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RESUMO

A Leucemia Linfoblastica Aguda (LLA) é um cancer hematoldgico agressivo que afeta majorita-
riamente criangas e exige diagndstico precoce para aumentar a taxa de sobrevida. Os métodos
tradicionais de diagndstico, como a aspira¢do de medula dssea e a citometria de fluxo, sdo invasi-
vos, caros e pouco de dificil acesso em regides com recursos limitados (Pui et al., 2015). Estudos
como (Ghaderzadeh et al., 2022) propdem o uso de modelos de Inteligéncia Artificial (IA) para
auxiliar médicos na identificacdo da doenca por meio de imagens, com foco na diferenciacao
entre células benignas (hematogonias) e linfoblastos malignos. No entanto, essas abordagens
costumam ser mais complexas e demandam mais recursos, incluindo tempo de processamento.
Esta monografia também propde o uso de Redes Neurais Convolucionais (RNCs) para auxiliar
na triagem e diagndstico de LLA a partir de imagens de Esfregaco de Sangue Periférico (ESP),
utilizando a arquitetura EfficientNet-B3, conhecida por seu equilibrio entre desempenho e
eficiéncia (Tan e Le, 2019). Com o suporte da biblioteca FastAI, foi implementado um algoritmo
de classificacdo que atingiu uma acuracia de 98,92% no conjunto de teste. Os resultados foram
comparados com os do artigo de referéncia, que utilizou DenseNet201 aliada a segmentacgdo de
cor HSV nas imagens, dando indicios de que o modelo proposto tem o potencial de alcangar um
desempenho competitivo com menor complexidade. A abordagem adotada visa contribuir para o
diagnodstico dos médicos com uma ferramenta inteligente, confidvel e mais acessivel a ambientes

clinicos com infraestrutura limitada, mantendo a eficiéncia computacional.

Palavras-chave: modelagem estocastica; redes neurais; oncologia; patologia computacional;

inteligéncia artificial.



ABSTRACT

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic cancer that predominantly
affects children and requires early diagnosis to improve survival rates. Traditional diagnostic
methods, such as bone marrow aspiration and flow cytometry, are invasive, expensive, and
often inaccessible in resource-limited settings (Pui et al., 2015). Studies such as (Ghaderzadeh
et al., 2022) propose the use of Artificial Intelligence (AI) models to assist physicians in
identifying the disease through imaging, focusing on the differentiation between benign cells
(hematogones) and malignant lymphoblasts. However, these approaches are often complex and
resource-intensive, including longer processing times. This monograph also proposes the use of
Convolutional Neural Networks (CNNs) to support the screening and diagnosis of ALL from
Peripheral Blood Smear (PBS) images, employing the EfficientNet-B3 architecture, known
for balancing performance and efficiency (Tan e Le, 2019). Supported by the FastATI library,
a classification algorithm was implemented and achieved an accuracy of 98.92% on the test
set. The results were compared with those of the reference study, which used DenseNet201
combined with HSV color segmentation, indicating that the proposed model has the potential to
achieve competitive performance with lower complexity. The adopted approach aims to support
medical diagnosis with an intelligent, reliable, and more accessible tool for clinical settings with

limited infrastructure, while maintaining computational efficiency.

Keywords: stochastic modelling; neural networks; oncology; computational pathology; artificial

intelligence.
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1 INTRODUCAO

A Leucemia Linfoblastica Aguda (LLA) € um cincer hematoldgico agressivo que se
origina na medula 6ssea, caracterizado pela proliferacdo descontrolada de linfoblastos (células
imaturas do sistema linfético). E o tipo mais comum de leucemia em criancas, representando
cerca de 25% dos canceres infantis, mas também afeta adultos (Pui et al., 2015). Um diagndstico
precoce € importantissimo, pois a LLLA progride rapidamente, e o tratamento iniciado nas
primeiras semanas pode aumentar significativamente as taxas de sobrevida (Inaba et al., 2013).

Atualmente, o diagndstico definitivo requer métodos muito invasivos, como aspiragdo
de medula 6ssea e imunofenotipagem por citometria de fluxo, que sdo caros, demorados e causam
desconforto aos pacientes, especialmente nas criangas (Terwilliger e Abdul-Hay, 2017). Além
disso, em regides com poucos recursos, 0 acesso a esses exames € limitado, atrasando o inicio do
tratamento.

Um dos maiores desafios do diagndstico inicial da LLA € a diferenciacdo entre
linfoblastos malignos e hematogonias (células linfoides benignas) em Esfregaco de Sangue
Periférico (ESP). Essa distin¢ao é complexa porque hematogonias sdo células B imaturas ndo ma-
lignas, comumente encontradas em criangas € em recuperacdao pds-quimioterapia, e linfoblastos
malignos tém morfologia semelhante, levando a falsos positivos em andlises manuais (Rimsza et
al., 2000). A andlise microscépica tradicional depende da experiéncia do hematologista e esta
sujeita a erros humanos devido a fadiga e a subjetividade.

O uso de técnicas de Inteligéncia Artificial (IA), especialmente as Redes Neurais
Convolucionais (RNCs) aplicadas a satide, oferece uma alternativa promissora para complementar
o diagnédstico do médico ao reduzir a subjetividade na andlise de imagens de exames. Isso permite
uma triagem mais eficiente, apoiando o profissional, diminuindo custos e, principalmente,
reduzindo a necessidade de exames invasivos em casos inequivocos (Esteva et al., 2017);(Topol,

2019).

1.1 Objetivos

Este trabalho tem como objetivos:
1. Apresentar um modelo de classificacio de imagens de microscopia para auxiliar no
diagnéstico de LLLA utilizando uma arquitetura alternativa otimizada para eficiéncia com-

putacional.
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ii. Implementar um pipeline automatizado para a andlise dessas imagens.
iii. Comparar o desempenho do modelo proposto com a abordagem original, destacando as
diferencas entre precisdo e complexidade.

Enquanto o artigo original de Ghaderzadeh et al. (2022) utiliza DenseNet201 com
segmentacdo HSV, este trabalho explora a EfficientNet-B3, que oferece menor custo com-
putacional (ideal para laboratérios com recursos limitados), facilidade de implementacdo e
performance competitiva suficiente para triagem inicial. A escolha dessa abordagem visa demo-
cratizar o diagnéstico de LLA, tornando-o acessivel mesmo em cendrios com poucos recursos
especializados (Zhang e Satapathy, 2021).

Para atingirmos os objetivos acima, o trabalho foi organizado da seguinte forma:
Sdo 4 capitulos além deste primeiro, que contém a introdugdo da problemética e a motivacao
geral do trabalho; o segundo trata da fundamentacdo tedrica do trabalho, detalhando a teoria do
funcionamento das redes neurais e as técnicas de processamento e andlise utilizadas. No Capitulo
3, apresentamos a metodologia proposta, detalhando os modelos de aprendizado estatistico, os
dados que os alimentam, seus requisitos e as condi¢des e maquinas em que foram rodados. Em
seguida, no Capitulo 4, os resultados obtidos sao discutidos, incluindo gréficos e tabelas para
ilustrar tudo mais claramente. Pra finalizar, temos as conclusdes do trabalho e propostas de

melhorias e linhas de pesquisa a seguir em trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

A crescente demanda por solugdes automatizadas em problemas complexos de
classificagcdo, reconhecimento de padrdes e tomada de decisdo levou ao avango de técnicas
inspiradas no funcionamento do cérebro humano (Goodfellow et al., 2016). As Redes Neurais
Artificiais (RNAs) surgem nesse contexto como modelos computacionais capazes de aprender
representacOes a partir de dados, sendo amplamente utilizadas em areas como visdo computa-
cional, processamento de linguagem natural, sistemas de recomendacao e, mais recentemente,
diagnodstico médico assistido por computador (Esteva et al., 2017).

Neste capitulo, serdo abordados os conceitos fundamentais das RNAs, comegando
pela anatomia de um neur6nio artificial e pelo algoritmo perceptron, considerado a base historica
do desenvolvimento das RNAs. Em seguida, serdo discutidas as funcdes de ativagdo mais
utilizadas, as RNCs, que se destacam pelo seu desempenho em tarefas envolvendo dados visuais,
como € o caso da andlise de imagens de esfregaco sanguineo e todos 0s processos e termos

comuns da drea de ciéncia de dados, utilizados neste trabalho.

2.1 Redes Neurais Artificiais

Resumidamente, as RNAs s@o estruturas compostas por unidades de processamento
denominadas neurdnios artificiais, organizados em camadas interconectadas. Cada neurdnio
recebe entradas numéricas, aplica pesos e funcdes de ativagdo e gera uma saida que pode ou nio
ser passada para camadas subsequentes. O aprendizado ocorre a partir da exposicao a exemplos
rotulados, ajustando-se os pesos por meio de algoritmos de otimizagdo com base no erro que
representa a diferenca entre a saida prevista e o valor esperado. Cada um desses aspectos sera

melhor detalhado a seguir.
2.1.1 Neuroénio Artificial e Perceptron

O neurdnio artificial é a unidade fundamental das RNAs. Gerstner et al. (2014)
comparam seu funcionamento ao dos neurdnios biol6gicos, que transmitem impulsos elétricos a
partir de estimulos recebidos pelos dendritos, processando-os no corpo celular e gerando um
novo impulso na dire¢do do axdnio. De forma andloga, o neurdnio artificial recebe entradas
numéricas, realiza uma opera¢do matematica sobre elas e produz uma saida (McCulloch e Pitts,

1943).
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Desta forma, um neurdnio artificial pode ser representado pela seguinte forma

funcional:

n
= Z wix; +b,
i=1

em que x; sdo os valores das entradas (features), w; sdo os pesos associados a cada entrada, b
€ o termo de viés (bias), que permite ao modelo ajustar o limiar da ativagdo e z é o somatério
ponderado das entradas.

O valor z é entdo passado por uma fungdo de ativagdo f(z), que determina a saida

final do neurdnio:
y=f(2).
A Figura 1 traz uma representagdo grafica do funcionamento do neurdnio:

Figura 1 — Representagdo do Neurdnio Artificial

ry — U

Ty — Wy

T —F W

Fonte: Elaborado pelo autor

2.1.2 Redes Multicamadas e Funcdes de Ativacao

As Redes Neurais Multicamadas (MLPs), também conhecidas como Multilayer
Perceptrons, representam uma evolugdo em relacdo ao perceptron simples, sendo capazes de
modelar relacdes complexas e ndo lineares entre varidveis de entrada e saida. Essas redes sao
compostas por uma ou mais camadas ocultas entre a camada de entrada e a de saida, onde cada
camada é formada por multiplos neurdnios artificiais conectados a camada seguinte (Hornik et
al., 1989). A Figura 2 ilustra uma rede multicamada com fluxo em uma direcao, 3 neur6nios de
entrada, 2 camadas ocultas com 4 neurdnios cada e 2 de saida. Ha também 2 neuro6nios de bias,

um para cada camada oculta.
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Figura 2 — Representacao de uma Rede Multicamada
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Fonte: Elaborado pelo autor

Cada neuronio realiza uma transformacao dos dados por meio de uma combinagdo
linear das entradas seguida de uma func¢do de ativagdo nao linear. A equagdo que representa o

funcionamento de um neurdnio nas MLPs €:
(1) (-1
aV = f [ L w04 p0 )
i=1

()

em que al) representa a ativagdo da /-€sima camada, w;

(1)

i

s30 os pesos conectando os neurdnios
da camada anterior, x sdo as ativagdes da camada anterior e b\ é o termo de viés. A funcao
f(+) corresponde a funcéo de ativagéo, que confere a rede a capacidade de modelar relagdes nao
lineares (Goodfellow et al., 2016).

As fungdes de ativagdo desempenham um papel fundamental para o aprendizado de
padrdes complexos (Radford et al., 2021). Sem elas, mesmo uma rede profunda se comportaria
como um modelo linear. A seguir, sdo apresentadas as principais funcdes de ativagdo utilizadas
em redes multicamadas:

— Sigmoide: definida como f(x) = rle—x mapeia a saida para o intervalo (0,1). Foi ampla-
mente utilizada em redes antigas, mas tende a causar o problema do gradiente desvanecido
em redes profundas. Geralmente usada em redes de classificacdo bindria (quando ha
apenas duas classes e usamos uma tnica saida). A saida tem interpretacao probabilistica
(pode ser vista como uma “probabilidade” de estar em uma classe) (LeCun et al., 1998).

ef—e "

— Tangente hiperbdlica: dada por f(x) = tanh(x) = &, mapeia a safda para o intervalo

(-=1,1). Também sofre com o gradiente desvanecido, embora seja centrada na origem.
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Usada historicamente, pode ser uma op¢ao interessante para redes rasas ou quando se quer
saidas simétricas, mas raramente usada em redes modernas (LeCun et al., 1998).

— ReLU (Rectified Linear Unit): definida como f(x) = max(0,x) = x*, é atualmente a
func¢do mais comum em redes neurais profundas. Possui vantagens como simplicidade
computacional e mitigacao parcial do gradiente desvanecido (Nair e Hinton, 2010).

— Softmax: definida como f(x;) = Z}{—Texf’ transforma um vetor de valores reais em uma
distribui¢do de probabilidade sobre K classes. Cada valor de saida estara no intervalo
(0,1) e a soma de todas as safdas serd igual a 1. E comumente utilizada na camada de
saida de redes neurais para tarefas de classificagdo multiclasse, permitindo interpretar os
valores como probabilidades associadas a cada classe. Por ser sensivel a outliers e valores
extremos na entrada, pode amplificar diferengas sutis entre as ativagdes (Bridle, 1990).

Goodfellow et al. (2016) afirmam que a escolha da funcao de ativacao pode afetar
significativamente o desempenho da rede, sendo a ReLU geralmente preferida em camadas ocultas
de redes modernas. Para a camada de saida, no entanto, ¢ comum utilizar funcdes especificas
como a softmax, em problemas de classificagcdo multiclasse, ou a sigmoide, para classificacdo
bindria.

Redes multicamadas com pelo menos uma fungio de ativacao ndo linear sdo capazes
de aproximar qualquer funciao continua, segundo o Teorema da Aproximagdo Universal em

Hornik et al. (1989). Isso justifica sua ampla aplicacdo em tarefas como regressao, classificagao

e reconhecimento de padrodes.
2.1.3 Treinamento: Retropropagacdo e Ajuste de Pesos

Em sintese, o processo de treinamento de RNAs consiste em ajustar os pesos das
conexdes entre os neurdnios de modo a minimizar o erro entre a saida prevista pelo modelo e a
saida esperada. O algoritmo mais amplamente utilizado para esse ajuste é o backpropagation, ou
retropropagacdo do erro, em conjunto com métodos de otimiza¢do como o Gradiente Descendente
(Rumelhart et al., 1986). O treinamento ocorre em duas etapas principais:

1. Propagacao direta (forward pass): os dados de entrada percorrem a rede camada por
camada até gerar uma saida. Com isso, é possivel calcular a loss function (funcdo de
perda), que quantifica o erro entre a previsao da rede (y) e o valor real (y).

2. Retropropagacao do erro (backward pass): o erro é propagado de volta pela rede, desde

a saida até a entrada. Nesse processo, € obtido o gradiente da funcio de perda em relacdo
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a cada peso da rede, usando a regra da cadeia para derivadas parciais. Esse gradiente €
entdo utilizado para atualizar os pesos.

Seja L a funcdo de perda (ex: erro quadritico médio), e w um peso qualquer da rede.

O objetivo € minimizar E com rela¢do a w, usando o gradiente 3—5:
JdL
W—w—1n-=—, (2.1)
dw

em que 1) representa a taxa de aprendizado (learning rate), que controla o tamanho do passo
dado na direcdo do gradiente.

Durante a retropropagacao, cada neurdnio da rede calcula sua contribui¢do para o
erro total e propaga esse valor para os pesos que o antecedem. Esse processo € possivel gracas
a estrutura diferencidvel da rede e ao uso de fungdes de ativacdo que possuem derivadas bem
definidas (Rumelhart et al., 1986).

Esse procedimento € repetido diversas vezes para todos os dados do conjunto de
treino, em ciclos chamados épocas (epochs). Ao final de multiplas €pocas, espera-se que a rede
tenha aprendido uma representacao dos dados capaz de generalizar para novos exemplos.

Além do gradiente descendente simples, otimizadores mais sofisticados, como o
Adam, sdo frequentemente utilizados para acelerar a convergéncia e adaptar a taxa de aprendizado

para cada peso individualmente, como serd discutido na Secao 2.3.2.

2.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (RNCs) sdao uma arquitetura de redes neurais
profundas especialmente projetadas para o processamento de dados com estrutura topolégica,
como imagens, dudios e videos. Diferente das redes densamente conectadas, as RNCs exploram
a correlacdo espacial dos dados por meio de filtros aprendiveis, chamados kernels, que varrem a
entrada em janelas locais.

Inspiradas nos estudos de neurociéncia sobre o cortex visual de mamiferos, as RNCs
foram formalizadas inicialmente por LeCun et al. (1998) e ganharam grande destaque com
o avango da capacidade computacional e o surgimento de grandes bases de imagens, como o
ImageNet. Desde entdo, tornaram-se a principal abordagem para tarefas visuais automatizadas
e tém sido cada vez mais aplicadas em diagndsticos médicos baseados em imagens, como

hematologia, oncologia, dermatologia e radiologia (Rawat e Wang, 2017; Litjens et al., 2017).
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2.2.1 Estrutura Geral de uma CNN

Com base nesses detalhes introdutérios, define-se que a arquitetura de uma CNN ¢é
composta por trés grandes blocos:

1. Bloco convolucional: camadas convolucionais com filtros de pequeno porte, funcdes de
ativagcao (como ReLU), normalizacdo (ex.: BatchNorm) e camadas de pooling;

2. Bloco intermediario: a saida dos blocos convolucionais é achatada, formando um vetor
que representa a imagem em um espacgo de caracteristicas latentes;

3. Bloco de classificacao: camadas totalmente conectadas processam o vetor para gerar uma
predi¢do final. A ultima camada aplica uma fun¢@o como softmax ou sigmoide.

Por exemplo, em um problema de classificacdo de leucemia com trés classes (normal,
precoce, avangado), a saida da CNN pode ser um vetor com trés valores normalizados por
softmax, representando a probabilidade de cada classe.

RNCs modernas adotam variagdes dessas estruturas basicas para melhorar o desem-
penho e a eficiéncia computacional. DenseNet, por exemplo, conecta cada camada convolucional
a todas as anteriores, promovendo o reuso de caracteristicas. Na EfficientNet, introduz-se um
método sistemdtico de balanceamento entre profundidade, largura e resolucio de entrada para
otimizar a acurdcia com menor custo computacional (Huang et al., 2017; Tan e Le, 2019), como

serd melhor definido na subsecdo 2.5.2.

2.2.2 Motivagao e Aplicacoes em Imagens Médicas

Em tarefas de classificacdo de imagens, a rede precisa ser capaz de identificar padrdes
visuais relevantes — como bordas, formas, texturas e objetos — mesmo quando estes aparecem
em diferentes posi¢cdes ou com pequenas variacdes. Redes neurais totalmente conectadas (MLPs)
exigiriam que cada pixel da imagem fosse ligado a todos os neurdnios da primeira camada, o que
levaria a um nimero explosivo de parametros. Além disso, ao achatar a imagem em um vetor
unidimensional, essa estrutura descarta informagdes espaciais fundamentais, como a relacdo de
proximidade entre pixels.

As RNCs solucionam esses problemas ao processar localmente as entradas com
filtros convolucionais que capturam padrdes especificos em janelas de pequeno porte (ex.: 3 x 3
ou 5 x 5). Esses filtros sdo treinados a reconhecer caracteristicas visuais especificas e sdo

aplicados em toda a imagem por deslizamento, compartilhando seus pesos em cada posi¢ao —
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uma abordagem que economiza memdria e favorece a generalizacdo.

Em aplicacdes médicas, essa caracteristica € particularmente util. Por exemplo
(como € objetivo deste trabalho), ao analisar uma imagem microscépica de sangue periférico,
RNCs podem aprender a reconhecer padroes morfoldgicos de blastos leucémicos, mesmo que

estejam em diferentes regides da lamina. Isso permite aplicar RNCs em tarefas como:

Deteccao de Leucemia Linfoblastica Aguda (LLA): identificando padrdes celulares

andmalos em imagens digitalizadas de laminas hematoldgicas;

Classificacao histopatoldgica: distinguindo entre tecidos cancerigenos e sauddveis em

bidpsias;

Deteccio de anomalias radiolégicas: como nédulos pulmonares em tomografias;

Segmentacio de estruturas: como separagdo automatica de células ou identificacdo do
ntcleo.

As RNCs superaram com folga outras abordagens em desafios computacionais como
o ImageNet e continuam sendo refinadas com novas arquiteturas e técnicas de regularizacgao,
motivando seu uso em contextos sensiveis e de alto impacto, como o diagndstico assistido por

IA (Litjens et al., 2017).

2.2.3 Camadas Convolucionais e Pooling

A operacao de convolugdo consiste em aplicar o kernel sobre regides locais da
entrada (por exemplo, pedacos de uma imagem), multiplicando os valores dos pixels por pesos
aprendiveis e somando os resultados. Cada filtro é responsdvel por detectar uma caracteristica
visual. Por exemplo, um filtro pode ser treinado para detectar linhas horizontais, enquanto outro

detecta contornos circulares, etc.
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Figura 3 — Representagao de Filtros de Convolugao
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Fonte: (Hoffman, 2018)

Seja uma imagem / de tamanho a X a e um filtro K de tamanho k x k. A convolucao
percorre a imagem linha por linha, coluna por coluna, gerando um mapa de ativagdo A, em que
cada valor representa a forca com que aquele padrao foi detectado localmente. Essa operacao é

dada por:
k  k

(I«K)(i,j)=Y, Y I(i+m—1,j+n—1)-K(m,n).

m=1n=1

Ap6s cada convolucdo, aplica-se uma funcdo de ativacdo, que mantém os valores

positivos e zera os negativos, permitindo a rede modelar relagdes complexas e evitar saturagdes.

Figura 4 — Representacao de mapas de caracteristicas resultantes da convolugao
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Em seguida, é comum aplicar camadas de pooling, que resumem regides da imagem

-

filter #175

[ o |

filter #55

Fonte: (HE et al., 2015)

para reduzir a dimensionalidade dos mapas de ativacdo e tornar o modelo mais robusto a pequenas
variacoes e ruidos (Scherer et al., 2010). No max pooling, por exemplo, o valor mais alto é

selecionado, preservando a ativagdo mais forte da regido.
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Essas operacdes de convolucdo seguidas de pooling sdo repetidas diversas vezes,
construindo representacdes hierdrquicas da imagem. Os mapas de ativagdo resultantes das
ultimas camadas convolucionais sdo entdo “achatados” e enviados para camadas densas (fully

connected), que finalizam o processo de classificacao.

2.2.4 Blocos Convolucionais Avangados

Adicionalmente as camadas convolucionais tradicionais mencionadas, arquiteturas
modernas de redes neurais convolucionais utilizam blocos avangados que otimizam o uso de
parametros e melhoram a eficiéncia computacional. Entre os principais componentes, segundo
Tan e Le (2019), estdo as convolugdes separaveis em profundidade, as conexdes residuais € o
bloco Mobile Inverted Bottleneck Convolution (MBConv), fundamental para modelos como a

EfficientNet.
- Convolugdes Separdveis em Profundidade (Depthwise Separable Convolutions)

A convolugdo tradicional aplica filtros 3D que processam simultaneamente as dimen-
sOes espaciais e os canais da imagem, o que demanda alto custo computacional. As convolucdes
separdveis em profundidade dividem essa operacdo em duas etapas:

— Convolugdo Depthwise: aplica um filtro 2D em cada canal da entrada separadamente,
extraindo caracteristicas espaciais sem combinar canais.

— Convolugao Pointwise: utiliza filtros 1 x 1 para combinar os canais processados na etapa
anterior, permitindo a interacdo entre diferentes mapas de caracteristicas.

Essa divisdo reduz drasticamente o nimero de operacdes e parametros, acelerando o

processamento sem perda significativa de desempenho.

- Conexdes Residuais (Skip Connections)

Introduzidas pela arquitetura ResNet (He et al., 2016), as conexdes residuais consis-
tem em atalhos diretos que somam a entrada de um bloco com sua saida, criando um caminho

alternativo para o fluxo de informagdes e gradientes:
y=F(x)+x,

em que x é a entrada, F (x) a transformagdo aprendida pelo bloco e y a saida. Essa estrutura facilita

o treinamento de redes muito profundas, prevenindo o problema do gradiente desaparecendo e
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permitindo que a rede aprenda ajustes residuais.
- Bloco MBConv (Mobile Inverted Bottleneck Convolution)

O bloco MBConv € uma combinacao das técnicas acima com outras estratégias que
visam a maxima eficiéncia (Sandler et al., 2018; Ramachandran et al., 2017; Howard et al.,
2017):

— Bottleneck invertido: ao contrério do padrao tradicional, o bloco inicia com uma expansao
do nimero de canais (aumenta a dimensionalidade), para permitir maior capacidade de
aprendizado, e termina com uma redugdo, formando um gargalo.

— Convolucoes separaveis em profundidade: o nicleo do bloco € uma convolugio depthwise
3 x 3 que processa cada canal separadamente.

— Ativacao Swish: funcio nao linear suave, mais eficiente que a ReLU em muitos casos,
definida como Swish(x) = x- 6(x), em que o representa a fungdo sigmoide.

— Batch Normalization: normaliza as ativagdes para acelerar o treinamento e melhorar a
estabilidade.

— Conexoes residuais: se as dimensoes de entrada e saida coincidirem, a entrada é somada

a saida do bloco, facilitando o aprendizado residual.
Fluxo dentro de um bloco MBConv:

1. Expansao dos canais por convolugdo 1 x 1;

Convolugao depthwise 3 x 3 com ativagao Swish e batch normalization;
Reducao dos canais por convolugdo 1x1 (bottleneck);

Batch normalization;

Soma residual (quando aplicével);

A T

Saida para o préximo bloco.
Esse design permite alta eficiéncia computacional com bom poder de extracao de

caracteristicas, o que explica o sucesso da EfficientNet em ambientes restritos de hardware.

2.3 Técnicas de Otimizacao e Regularizacio

O treinamento de redes neurais profundas envolve a minimizac¢do de uma funcgao de

perda que mede o erro entre as previsdes do modelo e os valores reais. Para isso, utilizam-se
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algoritmos de otimizacdo baseados em gradiente, como o gradiente descendente e suas variantes
(Ruder, 2016). Contudo, apenas aplicar um otimizador eficiente ndo € suficiente: redes profundas
com muitos parametros sao suscetiveis a problemas como superajuste (overfitting), instabilidade
numérica e lentiddo no treinamento. Para lidar com essas questdes, sdo empregadas técnicas
de regularizacdo, como demonstrado por Loshchilov e Hutter (2019), que impdem restri¢des
ao aprendizado do modelo, promovendo maior capacidade de generalizacdo (Srivastava et al.,
2014).

Nesta secdo, serdo abordados os principais conceitos e ferramentas utilizados para
tornar o treinamento mais eficiente e estavel, incluindo algoritmos de otimizagao, ajustes da taxa
de aprendizado, uso de regularizacdo L, (conhecida como weight decay) e politicas modernas

como o One Cycle Policy de (Smith, 2017).

2.3.1 Oftimizadores Baseados em Gradiente

A base da maioria dos algoritmos de otimizacdo em redes neurais € o método do
gradiente descendente (Gradient Descent). Seu principio fundamental foi introduzido por
Augustin-Louis Cauchy (Cauchy, 1847) como método numérico para minimiza¢do, antecipando
em mais de um século sua aplicacdo em redes neurais. Seus fundamentos sdo desenvolvidos
ao longo do tempo e explicados, por exemplo, em Boyd e Vandenberghe (2004). A ideia é que
se atualizam os pesos da rede na dire¢do oposta ao gradiente da funcao de perda com respeito
a esses pesos. Ou seja, dado um peso w e a funcdo de perda L(w), a atualiza¢do é dada pela
equagdo (2.1). Essa técnica simples € eficaz, mas segundo (Choromanska et al., 2015), tem
limitacdes, como sensibilidade a escolha do valor de 7, o risco de ficar preso em minimos locais
e a dificuldade em adaptar-se a diferentes escalas de variancia nos dados.

Para contornar essas limitagdes, surgiram variantes mais sofisticadas, como:

— Gradiente Descendente com Momentum: adiciona uma fracdo do passo anterior a
atualizacdo atual, ajudando a acelerar em regides rasas e a suavizar oscilagoes;

— RMSprop: adapta a taxa de aprendizado para cada parametro com base na média dos
quadrados dos gradientes anteriores;

— Adam (Adaptive Moment Estimation): introduzido por Kingma e Ba (2015), combina as
ideias de momentum e RMSprop, ajustando o passo de atualizagdo com base nas médias
dos gradientes e de seus quadrados, o que resulta em um comportamento estivel e eficaz

mesmo em arquiteturas profundas.
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Dada sua robustez e simplicidade de uso, o otimizador Adam tem sido o padrio
de fato em muitos estudos recentes, incluindo neste trabalho, conforme detalhado a seguir na

Subsec¢do 2.3.2.
2.3.2 Otimizador Adam

O Adam (Adaptive Moment Estimation) é um dos otimizadores mais utilizados em
redes neurais profundas atualmente, devido a sua capacidade de combinar o melhor de dois
mundos: a estabilidade do método de momento e a adaptagdo do gradiente por parametro, como
no RMSProp. Ele foi proposto por Kingma e Ba (2015) e rapidamente se tornou um padrdo para
diversas tarefas de aprendizado profundo. O gradiente descendente tradicional aplica atualiza¢oes
uniformes para todos os pesos com base em um Unico valor de taxa de aprendizado (learning
rate). No entanto, redes profundas possuem milhares ou milhdes de parametros com escalas e
sensibilidades distintas, o que dificulta a convergéncia eficiente com um unico learning rate. O
Adam resolve isso adaptando o tamanho do passo para cada pardmetro com base no histérico de
gradientes. Ou seja, a cada iteracdo de atualizacdo, o Adam realiza os seguintes cdlculos para
cada parametro wy:

(i) Calcula o gradiente do erro em relagdo ao pardmetro: g, = V,,.J(wy)

(i1) Atualiza a média dos gradientes (momento de 1* ordem):

my = PBr-m_1+(1—PBp)-g-

(iii) Atualiza a média dos quadrados dos gradientes (momento de 2° ordem):

thﬁz-Vz—lJr(l—ﬁz)'g;z-

(iv) Realiza a correcdo de viés para as estimativas m; e v;:

A ny ” Vi
my = 7 € V= 7
(v) Atualiza o pardmetro:
n.—
Wil = Wr — =~
Vi + €

em que 1N € o learning rate (geralmente 0.001), B; e B, sdo coeficientes de decaimento para os
momentos (geralmente 0.9 e 0.999), € € um pequeno valor constante para evitar divisdo por zero

(geralmente 107%).
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Entre as vantagens deste otimizador em especifico, temos as atualizacdes adapta-
tivas por parametro, estabilidade em problemas com gradientes ruidosos ou esparsos, rapida
convergéncia, especialmente no inicio do treinamento, € menor necessidade de ajuste da taxa de
aprendizado. Ele também funciona bem mesmo sem muita normalizacido de dados.

Apesar de sua popularidade, o Adam tem algumas desvantagens que devemos co-
mentar, como levar a uma generalizacdo pior do que o Gradiente Descendente em alguns casos,
precisar de estratégias como weight decay (subsegdo 2.3.4) para controlar overfitting e ser
sensivel a escolhas de hiperparametros em tarefas muito especificas.

Trazendo para o contexto do trabalho, o pacote FastAI utilizado no cédigo imple-
menta o Adam de forma otimizada, integrando automaticamente praticas como o decaimento de
peso desacoplado (AdamW), politica de taxa de aprendizado One-Cycle (ver subse¢do 2.3.3) e
a integracdo com Mixed Precision Training (subsecao 2.3.5) para acelerar o treino em GPUs
modernas. Dessa forma, o uso do Adam no FastAI facilita a obtencdo de bons resultados com

poucas linhas de c6digo, sendo uma escolha padrdo robusta para prototipagem répida e produgdo.

2.3.3 Taxa de Aprendizado (Learning Rate) e Politica One Cycle

Como foi aludido anteriormente, a taxa de aprendizado, ou learning rate (1), é
um hiperparametro essencial que define o tamanho dos ajustes feitos nos pesos da rede a
cada iteracdo. Ruder (2016) comenta que valores muito altos podem causar instabilidade no
treinamento, fazendo com que o modelo oscile ou divirja, enquanto valores muito baixos podem
resultar em uma convergéncia lenta e ineficaz.

Para lidar com essa sensibilidade, foram desenvolvidas estratégias adaptativas que
variam a taxa de aprendizado ao longo do treinamento. Uma das mais eficazes € a Politica One-
Cycle, proposta por Smith (2017). Nessa abordagem, a taxa de aprendizado cresce gradualmente
até um valor maximo durante os primeiros ciclos do treinamento e, em seguida, decresce de forma
suave até um valor minimo préximo de zero. Essa variacdo ciclica favorece uma exploracao
inicial mais ampla da paisagem de erro e uma posterior estabilizacdo dos pesos, o que pode
resultar em melhor generalizagdo do modelo.

Além da taxa de aprendizado, o método One Cycle também pode ajustar outros
parametros, como 0 momento, ao longo do treinamento. No framework FastAI, essa técnica é
aplicada automaticamente e pode ser precedida por uma etapa de busca do melhor valor inicial

da taxa de aprendizado por meio do método Learning Rate Finder, que testa uma faixa de valores
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e aponta aquele que leva a maior queda na fun¢do de custo.
2.3.4 Regularizacdo: L, e Weight Decay

A regularizacdo tem como objetivo principal evitar o sobreajuste do modelo aos
dados de treinamento, penalizando comportamentos excessivamente complexos ou instaveis
durante o processo de aprendizado. Entre as estratégias mais consagradas estd a regularizacio L,
que consiste em adicionar a funcao de custo um termo proporcional ao quadrado da magnitude
dos pesos da rede (Krogh e Hertz, 1992; Bishop, 2006). Isso encoraja a manutencdo de pesos
pequenos, evitando que determinados neurdnios dominem a predicdo ou que a rede se torne
sensivel a pequenas flutuacdes nos dados.

Matematicamente, a penalizacdo L, pode ser expressa como A ):w%, emque A éo
coeficiente de regularizacdo que controla o peso da penalizag¢do no célculo da funcao de custo.
Em muitos frameworks, como o FastAI, essa penalizacio é implementada na forma do chamado
weight decay (Loshchilov e Hutter, 2019), que atua diretamente no processo de atualiza¢do dos
pesos durante o treinamento. Embora os dois conceitos estejam intimamente relacionados, o
weight decay desacoplado, como o proposto em AdamW, tem se mostrado mais eficaz por manter
a penalizacdo fora do célculo direto do gradiente, atuando apenas como uma restri¢do adicional
sobre 0s pesos.

Esse tipo de regularizacdo é especialmente tutil em redes profundas ou quando se
trabalha com conjuntos de dados de alta dimensionalidade, pois ajuda a manter o0 modelo mais
parcimonioso, mais robusto ao ruido e com melhor capacidade de generalizacao (Hastie et al.,

2015; Zhang e Satapathy, 2021; Foret et al., 2021).
2.3.5 Treinamento de Precisdo Mista (Mixed Precision)

O treinamento de precisdao mista, ou mixed precision training, ¢ uma técnica que
combina representacdes numéricas de diferentes precisdes (geralmente ponto flutuante de 32
bits (f1loat32) com ponto flutuante de 16 bits (f1oat16) durante o treinamento de redes neurais.
Definido em (Micikevicius et al., 2018), seu objetivo é acelerar o processo de otimizagdo e
reduzir o consumo de memoria sem comprometer significativamente a precisao dos resultados.

A abordagem consiste em realizar operacdes matematicas, como multiplicacdes de
matrizes e convolugdes, em precisao reduzida (float16), enquanto certas varidveis sensiveis,

como acumuladores de gradientes e pesos mestres, permanecem em float32. Essa estratégia
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tira proveito do fato de que muitas operagdes ndo exigem alta precis@o para serem eficazes, mas
preserva a precisdo onde € mais critica para a estabilidade do treinamento. Entre os beneficios do
uso de precisdo mista estdo a reducao significativa no tempo de treinamento, a menor demanda
por memoria da GPU, a possibilidade de utilizar quantidades de dados maiores e o aumento da
eficiéncia energética. No entanto, o uso dessa técnica exige cuidado com possiveis problemas
de underflow (valores proximos de zero representados como zero em float16) ou overflow
(valores muito grandes representados incorretamente), que podem ser mitigados com técnicas
como loss scaling — um reescalonamento tempordrio do valor da perda para evitar que ela se
anule durante a retropropagacgdo. Frameworks modernos como FastAI, PyTorch e TensorFlow
ja oferecem suporte nativo ao treinamento de precis@o mista, aproveitando bibliotecas otimizadas
como a NVIDIA Apex ou o pacote torch.cuda.amp (NVIDIA Corporation, 2023; PyTorch
Team, 2023).

2.3.6 Congelamento e Descongelamento de Camadas

O congelamento e o descongelamento de camadas (freezing e unfreezing) sao técnicas
aplicadas com frequéncia no treinamento de modelos por transferéncia de aprendizado. Quando
uma rede neural pré-treinada € utilizada em uma nova tarefa, geralmente seus pesos ja capturam
representacdes lteis de caracteristicas genéricas, como bordas, texturas ou padrdes de formas
(Yosinski et al., 2014).

Ao “congelar” as camadas iniciais da rede, impedimos que seus pesos sejam atuali-
zados durante o treinamento, preservando esse conhecimento genérico previamente aprendido.
Tipicamente, apenas as ultimas camadas sdo treinadas inicialmente, permitindo que o modelo se
adapte a nova tarefa sem perder a estabilidade oferecida pelas camadas congeladas.

ApOs essa primeira etapa de adaptacdo, realiza-se o “descongelamento” progressivo
das camadas, permitindo que toda a rede seja ajustada aos dados especificos do novo problema.
Esse processo, também chamado de ajuste fino (ou fine-tuning), contribui para melhorar o desem-
penho final do modelo, equilibrando a preservagdo do conhecimento prévio com a flexibilidade
de adaptacdo (Donahue et al., 2014).

Essa técnica é especialmente ttil quando se trabalha com conjuntos de dados pe-
quenos, pois evita que o modelo superajuste logo nas primeiras épocas. O FastAI (Howard e
Gugger, 2020) automatiza esse processo, possibilitando o congelamento e descongelamento de

camadas com comandos simples e controlando a taxa de aprendizado de forma diferenciada para
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diferentes blocos da rede, o que facilita a convergéncia e maximiza a generalizacao.

2.4 Meétricas de Avaliacao

A avaliacdo quantitativa do desempenho de um modelo de aprendizado profundo
requer o uso de métricas estatisticas padronizadas, capazes de refletir, com rigor, a qualidade
das predi¢des realizadas. Neste trabalho, tais métricas s@o obtidas automaticamente ao final do
treinamento por meio do cédigo implementado na biblioteca FastAI, permitindo monitorar a
performance do modelo a cada passo e compard-la entre diferentes arquiteturas, como veremos
nos Capitulos 3 e 4. A seguir, serdo descritas as principais métricas utilizadas, com énfase
naquelas mais relevantes para cendrios com dados desbalanceados (He e Garcia, 2009), como

serd no caso de nossos dados para detec¢do de leucemia linfoblastica aguda.
2.4.1 Recall (Sensibilidade): definicdao e exemplo

O Recall, também chamado de Sensibilidade ou taxa de verdadeiros positivos, € uma
métrica fundamental para problemas de classificagdo (Sokolova e Lapalme, 2009), especialmente
quando se trata de detectar corretamente exemplos positivos em um conjunto de dados. Ele
quantifica a capacidade do modelo em recuperar todos os exemplos relevantes da classe positiva.

Sua férmula € dada por:

VP

Recall = ———,
VP +FN

em que VP representa o nimero de verdadeiros positivos € FN o nimero de falsos negativos. Em
outras palavras, o recall mede a propor¢do de casos positivos corretamente identificados pelo
modelo em relagao ao total de positivos reais.

Essa métrica é particularmente importante em contextos nos quais deixar de identifi-
car um caso positivo pode ter consequéncias graves. Isso inclui, por exemplo, o diagndstico de
doencas, a deteccao de fraudes (ver (Pozzolo et al., 2015)) ou o reconhecimento de ameagas em
seguranca computacional. Nessas aplicagdes, € preferivel cometer alguns falsos positivos do que
ignorar um verdadeiro positivo relevante.

Em conjunto com outras métricas, como a precisio e a acuricia, o Recall permite
avaliar de forma mais completa o comportamento de classificadores em situagdes reais, especial-

mente quando hé desbalanceamento entre as classes (He e Garcia, 2009).
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2.4.2 FI Score: formula e interpretacio

Ainda segundo Sokolova e Lapalme (2009), o F1 Score € uma métrica que combina
harmonicamente o Recall e a precisdo (proporcao de acertos entre as predi¢des positivas). Ou
seja, ¢ a média harmonica entre a precisdo e 0 Recall. Essa combinagio € especialmente util
em cendrios com classes desbalanceadas, como evidenciado por He e Garcia (2009), nos quais

métricas tradicionais como a acurdcia podem fornecer uma visdo distorcida do desempenho do

modelo.
A férmula do F1 Score é a média harmdnica entre a precisdo e o Recall, ou seja:
Fl—>2 Precisao - Recall
7 Precisdo + Recall’
sendo a precisio definida como ——t— e o recall como . em que VP é o nimero de
p P+FP VP+FN* q

verdadeiros positivos, FP de falsos positivos e FN de falsos negativos.

Powers (2011) explica que o uso da média harmonica, ao invés da média aritmética,
penaliza fortemente situacdes em que ha um desequilibrio significativo entre precisdo e recall.
Dessa forma, o FI Score s6 sera alto se ambos forem simultaneamente elevados, tornando-se
uma métrica ideal quando se busca um equilibrio entre os dois critérios, especialmente em
aplicagdes criticas onde tanto a detecc@o de positivos quanto a minimizagao de alarmes falsos
sdo importantes.

Para exemplificar, suponha um modelo que obtém 0,9 de precisao e 0,6 de recall. A
média aritmética desses valores seria 0,75, mas o F1 Score seria:
0,9-0,6 0,54

=2.-2""=0,72.

Fl=2.— " =
0,9+0,6 1,5

Esse resultado evidencia que, embora a precisao seja alta, a performance geral do
modelo sofre penalizacao pela dificuldade em capturar todos os casos positivos. Em contraste,
um modelo que obtiver 0.75 em ambos (precisdo e recall) teria um F1 Score igual a 0.75,
indicando um equilibrio mais saudével entre as duas dimensoes.

Essa métrica € amplamente utilizada em tarefas de classificacao bindria e multilabel
(Tsoumakas et al., 2010; Sokolova e Lapalme, 2009), especialmente quando ha desequilibrio
entre as classes, como na deteccdo de leucemia linfobl4stica aguda, em que a propor¢do de casos

positivos pode ser pequena em relac@o ao total de amostras.
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2.4.3 Outras Métricas

Além do recall e do F1 Score, outras métricas podem ser utilizadas para avaliar o
desempenho de modelos de classificacdo, dependendo do contexto e dos objetivos especificos da
tarefa.

A acurécia representa a propor¢ao total de classificagdes corretas, tanto de positivos
quanto de negativos, em relacdo ao nimero total de amostras. Embora seja uma métrica intuitiva
e amplamente utilizada, sua utilidade € limitada em cendrios com classes desbalanceadas, pois
um modelo pode apresentar alta acurdcia mesmo errando sistematicamente a classe minoritaria
(Provost e Fawcett, 2000).

A precisdo, ja usada na defini¢do do F/ Score, quantifica a propor¢do de verdadeiros
positivos entre todas as predi¢des positivas. Ela € especialmente importante quando se deseja
minimizar falsos positivos, como em aplicacdes relacionadas a filtragem de spam (Mitchell,
1997) ou na triagem de exames com custo elevado.

Outra métrica relevante, comentada em Fawcett (2006), é a curva Receiver Operating
Characteristic (ROC), que representa graficamente a taxa de verdadeiros positivos em funcao da
taxa de falsos positivos para diferentes limiares de decisdo. A drea sob essa curva, conhecida
como AUC, fornece uma medida agregada do desempenho do modelo em todos os possiveis
limiares. Especificamente, a drea pode ser interpretada como a probabilidade de que o modelo
atribua uma pontuacao maior a uma instancia positiva do que a uma negativa escolhida aleato-
riamente. Assim, uma AUC proxima de 1 indica alto poder discriminativo, enquanto valores
proximos de 0,5 indicam desempenho equivalente ao acaso.

Por fim, destaca-se também a matriz de confusao (Han et al., 2011), que resume as
predi¢des do modelo em uma tabela 2 X 2 (ou maior em casos multiclasse como neste trabalho),
permitindo visualizar a distribuicdo dos acertos e erros por classe. Ela é especialmente util
como ferramenta diagndstica complementar as métricas numéricas. Lemos a matriz de confusio
analisando a correspondéncia entre as classes reais (geralmente representadas pelas linhas) e
as classes preditas pelo modelo (geralmente nas colunas). Dessa forma, os valores localizados
na diagonal principal representam os casos corretamente classificados — ou seja, em que a
classe predita coincide com a real. J4 os valores fora da diagonal correspondem as classificagdes
incorretas, indicando em quais classes o modelo mais frequentemente se confunde.

Cada uma dessas métricas fornece uma perspectiva distinta sobre o comportamento

do modelo, e a escolha adequada depende do equilibrio desejado entre erros do tipo I (falsos po-
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sitivos) e do tipo II (falsos negativos), das caracteristicas do conjunto de dados e das implicacdes

préticas associadas aos diferentes tipos de erro.

2.5 Arquiteturas Avancadas de Redes Convolucionais

Redes convolucionais profundas modernas exploram arquiteturas sofisticadas para
aumentar a efici€éncia computacional e a capacidade de generalizacdo, mesmo em tarefas com-
plexas. Entre os principais avangos estdo as redes com conexdes densas e as que utilizam
dimensionamento composto. Esta S ecao apresenta duas dessas arquiteturas: a DenseNet-201 e
aEfficientNet-B3, esta ultima utilizada neste trabalho para fins de diagndstico assistido de

LLA.

2.5.1 DenselNet-201: conceito de conexoes densas

A DenseNet-201 é uma variante da familia DenseNet (Densely Connected Convo-
lutional Networks), proposta por (Huang et al., 2017). Essa arquitetura foi usada no artigo que
inspirou este trabalho (Ghaderzadeh et al., 2022) e introduz o conceito de conexdes densas entre
camadas, em que cada camada recebe como entrada ndo apenas a saida da camada anterior, mas
também as saidas de todas as camadas anteriores.

Formalmente, a /-ésima camada recebe como entrada a concatenagao de todos os

mapas de ativagdo anteriores:

x; = Hj([x0,x1,...,x1-1]),

em que [xp,xp,...,X;_| representa a concatenacéo das saidas das camadas anteriores e H;(-) é
uma composicdo de operagdes como convolugdo, normalizacdo em lote (batch normalization) e
funcdo de ativagcdo ndo linear (geralmente ReLU).

Essa estratégia de conectividade resulta em diversos beneficios: reutilizagado eficiente
de caracteristicas, propagacio mais robusta do gradiente, redu¢do do nimero de parametros e
incentivo a aprendizagem de representacdes mais compactas. Além disso, como ndo hd soma dos
mapas de ativagao (como nas ResNets), mas sim concatenacdo, a DenseNet tende a preservar
mais informacdes ao longo da rede.

A DenseNet-201, em particular, é composta por 201 camadas profundas, organi-
zadas em quatro blocos densos separados por camadas de transicdo que realizam compressao

(reducao de dimensionalidade) e pooling. Seu uso tem sido bem-sucedido em tarefas de classifi-
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cacdo de imagens médicas, especialmente em contextos nos quais a preservacao de sutis padroes

visuais € critica.
2.5.2 EffictentNet-B3: compound scaling

A EfficientNet-B3 pertence a familia EfficientNet, introduzida por (Tan e
Le, 2019), cuja principal inovagao reside no uso de uma estratégia sistematica e otimizada de
escalonamento da rede, chamada de compound scaling.

Tradicionalmente, ao tentar aumentar a capacidade de uma rede, os projetistas
escolhem entre aumentar sua profundidade (nimero de camadas), largura (nimero de filtros
por camada) ou resolucdo da imagem de entrada. O compound scaling propde uma abordagem
integrada, em que esses trés fatores sdo escalados simultaneamente de forma balanceada, com
base em um conjunto de coeficientes derivados empiricamente.

Seja ¢ um fator de escala global, o método define:
profundidade (depth): d = a®
largura (width): w = B?

resolugdo (resolution): r = }/‘p

sujeito a restricao:

a-B2-yY~2, coma,fB,y>1.

Essa restri¢do visa garantir que o aumento simultaneo da profundidade, largura e resolucao da
rede nao leve a um crescimento exponencial do custo computacional. Especificamente, como
o niimero de operacdes (FLOPs) tende a crescer proporcionalmente a d - w? - 2, a imposicio
de que o - B2 - y> ~ 2 permite duplicar a complexidade computacional de forma controlada
a cada incremento de ¢, assegurando um balanceamento eficiente entre desempenho e custo
durante o escalonamento. Além do escalonamento eficiente, a EfficientNet-B3 também
emprega blocos MBConv (Mobile Inverted Bottleneck Convolution), originalmente introduzidos
na MobileNetV2 (Sandler et al., 2018). Esses blocos combinam convolugdes separdveis por
profundidade (depthwise separable convolutions), atalhos residuais e camadas de expansao/con-
tracdo para aumentar a eficiéncia computacional, reduzindo o custo de FLOPs com pouca perda
de desempenho.

A versdo B3 utiliza uma resolugado de entrada de 300 x 300, com maior profundidade

e largura que a versdo base (B0O), e representa um ponto de equilibrio entre desempenho e tempo
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de treinamento. Essa arquitetura se mostra promissora para tarefas médicas com dados visuais

de alta complexidade e volume moderado (Batool e Byun, 2023).
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3 METODOLOGIA

Neste Capitulo descrevemos os procedimentos adotados pelo artigo original e o
proposto por esse trabalho para o desenvolvimento de um novo modelo de classificagdo para
o diagnéstico assistido de LLA utilizando RNCs. Serdo detalhadas as etapas referentes a base
de dados utilizada, a escolha da arquitetura do modelo, a estrutura do cédigo implementado, o

processo de treinamento e teste, além das métricas aplicadas para validacao dos resultados.

3.1 Base de Dados

A base de dados (dataset) utilizada em ambas as abordagens comentadas neste
trabalho foi compilada num hospital em Teera, Ird. Ela consiste em imagens de esfregaco
sanguineo periférico em alta qualidade, disponibilizadas publicamente pelos autores do artigo
original na plataforma Kaggle (Aria et al., 2021). As imagens sdo classificadas em quatro
classes/subtipos de células linfoblasticas explicados por Kantarjian e O’Brien (2013) e Pui et al.
(2015):

— Benigno: Refere-se a células morfologicamente normais, ndo neoplasicas, € que nao
apresentam caracteristicas de malignidade. Sua identificac@o € essencial para estabelecer
um contraste preciso entre amostras sadias e leucémicas, evitando falsos positivos no
diagndstico.

— Early (Inicial): Denota células em um estdgio inicial de diferenciacdo ou maturagdo,
frequentemente associadas aos blastos hematopoiéticos. Em casos de leucemia linfo-
bléstica aguda (LLA), a presenca de células em estdgio inicial pode indicar o inicio da
transformacao leucémica.

— Pre-B (Pré B): Células precursoras da linhagem B que ja expressam alguns marcadores
de diferenciacdo, mas ainda ndo atingiram a maturacdo completa. Sao frequentemente
encontradas em pacientes com LLA tipo B, e sua proliferacdo descontrolada constitui um
dos principais alvos diagndsticos.

— Pro-B (Pré B): Representa um estigio ainda mais imaturo da linhagem B, anterior ao
Pre-B. Essas células ainda ndo expressam imunoglobulinas na membrana e marcam o
inicio do comprometimento linféide na LLLA-B. Sua deteccdo é relevante para classificar
subtipos da doenca e avaliar progndstico.

As amostras foram rotuladas por especialistas utilizando citometria de fluxo como
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critério diagndstico definitivo. A base contém um total de 3256 imagens, de 89 pacientes com

suspeita de LLA com as seguintes quantidades por tipo:

Figura 5 — Distribui¢do das classes rotuladas das imagens no dataset
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Fonte: (Ghaderzadeh et al., 2022)

Ou, em forma de tabela:

Tabela 1 — Distribui¢do de tipos das células em forma tabular.
Tipo Quantidade

Inicial 985 (30,25%)
Pre 963 (29,58%)
Pro 804 (24,69%)
Benigno 504 (15,48%)

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021).

Apesar do ndmero total de pacientes ser relativamente pequeno, a base de dados é
composta por muitas imagens. Isso se deve a captura de multiplos campos microscopicos por
paciente, refletindo a variabilidade celular de um mesmo individuo, o que permite que o modelo
aprenda representagcdes mais robustas e generalizdveis. As imagens foram captadas através de
fotos tiradas num microscépio com zoom 100X por uma camera Zeiss acoplada a microscopios
opticos e originalmente possuiam resolucido de 1024 x 768 pixels, no formato JPG, e foram
pré-processadas para remocdo de ruidos e normalizacdo dos valores de pixel, adequando-se ao
padrao de entrada das redes neurais convolucionais pré-treinadas. O pré-processamento das

imagens envolveu quatro etapas: (i) segmentacao dos blastos por limiariza¢do no espago de
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cor HSV; (ii) conversdo e redimensionamento para 224 x 224 pixels; (iii) normalizacdo das
intensidades de pixel para o intervalo [0, 1] com base na média e desvio padrdo globais; e (iv)
aumento de dados via transformagdes aleatdrias (alteracao de brilho, contraste, adi¢ao de ruido

JPEG, rotacdes e reflexdes horizontais e verticais), conforme os pardmetros descritos na Tabela 2.

Tabela 2 — Parametros de aumento de dados utilizados no treinamento original.

Transformacao Intervalo/Tipo

Brilho [—10%,+10%]
Contraste [—10%, +10%]
Rotacdo [—20°,4-20°]

Ruido JPEG Qualidade entre 50 e 100
Espelhamento Horizontal e vertical

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021).

Embora a base de dados disponibilizada publicamente na plataforma Kaggle conte-
nha imagens anotadas e padronizadas, a segmentacdo dos blastos em HSV ¢é realizada dinami-
camente durante o processamento das imagens no pipeline de treinamento. Esta segmentacdo
¢ feita por meio de limiares de cor definidos no espaco HSV, gerando mascaras bindrias que
destacam regides com predominancia de coloracdo purpura, tipica dos linfoblastos. A seguir,
na Figura 6, uma amostra de 16 fotos aleatdrias (ja pré-processadas) presentes no conjunto de

dados.



Figura 6 — Algumas das imagens presentes no dataset
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Antes de explicarmos o modelo proposto, precisamos definir o que ja foi realizado

anteriormente por Ghaderzadeh et al. (2022) e que, como consequéncia, inspirou a abordagem

deste trabalho.

3.2 Metodologia de Aplicacio do Modelo DenseNet-201

Neste estudo base, empregou-se a arquitetura DenseNet-201 via Python como

extratora de caracteristicas para a tarefa de diagndstico e classificagdo de subtipos da LLA com
base em imagens de esfregacos sanguineos periféricos. E importante frisar que a implementagio
estd disponivel publicamente em (Aria, 2022) e utiliza o conjunto de dados disponibilizado
na plataforma Kaggle em (Aria et al., 2021). O modelo proposto foi estruturado com duas
entradas: a imagem original e sua correspondente imagem segmentada. Ambas foram utilizadas
em paralelo na etapa de extracdo de caracteristicas, operada por uma DenseNet-201 pré-treinada

no ImageNet (famosa base de dados com indmeras imagens, usada para treinar modelos de
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visdo computacional). Inicialmente, os pesos da DenseNet foram congelados, permitindo o
treinamento apenas do bloco de classificacdo, composto por camadas densas, normalizacao
em lote, funcdes de ativacido (LeakyReLU e ReLU) e dropout (técnica de regularizacio usada
em redes neurais profundas para evitar overfitting). Apos algumas épocas, a DenseNet foi
descongelada para ajuste fino com a mesma base de dados, garantindo especializa¢gdo no dominio
biomédico. O treinamento foi conduzido com a funcdo de perda entropia cruzada categorica,
suavizacdo de rétulo (label smoothing), regularizacdo L, (coeficiente de 0,001) e dropout de
20%. O otimizador utilizado foi o Adam, com taxa de aprendizado inicial de 10~ e agendamento
por Cosine Annealing. A divisao dos dados seguiu a propor¢ao de 64% para treino, 16% para
validagdo e 20% para teste.

A implementacdo foi realizada em Python com a biblioteca Keras, utilizando o
pacote TensorFlow. Os experimentos foram executados em um computador com processador
Intel Core 17-7700K, 16 GB de RAM e GPU Nvidia GTX 1080. O treinamento completo
convergiu em menos de 220 épocas, atingindo acurécia de validagdo de 99,85% e perda inferior
a 0,0015. A duragdo de tempo em que o cédigo rodou ndo foi explicitada no artigo. Segundo
Ghaderzadeh et al. (2022), a escolha da DenseNet-201 se justificou por seu desempenho superior
em comparagdo com outras nove arquiteturas de redes convolucionais avaliadas sob as mesmas
condigdes experimentais. Com menor nimero de parametros treindveis (cerca de 20 milhdes), a

DenseNet-201 apresentou eficiéncia e capacidade de generalizacao.

3.3 Modelo Proposto

Para o modelo de classificagdo das imagens médicas proposto por este trabalho, com
cddigo disponibilizado em Esteves (2025), optou-se pelo uso da arquitetura EfficientNet-B3,
conhecida por seu equilibrio entre alta performance e baixo custo computacional (Tan e Le,
2019). Essa escolha visa permitir a aplicagdo do modelo em ambientes clinicos com restrigdes
de hardware, mantendo uma acurdcia competitiva frente a modelos mais complexos como o
DenseNet201. A EfficientNet-B3 foi implementada por meio da biblioteca FastAI, que
oferece facilidades para o uso de redes pré-treinadas com técnicas de transferéncia de aprendizado.
O modelo foi inicialmente congelado, treinando-se apenas as camadas finais, com o objetivo
de preservar as caracteristicas ja aprendidas em grandes bases de imagens. Em seguida, foi
descongelado para calibragdo e aperfeicoamento, um procedimento semelhante adotado no artigo

original.
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3.3.1 Ambiente do Codigo

A implementacdo foi realizada utilizando Python 3.11 (Python Software Founda-
tion, 2025) e a biblioteca FastAI do Python. O fluxo de processamento de dados incluiu o
carregamento das imagens a partir de um dataframe contendo os caminhos de arquivos hospeda-
dos no Google Drive e seus rétulos para identificagdo. O cédigo rodou em aproximadamente
7 minutos em um ambiente em nuvem do Google Colab. O processamento foi alocado au-
tomaticamente pelo servico em um computador com CPU Intel Xeon (2 nudcleos), 12GB de
RAM e GPU Nvidia Tesla 4 com 15GB de VRAM. A cria¢do do modelo utilizou a funcao
vision_learner do FastAI, com a arquitetura EfficientNet-B3 e métricas de avaliagdo
definidas como acuricia e F/-Score. O treinamento foi conduzido utilizando técnicas de mixed

precision para acelerar o processo sem perda de precisdo.
3.3.2 Treino e Teste do Modelo

O modelo foi treinado por 10 épocas, com taxa de aprendizado (learning rate) inicial
determinada automaticamente a partir da funcido de learning rate finder do FastAI. O
otimizador Adam foi utilizado para ajuste dos pesos, com regularizagdo L. O conjunto de dados
foi dividido em 80% para treino e 20% para teste. Esta divisao foi realizada a partir do dataset
original, sem a separacdo de um terceiro conjunto de validacdo independente para ajustes de
hiperparametros intermedidrios. O processo de treinamento incluiu a técnica de one-cycle policy,
que ajusta dinamicamente a taxa de aprendizado durante as épocas para melhorar a convergéncia.
Ap6s o treinamento, o modelo foi avaliado no conjunto de teste separado, e as métricas de

desempenho foram computadas.
3.3.3 Meétricas de Avaliacdo

Para avaliar o desempenho do modelo, foram utilizadas as métricas de acuricia,
precisdo, recall e F1-Score para cada classe, considerando a importancia de um diagndstico
confidvel em ambiente clinico. A matriz de confusdo também foi utilizada para analisar os
erros de classificacdo entre as classes, além da curva ROC e a Area sob a curva (AUC). Essas
métricas fornecem uma visao detalhada da capacidade do modelo em identificar corretamente os
diferentes subtipos de LLA, além de possibilitar a comparacdo direta com os resultados obtidos

em estudos anteriores.
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4 RESULTADOS

Este Capitulo apresenta os resultados obtidos com o modelo EfficientNet-B3 na
tarefa de classificagdo dos subtipos de leucemia linfobldstica aguda a partir das imagens de
esfregaco sanguineo. Sdo exibidos os principais indicadores de desempenho, a andlise das curvas
de aprendizado e ROC, a matriz de confusdo, além da comparacao dos resultados com o modelo

DenseNet201, utilizado no artigo-base.

4.1 Desempenho do Modelo

O modelo EfficientNet-B3 treinado atingiu uma Acurécia final de 99,08% no
conjunto de teste e 98,92% na acurdcia final, indicando alta capacidade de generalizacdo. Com
base na saida completa da fun¢do learn.summary (), o modelo tem 12.191.016 parametros,
sendo treindveis 1.582.080 e os ndo treindveis: 10.608.936. Isso significa que a maior parte do
modelo estd congelada (ndo treindvel), e apenas uma parte menor (a cabeca de classificacdo
adicionada pelo FastATI) estd sendo treinada para a sua tarefa especifica de classificagdo de
células. Ele também tem consideravelmente menos parametros que o do artigo original. Além
disso, as métricas detalhadas por classe, incluindo Precisdo, Recall e F1-Score, evidenciam que

o modelo € eficaz na distin¢do entre as quatro classes: benigno, inicial pre-B, pre-B e pro-B.

Tabela 3 —Métricas de desempenho por classe do modelo EfficientNet-B3

Classe  Precisao (%) Recall (%) FI1-Score (%)
Benigno 96,81 97,85 97,33
Inicial 98,47 97,97 98,22
Pre-B 98,98 100,00 99,49
Pro-B 99,39 98,20 98,80

Tabela 4 —Métricas de (Recall) e Especificidade por classe.

Classe  Recall Especificidade
Benigno 0,9765 0,9965
Inicial 0,9901 0,9911
Pre 0,9849 1,0000
Pro 1,0000 0,9970

Esses resultados evidenciam que o modelo apresenta alto Recall e Especificidade em

todas as categorias, reduzindo a probabilidade de falsos positivos e negativos, fator crucial para a
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aplicagdo clinica do sistema.

4.2 Curva de Aprendizado

A Figura 7 representa o resultado da execugdo da fun¢do Learning Rate Finder
da biblioteca FastAI. Este grafico é fundamental para a selecdo de uma taxa de aprendizado ideal
antes do treinamento principal do modelo, essencial para garantir uma convergéncia eficiente e
evitar problemas como divergéncia ou lentidao excessiva. A curva ilustra a variacao da perda
(Loss) em resposta ao aumento exponencial da taxa de aprendizado: observa-se um periodo
inicial de perda elevada (com learning rates muito baixas), seguido por uma regido de declinio
acentuado e consistente da perda, indicando o ponto onde o modelo aprende de forma mais eficaz.
Posteriormente, a perda comeca a aumentar rapidamente com learning rates excessivamente
altas, sinalizando divergéncia. A identificacao do ponto de maior declinio da perda ou da regido
anterior ao seu aumento abrupto (sinalizados pelos pontos ’valley’ e ’slide’) guiou a escolha da
taxa de aprendizado inicial para o treinamento de 20 épocas, contribuindo para os resultados de

alta performance e generalizacdo observados.

Figura 7 — Curva de taxa de aprendizado do modelo proposto
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Fonte: Elaborado pelo autor
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4.3 Curva ROC e AUC

A curva ROC multiclasse, ilustrada na Figura 8, € uma ferramenta grafica crucial para
avaliar a capacidade de discrimina¢do do modelo entre as classes. Para cada classe individual
(Benigno, Inicial, Pre e Pro), a curva se mantém préxima do canto superior esquerdo do grafico,
indicando uma Taxa de Verdadeiros Positivos (Recall) consistentemente alta para uma Taxa de

Falsos Positivos muito baixa.

Figura 8 — Gréfico da curva ROC do modelo proposto
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Fonte: Elaborado pelo autor

Para melhorar a visualizacio, elaboramos na Figura 9 uma versao ampliada do canto

esquerdo superior do grafico.
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Figura 9 — Gréfico da Curva ROC do modelo proposto com zoom
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Fonte: Elaborado pelo autor

Os valores da AUC corroboram a 6tima performance obtida: no conjunto de teste,
as Areas sob as Curvas variaram de 0,9993 (Benigno) a 0,9997 (Pre), com 0,9996 para Inicial
e 0,9996 para Pro. Os valores de AUC Micro-average e Macro-average, ambos de 0,9996 no
teste, solidificam a conclusdo de que o modelo possui um poder discriminativo quase perfeito e
generalizdvel em todas as categorias. Essa performance elevada, em que os valores de AUC se
aproximam de 1, € vital em um contexto de diagndstico médico, onde a capacidade de distinguir

com alta precisdo entre diferentes estdgios da doenga € fundamental.

4.4 Matriz de Confusao

A matriz de confusdo obtida no conjunto de teste, mostrada na Figura 10, evidencia
a alta precisao do modelo na classificacdo das classes, com poucos erros concentrados entre

subtipos morfologicamente similares, como o Benigno, Pre-B e Inicial.



47

Figura 10 — Matriz de confusao do modelo proposto
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A seguir na Figura 11, temos algumas imagens selecionadas aleatoriamente pelo
codigo. Nota-se que estdo com os rétulos originais e os preditos para facilitar a comparacdo
antes e depois do modelo. L.ogo, como em vdrios casos os dois sdo iguais, fica evidenciada a alta

precisdao do modelo.
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Figura 11 — Selecdo aleatdria da saida de 9 exames diagnosticados pelo modelo
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A fim de complementar a andlise, foi gerada também uma imagem com as 12

previsdes menos precisas processadas pela rede neural construida:
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Figura 12 — Selec@o dos exames diagnosticados menos precisamente
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Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021)

4.5 Comparacio com o Modelo DenseNet201

Em comparagdo com o DenseNet201 utilizado no estudo original, que alcangou
Acurécia de 99,85%, o modelo EfficientNet-B3 apresentou um promissor desempenho com-
petitivo, com menor nimero de parametros e custo computacional reduzido. Essa diferenca torna
o modelo EfficientNet-B3 uma alternativa vidvel para ambientes com restricdes de hardware,
mantendo alto nivel de precisdo necessario para assistir médicos em seus diagndsticos clinicos,

reduzindo subjetividade.

4.6 Discussao

Os resultados indicam que a arquitetura EfficientNet-B3 é capaz de aprender
quais sdo os padrdes relevantes nas imagens de esfregaco sanguineo para classificar os subtipos
de LLA com elevada acuricia e eficiéncia. A leve oscilagdo observada nas curvas de aprendizado

sugere que estratégias adicionais de regularizacdo podem ser exploradas para melhorar a robustez
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do modelo (isso estd melhor explicado na secdo seguinte, onde estdo detalhadas possiveis
solucdes e melhorias a serem aplicadas em trabalhos futuros). Adicionalmente, a atual auséncia
de segmentagdo prévia das imagens durante o processo mas presente no estudo original, simplifica
o pipeline e pode facilitar a ado¢do do modelo em laboratdrios clinicos, sem prejuizo significativo
na qualidade do diagnéstico. Também € importante destacar a necessidade de um conjunto

independente para validacao, no qual o modelo proposto € efetivamente testado.
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5 CONCLUSOES E TRABALHOS FUTUROS

Este trabalho apresentou o desenvolvimento e avaliacdo de um modelo de classifica-
cdo para a LLA e seus subtipos, utilizando a arquitetura EfficientNet-B3 aplicada a imagens
de esfregaco sanguineo periférico. A partir do uso da biblioteca FastAI e técnicas modernas
de aprendizado profundo, foi possivel alcancar uma Acuricia de 99,08% no conjunto de teste e
98.,92% na final, com métricas de Precisao, Recall, F1-Score e AUC elevadas em todas as classes
analisadas.

Os resultados evidenciam que o modelo EfficientNet-B3 é uma promissora al-
ternativa competitiva ao DenseNet201, referéncia no estudo base, apresentando desempenho
comparavel, com menor custo computacional e simplicidade operacional. Essa caracteristica
torna o modelo particularmente adequado para ambientes clinicos com recursos limitados, con-
tribuindo para a democratizacdo do diagndstico assistido por IA, também chamado de patologia
computacional.

Foi observado um leve indicio de overfitting a partir da décima época de treinamento,
evidenciado pela oscilagdo da perda de validagcdo enquanto a perda de treinamento continuava a
diminuir. Embora esse comportamento nao tenha comprometido o desempenho final do modelo,
sugere a necessidade de estratégias adicionais de regularizagcdo para futuras implementagdes.

Como trabalho futuro, recomenda-se a exploracdo de técnicas de segmentacao prévia
das imagens, conforme utilizado no artigo original (como a HSV), que podem aprimorar a
capacidade do modelo em focar nas regides de interesse, possivelmente aumentando a acuréicia.
Além disso, a aplicacdo de métodos de interpretabilidade pode oferecer insights e pistas valiosas
para a validagdo clinica, permitindo aos especialistas compreender os critérios utilizados pelo
modelo para suas decisdes. A inclusdo de validacdes cruzadas e o teste em conjuntos de dados
externos também sao passos importantes para assegurar a robustez e a generalizagdo do modelo.

Em suma, este trabalho contribui para o avan¢o do diagndstico assistido da LLA,
propondo uma solugdo eficiente e acessivel, que pode auxiliar profissionais da satide no processo

de triagem e detec¢do precoce da doenca.
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