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RESUMO

\

Neste trabalho consideramos o modelo de Chern-Simons acoplado & campos de
matéria modificado pela introdugio, a nivel de arvore, de um termo do tipo Pauli, ou seja
um acoplamento de momento magnético andmalo. A introdug@o deste termo € efetuada pela
inclusdo de uma contribuigdo adicional na derivada covariante de gauge, a qual acopla
diretamente o campo de matéria ao tensor do campo eletromagnético.

Apresentamos uma revisio do formalismo de Dirac para sistemas vinculados e
utilizamos este método para tratar a estrutura de vinculos do modelo.

Escolhemos o gauge de Lorentz como condi¢do de fixagdo de gauge e construimos
as transformagGes de BRST para o modelo, assim como a corrente e carga de BRST
correspondentes.

O modelo € posteriormente quantizado usando os parénteses.de Dirac e mostramos
o aparecimento de uma contribuigdo extra para as propriedades rotacionais do campo de
matéria.

Toda esta formulagdo € entdo refeita para um gauge nio-covariante e observamos
novamente a mesma modificagdo na estatistica andmala do modelo.

Concluimos entdo que a introdugdo de um termo de momento de dipolo andmalo
leva a uma modificagdo na chamada estatistica fracionaria e discutimos a possibilidade do

aparecimento de anions mesmo na auséncia de termo de Chern-Simons.



ABSTRACT

In this work we consider the Chern-Simons model coupled to matter fields, in which
we add an Pauli-type coupling. The added term can be interpreted as an anomalous
magnetic moment coupling. The introduction of this term is achieved by adding to the gauge
covariant derivative an extra nonminimal contribution, which couples the matter field
directly to the field strenght.

We present a review of the Dirac formalism for constrained systems and this method
is used to treat the constraints of the model properly.

As gauge fixing condition we choose the Lorentz gauge and we construct the BRST
transformations to the model, as well as the BRST current and charge.

Using the Dirac bracket method the model is quantized and it-is shown that appears
an extra contribution to the rotational property of the matter field.

Then this formulation is rebuilt for a noncovariant gauge and we note that the same
modification arises in the anomalous statistic of the model.

So we conclude that the inclusion of the anomalous magnetic moment leads to a
change in the so called fractional statistics and we discuss an open possibility of the presence

of anyons even in the absence Chern-Simons term.
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INTRODUCAO

Modelos em (2+1) dimensdes tém sido muito estudados nos ultimos anos. A
possibilidade de solugdes tipo solitons desperta muito interesse, especialmente na diregio de
aplicagGes em Fisica da Matéria Condensada (Supercondutividade em altas temperaturas,
efeito Hall quéntico, etc.) [1-3]. Por exemplo, o modelo de Ginzburg-Landau para a
supercondutividade apresenta solugGes topologicas tipo vortice [4], e o modelo de Higgs
- abeliano [5] admite vortices que carregam fluxo magnético, mas que s3o eletricamente
neutros.

O grande uso do termo de Chern-Simons, de maneira geral, deve-se ao fato deste
revelar propriedades topologicas importantes aos modelos em (2+1) dimensdes espago
temporais. No contexto que mais nos interessa, o termo de Chern-Simons leva ao
aparecimento dos chamados anions, os quais apresentam estatistica fracionaria [6,7], na
qual se permite a existéncia de autovalores fracionarios para o operador de spin. Esta
propriedade esta relacionada com as caracteristicas topoldgicas da teoria.

Em duas dimensGes espaciais, existe esta nova possibilidade para estatistica quantica,

que interpola continuamente entre bosons e fermions. Esta chamada estatistica fracionaria,



segundo Wilczek [6], concretiza-se em particulas denominadas anions, as quais possuem
spin fracionario.

Este efeito pode ser obtido com um modelo dindmico simples, em que campos de
gauge ficticios assumem uma dindmica, a qual nfo pode ser identificado como um
Eletromagnetismo ordinario. Em Teoria Quéntica de Campos se implementa em (2+1)
dimensSes um modelo simples que apresenta estas anomalias. Este modelo possui a
construgdo de Chern-Simons.

Podemos mencionar inicialmente o trabalho de Leynas [8], mas quem primeiro fez
um estudo mais sistematico sobre os chamados anions, no inicio da década de 80, foi
Wilczek [9-12], realizando até mesmo um esforgo mais efetivo no sentido de aplicar estes
objetos para o entendimento de fendmenos tais como supercondutividade em altas
temperaturas e efeito Hall quantico.

Basicamente Wilczek associava aos anions estas anomalias na propriedade rotacional
de campos escalares. No entanto, a idéia de modificar o espago-tempo tridimensional em
teorias de campos através de uma Lagrangiana composta basicamente por uma corrente
conservada acoplada aos campos de gauge e o termo de Chern-Simons, foi originalmente
proposta por Hagen [1] em 1985. Analisando um modelo em (2+1) dimensdes com dindmica
ndo ordinaria para um campo de gauge ficticio, Hagen verificou o aparecimento de
estatistica fracionaria mas n@o interpolagdo entre bosons e fermions. Isto significa que para
seu modelo, as propriedades andmalas ndo se traduziam em anions. Semenoff em 1988 [13]
obteve resultados semelhantes utilizando explicitamente o termo de Chern-Simons,
considerando um gauge ndo-covariante. Esta relagdo entre estatistica fracionaria e anions
ainda ndo é clara o bastante, porém se usa comumente o termo “caracteristica anidnica”,
quando se refere a estatistica fracionaria. Vale lembrar que a definigdo de anions esta
intimamente relacionada a estatistica fracionaria.

O spin fracionario é medido através do calculo de um termo extra na algebra do
momentum angular. Nas referéncias [13-15] o termo extra resultante é proporcional ao
inverso do coeficiente de Chern-Simons. Este resultado foi obtido utilizando-se o gauge de
Coulomb. No entanto, como é de esperar, uma vez que a Fisica nio pode depender da
escolha de gauge, o spin fracionario ndo € privilégio de gauges ndo-covariantes. Realmente,

em 1992, H. Shin, W. Kim e J. Kim [16], analisaram uma teoria de gauge Abeliana com o



termo de Chern-Simons, sendo introduzido na derivada covariante o acoplamento dos
campos de gauge com o campo de matéria. Diferente de Semenoff, introduzem a simetria de
BRST e mostram que o spin fracionario também é obtido em um gauge covariante.

A caracteristica de anions, como ja dito, vem do termo de Chern-Simons, porém,
vale salientar que existe uma controvérsia, pois acredita-se que esta caracteristica seja
perdida com a introdugio do termo de Maxwell [17]. No entanto, alguns autores
consideram irrealista um modelo para anions que ndo contenha um termo de propagagéo do
tipo Maxwell. Uma solugio para esse impasse foi proposta inicialmente por J. Stern [18] e
desenvolvida por M. Torres [19]. A proposta consiste em introduzir um acoplamento nfo-
minimo em um modelo Maxwell-Chern-Simons. Este acoplamento é basicamente aquele
conhecido como termo de Pauli e pode ser interpretado como uma introdugdo de um
momento magnético andmalo a nivel de arvore. E interessante assinalar que devido as
peculiaridades da algebra SO(2,1), caracteristica do espago-tempo (2+1) dimensional, o
acoplamento tipo Pauli existe, mesmo na auséncia de graus de liberdade de spin [18,20].

O ponto central da proposta mencionada acima € que obtém-se uma lei de Gauss
como uma equagdo de primeira ordem, mesmo na presenga do termo de Maxwell (para um
valor particular da constante de acoplamento de Pauli ). E como sabemos, uma lei de Gauss
de primeira ordem € essencial para o comportamento anidnico.

Neste trabalho, estudamos o modelo de Chern-Simons Abeliano com o termo de
Pauli acoplado & campos de matéria. A introdug@o deste termo extra é obtida, definindo a
~ derivada covariante com um termo que acopla os campos de gauge com o campo escalar
complexo  ( acoplamento minimo), e um outro que acopla diretamente o mesmo campo
de matéria ao tensor campo eletromagnético, sendo este ultimo conhecido como termo de
momento de dipolo andmalo (acoplamento ndo-minimo). Uma vez que este sistema possui
invaridncia de BRST, utilizamos o chamado formalismo de BRST para obter mais
informagGes sobre o sistema, além deste formalismo possibilitar uma analise mais limpa da
questdo dos vinculos.

E necessaria uma ‘andlise de BRST quando se trabalha com fixagio de gauge.
Escolhemos inicialmente um gauge covariante, o gauge de Lorentz. Como é sabido, as
teorias de gauge apresentam vinculos. Portanto, inicialmente, estudamos a estrutura de

vinculos do modelo e realizamos sua quantizagdo utilizando o formalismo de Dirac para



sistemas vinculados [21,22]. Posteriormente, utilizamos a simetria de BRST [23,24] do
modelo para finalmente obtermos as propriedades rotacionais do campo escalar.

Basicamente nosso interesse prende-se a duas questes: 1) realizar a quantizagio
deste modelo com acoplamento ndo minimo tanto em um gauge covariante quanto em um
gauge ndo covariante; 2) verificar o que ocorre com a estatistica fracionaria em teorias de
Chern-Simons pura com momento de dipolo anémalo.

Esta segunda questdo foi de certa forma levantada, muito recentemente, no trabalho
de Carrington e Kunstatter [25]. Estes autores especulam que interagdes devidas ao
momento de dipolo andmalo, provocam anomalias estatisticas. Ou ainda, que o termo
andmalo seria capaz de levar a estatistica fracionaria independentemente do termo de Chern-
Simons.

Isto parece estar de acordo com o que encontramos no nosso modelo, pois como
mostraremos no decorrer deste trabalho, surge um termo adicional para a propriedade
rotacional do campo de matéria, o qual se apresenta como uma variagdo a estatistica

fracionaria, vindo diretamente do termo andmalo.

Este trabalho é desenvolvido da seguinte forma:

O capitulo 1 apresenta uma revisdo sobre sistemas vinculados, onde fazemos uma
analise sobre dindmica de vinculos através do método desenvolvido por Dirac, o qual
consiste basicamente em passar de uma teoria vinculada para uma teoria sem vinculos
efetivos. Para efeito de ilustragdo, neste capitulo fazemos também uma analise do exemplo
classico do campo eletromagnético.

O capitulo 2 aborda trés assuntos importantes para o desenvolvimento do trabalho.
Primeiro, faz-se uma analise do termo de Chern-Simons do ponto vista de fisico, aplicando
em seguida o método de analise Hamiltoniana desenvolvido no capitulo 1, na quantizagdo da
teoria de Chern-Simons Abeliana pura. Em seguida, introduzimos as transformagdes de
BRST, discutimos a questdo da fixagdo de gauge e mostramos a invaridncia BRST do
modelo com gauge fixado.

A qultima parte do capitulo 2 ressalta a motivagdo da introdugdo do termo de

momento de dipolo andmalo em teorias de gauge, diretamente na agdo classica, realizando



uma breve analise de aspectos importantes do que acontece com uma teoria de Maxwell-
Chern-Simons quando da sua introdug3o.

O capitulo 3 usa todos os conceitos e técnicas desenvolvidas nos capitulos 1 e 2 para
analisar o modelo de Chern-Simons Abeliano no gauge covariante de Lorentz com simetria
BRST e momento de dipolo an6malo. Quantizamos a teoria utilizando o formalismo de
Dirac e em seguida construimos a corrente e a carga de BRST. Logo apés, analisando o
operador de momentum angular do campo de matéria, mostramos que surge uma
contribuig@o adicional para a estatistica fracionaria quando da introdugio de interagGes de
momento de dipolo an6malo. Em seguida, no contexto de um modelo similar ao descrito
acima, utilizamos o gauge ndo-covariante de Coulomb e novamente observamos as
propriedades rotacionais andmalas de campos do modelo.

Finalmente, apresentamos as conclusdes sobre o trabalho desenvolvido, e algumas
perspectivas abertas para a continuagio desta linha de trabalho.

Um apéndice ¢ ainda introduzido para apresentar nossas convengaes.



CAPITULO 1

DINAMICA DE VINCULOS E FORMULACAO DE
DIRAC.

INTRODUCAO

Este capitulo propde-se ao estudo de sistemas vinculados, através da introdug@o de
um método de analise Hamiltoniana, investigando também a conex@o entre vinculos e
simetrias. Faremos o exemplo classico do Campo Eletromagnético, que evidencia a
aplicagdo do método de analise Hamiltoniana para o estudo de sistema vinculados.

Um método consistente para tratar sistemas vinculados foi proposto ha mais de
quarenta anos por Dirac. O método é conhecido por “Formalismo de Dirac para Sistemas

Vinculados” [21,22], que tem como objetivo transformar um modelo vinculado em um



modelo sem vinculos efetivos, através da redefini¢do dos “Parénteses de Poisson”, passando
para os chamados “Parénteses de Dirac”, e da obtengio das tranformagGes de Gauge.
Depois de determinados os “Parénteses de Dirac” e as simetrias do sistema,

passamos a uma teoria sem vinculos efetivos.

1.1 LAGRANGIANAS SINGULARES.

Nesta seg@o consideraremos somente sistemas nos quais a dindmica pode ser
derivada do principio estacionario, Lagrangianas que sejam fungGes de coordenadas e de

suas derivadas primeira. Para sistemas com N graus de liberdade temos,
12 ;
S= J't datL(q;,4;) (1.01)
1

Aqui g; e g; ; i =1,...,N, sio coordenadas locais sobre o espago de configuragdes. A

condig@o necessaria para a agdo (1.01) ser estacionaria sdo as equagdes de Euler-Lagrange:

E = _1(2_) L (102
at\d;) A;

Desenvolvendo a derivada total em relagdo ao tempo na expressdo acima e

lembrando que a Lagrangiana L ndo depende explicitamente do tempo, obtemos:

&L i L oL

i el e ) (1.03)
a;aj; Y day; Y ay

Ou,



—W

54 +Vi=0 (1.04)

Onde W é chamada de matriz Hessiana com seus elementos dados por

2
L
sz=—.ﬁ—. (1.05)
;A
€
a L
= - q; (1.06)

F A

Pela equagdo de movimento (1.04), vemos que se a matriz Hessiana for inversivel, a

aceleragdo pode ser dada por

qj =W;Vi (1.07)

Estes sistemas sio chamados de regulares.

Se, porém, det W =0, W ndo admite inversa, logo a aceleragio, e assim a evolugio
temporal do sistema ndo serd completamente fixada pela condigdes iniciais(q;,d; ;-
Tais sistemas s3o entdo chamados singulares. Vé-se entdo que em sistemas singulares
diferentes configuragdes de campos exprimem uma mesma configuragfo inicial. Isto estd
ligado ao fato de termos restrigGes ao sistema, ou seja, termos um sistema vinculado.

Por simplicidade assumiremos que o “rank” de /¥ é uma constante dada por R, sendo

R <N, onde N é o nimero de graus de liberdade da teoria. Existem entioMl =N —R

autovalores zero da matriz Hessiana dados poru(a) ya=1,.,M. Assim:

'ul(a)I/VU =0 a=1,.,M; i,j =1..N (1.08)



Isso implica que
,u,( %)E; =0 (1.09)

ou
0 =4 =¥ (q,4) (1.10)

as quais sdo condi¢des a serem satisfeitas pelas variaveis dindmicas. Portanto, algumas
destas M condigdes podem desaparecer identicamente, e assumimos que M, onde

M'< M, sio condigdes funcionalmente independentes do restante, consolidando-se
como restrigdes ao sistema.
Estas relagdes (1.10) dependentes das coordenadas e das velocidades, sio chamadas

de vinculos Lagrangianos. Estes impdem restrigdes ao movimento das variaveis dindmicas.

1.2 VINCULOS PRIMARIOS.

Trataremos agora com um formalismo Hamiltoniano consistente para Lagrangianas

singulares, ou seja, Lagrangianas em que
detW =0 (1.11)

E Lagrangianas bem construidas, com agio

5] :
S= LI dtl(q;,q;)



Com os momenta definidos por

-4

Diretamente dos momenta definidos acima podemos escrever fungGes do tipo
D,.(q,p)=0 m=1,..M (1.13)

Estas sdo as fungOes de vinculo, que sio pura consequéncia da definigdo (1.12). Dirac
chamou estes vinculos de “Vinculos Primarios”. Mas estes ndo sdo os unicos vinculos da
“teoria, ja que podem existir outros vinculos vindos de outras condigdes. Estes vinculos

definem uma sub-regido no espago de fase (g,p), onde o sistema efetivamente evoluira.

1.3 HAMILTONIANO TOTAL.

Comegamos por escrever o conhecido Hamiltoniano candnico H, como abaixo

He=pig' - L (1.14)

Se o sistema nfo tem vinculos, o principio de Hamilton pode ser expresso como

aj'dx(p,-g’ ~H,)=0

10



Se existem vinculos primaérios, as condi¢des de vinculo devem ser incorporadas ao

principio de Hamilton. Isto pode ser feito através dos multiplicadores de Lagrangel}m( t).

Escrevemos entio
sfdi(pd’ —H,—v"®,, ) =0 (1.15)

Se fizermos H, — H, + V" ®@,,, podemos escrever as equagdes de Hamilton

como

(1.16)

(1.17)

Sendo V" = V" (t ) fungdes arbitrarias.

A equagio (1.15) nos leva a reescrever o Hamiltoniano do sistema como

H=H, +V/"®, (1.18)

Neste ponto, torna-se necessario introduzir os “Parénteses de Poisson”.

Considere duas fungdes A(q,p) e B(q,p). Os parénteses de Poisson entre A e B sdo
definidos como

(45 LB _ A B
X; bi D A;

(1.19)

Possuindo as seguintes propriedades:

11



{A,B}=-{A,B}
{A+B,C}={A,C}+{B,C} (1.20)
{AB,C}—~A{B,C}+{A,C}B

{A,{B,C}}+{B,{C.A}}+{C,{A,B}}=0 (1.21)

A equagdo (1.21) é conhecida por “Identidade de Jacobi”.

Vamos calcular agora a evolugdo temporal de uma variavel X(g,p).

X=X H)=({X,H}+H{XV)D, +V'{X,D,} (122

O segundo termo a esquerda da expressdo (1.22) n3o contribui para evolugdo

temporal de X, pois V" (t) nio depende de g nem de p. No terceiro termo, se fizermos
@,=0 antes de calcular os parénteses de Poisson, esse termo também se anula. Assim a
dindmica do sistema ser gerada pelo Hamiltoniano candnico 1, e todas informagdes sobre

os vinculos desaparecem das equagdes de movimento obtidas via principio de Hamilton.
Para resolver esta situagdo, vamos pdr como regra que todos os parénteses devem ser
calculados antes de se usar as equagdes de vinculos. Dirac, para sintetizar esta regra,

introduziu o conceito de igualdade fraca.
Sabemos, a priori, que se um vinculo @,, ¢ igual a zero, a evolug@o temporal ndo

deveria nem ser calculada, mas para obtermos mais informagdes sobre os vinculos fazemos

uso desta condig@o de consisténcia e escrevemos

Du(q,p) =0 (1.23)
Este é o simbolo (=) de igualdade fraca, e indica que ndo devemos fazer logo os

vinculos iguais a zero.

Definimos entdo o Hamiltoniano total como

12



H, =H,+/"®, (1.24)
A equagdo (1.22) fica entdo

X ~{X,H} (1.25)

1.4 VINCULOS SECUNDARIOS.

Ja sabemos que os vinculos primarios definem uma sub-regido do espago de fase em
que ocorre a evolugdo do sistema. E dado entdo que a evolug@o do sistema deve ser tal que

preserve os vinculos primarios (1.23). Isto é explicitado pela condigdo de consisténcia

@,,(9,p)=~0

Na verdade, essa é uma restrigdo adicional sobre o espago de fase disponivel ao
sistema. Estes novos vinculos sdo chamados secundérios e sio obtidos calculando a
evolugdo temporal dos vinculos primarios. Uma vez encontrado um certo niimero de
vinculos secundarios, deve-se repetir o processo até verificar que ndo ocorre mais vinculos.

Assim, no final do processo, teremos M vinculos no sistema fisico, onde este M
agora € o namero total de vinculos, primarios e secundérios, pois esta disting@o € irrelevante

no final do processo. Escrevemos entdo
D,.(q,p) =0 m=1,..M (1.26)

Supondo que foi encontrado um conjunto completo de vinculos independentes e

considerando a evolugdo temporal de um determinado vinculod;, vejamos entdo o que

pode acontecer com os multiplicadores de Lagrangey” (t).

13



@; ={ @, H} +V"{ @, @} ~0 (1.27)

Podemos considerar (1.27) como um sistema de M equagles lineares homogéneas

para os v,(?). As equagdes tém solugdes da forma

P =U™ ™ (1.28)

Onde U"= U"(qp) é a solugdo particular e V"= V"(q,p) é a solugdo geral do sistema

homogeéneo. Para solug@o geral podemos escrever
{@i,Hc} +Vm{(pi,¢j} ~( (1.29)

O sistema homogéneo (1.29) pode ter certo nimero A de solugdes, de modo que sua

solugdo geral pode ser escrita como

V2 =yl a=1I,...A (1.30)
Assim

Vi =U" + A7 (1.31)
Podendo escrever o Hamiltoniano total como

Hy =H; +U" @y + V'V Dy,

H =H"+ ‘ﬂéa (1.32)
Onde
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H’=H,+U"®, (1.33)
Dy =@y(q,p) =V, @y, (134)
Assim, a evolug@o temporal de uma variavel X é dada por
o ’ a
X={X,H +v @a} (1.35)

O termo V@, da expressio (1.35) serd de grande importdncia para a andlise das

transformagGes de gauge.

1.5 TRANSFORMACOES DE GAUGE.

A presenga nas equagdes de movimento (1.35) de A fungGes arbitrarias ¥ tem
como consequéncia que um mesmo estado fisico corresponde a mais de um conjunto de
variaveis candnicas (q,p). Podemos dizer ainda que o conjunto de ¢’s e p’s definem
univocamente o estado do sistema, mas o reciproco néo é verdade.

Para entender isto, suponhamos que em um instante inicial #, temos um conjunto de
varidveis candnicas (q,p). E de se esperar que as equa¢des de movimento (1.35) determinem
completamente o estado fisico do sistema em qualquer instante posterior #,. Assim, qualquer

ambiguidade nas varidveis canfnicas no instante #,=¢, deve ser fisicamente irrelevante.

Os coeficientes V' sdo fungGes arbitrarias do tempo, logo o valor das varidveis
canbnicas em £, depende da variagdo destas fungGes no intervalo de tempo ¢ < ¢ < ..

Vejamos:
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g9;(1,) =q;(t;) +{CIj-H’}t1 ot + ‘fl(t]){qi» @a}tl ot (1.36)

pi(ty) =pi(t,) +{p,.,H’},l St + W(tl){pi,@a}tl ot (1.37)

Assim, a troca das variaveis candnicas g's e p’s geradas por V'@, é

& =€4{4i, Py} (1.38)

;i =&al b Py} (1.39)
Onde

Eq=Eg4(t)=00tV (1) (1.40)

Em teoria de campos se diz que (1.31) representa as transformagdes de gauge da

teoria, e os vinculos @, sdo geradores das transformagdes de gauge.

1.6 FUNCOES DE PRIMEIRA E DE SEGUNDA CLASSE.
HAMILTONIANO ESTENDIDO.

Vimos que a classificagdo dos vinculos como primarios e secundarios ndo € essencial
depois que estes sdo encontrados. Mas a classificagio das fungdes, como de primeira e
segunda classe, é de essencial importancia para a formulagio de Dirac.

Uma fungio f{q,p) é dita de primeira classe se o paréntese de Poisson com os

vinculos & se anulam fracamente. Ou seja
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{f,@j}=0 j=1..M (1.41)

Uma fungdo é de segunda classe se ndo obedece & expressdo (1.41), ou seja, uma

funcdo é de segunda se, e somente se, ndo € de primeira classe.

Teorema: Se duas fungdes f e g sGo de primeira classe, o paréntese
de Poisson entre estas fungoes também é de primeira classe.
Prova: Admita f e g de primeira classe e @; os vinculos do

sistema. Assim

f, O}=o; B0
{8, D}=LD~0

Isto vem diretamente da expressdo (1.41) e do fato que
os @, sdo as unicas quantidades independentes que se anulam

Jracamente no espago de fase.
Usando a identidade de Jacobi

{A.{B,C}}+{B,{C.A}}+{C,{A,B}}=0

Temos

{08} D)=l {e. BJ-(8.{, B}}=
=ailf, D}-fi{g D}=0

Logo

(e} @}~0
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Temos entdo a expressdo
{{f.8},®;}=~0 (1.42)

Para fe g sendo fungGes de primeira classe.
O resultado a seguir evidencia que os geradores de gauge @, sdo fungdes de

primeira classe.

(Po, @} =V O, @} = 143
VI Dy @ VYD Dy 0

Vimos que as fungdes que geram as transformagdes de gauge sdo de primeira classe.
Mas podemos garantir que todos os vinculos de primeira classe geram transformagdo de
gauge? Nao parece possivel chegarmos a uma conclusdo pelo que foi exposto aqui.

Geralmente, o que se faz é admitir como um postulado que todos os vinculos de
primeira classe geram transformagdes de gauge.

O que se postula € consistente porque:

i) A transformagdo gerada por um vinculo de primeira classe conserva todos os
vinculos, e, portanto, conserva estados permitidos em outros estados permitidos;

i) Ao ser os parénteses de Poisson dos vinculos de primeira classe, outro vinculo de
primeira classe, segundo o teorema ja exposto, os parénteses de Poisson dos geradores de
gauge também serdo geradores de transformagGes de gauge.

De acordo com o postulado de que todos os vinculos de primeira classe geram

transformagdes de gauge, estendemos as equagGes de movimento da forma
X ~A{X,H )+ {X, @) (1.44)

E se define o Hamiltoniano estendido H, como
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H=H'+V"®, (1.45)
Passando a escrever
X ~{X,H,) (1.46)

Temos mais uma redefini¢do da evolug@o temporal de uma variavel X.

1.7 ELIMINACAO DOS VINCULOS DE SEGUNDA CLASSE.

Com os vinculos de segunda classe se deve ter um cuidado adicional, quando se
considera um conjunto deles. A razdo é que pode haver combinagGes lineares de vinculos de
segunda classe que sejam de primeira classe. Assim se dird com precisdo que um conjunto
de vinculos ¢ de segunda classe se nenhuma combinag?o linear deles é de primeira classe.

Um critério para caracterizar conjunto de vinculos de segunda classe é:

Um conjunto {@;/ i=1,...,M} de vinculos é de segunda classe se, e somente se, a

matriz
Cij~{ D, B} (1.47)
for inversivel.
Note que os parénteses de Poisson s3o antissimétricos, logo C;, ¢€

antissimétrico. Assim, ‘0 nimero de vinculos de segunda classe é sempre par, ja que o

determinante de uma matriz antissimétrica de dimens&o impar € zero.
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Os vinculos de segunda classe ndo sdo geradores de transformagGes de gauge. As
transformagOes que geram ndo sdo de interesse fisico, pois ao ser de segunda classe n@o

conservam os vinculos.

Em um sistema, pode ocorrer que todos os vinculos sejam de primeira classe, ou que
alguns sejam de primeira classe e outros de segunda classe. De uma forma geral, convém
identificar o conjunto de vinculos de segunda classe e eliminar estes da teoria. Para isso

utiliza-se os parénteses de Dirac, {, }4 definidos como

gt~ gh-tf OICij { B g} (1.48)

Onde C;; T ¢ a matriz inversa de Cii.
J J

Os Parénteses de Dirac possuem as seguintes propriedades:

{F,Gla=-{F,G}a
{F,GR}a={F,G}aR+G{F,R}4 (1.49)
{F,G}4~{F,G}, para G de primeira classe e F arbitrario.

{ Dy, F}4~0, paraF de primeira classe. (1.50)

1.8 CONDICOES DE GAUGE.

Na sec@o anterior, solucionamos a questdo dos vinculos de segunda classe. Agora,
trataremos dos vinculos de primeira classe.

A presenga de vinculos de primeira classe leva associado uma liberdade de gauge.
Temos interpretado esta liberdade no sentido que um mesmo estado corresponde a mais de

um conjunto de variaveis candnicas (g,p). Ou seja conjunto de variaveis candnicas (g,p) € 0
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conjunto (q+dq,p+dp), descrevem um mesmo estado fisico. Isto implica que temos graus
de liberdade espurios. Logo, estes tém que ser eliminados da teoria.

E conveniente eliminar esta ambiguidade impondo restrigSes adicionais, chamadas
de “Condigdes de Gauge”. Ou seja, as condigGes de gauge eliminam os graus de liberdade
espurios evidenciados pelos vinculos de primeira classe. As expressdes acima revelam as
transformagGes nas variaveis candnicas, ou ainda, revelam as transformagdes de gauge.

As condigGes de gauge sdo fungdes do tipo

Ci(q.p)~0 (1.51)

que devem satisfazer os seguintes pontos:
i) Dado um conjunto qualquer de varidveis candnicas (q,p), deve existir uma

transformagdo de gauge que passe de (¢,p) a outro conjunto (¢’p’) que satisfagam as
condigGes de gauge (1.51);

ii) As condigdes de gauge (1.51) devem fixar completamente o gauge. Ou seja, ndo
pode existir nenhuma outra transformagdo de gauge, fora a identidade, que conserve as

condi¢des de gauge (1.51).

1.9 O EXEMPLO DO CAMPO ELETROMAGNETICO.

Este exemplo tem por objetivo ilustrar os conceitos teéricos introduzidos
anteriormente. Passaremos agora a tratar com campos e ndo mais com coordenadas. O caso
do campo eletromagnético é muito interessante, em particular porque € mais ligado a nossa
experiéncia cotidiana. Iremos encontrar os vinculos presentes na teoria do campo
eletromagnético e em seguida classifica-los em vinculos de primeira e segunda classe, com o
proposito de determinar os parénteses corretos da teoria, e, se necessario, encontrar as
condigGes de gauge do sistema.

A Lagrangiana do campo eletromagnético é dada por
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j d4x(—§F'”VF#V ) (1.52)

As varidveis candnicas sdo correspondentemente, o campo A, =A,(x,t) e seu
momentum canonicamente conjugado p# = 7# = 7# (x,t), definido como
L
pH =t =—— (1.53)

A L

Sabendo que F,, =J, A, —J,A,,, podemos encontrar

a# =FHO (1.54)

Separando o momentum canonicamente conjugado 7# em suas partes temporal e espacial

podemos. €SCrever:

2 =0
7 =F0 =54, 4 (1.55)

Pela expressdo (1.03), da definigio de vinculos primérios, pode-se dizer que 7°=0 é
0 unico vinculo primario existente nesta teoria.

O passo seguinte € verificarmos se existem vinculos secundéarios na teoria,
contruindo o Hamiltoniano total e exigindo que os vinculos primarios se conservem
durante a evolugdo temporal Primeiro, escrevemos o Hamiltoniano candnico,

considerando a expressdo (1.54).

22



Ho=[d’x(aynt - £)=[d’x{4,F* + %F”"Fﬂv} (1.56)

Manipulando a expressio (1.56), podemos escrever o Hamiltoniano candnico como
gipd am2 . =2 -
Hc=fd x{(5(E? +B%) = 4yV-7) (1.57)

Onde fica explicito o campo elétrico e o campo magnético.
Agora, implementando o vinculo primério através do multiplicador de Lagrange v,

podemos escrever o Hamiltoniano total como
.ol g, =g " 0
H =[d ;c{E(E +B°)-A)V-m+vyn”} (1.58)
Podemos agora usar a condigio de consisténcia, escrevendo

W =’ H,}=~0 (1.59)

Fazendo uso dos parénteses de Poisson para as varidveis candnicas A, e 7, abaixo

{A,,7" }=6#,5(x~y)

{A# AV }={z¥ 7V }=0 (1.60)
temos

{(r’ H }=0,n" =V-%=0 (1.61)
Lembrando que
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nt=F"0 - _g} (1.62)

—

V-72=V-E=~0 (1.63)

Onde a expressdo acima representa o vinculo da Lei de Gauss .
Pode-se verificar que ndo ha mais vinculos na teoria. Para isto, aplica-se novamente
a condig¢do de consisténcia para o vinculo da Lei de Gauss. Em resumo, temos dois vinculos

em nossa teoria os quais s3o
D = ° =0 (1.64)

D, =ﬁ,-7ri ~0 (1.65)

Verificando os parénteses de Poisson entres os vinculos acima, podemos constatar que sdo

nulos. Logo os vinculos sdo de primeira classe, ou seja, C,j ndo € inversivel.

Sendo os vinculos de primeira classe, estes geram transformagdes de gauge, o que

nos levara a impor as chamadas condigGes de gauge. Usando (1.38) e (1.39) vejamos quais

as transformagdes geradas nas variaveis candnicas pelos vinculos @; e @ 5. Temos:

8o ={ 4(x),[ d° ye(y)x° } =

(1.66)
=J6(Y){AO(X)v”°}d3y =&(x)

Entdo
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84; (x)=0

6ﬂi(x)= 0 (1.67)

As transformagGes geradas por 77° &0, se reduzem a uma troca arbitraria em A,. Portanto,

é valido eliminar a variagdo de A, impondo, por exemplo, a condigdo de gauge

Ao(x)=0 (1.68)

Este é o chamado gauge temporal.

Para o vinculo da lei de Gauss encontramos entio

sl (x)=0 (1.69)
04;(x)=0;¢(x) (1.70)

Da expressdo (1.70), vemos a transformagio de gauge usual do eletromagnetismo. Devido

a liberdade existente em &, podemos impor o gauge de Coulomb

24 =0 1.71)

i

Note que n3o precisamos fazer uso dos Parénteses de Dirac, pois ficamos com uma
teoria que possui dois vinculos de primeira classe e duas condigdes de gauge. No capitulo

seguinte faremos a andlise de vinculos para a teoria de Chern-Simons.
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CAPITULO 2

CONSTRUCAO DE CHERN-SIMONS,
FORMULACAO DE BRST E MOMENTO DE
DIPOLO ANOMALO.

INTRODUCAO

Veremos como o termo de Chern-Simons pode ser implementado por uma simples e
elegante construgdo. A teoria de Chern-Simons surge como uma possibilidade de explicar
fenémenos da fisica em (2+1) dimensGes, por possuir intrinsicamente ligada a ela, uma
estatistica fracionaria que pode levar aos chamados anions, os quais sdo particulas que
possuem spin fracionario. Esta ligagdo entre o termo de Chern-Simons e a estatistica

fracionaria sera vista com mais clareza no préximo capitulo.
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O termo de momento de dipolo andmalo surge neste contexto da teoria de Chern-
Simons, de uma certa forma, com o intuito de assegurar a caracteristica fracionaria, visto
que a principio, tal caracteristica esta diretamente associada ao termo de Chern-Simons e a
mesma é perdida, segundo alguns autores [17], quando da introdug@o do termo de Maxwell.

Na se¢do 2.1 mostramos que o termo de Chern-Simons leva & uma corrente e uma
carga, as quais s3o conservadas sem necessidade de recorrer a equagdes de movimento, o
que caracteriza o chamado termo topologico. Na se¢fo seguinte, aplicamos o método de
Dirac para caracterizar os vinculos de uma teoria de Chern-Simons e na segfo 2.3 revemos
as transformag¢Ges de BRST. Por fim, na se¢do 2.4 introduzimos o momento de dipolo

andmalo e discutimos o seu papel numa teoria de Maxwell-Chern-Simons.

2.1 CONSTRUCAO DE CHERN-SIMONS.

Sabemos que podemos associar a uma simetria continua uma lei de conservago.

Esta lei de conservagdo ¢ evidenciada pelo que chamamos de corrente conservada, J# que

obedece a

5#,]:“ =0 (2.01)

onde (2.01) expressa a lei de conservagdo da corrente J a8
Veremos agora que a esta corrente conservada podemos assoctar uma carga
conservada Q.

Da expressdo (2.01), podemos escrever

S
89 + ;. =%+V-J=0 (2.02)
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Onde J|) é exatamente a densidade de carga. Assim, iremos verificar se a carga O associada

a corrente conservada é também conservada.

Integrando a expressdo (3.02) em todo o volume, temos
a7’ .
Jdv7+fdv(V-J)=0 (2.03)
14 14

Usando o teorema de Gauss, teremos

o 3 =
Ejdu]0+IJ-da=0 (2.04)
14 S

Como no infinito as correntes se anulam, ficamos entdo com

= 2.05
4 (2.05)
onde a carga Q ¢ dada por
= J'J 0y (2.06)

A expressdo (2.05) garante a conservagdo da carga mediante a construgdo de uma
corrente que obedega a lei de conservagéo (2.01)

Vejamos agora uma forma de obter correntes identicamente conservadas.

Consideremos uma corrente J# , em 1+1 dimensGes, dada por

JH =e#v3 0 (2.07)
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onde @ ¢ um campo escalar.

Para verificar se ela se conserva, aplicamos a derivada &,

OuJt =0,(e",0)=6"5,0,p=
=00019- 1099 =0

(2.08)

Seguindo a mesma idéia, vamos escrever agora uma corrente em 2+1 dimensdes,

por exemplo;
JE =54, (2.09)
onde A7 é um campo vetorial. Logo para que esta corrente tenha significado fisico é

necessario que seja invariante de gauge. Passemos primeiro a verificar isto. Assim, pela

transformag@o de gauge

Ay > Ay =4, +9,4
implica que

JE = JH =gt 4
Logo

JH=PAG (4) +0,4)=

: .10
_ #V/l #Vlﬁ Oa1A= /lV/lﬁ A (2 )
=& 5'VA,1 +& vorA=¢€ v4a

Portanto, J# & invariante de gauge.
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Vemos agora que a corrente J # em (2+1) dimensdes € conservada.

0yt =0,(e"5,4; )= e"5,0,4; =0 @.11)

As expressdes (2.10) e (2.11) foram obtidas devido ao fato do tensor g,uwl ser

antissimétrico e o operador & ,ué,v ser simétrico quando atua nas funcGes A e A;. Desta

forma, pode-se escrever os resultados

eMVA5,0,4=0

e43,0,4; =0

Construida entdo uma corrente conservada J# em 1+2 dimensdes, logo podemos

associar uma carga conservada dada por (2.06).
A carga conservada (J, quando J 0 ¢ integrada em todo o espago

(0= _[iooo Jod 2x ), chama-se carga topoldgica [26] se tiver solugdo diferente de zero

Como veremos a seguir, esta forma de escrever uma corrente conservada leva-nos a
constru¢do de Lagrangianas com o chamado termo de Chern-Simons, cuja equagio de
campo envolve esta corrente conservada.

Faremos uma teoria em 2+1 dimensGes ser governada por uma determinada
Lagrangiana e suporemos que existe nesta teoria uma corrente conservada. Entdo,
consideraremos o efeito da modificag@o da teoria pela adigio de termos na Lagrangiana,

como abaixo:

AC=-qJ* A4, + %a’“’/’Aﬂo”‘,Ap (2.11)
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A equagio de movimento para o campo A y é

gJ# = kg”"’lo”,,Ap (2.12)

a qual da uma expressdo para a corrente conservada, semelhante a proposta em (2.09).

Da forma como estd escrito o termo de Chern-Simons, vé-se que este ndo €
invariante de gauge, pois aparece uma contribui¢@o adicional na forma de uma divergéncia.
No entanto a agfo correspondente € invariante de gauge e o sistema faz, entfio, sentido
fisico.

Quantidade do tipo do ultimo termo da equag?o (2.11) foi primeiro considerado por
Chern e Simons de uma forma completamente diferente do exposto aqui, num contexto de
pura geometria diferencial e sdo conhecidos como termo de Chern-Simons.

Este termo tém sido bastante usado na literatura por esta intimamente ligado a

anomalias rotacionais e também pela possibilidade da presenga de vortices [27,28,19].

2.2 FORMULACAO DE DIRAC PARA A TEORIA DE
CHERN-SIMONS.

Como uma aplicagdo do método desenvolvido por Dirac, faremos a analise de
vinculos para uma teoria, cuja Lagrangiana é composta basicamente pela termo de Chern-

Simons em 2+1 dimensdes, sendo esta escrita na forma:

k

£L==
4

At g FFY + AR, =

k 2
_r M AV Y7,

(2.13)
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Como ja mencionado, sabemos que este sistema possui sentido fisico, e seguindo a analise
da segdo 1.1, temos que esta Lagragiana € singular.

Partindo da defini¢gio de momentum canonicamente conjugado aos campos, obtemos

N | &

Ry=—A"euvp (2.14)

Uma analise mais detalhada mostra que
Vo =TT = 0

V]=7I1—%A2 ~ 0

V2 =7[2+§A1z0

sdo vinculos primarios.

Podemos escrever a Lagrangiana (2.13) na forma
k : j
L= (= &kmAm ) Ak = Kemi Ao A + A%y + A @19)
e obter o Hamiltoniano candnico como

H = ke oy Ao Bpp Ay — AP Ty — A1 (2.16)

e chegarmos a forma abaixo para o Hamiltoniano total
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H, =jd3x’7-{+jd3x{/10750 + A+ AV (2.17)

O proéximo passo € verificar se existem vinculos secundarios, analisando a condigdo

de consisténcia dos vinculos primarios, escritas como:

Von
V0

Utilizando os parénteses de Poisson usuais, obtemos

VO z{ﬂ(),Hp}zJo +k£mkﬁk"4m =0

As condigdes de consisténcia V; =0 e V; =0 simplesmente nos dio os valores

dos multiplicadores de Lagrange 4; e A 5. Ficamos assim com o conjunto de vinculos de

primeira classe
Vo=mp=0 (2.18)
Vy=Jp +kepp 0y 4y =0 (2.19)

e o conjunto de vinculos de segunda classe

Vi=m;- %AZ ~( (2.20)
k
Vy=m;y +5A1 ~ 0 (2.21)
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Sabemos que os vinculos de primeira classe sdo geradores das transformagdes de
gauge. Ja os de segunda classe, que trataremos inicialmente, serdo eliminados da teoria
através da defini¢8o dos parénteses de Dirac, pois os mesmos néo geram transformagdes de

interesse fisico.

A fim de obtermos os parénteses de Dirac, encontramos a matriz C’.'I' ={V; ,Vj }:

5 0 k
CU=5 (x—y)(_k 0]

€ sua inversa

0o -1
C"J,-j=52(x—y) ] k (2.22)
0
k

A definigio dos parénteses de Dirac, é dada por
{6.0}p = (0,0}~ {0V, JCj' {V;,0)

onde @ e O, podem representar 7, Ay, w;, Aj, w5 e Ay. Vale evidenciar que
Vi e Vj representam os vinculos de segunda classe.

Encontramos os seguintes parénteses de Dirac diferentes de zero:

{mg,49}p=6%(x-y) (2.23)

(41, 42}p =87 (x= ) @29
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Ja encontramos os parénteses corretos da tecsia e passaremos agora a tratar do
vineulos de primeira elasse, tmpondo condigdes de gauge que tornam a teoria consistente.

Usando a expressdo abaixo, semelhante a escrita no capitulo 1:
00={0O,&V;} (2.25)

onde ® =1, Ay 7; A; e V; representa os vinculos de primeira classe. Mas por outro

lado, podemos definir uma fungio G('€), a qual é fungio dos pardmetros arbitrarios & que

levam aos vinculos de primeira classe.
G(e)=[d?x[emg +&(Jo + kemOmAy )] (2.26)

Rescrevendo (2.25) como

00={0,G(e)} (2.27)
encontramos

4% ={4°.G(e)}=¢ (2.28)

A ={4 Gle))=kd e (2.29)

Nas expressdes acima, constatamos arbitrariedade na variagdo do campo A*,
precisamos entdo escolher.um gauge que contorne tal situagdo. Podemos escolher o gauge

covariante de Lorentz;

5;1A# =0 (2.30)
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E também comum ser usado o gauge de Coulomb (nZo-covariante),
g;A' =0 (2.31)

e 0 gauge temporal

'
o

I

S

(2.32)

Este modelo nos da a possibilidade de trabalharmos com vinculos de primeira classe
e vinculos de segunda classe. Vale salientar que ao impormos as condi¢gdes de gauge,
poderiamos avaliar um novo conjunto de vinculos, composto pelos vinculos primarios e as

condigBes de gauge estabelecidas.

2.3 FORMULACAO DE BRST

Na eletrodindmica quéntica, devido & liberdade que temos com as transformagdes de
gauge, encontramos dificuldades em obter o propagador desta teoria [24]. Vale salientar que
esta dificuldade surge tanto no formalismo candnico como no formalismo por integral de
trajetoria.

Iremos diretamente para o método por integral de trajetdria, considerando

simplesmente o funcional gerador para a teoria de Maxwell.
Z= D4, 155 (233)

onde
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1
L= —;F”"Fw (2.34)

Sabemos que a Lagrangiana acima € invariante sob uma transformag¢do de gauge
A 4= A ut o #/1, e que a integragdo é tomada para todos A4 y incluindo estes que sio
escritos pela transformag@o de gauge. Isto da uma contribuigdo infinita para a integral
funcional Z e, portanto, para as fungdes de Green obtidas pela diferenciagio do funcional

Z . O que devemos fazer ent3o para termos um valor finito para Z ? O que implica, em

obtermos um propagador para o campo de gauge. Podemos resolver esta questdo impondo a

condigdo de Lorentz & #A'u = (. A Lagrangiana pode ser entdo escrita como

£=—§F#VF“" —%(a"#A/‘)Z =Ly +Lyr (2.35)
onde
] u2
L:gf = —-2—(o"ﬂA ) (2.36)

¢ conhecido como termo de fixagdo de gauge. Isto da a Lagrangiana

L= éA”gﬂva"#ﬁ”A" (2.37)

onde o operador g #Vﬁ #Qﬂ tem um inverso, o que leva ao propagador de Feynman.

Com o intuito de ter regras gerais para encontrar o propagador do campo de gauge,
faremos uma analise do caso ndo-abeliano. Baseado na formulag@o finita para o funcional Z,
foi desenvolvido um método por Faddeev-Popov [23], que tem por resultado final uma

Lagrangiana efetiva escrita na forma geral abaixo.
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P g
L.go=L—-——F°-pMn=L+L L
o 2a S st Ak (2.38)

Onde

Loy=——F" e Lp,=-7My

F depende da fixag@o de gauge, M é o operador diferencial
oF
M=
on

7] é um campo escalar com estatistica de Fermi e £ fog ¢ o termo de ghost de Faddeev-

Popov, ou de compensagio da escolha de gauge.

A Lagrangiana escrita na forma acima estd com a simetria de gauge quebrada, ou
como se costuma dizer, com o gauge fixado. No entanto esta Lagrangiana é ainda invariante
sob outra simetria, como veremos mais adiante. E tal simetria é conhecida como simetria de
BRST. Esta formulag@o foi desenvolvida por Becchi, Rouet, Stora e separadamente por
Tyutin [23].

Fagamos agora uma analise para o caso ndo-Abeliano , onde escrevemos a integral

funcional
Z=N|[D4 DD (239)

onde N é o fator de normalizagZo e
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1
['e_ﬁ' =—;FEVF'HW +Eg +£]ng (2.40)

Para o termo de fixagdo de gauge escolhemos o gauge de Lorentz, e o termo de

ghost de Faddeev-Popov pode ser escrito como

c_fpg — _na(é-abof,#é,p _ g‘abCﬁﬂAZ _ gfabCAzaﬂ)nb
=07 (0,m" + gfabcAch) +'derivada total' (2.41)

=0#n?Dyn® =-n“"0#Dyn® + derivada total’

abe

onde g é a constante de acoplamento e f € um tensor antissimétrico chamado de

constante de estrutura, que obedece a identidade de Jacobi

abc rcmn _ amc pcnb anc pcbm
b Sabe Bl S SSa Caeates i

Faremos entio uma investigagio do comportamento de f’ejf sobre uma

transformagdo de gauge, a qual para o caso ndo-Abeliano é dada por
a_1 a
o4, = E( D,A) (2.42)

A idéia de Becchi, Rouet, Stora e ainda Tyutin foi escrever o pardmetro da

transformag@o de gauge como:

A =-n?A (2.43)

39



sendo portanto uma reparametrizagio da transformagio de gauge, onde A (uma constante)

e 77a sdo quantidades de Grassmann (/12 = ()). Escrevemos abaixo as transformagdes dos

campos que tornam a Lagrangiana efetiva invariante:

1

Ay, = —E(D”na )A (2.44)
i

5na L —Efabcﬂbﬂcll (2.45)
)|

on? = —g(o"”Az)/l (2.46)

As trés equagdes acima constituem as transformagdes de BRST. Para o caso de uma
teoria abeliana as transformagGes nos campos tomam uma forma mais simples, como podera

ser verificado no capitulo seguinte.

2.4 MOMENTO DE DIPOLO ANOMALO

O estudo de teorias com a introdugdo do termo de Pauli ou de interagdes de
momento de dipolo andmalo a nivel de arvore, tem recentemente despertado grande
interesse na literatura, que busca novos modelos para fendmenos em 2+1 dimensdes
[18,20,19,29,30]. Sabe-se que tais teorias sdo ndo-renormalizaveis, mas tem-se considerado
estas teorias como efetivas, motivados pelo interesse em descrever melhor as interagdes
entre particulas em um plano. Neste sentido duas possibilidades de interpretagdo surgem:
por um lado a agdo nf3o-minima pode ser vista como uma ferramenta fenomenoldgica, que

envolve um pardmetro extra g, o qual pode ser convenientemente ajustado com a carga e e a
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massa topoldgica %, tal que a agdo possa modelar um comportamento anidnico na auséncia
do termo de Maxwell. Por outro lado, um valor critico para a constante g talvez possa ser
entendido a partir de uma teoria fundamental, que leva, em determinado limite, & ag&o no-
minima. As interagGes de momento de dipolo andmalo sio obtidas com a introdug?o,
diretamente na derivada covariante, de um termo que envolve o tensor campo

eletromagnético, como se segue.
V=10, ~ied,~i(g]4)e,5sF ]
Iz H H 7%

E interessante mencionar que alguns autores consideraram recentemente uma forma
alternativa de introduzir o momento de dipolo andémalo [31,32,33,35]. Em particular,
Carrington e Kunstatter, considerando um acoplamento de corrente com o tensor
intensidade de campo dual, mostraram que a teoria ¢ renormalizavel a /-loop [33].

Vamos mostrar agora como € que a contribuigio do momento de dipolo andmalo

pode gerar a possibilidade de termos uma teoria Maxwell-Chern-Simons com carater
anionico em um determinado limite g = g, [19], onde g, € um valor critico para a
constante de acoplamento.

Considera-se a teoria que generaliza o modelo Abeliano Chern-Simons-Higgs com

interagdes de momento de dipolo andmalo, sendo descrita pela densidade Lagrangiana

1 k I 2
L=-2Fyy FHY 4204, F g + EIV W =V08)  @an

onde o potencial V(| |¢| ) tem a forma

vad) = alld? +ald” +as)d°

eV #¢ faz o acoplamento entre o campo de matéria e o campo de gauge.

As equagdes de movimento para a Lagrangiana (2.47) sdo
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SV, VHp=-Z- (2.48)

vl [F% + %J“ ]=J, - kF, 2.49)

A equagdo acima foi escrita em termos do tensor intensidade do campo dual,

definido como

Fy

va
€ uva F

N |~

e a corrente conservada € dada por

Tu==iS 8V ub= (Y ub)']

A solugo da equagio (2.49), sdo equagdes de primeira ordem, dadas por

=—Jy (2.50)

gl 2.51)

A equag@o (2.50), coincide com as equagdes de movimento que tém sido
consideradas por uma teoria Chern-Simons sem o termo de Maxwell [13], a menos da

redefinicio da corrente. Esta solugdo representa solugdes tipo vortice, a qual tem sido
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considerada em varios outros artigos [27,28,34]. Porém em trabalhos anteriores ao de
Torres [19], a contribuigdo do momento de dipolo andmalo e o termo de Maxwell ndo estéo
explicitamente incluidos na Lagrangiana.

Podemos ainda citar, como consequéncias interessantes da introdu¢do do momento
de dipolo andmalo, no quadro de uma quebra espontdnea da simetria de gauge, a geragdo de
um termo de Maxwell e de um termo de Chern-Simons, mesmo na auséncia destes termos
na Lagrangeana inicial [35]. Este aspecto, conjugado com o aparecimento de um jfofino
dindmico, foi também demonstrado na referéncia [36].

Esta se¢do, de uma certa forma, tenta mostrar a importancia de se analisar teorias
utilizando o momento de dipolo andmalo, pois como visto, este pode trazer novas

resultados com relagfo a estatistica fracionaria.
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CAPITULO 3

TEORIA DE CHERN-SIMONS ABELIANA COM
INTERACOES DE MOMENTO DE DIPOLO
ANOMALO.

INTRODUCAO

Nos capitulos anteriores usamos o método de Dirac para tratar os vinculos,
construimos as transformagdes de BRST para uma teoria de Chern-Simons e introduzimos o
acoplamento n3o-minimo no contexto de um modelo de Maxwell-Chern-Simons-Higgs.
Neste capitulo introduziremos o modelo de Chern-Simons acoplado & campos de matéria
com um termo de momento magnético andmalo, objeto central deste trabalho, e aplicaremos
as andlises introduzidas nos capitulos anteriores. Na se¢do 3.1 apresentamos o modelo.

Fixamos o gauge diretamente na Lagrangiana, sendo este o gauge covariante de Lorentz
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o #A# =0 e, consequentemente, temos um termo com os chamados campos de ghost de

Faddeev-Popov [24]. Logo apés, realizamos sua quantizagdo através do formalismo de
Dirac e na se¢do 3.3 analisamos sua simetria de BRST. Na se¢o 3.4 construimos a corrente
e a carga de BRST. As propriedades rotacionais do campo de matéria sio estudadas na
secdo 3.5 onde mostramos, através da relagdo de comutagdo entre o operador momentum
angular e o campo escalar complexo (campo de matéria), que com a introdugdo do

momento de dipolo andmalo diretamente na derivada covariante, surge o spin-fracionario e

um termo adicional ainda n3o encontrado na literatura. Este é dado por i( g/ 2)ye E @,0

qual pode representar uma alteragdo na estatistica fracionaria. Por fim, na seg¢do 3.6
reanalisamos o problema, agora considerando um gauge ndo-covariante, € novamente

obtemos a mesma contribuigio adicional para a estatistica fracionaria.

3.1 TEORIA DE CHERN-SIMONS COM ACOPLAMENTO NAO-
MINIMO EM UM GAUGE COVARIANTE.

Comegaremos por considerar a densidade Lagrangiana abaixo.

2 K v a,?
_ V. _ H
C=[Vyud +" e a0, 4; - 4,000+ 6% aon
-iokcd ¢

Sendo V, =[Jd, —ied, —i(g/4)8#,10-F/10], o operador que introduz o termo

andmalo na Lagrangiana, acoplando o campo de matéria com o campo de gauge; b é um
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campo mulfiplicador de Lagrange que implementa o gauge covariante de Lorentz & #A# ;€

€ o campo de ghost de Faddeev-Popov e C o anti-ghost.

O primeiro termo de (3.01) é responsavel pelo acoplamento entre o campo A eo
campo escalar complexo @, o segundo € o fermo de Chern-Simons e os #rés Glfimos termos

surgem da necessidade de se obter um propagador para os campos [24].Sendo

a 1
~4,0Mb+ 31)2 =3 AR ) (3.02)
onde
L5 4
b=-—0,4 (3.03)

o qual implementa o gauge covariante de Lorentz. E por ulfimo o termo de ghosts. Podemos
adianfar que, embora no gauge escolhido os ghosts desacoplam, podendo ser descarfados da
acdo, eles sdo mantidos porque sdo necessarios no formalismo de BRST.

Desenvolvendo a Lagrangiana (3.01) femos

. . * - .
L=(* +ieAH +z§gﬂVPva )@* (* —ieAH - zgaﬂv'Dva )é+

+’; e"A4,0,4; — A,0"b + C;bz ~ioked ¢
ou

C=|Dudf +18 MR8 (Dup) - (Do) 1+

2
& F

2 . k_pna
5 o F Pl +28/“’ A, 0,45 +

46



~A4,0"b+ %bz ~i0%Td ¢ (3.04)

Onde D, = 17 1 —ieA,,, faz o chamado acoplamento minimo entre os campos ¢ e Ay

sem o termo andmalo.

O segundo e ferceiro termos da expressdo (3.04) surgem devido a infrodugdo do

termo andmalo —ige #VO.F Ao no operador que implemenfa o acoplamento nZo-minimo.

3.2 QUANTIZANDO A TEORIA.

Em uma feoria vinculada, podemos fazer a analise de vinculos ufilizando o
formalismo de Dirac [21,22], como ja exposto nos capitulos anteriores. Utilizando este
formalismo, podemos consfatar que nem sempre as relagSes de comuzagio e anfi-comutagio
enfre as varidveis canOnicas vém diretamente dos parénfeses de Poisson, precisando,
portanto, antes de quanfizarmos a feoria, obfer, se necessario, os parénfeses de Dirac enfre
as variaveis candnicas.

Vamos inicialmenze abrir a Lagrangiana (3.03) em suas parfes temporal e espacial.

Lembrando que esramos em 2+1 dimensdes, obfemos a Lagragiana na forma abaixo.

L=-|Dg* +p¢" +iedg(9p" -4 )+ keV 4,04, +

—%eUA,-_Aj —Ab- A5+ %bz —icc—-id'ed;c +

+e? 4g|g)? +1— eV F;[¢"(Dog)- ¢(Dog)" ] +
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+2€UF0[¢ (Dig)-(Dig)" ]+
(3.05)

2 2
, L
+g8 1‘":'01‘7'0|¢|'2 +g8 F;FY|4

A parfir da Lagrangiana escrira da forma (3.05), passamos a obfer os momenta

*
canonicamente conjugados aos campos A4y, A it b, ¢, ¢ ,C, ec, respectivamente:

my=0 (3.06.2)

2 =-§a'fA 8 g (Dig)-¢(D'g) ] +

P (3.06.b)

g .j 2. 8 g2
—=—3) 4ylg|” +=-4

o Ayl + - 2719

wy=—Ap (3.06.c)
= gb* + ieA0¢* + i§¢*e'jF,-j (3.06.d)

i & . 306
T —¢—I€A0¢—14¢8 E; (3.06.¢)
g = —ic (3.06.,f)
T, =-IC (3.06.g)
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Sabemos que os momentos canonicamente conjugados que ndo possuem derivadas
nos campos, sdo classificados de vinculos primarios segundo a formulagio de Dirac para
sistemas vinculados.

Assim podemos destacar os dois vinculos primarios de nossa feoria:

wo=~0 (3.07.2)

mp+Ay=~0 (3.07.b)

Obridos os vinculos primarios, o passo seguinte é verificarmos se existem mais

vinculos na teoria. Utilizando a condigio de consisténcia
Vi =0

com F; sendo um vinculo primario, podemos verificar se existem vinculos secundarios.

Inicialmente, obfemos o Hamilzoniano candnico, o qual é dado por
0 - s . * .k : &
He=m Ag+rmjdj+np+n ¢ +rl+ngC+mpb-L

Utilizando as expressdes (3.06) e a Lagrangiana na forma (3.05) podemos chegar a seguinte

forma para o Hamilfoniano candnico:

H, =|Dg|? + 4,5'b- jbz +an —iedy(n d- )+
+keV 490, A; +ir g + 5T 0+

~iZ5,4) (¢ (Dig)~4(Dig)" ]+
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2
j 2
—%ﬁiAoa’A0|¢| 4
(3.08)

—z— eVF; [ (Dyp)- ¢(Dyo)" ]—— F;FY|g?

E necessério agora implemenfar os vinculos primérios na feoria, e faremos isto
usando os campos mulfiplicadores de Lagrange Ap e A;, com os quais escrevemos o

Hamiltoniano primario.
Hy=H +Agm+A)(7p + 4y) (3.09)

Torna-se necessario neste ponfo escrevermos os parénfeses de Poisson entre as

variaveis canOnicas de nossa feoria. Vejamos enfao.

{ 49,0} =06%(x~y)
{4, }=876%(x-y)
(pr}={(¢ .7 }=6%(x-y) (3.10)
{bmy}=56%(x-y)
{ene}={Cnz}=5"(x-y)
Agora, podemos verificar se existem vinculos secundarios, calculando a evolugdo

temporal dos vinculos primarios e usando o fafo de a evolugdo temporal dos vinculos

primarios ser fracamenfe nula. Assim feremos

{ﬂo,jdszP}={ﬂo,Id2ch}—AIzO (3.11.a)
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{my+ Ao, [ d*xHy ) = {my + 49, [d2xH }+ A =0 (311b)

Utilizando o Hamilfoniano candnico (3.08), podemos determinar os campos mulfiplicadores
de Lagrange Ag e A;. Logo, ndo existem mais vinculos na feoria, assim feremos somente

dois vinculos, os quais sdo
Vi=mp=0 (3.12.a)
Vy=mp+A4y)=0 (3.12.b)

Sabemos da grande importancia para a formulagg@o de Dirac, quanfo da classificagdo
dos vinculos em primeira classe e segunda classe. Podemos, enfdo, constatar facilmente que

os vinculos (3.12) s@o de segunda classe, pois

(Vi .Va}==6%(x~y) (3.13)

Como ndo existem vinculos de primeira classe, nio exisfem condigdes de gauge a
serem deferminadas na feoria. Isfo era esperado, pois estamos tfrabalhando com uma
Lagrangiana onde foi fixado o gauge. Sabemos que os vinculos de segunda classe devem ser
eliminados, pois nio geram fransformagdes de inferesse fisico. Enconfraremos agora os

parénteses de Dirac para, em seguida, quantizarmos a feoria.

Enconframos  enfio = a  matriz Gii(x.), definida  como
Cii(x,y)={Vi(x).Vj(y)}.
0 -1
1

c,j(x.y)=[ ; ]52(x—y)

e sua inversa
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c,-;-’(x,y)=[0 ']az(x—y) 619

=l ¥

Sendo os parénteses de Dirac definidos como

{A(x),B(y)}a={A(x),B(y)}+
—{ A(x)Vi(x' )JCi V(¥ ). B(y))

Utilizando os resultados acima e calculando fodos os parénteses de Dirac entre as variaveis

candnicas, enconframos os seguinfes parénfeses de Dirac abaixo:

{Ag.b}a=5(x-y)

{47 }g=676"(x-y) (3.15)
($m)a={8 7 }g=56°(x-y)
{c.mcha={Crz)qg=0°(x-y)

Com o intifo de quanfizarmos a feoria, faremos a seguinfe fransformagio:

{,}a—>i{,} =[], obtendo as relagdes de comuragio, como se segue:

[4p,b]=i8%(x~y)
[4.7;]q=i856°(x~y) (3.16)
[$7]a=[8 .7 Jg=i6%(x~y)

[e.mc]a=[C x5 ]q=i6%(x~y)
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Encontradas enf3o as relagdes de comrag@io correfas para a feoria, podemos agora
dizer que esramos com uma feoria sem vinculos efefivos, pois estes foram oculfados pelos

parénteses de Dirac.

3.3 SIMETRIA DE BRST

Como ja comentamos, a Lagrangiana escrifa na forma (3.01) esta com a simefria de
gauge quebrada, mas exisfe uma simetfria remanescente, a simefria de BRST, dada pelas

tfransformagGes nos campos:

Spd, =10,c
opp=ielcy

Sgp =—ielcd’ G.17)
Sgb=0

opc=0

Spt=ilb

Onde S p denota a transformagdo de BRST e A, pardmetro global da fransformagdo, ¢

uma quantidade de Grassmann constante,

Levando os campos Aﬂ, @, b, ce C, respectivamente para

A# - AH + ﬂa”pc

¢ P +iedcg
¢ —> ¢ —iedcg”
b—b
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coC
cC—o>c+ilb

e considerando o fato que 2=0 , pois A é um niimero de Grassmann, e aplicando esfas
tranformagGes na Lagrangiana (3.01), podemos constatar que esta é realmente invariante
sob esta franformag@o nos campos.

O termo de acoplamento e o termo de Chern-Simons separadamente sdo invariantes
sob uma fransformagdo de gauge a menos de uma derivada fofal, € de se esperar que estes

termos confinuassem invarianfes sob uma fransformagio de BRST, pois esta tfransformagio

¢ apenas uma reparameiriza¢do da fransformagio de gauge A 0= A ut 174 #A , fazendo o

gerador A ir para y — Ac, onde c é o campo de ghost.

O termo de fixa¢do de gauge,
~A4,0"b+ %bz
junfamente com o termo de ghost
—io¥ed e

ficam invariantes sob estas fransformagGes nos campos. Logo, a Lagrangiana é realmente

invarianfe de BRST.
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3.4 CARGA CONSERVADA DE BRST.

Vamos construir agora a correnfe conservada de BRST, a qual possibilizara

enconfrarmos uma expressdo para o campo 4;, que sera de grande imporfincia para analise
da propriedade rotacional do campo ¢ .

A corrente conservada de Noether para a fransformag@o de BRST ¢ dada como

oL
JE=Y——630
Gl A Tl

%
Onde @, pode representar os campos Aﬂ, @, ¢ , b ce C. Assim, usando a

Lagrangiana na forma da expressio (3.04) e as transformagGes (3.17), enconframos a

corrente conservada de BRST na forma exposta abaixo.

T = ketVho,cdy +iec(OP g~ §OF b+ 2iedP g ) +
2
2 2
#bots = Sedgfl #PFyp + S | POy 19

. * *
+i5eceP [§(Dpp) = §(Dpp)" 10,¢
A componente =0 da corrente conservada de BRST sera

J§ =kl oyca; +iec(d" 9 - ¢" 9+ 2ied’|g )+
. 2 y
+b3% - %ecl¢|2~€yﬁ}'j + %1¢‘2F0]0"ic +

il [§(Djp)~4(D;9) 10ic
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o« % .
Usando as expressdes (3.06) escritas para ¢ e @, podemos reescrever a expressio

acima como:

TG =clie(pn—¢'z" - 7 Vo1(4"(D;9) - 4(D;#)" )+
+ i%e o7 F" )~ ke5,4; ]+ 86 ¢ (3.19)

As transformagdes de BRST (3.17), s@o geradas pela carga conservada de BRST
QOp, definida como

2_q10
0p = [d?xI}
a qual pode ser escrita na forma

Op = J-dzx{c[ie(qz)ﬂ' - ¢*rr* +
-5 Y018 (D;4)- 4(D;#)") +
2 : y
+i—§—eo",-(|¢|2 F%))-ke¥5,4;1+68°c)  (3:20)

Um resultado a ser verificado ¢ a nilpoténcia de Op, isto §, verificar se

0% =0

Para isso reescrevemosa carga conservada Jp como
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0p = [d%x(a)
onde
a={clie(¢n~¢'n ~-= V(4 (D)~ H(Ds)")+
82 0200y 2
+iS=5,(4" F" ))- kel 5;4; ] +b5c)
sendo @ uma quantidade de Grassman. Podemos escrever
Qfg = é”dzxdzx'(aa' +a'a)

Usando entdo o fato de @ e ' serem quantidades anti-comutantes concluimos

entdo que

0%=0 (3.21)

Logo, fica comprovado que a carga g ¢ realmente nilpotente.

Voltemos agora & expressdo (3.20) e reescrevamos a carga de BRST na forma,
=l a2 k5. 4. )+b°
Op = |d“x[c(e]g—ke?jA;)+bT c] (3.22)

onde
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Jo=il¢n-¢'z" -5 Vo4 (D;p)~4(Djg) )+

g 42 0i
+i3e 3i(ld° F™ )] (3.23)

Como nossa teoria € invariante sobre a transformagdo de BRST (3.17), logo ¢

exigido que um estado fisico também seja invariante sobre esta transformagdo gerada pela

carga Op. Concluimos que

Oglest. fis)=0 (3.24)

onde |eSt. ﬁS.), representa o estado fisico, sendo (3.24) a condigio que deve ser satisfeita.

Usando o resultado da expressdo (3.06), em que
Ty = -id%

e usando as relagdes de comutagdo (3.16), podemos reescrever a carga conservada de
BRST como

Op = J' d%xc(ilo - ke¥0;4;) + (03, j d%xzd%] (3.25)

Usando Jp na forma acima e fazendo esta carga atuar em um estado fisico, teremos
que o estado resultante terd norma zero e € ortogonal a algum estado fisico, devido a
nilpoténcia de Op e a condigdo (3.24). Podemos portanto considerar somente a primeira

parte da equagdo (3.25), passando a escrever a condigdo (3.24) na forma

[ j d%xc(ilo - ke¥9;4))] |est. fis) =0 (3.26)
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O que significa que podemos escrever o espago total de Fock como o produto direto abaixo

V=V ®Vg, (3.27)

Pois estamos com uma teoria em que os campos de ghost ¢ e C sdo completamente

desacoplados dos outros campos. Onde V{y € o espago de Fock para os campos fisicos da

teoria e Vgh € o espago de Fock para os campos de ghost

Assim, um estado |V) €V é um estado fisico, logo ndo possui nenhuma dependéncia

com os campos de ghost, isto €,
|v) =|est. fis) ®10) gh (3.28)

Onde lO) gh é o estado de vacuo de ghost.

Escreveremos entfo a condigio (3.26) como se segue:
ij ‘
[eJo —ke¥5;4; Jlest. fis) @ d0) ,, =0 (3.29)
Como temos um produto direto, a condigdo abaixo também deve ser satisfeita.
[eJy - kg'jé’,-Aj Jlest. fisy=0 (3.30)

Veremos na se¢do 3.6 que esta condigdo é exatamente o vinculo da Lei de Gauss,
no caso de trabalharmos no gauge ndo-covariante de Coulomb. Isto ja nos garante a
existéncia de estatistica fracionaria [13], porém ndo mostra se havera alguma modificagéo
devido ao termo de Pauli. Pode ser comprovado que a solugdo para a condigdo (3.30) é

dada por
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(3.31)

Onde Jy ¢ dado por (3.23) e G(x—x') ¢ a fungdo de Green que em duas dimensdes[37]

¢é escrita como

G(x—-x')= -ibﬂx — x'|+ Const.

(3.32)

3.5 PROPRIEDADE ROTACIONAL DO CAMPO DE MATERIA.

Nosso objetivo final, nesta se¢do, é obter uma expressio para a relagdo de

comutagio entre o operador momento angular e o campo de matéria @, a qual evidencie

resultados sobre a estatistica fracionaria.

Obtemos inicialmente o tensor simétrico energia-momentum [38,39,24], o qual €

dado pela expressdo

I —. __ 0 d-8£) a-gL)
8Ty =

2 Y a@g#" i
&a

e escrevendo £ [38] em termos da métrica encontramos entio

%*
Ty =(Vub) Vyb+(V,8)'V - 4,8,b+
2 h
- A,0,b - g#,,(|Va¢| - A%5%b) + va
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h | - . .
Onde T EV € o tensor simétrico de energia-momentum para os campos de ghost, escrito

como
78" =i(d,cd,c+,c0,c)
yng utCyv FEe

A componente T j dotensor T}, ¢

To;=(Vod) V b+ (V;$) Vop— 43 b+

(3.34)
h
~ 499 + T,

Abrindo a expressdo acima e utilizando os momenta (3.06.d) e (3.06.e), encontramos

Tpj=(70;p+m 3¢ )—ied;(¢n~¢ 7 )+
L .
—igaﬁFlo(qﬁfz—qﬁ 7' )- Agd b A;Ggb+  (339)

gh
+ TOj

Completando a expressdo acima, podemos escrevé-la em termo da corrente J), ficando da

forma:

Tpj=(70;9+7 0;¢ )—ied;Jy +
~i8 Fpn— g7 )~ 490 b - A0 +
. o, . (3.36)
-i54;670,[4"D;6-9(D;9)" ] +

2
. i o 442 00, rgh
+1% A;e10,00° FY )+ Tf,
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Podemos passar agora ao operador momentum angular, sendo este em 2+I/

dimensdes definido por
L =jd2xaUxiToj (3.37)
Logo

La = Idzxeijxi{(fm"jgé + ﬂ'*aj¢*) = IeAJJo +
= i%a JF (g~ ¢'n" )~ 498;b~ A;0,b +
) (3.38)
. *
~i54;605,14"D g~ 4(D;j8)" ]+
2
. j 5 a2 p0i h
+z% 4895, FO ) + 15}

A propriedade rotacional do campo ¢ é obtida pela verificagdo da relagdo de

comutagio [ L, ,4(y)].

Utilizando a relagdo de comutagio

[$7]=i6%(x-y)

encontramos

[$.J9]=—95%(x—y) (3.39)

A partir das duas relagGes de comutagdo acima, obtemos
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[Laip]=5"y,0;6- [e[dxeVxiA;00.0] +

. (3.40)
. & 10
+135ﬂe’fy,-F ¢
Antes de prosseguirmos, vamos desenvolver o termo
ejdzxgijx-A i,
ijJ0
Usando a expressdo (3.31) para A ;, teremos
2_j e’ 232 4 0j
eId xelx;AjJg =—7”d xd“x'ed xjep x (3.41)
x FkG(x=x")Jo(x)Jp(x')
podendo ainda apresentar-se como
2.0 32 242
Yed:Jn = ——— '
eId xe? x;A;Jg k ”d xd“x' x (3.42)
x %-VG(x=x')Jg(x)Jo(x')
Pode ser visto que,
= l[X-(Xx-X'
x-VG(x—x’)=——( ( 2)- (3.43)
: 27\ |x-x'|

Voltando, temos,
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) 2 e o
ejdzxeyxiAon=2ﬁﬂ;”d2xd2x’x & J;)x
pr = (3.44)
_€ 2
XJo(x)Jo(x)=EQ
pots
xo(xox) ! (3.45)

para X = X' . Na expressio (3.44) O € o operador carga eletromagnética, o qual é definido

como
0= Idszo(x) (3.46)

Reescrevemos (3.40) como

g 2
[Lag]="yid;8~ | [0°.4(n)]+

(3.47)
+i -g— Ejlé‘ijyiFlo¢
Temos também que
[0(x).4(y)] = $5°(x - ) (3.48)
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Usando este ultimo resultado e manipulando o ultimo termo de (3.47) chegamos finalmente
a expressdo para a relagdo de comutag@o entre o operador momentum angular e o campo de

matéria, dada por

2
[La $(V)] =i(FxV)p(y)= . O(¥)#(¥)+
(3.49)
155 E4(y)
Para g= —2% , a equagdo acima torna-se
o2
[La (0] =i(FxV)g(y)= | O(0)d(¥)+
(3.50)

~i75-E4(y)

Os dois primeiros termos deste resultado sio semelhantes ao que tem sido
encontrado na literatura para teorias sem a presen¢a do termo andmalo. O primeiro termo,
ja esperado, é o termo que evidencia a propriedade rotacional essencial para campos de

matéria. O segundo € devido & presenga do termo de Chern-Simons e, basicamente, esta

relacionado com o campo magnético B, pois B = Syﬁi A - O ultimo termo de (3.51) esta

-

relacionado com o campo elétrico E e surgiu com a introdugdo do termo andmalo na

Lagrangiana, introduzido com a redefini¢do do operador D# parao V u- Este resultado

nos parece bastante interessante. Primeiro porque confirma as especulagdes da referéncia
[25] sobre a contribuigdo do momento de dipolo andmalo para a estatistica fracionaria e, por
outro lado, abre a possibilidade da existéncia de uma estatistica anOmala sem a presenga do
termo de Chern-Simons, o que poderia levar a um novo conceito para os anions. E
interessante notar que, ao contrario do termo de Chern-Simons, que esta ligado ao campo

magnético, o termo extra esta relacionado com o campo elétrico.
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3.6 TEORIA DE CHERN-SIMONS EM UM GAUGE
NAQO-COVARIANTE

Nosso objetivo € verificar a influéncia do termo de Pauli, para a estatistica

fracionaria em um gauge n3o-covariante.
Analisaremos agora nosso modelo em um formalismo onde a quebra da simetria de

gauge € implementada apenas a nivel de vinculos. Consideremos a densidade Lagrangiana

escrita na forma abaixo:
‘V ¢| 8’ S A 5 A (3.50)
)7 A :

Obtendo os seguintes momenta canonicamente conjugados:

=26V 4 - ’f[¢ (Dig)-4(D'¢)" ]+
(3.51)
-—0”JA old + AJ|¢|

= {15* + ieA0¢* + i%;ﬁ*eijF,J

PR U0 I8
T =¢—iedpg 14¢3 Fjj

Identificamos somente um vinculo primério das expressdes acima, o qual é:

IZ'ONO

66



E usando o fato que 77y = 0, encontramos o vinculo secundério abaixo:

eJo = Kg’jﬁ,-Aj ~0
onde

. * %k 1] *
Jh =clie(pn~¢'z" - 7 0,(9"(Djp) - 4(D;8)") +
.8 2 0i ij 0
+12 0",(|¢| F ))—ké‘ é,Aj]+b0"c
e

Podemos contatar que ndo existem mais vinculos na teoria. Ficamos entdo com dois

vinculos de primeira classe, os quais sio:

Vi=mg=0 (3.52)
Vay=ely —Ke’jo”,-Aj ~0 (3.53)

Sendo os vinculos acima de primeira classe (a expressdo 3.53 € o vinculo da Lei de
Gauss), estes sdo geradores de transformagbes de gauge. Assim podemos impor as
chamadas condigGes de gauge, com o intuito de eliminar qualquer ambiguidade na variagGes

dos campos. Impomos ent@o o gauge de Coulomb[54]:
GA=0 (3.54)

. . ~ i .
Vemos que o vinculo (3.53), é a mesma expressio que o campo A’ deveria

satisfazer na condigdo (3.30). Mas A’ devido a condig@o de gauge imposta, deve também

satisfazer o gauge de Coulomb. Temos entdo que:
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o qual satisfaz o vinculo V5 e o gauge de Coulomb.

Podemos encontrar o tensor simétrico energia-momentum, como:

Ty =(Vu8) Vb +(V8)'V b~ 8, (Vadl)  (3.59)

Usando os parénteses de Poisson usuais e calculando a propriedade rotacional do

campo escalar complexo @, encontraremos o mesmo resultado obtido na expressdo (3.49).
Concluimos entdo que mesmo em um gauge n3o-covariante como o gauge de Coulomb

aparece o termo i(g/4)7 ® E@. Este resultado est dentro do previsto pois a escolha de

gauge ndo deve alterar os resultados de uma teoria fisica.
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CONCLUSOES E PERSPECTIVAS

A estrutura formal deste trabalho foi baseada em dois formalismos que se mostraram
extremamente Uteis tanto do ponto de vista de formagdo académica quanto do ponto de
vista da solug@o dos problemas praticos abordados.

O método de Dirac para analise de sistemas vinculados mostrou-se ser tecnicamente
objetivo quanto a obtengdo de resultados e rico em informag¢des quanto a natureza fisica do
sistema. Em sistemas em que os vinculos nfo sdo todos de segunda classe, os vinculos de
primeira classe possibilitam a implementag@o de “condigdes de gauge”, as quais podem ser
interpretadas como restrigdes adicionais que a teoria deve satisfazer ou podem sem
incorporadas aos vinculos da teoria, e a partir disto faz-se uma nova analise dos vinculos
efetivos, verificando se os mesmos s3o de primeira ou segunda classe para em seguida obter
os parénteses de Dirac.

Por outro lado, o formalismo de BRST para teorias de gauge, utilizando-se das
idéias de Faddev-Popov, permite que se trabalhe com uma simetria manifesta, mesmo com a
simetria de gauge fixada, o que leva a facilidades técnicas, e ainda torna mais transparente a
analise dos estados fisicos da teoria. Especialmente quando se trabalha com a fixagdo de

gauge explicita na Lagrangiana, a utilizagdo do formalismo de BRST mostra-se mandatoria.
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O aparecimento do spin fracionario deve-se basicamente ao termo de Chern-Simons,

como ja mostrado em varios artigos. Surgem porém alguns questionamentos, tais como:

i. Alguns autores acreditam que em uma teoria Maxwell-Chern-Simons, o termo
de Maxwell inibe o carater anidnico. Assim, seria possivel de alguma forma

recuperar o carater anidnico para esta teoria?

ii. A estatistica fracionaria poderia ser obtida ou pelo menos modificada devido a
interagées implementadas em uma teoria Maxwell pura ou Maxwell-Chern-

Simons ou Chern-Simons pura?

A resposta a primeira quest@o tem sido dada em parte com a introdugfo do termo de
Pauli diretamente na Lagrangiana. Por exemplo, no modelo Maxwell-Chern-Simons-Higgs
com momento de dipolo andmalo, para um certo valor da constante de acoplamento g se
recupera o carater anidnico.

A anilise que desenvolvemos neste trabalho, que trata basicamente a teoria de
Chern-Simons pura, nos leva a crer que, se nio respondemos, pelo menos demos um
encaminhamento novo a segunda questdo. O termo adicional obtido quando calculamos a
propriedade rotacional do campo escalar complexo, ndo foi ainda mostrado na Literatura.
Acreditamos que esta modificagdo, devido ao termo de Pauli, pode ser considerada como
uma alteragdo na estatistica fracionaria. Ficamos induzidos a pensar que este termo extra
surge mesmo na auséncia do termo de Chern-Simons. Se esta propriedade andmala da
estatistica pode levar a um novo conceito de anions, € uma especulago interessante e que

necessita de esclarecimentos adicionais.

Os principais resultados deste trabalho podem ser resumidos como:

- Construimos a corrente e a carga de BRST para o modelo de Chern-Simons com

acoplamento ndo-minimo.
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- Ao utilizarmos a formulagao BRST cebtemos a forma para o campo 4;, através da
andlise da atuagfio da carga topoldgica de BRST (O») em um estado fisico, da qual obtemos
uma expressdo que se apresenta basicamente como o vinculo da Lei de Gauss. Quando a
fixagdo de gauge ndo é explicitada no Lagrangiano encontramos a mesma forma para o
campo 4;, porém este vem agora diretamente da anélise de vinculos da teoria, onde temos o

vinculo da Lei de Gauss novamente.

- O spin fracionario € obtido quando trabalhamos no gauge covariante de Lorentz,
como também no gauge ndo-covariante de Coulomb, mesmo com a introdug@o do termo de
Pauli.

- A introdugdo do momento de dipolo andmalo leva ao aparecimento de uma
contribui¢do adicional a0 momentum angular do campo de matéria. Desta forma, mostramos
que o termo de Pauli ndo destr6i o carater anidnico, apenas o modifica. Abre-se a
possibilidade de objetos exibirem a estatistica andmala sem recorrer ao termo de Chern-

Simons

As perspectivas de continuag@o desta linha de trabalho residem em:

- Realizar os mesmos procedimentos deste trabalho para o caso do campo espinorial.

- Verificar a possibilidade da existéncia da chamada interpolagdo entre bosons e

fermions, caracteristica de anions, num quadro de auséncia do termo de Chern-Simons.
- Verificar qual o efeito do termo de Maxwell sobre todos estes modelos com o

termo de Pauli e, em particular, se para um valor critico da constante de acoplamento g o

termo extra no momentum angular permanece.
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APENDICE

A.1 Convengses.
Utilizamos neste trabalho o sistema natural de unidades:
hi=c=1
Derivadas covariante:

D# — ﬁ# —ieAﬂ
V, =38, —ied, —iE e#PF.
e e e vp

Trabalhamos em 1+2 dimensdes, onde utilizamos:

P S/
Métrica: g¥ =0 -1 0
0 0 -1

Tensor de Levi-Civita:
1 (permutagOes pares)

e#"P =< —1( permutagdes impares)

0 (indices repetidos)
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