
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE ESTATÍSTICA E MATEMÁTICA APLICADA

CURSO DE GRADUAÇÃO EM ESTATÍSTICA

PIETRO DE OLIVEIRA ESTEVES

USO DE REDES NEURAIS CONVOLUCIONAIS NO DIAGNÓSTICO DE

LEUCEMIA LINFOBLÁSTICA AGUDA

FORTALEZA

2025



PIETRO DE OLIVEIRA ESTEVES

USO DE REDES NEURAIS CONVOLUCIONAIS NO DIAGNÓSTICO DE LEUCEMIA

LINFOBLÁSTICA AGUDA

Trabalho de conclusão de curso apresentado ao
Curso de Graduação em Estatística do Centro
de Ciências da Universidade Federal do Ceará,
como requisito parcial à obtenção do grau de
Bacharel em Estatística.

Orientador: Prof. Dr. Juvêncio Santos
Nobre

FORTALEZA

2025



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

E84u Esteves, Pietro de Oliveira.
    Uso de redes neurais convolucionais no diagnóstico de leucemia linfoblástica aguda / Pietro de Oliveira
Esteves. – 2025.
    57 f. : il. color.

     Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de Ciências,
Curso de Estatística, Fortaleza, 2025.
     Orientação: Prof. Dr. Juvêncio Santos Nobre.

    1. Modelagem estocástica. 2. Redes neurais. 3. Oncologia. 4. Patologia computacional. 5. Inteligência
artificial. I. Título.
                                                                                                                                         CDD 519.5



PIETRO DE OLIVEIRA ESTEVES

USO DE REDES NEURAIS CONVOLUCIONAIS NO DIAGNÓSTICO DE LEUCEMIA

LINFOBLÁSTICA AGUDA

Trabalho de conclusão de curso apresentado ao
Curso de Graduação em Estatística do Centro
de Ciências da Universidade Federal do Ceará,
como requisito parcial à obtenção do grau de
Bacharel em Estatística.

Aprovada em: 05/08/2025.

BANCA EXAMINADORA

Prof. Dr. Juvêncio Santos Nobre (Orientador)
Universidade Federal do Ceará (UFC)

Profa. Dra. Maria Jacqueline Batista
Universidade Federal do Ceará (UFC)

Prof. Dr. Luis Gustavo Bastos Pinho
Universidade Federal do Ceará (UFC)



À minha família, pelo apoio incondicional. Mãe,

seu cuidado me guiou; pai, sua dedicação me

deu segurança. Aos meus irmãos, gratidão pelo

carinho e incentivo.



AGRADECIMENTOS

Ao corpo docente do Departamento de Estatística e Matemática Aplicada (DEMA),

minha sincera gratidão por todo o conhecimento transmitido. À Universidade Federal do Ceará

(UFC), por ter proporcionado minha formação acadêmica e pessoal.

Ao meu orientador e membro da banca, Prof. Dr. Juvêncio Nobre, cuja dispo-

nibilidade, inspiração, ensinamentos e, sobretudo, paciência foram pilares essenciais para a

concretização deste trabalho, e à Profa. Dra. Maria Jacqueline Batista e ao Prof. Dr. Luis

Gustavo Bastos Pinho, agradeço pelas valiosas contribuições e sugestões que enriqueceram esta

monografia.

À família: meus irmãos Enrico e Samya, minha mãe Cyntia e meu pai Francisco.

Vocês são a base de tudo. Agradeço por cada palavra de incentivo e por todo o apoio que me

deram; sem vocês, esta conquista não seria possível.

Aos amigos que a universidade me deu, tanto os da minha turma original quanto os

que conheci ao longo dos semestres, agradeço pela jornada.

Agradeço também aos meus amigos de vida, que mesmo de fora dos muros da

UFC, sempre estiveram presentes: Florêncio, Thiago, Renan, Braga, Bruno, Gustavo, Diego,

Will e Marcelo. Obrigado pelas risadas e pelo apoio mútuo que tornaram tudo mais leve. Um

agradecimento particular a João Neto (in memoriam), sempre presente e a inspiração inicial para

este trabalho.

Por fim, aos meus colegas do Observatório da Indústria, em especial: João, Paulo,

Lucas e Guilherme. Agradeço a parceria dentro e fora do mundo profissional.



“Eu cantei lá no Recife,

Perto do Pronto Socorro.

Ganhei duzentos mil-réis,

Comprei duzentos cachorro;

Ano passado eu morri

Mas esse ano eu não morro!”

(Zé Limeira, “Poeta do Absurdo”)



RESUMO

A Leucemia Linfoblástica Aguda (LLA) é um câncer hematológico agressivo que afeta majorita-

riamente crianças e exige diagnóstico precoce para aumentar a taxa de sobrevida. Os métodos

tradicionais de diagnóstico, como a aspiração de medula óssea e a citometria de fluxo, são invasi-

vos, caros e pouco de difícil acesso em regiões com recursos limitados (Pui et al., 2015). Estudos

como (Ghaderzadeh et al., 2022) propõem o uso de modelos de Inteligência Artificial (IA) para

auxiliar médicos na identificação da doença por meio de imagens, com foco na diferenciação

entre células benignas (hematogônias) e linfoblastos malignos. No entanto, essas abordagens

costumam ser mais complexas e demandam mais recursos, incluindo tempo de processamento.

Esta monografia também propõe o uso de Redes Neurais Convolucionais (RNCs) para auxiliar

na triagem e diagnóstico de LLA a partir de imagens de Esfregaço de Sangue Periférico (ESP),

utilizando a arquitetura EfficientNet-B3, conhecida por seu equilíbrio entre desempenho e

eficiência (Tan e Le, 2019). Com o suporte da biblioteca FastAI, foi implementado um algoritmo

de classificação que atingiu uma acurácia de 98,92% no conjunto de teste. Os resultados foram

comparados com os do artigo de referência, que utilizou DenseNet201 aliada à segmentação de

cor HSV nas imagens, dando indícios de que o modelo proposto tem o potencial de alcançar um

desempenho competitivo com menor complexidade. A abordagem adotada visa contribuir para o

diagnóstico dos médicos com uma ferramenta inteligente, confiável e mais acessível a ambientes

clínicos com infraestrutura limitada, mantendo a eficiência computacional.

Palavras-chave: modelagem estocástica; redes neurais; oncologia; patologia computacional;

inteligência artificial.



ABSTRACT

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic cancer that predominantly

affects children and requires early diagnosis to improve survival rates. Traditional diagnostic

methods, such as bone marrow aspiration and flow cytometry, are invasive, expensive, and

often inaccessible in resource-limited settings (Pui et al., 2015). Studies such as (Ghaderzadeh

et al., 2022) propose the use of Artificial Intelligence (AI) models to assist physicians in

identifying the disease through imaging, focusing on the differentiation between benign cells

(hematogones) and malignant lymphoblasts. However, these approaches are often complex and

resource-intensive, including longer processing times. This monograph also proposes the use of

Convolutional Neural Networks (CNNs) to support the screening and diagnosis of ALL from

Peripheral Blood Smear (PBS) images, employing the EfficientNet-B3 architecture, known

for balancing performance and efficiency (Tan e Le, 2019). Supported by the FastAI library,

a classification algorithm was implemented and achieved an accuracy of 98.92% on the test

set. The results were compared with those of the reference study, which used DenseNet201

combined with HSV color segmentation, indicating that the proposed model has the potential to

achieve competitive performance with lower complexity. The adopted approach aims to support

medical diagnosis with an intelligent, reliable, and more accessible tool for clinical settings with

limited infrastructure, while maintaining computational efficiency.

Keywords: stochastic modelling; neural networks; oncology; computational pathology; artificial

intelligence.
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1 INTRODUÇÃO

A Leucemia Linfoblástica Aguda (LLA) é um câncer hematológico agressivo que se

origina na medula óssea, caracterizado pela proliferação descontrolada de linfoblastos (células

imaturas do sistema linfático). É o tipo mais comum de leucemia em crianças, representando

cerca de 25% dos cânceres infantis, mas também afeta adultos (Pui et al., 2015). Um diagnóstico

precoce é importantíssimo, pois a LLA progride rapidamente, e o tratamento iniciado nas

primeiras semanas pode aumentar significativamente as taxas de sobrevida (Inaba et al., 2013).

Atualmente, o diagnóstico definitivo requer métodos muito invasivos, como aspiração

de medula óssea e imunofenotipagem por citometria de fluxo, que são caros, demorados e causam

desconforto aos pacientes, especialmente nas crianças (Terwilliger e Abdul-Hay, 2017). Além

disso, em regiões com poucos recursos, o acesso a esses exames é limitado, atrasando o início do

tratamento.

Um dos maiores desafios do diagnóstico inicial da LLA é a diferenciação entre

linfoblastos malignos e hematogônias (células linfoides benignas) em Esfregaço de Sangue

Periférico (ESP). Essa distinção é complexa porque hematogônias são células B imaturas não ma-

lignas, comumente encontradas em crianças e em recuperação pós-quimioterapia, e linfoblastos

malignos têm morfologia semelhante, levando a falsos positivos em análises manuais (Rimsza et

al., 2000). A análise microscópica tradicional depende da experiência do hematologista e está

sujeita a erros humanos devido à fadiga e à subjetividade.

O uso de técnicas de Inteligência Artificial (IA), especialmente as Redes Neurais

Convolucionais (RNCs) aplicadas à saúde, oferece uma alternativa promissora para complementar

o diagnóstico do médico ao reduzir a subjetividade na análise de imagens de exames. Isso permite

uma triagem mais eficiente, apoiando o profissional, diminuindo custos e, principalmente,

reduzindo a necessidade de exames invasivos em casos inequívocos (Esteva et al., 2017);(Topol,

2019).

1.1 Objetivos

Este trabalho tem como objetivos:

i. Apresentar um modelo de classificação de imagens de microscopia para auxiliar no

diagnóstico de LLA utilizando uma arquitetura alternativa otimizada para eficiência com-

putacional.
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ii. Implementar um pipeline automatizado para a análise dessas imagens.

iii. Comparar o desempenho do modelo proposto com a abordagem original, destacando as

diferenças entre precisão e complexidade.

Enquanto o artigo original de Ghaderzadeh et al. (2022) utiliza DenseNet201 com

segmentação HSV, este trabalho explora a EfficientNet-B3, que oferece menor custo com-

putacional (ideal para laboratórios com recursos limitados), facilidade de implementação e

performance competitiva suficiente para triagem inicial. A escolha dessa abordagem visa demo-

cratizar o diagnóstico de LLA, tornando-o acessível mesmo em cenários com poucos recursos

especializados (Zhang e Satapathy, 2021).

Para atingirmos os objetivos acima, o trabalho foi organizado da seguinte forma:

São 4 capítulos além deste primeiro, que contém a introdução da problemática e a motivação

geral do trabalho; o segundo trata da fundamentação teórica do trabalho, detalhando a teoria do

funcionamento das redes neurais e as técnicas de processamento e análise utilizadas. No Capítulo

3, apresentamos a metodologia proposta, detalhando os modelos de aprendizado estatístico, os

dados que os alimentam, seus requisitos e as condições e máquinas em que foram rodados. Em

seguida, no Capítulo 4, os resultados obtidos são discutidos, incluindo gráficos e tabelas para

ilustrar tudo mais claramente. Pra finalizar, temos as conclusões do trabalho e propostas de

melhorias e linhas de pesquisa a seguir em trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

A crescente demanda por soluções automatizadas em problemas complexos de

classificação, reconhecimento de padrões e tomada de decisão levou ao avanço de técnicas

inspiradas no funcionamento do cérebro humano (Goodfellow et al., 2016). As Redes Neurais

Artificiais (RNAs) surgem nesse contexto como modelos computacionais capazes de aprender

representações a partir de dados, sendo amplamente utilizadas em áreas como visão computa-

cional, processamento de linguagem natural, sistemas de recomendação e, mais recentemente,

diagnóstico médico assistido por computador (Esteva et al., 2017).

Neste capítulo, serão abordados os conceitos fundamentais das RNAs, começando

pela anatomia de um neurônio artificial e pelo algoritmo perceptron, considerado a base histórica

do desenvolvimento das RNAs. Em seguida, serão discutidas as funções de ativação mais

utilizadas, as RNCs, que se destacam pelo seu desempenho em tarefas envolvendo dados visuais,

como é o caso da análise de imagens de esfregaço sanguíneo e todos os processos e termos

comuns da área de ciência de dados, utilizados neste trabalho.

2.1 Redes Neurais Artificiais

Resumidamente, as RNAs são estruturas compostas por unidades de processamento

denominadas neurônios artificiais, organizados em camadas interconectadas. Cada neurônio

recebe entradas numéricas, aplica pesos e funções de ativação e gera uma saída que pode ou não

ser passada para camadas subsequentes. O aprendizado ocorre a partir da exposição a exemplos

rotulados, ajustando-se os pesos por meio de algoritmos de otimização com base no erro que

representa a diferença entre a saída prevista e o valor esperado. Cada um desses aspectos será

melhor detalhado a seguir.

2.1.1 Neurônio Artificial e Perceptron

O neurônio artificial é a unidade fundamental das RNAs. Gerstner et al. (2014)

comparam seu funcionamento ao dos neurônios biológicos, que transmitem impulsos elétricos a

partir de estímulos recebidos pelos dendritos, processando-os no corpo celular e gerando um

novo impulso na direção do axônio. De forma análoga, o neurônio artificial recebe entradas

numéricas, realiza uma operação matemática sobre elas e produz uma saída (McCulloch e Pitts,

1943).
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Desta forma, um neurônio artificial pode ser representado pela seguinte forma

funcional:

z =
n

∑
i=1

wixi +b,

em que xi são os valores das entradas (features), wi são os pesos associados a cada entrada, b

é o termo de viés (bias), que permite ao modelo ajustar o limiar da ativação e z é o somatório

ponderado das entradas.

O valor z é então passado por uma função de ativação f (z), que determina a saída

final do neurônio:

y = f (z).

A Figura 1 traz uma representação gráfica do funcionamento do neurônio:

Figura 1 – Representação do Neurônio Artificial

Fonte: Elaborado pelo autor

2.1.2 Redes Multicamadas e Funções de Ativação

As Redes Neurais Multicamadas (MLPs), também conhecidas como Multilayer

Perceptrons, representam uma evolução em relação ao perceptron simples, sendo capazes de

modelar relações complexas e não lineares entre variáveis de entrada e saída. Essas redes são

compostas por uma ou mais camadas ocultas entre a camada de entrada e a de saída, onde cada

camada é formada por múltiplos neurônios artificiais conectados à camada seguinte (Hornik et

al., 1989). A Figura 2 ilustra uma rede multicamada com fluxo em uma direção, 3 neurônios de

entrada, 2 camadas ocultas com 4 neurônios cada e 2 de saída. Há também 2 neurônios de bias,

um para cada camada oculta.
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Figura 2 – Representação de uma Rede Multicamada

Fonte: Elaborado pelo autor

Cada neurônio realiza uma transformação dos dados por meio de uma combinação

linear das entradas seguida de uma função de ativação não linear. A equação que representa o

funcionamento de um neurônio nas MLPs é:

a(l) = f

(

n

∑
i=1

w
(l)
i x

(l−1)
i +b(l)

)

,

em que a(l) representa a ativação da l-ésima camada, w
(l)
i são os pesos conectando os neurônios

da camada anterior, x
(l−1)
i são as ativações da camada anterior e b(l) é o termo de viés. A função

f (·) corresponde à função de ativação, que confere à rede a capacidade de modelar relações não

lineares (Goodfellow et al., 2016).

As funções de ativação desempenham um papel fundamental para o aprendizado de

padrões complexos (Radford et al., 2021). Sem elas, mesmo uma rede profunda se comportaria

como um modelo linear. A seguir, são apresentadas as principais funções de ativação utilizadas

em redes multicamadas:

– Sigmoide: definida como f (x) = 1
1+e−x , mapeia a saída para o intervalo (0,1). Foi ampla-

mente utilizada em redes antigas, mas tende a causar o problema do gradiente desvanecido

em redes profundas. Geralmente usada em redes de classificação binária (quando há

apenas duas classes e usamos uma única saída). A saída tem interpretação probabilística

(pode ser vista como uma “probabilidade” de estar em uma classe) (LeCun et al., 1998).

– Tangente hiperbólica: dada por f (x) = tanh(x) = ex−e−x

ex+e−x , mapeia a saída para o intervalo

(–1,1). Também sofre com o gradiente desvanecido, embora seja centrada na origem.
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Usada historicamente, pode ser uma opção interessante para redes rasas ou quando se quer

saídas simétricas, mas raramente usada em redes modernas (LeCun et al., 1998).

– ReLU (Rectified Linear Unit): definida como f (x) = max(0,x) = x+, é atualmente a

função mais comum em redes neurais profundas. Possui vantagens como simplicidade

computacional e mitigação parcial do gradiente desvanecido (Nair e Hinton, 2010).

– Softmax: definida como f (xi) =
exi

∑
K
j=1 e

x j
, transforma um vetor de valores reais em uma

distribuição de probabilidade sobre K classes. Cada valor de saída estará no intervalo

(0,1) e a soma de todas as saídas será igual a 1. É comumente utilizada na camada de

saída de redes neurais para tarefas de classificação multiclasse, permitindo interpretar os

valores como probabilidades associadas a cada classe. Por ser sensível a outliers e valores

extremos na entrada, pode amplificar diferenças sutis entre as ativações (Bridle, 1990).

Goodfellow et al. (2016) afirmam que a escolha da função de ativação pode afetar

significativamente o desempenho da rede, sendo a ReLU geralmente preferida em camadas ocultas

de redes modernas. Para a camada de saída, no entanto, é comum utilizar funções específicas

como a softmax, em problemas de classificação multiclasse, ou a sigmoide, para classificação

binária.

Redes multicamadas com pelo menos uma função de ativação não linear são capazes

de aproximar qualquer função contínua, segundo o Teorema da Aproximação Universal em

Hornik et al. (1989). Isso justifica sua ampla aplicação em tarefas como regressão, classificação

e reconhecimento de padrões.

2.1.3 Treinamento: Retropropagação e Ajuste de Pesos

Em síntese, o processo de treinamento de RNAs consiste em ajustar os pesos das

conexões entre os neurônios de modo a minimizar o erro entre a saída prevista pelo modelo e a

saída esperada. O algoritmo mais amplamente utilizado para esse ajuste é o backpropagation, ou

retropropagação do erro, em conjunto com métodos de otimização como o Gradiente Descendente

(Rumelhart et al., 1986). O treinamento ocorre em duas etapas principais:

1. Propagação direta (forward pass): os dados de entrada percorrem a rede camada por

camada até gerar uma saída. Com isso, é possível calcular a loss function (função de

perda), que quantifica o erro entre a previsão da rede (ŷ) e o valor real (y).

2. Retropropagação do erro (backward pass): o erro é propagado de volta pela rede, desde

a saída até a entrada. Nesse processo, é obtido o gradiente da função de perda em relação
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a cada peso da rede, usando a regra da cadeia para derivadas parciais. Esse gradiente é

então utilizado para atualizar os pesos.

Seja L a função de perda (ex: erro quadrático médio), e w um peso qualquer da rede.

O objetivo é minimizar E com relação a w, usando o gradiente ∂E
∂w

:

w← w−η ·
∂L

∂w
, (2.1)

em que η representa a taxa de aprendizado (learning rate), que controla o tamanho do passo

dado na direção do gradiente.

Durante a retropropagação, cada neurônio da rede calcula sua contribuição para o

erro total e propaga esse valor para os pesos que o antecedem. Esse processo é possível graças

à estrutura diferenciável da rede e ao uso de funções de ativação que possuem derivadas bem

definidas (Rumelhart et al., 1986).

Esse procedimento é repetido diversas vezes para todos os dados do conjunto de

treino, em ciclos chamados épocas (epochs). Ao final de múltiplas épocas, espera-se que a rede

tenha aprendido uma representação dos dados capaz de generalizar para novos exemplos.

Além do gradiente descendente simples, otimizadores mais sofisticados, como o

Adam, são frequentemente utilizados para acelerar a convergência e adaptar a taxa de aprendizado

para cada peso individualmente, como será discutido na Seção 2.3.2.

2.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (RNCs) são uma arquitetura de redes neurais

profundas especialmente projetadas para o processamento de dados com estrutura topológica,

como imagens, áudios e vídeos. Diferente das redes densamente conectadas, as RNCs exploram

a correlação espacial dos dados por meio de filtros aprendíveis, chamados kernels, que varrem a

entrada em janelas locais.

Inspiradas nos estudos de neurociência sobre o córtex visual de mamíferos, as RNCs

foram formalizadas inicialmente por LeCun et al. (1998) e ganharam grande destaque com

o avanço da capacidade computacional e o surgimento de grandes bases de imagens, como o

ImageNet. Desde então, tornaram-se a principal abordagem para tarefas visuais automatizadas

e têm sido cada vez mais aplicadas em diagnósticos médicos baseados em imagens, como

hematologia, oncologia, dermatologia e radiologia (Rawat e Wang, 2017; Litjens et al., 2017).
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2.2.1 Estrutura Geral de uma CNN

Com base nesses detalhes introdutórios, define-se que a arquitetura de uma CNN é

composta por três grandes blocos:

1. Bloco convolucional: camadas convolucionais com filtros de pequeno porte, funções de

ativação (como ReLU), normalização (ex.: BatchNorm) e camadas de pooling;

2. Bloco intermediário: a saída dos blocos convolucionais é achatada, formando um vetor

que representa a imagem em um espaço de características latentes;

3. Bloco de classificação: camadas totalmente conectadas processam o vetor para gerar uma

predição final. A última camada aplica uma função como softmax ou sigmoide.

Por exemplo, em um problema de classificação de leucemia com três classes (normal,

precoce, avançado), a saída da CNN pode ser um vetor com três valores normalizados por

softmax, representando a probabilidade de cada classe.

RNCs modernas adotam variações dessas estruturas básicas para melhorar o desem-

penho e a eficiência computacional. DenseNet, por exemplo, conecta cada camada convolucional

a todas as anteriores, promovendo o reuso de características. Na EfficientNet, introduz-se um

método sistemático de balanceamento entre profundidade, largura e resolução de entrada para

otimizar a acurácia com menor custo computacional (Huang et al., 2017; Tan e Le, 2019), como

será melhor definido na subseção 2.5.2.

2.2.2 Motivação e Aplicações em Imagens Médicas

Em tarefas de classificação de imagens, a rede precisa ser capaz de identificar padrões

visuais relevantes — como bordas, formas, texturas e objetos — mesmo quando estes aparecem

em diferentes posições ou com pequenas variações. Redes neurais totalmente conectadas (MLPs)

exigiriam que cada pixel da imagem fosse ligado a todos os neurônios da primeira camada, o que

levaria a um número explosivo de parâmetros. Além disso, ao achatar a imagem em um vetor

unidimensional, essa estrutura descarta informações espaciais fundamentais, como a relação de

proximidade entre pixels.

As RNCs solucionam esses problemas ao processar localmente as entradas com

filtros convolucionais que capturam padrões específicos em janelas de pequeno porte (ex.: 3×3

ou 5× 5). Esses filtros são treinados a reconhecer características visuais específicas e são

aplicados em toda a imagem por deslizamento, compartilhando seus pesos em cada posição —
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uma abordagem que economiza memória e favorece a generalização.

Em aplicações médicas, essa característica é particularmente útil. Por exemplo

(como é objetivo deste trabalho), ao analisar uma imagem microscópica de sangue periférico,

RNCs podem aprender a reconhecer padrões morfológicos de blastos leucêmicos, mesmo que

estejam em diferentes regiões da lâmina. Isso permite aplicar RNCs em tarefas como:

– Detecção de Leucemia Linfoblástica Aguda (LLA): identificando padrões celulares

anômalos em imagens digitalizadas de lâminas hematológicas;

– Classificação histopatológica: distinguindo entre tecidos cancerígenos e saudáveis em

biópsias;

– Detecção de anomalias radiológicas: como nódulos pulmonares em tomografias;

– Segmentação de estruturas: como separação automática de células ou identificação do

núcleo.

As RNCs superaram com folga outras abordagens em desafios computacionais como

o ImageNet e continuam sendo refinadas com novas arquiteturas e técnicas de regularização,

motivando seu uso em contextos sensíveis e de alto impacto, como o diagnóstico assistido por

IA (Litjens et al., 2017).

2.2.3 Camadas Convolucionais e Pooling

A operação de convolução consiste em aplicar o kernel sobre regiões locais da

entrada (por exemplo, pedaços de uma imagem), multiplicando os valores dos pixels por pesos

aprendíveis e somando os resultados. Cada filtro é responsável por detectar uma característica

visual. Por exemplo, um filtro pode ser treinado para detectar linhas horizontais, enquanto outro

detecta contornos circulares, etc.



23

Figura 3 – Representação de Filtros de Convolução

Fonte: (Hoffman, 2018)

Seja uma imagem I de tamanho a×a e um filtro K de tamanho k× k. A convolução

percorre a imagem linha por linha, coluna por coluna, gerando um mapa de ativação A, em que

cada valor representa a força com que aquele padrão foi detectado localmente. Essa operação é

dada por:

(I ∗K)(i, j) =
k

∑
m=1

k

∑
n=1

I(i+m−1, j+n−1) ·K(m,n).

Após cada convolução, aplica-se uma função de ativação, que mantém os valores

positivos e zera os negativos, permitindo à rede modelar relações complexas e evitar saturações.

Figura 4 – Representação de mapas de características resultantes da convolução

Fonte: (HE et al., 2015)

Em seguida, é comum aplicar camadas de pooling, que resumem regiões da imagem

para reduzir a dimensionalidade dos mapas de ativação e tornar o modelo mais robusto a pequenas

variações e ruídos (Scherer et al., 2010). No max pooling, por exemplo, o valor mais alto é

selecionado, preservando a ativação mais forte da região.
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Essas operações de convolução seguidas de pooling são repetidas diversas vezes,

construindo representações hierárquicas da imagem. Os mapas de ativação resultantes das

últimas camadas convolucionais são então ”achatados” e enviados para camadas densas (fully

connected), que finalizam o processo de classificação.

2.2.4 Blocos Convolucionais Avançados

Adicionalmente às camadas convolucionais tradicionais mencionadas, arquiteturas

modernas de redes neurais convolucionais utilizam blocos avançados que otimizam o uso de

parâmetros e melhoram a eficiência computacional. Entre os principais componentes, segundo

Tan e Le (2019), estão as convoluções separáveis em profundidade, as conexões residuais e o

bloco Mobile Inverted Bottleneck Convolution (MBConv), fundamental para modelos como a

EfficientNet.

- Convoluções Separáveis em Profundidade (Depthwise Separable Convolutions)

A convolução tradicional aplica filtros 3D que processam simultaneamente as dimen-

sões espaciais e os canais da imagem, o que demanda alto custo computacional. As convoluções

separáveis em profundidade dividem essa operação em duas etapas:

– Convolução Depthwise: aplica um filtro 2D em cada canal da entrada separadamente,

extraindo características espaciais sem combinar canais.

– Convolução Pointwise: utiliza filtros 1×1 para combinar os canais processados na etapa

anterior, permitindo a interação entre diferentes mapas de características.

Essa divisão reduz drasticamente o número de operações e parâmetros, acelerando o

processamento sem perda significativa de desempenho.

- Conexões Residuais (Skip Connections)

Introduzidas pela arquitetura ResNet (He et al., 2016), as conexões residuais consis-

tem em atalhos diretos que somam a entrada de um bloco com sua saída, criando um caminho

alternativo para o fluxo de informações e gradientes:

y = F(x)+ x,

em que x é a entrada, F(x) a transformação aprendida pelo bloco e y a saída. Essa estrutura facilita

o treinamento de redes muito profundas, prevenindo o problema do gradiente desaparecendo e
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permitindo que a rede aprenda ajustes residuais.

- Bloco MBConv (Mobile Inverted Bottleneck Convolution)

O bloco MBConv é uma combinação das técnicas acima com outras estratégias que

visam a máxima eficiência (Sandler et al., 2018; Ramachandran et al., 2017; Howard et al.,

2017):

– Bottleneck invertido: ao contrário do padrão tradicional, o bloco inicia com uma expansão

do número de canais (aumenta a dimensionalidade), para permitir maior capacidade de

aprendizado, e termina com uma redução, formando um gargalo.

– Convoluções separáveis em profundidade: o núcleo do bloco é uma convolução depthwise

3×3 que processa cada canal separadamente.

– Ativação Swish: função não linear suave, mais eficiente que a ReLU em muitos casos,

definida como Swish(x) = x ·σ(x), em que σ representa a função sigmoide.

– Batch Normalization: normaliza as ativações para acelerar o treinamento e melhorar a

estabilidade.

– Conexões residuais: se as dimensões de entrada e saída coincidirem, a entrada é somada

à saída do bloco, facilitando o aprendizado residual.

Fluxo dentro de um bloco MBConv:

1. Expansão dos canais por convolução 1×1;

2. Convolução depthwise 3×3 com ativação Swish e batch normalization;

3. Redução dos canais por convolução 1x1 (bottleneck);

4. Batch normalization;

5. Soma residual (quando aplicável);

6. Saída para o próximo bloco.

Esse design permite alta eficiência computacional com bom poder de extração de

características, o que explica o sucesso da EfficientNet em ambientes restritos de hardware.

2.3 Técnicas de Otimização e Regularização

O treinamento de redes neurais profundas envolve a minimização de uma função de

perda que mede o erro entre as previsões do modelo e os valores reais. Para isso, utilizam-se
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algoritmos de otimização baseados em gradiente, como o gradiente descendente e suas variantes

(Ruder, 2016). Contudo, apenas aplicar um otimizador eficiente não é suficiente: redes profundas

com muitos parâmetros são suscetíveis a problemas como superajuste (overfitting), instabilidade

numérica e lentidão no treinamento. Para lidar com essas questões, são empregadas técnicas

de regularização, como demonstrado por Loshchilov e Hutter (2019), que impõem restrições

ao aprendizado do modelo, promovendo maior capacidade de generalização (Srivastava et al.,

2014).

Nesta seção, serão abordados os principais conceitos e ferramentas utilizados para

tornar o treinamento mais eficiente e estável, incluindo algoritmos de otimização, ajustes da taxa

de aprendizado, uso de regularização L2 (conhecida como weight decay) e políticas modernas

como o One Cycle Policy de (Smith, 2017).

2.3.1 Otimizadores Baseados em Gradiente

A base da maioria dos algoritmos de otimização em redes neurais é o método do

gradiente descendente (Gradient Descent). Seu princípio fundamental foi introduzido por

Augustin-Louis Cauchy (Cauchy, 1847) como método numérico para minimização, antecipando

em mais de um século sua aplicação em redes neurais. Seus fundamentos são desenvolvidos

ao longo do tempo e explicados, por exemplo, em Boyd e Vandenberghe (2004). A ideia é que

se atualizam os pesos da rede na direção oposta ao gradiente da função de perda com respeito

a esses pesos. Ou seja, dado um peso w e a função de perda L(w), a atualização é dada pela

equação (2.1). Essa técnica simples é eficaz, mas segundo (Choromanska et al., 2015), tem

limitações, como sensibilidade à escolha do valor de η , o risco de ficar preso em mínimos locais

e a dificuldade em adaptar-se a diferentes escalas de variância nos dados.

Para contornar essas limitações, surgiram variantes mais sofisticadas, como:

– Gradiente Descendente com Momentum: adiciona uma fração do passo anterior à

atualização atual, ajudando a acelerar em regiões rasas e a suavizar oscilações;

– RMSprop: adapta a taxa de aprendizado para cada parâmetro com base na média dos

quadrados dos gradientes anteriores;

– Adam (Adaptive Moment Estimation): introduzido por Kingma e Ba (2015), combina as

ideias de momentum e RMSprop, ajustando o passo de atualização com base nas médias

dos gradientes e de seus quadrados, o que resulta em um comportamento estável e eficaz

mesmo em arquiteturas profundas.
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Dada sua robustez e simplicidade de uso, o otimizador Adam tem sido o padrão

de fato em muitos estudos recentes, incluindo neste trabalho, conforme detalhado a seguir na

Subseção 2.3.2.

2.3.2 Otimizador Adam

O Adam (Adaptive Moment Estimation) é um dos otimizadores mais utilizados em

redes neurais profundas atualmente, devido à sua capacidade de combinar o melhor de dois

mundos: a estabilidade do método de momento e a adaptação do gradiente por parâmetro, como

no RMSProp. Ele foi proposto por Kingma e Ba (2015) e rapidamente se tornou um padrão para

diversas tarefas de aprendizado profundo. O gradiente descendente tradicional aplica atualizações

uniformes para todos os pesos com base em um único valor de taxa de aprendizado (learning

rate). No entanto, redes profundas possuem milhares ou milhões de parâmetros com escalas e

sensibilidades distintas, o que dificulta a convergência eficiente com um único learning rate. O

Adam resolve isso adaptando o tamanho do passo para cada parâmetro com base no histórico de

gradientes. Ou seja, a cada iteração de atualização, o Adam realiza os seguintes cálculos para

cada parâmetro wt :

(i) Calcula o gradiente do erro em relação ao parâmetro: gt = ∇wJ(wt)

(ii) Atualiza a média dos gradientes (momento de 1ª ordem):

mt = β1 ·mt−1 +(1−β1) ·gt .

(iii) Atualiza a média dos quadrados dos gradientes (momento de 2ª ordem):

vt = β2 · vt−1 +(1−β2) ·g
2
t .

(iv) Realiza a correção de viés para as estimativas mt e vt :

m̂t =
mt

1−β t
1

e v̂t =
vt

1−β t
2
.

(v) Atualiza o parâmetro:

wt+1 = wt−η ·
m̂t√
v̂t + ε

.

em que η é o learning rate (geralmente 0.001), β1 e β2 são coeficientes de decaimento para os

momentos (geralmente 0.9 e 0.999), ε é um pequeno valor constante para evitar divisão por zero

(geralmente 10−8).
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Entre as vantagens deste otimizador em específico, temos as atualizações adapta-

tivas por parâmetro, estabilidade em problemas com gradientes ruidosos ou esparsos, rápida

convergência, especialmente no início do treinamento, e menor necessidade de ajuste da taxa de

aprendizado. Ele também funciona bem mesmo sem muita normalização de dados.

Apesar de sua popularidade, o Adam tem algumas desvantagens que devemos co-

mentar, como levar a uma generalização pior do que o Gradiente Descendente em alguns casos,

precisar de estratégias como weight decay (subseção 2.3.4) para controlar overfitting e ser

sensível a escolhas de hiperparâmetros em tarefas muito específicas.

Trazendo para o contexto do trabalho, o pacote FastAI utilizado no código imple-

menta o Adam de forma otimizada, integrando automaticamente práticas como o decaimento de

peso desacoplado (AdamW), política de taxa de aprendizado One-Cycle (ver subseção 2.3.3) e

a integração com Mixed Precision Training (subseção 2.3.5) para acelerar o treino em GPUs

modernas. Dessa forma, o uso do Adam no FastAI facilita a obtenção de bons resultados com

poucas linhas de código, sendo uma escolha padrão robusta para prototipagem rápida e produção.

2.3.3 Taxa de Aprendizado (Learning Rate) e Política One Cycle

Como foi aludido anteriormente, a taxa de aprendizado, ou learning rate (η), é

um hiperparâmetro essencial que define o tamanho dos ajustes feitos nos pesos da rede a

cada iteração. Ruder (2016) comenta que valores muito altos podem causar instabilidade no

treinamento, fazendo com que o modelo oscile ou divirja, enquanto valores muito baixos podem

resultar em uma convergência lenta e ineficaz.

Para lidar com essa sensibilidade, foram desenvolvidas estratégias adaptativas que

variam a taxa de aprendizado ao longo do treinamento. Uma das mais eficazes é a Política One-

Cycle, proposta por Smith (2017). Nessa abordagem, a taxa de aprendizado cresce gradualmente

até um valor máximo durante os primeiros ciclos do treinamento e, em seguida, decresce de forma

suave até um valor mínimo próximo de zero. Essa variação cíclica favorece uma exploração

inicial mais ampla da paisagem de erro e uma posterior estabilização dos pesos, o que pode

resultar em melhor generalização do modelo.

Além da taxa de aprendizado, o método One Cycle também pode ajustar outros

parâmetros, como o momento, ao longo do treinamento. No framework FastAI, essa técnica é

aplicada automaticamente e pode ser precedida por uma etapa de busca do melhor valor inicial

da taxa de aprendizado por meio do método Learning Rate Finder, que testa uma faixa de valores
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e aponta aquele que leva à maior queda na função de custo.

2.3.4 Regularização: L2 e Weight Decay

A regularização tem como objetivo principal evitar o sobreajuste do modelo aos

dados de treinamento, penalizando comportamentos excessivamente complexos ou instáveis

durante o processo de aprendizado. Entre as estratégias mais consagradas está a regularização L2,

que consiste em adicionar à função de custo um termo proporcional ao quadrado da magnitude

dos pesos da rede (Krogh e Hertz, 1992; Bishop, 2006). Isso encoraja a manutenção de pesos

pequenos, evitando que determinados neurônios dominem a predição ou que a rede se torne

sensível a pequenas flutuações nos dados.

Matematicamente, a penalização L2 pode ser expressa como λ ∑w2
i , em que λ é o

coeficiente de regularização que controla o peso da penalização no cálculo da função de custo.

Em muitos frameworks, como o FastAI, essa penalização é implementada na forma do chamado

weight decay (Loshchilov e Hutter, 2019), que atua diretamente no processo de atualização dos

pesos durante o treinamento. Embora os dois conceitos estejam intimamente relacionados, o

weight decay desacoplado, como o proposto em AdamW, tem se mostrado mais eficaz por manter

a penalização fora do cálculo direto do gradiente, atuando apenas como uma restrição adicional

sobre os pesos.

Esse tipo de regularização é especialmente útil em redes profundas ou quando se

trabalha com conjuntos de dados de alta dimensionalidade, pois ajuda a manter o modelo mais

parcimonioso, mais robusto ao ruído e com melhor capacidade de generalização (Hastie et al.,

2015; Zhang e Satapathy, 2021; Foret et al., 2021).

2.3.5 Treinamento de Precisão Mista (Mixed Precision)

O treinamento de precisão mista, ou mixed precision training, é uma técnica que

combina representações numéricas de diferentes precisões (geralmente ponto flutuante de 32

bits (float32) com ponto flutuante de 16 bits (float16) durante o treinamento de redes neurais.

Definido em (Micikevicius et al., 2018), seu objetivo é acelerar o processo de otimização e

reduzir o consumo de memória sem comprometer significativamente a precisão dos resultados.

A abordagem consiste em realizar operações matemáticas, como multiplicações de

matrizes e convoluções, em precisão reduzida (float16), enquanto certas variáveis sensíveis,

como acumuladores de gradientes e pesos mestres, permanecem em float32. Essa estratégia
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tira proveito do fato de que muitas operações não exigem alta precisão para serem eficazes, mas

preserva a precisão onde é mais crítica para a estabilidade do treinamento. Entre os benefícios do

uso de precisão mista estão a redução significativa no tempo de treinamento, a menor demanda

por memória da GPU, a possibilidade de utilizar quantidades de dados maiores e o aumento da

eficiência energética. No entanto, o uso dessa técnica exige cuidado com possíveis problemas

de underflow (valores próximos de zero representados como zero em float16) ou overflow

(valores muito grandes representados incorretamente), que podem ser mitigados com técnicas

como loss scaling — um reescalonamento temporário do valor da perda para evitar que ela se

anule durante a retropropagação. Frameworks modernos como FastAI, PyTorch e TensorFlow

já oferecem suporte nativo ao treinamento de precisão mista, aproveitando bibliotecas otimizadas

como a NVIDIA Apex ou o pacote torch.cuda.amp (NVIDIA Corporation, 2023; PyTorch

Team, 2023).

2.3.6 Congelamento e Descongelamento de Camadas

O congelamento e o descongelamento de camadas (freezing e unfreezing) são técnicas

aplicadas com frequência no treinamento de modelos por transferência de aprendizado. Quando

uma rede neural pré-treinada é utilizada em uma nova tarefa, geralmente seus pesos já capturam

representações úteis de características genéricas, como bordas, texturas ou padrões de formas

(Yosinski et al., 2014).

Ao “congelar” as camadas iniciais da rede, impedimos que seus pesos sejam atuali-

zados durante o treinamento, preservando esse conhecimento genérico previamente aprendido.

Tipicamente, apenas as últimas camadas são treinadas inicialmente, permitindo que o modelo se

adapte à nova tarefa sem perder a estabilidade oferecida pelas camadas congeladas.

Após essa primeira etapa de adaptação, realiza-se o “descongelamento” progressivo

das camadas, permitindo que toda a rede seja ajustada aos dados específicos do novo problema.

Esse processo, também chamado de ajuste fino (ou fine-tuning), contribui para melhorar o desem-

penho final do modelo, equilibrando a preservação do conhecimento prévio com a flexibilidade

de adaptação (Donahue et al., 2014).

Essa técnica é especialmente útil quando se trabalha com conjuntos de dados pe-

quenos, pois evita que o modelo superajuste logo nas primeiras épocas. O FastAI (Howard e

Gugger, 2020) automatiza esse processo, possibilitando o congelamento e descongelamento de

camadas com comandos simples e controlando a taxa de aprendizado de forma diferenciada para
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diferentes blocos da rede, o que facilita a convergência e maximiza a generalização.

2.4 Métricas de Avaliação

A avaliação quantitativa do desempenho de um modelo de aprendizado profundo

requer o uso de métricas estatísticas padronizadas, capazes de refletir, com rigor, a qualidade

das predições realizadas. Neste trabalho, tais métricas são obtidas automaticamente ao final do

treinamento por meio do código implementado na biblioteca FastAI, permitindo monitorar a

performance do modelo a cada passo e compará-la entre diferentes arquiteturas, como veremos

nos Capítulos 3 e 4. A seguir, serão descritas as principais métricas utilizadas, com ênfase

naquelas mais relevantes para cenários com dados desbalanceados (He e Garcia, 2009), como

será no caso de nossos dados para detecção de leucemia linfoblástica aguda.

2.4.1 Recall (Sensibilidade): definição e exemplo

O Recall, também chamado de Sensibilidade ou taxa de verdadeiros positivos, é uma

métrica fundamental para problemas de classificação (Sokolova e Lapalme, 2009), especialmente

quando se trata de detectar corretamente exemplos positivos em um conjunto de dados. Ele

quantifica a capacidade do modelo em recuperar todos os exemplos relevantes da classe positiva.

Sua fórmula é dada por:

Recall =
VP

VP+FN
,

em que VP representa o número de verdadeiros positivos e FN o número de falsos negativos. Em

outras palavras, o recall mede a proporção de casos positivos corretamente identificados pelo

modelo em relação ao total de positivos reais.

Essa métrica é particularmente importante em contextos nos quais deixar de identifi-

car um caso positivo pode ter consequências graves. Isso inclui, por exemplo, o diagnóstico de

doenças, a detecção de fraudes (ver (Pozzolo et al., 2015)) ou o reconhecimento de ameaças em

segurança computacional. Nessas aplicações, é preferível cometer alguns falsos positivos do que

ignorar um verdadeiro positivo relevante.

Em conjunto com outras métricas, como a precisão e a acurácia, o Recall permite

avaliar de forma mais completa o comportamento de classificadores em situações reais, especial-

mente quando há desbalanceamento entre as classes (He e Garcia, 2009).
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2.4.2 F1 Score: fórmula e interpretação

Ainda segundo Sokolova e Lapalme (2009), o F1 Score é uma métrica que combina

harmonicamente o Recall e a precisão (proporção de acertos entre as predições positivas). Ou

seja, é a média harmônica entre a precisão e o Recall. Essa combinação é especialmente útil

em cenários com classes desbalanceadas, como evidenciado por He e Garcia (2009), nos quais

métricas tradicionais como a acurácia podem fornecer uma visão distorcida do desempenho do

modelo.

A fórmula do F1 Score é a média harmônica entre a precisão e o Recall, ou seja:

F1 = 2 ·
Precisão ·Recall
Precisão+Recall

,

sendo a precisão definida como VP
VP+FP e o recall como VP

VP+FN , em que VP é o número de

verdadeiros positivos, FP de falsos positivos e FN de falsos negativos.

Powers (2011) explica que o uso da média harmônica, ao invés da média aritmética,

penaliza fortemente situações em que há um desequilíbrio significativo entre precisão e recall.

Dessa forma, o F1 Score só será alto se ambos forem simultaneamente elevados, tornando-se

uma métrica ideal quando se busca um equilíbrio entre os dois critérios, especialmente em

aplicações críticas onde tanto a detecção de positivos quanto a minimização de alarmes falsos

são importantes.

Para exemplificar, suponha um modelo que obtém 0,9 de precisão e 0,6 de recall. A

média aritmética desses valores seria 0,75, mas o F1 Score seria:

F1 = 2 ·
0,9 ·0,6

0,9+0,6
= 2 ·

0,54
1,5

= 0,72.

Esse resultado evidencia que, embora a precisão seja alta, a performance geral do

modelo sofre penalização pela dificuldade em capturar todos os casos positivos. Em contraste,

um modelo que obtiver 0.75 em ambos (precisão e recall) teria um F1 Score igual a 0.75,

indicando um equilíbrio mais saudável entre as duas dimensões.

Essa métrica é amplamente utilizada em tarefas de classificação binária e multilabel

(Tsoumakas et al., 2010; Sokolova e Lapalme, 2009), especialmente quando há desequilíbrio

entre as classes, como na detecção de leucemia linfoblástica aguda, em que a proporção de casos

positivos pode ser pequena em relação ao total de amostras.
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2.4.3 Outras Métricas

Além do recall e do F1 Score, outras métricas podem ser utilizadas para avaliar o

desempenho de modelos de classificação, dependendo do contexto e dos objetivos específicos da

tarefa.

A acurácia representa a proporção total de classificações corretas, tanto de positivos

quanto de negativos, em relação ao número total de amostras. Embora seja uma métrica intuitiva

e amplamente utilizada, sua utilidade é limitada em cenários com classes desbalanceadas, pois

um modelo pode apresentar alta acurácia mesmo errando sistematicamente a classe minoritária

(Provost e Fawcett, 2000).

A precisão, já usada na definição do F1 Score, quantifica a proporção de verdadeiros

positivos entre todas as predições positivas. Ela é especialmente importante quando se deseja

minimizar falsos positivos, como em aplicações relacionadas à filtragem de spam (Mitchell,

1997) ou na triagem de exames com custo elevado.

Outra métrica relevante, comentada em Fawcett (2006), é a curva Receiver Operating

Characteristic (ROC), que representa graficamente a taxa de verdadeiros positivos em função da

taxa de falsos positivos para diferentes limiares de decisão. A área sob essa curva, conhecida

como AUC, fornece uma medida agregada do desempenho do modelo em todos os possíveis

limiares. Especificamente, a área pode ser interpretada como a probabilidade de que o modelo

atribua uma pontuação maior a uma instância positiva do que a uma negativa escolhida aleato-

riamente. Assim, uma AUC próxima de 1 indica alto poder discriminativo, enquanto valores

próximos de 0,5 indicam desempenho equivalente ao acaso.

Por fim, destaca-se também a matriz de confusão (Han et al., 2011), que resume as

predições do modelo em uma tabela 2×2 (ou maior em casos multiclasse como neste trabalho),

permitindo visualizar a distribuição dos acertos e erros por classe. Ela é especialmente útil

como ferramenta diagnóstica complementar às métricas numéricas. Lemos a matriz de confusão

analisando a correspondência entre as classes reais (geralmente representadas pelas linhas) e

as classes preditas pelo modelo (geralmente nas colunas). Dessa forma, os valores localizados

na diagonal principal representam os casos corretamente classificados — ou seja, em que a

classe predita coincide com a real. Já os valores fora da diagonal correspondem às classificações

incorretas, indicando em quais classes o modelo mais frequentemente se confunde.

Cada uma dessas métricas fornece uma perspectiva distinta sobre o comportamento

do modelo, e a escolha adequada depende do equilíbrio desejado entre erros do tipo I (falsos po-
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sitivos) e do tipo II (falsos negativos), das características do conjunto de dados e das implicações

práticas associadas aos diferentes tipos de erro.

2.5 Arquiteturas Avançadas de Redes Convolucionais

Redes convolucionais profundas modernas exploram arquiteturas sofisticadas para

aumentar a eficiência computacional e a capacidade de generalização, mesmo em tarefas com-

plexas. Entre os principais avanços estão as redes com conexões densas e as que utilizam

dimensionamento composto. Esta S eção apresenta duas dessas arquiteturas: a DenseNet-201 e

a EfficientNet-B3, esta última utilizada neste trabalho para fins de diagnóstico assistido de

LLA.

2.5.1 DenseNet-201: conceito de conexões densas

A DenseNet-201 é uma variante da família DenseNet (Densely Connected Convo-

lutional Networks), proposta por (Huang et al., 2017). Essa arquitetura foi usada no artigo que

inspirou este trabalho (Ghaderzadeh et al., 2022) e introduz o conceito de conexões densas entre

camadas, em que cada camada recebe como entrada não apenas a saída da camada anterior, mas

também as saídas de todas as camadas anteriores.

Formalmente, a l-ésima camada recebe como entrada a concatenação de todos os

mapas de ativação anteriores:

xl = Hl([x0,x1, ...,xl−1]),

em que [x0,x1, ...,xl−1] representa a concatenação das saídas das camadas anteriores e Hl(·) é

uma composição de operações como convolução, normalização em lote (batch normalization) e

função de ativação não linear (geralmente ReLU).

Essa estratégia de conectividade resulta em diversos benefícios: reutilização eficiente

de características, propagação mais robusta do gradiente, redução do número de parâmetros e

incentivo à aprendizagem de representações mais compactas. Além disso, como não há soma dos

mapas de ativação (como nas ResNets), mas sim concatenação, a DenseNet tende a preservar

mais informações ao longo da rede.

A DenseNet-201, em particular, é composta por 201 camadas profundas, organi-

zadas em quatro blocos densos separados por camadas de transição que realizam compressão

(redução de dimensionalidade) e pooling. Seu uso tem sido bem-sucedido em tarefas de classifi-
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cação de imagens médicas, especialmente em contextos nos quais a preservação de sutis padrões

visuais é crítica.

2.5.2 EfficientNet-B3: compound scaling

A EfficientNet-B3 pertence à família EfficientNet, introduzida por (Tan e

Le, 2019), cuja principal inovação reside no uso de uma estratégia sistemática e otimizada de

escalonamento da rede, chamada de compound scaling.

Tradicionalmente, ao tentar aumentar a capacidade de uma rede, os projetistas

escolhem entre aumentar sua profundidade (número de camadas), largura (número de filtros

por camada) ou resolução da imagem de entrada. O compound scaling propõe uma abordagem

integrada, em que esses três fatores são escalados simultaneamente de forma balanceada, com

base em um conjunto de coeficientes derivados empiricamente.

Seja φ um fator de escala global, o método define:

profundidade (depth): d = αφ

largura (width): w = β φ

resolução (resolution): r = γφ

sujeito à restrição:

α ·β 2 · γ2 ≈ 2, com α,β ,γ > 1.

Essa restrição visa garantir que o aumento simultâneo da profundidade, largura e resolução da

rede não leve a um crescimento exponencial do custo computacional. Especificamente, como

o número de operações (FLOPs) tende a crescer proporcionalmente a d ·w2 · r2, a imposição

de que α · β 2 · γ2 ≈ 2 permite duplicar a complexidade computacional de forma controlada

a cada incremento de φ , assegurando um balanceamento eficiente entre desempenho e custo

durante o escalonamento. Além do escalonamento eficiente, a EfficientNet-B3 também

emprega blocos MBConv (Mobile Inverted Bottleneck Convolution), originalmente introduzidos

na MobileNetV2 (Sandler et al., 2018). Esses blocos combinam convoluções separáveis por

profundidade (depthwise separable convolutions), atalhos residuais e camadas de expansão/con-

tração para aumentar a eficiência computacional, reduzindo o custo de FLOPs com pouca perda

de desempenho.

A versão B3 utiliza uma resolução de entrada de 300×300, com maior profundidade

e largura que a versão base (B0), e representa um ponto de equilíbrio entre desempenho e tempo
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de treinamento. Essa arquitetura se mostra promissora para tarefas médicas com dados visuais

de alta complexidade e volume moderado (Batool e Byun, 2023).
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3 METODOLOGIA

Neste Capítulo descrevemos os procedimentos adotados pelo artigo original e o

proposto por esse trabalho para o desenvolvimento de um novo modelo de classificação para

o diagnóstico assistido de LLA utilizando RNCs. Serão detalhadas as etapas referentes à base

de dados utilizada, a escolha da arquitetura do modelo, a estrutura do código implementado, o

processo de treinamento e teste, além das métricas aplicadas para validação dos resultados.

3.1 Base de Dados

A base de dados (dataset) utilizada em ambas as abordagens comentadas neste

trabalho foi compilada num hospital em Teerã, Irã. Ela consiste em imagens de esfregaço

sanguíneo periférico em alta qualidade, disponibilizadas publicamente pelos autores do artigo

original na plataforma Kaggle (Aria et al., 2021). As imagens são classificadas em quatro

classes/subtipos de células linfoblásticas explicados por Kantarjian e O’Brien (2013) e Pui et al.

(2015):

– Benigno: Refere-se a células morfologicamente normais, não neoplásicas, e que não

apresentam características de malignidade. Sua identificação é essencial para estabelecer

um contraste preciso entre amostras sadias e leucêmicas, evitando falsos positivos no

diagnóstico.

– Early (Inicial): Denota células em um estágio inicial de diferenciação ou maturação,

frequentemente associadas aos blastos hematopoiéticos. Em casos de leucemia linfo-

blástica aguda (LLA), a presença de células em estágio inicial pode indicar o início da

transformação leucêmica.

– Pre-B (Pré B): Células precursoras da linhagem B que já expressam alguns marcadores

de diferenciação, mas ainda não atingiram a maturação completa. São frequentemente

encontradas em pacientes com LLA tipo B, e sua proliferação descontrolada constitui um

dos principais alvos diagnósticos.

– Pro-B (Pró B): Representa um estágio ainda mais imaturo da linhagem B, anterior ao

Pre-B. Essas células ainda não expressam imunoglobulinas na membrana e marcam o

início do comprometimento linfóide na LLA-B. Sua detecção é relevante para classificar

subtipos da doença e avaliar prognóstico.

As amostras foram rotuladas por especialistas utilizando citometria de fluxo como
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critério diagnóstico definitivo. A base contém um total de 3256 imagens, de 89 pacientes com

suspeita de LLA com as seguintes quantidades por tipo:

Figura 5 – Distribuição das classes rotuladas das imagens no dataset

Fonte: (Ghaderzadeh et al., 2022)

Ou, em forma de tabela:

Tabela 1 – Distribuição de tipos das células em forma tabular.

Tipo Quantidade

Inicial 985 (30,25%)
Pre 963 (29,58%)
Pro 804 (24,69%)
Benigno 504 (15,48%)

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021).

Apesar do número total de pacientes ser relativamente pequeno, a base de dados é

composta por muitas imagens. Isso se deve à captura de múltiplos campos microscópicos por

paciente, refletindo a variabilidade celular de um mesmo indivíduo, o que permite que o modelo

aprenda representações mais robustas e generalizáveis. As imagens foram captadas através de

fotos tiradas num microscópio com zoom 100× por uma câmera Zeiss acoplada a microscópios

ópticos e originalmente possuíam resolução de 1024× 768 pixels, no formato JPG, e foram

pré-processadas para remoção de ruídos e normalização dos valores de pixel, adequando-se ao

padrão de entrada das redes neurais convolucionais pré-treinadas. O pré-processamento das

imagens envolveu quatro etapas: (i) segmentação dos blastos por limiarização no espaço de



39

cor HSV; (ii) conversão e redimensionamento para 224× 224 pixels; (iii) normalização das

intensidades de pixel para o intervalo [0,1] com base na média e desvio padrão globais; e (iv)

aumento de dados via transformações aleatórias (alteração de brilho, contraste, adição de ruído

JPEG, rotações e reflexões horizontais e verticais), conforme os parâmetros descritos na Tabela 2.

Tabela 2 – Parâmetros de aumento de dados utilizados no treinamento original.

Transformação Intervalo/Tipo

Brilho [−10%,+10%]
Contraste [−10%,+10%]
Rotação [−20◦,+20◦]
Ruído JPEG Qualidade entre 50 e 100
Espelhamento Horizontal e vertical

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021).

Embora a base de dados disponibilizada publicamente na plataforma Kaggle conte-

nha imagens anotadas e padronizadas, a segmentação dos blastos em HSV é realizada dinami-

camente durante o processamento das imagens no pipeline de treinamento. Esta segmentação

é feita por meio de limiares de cor definidos no espaço HSV, gerando máscaras binárias que

destacam regiões com predominância de coloração púrpura, típica dos linfoblastos. A seguir,

na Figura 6, uma amostra de 16 fotos aleatórias (já pré-processadas) presentes no conjunto de

dados.
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Figura 6 – Algumas das imagens presentes no dataset

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021)

Antes de explicarmos o modelo proposto, precisamos definir o que já foi realizado

anteriormente por Ghaderzadeh et al. (2022) e que, como consequência, inspirou a abordagem

deste trabalho.

3.2 Metodologia de Aplicação do Modelo DenseNet-201

Neste estudo base, empregou-se a arquitetura DenseNet-201 via Python como

extratora de características para a tarefa de diagnóstico e classificação de subtipos da LLA com

base em imagens de esfregaços sanguíneos periféricos. É importante frisar que a implementação

está disponível publicamente em (Aria, 2022) e utiliza o conjunto de dados disponibilizado

na plataforma Kaggle em (Aria et al., 2021). O modelo proposto foi estruturado com duas

entradas: a imagem original e sua correspondente imagem segmentada. Ambas foram utilizadas

em paralelo na etapa de extração de características, operada por uma DenseNet-201 pré-treinada

no ImageNet (famosa base de dados com inúmeras imagens, usada para treinar modelos de
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visão computacional). Inicialmente, os pesos da DenseNet foram congelados, permitindo o

treinamento apenas do bloco de classificação, composto por camadas densas, normalização

em lote, funções de ativação (LeakyReLU e ReLU) e dropout (técnica de regularização usada

em redes neurais profundas para evitar overfitting). Após algumas épocas, a DenseNet foi

descongelada para ajuste fino com a mesma base de dados, garantindo especialização no domínio

biomédico. O treinamento foi conduzido com a função de perda entropia cruzada categórica,

suavização de rótulo (label smoothing), regularização L2 (coeficiente de 0,001) e dropout de

20%. O otimizador utilizado foi o Adam, com taxa de aprendizado inicial de 10−3 e agendamento

por Cosine Annealing. A divisão dos dados seguiu a proporção de 64% para treino, 16% para

validação e 20% para teste.

A implementação foi realizada em Python com a biblioteca Keras, utilizando o

pacote TensorFlow. Os experimentos foram executados em um computador com processador

Intel Core i7-7700K, 16 GB de RAM e GPU Nvidia GTX 1080. O treinamento completo

convergiu em menos de 220 épocas, atingindo acurácia de validação de 99,85% e perda inferior

a 0,0015. A duração de tempo em que o código rodou não foi explicitada no artigo. Segundo

Ghaderzadeh et al. (2022), a escolha da DenseNet-201 se justificou por seu desempenho superior

em comparação com outras nove arquiteturas de redes convolucionais avaliadas sob as mesmas

condições experimentais. Com menor número de parâmetros treináveis (cerca de 20 milhões), a

DenseNet-201 apresentou eficiência e capacidade de generalização.

3.3 Modelo Proposto

Para o modelo de classificação das imagens médicas proposto por este trabalho, com

código disponibilizado em Esteves (2025), optou-se pelo uso da arquitetura EfficientNet-B3,

conhecida por seu equilíbrio entre alta performance e baixo custo computacional (Tan e Le,

2019). Essa escolha visa permitir a aplicação do modelo em ambientes clínicos com restrições

de hardware, mantendo uma acurácia competitiva frente a modelos mais complexos como o

DenseNet201. A EfficientNet-B3 foi implementada por meio da biblioteca FastAI, que

oferece facilidades para o uso de redes pré-treinadas com técnicas de transferência de aprendizado.

O modelo foi inicialmente congelado, treinando-se apenas as camadas finais, com o objetivo

de preservar as características já aprendidas em grandes bases de imagens. Em seguida, foi

descongelado para calibração e aperfeiçoamento, um procedimento semelhante adotado no artigo

original.
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3.3.1 Ambiente do Código

A implementação foi realizada utilizando Python 3.11 (Python Software Founda-

tion, 2025) e a biblioteca FastAI do Python. O fluxo de processamento de dados incluiu o

carregamento das imagens a partir de um dataframe contendo os caminhos de arquivos hospeda-

dos no Google Drive e seus rótulos para identificação. O código rodou em aproximadamente

7 minutos em um ambiente em nuvem do Google Colab. O processamento foi alocado au-

tomaticamente pelo serviço em um computador com CPU Intel Xeon (2 núcleos), 12GB de

RAM e GPU Nvidia Tesla 4 com 15GB de VRAM. A criação do modelo utilizou a função

vision_learner do FastAI, com a arquitetura EfficientNet-B3 e métricas de avaliação

definidas como acurácia e F1-Score. O treinamento foi conduzido utilizando técnicas de mixed

precision para acelerar o processo sem perda de precisão.

3.3.2 Treino e Teste do Modelo

O modelo foi treinado por 10 épocas, com taxa de aprendizado (learning rate) inicial

determinada automaticamente a partir da função de learning rate finder do FastAI. O

otimizador Adam foi utilizado para ajuste dos pesos, com regularização L2. O conjunto de dados

foi dividido em 80% para treino e 20% para teste. Esta divisão foi realizada a partir do dataset

original, sem a separação de um terceiro conjunto de validação independente para ajustes de

hiperparâmetros intermediários. O processo de treinamento incluiu a técnica de one-cycle policy,

que ajusta dinamicamente a taxa de aprendizado durante as épocas para melhorar a convergência.

Após o treinamento, o modelo foi avaliado no conjunto de teste separado, e as métricas de

desempenho foram computadas.

3.3.3 Métricas de Avaliação

Para avaliar o desempenho do modelo, foram utilizadas as métricas de acurácia,

precisão, recall e F1-Score para cada classe, considerando a importância de um diagnóstico

confiável em ambiente clínico. A matriz de confusão também foi utilizada para analisar os

erros de classificação entre as classes, além da curva ROC e a Área sob a curva (AUC). Essas

métricas fornecem uma visão detalhada da capacidade do modelo em identificar corretamente os

diferentes subtipos de LLA, além de possibilitar a comparação direta com os resultados obtidos

em estudos anteriores.



43

4 RESULTADOS

Este Capítulo apresenta os resultados obtidos com o modelo EfficientNet-B3 na

tarefa de classificação dos subtipos de leucemia linfoblástica aguda a partir das imagens de

esfregaço sanguíneo. São exibidos os principais indicadores de desempenho, a análise das curvas

de aprendizado e ROC, a matriz de confusão, além da comparação dos resultados com o modelo

DenseNet201, utilizado no artigo-base.

4.1 Desempenho do Modelo

O modelo EfficientNet-B3 treinado atingiu uma Acurácia final de 99,08% no

conjunto de teste e 98,92% na acurácia final, indicando alta capacidade de generalização. Com

base na saída completa da função learn.summary(), o modelo tem 12.191.016 parâmetros,

sendo treináveis 1.582.080 e os não treináveis: 10.608.936. Isso significa que a maior parte do

modelo está congelada (não treinável), e apenas uma parte menor (a cabeça de classificação

adicionada pelo FastAI) está sendo treinada para a sua tarefa específica de classificação de

células. Ele também tem consideravelmente menos parâmetros que o do artigo original. Além

disso, as métricas detalhadas por classe, incluindo Precisão, Recall e F1-Score, evidenciam que

o modelo é eficaz na distinção entre as quatro classes: benigno, inicial pre-B, pre-B e pro-B.

Tabela 3 – Métricas de desempenho por classe do modelo EfficientNet-B3

Classe Precisão (%) Recall (%) F1-Score (%)

Benigno 96,81 97,85 97,33
Inicial 98,47 97,97 98,22
Pre-B 98,98 100,00 99,49
Pro-B 99,39 98,20 98,80

Tabela 4 – Métricas de (Recall) e Especificidade por classe.

Classe Recall Especificidade

Benigno 0,9765 0,9965
Inicial 0,9901 0,9911
Pre 0,9849 1,0000
Pro 1,0000 0,9970

Esses resultados evidenciam que o modelo apresenta alto Recall e Especificidade em

todas as categorias, reduzindo a probabilidade de falsos positivos e negativos, fator crucial para a
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aplicação clínica do sistema.

4.2 Curva de Aprendizado

A Figura 7 representa o resultado da execução da função Learning Rate Finder

da biblioteca FastAI. Este gráfico é fundamental para a seleção de uma taxa de aprendizado ideal

antes do treinamento principal do modelo, essencial para garantir uma convergência eficiente e

evitar problemas como divergência ou lentidão excessiva. A curva ilustra a variação da perda

(Loss) em resposta ao aumento exponencial da taxa de aprendizado: observa-se um período

inicial de perda elevada (com learning rates muito baixas), seguido por uma região de declínio

acentuado e consistente da perda, indicando o ponto onde o modelo aprende de forma mais eficaz.

Posteriormente, a perda começa a aumentar rapidamente com learning rates excessivamente

altas, sinalizando divergência. A identificação do ponto de maior declínio da perda ou da região

anterior ao seu aumento abrupto (sinalizados pelos pontos ’valley’ e ’slide’) guiou a escolha da

taxa de aprendizado inicial para o treinamento de 20 épocas, contribuindo para os resultados de

alta performance e generalização observados.

Figura 7 – Curva de taxa de aprendizado do modelo proposto

Fonte: Elaborado pelo autor
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4.3 Curva ROC e AUC

A curva ROC multiclasse, ilustrada na Figura 8, é uma ferramenta gráfica crucial para

avaliar a capacidade de discriminação do modelo entre as classes. Para cada classe individual

(Benigno, Inicial, Pre e Pro), a curva se mantém próxima do canto superior esquerdo do gráfico,

indicando uma Taxa de Verdadeiros Positivos (Recall) consistentemente alta para uma Taxa de

Falsos Positivos muito baixa.

Figura 8 – Gráfico da curva ROC do modelo proposto

Fonte: Elaborado pelo autor

Para melhorar a visualização, elaboramos na Figura 9 uma versão ampliada do canto

esquerdo superior do gráfico.
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Figura 9 – Gráfico da Curva ROC do modelo proposto com zoom

Fonte: Elaborado pelo autor

Os valores da AUC corroboram a ótima performance obtida: no conjunto de teste,

as Áreas sob as Curvas variaram de 0,9993 (Benigno) a 0,9997 (Pre), com 0,9996 para Inicial

e 0,9996 para Pro. Os valores de AUC Micro-average e Macro-average, ambos de 0,9996 no

teste, solidificam a conclusão de que o modelo possui um poder discriminativo quase perfeito e

generalizável em todas as categorias. Essa performance elevada, em que os valores de AUC se

aproximam de 1, é vital em um contexto de diagnóstico médico, onde a capacidade de distinguir

com alta precisão entre diferentes estágios da doença é fundamental.

4.4 Matriz de Confusão

A matriz de confusão obtida no conjunto de teste, mostrada na Figura 10, evidencia

a alta precisão do modelo na classificação das classes, com poucos erros concentrados entre

subtipos morfologicamente similares, como o Benigno, Pre-B e Inicial.
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Figura 10 – Matriz de confusão do modelo proposto

Fonte: Elaborado pelo autor

A seguir na Figura 11, temos algumas imagens selecionadas aleatoriamente pelo

código. Nota-se que estão com os rótulos originais e os preditos para facilitar a comparação

antes e depois do modelo. Logo, como em vários casos os dois são iguais, fica evidenciada a alta

precisão do modelo.
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Figura 11 – Seleção aleatória da saída de 9 exames diagnosticados pelo modelo

Fonte: Elaborado pelo autor

A fim de complementar a análise, foi gerada também uma imagem com as 12

previsões menos precisas processadas pela rede neural construída:
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Figura 12 – Seleção dos exames diagnosticados menos precisamente

Fonte: Elaborado pelo autor baseado em dados de (Aria et al., 2021)

4.5 Comparação com o Modelo DenseNet201

Em comparação com o DenseNet201 utilizado no estudo original, que alcançou

Acurácia de 99,85%, o modelo EfficientNet-B3 apresentou um promissor desempenho com-

petitivo, com menor número de parâmetros e custo computacional reduzido. Essa diferença torna

o modelo EfficientNet-B3 uma alternativa viável para ambientes com restrições de hardware,

mantendo alto nível de precisão necessário para assistir médicos em seus diagnósticos clínicos,

reduzindo subjetividade.

4.6 Discussão

Os resultados indicam que a arquitetura EfficientNet-B3 é capaz de aprender

quais são os padrões relevantes nas imagens de esfregaço sanguíneo para classificar os subtipos

de LLA com elevada acurácia e eficiência. A leve oscilação observada nas curvas de aprendizado

sugere que estratégias adicionais de regularização podem ser exploradas para melhorar a robustez
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do modelo (isso está melhor explicado na seção seguinte, onde estão detalhadas possíveis

soluções e melhorias a serem aplicadas em trabalhos futuros). Adicionalmente, a atual ausência

de segmentação prévia das imagens durante o processo mas presente no estudo original, simplifica

o pipeline e pode facilitar a adoção do modelo em laboratórios clínicos, sem prejuízo significativo

na qualidade do diagnóstico. Também é importante destacar a necessidade de um conjunto

independente para validação, no qual o modelo proposto é efetivamente testado.
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5 CONCLUSÕES E TRABALHOS FUTUROS

Este trabalho apresentou o desenvolvimento e avaliação de um modelo de classifica-

ção para a LLA e seus subtipos, utilizando a arquitetura EfficientNet-B3 aplicada a imagens

de esfregaço sanguíneo periférico. A partir do uso da biblioteca FastAI e técnicas modernas

de aprendizado profundo, foi possível alcançar uma Acurácia de 99,08% no conjunto de teste e

98,92% na final, com métricas de Precisão, Recall, F1-Score e AUC elevadas em todas as classes

analisadas.

Os resultados evidenciam que o modelo EfficientNet-B3 é uma promissora al-

ternativa competitiva ao DenseNet201, referência no estudo base, apresentando desempenho

comparável, com menor custo computacional e simplicidade operacional. Essa característica

torna o modelo particularmente adequado para ambientes clínicos com recursos limitados, con-

tribuindo para a democratização do diagnóstico assistido por IA, também chamado de patologia

computacional.

Foi observado um leve indício de overfitting a partir da décima época de treinamento,

evidenciado pela oscilação da perda de validação enquanto a perda de treinamento continuava a

diminuir. Embora esse comportamento não tenha comprometido o desempenho final do modelo,

sugere a necessidade de estratégias adicionais de regularização para futuras implementações.

Como trabalho futuro, recomenda-se a exploração de técnicas de segmentação prévia

das imagens, conforme utilizado no artigo original (como a HSV), que podem aprimorar a

capacidade do modelo em focar nas regiões de interesse, possivelmente aumentando a acurácia.

Além disso, a aplicação de métodos de interpretabilidade pode oferecer insights e pistas valiosas

para a validação clínica, permitindo aos especialistas compreender os critérios utilizados pelo

modelo para suas decisões. A inclusão de validações cruzadas e o teste em conjuntos de dados

externos também são passos importantes para assegurar a robustez e a generalização do modelo.

Em suma, este trabalho contribui para o avanço do diagnóstico assistido da LLA,

propondo uma solução eficiente e acessível, que pode auxiliar profissionais da saúde no processo

de triagem e detecção precoce da doença.
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