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RESUMO

No campo de sistemas polinomais, o projeto de controladores comumente consiste em determinar

condições de Lyapunov em desigualdades matriciais lineares, e encontrar uma solução através de

algoritmos de programação semi-definida. No entanto, as bilinearidades inerentes às condições

de Lyapunov exigem empregos de estratégias muitas vezes subótimas, como a iteração D-K, que

não possuem critérios de garantia da convergência da solução. Além disso, a obtenção de um

modelo que descreva o comportamento de plantas de difícil modelagem é solucionada através de

ensaios de coleta de dados para identificação do sistema, os quais, quando sujeitos à perturbações

ou ruído, dificultam a obtenção de um modelo confiável. Nesse trabalho, foi utilizada uma

abordagem baseada em dados para projetar leis de controle sem um passo intermediário de

identificação e com robustez quanto à dados sujeitos a perturbações desconhecidas mas limitadas.

Utilizando a teoria de Lyapunov e a teoria da QSR-dissipatividade, foram constuídas condições

de soma-de-quadrados para projeto de uma lei de controle para sistemas não-lineares polinomiais

que garanta estabilização assintótica localmente em torno da origem. Essas condições foram

implementadas utilizando programação em soma-de-quadrados com o auxílio das ferramentas

SOSTools e Mosek em algoritmos iterativos sem bilinearidades e que garantissem a convergência

da solução. Por fim, a lei de controle e a função de Lyapunov encontrada foram validadas através

de ferramentas de verificação formal como o Z3Prover para emitir um certificado de Lyapunov.

Palavras-chave: Controle baseado em dados. Sistemas não-lineares. Teoria da dissipatividade.



ABSTRACT

In the field of polynomial systems, control design is commonly related to finding Lyapunov

conditions in the form of linear matrix inequalities and determining a solution to them through

semidefinite programming algorithms. However, the bilinearities inherent to Lyapunov conditions

require the use of often suboptimal strategies, such as the D-K iteration, which has no guarantees

of solution convergence. In addition, the challenge of some plants that are difficult to model is

solved through data collection experiments in order to identify the system. Yet, since the data is

subject to disturbances or noise, it hinders the development of a reliable model. In this work, a

data-driven approach was used to design control laws without an intermediate identification step

and with robustness to data subject to unknown but limited disturbances. Using Lyapunov theory

and QSR-dissipation theory, sum-of-squares conditions were constructed to design a control law

for polynomial nonlinear systems that guarantees asymptotic stabilization locally around the

origin. These conditions were implemented using sum-of-squares programming with the help of

SOSTools and Mosek in iterative algorithms without bilinearities and constraints for solution

convergence. Finally, the control law and the Lyapunov function were validated using formal

verification tools such as Z3Prover to issue a Lyapunov certificate.

Keywords: Data-driven control. Nonlinear systems. Dissipativity theory.
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1 INTRODUCTION

The control of dynamical systems is a widely present task in all engineering fields.

Beacause of that, the study of such systems is of utmost importance, since the modeling through

mathematical equation makes it possible to analyze its behaviour and evolution over time

(HADDAD; CHELLABOINA, 2008). One possible way to describe the systems in the time

domain is the state-space representation, which utilizes first order differential equations of the

derivatives of the variables of interest (denominated states) in a system of equations, allowing,

given an initial value, the determination of the states in any point of time. in order to implement a

control system, it is possible to describe the system with the desired degree of accuracy around an

operation point. Such control system may be responsible for guaranteeing the desired behavior,

determined by each application, and its performance criteria, which could be, e.g, stabilization

around an equilibrium point, disturb rejection, or reference tracking.

Dynamical systems in general are nonlinear, due to their own nature or due to the

nature of the control system implemented. The presence of nonlinearities can turn the analysis

of the systems more difficult and, for that reason, the system is linearized around a point of

interest to circumvent such issue. Linearizing a system can be sufficient in many cases, and it

has advantages such as making stability analysis easiest, being sufficient to check the signal of

state-space matrix eigenvalues. However, it limits the capacity of the model to describe the real

system to a neighborhood of the selected operation point, which can be a very small domain of

model-system equivalence, making necessary an alternative model that takes into account the

nonlinearities inherent to the studied system.

Lyapunov stability theory is an important and well-known tool for the study of

dynamical systems and can be applied to nonlinear systems, since it provides conditions that,

if satisfied, guarantee different degrees of stability of an equilibrium point (KHALIL, 2002).

With such conditions, the procedure of stabilization of a plant around the origin can become

the design of a Static Output Feedback (SOF) control law that makes the closed-loop system

stable, asymptotically stable, or exponentially stable by satisfying the respective Lyapunov

conditions. In the recent years, Lyapunov theory is being applied in fields such as stabilization

of polynomial systems using Sum-Of-Squares (SOS) decomposition and Dissipativity theory.

Additionally, the development of softwares such as YALMIP (LÖFBERG, 2004), SOSTools

(PAPACHRISTODOULOU et al., 2021), SeDuMi (STURM, 1999) and MOSEK (APS, 2025)

has made possible to development of algorithms that solve these problems numerically. In this
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scenario, (AUGUST; PAPACHRISTODOULOU, 2022) develops an algorithm based in Sum-

of-Squares Program (SOSP) to design SOF control laws for polynomial systems by imposing

constraints in the Lyapunov function and state-space model. Such constraints result in a linear-

like approach to the state-space polynomial model. In (ICHIHARA, 2013), a more general

assumption in the Lyapunov function is made, being that a quadratic polynomial structure,

and a solution for symmetric input saturation is proposed using polytopic conditions, although

still dealing with a linear-like state-space model. As for methods of verifying the Lyapunov

conditions in dynamical systems, (AHMED et al., 2020) uses a strategy of Counter-Example

Guided Inductive Synthesis (CEGIS) to synthesize a Lyapunov function for a given system with

polynomial constraints with a Satisfiability Modulo Theories (SMT) solver. In addition, (ABATE

et al., 2021) applies the same strategy but considers a neural Lyapunov function.

Although modelling a system with only phenomenological theory can be sufficient

in many applications, it results in deviations between the model and the real system due to, e.g.,

precision or tolerances. In this scenario, some strategies rely on some tests and experiments

in order to collect data from the plant. Then, the data can be used to construct a model for the

plant by applying identification techniques, which is used later on in the control design methods.

Alternatively, an innovative set of strategies search to design control laws directly from the

data, without the intermediary step of identifying the system. In (WILLEMS et al., 2005), it

is shown that if the input-output data is persistently exciting, it can represent a linear system’s

whole behaviour. In (MARTIN; ALLGöWER, 2024), this notion is utilized to verify dissipativity

conditions from data in nonlinear systems through Taylor’s polynomial approximation. (PERSIS;

TESI, 2019) also uses Willems’ lemma as a primary assumption to design data-driven control

laws with linear matrix inequalities. The same issue is addressed in (BISOFFI et al., 2022) with

the addition of a solution for polynomial systems with no constraints in Lyapunov function aside

it being polynomial. This solution, in order to circumvent the bilinearities in the SOS constraints,

uses SOSP to solve an algorithm with D-K iteration (an iterative method that alternately fixes

one of the terms of a bilinearity to solve the problem for the other decision variable), with stop

criterion of maximum iterations.

In this scenario, the objective of this work will be the construction of algorithms that

have no constraint in the structure of the Lyapunov function, besides it being polynomial, and

have a stop criterion that guarantees a valid solution was found. By using SOS decomposition

to design control laws based in the QSR-Dissipativity theory and Lyapunov theory, with a
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data-driven approach, the designed control law must satisfy Lyapunov conditions for local

asymptotical stabilization around the origin and it will be explored the impact of different

definitions for the supply rate present in the QSR-Dissipativity theory. Furthermore, it will also

be explored the certification of Lyapunov functions by the SMT solver: Z3 Theorem Prover, a

formal verification tool (MOURA; BJøRNER, 2008).
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2 THEORETICAL BASIS

In the field of control of dynamical systems, the modelling process is of utmost

importance for the analysis of the systems’ behaviour and the design of control laws that assure

the desired performance criteria. With that purpose, dynamical systems will be studied in this

work from their state space representation, since it allows to determine the trajectories of the

states of the system over time given a set of first order differential equations and a set of initial

values (HADDAD; CHELLABOINA, 2008).

2.1 Dynamical Systems

To write this definition formally, consider a state vector x ∈X ⊆ Rn and an input

vector u ∈U ⊆ Rm. A time-varying nonlinear system can be written as:

ẋ = F(t,x(t),u(t)), x(t0) = Z0, x ∈ [t0, t1]. (2.1)

The system is said to be time-invariant if

F(t0,x(t),u(t)) = F(t,x(t),u(t)), ∀(t,x,u) ∈ [t0, t1]×X ×U . (2.2)

If the system has the form:

ẋ = f (x)+g(x)u, (2.3)

it is classified as input-affine. Here, a subtype of such systems will be studied, the polynomial

systems, in which f (x) e g(x) can be written as polynomials of x (BISOFFI et al., 2022).

Therefore, they can be modelled using matrices of monomials Z(x) ∈PN×1 e W (x) ∈PM×m

and matrices of coefficients A ∈ Rn×N e B ∈ Rn×M, such that,

ẋ = AZ(x)+BW (x)u. (2.4)

Additionally, an output y ∈ Y ⊆ Rp can be defined such that

y = h(x). (2.5)

The equation pair (2.2) and (2.5) (or (2.4) and (2.5)) compose the state-space representation of

a nonlinear (polynomial) system. Since innumerable applications aim to achieve stabilization

around an equilibrium point, its definition becomes necessary.
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2.2 Equilibrium Points

An stable equilibrium point xeq, considering x ∈X , is the one that x→ xeq when

t→ ∞. This point is considered isolated if there is an open ball around it, defined by Bε(xeq) :=

{x ∈ Rn : ||x− xeq||< ε}, which contains only that equilibrium point.

To study the system’s behaviour around the equilibrium point, the Lyapunov Theory

will be used as in (HADDAD; CHELLABOINA, 2008).

2.3 Lyapunov Stability Theory

Lyapunov theory analyzes the stability around an equilibrium point (specifically

here, around the origin) by finding a Lyapunov function that attests the stability of a system to a

certain degree. These degrees of stability are dependants on the conditions met by the Lyapunov

function, and to define them consider the nonlinear dynamical system around the origin:

ẋ = f (x(t)), x(0) = Z0, x(t) ∈X , 0 ∈X . (2.6)

Assume f (0) = 0 and f (x) being Lipschitz continuous, i.e., || f (x)− f (y)|| ≤ L||x−y||, ∀x,y, for

some L > 0. Such assumption implies that there is a different x(t) for each initial condition of

the system and that it is solution of (2.6). Then, the stability of Lyapunov therory is defined as:

Definition 1. (i) The solution x(t)≡ 0 of (2.6) is Lyapunov stable if, for every ε > 0, there is

a RD(ε)> 0 such that, if ||x(0)||< RD, then ||x(t)||< ε , t ≥ 0.

(ii) The solution x(t)≡ 0 of (2.6) is asymptotically stable if it is Lyapunov stable and there is

a RD > 0 such that, if ||x(0)||< RD, then limx→∞ x(t) = 0.

(iii) The solution x(t)≡ 0 of (2.6) is exponentially stable if there are α , β e RD constants such

that, if ||x(0)||< RD, then ||x(t)|| ≤ α||x(0)||e−β t , t ≥ 0.
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Figure 1 – Lyapunov stability

Source: (HADDAD; CHELLABOINA, 2008)

Figure 2 – Asymptotical stability

Source: (HADDAD; CHELLABOINA, 2008)

In figure 1, note that Lyapunov stability does not necessarily implies x→ xeq, al-

though it implies in x having a maximum distance radius from the origin. In figure 2 however,

the asymptotical stability implies x→ xeq when t→ ∞.

In order to verify the degree of stability of the analyzed system according to Defini-

tion 1, Lyapunov Theorem is stablished as it follows:

Theorem 1 (Lyapunov Theorem). Consider the nonlinear dynamical system (2.6) and assume

that there is a continuously differentiable function V : X → R such that

V (0) = 0,

V (x)> 0, x ∈X , x ̸= 0,

∇V (x)⊤ f (x)≤ 0, x ∈X ,

(2.7)

then the solution x(t)≡ 0 of (2.6) is Lyapunov stable. If, in addition to that,

∇V (x)⊤ f (x)< 0, x ∈X ,x ̸= 0, (2.8)

then the solution x(t)≡ 0 of (2.6) is asymptotically stable. At last, if there are α,β ,ε > 0 and



20

p≥ 1, such that

α||x||p ≤V (x)≤ β ||x||p, x ∈X ,

∇V (x)⊤ f (x)≤−εV (x), x ∈X ,
(2.9)

then the solution x(t)≡ 0 of (2.6) is exponentially stable.

In control theory, even if the open-loop system is not Lyapunov, asymptotically or

exponentially stable, one can guarantee the stability of the closed-loop system by taking into

account the conditions of Theorem 1 when designing the control system.

2.4 Dissipativity Theory

Another important theory that will be applied further in this work is the Dissipativity

Theory (WILLEMS, 2007), which will be implemented alongside Lyapunov theorem. In order to

do so, considering the input-affine system (2.3)-(2.5), a supply rate function will be defined as:

r(u,y(x)) = y(x)⊤Qy(x)+2y(x)⊤Su+u⊤Ru, (2.10)

where Q ∈ Sp, S ∈ Rp×m, R ∈ Sm
>0. A system is called to be dissipative (or QSR-dissipative for

the supply rate chosen here) if there exists a storage function V (x) such that

V̇ (x)≤ r(u,y(x)). (2.11)

Additionally, the system can be called strictly QSR-dissipative if it satisfies

V̇ (x)+T (x)≤ r(u,y(x)), (2.12)

for some T (x)> 0. This concept of dissipative systems can be taken into account when designing

a control law for a SOF by selecting u =−R−1S⊤y(x), meaning that (2.10) can be developed as

it follows:

r(u,y(x)) = y(x)⊤Qy(x)+2y(x)⊤Su+u⊤Ru (2.13)

r(u,y(x)) = y(x)⊤Qy(x)−2y(x)⊤SR−1S⊤y(x)+ y(x)⊤SR−1S⊤y(x) (2.14)

r(u,y(x)) =−y(x)⊤(SR−1S⊤−Q)y(x) (2.15)

Defining a ∆c as

∆c := SR−1S⊤−Q, (2.16)

and if ∆c > 0, then r(u,y(x)) ≤ 0, which in turn implies V̇ < 0, satisfying the asymptotical

stability conditions in Theorem 1.
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2.5 Data-driven control

Designing a control law through modeling is not always possible or viable. This can

occur, e.g., when there are parameters difficult to calculate or not available for measuring. In such

cases, the plant can be considered a black box, when there is no prior knowledge of its dynamics,

or a gray box, when some characteristics, such as degree of polynomial complexity, is known

beforehand. Then, an experiment can be performed to gather data with enough information to

describe the plant behavior. Here, it is considered a unknown process disturbance d which affects

the evolution of the system resulting in noisy data. For that reason, it is necessary to take into

account a set of systems compatible with the data, in order to obtain a robust control law.

2.5.1 Noisy data and uncertainty set C

In (BISOFFI et al., 2022), when describing the dynamics of the systems using data,

its representation can be derived from (2.4) as

ẋ = A∗Z(x)+B∗W (x)+d, x ∈ Rn, u ∈ Rm, d ∈ Rn. (2.17)

Z(x) and W (x) are considered the known vector and matrix of regressors, respectively. A∗ and

B∗ are unknown matrices containing the coefficients of the regressors from the exact plant

model. In this arrangement, Z and W can be chosen containing more monomials than the ones

present in the plant, since the coefficients from the extra monomials would ideally be null. A

noisy-data is considered in this model, and the disturbance d represents the measurement noises

that are unavoidable in the data-acquiring proccesses. The experiment, necessary to obtain the

system’s data since A∗ and B∗ are unknown, is performed over t ∈ [t0, tTs−1] (being Ts the number

of samples by applying an input sequence ut0, . . . , uTs−1 and collecting the input-state sequences

in the data-matrices X1 ∈ Rn×Ts , Z0 ∈ RN×Ts , W0 ∈ RM×Ts , defined as:

X1 :=
[
ẋ(t0) · · · ẋ(tTs−1)

]
, (2.18a)

Z0 :=
[
Z(x(t0)) · · · Z(x(tTs−1))

]
, (2.18b)

W0 :=
[
W (x(t0))u(t0) · · · W (x(tTs−1))u(tTs−1)

]
. (2.18c)

The disturbance sequence cannot be measured, but it is already contained in the data in (2.18). For

that reason and in order to robustly model the problem, it is considered a disturbance sequence
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with bounded energy, i.e., for some matrix RD:

D0 :=
[
d(t0) · · · d(tTs−1)

]
(2.19a)

D0 ∈D := {D ∈ Rn×Ts : DD⊤ ⪯ RDR⊤D}. (2.19b)

Together, (2.18) and (2.19) make up the uncertainty set C :

C := {[A B] : X1 = AZ0 +BW0 +D, D ∈D} (2.20)

which describes all [A B] matrix pairs consistent with data, i.e., that could generate the sequences

in (2.18)

2.5.2 Reformulations of C and properties

In this subsection, the aim is to reformulate the set C in (2.20) as a matrix ellipsoid

in order to derive SOS constraints for control design.

By isolating D in set C definition (2.20), one obtains D = X1−AZ0−BW0, and

substituting it in (2.19b) results in

(X1−AZ0−BW0)(X1−AZ0−BW0)
⊤ ⪯ RDR⊤D.

The previous expression can be developed and reorganized in a quadratic form following the

next steps:

X1X⊤1 −X1Z⊤0 A⊤−X1W⊤0 B⊤−AZ0X⊤1 +AZ0Z⊤0 A⊤

+AZ0W⊤0 B⊤−BW0X⊤1 +BW0Z⊤0 A⊤+BW0W⊤0 B⊤−RDR⊤D ⪯ 0

[
1 A B

]
X1X⊤1 −RDR⊤D

[
−X1W⊤0 −X1W⊤0

]−Z0X⊤1

−W0X⊤1

  Z0Z⊤0 Z0W⊤0

−W0Z⊤0 W0W⊤0





1

A⊤

B⊤

⪯ 0

[
1 A B

]
X1X⊤1 −RDR⊤D −X1

[
Z⊤0 W⊤0

]
−

Z0

W0

X⊤1

Z0

W0

[Z⊤0 W⊤0

]



1

A⊤

B⊤

⪯ 0

[
1 A B

]


X1X⊤1 −RDR⊤D −X1

Z0

W0

⊤

−

Z0

W0

X⊤1

Z0

W0

Z0

W0

⊤



1

A⊤

B⊤

⪯ 0
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This matricial product can be written in terms of new data matrices Ad , Bd , and Cd . Defining

them as

Cd B⊤d

Bd Ad

 :=


X1X⊤1 −RDR⊤D −X1

Z0

W0

⊤

−

Z0

W0

X⊤1

Z0

W0

Z0

W0

⊤


(2.21)

allows the set C to be expressed in terms of Ad , Bd , and Cd , expressed below.

C = {[A B] : [1 A B]

Cd B⊤d

Bd Ad

 [1 A B]⊤ ⪯ 0}

= {[A B] = Z⊤AB : Cd +B⊤d ZAB +Z⊤ABBd +Z⊤ABAdZAB ⪯ 0}

(2.22)

The data matrices Ad , Bd , Cd are not related to an identification step for the real system [A∗ B∗],

but are parameters for estimating a set containing all pairs [A B] consistent with data. Taking in

consideration a standard representation of a vector ellipsoid, i.e., {z∈Rq : c+b⊤z+z⊤b+z⊤az≤

0} with parameters a ∈ Rq×q, b ∈ Rq, and c ∈ R, it is notable that (2.21) can be interpreted as

an extension for matrix ellipsoids. In this interpretation, and since Ad = A⊤d in (2.21), (2.22) is

further developed in the next steps by multiplying terms equivalent with the identity matrix and

adding a term equivalent to zero.

Cd +B⊤d ZAB +Z⊤ABBd +Z⊤ABAdZAB ⪯ 0

Cd +(AdA−1
d Bd)

⊤ZAB +Z⊤ABAdA−1
d Bd +Z⊤ABAdZ +B⊤d A−1

d AdA−1
d Bd−B⊤d A−1

d AdA−1
d Bd ⪯ 0

Cd +(A−1
d Bd)

⊤AdZAB +Z⊤ABAdA−1
d Bd +Z⊤ABAdZAB +(A−1

d Bd)
⊤AdA−1

d Bd−B⊤d A−1
d Bd ⪯ 0

(A−1
d Bd +ZAB)

⊤Ad(A−1
d Bd +ZAB)⪯ B⊤d A−1

d Bd−Cd

Defining the matrices ζ :=−A−1
d Bd and Qd := B⊤d A−1

d Bd−Cd , one obtains a new

representation of set C .

C = {[A B] = Z⊤AB : (ZAB−ζ )⊤Ad(ZAB−ζ )⪯ Qd}

ζ =−A−1
d Bd, Qd = B⊤d A−1

d Bd−Cd

(2.23)

Note that this new representation of the matrix ellipsoid is defined around its center ζ with its

radius being Qd , which will be particularly useful when designing a control law that stabilizes

the whole set of matrices consistent with the data obtained. This will guarantee some level of
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robustness related to the noise and its assumed upper bound RD, taken into account explicitly in

the data matrix Cd (2.21).

For the next lemmas, it will be assumed that the data
[ Z0

W0

]
is persistently exciting

(WILLEMS et al., 2005), which is related to its full row rank. The implication is that the data

will have enough information to represent the behavior of the system in a way possible to check

whether or not one needs more samples. The persistence of excitation directly implies that

Ad ≻ 0, which guarantees it is an invertible matrix, necessary for the definition (2.23). Also,

since Qd represents an ellipsoid radius, it needs to be positive semidefinite, a result that will be

proven in Lemma 1.

Lemma 1. Assuming
[ Z0

W0

]
has full row rank, Ad ≻ 0 and Qd ⪰ 0.

Proof. Ad ≻ 0 is a direct consequence of
[ Z0

W0

]
having full row rank (BISOFFI et al., 2022), with

Ad as in (2.21). Qd can be developed by substituting (2.21) in (2.23):

Qd = B⊤d A−1
d Bd−Cd

= X1

Z0

W0

⊤

Z0

W0

Z0

W0

⊤

−1Z0

W0

X⊤1 −X1X⊤1 +RDR⊤D

Defining Qp =
[ Z0

W0

]⊤([ Z0
W0

][ Z0
W0

]⊤)−1 [ Z0
W0

]
, it can be verified that Q2

p = Qp, which qualifies Qp

as a projection matrix, and the previous equation can be written as

Qd = X1QpX⊤1 −X1X⊤1 +RDR⊤D. (2.24)

Additionally, being X1 = A∗Z0 +B∗W0 +D0 = [A∗ B∗ ]
[ Z0

W0

]
+D0, it follows that
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X1Qp−X1 =

[A∗ B∗
]Z0

W0

+D0

Z0

W0

⊤

Z0

W0

Z0

W0

⊤

−1Z0

W0


−
[
A∗ B∗

]Z0

W0

−D0

=
[
A∗ B∗

]Z0

W0

+D0

Z0

W0

⊤

Z0

W0

Z0

W0

⊤

−1Z0

W0


−
[
A∗ B∗

]Z0

W0

−D0

= D0Qp−D0.

A similar result for its transpose can be obtained as well: QpX⊤1 −X⊤1 = (X1Qp−

X1)
⊤ = (D0Qp−D0)

⊤ = QpD⊤0 −D⊤0 . At last, (2.24) can be rearranged in order to use these

results, allowing to write it in terms of D0 instead of X1, by the next steps.

Qd = X1QpX⊤1 −X1X⊤1 +RDR⊤D

= (X1Qp−X1)X⊤1 +RDR⊤D

= (D0Qp−D0)X⊤1 +RDR⊤D

= D0(QpX⊤1 −X⊤1 )+RDR⊤D

= D0(QpD⊤0 −D⊤0 )+RDR⊤D

= D0QpD⊤0 −D0D⊤0 +RDR⊤D

Since Qp ⪰ 0 and D0 ∈D (2.19b),

Qd = D0QpD⊤0 +RDR⊤D−D0D⊤0

⪰ RDR⊤D−D0D⊤0

⪰ 0.
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Lemma 2. Assuming
[ Z0

W0

]
has full row rank, C is bounded with respect to any matrix norm.

Proof. Consider C in (2.23), a nonempty set since ζ⊤ ∈ C . Z⊤AB ∈ C if and only if v⊤(ZAB−

ζ )⊤Ad(ZAB−ζ )v≤ v⊤Qdv, for all v ∈ Rn. λmin(Ad) represents the minimum eigenvalue of Ad

(symmetric). By applying the square root in both sides of the previous inequation, one obtains

|A1/2
d ||(ZAB−ζ )v| ≤ |Q1/2

d v|, ∀v : |v|= 1.

Using the induced 2-norm, as in |A1/2
d |

2 = λmin((A
1/2
d )⊤A1/2

d ) = λmin(Ad) e |Mv|=

sup|v|=1 |Mv| (HORN; JOHNSON, 2013), implies√
λmin(Ad) sup

|v|=1
|(ZAB−ζ )v| ≤ sup

|v|=1
|Q1/2

d v|.

Through the reverse triangle inequality, it is possible to obtain the following develop-

ment.

sup
|v|=1
|(ZAB−ζ )v| ≤ λmin(Ad)

−1/2 sup
|v|=1
|Q1/2

d v|

=⇒ ||ZAB−ζ || ≤ λmin(Ad)
−1/2||Q1/2

d ||

=⇒ ||ZAB||− ||ζ || ≤ ||ZAB−ζ || ≤ λmin(Ad)
−1/2||Q1/2

d ||

=⇒ ||ZAB|| ≤ ||ζ ||+λmin(Ad)
−1/2||Q1/2

d ||

Since all the values from the right side of the inequation are finite, Z is bounded

in relation to the 2-norm. Furthermore, any matrix norm is equivalent to another matrix norm,

meaning there is a finite constant CAB, such that ||M||a ≤Cab||M||b to any matrix M (HORN;

JOHNSON, 2013). Thus, if ZAB is bounded in relation to 2-norm, implies it being bounded in

relation to any n-norm.

In order to apply Petersen’s Lemma, which will be presented further in this work, it

is convenient to define set C as set E will, defined by:

E := {ζ +A−1/2
d ϒQ1/2

d : ||ϒ|| ≤ 1}. (2.25)

Given a matrix inequality with a bounded matrix F (i.e, F⊤F ⪯ F̄), Petersen’s lemma allows

to obtain an equivalent condition in terms of its upper bound F̄ . In the case of set E , by taking

F = ϒ and F̄ = I, Petersen’s lemma will be useful when obtaining conditions for control design

in terms of the data. Before that, the next proposition will show that set C is equivalent to set E .
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Proposition 1. Being Ad ≻ 0 and Qd ⪰ 0, C = E .

Proof. To prove that C = E , it will be proved that C ⊆ E and E ⊆ C .

For C ⊆ E , suppose that Z⊤AB ∈ E , i.e., Z⊤AB = ζ +A−1/2
d ϒQ1/2, for some matrix ϒ

satisfying ||ϒ|| ≤ 1. Then,

(ZAB−ζ )⊤Ad(ZAB−ζ ) = (A−1/2
d ϒQ1/2)⊤Ad(A

−1/2
d ϒQ1/2)

= Q1/2
ϒ
⊤A−1/2

d AdA−1/2
d ϒQ1/2

= Q1/2
ϒ
⊤

ϒQ1/2

⪯ Q1/2Q1/2 = Q.

For C ⊆ E , suppose that Z⊤AB ∈ C , i.e., (ZAB− ζ )⊤Ad(ZAB− ζ ) ⪯ Q. A matrix ϒ

needs to be found, satisfying ZAB = ζ +A−1/2
d ϒQ1/2, which can be written as

ϒQ1/2 = A1/2
d (ZAB−ζ ). (2.26)

If Q1/2 = 0, this condition can be satisfied by taking ϒ = 0. If Q1/2 ≻ 0, it has

i∈ {1, · · · ,n} that define a diagonal matrix Λi := diag{λ , · · · ,λi}≻ 0. Since Q1/2 is symmetrical,

there is an orthogonal real matrix T (T⊤T = T T⊤ = I), such that the eigenvalues decomposition

of Q1/2 is

Q1/2 = T ΛT⊤ := T
[

Λi 0
0 0

]
T⊤. (2.27)

Since Q1/2 ≻ 0 if i = n, then (2.27) admits Λ = Λi. Writing T =:
[
T1 T2

]
implies

T⊤T = I (2.28)[
T1 T2

]T⊤1

T⊤2

= I (2.29)

T1T⊤1 +T2T⊤2 = I (2.30)

T T⊤ = I (2.31)T⊤1

T⊤2

[T1 T2

]
= I (2.32)

T⊤1 T1 T⊤1 T2

T⊤2 T1 T⊤2 T2

=

I 0

0 I

 (2.33)
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Then, by selecting

ϒ = A1/2
d (ZAB−ζ )Q−1/2 = A1/2

d (ZAB−ζ )T1Λ
−1
i T⊤1 , (2.34)

it can be verified that ||ϒ|| ≤ 1 by applying some of the properties above.

ϒ
⊤

ϒ = T1Λ
−1
i T⊤1 (Z−ζ )⊤A1/2

d A1/2
d (Z−ζ )T1Λ

−1
i T⊤1

(2.23)
=⇒ ϒ

⊤
ϒ⪯ T1Λ

−1
i T⊤1 QT1Λ

−1
i T⊤1

(2.27)
= T1Λ

−1
i T⊤1

[
T1 T2

]Λi 0

0 0

T T⊤

Λi 0

0 0

T⊤1

T⊤2

T1Λ
−1
i T⊤1

(2.31)
= T1Λ

−1
i T⊤1

[
T1 T2

]Λ2
i 0

0 0

T⊤1

T⊤2

T1Λ
−1
i T⊤1

= T1Λ
−1
i T⊤1 T1Λ

2
i T⊤1 T1Λ

−1
i T⊤1

(2.33)
= T1Λ

−1
i Λ

2
i Λ
−1
i T⊤1

= T1T⊤1 = I

Then, (2.26) holds. Being (2.26) equivalent to

ϒQ1/2 =ϒ

[
T1 T2

]Λi 0

0 0

T⊤ = A1/2
d (Z−ζ ) (2.35)

⇐⇒
[
ϒT1Λi 0

]
= A1/2(Z−ζ )T (2.36)

⇐⇒
[
ϒT1Λi 0

]
= A1/2(Z−ζ )

[
T1 T2

]
(2.37)

⇐⇒

{
ϒT1Λi = A1/2(Z−ζ )T1

0 = A1/2(Z−ζ )T2

(2.38)

The upper equality of (2.38) holds because of the chosen ϒ in (2.34). The lower

equality of (2.38) holds if T2 collumns are in ker(Q1/2) and ker(Q1/2)⊆ ker(A1/2
d (Z−ζ )). The

first condition − T2 ∈ ker(Q1/2) − is true because

Q1/2T2 = T

Λi 0

0 0

T⊤1

T⊤2

T2
(2.33)
= T

Λi 0

0 0

0

I

= 0. (2.39)

The second condition − ker(Q1/2)⊆ ker(A1/2
d (ZAB−ζ )) − is also true, because if
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v ∈ ker(Q1/2), v satisfies Q1/2v = 0, thus, from (2.23),

0 = v⊤Q1/2Q1/2v

= v⊤Qv

≥ v⊤(Z−ζ )Ad(Z−ζ )v

= |A1/2
d (Z−ζ )v|2

Then, since |A1/2
d (Z− ζ )v|2 ≤ 0 and the absolute value of any matrix M is non-

negative, i.e., |M| ≥ 0, ∀M, it follows that A1/2
d (Z−ζ )v = 0.

2.5.3 Petersen’s lemma and control design

With the definition of set C as equivalent to set E (2.25), its representation of the

uncertainty set that contains all pair of matrices [A B] compatible with the data can be utilized in

the process of obtaining some data-driven Lyapunov condition for control law design. For that,

Petersen’s lemma will now be presented, since it will be used in a key step further in this work.

Lemma 3 (Nonstrict Petersen’s Lemma). Consider matrices C ∈ Rn×n, E ∈ Rn×p, F̄ ∈ Rq×q,

G ∈ Rq×n, with C =C⊤ and F = F⊤ ⪰ 0, and let F be

F := {F ∈ Rp×q : F⊤F ⪯ F̄}. (2.40)

Suppose additionally E ̸= 0, F̄ ≻ 0 and G ̸= 0. Then,

C+EFG+G⊤F⊤E⊤ ⪯ 0, ∀F ∈F (2.41)

if and only if there exists λ > 0 such that

C+λEE⊤+λ
−1G⊤F̄G⪯ 0. (2.42)

Proof. See (BISOFFI et al., 2022)

Bearing Petersen’s lemma (Lemma 3), strict QSR-dissipativity (2.12), (SILVA et

al., 2024) devised a data-driven Lyapunov condition which, if satisfied, guarantees asymptotic

stability of a system with a SOF control law.

Proposition 2. Let data be given by Z0, W0 and X1 as in (2.18). Assuming
[ Z0

W0

]
have full

row rank and Z(0) = 0. Given positive scalars βV , βT , and positive integers nV , nT , if there
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exists polynomials V (x), T (x), λ (x), with V (0) = 0, T (0) = 0, and constant matrices Q ∈ Sm,

S ∈ Rp×m, R ∈ Sm
>0 such that for each x

V (x)−βV ||x||2nV ≥ 0, (2.43)

T (x)−βT ||x||2nT ≥ 0, (2.44) Σ1 +λ (x)Σ2

∇V T Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

⪯ 0, (2.45)

λ (x)> 0, (2.46)

∆c ⪰ 0, (2.47)

being

Σ1 =

∇V T ζ T
N Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T ζM
1
2∇V −ST h(x) −R

 , (2.48a)

Σ2 =

 1
2Z(x)T (A−1/2

d )N

1
2W (x)T (A−1/2

d )M

 ·[⋆] , (2.48b)

then the origin is globally asymptotically stable for ẋ = AZ(x)+BW (x)u := fA,B(x),

for all
[
A B
]
∈ C , and a control law u = Kh(x), with K =−R−1ST .

Proof. For the proof, we start following the same rationale as (BISOFFI et al., 2022) with the

addition of the supply rate of the Dissipativity Theory (section 2.4). It will be shown that V is a

Lyapunov function for all ẋ = fA,B(x),
[
A B
]
∈ C . From (2.43), V is radially unbounded, and

since V (0) = 0, it follows that V is positive definite. The next step is to address the derivative

of V satisfying V̇ = ∇V T fA,B < 0. From (2.12), V̇ < 0 if ∆c ≥ 0 and T (x) > 0. Then, the

parametrization of
[
A B
]

will be substituted in (2.23) to show that

∇V T (AZ(x)+BW (x)u)≤−T (x)+ r(u,y(x))

if (2.45) and (2.46) both hold. Notice that the above inequality leads to

∇V T [A B
][ Z(x)

W (x)u

]
+T (x)≤ h(x)T Qh(x)+2h(x)T Su+uT Ru (2.49)

∇V T (ζ +A−1/2
d ϒQ1/2

d )T [ Z(x)
W (x)u

]
+T (x)−h(x)T Qh(x)−2h(x)T Su−uT Ru≤ 0

∇V T
ζ

T [ Z(x)
W (x)u

]
+∇V T Q1/2

d ϒ
T (A−1/2

d )T [ Z(x)
W (x)u

]
+T (x)−h(x)T Qh(x)−2h(x)T Su−uT Ru≤ 0
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∇V T
ζ

T [ Z(x)
W (x)u

]
+

1
2

∇V T Q1/2
d ϒ

T (A−1/2
d )T [ Z(x)

W (x)u

]
+
[ Z(x)

W (x)u

]T A−1/2
d ϒQ1/2

d
1
2

∇V+

T (x)−h(x)T Qh(x)−2h(x)T Su−uT Ru≤ 0
(2.50)

At this point, we differ from (BISOFFI et al., 2022), by splitting ζ and A−1/2
d into its N-rows

and M-rows components, ζ :=
[

ζN
ζM

]
and A−1/2

d :=
[ (A−1/2

d )N

(A−1/2
d )M

]
. Then, we have

∇V T
ζ

T
N Z(x)+∇V T

ζ
T
MW (x)u+

1
2

∇V T Q1/2
d ϒ

T (A−1/2
d )T

NZ(x)

+
1
2

∇V T Q1/2
d ϒ

T (A−1/2
d )T

MW (x)u+Z(x)T (A−1/2
d )NϒQ1/2

d
1
2

∇V

+uTW (x)T (A−1/2
d )MϒQ1/2

d
1
2

∇V +T (x)−h(x)T Qh(x)−2h(x)T Su−uT Ru≤ 0

(2.51)

Then, the expression above can be rearranged in the form of the matricial product bellow

[
1 uT ].

∇V T (ζ T
N +Q1/2

d ϒT (A−1/2
d )T

N)Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T(ζM +(A−1/2
d )MϒQ1/2

d

)1
2∇V −ST h(x) −R

 .
1

u

≤ 0 (2.52)

which is valid if the center matrix is negative semidefinite. Rewriting this matrix as a sum of two

matrices, we obtain:∇V T ζ T
N Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T ζM
1
2∇V −ST h(x) −R

 +

 ∇V T Q1/2
d ϒT (A−1/2

d )T
NZ(x) ⋆

W (x)T (A−1/2
d )MϒQ1/2

d
1
2∇V 0

⪯ 0 (2.53)

Then, we split the second matrix in as sum of matricial products in order to apply the nonstrict

Petersen’s lemma in the next steps∇V T ζ T
N Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T ζM
1
2∇V −ST h(x) −R

 +

(
[⋆]+

 Z(x)T (A−1/2
d )NϒQ1/2

d
1
2∇V 0

W (x)T (A−1/2
d )MϒQ1/2

d
1
2∇V 0

)⪯ 0

∇V T ζ T
N Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T ζM
1
2∇V −ST h(x) −R


+

[⋆]+

 1
2Z(x)T (A−1/2

d )N

1
2W (x)T (A−1/2

d )M

ϒ

[
Q1/2

d ∇V 0
]⪯ 0 (2.54)

By applying Petersen’s lemma (Lemma 3), since ϒϒT ≤ I, it’s possible to obtain∇V T ζ T
N Z(x)+T (x)−h(x)T Qh(x) ⋆

W (x)T ζM
1
2∇V −ST h(x) −R


+λ (x)

 1
2Z(x)T (A−1/2

d )N

1
2W (x)T (A−1/2

d )M

[⋆ ]+λ (x)−1

∇V T Q1/2
d

0

[⋆ ]⪯ 0 (2.55)
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Now, for concision, the matrices Σ1 and Σ2 are as (3.21), resulting in

Σ1 +λ (x)Σ2−

∇V T Q1/2
d

0

(−λ (x)−1)
[
Q1/2

d ∇V 0
]
⪯ 0

Finally, taking the Schur’s complement of the inequation above leaves us with Σ1 +λ (x)Σ2

∇V T Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

⪯ 0. (2.56)

The condition stated in Proposition 2 can be applied as well when trying to achieve a

local asymptotical stability. For that, an s-procedure is applied to (2.45), resulting in: Σ1 +λ (x)Σ2

∇V T Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

+α(x)(1−L(x))⪯ 0, (2.57)

with a positive definite α(x) ∈P(n+m+1)×(n+m+1). The meaning of this condition is that if

(2.57) is satisfied, (2.45) also holds in a region around the origin that is given by an ellipsoid

E (L,1) := {x∈Rn | L(x)≤ 1}. This strategy can be useful when achieving global stability proves

challenging or a limited domain of attraction is sufficient, which is true in many applications.

Alternatively to the supply rate in (2.10), it can be defined a more general supply

rate as in (MADEIRA et al., 2025) taking into account Q and S as polynomial matrices, i.e.,

r(u,y) = Q(y)+2S(y)u+u⊤Ru (2.58)

Note that, for the purpose of this work, it is considered a real matrix R, since it allows for an

simpler calculation of its inverse than if its considered polynomial. Then, a condition based in

the supply rate in (2.58), similar to the one in Proposition 2 is formalized below.

Proposition 3. Let data be given by Z0, W0 and X1 as in (2.18). Assuming
[ Z0

W0

]
have full

row rank and Z(0) = 0. Given positive scalars βV , βT , and positive integers nV , nT , if there

exists polynomials V (x), T (x), λ (x), with V (0) = 0, T (0) = 0, and Q(y) ∈P , S(y) ∈P1×m,
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R(x) ∈ Rm×m
>0 polynomial matrices such that for each xg

V (x)−βV ||x||2nV ≥ 0, (2.59)

T (x)−βT ||x||2nT ≥ 0, (2.60) Σ1 +λ (x)Σ2

∇V T Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

⪯ 0, (2.61)

λ (x)> 0, (2.62)

∆c ⪰ 0, (2.63)

being

Σ1 =

∇V T ζ T
N Z(x)+T (x)−Q(y) ⋆

W (x)T ζM
1
2∇V −S(y) −R

 , (2.64a)

Σ2 =

 1
2Z(x)T (A−1/2

d )N

1
2W (x)T (A−1/2

d )M

 ·[⋆] , (2.64b)

then the origin is globally asymptotically stable for ẋ = fA,B(x), for all
[
A B
]
∈ C ,

and a control law u = K(y), with K =−R−1S⊤(y).

Proof. The proof follows the exact same steps of the Proposition 2.

The s-procedure can be applied as well in the Proposition 3 to achieve local asymp-

totical stability.

About the differences between Proposition 2 and Proposition 3, the first is based on a

supply rate with constant matrices, which can lead to less computational effort when determining

them through mathematical solvers. However, the supply rate in the second case (2.58) can offer

a bigger set of possible solutions. Also, the definition of an output as in (2.5) is not needed

and the degrees of complexity of the polynomial control law is defined by the S(y) matrix.

Furthermore, as seen in (MADEIRA et al., 2025), the second proposition can be applied to

obtain rational control laws, expanding their range of complexity.
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3 METHODOLOGY

The initial step to design a data-driven control law is to perform an experiment for

the data acquisition.

3.1 Collecting Data

For this work, the input signal selected was sinusoidal as in (BISOFFI et al., 2022),

which was applied in the systems state space model via simulation. Then, a number of samples

Ts were extracted and the input and state sequences were used to construct the data-matrices Z0,

W0 as in (2.18), with the noise added to the estimation of X1 as in (2.20). A sampling time can be

defined as τs, but here the simulation was made with MATLAB function ode45, and it utilizes a

varying time step. This was not an issue since it did not affect the dataset’s ability to describe the

open-loop trajectories of the system.

The disturbance d was also modeled by sinusoidal waves. If its amplitude is given

by
√

δ

n and frequency 2πω , it makes |d|2 ≤ δ

n , which in turn make the sequence D in (2.19) to

be D⪯
√

δ

n Jn×Ts , meaning that

DD⊤ ⪯ Ts
δ

n
Jn×n. (3.1)

Now, analyzing the Jn×n matrix, it can be stated that Jn×n ⪯ nI. Such property can be derived

from a particular case of the Cauchy-Schwarz inequality, i.e., |⟨v,w⟩|2 ≤ ⟨v,v⟩⟨w,w⟩, for any

v, w ∈ Rn, by selecting w = Jn×1, resulting in(
n

∑
i=1

vi1

)2

=

(
n

∑
i=1

vi

)2

≤
n

∑
i=1

v2
i

n

∑
i=1

12 = n
n

∑
i=1

v2
i

Take into consideration that the left sum can be written in the matricial form (∑n
i=1 vi)

2 = v⊤Jn×nv,

and the sum in the left term can be written as ∑
n
i=1 v2

i = v⊤Iv, for any v ∈ Rn, then Jn×n ⪯ nI.

Then, (3.1)⪯ Ts
δ

n nI. This guarantees that DD⊤ ⪯ Tsδ I, admitting RD =
√

Tsδ I.

Since the conditions for control law design in Proposition 2 and 3 are polynomial

matrices, SOS Programming will be used to solve algorithms through SOS decomposition of

polynomials.
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3.2 SOS approach

A polynomial p(x) ∈Rn can be written as a SOS decomposition if there is a positive

semidefinite matrix M, such that

p(x) = z.M.z⊤, z ∈ Rm, M ∈ Rm×m (3.2)

where z contains the monomials of x in p(x) and M contains the coeficients of such monomials.

The utility of such decomposition is that it can be used to verify if a polynomial is positive

semidefinite by finding its SOS representation (PAPACHRISTODOULOU et al., 2021).

With SOSTools, a MATLAB toolbox, it can be defined a SOSP to find the SOS

decomposition of polynomials, or polynomial matrices. Additionally in the SOSP, it can be

defined decision variables, which are variables to be determined by the toolbox when finding

the SOS decomposition, and some constraints for these same variables. The decision variables

would be mainly the Lyapunov function V (x) and the QSR-dissipativity matrices, along with

the auxiliary variables shown in Proposition 2 and Proposition 3. Also, these decision variables

are constrained by positive definite and semidefinite polynomial conditions, making this kind of

toolbox fit perfectly in the problem studied in subsection 2.5.1. The Theorems 2 and 3 rewrite

the mentioned propositions in the form of SOSP taking into account the s-procedure in (2.57) for

local asymptotic stability.

Theorem 2. Let data be given by Z0, W0 and X1 as in (2.18). Assuming
[ Z0

W0

]
have full row rank

and Z(0) = 0. Given positive scalars βV , βT , βL, ελ , and positive integers nV , nT , nL, if there

exists polynomials V (x), T (x), L(x) ,λ (x), with V (0) = 0, T (0) = 0, constant matrices Q ∈ Sp,
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S ∈ Rp×m, R ∈ Sm
>0, and polynomial matrix α(x) ∈P(m+n+1)×(m+n+1) such that for each x

V (x)−βV ||x||2nV ∈ Σ[x], (3.3)

T (x)−βT ||x||2nT ∈ Σ[x], (3.4)

L(x)−βL||x||2nL ∈ Σ[x], (3.5)

−

 Σ1 +λ (x)Σ2

∇V⊤Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

−α(x)(1−L(x)) ∈ Σ[x], (3.6)

λ (x)− ελ ∈ Σ[x], (3.7)

α(x) ∈ Σ[x], (3.8)

∆c ∈ Σ[x], (3.9)

being

Σ1 =

∇V⊤ζ⊤N Z(x)+T (x)−h(x)⊤Qh(x) ⋆

W (x)⊤ζM
1
2∇V −S⊤h(x) −R

 , (3.10a)

Σ2 =

 1
2Z(x)⊤(A−1/2

d )N

1
2W (x)⊤(A−1/2

d )M

 ·[⋆] , (3.10b)

then the origin is locally asymptotically stable for ẋ = fA,B(x), for all
[
A B
]
∈C , and

a control law u = Kh(x), with K =−R−1S⊤. The domain of attraction is estimated by E (L,1).

Proof. Since a polynomial matrix having a SOS decomposition means it is positive semidefinite,

(3.3), (3.4), (3.7), (3.9) imply respectively (2.43), (2.44), (2.46), (2.16). Additionally, (3.6) means

that:

−

 Σ1 +λ (x)Σ2

∇V⊤Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

−α(x)(1−L(x))⪰ 0. (3.11)

Then, we can rewrite it as: Σ1 +λ (x)Σ2

∇V⊤Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

⪯−α(x)(1−L(x)). (3.12)
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Since α(x)⪰ 0 because of (3.8), and L(x)≥ 0 because of (3.5), the right hand of the inequality

above is only negative when L(x)≤ 1, i.e., Σ1 +λ (x)Σ2

∇V⊤Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

⪯−α(x)(1−L(x))⪯ 0, x ∈ E (L,1). (3.13)

This means that, if (3.6) holds, (2.45) holds for all x ∈ E (L,1), being E (L,1) an estimative of

the domain of attraction where the closed-loop system is dissipative.

Theorem 3. Let data be given by Z0, W0 and X1 as in (2.18). Assuming
[ Z0

W0

]
have full row

rank and Z(0) = 0. Given positive scalars βV , βT , βL, ελ , and positive integers nV , nT , nL, if

there exists polynomials V (x), T (x), λ (x), with V (0) = 0, T (0) = 0, and matrices Q(y) ∈P ,

S(y) ∈P1×m, R ∈ Sm
>0, α(x) ∈P(n+m+1)×(n+m+1) such that for each x

V (x)−βV ||x||2nV ∈ Σ[x], (3.14)

T (x)−βT ||x||2nT ∈ Σ[x], (3.15)

L(x)−βL||x||2nL ∈ Σ[x], (3.16)

−

 Σ1 +λ (x)Σ2

∇V⊤Q1/2
d

0


[
Q1/2

d ∇V 0
]

−λ (x)I

−α(x)(1−L(x)) ∈ Σ[x], (3.17)

λ (x)− ελ ∈ Σ[x], (3.18)

α(x) ∈ Σ[x], (3.19)

∆c ∈ Σ[x], (3.20)

being

Σ1 =

∇V⊤ζ⊤N Z(x)+T (x)−Q(y) ⋆

W (x)⊤ζM
1
2∇V −S(y) −R

 , (3.21a)

Σ2 =

 1
2Z(x)⊤(A−1/2

d )N

1
2W (x)⊤(A−1/2

d )M

 ·[⋆] , (3.21b)

then the origin is locally asymptotically stable for ẋ = fA,B(x), for all
[
A B
]
∈ C ,

and a control law u = K(y), with K = −R−1S⊤(y). The domain of attraction is estimated by

E (L,1).
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Proof. Following the same steps for the proof of Theorem 3, (3.14), (3.15), (3.18), (3.20) imply

respectively (2.59), (2.44), (2.62), (2.63). Additionally, (3.17), (3.16), (3.19) mean that (2.61)

holds for all x ∈ E (L,1), being E (L,1) an estimative of the domain of attraction where the

closed-loop system is dissipative.

In the previous theorems, Z(x) and W (x) are the known regressors of the plant, ζ ,

Ad and Qd are matrices determined by the data Z0, W0 and X1. The decision variables to be

determined by the SOSP are V (x), T (x), L(x), α(x), λ (x), Q, S, R (or Q(y), S(y), R in Theorem

3). The input parameters βV , βT , βL, nV , nT , nL have influence in the radially unboundness of

V (x), T (x) and L(x). Since SOSTools does not compute contraints that are strict inequalities, the

last input parameter ελ > 0 is needed to guarantee that λ (x)> 0, which is selected as a sufficient

small value.

3.3 Algorithm Formulation

Both Theorems 2 and 3 present bilinearities that need to be addressed in order to be

implemented. The first one is present the ∆c as in (2.16). Since the problem needs to be linear in

the decision variables, adding constraint in the form of (3.9)/(3.20) is not possible. This issue is

circumvented in (MADEIRA; MACHADO, 2024) by two steps: the first step solves the SOSP

with no restrictions in ∆c, the second step is an iterative loop that solves the same SOSP with the

addiction of a constraint that guarantees

∆c,k ⪰ ∆c,k−1 (3.22)

and stops when ∆c,κ ≥ 0. Such condition is presented in the next proposition for the polynomial

matrix case, based in (MADEIRA et al., 2025), and can be applied in the real matrix case as

well by making Q(y) = Q and S(y) = S.

Proposition 4. Suppose that ∀k = {0, 1, 2 , ...}, there exist sequencies Qk ∈P , Sk ∈P1×m

and Rk ∈ Sm
>0. In addition, let ∆k in (2.16) be well defined in x. If ∀k = {0, 1, 2 , ...}

Rk−1−Rk ⪰ 0 (3.23)

and

Sk(y)R−1
k−1S⊤k−1(y)+Sk−1(y)R−1

k−1S⊤k (y)

−2Sk−1(y)R−1
k−1S⊤k−1(y)+Qk−1(y)−Qk(y) ∈ Σ[y],

(3.24)

then (3.22) holds ∀k = {0, 1, 2 , ...}.
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Proof. From (2.16), (3.22) can be written as

Sk(y)R−1
k S⊤k (y)−Qk(y)≥ Sk−1(y)R−1

k−1S⊤k−1(y)−Qk−1(y). (3.25)

Suppose that (3.23) holds, then

(3.25) ⇐= Sk(y)R−1
k−1S⊤k (y)−Sk−1(x)R−1

k−1S⊤k−1(x)≥ Qk(y)−Qk−1(y). (3.26)

Now, taking into account that

(Sk(y)−Sk−1(y))R−1
k−1(Sk(y)−Sk−1(y))⊤ ≥ 0, (3.27)

note it is equivalent to

Sk(y)R−1
k−1Sk(y)⊤ ≥ Sk(y)R−1

k−1Sk−1(y)+Sk−1(y)R−1
k−1Sk(y)−Sk−1(y)R−1

k−1Sk−1(y), (3.28)

Then, by substitutig Sk(x)R−1
k−1Sk(x)⊤ in (3.26), (3.26) is implied by

Sk(y)R−1
k−1Sk−1(y)+Sk−1(y)R−1

k−1Sk(y)−2Sk−1(y)R−1
k−1Sk−1(y)≥ Qk(y)−Qk−1(y), (3.29)

which is identical to (3.24). Therefore (3.24) is a sufficient condition for (3.22).

The importance of Proposition 4 is due to it providing a condition that is linear in

the decision variables, i.e., Qk(y), Sk(y) and Rk. Such conditions were named in (MADEIRA;

MACHADO, 2024) as Recurrent Dissipativity-Based Inequalities (RDBI).

The second bilinearity present in Theorems 2 and 3 is in the s-procedure term

α(x)(1−L(x)). The method proposed in this work deals with it by, given some initial α(x),

determining L(x) in the first step. Then, in the iterative step, which utilize the RDBI, the L(x)

found in the first step is fixed, and only α(x) is treated as a decision variable. This method will

be organized in the Algorithms 1 and 2 presented next.

In Algorithm 1, since ∆c ∈ R, the test ∆c ⪰ 0 required in the if sections can be

performed by analyzing if all of its eigenvalues are positive. In Algorithm 2, such test cannot be

as easily performed. Since ∆c ∈P , an alternative test can be made by an auxiliary SOSP to find

if ∆c ∈ Σ[x], thus satisfying ∆c ≥ 0.
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Algorithm 1: Data-driven Local Dissipativity Control Design - supply rate as in (2.10)
Input :Consider a Z(x) ∈PN×1, W (x) ∈PM×1, h(x) ∈P p×1[x], set (βV , βT , βL,

ελ ) ∈ R>0, (nV , nT , nL, kmax) ∈ N, α0(x) ∈P
(n+m+1)×(n+m+1)
>0

k← 0

STEP 1) Find Q0 ∈ Sp, S0 ∈ Rp×m, R0 ∈ Sm
>0, λ0(x) ∈P , V0(x) ∈P , T0(x) ∈P ,

L(x) ∈P

subject to (3.3)-(3.7)

if ∆c,0 ⪰ 0 then
K =−R−1

0 ST
0

V =V0(x)
else

while k < kmax do
STEP 2) Find Qk ∈ Sp, Sk ∈ Rp×m, Rk ∈ Sm

>0, λk(x) ∈P , Vk(x) ∈P ,
Tk(x) ∈P , α(x) ∈P(n+m+1)×(n+m+1)

subject to (3.3)-(3.7), (3.23)-(3.24) and α(x) ∈ Σ(n+m+1)×(n+m+1)[x]

if ∆c,k ≥ 0 or k = kmax then
K =−R−1

k ST
k

V =Vk(x)
STOP

end
k← k+1

end
end

Output :K, V (x)

3.4 Lyapunov Certificate with Z3 Prover

Bearing the solutions found by Algorithms 1 and 2, a Lyapunov certificate can be

obtained by verifying if Z3 Prover can find a counterexample for V (x) > 0 and V̇ < 0 in the

estimated domain of attraction E (L,1). This feature is illustrated below with an code example

for Z3 Prover in Python which attempts to prove if −x2 +10 < 0 when x < 5, x ∈ R. Code:

1 import z3

2 x= z3.Real('x')

3 z3.prove(z3.Implies(x<=5,-x**2+10 >=0))

Output:

1 counterexample

2 [x = 4]
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Algorithm 2: Data-driven Local Dissipativity Control Design - supply rate as in (2.58)
Input :Consider a Z(x) ∈PN×1, W (x) ∈PM×1, set (βV , βT , βL, ελ ) ∈ R>0, (nV , nT ,

nL, kmax) ∈ N, α0(x) ∈P
(n+m+1)×(n+m+1)
>0

k← 0

STEP 1) Find Q0(y) ∈P , S0(y) ∈P1×m, R0 ∈ Sm
>0, λ0(x) ∈P , V0(x) ∈P ,

T0(x) ∈P , L(x) ∈P

subject to (3.14)-(3.18)

if ∆c,0 ∈ Σ[y] then
K =−R−1

0 ST
0 (y)

V =V0(x)
else

while k < kmax do
STEP 2) Find Qk(y) ∈P , Sk(y) ∈P1×m, Rk ∈ Sm

>0, λk(x) ∈P , Vk(x) ∈P ,
Tk(x) ∈P , α(x) ∈P(n+m+1)×(n+m+1)

subject to (3.14)-(3.18), (3.23)-(3.24) and α(x) ∈ Σ(n+m+1)×(n+m+1)[x]

if ∆c,k ∈ Σ[x] or k = kmax then
K =−R−1

k ST
k (y)

V =Vk(x)
STOP

end
k← k+1

end
end

Output :K(y), V (x)

Alternatively, if not found a counterexample for the formula, it is considered proved

or satisfied as the next example illustrates. Code:

1 import z3

2 x= z3.Real('x')

3 z3.prove(z3.Implies(x>=4,x**2 -10 >=0))

Output:

1 proved

Because they’re able to prove the positive definiteness of a polynomial within a

domain, SMT solvers can be used to provide a Lyapunov certificate by checking if the data-

driven Lyapunov condition in (2.45)/(2.61) holds with the solutions found by Algorithm 1/2.

Moreover, there is a scenario where the positive definite constraints can be feasible, but a SOS
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decomposition could not be found, e.g., due to numerical imprecision or due to the polynomial

not having an SOS decomposition. This scenario may cause the SOSP solvers to return solutions

not certifiable via SOSP, but SMT solvers can still provide the Lyapunov certificate.

The procedure for issuing a Luapunov certicate was to verify if the Lyapunov

conditions (Theorem 1) were satisfied. For V (x) > 0, it can be a straight-forward test by

verifying its positive-definiteness as illustrated in example codes above. For V̇ (x)< 0, the tested

condition was the data-driven conditions 2.45/2.61, but with a Schur Complement in order to

make it a scalar polynomial (instead of a matrix polynomial), since it cannot be analyzed by Z3

Prover otherwise.

In addition to that, its important to remark that the estimative of the domain of

attraction E (L,1) is only determined in STEP 1 for both algorithms. If all steps were feasible,

Lyapunov conditions can be satisfied in an equal or bigger domain of attraction with the final

solutions found. In this work, with the solutions provided by SOSTools, Z3 Prover was applied

to provide a Lyapunov certificate and to maximize the domain of attraction by conducting a line

search in ρ to find a maximum E (V,ρ) in which (2.45)/(2.61) holds.
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4 RESULTS

To apply the strategy developed in the previous section, two systems with a nonlinear

polynomial state-space representation were selected. The local asymptotic stabilization around

the origin of both systems was solved using both algorithms 1 and 2, for comparison in the

use of the different definitions of the supply rate ((2.10) and (2.58)). The software used to

implement the algorithms was MATLAB, particularly with the SOSTools toolbox, using Mosek

as solver. The solutions found were then tested with Z3 Theorem Prover to guarantee a Lyapunov

certificate. The computer in which the software was running has the specifications: Processor

12th Gen Intel®Core ™i7-12700F 2.10 GHz, with RAM 32,0 GB.

4.1 System 1

The first system was extracted from (KHALIL, 2002, Example 14.9), and it can be

represented by the following state-space equations:

ẋ1 = x2
1− x3

1 + x2

ẋ2 = u
(4.1)

Figure 3 – Block diagram of system (4.1)

Figure 3 shows the block diagram for system (4.1) and the open-loop phase diagram

is shown in figure 5. The system already converges for a set of equilibrium points, when

ẋ1 = x2
1− x3

1 + x2 = 0, shown as a dashed line. However, we want to achieve asymptotical

stability around the origin (as a isolated equilibrium point).
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Figure 4 – Open-loop phase diagram for system (4.1)

To perform the data acquisition experiment, the input signal selected was u =

5sin5t, in the interval t ∈ [0,10], t in seconds, and it was extracted the first Ts = 100 samples

provided by MATLAB’s ode45 function. That particular signal was chosen considering the main

assumption in Lemma 1, i.e.,
[ Z0

W0

]
having full row rank, with selected vectors of monomials

being Z = [x1 x2
1 x3

1 x2 x2
2 x3

2] and W = [1]. The disturbance signal applied in the sequence X1

was d =
[√δ/nsinωt√

δ/ncosωt

]
, with δ = 0.01 and ω = 0.8π , which satisfies (2.19). This disturbance

emulates the process disturbances as modelled in section 3.1, in order to design a control law

that robustly stabilize all pair all matrices [A B] consistent with data. The experiment data is

shown in figure 5.

4.1.1 Algorithm 1

For algorithm 1, the input parameters were nV = nT = nL = 1, βV = βT = 10−6,

βL = 10−4, ελ = 10−3, and α0(x) = 10−6||x||2I. The fictitious output, which determines the

polynomial degrees of the control law obtained, was h(x) = [x1 x2]
⊤. The degrees of the

polynomial decision variables V (x), T (x), λ (x), L(x), α(x) were respectively 4, 2, 0, 2 and 2.

By selecting this inputs, the computational complexity of algorithm 1 can be assessed by the

number of decision variables and constraints in the SOS programs executed in STEP 1 and STEP

2. In STEP 1, it were 18 decision variables and 6 SOS constraints, and in STEP 2, 45 decision

variables and 8 SOS constraints. The execution time until a solution with ∆c ⪰ 0 was 5.953207
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Figure 5 – Open-loop experiment for system (4.1)

seconds and the number of iterations was k = 37. Table 1 shows the solutions found by algorithm

1 for system (4.1).

Table 1 – V (x), u(x), λ (x) and L(x) solutions for (4.1), supply rate as in (2.10)

Fcn Expression

V 0.077217x4
1 +0.058274x3

1x2 +0.27619x2
1x2

2−0.11577x1x3
2 +0.015567x4

2

u −7.834x1−5.6198x2

λ 0.0072974

L 200977679.8299x2
1−220011.7166x1x2 +215571661.4608x2

2

With Z3Prover, it was possible to obtain a Lyapunov certificate by not finding a

counterexample for the Lyapunov conditions (Theorem 1) for asymptotic stability in the domain

of attraction estimated by E (L,1). In addition, by conducting a line search in ρ to find a bigger

ellipsoid E (L,ρ), it was obtained a Lyapunov certificate in a domain of attraction with ρ = 108.

At the left side of Figure 6, it is shown the phase diagram for the closed-loop, with

the dashed line representing the estimated domain of attraction E (L,108) and the bold line

representing a single trajectory for x0 = [0.4 0.4], which is also represented in the time domain

at the right side of Figure 6.
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4.1.2 Algorithm 2

For algorithm 2, the input parameters were nV = nT = nL = 1, βV = βT = 10−6,

βL = 10−4, ελ = 10−3, and α0(x) = 10−6||x||2I. With the new supply, the complexity of the

control law is determined by S(x), since u =−R−1S⊤(x). Then, the degrees of the polynomial

decision variables V (x), T (x), λ (x), L(x), α(x), Q(x), S(x) were respectively 4, 2, 0, 2, 2, 2

and 1. Assessing the computational complexity, STEP 1 had 18 decision variables and 6 SOS

and STEP 2, 45 decision variables and 8 SOS constraints. The execution time until a solution

with ∆c ⪰ 0 was 6.601079 seconds and the number of iterations was k = 37. Table 2 shows the

solutions found by algorithm 2 for system (4.1).

Table 2 – V (x), u(x), λ (x) and L(x) solutions for (4.1), supply rate as in (2.58)

Fcn Expression

V 0.06835x4
1 +0.061552x3

1x2 +0.27479x2
1x2

2−0.11572x1x3
2 +0.016102x4

2

u −8.1515x1−5.2592x2

λ 0.0075004

L 165169341.5667x2
1 +1112927.3042x1x2 +190941194.2397x2

2

Similar to the previous example, it was possible to obtain a Lyapunov certificate with

Z3 and the maximum domain of attraction E (L,ρ) found was for also ρ = 108.

At the left side of Figure 7, it is shown the phase diagram for the closed-loop, with

the dashed line representing the estimated domain of attraction E (L,108) and the bold line

representing a single trajectory for x0 = [0.4 0.4], which is also represented in the time domain

at the right side of Figure 7.

4.1.3 Comparison with (BISOFFI et al., 2022)

In the same way as in (SILVA et al., 2024), the results above were compared to the

method for data-driven control for polynomial systems in (BISOFFI et al., 2022), but in here we

address the (BISOFFI et al., 2022, Corollary 3) for local asymptotical stability. The data was

produced with the same experiment as in Figure 5.

The input parameters and decision variables were selected trying to keep them in

similar complexity as their equivalents in the two previous subsections, but still aiming for
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successful stabilization. Then, the selected parameters were l1 = 10−6||x||2 (equivalent to βV

and nV ), ελ = 10−8, initial V (x) = x⊤
[

0.0278 0.0127
0.0127 0.0216

]
x (obtained by stabilizing the linear model),

l0 = x⊤x, c = 1 (similar to L(x), but here the domain of attraction E (l0,1)is a input parameter),

kmax = 15 (stop criterion). The degrees of the polynomial decision variables V (x), k(x) (control

law), λ (x), T (x), s1(x), s2(x) (s-procedure variables similar to α(x) were respectively 2 to 4, 1,

0, 2 to 4, 2 to 4, 2 to 4. In terms of computational complexity, STEP 1 (V (x) fixed) had 3 decision

variables and 6 SOS and STEP 2 (k(x) fixed), 12 decision variables and 9 SOS constraints. The

execution time until k = kmax was 142.638647 seconds. Table 3 shows the solutions found by

(BISOFFI et al., 2022, Corollary 3) for system (4.1).

Table 3 – V (x), u(x) and λ (x) solutions by (BISOFFI et al., 2022, Corollary 3)

Fcn Expression

V −2.5176×10−9x4
1 +7.8577×10−9x3

1x2−2.2778×10−7x2
1x2

2−2.8085×10−8x1x3
2

−2.3159×10−7x4
2 +1.1703×10−7x3

1 +4.5677×10−8x2
1x2 +3.8531×10−8x1x2

2
+1.7155×10−9x3

2 +5.4677×10−7x2
1 +4.8187×10−8x1x2 +8.5266×10−7x2

2

u −1.0959x1−3.2629x2

λ 12960469.1712

With Z3Prover, it was possible to obtain a Lyapunov certificate by not finding a

counterexample for the Lyapunov conditions (Theorem 1) for asymptotic stability in the domain

of attraction estimated by E (L,1). In addition, by conducting a line search in ρ to find a bigger

ellipsoid E (L,ρ), it was obtained a Lyapunov certificate in a domain of attraction with ρ = 1.

At the left side of Figure 8, it is shown the phase diagram for the closed-loop, with the

dashed line representing the estimated domain of attraction E (L,1) and the bold line representing

a single trajectory for x0 = [0.4 0.4], which is also represented in the time domain at the right

side of Figure 8.
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Figure 6 – Closed-loop phase diagram (left) and time response (right) for system (4.1) using
Algorithm 1

Figure 7 – Closed-loop phase diagram (left) and time response (right) for system (4.1) using
Algorithm 2

Figure 8 – Closed-loop phase diagram (left) and time response (right) for system (4.1) using
Algorithm in (BISOFFI et al., 2022)

By observing the closed-loop phase diagrams (Figures 6, 7, 8), the domain of

attraction of the last method was bigger. However, by comparing the execution time and

computational complexity, it had worse performance in total time and single iteration time,
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despite having less decision variables in general constraints per STEP, even with different solvers.

Table 7 shows the total execution time and total iterations of Algorithms 1, 2 and from (BISOFFI

et al., 2022) using Mosek (APS, 2025) and SeDuMi (STURM, 1999) as the solvers (SeDuMi

results obtained from (SILVA et al., 2024)). This could be due to the main SOS condition (the

one derived from V̇ < 0 being bigger and/or it being more sparse than the ones present in the

other two algorithms, causing numerical complexity to scale up. Moreover, the D-K iteration

method have to solve 2 SOSP per iteration to deal with the bilinearity of the constraints, have

no stop criterion beside the maximum number of iteration, and has no solution convergence

constraint between iterations. Algorithms 1 and 2 tackle these issues by having only 1 SOSP

per iteration, a stop criterion when ∆c ⪰ 0 and a solution convergence constraint in ∆c,k+1 ⪰ ∆c,k

(3.22). Additionally, although all algorithms had no constraint to specify a time response (such

maximum overhoot or settling time), the last algorithm resulted in the slowest closed-loop time

response. In general, it successfully stabilized the system in the origin, but the performance of

the algorithm based in (BISOFFI et al., 2022, Corollary 3) was inferior to the Algorithms 1 and

2.

Table 4 – Algorithm performances for system (4.1)

Solver Algorithm Total execution time (s) Total iterations

Mosek
1 5.953207 37
2 6.601079 37
(BISOFFI et al., 2022) 142.638647 15

SeDuMi
1 15.07 4
(BISOFFI et al., 2022) 8023.18 15

4.2 System 2 - Van der Pol’s Oscillator

The second system was extracted from (HADDAD; CHELLABOINA, 2008). It is

also known as Van der Pol’s Oscillator and it can be represented by the following state-space

equations: ẋ1 = x2

ẋ2 =−x1 + e∗ (1− x2
1)∗ x2 +u

(4.2)

The open-loop phase diagram is shown in figure 9, and the system is not asymptoti-

cally stable around the origin and converges to a periodic trajectory around the origin.
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Figure 9 – Open-loop phase diagram for system (4.2)

To perform the data acquisition experiment, the input signal selected was u = 5sin5t,

in the interval t ∈ [0,10], t in seconds, and it was extracted the first Ts = 100 samples provided by

MATLAB’s ode45 function. That particular signal was chosen considering the main assumption

in lemma 1, i.e.,
[ Z0

W0

]
having full row rank, with selected vectors of monomials being Z all the

monomials of x with degree from 1 to 3 and W = [1]. The disturbance signal applied in the

sequence X1 was d =
[√δ/nsinωt√

δ/ncosωt

]
, with δ = 0.01 and ω = 0.8π , the same used in section 4.2.

The experiment data is shown in figure 10.

4.2.1 Algorithm 1

For algorithm 1, the input parameters were nV = nT = nL = 1, βV = βT = 10−6,

βL = 10−4, ελ = 10−8, and α0(x) = 10−4||x||2I. The monomial degrees of the fictitious output

h(x) was {1,3}. The degrees of the polynomial decision variables V (x), T (x), λ (x), L(x), α(x)

were respectively 2 to 4, 2, 0, 2 to 4 and 2 to 6. These parameters resulted in 56 decision variables

and 6 SOS constraints in STEP 1 of the algorithm, and 294 decision variables and 8 constraints in

STEP 2. The execution time until a solution with ∆c ⪰ 0 was 8.084261 seconds and the number

of iterations was k = 15. Table 5 shows the solutions found by algorithm 1 for system (4.2).

It was possible to obtain a Lyapunov certificate with Z3 and the maximum domain

of attraction E (L,ρ) found was for ρ = 10.

At the left side of Figure 11, it is shown the phase diagram for the closed-loop,
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Figure 10 – Open-loop experiment for system (4.2)

Table 5 – V (x), u(x), λ (x) and L(x) solutions for (4.2), supply rate as in (2.10)

Fcn Expression

V 0.214x4
1 +0.25868x3

1x2 +0.46486x2
1x2

2 +0.12299x1x3
2 +0.70013x4

2 +0.0023443x3
1

−0.0062013x2
1x2 +0.0020025x1x2

2−0.00013813x3
2 +1.0024x2

1 +0.78862x1x2
+0.41352x2

2

u 3.2224x3
1−2.8409x2

1x2 +3.6794x1x2
2−10.5933x3

2−6.828x1−8.9324x2

λ 3.9818

L 10.9632x4
1 +0.0084373x3

1x2 +12.5655x2
1x2

2 +0.0054906x1x3
2 +10.9904x4

2
−1.3268×10−5x3

1−7.921×10−5x2
1x2−1.4367×10−5x1x2

2−6.5266×10−5x3
2

+0.78079x2
1−3.6692×10−5x1x2 +0.78044x2

2

with the dashed line representing the estimated domain of attraction E (L,10) and the bold line

representing a single trajectory for x0 = [0.3 0.4], which is also represented in the time domain

at the right side of Figure 11.



52

Figure 11 – Closed-loop phase diagram (left) and time response (right) for system (4.2) using
Algorithm 1

Figure 12 – Closed-loop phase diagram (left) and time response (right) for system (4.2) using
Algorithm 2

4.2.2 Algorithm 2

For algorithm 2, the input parameters were nV = nT = nL = 1, βV = βT = 10−6,

βL = 10−4, ελ = 10−8, and α0(x) = 10−4||x||2I. Then, the degrees of the polynomial decision

variables V (x), T (x), λ (x), L(x), α(x), Q(x), S(x) were respectively 2 to 4, 2, 0, 2 to 4, 2 to 6,

2 to 6 and {1,3}. These parameters resulted in 60 decision variables and 6 SOS constraints in

STEP 1 of the algorithm, and 298 decision variables and 8 constraints in STEP 2. The execution

time until a solution with ∆c ⪰ 0 was 5.729857 seconds and the number of iterations was k = 6.

Table 5 shows the solutions found by algorithm 2 for system (4.2).

It was possible to obtain a Lyapunov certificate with Z3 and the maximum domain

of attraction E (L,ρ) found was for ρ = 1.

At the left side of Figure 12, it is shown the phase diagram for the closed-loop,

with the dashed line representing the estimated domain of attraction E (L,1) and the bold line
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Table 6 – V (x), u(x), λ (x) and L(x) solutions for (4.2), supply rate as in (2.58)

Fcn Expression

V 7.201×10−19x4
1−1.5867×10−15x3

1x2 +5.1148×10−15x2
1x2

2−2.5178×10−14x1x3
2

+9.8052×10−14x4
2 +9.2091×10−18x3

1 +8.6472×10−17x2
1x2 +3.2336×10−16x1x2

2
−1.044×10−15x3

2−7.3986×10−17x2
1−3.6131×10−15x1x2−8.7963×10−15x2

2

u −1.4412x3
1−1.9801x2

1x2 +8.7331x1x2
2−44.7184x3

2 +0.32905x1−1.449x2

λ −3.14×10−17

L 10.704x4
1 +0.0038086x3

1x2 +11.8831x2
1x2

2 +0.0035042x1x3
2 +10.7213x4

2
−0.00010667x3

1 +0.00011662x2
1x2−7.3657×10−5x1x2

2 +0.00016152x3
2

+0.94605x2
1 +4.0593×10−5x1x2 +0.94607x2

2

representing a single trajectory for x0 = [0.3 0.4], which is also represented in the time domain

at the right side of Figure 12. Table 7 shows the total execution time and total iterations of

Algorithms 1, 2.

Table 7 – Algorithm performances for system (4.2)

Solver Algorithm Total execution time (s) Total iterations

Mosek
1 8.084261 15
2 5.729857 6
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5 CONCLUSION AND FUTURE WORKS

In this work, data-driven QSR-dissipativity-based conditions for control design of

polynomial systems were developed with two supply rates: with constant and polynomial Q, S,

R matrices. In the implementation of these conditions, both algorithms succesfully designed a

control law that locally asymptotically stabilized the two analyzed systems.

Comparing the performance of the algorithms, the use of a supply rate with polyno-

mial Q, S, R matrices achieved a solution with faster total execution time and fewer iterations

than the algorithm with constant Q, S, R matrices. Additionally, when comparing with another

SOSP method (based on the D-K iteration), although the proposed algorithms had more decision

variables and constraints, their execution time was smaller.

At last, the auxiliary use of Z3Prover in providing Lyapunov certificates for the

found solutions a valuable source of reassuring the Lyapunov conditions are being satisfied,

specially since numerical imprecisions can lead the softwares like SOSTools to not finding a

SOS decomposition as well.

Future works can extend the approach developed here to achieve rational control

laws and another formal verification tools can be explored, e.g., SMT solvers that can provide a

neural Lyapunov certificate by training a neural network to act as Lyapunov function.
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APPENDIX A – CODES

Code 1 – Control design algorithm - system 1 - supply rate with constant matrices Q, S, R

1 % % % Data -driven Control - Dissipativity -based with

Petersen 's Lemma

2 % % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

3 % % % System: Khalil (2008)

4

5 clc; clear; close all

6

7 % Data -driven Dissipativity Polynomial Control Synthesis

8 pvar x1 x2

9 vars = [x1;x2];

10 x = [x1;x2];

11

12 % f = [x1^2-x1^3+x2;

13 % 0];

14 %

15 % g = [0; 1];

16 %

17 h = monomials(x,1); %fictitious output

18

19 m = 1; % u columns

20 n = 2; % x columns

21 p = size(h,1); % h length

22

23 %----------------------------- DATA COLLECT

------------------------------%

24 global delta

25 delta = 1e-2; % Disturbance amplitude

26

27 x0 = [3; -1]; % initial condition
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28 opt = odeset('RelTol ', 1e-3, 'AbsTol ', 1e-6, 'NormControl ',

'off');

29 [t, xsol] = ode45(@experiment , [0 10], x0, opt); %

simulation time = [0,10]

30 X00 = xsol ';

31 U00 = [];

32 X11 = [];

33

34 for i = 1: length(t)

35 U00(:,i) = 5*sin (5*t(i)); % control signal

36 X11(:,i) = [X00(1,i)^2-X00(1,i)^3+X00(2,i)+sqrt(delta/n

)*cos(2*pi*0.4*t(i)); % derivative signal

37 U00(:,i)+sqrt(delta/n)*sin(2*pi*0.4*t(i))];

38 end

39

40 Ts = 100; % number of samples

41

42 X0 = X00(:,1:Ts); % selecting first T samples of the

experiment

43 X1 = X11(:,1:Ts);

44 U0 = U00(:,1:Ts);

45 t = t(1:Ts);

46

47 DELTA = sqrt(Ts*delta)*eye(n); % Disturbance upper bound

48

49 % Initialization of regressors

50 Z = [monomials(x1 ,1:3);monomials(x2 ,1:3)];

51 W = monomials(x,0);

52

53 N = length(Z);

54 M = length(W);

55
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56 % plot of generated data

57 figure

58 subplot (2,1,1)

59 input_exp = plot(t,U0);

60 title('Input');

61 set(input_exp ,'LineWidth ' ,1.5);

62 ylabel('u')

63 grid on

64

65 subplot (2,1,2)

66 states_exp = plot(t,X0(1,:),'--',t,X0(2,:),'-.');

67 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

68 title('Open -loop State Response ');

69 set(states_exp ,'LineWidth ' ,1.5);

70 ylabel('x')

71 xlabel('t')

72 grid on

73

74 % construction of the data matrices Ad, Bd, Cd

75 Z0 = double(subs(Z,x,X0));

76 W0 = U0;

77

78 Ad = [Z0;W0]*[Z0;W0]';

79 Bd = -[Z0;W0]*X1 ';

80 Cd = X1*X1 '-DELTA*DELTA ';

81

82 % construction of the data matrices zeta and Q

83 zeta = -Ad\Bd;

84 Qd = Bd '*(Ad\Bd)-Cd;

85

86 zeta_N = zeta (1:N,:);
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87 zeta_M = zeta((N+1):(N+M) ,:);

88 Ad_i = Ad^( -1/2);

89 Ad_i_N = Ad_i (:,1:N);

90 Ad_i_M = Ad_i(:,(N+1):(N+M));

91

92 % Inputs (design parameters)

93 beta_V = 1e-6;

94 beta_T = 1e-6;

95 beta_L = 1e-4;

96 n_V = 1;

97 n_T = 1;

98 n_L = 1;

99 epsi = 1e-3;

100 alpha = 1e-6*(x1^2+x2^2)*eye(n+m+1);

101

102 % Maximum iteration number

103 k = 1;

104 kmax = 100;

105

106 tic

107 % STEP 1: Determine V0, Tx , L0 , Q0 , S0, R0, lambda0

108 prog = sosprogram(vars);

109

110 [prog , Q] = sospolymatrixvar(prog ,monomials(x,0) ,[p,p],'

symmetric ');

111 [prog , S] = sospolymatrixvar(prog ,monomials(x,0) ,[p,m]);

112 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m,m],'

symmetric ');

113 [prog , V] = sospolyvar(prog ,[ monomials(x,4)],'wscoeff ');

114 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

115 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'wscoeff '

);
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116 [prog , L] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

117

118 % SOS constrains

119 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V);

120 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T);

121 prog = sosineq(prog ,L-beta_L *(x1^2+x2^2)^n_L);

122 gradV = jacobian(V,x)'; % gradient of Lyapunov function

123

124 Sigma1 = [gradV '*zeta_N '*Z+T-h'*Q'*h (1/2)*gradV '*zeta_M '*W

-h'*S

125 ((1/2)*gradV '*zeta_M '*W-h'*S)' -R];

126 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M ']*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_M*W];

127 B_aux = [gradV '*Qd ^(1/2)

128 zeros(m,n)];

129

130 stability = [Sigma1+lambda*Sigma2 B_aux % data -

driven dissipativity -based condition for local stability

131 B_aux ' -lambda*eye(n)]+alpha*(1-L);

132

133 prog = sosineq(prog ,-stability);

134

135 prog = sosineq(prog ,R); % dissipativity 's R constraint

136

137 prog = sosineq(prog ,lambda -epsi); % petersen 's lemma 's

lambda constraint

138

139 % STEP 1 solution

140 options.solver = 'mosek';

141 sol = sossolve(prog ,options);

142

143 Q0 = double(sosgetsol(sol ,Q));
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144 R0 = double(sosgetsol(sol ,R));

145 S0 = double(sosgetsol(sol ,S));

146 L = sosgetsol(sol , L);

147

148 T = sosgetsol(sol ,T);

149 Delta_c = S0*(R0\(S0 '))-Q0;

150 min(eig(Delta_c))

151

152 if min(eig(Delta_c)) >= 0 % Stop criteria: Delta_c test

153 K = -R0\(S0 ') % Control gains

154 V = sosgetsol(sol ,V) % Lyapunov function

155 else

156 % STEP 2: Iterative method for V, Tx, alpha , Q, S, R,

lambda

157 while k <= kmax

158 prog = sosprogram(vars);

159

160 [prog , Q] = sospolymatrixvar(prog ,monomials(x,0) ,[p

,p],'symmetric ');

161 [prog , S] = sospolymatrixvar(prog ,monomials(x,0) ,[p

,m]);

162 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m

,m],'symmetric ');

163 [prog , V] = sospolyvar(prog ,[ monomials(x,4)],'

wscoeff ');

164 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'

wscoeff ');

165 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'

wscoeff ');

166 [prog , alpha] = sospolymatrixvar(prog ,[ monomials(x

,2)],[n+m+1,n+m+1],'symmetric ');

167
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168 % SOS constraints

169 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V);

170 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T);

171

172 gradV = jacobian(V,x)'; % gradient of Lyapunov

function

173

174 Sigma1 = [gradV '*zeta_N '*Z+T-h'*Q'*h (1/2)*gradV '*

zeta_M '*W-h'*S

175 ((1/2)*gradV '*zeta_M '*W-h'*S)' -R];

176 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M

']*[(1/2)*Ad_i_N*Z (1/2)*Ad_i_M*W];

177 B_aux = [gradV '*Qd ^(1/2)

178 zeros(m,n)];

179

180 stability = [Sigma1+lambda*Sigma2 B_aux

% data -driven dissipativity -based

condition for local stability

181 B_aux ' -lambda*eye(n)]+ alpha*(1-L);

182

183 prog = sosineq(prog ,-stability);

184

185 prog = sosineq(prog ,R); % dissipativity

's R constraint

186

187 prog = sosineq(prog ,R0-R); % increasing

delta constraints

188 delta_increasing = S*(R0\(S0 ')) + (R0\S0 ') '*S' - 2*

S0*(R0\(S0 ')) + Q0 - Q;

189 prog = sosineq(prog ,delta_increasing);

190
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191 prog = sosineq(prog ,lambda -epsi); % petersen 's

lemma 's lambda constraint

192 prog = sosineq(prog ,alpha);

193

194 % STEP 2 solution

195 sol = sossolve(prog ,options);

196

197 Q = double(sosgetsol(sol ,Q))

198 R = double(sosgetsol(sol ,R))

199 S = double(sosgetsol(sol ,S))

200 alpha = sosgetsol(sol ,alpha);

201 lambda = sosgetsol(sol ,lambda);

202

203 T = sosgetsol(sol ,T);

204 Delta_c = S*(R\(S'))-Q;

205 min(eig(Delta_c))

206 if min(eig(Delta_c))>= 0 | k == kmax % Stop

criteria: Delta_c test

207 K = -R\(S') % Control

gains

208 V = sosgetsol(sol ,V) % Lyapunov

function

209 break

210 end

211 k=k+1

212 Q0 = Q; R0 = R; S0 = S;

213 end

214 end

215 toc

216

217 % Phase diagram - Open loop

218 syms x1 x2
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219 a=2;

220 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

221

222 dx1 = x1.^2 - x1.^3 + x2;

223 dx2 = 0.*x1;

224

225 figure

226 phase_OL = streamslice(x1,x2,dx1 ,dx2 ,1);

227 set(phase_OL ,'LineWidth ' ,1.5);

228 title('Open -loop phase diagram ')

229 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

230 grid on

231 %%

232 % Phase diagram - Closed loop

233 syms x1 x2

234 global Kx

235 Kx = matlabFunction(p2s(K*h));

236 a=4;

237 passo = 0.01;

238 [x1 ,x2] = meshgrid(-a:passo:a,-a:passo:a);

239

240 dx1 = x1.^2 - x1.^3 + x2;

241 dx2 = Kx(x1 ,x2);

242

243 figure

244 phase_CL = streamslice(x1,x2,dx1 ,dx2 ,1.5);

245 set(phase_CL ,'LineWidth ' ,1.5);

246 title('Closed -loop phase diagram ','')

247 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

248 hold on



66

249 plot(0,0,'x','LineWidth ' ,2)

250 grid on

251 elipL = matlabFunction(p2s(1-L));

252 zhandle = fimplicit(elipL);

253 zhandle.LineWidth = 1.5;

254 zhandle.LineStyle = "-";

255 zhandle.Color = "b";

256 x0 = [1; 2]; % initial condition

257 [t, xsol] = ode45(@ experiment_CL , [0 15], x0 , opt);

258 plot(xsol (:,1),xsol (:,2),'LineWidth ' ,2);

259 figure

260 plot(t,xsol (:,1),t,xsol (:,2),'LineWidth ' ,2);

261 title('Time response - closed -loop')

262

263 grid on

264 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

265

266 %------------------------------ EXPERIMENT

-------------------------------%

267 function dx = experiment(t,x)

268 global delta

269 u = 5*sin(5*t);

270 dx = [x(1)^2-x(1)^3+x(2);

271 u];

272 end

273

274 function dx = experiment_CL(t,x)

275 global Kx

276 dx = [x(1)^2-x(1)^3+x(2);

277 Kx(x(1),x(2))];

278 end
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Code 2 – Control design algorithm - system 1 - supply rate with polynomial matrices Q, S, R

1 clc; clear; close all

2 % % % Data -driven Control - Dissipativity -based with

Petersen 's Lemma

3 % % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

4 % % % System: Khalil (2008)

5

6 % Data -driven Dissipativity Polynomial Control Synthesis

7 pvar x1 x2

8 vars = [x1;x2];

9 x = [x1;x2];

10

11 % f = [x1^2-x1^3+x2;

12 % 0];

13 %

14 % g = [0; 1];

15

16 m = 1; % u columns

17 n = 2; % x columns

18

19 %----------------------------- DATA COLLECT

------------------------------%

20

21 global delta

22 delta = 1e-2; % Disturbance amplitude

23

24 x0 = [3; -1]; % initial condition

25 opt = odeset('RelTol ', 1e-3, 'AbsTol ', 1e-6, 'NormControl ',

'off');

26 [t, xsol] = ode45(@experiment , [0 10], x0, opt); %

simulation time = [0,10]

27 X00 = xsol ';
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28 U00 = [];

29 X11 = [];

30

31 for i = 1: length(t)

32 U00(:,i) = 5*sin (5*t(i)); % control signal

33 X11(:,i) = [X00(1,i)^2-X00(1,i)^3+X00(2,i)+sqrt(delta/n

)*cos(2*pi*0.4*t(i)); % derivative signal

34 U00(:,i)+sqrt(delta/n)*sin(2*pi*0.4*t(i))];

35 end

36

37 Ts = 100; % number of samples

38

39 X0 = X00(:,1:Ts); % selecting first T samples of the

experiment

40 X1 = X11(:,1:Ts);

41 U0 = U00(:,1:Ts);

42 t = t(1:Ts);

43

44 DELTA = sqrt(Ts*delta)*eye(n); %Disturbance upper bound

45

46 % Initialization of regressors

47 Z = [monomials(x1 ,1:3);monomials(x2 ,1:3)];

48 W = monomials(x,0);

49

50 N = length(Z);

51 M = length(W);

52

53 % plot of generated data

54 figure

55 subplot (2,1,1)

56 input_exp = plot(t,U0);

57 title('Input');
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58 set(input_exp ,'LineWidth ' ,1.5);

59 ylabel('u')

60 grid on

61

62 subplot (2,1,2)

63 states_exp = plot(t,X0(1,:),'--',t,X0(2,:),'-.');

64 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

65 title('Open -loop State Response ');

66 set(states_exp ,'LineWidth ' ,1.5);

67 ylabel('x')

68 xlabel('t')

69 grid on

70

71 % construction of the data matrices Ad, Bd, Cd

72 Z0 = double(subs(Z,x,X0));

73 W0 = U0;

74

75 Ad = [Z0;W0]*[Z0;W0]';

76 Bd = -[Z0;W0]*X1 ';

77 Cd = X1*X1 '-DELTA*DELTA ';

78

79 % construction of the data matrices zeta and Q

80 zeta = -Ad\Bd;

81 Qd = Bd '*(Ad\Bd)-Cd;

82

83 zeta_N = zeta (1:N,:);

84 zeta_M = zeta((N+1):(N+M) ,:);

85 Ad_i = Ad^( -1/2);

86 Ad_i_N = Ad_i (:,1:N);

87 Ad_i_M = Ad_i(:,(N+1):(N+M));

88
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89 % Inputs (design parameters)

90 beta_V = 1e-6;

91 beta_T = 1e-6;

92 beta_L = 1e-4;

93 n_V = 1;

94 n_T = 1;

95 n_L = 1;

96 epsi = 1e-3;

97 alpha = 1e-6*(x1^2+x2^2)*eye(n+m+1);

98

99 % Maximum iteration number

100 k = 1;

101 kmax = 100;

102

103 tic

104 % STEP 1: Determine V0, Tx , L0 , Q0 , S0, R0, lambda0

105 prog = sosprogram(vars);

106

107 [prog , Q] = sospolyvar(prog ,monomials(x,2),'wscoeff ');

108 [prog , S] = sospolyvar(prog ,monomials(x,1),'wscoeff ');

109 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m,m],'

symmetric ');

110 [prog , V] = sospolyvar(prog ,[ monomials(x,4)],'wscoeff ');

111 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

112 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'wscoeff '

);

113 [prog , L] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

114

115 % SOS constrains

116 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V);

117 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T);

118 prog = sosineq(prog ,L-beta_L *(x1^2+x2^2)^n_L);
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119 gradV = [diff(V,x1); diff(V,x2)]; % gradient of Lyapunov

function

120

121 Sigma1 = [gradV '*zeta_N '*Z+T-Q (1/2)*gradV '*zeta_M '*W-S

122 ((1/2)*gradV '*zeta_M '*W-S)' -R];

123 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M ']*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_M*W];

124 B_aux = [gradV '*Qd ^(1/2)

125 zeros(m,n)];

126

127 stability = [Sigma1+lambda*Sigma2 B_aux % data -

driven dissipativity -based condition for local stability

128 B_aux ' -lambda*eye(n)]+alpha*(1-L);

129

130 prog = sosineq(prog ,-stability);

131

132 prog = sosineq(prog ,R); % dissipativity 's R constraint

133

134 prog = sosineq(prog ,lambda -epsi); % petersen 's lemma 's

lambda constraint

135

136 % STEP 1 solution

137 options.solver = 'mosek';

138 sol = sossolve(prog ,options);

139

140 Q0 = sosgetsol(sol ,Q);

141 R0 = double(sosgetsol(sol ,R));

142 S0 = sosgetsol(sol ,S);

143 L = sosgetsol(sol , L);

144

145 T = sosgetsol(sol ,T);

146 Delta_c = S0*inv(R0)*(S0 ')-Q0;
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147

148 prog2 = sosprogram(vars);

149 prog2 = sosineq(prog2 ,Delta_c);

150 sol2 = sossolve(prog2 ,options);

151

152 if abs(sol2.solinfo.info.feasratio -1) <= 0.1 % Stop

criteria: Delta_c test

153 K = -inv(R0)*(S0 ') % Control gains

154 V = sosgetsol(sol ,V) % Lyapunov function

155 else

156 % STEP 2: Iterative method for V, Tx, alpha , Q, S, R,

lambda

157 while k <= kmax

158 prog = sosprogram(vars);

159

160 [prog , Q] = sospolyvar(prog ,monomials(x,2),'wscoeff

');

161 [prog , S] = sospolyvar(prog ,monomials(x,1),'wscoeff

');

162 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m

,m],'symmetric ');

163 [prog , V] = sospolyvar(prog ,[ monomials(x,4)],'

wscoeff ');

164 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'

wscoeff ');

165 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'

wscoeff ');

166 [prog , alpha] = sospolymatrixvar(prog ,[ monomials(x

,2)],[n+m+1,n+m+1],'symmetric ');

167

168 % SOS constraints

169 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V);
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170 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T);

171 gradV = [diff(V,x1); diff(V,x2)]; % gradient of

Lyapunov function

172

173 Sigma1 = [gradV '*zeta_N '*Z+T-Q (1/2)*gradV '*zeta_M

'*W-S

174 ((1/2)*gradV '*zeta_M '*W-S)' -R];

175 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M

']*[(1/2)*Ad_i_N*Z (1/2)*Ad_i_M*W];

176 B_aux = [gradV '*Qd ^(1/2)

177 zeros(m,n)];

178

179 stability = [Sigma1+lambda*Sigma2 B_aux

% data -driven dissipativity -based

condition for local stability

180 B_aux ' -lambda*eye(n)]+ alpha*(1-L);

181

182 prog = sosineq(prog ,-stability);

183

184 prog = sosineq(prog ,R); % dissipativity

's R constraint

185

186 prog = sosineq(prog ,R0-R); % increasing

delta constraints

187 delta_increasing = S*inv(R0)*(S0 ') + inv(R0)*(S0 ')

'*S' - 2*S0*inv(R0)*(S0 ') + Q0 - Q;

188 prog = sosineq(prog ,delta_increasing);

189

190 prog = sosineq(prog ,lambda -epsi); % petersen 's

lemma 's lambda constraint

191 prog = sosineq(prog ,alpha);

192
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193 % STEP 2 solution

194 sol = sossolve(prog ,options);

195

196 Q = sosgetsol(sol ,Q)

197 R = double(sosgetsol(sol ,R))

198 S = sosgetsol(sol ,S)

199 alpha = sosgetsol(sol ,alpha);

200 lambda = sosgetsol(sol ,lambda);

201

202 T = sosgetsol(sol ,T);

203 Delta_c = S*inv(R)*(S')-Q;

204

205 prog2 = sosprogram(vars);

206 prog2 = sosineq(prog2 ,Delta_c);

207 sol2 = sossolve(prog2 ,options);

208

209 if abs(sol2.solinfo.info.feasratio -1) <= 0.1 | k ==

kmax % Stop criteria: Delta_c test

210 K = -inv(R)*(S') %

Control gains

211 V = sosgetsol(sol ,V) % Lyapunov

function

212 break

213 end

214 k=k+1

215 Q0 = Q; R0 = R; S0 = S;

216 end

217 end

218 toc

219

220 % Phase diagram - Open loop

221 syms x1 x2
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222 a=10;

223 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

224

225 dx1 = x1.^2 - x1.^3 + x2;

226 dx2 = 0.*x1;

227

228 figure

229 phase_OL = streamslice(x1,x2,dx1 ,dx2 ,1);

230 set(phase_OL ,'LineWidth ' ,1.5);

231 title('Open -loop phase diagram ')

232 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

233 grid on

234 %%

235 % Phase diagram - Closed loop

236 syms x1 x2

237 global Kx

238 Kx = matlabFunction(p2s(K));

239 a=2;

240 passo = 0.01;

241 [x1 ,x2] = meshgrid(-a:passo:a,-a:passo:a);

242

243 dx1 = x1.^2 - x1.^3 + x2;

244 dx2 = Kx(x1 ,x2);

245

246 figure

247 phase_CL = streamslice(x1,x2,dx1 ,dx2 ,1.5);

248 set(phase_CL ,'LineWidth ' ,1.5);

249 title('Closed -loop phase diagram ')

250 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

251 hold on
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252 plot(0,0,'x','LineWidth ' ,2)

253 grid on

254 elipL = matlabFunction(p2s(1-L));

255 zhandle = fimplicit(elipL);

256 zhandle.LineWidth = 1.5;

257 zhandle.LineStyle = "-";

258 zhandle.Color = "b";

259 x0 = [1; 1]; % initial condition

260 [t, xsol] = ode45(@ experiment_CL , [0 15], x0 , opt);

261 plot(xsol (:,1),xsol (:,2),'LineWidth ' ,2);

262 figure

263 plot(t,xsol (:,1),t,xsol (:,2),'LineWidth ' ,2);

264 title('Time response - closed -loop')

265 xlabel('t'); ylabel('x');

266 grid on

267 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

268

269 %------------------------------ EXPERIMENT

-------------------------------%

270 function dx = experiment(t,x)

271 global delta

272

273 u = 5*sin(5*t);

274 dx = [x(1)^2-x(1)^3+x(2);

275 u];

276 end

277

278 function dx = experiment_CL(t,x)

279 global Kx

280 dx = [x(1)^2-x(1)^3+x(2);

281 Kx(x(1),x(2))];
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282 end

Code 3 – Control design algorithm - system 2 - supply rate with constant matrices Q, S, R

1 % % % Data -driven Control - Dissipativity -based with

Petersen 's Lemma

2 % % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

3 % % % System: Van der Pol

4

5 clc; clear; close all

6

7 % Data -driven Dissipativity Polynomial Control

8 pvar x1 x2

9 vars = [x1;x2];

10 x = [x1;x2];

11

12 % e = 1;

13 % f = [x2;

14 % -x1 + e*(1-x1^2)*x2];

15 %

16 % g = [0 1];

17 %

18 h = monomials(x,[1 ,3]);

19

20 m = 1; % u columns

21 n = 2; % x columns

22 p = size(h,1); % h length

23

24 %----------------------------- DATA COLLECT

------------------------------%

25 global delta

26 delta = 1e-2; % Disturbance amplitude
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27

28 x0 = [-0.2; 0.1]; % initial condition

29 opt = odeset('RelTol ', 1e-3, 'AbsTol ', 1e-6, 'NormControl ',

'off');

30 [t, xsol] = ode45(@vander , [0 10], x0 , opt);

31 X00 = xsol ';

32

33 U00 = sin (2*pi*t)'; % control signal

34 X11 = [X00(2,:)+sqrt(delta/n)*cos(2*pi*0.4*t)';

35 -X00(1,:)+X00(2,:)-X00(2,:).*(X00(1,:) .^2)+U00+sqrt(

delta/n)*sin (2*pi *0.4*t) '];

36

37 Ts = 100; % number of samples

38

39 X0 = X00(:,1:Ts); % selecting first T samples of the

experiment

40 X1 = X11(:,1:Ts);

41 U0 = U00(:,1:Ts);

42 t = t(1:Ts);

43

44 DELTA = sqrt(Ts*delta)*eye(n); %Disturbance upper bound

45

46 % Initialization of regressors

47 Z = [monomials(x,1:3)];

48 W = monomials(x,0);

49

50 N = length(Z);

51 M = length(W);

52

53 % plot of generated data

54 figure

55 subplot (2,1,1)
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56 plot(t,U0 ,'LineWidth ' ,1.5)

57 title('Input')

58 ylabel('u')

59 grid on

60

61 subplot (2,1,2)

62 plot(t,X0(1,:),'--',t,X0(2,:),'-.','LineWidth ' ,1.5)

63 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

64 title('Open -loop response ')

65 ylabel('x')

66 xlabel('t')

67 grid on

68

69 % construction of the data matrices Ad, Bd, Cd

70 Z0 = double(subs(Z,x,X0));

71 W0 = U0;

72

73 Ad = [Z0;W0]*[Z0;W0]';

74 Bd = -[Z0;W0]*X1 ';

75 Cd = X1*X1 '-DELTA*DELTA ';

76

77 % construction of the data matrices zeta and Q

78 zeta = -Ad\Bd;

79 Qd = Bd '*(Ad\Bd)-Cd;

80

81 zeta_N = zeta (1:N,:);

82 zeta_M = zeta((N+1):(N+M) ,:);

83 Ad_i = Ad^( -1/2);

84 Ad_i_N = Ad_i (:,1:N);

85 Ad_i_M = Ad_i(:,(N+1):(N+M));

86
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87 % Inputs (design parameters)

88 beta_V = 1e-6;

89 beta_T = 1e-6;

90 beta_L = 1e-4;

91 n_V = 1;

92 n_T = 1;

93 n_L = 1;

94 epsi = 1e-8;

95 alpha = 1e-4*(x1^4+x2^4)*eye(n+m+1);

96

97 % Maximum iteration number

98 k = 1;

99 kmax = 50;

100

101 tic

102 % STEP 1: Determine V0, Tx , L0 , Q0 , S0, R0, lambda0

103 prog = sosprogram(vars);

104

105 [prog , Q] = sospolymatrixvar(prog ,monomials(x,0) ,[p,p],'

symmetric ');

106 [prog , S] = sospolymatrixvar(prog ,monomials(x,0) ,[p,m]);

107 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m,m],'

symmetric ');

108 [prog , V] = sospolyvar(prog ,[ monomials(x,2:4)],'wscoeff ');

109 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

110 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'wscoeff '

);

111 [prog , L] = sospolyvar(prog ,[ monomials(x,2:4)],'wscoeff ');

112

113 % SOS constraints

114 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V); % V radially

unbounded constraint
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115 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T); % T radially

unbounded constraint

116 prog = sosineq(prog ,L-beta_L *(x1^2+x2^2)^n_L);

117

118 gradV = jacobian(V,x)'; % gradient of Lyapunov function

119

120 Sigma1 = [gradV '*zeta_N '*Z+T-h'*Q'*h -h'*S+(1/2)*gradV '*

zeta_M '*W;

121 (-h'*S+(1/2)*gradV '*zeta_M '*W)' -R];

122 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M ']*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_M*W];

123 B_aux = [gradV '*Qd ^(1/2);

124 zeros(m,n)];

125

126 stability = [Sigma1+lambda*Sigma2 B_aux % data -

driven dissipativity -based condition for local stability

127 B_aux ' -lambda*eye(n)]+alpha*(1-L);

128

129 prog = sosineq(prog ,-stability);

130

131 prog = sosineq(prog ,R); % dissipativity 's R constraint

132

133 prog = sosineq(prog ,lambda -epsi); % petersen 's lemma 's

lambda constraint

134

135 % STEP 1 solution

136 options.solver = 'mosek';

137 sol = sossolve(prog ,options);

138

139 Q0 = double(sosgetsol(sol ,Q));

140 R0 = double(sosgetsol(sol ,R));

141 S0 = double(sosgetsol(sol ,S));
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142 L = sosgetsol(sol , L);

143

144 T = sosgetsol(sol ,T);

145 Delta_c = S0*(R0\(S0 '))-Q0;

146 min(eig(Delta_c))

147

148 if min(eig(Delta_c)) >= 0 % Stop criterion: Delta_c

test

149 K = -R0\(S0 ') % Control gains

150 V = sosgetsol(sol ,V) % Lyapunov function

151 else

152 % STEP 2: Iterative method for V, Tx, alpha , Q, S, R,

lambda

153 while k <= kmax

154 prog = sosprogram(vars);

155

156 [prog , Q] = sospolymatrixvar(prog ,monomials(x,0) ,[p

,p],'symmetric ');

157 [prog , S] = sospolymatrixvar(prog ,monomials(x,0) ,[p

,m]);

158 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m

,m],'symmetric ');

159 [prog , V] = sospolyvar(prog ,[ monomials(x,2:4)],'

wscoeff ');

160 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'

wscoeff ');

161 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'

wscoeff ');

162 [prog , alpha] = sospolymatrixvar(prog ,[ monomials(x

,2:6)],[n+m+1,n+m+1],'symmetric ');

163

164 % SOS constraints
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165 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V); % V

radially unbounded constraint

166 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T); % T

radially unbounded costraint

167

168 gradV = jacobian(V,x)'; % gradient of Lyapunov

function

169

170 Sigma1 = [gradV '*zeta_N '*Z+T-h'*Q'*h -h'*S+(1/2)*

gradV '*zeta_M '*W

171 (-h'*S+(1/2)*gradV '*zeta_M '*W)' -R];

172 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M

']*[(1/2)*Ad_i_N*Z (1/2)*Ad_i_M*W];

173 B_aux = [gradV '*Qd ^(1/2)

174 zeros(m,n)];

175

176 stability = [Sigma1+lambda*Sigma2 B_aux %

data -driven dissipativity -based condition for

local stability

177 B_aux ' -lambda*eye(n)]+alpha*(1-L);

178 prog = sosineq(prog ,-stability);

179

180 prog = sosineq(prog ,R); % dissipativity

's R constraint

181

182 prog = sosineq(prog ,R0-R); % increasing

delta constraints

183 delta_increasing = S*(R0\(S0 ')) + (R0\S0 ') '*S' - 2*

S0*(R0\(S0 ')) + Q0 - Q;

184 prog = sosineq(prog ,delta_increasing);

185

186 prog = sosineq(prog ,lambda -epsi); % petersen 's
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lemma 's lambda constraint

187 prog = sosineq(prog ,alpha);

188

189 % STEP 2 solution

190 sol = sossolve(prog ,options);

191

192 Q = double(sosgetsol(sol ,Q))

193 R = double(sosgetsol(sol ,R))

194 S = double(sosgetsol(sol ,S))

195 alpha = sosgetsol(sol ,alpha);

196 lambda = sosgetsol(sol ,lambda);

197

198 T = sosgetsol(sol ,T);

199 Delta_c = S*(R\(S'))-Q;

200 min(eig(Delta_c))

201 if min(eig(Delta_c))>= 0 | k == kmax % Stop

criterion: Delta_c test

202 K = -R\(S') % Control

gains

203 V = sosgetsol(sol ,V) % Lyapunov

function

204 break

205 end

206 k=k+1

207 Q0 = Q; R0 = R; S0 = S;

208 end

209 end

210 toc

211

212 % Phase diagram - Open loop

213 syms x1 x2

214 a=5;
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215 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

216 e=1;

217 dx1 = x2;

218 dx2 = -x1 + e.*(1-x1.^2).*x2;

219

220 figure

221 OL = streamslice(x1,x2 ,dx1 ,dx2 ,1);

222 set(OL,'LineWidth ' ,1.5);

223 title('Phase diagram - open -loop')

224 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

225 grid on

226

227 %%

228 % % Phase diagram - Closed loop

229 uk = K*h;

230 global uf

231 uf = matlabFunction(p2s(uk));

232 a=1;

233 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

234 dx1 = x2;

235 dx2 = -x1 + e.*(1-x1.^2).*x2 + uf(x1,x2);

236

237 figure

238 CL = streamslice(x1,x2 ,dx1 ,dx2 ,4);

239 set(CL,'LineWidth ' ,1.5);

240 title('Phase diagram - closed -loop')

241 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

242 hold on

243 plot(0,0,'x','LineWidth ' ,2)

244 grid on
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245

246 ellipL = fimplicit(p2s(1-L));

247 ellipL.LineWidth = 1;

248 ellipL.Color = 'b';

249 x0 = [-0.3; -0.4]; % initial condition

250 [t, xsol] = ode45(@vander_cl , [0 10], x0, opt);

251 plot(xsol (:,1),xsol (:,2),'LineWidth ' ,2);

252 figure

253 plot(t,xsol (:,1),t,xsol (:,2),'LineWidth ' ,2);

254 title('Time response - closed -loop')

255 xlabel('t'); ylabel('x');

256 grid on

257 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

258

259 %------------------------------ EXPERIMENT

-------------------------------%

260 function dx = vander(t,x)

261 e=1;

262 global delta

263 u = sin (2*pi*t);

264 dx = [x(2);

265 -x(1) + e*(1-x(1)^2)*x(2) + u];

266 end

267

268 function dx = vander_cl(t,x)

269 global uf

270 e=1;

271 dx = [x(2);

272 -x(1) + e*(1-x(1)^2)*x(2) + uf(x(1),x(2))];

273 end
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Code 4 – Control design algorithm - system 2 - supply rate with polynomial matrices Q, S, R

1 % % % Data -driven Control - Dissipativity -based with

Petersen 's Lemma

2 % % % Author: Joao Gabriel Napoleao Silva - NEACON - UFC

3 % % % System: Van der Pol

4

5 clc; clear; close all

6

7 % Data -driven Dissipativity Polynomial Control

8 pvar x1 x2

9 vars = [x1;x2];

10 x = [x1;x2];

11

12 % e = 1;

13 % f = [x2;

14 % -x1 + e*(1-x1^2)*x2];

15 %

16 % g = [0 1];

17

18

19 m = 1; % u columns

20 n = 2; % x columns

21

22 %----------------------------- DATA COLLECT

------------------------------%

23 global delta

24 delta = 1e-2; % Disturbance amplitude

25

26 x0 = [-0.2; 0.1]; % initial condition

27 opt = odeset('RelTol ', 1e-3, 'AbsTol ', 1e-6, 'NormControl ',

'off');

28 [t, xsol] = ode45(@vander , [0 10], x0 , opt);
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29 X00 = xsol ';

30 U00 = sin (2*pi*t)'; % control signal

31 X11 = [X00(2,:)+sqrt(delta/n)*cos(2*pi*0.4*t)';

32 -X00(1,:)+X00(2,:)-X00(2,:).*(X00(1,:) .^2)+U00+sqrt(

delta/n)*sin (2*pi *0.4*t) '];

33

34 Ts = 100; % number of samples

35

36 X0 = X00(:,1:Ts); % selecting first T samples of the

experiment

37 X1 = X11(:,1:Ts);

38 U0 = U00(:,1:Ts);

39 t = t(1:Ts);

40

41 DELTA = sqrt(Ts*delta)*eye(n); %Disturbance upper bound

42

43 % Initialization of regressors

44 Z = [monomials(x,1:3)];

45 W = monomials(x,0);

46

47 N = length(Z);

48 M = length(W);

49

50 % plot of generated data

51 figure

52 subplot (2,1,1)

53 plot(t,U0 ,'LineWidth ' ,1.5)

54 title('Input')

55 ylabel('u')

56 grid on

57

58 subplot (2,1,2)



89

59 plot(t,X0(1,:),'--',t,X0(2,:),'-.','LineWidth ' ,1.5)

60 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

61 title('Open -loop response ')

62 ylabel('x')

63 xlabel('t')

64 grid on

65

66 % construction of the data matrices Ad, Bd, Cd

67 Z0 = double(subs(Z,x,X0));

68 W0 = U0;

69

70 Ad = [Z0;W0]*[Z0;W0]';

71 Bd = -[Z0;W0]*X1 ';

72 Cd = X1*X1 '-DELTA*DELTA ';

73

74 % construction of the data matrices zeta and Q

75 zeta = -Ad\Bd;

76 Qd = Bd '*(Ad\Bd)-Cd;

77

78 zeta_N = zeta (1:N,:);

79 zeta_M = zeta((N+1):(N+M) ,:);

80 Ad_i = Ad^( -1/2);

81 Ad_i_N = Ad_i (:,1:N);

82 Ad_i_M = Ad_i(:,(N+1):(N+M));

83

84 % Inputs (design parameters)

85 beta_V = 1e-6;

86 beta_T = 1e-6;

87 beta_L = 1e-4;

88 n_V = 1;

89 n_T = 1;
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90 n_L = 1;

91 epsi = 1e-8;

92 alpha = 1e-4*(x1^4+x2^4)*eye(n+m+1);

93

94 % Maximum iteration number

95 k = 1;

96 kmax = 50;

97

98 tic

99 % STEP 1: Determine V0, Tx , L0 , Q0 , S0, R0, lambda0

100 prog = sosprogram(vars);

101

102 [prog , Q] = sospolyvar(prog ,monomials(x ,[2:6]) ,'wscoeff ');

103 [prog , S] = sospolyvar(prog ,monomials(x,[1 ,3]),'wscoeff ');

104 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m,m],'

symmetric ');

105 [prog , V] = sospolyvar(prog ,[ monomials(x,2:4)],'wscoeff ');

106 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'wscoeff ');

107 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'wscoeff '

);

108 [prog , L] = sospolyvar(prog ,[ monomials(x,2:4)],'wscoeff ');

109

110 % SOS constraints

111 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V); % V radially

unbounded constraint

112 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T); % T radially

unbounded constraint

113 prog = sosineq(prog ,L-beta_L *(x1^2+x2^2)^n_L);

114

115 gradV = jacobian(V,x)'; % gradient of Lyapunov function

116

117 Sigma1 = [gradV '*zeta_N '*Z+T-Q -S+(1/2)*gradV '*zeta_M '*W;
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118 (-S+(1/2)*gradV '*zeta_M '*W)' -R];

119 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M ']*[(1/2)*Ad_i_N

*Z (1/2)*Ad_i_M*W];

120 B_aux = [gradV '*Qd ^(1/2);

121 zeros(m,n)];

122

123 stability = [Sigma1+lambda*Sigma2 B_aux % data -

driven dissipativity -based condition for local stability

124 B_aux ' -lambda*eye(n)]-alpha*(1-L);

125

126 prog = sosmatrixineq(prog ,-stability);

127

128 prog = sosineq(prog ,R); % dissipativity 's R constraint

129

130 prog = sosineq(prog ,lambda -epsi); % petersen 's lemma 's

lambda constraint

131

132 % STEP 1 solution

133 options.solver = 'mosek';

134 sol = sossolve(prog ,options);

135

136 Q0 = sosgetsol(sol ,Q);

137 R0 = double(sosgetsol(sol ,R));

138 S0 = sosgetsol(sol ,S);

139 L = sosgetsol(sol , L);

140

141 T = sosgetsol(sol ,T);

142 Delta_c = S0*inv(R0)*(S0 ')-Q0;

143

144 prog2 = sosprogram(vars);

145 prog2 = sosineq(prog2 ,Delta_c);

146 sol2 = sossolve(prog2 ,options);
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147

148 if abs(sol2.solinfo.info.feasratio -1) <= 0.1 % Stop

criterion: Delta_c test

149 K = -inv(R0)*S0 ' % Control gains

150 V = sosgetsol(sol ,V) % Lyapunov function

151 else

152 % STEP 2: Iterative method for V, Tx, alpha , Q, S, R,

lambda

153 while k <= kmax

154 prog = sosprogram(vars);

155

156 [prog , Q] = sospolyvar(prog ,monomials(x ,[2:6]) ,'

wscoeff ');

157 [prog , S] = sospolyvar(prog ,monomials(x,[1 ,3]),'

wscoeff ');

158 [prog , R] = sospolymatrixvar(prog ,monomials(x,0) ,[m

,m],'symmetric ');

159 [prog , V] = sospolyvar(prog ,[ monomials(x,2:4)],'

wscoeff ');

160 [prog , T] = sospolyvar(prog ,[ monomials(x,2)],'

wscoeff ');

161 [prog , lambda] = sospolyvar(prog ,[ monomials(x,0)],'

wscoeff ');

162 [prog , alpha] = sospolymatrixvar(prog ,[ monomials(x

,2:6)],[n+m+1,n+m+1],'symmetric ');

163

164 % SOS constraints

165 prog = sosineq(prog ,V-beta_V *(x1^2+x2^2)^n_V); % V

radially unbounded constraint

166 prog = sosineq(prog ,T-beta_T *(x1^2+x2^2)^n_T); % T

radially unbounded costraint

167
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168 gradV = jacobian(V,x)'; % gradient of Lyapunov

function

169

170 Sigma1 = [gradV '*zeta_N '*Z+T-Q -S+(1/2)*gradV '*

zeta_M '*W

171 (-S+(1/2)*gradV '*zeta_M '*W)' -R];

172 Sigma2 = [(1/2)*Z'*Ad_i_N '; (1/2)*W'*Ad_i_M

']*[(1/2)*Ad_i_N*Z (1/2)*Ad_i_M*W];

173 B_aux = [gradV '*Qd ^(1/2)

174 zeros(m,n)];

175

176 stability = [Sigma1+lambda*Sigma2 B_aux %

data -driven dissipativity -based condition for

local stability

177 B_aux ' -lambda*eye(n)]-alpha*(1-L);

178 prog = sosineq(prog ,-stability);

179

180 prog = sosineq(prog ,R); % dissipativity

's R constraint

181

182 prog = sosineq(prog ,R0-R); % increasing

delta constraints

183 delta_increasing = R*inv(R0)*(S0 ') + inv(R0)*(S0 ')

'*S' - 2*S0*inv(R0)*(S0 ') + Q0 - Q;

184 prog = sosineq(prog ,delta_increasing);

185

186 prog = sosineq(prog ,lambda -epsi); % petersen 's

lemma 's lambda constraint

187 prog = sosineq(prog ,alpha);

188

189 % STEP 2 solution

190 sol = sossolve(prog ,options);



94

191

192 Q = sosgetsol(sol ,Q)

193 R = double(sosgetsol(sol ,R))

194 S = sosgetsol(sol ,S)

195 alpha = sosgetsol(sol ,alpha);

196 lambda = sosgetsol(sol ,lambda);

197

198 T = sosgetsol(sol ,T);

199 Delta_c = S*inv(R)*(S')-Q;

200

201 prog2 = sosprogram(vars);

202 prog2 = sosineq(prog2 ,Delta_c);

203 sol2 = sossolve(prog2 ,options);

204 if abs(sol2.solinfo.info.feasratio -1) <= 0.1 | k ==

kmax % Stop criterion: Delta_c test

205 K = -inv(R)*S' %

Control gains

206 V = sosgetsol(sol ,V) % Lyapunov

function

207 break

208 end

209 k=k+1

210 Q0 = Q; R0 = R; S0 = S;

211 end

212 end

213 toc

214

215 % Phase diagram - Open loop

216 syms x1 x2

217 a=5;

218 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

219 e=1;
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220 dx1 = x2;

221 dx2 = -x1 + e.*(1-x1.^2).*x2;

222

223 figure

224 OL = streamslice(x1,x2 ,dx1 ,dx2 ,1);

225 set(OL,'LineWidth ' ,1.5);

226 title('Phase diagram - open -loop')

227 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

228 grid on

229

230 %%

231 % % Phase diagram - Closed loop

232 uk = K;

233 global uf

234 uf = matlabFunction(p2s(uk));

235 a=5;

236 [x1 ,x2] = meshgrid(-a:0.1:a,-a:0.1:a);

237 dx1 = x2;

238 dx2 = -x1 + e.*(1-x1.^2).*x2 + uf(x1,x2);

239

240 figure

241 CL = streamslice(x1,x2 ,dx1 ,dx2 ,4);

242 set(CL,'LineWidth ' ,1.5);

243 title('Phase diagram - closed -loop')

244 xlabel('$x_1$','Interpreter ','latex'), ylabel('$x_2$','

Interpreter ','latex')

245 hold on

246 plot(0,0,'x','LineWidth ' ,2)

247 grid on

248

249 ellipL = fimplicit(p2s(1-L));
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250 ellipL.LineWidth = 1;

251 ellipL.Color = 'b';

252 x0 = [2; 2]; % initial condition

253 [t, xsol] = ode45(@vander_cl , [0 300], x0, opt);

254 plot(xsol (:,1),xsol (:,2),'LineWidth ' ,2);

255 figure

256 plot(t,xsol (:,1),t,xsol (:,2),'LineWidth ' ,2);

257 title('Time response - closed -loop')

258 xlabel('t'); ylabel('x');

259 grid on

260 legend('$x_1$','$x_2$','Interpreter ','latex','Location ','

northeast ');

261

262 %------------------------------ EXPERIMENT

-------------------------------%

263 function dx = vander(t,x)

264 e=1;

265 global delta

266 u = sin (2*pi*t);

267 dx = [x(2) + sqrt(delta)*cos(2*pi*0.4*t);

268 -x(1) + e*(1-x(1)^2)*x(2) + u + sqrt(delta)*sin (2*

pi*0.4*t)];

269 end

270

271 function dx = vander_cl(t,x)

272 global uf

273 e=1;

274 dx = [x(2);

275 -x(1) + e*(1-x(1)^2)*x(2) + uf(x(1),x(2))];

276 end
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