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RESUMO 

Neste trabalho consideramos o modelo de Chem-Simons acoplado à campos de 

matéria modificado pela introdução, a nível de árvore, de um termo do tipo Pauli, ou seja 

um acoplamento de momento magnético anômalo. A introdução deste termo é efetuada pela 

inclusão de uma contribuição adicional na derivada covariante de gauge, a qual acopla 

diretamente o campo de matéria ao tensor do campo eletromagnético. 

Apresentamos uma revisão do formalismo de Dirac para sistemas vinculados e 

utilizamos este método para tratar a estrutura de vínculos do modelo. 

Escolhemos o gauge de Lorentz como condição de fixação de gauge e construímos 

as transformações de BRST para o modelo, assim como a corrente e carga de BRST 

correspondentes. 

O modelo é posteriormente quantizado usando os parênteses. de Dirac e mostramos 

o aparecimento de uma contribuição extra para as propriedades rotaciônais do campo de

matéria. 

Toda esta formulação é então refeita para um gauge não-covariante e observamos 

novamente a mesma modificação na estatística anômala do modelo. 

Concluímos então que a introdução de um termo de momento de dipolo anômalo 

leva a uma modificação na chamada estatística fracionária e discutimos a possibilidade do 

aparecimento de anions mesmo na ausência de termo de Chem-Simons. 
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ABSTRACT 

ln this work we consider the Chem-Simons model coupled to matter fields, in which 

we add an Pauli-type coupling. The added term can be interpreted as an anomalous 

magnetic moment coupling. The introduction ofthis term is achieved by adding to the gauge 

covariant derivative an extra nonminimal contribution, which couples the matter field 

directly to the field strenght. 

We present a review ofthe Dirac formalism for constrained systems and this method 

is used to treat the constraints of the model properly. 

As gauge fixing condition we choose the Lorentz gauge and we construct the BRST 

transformations to the model, as well as the BRST current and charge. 

Using the Dirac bracket method the model is quantized and it-is shown that appears 

an extra contribution to the rotational property ofthe matter field. 

Then this formulation is rebuilt for a noncovariant gauge and we note that the sarne 

modification arises in the anomalous statistic of the model. 

So we conclude that the inclusion of the anomalous magnetic moment leads to a 

_ change in the so called fractional statistics and we discuss an o pen possibility of the presence 

of anyons even in the absence Chem-Simons term. 
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INTRODUÇÃO 

Modelos em (2+1) dimensões têm sido muito estudados ·nos últimos anos. A 

possibilidade de soluções tipo sólitons desperta muito interesse, especialmente na direção de 

aplicações em Física da Matéria Condensada (Supercondutividade em altas temperaturas, 

efeito Hall quântico, etc.) [1-3]. Por exemplo, o modelo de Ginzburg-Landau para a 

supercondutividade apresenta soluções topológicas tipo vórtice [4], e o modelo de Higgs 

• abeliano [5] admite vórtices que carregam fluxo magnético, mas que são eletricamente

neutros.

O grande uso do termo de Chem-Simons, de maneira geral, deve-se ao fato deste 

revelar propriedades topológicas importantes aos modelos em _ (2+ 1) dimensões espaço 

temporais. No contexto que mais nos interessa, o termo de Chem-Simons leva ao 

aparecimento dos chamados anions, os quais apresentam estatística fracionária [6, 7], na 

. qual se pemúte a existência de autovalores fracionários para o operador de spin. Esta 

propriedade está relacionª-da com as características topológicas da teoria. 

Em duas dimensões espaciais, existe esta nova possibilidade para estatística quântica, 

que interpola continuamente entre bosons e fermions. Esta chamada estatística fracionária, 
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segundo Wilczek [6], concretiza-se em partículas denominadas anions, as quais possuem 

spin fracionário. 

Este efeito pode ser obtido com um modelo dinâmico simples, em que campos de 

gauge fictícios assumem uma dinâmica, a qual não pode ser identificado como um 

Eletromagnetismo ordinário. Em Teoria Quântica de Campos se implementa em (2+ 1) 

dimensões um modelo simples que apresenta estas anomalias. Este modelo possui a 

construção de Chem-Simons. 

Podemos mencionar inicialmente o trabalho de Leynas [8], mas quem primeiro fez 

um estudo mais sistemático sobre os chamados anions, no inicio da década de 80, foi 

Wilczek [9-12], realizando até mesmo um esforço mais efetivo no sentido de aplicar estes 

objetos para o entendimento de fenômenos tais como supercondutividade em altas 

temperaturas e efeito Hall quântico. 

Basicamente Wilczek associava aos anions estas anomalias na propriedade rotacional 

de campos escalares. No entanto, a idéia de modificar o espaço-tempo tridimensional em 

teorias de campos através de uma Lagrangiana composta basicamente por uma corrente 

conservada acoplada aos campos de gauge e o termo de Chem-Simons, foi originalmente 

proposta por Hagen [1] em 1985. Analisando um modelo em (2+ 1) dimensões com dinâmica 

não ordinária para um campo de gauge fictício, Hagen verificou o aparecimento de 

estatística fracionária mas não interpolação entre bosons e ferrnions. Isto significa que para 

seu modelo, as propriedades anômalas não se traduziam em anions. Semenoff em 1988 [13] 

obteve resultados semelhantes utilizando explicitamente o termo de Chem-Simons, 

considerando um gauge não-covariante. Esta relação entre estatística fracionária e anions 

ainda não é clara o bastante, porém se usa comumente o termo "característica aniônica", 

quando se refere à estatística fracionária. Vale lembrar que a definição de anions esta 

intimamente relacionada à estatística fracionária. 

O spin fracionário é medido através do cálculo de um termo extra na álgebra do 

momentum angular. Nas referências [13-15] o termo extra resultante é proporcional ao 

inverso do coeficiente de Chem-Simons. Este resultado foi obtido utilizando-se o gauge de 

Coulomb. No entanto, cÕmo é de esperar, uma vez que a Física não pode depender da 

escolha de gauge, o spin fracionário não é privilégio de gauges não-covariantes. Realmente, 

em 1992, H. Shin, W. Kim e J.Kim [16], analisaram uma teoria de gauge Abeliana com o 
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termo de Chern-Simons, sendo introduzido na derivada covariante o acoplamento dos 

campos de gauge com o campo de matéria. Diferente de Semenoff, introduzem a simetria de 

BRST e mostram que o spin fracionário também é obtido em um gauge covariante. 

A característica de anions, como já dito, vem do termo de Chern-Simons, porém, 

vale salientar que existe uma controvérsia, pois acredita-se que esta característica seja 

perdida com a introdução do termo de Maxwell [17]. No entanto, alguns autores 

consideram irrealista um modelo para anions que não contenha um termo de propagação do 

tipo Maxwell. Uma solução para esse impasse foi proposta inicialmente por J. Stern [18] e 

desenvolvida por M. Torres [19]. A proposta consiste em introduzir um acoplamento não­

mínimo em um modelo Maxwell-Chern-Simons. Este acoplamento é basicamente aquele 

conhecido como termo de Pauli e pode ser interpretado como uma introdução de um 

momento magnético anômalo a nível de árvore. É interessante assinalar que devido às 

peculiaridades da álgebra SO(2, 1 ), característica do espaço-tempo (2+ 1) dimensional, o 

acoplamento tipo Pauli existe, mesmo na ausência de graus de liberdade de spin [18,20]. 

O ponto central da proposta mencionada acima é que obtém-se uma lei de Gauss 

como uma equação de primeira ordem, mesmo na presença do termo de Maxwell (para um 

valor particular da constante de acoplamento de Pauli ). E como sabemos', uma lei de Gauss 

de primeira ordem é essencial para o comportamento aniônico. 

Neste trabalho, estudamos o modelo de Chern-Simons Abeliano com o termo de 

Pauli acoplado à campos de matéria. A introdução deste termo extra é obtida, definindo a 

_ derivada covariante com um termo que acopla os campos de gauge com o campo escalar 

complexo ( acoplamento mínimo), e um outro que acopla diretamente o mesmo campo 

de matéria ao tensor campo eletromagnético, sendo este último conhecido como termo de 

momento de dipolo anômalo (acoplamento não-mínimo). Uma vez que este sistema possui 

invariância de BRST, utilizamos o chamado formalismo de BRST para obter mais 

informações sobre o sistema, além deste formalismo possibilitar uma análise mais limpa da 

questão dos vínculos. 

É necessária uma 'análise de BRST quando se trabalha com fixação de gauge . 

Escolhemos inicialmente um gauge covariante, o gauge de Lorentz. Como é sabido, as 

teorias de gauge apresentam vínculos. Portanto, inicialmente, estudamos a estrutura de 

vínculos do modelo e realizamos sua quantização utilizando o formalismo de Dirac para 
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sistemas vinculados [21,22]. Posteriormente, utilizamos a simetria de BRST [23,24] do 

modelo para finalmente obtermos as propriedades rotacionais do campo escalar. 

Basicamente nosso interesse prende-se a duas questões: 1) realizar a quantização 

deste modelo com acoplamento não núnimo tanto em um gauge covariante quanto em um 

gauge não covariante; 2) verificar o que ocorre com a estatística fracionária em teorias de 

Chem-Simons pura com momento de dipolo anômalo. 

Esta segunda questão foi de certa forma levantada, muito recentemente, no trabalho 

de Carrington e Kunstatter [25]. Estes autores especulam que interações devidas ao 

momento de . dip9lo anômalo, provocam anomalias estatísticas. Ou ainda, que o termo 

anômalo seria capaz de levar à estatística fracionária independentemente do termo de Chem­

Simons. 

Isto parece estar de acordo com o que encontramos no nosso modelo, pois como 

mostraremos no decorrer deste trabalho, surge um termo adicional para a propriedade 

rotacional do campo de matéria, o qual se apresenta como uma variação à estatística 

fracionária, vindo diretamente do termo anômalo. 

Este trabalho é desenvolvido da seguinte forma: 

O capítulo 1 apresenta uma revisão sobre sistemas vinculados, onde fazemos uma 

análise sobre dinâmica de vínculos através do método desenvolvido por Dirac, o qual 

. consiste basicamente em passar de uma teoria vinculada para uma teoria sem vínculos 

efetivos. Para efeito de ilustração, neste capítulo fazemos também uma análise do exemplo 

clássico do campo eletromagnético. 

O capítulo 2 aborda três assuntos importantes para o desenvolvimento do trabalho. 

Primeiro, faz-se uma análise do termo de Chem-Simons do ponto vista de tisico, aplicando 

em seguida o método de análise Hamiltoniana desenvolvido no capítulo 1, na quantização da 

teoria de Chem-Simons Abeliana pura. Em seguida, introduzimos as transformações de 

BRST, discutimos a que�tão da fixação de gauge e mostramos a invariância BRST do 

modelo com gauge fixado. 

A última parte do capítulo 2 ressalta a motivação da introdução do termo de 

momento de dipolo anômalo em teorias de gauge, diretamente na ação clássica, realizando 
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uma breve análise de aspectos importantes do que acontece com uma teoria de Maxwell­

Chem-Simons quando da sua introdução. 

O capítulo 3 usa todos os conceitos e técnicas desenvolvidas nos capítulos 1 e 2 para 

analisar o modelo de Chem-Simons Abeliano no gauge covariante de Lorentz com simetria 

BRST e momento de dipolo anômalo. Quantizamos a teoria utilizando o formalismo de 

Dirac e em seguida construímos a corrente e a carga de BRST. Logo após, analisando o 

operador de momentum angular do campo de matéria, mostramos que surge uma 

contribuição adicional para a estatística fracionária quando da introdução de interações de 

momento de dipolo anômalo. Em seguida, no contexto de um modelo similar ao descrito 

acima, utilizamos o gauge não-covariante de Coulomb e novamente observamos as 

propriedades rotacionais anômalas de campos do modelo. 

Finalmente, apresentamos as conclusões sobre o trabalho desenvolvido, e algumas 

perspectivas abertas para a continuação desta linha de trabalho. 

Um apêndice é ainda introduzido para apresentar nossas convenções. 
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CAPÍTULO 1 

DINÂMICA DE VÍNCULOS E FORMULAÇÃO DE 

DIRAC. 

INTRODUÇÃO 

Este capítulo propõe-se ao estudo de sistemas vinculados, através da introdução de 

um método de análise Hamiltoniana, investigando também a conexão entre vínculos e 

simetrias. Faremos o exemplo clássico do Campo Eletromagnético, que evidencia a 

aplicação do método de anáijse Hamiltoniana para o estudo de sistema vinculados. 

Um método consistente para tratar sistemas vinculados foi proposto há mais de 

quarenta anos por Dirac. O método é conhecido por "Formalismo de Dirac para Sistemas 

Vinculados" [21,22], que tem como objetivo transformar um modelo vinculado em um 
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• modelo sem vínculos efetivos, através da redefinição dos "Parênteses de Poisson", passando

para os chamados "Parênteses de Dirac", e da obtenção das tranformações de Gauge.

Depois de determinados os "Parênteses de Dirac" e as simetrias do sistema, 

passamos a uma teoria sem vínculos efetivos. 

1.1 LAGRANGIANAS SINGULARES. 

Nesta seção consideraremos somente sistemas nos quais a dinâmica pode ser 

derivada do princípio estacionário, Lagrangianas que sejam funções de coordenadas e de 

suas derivadas primeira. Para sistemas com N graus de liberdade temos, 

(1.01) 

Aqui qi e iJi ; i = 1, ... ,N, são coordenadas locais sobre o espaço de configurações. A 

condição necessária para a ação (1.01) ser estacionária são as equações de Euler-Lagrange: 

{1.02) 

Desenvolvendo a derivada total em relação ao tempo. na expressão acima e 

lembrando que a Lagrangiana L não depende explicitamente do tempo, obtemos: 

(1.03) 

Ou, 
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-W·q·· · +V:- -O
lj J 1 - (1.04) 

Onde W é chamada de matriz Hessiana com seus elementos dados por 

(1.05) 

e 

8L ô2L 

T7i = âJ; - tXJ;âJJ iJ
J

(1.06) 

Pela equação de movimento (1.04), vemos que se a matriz Hessiana for inversível, a 
aceleração pode ser dada por 

•• w-lrr
q] = 

ij Yj

Estes sistemas são chamados de regulares. 

(1.07) 

Se, porém, det W =O, W não admite inversa, logo a aceleração, e assim a evolução 

temporal do sistema não será completamente fixada pela condições iniciais ( q;, i_t; )1 =O. 

Tais sistemas são então chamados singulares. Vê-se então que em sistemas singulares 

diferentes configurações de campos exprimem uma mesma configuração inicial. Isto está 
ligado ao fato de termos restrições ao sistema, ou seja, termos um sistema vinculado. 

Por simplicidade assumiremos que o "rank" de W é uma constante dada por R, sendo 

R < N, onde N é o número de graus de liberdade da teoria. Existem entãoM" = N 
-

R

autovalores zero da matrii Hessiana dados porµ( a), a=], ... , M. Assim: 

µ(a)ur.. -O j YYij - a =l, ... ,M; i,j =l, ... ,N

8 
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Isso implica que 

ou 

(1.09) 

(l.10) 

as quais são condições a serem satisfeitas pelas variáveis dinâmicas. Portanto, algumas 

destas M condições podem desaparecer identicamente, e assumimos que M', onde 

M' < M, são condições funcionalmente independentes do restante, consolidando-se 

como restrições ao sistema. 

Estas relações (1.10) dependentes das coordenadas e das velocidades, são chamadas 

de vínculos Lagrangianos. Estes impõem restrições ao movimento das variáveis dinâmicas. 

1.2 VÍNCULOS PRIMÁRIOS. 

Trataremos agora com um formalismo Hamiltoniano consistente para Lagrangianas 

singulares, ou seja, Lagrangianas em que 

detW =0 (1.11) 

E Lagrangianas bem con�truídas, com ação
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Com os momenta definidos por 

(1.12) 

Diretamente dos momenta definidos acima podemos escrever funções do tipo 

m=l, ... ,M (1.13) 

Estas são as funções de vínculo, que são pura consequência da definição (1.12). Dirac 

chamou estes vínculos de "Vínculos Primários". Mas estes não são os únicos vínculos da 

• teoria, já que podem existir outros vínculos vindos de outras condições. Estes vínculos

definem uma sub-região no espaço de fase (q,p), onde o sistema efetivamente evoluirá.

1.3 HAMILTONIANO TOTAL. 

Começamos por escrever o conhecido Hamiltoniano canônico Hc como abaixo 

(1.14) 

Se o sistema não tem vínculos, o princípio de Hamilton pode ser expresso como 
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Se existem vínculos primários, as condições de .vínculo devem ser incorporadas ao 

princípio de Hamilton. Isto pode ser feito através dos multiplicadores de Lagrange v11 ( t). 

Escrevemos então 

{1.15) 

Se fizermos Hc -> Hc + v11 <Pm, podemos escrever as equações de Hamilton

como 

{1.16) 

{1.17) 

Sendo v!' = v11 ( t) funções arbitrárias.

A equação {1.15) nos leva a reescrever o Hamiltoniano do sistema como 

(1.18) 

Neste ponto, toma-se necessário introduzir os "Parênteses de Poisson". 

Considere duas funções A(q,p) e B(q,p). Os parênteses de Poisson entre A e B são

definidos como 

(1.19) 

Possuindo as seguintes propriedades: 
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{A,B}=-{A,B} 

{A +B,C}={A,C}+{B,C} 

{AB,C}-A{B,C}+{A,C}B 

{A, {B,C}}+{B, {C,A}}+{C, {A,B}} =O 

A equação (1.21) é conhecida por "Identidade de Jacobi". 

(1.20) 

(1.21) 

Vamos calcular agora a evolução temporal de uma variável X(q,p). 

(1.22) 

O segundo termo à esquerda da expressão (1.22) não contribui para evolução 

temporal de X, pois v" (t) não depende de q nem de p. No terceiro termo, se fizermos 

<I>m
=O antes de calcular os parênteses de Poisson, esse termo também se anula. Assim a 

dinâmica do sistema será gerada pelo Hamiltoniano canônico H
c

, e todas informações sobre 

os vínculos desaparecem das equações de movimento obtidas via princípio de Hamilton. 

Para resolver esta situação, vamos pôr como regra que todos os parênteses devem ser 

calculados antes de se usar as equações de vínculos. Dirac, para sintetizar esta regra, 

introduziu o conceito de igualdade fraca. 

Sabemos, a priori, que se um vínculo <P
m 

é igual a zero, a evolução temporal não 

deveria nem ser calculada, mas para obtermos mais informações sobre os vínculos fazemos 

uso desta condição de consistência e escrevemos 

(1.23) 

Este é o símbolo (::::;) de igualdade fraca, e indica que não devemos fazer logo os 

vínculos iguais a zero. 

Definimos então o Hamiltoniano total como 
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(1.24) 

A equação (1.22) fica então 

(1.25) 

1.4 VÍNCULOS SECUNDÁRIOS. 

Já sabemos que os vínculos primários definem uma sub-região do espaço de fase em 

que ocorre a evolução do sistema. É dado então que a evolução do sistema deve ser tal que 

preserve os vínculos primários (1.23). Isto é explicitado pela condição de consistência 

Na verdade, essa é uma restrição adicional sobre o espaço de fase disponível ao 

sistema. Estes novos vínculos são chamados secundários e são obtidos calculando a 

evolução temporal dos vínculos primários. Uma vez encontrado um certo número de 

vínculos secundários, deve-se repetir o processo até verificar que não ocorre mais vínculos. 

Assim, no final do processo, teremos M vínculos no sistema físico, onde este M

agora é o número total de vínculos, primários e secundários, pois esta distinção é irrelevante 

no final do processo. Escrevemos então 

m=l, ... ,M (1.26) 

Supondo que foi encontrado um conjunto completo de vínculos independentes e 

considerando a evolução temporal de um determinado vínculcfPi, vejamos então o que 

pode acontecer com os multiplicadores de Lagrangev'1 ( t). 
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(1.27) 

Podemos considerar (1.27) como um sistema de M equações lineares homogêneas 
para os Vm(tJ. As equações têm soluções da forma 

(1.28) 

Onde U"= UYq,p) é a solução particular e V'= V'(q,p) é a solução geral do sistema 
homogêneo. Para solução geral podemos escrever 

(1.29) 

O sistema homogêneo (1.29) pode ter certo número A de soluções, de modo que sua 

solução geral pode ser escrita como 

a=J, ... ,A 

Assim 

Podendo escrever o Hamiltoniano total como 

Onde 

H1 =Hc +Um (!Jm + iPV;'@m

H1 =H'+ iP@a
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� 

(1.33) 

(1.34) 

Assim, a evolução temporal de uma variável X é dada por 

(1.35) 

O termo vª<I>a da expressão (1.35) será de grande importância para a análise das 
transformações de gauge. 

1.5 TRANSFORMAÇÕES DE GAUGE. 

A presença nas equações de movimento (1.35) de A funções arbitrárias v' tem 
como consequência que um mesmo estado físico corresponde a mais de um conjunto de 
variáveis canônicas ( q,p). Podemos dizer ainda que o conjunto de q 's e p 's definem 
univocamente o estado do sistema, mas o recíproco não é verdade. 

Para entender isto, suponhamos que em um instante inicial t1 temos um conjunto de 
variáveis canônicas (q,p). É de se esperar que as equações de movimento (1.35) determinem 
completamente o estado físico do sistema em qualquer instante posterior t2. Assim, qualquer 

ambiguidade nas variávei� canônicas no instante t2 .é t1 deve ser fisicamente irrelevante. 

Os coeficientes ªv' são funções arbitrárias do tempo, logo o valor das variáveis 

canônicas em t2 depende da variação destas funções no intervalo de tempo t1 5 t 5 t2. 
Vejamos: 
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Assim, a troca das variáveis. canônicas q 's e p 's geradas por vª <t>a é 

{1.38) 

{1.39) 

Onde 

(1.40) 

Em teoria de campos se diz que (1.31) representa as transformações de gauge da 

teoria, e os vínculos (JJ a são geradores das transformações de gauge. 

1.6 FUNÇÕES DE PRIMEIRA E DE SEGUNDA CLASSE. 

HAMILTONIANO ESTENDIDO. 

Vimos que a classificação dos vínculos como primários e secundários não é essencial 

depois que estes são e_ncontrados. Mas a classificação das funções, como de primeira e 

segunda classe, é de essencial importância para a formulação de Dirac. 

Uma função f(q,p) é dita de primeira classe se o parêntese de Poisson com os 

vínculos � se anulam fracamente. Ou seja 
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j=l, ... ,M (1.41) 

Uma função é de segunda classe se não obedece à expressão (1.41), ou seja, uma 

função é de segunda se, e somente se, não é de primeira classe. 

Teorema: 

Prova: 

Se duas funções f e g são de primeira classe, o parêntese 

de Poisson entre estas funções também é de primeira classe. 

Admita f e g de primeira classe e �- os vínculos do 

sistema. Assim 

{f, {J)j} = a; {J); ::::() 

{g, {J)j}=fi;{J);::::() 

Isto vem diretamente da expressão (1.41) e do fato que 

os �- são as únicas quantidades independentes que se anulam 

fracamente no espaço de fase. 

Temos 

Logo 

Usando a identidade de Jacobi 

{A, {B,C}}+{B, {C,A}}+{C, {A,B}}=o 

{{f,g}, {J)j}={f, {g, {J}j}-{g, {f, {J)j}}= 

=a;{f, {J}J-P;{g, {J)J=O 

{ {f, g}' {J)j} ::::() 
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Temos então a expressão 

Para/ e g sendo funções de primeira classe. 

(1.42) 

O resultado a seguir evidencia que os geradores de gauge <P a são funções de

primeira classe. 

f <Pa, <P j} = fVa
m

<P m, <P j} =

= v: f <P m, <P 1J + rv:' , <P 1J<P m � o 
(1.43) 

Vimos que as funções que geram as transformações de gauge são de primeira classe. 

Mas podemos garantir que todos os vínculos de primeira classe geram transformação de 

gauge? Não parece possível chegarmos a uma conclusão pelo que foi exposto aqui. 

Geralmente, o que se faz é admitir como um postulado que todos os vínculos de 

primeira· classe geram transformações de gauge. 

O que se postula é consistente porque: 

i) A transformação gerada por um vínculo de primeira classe conserva todos os

vínculos, e, portanto, conserva estados permitidos em outros estados permitidos; 

ii) Ao ser os parênteses de Poisson dos vínculos de primeira classe, outro vínculo de

primeira classe, segundo o teorema já exposto, os parênteses de Poisson dos geradores de 

gauge também serão geradores de transformações de gauge. 

De acordo com o postulado de que todos os vínculos de primeira classe geram 

transformações de gauge, estendemos as equações de movimento da forma 

E se define o Hamiltoniano estendido He como 
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Passando a escrever 

(1.45) 

(1.46) 

Temos mais uma redefinição da evolução temporal de uma variável X 

1.7 ELIMINAÇÃO DOS VÍNCULOS DE SEGUNDA CLASSE. 

Com os vínculos de segunda classe se deve ter um cuidado adicional, quando se 

considera um conjunto deles. A razão é que pode haver combinações lineares de vínculos de 

segunda classe que sejam de primeira classe. Assim se dirá com precisão que um conjunto 

de vínculos é de segunda classe se nenhuma combinação linear deles é de primeira classe. 

Um critério para caracterizar conjunto de vínculos de segunda classe é: 

Um conjunto { (/); I i = 1, ... ,M} de vínculos é de segunda classe se, e somente se, a 

matriz 

e.·={(/),- (JJ,.l
1) l 1 "J/ (1.47) 

for inversível. 

Note que os parênteses de Poisson são antissimétricos, logo C; 1 é 

antissimétrico. Assim, ;o número de vínculos de segunda classe é sempre par, já que o 

determinante de uma matriz antissimétrica de dimensão ímpar é zero. 
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Os vínculos de segunda classe não são geradores de transformações de gauge. As 

transformações que geram não são de interesse tisico, pois ao ser de segunda classe não 

conservam os vínculos. 

Em um sistema, pode ocorrer que todos os vínculos sejam de primeira classe, ou que 

alguns sejam de primeira classe e outros de segunda classe. De uma forma geral, convém 

identificar o conjunto de vínculos de segunda classe e eliminar estes da teoria. Para isso 

utiliza-se os parênteses de Dirac, {, h definidos como 

(1.48) 

Onde C;i1 é a matriz inversa de Cij, 

Os Parênteses de Dirac possuem as seguintes propriedades: 

{F,G}a=-{F,G}a 

{F, GR} a={F, G} aR+G{F,R} a (1.49) 

{F,G}az{F,G}, para G de primeira classe e F arbitrário. 

{�,F}a�, para F de primeira classe. (1.50) 

1.8 CONDIÇÕES DE GAUGE. 

Na seção anterior, solucionamos a questão dos vínculos de segunda classe. Agora, 

trataremos dos vínculos ,de primeira classe. 

A presença de vínculos de primeira classe leva associado uma liberdade de gauge. 

Temos interpretado esta liberdade no sentido que um mesmo estado corresponde a mais de 

um conjunto de variáveis canônicas (q,p). Ou seja conjunto de variáveis canônicas (q,p) e o 
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conjunto (q+dq,p+dp), descrevem um mesmo estado tisico. Isto implica que temos graus 

de liberdade espúrios. Logo, estes têm que ser eliminados da teoria. 

É conveniente eliminar esta ambiguidade impondo restrições adicionais, chamadas 

de "Condições de Gauge". Ou seja, as condições de gauge eliminam os graus de liberdade 

espúrios evidenciados pelos vínculos de primeira classe. As expressões acima revelam as 

transformações nas variáveis canônicas, ou ainda, revelam as transformações de gauge. 

As condições de gauge são funções do tipo 

C;(q,p):::;() (1.51) 

que devem satisfazer os seguintes pontos: 

i) Dado um conjunto qualquer de variáveis canônicas (q,p), deve existir uma

transformação de gauge que passe de (q,p) a outro conjunto (q ',p ') que satisfaçam as

condições de gauge (1.51); 

ii) As condições de gauge (1.51) devem fixar completamente o gauge. Ou seja, não

pode existir nenhuma outra transformação de gauge, fora a identidade, que conserve as 

condições de gauge (1.51). 

1.9 O EXEMPLO DO CAMPO ELETROMAGNÉTICO. 

Este exemplo tem por objetivo ilustrar os conceitos teóricos introduzidos 

anteriormente. Passaremos agora a tratar com campos e não mais com coordenadas. O caso 

do campo eletromagnético é muito interessante, em particular porque é mais ligado à nossa 

experiência cotidiana. )remos encontrar os vínculos presentes na teoria do campo 

eletromagnético e em seguida classificá-los em vínculos de primeira e segunda classe, com o 

propósito de determinar os parênteses corretos da teoria, e, se necessário, encontrar as 

condições de gauge do sistema. 

A Lagrangiana do campo eletromagnético é dada por 
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(1.52) 

As variáveis canônicas são correspondentemente, o campo Àµ =A
µ

(x,t) e seu 

momentum canonicamente conjugado pµ 
= ,cµ 

= ,cµ (X, t) , definido como 

(1.53) 

Sabendo que F
µv = Ô

µ
Àv -ÔvÀ

µ
, podemos encontrar 

(1.54) 

Separando o momentum canonicamente conjugado ,cµ em suas partes temporal e espacial 

podemos. escrever: 

(1.55) 

Pela expressão (1.03), da definição de vínculos primários, pode-se dizer que tf=O é 

o único vínculo primário existente nesta teoria.

O passo seguinte é verificarmos se existem vínculos secundários na teoria, 

contruindo o Hamiltoniano total e exigindo que os vínculos primários se conservem 

durante a evolução :temporal Primeiro, escrevemos o Hamiltoniano canônico, 

considerando a expressão (1.54). 
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Manipulando a expressão (1.56), podemos escrever o Hamiltoniano canônico como 

(1.57) 

Onde fica explícito o campo elétrico e o campo magnético. 

Agora, implementando o vínculo primário através do multiplicador de Lagrange Vo, 

podemos escrever o Hamiltoniano total como 

Podemos agora usar a condição de consistência, escrevendo 

(1.59) 

Fazendo uso dos parênteses de Poisson para as variáveis canônicas Ave 1f, abaixo 

temos 

{ A
µ

,lr v} = ôµ vô(x-y)

{Aµ , A V} = { Jrµ 'Jr V} = o 

Lembrando que 
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(1.62) 

Daí 

(1.63) 

Onde a expressão acima representa o vínculo da Lei de Gauss . 

Pode-se verificar que não há mais vínculos na teoria. Para isto, aplica-se novamente 

a condição de consistência para o vínculo da Lei de Gauss. Em resumo, temos dois vínculos 

em nossa teoria os quais são 

(1.64) 

(1.65) 

Verificando os parênteses de Poisson entres os vínculos acima, podemos constatar que são 

nulos. Logo os vínculos são de primeira classe, ou seja, C;j não é inversível. 

Sendo os vínculos de primeira classe, estes geram transformações de gauge, o que 

nos levará a impor as chamadas condições de gauge. Usando (1.38) e (1.39) vejamos quais 

as transformações geradas nas variáveis canônicas pelos vínculos <PJ e <P 2. Temos: 

8A0 = { A0
(x), f d3 ye(y)1rº } =

= f e(y){ A0
(x),1rº }d 3 y = e(x) 

(1.66) 

Então 
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oA;(x) = O 

81r
i (x) = O (1.67) 

As transformações geradas por 1f l::fO, se reduzem a uma troca arbitrária em A
0

. Portanto, 

é válido eliminar a variação de A
0 

impondo, por exemplo, a condição de gauge 

(1.68) 

Este é o chamado gauge temporal. 

Para o vínculo da lei de Gauss encontramos então 

(1.69) 

(1.70) 

Da expressão (1.70), vemos a transformação de gauge usual do eletromagnetismo. Devido 

a liberdade existente em E, podemos impor o gauge de Coulomb 

(1.71) 

Note que não precisamos fazer uso dos Parênteses de Dirac, pois ficamos com uma 

teoria que possui dois vínculos de primeira classe e duas condições de gauge. No capítulo 

seguinte faremos a análise de vínculos para a teoria de Chern-Simons. 
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CAPÍTUL02 

CONSTRUÇÃO DE CHERN-SIMONS, 

FORMULAÇÃO DE BRST E MOMENTO DE 

DIPOLO ANOMALO. 

INTRODUÇÃO 

Veremos como o termo de Chem-Simons pode ser implementado por uma simples e 

elegante construção. A teoria de Chem-Simons surge como uma possibilidade de explicar 

fenômenos da física em (2+ 1) dimensões, por possuir intrinsicamente ligada a ela, uma 

estatística fracionária que pode levar aos chamados anions, os quais são partículas que 

possuem spin fracionário. Esta ligação entre o termo de Chem-Simons e a estatística 

fracionária será vista com mais clareza no próximo capítulo. 
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O termo de momento de dipolo anômalo surge neste contexto da teoria de Chern­

Simons, de uma certa forma, com o intuito de assegurar a característica fracionária, visto 

que a princípio, tal característica está diretamente associada ao termo de Chern-Simons e a 

mesma é perdida, segundo alguns autores [I 7], quando da introdução do termo de Maxwell. 

Na seção 2.1 mostramos que o termo de Chern-Simons leva à uma corrente e uma 

carga, as quais são conservadas sem necessidade de recorrer à equações de movimento, o 

que caracteriza o chamado termo topológico. Na seção seguinte, aplicamos o método de 

Dirac para caracterizar os vínculos de uma teoria de Chern-Simons e na seção 2.3 revemos 

as transformações de BRST. Por fim, na seção 2.4 introduzimos o momento de dipolo 

anômalo e discutimos o seu papel numa teoria de Maxwell-Chern-Simons. 

2.1 CONSTRUÇÃO DE CHERN-SIMONS. 

Sabemos que podemos associar a uma simetria contínua uma lei de conservação. 

Esta lei de conservação é evidenciada pelo que chamamos de corrente conservada, J µ que 

obedece a 

(2.01) 

onde (2. O 1) expressa a lei de conservação da corrente J µ . 

Veremos agora que a esta corrente conservada podemos associar uma carga 

conservada Q. 

Da expressão (2.01), podemos escrever 

o 
o i âJ -

ôoJ +ô;J =-+V·J=O 
â 
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Onde J o é exatamente a densidade de carga Assim, iremos verificar se a carga Q associada 

à corrente conservada é também conservada. 

Integrando a expressão (3.02) em todo o volume, temos 

mº

f dva+ f dv(V-])=0
V V 

Usando o teorema de Gauss, teremos 

; f dvJ
º 

+ 
f J • dã = O 

V S 

Como no infinito as correntes se anulam, ficamos então com 

onde a carga Q é dada por 

(2.03) 

(2.04) 

(2.05) 

(2.06) 

A expressão (2.05) garante a conservação da carga mediante a construção de uma 

corrente que obedeça à lei de conservação (2.01) 

Vejamos agora uma forma de obter correntes identicamente conservadas. 

Consideremos uma corrente J µ, em 1 + 1 dimensões, dada por 

(2.07) 
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onde (fJ é um campo escalar. 

Para verificar se ela se conserva, aplicamos a derivada ô
µ

ô 
µ

Jµ =ô
µ

( &µv Ô
y
(f)) = &µv ô 

µ
Ô

v
(f) = 

(2.08) 
= õ0ô1

(f)-ô1ô0
(f) = o 

Seguindo a mesma idéia, vamos escrever agora uma corrente em 2+ 1 dimensões, 
por exemplo; 

(2.09) 

ondeAÂ é um campo vetorial. Logo para que esta corrente tenha significado físico é 

necessário que seja invariante de gauge. Passemos primeiro a verificar isto. Assim, pela 
transformação de gauge 

implica que 

Logo 

J'µ = &�vÂ Õv
( AÂ + ô ÂA) = 

= êµvÂôvAÂ + &µvÂÔ
vÕÂA = &µvÂÔ

vÀÂ

(2.10) 

Portanto, J µ é invariante de gauge. 
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Vemos agora que a corrente J µ em (2+ 1) dimensões é conservada. 

(2.11) 

As expressões (2.1 O) e (2.11) foram obtidas devido ao fato do tensor &µvÃ ser 

antissimétrico e o operador Ô 
µ

Ô v ser simétrico quando atua nas funcões A e A,i. Desta 

forma, pode-se escrever os resultados 

&µvÃ ôvô ÃA = O 

&µvÂ ô 
µ

Ôv ÀÂ = O

Construída então uma corrente conservada J µ em 1 +2 dimensões, logo podemos 
associar uma carga conservada dada por (2.06). 

A carga conservada Q, quando J0 é integrada em todo o espaço 

(Q = f..:0J6d
2 X), chama-se carga topológica [26] se tiver solução diferente de zero

Como veremos a seguir, esta forma de escrever uma corrente conservada leva-nos a 
construção de Lagrangianas com o chamado termo de Chem-Simons, cuja equação de 

campo envolve esta corrente conservada. 
Faremos uma teoria em 2+ 1 dimensões ser governada por uma determinada 

Lagrangiana e suporemos que existe nesta teoria uma corrente conservada. Então, 
consideraremos o efeito da modificação da teoria pela adição de termos na Lagrangiana, 

como abaixo: 

k 
L'.1.C. - -q.Jµ A +-eµvp A ô A-

µ 2 
µ V p 
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A equação de movimento para o campo A
µ 

é

(2.12)

a qual dá uma expressão para a corrente conservada, semelhante à proposta em (2.09).
Da forma como está escrito o termo de Chern-Simons, vê-se que este não é

invariante de gauge, pois aparece uma contribuição adicional na forma de uma divergência.
No entanto a ação correspondente é invariante de gauge e o sistema faz, então, sentido
fisico.

Quantidade do tipo do último termo da equação (2.11) foi primeiro considerado por
Chern e Simons de uma forma completamente diferente do exposto aqui, num contexto de
pura geometria diferencial e são conhecidos como termo de Chern-Simons.

Este termo têm sido bastante usado na literatura por esta intimamente ligado a
anomalias rotacionais e também pela possibilidade da presença de vórtices [27,28,19].

2.2 FORMULAÇÃO DE DIRAC PARA A TEORIA DE 

CHERN-SIMONS. 

Como uma aplicação do método desenvolvido por Dirac, faremos a análise de
vínculos para uma teoria, cuja Lagrangiana é composta basicamente pela termo de Chern­
Simons em 2+ 1 dimensões, sendo esta escrita na forma:

k.C=
4

Aµ&
µ

v.?,,Fµv +AµJ
µ 

=
= � 6 

µ
v.?,,ÂµÔv A;,, + Aµ J

µ
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Como já mencionado, sabemos que este sistema possui sentido físico, e seguindo a análise 

da seção 1.1, temos que esta Lagragiana é singular. 

Partindo da definição de momentum canonicamente conjugado aos campos, obtemos 

(2.14) 

Uma análise mais detalhada mostra que 

são vinculos primários. 

Podemos escrever a Lagrangiana (2.13) na forma 

(2.15) 

e obter o Hamiltoniano canônico como 

(2.16) 

e chegarmos a forma abaixo para o Hamiltoniano total 
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( 2.17) 

O próximo passo é verificar se existem vínculos secundários, analisando a condição 

de consistência dos vínculos primários, escritas como: 

Utilizando os parênteses de Poisson usuais, obtemos 

As condições de consistência V1 � O e V2 � O simplesmente nos dão os valores 

dos multiplicadores de Lagrange Â 1 e Â 2 . Ficamos assim com o conjunto de vínculos de 

primeira classe 

(2.18) 

(2.19) 

e o conjunto de vínculos de segunda classe 

(2.20) 

(2.21) 
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Sabemos que os vínculos de primeira classe são geradores das transformações de 
gauge. Já os de segunda classe, que trataremos inicialmente, serão eliminados da teoria 

através da definição dos parênteses de Dirac, pois os mesmos não geram transformações de 

interesse físico. 

A fim de obtermos os parênteses de Dirac, encontramos a matriz C
ij 

= {V; , v
1} : 

e sua mversa 

2 
( 

O kJ 
c

iJ 
= ô ( x - y J -k 0 

o 
1

--

C-J ij = ô2 
( X - y) k 

1 
o 

k 

A definição dos parênteses de Dirac, é dada por 

{0,0}n = {0,0)- {0,V;}Cij1 {V1 ,0}

(2.22) 

onde e e 0, podem representar 7r o , Ao , 7r 1, A 1, 7r 2 e A 2 . Vale evidenciar que 

V; e V
j 

representam os vínculos de segunda classe. 

Encontramos os seguintes parênteses de Dirac diferentes de zero: 

1 2 
{A1,A2Jn=-ô (x-y)

k 
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Já encontramos os parênteses corretos da, r<t� e �ssarerm>S :a�ra \3. �atar do 

-víneult>s ""1e f)r.im�ka -t,lasse, :j,mpendo oondi��es de gal'lge ·que tornam a teoria consistente.

Usando a expressão abaixo, semelhante à escrita no capítulo 1:

(2.25) 

onde e = 7r o, Ao 7r i A; e V; representa os vínculos de primeira classe. Mas por outro' ' 

lado, podemos definir uma função G( & ) , a qual é função dos parâmetros arbitrários & que 

levam aos vínculos de primeira classe. 

(2.26) 

Rescrevendo (2.25) como 

80= {0,G(&)j (2.27) 

encontramos 

{2.28) 

(2.29) 

Nas expressões acima, constatamos arbitrariedade na variação do campo Aµ , 

precisamos então escolher ,um gauge que contorne tal situação. Podemos escolher o gauge 

covariante de Lorentz: 

(2.30) 
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É também comum ser usado o gauge de Coulomb (não-covariante), 

(2.31) 

e o gauge temporal 

(2.32) 

Este modelo nos dá a possibilidade de trabalharmos com vínculos de primeira classe 

e vínculos de segunda classe. Vale salientar que ao impormos as condições de gauge, 

poderíamos avaliar um novo conjunto de vínculos, composto pelos vínculos primários e as 

condições de gauge estabelecidas. 

2.3 FORMULAÇÃO DE BRST 

Na eletrodinâmica quântica, devido à liberdade que temos com as transformações de 

gauge, encontramos dificuldades em obter o propagador desta teoria [24]. Vale salientar que 

esta dificuldade surge tanto no formalismo canônico como no formalismo por integral de 

trajetória. 

Iremos diretamente para o método por integral de trajetória, considerando 

simplesmente o funcional gerador para a teoria de Maxwell. 

(2.33) 

onde 
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(2.34) 

Sabemos que a Lagrangiana acima é invariante sob uma transformação de gauge 

A
µ 

➔ A
µ 

+ Ô 
µ

A, e que a integração é tomada para todos A
µ 

incluindo estes que são 

escritos pela transformação de gauge. Isto dá uma contribuição infinita para a integral 

funcional Z e, portanto, para as funções de Green obtidas pela diferenciação do funcional 

Z . O que devemos fazer então para termos um valor finito para Z ? O que implica, em 

obtermos um propagador para o campo de gauge. Podemos resolver esta questão impondo a 

condição de Lorentz ô
µ 

Aµ = O . A Lagrangiana pode ser então escrita como 

(2.35) 

onde 

(2.36) 

é conhecido como termo de fixação de gauge. Isto dá a Lagrangiana 

(2.37) 

onde o operador g µvÔ µÔ,µ tem um inverso, o que leva ao propagador de Feynman.

Com o intuito de ter regras gerais para encontrar o propagador do campo de gauge, 

faremos uma análise do caso não-abeliano. Baseado na formulação finita para o funcional Z,

foi desenvolvido um método por Faddeev-Popov [23], que tem por resultado final uma 

Lagrangiana efetiva escrita na forma geral abaixo. 
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Onde 

1 2 .c,
gf" 

=--F 
2a 

e .e, fpg = - rjM 17 

F depende da fixação de gauge, M é o operador diferencial 

(2.38) 

17 é um campo escalar com estatística de Fermi e L
jpg é o termo de ghost de Faddeev­

Popov, ou de compensação da escolha de gauge. 

A Lagrangiana escrita na forma acima está com a simetria de gauge quebrada, ou 

como se costuma dizer, com o gauge fixado. No entanto esta Lagrangiana é ainda invariante 

sob outra simetria, como veremos mais adiante. E tal simetria é conhecida como simetria de 

BRST. Esta formulação foi desenvolvida por Becchi, Rouet, Stora e separadamente por 

Tyutin [23]. 

Façamos agora uma análise para o caso não-Abeliano , onde escrevemos a integral 

funcional 

(2.39) 

onde N é o fator de normalização e 
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(2.40) 

Para o termo de fixação de gauge escolhemos o gauge de Lorentz, e o termo de 
ghost de Faddeev-Popov pode ser escrito como 

.Cfpg = -
17

ª 
( 8

ªb ô 
µ

Ôµ - gf
abc ôµ At - gf

abc Atoµ )17

b

= ôµ
17

a 
( ô 

µ 17

ª + gf
abc At11

c) +' derivada total' (2.41)

= ôµ 
17

ª D 
µ 17

ª 
= -

17

ª ôµ D 
µ 17

ª +' derivada total'

d ' d 1 f abc ' • • ' • h d d on e g e a constante e acop amento e e um tensor ant1ss1metnco c ama o e

constante de estrutura, que obedece à identidade de Jacobi 

Fáremos então uma investigação do comportamento de .Ceff 
sobre uma 

transformação de gauge, a qual para o caso não-Abeliano é dada por 

(2.42) 

A idéia de Becchi, Rouet, Stora e ainda Tyutin foi escrever o parâmetro da 

transformação de gauge como: 

(2.43) 
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sendo portanto urna reparametrização da transformação de gauge, onde Â, (urna constante) 

e 17ª são quantidades de Grassrnann ( Ã2 = O). Escrevemos abaixo as transformações dos 

campos que tornam a Lagrangiana efetiva invariante: 

(2.44) 

(2.45) 

a 1 µ aôrj = --( ô A
µ

)Ã 
g 

(2.46) 

As três equações acima constituem as transformações de BRST. Para o caso de urna 

teoria abeliana as transformações nos campos tornam urna forma mais simples, corno poderá 

ser verificado no capítulo seguinte. 

2.4 MOMENTO DE DIPOLO ANÔMALO 

O estudo de teorias com a introdução do termo de Pauli ou de interações de 

momento de dipolo anômalo a nível de árvore, tem recentemente despertado grande 

interesse na literatura, que busca novos modelos para fenômenos em 2+ 1 dimensões 

[18,20, 19,29,30]. Sabe-se que tais teorias são não-renormalizáveis, mas tem-se considerado 

estas teorias corno efetivas, motivados pelo interesse em descrever melhor as interações 

entre partículas em um plano. Neste sentido duas possibilidades de interpretação surgem: 

por um lado a ação não-mínima pode ser vista corno urna ferramenta fenomenológica, que 

envolve um parâmetro extra g, o _qual pode ser convenientemente ajustado com a carga e e a 
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massa topológica k, tal que a ação possa modelar um comportamento aniônico na ausência 

do termo de Maxwell. Por outro lado, um valor crítico para a constante g talvez possa ser 

entendido a partir de uma teoria fundamental, que leva, em determinado limite, à ação não­

mínima. As interações de momento de dipolo anômalo são obtidas com a introdução, 

diretamente na derivada covariante, de um termo que envolve o tensor campo 

eletromagnético, como se segue. 

É interessante mencionar que alguns autores consideraram recentemente uma forma 

alternativa de introduzir o momento de dipolo anômalo [31,32,33,35]. Em particular, 

Carrington e Kunstatter, considerando um acoplamento de corrente com o tensor 

intensidade de campo dual, mostraram que a teoria é renormalizável a 1-loop [33]. 

Vamos mostrar agora como é que a contribuição do momento de dipolo anômalo 

pode gerar a possibilidade de termos uma teoria Maxwell-Chern-Simons com caráter 

aniônico em um determinado limite g = gc [19], onde gc é um valor crítico para a 

constante_ de acoplamento.

Considera-se a teoria que generaliza o modelo Abeliano Chern-Simons-Higgs com 

interações de momento de dipolo anômalo, sendo descrita pela densidade Lagrangiana 

onde o potencial V (lç61) tem a forma

e Vµ ç6 faz o acoplamento entre o campo de matéria e o campo de gauge.

As equações de movimento para a Lagrangiana (2.47) são 
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(2.48) 

(2.49) 

A equação acima foi escrita em termos do tensor intensidade do campo dual, 

definido como 

e a corrente conservada é dada por 

A solução da equação (2.49), são equações de primeira ordem, dadas por 

(2.50} 

quando a relação abaixo é considerada. 

(2.51) 

A equação (2.50}, coincide com as equações de movimento que têm sido 

consideradas por uma teoria Chem-Simons sem o termo de Maxwell [13], a menos da 

redefinição da corrente. Esta solução representa soluções tipo vórtice, a qual tem sido 
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considerada em vários outros artigos [27,28,34]. Porém em trabalhos anteriores ao de 

Torres [19], a contribuição do momento de dipolo anômalo e o termo de Maxwell não estão 

explicitamente incluídos na Lagrangiana. 

Podemos ainda citar, como consequências interessantes da introdução do momento 

de dipolo anômalo, no quadro de uma quebra espontânea da simetria de gauge, a geração de 

um termo de Maxwell e de um termo de Chem-Simons, mesmo na ausência destes termos 

na Lagrangeana inicial [3 5]. Este aspecto, conjugado com o aparecimento de um fotino 

dinâmico, foi também demonstrado na referência [36]. 

Esta seção, de uma certa forma, tenta mostrar a importância de se analisar teorias 

utilizando o momento de dipolo anômalo, pois como visto, este pode trazer novas 

resultados com relação a estatística fracionária. 
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CAPÍTUL03 

TEORIA DE CHERN-SIMONS ABELIANA COM 
INTERAÇÕES DE MOMENTO DE DIPOLO 
ANOMALO. 

INTRODUÇÃO 

Nos capítulos anteriores usamos o método de Dirac para tratar os vínculos, 

construímos as transfonnações de BRST para uma teoria de Chem-Simons e introduzimos o 

acoplamento não-mínimo no contexto de um modelo de Maxwell-Chem-Simons-Higgs. 

Neste capítulo introduzh:emos o modelo de Chem-Simons acoplado à campos de matéria 

com um tenno de momento magnético anômalo, objeto central deste trabalho, e aplicaremos 

as análises introduzidas nos capítulos anteriores. Na seção 3 .1 apresentamos o modelo. 

Fixamos o gauge diretamente na Lagrangiana, sendo este o gauge covariante de Lorentz 
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ô
µ

Aµ = O e, consequentemente, temos um termo com os chamados campos de ghost de 

Faddeev-Popov [24]. Logo após, realizamos sua quantização através do formalismo de 
Dirac e na seção 3.3 analisamos sua simetria de BRST. Na seção 3.4 construímos a corrente 
e a carga de BRST. As propriedades rotacionais do campo de matéria são estudadas na 
seção 3. 5 onde mostramos, através da relação de comutação entre o operador momentum 
angular e o campo escalar complexo (campo de matéria), que com a introdução do 
momento de dipolo anômalo diretamente na derivada covariante, surge o spin-fracionário e 

um termo adicional ainda não encontrado na literatura. Este é dado por i ( g / 2) y • Ê </J, o 

qual pode representar uma alteração na estatística fracionária. Por fim, na seção 3.6 
reanalisamos o problema, agora considerando um gauge não-covariante, e novamente 
obtemos a mesma contribuição adicional para a estatística fracionária. 

3.1 TEORIA DE CHERN-SIMONS COM ACOPLAMENTO NÃO­

MÍNIMO EM UM GAUGE COVARIANTE. 

Começaremos por considerar a densidade Lagrangiana abaixo . 

.C, =IV <)1
2 

+ K eµvÂ A ô A2 -A ôµb+ ª b2 + 
µ 2 µ V µ 2 (3.01) 

-iôµcÔ
µ

C

Sendo V
µ 

= [ô
µ 

-ieA� -i( g/ 4)e 
µ2a-

FÂCY }, o operador que introduz o termo 

anômalo na Lagrangiana, acoplando o campo de matéria com o campo de gauge; b é um 
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campo multiplicador de Lagrange que implementa o gauge covariante de Lorentz ô 
µ

Aµ ; e

é o campo de ghost de Faddeev-Popov e e o anti-ghost.

O primeiro termo de (3.01) é responsável pelo acoplamento entre o campo Aµ e o

campo escalar complexo </J, o segundo é o termo de Chem-Simons e os três últimos termos

surgem da necessidade de se obter um propagador para os campos [24].Sendo 

onde 

µ a 2 1 µ 2-A ô b+-b =--(ô A ) µ 2 2a µ (3.02) 

(3.03) 

o qual implementa o gauge covariante de Lorentz. E por último o termo de ghosts. Podemos

adiantar que, embora no gauge escolhido os ghosts desacoplam, podendo ser descartados da

ação, eles são mantidos porque são necessários no formalismo de BRST.

ou 

Desenvolvendo a Lagrangiana (3. O 1) temos

,C, = (ôµ + ieAµ + i ! eµvp 
Fvp)</J* ( ôµ 

- ieAµ
- i ! eµvp Fvp)</J +

+ k eµvJ A ô A;., - A ôµb + a b2 
- iôµc ô e

2 µ V µ 2 µ 

,C, = IDµ</Jl
2 

+ i ! eµvJ.. Fvif rj)* (Dµ</J)-rj)(Dµ</J)* J +

+ 
g

2 
F, pVPl,1,12 

+ k eµvÃ A ô A +

8 Vp 'f' 2 µ V Â 
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(3.04) 

Onde Dµ = Ôµ - ieAµ, faz o chamado acoplamento núnimo entre os campos efJ e Aµ 

sem o termo anômalo. 

O segundo e terceiro termos da expressão (3.04) surgem devido a introdução do

t " 1 • FÂ.CT d • 1 1 - ' • ermo anoma o -1g8 µva no opera or que 1mp ementa o acop amento nao-nurumo. 

3.2 QUANTIZANDO A TEORIA. 

Em uma teoria vinculada, podemos fazer a análise de vínculos utilizando o 
formalismo de Dirac [21,22], como já exposto nos capítulos anteriores. Utilizando este 

formalismo, podemos constatar que nem sempre as relações de comutação e anti-comutação 
entre as. variáveis canônicas vêm diretamente dos parênteses de Poisson, precisando, 
portanto, antes de quantizarmos a teoria, obter, se necessário, os parênteses de Dirac entre 

as variáveis canônicas. 
Vamos inicialmente abrir a Lagrangiana (3.03) em suas partes temporal e espacial. 

Lembrando que estamos em 2+ 1 dimensões, obtemos a Lagragiana na forma abaixo . 

.C = -IDefJl
2 

+ �q5* + ieAo ( �q5* - �*) + k8ij A0ô;A J +

k • •  • a 2 • 

--81] A·,Â. - A 6-A·ô1b +-b -icê-iô1 cô·c +
2 l· j O l 2 l 

2 2 g • •  
* * 

+e Ao lefJI + i 4 81J FiJ [ ifJ ( D0 ifJ) - ifJ( Do ifJ) J +
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g •• * * 

+ 
2 

slJ FJo [ (jJ ( Di (jJ) - (j)( Di (jJ) J +

2 2 

+
g8 Fw Fw lefJl2 

+
g8 FijFij lefJl2 

(3.05) 

A partir da Lagrangiana escrita da forma (3.05), passamos a obter os momenta 
* 

canonicamente conjugados aos campos Ao, A j, b, (jJ, (jJ , e, e e, respectivamente:

1Co = o 

J k ·· g ·· * • * 
1e = -

2 
slJ A; - i 

2 
slJ [ (jJ ( D; (jJ) - (j)( D1 

(jJ) ] +

2 2 

_Laí AolefJl2 + LÃJlefJl22 4 

* . g .. 1e = (j)- ieA0(j)- i 4 (j)slJ Fij

1Cc = -iê 

1Cc = -ic
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(3.06.b)

(3.06.c) 

(3.06.d) 

(3.06.e) 

(3.06.f) 

(3.06.g) 



Sabemos que os momentos canonicamente conjugados que não possuem derivadas 

nos campos, são classificados de vínculos primários segundo a formulação de Dirac para 

sistemas vinculados. 

Assim podemos destacar os dois vínculos primários de nossa teoria: 

{3.07.a) 

(3.07.b) 

Obtidos os vínculos primários, o passo seguinte é verificarmos se existem mais 

vínculos na teoria. Utilizando a condição de consistência 

com Vi sendo um vínculo primário, podemos verificar se existem vínculos secundários. 

Inicialmente, obtemos o Hamiltoniano canônico, o qual é dado por 

Utilizando as expressões {3.06) e a Lagrangiana na forma {3.05) podemos chegar à seguinte 

forma para o Hamiltoniano canônico:

1ic =ID�l2 +A;Íb-ª b2 +1r1r* -ieA0(1r•�-1r�)+ 
2 

+keijAoô;AJ +itrctrc +ô;cô;c+
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(3.08) 

É necessário agora implementar os vínculos primários na teoria, e faremos isto 

usando os campos multiplicadores de Lagrange Ão e Â J, com os quais escrevemos o 

Hamiltoniano primário. 

(3.09) 

Toma-se necessário neste ponto escrevermos os parênteses de Poisson entre as 

variáveis canônicas de nossa teoria. Vejamos então. 

{ <),:r} = { <)* ,:r*} = o.2(x- y)

{b,:rb}=82(x- y)

{ c,1rcJ = {c,:rc} = 82 (x- y) 

(3.10) 

Agora, podemos verificar se existem vínculos secundários, calculando a evolução

temporal dos vínculos primários e usando o fato de a evolução temporal dos vínculos 

primários ser fracamente nula. Assim teremos 

(3.11.a) 
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(3.11.b) 

Utilizando o Hamiltoniano canônico (3.08), podemos determinar os campos multiplicadores 

de Lagrange Âo e Â l · Logo, não existem mais vínculos na teoria, assim teremos somente 

dois vínculos, os quais são 

(3.12.a) 

(3.12.b) 

Sabemos da grande importância para a formulação de Dirac, quanto da classificação 

dos vínculos em primeira classe e segunda classe. Podemos, então, constatar facilmente que 

os vínculos (3 .12) são de segunda classe, pais 

(3.13) 

Como não existem vínculos de primeira classe, não existem condições de gauge a 

serem determinadas na teoria. Isto era esperada, pais estamos trabalhando com uma 

Lagrangiana ande foi fixado o gauge. Sabemas que os vínculos de segunda classe devem ser 

eliminadas, pais não geram transformações de interesse tisica. Encontraremos agora os 

parênteses de Dirac para, em seguida, quantizarmas a teoria. 

Encontramos então a matriz C
ij 

(X, y), definida como 

Cij (X, y) = {V;( X), Vj( y)}. 

e sua inversa 
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(3.14) 

Sendo os parênteses de Dirac definidos como

{ A(x),B(y)}d = { A(x),B(y)}+ 

-{ A(x),V;(x')}C;j1{V1(y'),B(y)}

Utilizando os resultados acima e calculando todos os parênteses de Dirac entre as variáveis 

canônicas, encontramos os seguintes parênteses de Dirac abaixo: 

{ Ao,b}d =ô2(x-y)

• 2 
{ Àj, 1! j }d = ÔjÔ ( X - y) 

{tp,,r}d ={q/,,r* }d =ô2(x-y)

{ c,,rc }d = {c,,rc }d = 5
2 (x-Y)

(3.15) 

Com o intuito de quantizarmos a teoria, faremos a seguinte transformação: 

{,}d ➔ i{,} =[,],obtendo as relações de comutação, como se segue: 

[ Ao,b]= iJ
2(x-y)

[A;, ,r j] d = i J�J2 
( X - Y) 

[<jJ,,r]d =l</J*,,r* ld = iJ2(x-y) 

[c,1rc ld == [c,1rc ld = iJ2(x-y) 
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Encontradas então as relações de comutação corretas para a teoria, podemos agora 

dizer que estamos com uma teoria sem vínculos efetivos, pois estes foram ocultados pelos

parênteses de Dirac. 

3.3 SIMETRIA DE BRST 

Como já comentamos, a Lagrangiana escrita na forma (3.01) está com a simetria de

gauge quebrada, mas existe uma simetria remanescente, a simetria de BRST, dada pelas

transformações nos campos:

ôBÀµ =ÂÔµC 

ô B</J = ieÂC</J 
* * 

ô B'P = -ieÂC</J

8Bb=0 

ôBC=O 
ô Bc = iÃb 

(3.17) 

Onde ô B denota a transformação de BRST e Â, parâmetro global da transformação, é

uma quantidade de Grassmann constante. 

Levando os campos Aµ, </J, b, e e e, respectivamente para

Aµ➔ A
µ, 

+ÂÔµC 

</J ➔ <jJ + ieÂC<jJ 
* * * 

</J ➔ </J - iek</J 

b➔b 
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c ➔ c 

c ➔ c+iÃh 

e coruiderando o fato que Â,2 = O , pois Â é um número de Grassmann, e aplicando estas

tranformações na Lagrangiana (3. O 1 ), podemos constatar que esta é realmente invariante 

sob esta tranformação nos campos. 

O termo de acoplamento e o termo de Chem-Simons separadamente são invariantes 

sob uma transformação de gauge a menos de uma derivada total, é de se esperar que estes 

termos continuassem invariantes sob uma transformação de BRST, pois esta transformação 

é apenas uma reparametrização da transformação de gauge A
µ 

➔ A
µ 

+ ô 
µ
A, fazendo o 

gerador A ir para X ➔ ÂC , onde e é o campo de ghost. 

O termo de fixação de gauge, 

µ a 2-A ô b+-b µ 2 

juntamente com o termo de ghost 

ficam invariantes sob estas traruformações nos campos. Logo, a Lagrangiana é realmente 

invariante de BRST. 
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3.4 CARGA CONSERVADA DE BRST. 

Vamos construir agora a corrente conservada de BRST, a qual possibilitará 

encontrarmos uma expressão para o campo Ai , que será de grande importância para análise 

da propriedade rotacional do campo r/J . 

A corrente conservada de Noether para a transformação de BRST é dada como

* 
Onde 0 a pode representar os campos A

µ
, r/J, r/J , b, e e e. Assim, usando a 

Lagrangiana na forma da expressão (3. 04) e as transformações (3 .17), encontramos a 
corrente conservada de BRST na forma exposta abaixo. 

J1/J = k&µvÃ ôvcA;., + iec( ôµrp* rp- rp* ôµ</J + 2ieAµ l</Jl
2

) +
2 

+ bôµb- � ecl</Jl
2 

&µvp Fvp + � l</Jl
2 

Fµv 
Ôv C + (3.18)

+ i � ec&µvp [ rp* (Dp</J)- rp(Dp</J)* Jô vc

A componente µ=O da corrente conservada de BRST será 

JZ = k/J ô,cA 
J + iec( �* </J- rp* � + 2ieAº l</Jl

2
) +

: . 
2 

o g 2 •• g 2 o· + bô b -
2

ecl</JI &lJ Fij + 
2

1</JI F 
1 ôi c +

g •• * * 

+ t
2

&1J [ </J (DJ</J)- </J(Dj</J) Jôic
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. * • 
Usando as expressões (3.06) escritas para </J e <jJ, podemos reescrever a expressão

acima como: 

o ** g·· * * JB =c[ie(<jJ:r-<j) :r -2e
e1Jô;(</J (Dj

</J)-<j)(Dj
</J) )+

+ i �e 
Ôj (l</Jl

2 
Fºi ))-k&ij ô;A j 1 + bo0 e (3.19) 

As transformações de BRST (3 .17), são geradas pela carga conservada de BRST 

QB , definida como 

a qual pode ser escrita na forma 

QB = f d
2 x{ c[ie( <j):r -q/ :r * +

g •• * * -2e &
11 ô;( <jJ (D1 </JJ-<j)(D1

</JJ ) +

Um resultado a ser verificado é a nilpotência de QB , isto é, verificar se 

Para isso reescrevemosa carga conservada QB como 
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onde 

sendo a uma quantidade de Grassman. Podemos escrever 

Q
1J = �

f f d
2 xd2 x'( aa' + a'a)

Usando então o fato de a e a' serem quantidades anti-comutantes concluimos 

então que 

(3.21) 

Logo, fica comprovado que a carga 

Q
B é realmente nilpotente.

Voltemos agora à expressão (3.20) e reescrevamos a carga de BRST na forma, 

(3.22) 

onde 
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* * g .. * * 
J0 = i[ rjJ1r- <jJ 1r -

2e 
slJ ô;( <jJ (D1<))- <jJ(D1<)) ) +

2
+ i �

e 
ôi (1�2 Foi )] (3.23)

Como nossa teoria é invariante sobre a transformação de BRST (3 .17), logo é
exigido que um estado tisico também seja invariante sobre esta transformação gerada pela

carga QB . Concluimos que

(3.24)

onde iest.jis.), representa o estado tisico, sendo (3.24) a condição que deve ser satisfeita.

Usando o resultado da expressão (3.06), em que

·a
º

1tc = -1 e 

e usando as _relações de comutação (3 .16),- podemos reescrever a carga conservada de
BRSTcomo

Usando QB na forma acima e fazendo esta carga atuar em um estado tisico, teremos

que o estado resultante terá norma zero e é ortogonal a algum estado tisico, devido a

nilpotência de QB e a con�ição (3.24). Podemos portanto considerar somente a primeira

parte da equação (3.25), pãssando a escrever a condição (3.24) na forma

(3.26)
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O que significa que podemos escrever o espaço iotal de Fock como o produto direto abaixo 

(3.27) 

Pois estamos com uma teoria em que os campos de ghost e e e são completamente

desacoplados dos outros campos. Onde Vo é o espaço de Fock para os campos fisicos da 

teoria e Vgh é o espaço de Fock para os campos de ghost 

Assim, um estado I v) E V é um estado tisico, logo não possui nenhuma dependência 

com os campos de ghost, isto é,

lv) = lest.fis.) ® lü) gh (3.28) 

Onde I O) gh é o estado de vácuo de ghost. 

Escreveremos então a condição (3 .26) como se segue: 

(3.29) 

Como temos um produto direto, a condição abaixo também deve ser satisfeita. 

[ eJ0 - kiÍ ô;AJ Jlest.fis.) = O (3.30) 

Veremos na seção 3.6 que esta condição é exatamente o vínculo da Lei de Gauss, 
no caso de trabalharmos no gauge não-covariante de Coulomb. Isto já nos garante a 
existência de estatística "fracionária [13], porém não mostra se haverá alguma modificação 
devido ao termo de Pauli. Pode ser comprovado que a solução para a condição (3.30) é 
dada por 

59 



(3.31) 

Onde J o é dado por (3 .23) e G( X - x') é a função de Green que em duas dimensões[37]

é escrita como 

1 G( x - x') = --lnlx - x'I + Const. 
2,r 

(3.32) 

3.5 PROPRIEDADE ROTACIONAL DO CAMPO DE MATÉRIA. 

Nosso objetivo final, nesta seção, é obter uma expressão para a relação de 

comutação entre o operador momento angular e o campo de matéria r/J, a qual evidencie

resultados sobre a estatística fracionária. 

Obtemos inicialmente o tensor simé.trico energia-momentum [38,39,24], o qual é 

dado pela expressão 

e escrevendo .C [38] em termos da métrica encontramos então

o * * 
Tµv = (V µr/J) V vr/J + (V vr/JJ V µr/J-Aµôvb +

- ÀyÔ µb - gµv(IV a�l
2 

-Aª aab) + Tff.Í
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Onde Tff i é o tensor simétrico de energia-momentum para os campos de ghost, escrito 
como 

A componente To j do tensor Tµv é 

(3.34) 

Abrindo a expressão acima e utilizando os momenta (3.06.d) e (3.06.e), encontramos 

* * * * 
T01 =(1ro1rp+1r o1rp )-ieA1 (rp1r-rp 1r )+ 

g 10 * * -i
2

&JlF (r/J:r-r/J 7r )-Aoô1b-A1ôob+ (3.35) 

+To�
h

Completando a expressão acima, podemos escrevê-la em termo da corrente J o , ficando da 
forma: 

* * 
T01 = ( 1ro1rp + 1r o1rp )-ieA1J0 +

g 10 * * -i-&j!F (</>n-</> 1r )-A0o1b-A1ôob+ 

g •• * * -i
2

AJ&111Ji f</> D1</>-</>(D1</>) ]+
2 

+ i � A JeiJ ô; (lr/Jl2 pOi ) + To�
h
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Podemos passar agora ao operador momentum angular, sendo este em 2+ J

dimensões definido por 

Logo 

g •• * * 
- i2 A1&1J ôi [ rp D1rp- rp(Djr/J) J +

2 

+ i � A 1ii õi(lr/Jl2 pOi ) + 
T

o�
h}

(3.37) 

(3.38) 

A propriedade rotacional do campo r/J é obtida pela verificação da relação de

comutação [La, rp( Y)} 
.

Utilizando a relação de comutação 

encontramos 

2[ rp, J O} = -rpô ( X - Y) (3.39) 

A partir das duas relações de comutação acima, obtemos 
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[ La , <p J = eY Yi ô j <p - [ e f d 2 x &ij xi A j J o , <p J +

+ i � e j/&ij YiF10 <p 

Antes de prosseguirmos, vamos desenvolver o termo 

Usando a expressão {3.31) para A j, teremos

2 
I

2 
• • 

e
ff

2 2 • • e d xelJ x1-A1-J0 = --k d xd x'elJ xi&k/ x

x ôkG(x-x')Jo(x)Jo(x') 

podendo ainda apresentar-se como 

2 

I
2 

• •  
e

ff
2 2 e d xelJ xiA1-J0 = --

k d xd x' x

xi• VG(x - x')Jo(x)Jo(x') 

Pode ser visto que, 

1 (x•(x-x'JJi-VG(x-x')=--
, 2,r lx - x'l 2 

Voltando, temos, 
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(3.41) 
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(3.43) 



p01s 

efd2xeiJx·A ·J =..::._ffd2xd2x'i·(i-i') 
xz J o 

2Jrk lx -x'l2 

- (- -,) 1 X· X-X ----=-
lx -x'l2 2 

2 

x Jo(x)Jo(x') =
-e-

Q
2

4Jrk 

(3.44) 

(3 .45) 

para i = x' . Na expressão (3 .44) Q é o operador carga eletromagnética, o qual é definido 

como 

Reescrevemos (3.40) como 

2 . .  e 2 
[La ,r/JJ=elJyiôJr/J- 4nk[Q ,rjJ(y)]+ 

+ i � e j/&iJ YiF 10 
r/J

Temos também que 

[Q(x),rp(y)] = rp8
2 

(x- y) 

64 

(3.46) 

(3.47) 

(3.48) 



Usando este último resultado e manipulando o último termo de (3.47) chegamos finalmente
à expressão para a relação de comutação entre o operador momentum angular e o campo de
matéria, dada por

e2 
[ La ,<j)(y )] = i(y x V )<j)(y )-

21{k Q
(y )rp(y) 

+

+ 
i � ji. Êrp(y) 

Para g = - 2 ;{ , a equação acima toma-se

e2 
[ La ,rp(y )] = i(y x V )rp(y )-

l1rk Q
(y )rp(y) 

+

e -

- i -y · Erp( y)k

(3.49)

(3.50)

Os dois pnme1ros termos deste resultado são semelhantes ao que tem sido
encontrado na literatura para teorias sem a presença do termo anômalo. O primeiro termo,
já esperado, é o termo que evidencia a propriedade rotacional essencial para campos de
matéria. O segundo é devido à presença do termo de Chern-Simons e, basicamente, está

relacionado com o campo magnético B, pois B = &ij ôi A j. O último termo de (3. 51) está

relacionado com o campo elétrico Ê e surgiu com a introdução do termo anômalo na
Lagrangiana, introduzido com a redefinição do operador D

µ 
para o V

µ 
. Este resultado

nos parece bastante interessante. Primeiro porque confirma as especulações da referência
[25] sobre a contribuição 

0

d'o momento de dipolo anômalo para a estatística fracionária e, por
outro lado, abre a possibilidade da existência de uma estatística anômala sem a presença do
termo de Chern-Simons, o que poderia levar a um novo conceito para os anions. É
interessante notar que, ao contrário do termo de Chem-Simons, que está ligado ao campo
magnético, o termo extra está relacionado com o campo elétrico.
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3.6 TEORIA DE CHERN-SIMONS EM UM GAUGE 

NÃO-COV ARIANTE 

Nosso objetivo é verificar a influência do termo de Pauli, para a estatística 

fracionária em um gauge não-covariante. 

Analisaremos agora nosso modelo em um formalismo onde a quebra da simetria de 

gauge é implementada apenas a nível de vínculos. Consideremos a densidade Lagrangiana 

escrita na forma abaixo: 

Obtendo os seguintes momenta canonicamente conjugados: 

Jro = o 
J k ·· g ·· * • * 

1r = -
2 

elJ A; 
-

i 
2 

elJ [ <jJ ( D; <jJ) - </J( D1 <jJ) ] +

2 2 

_LaJ Aol</Jl2 
+ LÂJ l</Jl2

2 4 

(3.50) 

(3.51) 

Identificamos somente um vínculo primário das expressões acima, o qual é: 
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E usando o fato que ir o � O, encontramos o vínculo secundário abaixo:

onde 

o * *  g ·· * * JB =c[ie(tjJ1r-<jJ ,r -

2ec1Jôi('P (D1</J)-</J(D1</J) )+

+ i �e 
ôi (l</Jl2 

F
Oi 

))- k/J ôiAJ J + bõ0 e

Podemos contatar que não existem mais vínculos na teoria. Ficamos então com dois 

vínculos de primeira classe, os quais são: 

(3.52) 

(3.53) 

Sendo os vínculos acima de primeira classe (a expressão 3.53 é o vínculo da Lei de 

Gauss), estes são geradores de transformações de gauge. Assim podemos impor as 

chamadas condições de gauge, com o intuito de eliminar qualquer ambiguidade na variações 

dos campos. Impomos então o gauge de Coulomb[54]: 

(3.54) 

Vemos que o vínculo (3.53), é a mesma expressão que o campo Ai 
deveria 

satisfazer na condição (3.30). Mas Ai , devido à condição de gauge imposta, deve também 

satisfazer o gauge de Coulomb. Temos então que: 
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o qual satisfaz o vínculo V2 e o gauge de Coulomb.

Podemos encontrar o tensor simétrico energia-momentum, como: 

(3.55) 

Usando os parênteses de Poisson usuais e calculando a propriedade rotacional do 

campo escalar complexo </J, encontraremos o mesmo resultado obtido na expressão (3 .49).

Concluimos então que mesmo em um gauge não-covariante como o gauge de Coulomb 

aparece o termo i(g/4)y • E</J. Este resultado está dentro do previsto pois a escolha de

gauge não deve alterar os resultados de uma teoria fisica. 
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CONCLUSÕES E PERSPECTIVAS 

A estrutura formal deste trabalho foi baseada em dois formalismos que se mostraram 

extremamente úteis tanto do ponto de vista de formação acadêmica quanto do ponto de 

vista da solução dos problemas práticos abordados. 

O método de Dirac para análise de sistemas vinculados mostrou-se ser tecnicamente 

objetivo quanto a obtenção de resultados e rico em informações quanto a natureza física do 

sistema. Em sistemas em que os vínculos não são todos de segunda classe, os vínculos de 

primeira classe possibilitam a implementação de "condições de gauge", as quais podem ser 

interpretadas como restrições adicionais que a teoria deve satisfazer ou podem sem 

incorporadas aos vínculos da teoria, e a partir disto faz-se uma nova análise dos vínculos 

efetivos, verificando se os mesmos são de primeira ou segunda classe para em seguida obter 

os parênteses de Dirac. 

Por outro lado, o formalismo de BRST para teorias de gauge, utilizando-se das 

idéias de Faddev-Popov,' permite que se trabalhe com uma simetria manifesta, mesmo com a 

simetria de gauge fixada, o que leva a facilidades técnicas, e ainda torna mais transparente a 

análise dos estados fisicos da teoria. Especialmente quando se trabalha com a fixação de 

gauge explícita na Lagrangiana, a utilização do formalismo de BRST mostra-se mandatária. 
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O aparecimento do spin fracionário deve-se basicamente ao termo de Chern-Simons, 

como já mostrado em vários artigos. Surgem porém alguns questionamentos, tais como: 

i. Alguns autores acreditam que em uma teoria Maxwell-Chern-Simons, o termo

de Maxwell inibe o caráter aniônico. Assim, seria possível de alguma forma 

recuperar o caráter aniônico para esta teoria? 

ii. A estatística fracionária poderia ser obtida ou pelo menos modificada devido a

interações implementadas em uma teoria Maxwell pura ou Maxwell-Chern­

Simons ou Chern-Simons pura? 

A resposta à primeira questão tem sido dada em parte com a introdução do termo de 

Pauli diretamente na Lagrangiana. Por exemplo, no modelo Maxwell-Chern-Simons-Higgs 

com momento de dipolo anômalo, para um certo valor da constante de acoplamento g se 

recupera o caráter aniônico. 

A análise que desenvolvemos neste trabalho, que trata basicamente a teoria de 

Chern-Simons pura, nos leva a crer que, se não respondemos, pelo menos demos um 

encaminl)amento novo à segunda questão. O termo adicional obtido quando calculamos a 

propriedade ·rotacional do campo escalar complexo, não foi ainda mostrado na Literatura. 

Acreditamos que esta modificação, devido ao termo de Pauli, pode ser considerada como 

uma alteração na estatística fracionária. Ficamos induzidos a pensar que este termo extra 

surge mesmo na ausência do termo de Chern-Simons. Se esta propriedade anômala da 

estatística pode levar a um novo conceito de anions, é uma especulação interessante e que 

necessita de esclarecimentos adicionais. 

Os principais resultados deste trabalho podem ser resumidos como: 

- Construímos a· corrente e a carga de BRST para o modelo de Chern-Simons com

acoplamento não-mínimo. 
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- Ao utilizarmos a formulação BRST obtemos a forma para o campo Ai, através da

wti-se da atuaç;ão da eàfga topológica de BRST (Qb) em um estado físico, da qual obtemos 

uma expressão que se apresenta basicamente como o vínculo da Lei de Gauss. Quando a 

fixação de gauge não é explicitada no Lagrangiano encontramos a mesma forma para o 

campo Ah porém este vem agora diretamente da análise de vínculos da teoria, onde temos o 

vínculo da Lei de Gauss novamente. 

- O spin fracionário é obtido quando trabalhamos no gauge covariante de Lorentz,

como também no gauge não-covariante de Coulomb, mesmo com a introdução do termo de 

Pauli. 

- A introdução do momento de dipolo anômalo leva ao aparecimento de uma

contribuição adicional ao momentum angular do campo de matéria. Desta forma, mostramos 

que o termo de Pauli não destrói o caráter aniônico, apenas o modifica. Abre-se a 

possibilidade de objetos exibirem a estatística anômala sem recorrer ao termo de Chem­

Simons 

As perspectivas de continuação desta linha de trabalho residem em: 

- Realizar os mesmos procedimentos deste trabalho para o caso do campo espinorial.

- Verificar a possibilidade da existência da chamada interpolação entre bosons e

fermions, característica de anions, num quadro de ausência do termo de Chem-Simons. 

- Verificar qual o efeito do termo de Maxwell sobre todos estes modelos com o

termo de Pauli e, em particular, se para um valor crítico da constante de acoplamento g o 

termo extra no momentum angular permanece. 
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APENDICE 

A.1 Convenções. 

Utilizamos neste trabalho o sistema natural de unidades: 

n=c=l 

Derivadas covariante: 

Trabalhamos em 1 +2 dimensões, onde utilizamos: 

Métrica: 

Tensor de Levi-Civita: 

! 1 (permutações pares)

e
µvp = -1 (permutações impares)

O (índices repetidos) 
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