Figura 28, correspondente ao cenário de alta densidade de objetos, o SEMAC

mantém desempenho consistente mesmo sob sobreposição parcial e interferência mútua entre

gradientes. A sobreposição entre GT e predição evidencia coincidência quase integral nas regiões

internas, com pequenas divergências apenas em zonas de contato muito estreito, onde ocorre

subsegmentação discreta. Ainda assim, as fronteiras permanecem bem definidas, e o método

preserva a separação entre instâncias adjacentes, aspecto particularmente notável diante do

elevado número de objetos e do ruído visual adicionado. Visualmente, observa-se que o SEMAC

reproduz adequadamente tanto as formas regulares quanto as irregulares, mantendo proporção,

área e continuidade geométrica compatíveis com o padrão-ouro.

O SEMAC demonstrou quatro propriedades qualitativas essenciais sob condições

regulares e perturbadas: (i) estabilidade inicial com rápida aderência às bordas em cenários

regulares, alcançando convergência em poucas iterações; (ii) robustez frente a gradientes fotomé-

tricos suaves, com correção progressiva de oscilações intermediárias até atingir mínimos locais

coerentes com as bordas reais; (iii) resistência a vazamentos em regiões de baixo contraste e

ruído pontual, refletida na manutenção de alta precisão e especificidade; e (iv) preservação da

separação entre objetos adjacentes em contextos de alta densidade, realizando ajustes finos que

evitam fusões indevidas e asseguram coerência morfológica. Essas propriedades explicam as

pequenas reduções observadas nas métricas de sobreposição sob perturbações moderadas.

As evidências visuais complementam as análises quantitativas e confirmam que o

processo de minimização de energia permanece estável e eficaz diante de variações controladas
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Figura 26 – Visualização qualitativa da segmentação em duas amostras sintéticas.
Amostra 76

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 105

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.



84

Figura 27 – Visualização qualitativa da segmentação em duas amostras sintéticas com bordas irregulares,
com e sem modificações na imagem.

Amostra 44

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 16

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.
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Figura 28 – Visualização qualitativa da segmentação em duas amostras sintéticas com alta densidade de
objetos, com e sem modificações na imagem.

Amostra 54

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 71

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.
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de geometria, textura e iluminação. O método mantém a coerência estrutural das segmentações

e apresenta correspondência espacial consistente com o padrão-ouro, indicando bom potencial

de generalização para imagens biomédicas reais, mesmo na presença de formas irregulares,

gradientes de iluminação ou ruído de aquisição.

De forma integrada, os resultados do conjunto sintético demonstram que o SEMAC

apresenta comportamento estável e coerente do ponto de vista energético em ambientes con-

trolados. A análise conjunta das Figuras 20 a 28, aliada às métricas quantitativas, evidencia a

capacidade do método de preservar a integridade geométrica e topológica das regiões de interesse

mesmo sob perturbações moderadas.

Esses achados consolidam a etapa de validação inicial do método, estabelecendo um

referencial de desempenho sob condições ideais e semi-perturbadas. Essa base experimental

confirma a eficiência do mecanismo de minimização de energia e fornece sustentação teórica

e empírica para sua aplicação em imagens biomédicas reais, nas quais as variações de textura,

contraste e artefatos de aquisição impõem desafios substancialmente maiores à convergência e à

estabilidade do processo de segmentação.

4.2 Cenário Generalista

Concluída a etapa de validação em condições controladas, esta seção apresenta

a aplicação do SEMAC em imagens reais, provenientes de diferentes domínios biomédicos.

O objetivo é avaliar sua capacidade de generalização diante de variações naturais de textura,

contraste e presença de artefatos, aspectos que tornam a segmentação mais desafiadora em

contextos experimentais e clínicos.

As subseções seguintes abordam separadamente dois conjuntos representativos:

lesões cutâneas (Seção 4.2.1) e células sanguíneas (Seção 4.2.2). Em ambos os casos, são

apresentadas análises quantitativas e qualitativas, com comparações frente a métodos de referên-

cia da literatura, a fim de verificar o desempenho e a adaptabilidade do SEMAC em domínios

visualmente distintos.

4.2.1 Segmentação de lesões cutâneas

As lesões cutâneas constituem um dos desafios mais complexos da VC aplicada à

área da saúde, em razão da ampla diversidade de formas, texturas e contrastes, além da presença
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de artefatos de aquisição como pelos, reflexos e variações de iluminação. Essas características

produzem bordas irregulares e transições sutis entre pele saudável e lesão, tornando a segmen-

tação uma tarefa sensível a pequenas variações fotométricas e estruturais. O SEMAC, por sua

formulação multirregião, permite delinear simultaneamente N regiões de interesse, incluindo o

caso particular de uma única lesão (N=1), mantendo coerência geométrica e estabilidade durante

o processo evolutivo.

4.2.1.1 Resultados Quantitativos

Sob essas condições adversas, o SEMAC preservou estabilidade evolutiva e boa

aderência às fronteiras das lesões, evitando desvios em regiões de baixo gradiente ou bordas

difusas, situações em que abordagens puramente clássicas ou redes neurais supervisionadas

tendem a perder definição ou gerar sobresegmentações.

A Tabela 5 apresenta as métricas obtidas no conjunto ISIC 2018, comparadas a

abordagens recentes da literatura. O SEMAC atingiu Acurácia de 95,90%, Sensibilidade de

94,20% e Especificidade de 96,40%, refletindo uma segmentação equilibrada, capaz de detectar

adequadamente as regiões patológicas sem comprometer a preservação do fundo. A Precisão

de 90,80% indica que a maioria dos pixels classificados como lesão corresponde efetivamente

à área de interesse, enquanto o MCC = 90,87% confirma a correlação positiva entre predição

e referência, mesmo sob variações de forma e textura. O SEMAC apresentou desempenho

equilibrado, sem sacrificar sensibilidade em prol de especificidade ou vice-versa.

Tabela 5 – Resultados comparativos em métricas quantitativas para segmentação em imagens de pele.
Método Referência ACC (%) Prec (%) Sens (%) Espec (%) MCC (%)

SEMAC Método proposto 95,90 90,80 94,20 96,40 90,87
GFANet Qiu et al. (2023) 96,29 – 90,75 97,79 –
FAT-Net Wu et al. (2022) 95,78 – 91,00 96,99 –
ADF-Net Huang et al. (2024) 96,70 – 92,34 97,41 –
ASP-VMUNet Bao et al. (2025) 93,83 – 89,97 95,33 –

Fonte: Elaborado pelo Autor.

Em termos quantitativos, o SEMAC apresenta desempenho competitivo em relação

às arquiteturas baseadas em convoluções profundas e aos modelos híbridos com mecanismos de

atenção. Embora apresente uma Acurácia ligeiramente inferior à ADF-Net (diferença de apenas

0,8%), o método proposto demonstra maior consistência global (MCC = 90,87%), o que indica

melhor equilíbrio entre verdadeiros positivos e negativos e menor propensão à sobresegmentação.

Esse comportamento decorre da natureza controlada da evolução dos contornos, em que as
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forças internas atuam como um mecanismo de regularização geométrica, impedindo a expansão

indevida sobre regiões de fundo com gradiente ambíguo. Com isso, o SEMAC tende a formar

fronteiras mais compactas e semanticamente coerentes, limitando o avanço dos contornos a áreas

efetivamente suportadas pela evidência fotométrica e mantendo estabilidade mesmo em imagens

com contraste difuso.

Entre os métodos comparativos, o GFANet (Qiu et al., 2023) integra múltiplos

níveis de atenção reversa para realçar bordas e suprimir ruído de fundo. Essa abordagem obtém

elevada Especificidade (97,79%), indicando forte capacidade de rejeitar regiões não lesionadas,

mas tende à subsegmentação em áreas de textura irregular. Isso ocorre porque o refinamento

progressivo das bordas, embora eficaz em contornos nítidos, reduz a resposta em gradientes sutis,

levando à omissão parcial de regiões com baixo contraste.

O FAT-Net (Wu et al., 2022), por sua vez, combina convoluções e transformadores

para capturar dependências de longo alcance, o que resulta em maior Sensibilidade (91,00%) e

melhor cobertura da área lesionada. No entanto, esse ganho vem acompanhado de leve queda na

Especificidade e aumento expressivo no custo computacional, devido à sobreposição de múltiplos

módulos de atenção global.

A ADF-Net (Huang et al., 2024) constitui uma evolução direta dessa linha de

pesquisa, ao introduzir mecanismos de atenção focal adaptativa e fusão dual de características.

Essa arquitetura alcança um equilíbrio consistente entre contexto local e global, aprimorando

a distinção entre bordas e fundo. No entanto, sua eficiência depende fortemente do ajuste de

hiperparâmetros e da disponibilidade de grandes conjuntos de dados rotulados, o que limita sua

capacidade de generalização para domínios distintos.

Por fim, o ASP-VMUNet (Bao et al., 2025) utiliza convoluções atrous e o módulo

Mamba para ampliar o campo receptivo sem perda de resolução espacial. Apesar disso, o

SEMAC não reproduz o mesmo nível de desempenho global, sugerindo que a simples expansão

da área de contexto não é suficiente para resolver ambiguidades topológicas ou inconsistências

fotométricas nas bordas das lesões.

Em contraste com as abordagens anteriores aplicadas a esse mesmo conjunto de

dados, o SEMAC adota uma formulação energética explícita, na qual a evolução dos contornos

é guiada por um campo de evidência a partir dos dados. Essa estrutura combina aprendizado

supervisionado profundo com princípios físicos de otimização, conferindo ao SEMAC maior

interpretabilidade e estabilidade numérica, ao mesmo tempo em que reduz a dependência de
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ajustes empíricos e mecanismos de atenção complexos. Enquanto as redes puramente neurais

ajustam suas fronteiras com base em correlações estatísticas locais, o SEMAC realiza uma

otimização física sobre o campo de evidência, modulando dinamicamente as forças de contração

e expansão conforme a coerência morfológica das regiões. O resultado é uma segmentação mais

regularizada e semanticamente consistente, capaz de preservar detalhes anatômicos relevantes

sem comprometer o equilíbrio entre fidelidade geométrica e robustez numérica. Essas propri-

edades tornam o método particularmente adequado para aplicações biomédicas, nas quais a

precisão de fronteira e a interpretabilidade do processo são tão importantes quanto o desempenho

quantitativo.

A Tabela 6 apresenta as métricas de similaridade, que quantificam o grau de sobre-

posição entre as máscaras preditas e as de referência. O SEMAC alcançou IoU de 85,90% e

Dice de 92,30%, com ganhos de 3,9% e 3,3% em relação ao FAT-Net, e de 2,2% e 2,1% sobre o

GFANet, respectivamente. Esses valores indicam que o campo de evidência conduz a evolução

dos contornos de forma estável e contínua, favorecendo segmentações coesas e menos sensíveis

a variações de textura, contraste e iluminação.

Tabela 6 – Resultados comparativos em métricas de similaridade para segmentação em imagens de pele.

Método Referência IoU (%) Dice (%)

SEMAC Método proposto 85,90 92,30
GFANet Qiu et al. (2023) 83,66 90,13
FAT-Net Wu et al. (2022) 82,02 89,03
ADF-Net Huang et al. (2024) 84,52 90,82
ASP-VMUNet Bao et al. (2025) 80,32 89,09

Fonte: Elaborado pelo Autor.

A diferença entre o desempenho do SEMAC e o das principais arquiteturas do estado

da arte é inferior a 1,5% em IoU, situando-se dentro da variabilidade experimental esperada.

Essa proximidade demonstra que a integração entre aprendizado supervisionado e formulação

energética é capaz de sustentar altos níveis de similaridade sem recorrer a mecanismos explícitos

de atenção ou regularizações complexas. A estrutura híbrida do SEMAC, ao combinar princípios

físicos de contorno com aprendizado profundo, equilibra generalização e controle morfológico,

assegurando estabilidade e reprodutibilidade das segmentações.

As arquiteturas puramente neurais, como FAT-Net e ADF-Net, tendem a sobreajustar

em regiões de baixo contraste devido à natureza local de seus mapas de atenção. No SEMAC, a

ação conjunta das forças internas e externas suaviza essas oscilações e estabiliza a fronteira em
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áreas ambíguas. Esse equilíbrio entre coerência geométrica e orientação contextual resulta em

segmentações mais homogêneas e previsíveis, reduzindo a variabilidade estatística e preservando

a integridade das bordas.

Do ponto de vista conceitual, o SEMAC integra a formulação clássica dos contornos

ativos ao aprendizado profundo supervisionado, realizando uma otimização física sobre o campo

de evidência. Seu comportamento estável decorre do ajuste dinâmico entre as forças internas,

que impõem continuidade e suavidade, e a energia externa, que conduz a curva em direção às

bordas semanticamente consistentes. Essa formulação preserva a interpretabilidade geométrica e

assegura robustez diante de ruídos e variações estruturais, evidenciando potencial para aplicações

clínicas que exigem precisão morfológica e reprodutibilidade.

A Figura 29 apresenta a distribuição das métricas de desempenho obtidas pelo

método proposto na segmentação de lesões cutâneas. Observa-se baixa variabilidade e elevada

consistência entre execuções, com desvios padrão inferiores a 1,1% nas principais métricas. Esse

comportamento demonstra que o SEMAC mantém estabilidade sob diferentes configurações de

inicialização e ajustes de hiperparâmetros, preservando a robustez dos resultados obtidos.

Figura 29 – Distribuição das métricas de desempenho na segmentação de lesões cutâneas por meio de
boxplots. Cada boxplot representa a dispersão dos valores obtidos nas imagens do conjunto de teste.
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Fonte: Elaborado pelo autor.

As métricas de Acurácia (95,90%) e Precisão (90,80%) apresentam caixas compactas

e whiskers curtos, evidenciando uma distribuição concentrada e alto grau de reprodutibilidade.



91

Esse comportamento confirma a capacidade do SEMAC em identificar corretamente as regiões

lesionadas, minimizando erros de classificação e assegurando resultados consistentes. A Espe-

cificidade, com média de 96,40% e desvio padrão de apenas 0,4%, destaca-se como a métrica

mais estável, indicando que o método controla de forma eficiente a expansão dos contornos e

evita a inclusão de áreas de fundo. Já a Sensibilidade, embora apresente leve dispersão (σ =

0,9%), mantém valores médios acima de 94%, reforçando a habilidade do SEMAC em capturar

fronteiras difusas sem comprometer a integridade geométrica da segmentação.

As métricas de similaridade IoU (85,90%) e Dice (92,30%) evidenciam a fidelidade

geométrica das segmentações, com sobreposição elevada entre predições e anotações de refe-

rência. A amplitude interquartil moderada indica que o SEMAC mantém coerência estrutural

mesmo em cenários visuais adversos. Por fim, o valor de MCC igual a 90,87%, com desvio

padrão σ de 0,85, demonstra o equilíbrio entre falsos positivos e falsos negativos, validando a

estabilidade global do método proposto.

De modo geral, o SEMAC combina a estrutura geométrica dos contornos ativos com

a expressividade estatística do campo de evidência, alcançando desempenho comparável ao de

arquiteturas profundas recentes, mas com menor sensibilidade à quantidade de dados e maior

estabilidade interpretável. Em vez de depender exclusivamente da generalização de redes, o

SEMAC fundamenta sua evolução em princípios energéticos explícitos, nos quais o campo de

evidência atua como modulador contextual das forças internas e externas.

4.2.1.2 Resultados Qualitativos

A Figura 30 ilustra a evolução do processo de segmentação em imagens de pele ao

longo das iterações do SEMAC. São apresentadas cinco amostras representativas que abrangem

diferentes condições visuais, permitindo observar como o SEMAC se adapta a distintos graus de

complexidade. As amostras 4 e 9 exemplificam casos de baixo contraste entre a lesão e o tecido

saudável, nas quais o contorno evolui de forma progressiva até estabilizar nas fronteiras reais. A

amostra 15 corresponde a uma borda nítida e bem delimitada, evidenciando convergência rápida

e regularidade geométrica. Já as amostras 86 e 197 ilustram situações de maior irregularidade

morfológica, com bordas descontínuas e texturas heterogêneas, nas quais o método ajusta o

contorno de modo incremental, mantendo continuidade e coerência estrutural ao longo da

evolução.

Nas iterações iniciais, o contorno parte de uma configuração retangular que delimita



92

Figura 30 – Evolução do processo de segmentação em imagens de pele pelo SEMAC. Cada linha
corresponde a uma amostra distinta, enquanto as colunas representam diferentes estágios iterativos.
Observa-se a progressiva adaptação das curvas de contorno (em verde) desde a inicialização retangular até
a convergência final às bordas reais da lesão.

Amostra 4
Iteração 1 Iteração 2 Iteração 6 Iteração 7

Amostra 9
Iteração 1 Iteração 3 Iteração 5 Iteração 6

Amostra 15
Iteração 1 Iteração 4 Iteração 6 Iteração 8

Amostra 86
Iteração 1 Iteração 3 Iteração 6 Iteração 7

Amostra 197
Iteração 1 Iteração 2 Iteração 4 Iteração 6

Fonte: Elaborado pelo autor.
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de forma ampla a região suspeita. À medida que o processo evolui, essa forma inicial se deforma

gradualmente, adaptando-se às variações fotométricas e morfológicas até aderir com precisão às

bordas reais da lesão. O ritmo de convergência varia conforme o tamanho e a complexidade das

estruturas segmentadas. Lesões extensas, como a Amostra 4, alcançam estabilização rapidamente,

pois o contorno inicial já cobre boa parte da área de interesse, exigindo apenas correções

marginais nas fronteiras.

Em contrapartida, em lesões menores (como nas Amostras 4 e 15), observa-se um

processo mais gradual e refinado. Nessas situações, o contorno precisa contrair-se de forma

controlada ao longo das iterações para capturar as nuances da região patológica, ajustando a

curvatura local até que a segmentação se estabilize de maneira coerente e morfologicamente fiel.

A Figura 31 apresenta uma análise qualitativa dos resultados obtidos pelo SEMAC

na segmentação de lesões cutâneas. Para cada amostra, são exibidas: (i) a imagem original;

(ii) a máscara de referência anotada manualmente (GT); (iii) a segmentação predita; e (iv)

a sobreposição entre GT e predição, evidenciando o grau de coincidência entre as regiões

segmentadas. Observa-se que, nas três amostras, o SEMAC delineia com precisão as regiões de

interesse, mantendo boa aderência às bordas reais. As diferenças entre GT e predição concentram-

se nas extremidades das lesões, associadas a pequenas irregularidades geométricas ou a variações

sutis de tonalidade, típicas de imagens dermatoscópicas. Esses resultados demonstram que

o método mantém a integridade morfológica das lesões e reduz significativamente erros de

subsegmentação e supersegmentação.

Esse comportamento reforça que a formulação multicontorno lida de forma eficaz

com heterogeneidade de textura, variações de contraste e interferências externas, ajustando-se

dinamicamente à complexidade e ao tamanho da lesão. O número distinto de iterações até a

convergência entre amostras reflete essa adaptabilidade, indicando que o processo evolutivo é

guiado por critérios energéticos locais em vez de depender de um número fixo de passos.

A análise qualitativa complementa as evidências quantitativas, mostrando que o

SEMAC é capaz de evoluir de aproximações iniciais amplas até contornos precisos e estáveis,

mesmo sob condições desafiadoras. Essa consistência visual, aliada ao desempenho numérico

elevado, consolida o método como uma alternativa eficaz e confiável para a segmentação

automática de lesões de pele.
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Figura 31 – Visualização qualitativa de duas amostras de lesões cutâneas. Para cada caso, são
apresentadas: (i) a imagem original; (ii) a sobreposição do GT; (iii) a segmentação predita pelo SEMAC;
e (iv) a sobreposição entre a GT e a predição.

Amostra 49

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 101

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.
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4.2.2 Segmentação de Células Sanguíneas

Após a etapa de avaliação em imagens de pele, o SEMAC foi aplicado ao domínio

de células sanguíneas, com o objetivo de analisar seu desempenho em estruturas de menor

escala e alta densidade espacial em casos reais. Diferentemente das lesões cutâneas, que

geralmente apresentam uma única região de interesse bem delimitada, as imagens microscópicas

de sangue contêm múltiplos objetos próximos e com fronteiras pouco contrastantes. Essas

características impõem desafios adicionais ao processo de segmentação, exigindo que o SEMAC

preserve a individualidade das instâncias, mantenha a separação entre células adjacentes e lide

adequadamente com interferências provocadas por ruído e sobreposição óptica.

4.2.2.1 Resultados Quantitativos

A avaliação quantitativa no domínio das células sanguíneas, apresentada na Tabela 7,

evidencia que o SEMAC mantém desempenho elevado mesmo em um cenário caracterizado

por alta densidade estrutural, sobreposição de instâncias e contraste variável entre fundo e

objeto. O SEMAC obteve Acurácia de 96,24%, Precisão de 95,60%, Sensibilidade de 93,10%,

Especificidade de 97,90% e MCC de 91,40%, indicando equilíbrio consistente entre detecção e

rejeição de regiões, com controle efetivo de falsos positivos e negativos.

Tabela 7 – Resultados comparativos em métricas quantitativas para segmentação em imagens de células
sanguíneas.

Método Referência ACC (%) Prec (%) Sens (%) Espec (%) MCC (%)

SEMAC Método proposto 96,24 95,60 93,10 97,90 91,40

CellSegUNet Depto et al. (2021) 97,60 – – – –

Fonte: Elaborado pelo autor.

A formulação do SEMAC evita tanto a fusão indevida de células adjacentes quanto a

fragmentação excessiva de estruturas contínuas, problemas recorrentes em métodos puramente

convolucionais aplicados a imagens microscópicas. A elevada Especificidade (97,90%) evidencia

que o SEMAC controla de forma eficaz a expansão dos contornos, impedindo a incorporação de

áreas de fundo, enquanto a Sensibilidade (93,10%) confirma sua capacidade de detectar fronteiras

sutis mesmo sob ruído e baixa definição óptica. O valor de MCC superior a 90% reforça a

estabilidade global do equilíbrio entre verdadeiros e falsos classificadores, demonstrando a

robustez do processo evolutivo diante de variações topológicas e heterogeneidade intra-amostra.

Em comparação ao CellSegUNet (Metlek, 2024), o SEMAC apresenta desempenho
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Tabela 8 – Resultados comparativos em métricas de similaridade para segmentação em imagens de células
sanguíneas. O estudo de Depto et al. (2021) avaliou diversos métodos de segmentação aplicados ao
mesmo conjunto de dados de células sanguíneas, possibilitando uma comparação direta de desempenho
entre as abordagens.

Método Referência Dice (%) IoU (%)

SEMAC Método proposto 94,80 90,10
Otsu’s Method Depto et al. (2021) 92,60 86,50
BHT Depto et al. (2021) 52,50 49,48
Watershed Depto et al. (2021) 78,21 68,21
U-Net Depto et al. (2021) 93,09 87,16
U-Net++ Depto et al. (2021) 88,80 81,44
TernausNet Depto et al. (2021) 93,38 87,65
R2U-Net Depto et al. (2021) 86,70 77,70
Attention U-Net Depto et al. (2021) 91,00 83,70
Attention R2U-Net Depto et al. (2021) 78,50 65,20
FCN Depto et al. (2021) 85,40 75,20
DeepLabv3+ Toptaş e Hanbay (2023) 96,00 91,00
CellSegUNet Metlek (2024) 97,10 92,70

Fonte: Elaborado pelo autor.

competitivo, alcançando 94,80% de Dice e 90,10% de IoU, valores apenas 2,30 p.p. e 2,60 p.p.

inferiores, respectivamente, aos do modelo supervisionado especializado. Essa proximidade

de resultados é relevante considerando que o SEMAC adota uma formulação que engloga

aprendizado profundo e dinâmica geométrica, mantendo estrutura explicável e estabilidade

física mesmo sem ajustes específicos para o domínio hematológico. Enquanto o CellSegUNet

foi projetado exclusivamente para a segmentação de células sanguíneas, o SEMAC conserva

desempenho semelhante com uma arquitetura mais genérica e interpretável.

Como mostrado na Tabela 8, o SEMAC supera métodos clássicos como Watershed e

BHT, com ganhos expressivos tanto em Dice e em IoU, além de apresentar resultados superiores

a arquiteturas intermediárias como U-Net (+1,71% em Dice e +2,94% em IoU) e TernausNet

(+1,42% e +2,45%, respectivamente). Em relação ao DeepLabv3+ (Toptaş; Hanbay, 2023),

modelo de segmentação genérica amplamente utilizado, o desempenho do SEMAC difere em

apenas 1,2% em IoU e 1,2% em Dice, mantendo, contudo, maior regularidade e estabilidade

morfológica nas fronteiras segmentadas.

A diferença observada em relação aos modelos de referência reflete a natureza inte-

grada do SEMAC, no qual o campo de evidência atua como componente ativo do processo de

evolução geométrica. Em vez de operar de forma puramente paramétrica, o SEMAC traduz as

informações aprendidas pela rede em forças energéticas contínuas, que orientam a contração e a



97

expansão dos contornos de acordo com a coerência morfológica da imagem. Essa formulação

confere ao método maior estabilidade e regularidade na convergência, permitindo que as frontei-

ras evoluam de maneira controlada mesmo em regiões de baixo contraste ou com sobreposição

de estruturas. Assim, o desempenho alcançado não decorre apenas da capacidade de aprendizado,

mas da forma como esse aprendizado é incorporado à dinâmica física da segmentação, resul-

tando em previsibilidade, robustez e aderência geométrica superiores em contextos biomédicos

complexos.

A comparação com modelos puramente neurais evidencia diferenças conceituais

relevantes. Enquanto arquiteturas como U-Net, DeepLabv3+ e CellSegUNet dependem de

mecanismos de atenção e convoluções dilatadas para reconstruir o contexto global, o SEMAC

preserva a formulação clássica dos contornos ativos, incorporando o campo de evidência como

componente contínuo da energia externa. Esse campo orienta as forças de fronteira com base em

relações probabilísticas locais e regionais, reforçando gradientes em áreas ambíguas e conduzindo

a uma convergência mais suave e estável. Como consequência, o SEMAC reduz a ocorrência

de sobresegmentação em regiões densas, mantém coerência espacial entre múltiplos objetos e

assegura contornos mais regulares mesmo sob ruído fotométrico ou variação topológica.

A Figura 32 apresenta a distribuição das métricas de desempenho obtidas na segmen-

tação de células sanguíneas. Observa-se alta consistência entre execuções, com desvios padrão

inferiores a 1,2% em todas as métricas, o que evidencia a estabilidade do método diante da

variabilidade morfológica das amostras. A Acurácia (96,24%) e a Precisão (95,60%) concentram-

se em valores elevados, com dispersões reduzidas (σ = 0,65 e σ = 0,75, respectivamente),

indicando excelente capacidade do SEMAC em identificar corretamente as regiões celulares. A

Especificidade, com média de 97,90% e desvio de apenas 0,45%, destaca-se como a métrica mais

estável, refletindo o controle eficaz sobre a delimitação das fronteiras e a exclusão de regiões de

fundo. A Sensibilidade (93,10%), embora apresente variação ligeiramente superior (σ = 1,10),

mantém desempenho consistente mesmo em áreas de sobreposição celular.

O coeficiente de Matthews (MCC = 91,40%, σ = 1,00) confirma o equilíbrio entre

verdadeiros e falsos resultados, reforçando a confiabilidade do processo de segmentação. As

métricas de similaridade, IoU (90,10%) e Dice (94,80%), evidenciam elevada sobreposição entre

as predições e as anotações de referência, com baixa variabilidade interamostral. Essa estabi-

lidade confirma a robustez da integração entre o campo de evidência e a evolução geométrica

dos contornos, favorecendo a obtenção de fronteiras contínuas, coerentes e morfologicamente
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Figura 32 – Distribuição das métricas de desempenho na segmentação de células sanguíneas por meio de
boxplots. Cada boxplot representa a variação dos valores obtidos nas imagens do conjunto de teste.
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Fonte: Elaborado pelo autor.

consistentes. Esses resultados consolidam o SEMAC como uma abordagem interpretável e

generalizável para a segmentação automática de células sanguíneas em contextos clínicos e

laboratoriais.

Os resultados quantitativos indicam que o SEMAC alcança um ponto de equilíbrio

entre desempenho e interpretabilidade, preservando a robustez geométrica observada nas imagens

de pele e estendendo sua aplicabilidade a domínios microscópicos mais complexos. O SEMAC

demonstra capacidade de generalização comparável à de arquiteturas supervisionadas de última

geração, mas com menor dependência de dados anotados e maior explicabilidade estrutural,

aspectos desejáveis em contextos biomédicos que demandam transparência e confiabilidade nos

processos de segmentação automática.

4.2.2.2 Resultados Qualitativos

As Figuras 33 e 34 ilustram a evolução do processo de segmentação em imagens

de células sanguíneas, evidenciando a progressiva adaptação dos contornos ativos (em verde)

às bordas reais das células ao longo das iterações. O comportamento observado demonstra a

capacidade do SEMAC multirregião de evoluir simultaneamente múltiplos contornos (N > 1),

ajustando-os de forma coordenada às diferentes regiões de interesse. Em amostras com células
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isoladas ou levemente agrupadas (Figura 33), a convergência ocorre rapidamente, uma vez que os

contornos interagem minimamente entre si e aderem às fronteiras verdadeiras em poucas iterações.

Por outro lado, em configurações mais densas, como nas amostras que estão na Figura 34, o

processo se torna mais gradual: as curvas competem por regiões adjacentes e precisam de

iterações adicionais até que as fronteiras sejam devidamente separadas e estabilizadas. Esse

comportamento evidencia o caráter adaptativo do SEMAC, cuja evolução iterativa corrige

progressivamente sobreposições e ambiguidades locais, preservando a coerência morfológica e a

independência entre as regiões segmentadas.

A Figura 35 complementa a análise ao comparar os resultados finais do SEMAC

com as máscaras de referência. Nota-se predominância de acertos e baixa incidência de erros

localizados, concentrados principalmente em regiões de sobreposição celular ou de baixo con-

traste fotométrico. Os falsos-negativos ocorrem, em geral, nas bordas parcialmente ocultas por

contato entre células, enquanto pequenos falsos-positivos aparecem em fragmentos residuais

ou em zonas com reflexos ópticos. Ainda assim, a correspondência entre predição e referência

demonstra preservação precisa da morfologia celular, com contornos suaves e aderentes às

fronteiras verdadeiras, evidenciando a eficiência da regulação energética em separar regiões

adjacentes sem distorcer sua geometria.

A análise visual também revela que o processo de evolução multirregião (N > 1)

preserva a independência entre os contornos, evitando tanto fusões indevidas quanto fragmen-

tações artificiais. Em áreas de alta densidade celular, os contornos se estabilizam de forma

cooperativa, ajustando suas fronteiras em resposta às forças de repulsão mútua e à influência do

campo de evidência local. Essa dinâmica garante a delimitação individual das células mesmo em

regiões de contato intenso, onde a distinção morfológica é fundamental para análise quantitativa

posterior. A capacidade do método de manter topologia estável e coerência geométrica ao longo

da evolução reforça sua aplicabilidade em cenários laboratoriais, nos quais pequenas distorções

de fronteira podem comprometer medidas de área ou forma.

A análise qualitativa confirma que o SEMAC preserva com precisão a morfologia

circular ou elíptica típica das células, mantendo estabilidade mesmo sob ruído, variações de

contraste e agrupamentos densos. A interação entre o processo iterativo de evolução e o controle

geométrico das fronteiras assegura segmentações coerentes e contínuas, com contornos regulares

e ausência de distorções estruturais, mesmo em regiões de contato ou sobreposição parcial.

Esse comportamento indica que o SEMAC regula de forma eficaz a competição entre contornos



100

Figura 33 – Evolução do processo de segmentação em imagens de células sanguíneas bem espaçadas,
utilizando o SEMAC. Observa-se a adaptação suave das curvas de contorno (em verde) desde a
inicialização retangular até a convergência final sobre as fronteiras reais, evidenciando a precisão na
delimitação individual das células.

Amostra 4

Iteração 1 Iteração 2

Iteração 5 Iteração 7
Amostra 87

Iteração 1 Iteração 3

Iteração 4 Iteração 7

Fonte: Elaborado pelo autor.
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Figura 34 – Evolução do processo de segmentação em imagens de alta densidade celular pelo SEMAC.
Nota-se a capacidade do método em preservar estabilidade topológica e coerência geométrica mesmo sob
sobreposição e proximidade entre células, assegurando separação consistente das fronteiras.

Amostra 3

Iteração 1 Iteração 3

Iteração 4 Iteração 5
Amostra 61

Iteração 1 Iteração 2

Iteração 5 Iteração 6

Fonte: Elaborado pelo autor.
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Figura 35 – Visualização qualitativa de duas amostras de células sanguíneas.

Amostra 2

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita
Amostra 32

(i) Original (ii) GT

(iii) Predita (iv) GT vs. Predita

Fonte: Elaborado pelo autor.
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vizinhos, equilibrando repulsão e aderência às bordas reais sem comprometer a integridade das

regiões segmentadas.

O desempenho visualmente consistente, aliado à estabilidade morfológica observada,

evidencia que o SEMAC constitui uma abordagem confiável e reprodutível para segmentação

de células sanguíneas. Sua formulação energética orientada por evidência contextual promove

coerência geométrica e previsibilidade de resposta, preservando as fronteiras celulares com

fidelidade mesmo diante de ruído e sobreposição. Essas propriedades reforçam o potencial do

método como uma solução eficiente e interpretável para aplicações biomédicas que demandam

precisão de fronteira e consistência estrutural nas segmentações.

4.3 Análise Geral dos Resultados do SEMAC

Os resultados apresentados ao longo deste capítulo reforçam a consistência e a

eficácia do SEMAC, evidenciando sua capacidade de reproduzir o comportamento esperado

de acordo com os objetivos estabelecidos na Seção 1.3. Observa-se que o método mantém

estabilidade evolutiva, precisão na delimitação das fronteiras e coerência geométrica entre

múltiplas regiões, confirmando a adequação da proposta tanto em cenários sintéticos quanto em

imagens clínicas reais.

4.3.1 Desempenho do SEMAC em Bordas Complexas, Baixo Contraste e Ruído

Os resultados obtidos em regiões de baixo contraste, bordas irregulares e presença de

ruído evidenciam a robustez e a estabilidade do SEMAC em condições adversas de segmentação.

Tais situações são particularmente desafiadoras para abordagens baseadas apenas em gradiente,

que tendem a perder precisão quando as transições fotométricas são suaves ou quando há

variações internas de tonalidade na região de interesse.

Na Figura 36 apresenta-se um exemplo representativo de uma lesão dermatoscópica

caracterizada por bordas pouco definidas e textura heterogênea. Observa-se que, ao longo da

evolução, o SEMAC manteve aderência consistente às fronteiras reais da estrutura, ajustando-se

de forma gradual às variações locais de intensidade sem ser significativamente afetado pelo ruído,

neste caso decorrente da presença de gel sobre a superfície cutânea. O contorno final apresentou

elevada correspondência com o GT fornecido por especialistas (Figura 36.c), preservando a

coerência geométrica mesmo em regiões de baixo contraste e em transições sutis entre pele
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saudável e lesão.

Figura 36 – Desempenho do SEMAC em uma imagem dermatoscópica caracterizada por baixo contraste,
bordas irregulares e variação interna de tonalidade. (a–b) Evolução progressiva do contorno ativo sobre a
lesão, com o campo de forças adaptativo ajustando-se às transições sutis de intensidade; (c) GT fornecido
por especialistas, utilizado como referência; (d) Aderência do método às fronteiras reais mesmo em
regiões com transições suaves e ruído de textura.

(a) (b)

(c) (d)

Fonte: Elaborado pelo autor.

Esse comportamento demonstra a eficiência do campo de forças adaptativo em

redistribuir a energia evolutiva conforme o grau de evidência local, reforçando fronteiras com

contraste reduzido e atenuando flutuações causadas por ruído de textura. Mesmo nas áreas em

que o gradiente fotométrico é insuficiente para definir limites nítidos, o SEMAC manteve a

regularidade e a continuidade das bordas, preservando a forma morfológica da região segmentada.
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Esses resultados reforçam a contribuição do SEMAC para a segmentação de regiões

complexas, evidenciando que a integração entre o campo de evidência e o modelo paramétrico

proporciona uma dinâmica evolutiva estável e semanticamente coerente. A capacidade do método

de preservar a coerência estrutural mesmo sob variações tonais e presença de ruído representa

um avanço significativo em relação às formulações clássicas de contornos ativos, tornando-o

particularmente adequado para aplicações clínicas e científicas em cenários de baixa definição e

alta variabilidade morfológica.

4.3.2 Evolução dos Múltiplos Contornos Ativos e Divisão entre Múltiplas Regiões

Uma das principais capacidades do SEMAC é detectar e processar automaticamente

a divisão entre regiões adjacentes durante o processo evolutivo. À medida que dois segmentos

de contorno se aproximam dentro de uma mesma vizinhança energética, o método identifica

a interseção e executa a operação de divisão, resultando na formação de novos contornos

autônomos (Figura 37.c).

Essa propriedade de autoparticionamento representa um avanço em relação às for-

mulações clássicas de contornos ativos, nas quais o tratamento de múltiplas regiões exige

inicializações independentes ou heurísticas externas. No SEMAC, a divisão topológica emerge

naturalmente da interação entre o campo de evidência e a dinâmica física do contorno, permitindo

que um único contorno inicial se propague, fragmente e se estabilize de acordo com a estrutura

real da imagem.

O resultado é um processo contínuo no qual divisão e estabilização ocorrem de forma

integrada, mantendo a coerência geométrica e a integridade morfológica das regiões segmentadas.

Esse comportamento demonstra o potencial do método para aplicações clínicas e científicas que

exigem a segmentação precisa de múltiplas regiões interconectadas, com fronteiras próximas ou

sobrepostas.

4.3.3 Estabilização Independente e Coerência entre Regiões Próximas

Após o particionamento topológico descrito anteriormente, os contornos resultantes

evoluem de maneira independente e estável, mantendo coerência geométrica mesmo quando

permanecem muito próximos.

A Figura 37 também evidencia essa estabilização local: observa-se a redução pro-

gressiva do módulo das forças externas aplicadas aos pontos do contorno até que o sistema
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Figura 37 – Evolução local dos contornos ativos em imagem microscópica de sangue periférico,
ilustrando o processo de divisão topológica e a estabilização subsequente: (a) aproximação de duas
fronteiras dentro de uma mesma vizinhança energética; (b) interseção e divisão automática; (c) início da
evolução independente dos contornos recém-divididos; (d) estabilização local sobre as respectivas
fronteiras de interesse.

(a) (b)

(c) (d)

Fonte: Elaborado pelo autor.

atinja o equilíbrio, momento em que as forças resultantes se anulam e o contorno cessa sua

movimentação. Esse fenômeno é visualmente indicado pelo desaparecimento dos vetores (setas),

mostrando que cada fronteira se ajusta autonomamente à sua região de interesse.

Além disso, cada contorno estabiliza-se em momentos distintos, caracterizando o

comportamento de parada independente. Como observado na Figura 37.d, determinadas regiões

atingem o equilíbrio energético mais rapidamente, enquanto outras continuam ajustando-se
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até alcançar sua configuração final. Esse mecanismo confirma que o SEMAC não depende de

sincronização global entre os contornos, permitindo que cada um evolua e se estabilize de acordo

com sua própria condição energética local.

O equilíbrio entre as forças internas e externas é alcançado de forma automática e

adaptativa, garantindo estabilidade numérica e coerência geométrica mesmo em regiões de alta

densidade estrutural. Essa capacidade de autorregulação geométrica constitui um dos diferenciais

mais relevantes da proposta, demonstrando que o SEMAC é capaz de preservar simultaneamente

a independência evolutiva e a coerência espacial das múltiplas fronteiras segmentadas.

A Figura 38 ilustra ainda a capacidade do SEMAC de distinguir e segmentar correta-

mente objetos espacialmente próximos, mesmo sob forte interferência de vizinhança. Observa-se

que, à medida que os contornos evoluem, as forças adaptativas atuam de modo local e inde-

pendente, impedindo a fusão entre fronteiras adjacentes e mantendo a delimitação precisa das

células, inclusive em regiões de contato ou de pequeno espaçamento entre membranas. Esse

comportamento demonstra a estabilidade do modelo diante de regiões densamente povoadas e

reforça sua habilidade em preservar a coerência geométrica de cada instância, mesmo quando

múltiplos objetos coexistem em um mesmo domínio energético.

4.3.4 Validação do Campo de Evidência e da Proposta Multirregional

Os resultados experimentais apresentados nas subseções anteriores validam a for-

mulação energética proposta pelo SEMAC, comprovando a coerência entre seus componentes

conceituais e o comportamento observado durante a evolução dos contornos. A combinação

entre o campo de evidência, o modelo físico baseado em contornos ativos paramétricos e a

lógica de divisão topológica adaptativa resultou em um processo evolutivo estável, coerente e

morfologicamente consistente.

A energia externa aprendida demonstrou desempenhar papel determinante na orien-

tação das forças de atração, reforçando a capacidade do método em lidar com regiões de baixo

contraste e ruído, sem comprometer a definição das fronteiras. Essa evidência confirma que o

aprendizado supervisionado contribui para tornar o campo energético mais informativo, atuando

como um guia semântico que complementa as propriedades físicas do modelo.

Entretanto, os resultados também evidenciam que o desempenho global do SEMAC

não depende exclusivamente do termo de energia externa, mas do equilíbrio entre todas as forças

que compõem sua formulação. A estrutura de múltiplos contornos adaptativos, associada à lógica
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Figura 38 – Evolução multirregião em imagem microscópica de sangue, ilustrando a atuação dos vetores
de força adaptativos após a divisão topológica. O SEMAC conduz a contração e a estabilização dos
contornos de forma autônoma, mantendo separação estável entre fronteiras adjacentes. As colunas à
direita mostram ampliações das áreas destacadas, evidenciando a orientação local das forças e sua
redução progressiva até o equilíbrio final.

Fonte: Elaborado pelo autor.
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de divisão automática e à estabilização independente, mostrou-se essencial para garantir que a

evolução ocorra de forma coordenada e sem interferência entre regiões adjacentes. Essa sinergia

entre aprendizado, física e topologia caracteriza a principal contribuição da proposta.

De modo geral, a análise dos resultados confirma que o SEMAC alcança segmenta-

ções multirregionais estáveis e coerentes sem necessidade de múltiplas inicializações ou ajustes

manuais. A integração entre campo de evidência, dinâmica MCA e controle adaptativo de energia

produz um modelo capaz de generalizar seu comportamento em diferentes contextos visuais,

mantendo a coerência geométrica e a consistência semântica das fronteiras segmentadas.
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5 CONCLUSÕES E TRABALHOS FUTUROS

Este trabalho apresentou o SEmantic Multi-Region Active Contour (SEMAC), um

método de segmentação que combina uma formulação de energia externa aprendida, responsável

por orientar a evolução semântica dos contornos, com um mecanismo dinâmico de divisão e

estabilização autônoma, que permite a formação e evolução de múltiplos contornos em paralelo.

A proposta integra a modelagem física dos contornos ativos com o aprendizado supervisionado

de campos de evidência semântica, resultando em segmentações multirregionais com elevada

coerência geométrica e consistência morfológica, mesmo em cenários complexos e sob condições

adversas de ruído e baixo contraste.

A formulação proposta demonstrou que a fusão entre o campo de evidência semântico

e a dinâmica dos contornos ativos gera um processo de segmentação simultaneamente físico e

interpretável. O campo de evidência atua como energia externa semântica, traduzindo padrões

visuais complexos em forças direcionais que guiam o contorno em direção às fronteiras de

interesse. Em paralelo, a modelagem parâmetrica assegura suavidade, continuidade e coerência

topológica, prevenindo oscilações e colapsos que frequentemente comprometem abordagens

puramente supervisionadas. Essa integração entre aprendizado semântico e modelagem de

contornos redefine a segmentação multirregional como um processo dinâmico, adaptativo e

explicável, no qual o comportamento geométrico emerge naturalmente do equilíbrio entre as

forças internas e externas do sistema.

Os experimentos confirmaram a robustez, estabilidade e interpretabilidade do mo-

delo em diferentes contextos. Em imagens sintéticas, o SEMAC apresentou comportamento

controlado e previsível, respondendo de forma coerente a ruídos, irregularidades e perturbações

geométricas. Nas imagens clínicas, obteve resultados expressivos em dermatoscopia e citologia

sanguínea, mantendo a fidelidade das fronteiras mesmo em regiões de baixo contraste ou de

conectividade estrutural complexa. Os mapas de evolução e campos vetoriais evidenciaram a

coerência energética da proposta: as forças adaptativas concentraram-se progressivamente nas

regiões de fronteira até desaparecerem, marcando o instante de equilíbrio e estabilização dos

contornos. Essa característica de autorregulação, observada pelo desaparecimento das setas nas

iterações finais, confirma que o método atinge o equilíbrio físico-energético previsto em sua

formulação.

Outro aspecto de destaque é a autonomia do processo evolutivo. O método é

capaz de iniciar com um único contorno, que se propaga e se divide naturalmente conforme
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a distribuição energética, gerando novos contornos que evoluem e estabilizam-se de forma

independente. Essa lógica de divisão topológica e estabilização autônoma elimina a necessidade

de múltiplas inicializações, permitindo lidar com estruturas complexas e interconectadas sem

perda de coerência geométrica. O resultado é uma segmentação multirregional fluida, contínua e

morfologicamente consistente, na qual cada fronteira se ajusta de modo inteligente à estrutura

real da imagem.

O SEMAC consolida, assim, uma abordagem integrada entre aprendizado supervisi-

onado e modelagem parâmetrica do ACM, demonstrando que é possível incorporar informação

semântica em modelos variacionais sem comprometer a interpretabilidade ou a estabilidade

numérica. A energia externa, tradicionalmente dependente apenas de gradientes fotométricos,

passa a ser representada por um campo semântico, capaz de generalizar entre diferentes domínios

e de se adaptar às características particulares de cada imagem. Essa formulação resultou em

um método leve, explicável e robusto, que combina o raciocínio físico da evolução de contor-

nos com a flexibilidade do aprendizado supervisionado, oferecendo uma alternativa sólida às

segmentações puramente estatísticas ou empíricas.

Apesar dos resultados promissores, o SEMAC ainda apresenta limitações inerentes

à sua formulação contínua e natureza iterativa. Em situações nas quais dois ou mais objetos

distintos encontram-se estruturalmente conectados por pequenas pontes ou regiões de contato, o

modelo tende a interpretá-los como uma única estrutura contínua, não realizando a separação

explícita entre as instâncias. Essa limitação decorre da própria coerência topológica imposta pelo

campo de energia, que privilegia a regularidade geométrica e a preservação da conectividade local

em detrimento da fragmentação entre regiões adjacentes. Além disso, o custo computacional

tende a crescer com o número de regiões e a resolução das imagens, sugerindo a necessidade

de versões paralelas e implementações otimizadas para execução em GPU. Esses aspectos,

contudo, não comprometem a consistência dos resultados, mas indicam caminhos naturais para o

aprimoramento futuro do modelo.

De modo geral, o SEMAC apresentou desempenho consistente, comportamento

previsível e alta coerência estrutural em distintos contextos de segmentação. Sua formulação

contínua e semântico-geométrica constitui uma alternativa eficaz e interpretável para problemas

multirregionais em imagens naturais e biomédicas, reforçando a importância de modelos que

unem aprendizado supervisionado e dinâmica física como uma direção promissora para a

segmentação baseada em energia.
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5.1 Trabalhos Futuros

As contribuições apresentadas neste trabalho abrem diferentes perspectivas de conti-

nuidade e aprimoramento do SEMAC. Entre as direções mais promissoras, destacam-se:

– Extensão tridimensional: desenvolvimento de uma versão 3D do SEMAC, incorporando

campos de evidência volumétricos e superfícies ativas multirregionais, com o objetivo de

ampliar sua aplicabilidade em imagens médicas tomográficas e micrográficas;

– Generalização para novos domínios: avaliação do método em contextos industriais, ambi-

entais e veterinários, a fim de investigar sua capacidade de adaptação a diferentes padrões

de textura, contraste e ruído, bem como sua robustez frente a condições de aquisição

heterogêneas;

– Aprimoramento do controle evolutivo: implementação de estratégias de ponderação adap-

tativa entre as forças internas e externas, com base em propriedades locais da imagem e no

estado energético do contorno, permitindo maior autonomia e estabilidade na evolução;

Essas direções representam oportunidades tanto conceituais quanto tecnológicas,

capazes de expandir o escopo de aplicação do SEMAC e consolidar sua contribuição no avanço

da segmentação semântica explicável e multirregional.
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