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RESUMO

No campo de sistemas polinomais, o projeto de controladores comumente consiste em determinar
condic¢des de Lyapunov em desigualdades matriciais lineares, e encontrar uma solucao através de
algoritmos de programacgdo semi-definida. No entanto, as bilinearidades inerentes as condi¢des
de Lyapunov exigem empregos de estratégias muitas vezes subdtimas, como a iteracdo D-K, que
ndo possuem critérios de garantia da convergéncia da solucdo. Além disso, a obtencdo de um
modelo que descreva o comportamento de plantas de dificil modelagem € solucionada através de
ensaios de coleta de dados para identificagdo do sistema, os quais, quando sujeitos a perturbagdes
ou ruido, dificultam a obtencao de um modelo confidvel. Nesse trabalho, foi utilizada uma
abordagem baseada em dados para projetar leis de controle sem um passo intermedidrio de
identificagc@o e com robustez quanto a dados sujeitos a perturba¢des desconhecidas mas limitadas.
Utilizando a teoria de Lyapunov e a teoria da QSR-dissipatividade, foram constuidas condi¢des
de soma-de-quadrados para projeto de uma lei de controle para sistemas ndo-lineares polinomiais
que garanta estabiliza¢do assintdtica localmente em torno da origem. Essas condi¢des foram
implementadas utilizando programacdo em soma-de-quadrados com o auxilio das ferramentas
SOSTools e Mosek em algoritmos iterativos sem bilinearidades e que garantissem a convergéncia
da solugdo. Por fim, a lei de controle e a fun¢do de Lyapunov encontrada foram validadas através

de ferramentas de verificagdo formal como o Z3Prover para emitir um certificado de Lyapunov.

Palavras-chave: Controle baseado em dados. Sistemas ndo-lineares. Teoria da dissipatividade.



ABSTRACT

In the field of polynomial systems, control design is commonly related to finding Lyapunov
conditions in the form of linear matrix inequalities and determining a solution to them through
semidefinite programming algorithms. However, the bilinearities inherent to Lyapunov conditions
require the use of often suboptimal strategies, such as the D-K iteration, which has no guarantees
of solution convergence. In addition, the challenge of some plants that are difficult to model is
solved through data collection experiments in order to identify the system. Yet, since the data is
subject to disturbances or noise, it hinders the development of a reliable model. In this work, a
data-driven approach was used to design control laws without an intermediate identification step
and with robustness to data subject to unknown but limited disturbances. Using Lyapunov theory
and QSR-dissipation theory, sum-of-squares conditions were constructed to design a control law
for polynomial nonlinear systems that guarantees asymptotic stabilization locally around the
origin. These conditions were implemented using sum-of-squares programming with the help of
SOSTools and Mosek in iterative algorithms without bilinearities and constraints for solution
convergence. Finally, the control law and the Lyapunov function were validated using formal

verification tools such as Z3Prover to issue a Lyapunov certificate.

Keywords: Data-driven control. Nonlinear systems. Dissipativity theory.
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1 INTRODUCTION

The control of dynamical systems is a widely present task in all engineering fields.
Beacause of that, the study of such systems is of utmost importance, since the modeling through
mathematical equation makes it possible to analyze its behaviour and evolution over time
(HADDAD; CHELLABOINA, 2008). One possible way to describe the systems in the time
domain is the state-space representation, which utilizes first order differential equations of the
derivatives of the variables of interest (denominated states) in a system of equations, allowing,
given an initial value, the determination of the states in any point of time. in order to implement a
control system, it is possible to describe the system with the desired degree of accuracy around an
operation point. Such control system may be responsible for guaranteeing the desired behavior,
determined by each application, and its performance criteria, which could be, e.g, stabilization
around an equilibrium point, disturb rejection, or reference tracking.

Dynamical systems in general are nonlinear, due to their own nature or due to the
nature of the control system implemented. The presence of nonlinearities can turn the analysis
of the systems more difficult and, for that reason, the system is linearized around a point of
interest to circumvent such issue. Linearizing a system can be sufficient in many cases, and it
has advantages such as making stability analysis easiest, being sufficient to check the signal of
state-space matrix eigenvalues. However, it limits the capacity of the model to describe the real
system to a neighborhood of the selected operation point, which can be a very small domain of
model-system equivalence, making necessary an alternative model that takes into account the
nonlinearities inherent to the studied system.

Lyapunov stability theory is an important and well-known tool for the study of
dynamical systems and can be applied to nonlinear systems, since it provides conditions that,
if satisfied, guarantee different degrees of stability of an equilibrium point (KHALIL, 2002).
With such conditions, the procedure of stabilization of a plant around the origin can become
the design of a Static Output Feedback (SOF) control law that makes the closed-loop system
stable, asymptotically stable, or exponentially stable by satisfying the respective Lyapunov
conditions. In the recent years, Lyapunov theory is being applied in fields such as stabilization
of polynomial systems using Sum-Of-Squares (SOS) decomposition and Dissipativity theory.
Additionally, the development of softwares such as YALMIP (LOFBERG, 2004), SOSTools
(PAPACHRISTODOULOU et al., 2021), SeDuMi (STURM, 1999) and MOSEK (APS, 2025)

has made possible to development of algorithms that solve these problems numerically. In this
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scenario, (AUGUST; PAPACHRISTODOULOU, 2022) develops an algorithm based in Sum-
of-Squares Program (SOSP) to design SOF control laws for polynomial systems by imposing
constraints in the Lyapunov function and state-space model. Such constraints result in a linear-
like approach to the state-space polynomial model. In (ICHIHARA, 2013), a more general
assumption in the Lyapunov function is made, being that a quadratic polynomial structure,
and a solution for symmetric input saturation is proposed using polytopic conditions, although
still dealing with a linear-like state-space model. As for methods of verifying the Lyapunov
conditions in dynamical systems, (AHMED et al., 2020) uses a strategy of Counter-Example
Guided Inductive Synthesis (CEGIS) to synthesize a Lyapunov function for a given system with
polynomial constraints with a Satisfiability Modulo Theories (SMT) solver. In addition, (ABATE
et al., 2021) applies the same strategy but considers a neural Lyapunov function.

Although modelling a system with only phenomenological theory can be sufficient
in many applications, it results in deviations between the model and the real system due to, e.g.,
precision or tolerances. In this scenario, some strategies rely on some tests and experiments
in order to collect data from the plant. Then, the data can be used to construct a model for the
plant by applying identification techniques, which is used later on in the control design methods.
Alternatively, an innovative set of strategies search to design control laws directly from the
data, without the intermediary step of identifying the system. In (WILLEMS ez al., 2005), it
is shown that if the input-output data is persistently exciting, it can represent a linear system’s
whole behaviour. In (MARTIN; ALLGOWER, 2024), this notion is utilized to verify dissipativity
conditions from data in nonlinear systems through Taylor’s polynomial approximation. (PERSIS;
TESI, 2019) also uses Willems’ lemma as a primary assumption to design data-driven control
laws with linear matrix inequalities. The same issue is addressed in (BISOFFI et al., 2022) with
the addition of a solution for polynomial systems with no constraints in Lyapunov function aside
it being polynomial. This solution, in order to circumvent the bilinearities in the SOS constraints,
uses SOSP to solve an algorithm with D-K iteration (an iterative method that alternately fixes
one of the terms of a bilinearity to solve the problem for the other decision variable), with stop
criterion of maximum iterations.

In this scenario, the objective of this work will be the construction of algorithms that
have no constraint in the structure of the Lyapunov function, besides it being polynomial, and
have a stop criterion that guarantees a valid solution was found. By using SOS decomposition

to design control laws based in the QSR-Dissipativity theory and Lyapunov theory, with a
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data-driven approach, the designed control law must satisfy Lyapunov conditions for local
asymptotical stabilization around the origin and it will be explored the impact of different
definitions for the supply rate present in the QSR-Dissipativity theory. Furthermore, it will also
be explored the certification of Lyapunov functions by the SMT solver: Z3 Theorem Prover, a

formal verification tool (MOURA; BJgRNER, 2008).
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2 THEORETICAL BASIS

In the field of control of dynamical systems, the modelling process is of utmost
importance for the analysis of the systems’ behaviour and the design of control laws that assure
the desired performance criteria. With that purpose, dynamical systems will be studied in this
work from their state space representation, since it allows to determine the trajectories of the
states of the system over time given a set of first order differential equations and a set of initial

values (HADDAD; CHELLABOINA, 2008).

2.1 Dynamical Systems

To write this definition formally, consider a state vector x € 2~ C R” and an input

vector u € 2 C R™. A time-varying nonlinear system can be written as:
Xx=F(t,x(t),u(t)), x(to)=2Zy, xE€ [to,t1]. (2.1)
The system is said to be time-invariant if
F(to,x(t),u(t)) = F(t,x(t),u(t)), Y(t,x,u)€to,ti] x X xXU. (2.2)
If the system has the form:

x= f(x)+g(x)u, (2.3)

it is classified as input-affine. Here, a subtype of such systems will be studied, the polynomial
systems, in which f(x) e g(x) can be written as polynomials of x (BISOFFI et al., 2022).
Therefore, they can be modelled using matrices of monomials Z(x) € 22V*! e W (x) € g2Mxm

and matrices of coefficients A € R™N ¢ B € R™M _such that,
X =AZ(x)+BW (x)u. (2.4)

Additionally, an output y € 2" C R? can be defined such that
y = h(x). (2.5)

The equation pair (2.2) and (2.5) (or (2.4) and (2.5)) compose the state-space representation of
a nonlinear (polynomial) system. Since innumerable applications aim to achieve stabilization

around an equilibrium point, its definition becomes necessary.
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2.2 Equilibrium Points

An stable equilibrium point x,,, considering x € 4, is the one that x — Xeq When
t — oo. This point is considered isolated if there is an open ball around it, defined by Be(x,,) :=
{x € R" 1 ||x — x¢4|| < €}, which contains only that equilibrium point.

To study the system’s behaviour around the equilibrium point, the Lyapunov Theory

will be used as in (HADDAD; CHELLABOINA, 2008).

2.3 Lyapunov Stability Theory

Lyapunov theory analyzes the stability around an equilibrium point (specifically
here, around the origin) by finding a Lyapunov function that attests the stability of a system to a
certain degree. These degrees of stability are dependants on the conditions met by the Lyapunov

function, and to define them consider the nonlinear dynamical system around the origin:
x=f(x(t)), x(0)=Zy, x(r)e 2, 0€Z. (2.6)

Assume f(0) =0 and f(x) being Lipschitz continuous, i.e., || f(x) — f(¥)|| < L||x—y||, Vx,y, for
some L > 0. Such assumption implies that there is a different x(¢) for each initial condition of

the system and that it is solution of (2.6). Then, the stability of Lyapunov therory is defined as:

Definition 1. (i) The solution x(t) = 0 of (2.6) is Lyapunov stable if, for every € > 0, there is

a Rp(€) > 0 such that, if ||x(0)|| < Rp, then ||x(t)|| <€, t > 0.

(ii) The solution x(t) = 0 of (2.6) is asymptotically stable if it is Lyapunov stable and there is

a Rp > 0 such that, if ||x(0)|| < Rp, then limy_,e.x(t) = 0.
(iii) The solution x(t) = 0 of (2.6) is exponentially stable if there are &, B e Rp constants such
that, if ||x(0)|| < Rp, then ||x(¢)|| < a||x(0)||e P, t > 0.
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Figure 1 — Lyapunov stability

&

Source: (HADDAD; CHELLABOINA, 2008)

Figure 2 — Asymptotical stability

@

Source: (HADDAD; CHELLABOINA, 2008)

In figure 1, note that Lyapunov stability does not necessarily implies x — x4, al-
though it implies in x having a maximum distance radius from the origin. In figure 2 however,
the asymptotical stability implies x — x,, when ¢ — .

In order to verify the degree of stability of the analyzed system according to Defini-

tion 1, Lyapunov Theorem is stablished as it follows:

Theorem 1 (Lyapunov Theorem). Consider the nonlinear dynamical system (2.6) and assume

that there is a continuously differentiable function V : 2~ — R such that

V(0) =0,
V(x) >0, xeZ,x#0, (2.7)
VvV (x)" f(x) <0, xe X,

then the solution x(t) = 0 of (2.6) is Lyapunov stable. If, in addition to that,

VV(x) f(x) <0, x€.2,x#0, (2.8)

then the solution x(t) = 0 of (2.6) is asymptotically stable. At last, if there are o, 3,€ > 0 and
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p > 1, such that

allxl[? <V(x) <BIX|P, xeZ, 2.9)
VW) F) < V() xe |

then the solution x(t) = 0 of (2.6) is exponentially stable.

In control theory, even if the open-loop system is not Lyapunov, asymptotically or
exponentially stable, one can guarantee the stability of the closed-loop system by taking into

account the conditions of Theorem 1 when designing the control system.

2.4 Dissipativity Theory

Another important theory that will be applied further in this work is the Dissipativity
Theory (WILLEMS, 2007), which will be implemented alongside Lyapunov theorem. In order to

do so, considering the input-affine system (2.3)-(2.5), a supply rate function will be defined as:
r(u,y(x)) = y(x) ' Qy(x) +2y(x)  Su+u'Ru, (2.10)

where Q € SP, S € RP*"™ R ¢ SZ,. A system is called to be dissipative (or QSR-dissipative for

the supply rate chosen here) if there exists a storage function V (x) such that
V(x) < r(u,y(x))- 2.11)

Additionally, the system can be called strictly QSR-dissipative if it satisfies
V(x)+T(x) < r(u,y(x)), (2.12)

for some 7 (x) > 0. This concept of dissipative systems can be taken into account when designing

a control law for a SOF by selecting u = —R~ ST y(x), meaning that (2.10) can be developed as

it follows:
r(u,y(x)) = y(x) " Qy(x) +2y(x) " Su+u" Ru (2.13)
r(u,y(x)) = y(x) " Qy(x) —2y(x) "SR! y(x) +-y(x) 'SR™'S " y(x) (2.14)
r(u,y(x)) = =y(x) " (SR™'ST - Q)y(x) (2.15)
Defining a A, as
Ac:=SR7'ST —Q, (2.16)

and if A, > 0, then r(u,y(x)) < 0, which in turn implies V < 0, satisfying the asymptotical

stability conditions in Theorem 1.
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2.5 Data-driven control

Designing a control law through modeling is not always possible or viable. This can
occur, e.g., when there are parameters difficult to calculate or not available for measuring. In such
cases, the plant can be considered a black box, when there is no prior knowledge of its dynamics,
or a gray box, when some characteristics, such as degree of polynomial complexity, is known
beforehand. Then, an experiment can be performed to gather data with enough information to
describe the plant behavior. Here, it is considered a unknown process disturbance d which affects
the evolution of the system resulting in noisy data. For that reason, it is necessary to take into

account a set of systems compatible with the data, in order to obtain a robust control law.
2.5.1 Noisy data and uncertainty set ¢

In (BISOFFI et al., 2022), when describing the dynamics of the systems using data,

its representation can be derived from (2.4) as
x=AZx)+BW(x)+d, xeR", uecR" deR" (2.17)

Z(x) and W (x) are considered the known vector and matrix of regressors, respectively. A, and
B, are unknown matrices containing the coefficients of the regressors from the exact plant
model. In this arrangement, Z and W can be chosen containing more monomials than the ones
present in the plant, since the coefficients from the extra monomials would ideally be null. A
noisy-data is considered in this model, and the disturbance d represents the measurement noises
that are unavoidable in the data-acquiring proccesses. The experiment, necessary to obtain the
system’s data since A, and B, are unknown, is performed over € [to,t7,—1] (being T the number
of samples by applying an input sequence uy,, ..., ur,—1 and collecting the input-state sequences

in the data-matrices X; € R™7T5, Zy € RV*Ts W, € RM*Ts | defined as:

X, == [x(10) -+ x(t5;—1)], (2.18a)
Zo:= [Z(x(t9)) -+ Z(x(t,—1))], (2.18b)
Wo := [W(x(10))u(to) -+~ W (x(tr,—1))ultr,—1)] (2.18c)

The disturbance sequence cannot be measured, but it is already contained in the data in (2.18). For

that reason and in order to robustly model the problem, it is considered a disturbance sequence
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with bounded energy, i.e., for some matrix Rp:

Do := [d(t9) -+ d(tr;—1)] (2.192)

Dye 2 :={DecR"™5:DD" <RpR)}. (2.19b)
Together, (2.18) and (2.19) make up the uncertainty set 6"
¢ :={[A B|: X =AZy+BWyo+D Dc 7} (2.20)

which describes all [A B] matrix pairs consistent with data, i.e., that could generate the sequences

in (2.18)
2.5.2 Reformulations of ¢ and properties

In this subsection, the aim is to reformulate the set % in (2.20) as a matrix ellipsoid
in order to derive SOS constraints for control design.
By isolating D in set ¢ definition (2.20), one obtains D = X| — AZy — BW), and

substituting it in (2.19b) results in
(X1 —AZy — BWy) (X, —AZy—BW,) " < RpR),.

The previous expression can be developed and reorganized in a quadratic form following the

next steps:
X X[ - XiZg AT —X\Wy BT —AZoX| +AZyZJ AT
+AZoW, B" — BWoX{' +BWoZg AT +BWoW, B" —RpR}, <0
XX, — RpR), [_ X, W, _XIWOT} )
[1 A B} ~ZoX, Z0Zy  ZoW, AT| =20
—WoX," ~WoZ, WoW, BT

XiX] —RpR}, —X [ZOT Wﬂ 1

T =<0
| ol (% | 1]
1 0 0 T
Wo Wo B
_ -
Z
XX —RpR), —xi |7 1
Wo
[1 A B} Tl 1AT] 20
VA Zo| |Zo T
- bl B
Wo Wol |Wo
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This matricial product can be written in terms of new data matrices Ay, By, and C;. Defining

them as _ T
VA
XX, —RpR}, —X
Cs B) Wo
— . (2.21)
Bd Ad _ Z() XT Z() Z()
1
Wo Wol| |Wo

allows the set € to be expressed in terms of A;, By, and Cy, expressed below.

-
[1 AB]" <0}
By Ay (2.22)

Cua
¢ ={|A B]:[l AB]

= {[A B|=2Zip:Cy+B)Zp+ZipBy+ ZipAaZap < 0}

The data matrices Ay, By, Cy are not related to an identification step for the real system [A, B.],
but are parameters for estimating a set containing all pairs [A B] consistent with data. Taking in
consideration a standard representation of a vector ellipsoid, i.e., {z € R?: c+ b z4z7"b+z7"az<
0} with parameters a € R7*%, b € R?, and ¢ € R, it is notable that (2.21) can be interpreted as
an extension for matrix ellipsoids. In this interpretation, and since A; = A} in (2.21), (2.22) is
further developed in the next steps by multiplying terms equivalent with the identity matrix and

adding a term equivalent to zero.

Cuy+B)Zap+ZipBy+ ZigAaZap < 0
Ca+ (AaA;'By) " Zap + ZapAaA; ' By +ZipAaZ +ByA ' AgA ' By — By A ' AGA ' By < 0
C;+ (A;le)TAdZAB +Z,IBAdA;ZIBd + ZATBAdZAB + (A;le)TAdAJIBd - B;A;le =<0

(A;le —I—ZAB)TAd(Ad_IBd ‘JFZAB) =< B;Ad_le — Cd

Defining the matrices § := —A;le and Q; = B;A;le — Cy, one obtains a new

representation of set &

¢ ={[A Bl=Zip: (Zap—C)"Aa(Zap—§) < Qu}

(2.23)
¢ = —AJIBd, Qi=B,A;'By—Cy

Note that this new representation of the matrix ellipsoid is defined around its center { with its
radius being Q,, which will be particularly useful when designing a control law that stabilizes

the whole set of matrices consistent with the data obtained. This will guarantee some level of
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robustness related to the noise and its assumed upper bound Rp, taken into account explicitly in
the data matrix C; (2.21).

For the next lemmas, it will be assumed that the data [5‘% ]is persistently exciting
(WILLEMS et al., 2005), which is related to its full row rank. The implication is that the data
will have enough information to represent the behavior of the system in a way possible to check
whether or not one needs more samples. The persistence of excitation directly implies that
Ay > 0, which guarantees it is an invertible matrix, necessary for the definition (2.23). Also,
since O, represents an ellipsoid radius, it needs to be positive semidefinite, a result that will be

proven in Lemma 1.
Lemma 1. Assuming [%% } has full row rank, Ay > 0 and Qg >~ O.

Proof. Aq = 0is a direct consequence of [ | having full row rank (BISOFFI et al., 2022), with

0

Ay asin (2.21). Q4 can be developed by substituting (2.21) in (2.23):

Qs=BJA;'B;—Cy
T T\ ~
Z Zo| | Zo Zo
=X X! — XX, +RpR),
Wo Wol| |Wo Wo

Defining O, = [VZV((’J T ([ﬁ%} [%}(’)]T> B [VZV((’J it can be verified that Q%, = Oy, which qualifies Q)

as a projection matrix, and the previous equation can be written as
04 =X10,X, —XiX|" +RpR). (2.24)

Additionally, being X| = A,Zo+ B,Wo + Do = [A. B.][ {1 ] + Do, it follows that



25

T T\ !
Zy Zy Zy | | 2o 2y
X0,-Xi = | [a. B.] 4Dy
Wo Wo Wo Wo Wo
Zy
0[] o
Wo
T T\ !
Z 2 Zy | | 2o Z
= [A* B*] +Do
Wo Wo W() Wo WO
Zy
][] n
Wo
:DOQP—DO.

A similar result for its transpose can be obtained as well: 0,X|" — X, = (X0, —

X" = (DoQ) — Do) = Qng — Dg. At last, (2.24) can be rearranged in order to use these

results, allowing to write it in terms of Dy instead of X, by the next steps.

Q4 =X10,X| = X1 X|" +RpRy,
= (X10p — X1)X| +RpR})
= (DoQp— Do)X|' +RpR},
= Dy(QpX|' —X,') +RpR},
= Do(Q,Dy —D{ ) +RpR),

= DyQ,D{} — DoD{ +RpR},

Since Q, = 0 and Dy € Z (2.19b),

Qu = DoQ,Dg +RpR}, — DoD}
> RpR}, — DDy

= 0.
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Lemma 2. Assuming [%%] has full row rank, € is bounded with respect to any matrix norm.

Proof. Consider € in (2.23), a nonempty set since { | € €. ZXB € ¢ if and only if v (Zyp —
)T AW(Zap — &)v < v Qgv, for all v € R™. Ain(Ay) represents the minimum eigenvalue of Ay

(symmetric). By applying the square root in both sides of the previous inequation, one obtains
1/2 1/2
AN Zas = OV < 10, Wi lv = 1.

Using the induced 2-norm, as in |A£1/ 2|2 = lmi,,((Acl/ 2)TAL,/ 2) = Amin(Ag) € [Mv| =
SUP|y[—1 |Mv| (HORN; JOHNSON, 2013), implies
VinAd) sup |(Zag = E)v| < sup [0}/,
=1 =1
Through the reverse triangle inequality, it is possible to obtain the following develop-
ment.
st [(Zap = O] < Aon(Aa) ™17 sup 10,/
V= v|=
= 1125 — {11 < Auin(A0) 11037
= [1Zasl| = 1211 < 1248 = E1| < Amin(Aa) /21105

— [1Zasl| < 11€]]+ Amin(Aa) 721012

Since all the values from the right side of the inequation are finite, Z is bounded
in relation to the 2-norm. Furthermore, any matrix norm is equivalent to another matrix norm,
meaning there is a finite constant C4p, such that ||M||, < C,p||M||; to any matrix M (HORN;
JOHNSON, 2013). Thus, if Z4p is bounded in relation to 2-norm, implies it being bounded in

relation to any n-norm. [

In order to apply Petersen’s Lemma, which will be presented further in this work, it

is convenient to define set ¢ as set & will, defined by:

&= {C+A;"Prol? x| < 1. (2.25)

Given a matrix inequality with a bounded matrix F (i.e, F'F < F), Petersen’s lemma allows
to obtain an equivalent condition in terms of its upper bound F. In the case of set &, by taking
F =Y and F = I, Petersen’s lemma will be useful when obtaining conditions for control design

in terms of the data. Before that, the next proposition will show that set ¢’ is equivalent to set &'
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Proposition 1. Being Ay - 0and Q; =0, € = &.

Proof. To prove that ¢ = &, it will be proved that ¢ C & and & C %.
For ¢ C &, suppose that ZXB €é,ie., ZXB = C-l—A;l/zTQl/z, for some matrix Y

satisfying ||Y|| < 1. Then,

(Zas— ) " Aa(Zan — ) = (4,7 1Q"2) A (A4, P Y 0/?)

_ QI/ZYTAd l/zAdAc;l/zYQl/z
_ 0!/2yTyQ!2
<0'?0'?=0.

For ¢ C &, suppose that Z,, € ¢, i.e., (Zap— ) "Ay(Zap — §) = Q. A matrix Y

needs to be found, satisfying Zsp = { —|—A;1/ 2YQI/ 2, which can be written as

Y02 =AY (Zus— ©). (2.26)

If /2 = 0, this condition can be satisfied by taking Y = 0. If Q'/2 - 0, it has
i€ {1,---,n} that define a diagonal matrix A; := diag{A,--- ,A;} = 0. Since Q'/? is symmetrical,
there is an orthogonal real matrix 7 (T 'T = TT " = I), such that the eigenvalues decomposition
of 0V/2 is

Q2 =TAT T =T [N 0]T". (2.27)

Since Q'/2 - 0 if i = n, then (2.27) admits A = A;. Writing T =: [T} 7] implies

T'T=1 (2.28)
T,
n ||| =1 (2.29)
TT
2
NI, + BT =1 (2.30)
TT' =1 (2.31)
T,
[Tl Tz} 1 (2.32)
TT
2
T'Ty T,'T I 0
R (2.33)
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Then, by selecting
Y =AY (Zap— )02 =AY (Zag— OTAT'T, (2.34)
it can be verified that ||Y|| < 1 by applying some of the properties above.

YY=TATT (2 §) AP A (2 - OTAT T

1

2.23
CXYTY <A T oA T

292 A; O A; T

( :7)T1A,'_1T1T [Tl Tz] i 7T | 1 AT
0 0 0 0| |7

231) A2 0| |1 -
0 of |1

233
=TA T TAIT T T (2.33) TIA AIATT

=TT, =1

Then, (2.26) holds. Being (2.26) equivalent to

A
Q' = |1 1] N1 a2z (2.35)
0
— |xna; o] =A"2z-O1 (2.36)
— [TTIAI- o} =AYz - [Tl Tz] (2.37)

{YTlAi =A2(z-0m
= (2.38)

0=A"2(z-0)1,
The upper equality of (2.38) holds because of the chosen Y in (2.34). The lower
equality of (2.38) holds if T collumns are in ker(Q'/2) and ker(Q'/2) C ker(A/*(Z—¢)). The
first condition — 7, € ker(Ql/ 2) — is true because

ovrgy 1 |0 2 [ —0 2.39
2= 0 ) = =0. (2.39)

The second condition — ker(Q'/?) C ker(A;/ 2 (Zsap— €)) — is also true, because if
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Ve ker(Ql/z), v satisfies Q'/2y = 0, thus, from (2.23),

0=1T0"201/2
:vTQv
> v (Z—§)Aa(Z~C)v

= A2z - P

Then, since |Aji/ 2 (Z—¢)v]? <0 and the absolute value of any matrix M is non-

M| >0, VM, it follows that A/ *(Z — {)v = 0. 0

negative, 1.e.,
2.5.3 Petersen’s lemma and control design

With the definition of set ¢ as equivalent to set & (2.25), its representation of the
uncertainty set that contains all pair of matrices [A B] compatible with the data can be utilized in
the process of obtaining some data-driven Lyapunov condition for control law design. For that,

Petersen’s lemma will now be presented, since it will be used in a key step further in this work.

Lemma 3 (Nonstrict Petersen’s Lemma). Consider matrices C € R"" E ¢ R"P, F ¢ R974,

GeR" withC=C" and F=F" =0, and let F be
F ={F cRP*9:F'F < F}. (2.40)
Suppose additionally E # 0, F = 0 and G # 0. Then,
C+EFG+G'F'E" <0, VFeZ (2.41)
if and only if there exists A > 0 such that
C+AEET +A7'G'FG =<o0. (2.42)

Proof. See (BISOFFI et al., 2022) ]

Bearing Petersen’s lemma (Lemma 3), strict QSR-dissipativity (2.12), (SILVA et
al., 2024) devised a data-driven Lyapunov condition which, if satisfied, guarantees asymptotic

stability of a system with a SOF control law.

Proposition 2. Let data be given by Zy, Wy and X; as in (2.18). Assuming [VZV‘M have full

row rank and Z(0) = 0. Given positive scalars By, Br, and positive integers ny, nr, if there
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exists polynomials V (x), T (x), A(x), with V(0) =0, T(0) = 0, and constant matrices Q € S™,

SeRP*Mm Rc S, such that for each x

V(x) — By x| >0, (249
T()C) _'BTHxHZnT > 0, (244)
vyl 1/2
T A Ve
0 <0, (2.45)
0w o] —awr
A >0, (2.46)
A0 (2.47)
being
-V T #T _ T
. CvZ(x)+T(x) —h(x)"Qh(x)  * 7 (2.482)
| W@V -STh(x) R
-lZ T A_]/2
., 12 (x)7( ‘ 1/Z)N M (2.48b)
_QW(X)T(Ad Jm

then the origin is globally asymptotically stable for X = AZ(x) + BW (x)u := f4 p(x),
for all [A B} € €, and a control law u = Kh(x), with K = —R~'ST.

Proof. For the proof, we start following the same rationale as (BISOFFI et al., 2022) with the
addition of the supply rate of the Dissipativity Theory (section 2.4). It will be shown that V is a
Lyapunov function for all £ = fa (x), [A B] € €. From (2.43), V is radially unbounded, and
since V(0) = 0, it follows that V' is positive definite. The next step is to address the derivative
of V satisfying V = VVTfA7B < 0. From (2.12), V < 0 if A. > 0 and T(x) > 0. Then, the

parametrization of [A B} will be substituted in (2.23) to show that
VVT(AZ(x) +BW (x)u) < —T(x) + r(u, y(x))
if (2.45) and (2.46) both hold. Notice that the above inequality leads to
VWA B] [f5,] 4 T(x) < h(x)" Qh(x) +2h(x)" Su+u” Ru (2.49)

1/2

VT (C+A; PYQYDT [0 1+ T (x) — h(x)T Qh(x) — 2h(x)" Su—u” Ru < 0

VVTET[ A9 14w QYT (AT [E) 14T (x) — k() Qh(x) — 2h(x)" Su— uT Ru < 0
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x 1 1 2 1 ITT Zlx Z(x 1 2 1 21
T (x) —h(x)T Qh(x) — 2h(x)TSu —u'Ru<0

At this point, we differ from (BISOFFI et al., 2022), by splitting { and A, /2 into its N-rows

and M-rows components, { := [EN | and A 12 [EA" 11;;) ]. Then, we have
VW20 + VYT W (uc+ 39V QYT (a7 ()
+;VVTQ1/2 TA; HIW (u+Z2(x)T (A, )y YQ1/21 (2.51)
1/2] SV T(x) = h(x)" Qh(x) = 2h(x)" Su—u Ru < 0

+u"W(x)T (A, )Tl
Then, the expression above can be rearranged in the form of the matricial product bellow

B T
h(x)" Qh(x) * . 1 <0 @252

V(L + 0 YT (A ) Z(x >+T<x>
— ST h(x) —R| |u

[1uT}' —1/2 1/2
W) (Gu+ (A, Purol?)iv

which is valid if the center matrix is negative semidefinite. Rewriting this matrix as a sum of two

matrices, we obtain:
WIGZW+TW -hW Ok x| VIO Pz )
W) (A, P wrey vy o]~

W (x)T EuzVV — ST h(x) —R
Then, we split the second matrix in as sum of matricial products in order to apply the nonstrict

VVILTZ(x)+T(x) —h(x)TQh(x) * y
+<M+ W@, urey* vy o

W (x)T EuAvv —STh(x) —R

Petersen’s lemma in the next steps
Z@)T(A; N0 vy 0 ) 0

—h(x)TQh(x) *

VIl Z(x)+ T (x)
W(x)T s VV —STh(x) —R
3z (4"

2W(x)T(Af}l/z)M Y[oi/?vv of | x0 @354

+ | ¥+

N[ —

By applying Petersen’s lemma (Lemma 3), since YY? < I, it’s possible to obtain

VVIELZ(x)+ T (x) —h(x)TQh(x)

W(x)T 3 VV —STh(x) —R
17007 (A, )N | vvTol?
Ax) | 2 d x|+ A (x)7! * 0 (2.55
+2A(x) T4 (%] +2(x) . [*] <0 (2.55)
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Now, for concision, the matrices ¥; and X, are as (3.21), resulting in

vvTpl/?
T+ A () — (?d (—AC@‘U[QQQVV 0]50

Finally, taking the Schur’s complement of the inequation above leaves us with

vvTQl/?

0 <. (2.56)
0w o] —awr

T+ A ()5,

]

The condition stated in Proposition 2 can be applied as well when trying to achieve a

local asymptotical stability. For that, an s-procedure is applied to (2.45), resulting in:
VVT Q‘I/ 2

0 +a(x)(1—-L(x)) <0, (2.57)
1/2

0w o AW

21 + A ()C)Ez

with a positive definite a(x) € L2t H1)x(ntmtl) The meaning of this condition is that if
(2.57) is satisfied, (2.45) also holds in a region around the origin that is given by an ellipsoid
&(L,1):={x€R"| L(x) < 1}. This strategy can be useful when achieving global stability proves
challenging or a limited domain of attraction is sufficient, which is true in many applications.
Alternatively to the supply rate in (2.10), it can be defined a more general supply

rate as in (MADEIRA et al., 2025) taking into account Q and S as polynomial matrices, i.e.,
r(u,y) = Q(y) +28(y)u+u' Ru (2.58)

Note that, for the purpose of this work, it is considered a real matrix R, since it allows for an
simpler calculation of its inverse than if its considered polynomial. Then, a condition based in

the supply rate in (2.58), similar to the one in Proposition 2 is formalized below.

Proposition 3. Let data be given by Zy, Wy and Xy as in (2.18). Assuming [%}3) } have full
row rank and Z(0) = 0. Given positive scalars By, Br, and positive integers ny, nr, if there

exists polynomials V (x), T (x), A(x), with V(0) =0, T(0) =0, and Q(y) € &, S(y) € 21>,
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R(x) € RZ;™ polynomial matrices such that for each xg

V(x) = By[x|[*"™ >0, (2.59)
T (x) — Brllx|[*"" >0, (2.60)
vvTol?
Y+ A(x)E Ca
0 =<0, (2.61)
0w o] —awr
A(x) >0, (2.62)
Ac -0, (2.63)
being
g _ |V N2 TR -00) + (.64
| WGV -S6) k]
170074512
e | 070 D)
W) (A,

then the origin is globally asymptotically stable for X = f4 p(x), for all [A B} €E,
and a control law u = K(y), with K = —R~'ST (y).

Proof. The proof follows the exact same steps of the Proposition 2. 0

The s-procedure can be applied as well in the Proposition 3 to achieve local asymp-
totical stability.

About the differences between Proposition 2 and Proposition 3, the first is based on a
supply rate with constant matrices, which can lead to less computational effort when determining
them through mathematical solvers. However, the supply rate in the second case (2.58) can offer
a bigger set of possible solutions. Also, the definition of an output as in (2.5) is not needed
and the degrees of complexity of the polynomial control law is defined by the S(y) matrix.
Furthermore, as seen in (MADEIRA et al., 2025), the second proposition can be applied to

obtain rational control laws, expanding their range of complexity.
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3 METHODOLOGY

The initial step to design a data-driven control law is to perform an experiment for

the data acquisition.

3.1 Collecting Data

For this work, the input signal selected was sinusoidal as in (BISOFFI et al., 2022),
which was applied in the systems state space model via simulation. Then, a number of samples
T were extracted and the input and state sequences were used to construct the data-matrices Z,
Wp as in (2.18), with the noise added to the estimation of X; as in (2.20). A sampling time can be
defined as Ty, but here the simulation was made with MATLAB function ode45, and it utilizes a
varying time step. This was not an issue since it did not affect the dataset’s ability to describe the
open-loop trajectories of the system.

The disturbance d was also modeled by sinusoidal waves. If its amplitude is given
by \/g and frequency 27w, it makes |d|*> < g which in turn make the sequence D in (2.19) to
be D < \/ansz , meaning that

o
DD'" < T Jun- (3.1)

Now, analyzing the J,, matrix, it can be stated that J,,»,, =< nl. Such property can be derived

from a particular case of the Cauchy-Schwarz inequality, i.e., |(v,w)[> < (v,v)(w,w), for any

v, w € R", by selecting w = J,,« 1, resulting in

(i}wl)z (fw)z <Yy rroay?

i=1

2 T
=V JanV,

Take into consideration that the left sum can be written in the matricial form (Y7, v;)
and the sum in the left term can be written as ), vl-2 = v Iv, for any v € R", then J,,», <X nl.
Then, (3.1) < ngnl . This guarantees that DD " < T,81, admitting Rp = /T;01.

Since the conditions for control law design in Proposition 2 and 3 are polynomial

matrices, SOS Programming will be used to solve algorithms through SOS decomposition of

polynomials.
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3.2 SOS approach

A polynomial p(x) € R" can be written as a SOS decomposition if there is a positive

semidefinite matrix M, such that
plx)=zMz', zeR", MeR™" (32)

where z contains the monomials of x in p(x) and M contains the coeficients of such monomials.
The utility of such decomposition is that it can be used to verify if a polynomial is positive
semidefinite by finding its SOS representation (PAPACHRISTODOULOU et al., 2021).

With SOSTools, a MATLAB toolbox, it can be defined a SOSP to find the SOS
decomposition of polynomials, or polynomial matrices. Additionally in the SOSP, it can be
defined decision variables, which are variables to be determined by the toolbox when finding
the SOS decomposition, and some constraints for these same variables. The decision variables
would be mainly the Lyapunov function V (x) and the QSR-dissipativity matrices, along with
the auxiliary variables shown in Proposition 2 and Proposition 3. Also, these decision variables
are constrained by positive definite and semidefinite polynomial conditions, making this kind of
toolbox fit perfectly in the problem studied in subsection 2.5.1. The Theorems 2 and 3 rewrite
the mentioned propositions in the form of SOSP taking into account the s-procedure in (2.57) for

local asymptotic stability.

Theorem 2. Let data be given by Zy, Wy and X, as in (2.18). Assuming [%% ] have full row rank
and Z(0) = 0. Given positive scalars By, Br, BL, €, and positive integers ny, nr, ny, if there

exists polynomials V (x), T (x), L(x) ,A(x), with V(0) =0, T(0) = 0, constant matrices Q € SP,
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S e RP*™ R e S™ . and polynomial matrix ou(x) € G2\ mn+t)x(mtntl) qyeh that for each x

>0
V(x) — By |x[|*" € [, (3.3)
T (x) — Brl|x||*"" € T[], (3.4)
L(x) — Be||x[|** € Z[, (3.5)
varal 1/2
1+ A VL
— 0 —o(x)(1 —L(x)) € X[x], (3.6)
0w o] —awi
A(x) — g, € X[x], (3.7)
a(x) € E[x], (3.8)
Ac € Z[x], (3.9)
being
i TFT . T
5, = VV Iy Z(x)+T(x)—h(x)' Qh(x) * | (3.108)
| W@ EuyVV = STh(x) —R
[ 1T a—1/2
5= |20 Y 1 /2)N 4] (3.10b)
W) (A, m

then the origin is locally asymptotically stable for % = fa g(x), for all [A B] € €, and

a control law u = Kh(x), with K = —R~1S". The domain of attraction is estimated by & (L, 1).

Proof. Since a polynomial matrix having a SOS decomposition means it is positive semidefinite,
(3.3), (3.4), (3.7), (3.9) imply respectively (2.43), (2.44), (2.46), (2.16). Additionally, (3.6) means

that:

VVTQ}{/z

0 ] —a(x)(1—L(x)) = 0. (3.11)
[Qj/zvv o} —A(x)I

21 +)~(X)22 [

Then, we can rewrite it as:

VVT Q;/2

0 ] < —a(x)(1—L(x)). (3.12)
[Qj/zvv o} — ()1

T4+ A (x) [
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Since a(x) = 0 because of (3.8), and L(x) > 0 because of (3.5), the right hand of the inequality

above is only negative when L(x) < 1, i.e.,

VVTQ;!/Z

L+ A(x)E
0 = —o(x)(1-L(x)) 20, xe€&(L,1). (3.13)

0wy o] AW

This means that, if (3.6) holds, (2.45) holds for all x € &(L,1), being &(L,1) an estimative of

the domain of attraction where the closed-loop system is dissipative. 0

Theorem 3. Let data be given by Zy, Wy and X, as in (2.18). Assuming [VZV((’) } have full row
rank and Z(0) = 0. Given positive scalars By, Br, BL, €, and positive integers ny, nr, np, if
there exists polynomials V (x), T (x), A(x), with V(0) =0, T(0) = 0, and matrices Q(y) € 2,

S(y) € 1M Re ST, a(x) € pltm+x(mmt1) gych that for each x

V(x) — By |x[|*" € [, (3.14)
T (x) — Br|lx||*"" € Z[x], (3.15)
L(x) — Be||x[|** € Z[, (3.16)

L+ A(x)E, VVTQ;/Z
—~ 0 —a(x)(1—L(x)) € £[x], (3.17)

0w o] —awr
l(x)—sl EZ[x], (3.18)
a(x) € X[, (3.19)
Ac € X[x], (3.20)

being
g, |V W ZWFTE-00) + 321
| WYV -s) -R]

[ 17007 (42

5= |20 dl/z)N -+ (3.21b)

W) (A, )

then the origin is locally asymptotically stable for x = f4 p(x), for all [A B} €E,
and a control law u = K(y), with K = —R~'S"(y). The domain of attraction is estimated by
E(L,1).
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Proof. Following the same steps for the proof of Theorem 3, (3.14), (3.15), (3.18), (3.20) imply
respectively (2.59), (2.44), (2.62), (2.63). Additionally, (3.17), (3.16), (3.19) mean that (2.61)
holds for all x € &(L,1), being &(L,1) an estimative of the domain of attraction where the

closed-loop system is dissipative. [

In the previous theorems, Z(x) and W (x) are the known regressors of the plant, ¢,
Ay and Qg are matrices determined by the data Zj, Wj and X;. The decision variables to be
determined by the SOSP are V(x), T'(x), L(x), a(x), A(x), O, S, R (or Q(y), S(y), R in Theorem
3). The input parameters By, Br, Br, ny, nr, nz have influence in the radially unboundness of
V(x), T(x) and L(x). Since SOSTools does not compute contraints that are strict inequalities, the
last input parameter €, > 0 is needed to guarantee that A (x) > 0, which is selected as a sufficient

small value.

3.3 Algorithm Formulation

Both Theorems 2 and 3 present bilinearities that need to be addressed in order to be
implemented. The first one is present the A, as in (2.16). Since the problem needs to be linear in
the decision variables, adding constraint in the form of (3.9)/(3.20) is not possible. This issue is
circumvented in (MADEIRA; MACHADO, 2024) by two steps: the first step solves the SOSP
with no restrictions in A., the second step is an iterative loop that solves the same SOSP with the

addiction of a constraint that guarantees
Ac = Aci—1 (3.22)

and stops when A, x > 0. Such condition is presented in the next proposition for the polynomial
matrix case, based in (MADEIRA et al., 2025), and can be applied in the real matrix case as
well by making Q(y) = Q and S(y) = S.

Proposition 4. Suppose that Vk = {0, 1, 2 ...}, there exist sequencies Qy € &P, S € P1*m
and Ry € S”,. In addition, let Ay in (2.16) be well defined in x. If Vk = {0, 1, 2 ,...}

R {—Ry=0 (3.23)
and
SkOMR S ) +Sk-1 )R SE ()

=28k 1 )R S () +0k-1(y) — Qk(y) € Z[y,
then (3.22) holds Yk = {0, 1,2 ,...}.

(3.24)
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Proof. From (2.16), (3.22) can be written as

SkORCISY (v) — Qk(y) > Sk 1 )R S (3) — Qa1 (). (3.25)

Suppose that (3.23) holds, then
(3.25) <= SkYRSE () = Sict R 1S 1 (%) = Qu(y) = Qa1 () (3.26)

Now, taking into account that

(k) = Sk 1 V)R (Sk () = Ske1 () T >0, (3.27)

note it is equivalent to

SkOR Sk )T = Sk0R ! Sk 1(0) + St )R Sk(v) = Sict IR Sic1 (v),  (3.28)

Then, by substitutig Sy (x)Rk’_llSk (x)T in (3.26), (3.26) is implied by

SkR 1 Sk1(0) + Sk R k() = 21 R Sk-1(9) = Qu(y) = Qi1 (0), - (3:29)
which is identical to (3.24). Therefore (3.24) is a sufficient condition for (3.22). ]

The importance of Proposition 4 is due to it providing a condition that is linear in
the decision variables, i.e., Q(y), Sx(y) and Ry. Such conditions were named in (MADEIRA,;
MACHADO, 2024) as Recurrent Dissipativity-Based Inequalities (RDBI).

The second bilinearity present in Theorems 2 and 3 is in the s-procedure term
o(x)(1 — L(x)). The method proposed in this work deals with it by, given some initial &(x),
determining L(x) in the first step. Then, in the iterative step, which utilize the RDBI, the L(x)
found in the first step is fixed, and only o(x) is treated as a decision variable. This method will
be organized in the Algorithms 1 and 2 presented next.

In Algorithm 1, since A, € R, the test A, > 0 required in the if sections can be
performed by analyzing if all of its eigenvalues are positive. In Algorithm 2, such test cannot be
as easily performed. Since A, € &2, an alternative test can be made by an auxiliary SOSP to find

if A, € X[x], thus satisfying A, > 0.
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Algorithm 1: Data-driven Local Dissipativity Control Design - supply rate as in (2.10)

Input :Consider a Z(x) € 2NV, W (x) € 2™, h(x) € 227> [x], set (Bv, Br. Br.

81) € R>(), (I’lv, nr,ny, kmax) eN, 060( ) c <@(n—l—m—l—l) (n+m+1)
k<0

STEP 1) Find Qg € S?, So € RP*™, Ry € Sy, Ao(x) € P, Vo(x) € 2, Th(x) € Z,
Lix)e &

subject to (3.3)-(3.7)

if Ao = 0 then

K=-R,'S!

V= V()(X)

else

while & < &, do

STEP 2) Find Qy € SP, S; € RP*™ Ry € S>O’ )uk(x) €z, Vk(x) ez,
( ) cP. a ( ) c gp(ntm+1)x (n+m+1)

subject to (3.3)-(3.7), (3.23)-(3.24) and a(x) € Llntmt1)x(ntmt1)[y]

if Ac o > 0 or k = kyqx then
K=-R'SI
V =Vi(x)
STOP

end

k+—k+1
end

end
Output : K, V(x)

3

4 Lyapunov Certificate with Z3 Prover

Bearing the solutions found by Algorithms 1 and 2, a Lyapunov certificate can be

obtained by verifying if Z3 Prover can find a counterexample for V(x) > 0 and V < 0 in the

estimated domain of attraction &'(L, 1). This feature is illustrated below with an code example

for Z3 Prover in Python which attempts to prove if —x> + 10 < 0 when x < 5, x € R. Code:

1

"

import z3

x= z3.Real('x")

31z3.prove(z3.Implies(x<=5,-x**2+10>=0))

Output:

counterexample

[x = 4]
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Algorithm 2: Data-driven Local Dissipativity Control Design - supply rate as in (2.58)

Input :Consider a Z(x) € 2V, W(x) € 2M*1, set (By, Br. Br. €,) € R=o, (ny, nr,

nr, kmax) €N, ap(x) € <g2(>”0+m+1)><(”+m+1)

k<0

STEP 1) Find Qy(y) € 2. So(y) € 21", Ry € Sy, Ao(x) € 2, Vo(x) € 2.
To(x) € P, L(x) e &

subject to (3.14)-(3.18)

if AC,O € ZM then

K= k'S5

V=W

else

while &k < k4 do

STEP 2) Find 0i(y) € 2, Si(y) € 21", Ry € 8%, &k(x) € 2, K (x) € 2,
Ti(x) € 2, a(x) € gpntm+1)x (n+m+1)

subject to (3.14)-(3.18), (3.23)-(3.24) and a(x) € Llntm+1)x(ntmt1)[y]

if Aok € X[x] or k = kjax then
K=—-R'SI'(y)

V =Vi(x)
STOP
end
k+—k+1
end
end

Output : K (y), V(x)

Alternatively, if not found a counterexample for the formula, it is considered proved

or satisfied as the next example illustrates. Code:

I|import z3

3]

x= z3.Real('x")

31z3.prove(z3.Implies(x>=4,x*x*2-10>=0))

Output:

I |proved

Because they’re able to prove the positive definiteness of a polynomial within a
domain, SMT solvers can be used to provide a Lyapunov certificate by checking if the data-
driven Lyapunov condition in (2.45)/(2.61) holds with the solutions found by Algorithm 1/2.

Moreover, there is a scenario where the positive definite constraints can be feasible, but a SOS
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decomposition could not be found, e.g., due to numerical imprecision or due to the polynomial
not having an SOS decomposition. This scenario may cause the SOSP solvers to return solutions
not certifiable via SOSP, but SMT solvers can still provide the Lyapunov certificate.

The procedure for issuing a Luapunov certicate was to verify if the Lyapunov
conditions (Theorem 1) were satisfied. For V(x) > 0, it can be a straight-forward test by
verifying its positive-definiteness as illustrated in example codes above. For V (x) < 0, the tested
condition was the data-driven conditions 2.45/2.61, but with a Schur Complement in order to
make it a scalar polynomial (instead of a matrix polynomial), since it cannot be analyzed by Z3
Prover otherwise.

In addition to that, its important to remark that the estimative of the domain of
attraction &' (L, 1) is only determined in STEP 1 for both algorithms. If all steps were feasible,
Lyapunov conditions can be satisfied in an equal or bigger domain of attraction with the final
solutions found. In this work, with the solutions provided by SOSTools, Z3 Prover was applied
to provide a Lyapunov certificate and to maximize the domain of attraction by conducting a line

search in p to find a maximum & (V, p) in which (2.45)/(2.61) holds.
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4 RESULTS

To apply the strategy developed in the previous section, two systems with a nonlinear
polynomial state-space representation were selected. The local asymptotic stabilization around
the origin of both systems was solved using both algorithms 1 and 2, for comparison in the
use of the different definitions of the supply rate ((2.10) and (2.58)). The software used to
implement the algorithms was MATLAB, particularly with the SOSTools toolbox, using Mosek
as solver. The solutions found were then tested with Z3 Theorem Prover to guarantee a Lyapunov
certificate. The computer in which the software was running has the specifications: Processor

12th Gen Intel®Core ™7-12700F 2.10 GHz, with RAM 32,0 GB.

4.1 System1

The first system was extracted from (KHALIL, 2002, Example 14.9), and it can be

represented by the following state-space equations:

X = )C% —X? +x2
“4.1)

Xo=1u

Figure 3 — Block diagram of system (4.1)

— ()

— ()

u X,
— J

Figure 3 shows the block diagram for system (4.1) and the open-loop phase diagram
is shown in figure 5. The system already converges for a set of equilibrium points, when
X = x% — x:f +xo = 0, shown as a dashed line. However, we want to achieve asymptotical

stability around the origin (as a isolated equilibrium point).
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Figure 4 — Open-loop phase diagram for system (4.1)
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To perform the data acquisition experiment, the input signal selected was u =
5sin5t¢, in the interval ¢ € [0, 10], 7 in seconds, and it was extracted the first 7y = 100 samples
provided by MATLAB’s ode45 function. That particular signal was chosen considering the main
assumption in Lemma 1, i.e., [%}(’) ] having full row rank, with selected vectors of monomials
being Z = [x; x} x] x2 x3 x3] and W = [1]. The disturbance signal applied in the sequence X;
was d = [\/\/;S_ZSZZ] , with 6 = 0.01 and @ = 0.87, which satisfies (2.19). This disturbance
emulates the process disturbances as modelled in section 3.1, in order to design a control law
that robustly stabilize all pair all matrices [A B] consistent with data. The experiment data is

shown in figure 5.
4.1.1 Algorithm 1

For algorithm 1, the input parameters were ny = ny =ny = 1, fy = Br = 1079,
Br=10"% & = 1073, and ag(x) = 107%||x||*I. The fictitious output, which determines the
polynomial degrees of the control law obtained, was /(x) = [x; xp]". The degrees of the
polynomial decision variables V (x), T(x), A(x), L(x), a(x) were respectively 4, 2, 0, 2 and 2.
By selecting this inputs, the computational complexity of algorithm 1 can be assessed by the
number of decision variables and constraints in the SOS programs executed in STEP 1 and STEP
2. In STEP 1, it were 18 decision variables and 6 SOS constraints, and in STEP 2, 45 decision

variables and 8 SOS constraints. The execution time until a solution with A. > 0 was 5.953207
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Figure 5 — Open-loop experiment for system (4.1)
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seconds and the number of iterations was k = 37. Table 1 shows the solutions found by algorithm

1 for system (4.1).

Table 1 — V(x), u(x), A(x) and L(x) solutions for (4.1), supply rate as in (2.10)

Fen  Expression

V. 0.077217x] 4 0.058274x3x2 +0.27619x3x3 — 0.11577x13 + 0.015567x5

u —7.834x1 —5.6198x,

A 0.0072974

L 200977679.8299x% — 220011.7166x1x; +215571661.4608x3

With Z3Prover, it was possible to obtain a Lyapunov certificate by not finding a

counterexample for the Lyapunov conditions (Theorem 1) for asymptotic stability in the domain

of attraction estimated by &'(L, 1). In addition, by conducting a line search in p to find a bigger

ellipsoid &(L,p), it was obtained a Lyapunov certificate in a domain of attraction with p = 108,

At the left side of Figure 6, it is shown the phase diagram for the closed-loop, with

the dashed line representing the estimated domain of attraction &(L,10%) and the bold line

representing a single trajectory for xo = [0.4 0.4], which is also represented in the time domain

at the right side of Figure 6.
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4.1.2 Algorithm 2

For algorithm 2, the input parameters were ny =ny =n; = 1, By = Br = 107°,
B =10"% g, = 1073, and op(x) = 107||x||?I. With the new supply, the complexity of the
control law is determined by S(x), since u = —R~'S" (x). Then, the degrees of the polynomial
decision variables V(x), T(x), A(x), L(x), a(x), O(x), S(x) were respectively 4, 2, 0, 2, 2, 2
and 1. Assessing the computational complexity, STEP 1 had 18 decision variables and 6 SOS
and STEP 2, 45 decision variables and 8 SOS constraints. The execution time until a solution
with A, = 0 was 6.601079 seconds and the number of iterations was k = 37. Table 2 shows the

solutions found by algorithm 2 for system (4.1).

Table 2 — V(x), u(x), A(x) and L(x) solutions for (4.1), supply rate as in (2.58)

Fcn  Expression

V. 0.06835x] +0.061552x7x2 +0.27479x3x3 — 0.11572x1x3 +0.016102x5

u —8.1515x1 —5.2592x,
A 0.0075004

L 165169341 .5667x% +1112927.3042x1x2 + 190941 194.2397x%

Similar to the previous example, it was possible to obtain a Lyapunov certificate with
Z3 and the maximum domain of attraction &' (L, p) found was for also p = 108.

At the left side of Figure 7, it is shown the phase diagram for the closed-loop, with
the dashed line representing the estimated domain of attraction &(L,10%) and the bold line
representing a single trajectory for xo = [0.4 0.4], which is also represented in the time domain

at the right side of Figure 7.
4.1.3 Comparison with (BISOFFI et al., 2022)

In the same way as in (SILVA et al., 2024), the results above were compared to the
method for data-driven control for polynomial systems in (BISOFFI et al., 2022), but in here we
address the (BISOFFI et al., 2022, Corollary 3) for local asymptotical stability. The data was
produced with the same experiment as in Figure 5.

The input parameters and decision variables were selected trying to keep them in

similar complexity as their equivalents in the two previous subsections, but still aiming for
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successful stabilization. Then, the selected parameters were I; = 107%||x||? (equivalent to By

and ny), &, = 1078, initial Vix)= x [0'0278 0.0127

0-0278 0.0127]x (obtained by stabilizing the linear model),

Tx, ¢ = 1 (similar to L(x), but here the domain of attraction &(Iy, 1)is a input parameter),

lp=x
kmax = 15 (stop criterion). The degrees of the polynomial decision variables V (x), k(x) (control
law), A (x), T(x), s1(x), s2(x) (s-procedure variables similar to o(x) were respectively 2 to 4, 1,
0,2to4,2to4,2to4. In terms of computational complexity, STEP 1 (V (x) fixed) had 3 decision
variables and 6 SOS and STEP 2 (k(x) fixed), 12 decision variables and 9 SOS constraints. The

execution time until k = k,, was 142.638647 seconds. Table 3 shows the solutions found by

(BISOFFI et al., 2022, Corollary 3) for system (4.1).

Table 3 — V(x), u(x) and A (x) solutions by (BISOFFI et al., 2022, Corollary 3)
Fen  Expression
V. —25176 x 107x] +7.8577 x 10 x3xp — 2.2778 x 10~ "x}x3 —2.8085 x 10~ 8x1x3

—2.3159 x 1077x5 + 1.1703 x 10~ 7x] +4.5677 x 10~3x%x5 + 3.8531 x 10 8x1x3
+1.7155 x 107%x3 +5.4677 x 107 7x§ 4+ 4.8187 x 10~ 8x1x + 8.5266 x 10~ 7x3

u —1.0959x1 — 3.2629x,

A 12960469.1712

With Z3Prover, it was possible to obtain a Lyapunov certificate by not finding a
counterexample for the Lyapunov conditions (Theorem 1) for asymptotic stability in the domain
of attraction estimated by &'(L, 1). In addition, by conducting a line search in p to find a bigger
ellipsoid & (L, p), it was obtained a Lyapunov certificate in a domain of attraction with p = 1.

At the left side of Figure 8, it is shown the phase diagram for the closed-loop, with the
dashed line representing the estimated domain of attraction & (L, 1) and the bold line representing
a single trajectory for xo = [0.4 0.4], which is also represented in the time domain at the right

side of Figure 8.
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Figure 6 — Closed-loop phase diagram (left) and time response (right) for system (4.1) using
Algorithm 1
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Figure 7 — Closed-loop phase diagram (left) and time response (right) for system (4.1) using
Algorithm 2
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By observing the closed-loop phase diagrams (Figures 6, 7, 8), the domain of
attraction of the last method was bigger. However, by comparing the execution time and

computational complexity, it had worse performance in total time and single iteration time,
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despite having less decision variables in general constraints per STEP, even with different solvers.
Table 7 shows the total execution time and total iterations of Algorithms 1, 2 and from (BISOFFI
et al., 2022) using Mosek (APS, 2025) and SeDuMi (STURM, 1999) as the solvers (SeDuMi
results obtained from (SILVA et al., 2024)). This could be due to the main SOS condition (the
one derived from V < 0 being bigger and/or it being more sparse than the ones present in the
other two algorithms, causing numerical complexity to scale up. Moreover, the D-K iteration
method have to solve 2 SOSP per iteration to deal with the bilinearity of the constraints, have
no stop criterion beside the maximum number of iteration, and has no solution convergence
constraint between iterations. Algorithms 1 and 2 tackle these issues by having only 1 SOSP
per iteration, a stop criterion when A, = 0 and a solution convergence constraint in A. x4 1 = Ac x
(3.22). Additionally, although all algorithms had no constraint to specify a time response (such
maximum overhoot or settling time), the last algorithm resulted in the slowest closed-loop time
response. In general, it successfully stabilized the system in the origin, but the performance of
the algorithm based in (BISOFFI et al., 2022, Corollary 3) was inferior to the Algorithms 1 and
2.

Table 4 — Algorithm performances for system (4.1)

Solver Algorithm Total execution time (s) Total iterations
1 5.953207 37
Mosek 2 6.601079 37
(BISOFFI et al., 2022) 142.638647 15
o1 15.07 4
SeDUMI - B1SOFFI er al, 2022)  8023.18 15

4.2 System 2 - Van der Pol’s Oscillator

The second system was extracted from (HADDAD; CHELLABOINA, 2008). It is
also known as Van der Pol’s Oscillator and it can be represented by the following state-space

equations:
X1 =X
4.2)
X =—x1+ex(1 —x%) * X + U

The open-loop phase diagram is shown in figure 9, and the system is not asymptoti-

cally stable around the origin and converges to a periodic trajectory around the origin.
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Figure 9 — Open-loop phase diagram for system (4.2)

{
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To perform the data acquisition experiment, the input signal selected was u = 5sin 5¢,
in the interval 7 € [0, 10], 7 in seconds, and it was extracted the first 7; = 100 samples provided by
MATLAB'’s ode45 function. That particular signal was chosen considering the main assumption
in lemma 1, i.e., [VZV% } having full row rank, with selected vectors of monomials being Z all the
monomials of x with degree from 1 to 3 and W = [1]. The disturbance signal applied in the
sequence X| was d = [\/\/STTZSZZ] , with & = 0.01 and ® = 0.87, the same used in section 4.2.

The experiment data is shown in figure 10.
4.2.1 Algorithm 1

For algorithm 1, the input parameters were ny =ny =n; = 1, By = Br = 107°,
Br=10"% €, =1078, and og(x) = 10~*||x||*I. The monomial degrees of the fictitious output
h(x) was {1,3}. The degrees of the polynomial decision variables V (x), T'(x), A (x), L(x), a(x)
were respectively 2 to 4, 2, 0, 2 to 4 and 2 to 6. These parameters resulted in 56 decision variables
and 6 SOS constraints in STEP 1 of the algorithm, and 294 decision variables and 8 constraints in
STEP 2. The execution time until a solution with A, > 0 was 8.084261 seconds and the number
of iterations was k = 15. Table 5 shows the solutions found by algorithm 1 for system (4.2).

It was possible to obtain a Lyapunov certificate with Z3 and the maximum domain
of attraction &'(L, p) found was for p = 10.

At the left side of Figure 11, it is shown the phase diagram for the closed-loop,
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Figure 10 — Open-loop experiment for system (4.2)
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Table 5 — V(x), u(x), A (x) and L(x) solutions for (4.2), supply rate as in (2.10)

Fcn

Expression

0.214x7 4 0.25868x7x2 + 0.46486x7x3 +0.12299x x5 +0.70013x3 + 0.0023443x3
—0.0062013x3x; +0.0020025x1x3 — 0.00013813x3 + 1.0024x7 +0.78862x1x3
+0.41352x3

3.2224x7 —2.8409x7x; + 3.6794x1x5 — 10.5933x3 — 6.828x1 — 8.9324x;
3.9818

10.9632x7 + 0.0084373x3x2 + 12.5655x3x3 + 0.0054906x .3 + 10.9904x5
—1.3268 x 1075x3 — 7.921 x 10~>x3x; — 1.4367 x 102x1x3 — 6.5266 x 1075x3
+0.78079x% — 3.6692 x 107 xx; + 0.78044x3

with the dashed line representing the estimated domain of attraction &' (L, 10) and the bold line

representing a single trajectory for xo = [0.3 0.4], which is also represented in the time domain

at the right side of Figure 11.
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Figure 11 — Closed-loop phase diagram (left) and time response (right) for system (4.2) using
Algorithm 1
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Figure 12 — Closed-loop phase diagram (left) and time response (right) for system (4.2) using
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4.2.2 Algorithm 2

For algorithm 2, the input parameters were ny = ny =n; = 1, By = Br = 107°,
Br=10"% ¢, = 1073, and ag(x) = 107#||x||>1. Then, the degrees of the polynomial decision
variables V (x), T'(x), A(x), L(x), at(x), Q(x), S(x) were respectively 2 to 4, 2,0, 2 to 4,2 to 6,
2to 6 and {1,3}. These parameters resulted in 60 decision variables and 6 SOS constraints in
STEP 1 of the algorithm, and 298 decision variables and 8 constraints in STEP 2. The execution
time until a solution with A, = 0 was 5.729857 seconds and the number of iterations was k = 6.
Table 5 shows the solutions found by algorithm 2 for system (4.2).

It was possible to obtain a Lyapunov certificate with Z3 and the maximum domain
of attraction & (L, p) found was for p = 1.

At the left side of Figure 12, it is shown the phase diagram for the closed-loop,

with the dashed line representing the estimated domain of attraction &' (L, 1) and the bold line
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Table 6 — V(x), u(x), A (x) and L(x) solutions for (4.2), supply rate as in (2.58)

Fcn  Expression

V7201 x 107 x} — 1.5867 x 107 x3xp +5.1148 x 10~ Pxfxd —2.5178 x 10~ 4x13
+9.8052 x 107 4x3 +9.2091 x 10~ 18x3 +8.6472 x 10~ x3xp +3.2336 x 10~ 10xx3
—1.044 x 107 15x3 —7.3986 x 10717x3 —3.6131 x 10~ xyxp —8.7963 x 107 15x3

u  —1.4412x3 — 1.9801xFx; + 8.7331x1x3 — 44.7184x3 +0.32905x; — 1.449x,

A —3.14x 10717

L 10.704x} +0.0038086x3x2 + 11.8831x7x3 +0.0035042x1x3 + 10.7213x3
—0.00010667x3 +0.00011662x3x; — 7.3657 x 10™x1x3 +0.00016152x3
+0.94605x7 +4.0593 x 10™x1x2 4 0.94607x3

representing a single trajectory for xo = [0.3 0.4], which is also represented in the time domain

at the right side of Figure 12. Table 7 shows the total execution time and total iterations of

Algorithms 1, 2.

Table 7 — Algorithm performances for system (4.2)

Solver Algorithm Total execution time (s) Total iterations

1 8.084261 15
Mosek 2 5.729857 6
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5 CONCLUSION AND FUTURE WORKS

In this work, data-driven QSR-dissipativity-based conditions for control design of
polynomial systems were developed with two supply rates: with constant and polynomial Q, S,
R matrices. In the implementation of these conditions, both algorithms succesfully designed a
control law that locally asymptotically stabilized the two analyzed systems.

Comparing the performance of the algorithms, the use of a supply rate with polyno-
mial O, S, R matrices achieved a solution with faster total execution time and fewer iterations
than the algorithm with constant Q, S, R matrices. Additionally, when comparing with another
SOSP method (based on the D-K iteration), although the proposed algorithms had more decision
variables and constraints, their execution time was smaller.

At last, the auxiliary use of Z3Prover in providing Lyapunov certificates for the
found solutions a valuable source of reassuring the Lyapunov conditions are being satisfied,
specially since numerical imprecisions can lead the softwares like SOSTools to not finding a
SOS decomposition as well.

Future works can extend the approach developed here to achieve rational control
laws and another formal verification tools can be explored, e.g., SMT solvers that can provide a

neural Lyapunov certificate by training a neural network to act as Lyapunov function.
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APPENDIX A - CODES

Code 1 — Control design algorithm - system 1 - supply rate with constant matrices Q, S, R
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» % % Data-driven Control - Dissipativity-based with
Petersen's Lemma

% % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

% % % System: Khalil (2008)

clc; clear; close all

%» Data-driven Dissipativity Polynomial Control Synthesis
pvar x1 x2
vars = [x1;x2];

x = [x1;x2];

%h £ = [x1°2-x1"3+x2;

b 01;

b

h g = [0; 1];

b

h = monomials(x,1); %fictitious output
m = 1; % u columns

n = 2; % x columns

p = size(h,1); % h length

global delta

delta = 1le-2; %» Disturbance amplitude

x0 = [3; -1]; % initial condition
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AbsTol', 1e-6, 'NormControl',
[0 10], x0, opt); %
%» control signal

% derivative signal

[X00(1,i)~2-X00(1,1i)~3+X00(2,i)+sqrt(delta/n

U00(:,i)+sqrt(delta/n)*sin(2*pi*0.4*xt(i))];

ng first T samples of the

% Disturbance upper bound

opt = odeset('RelTol', 1le-3, '
'off');
[t, xsol] = ode45(Q@experiment,
simulation time = [0,10]
X00 = xsol';
Uoo = [1;
X11 = [1;
for i = 1:length(t)
U00(:,1i) = B*xsin(5*xt(i));
X11(:,1i) =
)*cos (2%pi*0.4xt (1)) ;
end
Ts = 100; % number of samples
X0 = X00(:,1:Ts); % selecti
experiment
X1 = X11(:,1:Ts);
U0 = U00(:,1:Ts);
t = t(1:Ts);
DELTA = sqrt(Ts*delta)*eye(n);
%» Initialization of regressors
Z = [monomials(x1,1:3) ;monomials(x2,1:3)1];
W = monomials(x,0);
N = length(Z);
M = length(W);




% plot of generated data

figure

subplot (2,1,1)

input_exp = plot(t,U0);
title (' Input');

set (input_exp, 'LineWidth' ,1.5);
ylabel ('u')

grid on

subplot (2,1,2)

states_exp = plot(t,X0(1,:),'--",t,X0(2,:),"'-.");

legend ('$x_18$','$x_2$%',"'Interpreter','latex','Location’,"
northeast');

title('Open-loop State Response');

set (states_exp, 'LineWidth',1.5);

ylabel ('x"')

xlabel ('t"')

grid on

% construction of the data matrices Ad, Bd, Cd
Z0 = double(subs(Z,x,X0));
W0 = UO0;

Ad = [ZO;WO]*[ZO;WO0]"';
Bd = -[ZO;WO]*X1"';
Cd = X1*xX1'-DELTA*DELTA';

% construction of the data matrices zeta and Q
zeta = -Ad\Bd;

Qd = Bd'*(Ad\Bd)-Cd;

zeta_N = zeta(1:N,:);
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zeta_M = zeta ((N+1) :(N+M), :);
Ad_i = Ad~(-1/2);
Ad_i_N

Ad_i(:,1:N);
Ad_i_M

Ad_i(:,(N+1):(N+M));

%» Inputs (design parameters)

beta_V = 1e-6;
beta_T = 1le-6;
beta_L = 1le-4;
n_V = 1,;
n.T = 1,;
n_LL = 1;

epsi = le-3;
alpha = le-6*(x1"2+x2"2)*eye(n+m+1) ;

% Maximum iteration number
k = 1;
kmax = 100;

tic
% STEP 1: Determine VO, Tx, LO, QO, SO, RO, lambdaO

prog = sosprogram(vars);

[prog, Q] = sospolymatrixvar (prog,monomials(x,0),[p,p],"

symmetric');

[prog, S] sospolymatrixvar (prog,monomials(x,0),[p,m]);

[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m,m],"

symmetric');

[prog, V] = sospolyvar (prog,[monomials(x,4)], 'wscoeff');
[prog, T] = sospolyvar(prog,[monomials(x,2)], 'wscoeff');
[prog, lambda] = sospolyvar(prog,[monomials(x,0)], 'wscoeff'

)
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[prog, L] = sospolyvar (prog,[monomials(x,2)], 'wscoeff');

b

prog = sosineq(prog,V-beta_V*(x1-2+x2°2)"n_V);
prog = sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T);
prog = sosineq(prog,L-beta_L*(x1°2+x2°2)"n_L);

SO0S constrains

gradV = jacobian(V,x)'; % gradient of Lyapunov function
Sigmal = [gradV'kxzeta_N'*Z+T-h'*Q'xh (1/2)*gradV'*zeta_M'xW
-h'*S
((1/2) *gradV 'xzeta_M'*W-h'*S)"'
Sigma2 = [(1/2)*Z'*Ad_i_N'; (1/2)*W'xAd_i_M']1*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_Mx*W];

B_aux = [gradV'*Qd~(1/2)
zeros(m,n)];
stability = [Sigmal+lambda*Sigma2 B_aux % data-
driven dissipativity-based condition for local stability
B_aux' -lambda*eye(n)]+alphax*x(1-L);
prog = sosineq(prog,-stability);
prog = sosineq(prog,R); % dissipativity's R constraint

prog = sosineq(prog,lambda-epsi);

.

lambda constraint

STEP 1 solution

options.solver = 'mosek';

sol = sossolve(prog,options);

Qo

= double(sosgetsol(sol,Q));

% petersen's lemma's
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uble (sosgetsol (sol,R));
uble (sosgetsol (so0l,S));

sosgetsol(sol, L);

sosgetsol(sol,T);

RO = do
SO = do
L=
T =
Delta_c

= S0*(RO\(S0'))-Q0;

min(eig(Delta_c))

if min(eig(Delta_c)) >= 0 % Stop criteria: Delta_c test

else

K = -RO\(SO0") % Control gains
V = sosgetsol(sol,V) % Lyapunov function
%» STEP 2: Iterative method for V, Tx, alpha, Q, S, R,
lambda
while k <= kmax
prog = sosprogram(vars);
[prog, Q] = sospolymatrixvar (prog,monomials(x,0),[p

,pl, 'symmetric');

[prog, S] = sospolymatrixvar (prog,monomials(x,0),[p
,m]);
[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m

,m] , 'symmetric');

[prog, V] = sospolyvar(prog,[monomials(x,4)],"
wscoeff');

[prog, T] = sospolyvar(prog, [monomials(x,2)],"
wscoeff ') ;

[prog, lambda] = sospolyvar (prog, [monomials(x,0)],"
wscoeff');

[prog, alphal] = sospolymatrixvar (prog,[monomials (x

,2)],[n+m+1,n+m+1], 'symmetric');
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SO0S constraints

prog = sosineq(prog,V-beta_V*(x1-2+x2°2)"n_V);

prog = sosineq(prog,T-beta_Tx*(x1"2+x2"2) "n_T);

gradV = jacobian(V,x)'; % gradient of Lyapunov

function

Sigmal = [gradV'kxzeta_N'*Z+T-h'*Q'xh (1/2)*gradV'x*

zeta_M'*xW-h'*S

((1/2) *gradV 'xzeta_M'*W-h'*S)' -R];

Sigma2 = [(1/2)*Z'*Ad_i_N'; (1/2)*W'*xAd_i_M

B_

'1x[(1/2)*xAd_i_N*Z (1/2)*Ad_i_MxW];
aux = [gradV'xQd~(1/2)

zeros(m,n)];

stability = [Sigmal+lambda*Sigma2 B_aux

prog

% data-driven dissipativity-based
condition for local stability

B_aux' -lambda*eye(n)]+alphax*x(1-L);

sosineq(prog,-stability);

prog = sosineq(prog,R); % dissipativity

's R constraint

prog = sosineq(prog,RO-R); % increasing

delta constraints

delta_increasing = S*(RO\(SO0')) + (RO\SO') '*S' - 2%

SO*(RO\N(SO')) + Q0 - Q;

prog = sosineq(prog,delta_increasing);




prog = sosineq(prog,lambda-epsi);

lemma's lambda constraint

prog = sosineq(prog,alpha);

% STEP 2 solution

sol = sossolve(prog,options);

double (sosgetsol (sol,Q))

R double (sosgetsol (sol,R))

S

double (sosgetsol (sol,S))

alpha = sosgetsol(sol,alpha);

lambda = sosgetsol(sol,lambda);

T = sosgetsol(sol,T);
Delta_c = S*(R\(S'))-Q;
min(eig(Delta_c))
if min(eig(Delta_c))>= 0 | k
criteria: Delta_c test
K = -R\(S")
gains
V = sosgetsol(sol,V)
function
break
end

k=k+1

end
end

toc

%» Phase diagram - QOpen loop

syms x1 x2

%» petersen's

% Stop

% Control

% Lyapunov
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a=2;

[x1,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

dxl = x1.72 - x1.°3 + x2;
dx2 = 0.x*xx1;
figure

phase_OL = streamslice(xl,x2,dx1,dx2,1);

set (phase_0OL, 'LineWidth' ,1.5);

title('Open-loop phase diagram')

xlabel('$x_1$','Interpreter ', 'latex'),
Interpreter','latex')

grid on

/Y

%» Phase diagram - Closed loop

syms x1 x2

global Kx

Kx = matlabFunction(p2s(Kx*h));

a=4;

passo = 0.01;

ylabel ('$x_2%"',"

[x1,x2] = meshgrid(-a:passo:a,-a:passo:a);

dx1

x1.72 - x1.°3 + x2;
dx2

Kx (x1,x2);

figure

phase_CL = streamslice(xl,x2,dx1,dx2,1.5);

set (phase_CL, 'LineWidth',1.5);

title('Closed-loop phase diagram','')

xlabel ('$x_1$', " 'Interpreter','latex'),
Interpreter','latex')

hold on

ylabel ('$x_2%"',"
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plot (0,0, 'x"','LineWidth',2)
grid on
eliplL = matlabFunction(p2s(1-L));

zhandle = fimplicit(elipL);

zhandle.LineWidth = 1.5;
zhandle.LineStyle = "-";
zhandle.Color = "b";

x0 = [1; 2]; % initial condition

[t, xsol] = ode45(Q@experiment_CL, [0 15], xO0,

plot(xsol(:,1),xs0l1(:,2),'LineWidth',2);
figure
plot(t,xsol(:,1),t,xs0l(:,2), 'LineWidth',2);

title('Time response - closed-loop')

grid on

opt);

legend ('$x_18$"','$x_2$%',"'Interpreter','latex','Location’,"

northeast');

function dx = experiment(t,x)
global delta
u = 5*xsin(5*t);
dx = [x(1)"2-x(1)"3+x(2);
ul;

end

function dx = experiment_CL(t,x)
global Kx
dx = [x(1)"2-x(1)~3+x(2);
Kx(x(1),x(2))1];

end
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Code 2 — Control design algorithm - system 1 - supply rate with polynomial matrices Q, S, R

clc; clear; close all
% % % Data-driven Control - Dissipativity-based with
Petersen's Lemma
h % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC
% % % System: Khalil (2008)

%» Data-driven Dissipativity Polynomial Control Synthesis
pvar x1 x2
vars = [x1;x2];

x = [x1;x2];

% f = [x172-x1"3+x2;

A 0];

b

% g = [0; 1];

m = 1; % u columns

n = 2; % x columns

/e DATA COLLECT
______________________________ v

global delta

delta = le-2; %» Disturbance amplitude

x0 = [3; -1]; % dinitial condition

opt = odeset('RelTol', 1e-3, 'AbsTol', le-6, 'NormControl',
'off');
[t, xsol] = ode45(@experiment, [0 10], x0, opt); %

simulation time = [0,10]

X00 = xsol';




Uoo

[1;

X11 [1;

for i = 1:1length(t)

Uoo(:,1i)

5xsin(5*xt(i));

X11(:,1)

Y*cos (2xpi*x0.4*xt(i)); %

pA
[X00(1,i)"2-X00(1,1i)"3+X00(2,i)+sqrt(delta/n
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control signal

derivative signal

U00(:,i)+sqrt(delta/n)*sin (2*pi*0.4*xt(i))];

end

Ts 100; % number of samples

X0

X00(:,1:Ts); A

experiment

X1 X11(:,1:Ts);

Uo U00(:,1:Ts);

t t(1:Ts);

DELTA sqrt (Ts*delta)*eye(n) ;

b

Initialization of regressors

selecting first T samples of the

sDisturbance upper bound

Z = [monomials(xl1,1:3) ;monomials(x2,1:3)1];
W = monomials(x,0);

N = length(Z);

M = length(W);

% plot of generated data
figure

subplot (2,1,1)

input_exp plot (t,U0);

title('Input');




set (input_exp, 'LineWidth' ,1.5);
ylabel ('u')

grid on

subplot (2,1,2)

states_exp = plot(t,X0(1,:),'--",t,X0(2,:),"'-.");

legend ('$x_18','$x_2$%',"'Interpreter','latex','Location’,"
northeast ') ;

title('Open-loop State Response');

set (states_exp, 'LineWidth' ,1.5);

ylabel ('x"')

xlabel ('t"')

grid on

% construction of the data matrices Ad, Bd, Cd
Z0 = double(subs(Z,x,X0));
W0 = UO0;

Ad = [ZO;WO0]=[ZO;WO]"';
Bd = -[Z0;WO0]*X1"';
Cd = X1xX1'-DELTA*DELTA';

% construction of the data matrices =zeta and Q
zeta = -Ad\Bd;
Qd = Bd'x(Ad\Bd) -Cd;

zeta_N zeta(1:N,:);

zeta_M zeta ((N+1) : (N+M) ,:);

Ad_i = Ad~(-1/2);

Ad_i_N Ad_i(:,1:N);

Ad_i_M Ad_i(:,(N+1):(N+M));
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%» Inputs (design parameters)
beta_V = 1le-6;

beta_T = 1e-6;

beta_L = 1le-4;

n_V = 1,;

n_.T = 1,

nL = 1,;

epsi = le-3;

alpha = le-6*%(x1"2+x2"2)*eye(n+m+1) ;

% Maximum iteration number

k = 1,

kmax = 100;

tic

% STEP 1: Determine VO, Tx,
prog = sosprogram(vars);
[prog, Q] =

[prog, S] =

[prog, R] =

symmetric');

[prog, V] = sospolyvar(prog,[monomials(x,4)], 'wscoeff');

LO, QO, SO, RO, lambdaO

sospolyvar (prog ,monomials (x,2), 'wscoeff');
sospolyvar (prog ,monomials(x,1), 'wscoeff');

sospolymatrixvar (prog,monomials(x,0),[m,m],"'

70

[prog, T] = sospolyvar(prog,[monomials(x,2)], 'wscoeff');

[prog, lambda] = sospolyvar (prog, [monomials(x,0)], 'wscoeff'
)

[prog, L] = sospolyvar(prog, [monomials(x,2)], 'wscoeff');

% SO0S constrains

prog
prog

sosineq(prog,V-beta_V*(x1~"2+x272) "n_V);

sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T);

prog = sosineq(prog,L-beta_L*(x1°2+x2°2)"n_L);




gradV = [diff(V,x1); diff(V,x2)]1;

function

Sigmal

((1/2) *gradV 'xzeta_M'*W-S) '

Sigma?2 [(1/2)*Z'*xAd_i _N';

*Z (1/2)*Ad_i_Mx*xW];

B_aux = [gradV'*xQd~(1/2)
zeros(m,n)];
stability = [Sigmal+lambda*Sigma2 B_aux
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% gradient of Lyapunov

[gradV 'xzeta_N'*Z+T-Q (1/2)*gradV'*zeta_M'*W-S

-R1;

(1/2)*W'xAd_i_M'I1*[(1/2)*Ad_i_N

% data-

driven dissipativity-based condition for local stability

B_aux'

prog = sosineq(prog,-stability);
prog = sosineq(prog,R);
prog = sosineq(prog,lambda-epsi);

lambda constraint

% STEP 1 solution

options.solver = 'mosek';

sol = sossolve(prog,options);
Q0 = sosgetsol(sol,Q);
RO = double(sosgetsol(sol,R));
SO = sosgetsol(sol,S);
L = sosgetsol(sol, L);
T = sosgetsol(sol,T);
Delta_c = SO*inv (RO)*(S0')-QO0;

-lambda*eye(n)]+alpha*(1-L);

% dissipativity's R constraint

% petersen's lemma's




prog2 = sosprogram(vars);

prog2 = sosineq(prog2,Delta_c);

sol2 = sossolve(prog2,options);

if abs(sol2.solinfo.info.feasratio-1) <= 0.1 h Stop
criteria: Delta_c test
K = -inv(R0O)*(S0"') % Control gains
V = sosgetsol(sol,V) %» Lyapunov function
else

% STEP 2: Iterative method for V, Tx, alpha
lambda

while k <= kmax

> Q, S’

R,
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prog = sosprogram(vars);

[prog, Q] = sospolyvar (prog,monomials(x,2),'wscoeff
")

[prog, S] = sospolyvar(prog,monomials(x,1),'wscoeff
)5

[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m

,m], 'symmetric');

[prog, V] = sospolyvar(prog,[monomials(x,4)],"

wscoeff ') ;

[prog, T] = sospolyvar(prog,[monomials(x,2)],"

wscoeff');

[prog, lambdal] = sospolyvar (prog, [monomials(x,0)],"

wscoeff ') ;

[prog, alphal] = sospolymatrixvar (prog,[monomials(x

,2)]1, [n+m+1,n+m+1], 'symmetric');

% S0S constraints

prog = sosineq(prog,V-beta_Vx*(x1-2+x2"2

)"n_V);
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prog = sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T);
gradV = [diff(V,x1); diff(Vv,x2)]; % gradient of

Lyapunov function

Sigmal = [gradV'xzeta_N'*Z+T-Q (1/2)*gradV'*zeta_M
"*W-S
((1/2) xgradV '*zeta_M'*xW-S)' -R];

Sigma2 [(1/2)*Z'*xAd_i_N'; (1/2)*W'xAd_i_M
"Ix[(1/2)*Ad_i_N*Z (1/2)*Ad_i_Mx*W];
B_aux = [gradV'*xQd~(1/2)

zeros(m,n)];

stability = [Sigmal+lambda*Sigma2 B_aux
%» data-driven dissipativity-based
condition for local stability

B_aux' -lambda*eye(n)]+alpha*x(1-L);

prog sosineq(prog,-stability);

prog sosineq(prog,R); %» dissipativity

's R constraint

prog = sosineq(prog,RO-R); % increasing
delta constraints

delta_increasing = S*inv(R0)*(S0') + inv(RO)*(S0"')

'%S' - 2%S0*xinv(RO)*(SO0') + Q0 - Q;
prog = sosineq(prog,delta_increasing);
prog = sosineq(prog,lambda-epsi); 7% petersen's

lemma's lambda constraint

prog = sosineq(prog,alpha);
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% STEP 2 solution

sol

Q
R

S

= sossolve(prog,options);

sosgetsol(sol,Q)
double (sosgetsol (sol,R))

sosgetsol (sol,S)

alpha = sosgetsol(sol,alpha);

lamb

T=

Delt

da = sosgetsol(sol,lambda);

sosgetsol (sol,T);
a_c = S*xinv(R)*(S')-Q;

prog2 = sosprogram(vars);

prog2 = sosineq(prog2,Delta_c);

s0l2 = sossolve(prog2,options);
if abs(sol2.solinfo.info.feasratio-1) <= 0.1 | k ==
kmax % Stop criteria: Delta_c test
K = -inv(R)*(S") T
Control gains
V = sosgetsol(sol,V) % Lyapunov
function
break
end
k=k+1

end
end

toc

%» Phase diagram - QOpen loop

syms x1 x2




a=10;

[x1,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

dxl = x1.72 - x1.°3 + x2;
dx2 = 0.x*xx1;
figure

phase_OL = streamslice(xl,x2,dx1,dx2,1);

set (phase_0OL, 'LineWidth' ,1.5);

title('Open-loop phase diagram')

xlabel('$x_1$','Interpreter ', 'latex'),
Interpreter','latex')

grid on

/Y

%» Phase diagram - Closed loop

syms x1 x2

global Kx

Kx = matlabFunction(p2s(K));

a=2;

passo = 0.01;

ylabel ('$x_2%"',"

[x1,x2] = meshgrid(-a:passo:a,-a:passo:a);

dx1

x1.72 - x1.°3 + x2;
dx2

Kx (x1,x2);

figure

phase_CL = streamslice(xl,x2,dx1,dx2,1.5);

set (phase_CL, 'LineWidth',1.5);

title('Closed-loop phase diagram')

xlabel ('$x_1$', " 'Interpreter','latex'),
Interpreter','latex')

hold on

ylabel ('$x_2%"',"
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plot (0,0, 'x"','LineWidth',2)
grid on
eliplL = matlabFunction(p2s(1-L));

zhandle = fimplicit(elipL);

zhandle.LineWidth = 1.5;
zhandle.LineStyle = "-";
zhandle.Color = "b";

x0 = [1; 1]; % initial condition

[t, xsol] = ode45(Q@experiment_CL, [0 15], xO0,

plot(xsol(:,1),xs0l1(:,2),'LineWidth',2);
figure

plot(t,xsol(:,1),t,xs0l(:,2), 'LineWidth',2);
title('Time response - closed-loop')
xlabel('t'); ylabel('x');

grid on

opt);

legend ('$x_18$"','$x_2$%',"'Interpreter','latex','Location’,"

northeast');

function dx = experiment(t,x)

global delta

u = 5*xsin(5*t);
dx = [x(1)"2-x(1)"3+x(2);
ul;

end

function dx = experiment_CL(t,x)
global Kx
dx = [x(1)~"2-x(1)"3+x(2);
Kx(x(1),x(2))];
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end
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Code 3 — Control design algorithm - system 2 - supply rate with constant matrices Q, S, R

» % % Data-driven Control - Dissipativity-based with
Petersen's Lemma
% % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

% % % System: Van der Pol

clc; clear; close all

% Data-driven Dissipativity Polynomial Control
pvar x1 x2
vars = [x1;x2];

x = [x1;x2];

hoe = 1;

h £ o= [x2;

% -x1 + e*x(1-x1"2)*x2];
b

h g = [0 11;

b

h = monomials(x,[1,3]);

m = 1; % u columns
n = 2; % x columns

p = size(h,1); % h length

global delta

delta = l1le-2; %» Disturbance amplitude
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x0 = [-0.2; 0.1]; % dinitial condition
opt = odeset('RelTol', 1e-3, 'AbsTol', le-6, 'NormControl',
'off');

[t, xsol] = ode45(@vander, [0 10], xO, opt);

X00 = xsol';
U00 = sin(2*pixt)'; ) control signal
X11 = [X00(2,:)+sqrt(delta/n)*cos (2*xpi*x0.4%t)';

-X00(1,:)+X00(2,:)-X00(2,:) .x(X00(1,:)."2)+U00+sqrt(

delta/n) *sin (2*xpi*0.4*t) '];

Ts = 100; % number of samples

X0 = X00(:,1:Ts); % selecting first T samples of the
experiment

X1 = X11(:,1:Ts);

U0 = U00(:,1:Ts);

t = t(1:Ts);

DELTA = sqrt(Ts*delta)*eye(n); %Disturbance upper bound

%» Initialization of regressors

Z = [monomials(x,1:3)1];
W = monomials(x,0);

N = length(Z);

M = length(W);

% plot of generated data
figure

subplot(2,1,1)




plot (t,U0, 'LineWidth' ,1.5)
title('Input')
ylabel ('u')

grid on

subplot (2,1,2)

plot(t,X0(1,:),"'--"',t,X0(2,:),"'-.","'LineWidth"',1.5)

legend ('$x_18','$x_2$%','Interpreter','latex','Location’,"
northeast');

title('Open-loop response')

ylabel ('x"')

xlabel ('t"')

grid on

% construction of the data matrices Ad, Bd, Cd
Z0 = double(subs(Z,x,X0));
W0 = UO0;

Ad = [ZO;WO0]=[ZO;WO]"';
Bd = -[Z0;WO0]*X1"';
Cd = X1xX1'-DELTA*DELTA';

% construction of the data matrices =zeta and Q
zeta = -Ad\Bd;
Qd = Bd'x(Ad\Bd) -Cd;

zeta_N zeta(1:N,:);

zeta_M zeta ((N+1) : (N+M) ,:);
Ad_i = Ad~(-1/2);

Ad_i_N

Ad_i(:,1:N);

Ad_i_M Ad_i(:,(N+1):(N+M));
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%» Inputs (design parameters)

beta_V = 1e-6;
beta_ T = 1le-6;
beta_L = 1le-4;
n_V = 1,;
n_.T = 1,
nL = 1,;

epsi = 1le-8;
alpha = le-4*(x1"4+x2"4)*eye(n+m+1) ;

% Maximum iteration number

tic
% STEP 1: Determine VO, Tx, LO, QO, SO, RO, lambdaO

prog = sosprogram(vars);

[prog, Q] = sospolymatrixvar (prog,monomials(x,0),[p,pl,"

symmetric');

[prog, S] sospolymatrixvar (prog,monomials(x,0),[p,m]);

[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m,m],"

symmetric');

[prog, V] = sospolyvar (prog,[monomials(x,2:4)], 'wscoeff');

[prog, T] = sospolyvar(prog, [monomials(x,2)], 'wscoeff');
[prog, lambdal] = sospolyvar (prog, [monomials(x,0)], 'wscoeff'
)

[prog, L] = sospolyvar (prog,[monomials(x,2:4)], 'wscoeff');

% S0S constraints
prog = sosineq(prog,V-beta_Vx*(x1-2+x2°2)"n_V); 7% V radially

unbounded constraint
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prog = sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T); % T radially

unbounded constraint

prog = sosineq(prog,L-beta_L*(x1°2+x2"2) "n_L);

gradV = jacobian(V,x)'; % gradient of Lyapunov function

Sigmal = [gradV'xzeta N '*Z+T-h'*Q'*h -h'*xS+(1/2)*gradV'x

zeta_M'*xW;

(-h'*xS+(1/2) *gradV '*zeta_M'*xW)' -R];

Sigma2 = [(1/2)*Z'*Ad_i_N'; (1/2)*W'*xAd_i_M']1*[(1/2)*Ad_i_N

*Z (1/2)%Ad_i_Mx*W];

B_aux = [gradV'*xQd~(1/2);

zeros(m,n)];

stability = [Sigmal+lambda*Sigma2 B_aux % data-

driven dissipativity-based condition for local stability

B_aux' -lambda*eye(n)]+alphax*(1-L);

prog = sosineq(prog,-stability);
prog = sosineq(prog,R); % dissipativity's R constraint
prog = sosineq(prog,lambda-epsi); 7, petersen's lemma's

lambda constraint

% STEP 1 solution

options.solver = 'mosek';

sol

Qo
RO
S0

= sossolve(prog,options);

double (sosgetsol (sol,Q));

double (sosgetsol (sol,R));

double (sosgetsol (so0l,S));




=
Il

T

82

sosgetsol(sol, L);

sosgetsol (sol,T);

Delta_c = SO*(RO\(S0'))-QO0;

min(eig(Delta_c))

if min(eig(Delta_c)) >= 0 h Stop criterion: Delta_c
test
K = -RO\(SO0') %» Control gains
V = sosgetsol(sol,V) % Lyapunov function
else
%» STEP 2: Iterative method for V, Tx, alpha, Q, S, R,

lambda

while k <= kmax

prog = sosprogram(vars);

[prog, Q] = sospolymatrixvar (prog,monomials(x,0),[p

,pl, ' symmetric');

[prog, S] = sospolymatrixvar (prog,monomials(x,0),[p
yml);
[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m

,m], 'symmetric');

[prog, V] = sospolyvar(prog, [monomials(x,2:4)],"
wscoeff ') ;

[prog, T] = sospolyvar(prog, [monomials(x,2)],"
wscoeff ') ;

[prog, lambdal] = sospolyvar(prog,[monomials(x,0)],"
wscoeff ') ;

[prog, alphal] = sospolymatrixvar (prog,[monomials(x

,2:6)], [n+m+1 ,n+m+1] , 'symmetric');

% SO0S constraints
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prog = sosineq(prog,V-beta_V*(x1-2+x2°2)"n_V); % V
radially unbounded constraint
prog = sosineq(prog,T-beta_T*(x1°2+x2"2)"n_T); % T

radially unbounded costraint

gradV = jacobian(V,x)'; ' gradient of Lyapunov

function

Sigmal = [gradV'kxzeta_N'*Z+T-h'*Q'*xh -h'*xS+(1/2)*
gradV 'xzeta_M'x*xW
(-h'*xS+(1/2) *xgradV '*zeta_M'*W)' -R];
Sigma2 = [(1/2)*Z'*Ad_i_N'; (1/2)*W'*xAd_i_M
"1x[(1/2)*Ad_i_N*Z (1/2)*Ad_i_Mx*W];
B_aux = [gradV'*Qd~(1/2)

zeros(m,n)];

stability = [Sigmal+lambda*Sigma2 B_aux b
data-driven dissipativity-based condition for
local stability

B_aux' -lambda*eye(n)]+alphax*(1-L);

prog sosineq(prog,-stability);

prog = sosineq(prog,R); % dissipativity

's R constraint

prog = sosineq(prog,RO-R); % increasing
delta constraints

delta_increasing = S*(RO\(SO0')) + (RO\SO') '*S' - 2%
SO*x(RON(S0')) + QO - Q;

prog sosineq(prog,delta_increasing);

prog = sosineq(prog,lambda-epsi); s petersen's




lemma's lambda constraint

prog = sosineq(prog,alpha);

% STEP 2 solution

sol = sossolve(prog,options);

double (sosgetsol(sol,Q))
R

double (sosgetsol (sol,R))

S double (sosgetsol(sol,S))
alpha = sosgetsol(sol,alpha);

lambda = sosgetsol(sol,lambda);

T = sosgetsol(sol,T);
Delta_c = S*x(R\(8'))-Q;
min(eig(Delta_c))
if min(eig(Delta_c))>= 0 | k ==
criterion: Delta_c test
K = -R\(8')
gains
V = sosgetsol(sol,V)
function
break
end

k=k+1

end
end

toc

%» Phase diagram - Open loop
syms x1 x2

a=5;

% Stop

% Control

% Lyapunov
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[x1,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

e=1;

dxl = x2;

dx2 = -x1 + e.*x(1-x1."2) .%x2;
figure

OL = streamslice(x1,x2,dx1,dx2,1);

set (0L, 'LineWidth',1.5);

title ('Phase diagram - open-loop')

xlabel ('$x_1$', ' Interpreter','latex'),
Interpreter', 'latex')

grid on

ToTh

%» % Phase diagram - Closed loop
uk = Kxh;

global uf

uf = matlabFunction (p2s(uk));
a=1;

[x1,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

ylabel ('$x_2%"',"

dxl = x2;
dx2 = -x1 + e.*x(1-x1."2) .%x2 + uf(x1l,x2);
figure

CL = streamslice(x1l,x2,dx1,dx2,4);

set (CL, 'LineWidth',1.5);

title('Phase diagram - closed-loop')

xlabel('$x_1$','Interpreter','latex'),
Interpreter', 'latex')

hold on

plot (0,0, 'x','LineWidth',2)

grid on

ylabel ('$x_2%"',"
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ellipL = fimplicit(p2s(1-L));

ellipL.LineWidth = 1;

ellipL.Color = 'b';

x0 = [-0.3; -0.4]; % initial condition

[t, xsol] = ode45(@vander_cl, [0 10], x0, opt);
plot(xsol(:,1),xs0l(:,2),'LineWidth',2);

figure

plot(t,xsol(:,1),t,xs0l(:,2), 'LineWidth',2);
title('Time response - closed-loop')
xlabel('t'); ylabel('x');

grid on

legend ('$x_1%','$x_2$%','Interpreter','latex','Location’,"

northeast ') ;

function dx = vander (t,x)
e=1;
global delta
u = sin(2*xpixt);
dx = [x(2);
-x (1) + ex(1-x(1)"2)*x(2) + ul;

end

function dx = vander_cl(t,x)
global uf
e=1;
dx = [x(2);
-x (1) + ex(1-x(1)"2)*x(2) + uf(x(1),x(2))];

end
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Code 4 — Control design algorithm - system 2 - supply rate with polynomial matrices Q, S, R

» % % Data-driven Control - Dissipativity-based with
Petersen's Lemma
% % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

% % % System: Van der Pol

clc; clear; close all

% Data-driven Dissipativity Polynomial Control
pvar x1 x2
vars = [x1;x2];

x = [x1;x2];

hoe = 1;

h £ = [x2;

% -x1 + ex(1-x1"2)%*x2];

b

h g = [0 11;

m = 1; % u columns

n = 2; % x columns

hmmm e e e - DATA COLLECT
______________________________ v

global delta

delta = 1le-2; % Disturbance amplitude

x0 = [-0.2; 0.1]; % dinitial condition
opt = odeset('RelTol', 1e-3, 'AbsTol', le-6, 'NormControl',

'off');

[t, xsol] = ode45(@vander, [0 10], xO, opt);




X00

xsol';
U00 = sin(2*pixt)'; J control signal

X11

[X00(2,:)+sqrt(delta/n)*cos (2*pi*x0.4*t)"';
-X00(1,:)+X00(2,:)-X00(2,:) .*x(X00(1,:).~2)+U00+sqrt(
delta/n) *sin (2*pi*0.4%xt) '];

Ts = 100; % number of samples

X0 = X00(:,1:Ts); % selecting first T samples of the
experiment

X1 = X11(:,1:Ts);

U0 = U00(:,1:Ts);

t = t(1:Ts);

DELTA = sqrt(Ts*delta)*eye(n); %Disturbance upper bound

% Initialization of regressors
Z = [monomials(x,1:3)1];

W = monomials(x,0);

N = length(Z);

M = length(W);

% plot of generated data
figure

subplot(2,1,1)

plot (t,U0, 'LineWidth' ,1.5)
title('Input')

ylabel ('u')

grid on

subplot(2,1,2)




plot(t,X0(1,:),"'--",t,X0(2,:),"'-."," 'LineWidth',1.5)

legend ('$x_18','$x_2$%',"'Interpreter','latex','Location’,"
northeast');

title('Open-loop response')

ylabel ('x"')

xlabel ('t"')

grid on

% construction of the data matrices Ad, Bd, Cd
Z0 = double(subs(Z,x,X0));
W0 = UO0;

Ad = [ZO;WOIx*[ZO;W0]"';
Bd = -[ZO;W0]*X1"';
Cd = X1*xX1'-DELTAxDELTA';

% construction of the data matrices zeta and Q
zeta = -Ad\Bd;
Qd = Bd'x(Ad\Bd) -Cd;

zeta_N zeta (1:N,:);

zeta_M zeta ((N+1) : (N+M) ,:);

Ad_i = Ad~(-1/2);

Ad_i_N Ad_i(:,1:N);

Ad_i_M

Ad_i(:,(N+1):(N+M));

%» Inputs (design parameters)

beta_V = 1e-6;
beta_T = 1le-6;
beta_L = 1e-4;
n_V = 1;

n_T

I
'_L
..
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nL = 1;
epsi = 1le-8;

alpha = le-4*(x1"4+x2"4)*eye(n+m+1) ;

% Maximum iteration number

tic

% STEP 1: Determine VO, Tx, LO, QO, SO, RO, lambdaO

prog = sosprogram(vars);

[prog, Q] = sospolyvar (prog,monomials(x,[2:6]), 'wscoeff');
[prog, S] = sospolyvar (prog,monomials(x,[1,3]), 'wscoeff');
[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m,m],"

symmetric');

[prog, V] = sospolyvar (prog,[monomials(x,2:4)], 'wscoeff');

[prog, T] = sospolyvar(prog, [monomials(x,2)], 'wscoeff');

[prog, lambdal] = sospolyvar (prog, [monomials(x,0)], 'wscoeff'
);

[prog, L] = sospolyvar (prog,[monomials(x,2:4)], 'wscoeff');

%» SO0S constraints

prog = sosineq(prog,V-beta_Vx*(x1-2+x2°2)"n_V); 7% V radially
unbounded constraint

prog = sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T); 7% T radially
unbounded constraint

prog = sosineq(prog,L-beta_L*(x1°2+x2°2)"n_L);

gradV = jacobian(V,x)'; % gradient of Lyapunov function

Sigmal = [gradV'xzeta_N'*Z+T-Q -S+(1/2)*gradV'*xzeta_M'x*W;




Si

B_

st

pTr

pr

pr

/.

(-S+(1/2) *gradV 'xzeta_M'*W)'

-R];
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gma2 = [(1/2)*Z'*Ad_i_N"'; (1/2)*W'*xAd_i_M']*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_Mx*W];
aux = [gradV'*Qd~(1/2);

zeros(m,n)];

ability = [Sigmal+lambda*xSigma2 B_aux

% data-

driven dissipativity-based condition for local stability

B_aux' -lambda*eye(n)]-alpha*(1-L);

og = sosmatrixineq(prog,-stability);

og = sosineq(prog,R);

og = sosineq(prog,lambda-epsi);

lambda constraint

STEP 1 solution

options.solver = 'mosek';

SO

Qo
RO
S0
L

T

1 = sossolve(prog,options);

sosgetsol(sol,Q);

double(sosgetsol (sol,R));

sosgetsol (sol,S);

sosgetsol(sol, L);

sosgetsol(sol,T);

Delta_c = SO*xinv (RO)*(S0')-Q0;

prog2 = sosprogram(vars) ;
prog2 = sosineq(prog2,Delta_c);
sol2 = sossolve(prog2,options);

%» dissipativity's R constraint

%» petersen's lemma's
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if abs(sol2.solinfo.info.feasratio-1) <= 0.1 % Stop

criterion: Delta_c test

K
V

else

b

-inv (RO) *SO' % Control gains

sosgetsol (sol,V) %» Lyapunov function

STEP 2: Iterative method for V, Tx, alpha, Q, S, R,

lambda

while k <= kmax

prog = sosprogram(vars);

[prog, Q] = sospolyvar(prog,monomials(x,[2:6]),"
wscoeff ') ;

[prog, S] = sospolyvar (prog,monomials(x,[1,3]),"
wscoeff');

[prog, R] = sospolymatrixvar (prog,monomials(x,0),[m
,m], 'symmetric');

[prog, V] = sospolyvar(prog, [monomials(x,2:4)],"'
wscoeff ') ;

[prog, T] = sospolyvar(prog, [monomials(x,2)],"
wscoeff ') ;

[prog, lambda] = sospolyvar (prog, [monomials(x,0)],"
wscoeff ') ;

[prog, alpha] = sospolymatrixvar (prog,[monomials (x

,2:6)], [n+tm+1 ,n+m+1] , 'symmetric');

% S0S constraints

prog = sosineq(prog,V-beta_V*(x1-2+x2°2)"n_V); % V
radially unbounded constraint

prog = sosineq(prog,T-beta_T*(x1°2+x2°2)"n_T); % T

radially unbounded costraint
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gradV = jacobian(V,x)'; ’ gradient of Lyapunov

function

Sigmal = [gradV'xzeta_N'*Z+T-Q -S+(1/2)*gradV'x*
zeta_M'x*xW
(-S+(1/2) *gradV 'xzeta_M'*W)' -R];
Sigma2 = [(1/2)*Z'*xAd_i_N'; (1/2)*W'*xAd_i_M
'1x[(1/2)*Ad_1i_N*Z (1/2)*Ad_i_MxW];
B_aux = [gradV'*xQd~(1/2)

zeros(m,n)];

stability = [Sigmal+lambda*Sigma2 B_aux b
data-driven dissipativity-based condition for
local stability

B_aux' -lambda*eye(n)]-alpha*(1-L);

prog = sosineq(prog,-stability);

prog sosineq(prog,R); % dissipativity

's R constraint

prog = sosineq(prog,R0-R); % increasing
delta constraints

delta_increasing = R*inv(R0O)*(S0') + inv(RO)*(S0"')

'%S' - 2%30xinv(RO)*(SO0') + QO - Q;
prog = sosineq(prog,delta_increasing);
prog = sosineq(prog,lambda-epsi); % petersen's

lemma's lambda constraint

prog = sosineq(prog,alpha);

% STEP 2 solution

sol = sossolve(prog,options);




end
end

toc

% Phase
syms x1
a=5;

[x1,x2]

e=1;

Q = sosgetsol(sol,Q)
R = double(sosgetsol(sol,R))
S = sosgetsol(sol,S)

alpha = sosgetsol(sol,alpha);

lambda = sosgetsol(sol,lambda);

T = sosgetsol(sol,T);
Delta_c = Sxinv(R)*(S')-Q;

prog2 = sosprogram(vars);

prog2 = sosineq(prog2,Delta_c);

s0l2 = sossolve(prog2,options);

if abs(so0l2.solinfo.info.feasratio-1) <=

kmax % Stop criterion:
K = -inv (R)x*S'
Control gains
V = sosgetsol(sol,V)
function
break
end

k=k+1

diagram - Open 1loop

x2

= meshgrid(-a:0.1:a,-a:0.1:a);

94

0.1 | k ==

Delta_c test

T

% Lyapunov




dxl = x2;
dx2 = -x1 + e.*(1-x1."2) .%x2;
figure

OL = streamslice(xl,x2,dx1,dx2,1);

set (OL, 'LineWidth' ,1.5);

title('Phase diagram - open-1loop')

xlabel('$x_1$','Interpreter ', 'latex'),
Interpreter','latex')

grid on

ToTh

% % Phase diagram - Closed loop
uk = K;

global uf

uf = matlabFunction (p2s(uk));
a=5;

[x1,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

ylabel ('$x_28"',"

dxl = x2;
dx2 = -x1 + e.*x(1-x1."2) .%x2 + uf(x1,x2);
figure

CL = streamslice(xl,x2,dx1l,dx2,4);

set (CL, 'LineWidth',1.5);

title ('Phase diagram - closed-loop')

xlabel ('$x_1$', ' 'Interpreter','latex'),
Interpreter','latex')

hold on

plot (0,0, 'x','LineWidth',2)

grid on

ellipL = fimplicit(p2s(1-L));

ylabel ('$x_28"',"
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ellipL.LineWidth = 1;

ellipL.Color = 'b';

x0 = [2; 2]; % dinitial condition

[t, xsol] = ode45(@vander_cl, [0 300], x0, opt);
plot(xsol(:,1),xs0l1(:,2),'LineWidth',2);

figure

plot(t,xsol(:,1),t,xs0l(:,2), 'LineWidth',2);
title('Time response - closed-loop')
xlabel('t'); ylabel('x');

grid on

legend ('$x_18','$x_2$%',"'Interpreter','latex','Location’,"

northeast');

function dx = vander(t,x)
e=1;
global delta
u = sin(2*pix*t);
dx = [x(2) + sqrt(delta)*cos (2*xpi*0.4%t);
-x(1) + ex(1-x(1)"2)*x(2) + u + sqrt(delta)*sin (2%
pi*0.4xt)];

end

function dx = vander_cl(t,x)
global uf
e=1;
dx = [x(2);
-x (1) + ex(1-x(1)"2)*x(2) + uf(x(1),x(2))];

end
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