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RESUMO

Esta tese tem por objetivo contribuir para o desenvolvimento de classificadores baseados em
protétipos utilizando métodos de kernel. Inicialmente, investiga-se a aplicacdo do truque de
kernel a rede neural self-organizing map (SOM) na classificacdo de bancos de dados do tipo
batch, avaliando-se a influéncia de diferentes funcdes de kernel e métodos de rotulacdao. Os
resultados indicaram que o uso de funcdes de kernel além das tradicionais (Gaussiana e Linear)
pode gerar desempenhos superiores. Verificou-se também que, nos bancos de dados analisados,
ha vantagens em computar tanto a medida de distancia quanto a definicdo do protétipo vencedor
no espacgo de atributos. Em seguida, considerando a importancia da defini¢do do nimero de
protétipos para a acurdcia de classificadores baseados em protétipos, propde-se a utilizacao
de métodos de esparsificagdo, tais como approximate linear dependence, novelty, surprise e
coherence, para sele¢do automadtica dessa quantidade, utilizando, como classificador, o algoritmo
K-vizinhos mais préximos ponderados. Esses métodos sdo comparados quanto a influéncia na
acurdcia e na quantidade de protdtipos selecionados para o modelo. Nos testes com o modelo
proposto, denominado sparse kernel (SPARK), nenhum método de esparsificacdo ou fungdo
kernel apresentou desempenho consistentemente superior em todos os conjuntos de dados,
destacando que a eficicia do modelo depende das caracteristicas do problema e requer selecao
criteriosa de métodos, funcdes kernel e hiperparametros. Na maioria dos casos, o desempenho
superou o do kernel-SOM, no qual a definicdo da quantidade de protStipos apresenta maior
custo computacional. Por fim, considerando aplicacdes em que os dados chegam em fluxo
continuo, propde-se um novo arcabougo tedrico, denominado sparse online kernel (SPOK),
para a constru¢do de modelos adaptativos baseados em protétipos utilizando métodos de kernel.
O modelo foi avaliado na classificagdo de dados sintéticos e reais em fluxo continuo. Os
resultados evidenciaram que, mesmo utilizando apenas prototipos e estratégias de K-vizinhos
mais préximos, o modelo atinge, com poucos protétipos, desempenho comparével ao estado da
arte em classificadores de fluxo continuo, os quais sdo, geralmente, baseados em janelamento,

comités ou arvores de decisio.

Palavras-chave: Classificacdo; Modelos baseados em protétipos; Métodos de kernel; Métodos

de esparsificacdo; Fluxo continuo de dados; Modelos adaptativos



ABSTRACT

The main purpose of this thesis is to contribute to the development of prototype-based classifiers
using kernel methods. Initially, the application of the kernel trick to the artificial neural network
self-organizing map (SOM) is investigated for the classification of batch datasets (in which
all training data are simultaneously available), also verifying the influence of different kernel
functions and labeling methods. The results of these initial experiments showed that using kernel
functions other than the commonly employed ones (Gaussian and Linear) can lead to superior
performance. Furthermore, it was verified that, in the analyzed datasets, there are advantages
in computing both the distance measure and the definition of the winning prototype in the
feature space. Then, considering that defining the number of prototypes is very important for the
accuracy of prototype-based classifiers, this work proposes the use of sparsification methods,
such as approximate linear dependence (ALD), novelty, surprise and coherence, for the automatic
selection of this quantity, employing the weighted K-nearest neighbors algorithm as the classifier.
These methods are compared with respect to their influence on classifier accuracy and on the
number of prototypes selected. In the experiments carried out with the proposed model, here
referred to as sparse kernel (SPARK), no sparsification method or kernel function consistently
outperformed the others across all datasets. These findings highlight that the effectiveness of
the model depends on the dataset characteristics, reinforcing the need for a careful selection
of sparsification methods, kernel functions, and hyperparameters adapted to each specific task.
Moreover, in most cases, the performance was superior to that of the kernel-SOM algorithm, in
which the definition of the number of prototypes implies a higher computational cost. Finally, in
many recent applications, data may be provided as a continuous stream. In this context, a new
theoretical framework, here referred to as sparse online kernel (SPOK), is proposed for building
adaptive prototype-based models using kernel methods. The proposed model was evaluated in
the classification of synthetic and real data streams. The results showed that, even relying solely
on prototypes and K-nearest neighbor strategies, the model achieved, with only a few prototypes,
performance comparable to the state-of-the-art in data stream classifiers, which are often based

on data windowing, ensembles or decision trees.

Keywords: Classification; Prototype-based Models; Kernel Methods; Sparsification Methods;

Data Streaming; Adaptive Models.
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1 INTRODUCTION

Prototype-based models in machine learning make use of a number of appealing
concepts, such as the explicit representation of observations in terms of memorized exemplars
and the comparison of observations with this reference set of exemplars in terms of similarity
(BIEHL et al., 2016). Some examples of prototype-based training algorithms are the K-means
(KM) (MACQUEEN, 1967), the neural gas (NG) (MARTINETZ et al., 1993), the learning
vector quantization (LVQ) (KOHONEN, 1990a) and the Kohonen’s self-organizing map (SOM)
(KOHONEN, 1990b). They have been applied to supervised and unsupervised machine learning
problems, such as condition monitoring of induction motors (SOUSA et al., 2019), financial
time series forecasting (BAN et al., 2013), image compression (KRISHNA et al., 1997) and
detection of geochemical anomaly patterns (BIGDELI et al., 2022).

Of great interest to this work, tasks in industry, business, medicine and science can
be modeled as classification problems. Examples include bankruptcy prediction, credit scoring,
medical diagnosis, quality control, handwritten character recognition, and speech recognition
(ZHANG, 2000). It is important to mention that some nonlinear features may be embedded
in these problems. To model them, kernel-based methods have been introduced (JAKEL et al.,
2007). The underlying idea of these methods is to apply a kernel function k(-,-) : 2" x 2" — R
to any pair of training vectors so that the result can be interpreted as an inner product between
two vectors ¢ (x;) and ¢(x;), where ¢ : 2~ — %, and .¥ is a high-dimensional (possibly infinite
dimensional) feature space (YIN, 2006): k(x;,X;) = ¢ (x;)T ¢(x;). Since ¢(-) is usually unknown,
inner products in the feature space are computed through the kernel function without using the
feature vectors ¢(x;) and ¢(x;) directly. This property of kernel methods is known as the
kernel trick (VALYON, 2006). The process of kernelization has been applied to prototype-based
algorithms, producing their kernelized versions, such as the kernel K-means (KKM) (ZHANG;
RUDNICKY, 2002), the kernel self-organizing map (KSOM) (LAU et al., 2006), the kernel
neural gas (KNG) (QIN; SUGANTHAN, 2004a) and the kernel learning vector quantization
(KLVQ) (HOFMANN; HAMMER, 2013).

Finally, in many modern applications, the data are not completely available for offline
processing, but rather it comes in the form of streams. As examples, one can mention health
care (SPANGENBERG et al., 2017), behavior recognition (CHUA et al., 2011), structural health
monitoring (LI; YU, 2015) and Internet of Things (ALIYU et al., 2018). Other examples, such

as internet business and social media, lead to vast amounts of data created every second in tweets,
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click-streams, or log files (AUGENSTEIN et al., 2017). These kinds of applications bring some
issues that need to be tackled. Firstly, keeping large volumes of streaming data in a hardware
memory is often infeasible. Hence, online processing is required so that models can immediately
retain as much information as possible from the incoming input-output sample and then discard it.
Furthermore, data independence and stationarity assumptions seem unrealistic because changes
in underlying data distribution can occur, for example, due to changes in populations or changing
personal interests (ZLIOBAITE et al., 2015).

These restrictions have motivated the development of many methods for online
processing. Some of them, such as the online support vector machine (OSVM) (LI; YU,
2015) and the adaptive random forest (ARF) (GOMES et al., 2017b), are adaptations of batch
algorithms, while some others are based on adaptive windows (BIFET; GAVALDA, 2007)
(BIFET et al., 2013), short-term and long-term memories (LOSING et al., 2016), or ensembles
(GOMES et al., 2017a). Prototype-based classifiers (PBC) have also been used for streaming
data processing, achieving competitive results compared to state-of-the-art stream classifiers in
terms of time and memory complexity, as well as accuracy (LOSING et al., 2015) (HEUSINGER
et al., 2020). Nevertheless, performances of PBC are highly dependent on the number of labeled
prototypes. In scenarios where all the data are available for offline processing, a set of prototypes
can be either optimally determined using evolutionary algorithms, such as in Soares Filho e
Barreto (2014), or added/removed adaptively (ALBUQUERQUE et al., 2018). However, in
most applications, that number is set by trial and error or exhaustive grid search. For streaming
processing, a PBC model must be capable of updating continuously the number of prototypes,
on the fly, according to the demands of the task. An alternative approach to address this problem
comes from the field of kernel adaptive filtering (KAF), where sparsification methods have been
developed to control model complexity by verifying whether a given sample is important or
redundant to the existing model (LIU et al., 2009).

All the previous topics led to the following research question: Is it possible to solve
complex classification problems through sparse prototype-based models that can be applied to

batch and online data processing?

1.1 Goals

The main goal of this thesis is to develop sparse kernel prototype-based models to

efficiently handle classification tasks in batch and online learning scenarios.
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1.1.1 Specific Goals

To achieve the overall aim of this research, the following specific goals were estab-
lished:

— Investigate the use of kernel prototype-based models for batch learning in classification
problems;

— Evaluate the impact of the chosen kernel functions in the performance of prototype-based
classification;

— Analyze different sparsification procedures in the performance of prototype-based classifi-
cation models;

— Develop new and/or extend current kernel prototype-based classifiers for online learning

tasks, such as streaming data classification.

1.2 Scientific production

The partial results of this doctorate thesis generated the following publications.

— Coelho, D. N.; Barreto, G. A.; Medeiros, C. M. Detection of Short Circuit Faults in
3-Phase Converter-Fed Induction Motors Using Kernel SOMs. In: 2017 12th International
Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and
Data Visualization (WSOM). IEEE, 2017. p. 1-7. Available at: https://ieeexplore.ieee.org/
abstract/document/8020016. DOI: 10.1109/WSOM.2017.8020016.

— Coelho, D. N.; Barreto, G. A. Approximate Linear Dependence as a Design Method for
Kernel Prototype-Based Classifiers. In: International Workshop on Self-Organizing Maps.
Springer, Cham, 2019. p. 241-250. Available at: https://link.springer.com/chapter/10.
1007/978-3-030-19642-4_24. DOI: 10.1007/978-3-030-19642-4_24.

— Coelho, D. N.; Barreto, G. A. A Sparse Online Approach for Streaming Data Classification
via Prototype-Based Kernel Models. Neural Processing Letters, 2022, p. 1-28. Available
at: https://link.springer.com/article/10.1007/s11063-021-10701-9. DOI: 10.1007/s11063-
021-10701-9.

In addition to these articles, the author of this thesis has also co-authored the follow-
ing related articles:

— Freitas, D. C. C.; Braga, A. P. S.; Coelho, D. N.; Cavalcanti Neto, E.; Silva, H. S. Andlise de

Técnicas para Aproximacao da Curva de Descarga de Baterias. In: Congresso Brasileiro de


https://ieeexplore.ieee.org/abstract/document/8020016
https://ieeexplore.ieee.org/abstract/document/8020016
https://doi.org/10.1109/WSOM.2017.8020016
https://link.springer.com/chapter/10.1007/978-3-030-19642-4_24
https://link.springer.com/chapter/10.1007/978-3-030-19642-4_24
https://doi.org/10.1007/978-3-030-19642-4_24
https://link.springer.com/article/10.1007/s11063-021-10701-9
https://doi.org/10.1007/s11063-021-10701-9
https://doi.org/10.1007/s11063-021-10701-9
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Automatica, 2018, Jodo Pessoa. Anais do Congresso Brasileiro de Automatica. Sociedade
Brasileira de Automatica (SBA), 2020. Available at: https://www.sba.org.br/open_journal _

systems/index.php/cba/article/view/379. Accessed on: 24 jun. 2025.

— Bessa, R.; Barreto, G. A.; Coelho, D. N.; De Moura, E. P.; Murta, R. H. F. On Least
Squares Support Vector Regression for Predicting Mechanical Properties of Steel Rebars.
Metals, v. 14, p. 695, 2024. Available at: https://www.mdpi.com/2075-4701/14/6/695.
DOI: 10.3390/met14060695.

1.3 Thesis Organization

The remaining text is divided according to the contributions achieved throughout
this doctorate research. Each chapter highlights either theory, results, and/or discussions on a
specific topic.

In Chapter 2, the theory of prototype and kernel based models are presented, espe-
cially in solving classification problems.

In Chapter 3, the results of applying kernel functions to the SOM algorithm in the
task of classification problems is evaluated. The batch learning mode and the corresponding
experiments are detailed.

In Chapter 4, the aproximate linear dependency (ALD) is used as a design method
for kernel prototype-based classifiers. The algorithm’s characteristics are discussed and the
I-nearest neighbor is used as a strategy for classification. Motivated by these initial results,
the author evaluates other sparsification methods for the active selection of prototypes. As a
consequence of the studies carried out in this chapter, a new framework, called SPARK, is
proposed. Thus, the quantity of prototypes and its classification accuracy are analysed, taking
into account different kernel functions and sparsification methods. Also, the distance weighted
kernel K-nearest neighbor is used as an strategy for classification.

In Chapter 5, the online processing of streaming data is discussed, and a new
algorithm, called SPOK-NN is proposed. Its formalization and application to simulated and real
world online classification tasks are presented, comparing its results to those of other state-of-the-
art algorithms. As in Chapter 4, the use of different kernel functions and sparsification methods
are analyzed.

Finally, in Chapter 6, final considerations and perspectives for future work are made.


https://www.sba.org.br/open_journal_systems/index.php/cba/article/view/379
https://www.sba.org.br/open_journal_systems/index.php/cba/article/view/379
https://www.mdpi.com/2075-4701/14/6/695
https://doi.org/10.3390/met14060695
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2 PROTOTYPE-BASED CLASSIFIERS: FROM LINEAR TO KERNEL-BASED
APPROACHES

In this chapter, the theory of kernel prototype-based classifiers is introduced. Initially,
it is important to define some terms that will be used from now on, such as:

— Sample: an input-output pair describing an object to be classified.

— Class: a set of similar objects.

— Attribute: a characteristic (feature) of an object that serves as an input to the classifier.

— Metaparameter: an experiment variable that must be defined before hyperparameters
optimization step.

— Hyperparameter: a variable of the classifier which must be defined before training and
should be optimized.

— Parameter: a variable that is adjusted during training so the classifier can adapt to the
problem it is intended to solve.

— Training: stage of the model building in which the classifiers’ parameters are adjusted.

— Training Iteration: a single presentation of a training sample used to update the classifier’s
parameters.

— Training Epoch: one complete pass through the entire training data set, with each sample
presented once to update the classifier’s parameters.

— Test: stage of the model building in which the trained classifier is applied to previously
unseen data, and performance measures are computed.

— Training/testing realization: a full cycle in which training is completed and the classifier is
evaluated on test data.

— Generatilization: it refers to the classifier’s ability to perform well on new, unseen data. A
classifier with high generalization capacity is able to correctly classify data points that were
not part of the training set, thus ensuring its effectiveness and robustness when applied to
real-world scenarios.

The classification problem will be defined from the previous terms.

2.1 The classification Problem

Formally, in the context of classification, which is a supervised learning task, a
dataset is given as a group of tuples (samples) {(x,,c,) € R? x {1,...,C}}_,, where x, is

the n-th input feature vector, ¢, is its respective n-th output class label, and C is the finite and
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predefined number of classes (C < N).

Depending on the problem, there are several ways of encoding class labels. In this
thesis, a column vector y, € R is represented by means of the one-hot encoding scheme. As
such, the component of the output vector referring to the class to which the input data belongs
has the value +1, while the other components have the value —1. As an example, if the problem
has three classes, and the current sample belongs to class number two, its label is ¢, = 2 and
its encoded label will be y, = [—1,+1, —1]7. In this sense, a dataset is given as a collection of
input-output pairs {(X,,y,) € RF x RE}V_|

In batch learning, the dataset of N samples is previously stored and can be divided
into two disjoint subsets: the training set (with N, samples) and the test set (with N,y samples).
The classifier model H is built from the training set, and the test set is used to validate it (LOSING
et al., 2018). Several training-testing strategies can be used to evaluate the models, such as the
k-fold cross-validation, in which the dataset is divided in k folds and all but one fold are used for
training, while the remaining one is used for testing. The process is repeated k times until each
one of the k-folds is used for testing.

To evaluate the generalization ability of the trained models to unseen samples, one
can use the classification batch error measure, which is given by

1

Y O(cn,n), 2.1

Ep=—
Nig n=1

where ¢, = H(x,) is the classifier’s output prediction, and the function ©(.,.) is either equal to 0,
if ¢, = ¢, or 1, otherwise. Like c,, the label prediction ¢, can also be encoded. This topic will

be further discussed in Section 2.6.

2.2 Competitive Learning Algorithms

Within the field of artificial neural networks, prototype-based algorithms are also
called competitive learning algorithms (BIEHL et al., 2016; KOHONEN, 2013). Models and
algorithms based on the principle of competitive learning include the NG and its variants
(MARTINETZ et al., 1993), the family of LVQ algorithms (KOHONEN, 1990a) and the
Kohonen’s SOM (KOHONEN, 1990b).

Competitive learning algorithms learn from data a mapping from a continuous
input space 2 onto a discrete set <7 of Q prototypes. The map ¢*(-) : 2~ — <7, defined by

the set of weight vectors W € {w,wa,...,wp}, W, € R c 2, assigns to each input vector
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x(t) € R C 2 a winning prototype ¢*(¢) € 27, determined by a measure of (dis)similarity such

as

(1) = argmin x(1) — w, (0|3 22)

where || - ||2 denotes the Euclidean distance and ¢ symbolizes a discrete time step associated with
the iterations of the algorithm. The Euclidean distance and other measures of (dis)similarity are
detailed in Appendix A.

Competitive learning algorithms are distinguished, in part, by the updating rules of
their prototypes. By means of the winner takes all (WTA) approach, at each iteration of the

algorithm, only the winning prototype is updated as
Wy (14 1) = We (1) + 1 (1) [x(2) — Wy ()], (2.3)

where 0 < 1(¢) < 1 is the learning rate. For the SOM network (KOHONEN, 1990b), another

unsupervised algorithm, all the prototypes are updated by the rule

Wy (t+1) = wy (1) +n()h(g", g, 1) [x(t) — Wy (1)), (2.4)

where h(q*,q,t) is a neighborhood function which defines the region of influence around the
winning prototype. With the LVQI classifier (KOHONEN, 1990a), a supervised algorithm, only

the winning prototype is updated according to the rule

Wy () + 1(6) [x(1) W (1)] . if e = e(wg (1)
Woe () =~ 1(0) [x(6) —Wqe (1)) if ¢ # e(w ().

where ¢; is the sample’s class label and c(w,+(t)) is the winning prototype class label.

Wy (t+1) = (2.5)

After the training phase of a prototype-based algorithm, there is an associated convex
region for each prototype, called Voronoi cell, so that any sample within this region is closer to
that prototype than to the other prototypes. The set of all Voronoi cells forms a Voronoi diagram
(which is related to the Dirichlet tessellation) (AURENHAMMER, 1991). In Figures 1 and 2,
two dimensional Voronoi diagrams are shown. In these diagrams, the symbol "x" represents a
prototype, and the Voronoi cells boundaries represent the points that are equally distant from
two or more prototypes. It is important to mention that, in both figures, the prototypes have the
same position at the plane, but the use of different distance measures leads to distinct Voronoi
cell boundaries (LEE, 1980).

Unsupervised prototype-based models can be directly applied to clustering and

vector quantization problems. In contrast, supervised prototype-based models are suitable for
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Figure 1 — Voronoi Diagram using the Manhattan Distance.
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Figure 2 — Voronoi Diagram using the Euclidean Distance.
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classification tasks, although the labels must be assigned to each prototype. When unsupervised
prototype-based models are employed in classification, a post-training strategy must be used to

assign a class label to each prototype. Three of these strategies are shown in the next section.

2.3 Prototype Labeling Strategies

As previously mentioned, the unsupervised learning algorithms require post-training

prototype labeling strategies in order to be applied to pattern classification tasks. During the
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prototype labeling phase, training data samples are presented to the algorithm once more, but
the prototypes’ weights are not updated. Once this phase is completed, the algorithm becomes
a prototype-based classifier (BIEHL et al., 2016; MATTOS; BARRETO, 2011). Basically, all
prototype labeling strategies aim at associating to each prototype a class label, so that some rule,
such as the nearest prototype rule in Eq. (2.2), is used for pattern classification purposes.

Three labeling methods are used in this thesis, namely: the minimum distance (MD),
the average distance (AD) and the majority voting (MV) method. The MD method, which is the
simplest, assigns to each prototype the label of its nearest training sample. In the AD method,
one first needs to compute the distances from a given prototype to the samples of all classes
which are mapped to this prototype, then compute the average distance per class. Finally, the
prototype receives the label of the class whose associated average distance is the smallest one. In
the MV method, each prototype inherits the most frequent class label among the labels of the
samples mapped to it.

Figure 3 shows a Voronoi diagram after the training phase. In the highlighted Voronoi
cell, there are six training samples: two from class 1 (blue), one from class 2 (green), and three
from class 3 (red). If the minimum distance method is used, the class label assigned to the
prototype would be class 1. Using the average distance criterion, class 2 would be assigned.
Finally, with the majority voting method, the prototype would receive the label of class 3.

Figure 3 — Illustration of the labeling methods used in
this work.
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An advantage of using unsupervised trained models (such as the SOM) with post-
training labeling strategies, is that one just needs to define the total number of prototypes for
the model. On the downside, there can be classes without prototypes. In supervised models,
in which the prototypes are already labeled before the training phase, one needs to define the
number of prototypes for each class.

Finally, it should be noted that competitive learning classifiers, such as SOM- or LVQ-
based, generate piecewise linear decision boundaries. Although each local separation corresponds
to a linear segment between Voronoi regions, the overall decision surface is generally nonlinear
and may exhibit a complex geometry. Kernelized versions of these prototype-based classifiers
provide an additional level of flexibility by replacing the standard Euclidean metric with other

similarity functions defined in high-dimensional feature spaces.

2.4 Kernelizing Prototype-based Models

Using the kernel trick, the search for the winning prototype, as originally shown in

Eq. (2.2), becomes:

: 2
¢'(0) = argmin|o (x(0) 6 (w, (1) . 2.6)
= argminJ,(x(1)),
Vq
where J,(x(¢)) is a cost function. Using some linear algebra and the kernel trick, this expression

can be expanded as

Jy(x(1)) = [[o(x(1)) — 9wy (0))][3.
= (B(x(1) — O(wa())T (9(x(1)) — 9wy (1)),
= O(x(0)TO(x(1)) + O (w(1)T D (wq()) — 26 (x(1))T  (wq (1),
= K(X(),X(0)) + k(Wq 1), Wy 1)) — 2K(x(1), Wy 0)). 2.7)
By the same token, prototype updating rules can also be kernelized. For example,

the gradient descent based kernel SOM (GD-KSOM) (ANDRAS, 2002) and the energy function
based kernel SOM (EF-KSOM) (LAU et al., 2006) have the following prototype updating rule:

Wy (t+1) =wy (1) =n(0)h(q",q,1) VIy(x(1)), (2.8)

where the general expression for the gradient vector VJ,(x(t)) is given by

21 x(1)  dx(wy(t)hwy(t))  dx(wa(t).x(1)
V) =G T w2 aw)

(2.9)
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Its important to mention that, the only difference between GD-KSOM and EF-KSOM
is in the way these algorithms select the winning prototype. The former executes this operation
in the input space (Eq. (2.2)), while the latter executes it in the feature space (Eq. (2.6)).

Finally, different kernel functions lead to different variants of the prototype updating
rule in Eq. (2.8) and to different kernelized selection of winning prototypes in Eq. (2.6). Some of

these kernel functions are briefly described in the next subsection.
2.4.1 Kernel Functions

The linear kernel is the simplest one, where the output of the kernel function is equal
to the dot product of two input vectors plus a hyperparameter 8 € R. This kernel, for two given

vectors, X; € R” and x; € R?, can be formally defined as
k(xi,X;) =x!x; 46, (2.10)

where 0 is a constant bias parameter. If 6 is set to 0, the kernelized version of an algorithm
reduces to its linear form.
The Gaussian kernel function has the general form

2
k(x;,X;) = exp <—M> , (2.11)

202

where 0 € R" is a scale parameter (a.k.a. the width parameter). A suitable value for the
hyperparameter o should be carefully tuned to the problem at hand (HARKAT et al., 2020). If
overestimated, the exponential behaves almost linearly and the projection to the high-dimensional
feature space loses its nonlinear nature. If underestimated, the function lacks regularization and
the decision boundaries tend to become highly sensitive to noise in the training data.
The exponential kernel is very similar to the Gaussian kernel. The main difference is
that neither the scale parameter oy nor the Euclidean norm is squared:
k(x;,X;) = exp (—@) . (2.12)
Another widely used kernel function is the polynomial one. In its simplest form
k(x;,x;) = (XITX i+ 1)1, the hyperparameter / is an integer degree. However, this function can
also have a fractional degree (ROSSIUS et al., 1998), and two additional hyperparameters can
be added:
!

k(xi,x;) = (ax; x;+6) (2.13)
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resulting in a function with more degrees of freedom to build a nonlinear mapping.

The Cauchy kernel function has the following general form:

k(xi,x,) = (1 n w> , (2.14)

where oy € R™ is a scale parameter. This kernel function is a long-tailed kernel, a term borrowed
from probability to denote distributions in which extremely small or large values have a relatively
high probability of occurring, in contrast to the Gaussian distribution, where values far from the
mean are rare. For this reason, the Cauchy kernel can be used to provide long-range influence
and sensitivity over the high-dimensional feature space (DE SOUZA, 2010).

The Log kernel function was introduced in Boughorbel et al. (2005), and its expres-

sion is given by

!
_ i =1
k(xi,x;) = —log [ 1 +—5—= |, (2.15)
O%

where log denotes the natural logarithm. The Log kernel function belongs to a class of kernel
functions that are not strictly positive definite, known as conditionally positive definite kernel
functions!, which have been shown to perform very well in practical applications (PONTE,
2020).

The sigmoid function is a class of functions that is widely used as activation functions

in artificial neural networks, which has also been used as a kernel function (BISHOP, 2006;

CARRINGTON et al., 2014). This kernel has its equation
k(x;,X;) = tanh (axiij +0) (2.16)

based on the hyperbolic tangent, where o € R is a horizontal scaling parameter and 6 € R is a
central vertical bias (CARRINGTON et al., 2014).

Finally, the KMOD (Kernel with MOderate Decreasing) (AYAT et al., 2002) is char-
acterized by a fast decay of the image of the original points near the origin and a moderate decay
towards infinity. These characteristics allow quite distant input vectors to still be considered,
while maintaining proximity information (ROCHA NETO, 2011). The general equation for the
KMOD kernel is

1 0
K%)= o (/07— 1 [e"p <||X,._xj\\2+o,%> ) 1] | .

1

Let 2" be a nonempty set. A kernel x(-,-) is called conditionally positive definite if and only if it is symmetric
and Zf\,’ja,-ajlc(xi,xj) >0,forN > 1, ay,...,a, € R with 2?;1 a; =0,and xq,...,xy € 2.
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Table 1 — Common kernel functions and their hyperparameters.

’ Name ‘ K(x,y) Hyperparameters
Linear
Kernel (xi,Xj) +6 = X/ X;+6 0
Gaussian Xi—X; Hz
Kernel eXp ng Ok
Exponential ( ) i
Kernel eXp K
Polynomial /
Kernel (a'<xi’xf>+9) = (O‘XiTXj+8) o, 0,1
=1
(Ij(i:lifg <1 + || xi— X/||2> oy
o —tog (1412 x,m) iy
Sll(ir;c;d tanh (& (x;,X;) 4 6) = tanh (ax! x; + 6) a, 0
Kmod | [ ( 0 ) ]
Kernel axp(6/03) 1 P [, [Fre 1 0, o«

All these kernel functions and their corresponding hyperparameters are summarized
in Table 1. The equations for J,(x(¢)) and VJ,(x(¢)), for each kernel, are developed in Appendix
B.

The next subsection provides a detailed description of the K-nearest neighbors

framework.

2.5 Classification using Prototype-based Models

K-nearest neighbors (KNN) methods represent one of the simplest and most intuitive
nonparametric techniques in the field of statistical discrimination (FIX; HODGES, 1989; COVER;
HART, 1967; ZHANG, 2022). These methods can be equally used for classification (DUDA et
al.,2001; SYRIOPOULOS et al., 2023) and regression tasks (NADARAYA, 1964; WATSON,
1964; FRIAS; MARTINEZ, 2025).

In its simplest version, when used for classification, considering just one neighbor, a
new observation inherits the same label as the closest sample from a dictionary composed either
of training samples or prototypes. This method is also known as the nearest neighbor classifier
(NNC) or nearest prototype classifier (NPC) (BIEHL ef al., 2016). A first extension of this idea
is to use more than one neighbor, resulting in the K-NN variant. In this case, not only the closest

observation within the learning set is used for the sake of classification, but also the K nearest
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ones (HECHENBICHLER; SCHLIEP, 2004). The decision is in favor of the class label, most
of these neighbors belong to. The drawback of this extension is that K is a hyperparameter that
must be selected (or optimized) before training, and different values of K for the same sample
can lead to different classification outputs. Figure 4 illustrates a new sample to be classified. The
dashed circles represent points that are equally distant from this new sample, and the colored
asterisks represent prototypes from different classes. In this figure, for K = 1, the predicted label
"Class 2’ will be chosen as the model’s output, otherwise, if K = 3, the label *Class 1’ will be the

classifier’s prediction.

Figure 4 — Classification for different values of the

hyperparameter K.
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More sophisticated methods can be derived from this majority voting KNN strategy.
The weighted K-nearest neighbors (WKNN) (DUDANI, 1976; HECHENBICHLER; SCHLIEP,
2004) is based on the idea that prototypes closer to a new observation should get a higher weight
in the class prediction of this observation.

The first step of this method is to calculate the distances d(-,-) € R from the new
sample to the model’s prototypes. Then, one must hold the K + 1 nearest neighbors and their
distances from this sample. Next, these distances have to be transformed, according to an
arbitrary function f(.), into similarity measures which can be used as weights. This arbitrary
function must satisfy the following properties:

— f(d(-,)) >0 foralld(-,-);
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— f(d(-,-)) gets its maximum for d(-,-) = 0;
- f (d (', ‘)) decreases monotonously for d(~, .) — oo,
The rectangular function (in which all distances have the same weight, turning the

KNN into a special case of WKNN) and the triangular function, which can be defined as

are examples of functions that can be used for the transformation®. An important step before
using the triangular function is to standardize the prototypes distances based on the distance
to the first neighbor (K + 1) that is not considered when calculating the final prediction. This
standardization is performed for each of the K-nearest neighbors as follows:

d(x,wy)

MLV 2.19
d(XaWK-i-l), ( )

d(X7 Wk) —

so that standardized distances always take values within the interval [0,1]. The WKNN algorithm
can be summarized in the following steps:
1. Consider H = {(Wq,éq), qg=1,..., Q} a model composed by a set of prototypes w, and
their labels ¢, and x(7) a new observation whose class label has to be predicted.

2. Find the K + 1 nearest neighbors {wk}fill to x(z) according to a distance measure

d(wg,x(t)).
3. Use the (K + 1)-th neighbor to standardize the K smallest distances via Equation (2.19).
4. Use an arbitrary function f(d(-,-)) to transform the standardized distances in similarity
measures.
5. As a prediction ¢, for the observation’s class, choose the class which shows the biggest

similarity measure sum

K
Cn = max <Z f(d(wk,xn))-l(ﬁk,C)> ; (2.20)
¢ \k=1

where the function I(é, ¢) is either equal to 1, if & = ¢, or 0, otherwise.
Kernel methods can be also applied to the WKNN, building the kernel weighted
K-nearest neighbors (KWKNN) (RUBIO et al., 2010). In this strategy, the kernelized squared

Euclidean distance, defined in Equation (2.7), can be used as a distance, such that

2
d(wg,x(1)) = [|o(x(1) - ¢(wy)|[;.
= k(x(2),x(2)) + x(wy, W) —2K(x(1),w,). (2.21)
For other examples, see Hechenbichler e Schliep (2004).

2
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After defining the class label prediction, additional information can be encoded in

the model’s output. Some techniques for achieving this are discussed in the next section.

2.6 Class Label Prediction Encoding

After predicting the class to which a sample belongs, one could simply defines the
models’ output §(¢) using the one-hot encoding approach. However, PBC models can also
provide additional information to the user by using alternative enconding approaches, depending
on the classification strategy.

Firstly, using the nearest neighbor strategy, one can hold the distances, to the sample,
from the closest prototypes of each class. Then, each component J.(¢) of the class prediction
vector §(¢) can be calculated as

d. (1) —d; (1)

Sel) = =T dr @)

(2.22)

where df (¢) is the distance from the sample to the closest prototype of class ¢, and d, (¢) is the
distance from the sample to the closest prototype of all the classes but c¢. A similar equation
appears in the prototypes’ weights update function of the GLVQ algorithm (SATO; YAMADA,
1995). The use of this encoding method confers the subsequent advantages:
— $.(¢) always take values within the interval [—1,+1]
— If the sample x(¢) exactly matches a prototype, the distance between them is 0, and the
models’ output will be in the one-hot enconding format.
— In the prediction vector §(z), only the position corresponding to the predicted class will be
positive.
Moreover, using the KNN strategy, one can compute the average of the nearest
protoypes’ labels, such as

_ 2115:1 y(w)

§() = == (2.23)

where y(wy ) is the one-hot encoded prototype’s label. This kind of enconding has the following
properties:
— In the prediction vector §(¢), the component corresponding to the predicted class will have
the highest value.
— The value y.(¢), at each prediction vector’s position, will be as high as the number of

nearest neighbors, from class c, to the sample x(7).
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Furthermore, with the WKNN and KWKNN strategies, one must follow steps 1 to 4
of the WKNN algorithm. Then, assuming that each neighboring prototype has its label y(w;) in
one-hot encoding form, the model’s prediction can be computed as
_ Y Y(wWe)-f(d(x(1), wi))

Y1 fd(x(t), W)

It is important to note that the KNN encoding is just a particular case of the WKNN, where

y(t) (2.24)

f(d(x,w;)) = 1 (using the retangular transformation function).

Similar to one-hot encoding, when using these alternative encoding strategies for
classifier prediction, one can simply select the highest value in the output prediction vector to
define the estimated class of the sample. However, other applications and analyses may also arise
from these encoding strategies, such as the reject option (CHOW, 1970) and receiver operating

characteristic (ROC) curves (FAWCETT, 2006).

2.7 Chapter Summary

In this chapter, the theory behind kernel prototype-based classifiers was introduced.
Concepts such as the classification problem, prototype labeling strategies, and kernel functions
form the foundation for understanding the main contributions of this thesis, each of which is
addressed in a dedicated chapter. In the next chapter, the impact of the chosen kernel functions

and prototype labeling strategies on the performance of KSOM classifier variants is evaluated.
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3 CLASSIFICATION USING KERNEL SELF-ORGANIZING MAPS

Prototype-based models have been used for diverse classification tasks such as
motor failure detection (COELHO et al., 2017), face recognition (RUSTAM; RIKA, 2018),
identification of human phosphorylated proteins (CUI; DING, 2020), Fake News Detection
(NGUYEN et al., 2023) and Identification of salinity sources in groundwater (JAFARI et al.,
2025). In this chapter, the GD-KSOM and EF-KSOM algorithms (LAU et al., 2006) are used as
examples of kernel prototype-based models applied to such tasks.

First, the aforementioned algorithms are briefly described, pointing out their main
hyperparameters. Some equations have already been presented in Chapter 2, but they are repeated
here to make this chapter self-contained. Next, the experimental setup and the metaparameters
(a term defined at the beginning of Chapter 2) are shown. After that, the classification datasets
are detailed. Finally, the influence of kernel functions and labeling methods on classification
accuracy is examined.

The eight kernel functions (all listed in Table 1) are used to generate different
nonlinear mappings of the data. In addition, the three labeling methods described in Section
2.3 are used to convert the KSOM variants into pattern classifiers. These methods are identified
by the following abbreviations: minimum distance (MD), average distance (AD) and majority
voting (MV). Moreover, the NNC is used for comparing the generalization performance of each
model.

Finally, all prototype-based models were implemented from scratch in MATLAB
(R2023b), running on Windows 10 Home, on an HP notebook with an Intel Core 17-7500U
processor (2.70 GHz) and 16 GB of RAM.

The motivation for focusing on GD-KSOM and EF-KSOM is twofold. First, these
two algorithms are widely used kernel extensions of SOM, yet their comparative behavior under
different kernel functions, prototype-labeling strategies and datasets has not been systematically
examined in the literature. This chapter therefore fills this gap by providing a broad and
controlled evaluation of these variants, extending the preliminary results of (LAU et al., 2006)
with additional datasets and a richer set of kernel functions. Second, the results obtained here
establish a quantitative baseline against which the new method proposed in Chapter 4 can be
compared, thus clarifying the relative contributions and performance gains obtained by the

approach developed in this thesis.
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3.1 Kernel SOM Models

The SOM model’s prototypes have a topological organization in space that can be,
for example, one-dimensional or two-dimensional. The set .o/ of Q prototypes must be defined
before the training step. For instance, 30 prototypes can be arranged in a two-dimensional grid
with 5 rows and 6 columns.

Once the topological distribution of the prototypes is determined, it is necessary
to initialize their weight vectors. One possible strategy is to place prototypes near the mean
vector of the training dataset. Alternatively, Q feature vectors can be randomly sampled from the
training set.

Then, in general, the SOM’s training algorithm consists of a predefined number of
epochs N,j,. In each epoch ep, the training samples are presented, once each, to the model, in
order to update the prototypes’ weights. The total number of discrete time steps (iterations) #,,,qx
can be calculated by multiplying the number of epochs N,, by the number of training samples
Ny

An important variable to be defined is the learning rate (0 < 1 < 1). It can be set
as a constant 1) or, to increase the probability of convergence, it is common to make the learning

rate decrease over time, such as

n(t)zno<1— d ) (3.1)

Imax
where ¢ is the current iteration (time step), and 1) is the initial learning rate (a hyperparameter).
In each iteration, the winning prototype ¢* must first be identified. In the standard
formulation of the algorithm, the similarity between samples and prototypes can be computed

using the squared Euclidean distance
¢"(1) = argmin [x(1) — w, (1)1 (32)
Alternatively, one can use the kernelized version of Equation 3.2 to find ¢*, such as

q'(0) = argmin|9 (x(1)) = ¢ (wy(1)) [ (3.3)

= argminJ,(x(?)),
Yq

As previously described in Section 2.4, this expression can be expanded as

Jx(1)) = ||o(x(t) — o (wa(0))]]3,
= k(x(1),x(1)) +k(wy(t), wy(t)) —2k(x(r),wy(2)). (3.4)
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Its important to mention that, the only difference between GD-KSOM and EF-KSOM lies in the
way these algorithms select the winning prototype. The former executes this operation in the
input space (Eq. (3.2)), while the latter executes it in the feature space (Eq. (3.4)).

In the original SOM model, after identifying the winning prototype, all the prototypes

are updated according to the following rule:
Wt 4+ 1) = w(t) + 0 ()h(g",4,1)[x(1) — wy(0)]. (3.5)

The kernel SOM models (GD-KSOM and EF-KSOM)), by their turn, have the following prototype

updating rule:

Wy (t+1) =w, (1) =n(0)h(q",q,1) VIy(x(1)), (3.6)

where the general expression of the gradient vector VJ,(x,) is given by

CaU,x()  AK(wa(t)w(t)) . dx(wy(r). (1))
VO = S0 = aw) Y aw) -7

The neighborhood function 4(g*,¢,t) depends on the geometric positions r,(¢) and
ry (¢) of the current prototype and the winning prototype, respectively. In its simplest form, its
value is either 1 if the current prototype is a neighbor of the winning prototype, or O otherwise.
This corresponds to the rectangular neighborhood proposed by Kohonen, where the number
of neighbors is defined by the layer size Nj. Different layer sizes lead to different numbers of
neighbors. In Figure 5, the neighborhood layers are illustrated in a two-dimensional network.
The dashed squares represent layer sizes N, = 1, N, = 2, and Nj, = 3 centered on the prototype
with geometric position rg(f) = [6,5].

Alternatively, the Gaussian function is often used as a neighborhood function as it
makes the training algorithm converge faster. This function can be defined as

_Hrq(t)_rrf(t)”g)

207 (1)

h(q",q,t) = exp ( (3.8)

where 0y (t) defines how much influence the winning prototype has on its neighbors. This

parameter requires a decay scheme, such as

G (t) = vo (V—f> (3.9)
Vo

where vy and v are hyperparameters that define the initial and final values of o}, respectively.

By choosing these values properly, the model can be made to start with a high neighborhood

influence and end with a low one.
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Figure 5 — SOM Neighborhood in a 2-dimensional space.
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Once the network training is completed, a labeling method must be applied (see
Section 2.3) to assign a label to each prototype. The final model H = {(wq,éq), qg=1,..., Q} is
thus composed of a set of prototypes w, and their corresponding labels ¢,. Finally, to classify
new incoming samples, the hyperparameter K of the KNN prediction strategy must be specified.

The hyperparameters values of the kernel SOM models are summarized in Table
2. One important detail is that the set of 30 prototypes is organized in a 6 x 5 rectangular grid.
The same topological arrangement was used in (COELHO et al., 2017) for a comparative study.
Additionally, this structure was kept fixed to allow a focused comparison of the kernel functions
and labeling strategies. Finally, some of the hyperparameters are fixed (preassigned), while
others have their search space also specified in Table 2. The heuristics used for hyperparameter
optimization are described in the next section.

Finally, Algorithm 1 summarizes the training process of the EF-KSOM model. It is
important to note that, disregarding the data vector dimension, the computational complexity of

this algorithm is (N, - Ny - Q).
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Table 2 — The hyperparameters of the Kernel SOM Algorithm.

| Symbol | Definition Values

0 Number of prototypes 30

Nep Number of Epochs 50
Vo Initial value of neighborhood influence 0.8
vy Final value of neighborhood influence 0.3
No Initial Learning Rate 0.7
a Kernels’ Hyperparameter 1 [2-10)...,219]
2 Kernels’ Hyperparameter 2 [0,£2710 . 4219]
O« Kernels’ Hyperparameter 3 2710 .. 219]
[ Kernels’ Hyperparameter 4 [0.2,0.4,...,2.8,3]
K Number of neighbors (for classification) 1

Algoritmo 1: Pseudocode of the EF-KSOM training and prototype labeling.
IHPUt: {(X}’HC}’Z) Iv" Q’ N€p9 VO’ Vf, nO» K('7 ')9 a’ 99 GK’ l» K

n=1°

Output: H = {(w,,5)}2_|
begin
Initialize prototypes’ weights {(wq)}g:1
Initialize prototypes’ grid positions {(rq)}g:1
Calculate maximum number of time Steps fjax = Nep X Niy
Initialize descrete time step t =0
for epochs =1:N,, do
Shuffle input-output pairs: {(x,,c,) }2’21
forn=1:N,; do
Update discrete time step: t =1+ 1
Get sample x(¢) from input-output pairs
Calculate the learning step 1 using Eq. 3.1
Find the winning prototype ¢* using Eq. 3.4
forg=1:Qdo

Calculate the neighborhood function i(q,q*,t) using Eq. 3.8

Update the weight vector w, using Eq. 3.6
end
end
end
Use a labeling strategy to generate prototypes’ labels {(5q)}§: !

end

3.2 Hyperparameters Optimization

In a machine learning system, hyperparameters are parameters that define the model’s
architecture. They must be determined before the training and testing processes and have a
direct influence on the performance of a given model (YANG; SHAMI, 2020). Hyperparameter

optimization involves finding the set of hyperparameters that minimizes a cost function applied
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to a machine learning model using the training dataset. Using cross-validation, the optimal set
of hyperparameters minimizes the mean error of the model’s prediction on the validation set
(BERGSTRA; BENGIO, 2012).

There are several strategies to find the best combination of hyperparameters’ values.
The first one, is the trial and error, where the user will test values based on experience. Besides
this, there are some systematic ways for optimizing the hyperparameters.

The grid search, for example, is an algorithm that evaluates all possible combinations
of hyperparameter values within a predefined grid. Specifically, it computes the Cartesian product
of the given values for each hyperparameter, which makes this approach extremely costly. The
computational cost increases exponentially with the dimensionality of the search space (HUTTER
etal., 2019).

Alternatively, random search is an optimization algorithm designed to enhance the
performance of a function by exploring a set of randomly generated numbers within the specified
search domain. It iteratively samples combinations until a predefined stopping criterion is met.
In the context of hyperparameter optimization, this method provides a compelling alternative
to grid search. Unlike grid search, which exhaustively evaluates all possible hyperparameter
combinations, random search introduces a more efficient approach by randomly selecting combi-
nations within a defined range. Notably, this method often outperforms grid search, particularly
in scenarios where only a subset of hyperparameters has a significant impact on the learning
algorithm’s performance (LIASHCHYNSKYT; LIASHCHYNSKYT, 2019).

Last but not least, stochastic optimization techniques such as particle swarm op-
timization (PSO) and genetic algorithms (GA) can be employed to determine the model’s
hyperparameters. However, these strategies were not used in this work.

In the next section, the experimental setup for batch datasets is described. It is

important to note that this setup is also used in the next chapter to evaluate another model.

3.3 Experimental Setup for Batch Datasets and KSOM

To evaluate the KSOM models on each dataset for batch learning, two sets of
experiments are carried out. In the first, 10 independent realizations are executed. For each
realization, the following steps are performed.

— (i) Shuffle the dataset;

— (ii) Holdout procedure: partition the data into training and test sets;
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— (iii) Z-score normalization: compute the sample mean vector i, and the standard deviation
vector o of the training samples. Then, normalize the feature vectors so that all attributes
have zero mean and unit variance;

— (iv) Hyperparameter optimization: apply random search with 100 trials on the training
dataset to find the best combination of hyperparameters;

— (v) Training: update the model’s parameters using the training dataset;

— (vi) Performance testing: use the test dataset to validate the trained model.

For the holdout procedure, the data is randomly divided as follows: 70% for training
and 30% for testing. At the end of the testing phase, several statistical performance measures are
computed for each classifier, such as accuracy, error rate and F1-score (macro-averaged in the
case of multiclass problems).

To search for the optimal hyperparameter values, a 5-fold cross-validation strategy
is performed using the entire training portion (i.e., the 70% split from the holdout procedure).
Each combination of hyperparameters is evaluated over 100 trials of random search, and the
batch classification error 0 < E;, < 1 (already defined in Eq. 2.1) is used as the loss function
for assessing the performance of prototype-based algorithms during hyperparameter selection.
Once the optimal hyperparameters are determined, the full training dataset is used again to
update/define the model parameters before the final evaluation on the test set.

To summarize, the metaparameters used in this setup are listed next.

— Number of realizations: N, = 10;

— Percentage of training data: N, = 70%;

— Normalization procedure: Z-score;

— Number of folds for cross-validation: Ny = 5;

— Number of random search trials: N; = 100;

— Loss function for random search: minimum batch classification error Ej,.

In the second set of experiments, the optimal hyperparameters obtained in the first set
are used, and 100 independent realizations are executed. In these realizations, the same sequence
of steps from the first set is performed, except for step (iv) (hyperparameter optimization). These
experiments are conducted to verify the models’ sensitivity to data shuffling.

In the next section, the datasets for batch learning used throughout this thesis are

described in detail.
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3.4 Datasets for batch learning

The motor failure dataset (COELHO et al., 2014) consists of 294 feature vectors,
each containing six harmonics of the fast Fourier transform of a line current measurement from
a three-phase induction motor. The samples are organized into seven class labels, where 1 is
for normal operation condition (42 samples) and the other 6 labels correspond to short-circuit
faulty conditions (252 samples). In Coelho et al. (2014), the best results were obtained when the
problem was treated as binary and the classes were balanced by adding 210 artificial samples of
normal condition to the dataset. The same methodology is adopted in this thesis.

The pap-smear (cervical cancer) dataset (JANTZEN et al., 2005) consists of 917
images of Pap-smear cells classified by cytotechnicians and doctors!. Each cell is described
by 20 numerical features, and the dataset is divided into seven classes. Samples from 3 classes
originate from normal cells (totaling 242 samples) while samples from the other four classes
correspond to abnormal cells (totaling 675 samples). So, the classification problem for this
dataset can be treated as binary.

In the vertebral column dataset> proposed by ROCHA NETO (2011), six biome-
chanical attributes are derived from the shape and orientation of the pelvis and lumbar spine
of 310 patients. Each patient’s condition is classified as normal (100 samples), disk hernia (60
samples), or spondylolisthesis (150 samples). This dataset can also be treated as binary, with the
patient’s condition classified as normal (100 samples) or abnormal (210 samples). In this thesis,
the binary labels are used.

Finally, the last dataset used for the batch learning experiments, proposed by Freire
et al. (2009), concerns a wall-following robot that chooses among four actions (move forward,
slight right turn, sharp right turn, and slight left turn) as it navigates a room using 24 ultrasound
sensors arranged circularly around its body>. The output of each sensor can be used as an
individual feature, or the outputs can be merged into either four or two features. In this thesis,
the two-feature configuration is used.

The characteristics of the datasets are summarized in Table 3, where # denotes the
cardinality of a set. In the next section, the KSOM model variants are evaluated on all these
datasets.

It is important to mention that the decision regarding the number of classes and

' https://mde-lab.aegean.gr/index.php/downloads/

https://doi.org/10.24432/C5K89B
3 https://doi.org/10.24432/C57C8W


https://mde-lab.aegean.gr/index.php/downloads/
https://doi.org/10.24432/C5K89B
https://doi.org/10.24432/C57C8W
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Table 3 — Summary table for the datasets used for batch learning.
| Dataset | #Samples | #Attributes | #Classes

Motor
Failure 504 6 2
Cervical 917 20 )
Cancer
Vertebral 310 6 )
Column
Wall
Following 5436 2 4

features in each dataset was driven by the need to compare the KSOM models with existing
results from other works in the literature, as well as with the model proposed in Chapter 4. These

comparisons are presented in Section 4.4.

3.5 Evaluation of Kernel SOM-based Classifiers on Batch Learning

Initially, to establish a baseline for the results of the KSOM-based classifiers, two
types of linear classifiers were used.

The first classifier applies a linear mapping between the input (feature vectors) and
the output (encoded label vectors). Considering that both the feature vectors and the encoded

label vectors are column vectors, this mapping is defined by the equation
y(1) = Wx(1), (3.10)

where W € R(P+D*C ig the weight matrix. It is important to note that the dimension P+ 1 arises
from the addition of a bias term b = 1 to each feature vector. Moreover, the weights of this
matrix are not known a priori. However, using the training data, there are techniques to estimate
these weights in order to minimize the error in mapping the input vectors to the encoded label
vectors. A widespread technique for this is the Moore-Penrose pseudoinverse (MOORE, 1920;
PENROSE, 1955), also known as ordinary least squares (OLS).

The second classifier is multiclass logistic regression (COX, 1958; BISHOP, 2006),
using the one-versus-rest multiclass strategy and the L-BFGS solver algorithm.

For these experiments, each dataset was shuffled 100 times, and the data was divided
into training and testing sets. For the first linear classifier, the OLS algorithm was applied to
compute the weight matrix W, and the accuracy obtained by applying this linear mapping on

the testing set was then calculated. For the multiclass logistic regression, the LogisticRegression



Table 4 — Summary of accuracies of the OLS and logistic regression models.

| Dataset | OLS | Logistic Regression |
Motor Failure 67.2+ 3.2 68.6+3.6
Cervical Cancer | 93.1+ 1.1 93.8+1.3
Vertebral Column | 76.4+ 3.1 85.4+3.3
Wall Following | 53.94+ 0.6 87.5+0.7
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Table 5 — Performances of the evaluated KSOM models for the Motor Failure dataset (1st set of
experiments).

Algorithm ‘ Labeling ‘ linear ‘gaussian ‘ polynomial | exponential ‘ cauchy‘ log ‘sigmoidal‘ kmod ‘

Majority | 73.6+ | 73.2+ 73.4+ 756+ | 737+ |741+| 732+ |74.6+
Voting 4.0 34 3.0 2.6 2.9 4.5 4.8 2.3
EF-KSOM Average |69.7 +| 69.9 = 73.0 + 64.3+ 67.6+ | 682+ | 62.1£ | 65.7+
Distance 4.0 3.7 1.9 3.9 3.3 4.4 15.4 3.9
Minimum | 69.4+ | 72.3 + 71.8 + 734 + 704+ | 718 £ | 702+ | 69.9+
Distance | 4.6 4.9 5.7 1.9 33 3.5 4.1 4.1
Majority | 73.5+ | 73.2+ 72.2+ 74.5 + 72.6+ | 720+ | 73.6 + | 72.9+
Voting 3.9 34 4.5 3.2 4.6 4.0 7.2 34
Average | 70.7£ | 69.7+ 71.1 + 72.2 + 70.54+ | 70.1£ | 68.6+ |70.9 +
GD-KSOM Distance 3.4 5.0 4.1 4.7 4.7 5.2 5.0 54
Minimum | 69.4+ | 69.5+ 713 + 70.2+ 68.2+ | 695+ | 72.6 £ |734+
Distance | 4.6 6.0 2.6 2.6 4.0 5.8 5.1 2.6

function from the scikit-learn Python package was used to train the model and obtain the accuracy
measure.

The performance achieved by both strategies across all datasets is summarized in
Table 4.

In the following subsections, the evaluation of kernel SOM-based classifiers on each

dataset for batch learning is described in detail.

3.5.1 Results for the Motor Failure Dataset

The performance of the KSOM model applied to the Motor Failure dataset is pre-
sented in Table 5. The top three mean accuracies in each row (corresponding to one KSOM
training algorithm and one labeling method) are highlighted in boldface. The same presentation
format is used for the other datasets.

The best performance (75.6 £ 2.6) was obtained with the EF-KSOM model combined
with the majority voting labeling method and the exponential kernel function. When comparing
labeling methods, the best performances were generally achieved with majority voting. Regarding
the kernel functions, the exponential kernel reached the highest performance and was selected

four times (out of six) as one of the best-performing kernels.
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Table 6 — Performances of the evaluated KSOM models for the Motor Failure dataset (2nd set of

experiments).
Algorithm ‘ Labeling ‘ linear ‘ gaussian ‘ polynomial | exponential ‘ cauchy ‘ log ‘ sigmoidal ‘ kmod ‘

Majority | 73.6£ | 779 £ 74.4+ 73.1+ 75.6+ | 768 £ | 753+ |[76.1 =+

Voting 2.9 35 3.5 3.7 3.0 3.2 3.6 3.7
EF-KSOM Average |69.9 + | 73.9 + 71.7 + 66.5+ 64.5+ | 659+ | 67.7£ | 65.9+

i Distance | 3.8 3.2 3.7 3.0 4.4 5.5 3.5 4.2
Minimum | 69.6+ | 75.9 £ 779 + 66.4+ 70.6 | 73.1£ | 774+ | 69.8+

Distance 4.0 2.8 3.6 4.0 3.2 33 3.2 4.7
Majority | 73.5 £ | 73.5 £ 72.6+ 74.1 + 73.14& | 732+ | 72.9£ | 73.1%

Voting 39 3.7 3.5 31 34 3.2 3.6 3.7
Average | 70.3+ | 71.3 £ 71.2 + 62.2+ 70.8+ | 70.5£ | 70.6+ |71.5+

GD-KSOM | pyistance | 3.8 4.0 3.4 3.4 3.5 3.9 3.4 3.8
Minimum | 69.94+ | 70.0£ 69.6+ 68.6t 701+ 702+ | 702+ |70.1+%

Distance 39 4.0 3.7 5.7 4.3 3.6 3.9 4.3

The best hyperparameters obtained from the first set of experiments with the Motor
Failure dataset are reported in Table 52, in Appendix C. Using these values, 100 new realizations
were carried out. The results from this experiment are shown in Table 6. The best performance
(77.9 £ 3.5) was achieved with the EF-KSOM model combined with the majority voting labeling
method and the Gaussian kernel function. When comparing labeling methods, the highest mean
values were generally obtained with the majority voting strategy. Regarding the kernel functions,
the Gaussian kernel reached the highest mean values and was selected five times (out of six) as
one of the best-performing kernels.

As can be seen, the best result from the second set of experiments (77.9 4-3.5) was
higher than that of the first set (75.6 £ 2.6), indicating that once the best hyperparameters are
found, shuffling again the data and dividing it into different training and test sets does not
negatively affect classifier performance. Moreover, this best result is 10.7% higher than the result
of (67.2£3.2) obtained with the OLS classifier, and 9.3% higher than the result of (68.6 +3.6)
obtained with the logistic regression classifier, both of which are reported in Table 4.

A summary of the results from these two sets of experiments is reported in Table
7. In this table, the comparisons column defines the following: the best result refers to the
combination of model, labeling strategy, and kernel function that achieved the highest mean
accuracy. The best model is the model that, when fixing the same kernel function and labeling
strategy, most frequently produced the highest mean accuracy. The best labeling strategy is the
labeling method that, when fixing the model and the kernel function, most often led to the highest
accuracy. Finally, the best kernels are the kernels that, when fixing the model and labeling

method, most frequently appeared among the top three mean accuracies. Similar summary tables
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Table 7 — Summary of the results for the Motor Failure dataset.

Dataset | Experiment | Comparisons |
EF-KSOM
Motor Failure | Optimizing Best Result Majority Voting
Exponential
Hyperparameters | Best Model EF-KSOM
Best Labeling Strategy | Majority Voting
Best Kernels Exponential
EF-KSOM
Using the Best Best Result Majority Voting
Gaussian
Hyperparameters | Best Model EF-KSOM
Best Labeling Strategy | Majority Voting
Best Kernels Gaussian

Table 8 — Performances of the evaluated KSOM models for the Cervical Cancer dataset (1st set
of experiments).

Algorithm ‘ Labeling ‘ linear ‘ gaussian ‘ polynomial | exponential ‘ cauchy ‘ log ‘ sigmoidal ‘ kmod ‘

Majority | 88.9 +| 87.1+ 89.0 = 86.0+ 88.8+ | 87.8+ | 89.4 + |87.6%

Voting 1.6 5.2 1.6 5.4 1.4 0.9 0.7 1.8
Average | 88.3+ | 89.1 + 87.6+ 87.6+ 88.9 & | 88.2+ | 89.1 &+ | 88.84

EF-KSOM Distance 1.6 2.2 5.3 5.6 1.8 1.7 14 1.9
Minimum | 86.64+ | 88.3 & 87.4+ 79.5+ 85.94+ [88.6 - | 879+ |85.7+

Distance 49 2.7 2.5 19.8 8.4 2.6 4.6 6.3
Majority | 89.4 + | 88.4+ 88.5+ 90.1 + 88.1+ | 88.5+ | 89.7 + | 88.7+

Voting 1.8 2.0 3.4 1.8 1.3 1.7 1.3 1.2
Average |89.4 + | 88.2+ 88.7+ 88.44+ 87.84+ [89.8+ | 88.9 -+ |88.8+

GD-KSOM Distance 1.9 2.0 1.7 2.1 1.4 1.0 1.1 1.5
Minimum | 85.6+ | 88.6 & 87.7+ 89.2 + 88.7 + | 87.9+ 85.24+ | 86.7+

Distance 6.6 3.6 2.2 2.1 1.8 3.0 6.7 3.5

are provided for the remaining datasets.

3.5.2 Results for the Cervical Cancer Dataset

The performance of the KSOM model applied to the Cervical Cancer dataset is pre-
sented in Table 8. The highest performance was achieved with the GD-KSOM model combined
with the majority voting labeling method and the exponential kernel function. Regarding the
kernel functions, the sigmoidal kernel reached the highest mean values and was selected five
times (out of six) as one of the best-performing kernels. When comparing the labeling methods
and KSOM models, the differences among the results of each strategy are minimal.

The best hyperparameters obtained from the first set of experiments with the cervical
cancer dataset are reported in Table 53, in Appendix C. Using these values, 100 new realizations

were carried out. The results from this experiment are presented in Table 9. Overall, for this
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Table 9 — Performances of the evaluated KSOM models for the Cervical Cancer dataset (2nd set
of experiments).

Algorithm ‘ Labeling ‘ linear ‘gaussian ‘ polynomial | exponential ‘ cauchy‘ log ‘sigmoidal‘ kmod ‘

Majority | 88.8+ [ 89.1+ | 89.0 & 88.8+ [88.9+ 887+ | 888+ [88.9+

Voting 1.5 1.5 13 1.5 1.7 1.5 1.6 1.6
Average | 87.8+ | 88.6%+ 88.5+ 889+ [ 88.2+ [83.9+ | 88.8+ |88.7+

EF-KSOM Distance | 4.2 1.8 3.0 1.5 1.7 8.2 1.8 14
Minimum | 87.4 + | 89.0 + 86.9+ 86.6+ 86.5+ [88.0+| 87.3+ |[874+

Distance 3.7 1.7 3.7 3.5 4.1 29 3.8 3.6
Majority | 88.6+ | 88.9 + 88.9 + 88.2+ 88.7+ [ 88.7+ | 889+ [ 88.4+

Voting 1.6 1.7 1.5 1.8 1.7 1.6 1.5 1.6
Average |88.4+| 87.6+ 88.1+ 88.0+ [88.7+[88.6+| 885+ |83.1+

GD-KSOM | 1yiciance | 22 | 37 3.7 3.5 16 | 25 15 3.5
Minimum | 87.3+ | 87.4+ 88.1 - 882+ | 87.6+ |87.0+ | 873+ |88.1+

Distance | 4.2 4.0 3.1 3.5 3.7 5.0 4.0 2.8

Table 10 — Summary of the results for the Cervical Cancer dataset.

| Dataset Experiment | Comparisons \ |
GD-KSOM
Cervical Cancer | Optimizing Best Result Majority Voting
Exponential
Hyperparameters | Best Model GD-KSOM
Best Labeling Strategy | Average Distance
Best Kernels Sigmoidal
EF-KSOM
Using the Best Best Result Majority Voting
Gaussian
Hyperparameters | Best Model EF-KSOM
Best Labeling Strategies | Majority Voting
Best Kernels Kmod

dataset, there were no significant differences when using different kernels, labeling methods, or
algorithms. The average accuracies range from 86.5 to 89.1. The best accuracy, 89.1%, is 4%
and 4.7% lower than the ones reported in Table 4.

A summary of the results from these two sets of experiments is reported in Table 10.
It is important to note that, when fixing the hyperparameters, as with the motor failure dataset,

the best result is achieved with the EF-KSOM model and the majority voting labeling method.

3.5.3 Results for the Vertebral Column Dataset

The performance of the KSOM model applied to the Vertebral Column dataset is
presented in Table 11. The best performance (78.2 +3.8) was achieved with the GD-KSOM
model combined with the majority voting labeling strategy and the Cauchy kernel function.

Regarding the kernel functions, the exponential kernel was selected four times (out of six) as
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Table 11 — Performances of the evaluated KSOM models for the Vertebral Column dataset (1st
set of experiments).

Algorithm ‘ Labeling ‘ linear ‘gaussian ‘ polynomial | exponential ‘ cauchy‘ log ‘sigmoidal‘ kmod ‘

Majority | 71.5+ | 73.5+ 73.8+ 72.6+ 7414+ |75.7+| 774+ |76.9 +
Voting 5.1 5.8 7.6 14.0 5.6 4.1 4.8 4.4

EF-KSOM Average | 56.7+ | 69.5 + 60.9+ 56.6+ 66.5+ | 62.8+ | 66.0 Lt | 61.6t
Distance 9.8 5.8 19.4 13.6 8.9 10.0 13.1 10.8

Minimum | 71.6+ | 73.0 &+ 69.0+ 73.0 + 70.1+ | 747 £ | 72.0+ | 69.44+
Distance 6.0 8.5 4.0 6.7 11.6 4.2 11.5 10.5

Majority | 74.4+ | 75.6+ 75.44+ 77.7 + 782+ [76.6 | 754+ | 73.1+
Voting 7.4 4.7 6.0 5.1 3.8 4.1 4.4 5.7

GD-KSOM Ayerage 62.3 +| 53.2+ 49.2+ 64.8 + 60.2 + | 54.0+ | 53.1+ | 57.5+
Distance | 10.4 14.8 13.8 9.9 15.7 15.9 14.1 12.8

Minimum | 68.4+ | 70.8 & 68.6+ 73.1 + 70.6+ | 68.6+ | 69.9+ |70.4 +
Distance 6.2 5.1 7.4 4.8 4.4 3.9 6.6 9.0

Table 12 — Performances of the evaluated KSOM models for the Vertebral Column dataset (2nd
set of experiments).

Algorithm ‘ Labeling ‘ linear ‘ gaussian ‘ polynomial | exponential ‘ cauchy ‘ log ‘ sigmoidal ‘ kmod ‘

Majority | 69.9£ | 75.6+ 81.9 + 76.9 + 7524+ | 749+ | 763+ | 753+
Voting 6.0 4.7 34 4.6 5.6 4.9 5.3 5.1
EF-KSOM Average |59.0+ | 64.1 + 59.3+ 59.9+ 63.3+ | 63.6+ | 722+ |653+
Distance | 10.5 8.6 10.3 14.9 11.1 11.0 5.9 8.8
Minimum | 69.9£ | 72.6+ 68.1+ 74.1 = 73.0£ | 70.1£ | 762+ |74.6 +
Distance | 5.6 6.2 6.1 5.2 5.6 6.7 6.1 54
Majority | 70.3£| 71.3%+ 71.5+ 723+ |720£ 723+ 71.7& | 709+
Voting 55 55 52 5.3 54 5.7 5.8 52
Average |59.5+ | 58.9£ 57.1+ 60.0 + 589+ | 584+ | 623+ |61.6+
GD-KSOM Distance | 11.7 11.5 11.6 11.9 11.2 11.7 6.5 10.9
Minimum | 69.1£ | 68.4+ 70.7 + 68.2+ 711+ | 69.6+ | 70.0+ |70.0-t
Distance | 7.4 6.2 6.3 5.9 6.1 6.4 6.5 6.0

one of the best-performing kernels. When comparing the labeling methods and algorithms, no
significant differences were observed among the results of each strategy.

The best hyperparameters obtained from the first set of experiments with the Vertebral
Column dataset are reported in Table 54, in Appendix C. Using these values, 100 new realizations
were carried out. The results from this experiment are presented in Table 12. The highest
performance (81.9 4 3.4) was achieved with the EF-KSOM model combined with the majority
voting labeling strategy and the polynomial kernel function. Regarding the kernel functions, the
sigmoidal kernel was selected five times (out of six) as one of the best-performing kernels. The
best accuracy (81.9%) is 5.5% higher than the result obtained with the OLS classifier and 3.5%
lower than the result obtained by the logistic regression classifier, both reported in Table 4.

A summary of the results from these two sets of experiments is reported in Table

13. It is important to note that, when fixing the hyperparameters, as with the motor failure and
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Table 13 — Summary of the results for the Vertebral Column Dataset.

Dataset Experiment Comparisons
GD-KSOM
Vertebral Column | Optimizing Best Result Majority Voting
Cauchy
Hyperparameters | Best Model EF-KSOM

Best Labeling Strategy | Majority Voting
Exponential or

Best Kernels

Cauchy
EF-KSOM
Using the Best Best Result Majority Voting
Polynomial
Hyperparameters | Best Model EF-KSOM
Best Labeling Strategies | Majority Voting
Best Kernels Sigmoidal

Table 14 — Performances of the evaluated KSOM models for the wall-following dataset (1st set
of experiments).

Algorithm ‘ Labeling ‘ linear ‘ gaussian ‘ polynomial | exponential ‘ cauchy ‘ log ‘ sigmoidal ‘ kmod ‘

Majority | 68.8£ | 75.7+ 76.0 £ 78.9 + 757+ | 747+ | 772+ | 75.8%

Voting 6.0 4.0 2.9 1.9 2.7 2.7 33 4.5
Average | 87.4+ | 89.5 + 90.2 + 89.0+ 90.1 + | 74.1+ | 89.3£ | 89.0+

EF-KSOM Distance | 4.3 0.9 1.1 1.6 1.0 3.0 1.6 23
Minimum | 58.0£ | 75.2+ 743+ 79.5 + 763+ |76.1+| 738+ |77.1+

Distance | 13.8 24 24 1.3 2.8 1.8 1.8 2.1
Majority | 69.6£ | 76.4+ 77.0£ 90.8+ |90.1+|89.5+£ | 90.0&£ [904=+

Voting 3.5 55 3.7 1.9 2.7 2.7 33 4.5
Average | 504+ | 74.8+ 73.3£ 779 + 733|751+ 709+ |774+

GD-KSOM Distance | 13.1 2.9 2.8 4.6 7.9 2.7 4.5 1.6
Minimum | 67.7£ | 754 + 743+ 794+ | 747+ | 734+ | 742+ | 73.8%

Distance | 8.0 2.7 3.6 2.5 4.5 6.1 2.8 33

cervical cancer datasets, the best result is achieved with the EF-KSOM model and the majority

voting labeling method.

3.5.4 Results for the Wall Following Dataset

Finally, the performance of the KSOM model applied to the Wall-Following dataset
is presented in Table 14. The best performance (90.8 £ 1.9) was achieved with the GD-KSOM
model combined with the majority voting labeling strategy and the exponential kernel function.
Regarding the kernel functions, the exponential kernel was selected five times (out of six) as
one of the best-performing kernels. When comparing the labeling methods and algorithms, no
significant differences were observed among the results of each strategy.

The best hyperparameters obtained from the first set of experiments with the Wall
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Table 15 — Performances of the evaluated KSOM models for the wall-following dataset (2nd set
of experiments).
Algorithm ‘ Labeling ‘ linear ‘ gaussian ‘ polynomial | exponential ‘ cauchy ‘ log ‘ sigmoidal ‘ kmod ‘

Majority | 69.5+ | 78.1+ 78.2 + 79.2 + 76.6+ | 76.6 | 791+ | 76.2+
Voting 4.0 2.7 24 1.7 2.2 2.2 2.2 2.5
Average | 86.0+ | 89.9 + 89.7 + 89.7+ 90.0 + | 76.1+ 88.1+ |89.9 +
EF-KSOM Distance | 4.1 1.1 1.2 1.6 1.1 3.1 2.5 1.1
Minimum | 63.6+ | 76.4 & 77.5 + 78.1 + 7214+ | 763+ | 724+ 763+
Distance 11.1 3.2 3.2 2.3 8.1 2.9 2.4 2.6
Majority | 69.5+ | 69.7+ 69.1+ 89.4 + 89.6 + 894+ | 894+ |89.4 +
Voting 3.8 3.7 4.2 1.2 1.2 1.3 1.3 1.3
GD-KSOM Ayerage 49.0 £ | 46.9+ 47.1+ 49.7 + 4774+ 495+ | 472+ |48.1 +
Distance 10.8 9.8 8.8 11.3 9.3 10.5 10.7 10.8
Minimum | 65.7 £ | 63.0 & 65.2 + 63.6 - 643+ |65.6 | 632+ |64.1+
Distance 9.8 11.7 10.7 11.2 11.1 9.9 11.3 10.9

Table 16 — Summary of the Results for the Wall Following Dataset.

Dataset Experiment Comparisons
GD-KSOM
Wall Following | Optimizing Best Result Majority Voting
Exponential
Hyperparameters | Best Model GD-KSOM
Best Labeling Strategy 1\:3]@; (;21; ;(i);zﬁc(:
Best Kernels Exponential
EF-KSOM
Using the Best Best Result Average Distance
Cauchy
Hyperparameters | Best Model EF-KSOM
. ) Majority Voting or
Best Labeling Strategies Average Distance
Best Kernels Exponential

Following dataset are reported in Table 55, in Appendix C. Using these values, 100 new realiza-
tions were carried out. The results from this experiment are presented in Table 15. The highest
performance (90.0 £ 1.1) was achieved with the EF-KSOM model combined with the average
distance labeling strategy and the Cauchy kernel function. Regarding the kernel functions, the
exponential kernel was selected five times (out of six) as one of the best-performing kernels.
When comparing the KSOM models, the EF-KSOM was the best overall.

A summary of the results from these two sets of experiments is reported in Table 16.
It is important to note that, when fixing the hyperparameters, as with the other datasets, the best

result is achieved with the EF-KSOM model.
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3.5.5 A summary of the Results

The results of this section can be summarized as follows:

— In most tests, using the EF-KSOM model proved to be a better choice than the GD-KSOM
classifier. In other words, calculating the distance and selecting the winning prototype in
the feature space leads to better results.

— The majority voting labeling strategy was the most effective. Since only the nearest
neighbor classifier was tested, a prototype that is close to many samples from the same
class during training can serve as a good predictor for its region of influence (Voronoi cell).

— For both KSOM models, no single kernel function consistently outperformed the others.
However, using a kernel function other than the linear one led to better results. Throughout
the tests, only the linear and log kernels were never considered, even once, as the best-
performing ones. In most cases, the Gaussian kernel (the most common in the literature)
was not the best. This highlights the importance of testing alternative kernel functions
when dealing with different applications. This finding also reinforces the results of other
works that evaluate different kernel functions and applications. For example, In Ngu e
Yeo (2022), several different kernel functions were evaluated in their proposed model for
predictive control of a wastewater treatment process, and the polynomial kernel performed
best.

In Table 17, a summary of the best performance obtained by the evaluated KSOM
models compared with those obtained by the baseline classifiers is presented. Considering the
OLS classifier, for three datasets, improvements of 10.7, 5.5, and 46.1 in mean accuracy were
observed. In the Cervical Cancer dataset, however, the result was 3.0 lower. For the logistic
regression classifier, improvements of 9.3 and 2.5 in mean accuracy were observed for two

datasets, while the results were 3.7 and 3.5 lower for the other two.

3.6 Final Considerations

In this chapter, two kernelized variants of the KSOM training algorithm were applied
to classification problems using the KNNC. In addition, different labeling methods and kernel
functions were compared to evaluate their influence on this task. Regarding the prototype
labeling strategy, majority voting often produced the best performance. Considering the eight

investigated kernel functions, five were frequently selected as the best: Gaussian, exponential,
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Table 17 — Summary of the best performance of the evaluated KSOM models compared with the

OLS and logistic regression classifiers.
’ Dataset \ KSOM Models \ OLS \ Logistic Regression ‘

Motor 779435 | 672432 68.6 3.6
Failure
Cervical 90.14+1.8 |93.1+1.1 93.84+1.3
Cancer
Vertebral || 1 g 34 | 764431 85.4+3.3
Column
Wall 908419 |53.940.6 87.5+0.7
Following

kmod, sigmoidal, and polynomial. Finally, the best training algorithm was EF-KSOM, in which
both the distance measure and the winning prototype calculations are performed in the feature
space.

It is important to note that, in all the tests carried out so far, the number of pro-
totypes (30) was kept constant. In the next chapter, a framework to automatically select this

hyperparameter is proposed.
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4 ON BUILDING SPARSE KERNEL PROTOTYPE-BASED CLASSIFIERS

In this chapter, a simple design scheme for building kernelized prototype-based
classifiers is presented. First, this is achieved through the approximate linear dependence (ALD)
method. The ALD is a sparsification procedure widely used in kernel adaptive filtering (ENGEL
et al., 2004)), and the kernel nearest neighbor classifier (KNNC) is used to predict the labels of
new samples. Motivated by the initial results, the sparsification procedures Novelty, Coherence,
and Surprise are also tested and compared with ALD, and the KWKNN scheme is additionally

applied to classify new samples.

4.1 The Kernel Nearest Neighbor Classifier via ALD Criterion

The proposed training method automatically selects a subset of the training samples
to construct a dictionary! Z,_; = {(i i,C j)}JQ:I', whose size is determined by a single scalar
parameter. The samples’ inputs X; in &;_ are approximately linearly independent feature vectors.
The goal of the proposed approach is to use the samples of the dictionary as prototype vectors in
the feature space, so that they can be employed in a kernelized nearest-neighbor classification
scheme.

Initially, the first training sample (x1,c;) is added to the dictionary. Then, at training
time step ¢ (2 <t < N,,), with N;, denoting the number of training samples, after having observed
t — 1 training samples, the dictionary Z,_; consists of a relevant subset {(i i,Cj) }JQ:I' of these
samples. When a new incoming training sample (X;,¢;) is available, one must test if it should
be added or not to the dictionary. To this end, it is necessary to estimate a vector of coefficients

a= (al, N T )T satisfying the ALD criterion

o1 (t) < v, 4.1)
where
2
def 01 _
81(t) = min Z ajp (%) — ¢ (x;)| , 4.2)
=1

and vy is the sparsity level parameter (a hyperparameter that should be optimized). By expanding

the minimization problem in Eq. (4.2) and applying the kernel trick, k(x;,x;) = (¢(x;), 9(x;)),

I also known as codebook (GARCIA; FORSTER, 2012).
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one can write

def 01 Or—1
5 = mm Z Cl(l] X,,X] 2261] X],X, —I—K‘(Xt,Xz) (4.3)

i,j=1

or, using the matrix notation,
81 (t) — min {aTK[_la - zaTEt_l (Xl) + kn} 5 (4.4)
a

where K;_; is a Q;_1 x Q,_ kernel matrix built using the current dictionary. The (i, j)-th entry
of this matrix is given by [K,_l} Tl (i,-,ij), withi,j=1,...,0;_1. The Q;_1-dimensional
vector k,_; is defined as

ko1 (x) = [k(x,%1) - k(x,%) - K(x,%0, )], 4.5)

while k; = x (X;,X;). Solving Eq. (4.4) leads to the optimal a,, which is given by

a, =K " k_i(x), (4.6)

so that Eq. (4.2) can be rewritten as

O1(t) = ki — k—1 (Xt)T a; 4.7)
or
61 (t) = ktt — El—l (X[)TKI__IIEZ‘_I (X[) . (48)

If &;(¢) > v, then the sample (x;,c;) must be added to the dictionary; that is,
Dy = D1 U{(x4,¢;)} and Q; = Q,_1 + 1. However, if 8;(¢) < vy, the sample is approximate
linear dependent and must not be added to the dictionary; thatis, Z; = %, and Q; = Q; 1.

For classification purposes, the ALD-based selection of prototype vectors for the

dictionary can be carried out in two straightforward ways, which are described next.

Design Method 1 - Randomly select an initial data sample. This sample becomes the first
element of the dictionary. Then, take the remaining samples of the training dataset one by one
and apply the ALD criterion according to (4.6) and (4.7). Note that each prototype vector in Z;
carries its class label for the sake of classification. The classifier designed using this method will
hereafter be referred to as KNNC-ALD-1 (kernel nearest neighbor classifier via ALD criterion
I).

Design Method 2 - According to this method, one dictionary must be built for each class.

For a problem with C classes, it is required C dictionaries _@,(C), c=1,2,...,C. To construct
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them, apply Design Method 1 to the data samples of the c-th class, c = 1,2,...,C. Repeat this
procedure for all classes individually. Then, merge the class-conditional dictionaries into a single
larger dictionary: %, = .@t(l) U @t(z) U---u @t(c). The classifier designed using this method will
hereafter be referred to as KNNC-ALD-2 (kernel nearest neighbor classifier via ALD criterion
2).

For the classification of an incoming sample, use the kernelized distance in Eq. (3.4)
in order to find the closest prototype. The search is executed over all the samples in the model’s
dictionary. Assign to that sample, the same class of the nearest prototype.

It should be noted that the only hyperparameters of the proposed approach are v; (the
sparsity level) and those associated with the chosen kernel function (such as the scale parameter
o of the Gaussian kernel). However, since the kernel parameters are common to all kernel-based
methods, the only tunable parameter specific to the proposed approach is the sparsity level v;.

Also, it is important to mention that there are alternative ways to achieve sparse
prototype-based models, such as those described in Hofmann et al. (2014), Albuquerque et al.
(2018), and Soares Filho e Barreto (2014). More on the issue of sparse dictionary learning can
also be found in Mairal et al. (2010). The ALD method was initially chosen because it can
be regarded as an approximation of PCA in the feature space (ENGEL et al., 2004), since it
implies that eigenvectors with eigenvalues that are significantly larger than v; are projected
almost entirely onto the span of the dictionary vectors. Consequently, the dictionary contains
vectors that effectively represent the directions of the largest variances of the data in the feature

space.

4.2 Evaluation of the KNNC-ALD on Batch Learning

The preliminary simulation results of the kernel nearest neighbor classifier via ALD
criterion (KNNC-ALD) are reported in this section, evaluating the classification performance of
the model with four different kernel functions (linear, Gaussian, Cauchy, and log) when applied
to real-world datasets. It is important to note that the hyperparameter 0 of the linear kernel was
set to 0, and the hyperparameter / of the log kernel was set to 2 to simplify the hyperparameter
analysis. As in the experiments of Chapter 3, all models were implemented from scratch in
MATLAB (version R2023b), running on Windows 10 Home on an HP notebook with a Core
17-7500U processor, 2.70 GHz, and 16 GB of RAM.
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Table 18 —Preliminary evaluation of the proposed KNNC-ALD classifiers with Iris dataset and
linear kernel.

Method Vi Kernel | o« | acc_tr | acc_ts | #Prot | #cl | #c2 | #c3
KNNC-ALD-1 | 0.001 | linear . 95.6 90.5 49 15 | 13 | 21
KNNC-ALD-1 | 0.01 | linear . 86.7 84.9 12 3 3 6
KNNC-ALD-1 0.1 linear . 759 73.9 5 1 2 2
KNNC-ALD-2 | 0.001 | linear . 99.5 93.6 89 30 | 30 | 29
KNNC-ALD-2 | 0.01 linear . 94.2 91.2 30 10 | 10 | 10
KNNC-ALD-2 | 0.1 linear . 90.7 89.0 13 4 4 5

4.2.1 Initial Tests

The tests were started with the Iris dataser*, which is one of the benchmarking
datasets widely used in the literature on classification methods and contains three classes of
50 instances each, with each class representing a different species of iris plant. This dataset
has been used in this section as a sanity check to verify the correctness of the implemented
algorithm. It was also used to analyze how the number of prototypes and the classifier accuracy
vary with changes in the hyperparameter vy, the kernel functions and their hyperparameters, and
the dictionary building method.

The results of the proposed approaches using the linear kernel are presented in Table
18. Since this kernel function has no hyperparameters (k(x;,X;) = xiTx ), only the dictionary
building method and the sparsity level v; are analyzed here. It should be noted that larger values
of v; lead to dictionaries with fewer prototypes, as it becomes harder for a new sample not to
be considered approximate linear dependent (see Eq. (4.7)). For small enough values of v, all
samples from the training dataset will be used as prototypes. Comparing the results highlighted
in boldface in Table 18, it can be observed that high accuracy rates are achieved by the KNNC-
ALD-2 classifier with basically the same number of prototypes as the KNNC-ALD-1, in both
the training and test sets. It is also worth noting that this quantity of prototypes corresponds to
approximately 12% of the entire training set.

When using the Gaussian kernel, for example, increasing the value of the scale
parameter Oy decreases the number of selected prototypes. To achieve good classification perfor-
mance with a reduced number of prototypes, both v| and oy should be optimized. Furthermore,
with this kernel function, the KNNC-ALD-2 classifier achieved the best results. These results

are presented in Table 19.

2 https://doi.org/10.24432/C56C76
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Table 19 —Preliminary evaluation of the proposed KNNC-ALD classifiers with Iris dataset and
Gaussian kernel.

Method % Kernel O | acc_tr | acc_ts | #Prot | #cl | #c2 | #c3
KNNC-ALD-1 | 0.001 | Gaussian | 20 | 98.7 93.1 88 30 | 28 | 30
KNNC-ALD-1 | 0.01 | Gaussian | 20 | 914 89.9 21 7 5 9
KNNC-ALD-1 0.1 Gaussian | 2 94.9 91.5 24 7 10
KNNC-ALD-2 | 0.001 | Gaussian | 20 | 100 93.2 99 33 | 32 | 34

~

KNNC-ALD-2 | 0.01 | Gaussian | 20 | 954 | 909 32 9 10 | 13
KNNC-ALD-2 | 0.1 | Gaussian | 2 | 95.7 91.7 30 8 10 | 12
KNNC-ALD-2 | 0.1 Gaussian | 5 | 93.6 | 91.1 18 5 5 8
KNNC-ALD-2 | 0.1 | Gaussian | 10 | 91.1 88.2 12 3 4 5

4.2.2 More General Tests

In the following experiments, for each evaluated dataset, eight variants of the pro-
posed algorithm are tested, consisting of four different kernel functions (linear, Gaussian, Cauchy,
and log), and two design methods (KNNC-ALD-1 and KNNC-ALD-2).

Also, similar to the first set of experiments for the KSOM algorithms (Section 3.3),
ten independent runs are performed. For each run, the following steps are carried out:

— (i) Holdout procedure: partition the data into training and test sets;

— (i) Z-score normalization: compute the empirical mean u_ and standard deviation o,
vectors of the training samples, and normalize the feature vectors so that all attributes have
zero empirical mean and unit variance;

— (iii) Hyperparameter optimization: use the training dataset and 100 trials of random search
to identify the best combination of hyperparameters;

— (iv) Training: update the model parameters using the training dataset;

— (v) Performance evaluation: use the test data to assess the trained model.

For the holdout step, the data are randomly divided into 70% for training and 30%
for testing. At the end of the testing phase, several statistical performance metrics can be
computed for each classifier, including accuracy, error rate, and F1-score (macro-averaged in the
case of multiclass problems). In this chapter, only accuracy is used to compare the classifiers’
performances.

Finally, a 5-fold cross-validation strategy is performed to search for the optimal
values of the hyperparameter v; (from the ALD criterion) and those associated with each kernel

function. The figure of merit used for evaluating the performances of the algorithms while
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choosing the optimal hyperparameters is given by
Jpp(Z,Ep) = Ep+ ADy, 4.9)

where E}, is the classifier’s batch error (0 < E, < 1), D, (0 < D, <'1) is the ratio between the
number of samples Q selected for the dictionary & and the total number of training samples
N;r, and A is a weighting term between these two factors (A > 0). If A = 0, the number of
prototypes is not considered. By increasing A, the Jpp index penalizes hyperparameters that lead
the algorithm to build dictionaries with a large number of prototypes.

It is important to mention that there are two restrictions on the choice of hyperpa-
rameters. First, the minimum number of samples selected for the dictionary must be greater than
the number of classes in the problem. This restriction prevents hyperparameter values that do
not allow the addition of prototypes to the model, as the model will add at least one prototype
per class using design method 2. Second, in the hyperparameter optimization procedure, the
maximum number of samples selected for the dictionary must be less than 50% of the total
number of training samples. This prevents the selection of hyperparameter values that would
lead to excessive and, hence, unnecessary insertions of prototypes into the dictionary.

The motor failure dataset (see Section 3.4) was the first to be investigated. The
accuracy for the test set obtained with the dataset of 504 samples (252 per class) and A = 0.5
(see Eq. (4.9)) is shown in Figure 6. The last letter CG’, ’C’, or ’L’) in the acronyms of this figure
stands for the Gaussian, Cauchy, or Log kernel functions, respectively. If there is no letter after
the numbers ’1° or ’2’ in the acronym, the result refers to the linear kernel function. The same
approach is used in Figure 7. First, it can be inferred that classification performance improves
when nonlinear kernel functions are used. Considering the optimal performance achieved, with
the Gaussian kernel and the KNNC-ALD-1 classifier, the following results were obtained: this
classifier achieved 100% accuracy but required 62.5% of the training samples (220 samples out
of 352) as prototypes

To evaluate the proposed classifiers on datasets with more attributes and samples, the
Pap-smear (Cervical Cancer) dataset was selected (see Section 3.4). The classification problem
for this dataset was also treated as binary. The results achieved by the proposed classifiers, using
A = 1,2 are shown in Figure 7. The worst mean and maximum accuracy rates were achieved by

using the log kernel. Finally, considering the best result of the proposed approach, obtained with

3 This weighting term (1) differs from the one used with the motor failure dataset, as this value resulted in better

overall performance for the Pap-smear dataset.



Figure 6 — Results using the KNNC-ALD and the motor failure dataset.
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Figure 7 — Results using the KNNC-ALD and the Cervical Cancer dataset.
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the Gaussian kernel and the KNNC-ALD-1 classifier, the following results were achieved: this

classifier reached 92% of accuracy while using only 3.27% of the training samples (21 out of

641).



64
4.3 Sparsification Procedures

Motivated by the results obtained by the KNNC-ALD model, other sparsification
procedures were researched in order to build sparse kernel prototype based classifiers. Here
these procedures are briefly described and the algorithm for the general framework sparse kernel
(SPARK) is shown. It is important to mention that, for all sparsification procedures, both design

methods can be used (one dictionary per class or just one dictionary for the entire dataset).
4.3.1 Coherence Criterion

Richard et al. (2009) proposed a sparsification strategy that employs a coherence
parameter in order to control the model order increase. They applied this strategy for nonlinear
filtering algorithms building in order to solve nonlinear dynamical systems identification.

They define the coherence parameter y as
Wzm;X K(X;,X;)|Vi,j€ 2 (4.10)

i#]
where « is a unit-norm kernel*. This parameter reflects the most extreme correlations in a
dictionary. Then, in time step ¢, they suggest inserting a new sample (x;,¢;) to a dictionary Z;_;
if the coherence of the increased dictionary remains below a given threshold vy, namely

(1) = max |K(%ix)| < vi @.11)
VX, €94

where v € [0, 1] determines both the sparsity level and the coherence of the dictionary. In
summary, if 01 (z) < vy, then the sample (X;,c;) must be added to the dictionary; that is, Z; =
D1 U{(x,¢;)} and Q; = Q;—1 + 1. However, if § > v, the sample is extremely correlated to
at least one of the current samples and must not be added to the dictionary, so that 7, = %,
and Oy = 0.

It is important to mention that, to calculate the coherence measure, one does not
need to compute the kernel matrix. Also, the computational complexity of this criterion is only
linear in the dictionary size. Finally, similarly to the ALD criterion, it uses only the inputs in
order to decide if a sample must be added or not to the dictionary. The next two criteria use both

input and output of a sample in order to do this.

4 This means that kK(x;,x,) = 1 for every x, € RP Cc Z. Otherwise, one must substitute
K (i Xr)/ /K (X¢, %) % K(X;,X;) for k(%;, %) in Equation 4.11.
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4.3.2 Novelty Criterion

Platt (1991) created a model named resource-allocating network (RAN), that allo-
cates a new computational unit whenever an unusual pattern is presented to the network. This
algorithm is used to predict complex time series, such as the chaotic time series created by the
Mackey-Glass delay-difference equation. The RAN consists of a two-layer network, and uses a
double-check novelty condition. An input-output pair (X;,y;) is considered novel if the input
is far away from existing centers (of the first layer), and if the difference between the desired
output and the network output (the second layer output) is large. Here, these conditions were
adapted, in order to build sparse kernel prototype-based classifiers, in the following manner.

Similarly to the other sparsification procedures, at time step t, a new sample (X;,¢;) is

presented to the model, which is composed by a dictionary &, | = {(i iCj) }]Q:ll. However, in
order to be added to the dictionary, the new sample must fulfill two conditions. Firstly, the input
of this sample must be far from the closest input of a prototype in the dictionary, considering

some (dis)similarity measure such as
- 2
81(1) = ||&j —x||; > v, (4.12)

where V| as a hyperparameter and X is the closest prototype in the dictionary to the input

sample. Here, the kernelized squared Euclidean measure

§i(1) = ||o&)—ox)|>w,

= k(&) &)+ K(x, %) = 2K(R ), %) > v (4.13)

is used. The second condition is based on the difference between the desired output and the
predicted one.

Firstly, one must calculate the predicted output §; using any KNN strategy. Then, if
the difference between the real output y; and the predicted output ¥, is greater than a hyperpa-

rameter V,, such as

&(t) = |y — $il2 > o, (4.14)

the sample must be added to the dictionary.
This second condition can also be extended to classification problems as follows: if

the current model H; makes an error:

¢ # oty (4.15)
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in other words, if the predicted class ¢; = argmax ¥, differs from the actual class ¢; = argmaxyy,
the second condition is satisfied and the sample must be added to the dictionary.

When comparing these two ways of applying the second condition, it was observed
that the error-based approach as shown in Eq. (4.15) yields the best results. Therefore, this
approach is utilized for comparing the novelty with the other sparsification criteria.

As a final remark, an important feature of the novelty criterion is that, similarly to

the coherence, one does not need to compute a kernel matrix as in the ALD criterion.
4.3.3 Surprise Criterion

Liu et al. (2009) introduced an information measure approach, called Surprise,
in order to determine useful data to be learned and remove redundant ones. This criterion
captures the amount of information a datum contains which is transferable to a learning system.
The authors claim that methods like ALD, Coherence and Novelty are effective in practical
applications, but are heuristic in nature. So, the surprise information criterion provides a unifying
view on existing sparsification methods.

They define Surprise as the negative log likeklihood (NLL) of an observation, given
the learning machine’s hypothesis. Also, this measure is computed based on the theory of
Gaussian process regression (GPR).

More formally, Surprise is a subjective information measure of a sample (x;,¢;) with
respect to a learning system H. Denoted by Sy (x;,¢;), it is defined as the NLL of the exemplar

given the learning system’s hypothesis on the data distribution
Su(Xt,¢) = —Inp(x;, ¢ |H), (4.10)

where p(x;,c¢;|H) is the subjective probability of (x;,c;) hypothesized by H. Applying this
definition directly to the active online learning problem, we have the surprise of (x;,¢;) to the

current learning system H;_1, such as
St (%1,¢) = —Inp(x;, ¢ [H; 1), (4.17)

where p(X;,c;|H;—1) is the posterior distribution of (x;,¢,) hypothesized by H;_. For simplicity,
they define S; = Sy, , (X, ¢/).
If p(x;,¢;|H;—1) is very large, the new datum (x;,¢;) is well expected by the learning

system H,_. If p(X;,¢;|H;—1) is small, the new datum “surprises” the learning system, which
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means either the data contains something new for the system to discover or it is suspicious.
According to this measure, we can classify the new exemplar into three categories:
— Redundant: S; < vq;
— Learnable: vi < §; < vy;
— Abnormal: S; > v,
where v and v, are hyperparameters. The choice of these thresholds are problem-dependent.
When developing this criterion with the GPR model, firstly, Liu et al. (2009) calcu-

lated the output prediction as
- - ~1
$r=Kk (%) [T+ K,_1| vy, (4.18)

where k,_; and K,_; were already defined for the ALD criterion, G,% is the variance of the
noise contained in an observation (here, we consider it a constant an =0.0001), I is the identity
matrix, and y;_ is a vector containing all the prototypes outputs. Then, the authors calculate the

prediction variance as
- - 1.
oF = 02 +ku — k1 (x)" [P I+ K] Koy (x0). (4.19)

It is important to mention that, if the noise variance 6 is considered 0, Eq. (4.19) reduces to
Eq. (4.8) of the ALD method.

Then, discarding constant terms, considering just one output, and applying the
definition of Surprise in Eq. (4.16), this measure can be written as
(e — ft)z

207

St = ln O; + (420)

Some observations were made. First, little surprise is expected when there is redundancy in
the data. Second, the proposed measure offers a general framework for redundancy removal,
anomaly detection, and knowledge discovery. Third, the measure is proportional to both the
magnitude of the prediction error and the prediction variance (particularly when the error is very
small). Finally, the surprise measure becomes large when the prediction error is high and the
variance is low.

Here, for prototype-based models, this measure was adapted to

HYt—f’tH%

S;=Ino; +
t 1 2Gt2

, 4.21)

where y; and ¥, are, respectively, the sample’s encoded output and the prototype-based model’s

encoded prediction, and oy 1s calculated using Eq. (4.19).
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4.3.4 The Sparse Kernel Prototype-Based classifiers Framework

Algorithms 2 and 3 represent the training functions of the SPARK framework using,
respectively, design methods 1 and 2. After the model’s training (construction of a dictionary of
samples), a classification strategy such as KNNC or KWKNN can be used for pattern recognition.

An important feature of this framework is that, after the hyperparameters optimization
step, in order to build a classification model, the training algorithm just need one epoch, meaning

that a sample is just used once, improving the training step speed.

Algoritmo 2: spark_training_design_method_1()

Input: (x,,cn) 11, k(+,7), Vi, V2

Output: ¥

begin

# Add first sample to the dictionary:

D« (x1,¢1); @+ 1

forn=2:Ndo

Get new input-output pair: (X, cp)

Apply a sparsification criterion considering & and (x,,cy)
(e.g. ALD, Coherence, Novelty, Surprise)

if sparsification criterion was met then
# Add Prototype to Dictionary

P <+ ZU{(Xn,yn)}
0+ 0+1;

end

end

end

In the next section, a comparison of the sparsification procedures in the task of sparse

kernel prototype-based classifiers building is made.

4.4 Classification using the SPARK Framework

Here, the experimental setup used for the KSOM model in Section 3.3 was also
applied, and the same datasets described in Section 3.4 were explored to evaluate the SPARK
model. The only differences are that the KWKNN is also tested for pattern classification, and,
in this framework, there is no need for a labeling strategy. Considering all possibilities, there
were 64 tests for each dataset (4 sparsification strategies, 2 design methods, 8 kernel functions).
It is important to mention that, as the KWKNN classifier is used, the hyperparameter K is also

optimized. Finally, in the tables presented in the following subsections, SM and DM stand for,
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Algoritmo 3: spark_training_design_method_2()
Input: (x,,cn) 1, k(-,7), Vi, V2
Output: ¥
begin
# Add first sample to a class-conditional dictionary:
(1) (x1,¢1); Q(Cl) — 1;
forn=2:Ndo
Get new input-output pair: (X,,c,)
if (@) = & then
# Add first sample to a class-conditional dictionary:
Pt = P U (%0, 3) }
Olen) «— olen) 41,

else
Apply a sparsification criterion considering ¥ (en) and (Xp,Cn)
(e.g. ALD, Coherence, Novelty, Surprise)

if sparsification criterion was met then
# Add Prototype to class-conditional Dictionary

9(6") «— -@(Cn) U {(Xnayn)}
Q(Cn) — Q(Cn) + ];

end

end

end

2=920092@0y...u2©;0=0DVU0@U-.-UQ©);

end

respectively, sparsification method and design method. Additionally, the three best results, in
each row (for each model’s configuration), are highlighted in boldface. This last feature of the
tables is used to highlight the best kernel functions for each dataset.

To establish a baseline for the results of the SPARK model (along with those already
established in the previous chapter), the mean accuracy from other works that used the same
datasets is displayed in Table 20. For the motor failure dataset, an LSSVM achieved 99.5%
performance, but it required all the training samples as support vectors (in this case, 80% of
the entire dataset). For the cervical cancer dataset, the authors achieved an accuracy of 93.4%,
similar to the ones reported in Table 4, as they also used a linear classifier. For the vertebral
column dataset, an accuracy of 85.9% was reported using an SVM with the KMOD kernel
function. Finally, for the wall-following dataset, a mean accuracy of 96.8% was obtained using a
single-hidden-layer MLP.

In the next subsections, the results with each data set are described in detail.
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Table 20 — Summary of performances of other works.

Dataset | Mean Accuracy Model Reference

Motor 99.5 LSSVM with Gaussian kernel | (COELHO ez al., 2014)

Failure

Cervical 93.4 Linear Classifier (JANTZEN et al., 2005)

Cancer

Vertebral 85.9 SVM with KMOD kernel | (ROCHA NETO, 2011)

Column

Wall . .
. 96.8 MLP with one hidden layer (FREIRE et al., 2009)

Following

Table 21 — Performances of the SPARK models for the Motor Failure dataset (1st set of
experiments).
’ SM ‘DM‘ linear‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘kmod‘

AID | 1 68.4+ | 83.84 |77.8+ | 89.0+ | 87.8+ | 89.1+ | 66.7+ | 89.2+
3.0 11.7 6.6 10.2 8.6 39 6.4 12.8

) 71.0+ | 82.6+ | 80.2+ | 84.2+ | 84.3+ | 80.7+ | 69.4+£ | 88.6+

3.4 12.3 4.0 95 13.3 | 16.1 4.9 13.2

CcoH | 1 77.5£ | 83.24+ | 839+ | 87.4+ | 96.6+ | 92.2+ | 80.1+ | 98.4+
9.3 13.2 7.1 13.0 8.6 2.7 9.4 1.8

’ 82.0+ | 85.7£ | 85.0£ | 83.9+ | 93.3£+ | 92.2+ [ 86.3+ | 90.9+

6.4 14.6 5.6 12.5 94 24 7.9 11.0

NOV | 1 89.5+ | 99.7£ | 89.3£ | 99.9£ | 89.8£ | 90.4£ | 85.0+ | 95.5+
3.6 0.8 2.3 0.3 3.3 3.6 4.0 3.6

’ 87.8E£ ] 99.9+ | 88.4+£ | 99.3+ | 91.1+ [ 89.5+ | 84.5+ | 96.1+

3.4 04 2.8 1.2 2.2 3.5 3.7 51

SUR | 1 70.5+ | 93.4+ | 76.6£ | 92.6E | 93.6+ | 81.8+ | 68.6£ | 92.9+
4.9 53 3.8 34 35 11.7 3.5 33

’ 71.4+ | 89.4%+ | 78.4£ | 90.1£ | 93.3+ | 88.8+|70.3£|90.8+

4.7 7.5 7.7 35 3.2 6.8 3.5 8.0

4.4.1 SPARK and the Motor Failure Dataset

In Table 21, the performance of each SPARK model configuration applied to the
motor failure dataset, for the first set of experiments (where the hyperparameter optimization
step is done for each experiment), is shown. The best performance (99.9 + 0.4) was obtained
using the novelty sparsification strategy combined with the Gaussian kernel function and design
method 2. As can be seen in Table 22, this performance was achieved using only 12.5% of the
training dataset samples as prototypes (44 samples out of 352). Comparing the kernel functions,
kmod, exponential, and Cauchy also led the algorithm to reach high performance. Moreover,
comparing the design methods, both performed better half of the time. However, design method
2, being the best method, caused a greater increase in accuracy.

In Table 23, the performance of each SPARK model configuration applied to the

motor failure dataset, for the second set of experiments (using the best hyperparameters achieved
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Table 22 — Number of Prototypes of the SPARK models and Motor Failure Dataset (1st set of
experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 6 229 | 91 | 212 | 216 |281| 21 | 228
2 9 228 | 100 | 221 | 229 |281| 10 | 220
COH| 1 169 | 219 | 139 | 224 | 224 |281| 174 | 214
2 | 190 | 221 | 104 | 222 | 215 |281| 141 | 230
NOV | 1 71 46 | 58 | 45 61 75 | 75 48
2 69 44 | 67 | 45 72 63 | 61 50
SUR | 1 7 210 | 87 | 170 | 110 |242] 31 173
2 15 | 217 | 137 | 104 | 137 [240| 40 | 140

Table 23 — Mean Accuracy of SPARK and Motor Failure Dataset (2nd set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 62.5+ | 93.4+ | 79.6+|93.4+ | 97.3+ | 86.6£ | 65.7+ | 93.1+
6.5 1.8 3.7 1.9 1.5 145 | 94 2.0

’ 703+ | 93.5+ [ 86.4+|94.6L | 974+ |91.4+ | 63.84|99.5+

4.7 2.0 3.1 19 14 2.4 7.1 0.8

COH | 1 90.9+ | 93.7+ | 88.7+ | 89.6£ | 98.8+ | 92.1+ | 90.1+ | 78.6+
2.4 1.9 3.1 2.5 1.3 22 2.1 3.5

’ 93.2+ | 80.7£ [92.4£[96.3+£ | 99.7+ | 92.0+£ | 91.4+ | 86.4+

1.9 24.5 22 1.9 0.7 2.4 23 3.0

NOV | 1 89.3+ 1| 99.9+ | 89.6£ | 99.8+ | 90.7+ | 90.3+ | 87.1£ | 99.8+
3.0 0.7 2.6 0.7 2.8 2.7 2.9 0.5

> 89.7£ 1] 99.9+ | 89.7£[99.6+ | 91.4+ | 91.3+[89.4£ |99.2+

2.5 04 2.7 0.8 3.1 2.6 3.0 0.8

SUR | 1 61.8+ | 92.74 [ 80.24+ | 93.5£ | 96.2+ | 93.4+ | 66.4+ | 97.8+
6.7 2.0 4.0 21 1.7 1.6 4.8 1.1

) 66.5+ | 88.3+ [ 88.9+|94.1+ | 95.8+ | 93.2+ | 73.8+ | 96.4+

5.6 3.1 2.8 25 1.9 2.0 6.5 1.6

in the first set of experiments) is shown. The best performance was also reached with the
novelty sparsification strategy combined with the Gaussian kernel function and design method 2.
Comparing the kernel functions, the kmod, exponential and Cauchy also led the algorithm to
reach high performance. Moreover, comparing the design methods, the design Method 2 was,
most of the time, the best one. As can be seen, the best result from the second set of experiments
(99.9 +0.4) was similar to that of the first set, indicating that once the best hyperparameters
are found, shuffling the data again and dividing it into different training and test sets does not
negatively affect classifier performance. Moreover, this best result is 32.7% higher than the result
obtained with the linear classifier reported in Table 4, and 22% higher than the result obtained
with the KSOM model (with 30 prototypes) reported in Chapter 3. Finally, this result was similar
to the one reported in (COELHO et al., 2014), as shown in Table 20, but the SPARK model only

required 44 prototypes, instead of the entire dataset.
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Table 24 — Number of Prototypes of SPARK and Motor Failure Dataset (2nd set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 7 223 | 102 | 212 | 226 |281| 26 | 225
2 21 221 | 98 | 218 | 220 (281| 9 224
COH| 1 192 | 225 | 166 | 187 | 225 |[281| 163 | 110
2 | 188 | 220 | 162 | 228 | 214 |281| 150 | 129
NOV | 1 65 46 | 72 | 46 79 77 | 63 47
2 80 44 | 69 | 47 79 71 | 67 50
SUR | 1 7 225 | 91 | 230 | 113 |226| 14 | 180
2 14 190 | 140 | 135 | 146 [242| 38 | 146

In Table 25, the summary of results for the motor failure dataset is shown. In this
table, as in the summary tables that will be presented for each dataset, in the comparisons column,
the best result is the combination of sparsification strategy, design method, kernel function, and
number of nearest neighbors that achieved the best performance. Moreover, the best design
method is the model that, fixing the same kernel function and sparsification strategy, most
often led to the highest performance. Furthermore, the best sparsification is the sparsification
strategy that, fixing the same kernel function and design method, most often led to the highest
performance. Finally, the best kernels are the kernels that, fixing the design method and the
sparsification strategy, most often led to the best three mean accuracies.

An important thing to note is that, for this dataset, in both sets of experiments, the
same configuration achieved the best result: design method 2, novelty sparsification strategy, and

Gaussian kernel.
4.4.2 SPARK and the Cervical Dataset

In table 26, the performance of each SPARK model configuration applied to the
cervical cancer dataset, for the first set of experiments (where the hyperparameters optimization
step is done for each experiment) is shown. The best performance (92.9 +2.1, with 109
prototypes) was achieved when using the ALD sparsification strategy combined with the log
kernel and the design method 2. Also, a more balanced result between accuracy and number
of prototypes (91.2 +2.5, with 22 prototypes) was achieved with the surprise sparsification
strategy combined with the sigmoidal kernel and the design method 2. Comparing the kernel
functions, the log, linear and sigmoidal were the ones the lead the algorithm to reach the best
results. Moreover, comparing the design methods, the Design Method 2 led the algorithm to

achieve the highest performances.



Table 25 — Summary of Results SPARK and Motor Failure Dataset.

Dataset Experiment Comparisons
novelty
Motor Failure | Optimizing Best Result design meﬁhod 2
Gaussian
3NN
Hyperparameters | Best Design Method -
Best Sparsification novelty
kmod or
Best Kernels exponential or
Cauchy
novelty
Using Best Best Result design mgthod 2
Gaussian
3NN
Hyperparameters | Best Design Method | design method 2
novelty or
Best Sparsification coherence or
surprise
kmod
Best Kernels exponential
Cauchy

Table 26 — Mean Accuracy of SPARK and Cervical Cancer Dataset (1st set of experiments).
’ SM ‘DM‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘
89.1+£ | 86.9+ | 89.44 | 88.6+t | 90.4+ | 92.2+ | 87.8+ | 86.3+
4.3 3.5 3.3 3.6 34 1.2 7.6 7.1

90.6+ | 89.2+ | 89.4+ | 85.6£ | 88.0£ | 92.9+£ | 90.2+ | 89.1+
34 3.0 3.2 59 4.8 21 3.0 3.6

87.5+ | 86.8+ | 87.9+ | 86.2+ | 87.5+ | 50.0+ | 86.2+ | 86.2+
3.6 8.8 23 4.7 4.3 39.4 3.8 7.7

90.2+ | 86.4+ | 88.5+ | 86.7£ | 84.3£ | 83.8+ | 89.9+ | 86.0+
4.6 3.6 23 4.4 6.3 16.0 35 7.3

87.9+ | 86.7+ | 87.24+ | 88.5+ | 88.5+ | 84.2+ | 86.0F | 86.8+
35 3.8 2.9 4.0 4.5 3.5 7.7 4.5

774+ | 61.1£ [79.7+ |51.3£ | 774+ | 79.1+ | 71.8%+ | 56.0+
265 | 36.6 | 13.3 | 365 | 27.7 16.1 254 | 393

79.3+ | 87.8+£ | 89.9+ | 87.8+ | 88.2+ | 88.8+ | 88.3+ | 86.6+
196 | 7.2 3.8 3.0 51 6.8 6.1 4.9

88.3+ [ 88.0+£ | 85.5+ | 87.3+ | 87.4+ | 90.2+ | 91.2+ | 86.9+
4.6 4.7 2.3 6.2 7.6 6.2 25 5.3

ALD | 1

2

COH | 1

NOV | 1

SUR | 1
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Table 27 — Number of Prototypes of SPARK and Cervical Cancer Dataset (1st set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 24 53 39 3 4 270 | 7 9
2 20 23 19 | 16 13 109 | 16 38
COH| 1 18 9 13 | 49 48 1 3 27
2 18 31 15 6 4 2 11 23
NOV | 1 11 17 | 47 9 9 11 | 14 59
2 2 2 11 2 2 2 2 2
SUR| 1 | 260 | 139 | 26 | 106 | 120 | 67 | 11 | 137
2 20 15 | 42 3 4 6 22 | 26

Table 28 — Mean Accuracy of SPARK and Cervical Cancer Dataset (2nd set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 87.6+ | 89.4+ | 89.2+ | 82.8+ | 83.1+ | 90.3+£ | 88.2+ | 80.4+
5.3 6.1 55 8.3 7.0 12.1 8.7 10.2

’ 89.4+ | 85.6+ | 85.7+ | 81.3£ | 80.3£ | 93.9+ | 90.0+ | 88.9+

6.4 6.9 6.2 152 | 154 2.0 7.2 6.6

coH ! 1 90.4+ | 76.6£ | 90.5+ | 87.5£ | 87.9£ | 92.4+ | 92.0+ | 82.7£
5.8 | 208 | 38 6.0 6.0 11 2.0 9.6

) 90.8+ | 87.1£ | 78.3+£ | 79.8£ | 76.8£ | 90.3£ | 90.4+ | 83.5+

5.0 4.6 109 | 6.3 8.7 12 1.3 6.5

NOV | 1 81.2+ | 86.2+ | 87.9+ | 81.6£ | 84.9+ | 87.1+ | 85.5+ | 88.1+
8.1 5.5 31 12.4 2.6 4.3 5.8 29

’ 87.3+ | 84.7L£ | 84.8+ | 84.8+ | 84.4% | 81.2E£ | 78.9+ | 86.2+

29 2.6 2.6 24 2.9 183 | 169 | 2.6

SUR | 1 922+ | 51.5£|89.1+ | 91.8+ | 91.9£ | 62.0£ | 81.9+ | 90.5+
32 | 376 | 23 1.3 1.2 35.6 | 199 1.9

> 92.3+ 1904+ [ 89.1+ | 90.0+£ | 89.2+ | 76.1£ | 84.4+ | 91.3£

2.6 1.2 4.4 1.2 4.4 20.6 | 153 1.4

In Table 28, the mean accuracy of each SPARK model configuration applied to
the cervical cancer dataset, for the second set of experiments (using the best hyperparameters
achieved in the first set of experiments) is shown. The best performance (93.9 2.0, with 89
prototypes) was achieved when using the ALD sparsification strategy combined with the log
kernel and the design method 2. Comparing the kernel functions, the log, linear and sigmoidal
were also the ones that lead the algorithm to reach the best results. Moreover, Comparing the
design methods, both were better half of the time, however, being the best method, design method
2 causes a greater increase in accuracy. As can be seen, the best result from the second set of
experiments (93.9 + 2.0, with 89 prototypes) is 3.8% higher than the result obtained with the
KSOM model (with 30 prototypes) reported in Chapter 3. Also, it was similar to the result
obtained by the linear classifier reported in Table 20.

In Table 30, the summary of results for the cervical cancer dataset is shown. An
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Table 29 — Number of Prototypes of SPARK and Cervical Cancer Dataset (2nd set of experi-
ments).

’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 25 53 41 | 38 42 1270] 10 19
2 19 29 21 17 14 89 | 15 36
COH| 1 19 6 88 | 52 45 1270| 53 23
2 19 33 9 | 20 8 270 270 | 19
NOV | 1 9 17 | 52| 9 31 30 | 15 56
2 61 48 | 68 | 60 69 2 2 60
SUR | 1 61 1 132 | 126 144 1 10 | 113
2 65 | 270 | 35 | 270 | 23 2 | 33 | 143
Table 30 — Summary of Results SPARK and Cervical Cancer Dataset.
Dataset Experiment Comparisons
ALD
Motor Failure | Optimizing Best Result des1gn1r:gethod 2
SNN
Hyperparameters | Best Design Method | Design Method 2
Best Sparsification ALD
log
Best Kernels linear
sigmoidal
ALD
Using Best Best Result design method 2
log
SNN
Hyperparameters | Best Design Method | Design Method 2
Best Sparsification ALD
log
Best Kernels linear
sigmoidal

important thing to note is that, for this dataset, in both sets of experiments, the same configuration

achieved the best result: design method 2, ALD sparsification strategy, and log kernel.
4.4.3 SPARK and the Vertebral Column Dataset

In Table 31, the performance of each SPARK model configuration applied to the
vertebral column dataset, for the first set of experiments (where the hyperparameters optimization
step is done for each experiment) is shown. The best performance (81.7 4.0, with 173
prototypes) was achieved when using the coherence sparsification strategy combined with the

log kernel and the design method 2. Also, a more balanced result between accuracy and number
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Table 31 — Mean Accuracy of SPARK and Vertebral Column Dataset (1st set of experiments).
’ SM ‘DM‘ linear ‘ gauss ‘ poly ‘ expo ‘Cauchy‘ log ‘ sigm ‘ kmod ‘
71.8+ | 72.4+ [ 77.0+ | 72.0+ | 74.6+ | 79.8+ | 76.2+ | 75.6+

ALD |1 g 78 | 57 | 69 | 68 | 49 | 49 | 9.0
L | T3IE[7A6E | TAIE[756% | T40E | T51E [ 73.9% | T35E

64 | 80 | 52 | 72 | 54 | 74 | 53 | 7.0

cor| 1 |77AE|T6.5E 7625 | 19.6E | 775 [19.8E| 76.1% | 6.9+
69 | 51 | 51 | 42 | 27 | 29 | 45 | 74

2 76.5+ (7924 [78.0+ | 76.7+ | 77.6+ | 81.74+ |77.6+|75.4+

59 | 41 | 37 | 41 | 49 | 40 | 46 | 43

NOv| 1 |TATE[T56E 7555 | TT4% | T69% [ 76.1+| 770+ | 78.6+
45 | 48 | 63 | 53 | 42 | 54 | 20 | 44

L | T5.6E [TA.6E | T6.6% [ T6.2E | TT5E | T78% 7555 | T81E

46 | 53 | 61 | 40 | 36 | 61 | 76 | 52

SUR| 1 | 768E 770 766+ | 73.8% | 75.5% | 1.9+ | 744+ | 75.6+
76 | 40 | 59 | 63 | 53 | 61 | 74 | 53

L |T39E[T65E [757% | T3.3% | T33% |13.3% | 7355 | T5.9%

61 | 52 | 61 | 82 | 73 | 75 | 69 | 65

Table 32 — Number of Prototypes of SPARK and Vertebral Column Dataset (1st set of experi-
ments).

’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 7 23 18 | 32 30 |173] 4 60
2 14 23 9 28 21 173 5 24
COH| 1 37 18 | 41 | 24 13 |173| 4 38
2 7 15 | 28 | 33 7 173 7 52
NOV | 1 17 14 | 20 | 32 15 18 | 32 12
2 26 | 32 | 14 13 121 9 36
SUR | 1 34 | 33 | 92 10 30 | 17 | 106
2 11 30 | 21 8 22 57 1 20 39

of prototypes (79.2 + 4.1, with 15 prototypes) was achieved with the coherence sparsification
strategy combined with the gaussian kernel and the design method 2. Comparing the kernel
functions, the exponential, Gaussian and log were, most of the time, the best ones. Moreover,
comparing the design methods, the Design Method 2 led the algorithm to reach the best results.

In Table 33, the performance of each SPARK model configuration applied to the
vertebral column dataset, for the second set of experiments (using the best hyperparameters
achieved in the first set of experiments) is shown. The best performance (80.9 +4.2, with 50
prototypes) was achieved when using the coherence sparsification strategy combined with the
kmod kernel and the design method 2. Comparing the kernel functions, the kmod and log were
the ones that lead the algorithm to reach the best results. Moreover, comparing the design
methods, the Design Method 1 was, most of the time, the best one. As can be seen, the best

result from the second set of experiments (80.9 £4.2, with 50 prototypes) is 1% lower than the



77

Table 33 — Mean Accuracy of SPARK and Vertebral Column Dataset (2nd set of experiments).
’ SM ‘DM‘ linear ‘ gauss ‘ poly ‘ expo ‘Cauchy‘ log ‘ sigm ‘ kmod ‘
68.5+ | 73.2+ | 74.3+ | 75.1+ | 75.8+ | 79.8+ | 66.1+ | 77.9+

ALD | 11790 59 | 52 | 47 | 55 | 44 | 92 | 46
S| 675% | 765 [70.4% | 768% | 74.65 [19.7% | 64.6% | T8.1E

75 | 59 | 61 | 56 | 59 | 66 | 10.1 | 56

cor| 1 | 779% | TATE 7725|1595 | 13.3% | 804% | 1.9+ | 774%
48 | 47 | 52 | 59 | 62 | 32 | 62 | 49

L | 65.5% | 71L8% [T4.8%79.2E | 69.5% [80.3E | 68 1% | 80.9+

95 | 54 | 53 | 48 | 52 | 37 | 84 | 42

NOV | 1 | 9% [TT2E 1605 | TT1E | 765+ | 76,65 | 154+ | 722+
51 | 55 | 44 | 52 | 68 | 52 | 54 | 63

S| T06E | 763 7715 T29% | T1.9% [76.1% | 69.8% | T8 1%

s4 | 62 | 49 | 74 | 66 | 56 | 75 | 46

SUR | 1 | 6765 | 7205 75.0+ | 80.0% | T98% | 76.4% | 74.6% | T8.4%
92 | 59 | 62 | 48 | 35 | 53 | 50 | 61

L 684 [TLIE | 740 [644E | T09% | 775% 76,05 | 76.8%

73 | 62 | 56 | 120 | 95 | 44 | 66 | 51

Table 34 — Number of Prototypes of SPARK and Vertebral Column Dataset (2nd set of experi-
ments).

’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 10 22 | 32 | 30 30 |173] 6 64
2 14 28 | 20 | 28 21 173 6 27
COH| 1 39 45 | 35 | 30 20 | 173 13 36
2 7 41 35 | 45 6 173 9 50
NOV | 1 19 15 | 20 | 29 18 17 | 20 12
2 12 23 | 37 | 16 16 16 | 7 33
SUR | 1 8 20 | 37 | 112 | 141 |29 | 16 91
2 12 33 | 35 9 17 52 | 25 38

result obtained with the KSOM model (with 30 prototypes) reported in Chapter 3. This shows
that, for some datasets, updating the positions of prototypes is a better solution than just adding
more prototypes to the model. Finally, this result was 5% lower than the one reported in Table
20, where a SVM with kmod kernel was used.

In Table 35, the summary of results for the vertebral column dataset is shown. An
important thing to note is that, for this dataset, in both sets of experiments, the best result was

achieved by the: design method 2 and the coherence sparsification strategy.

4.4.4 SPARK and the Wall Following Dataset

In Table 36, the performance of each SPARK model configuration applied to the Wall

Following dataset, for the first set of experiments (where the hyperparameters optimization step
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Table 35 — Summary of Results SPARK and Vertebral Column Dataset.

Dataset Experiment Comparisons
coherence
Motor Failure | Optimizing Best Result demgnlr(l)lgthod 2
6NN
Hyperparameters | Best Design Method | design method 2
Best Sparsification coherence
exponential
Best Kernels Gaussian
log
coherence
Using Best Best Result design method 2
kmod
ONN
Hyperparameters | Best Design Method | design method 1
Best Sparsification coherence
Best Kernels log, kmod

Table 36 — Mean Accuracy of SPARK and Wall Following Dataset (1st set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 49.8+ (91.6+ | 78.4+ | 91.4+ | 921+ | 921+ | 54.7+ | 91.1£
23.9 11 7.5 2.7 32 6.1 17.6 3.0

> 79.8+ | 942+ [ 88.1+ | 93.0£ | 92.5£ | 82.1£ | 74.0+ | 90.3£

6.0 23 2.5 3.1 3.0 17.7 9.3 3.0

COH| 1 90.6+ | 91.3£[90.9+ | 92.5+ | 92.3+ | 18.7£ | 86.0+ | 92.6*
3.1 1.9 2.8 1.9 1.2 17.3 8.4 1.2

) 92.0+ | 93.6£ [ 90.4+ | 943+ | 94.0£ | 96.4L | 87.8+ | 93.9+

1.4 2.1 4.9 1.7 1.9 0.3 5.3 1.4

NOV | 1 947+ | 94.8+ 1953+ | 94.5+ | 954+ | 95.0+ | 88.1+ | 95.1+
1.4 1.7 11 1.9 1.2 1.8 4.9 0.9

’ 63.7+ | 59.4+ | 57.1+£ | 66.5+ | 60.8E | 65.3£ | 54.6+ | 66.3£

81 8.9 156 | 5.8 11.2 | 11.0 | 16.6 | 11.1

SUR | 1 90.3£]96.6+ | 89.3+ | 95.6+ | 96.2+ | 92.0+ | 64.6+ | 95.5+
2.3 04 1.7 1.0 1.3 5.1 9.8 1.7

’ 84.04 [ 94.4+ | 85.7+ 952+ | 96.0+ | 92.8+ | 80.4+ | 94.2+

2.5 1.7 4.4 1.6 0.9 4.3 5.0 31

is done for each experiment) is shown. The best performance (96.6 + 0.4, with 443 prototypes)
was achieved when using the surprise sparsification strategy combined with whe Gaussian
kernel and the design method 1. Also, a more balanced result between accuracy and number
of prototypes (96.2 4 1.3, with 127 prototypes) was achieved with the surprise sparsification
strategy combined with the cauchy kernel and the design method 1. Comparing the kernel
functions, the exponential and cauchy were the ones the lead the algorithm to reach the best
results. Moreover, comparing the design methods, the design method 1 was, most of the time,

the best one.



79

Table 37 — Number of Prototypes of SPARK and Wall Following Dataset (1st set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD| 1 | 5 [169 [ 22 [101 ] 173 [732] 6 | 191
2 | 9 [ 159 | 20 | 167 | 138 [732] 10 | 104
COH| 1 | 112 [ 156 [ 183183 ] 170 | 1 | 172 | 156
2 | 153 | 129 | 133 | 116 | 140 |732] 225 | 195
NOV| 1 [ 65 [ 74 [74]67] 70 [66] 55 | 65
2 | 4 4 | 5 | 4 4 4| 4 | 4
SUR| 1 | 153 | 443 [ 128 156 | 127 [240] 7 | 132
2 | 40 | 137 | 121 | 134 | 133 |198] 41 | 244

In Table 38, the performance of each SPARK model configuration applied to the
Wall Following dataset, for the second set of experiments (using the best hyperparameters
achieved in the first set of experiments) is shown. The best performance (96.7 0.4 with 724
prototypes) was reached with the surprise sparsification strategy combined with the kmod kernel
function and design method 2. Also, a more balanced result between accuracy and number
of prototypes (96.3 +0.5, with 124 prototypes) was achieved with the surprise sparsification
strategy combined with the cauchy kernel and the design method 1. Comparing the kernel
functions, the log, gaussian and cauchy were also the ones that lead the algorithm to reach the
best results. Moreover, comparing the design methods, the Design Method 2 was, most of the
time, the best one. As can be seen, the best result from the second set of experiments (96.3 +0.5,
with 124 prototypes) is 5.5% higher than the result obtained with the KSOM model (with 30
prototypes) reported in Chapter 3. Also, it was just 0.5% lower than the result obtained by a
single-hidden-layer MLP reported in Table 20.

In Table 40, the summary of results for the Wall Following dataset is shown. An
important thing to note is that, for this dataset, in both sets of experiments, using design method

1 and the surprise sparsification strategy led to a better performance.

4.4.5 A summary of the Results

In Table 41, the summary of the best mean accuracies obtained using SPARK models
is shown. It is important to mention that the number of prototypes is determined during training,
based on the optimized hyperparameters. As can be seen from this table, no single sparsification
method or kernel function consistently outperformed the others across all datasets. However, in
most cases, design method 2 led the algorithm to achieve the best performance.

In Table 42, a comparison of the best accuracies obtained by the KSOM and SPARK
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Table 38 — Mean Accuracy of SPARK and Wall Following Dataset (2nd set of experiments).
’ SM ‘DM‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘
453+ 193.3+|76.0+ [ 92.94+ | 93.9+ | 90.7+ | 57.4+ | 93.7+

ALD |1 e9s | 11 | 101 | 13 | 11 | 198 | 194 | 11
L | 735 [953% §73% [953E | 952E | 96.0% 725+ | 949E

58 | 09 | 32 | 09 | 10 | 17 | 80 | 08

Com| 1 |935E |94 4% 031594 8E | 938+ 963+ 94.0% 938+
11|09 | 12| 08| 10 | 05 | 10 | 1.0

L 944 [952% 957 |94.9% | 95.1E | 963% |95.5% | 96,0+

08 | 09 | 05 | 1.0 | 1.0 | 05 | 06 | 06

NOv| 1 |9S0E[951E 952+ 951% | 952+ 953+ 915+ 951+
09 | 08 | 09 | 1.0 | 09 | 11 | 26 | 09

L | T33E[63.0% | 741 [95.0% | 642F |95 3% [ 64.6% | 63.5%

79 | 92 | 76 | 09 | 95 | 09 | 98 | 101

SUR | 1 | 501E 9635 921+ 96 5% | 96.3+ 964+ | 61.0% | 962+
170 | 05 | 14 | 05 | 05 | 05 | 160 | 04

S [79.7E[ 961 [93.8% | 95.9% | 965 |96.4% | 68.6% | 96.7+

62 | 07 | 18 | 06 | 04 | 06 | 105 | 04

Table 39 — Number of Prototypes of SPARK and Wall Following Dataset (2nd set of experiments).
’ SM ‘ DM ‘ linear ‘ gauss ‘ poly ‘ expo ‘ cauchy ‘ log ‘ sigm ‘ kmod ‘

ALD | 1 6 159 | 22 | 160 | 174 |732| 8 180
2 12 162 | 51 | 165 | 137 |732] 9 162
COH| 1 139 | 158 | 201 | 191 | 174 |732] 215 | 156
2 | 151 | 125 | 262 | 122 | 152 |732]| 214 | 203
NOV | 1 64 74 | 71 | 77 81 75 | 59 69
2 15 4 20 | 74 4 72| 4 4
SUR | 1 11 171 | 210 | 732 | 124 |229| 105 | 700
2 26 132 | 354 | 137 | 634 |190| 10 | 724

Table 40 — Summary of Results SPARK and Wall Following Dataset.

Dataset Experiment Comparisons
surprise
Motor Failure | Optimizing Best Result design me.thod !
Gaussian
INN

Hyperparameters | Best Design Method | design method 1
Best Sparsification | surprise
exponentinal

Cauchy
surprise

design method 1
Gaussian

4NN

Hyperparameters | Best Design Method | design method 2

Best Sparsification | surprise

log

Best Kernels Gaussian

Cauchy

Best Kernels

Using Best Best Result
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Table 41 — SPARK Models Best Mean Accuracies.

Dataset SPARK Model | Mean Accuracy | #Prototypes
Motor Design Method 2
) Novelty 999404 44
Failure )
Gaussian kernel
Cervical Design Method 2
ALD 93.94+2.0 89
Cancer
log kernel
Design Method 2
\ggiﬁil coherence 80.9+4.2 50
kmod kernel
Design Method 1
Fo;l):,) i}}in surprise 96.3+0.5 124
£ Cauchy
Table 42 — Comparison of performances between KSOM and SPARK models.
KSOM SPARK
Dataset | Best Mean Accuracy \ #Prototpyes | Best Mean Accuracy \ #Prototypes
Motor 77.9 30 99.9 44
Failure
Cervical
90.1 30 93.9 89
Cancer
Vertebral 81.9 30 80.9 50
Column
Wall 90.8 30 96.3 124
Following

models is presented. As can be seen from this table, in most cases, automatically selecting the
number of prototypes leads to higher classification rates. However, as observed in the vertebral
column dataset, updating the prototype weights can allow the model to achieve higher accuracy

with a low number of prototypes.

4.5 Final Considerations

In this chapter, a new framework called SPARK was proposed for designing sparse
kernel prototype-based classifiers. The experimental results demonstrated that the algorithm can
achieve high mean accuracy while maintaining sparse models with a low number of prototypes.
An important observation is that increasing the number of prototypes does not necessarily
lead to improved classification performance. In many cases, the best results were obtained
with configurations that selected significantly fewer prototypes, emphasizing the importance of

effective sparsification over model complexity.
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Furthermore, no single sparsification method or kernel function consistently out-
performed the others across all datasets. These findings highlight that the effectiveness of this
model depends on the characteristics of the dataset, reinforcing the need for careful selection of
sparsification criteria, kernel functions, and hyperparameters tailored to each specific task.

Until this chapter, the studied datasets are in batch format, meaning that all data is
already made available a priori. Thus, the algorithms presented so far are designed to operate

with this type of data. In the next chapter, a framework for handling a continuous stream of data

is proposed.
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5 A SPARSE ONLINE APPROACH FOR PROTOTYPE-BASED KERNEL MOD-
ELS

In this chapter, a novel method for designing sparse kernel prototype-based classifiers
is introduced, which is capable of handling the challenges posed by the processing of streaming
data. As done in Chapter 4, sparsity in the proposed model is initially pursued through the use of
the ALD method (ENGEL et al., 2004), which is a sequential procedure widely used in kernel
adaptive filters to build a dictionary of relevant samples extracted from the incoming data flow.
However, two major differences are introduced here. Firstly, items can also be removed from
the dictionary in order to better tackling long-term changes in the data, such as concept drifting,
as time passes by. Secondly, prototypes in the dictionary are updated in order to better fit to
short-term changes in the dynamics of the data. In this regard, the proposed sparse kernel PBC
model is a fully adaptive one, capable of adapting automatically to the problem complexity.

This chapter is organized as follows. Section 5.1 provides the fundamentals of
sequential learning and concept drift. The proposed framework is developed in Section 5.2. The
data sets and methods used are shown in Section 5.3. The simulation results are reported and

discussed in Section 5.4 and the conclusion is made in Section 5.6.

5.1 Sequential Learning and Concept Drift

As previously seen, formally, in the context of classification, which is a supervised
N

n=1>

learning task, a data set is given as a group of tuples (samples) {(x,,c,) € R? x {1,...,C}}
where x,, is the attributes vector (input) and ¢, is its respective class label. In batch learning, the
data set is previously stored and can be divided into two subsets: training and test. The classifier
model H is built from the training set, and the test set is used to validate it (LOSING et al.,
2018). Several training-testing strategies can be used to evaluate the models, such as the k-fold
cross-validation, in which the data set is divided in k groups and all but one group (the test one)
are used for training.

To analyse the built models in terms of the generalization ability to unseen samples,
one can use the classification batch error measure, which is given by

1 N

E,=—) O(c;,¢; 5.1
b N[s = (cl7cl)7 ( )

where ¢; = H(x;) is the classifiers’ prediction, N, is the number of test samples, and the function

O(.,.) is either equal to 0, if ¢; = &, or 1, otherwise.
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In data streaming problems, for which the data set is given as a sequence of potentially
infinite length, only one sample (x;,c;) arrives and is processed at time step ¢. This application
scenario often requires online learning, meaning that the classifier model needs to be updated
immediately upon the arrival of the current input-output pair or after the collection of a mini-batch
of samples. In order to evaluate the classifier model, it is common to resort to the interleaved
test-then-train (a.k.a. prequential) evaluation method (GAMA et al., 2014). In this case, for each
new unseen data x;, the current model H;_ is used to predict its label, i.e. & = H,;_(x;). With
this methodology, a single presentation of a given sample is carried out, all data is used to train
and test the algorithm, and no holdout set is needed for testing.

To evaluate the models in terms of the generalization ability to unseen samples, one

can use the classification sequential error measure, which is given by
1 1
Es = " Y O(ci,é), (5.2)
i=1

where ¢ is the current iteration.

One of the challenges in the context of data streaming is that stationarity is an
unrealistic assumption over a long period of time. Such changes in data statistics can occur, for
example, due to adversary activities (spam filtering task) or it is a natural consequence of an
environment with different operating points (ZLIOBAITE et al., 2015). Unexpected changes in
underlying data distribution over time have received different names depending on the field. It is
known as concept drift (in machine learning, data mining and predictive analysis) (GAMA et
al., 2014), nonstationarity (in signal processing) (HAYKIN; LI, 1995), covariate shift or data
set shift (in pattern recognition) (MORENO-TORRES et al., 2012). In the current thesis, this
phenomenon is refered henceforth to as concept drift.

Formally, a concept drift between time point #y and time point #; can be defined as

(GAMA et al., 2014)

X p(X, ) # p(X, )y, (5.3)

where p (X, ¢),, is the joint distribution at time 7y between the set of input variables X and their

target variables ¢. Using the Bayes rule, Eq. (5.3) can be rewritten as

IX: p(eX)1, p(X)1o # P(€X)r, p(X)s (5.4)

where p(X) is the distribution of the input data and p (¢|X) is the conditional probability of the
output. A virtual drift occurs if the distribution of the input data p (X) changes. A real drift refers

to a change in the conditional probability p (¢|X).
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Figure 8 — Types of concept drift.
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Source: Wadewale e Desai (2015)

Furthermore, the concept drift can be distinguished as being abrupt (sudden, instan-
taneous), gradual, incremental or recurrent (LI et al., 2020). In sudden drifts, the data changes
instantly and without alternation IWASHITA; PAPA, 2018). In the field of monitoring and
control (of a chemical plant, for example), an abrupt drift can be represented by an abnormal
condition of the system that happens in the order of seconds or minutes (ZLIOBAITE et al.,
2015). In incremental and gradual drifts, the changes occur slowly. An incremental drift happens
when the data values gradually change over time. This can be instantiated by a digital facial
recognition system that must recognize individuals who are in a constant aging process. On
the other hand, gradual drifts also include changing in class distribution IWASHITA; PAPA,
2018). Moreover, a recurring concept drift may occur due to cyclic phenomena, such as seasons
of the year or may be associated with irregular phenomena, such as inflation rates (TSYMBAL,
2004). Also, in real world problems, the concepts can change in more than one way, being
heterogeneous. In Figure 8, these and other two types of drifts (blip and noise) are illustrated.
See Wadewale e Desai (2015), Webb et al. (2016), Iwashita e Papa (2018) and Babiiroglu et al.
(2024) for a broader view on concept drift characterizing.

Finally, different strategies for updating learning models have been developed to
deal with concept drift, and they can be distinguished as passive (lazy) or active. In passive
strategies, the models are constantly (or periodically) retrained. Alternatively, in active strategies,
learning models may use trigger mechanisms to identify statistical changes and initiate a model

update (ZLIOBAITé et al., 2015). See Ditzler et al. (2015) for a broader view on learning in
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nonstationary environments.

5.2 The Proposed Model

In this section, a formal description of each constituent part of the resulting model
and the pseudocodes for implementation are provided. Also, a discussion about the numerical
methods that make it feasible for practical purposes is done. Codes are available at Github!.
Furthermore, it is important to mention that the proposed algorithm updates the classification

model using a passive strategy (see Section 5.1).
5.2.1 Dictionary growing procedure

In order to add samples to the dictionary, the same strategy as the one explained in
Section 4.1 is used, but one hyperparameter is added. This method will be explained here again
to make this chapter self-contained.

The proposed model starts with no prototype in the dictionary. The first sample
entering the dictionary is the first one to appear in the streaming. Then, subsequent samples will
be tested for their relevance in order to be included into the dictionary. The procedure to add
prototypes to the model’s dictionary was initially based on the ALD criterion (ENGEL et al.,
2004), which constructs a dictionary consisting of a subset of size Q;_1 of the input-output pairs
presented so far. This dictionary is denoted Z;_ ;.

More formally, using the ALD criterion, at time step ¢, after having observed ¢ — 1

Or—1
j=1"
The set of vectors {X j}JQ:l' in Z,;_1 comprises an approximately linearly independent set of

samples, the dictionary %,_; is comprised of a subset of O, ;| relevant pairs {(i i, Cj)

vectors. The proposed approach takes the pairs in the dictionary as labeled prototype vectors in
feature space, so that they can be used as a kernelized nearest neighbor classifier, since the labels
{5 I }jQ:]l of each input vector are kept in the dictionary.

When a new incoming sample X; is available, one must test if it should be added
or not to the dictionary. In order to do this, it is necessary to estimate a vector of coefficients

a= [a TR aQt_J g satisfying the ALD criterion:

61(t) < v, (5.5

1

https://github.com/davidcoelho89/spok-nn


https://github.com/davidcoelho89/spok-nn
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2
) (5.6)

and v is the sparsity level parameter (which is a hyperparameter and should be optimized). De-
veloping the minimization problem in Eq. (5.6) and using the kernel trick, x(x,y) = (¢(x), ¢ (y)),

one can write

def . O O
o1(r) = min .Zlaiaj x,,xj -2 Z a;K XJ,X, + K (X, %) (5.7)
i,j=
or, using matrix notation,
o1(t) = min{an(,_la—Zan(,_l (X;)+k,,}, (5.8)
a

where K;_; is a Q;_ x Q;_; kernel matrix built using the current dictionary. The (i, j)-th entry
of this matrix is given by [K,_l} =K (Xi,%;), with i, j =1,...,0,_1. The Q;_;-dimensional

vector l~(,_1 is defined as
Et—l (x;) = [K(x1,%1) -+ K(x,%;) -~ K(XhiQH)]Ta (5.9)

while k;; = Kk (x;,X;). Solving Eq. (5.8) leads to the optimal a,, which is given by

a, =K k_(x), (5.10)
so that Eq. (5.6) can be rewritten as
81(t) = ki — k1 (x;)" ay. (5.11)

If 61(¢) > vy, then the sample must be added to the dictionary; that is, 4, = %, U
{(X;,3)} and Q; = Q;—1 + 1. However, if 8; (¢) < vy, the sample is approximate linear dependent
and must not be added to the dictionary; thatis, %, = %,_; and Q; = Q1.

Differently from the method introduced in Chapter 4, in the current method, a
hyperparameter 3 limits the number of prototypes that can be added to the dictionary. Thus, once
the dictionary size reaches this limit, the only way a new sample can be added is if it belongs to

a class that has not yet been observed by the algorithm?.

Remark 1: It is important to mention that 3 limits the number of prototypes for the entire
dictionary, but each class can have a different number of prototypes. Also, this hyperparameter

can be set to infinite, so that there is no limit for adding new prototypes.
2

Therefore, the maximum number of prototypes that can belong to the dictionary at a given time step ¢ is 8 + Cp,
where C,, is the number of classes that had not been observed when the dictionary reached 8 prototypes.
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Remark 2: There are other dictionary sparsification procedures in the field of kernel adaptive
filtering such as Coherence (RICHARD et al., 2009), Novelty (PLATT, 1991) and Surprise (LIU
et al., 2008), that were already used in Chapter 4 and can be used within the framework here
developed. In this regard, results from these other sparsification procedures will be reported later
in this chapter. Also, there are other ways to achieve sparse prototype-based models, such as the
ones described in Hofmann et al. (2014), Albuquerque et al. (2018), and Soares Filho e Barreto
(2014). More on the issue of sparse online dictionary learning can also be found in (MAIRAL et
al., 2010). The ALD method was initially chosen because it can be taken as an approximation of
PCA in the feature space (ENGEL et al., 2004), as it implies that eigenvectors with eigenvalues
that are significantly larger than v; are projected almost in their entirety onto the span of the
dictionary vectors. Thus, the dictionary contains vectors that represent well the directions of the
largest variances of the data in the feature space. Indeed, the ALD procedure can be seen as an

approximate way of performing online sparse kernel PCA on sequential data.
5.2.2 ALD-based kernel nearest neighbor classifiers

The just described ALD-based selection of prototypes for the dictionary can be used
as a standalone classifier by means of kernelized distances, such as the ones introduced in Section
2.5. For this purpose, the approaches suggested in Chapter 4 are followed, which are reproduced

below for the sake of completeness.

Design Method 1: This approach involves the construction of a single dictionary. The first
sample in the streaming will be the first item of the dictionary. Then, for each new sample, apply
the ALD criterion according to Eq. (5.10) and Eq. (5.11). Note that each prototype vector in %,

carries its class label ¢, for the sake of classification.

Design Method 2: This approach requires the construction of smaller class-conditional dictio-
naries which are then merged later. For a problem with C classes, it is required C dictionaries
%(i) ,i=1,2,...,C. For this purpose, whenever a data sample (x;, ¢;) from the i-th class emerges,
apply the Design Method 1 to the dictionary .@[(i) |- The model’s dictionary is the union of all the
C class-conditional dictionaries %; = .@t(l) U @t(z) U---u .@t(c). In Remark 2, it was stated that,
if a dictionary is built from the ALD procedure, it represents the data distribution. As Design
Method 2 builds one dictionary per class, it allows a better modeling of the spatiotemporal
dynamics of each class than the Design Method 1. For this reason, it is more suitable for data

streaming processing than the Design Method 1.
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For the classification of an incoming sample, use the kernelized distance in Eq. (2.7)
in order to find the closest prototype. The search is executed over all the samples in the model’s

dictionary. Assign to that sample, the same class of the nearest prototype.

Remark 3: Other nearest neighbor strategies (such as the KNN and KWKNN) could be used
for classification purposes. But the nearest neighbor approach was, initially, used for the sake
of simplicity. Results from applying the KWKNN to this framework are discussed later in this
chapter.

It should be noted that the only hyperparameters so far are v (the sparsity level), 3
(maximum number of prototypes), and those associated with the chosen kernel function (as the
scale parameter oy of the gaussian kernel function). However, since the kernel parameters are
common to all kernel-based methods, the only tunable hyperparameters so far are the sparsity
level v; and the maximum number of prototypes 8 (which can be disconsidered if it is set to

infinity).

Remark 4: In the SPARK framework, introduced in Chapter 4, the dictionary only grows as time
passes and the prototypes in the dictionary are not updated. As a consequence, the SPARK-based
models cannot handle nonstationary data, typical of streaming scenarios. In this chapter, a
generalization of the SPARK framework is introduced, what makes the models also capable of
removing obsolete items from the dictionary and updating the prototypes in order to better model
the changes in the data dynamics. In fact, the SPARK framework is to be considered a special
case of the framework being developed. Also, as will be detailed further, only the design method

2 will be used for streaming data processing tasks discussed in the current chapter.

5.2.3 Updating the Prototypes

As mentioned above, if there is no change in the underlying data distribution, just the
ALD-based growing procedure and the design method 2 are sufficient to build a prototype-based
kernel classifier. However, as also mentioned previously, one important issue in data streams
is the concept drift. One contribution of this chapter is the verification that prototype updating
helps the classifier to deal suitably with gradual or incremental concept drift. In the following,

this simple but powerful idea is developed.

One-shot learning vs. Incremental learning - One important aspect of this proposal is to extract

information not only from the samples in the dictionary, but also from the samples which are
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not included in it. When the proposed classifier decides to include an incoming sample into the
dictionary, this is a type of one-shot learning (CARPENTER et al., 1991), i.e. all the information
in that sample is instantaneously absorbed as is by the classifier. This type of learning strategy
provides long-term stability to the model, since only relevant changes are incorporated into it.
However, even if a sample is not added to the dictionary, it can also carry important
information that should not be discarded, such as a small change in the data distribution, a
common scenario in streaming data processing. It was observed that these small changes were
not captured by the learning of the previous framework, when it was applied to streaming data
processing. To tackle this limitation, the idea of allowing the prototypes in the dictionary to be
updated slightly by gradient descent rule, similar to the one used by the EF-KSOM in Eq. (2.8),

but disregarding the neighborhood function, came out:
Wi (t41) = wi- (1) =1 (1) Vi (x(7)) , (5.12)

where only the closest prototype w; is updated. In this regard, Eq. (5.12) is a winner-take-all
competitive learning rule.

It should be noted that the one-shot learning mechanism of the proposed approach is
inspired by an equivalent procedure in the family of competitive learning algorithms known as
adaptive resonance theory (ART) models (CARPENTER et al., 1991). In ART models, if an
input item is different enough from the ones stored, it will be added as is to the set of prototypes.
This is known as vigilance mechanism, which is similar to the novelty mechanism (PLATT,
1991) used by many kernel adaptive filters for dictionary building. Then, as the learning process

advances, the stored prototypes are updated incrementally in a winner-take-all basis.

A common learning rule for different kernels - Since the recursive rule in Eq. (5.12) depends
on the computation of the gradient vector VJ; (x(z)), a different rule should emerge for each
different choices of the kernel function. However, for certain types of kernel functions, such as
must of those listed in Table 1, it was noticed that the gradient vector VJ; (x(¢)) is proportional
to the difference between the prototype vector and the current input sample, i.e. VJ;(x(t)) <
w; (1) — x(t), with the final expression being very similar to each other?. The calculation of the
corresponding gradient vectors, considering each kernel function separately, is developed in the

Appendix B.

3 Sometimes normalized by the quadratic norm of the difference vector, i.e. |[w; (¢) — x(t)||*.
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Thus, for the sake of simplicity, a common learning rule for all the kernel functions

is given by
wir (1 +1) = wir (1) + (1) [x (1) — wi (1)], (5.13)

where learning rate 1) is to be very small in order to allow the classifier to absorb small variations
in the data while avoiding catastrophic forgetting phenomena (RICHARDSON; THOMAS,
2008). The learning rate can follow a decaying scheme or be kept constant in a small value.

Here, the second option was chosen, and a recommended value is 7 < 0.1.

Remark 5: The proposed prototype updating strategy grants plasticity to the ALD-based classi-
fier without compromising the stability of the learned dictionary. This is possible by combining
ALD-based one-shot prototype selection with gradual updating of the prototype locations by
Eq. (5.13). Thus, the resulting model is capable of gradual learning without catastrophic forget-
ting, dealing gracefully with the stability-plasticity dilemma common to self-organizing neural
networks (GROSSBERG, 1987; RICHARDSON; THOMAS, 2008; MERMILLOD et al., 2013;
BRNA et al., 2019).

Remark 6: The update rule in Eq. (5.13) was chosen for the sake of simplicity, but, as the
proposed algorithms are considered instantiations of a more comprehensive framework developed
with the aim of building sparse adaptive prototype-based kernel models, the interested reader
can certainly use other similar learning rules, such as those based on the Kernel Generalized

Learning Vector Quantization (KGLVQ) (HAMMER et al., 2014; QIN; SUGANTHAN, 2004b).

5.2.4 Dictionary Pruning Procedure

In data streaming problems, keeping the model complexity bounded, i.e. maintaining
the smallest number of items in the dictionary as time passes, while keeping the highest accuracy
rate as possible are important issues. The ALD and other sparsification methods only include
items in the dictionary. The user can, of course, control the inclusion rate either by manipulating
the parameter v, which gradually limits the acceptance of new items over time, or by defining a
maximum value 3 for the size of the dictionary. The ideal situation is to make the dictionary fully
adaptive; that is, it can not only include items in, but also delete items from the dictionary when
they become irrelevant. Some algorithms use performance-based techniques to limit memory
usage. In Li et al. (2020), for example, when the ensemble size exceeds a predefined threshold,

the worst-performing classifiers are removed.
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Algoritmo 4: score_update_procedure()

Input: s+, 7+, c(W;+), c(x)
Output: s;-
begin

if c(w;) = c(x) then
if w;+ predicted correctly the class label the last time it was chosen, and si+ < 0
then
‘ s <= 8-+ 1;
end
zw 1
else
if w;« predicted incorrectly the class label the last time it was chosen then
‘ S < Sjpx — 1;—
end
Zjx < 0
end
end

Bearing this in mind, a new dictionary pruning strategy was developed, which is
based on a binary variable {z ]}]Q; , indicating whether a given prototype produced a correct
prediction the last time it was selected to classify a sample (1 if correct, 0 otherwise), and on
a score {s 1}1%1 assigned to each prototype in the dictionary. The score of a prototype that
has just been inserted into the dictionary is set to 0, and the value of the variable z; is set to 1.
Then, when a new sample is classified and the algorithm observes its label, the score and the
variable z;+ of the closest prototype are updated as shown in Algorithm 4, henceforth called
score_update_procedure().

As one can notice from this pruning rule, a prototype that incorrectly classifies
samples in sequence is penalized. If this prototype, twice in a row, correctly classifies samples in
sequence, its score is improved. Also, the maximum score for a prototype is 0. After the score is
updated, the prototype will be removed if the two conditions below are jointly fulfilled.
Condition 1 verifies if its score is less than the minimum score €. This constant is set to —10 in

this thesis.
Condition 2 verifies if there is at least another prototype, in the dictionary, representing the
same class.

While the first condition is a performance-related verification, the second condition is
necessary to avoid dictionaries without representatives of a particular class. Finally, this approach
does not penalize prototypes that are not being selected in the last iterations. So, if there is

some kind of recurring concept drift and "old" prototypes are important for these concepts, the
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algorithm can still have good performance.
5.2.5 Rebuilding the Kernel Matrix

One main difference among standard prototype-based classifiers and their kernelized
counterparts is that every time the content of the dictionary is altered by insertion/deletion/updat-
ing of prototypes, the kernel matrix has to be reshaped, which can be the most time-consuming
part of the algorithm. For this purpose, many important linear algebra results will be used. In this
section, it is described how to do that for the three situations, starting with the case of insertion

of items into the dictionary.

After insertion of items: In order to apply the ALD test to an incoming sample, the inverse
of the kernel matrix K,_; has to be calculated, as shown in Eq. (5.10). As the size Q; of the
dictionary increases, it becomes unviable, in terms of the computational efforts required, to
recompute the full inverse matrix each time the dictionary is modified. A feasible alternative is
to calculate such inverses recursively using the following method described in (ENGEL et al.,
2004). This reduces the computational complexity of building a kernel matrix from &'(n?) to
O (n?).

Every time a new prototype is added to the dictionary, its corresponding class kernel
matrix (for the design method 2), or the entire kernel matrix (for the design method 1), is updated
as follows:

1. The current regularized kernel matrix (Van Vaerenbergh; SANTAMARfA, 2014) is repre-
sented by

K 1=K, 1+alp, (5.14)

where Ip, | is the identity matrix of dimension Q;_1, and 0, is a small constant (here
set to 0.001) used to handle matrix ill-conditioning which inevitably leads to numerical
problems during inversion.

2. The kernel function between each dictionary prototype and the current input sample is

calculated and kept in the vector
Et—l (Xl) = [K(Xl‘vil) T K(Xl‘vii) Tt K<XZ7iQt,1)]T' (515)
3. Finally, one needs to calculate the kernel function between the sample and itself

kll = K(Xt,Xt). (516)
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4. With the previous results, the new kernel matrix is given by

: K1 ke
K=" """ (5.17)
k;l;l kit + oy,

In order to update the inverse kernel matrix, the variables

. .1~

a; = Kt—lkl—l (518)
and

81(t) = kyy — k4,4 o, (5.19)

need to be calculated. Then, the inverse matrix is updated as

. . 71
_ 1 |[6i(0)K_ +aal —a
t]:'— 1() t—1 14 t ‘ (5.20)
61(2) —al 1
As one can notice, Eq. (5.15) and Eq. (5.16) are already used for the ALD test. Also,
Eq. (5.18) and Eq. (5.19) just differ from the ALD ones, namely, Eq. (5.10) and Eq. (5.11), by

the regularization term o,lp, ,. Thus, they just need to be calculated once, either using o, in

Eq. (5.10) and Eq. (5.11), or setting o, to 0 in the inversion procedure.

After removal of items: For this case, every time a prototype is removed from the dictionary,
the dimensions of the kernel matrix and, hence, its inverse will be reduced. For this purpose,
the k-th column and the k-th row corresponding to the removed prototype need to be withdrawn
from the previous kernel matrix. In order to calculate the inverse of this modified kernel matrix,
the Sherman-Morrison identity (SHERMAN; MORRISON, 1950) must be used:

(B'uw)(m"B"")

Th—1 _ p—1
(B—um’ )" =B "+ “m’B-u

(5.21)

In Judrez-Ruiz et al. (2016), one can find how to compute the inverse square matrix
after removing, at the same time, any row and column of the original squared matrix. This
reduces the computational complexity of building this kernel matrix from &'(n?) to €'(n?). Here,

the removed row and columns have the same index i, and one can define

B=K,_, (5.22)

u=B;—e;, (5.23)
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and
m =e;, (5.24)

where B; € R2-! is i-th column vector of K,_; and e; € RZ-! is the i-th canonical column
o o o=
vector*. Then, one can use the matrix identity in Eq. (5.21) to compute the matrix K, = after

removing its i-th column and its i-th row.

After prototype updating: It is important to mention that, if a prototype is updated, this is
equivalent to removing the old prototype, and adding a new (updated) one. So, in this case, one
have to apply sequentially the just described methods to emulate the removal of a prototype and

the insertion of a prototype in order to update the kernel matrix and compute its inverse.

The algorithm formed by the procedures of adding, online updating and pruning of
prototypes is named as SParse Online Kernel adaptive Nearest-Neighbor (SPOK-NN). For a
better understanding of the proposed approach, the main routines of the SPOK-NN classifier are
presented in three smaller procedures, namely: (i) updating the error measure (Algorithm 5); (ii)
adding or updating a prototype (Algorithm 6); and (iii) pruning the dictionary (Algorithm 7).
These procedures are used in the main pseudocode of the SPOK-NN classifier (Algorithm 8)

considering the design method 2.

Algoritmo 5: error_measure_update_procedure()
Input: E;, 7, ¢(x;), ¢

Output: E;

begin

if ¢(x;) = ¢; then
‘ E; —(t_lt)*E“';

else

t—1)*Eg+1 .
‘ ES<——( )ls ;

end

end

4 A binary vector of length Q;_ with the i-th element set to 1. All the other elements are set to zero.
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Algoritmo 6: add_or_update_prototype() (Design Method 2)

Input: vy, B, O, s, {(x/,¢) },2, Q“, K¢, (ch)_l,
Output: s, 2¢, Q, 0%, K¢, (K¢)~!

begin
#ALD Test:

Compute a, and 6;(¢) using Eq. (5.10) and Eq. (5.11);

if 8;(¢) > vi and Q < 3 then
# Add Prototype to Dictionary

D — PU{(x,¢1) }s

Update K¢ and (K¢)~! using Eqs. (5.17) and (5.20);

Q% <+ Q0% +1;

s« sU{0};

else

Update nearest prototype of ¢ using Eq. (5.13);

Update K and (K“)~! using Egs. (5.17), (5.20) and (5.21);

end

end

Algoritmo 7: pruning_procedure() (Design Method 2)

Input: 7. 0. &5, {(70)}C . (@)} . {(KO)}C . {(KD)T}C
Output: s, {(70)}< . {(0M)}C |, {(RD)}E, {(RO)1)¢

begin

forg=1:Qdo

Get g-th prototype {(xg4,¢4) } from dictionary Z;

if s, < € and Q(Cq) > 1 then

P\q)  Pleg) — {(xq,cq)};

0'ca) « Qlea) —1;

Update (K)~! using Eq. (5.21);

Update K¢ removing its g-th column and g-th row;

ss—{(sq)}

end

end

end
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Algoritmo 8: SPOK-NN (Design Method 2)
Input: {(x;,¢,)}_;. k(-,-), 7. V1. B. M. €, O,
Output: ¥

begin
# Add first sample to the dictionary:

Ei< 1,9 «+ (x1,¢1); 0« 1,8+ 0;
P (x1,e1); Q1) ¢ 13
Kt « K (X1,X1) + Op; (I~("1)’1 — 1/I~("1;

fortr=2:7do
Get new input-output pair: (X;,c;)

# Classify new data using nearest neighbor rule:
Find ¢*(x;) using Eq. (2.6) ;

Then &(x;) < c(Wg+);

Update the Error Measure using Algorithm 35;

# Add first sample of a class conditional dictionary

if @,(C’) = & then
gla) (X,¢0); Q(C’) +— 138+ sU{0};

K¢« K (X1, X;) + Op; (K“i)*1 — I/ch;

else
| Update or add a prototype using Algorithm 6;

end
Update the winner score using Algorithm 4;
Run the pruning procedure using Algorithm 7;

2=90u2@y...u2©; 0=0M U@ uy...uQ©;

end

end

In the next section, the main characteristics of the datasets used in this thesis, as well
as the methodology adopted to assess the performance of the proposed algorithm on streaming

data classification, are introduced.

5.3 Data Sets and Methods

For evaluating the SPOK-NN model in streaming data classification, its performance

is tested using three artificial and six real-world data sets. The artificial drift data sets were
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Table 43 —Summary of the characteristics of the artificial data sets.

] Data set \ #Samples \ #Features \ #Classes \ Drift Type
Moving Squares 200K 2 4 Real Gradual
RBF Interchanging 200K 2 15 Real Abrupt
Chessboard 200K 2 8 Virtual Recurring

generated by the Massive Online Analysis (MOA) framework (BIFET et al., 2010b). This
framework provides learning algorithms, data generators, evaluation methods and statistics for
data streaming analysis. The artificial data sets used in this thesis are described below.

The Moving Squares dataset is composed of four uniformly distributed square
regions moving horizontally at a constant speed. The direction is inverted whenever the leading
square reaches a predefined boundary. Each square represents a different class. This data set
is used in order to test if the algorithm can handle gradual drifts. The Interchanging RBF is
composed of 15 Gaussians with random covariance matrices replacing each other every 3000
samples. Thereby, the number of Gaussians switching their position increases each time by one
until all are simultaneously changing their location. This allows to evaluate an algorithm in the
context of abrupt drift with increasing strength. For the Transient Chessboard data set, virtual
drift is generated by revealing successively parts of a chessboard. This is done square by square
randomly chosen from the whole chessboard such that each square represents an own concept.
Whenever four fields have been revealed, samples covering the whole chessboard are presented.
This recurring alternation of patterns penalizes algorithms tending to discard former concepts.
To reduce the impact of classification by chance, Losing ef al. (2016) used eight classes instead
of two. The same strategy was used here to asses the generalization ability of the proposed
SPOK-NN classifier in handling recurring concept drifts. In Table 43, the main characteristics of
the artificial data sets, such as number of samples, features, and classes, are summarized.

Additionally, six real-world data sets that also contain different kinds of drifts are
used in order to assess the proposed classifier in more realistic nonstationary scenarios. The
Forest Cover Type assigns cartographic variables of 30m x 30m cells obtained from US Forest
Service data. Only forests with minimal human-cause disturbances were used, so that resulting
forest cover types are more a result of ecological processes (BIFET e al., 2013). The Electricity
data set is initially described in Harries (1999) and holds information of the Australian New
South Wales electricity market, whose prices are affected by supply and demand of the market
itself and are set every 5 min. A class label identifies the change of the price relative to a moving

average of the last 24 hours (GOMES et al., 2017b). The Outdoor set was obtained from images
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Table 44 — Summary of the characteristics of the real-world data sets.
| Dataset | #Samples | #Features | #Classes |

Cover Type | 581012 54 7
Electricity 45312 5 2
Outdoor 4000 21 40
Poker Hand | 829200 10 10
Rialto 82250 27 10
Weather 18159 8 2

recorded by a mobile in a garden environment (LOSING et al., 2015). The task was to classify
40 different objects, each approached ten times under varying lighting conditions affecting the
color based representation. Each approach consists of 10 images and is represented in temporal
order. The objects are encoded in a normalized 21-dimensional RG-chromaticity histogram
(LOSING et al., 2016). The Poker Hand set is formed by one million instances representing all
possible poker hands. Each card in a hand is described by two attributes: suit and rank. So, each
hand is described by 10 attributes. The class indicates the value of a hand. The same data set as
in Bifet et al. (2013) was used, where virtual drift is introduced via sorting the instances rank and
suit, and duplicates are removed. The Rialto is composed of 10 colorful buildings next to the
Rialto bridge in Venice encoded in a normalized 27-dimensional RGB histogram. The images
were obtained from time-lapse videos captured by a webcam with fixed position. Continuously
changing weather and lighting conditions affect the representation. The overnight recordings
were removed and the labels were generated by manually masking the corresponding buildings
(LOSING et al., 2016). Finally, the Weather data set was introduced by Elwell e Polikar (2011).
The task goal is to predict whether it is going to rain on a certain day or not. It is important to
mention that there is a imbalance towards no rain (69%). A summary of the main characteristics

of the real-world data sets is provided in Table 44.

Training and Evaluation Methodology: For each data set, the construction of the SPOK-NN
classifier is carried out in the following manner. First of all, a kernel function is chosen’. Then,
all the hyperparameters but v; and oy are kept constant. A grid search is carried out in order
to optimize the two remaining hyperparameters. For this purpose, the first 1000 samples of the

streaming are used with the aim of minimizing the following cost function:

JPB<@7ES) :Es“f’le; (5.25)

5

In this chapter, just three kernel functions are initially used in order to make the results analysis as simple as
possible: linear, Gaussian and Cauchy.
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Table 45 — Summary table with the hyperparameters’ values and ranges used for the grid search
aiming at minimizing the cost function in Eq. (5.25).

| Hyperparameter | Symbol | Values |
Sparsity level Vi {274273,...,2%}
Maximum number of prototypes B {600, 1000}
Learning rate n 0.1
Minimum score £ -10
Kernel parameter O {27102-9 2%}
Weighting factor A 0.5

where Dy is the ratio between the number of samples selected to the dictionary Q; and the number
of samples observed by the algorithm (in this case, 1000); E is the sequential error measure,
already defined in Eq. (5.2); and A > 0 is a positive weighting factor that controls the relative
importance of Dj.

The rationale for introducing the cost function in Eq. (5.25) is to find a good trade-off
between the minimum error (quantified in E) and the complexity of the model (quantified in D).
For larger values of A, the minimization process is prone to choose hyperparameters that leads to
dictionaries with less prototypes and with a bigger classification error. Once the optimization
procedure is finished, the dictionary built with the best hyperparameters is used as an initial
dictionary for the evaluation of the N — 1000 remaining samples.

In Table 45, all the hyperparameters’ values and ranges used for the grid search over
v1 and Oy are reported. One important thing to be mentioned is that there are two restrictions on
the hyperparameters choice: the minimum number of samples selected to the dictionary should
be bigger than the number of classes of the problem. This restriction prevents hyperparameters’
values that do not allow the addition of prototypes to the model. Also, the maximum number of
samples selected to the dictionary, in the hyperparameter optimization procedure, should be less
than 60% of the total of samples used (in this case, 600 prototypes). This prevents the choice of
hyperparameters’ values that allow excessive and, hence, unnecessary insertions of prototypes
into the dictionary.

The remaining N — 1000 samples are used to evaluate the classifiers’ performance.
This is done through the interleaved test-then-train (a.k.a prequential) method. According to
this approach, at each instant ¢, one uses the last model H;_ to predict the sample’s label. This
prediction ¢; is then compared with the sample’s actual label ¢;, and an error or a hit is computed.
Thereafter, this sample is used to update the last model, creating the current model H;. So, each

sample is used to test the model before being used to train it and the error can be incrementally
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updated.

The SPOK-NN classifier was implemented from scratch in MATLAB (R2023b),
running on Windows 10 Home, on an HP notebook with an Intel Core 17-7500U processor (2.70
GHz) and 16 GB of RAM.

5.4 Results and Discussion

The results shown in this section are organized in order to emphasize the characteris-
tics of the proposed SPOK-NN classifier and its ability to handle streaming data classification

problems with concept drift.

Proof of concept with artificial data sets: Firstly, with the Moving Squares data set, 8.64 (avg.) +
1.91 (std.) prototypes were needed to represent the four classes. Even with the movement of each
square, the test-then-train error was just 0.0429, showing that the algorithm can handle gradual
drift suitably. The evolution of error rate over time, from the first time step until the 45000-th,
can be observed in Figure 9. It is interesting to mention the short-term large oscillations observed
in the first 10000 steps. This is largely due to a transient period that the classifier experiences
while learns the dynamics of the problem. After that, learning tends to be smoother, with smaller
variations of the error rate. From the 45000-th step onwards, the error rate remains approximately
constant until the last sample (which is 200k for this data set).

With the RBF Interchanging data set, 19.60 (avg.) +2.33 (std.) prototypes were
needed to represent the 15 classes. Even with each RBF replacing each other every 3000 samples,
the test-then-train error was just 0.0171, showing that the algorithm can handle abrupt drifts
nicely. The evolution of the number of prototypes over time is shown in Figure 10 for this data
set. One can easily observe that this curve is very spiky. This occurs due to the very nature of the
task, in which sudden changes occur every 3000 samples. The proposed SPOK-NN classifier is
able to change the number of items in its dictionary by inserting and removing samples according
to the demands of the task. The final location of the prototypes is shown in Figure 11.

Finally, with the Transient Chessboard data set, the 8 classes were represented
by 74.86 4+ 5.26 prototypes, and this number leads to a final error rate of 0.1487. The main
conclusion is that the SPOK-NN classifier can suitably hold past concepts that do not conflict

with current ones. The final locations of the prototypes are shown in Figure 12.

Performance comparisons with the real-world data sets. For the following numerical ex-
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Figure 9 — Evolution of the rate of misclassified samples by the proposed
SPOK-NN classifier (Moving Squares data set).

Percentage of samples misclassified

0.07 r
0.06
0.056 r

0.03 r

Error Rate

0.02

0.01 r

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Time Step «10*

Source: Author

Figure 10 — Number of prototypes per iteration step given by the SPOK-
NN classifier to handle the RBF Interchanging data set. The spiky nature
of this curve reflects the ability of the SPOK-NN classifier to rapidly
adapting its dictionary to the sudden changes imposed by the task.
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periments, the same real world data sets used in (LOSING et al., 2016) are considered for a
comparative study among 6 algorithms, namely: Learn++.NSE (ELWELL; POLIKAR, 2011),
dynamic adaption to concept changes (DACC) (JABER et al., 2013), leveraging bagging (LVGB)
(BIFET et al., 2010a), probabilistic adaptive windowing K-nearest neighbors (PAW-KNN)
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Figure 11 — Final prototypes locations given by the SPOK-NN classifier
at the end of the processing of the RBF Interchanging data set.
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(BIFET et al., 2013), self adjusting memory K-nearest neighbors (SAM-KNN) (LOSING et al.,
2016) and a KNN with a sliding window (KNNj). The results in (LOSING et al., 2016) are
used as a baseline to assess if the proposed method is suitable for streaming data. It should be
noted that a comprehensive comparison of model complexity involving all these algorithms are
not carried out in this thesis, since they are built on different learning and data representation
paradigms, such as ensembles, trees or data windows. However, a choice for a simplified view
of model’s complexity was indeed made and explored in the experiments to be reported soon,
taking into account the number of prototypes and the classifier accuracy.

The ideas that led to the development of the algorithms previously listed differ
in many ways from those behind the SPOK-NN algorithm. In simple words, the SPOK-NN
classifier is an online algorithm that builds on-the-fly a fully adaptive dictionary (i.e., that grows,
shrinks, and adapts) and then applies a kernelized nearest neighbor rule to classify new data.
The L++.NSE, DACC and LVGB algorithms, in their turn, use ensembles® of decision trees as
classifier models. The KNN; and PAW algorithms are based on sliding windows only, of fixed
or adaptive length, and a standard (i.e. non-kernelized) nearest neighbor rule; that is, they do

not actually learn the underlying dynamics of the stream data, since they process the temporally

6 The Diversity for Dealing with Drifts (DDD) (MINKU; YAO, 2012) is another well known method of ensembles

for dealing with streaming data.
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Figure 12 — Final locations of the prototypes provided by the SPOK-NN
classifier at the end of the processing of the Transient Chessboard data

set.
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Table 46 — Summary of the performance comparison between the SPOK-NN classifier and
alternative methods in real-world data sets (adapted from (LOSING et al., 2016)).

Data Set L++NSE | DACC | LVGB | KNN; | KNNy, | SAM | SPOK
Covertype 0.1500 | 0.1005 | 0.0907 | 0.0421 | 0.0676 | 0.0480 | 0.1167
Electricity 0.2724 | 0.1687 | 0.1678 | 0.2861 | 0.2613 | 0.1752 | 0.2582
Outdoor 0.5780 | 0.3565 | 0.3997 | 0.1398 | 0.1630 | 0.1125 | 0.1909
Poker Hand | 0.2214 | 0.2097 | 0.1365 | 0.1708 | 0.2794 | 0.1845 | 0.2689
Rialto 0.4036 | 0.2893 | 0.3964 | 0.2274 | 0.2496 | 0.1858 | 0.3817
Weather 0.2288 | 0.2678 | 0.2189 | 0.2153 | 0.2311 | 0.2174 | 0.2590

local subsequence of data items provided by the sliding window to make a decision. Finally,

among the evaluated algorithms, the SAM-KNN algorithm is the only one that keeps an adaptive

dictionary of relevant items as the SPOK-NN classifier. However, the way the dictionary is built

is very different. Furthermore, the former uses the standard nearest neighbor, while the latter

uses a kernelized version of this rule. Additional details on these differences will be provided

later on this section.

The results of the performance comparison in terms of the error rate between the

proposed SPOK-NN classifier and the aforementioned alternative algorithms are summarized in

Table 46. It can be observed that the error rates of the SPOK-NN were always between the best

and worst values of the alternative algorithms.
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Table 47 — Performance comparison between the SPOK-NN classifier and the best and worst
methods in real-world data sets.

SPOK-NN Best Result Worst Result
Data set #Prot. Error Algorithm Error Algorithm Error
CoverType 1000 0.1167 KNN;j 0.0421 L++NSE 0.1500
Electricity 1000  0.2582 LVGB 0.1678 KNN; 0.2861
Outdoor 192 0.1909 SAM-KNN 0.1125 L++NSE  0.5780
Poker Hand 24 0.2689 LVGB 0.1365 PAW-KNN 0.2794
Rialto 89 0.3817 SAM-KNN 0.1858 L++NSE 0.4036
Weather 20 0.2590 KNN;i 0.2153 DACC 0.2678

In Table 47, a closer look at the results shown in Table 46 is done, highlighting
the performance comparison also in terms of the number of prototypes used by the SPOK-
NN classifier and the best and the worst performing algorithms for each data set. From this
perspective, it should be emphasized that the number of prototypes required by the SPOK-NN
for achieving such intermediate error rates is much lower than the window/dictionary lengths
used by the alternative algorithms. With the Outdoor, Poker Hand, Rialto and Weather data sets,
just a few prototypes (192, 24, 89 and 20, respectively) were necessary for achieving acceptable
error rates. This is a major feature of the SPOK-NN classifier; that is, the ability to achieve a
reasonable balance between model compactness and accuracy, which is important in applications
of stream data processing.

Alternatively, the insertion of many more items into the dictionary could have been
allowed through the parameters v; (used in the ALD test) and A (used in the cost function). Also,
it would be very simple to increase the maximum allowed number of prototypes in the dictionary
(B). However, those options were not chosen since the larger the number of prototypes stored in
the dictionary or in the sliding window, the larger the computational costs in memory usage and
operations required. Last but not least, a larger number of prototypes does not necessarily lead to
a lower error rate. To support this claim, the KNN; was tested with different sliding window sizes
(#5). These results are summarized in Table 48. As can be seen, for the datasets Moving Squares,
RBF Interchanging, Electricity and Rialto, a wider window size in fact led to a larger error rate.
For the SPOK-NN algorithm, an increase in the maximum allowed number of prototypes (f3)
from 600 to 1000 had no effect in the algorithm performance for these data sets because the final
number of prototypes is much lower than the prespecified upper limit 3. Different error rates
occurred for the CoverType and Electricity data sets, because the SPOK-NN algorithm reached
the upper limit in the number of prototypes for both. In these cases, an increase in 3 indeed

improved the SPOK-NN performance.
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Table 48 — Error rates of KNN; and SPOK-NN with different window sizes.

Error Rate
KNN; SPOK-NN
Data Set W, =600 | #;=1000 | B =600 | B =1000
Moving Squares 0.5603 0.6016 0.0429 0.0429
RBF Interchanging | 0.0682 0.1060 0.0171 0.0171
Chessboard 0.1682 0.1670 0.1487 | 0.1487
Covertype 0.0799 0.0641 0.1253 | 0.1167
Electricity 0.2298 0.2242 0.2667 | 0.2582
Outdoor 0.2230 0.2065 0.1909 | 0.1909
Poker Hand 0.1944 0.1818 0.2689 | 0.2689
Rialto 0.2653 0.2725 0.3817 | 0.3817
Weather 0.2240 0.2210 0.2590 | 0.2590

Table 49 — Best results achieved by the SPOK-NN classifier for each evaluated data sets and the
corresponding values of the hyperparameters.

Data set B Error | #Prot Vi Kernel Oy
Moving Squares | 1000 | 0.0429 8 0.5 Cauchy | 0.0625
RBF Int. 1000 | 0.0171 19 0.125 | Cauchy 0.25
Chessboard 1000 | 0.1487 | 78 0.25 | Gaussian | 0.25
Cover type 1000 | 0.1167 | 1000 1 Linear -
Electricity 1000 | 0.2582 | 1000 | 0.0313 | Linear -
Outdoor 1000 | 0.1909 | 192 | 0.0625 | Cauchy 0.5
Poker Hand 1000 | 0.2689 | 24 1 Cauchy 1
Rialto 1000 | 0.3817 | 89 0.125 | Gaussian | 0.125
Weather 1000 | 0.2590 | 20 0.25 Cauchy 64

Even reaching the upper limit in number of prototypes, the chosen numbers for 3
(600 and 1000) are much smaller than the maximum window length (i.e., 5000) used in Losing
et al. (2016). Furthermore, the memories in the KNN; algorithm (LOSING et al., 2016) are just
repositories of items, while the nearest prototype in SPOK-NN’s dictionary is updated for each

input pattern by means of the WTA learning shown in Eq. (5.13).

A summary table with the best results: A summary report of the SPOK-NN classifier, including
the best results obtained for each dataset and the hyperparameter values selected by grid search,
is shown in Table 49. In the artificial data sets, with just a few prototypes, the errors are
0.0171, 0.0429 and 0.1487. As mentioned before, for the real-world data sets, the error rates are
competitive with state of the art algorithms (see (LOSING et al., 2016)), an achievement reached
by the combined use of a fully adaptive dictionary and a kernelized nearest neighbor classifier.
A closer look into Table 47 reveals that the algorithms achieving the best results in
terms of error rates for the real world data sets are the following ones: KNN; (CoverType and

Weather), LVGB (Electricity and Poker Hand) and SAM-KNN (Rialto and Outdoor). However,



107

attention also should be paid to the number of prototypes required to reach those error rates. The
KNNj algorithm, for example, has a fixed sliding window of 5000 samples.

For the sake of comparison, taking the results provided in Losing et al. (2016), the
SAM-KNN algorithm required from 500 to 3500 prototypes to reach a low error rate for the
interchanging RBF data set. The SPOK-NN, by its turn, using less than 40 prototypes, reached
a low error rate. For the moving squares data set, the SPOK-NN demands just 8 prototypes to
reach 0.0429 error rate, while the SAM-KNN algorithm needed from 50 (the minimum size of
their short-term memory sliding window) to 200 prototypes.

Since the authors in Losing ef al. (2016) did not mention the number of prototypes
used by their algorithms for the real world data sets, a implementation of the SAM-KNN
algorithm provided by them’ was used to observe the differences about the adaptation of SPOK-
NN dictionary and the two types of memory in SAM-KNN (short-term and long-term). For these
experiments, the values for f (maximum dictionary size of SPOK-NN) and L,,,, (maximum
number of stored examples in SAM-KNN memories) were set to 1000.

The SAM-KNN relies on a window (short-term memory) of adaptive size, with the
latest samples. Each time this window is shortened, some samples are stored in a dictionary (the
long-term memory). Every time the sum of samples in these two memories reaches L., the
samples in LTM are compressed in half, by using the kMeans++ algorithm. This behavior can be
seen in Figures 13 and 14. With the Rialto data set (Figure 13), the adaptation of each SAM-KNN
memory is shown in a different subfigure. Taking into account the sum of samples/prototypes
in both memories, 824.25 + 109.28 prototypes were necessary to reach an error rate of 0.1831.
Moreover, with the Weather data set (Figure 14), these memories are shown simultaneously in a
subfigure, and summed in the other one. Taking into account the sum of samples/prototypes in
both memories, 799.24 + 109.62 prototypes were necessary to reach an error rate of 0.2252.

From this perspective, an interesting feature of the SPOK-NN algorithm is its fully
adaptive dictionary, in the sense that it chooses the adequate number of prototypes on the fly and
updates their positions if necessary. It does not rely on either sliding windows (SAM-KNN and
KNN;j) or ensembles (the LVGB relies on these two concepts, and needs to constantly verify the
error on a window in order to update its models). In order to update the SPOK-NN model, just
the current sample is needed. The evolution of the dictionary size for the SPOK-NN algorithm

is also shown in Figures 13 and 14. With the Rialto data set, 75.97 £ 15.40 prototypes were

7 https://github.com/vlosing/SAMKNN
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Figure 13 — Comparison between number of stored samples/prototypes
per iteration in SPOK-NN dictionary and SAM-KNN memories (STM
and LTM) with Rialto dataset.
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necessary to reach an error rate of 0.3817. With the Weather data set, 19.25 £=2.38 prototypes
were necessary to reach an error rate of 0.2590.

In summary, the final number of prototypes in the SPOK-NN dictionary is much
smaller than the number of items jointly stored in SAM-KNN’s memories (STM+LTM), with
both algorithms achieving suitable error rates. More specifically, the final error rate for the
Rialto data set was higher (though acceptable) for the SPOK-NN. However, for the Weather
data set, the error rate achieved by the SPOK-NN algorithm was equivalent to that achieved
by the SAM-KNN and this was possible using a much smaller number of prototypes. More
sofisticated models could have been built over the prototypes in the dictionary, such as a distance
weighted K-nearest neighbors (DWKNN) (RUBIO et al., 2010), least squares support vector
machine (LSSVM) (SUYKENS; VANDEWALLE, 1999), or kernel quadratic discriminant
(KQD) (HAASDONK; PeKALSKA, 2009) in order to achieve even smaller error rates. But,
in this preliminar tests, the methodology was kept as simple as possible in order to meet the

requirements of stream data processing.

The role of prototype updating in SPOK-NN: In order to highlight the importance of updating

the prototypes for the performance of the SPOK-NN algorithm, an evaluation was conducted just



Figure 14 — Comparison between number of stored samples/prototypes
per iteration in SPOK-NN dictionary and SAM-KNN memories (STM

and LTM) with Weather dataset.

Number of Stored Samples/Prototypes

22.5 4
z 20.0
Z
5 17.51
a
2

15.0 A

125

2500 5000 7500 10000

12500

15000

17500

= 800
5

2 600 1
= 1

= i
wn 400 l I

=
$ 2007 g/

III

iV lH‘v‘JV lrn 7':":-’ V Vw E’W’V le UM’J% il W

Iy ‘-’wW

1

—-- SAMSTM
SAM LTM

2500 5000 7500 10000

12500

15000

17500

1000 A

800

SAM STM+ITM

600

2500 5000 7500 10000
Time Step

Source: Author

Table 50 —Best results achieved by the SPOK-NN with or without the update procedure.

12500

15000

17500

With Update | Without Update
Data Set Error | #Prot | Error | #Prot
Moving Squares | 0.0429 | 8 0.2239 | 19
RBF Int 0.0171 | 19 0.0517 | 18
Chessboard 0.1487 | 78 0.1923 | 164
Electricity 0.2582 | 1000 | 0.3443 | 860
Outdoor 0.1909 | 192 0.1741 | 615
Rialto 0.3817 | 89 0.4567 | 1000
Weather 0.2590 | 20 0.3670 | 11
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with the adding and removing procedures. These results are summarized at Table 50. In most

data sets, when not using the updating procedure, it was observed a deterioration in accuracy

(even with the increase in the number of prototypes in the dictionary). With the Outdoor, there

was a 1.68% decrease in error, but the dictionary was more than three times bigger comparing to

the one built with the prototype updating procedure included.

As a final remark, it is important to mention that a fundamental difference of the

proposed method with respect to the ones evaluated in this chapter, is that it is the only one that

relies on kernel computations. As such, the choice of the kernel function and the associated

hyperparameters directly affects the error rate. So, as the scale parameter oy affects also the
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Table 51 — Performance comparison between the SPOK-KNN classifier and the best and worst
methods in real-world data sets.

SPOK-KNN SPOK-NN Best Result Worst Result
Data set #Prot. Error #Prot. Error Algorithm Error Algorithm Error
CoverType 1000 (2-NN) 0.1085 1000 0.1167 KNN;i 0.0421 L++NSE 0.1500
Electricity 1000 (7-NN) 0.2469 1000 0.2582 LVGB 0.1678 KNN; 0.2861
Outdoor 435 (6-NN) 0.1141 192 0.1909 SAM-KNN 0.1125 L++NSE 0.5780
Poker Hand 1000 (9-NN) 0.2108 24 0.2689 LVGB 0.1365 PAW-KNN 0.2794
Rialto 98 (2-NN)  0.3690 89 0.3817 SAM-KNN 0.1858 L++.NSE 0.4036
Weather 54 (7-NN)  0.2232 20 0.2590 KNN; 0.2153 DACC 0.2678

number of prototypes added to the model, all but this hyperparameter and the sparsity level v;
were kept constant. Just the first 1000 samples were chosen to execute a crude hyperparameter
optimization, since there is no information about drifts, and just a little information about the
initial data distribution. For sequential learning problems, one can always collect some data

before training the model in an online fashion.

5.5 Evaluating sparsification methods in the SPOK model

In this section, motivated by the results obtained with the SPOK framework using
the ALD sparsification procedure (as in Chapter 4, when applying the SPARK framework to
batch datasets), other sparsification procedures were investigated to build sparse kernel prototype-
based classifiers for streaming datasets. As in Section 5.3, the SPOK framework performance is
evaluated across three artificial and six real-world datasets, but know using four sparsification
procedures and eight kernel functions. The training and evaluation methodology remains the
same as in Section 5.3. Additionally, the KWKNN strategy is applied to further improve
classification. Detailed results for each dataset and SPOK model configurations are provided in
Appendix D.

As shown in Table 51, using alternative sparsification procedures combined with
the KWKNN strategy improved the overall accuracy of the SPOK models. Two datasets are
particularly noteworthy. For the Outdoor dataset, 435 prototypes were required to nearly reach the
best result. For the Weather dataset, 54 prototypes were sufficient, with the SPOK performance

differing from the best result by less than 1%.
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5.6 Final Considerations

In this chapter, a novel adaptive prototype-based kernel classifier was introduced
aimed at efficient online processing of stream data. The proposed classifier, named SPOK-NN,
was designed to balance the trade-off between accuracy (i.e. small error) and complexity (size
of the dictionary). This trade-off is particularly important for tasks involving continuous online
learning with gradual and abrupt concept drift.

The design of the SPOK-NN is inspired by competitive learning algorithms and in
how they deal with the stability-plasticity dilemma and, hence, with the issue of catasthophic
forgetting. In this regard, the SPOK-NN classifier is stable since it only keeps relevant prototypes
in a dictionary. It is adaptive since it keeps learning relevant information from data even if the
sample is not inserted into the dictionary. Stable unlearning of information that became irrelevant
for current state of the task is also possible by carefully removing items from the dictionary.
Finally, the proposed SPOK-NN classifier is accurate (i.e., it achieves acceptable low error rates)
in classifying stream data in nonstationary scenarios.

These characteristics of the SPOK-NN classifier were evaluated, firstly, using bench-
marking artificial data sets, namely, Moving Squares, Interchanging RBF, and Transient Chess-
board, which present, respectively, gradual, abrupt and recurring drifts. The error rates and the
number of prototypes for these artificial data sets were, in the best scenario, respectively, 0.0429
and 8; 0.0171 and 19; 0.1487 and 78. Then, the proposed algorithm was also evaluated using
benchmarking real-world data sets, such as the Forest Cover Type, Electricity, Outdoor, Poker
Hand, Weather and Rialto. The resulting classifier was able to achieve equivalent or smaller error
rates (in comparison to other state of the art algorithms) with lower numbers of prototypes.

In the next chapter, the thesis conclusions are made, and some open problemas are

pointed out.
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6 CONCLUSIONS AND OPEN PROBLEMS

In this thesis, new contributions were made to the development of prototype-based
classifiers using kernel methods. Firstly, the application of the kernel trick to the self-organizing
map (SOM) in the classification of batch datasets has shown that computing both the distance
measure and the winning prototype in the feature space is the best strategy. Additionally, using
alternative kernel functions, instead of only linear and Gaussian, can lead to better results.

Then, as defining the number of prototypes is very important for the accuracy of
prototype-based classifiers, the use of sparsification procedures, such as ALD, novelty, surprise
and coherence, is proposed for the automatic selection of this quantity, in classification problems
with batch data sets, applying the weighted K-nearest neighbors strategy. The results showed
that the SPARK method can effectively handle datasets in batch format, building models with a
reasonable number or prototypes and, in most cases, achieving higher accuracy compared with
the KSOM model with a fixed number of prototypes. Moreover, no single sparsification method
or kernel function consistently outperformed the others across all datasets, reinforcing the need
for careful selection of sparsification criteria, kernel functions, and hyperparameters tailored to
each specific task.

Finally, a novel method, named SPOK, for designing sparse kernel prototype-based
classifiers is introduced, capable of handling the challenges posed by the processing of streaming
data. This is achieved by allowing items in the dictionary to be removed or updated. The results
with real-world and synthetic datasets show that this model is competitive with state-of-the-art
approaches while using a small number of prototypes.

It is important to mention that many open questions arose from this work. Firstly,
one can investigate why a particular sparsification method or kernel function performs better for
a specific dataset. Additionally, other distance measures can be used, such as the Mahalanobis
distance, fuzzy distance or the fractional order minkowiski distance. Moreover, the SPARK
model can be used as a strategy to select the number of prototypes for other prototype-based
classifiers, such as SOM and LVQ. Furthermore, more complex models can be built using
the prototypes generated by these methods. Also, an ensemble of SPARK models, employing
different sparsification strategies, can also be applied for batch learning. Finally, the SPARK and

SPOK models can be adapted and evaluated in regression tasks.
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APPENDIX A - DISTANCE MEASURES

At this appendix, some distances that can be used as dis(similarity) measures for

prototype-based models are described.

A.1 Dot Product

It is a measure of similarity.
(i) =X/ X;
A.2  Minkowski

Generalized measure of dissimilarity

1

P w\”
bl = (£ ol
p=1
A.3 Manhattan

Also knonw as city-block measure.

P
HXZ'_XJ'H1 = Z !xip_xjp|
p=1

A.4 Euclidean

Most commonly used distance measure between two vectors.

1
2

> 2 2 T
il = ( X b =) = /s =) (53
p:
A.5 Chebyshev

Considers the maximum value between the absolute distance of two vectors’ at-

tributes.

1

P M
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A.6 Mahalanobis

This distance is based on the attributes correlation, where S is the covariance matrix.

Ii—xillg = ¥/ (x—x;) " $7! (xi—xy)

A.7 Quadratic

It is a generalization of the Mahalanobis distance, where A is a symmetric and

positive-definite matrix.

=%l = ¥/ (=) A (xi—x;).

IfA = S’l, this measure is equal to the Mahalanobis distance. On the other hand, if

A =1, this measure is equal to the Euclidean distance.

A.8 Cosine

Like the dot product, this is another measure of similarity, however, this distance

does not depend on the vectors magnitudes.

(xi,%;) X X;

Ixilly - (1%l il [[x5]],
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At this appendix, the equations of the kernel distances and its gradients of the kernel

functions used at this thesis are developed.

B.1 Functions

B.1.1 Linear

K(x;,X;) = (x;,X;) +0 =X/ x; + 6

B.1.2 Gaussian

[xi

i) = -

B.1.3 Polynomial

(s3)) = (@ (30.%)) + 6)7 = (ax]x; 1 6)

B.1.4 Laplacian or Exponential

I

K(x;,Xj) = exp (

B.1.5 Cauchy

2
— x|
2y?

Bxl)

K (xi,Xj) = <1+M> )

’)/2

B.1.6 Log

K (xi,X;) = —log <1 +

[xi—x,”

/)/2

)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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B.1.7 Sigmoid

K(xi,xj) =tgh (Oc <x,~,xj>-|—0) =tgh (chl-TXj—l—O) B.7)

B.1.8 Kmod (moderated decreasing)

1 0
X)) = - -1 B.8
K (X7, ;) o (0/79) 1 [eXp <||Xi—XjH2+72> ] (B.8)

B.2 Kernel Distances and its Gradients

B.2.1 Linear

Ji(x) = (x"x4+0) —2(w/'x+6)+ (W' w; +0)
Jix) =x"x— 2wl x+wlw; (B.9)

VJi(x) =2(w; —x) (B.10)

B.2.2 Gaussian

Ix—x]13 lwi —x|3 lwi —wil3
Ji(x)zexp(— 27 —2.exp _2—72 +exp _2—'}’2

L 2
Ji(X) =2 — 2.exp <—M) (B.11)

L 2
VJi(x) = (%) exp (—%) (W; —x) (B.12)



B.2.3 Polynomial

Ji(x) = (ax"x+ 0)" 4 (aw! w; 4+ 0)" —2(aw! x +6)"
VJi(x) = y(ow! w;+6)" 2aw; — 2y(aw! x+ 6)" ax

VJi(x) =2ay [wi(awiTw,- +0)" ! —x(aw!/x+ 9)7’_1}

B.2.4 Laplacian or Exponential

HX—XH) ( HWi—XH) ( ”Wi_WiH)
Ji(X) = ex <—— —2exp| ——— | texp| ——
(x) p ” p ; p ”

Ji(x) =2 —2exp (— le;XH>
VJi(x) = —2exp <-M) (—%) G ||wl-1—x|| > 2(w; —x)

B.2.5 Cauchy

2\ ! o2\ !  w
s = (10 XY oy vl +<1+—HW’
Y Y Y

Iwi— x|\~ P
Jix) =221+~ ) =22 ot
y P+ lwi—x|

VIi(x) = =29 | - 2(wi—x)

4y?
VJ,'(X) = (Wi - X)
Lw+wix%4
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(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)
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B.2.6 Log

—x|? w2
Ji(x) = —log (1-1— Ix YZXH ) +2log (l-l— HWZY ” ) log (1 +_||W’ '}/2Wl|| >

_x|I? 2 - x|I?
Ji(x) = 2log <1+M> — 2log <m> (B.19)
Y Y
2 2(w; — 4
Vi =2 2w S (Wi —x) (B.20)
YHlx—will® Y Y2+ [x—wil

B.2.7 Sigmoid

Ji(x) = tgh (ax"x+0) +tgh (aw] w;+0) —2tgh (aw] x+6) (B.21)

Obs:

W = [1—1gl® (f(W))] £ (w)

VJi(x) = [1—1gh*(aw] w;+0)] (2aw;) —2[1 —1gh* (aw] x+ 0) | (0x)

VJi(x) =20 | (wi —x) — (1gh? (oow] i+ 0)w; — 1gh*(aw! x+ 0)x) | (B.22)

B.2.8 Kmod (moderated decreasing)

Ji(x) = ;[e ( ; ) ]
ST exp(0/yh) -1 [x — XH +7
1
W[ex’)<\wz wzH +Y>

+

-
2t | (o)
exp(0/7*) —1 Hw,—XH +7*

2
T B.23
N =2 et [ (HWz—XH +Y) o
—2
VIJi(x) = 2w
X = e =147 Iw; —x])? +y2) (HW,-—XH +7) e
40 exp %
VJi(x) = (”w""‘” it ) (Wi —x) (B2

(exp(8/72) — 1) (||wi —X||2+7’2>2
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APPENDIX C - OPTIMUM HYPERPARAMETERS

At this appendix, the best combination of hyperparameters, for each model configu-

ration is disposed in tables.
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Table 52 — Best Hyperparameters of KSOM applied to the Motor Failure Dataset

linear gaus poly exp
Algorithm | Labeling | theta | sigma alpha\ theta \gamma sigma
Majority |y h010| 512 | 02 8 128 2.6
Voting
KSOM.EF | AVerage | g 55 | 256 | 08 | 128 16 0.6
Distance
Minimum |- o 056 | 35 02 | 512 | 512 0.4
Distance
Majority | 5010 | 512 | 02 8 4 0.6
Voting
KSOM.GD | Average | 5 16 0.2 4 128 0.4
Distance
Minimum |5 0156 | 4 2.4 32 512 1
Distance
cauchy log sigm kmod
| Algorithm | Labeling | sigma | gamma | sigma | alpha | theta | gamma | sigma
Majority | 56 | 00313 | 4 | 00313 | 128 | 003125 | 128
Voting
KSOM.EF | 2Verage | s | o625 | -1 | 8 1 8
Distance
Minimum |00 00039 | 4 | 025 0.5 0.25 0.5
Distance
Majority | 156 | 00313 | -1024 | 256 4 256 4
Voting
KSOM.GD | Average 1 0.5 256 8 8 8 8
Distance
Minimum | o5 1 gons | 1024 | 1024 | 1024 | 1024 | 1024
Distance
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Table 53 — Best Hyperparameters of KSOM applied to the Cervical Cancer Dataset

linear | gauss poly expo
| Algorithm | Labeling | theta | sigma | alpha | theta | gamma sigma
Majority | 5,5 64 | 00156 | 0.5 1 256
Voting
KSOM.EF | Average 1 8 0.5 0.5 1 512
Distance
Minimum |-, 64 | 00625| 32 0.8 8
Distance
Majority 0 64 |00078| 2 2 512
Voting
KSOM-GD | Average | gy, 32 0.25 16 0.6 16
Distance
Minimum [ 0020 1 64 | 00039 | 32 0.8 64
Distance
cauchy log sigm kmod
Algorithm | Labeling | sigma | gamma | sigma | alpha | theta | gamma | sigma
Majority 4 22 10,0010 | 0,0039 | 0,0156 | 025 | 256
Voting
KSOM.EF | Average | o, 2.4 64 | 00156| 05 256 32
Distance
Minimum | ¢ 0.8 | 00010 | 00039 | 00156 | 05 4
Distance
Majority |, 0.8 1 100039 | 00313 | 025 64
Voting
KSOM.GD | Average 4 0.4 8 00313 | -0,0020 | 16 8
Distance
Minimum | 24 100039 | 0,0039 | 0,0020 4 8
Distance
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Table 54 — Best Hyperparameters of KSOM applied to the Vertebral Column Dataset

linear | gauss poly expo
| Algorithm | Labeling | theta | sigma | alpha | theta | gamma sigma
Majority | ¢ 4 | 0125 | 256 0.2 32
Voting
KSOM.EF | Average | ¢ 1 8 256 0.6 0.5
Distance
Minimum |, 1 100039 1 2 8
Distance
Majority | ) ))7¢ 1 10,0078 | 512 1 1
Voting
KSOM.GD | Average 16 1 4 128 0.6 1
Distance
Minimum | o, 4 0.125 | 32 0.8 16
Distance
cauchy log sigm kmod
Algorithm | Labeling | sigma | gamma | sigma | alpha | theta | gamma | sigma
Majority 1 2.6 0.5 | 0,0625| 0,0039 4 2
Voting
KSOM.EF | Average | ¢ 0.6 025 | 0,125 1 8 2
Distance
Minimum | = 2 05 | 0125 | -0.125 | 512 8
Distance
Majority
. 0.5 0.2 2 10,0625 | -0,0156 | 1 2
Voting
KSOM.GD | Average 4 1 0.5 |0,0039 | -0.1250 | 0,0020 | 2
Distance
Minimum | ¢ 0.6 4 100039 | -0,0020 | 0,0156 | 4
Distance
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Table 55 — Best Hyperparameters of KSOM applied to the Wall Following Dataset

linear | gauss poly expo
| Algorithm | Labeling | theta | sigma | alpha | theta | gamma sigma
Majority |y y156 | 32 | 0.0020| 256 1 1024
Voting
KSOM.EF | Average | 5, 0.5 4 64 0.4 32
Distance
Minimum |5 02141 16 0.5 512 0.4 8
Distance
Majority | s 0313 | 30 | 00078 | 64 0.8 1
Voting
KSOM-GD | 2verage | you | 05 | 0125 | 32 1 256
Distance
Minimum | 000 | ¢ 100020 | 1 1 1024
Distance
cauchy log sigm expo
Algorithm \ Labeling | sigma | gamma | sigma | alpha \ theta | gamma | sigma
Majority | 1, 22 32 10,0020 | 00078 | 256 32
Voting
KSOM.EF | Average 1 0.8 32 10,0078 | 00039 1 1
Distance
Minimum | o 2.6 16 | 00010 |-00313| 2 1
Distance
Majority | 1, 2.6 32 10,0020 | 00010 | 16 32
Voting
KSOM.GD | Average 16 0.8 2 0.25 1 0.0039 | 0.5
Distance
Minimum |, 2 32 10,0010 05 | 00020 ]| 16
Distance




APPENDIX D - SPOK RESULTS FOR DIFFERENT SPARSIFICATION

PROCEDURES

Table 56 — Evaluation of the SPOK model and the Moving Squares Dataset
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’ Sm ‘Dm‘NN\ linear ‘ gauss ‘ poly ‘ expo \cauchy\ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.954+
0.003

0.949+
0.002

0.371x
0.061

0.949+
0.002

0.955+
0.002

0.576+
0.082

0.247+
0.035

0.952+
0.003

k

0.970x
0.009

0.659+
0.010

0.327x
0.031

0.723+
0.003

0.445+
0.009

0.833x
0.148

0.249+
0.006

0.683+
0.005

COH

0.981+
0.002

0.952+
0.002

0.982+
0.002

0.913+
0.004

0.949+
0.003

0.413+
0.039

0.664+
0.032

0.951+
0.002

0.995+
0.001

0.625+
0.006

0.984+
0.002

0.686E
0.007

0.955+
0.012

0.354+
0.010

0.946£
0.008

0.959+
0.010

NOV

0.997+
0.000

0.334+
0.076

0.968+
0.004

0.369+
0.109

0.997+
0.000

0.997+
0.000

0.250+
0.002

0.368+
0.105

0.638+
0.041

1.000+
0.000

0.4224+
0.114

0.371x
0.107

0.350-
0.113

0.338+
0.111

0.380+
0.016

1.000+
0.000

SUR

0.953+
0.005

0.967+
0.003

0.686L
0.106

0.688+
0.030

0.949+
0.004

0.914+
0.003

0.965+
0.003

0.967+
0.003

0.675+
0.016

0.871+
0.004

0.710+
0.133

0.381+
0.050

0.640+
0.064

0.982+
0.024

0.477+
0.035

0.364+
0.078




Table 57 — Evaluation of the SPOK model and the RBF Interchanging Dataset
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’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.552+
0.131

0.733+
0.084

0.509+
0.125

0.893+
0.033

0.654+
0.104

0.511+
0.121

0.090+
0.007

0.945+
0.016

k

0.545+
0.138

0.619+
0.111

0.478+
0.126

0.553+
0.104

0.527+
0.135

0.798+
0.060

0.670£
0.058

0.459+
0.149

COH

0.983+
0.006

0.747+
0.080

0.973+
0.009

0.572+
0.115

0.805+
0.060

0.509+
0.126

0.844+
0.049

0.962+
0.011

0.928+
0.017

0.819+
0.043

0.930+
0.016

0.640£
0.106

0.519+
0.137

0.444+
0.131

0.902+
0.030

0.655+
0.100

NOV

0.954+
0.013

0.944+
0.004

0.867+
0.023

0.809+
0.051

0.954+
0.013

0.995+
0.001

0.122+
0.008

0.952+
0.004

0.954+
0.013

0.685+
0.096

0.675+
0.100

0.692+
0.092

0.954-+
0.013

0.954+
0.013

0.410+
0.012

0.657+
0.101

SUR

0.892+
0.023

0.414+
0.160

0.443+
0.151

0.746E
0.061

0.947+
0.015

0.526+
0.126

0.484+
0.156

0.599+
0.098

0.538+
0.127

0.634+
0.106

0.817+
0.048

0.688+
0.087

0.756+
0.067

0.827+
0.049

0.815+
0.040

0.762+
0.064

Table 58 — Evaluation of the SPOK model and the Chessboard Dataset

’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.733+
0.054

0.859+
0.023

0.896+
0.036

0.926+
0.029

0.799+
0.020

0.516+
0.032

0.713+
0.061

0917+
0.028

k

0.880+
0.046

0.951+
0.031

0.874+
0.051

0.935+
0.031

0.882+
0.026

0.499+
0.032

0.131+
0.013

0.949+
0.035

COH

0.886E
0.026

0.932+
0.030

0.589+
0.029

0.919+
0.028

0.915+
0.029

0.888+
0.027

0.668+
0.022

0.915+
0.029

0.913£
0.030

0.960+
0.033

0.880+
0.027

0.942+
0.035

0.950+
0.032

0.919+
0.037

0.631+
0.024

0.956+
0.032

NOV

0.553+
0.036

0.512+
0.076

0.894+
0.025

0.886E
0.036

0.922+
0.027

0.553+
0.036

0.130+
0.009

0.890+
0.037

0.553+
0.036

0.946-+
0.041

0.927+
0.026

0.940+
0.048

0.553+
0.036

0.553+
0.036

0.122+
0.010

0.082+
0.006

SUR

0.698+
0.055

0.552+
0.036

0.869+
0.053

0.778+
0.022

0.553+
0.035

0.619+
0.042

0.636E
0.037

0.551+
0.035

0.575+
0.030

0.934+
0.031

0.851£
0.083

0.901x
0.111

0.937+
0.030

0.942+
0.033

0.651£
0.047

0.943+
0.032




Table 59 — Evaluation of the SPOK model and the Cover Type Dataset
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’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.881+
0.039

0.890+
0.037

0.878+
0.040

0.887+
0.038

0.888+t
0.039

0.866+
0.037

0.884+
0.038

0.882+t
0.039

k

0.881+
0.039

0.886+
0.039

0.880+
0.039

0.872+
0.037

0.877+
0.037

0.839+
0.069

0.881+
0.045

0.879+
0.036

COH

0.887+
0.037

0.872+
0.045

0.890+
0.035

0.890+
0.035

0.888+t
0.037

0.872+
0.036

0.894+
0.034

0.889+
0.035

0.892+
0.035

0.877x
0.035

0.856£
0.039

0.875+
0.038

0.883+t
0.038

0.866E
0.037

0.817x
0.030

0.883+t
0.038

NOV

0.885+
0.032

0.887+
0.031

0.886+
0.032

0.885+
0.032

0.885+
0.032

0.885+
0.032

0.889+
0.032

0.885+
0.032

0.863+
0.032

0.855+
0.028

0.865+
0.032

0.869+
0.032

0.881+
0.033

0.872+
0.031

0.837+
0.033

0.855+
0.029

SUR

0.870+
0.038

0.886+
0.041

0.876L
0.040

0.884+
0.040

0.887L
0.038

0.880+
0.040

0.833£
0.039

0.884+
0.041

0.864+
0.037

0.876+
0.035

0.824+
0.031

0.875+
0.036

0.868+
0.039

0.866+
0.037

0.870+
0.037

0.879+
0.038

Table 60 — Mean Accuracy of SPOK and Electricity Dataset

’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.744+
0.016

0.727+
0.012

0.744+
0.013

0.740+
0.013

0.742+
0.013

0.741+
0.012

0.715+
0.021

0.734+
0.012

k

0.745+
0.013

0.696+
0.034

0.726+
0.017

0.728+
0.014

0.725+
0.014

0.512+
0.058

0.674+
0.013

0.737+
0.012

COH

0.726£
0.011

0.740+
0.015

0.731£
0.013

0.740+
0.015

0.742+
0.014

0.740+
0.012

0.708+
0.013

0.742+
0.014

0.730+
0.011

0.618+
0.056

0.729+
0.008

0.747+
0.017

0.743+
0.015

0.725+
0.022

0.715+
0.013

0.739+
0.009

NOV

0.745+
0.014

0.700%
0.029

0.744+
0.013

0.737x
0.017

0.745+
0.014

0.745+
0.014

0.725+
0.019

0.747+
0.015

0.722+
0.022

0.747+
0.018

0.720+
0.024

0.740+
0.024

0.734+
0.025

0.750+
0.024

0.678+
0.014

0.753+
0.020

SUR

0.747+
0.016

0.721+
0.009

0.746£
0.021

0.744+
0.018

0.744+
0.013

0.739+
0.014

0.729+
0.026

0.738+
0.014

0.715x
0.023

0.696+
0.031

0.699+
0.021

0.742+
0.020

0.749+
0.020

0.726£
0.021

0.607£
0.031

0.747x
0.016




Table 61 — Evaluation of the SPOK model and the Outdoor Dataset
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’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.788+
0.030

0.749+
0.062

0.759+
0.053

0.753+
0.062

0.738+
0.063

0.703+
0.044

0.767+
0.030

0.833+
0.027

k

0.787x
0.030

0.760+
0.030

0.778x
0.031

0.819+
0.029

0.732+
0.067

0.688+
0.053

0.756£
0.037

0.763+
0.059

COH

0.831+
0.031

0.770+
0.056

0.866+
0.023

0.739+
0.063

0.767+
0.058

0.720+
0.067

0.839+
0.028

0.841+
0.028

0.792+
0.027

0.841+
0.025

0.811+
0.029

0.773+
0.055

0.787+
0.050

0.568+
0.069

0.753+
0.035

0.760-+
0.062

NOV

0.872+
0.021

0.878+
0.021

0.876+
0.022

0.878+
0.021

0.879+
0.020

0.879+
0.020

0.848+
0.024

0.877+
0.021

0.872+
0.021

0.882+
0.022

0.874+
0.021

0.878+
0.021

0.886-t
0.022

0.882+
0.020

0.833+
0.026

0.881=+
0.021

SUR

0.745+
0.044

0.782+
0.046

0.742+
0.066

0.684+
0.082

0.759+
0.038

0.757+
0.032

0.737+
0.037

0.743+
0.063

0.792+
0.038

0.866+
0.022

0.713+
0.066

0.823+
0.032

0.889+
0.022

0.767+
0.051

0.765+
0.029

0.861+
0.023

Table 62 — Evaluation of the SPOK model and the Poker Hand Dataset

’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.715+
0.018

0.698+
0.024

0.711£
0.017

0.738+
0.015

0.730+
0.016

0.699+
0.018

0.737+
0.010

0.725+
0.014

k

0.759+
0.012

0.742+
0.020

0.767+
0.010

0.780+
0.015

0.784+
0.013

0.742+
0.013

0.641+
0.022

0.774+
0.012

COH

0.718+
0.019

0.722+
0.016

0.735+
0.017

0.715+
0.019

0.717+
0.019

0.713£
0.017

0.330+
0.061

0.717+
0.020

0.773+
0.012

0.774+
0.015

0.791+
0.013

0.771+
0.014

0.777+
0.011

0.776+
0.012

0.558+
0.019

0.778+
0.012

NOV

0.743+
0.016

0.749+
0.015

0.742+
0.016

0.749+
0.014

0.742+
0.016

0.742+
0.016

0.738+
0.017

0.746+
0.015

0.780+
0.017

0.780+
0.018

0.783+
0.018

0.786E
0.017

0.772+
0.020

0.789+
0.018

0.728+
0.007

0.789+
0.018

SUR

0.712+
0.020

0.719+
0.019

0.729+
0.018

0.721+
0.015

0.723+
0.017

0.718+
0.018

0.708+
0.018

0.684-+
0.015

0.755+
0.033

0.728+
0.025

0.678+
0.013

0.771x
0.014

0.767+
0.013

0.684+
0.020

0.763£
0.009

0.780+
0.016




Table 63 — Evaluation of the SPOK model and the Rialto Dataset
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’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.622+
0.029

0.615+
0.041

0.627+
0.022

0.624+
0.031

0.624-+
0.032

0.573+
0.033

0.629+
0.019

0.626-t
0.032

k

0.640£
0.021

0.575+
0.042

0.613£
0.029

0.611£
0.035

0.610£
0.034

0.575+
0.031

0.149+
0.012

0.614+
0.034

COH

0.642+
0.033

0.628+
0.031

0.625+
0.031

0.623+
0.032

0.623-+£
0.032

0.618+
0.032

0.646+
0.032

0.618+
0.033

0.628+
0.032

0.593+
0.040

0.613+
0.033

0.584+
0.042

0.606-t
0.033

0.392+
0.029

0.631£
0.017

0.568+t
0.046

NOV

0.651+
0.028

0.654+
0.032

0.654+
0.032

0.655+
0.032

0.648+
0.033

0.652+
0.032

0.654+
0.025

0.654+
0.032

0.661+
0.028

0.478+
0.074

0.658+
0.035

0.658+
0.036

0.650-t
0.038

0.655+
0.036

0.631+
0.022

0.657+
0.036

SUR

0.488=+
0.010

0.602+
0.044

0.608+
0.037

0.619+
0.033

0.619+
0.033

0.630+
0.030

0.571+
0.023

0.625+
0.027

0.617+
0.023

0.652+
0.035

0.556+
0.036

0.639+
0.042

0.640+
0.042

0.648+
0.040

0.645+
0.021

0.654+
0.033

Table 64 — Evaluation of the SPOK model and the Weather Dataset

’ Sm ‘Dm‘NN‘ linear ‘ gauss ‘ poly ‘ expo ‘cauchy‘ log ‘ sigm ‘ kmod ‘

ALD

2

1

0.751+
0.018

0.716+
0.012

0.751+
0.012

0.725+
0.014

0.718+
0.011

0.696+
0.015

0.687+
0.015

0.728+
0.016

k

0.778+
0.017

0.775+
0.017

0.775+
0.018

0.777x
0.009

0.777+
0.011

0.688+
0.015

0.687+
0.015

0.779+
0.012

COH

0.700£
0.015

0.735+
0.012

0.722+
0.011

0.746E
0.009

0.739+
0.012

0.750+
0.012

0.425+
0.023

0.734+
0.012

0.679+
0.021

0.777+
0.011

0.739+
0.012

0.779+
0.014

0.779+
0.013

0.763+
0.013

0.687+
0.015

0.776+
0.012

NOV

0.732+
0.012

0.720+
0.009

0.731x
0.008

0.722+
0.017

0.726+
0.013

0.688+
0.016

0.687+
0.015

0.724+
0.015

0.736E
0.020

0.731+
0.014

0.739+
0.018

0.764+
0.010

0.750+
0.019

0.735+
0.019

0.687£
0.015

0.738%
0.011

SUR

0.715+
0.015

0.725+
0.014

0.752+
0.017

0.724+
0.014

0.752+
0.011

0.688+
0.020

0.687£
0.015

0.753+
0.012

0.750x
0.015

0.785+
0.016

0.690+
0.020

0.762+
0.013

0.762+
0.016

0.688+
0.020

0.687£
0.015

0.786=E
0.017
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