
UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS SOBRAL

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE

COMPUTAÇÃO

MESTRADO ACADÊMICO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

RAIMUNDO ALAN FREIRE MOREIRA

ENTRE MÉTRICAS E PERCEPÇÃO: USO DE APRENDIZADO DE MÁQUINA E

LLMS NA DETECÇÃO E REFATORAÇÃO DE CODE SMELLS

SOBRAL

2025

RAIMUNDO ALAN FREIRE MOREIRA

ENTRE MÉTRICAS E PERCEPÇÃO: USO DE APRENDIZADO DE MÁQUINA E LLMS

NA DETECÇÃO E REFATORAÇÃO DE CODE SMELLS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Engenharia Elétrica e de
Computação do Programa de Pós-Graduação
em Engenharia Elétrica e de Computação do
Campus Sobral da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Engenharia Elétrica e de
Computação. Área de Concentração: Sistemas
de Informação

Orientador: Prof. Dr. Fischer Jônatas
Ferreira

Coorientador: Prof. Dr. Gustavo Andrade do
Vale

SOBRAL

2025

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M839e Moreira, Raimundo Alan Freire.
 Entre Métricas e Percepção: Uso de Aprendizado de Máquina e LLMs na Detecção e Refatoração de Code
Smells / Raimundo Alan Freire Moreira. – 2025.
 132 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Campus de Sobral, Programa de Pós-Graduação
em Engenharia Elétrica e de Computação, Sobral, 2025.
 Orientação: Prof. Dr. Fischer Jônatas Ferreira.
 Coorientação: Prof. Dr. Gustavo Andrade do Vale.

 1. qualidade de código. 2. code smells. 3. aprendizado de máquina. 4. modelos de linguagem de grande
porte. 5. ferramentas de pesquisa. I. Título.
 CDD 621.3

RAIMUNDO ALAN FREIRE MOREIRA

ENTRE MÉTRICAS E PERCEPÇÃO: USO DE APRENDIZADO DE MÁQUINA E LLMS

NA DETECÇÃO E REFATORAÇÃO DE CODE SMELLS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Engenharia Elétrica e de
Computação do Programa de Pós-Graduação
em Engenharia Elétrica e de Computação do
Campus Sobral da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Engenharia Elétrica e de
Computação. Área de Concentração: Sistemas
de Informação

Aprovada em: 30 de setembro de 2025

BANCA EXAMINADORA

Prof. Dr. Fischer Jônatas Ferreira (Orientador)
Universidade Federal de Itajubá (UNIFEI)

Prof. Dr. Gustavo Andrade do Vale (Coorientador)
Universidade Federal de Minas Gerais (UFMG)

Prof. Dr. Evilásio Costa Júnior
Universidade Federal do Ceará (UFC)

Prof. Dr. Mauricio Ronny de Almeida Souza
Universidade Federal de Lavras (UFLA)

Dedico este trabalho à minha família, fonte de

amor, força e inspiração em todos os momentos.

À minha esposa e filha, por serem meu alicerce

diário, e à minha mãe, pelo exemplo de perse-

verança e dedicação. Ao meu pai, em memória,

cuja presença permanece viva em minhas lem-

branças e em cada conquista alcançada.

AGRADECIMENTOS

A Deus, pela força, proteção e sabedoria em cada etapa desta caminhada. Sem a fé e

a confiança depositadas em sua presença, os desafios enfrentados ao longo desta jornada teriam

sido ainda maiores. Foi ele quem renovou minhas energias nos momentos de incerteza e me deu

serenidade para perseverar diante das dificuldades.

À minha mãe, pelo apoio inestimável em todas as etapas da minha vida e por me

ensinar, desde cedo, que a educação é o bem mais precioso que alguém pode conquistar. Seu

exemplo de dedicação, resiliência e amor sempre foi a base sobre a qual construí meus sonhos.

À minha esposa, Elisângela, pelo amor incondicional, pelo companheirismo em

todos os momentos e pela paciência nas inúmeras vezes em que precisei estar ausente. Sua força

para sustentar as responsabilidades do cotidiano e sua confiança em mim foram determinantes

para que eu tivesse tranquilidade e segurança para avançar. Este trabalho é também fruto da sua

dedicação silenciosa e de sua presença constante ao meu lado.

À minha filha, Lys, pelo carinho imenso e pela capacidade de compreender, mesmo

tão jovem, as ausências necessárias em função dos estudos. O amor incondicional que recebi

dela foi combustível diário para continuar, mesmo diante das maiores dificuldades. A ela, dedico

este esforço, na esperança de que um dia veja neste trabalho um exemplo de perseverança e

valorização da educação.

Ao Prof. Dr. Fischer Jônatas Ferreira, pela orientação segura e sempre pautada pela

paciência, pelo rigor científico e pela generosidade em compartilhar seus conhecimentos. Sua

confiança em meu trabalho e sua capacidade de guiar este estudo com clareza foram fundamentais

para que eu alcançasse este resultado.

Ao Prof. Dr. Gustavo do Vale, pela coorientação dedicada e pelo olhar atento, que

acrescentou contribuições valiosas ao longo desta pesquisa. Sua sensibilidade acadêmica e

postura colaborativa enriqueceram não apenas este estudo, mas também minha formação como

pesquisador.

Ao Prof. Dr. Márcio Amora, pelo incentivo e pela conhecimento transmitido durante

a disciplina de Inteligência Computacional Aplicada.

A todos os professores que fizeram parte de minha formação, por transmitirem mais

do que conhecimento técnico. A cada um deles, agradeço pelos valores éticos, pela inspiração,

pela postura humana e pelo afeto, aspectos que transcendem os conteúdos e que se tornam

exemplos de vida.

Aos colegas de trabalho e ao Instituto Federal de Educação, Ciência e Tecnologia

do Ceará (IFCE), pelo apoio institucional e pela compreensão nas adaptações necessárias para

conciliar as demandas profissionais com as acadêmicas. A flexibilidade concedida e o incentivo

recebido foram indispensáveis para que eu pudesse me dedicar ao mestrado sem abrir mão das

minhas responsabilidades.

Aos colegas de mestrado, especialmente Geraldo Martins, Rhuan Nunes, Expedito

Magalhães, Marcelo Estevão e Iago Magalhães, pela amizade construída ao longo desses anos. As

discussões em sala, as trocas de experiências e até os momentos de descontração nos corredores

e no restaurante da UFC foram fundamentais para tornar a jornada mais leve e significativa.

A todos aqueles que, direta ou indiretamente, contribuíram para esta conquista, deixo

registrado meu profundo reconhecimento. Cada gesto de apoio, cada palavra de incentivo e cada

demonstração de confiança teve importância singular nesta trajetória.

Aos membros da banca examinadora, Prof. Dr. Evilásio Costa Júnior e Prof. Dr.

Mauricio Ronny de Almeida Souza, pela generosidade em dedicar parte de seu tempo à leitura,

análise e apreciação deste trabalho.

“Qualquer tolo pode escrever código que um

computador entende. Bons programadores es-

crevem código que humanos podem entender.”

(Martin Fowler)

RESUMO

A qualidade de software é determinante para a manutenibilidade, legibilidade, testabilidade

e evolução de sistemas, sendo que grande parte do custo de manutenção está associada à

compreensão de código existente. Nesse contexto, os code smells surgem como indícios de

problemas estruturais ou estilísticos que degradam a arquitetura e alimentam o débito técnico.

Embora detectores de code smells baseados em métricas sejam amplamente utilizados, eles

enfrentam limites de interpretabilidade e generalização. Algoritmos de aprendizado de máquina

(machine learning – ML) e modelos de linguagem de grande porte (large language models –

LLMs) ampliam as possibilidades de automação na detecção de code smells, no entanto, podem

introduzir anomalias. Esta dissertação investiga como técnicas de inteligência artificial podem

apoiar a melhoria da qualidade de software, conectando sinais objetivos de ML à percepção

humana em refatorações realizadas por LLMs. O estudo foi conduzido em três etapas. Na

primeira, cinco classificadores supervisionados foram aplicados a quatro code smells nos sistemas

do Qualitas Corpus. Modelos baseados em árvores performaram melhor e superaram 96% de

acurácia estabelecendo baselines replicáveis. Na segunda etapa, foi desenvolvida a ferramenta

TwinCode, para experimentos empíricos com comparação lado a lado de trechos de código

e questionários estruturados, validada com 12 participantes que apontaram alta usabilidade e

consistência. Na terceira etapa, investigou-se a percepção de desenvolvedores sobre refatorações

com LLMs, por meio de comparações cegas e entrevistas. Em 97% das escolhas os entrevistados

escolheram as versões refatoradas e associaram a escolha a ganhos de legibilidade, modularidade

e manutenibilidade, ainda que com alertas para riscos de over-engineering. Os resultados

demonstram que: (i) algoritmos de ML oferecem sinais robustos para detecção de code smells,

(ii) TwinCode contribui para padronização metodológica de estudos empíricos e (iii) LLMs

possuem potencial de apoiar refatorações quando aplicados com supervisão crítica. Contudo, esta

dissertação integra métricas objetivas e julgamentos humanos, oferecendo evidências aplicáveis

à pesquisa acadêmica e à prática profissional de desenvolvimento de software.

Palavras-chave: qualidade de código; code smells; aprendizado de máquina; modelos de

linguagem de grande porte; ferramentas para pesquisa empírica.

ABSTRACT

Software quality is essential for maintainability, readability, testability, and the long-term evolu-

tion of systems, with a large portion of maintenance costs related to understanding existing code.

In this context, code smells emerge as indicators of structural or stylistic issues that degrade

architecture and introduce technical debt. While metric-based detectors are widely used, they

face limits of interpretability and generalization, whereas recent advances with machine learning

(ML) algorithms and large language models (LLMs) expand automation possibilities but might

introduce anomalies. This dissertation investigates how artificial intelligence techniques can sup-

port software quality improvement by connecting objective ML signals with human perception

in refactorings produced by LLMs. The study was organized in three stages. In the first, five

supervised classifiers were applied to four smells identified in systems from Qualitas Corpus.

Tree-based models performed better and surpassing accuracy of 96% establishing replicable

baselines. In the second stage, we propose TwinCode a open source tool developed to support

empirical experiments with side by side code comparison and structured questionnaires. The

tool was validated with 12 participants who reported high usability and consistency. In the

third stage, we examined the developers’ perceptions of LLM-based refactorings through blind

comparisons and interviews. In 97% of choices, intervieews chose the refactored versions and

associated their choice with improvements in readability, modularity, and maintainability, even

though they reported over-engineering issues. Our results demonstrate that: (i) ML algorithms

provide robust signals for code smell detection, (ii) TwinCode contributes to the methodological

standardization of empirical studies, and (iii) LLMs have potential to support refactorings when

applied with critical supervision.Taken together, this dissertation integrates objective metrics and

human judgments, offering evidence applicable to both academical and professional software

development.

Keywords: code quality; code smells; machine learning; large language models; empirical

research tools.

LISTA DE FIGURAS

Figura 1 – Visão geral da dissertação . 19

Figura 2 – Fluxo de trabalho proposto. 37

Figura 3 – Diferença de acurácia (Sem - Com) por algoritmo em cada métrica. Escala de

cinza. 45

Figura 4 – Interface do módulo de pesquisas: ambiente integrado para gerenciamento

de investigações científicas . 58

Figura 5 – Interface de gerenciamento de trechos de código: visualização sistemática e

controle metodológico . 59

Figura 6 – Interface de comparação: visualização lado a lado de códigos com diferentes

complexidades ciclomáticas . 60

Figura 7 – Sistema de questionários: combinação de escalas Likert e campos abertos

para coleta de dados . 61

Figura 8 – Caracterização dos participantes . 63

Figura 9 – Fluxo de trabalho proposto . 76

Figura 10 – Categorias por entrevistado . 88

Figura 11 – Nuvem de palavras . 90

Figura 12 – Distribuição geral de preferências . 92

LISTA DE TABELAS

Tabela 1 – Visão geral dos sistemas do Qualitas Corpus 38

Tabela 2 – Detectores de code smells . 39

Tabela 3 – Composição do conjunto de dados . 39

Tabela 4 – Comparação das métricas . 42

Tabela 5 – Desempenho dos algoritmos com validação cruzada em 10 partes (Acurácia) 43

Tabela 6 – Comparação dos algoritmos com validação cruzada e sem validação cruzada

em termos de acurácia . 44

Tabela 7 – Resultados do teste de Wilcoxon comparando acurácia Sem vs. Com valida-

ção cruzada. 44

Tabela 8 – Comparação da acurácia de trabalhos relacionados com o presente trabalho . 48

Tabela 9 – Estatísticas descritivas das afirmativas do questionário 62

Tabela 10 – Comparação entre ferramentas de análise de código 69

Tabela 11 – Processo de seleção das amostras para refatoração 79

Tabela 12 – Sistemas do Qualitas Corpus analisados pelos entrevistados 80

Tabela 13 – Perfil dos entrevistados . 86

Tabela 14 – Experiência como métodos para classificação de qualidade de código 87

Tabela 15 – Percepções sobre Inteligência Artificial (IA) na qualidade de código 94

Tabela 16 – Análise de Conteúdo das Entrevistas . 123

Tabela 17 – Escolhas e justificativas do entrevistado E1 nas cinco comparações 127

Tabela 18 – Escolhas e justificativas do entrevistado E2 nas cinco comparações 127

Tabela 19 – Escolhas e justificativas do entrevistado E3 nas cinco comparações 128

Tabela 20 – Escolhas e justificativas do entrevistado E4 nas cinco comparações 128

Tabela 21 – Escolhas e justificativas do entrevistado E5 nas cinco comparações 128

Tabela 22 – Escolhas e justificativas do entrevistado E6 nas cinco comparações 129

Tabela 23 – Escolhas e justificativas do entrevistado E7 nas cinco comparações 129

LISTA DE ABREVIATURAS E SIGLAS

AI Artificial Intelligence

CSS Cascading Style Sheets

DP Desvio Padrão

HTML HyperText Markup Language

IA Inteligência Artificial

IHC Interação Humano-Computador

LLMs Large Language Models

ML Machine Learning

MLP Multilayer Perceptron

MVC Model, View e Controller

PHP PHP: Hypertext Preprocessor

PLN Processamento de Linguagem Natural

SaaS Software as a Service

SVM Support Vector Machines

TCLE Termo de Consentimento Livre e Esclarecido

UX User Experience

SUMÁRIO

1 INTRODUÇÃO . 17

1.1 Objetivo da Dissertação . 18

1.2 Contribuições . 19

1.3 Estrutura do Trabalho . 21

2 FUNDAMENTAÇÃO TEÓRICA . 22

2.1 Code Smells e Métricas de Software . 22

2.2 Qualidade de Software . 23

2.3 Refatoração de Código . 25

2.4 Aprendizado de Máquina na Detecção de Smells 26

2.5 Normalização e Validação dos Dados . 28

2.6 Ferramentas e Usabilidade em Pesquisas Acadêmicas 30

2.7 Percepção Humana de Qualidade de Código 31

2.8 Modelos de Linguagem de Grande Porte (LLMs) 32

3 DETECÇÃO DE CODE SMELL COM APRENDIZADO DE MÁQUINA 34

3.1 Metodologia . 36

3.1.1 Conjunto de Dados . 37

3.1.2 Avaliação de Desempenho . 39

3.2 Resultados . 41

3.2.1 QP1 - Eficácia dos Algoritmos . 41

3.2.2 QP2 - Eficácia dos Algoritmos com Validação Cruzada 43

3.3 Trabalhos Relacionados . 45

3.4 Ameaças à Validade da Pesquisa . 48

3.5 Conclusão . 50

4 TWINCODE . 52

4.1 Metodologia . 53

4.1.1 Objetivos da Pesquisa . 54

4.1.2 Questões Pesquisa . 54

4.1.3 Validação . 55

4.2 Estrutura da Ferramenta . 56

4.2.1 Arquitetura e Tecnologias . 56

4.2.2 Módulos e Interfaces . 57

4.2.3 Exemplo de Uso . 59

4.3 Validação e Resultados . 61

4.3.1 Caracterização dos Participantes . 62

4.3.2 Facilidade de Uso Percebida da Interface (QP1) 64

4.3.3 Eficiência Funcional para Estudos Empíricos (QP2) 65

4.3.4 Potencial de Adoção em Ambientes Acadêmicos (QP3) 66

4.3.5 Funcionalidades Valorizadas e Prioridades de Melhoria (QP4) 66

4.4 Trabalhos Relacionados . 67

4.5 Ameaças à Validade da Pesquisa . 69

4.6 Conclusão . 72

5 PERCEPÇÃO DE DESENVOLVEDORES SOBRE QUALIDADE DE

CÓDIGO REFATORADO POR MODELO DE LINGUAGEM DE GRANDE

PORTE . 74

5.1 Metodologia . 75

5.1.1 Objetivos da Pesquisa . 77

5.1.2 Conjunto de Dados . 78

5.1.3 Processo de Refatoração . 80

5.1.4 Seleção dos Entrevistados e Coleta e Análise dos Dados 83

5.2 Resultados . 85

5.2.1 Caracterização dos Entrevistados . 85

5.2.2 Critérios de Qualidade de Código (QP1) 87

5.2.3 Comparações de Código (QP2) . 91

5.2.4 Impacto da Revelação sobre IA (QP3) . 93

5.2.5 Expectativas sobre LLMs (QP4) . 96

5.2.6 Análise dos Resultados . 97

5.3 Trabalhos Relacionados . 98

5.4 Ameaças à Validade . 101

5.5 Conclusão . 102

6 CONSIDERAÇÕES FINAIS . 104

6.1 Conclusões . 104

6.2 Implicações e Lições Aprendidas . 105

6.3 Trabalhos Futuros . 106

REFERÊNCIAS . 108

APÊNDICES . 116

APÊNDICE A – Codificação semântica detalhada 116

APÊNDICE B – Análise de Conteúdo das Entrevistas 123

APÊNDICE C – Quadros de Escolhas e Justificativas dos Entrevistados . . 127

APÊNDICE D – Roteiro de Entrevista 130

ANEXOS . 131

17

1 INTRODUÇÃO

A qualidade de software é determinante para a manutenibilidade, legibilidade, testa-

bilidade e evolução de sistemas ao longo do seu ciclo de vida; estima-se que até 80% do custo

total de um sistema esteja associado à manutenção, em grande parte dedicada à compreensão de

código existente (KRASNER, 2021; RAHMAN et al., 2024). Nesse cenário, code smells surgem

como indícios de problemas estruturais/estilísticos que, embora não inviabilizem a execução,

degradam a arquitetura e alimentam o débito técnico, afetando a sustentabilidade de projetos (FO-

WLER, 2018; YAMASHITA; MOONEN, 2013; OUNI et al., 2017; PALOMBA et al., 2018).

Detectores baseados em métricas e análise estática têm sido amplamente utilizados (FONTANA

et al., 2016), enquanto avanços recentes incorporam técnicas de aprendizado de máquina (do

inglês Machine Learning (ML)). Modelos baseados em árvores (ABDOU; DARWISH, 2024)

têm alcançado alta acurácia da detecção de code smells. Por outro lado, modelos de linguagem

de grande porte (do inglês Large Language Models (LLMs)) têm sido eficazes e mantido boas

práticas quando refatorando artefatos de código (CHEN et al., 2021; ROZIERE et al., 2023;

ACHIAM et al., 2023). Ao mesmo tempo, estudos apontam limites e riscos, como a geração de

novos smells e dificuldades de consistência semântica em refatorações complexas (VELASCO

et al., 2025; BÖRSTLER et al., 2023). Para minimizar essas anomalias, alguns pesquisadores

destacam o papel de engenharia de prompt para melhorar a qualidade das refatorações e soluções

propostas por LLMs (WHITE et al., 2023).

Apesar do aparato técnico disponível, persiste uma tensão entre marcações algorít-

micas e julgamentos humanos, pois desenvolvedores frequentemente discordam de detectores

automáticos por avaliarem a qualidade de forma mais ampla (clareza semântica, consistência

estilística, esforço cognitivo) (BUSE; WEIMER, 2009; POSNETT et al., 2011; BINKLEY et al.,

2013). Rahman et al. (2024), por meio de uma revisão sistemática da literatura, apontam desafios

de interpretabilidade e generalização em contextos heterogêneos. No campo da refatoração

com LLMs, a literatura carece de evidências sobre como desenvolvedores percebem o código

produzido e quais critérios humanos orientam tais julgamentos. Adicionalmente, há fragilidades

metodológicas, pois estudos frequentemente recorrem a soluções ad hoc para coleta/compara-

ção de versões, o que prejudica padronização e replicabilidade entre investigações (SANTOS;

GEROSA, 2018).

Diante desse quadro, há oportunidade para uma abordagem integrada que conecte

(i) sinais objetivos de ML na detecção de smells, (ii) protocolos/infraestruturas que viabilizem

18

estudos empíricos replicáveis (comparações cegas com coleta estruturada) e (iii) a análise da

percepção de desenvolvedores sobre refatorações por LLMs. Tal integração busca, simultanea-

mente, reduzir o hiato entre métricas e julgamento humano, orientar a adoção responsável de

LLMs em fluxos de trabalho (potencializando benefícios e mitigando riscos (VELASCO et al.,

2025; BÖRSTLER et al., 2023)) e prover evidências úteis tanto para a comunidade científica

quanto para a prática profissional, em linha com a evolução recente da área de engenharia de

software e computação como um todo (FONTANA et al., 2016; ABDOU; DARWISH, 2024;

CHEN et al., 2021; ROZIERE et al., 2023; ACHIAM et al., 2023; WHITE et al., 2023).

1.1 Objetivo da Dissertação

O objetivo principal é investigar como técnicas de inteligência artificial podem

apoiar a melhoria da qualidade de software, conectando sinais objetivos de detecção de code

smells a julgamentos humanos sobre qualidade de código. Para alcançar este objetivo, definimos

dois objetivos específicos:

• OE1 — Detecção de Code Smells com ML. Investigar, de forma sistemática, o desempe-

nho de classificadores supervisionados na identificação de quatro code smells (Data Class,

God Class, Feature Envy e Long Method).

• OE2 — Percepção Humana de Qualidade de Software e Refatorações com LLMs.

Investigar, por meio de comparações cegas e entrevistas, como desenvolvedores julgam

versões originais versus refatoradas por LLMs e quais critérios orientam tais julgamentos

(p. ex., legibilidade, modularidade, manutenibilidade).

O OE1 é motivado pelo papel central de detectores baseados em métricas e ML

na identificação de indícios de baixa qualidade, bem como pelos desafios de generalização e

interpretabilidade reportados na literatura (FONTANA et al., 2016; RAHMAN et al., 2024;

ABDOU; DARWISH, 2024). O OE2 decorre da necessidade de compreender a qualidade

percebida do código gerado/refatorado por LLMs, dada a tensão conhecida entre marcações

automáticas e julgamentos humanos (BUSE; WEIMER, 2009; POSNETT et al., 2011; BINKLEY

et al., 2013), bem como dos riscos e limites na prática de refatoração automática e do papel

da engenharia de prompt adequado (WHITE et al., 2023; CHEN et al., 2021; ROZIERE et

al., 2023; ACHIAM et al., 2023). Para viabilizar estudos empíricos replicáveis nesse segundo

19

objetivo específico, desenvolvemos a ferramenta TwinCode, que integra comparação lado a lado

e questionários estruturados, reduzindo soluções ad hoc e favorecendo padronização (SANTOS;

GEROSA, 2018). A Figura 1 mostra a relação entre os objetivos do estudo.

Figura 1 – Visão geral da dissertação
Fonte: Elaborado pelo autor (2025)

1.2 Contribuições

Nesta dissertação são apresentadas diversas contribuições que utilizam técnicas

de inteligência artificial como auxílio na melhoria da qualidade de software. A seguir, são

mencionadas e explicadas as principais extensões dessas contribuições.

1. Detecção de code smells com ML. Foi criado um benchmark sistemático de cinco clas-

sificadores supervisionados (Árvore de Decisão, Floresta Aleatória, Gradient Boosting,

Support Vector Machines (SVM) e Multilayer Perceptron (MLP)) para quatro smells (Data

Class, God Class, Feature Envy, Long Method) com dados derivados do Qualitas Corpus

de Tempero et al. (2010) e comparação com/sem validação cruzada. Com resultado,

obtive-se acurácias entre 89,7% e 99,2%, com picos de 96,8% (Data Class), 96,3%

(God Class), 98,4% (Feature Envy) e 99,2% (Long Method). Modelos baseados em

árvores mostraram desempenho consistentemente superior. Diferenças entre cenários

com/sem validação cruzada não foram estatisticamente significativas. Dentre as principais

contribuições, destaca-se o estabelecimento de baselines fortes e protocolo comparativo

20

replicável para detecção de code smells. E a publicação do estudo nos anais da XXVII

Ibero-American Conference on Software Engineering (CIbSE 2024) - (MOREIRA et al.,

2024).

2. Ferramenta TwinCode. Foi realizado o projeto e implementação de uma ferramenta

para comparação lado a lado de artefatos de código com realce de sintaxe, numeração de

linhas e questionários por comparação. Desenvolvida em PHP: Hypertext Preprocessor

(PHP)/Laravel para backend e a biblioteca Javascript React junto com TailwindCSS para

estilização das páginas. Realizou-se uma avaliação exploratória com 12 participantes.

Como resultados, obteve-se boa aceitação do núcleo de inspeção (comparação, syntax

highlighting, numeração); consistência interna elevada e indicadores favoráveis de po-

tencial de adoção (p. ex., média ≈ 4,42 para uso acadêmico em escala de 1–5). O estudo

também mostrou oportunidades priorizadas de melhoria no fluxo pares–questionários

e em funcionalidades auxiliares (exportação, filtros, versionamento). A ferramenta foi

registrada no INPI (BR512025003573-0). Dentre as contribuições do estudo destaca-se a

disponibilização do código-fonte da ferramenta que busca padronizar a coleta de evidências

em estudos de comparação de código e viabiliza replicabilidade metodológica.

3. Percepção de Desenvolvedores sobre Qualidade do Software e Refatorações com

LLMs. Foi elaborado uma investigação as cegas e randomizada com 7 desenvolvedores, 5

pares por entrevistado (total 35 julgamentos), amostrados de um conjunto de 80 artefatos

(12 sistemas do Qualitas Corpus). Cada par continha o código original e o código com

refatorações produzidas pelo modelo Qwen2.5-Max. Como resultado, 34 de 35 escolhas

(≈ 97,1%) favoreceram as versões refatoradas; critérios centrais de decisão incluíram

legibilidade, modularidade e manutenibilidade. A revelação posterior da autoria dos

códigos refatorados por LLM não alterou as opiniões dos entrevistados, pois a escolha veio

por meio de análise técnica. Os entrevistados mencionaram riscos de over-engineering e

perda de contexto em casos específicos quanto ao uso de LLMs para refatoração de código.

Como contribuições, pode-se mencionar evidência empírica exploratória sobre a aceitação

e critérios humanos aplicados a refatorações por LLMs e insumos práticos para adoção

responsável dessas ferramentas em fluxos de desenvolvimento de software.

Como pode-se ver, os três estudos se complementam. A detecção baseada em ML

provê sinais objetivos robustos. O estudo com LLMs revela preferências e critérios humanos

21

de qualidade e a TwinCode conecta ambos por meio de um instrumento replicável. Em conjunto,

o estudo contribui para a área ao (i) consolidar baselines e protocolos para detecção de codes

smells; (ii) oferecer um artefato/ferramenta que padroniza e acelera a pesquisa empírica; e

(iii) produzir evidências centradas no desenvolvedor sobre refatorações assistidas por LLM,

orientando pesquisadores, construtores de ferramentas e desenvolvedores rumo a uma adoção

mais informada e responsável de IA na melhoria da qualidade de software.

1.3 Estrutura do Trabalho

Os restante deste trabalho está organizado em cinco capítulos. O Capítulo 2 con-

solida conceitos e trabalhos relacionados sobre qualidade de código, code smells, métricas de

software, técnicas de ML aplicadas à detecção e o papel de LLMs na refatoração, além de

discutir lacunas que motivam este estudo. O Capítulo 3 detalha a formulação do problema de

detecção de code smells, o conjunto de smells investigados e os classificadores supervisionados

considerados, apresentando o delineamento comparativo dos resultados obtidos, bem como os

resultados alcançados em estudos anteriores. O Capítulo 4 descreve a TwinCode desenvolvida

para comparação lado a lado de trechos de código com coleta estruturada via questionários, sua

arquitetura e o papel da ferramenta como infraestrutura para estudos empíricos replicáveis, bem

como a avaliação da ferramenta. O Capítulo 5 apresenta o estudo baseado em comparações

cegas e entrevistas, conduzido para compreender como desenvolvedores julgam versões originais

versus refatoradas por LLMs e quais critérios orientam tais julgamentos. Por fim, o Capítulo 6

sintetiza os resultados, discute implicações para a prática e para a pesquisa e apresenta direções

de trabalhos futuros.

22

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os fundamentos que embasam esta pesquisa. A Seção 2.1

apresenta conceitos básicos e históricos sobre code smells e métricas de software. A Seção 2.2

apresenta histórico sobre qualidade de software. A Seção 2.3 aprofunda-se em práticas de

refatoração de código. A Seção 2.4 apresenta técnicas de aprendizado de máquina. A Seção 2.5

apresenta uma abordagem sobre normalização e validação de dados. A Seção 2.6 discute sobre

ferramentas e usabilidade. A Seção 2.7 trata da percepção humana sobre qualidade de software.

Por fim, a Seção 2.8 analisa a inserção das LLMs em estudos na área de engenharia de software.

2.1 Code Smells e Métricas de Software

O termo code smell foi introduzido por Riel (1996) e popularizado por Fowler (1999)

para designar indícios de problemas estruturais ou estilísticos em um código-fonte que, embora

não representem defeitos funcionais imediatos, podem comprometer sua qualidade a longo prazo.

Esses indícios atuam como “sinais de alerta” que sugerem a necessidade de refatoração, uma vez

que estão frequentemente associados à degradação da manutenibilidade, à perda de legibilidade e

ao aumento da complexidade (BROWN et al., 1998; YAMASHITA; COUNSELL, 2013). Dessa

forma, os code smells não são erros de compilação ou execução, mas sintomas de design pobre

que aumentam os custos de manutenção e elevam o risco de falhas futuras.

Entre os diversos tipos catalogados por (FOWLER, 1999), esta pesquisa concentra-se

em quatro dos mais recorrentes e estudados: (i) God Class, caracterizada por classes excessi-

vamente grandes, com múltiplas responsabilidades e baixo nível de coesão (FONTANA et al.,

2016); (ii) Data Class, definida por classes que funcionam apenas como contêineres de dados,

apresentando atributos públicos ou getters/setters sem encapsulamento adequado (FONTANA et

al., 2016; DEWANGAN et al., 2021); (iii) Feature Envy, smell em nível de método que acessa

mais atributos de outras classes do que da sua própria, revelando alto acoplamento e violação

de encapsulamento (BROWN et al., 1998; FONTANA et al., 2016); e (iv) Long Method, que

ocorre quando um método é demasiadamente extenso, combinando múltiplas funcionalidades e

prejudicando a legibilidade (MCCONNELL, 2004; DEWANGAN et al., 2021). Esses quatro

smells foram selecionados pela literatura devido à sua alta incidência em sistemas reais e ao

impacto negativo significativo na qualidade do software (FONTANA et al., 2016; ABDOU;

DARWISH, 2024).

23

A detecção de smells está intimamente ligada ao uso de métricas de software, que

oferecem uma base quantitativa para avaliação objetiva de atributos internos do código. Métricas

são definidas como medidas que capturam propriedades do software em diferentes níveis de

granularidade, tais como método, classe, pacote e projeto (FONTANA et al., 2016). Entre as

mais utilizadas destacam-se: (i) complexidade ciclomática (MCCABE, 1976), que quantifica a

quantidade de caminhos independentes em um método, servindo como indicador de dificuldade

de teste e compreensão; (ii) coesão e acoplamento, métricas fundamentais da qualidade orientada

a objetos propostas por Chidamber e Kemerer (1994), que medem respectivamente o grau de

inter-relação interna de uma classe e sua dependência de outras classes; (iii) tamanho de métodos

e classes, associado ao número de linhas de código e de atributos; (iv) índices compostos como

o Maintainability Index, que agregam múltiplas métricas para inferir a facilidade de manutenção

(COLEMAN et al., 1994).

Embora as métricas forneçam evidências objetivas, diversos estudos apontam que

sua interpretação nem sempre é trivial e pode divergir da percepção de desenvolvedores sobre

qualidade (BUSE; WEIMER, 2009; POSNETT et al., 2011). Essa tensão entre medidas automá-

ticas e avaliação humana justifica a necessidade de abordagens empíricas que combinem análise

quantitativa e julgamento subjetivo, como proposto neste trabalho.

Assim, a compreensão de code smells e métricas de software constitui a base teórica

que sustenta a presente pesquisa, permitindo tanto a avaliação algorítmica por meio de técnicas

de aprendizado de máquina quanto a investigação da percepção humana em relação à qualidade

de código refatorado.

2.2 Qualidade de Software

A avaliação da qualidade de software é um tema muito importante em Engenharia

de Software, buscando oferecer parâmetros objetivos e subjetivos que orientem tanto o desen-

volvimento quanto a manutenção de sistemas. Diferentes modelos foram propostos ao longo

da história para estruturar a noção de qualidade, traduzindo-a em dimensões mensuráveis e

relacionadas a atributos internos e externos do produto (MCCALL et al., 1977; BOEHM, 1976;

PRESSMAN et al., 1995; KITCHENHAM; PFLEEGER, 1996). Os primeiros esforços siste-

matizados surgiram no final da década de 1970. McCall et al. (1977) propuseram um modelo

que agrupava atributos em três categorias: fatores de produto, critérios de qualidade e métricas,

com ênfase em características como confiabilidade, manutenibilidade e eficiência. Boehm et

24

al. (1976) sugeriram um modelo hierárquico que organizava a qualidade em atributos de alto

nível (como utilidade e portabilidade) e métricas mais específicas, estabelecendo a relação entre

requisitos de usuários e propriedades técnicas do software.

Posteriormente, com a consolidação da normalização internacional, foi publicada

a ISO/IEC 9126 (ISO/IEC, 2001), que se tornou referência para a avaliação de qualidade de

produto de software. Esse modelo definiu seis características principais: funcionalidade, confia-

bilidade, usabilidade, eficiência, manutenibilidade e portabilidade, cada uma delas desdobrada

em subcaracterísticas que permitiam operacionalizar a avaliação. Apesar de sua relevância, a

norma recebeu críticas pela ausência de diretrizes claras para definição de métricas específicas, o

que dificulta sua aplicação prática em cenários reais (KITCHENHAM, 1996; WASHIZAKI et

al., 2004). A evolução natural desse esforço resultou no ISO/IEC 25010, publicado em 2011, que

ampliou e refinou a estrutura anterior. O novo modelo passou a contemplar oito características:

adequação funcional, desempenho e eficiência, compatibilidade, usabilidade, confiabilidade,

segurança, manutenibilidade e portabilidade. Além disso, introduziu a distinção entre qualidade

de produto e qualidade em uso, reconhecendo que a experiência do usuário final constitui

parte essencial da avaliação (ISO/IEC, 2011). Essa abordagem responde a críticas anteriores ao

incorporar explicitamente dimensões de percepção e contexto de uso.

No âmbito da pesquisa em qualidade de código, tais modelos são fundamentais para

situar métricas e indicadores empregados em análises automatizadas. Métricas como complexi-

dade ciclomática (MCCABE, 1976), acoplamento e coesão (CHIDAMBER; KEMERER, 1994),

bem como índices compostos como o Maintainability Index (COLEMAN et al., 1994), podem

ser mapeadas a dimensões dos modelos ISO, particularmente manutenibilidade, eficiência e

confiabilidade. Por outro lado, aspectos subjetivos como legibilidade e clareza, apontados por

estudos empíricos como os de Posnett et al. (2011) e Binkley et al. (2013), dialogam com as

características de usabilidade e qualidade em uso.

Em síntese, os modelos de qualidade de software não se limitam a organizar atributos

em categorias conceituais: eles possibilitam estabelecer conexões entre medições quantitativas,

obtidas a partir de métricas, e interpretações qualitativas realizadas por desenvolvedores e

usuários. Nesse cenário, o ISO/IEC 25010 destaca-se por oferecer um quadro de referência que

articula dimensões objetivas, como manutenibilidade e eficiência, com aspectos subjetivos, como

clareza e usabilidade, favorecendo uma visão mais integrada da qualidade do código.

25

2.3 Refatoração de Código

A refatoração de código é definida como o processo sistemático de reestruturar

o código-fonte existente de um sistema de software sem alterar seu comportamento externo

(FOWLER, 1999). O objetivo é melhorar atributos internos do código, tais como legibilidade,

simplicidade, manutenibilidade e extensibilidade, reduzindo a complexidade acidental que tende

a se acumular durante o ciclo de vida do software. Assim, enquanto a correção de defeitos

visa restaurar a funcionalidade, a refatoração concentra-se em melhorar a qualidade estrutural

e não funcional do sistema. Historicamente, a noção de refatoração remonta a trabalhos de

Opdyke (1992), que introduziu o conceito em sua tese de doutorado, propondo operações de

transformação (refactorings) para melhorar a estrutura interna de sistemas orientados a objetos.

Posteriormente, Fowler (1999) sistematizou e popularizou um catálogo de 22 tipos de code

smells acompanhados de refatorações correspondentes, como Extract Method, Move Method,

Encapsulate Field e Replace Conditional with Polymorphism. Essa sistematização consolidou a

refatoração como prática na engenharia de software, integrada a metodologias ágeis e práticas de

desenvolvimento como Continuous Integration e Test-Driven Development (BECK, 2003).

Métodos de refatoração podem ser classificadas em cinco principais categorias:

(i) refatorações de extração e decomposição, como a criação de métodos ou classes menores;

(ii) refatorações de movimentação, que reposicionam atributos ou métodos em classes mais

adequadas; (iii) refatorações de encapsulamento, que melhoram o controle de acesso a dados;

(iv) refatorações de simplificação de expressões e estruturas condicionais; (v) refatorações de

herança, que reorganizam hierarquias de classes para melhorar coesão e reduzir acoplamento

(FOWLER, 1999; MENS; TOURWÉ, 2004).

Diversos estudos têm ressaltado que a refatoração não se limita a um exercício de

“embelezamento” do código, mas atua como um mecanismo estratégico de contenção do débito

técnico e de preservação da arquitetura ao longo do tempo (YAMASHITA; COUNSELL, 2013).

Essa perspectiva ganha força quando se observa que a presença de smells está frequentemente

associada a falhas futuras e a dificuldades de compreensão. Nesse sentido, a refatoração funciona

como uma espécie de “manutenção preventiva”, capaz de reduzir riscos e sustentar a evolução

do sistema (SAHIN et al., 2014). Evidências empíricas reforçam esse papel: Ouni et al. (2016)

e Hilmi et al. (2023) apontam que a remoção de smells contribui não apenas para diminuir

a incidência de defeitos, mas também para ampliar a produtividade de desenvolvedores, que

passam a interagir com um código mais legível, modular e previsível. No contexto desta pesquisa,

26

o uso de algoritmos de ML e LLMs buscam apoiar esse processo de refatoração, fornecendo

alternativas automáticas que podem ser comparadas à percepção crítica de programadores.

Embora tradicionalmente realizada de forma manual, a refatoração tem sido progres-

sivamente apoiada por ferramentas automatizadas, tais como Eclipse, IntelliJ IDEA e NetBeans,

que incorporam catálogos de refatorações seguras e auxiliam no processo. Contudo, essas ferra-

mentas ainda apresentam limitações, especialmente em cenários mais complexos que exigem

julgamento humano, como a decisão sobre modularização adequada ou clareza de nomencla-

turas (GE et al., 2012). Mais recentemente, pesquisas têm explorado a aplicação de técnicas

de aprendizado de máquina e, em particular, de LLMs, como forma de sugerir refatorações

de maneira automática e contextualizada (CHEN et al., 2025). Essa abordagem representa

uma evolução importante, pois permite aliar a sistematização de boas práticas codificadas em

catálogos clássicos ao potencial de generalização e adaptação de modelos de IA, promovendo

refatorações que preservam funcionalidade e atendem a padrões de estilo e clareza cognitiva.

A refatoração de código desempenha um papel estratégico ao articular a detecção de

code smells com a melhoria efetiva da qualidade de software. Mais do que uma técnica corretiva,

ela funciona como ponto de convergência entre métricas objetivas, análises automatizadas e

percepções subjetivas de desenvolvedores. Esse caráter híbrido explica sua relevância não apenas

para a avaliação de algoritmos de detecção, mas também para a análise crítica de refatorações

sugeridas por modelos de linguagem.

2.4 Aprendizado de Máquina na Detecção de Smells

A detecção automática de code smells é um campo de pesquisa que tem ganhado

relevância crescente, pois busca reduzir a subjetividade inerente ao processo manual e aumentar a

escalabilidade da análise de qualidade de código. A abordagem tradicional de detecção, baseada

em inspeções humanas e em ferramentas estáticas de análise, apresenta limitações relacionadas à

consistência dos resultados e à dificuldade de lidar com grandes bases de código (MANTYLA

et al., 2003). Nesse contexto, o uso de técnicas de ML representa um avanço significativo, ao

permitir que algoritmos aprendam padrões associados a smells a partir de métricas de software e

bases rotuladas.

O Aprendizado de Máquina (AM), ou ML, é um subcampo da Inteligência Artificial

voltado ao desenvolvimento de algoritmos capazes de aprender padrões a partir de dados e, com

isso, realizar previsões ou tomar decisões sem que tenham sido explicitamente programados para

27

cada tarefa (MITCHELL, 1997; RUSSELL; NORVIG, 2021). No Aprendizado de Máquina,

segundo Ray (2019), um programa de computador é designado para realizar determinadas tarefas

e diz-se que a máquina aprendeu com sua experiência se seu desempenho mensurável nessas

tarefas melhora à medida que adquire cada vez mais experiência na execução delas. Dessa

forma, os modelos de ML tomam decisões e fazem previsões baseadas em dados, explorando

regularidades presentes em grandes volumes de informação.

Neste estudo, foram selecionados cinco algoritmos de aprendizado de máquina para

comparação quanto ao desempenho na detecção de code smells. São eles: Multilayer Perceptron

(MLP), uma rede neural multicamada com capacidade de capturar relações não lineares (RUCK

et al., 1990); Árvore de Decisão, algoritmo hierárquico baseado em regras de divisão sucessiva

dos dados (QUINLAN, 1990); Floresta Aleatória, técnica de ensemble learning que combina

múltiplas árvores para aumentar robustez (BREIMAN, 2001); Gradiente Boost, método aditivo

que corrige iterativamente os erros de modelos anteriores (FRIEDMAN, 2001); e Support

Vector Machines (SVM), que busca hiperplanos ótimos para separar classes em espaços de

alta dimensionalidade (NOBLE, 2006). Esses algoritmos foram escolhidos por representarem

abordagens clássicas e consolidadas na literatura, além de oferecerem diferentes formas de lidar

com a complexidade do problema de classificação de smells.

Fontana et al. (2016) realizaram um dos estudos de referência nesse campo, utilizando

74 sistemas do Qualitas Corpus, repositório criado por Tempero et al. (2010), e 16 classificadores

de aprendizado de máquina para detectar quatro smells — God Class, Data Class, Feature Envy

e Long Method. Os resultados mostraram que diferentes algoritmos apresentam desempenhos

variados dependendo do smell em análise, sugerindo que não há um modelo universalmente ótimo.

Trabalhos posteriores, como os Kaur e Kaur (2021) e Abdou e Darwish (2024), reforçam essa

constatação, apontando que técnicas baseadas em ensembles, como Random Forest e Gradient

Boosting, tendem a alcançar maior acurácia e robustez em comparação a algoritmos individuais.

A aplicação de ML na detecção de smells geralmente segue um processo composto

por quatro etapas principais: (i) extração de métricas do código-fonte, como complexidade,

coesão, acoplamento e tamanho; (ii) pré-processamento dos dados, incluindo normalização e

tratamento de desbalanceamento de classes; (iii) treinamento supervisionado de classificadores a

partir de bases rotuladas por especialistas ou heurísticas; e (iv) avaliação por meio de métricas

de desempenho, tais como acurácia, precisão, sensibilidade e F1-score (MHAWISH; GUPTA,

2020; NUCCI et al., 2018).

28

Além disso, recentes avanços têm explorado o uso de deep learning na detecção de

smells, empregando redes neurais convolucionais (CNNs) e recorrentes (RNNs) para capturar

padrões semânticos e estruturais diretamente do código (ALAZBA et al., 2023). Contudo,

esses modelos ainda enfrentam desafios relacionados à interpretabilidade e à necessidade de

grandes volumes de dados rotulados, o que limita sua aplicabilidade em contextos industriais. A

principal contribuição do uso de ML para detecção de smells está na possibilidade de transformar

um processo subjetivo em um procedimento mais objetivo e automatizado, sem perder de

vista a complexidade inerente ao julgamento humano. Nesse sentido, a literatura indica que a

combinação entre abordagens algorítmicas e avaliação por desenvolvedores pode gerar resultados

mais confiáveis (POSNETT et al., 2011; SANTOS; GEROSA, 2018).

O aprendizado de máquina desempenha papel duplo: de um lado, fornece modelos

de predição de elevada acurácia para identificar code smells em larga escala; de outro, serve como

contraponto objetivo às percepções humanas coletadas via experimentos empíricos, permitindo

investigar convergências e divergências entre medidas automáticas e julgamentos subjetivos.

2.5 Normalização e Validação dos Dados

A qualidade dos resultados obtidos em experimentos com aprendizado de máquina

depende não apenas da escolha de algoritmos, mas também do tratamento prévio dos dados

e da forma como o desempenho dos modelos é avaliado. Nesse sentido, a normalização e a

validação dos dados representam etapas fundamentais para garantir consistência, comparabilidade

e generalização dos resultados (HAN et al., 2022). Em problemas de classificação de code

smells, as métricas extraídas do código-fonte apresentam escalas heterogêneas: enquanto a

complexidade ciclomática é expressa em valores inteiros e potencialmente altos, o acoplamento

pode assumir valores pequenos, e o número de atributos ou métodos tende a variar em escalas

intermediárias. Essa heterogeneidade pode induzir viés em algoritmos de ML, sobretudo em

métodos baseados em distância, como k-NN, ou em modelos sensíveis à escala de atributos,

como Redes Neurais e SVM (AL-SHALABI et al., 2006).

A normalização busca reduzir esse viés ao transformar os dados para uma escala

comparável. De modo geral, pode-se representar o processo de transformação de um vetor de

atributos x em x′ por meio de um escalonamento (E) e um fator de tradução (T): x′ = Ex+T .

Diferentes técnicas podem ser aplicadas, dependendo da distribuição dos dados e das exigências

do modelo: escalonamento para intervalos, transformação logarítmica, padronização por Z-score

29

e normalização Min-Max (HAN et al., 2022). Neste trabalho, optou-se pela normalização

Min-Max, que dimensiona os valores para o intervalo [0,1], sendo dada pela expressão: x′ =
x−min(x)

max(x)−min(x)

Outro aspecto essencial é a forma de avaliar a capacidade de generalização dos

modelos treinados. Em contextos de pesquisa acadêmica, a simples divisão dos dados em treino e

teste pode levar a estimativas instáveis, sobretudo quando os conjuntos de dados são limitados ou

desbalanceados. Para mitigar esse problema, a validação cruzada (cross-validation) tornou-se

prática consolidada (ARLOT; CELISSE, 2010).

Na validação cruzada k-fold, o conjunto de dados é dividido em k subconjuntos

de tamanho aproximadamente igual. Em cada iteração, k− 1 subconjuntos são usados para

treinamento e o subconjunto restante é reservado para teste. Esse procedimento é repetido k

vezes, de forma que cada subconjunto seja utilizado exatamente uma vez como conjunto de teste.

A média dos resultados obtidos constitui uma estimativa mais robusta do desempenho real do

modelo, reduzindo a variabilidade associada a uma única partição dos dados (ARLOT; CELISSE,

2010; KOHAVI et al., 1995).

A avaliação do desempenho dos modelos requer também a aplicação de métodos

estatísticos. Medidas como média e desvio padrão sintetizam tendências centrais e dispersão

em torno dos resultados. Para um conjunto de n observações x1,x2, . . . ,xn, a média é dada por:

x̄ = 1
n ∑

n
i=1 xi e o desvio padrão amostral por: s =

√

1
n−1 ∑

n
i=1(xi − x̄)2

Para comparações entre condições pareadas, como desempenho de algoritmos com e

sem validação cruzada, pode-se utilizar o teste de Wilcoxon para postos sinalizados, adequado

para pequenas amostras e sem pressuposição de normalidade (WILCOXON, 1945). O estatístico

de Wilcoxon é dado pela soma dos postos positivos: W = ∑
n
i=1 R+

i onde R+
i representa o posto

atribuído aos casos em que a diferença di > 0. A hipótese nula (H0) assume que a mediana

das diferenças é zero. A análise também deve considerar os riscos de erro: o erro tipo I,

com probabilidade α , ocorre quando se rejeita H0 sendo ela verdadeira; e o erro tipo II, com

probabilidade β , ocorre quando não se rejeita H0 mesmo sendo falsa. O poder estatístico do teste

é expresso como 1−β .

Em experimentos que envolvem percepção humana, como questionários aplicados

a desenvolvedores, utiliza-se frequentemente a escala Likert, estruturada em múltiplos níveis

de concordância (JOSHI et al., 2015). Para avaliar a consistência interna dos itens, emprega-se

o Alfa de Cronbach (CRONBACH, 1951), definido como: α = k
k−1

(

1− ∑
k
i=1 σ2

i
σ2

T

)

onde k é o

30

número de itens, σ2
i é a variância de cada item e σ2

T é a variância total do escore composto.

Valores de α g 0.7 são geralmente considerados indicativos de consistência aceitável (GLIEM;

GLIEM, 2003). No contexto da detecção de code smells, a normalização assegura que métricas

como complexidade, coesão e acoplamento sejam analisadas em bases comparáveis, evitando

que atributos em maior escala dominem o processo de classificação. A validação cruzada, por sua

vez, confere robustez às estimativas de desempenho, reduzindo vieses decorrentes de partições

específicas dos dados.

Complementarmente, a aplicação de fundamentos estatísticos, como médias, des-

vios padrão e testes não paramétricos, como Wilcoxon, possibilita avaliar de forma crítica as

diferenças de desempenho entre algoritmos, ao mesmo tempo em que a consideração dos erros

tipo I e II garante interpretação mais cautelosa dos resultados. Em paralelo, instrumentos de

medição aplicados em pesquisas empíricas, como escalas Likert e o Alfa de Cronbach, permitem

avaliar a consistência interna e a confiabilidade das percepções coletadas junto a desenvolvedores,

integrando assim dimensões subjetivas ao processo de análise.

2.6 Ferramentas e Usabilidade em Pesquisas Acadêmicas

A evolução de ferramentas de apoio à Engenharia de Software tem desempenhado

papel fundamental na análise e detecção de code smells, bem como na avaliação de qualidade

de código em ambientes acadêmicos e industriais. Soluções como PMD, Checkstyle, iPlasma

e JCodeOdor se destacam por automatizar a coleta de métricas e identificação de padrões

problemáticos (LIGGESMEYER; TRAPP, 2009; FONTANA et al., 2016). No entanto, tais

ferramentas apresentam limitações quanto à interpretabilidade dos resultados e à replicabilidade

de experimentos, o que impacta diretamente sua adoção em pesquisas empíricas (MÄNTYLÄ;

LASSENIUS, 2006; SAHIN et al., 2014). No contexto acadêmico, a disponibilidade de ferramen-

tas que conciliem análise técnica com coleta estruturada de percepções é especialmente relevante.

Estudos empíricos em Engenharia de Software demandam não apenas métricas quantitativas,

mas também instrumentos que capturem dimensões subjetivas, como legibilidade e clareza,

sob a ótica de desenvolvedores (BINKLEY et al., 2013; POSNETT et al., 2011). Diversos

autores ressaltam que a confiabilidade dos resultados depende de procedimentos sistemáticos e

do suporte de ferramentas capazes de reduzir vieses e assegurar a rastreabilidade das evidências

(WOHLIN et al., 2012; RUNESON et al., 2012; FALESSI et al., 2018).

A usabilidade dessas ferramentas é um aspecto crítico. Segundo Nielsen (1994), a

31

usabilidade pode ser avaliada por meio de heurísticas que incluem facilidade de aprendizagem,

eficiência, memorabilidade, redução de erros e satisfação do usuário. Esses critérios tornaram-se

referência no campo de Interação Humano-Computador (IHC) e têm sido aplicados também à

avaliação de sistemas de apoio à pesquisa (SAURO; LEWIS, 2016). Em pesquisas empíricas,

a adoção de ferramentas com baixa usabilidade pode introduzir vieses significativos, como

aumento da carga cognitiva dos participantes ou dificuldades na execução de tarefas propostas.

Evidências nesse sentido foram relatadas por Mäntylä (2005), ao demonstrar que mesmo em

avaliações de code smells há baixa concordância entre avaliadores humanos, indicando que

o uso de métricas ou ferramentas pouco intuitivas pode comprometer a confiabilidade dos

resultados. De forma complementar, Fakhoury et al. (2018) mostraram que léxicos de código

pobres e problemas de legibilidade elevam a carga cognitiva dos desenvolvedores, sugerindo que

ferramentas com baixa usabilidade podem potencializar esses efeitos, interferindo na validade

interna de experimentos empíricos.

Outro elemento importante é a integração de métodos de coleta de dados qualitati-

vos e quantitativos. Questionários baseados em escalas Likert, por exemplo, são amplamente

utilizados para medir percepções subjetivas de forma padronizada (JOSHI et al., 2015), en-

quanto técnicas de análise de conteúdo (BARDIN, 2016) permitem examinar respostas abertas e

identificar categorias emergentes. Uma ferramenta bem projetada deve incorporar tais mecanis-

mos, de forma a apoiar não apenas a execução técnica de experimentos, mas também a análise

metodológica robusta de seus resultados.

Nesse cenário, iniciativas recentes, como a TwinCode (Capítulo 4), buscam preencher

essa lacuna ao aliar funcionalidades de comparação de código com instrumentos integrados de

coleta de dados, alinhando-se às demandas metodológicas da Engenharia de Software empírica.

Portanto, a discussão sobre ferramentas e usabilidade em pesquisas acadêmicas não se restringe

a aspectos técnicos, mas se estende à viabilidade de experimentos replicáveis, à confiabilidade

das percepções coletadas e ao fortalecimento do rigor científico.

2.7 Percepção Humana de Qualidade de Código

A avaliação da qualidade de software não pode ser reduzida apenas a indicadores

objetivos, visto que a percepção humana desempenha papel central na interpretação e julgamento

de atributos de código. Desenvolvedores, revisores e pesquisadores frequentemente avaliam

trechos de software não apenas com base em métricas estruturais, mas também a partir de

32

fatores cognitivos, como clareza, familiaridade e consistência estilística (POSNETT et al., 2011;

BINKLEY et al., 2013).

Estudos empíricos têm mostrado que a percepção de qualidade de código é influenci-

ada por múltiplos elementos. Buse e Weimer (2009), por exemplo, evidenciaram que atributos

como legibilidade e nomenclatura têm impacto direto na avaliação subjetiva dos desenvolvedores,

muitas vezes mais do que métricas tradicionais como acoplamento ou complexidade. Nesse

sentido, fatores como o tempo necessário para compreender um trecho, o esforço cognitivo

associado e a facilidade de navegação na estrutura do código tornam-se determinantes para a

percepção de qualidade. Posnett et al. (2011) destacam que a legibilidade é fortemente associada

à compreensibilidade do código, mas não é totalmente capturada por métricas objetivas. Binkley

et al. (2013), em um estudo com 120 participantes, concluíram que mudanças em elementos

aparentemente superficiais, como estilo de indentação e nomes de variáveis, impactam signifi-

cativamente a percepção dos desenvolvedores sobre a clareza e simplicidade do código. Isso

demonstra que medidas estritamente quantitativas não são suficientes para explicar a experiência

humana de interação com software.

No âmbito da Engenharia de Software empírica, a análise da percepção humana é

frequentemente realizada por meio de experimentos controlados, entrevistas e questionários

estruturados, que capturam tanto respostas quantitativas quanto qualitativas (via análise de

conteúdo). Santos e Gerosa (2018) enfatizam que tais abordagens são fundamentais para

compreender como desenvolvedores interpretam atributos como modularidade, manutenibilidade

e legibilidade, uma vez que o julgamento humano é inevitável em processos como revisão de

código e avaliação de soluções alternativas de design. Outro aspecto importante refere-se às

diferenças entre níveis de experiência. Pesquisadores como Begel e Simon (2008) mostraram

que programadores juniores tendem a valorizar mais a clareza superficial e a consistência

visual, enquanto desenvolvedores sêniores concentram-se em dimensões mais abstratas, como

modularidade e custo de manutenção. Essa heterogeneidade sugere que a percepção de qualidade

não é homogênea, mas mediada por fatores de experiência, contexto de uso e objetivos de

desenvolvimento.

2.8 Modelos de Linguagem de Grande Porte (LLMs)

LLMs representam um avanço recente no campo do Processamento de Linguagem

Natural (PLN), sendo baseados em arquiteturas de deep learning, em particular nos transformers

33

propostos por Vaswani et al. (2017). Esses modelos são treinados em grandes volumes de texto,

utilizando mecanismos de atenção para capturar relações contextuais de longo alcance entre

tokens, o que lhes permite gerar, completar e reescrever trechos de linguagem natural e de

programação com alta fluidez e coerência (BROWN et al., 2020).

Na área da Engenharia de Software, pesquisas recentes têm explorado o uso de LLMs

para apoiar diretamente o processo de refatoração de código. Modelos como Codex (CHEN et

al., 2021), Code LLaMA (ROZIERE et al., 2023) e GPT-4 (ACHIAM et al., 2023) demonstraram

capacidade de propor modificações estruturais em classes e métodos, frequentemente alinhadas a

práticas descritas em catálogos clássicos de refatoração (FOWLER, 1999). White et al. (2023)

mostram que os LLMs conseguem sugerir transformações como Extract Method e Move Method

preservando a semântica do programa, enquanto Chen et al. (2025) apontam sua eficácia na

remoção de determinados code smells.

Entre as principais vantagens do uso de LLMs nesse domínio estão: (i) a capacidade

de lidar com múltiplos contextos de programação, inclusive linguagens diferentes; (ii) a possibi-

lidade de gerar explicações textuais que auxiliam na compreensão das refatorações propostas;

(iii) a integração natural com fluxos de trabalho de desenvolvimento, como revisões de código

em sistemas de controle de versão. Por outro lado, limitações relevantes ainda precisam ser

enfrentadas: estudos indicam que os modelos têm propensão a gerar code smells (VELASCO et

al., 2025) e enfrentam desafios em compreensão semântica dinâmica e riscos de alucinação, o

que compromete a interpretabilidade das saídas (MA et al., 2023).

Do ponto de vista metodológico, os LLMs oferecem uma oportunidade única de

combinar a objetividade de algoritmos de aprendizado com a subjetividade da avaliação humana.

Ao propor refatorações, os modelos tornam-se passíveis de avaliação empírica por desenvol-

vedores, permitindo investigar não apenas sua eficácia técnica, mas também sua aceitação e

adequação no contexto do trabalho real de programação.

Assim, os LLMs configuram-se como elemento promissor na investigação aqui

proposta, funcionando como ponte entre a detecção automatizada de code smells, tradicional-

mente apoiada em métricas e aprendizado de máquina, e a refatoração de código mediada por

julgamentos humanos. Essa intersecção reforça o caráter interdisciplinar da pesquisa, ao integrar

fundamentos de Engenharia de Software, PLN e IHC.

34

3 DETECÇÃO DE CODE SMELL COM APRENDIZADO DE MÁQUINA

Este capítulo compartilha material com uma publicação: “Estudo Empírico: Detec-

ção de Code Smells com Aprendizado de Máquinas" (MOREIRA et al., 2024)

Code smell é uma característica estrutural do software que indica um aspecto no

código ou no design que pode causar problemas na manutenção do software. Code smell não

é um erro no sistema, pois não impede o funcionamento do programa, mas pode aumentar o

risco de falha do software ou desacelerar o desempenho. Notavelmente, a predição precoce do

code smell durante a fase de desenvolvimento é muito importante, especialmente em projetos

grandes (ABDOU; DARWISH, 2024). O processo de refatoração é fundamental para eliminar

code smells e melhorar a qualidade do software. Fowler (2018) apresenta uma definição de

22 tipos de code smells no código-fonte e oferecem algumas operações de refatoração para

corrigi-los.

O impacto dos code smells no software foram examinados por vários estudos e

revelaram seu efeito indesejável na qualidade do software (YAMASHITA; MOONEN, 2012;

YAMASHITA; MOONEN, 2013; SAHIN et al., 2014). Outros autores também investigaram os

resultados da remoção dos code smells na redução da probabilidade de falhas e erros no sistema

de software. Hilmi et al. (2023) analisaram os desafios decorrentes dos code smells, os quais têm

efeitos adversos no processo de desenvolvimento de software. Ouni et al. (2016) e Fowler (2018)

recomendaram a aplicação de refatoração no software para eliminar code smells. Dewangan et

al. (2021) mostraram evidências do papel fundamental das métricas na detecção de code smells.

Além disso, eles identificaram que as métricas ajudam na compreensão do código-fonte medindo

tanto aspectos funcionais quanto não funcionais do software.

Travassos et al. (1999) e Ciupke (1999) investigaram a detecção de Code Smell por

meio de detecção manual. Moha et al. (2009) e Tsantalis e Chatzigeorgiou (2009) introduziram

abordagens baseados em métricas. Yamashita e Moonen (2013) e Tarwani e Chug (2016) avaliam

problemas de manutenibilidade causado por code smells. Fontana et al. (2016) e Dewangan

et al. (2021) abordaram a detecção por aprendizado de máquina. Ferramentas de apoio ao

desenvolvimento, como SonarQube1 e PMD2, já incorporam mecanismos de identificação de

1 Disponível em: <https://www.sonarsource.com/products/sonarqube/> Acesso em: 3 fev. 2024
2 Disponível em: <https://pmd.github.io/> Acesso em: 4 fev. 2024

35

code smells durante o processo de construção do software, ainda que baseados majoritariamente

em regras estáticas e métricas pré-definidas. Entretanto, observa-se que a maioria dos estudos

sobre aprendizado de máquina na detecção de code smells ocorre em ambientes experimentais

isolados, sem integração direta com o fluxo contínuo de desenvolvimento e manutenção. Essa

lacuna evidencia a necessidade de investigar como técnicas de IA podem ser incorporadas de

forma prática e sistemática ao ciclo de vida do software. Nesse sentido, a detecção automatizada

de code smells por meio de ML pode representar uma alternativa viável para ampliar o suporte

ao desenvolvedor em todas as etapas do ciclo de vida do software.

O objetivo deste capítulo é investigar a eficácia dos algoritmos de aprendizado de

máquina na detecção de code smells. Além disso, foi analisado se a técnica de validação cruzada

contribui para melhorar os resultados e reduzir as ameaças à validade deste estudo. Para isso,

adota-se um conjunto de dados com quatro tipos de code smells: God Class, Data Class, Feature

Envy e Long Method. Cinco algoritmos de aprendizado de máquina (MLP, Árvore de Decisão,

Floresta Aleatória, Gradiente Boost e SVM) são aplicados nos conjuntos de dados. Como

resultado, o algoritmo de Floresta Aleatória (97,0%) obteve o melhor desempenho médio, em

termos de acurácia, comparado com MLP (94,3%), Árvore de Decisão (93,9%), Gradiente Boost

(96,6%) e SVM (91,8%).

Este trabalho possui 5 contribuições principais, sendo elas:

• Avaliação Sistemática Multi-smell e Multi-algoritmo. O estudo utiliza um benchmark

de cinco classificadores supervisionados (MLP, Árvore de Decisão, Floresta Aleatória,

Gradient Boosting e SVM) aplicados aos code smells Data Class, God Class, Feature Envy

e Long Method, com justificativa técnica para a seleção e descrição do processo típico de

aplicação de ML à detecção de code smells.

• Base de Dados Curada e Mensuração Ampla.: Uso do Qualitas Corpus de Tempero

et al. (2010) (74 sistemas, 51.826 classes, 404.316 métodos) e de múltiplos detectores

(iPlasma, PMD, Fluid Tool, Anti-Pattern Scanner), cobrindo seis dimensões de métricas

(tamanho, complexidade, coesão, acoplamento, encapsulamento e herança).

• Desempenho Elevado e Baselines Fortes. Acurácia variando de 89,7% a 99,2% entre

code smells e algoritmos, com picos de 96,8% para Data Class, 93,7% para God Class,

98,4% para Feature Envy e 99,2% para Long Method.

• Robustez Frente à Validação Cruzada. Teste de Wilcoxon (pares Sem vs. Com validação

cruzada, n = 5 algoritmos) não indicou diferenças significativas nas acurácias (todos p >

36

0,05; Feature Envy com tendência, p = 0,063), corroborando estabilidade dos resultados.

• Síntese Comparativa da Literatura. Confirmação de que não há modelo universalmente

ótimo e de que algoritmos de árvore e ensembles (como Floresta Aleatória e Gradient

Boosting) tendem a maior acurácia/robustez para detecção de code smells.

O restante deste capítulo está organizado da seguinte forma. Na Seção 3.1, é descrito

a metodologia usada para o desenvolvimento deste trabalho. Na Seção 3.2, apresenta-se os

resultados e analise dos dados. Na Seção 3.3, descreve-se trabalhos relacionados. Na Seção 3.4,

é discutido as ameaças a validade da pesquisa. Finalmente, na Seção 3.5, é dada as conclusões o

estudo.

3.1 Metodologia

O objetivo principal deste estudo é avaliar o desempenho de técnicas de aprendizado

de máquina para a detecção de code smells. Como objetivo específico, busca-se avaliar o impacto

da validação cruzada na precisão dos algoritmos utilizados. Para alcançar tais objetivos, são

exploradas as duas questões de pesquisa descritas a seguir.

• QP1. Qual a eficácia de cinco técnicas de machine learning (MLP, Árvore de Decisão,

Floresta Aleatória, Gradiente Boost e SVM) para detecção de code smells?

• QP2. Qual o impacto da validação cruzada no conjunto de dados utilizado?

A Figura 2 apresenta as etapas seguidas neste trabalho. Inicialmente, o conjunto

de dados é coletado, seguido pelas etapas de pré-processamento e normalização. Esse pré-

processamento é necessário para minimizar diferenças nas faixas dos conjuntos de dados e

possibilitar a obtenção de melhores parâmetros pelos algoritmos. Em seguida, os dados são

divididos em três grupos/conjuntos: treinamento, validação cruzada e teste. Após essa divisão, o

desempenho dos algoritmos de aprendizado de máquina é calculado no conjunto de treinamento.

Na sequência, aplica-se a técnica de validação cruzada em 10 partes, a fim de avaliar e comparar

o desempenho de cada experimento durante o processo de treinamento. Por fim, realiza-se a

avaliação final com o conjunto de testes. A seguir, são detalhados o processo de coleta de dados

e a avaliação de desempenho.

37

Figura 2 – Fluxo de trabalho proposto.
Fonte: Elaborado pelo autor (2024)

3.1.1 Conjunto de Dados

O conjunto de dados usado foi obtido por Abdou e Darwish (2024) que se basearam

no trabalho de Fontana et al. (2016). Este conjunto de dados é compostos por 74 sistemas

desenvolvidos em Java de diferentes tamanhos e domínios, chamado de Qualitas Corpus (QC).

Esses sistemas possuem um conjunto de métricas orientadas a objetos coletadas abrangendo os

níveis de método, classe, pacote e projeto (TEMPERO et al., 2010). Algumas dessas métricas

foram definidas conforme o aspecto da qualidade de software, como complexidade, tamanho e

acoplamento. Outras métricas dependem da contagem da composição em pacotes ou classes. Os

code smells foram definidos no nível de método ou classe. No nível de método, foi escolhido

para detectar Feature Envy e Long Method, enquanto no nível de classe, detectamos Data Class

e God Class. Os autores do conjunto de dados escolheram estes quatro code smells devido sua

alta incidência e pelo impacto negativo na qualidade dos sistemas.

A Tabela 1 apresenta o tamanho geral dos sistemas selecionados por Fontana et al.

(2016). Na pesquisa de Abdou e Darwish (2024) foram utilizados apenas os dados correspon-

dentes aos code smells God Class, Data Class, Feature Envy e Long Method, que são o foco

dos experimentos descritos deste estudo. Como destacado por Fontana et al. (2016) e Abdou e

Darwish (2024), o uso de múltiplos sistemas heterogêneos é fundamental para assegurar que

os resultados de aprendizado de máquina não dependam de um conjunto de dados específico e

38

possam ser generalizados.

Tabela 1 – Visão geral dos sistemas do
Qualitas Corpus

Característica Quantidade

Número de Sistemas 74
Número de Pacotes 3.420
Número de Classes 51.826

Número de Métodos 404.316
Número de Linhas de Código 6.785.568

Fonte: Fontana et al. (2016)

A Tabela 2 apresenta as ferramentas utilizadas para identificar os code smells investi-

gados. A iPlasma foi empregada na detecção de todos os smells, enquanto a PMD contribuiu

especificamente para Long Method e God Class, a Fluid Tool para Data Class e Feature Envy, e

o Anti-Pattern Scanner exclusivamente para Data Class. A seleção dessas ferramentas conside-

rou três critérios: (i) gratuidade, (ii) facilidade de configuração e generalização dos resultados e

(iii) diversidade nas regras de detecção. As métricas utilizadas por elas abrangem seis dimensões

de qualidade de software: tamanho, complexidade, coesão, acoplamento, encapsulamento e

herança. As descrições detalhadas podem ser consultadas em material complementar 3.

A ferramenta iPlasma4 é uma plataforma de análise estática que fornece métricas

de código orientadas a objetos e permite identificar potenciais smells com base em limiares

pré-definidos. O PMD5 é uma ferramenta de código aberto que analisa código-fonte em diversas

linguagens, identificando problemas recorrentes como variáveis não utilizadas, métodos longos

ou complexos e estruturas de controle aninhadas. A Fluid Tool foi desenvolvida no contexto da

abordagem DECOR e utiliza regras declarativas para especificar e detectar code smells (MOHA

et al., 2009). Por fim, o Anti-Pattern Scanner foi projetado para identificar anti-padrões de

projeto que frequentemente se manifestam como code smells, combinando métricas de código e

heurísticas específicas (TSANTALIS; CHATZIGEORGIOU, 2009).

A Tabela 3 apresenta a divisão do conjunto de dados após a análise das ferramentas

e a análise manual descrita em Fontana et al. (2016). A classificação foi realizada em dois

grupos, de forma semelhante a trabalho anterior (ABDOU; DARWISH, 2024). O primeiro

grupo corresponde aos artefatos sem presença de code smells, denominados falsos positivos. O

3 Disponível em: <https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/>
4 Disponível em: <http://loose.upt.ro/research/tools/iplasma>. Acesso em: 15 set. 2025
5 Disponível em: <https://pmd.github.io/>. Acesso em: 15 set. 2025

39

Tabela 2 – Detectores de code smells

Code Smell Ferramenta/ Regra de Detecção

Long method iPlasma, PMD
Data class iPlasma, Fluid Tool, Anti-Pattern Scanner
God class iPlasma, PMD

Feature Envy iPlasma, Fluid Tool

Fonte: Fontana et al. (2016)

segundo grupo reúne os artefatos classificados como verdadeiros positivos, indicando que a

análise dos autores apontou a presença de code smells.

Tabela 3 – Composição do conjunto de dados

Code Smell Falsos Positivos Verdadeiros Positivos Total

Long method 280 140 420
Data class 151 269 420
God class 154 266 420

Feature Envy 280 140 420

Fonte: Elaborado pelo autor

3.1.2 Avaliação de Desempenho

Para medir o desempenho dos algoritmos de aprendizado de máquina considera-se

quatro métricas: Precisão, Sensibilidade, F1-score e Acurácia. O cálculo das quatro métricas

investigadas baseia-se nos valores de verdadeiro positivo (TP), verdadeiro negativo (TN), falso

positivo (FP) e falso negativo (FN) que são definidos a seguir.

• Verdadeiro Positivo (TP): casos em que o algoritmo identificou corretamente a presença

de um code smell.

• Falso Positivo (FP): casos em que o algoritmo classificou incorretamente um trecho como

contendo code smell, quando na realidade não continha.

• Verdadeiro Negativo (TN): casos em que o algoritmo identificou corretamente a ausência

de code smell.

• Falso Negativo (FN): casos em que o algoritmo deixou de identificar um code smell

existente, classificando-o como inexistente.

Esses parâmetros são calculados usando uma matriz de confusão que contém as

informações reais e previstas reconhecidas pelos classificadores de detecção de padrões de projeto

(CATAL, 2012). As equações para o cálculo das avaliações de desempenho são mostradas a

seguir.

40

• Precisão é a proporção de casos em que o modelo acertou ao prever uma classe positiva,

em relação a todas as vezes que ele previu essa classe — incluindo os acertos e os erros.

Essa descrição é representada na Equação 3.1.

Precisão =
T P

T P+FP
(3.1)

• Acurácia é a razão entre o número total de previsões corretas (verdadeiros positivos e

verdadeiros negativos) e o número total de previsões realizadas (incluindo verdadeiros

positivos, falsos positivos, verdadeiros negativos e falsos negativos). Essa descrição é

representada na Equação 3.2.

Accurácia =
T P+T N

T P+FP+T N +FN
(3.2)

• Sensibilidade ou revocação é a proporção de casos positivos que o modelo identificou

corretamente em relação ao total de casos que realmente são positivos, como exposto na

Equação 3.3.

Sensibilidade =
T P

T P+FN
(3.3)

• F1-Score é a média harmônica entre a Precisão e a Sensibilidade, como visto na Equação

3.4. Hossin e Sulaiman (2015) fala que F1-score busca equilíbrio entre essas precisão e

sensibilidade, especialmente útil quando há uma distribuição desigual entre classes. Por

exemplo, quando o números de classes sem code smells é muito maior que o número de

classes sem nenhum code smell).

F1-Score = 2×
Precisao×Sensibilidade
Precisao+Sensibilidade

(3.4)

41

A acurácia foi adotada como métrica principal por sintetizar, em um único valor, a

proporção de acertos do classificador, sendo intuitiva e amplamente utilizada em problemas de

classificação supervisionada (FOODY, 2023). Embora métricas como Precisão, Sensibilidade

e F1-score ofereçam informações complementares, a acurácia se destaca por sua simplicidade

interpretativa e por refletir de forma direta a capacidade dos algoritmos em distinguir corretamente

trechos com e sem code smells (GOPALAKRISHNA et al., 2013).

3.2 Resultados

Nesta seção, os resultados obtidos são descritos a partir da aplicação dos algoritmos

de aprendizado de máquina ao conjunto de dados. A apresentação está organizada em duas

subseções principais: a subseção 3.2.1 analisa a eficácia dos algoritmos considerando a acurácia

em diferentes tipos de code smells, destacando aqueles que alcançaram melhor desempenho e

discutindo suas variações. A subseção 3.2.2 avalia o impacto da técnica de validação cruzada nos

experimentos, comparando os resultados com o procedimento tradicional de partição simples e

discutindo suas implicações metodológicas.

3.2.1 QP1 - Eficácia dos Algoritmos

Como mencionado anteriormente, utilizou-se cinco algoritmos de aprendizado de

máquina para detecção de quatro code smells em projetos de software. Os quatro tipos de

code smells possuem dois níveis de granularidade: classes e métodos. A Tabela 4 compara

os resultados das métricas com todos os code smells, sem validação cruzada, usando a técnica

holdout dividindo o conjunto de dados em 70% para treino e 30% para teste e também foi usado

para validação, pois esses dados não foram usados no treinamento dos algoritmos. Como pode-se

observar os algoritmos obtiveram bom desempenho. Com resultados da acurácia variando entre

89,7% para os algoritmo Árvore de Decisão e SVM nos code smells Data class e God Class,

respectivamente e 99,2% para os algoritmos Árvore de Decisão, Floresta Aleatória e Gradiente

Boost para o code smell Long Method.

Analisando os dados gerado pelo algoritmo MLP, pode ser visto que seu melhor

desempenho em termos de acurácia é para o code smell Long Method (96,0%), porém o mesmo

ainda se mostra muito eficiente na detecção dos demais code smells com valor mínimo de

acurácia de 92,9% para God Class, os demais smells alcançaram valores de 93,7% (Data Class)

42

Tabela 4 – Comparação das métricas

Code Smell Algoritmo Precisão Sensibilidade F1-Score Acurácia

Data Class

MLP 93,1% 93,7% 93,4% 93,7%
Árvore de Decisão 88,9% 90,0% 89,3% 89,7%
Floresta Aleatória 96,7% 96,7% 96,7% 96,8%
Gradiente Boost 97,0% 96,3% 96,6% 96,8%
SVM 91,3% 91,2% 91,3% 92,3%

God Class

MLP 92,9% 91,7% 92,3% 92,9%
Árvore de Decisão 88,9% 89,2% 89,0% 89,7%
Floresta Aleatória 84,1% 92,4% 93,1% 93,7%
Gradiente Boost 92,9% 91,7% 92,3% 92,9%
SVM 91,1% 87,0% 88,5% 89,7%

Feature Envy

MLP 93,2% 93,8% 93,5% 94,4%
Árvore de Decisão 95,7% 96,6% 96,3% 96,8%
Floresta Aleatória 98,1% 98,1% 98,1% 98,4%
Gradiente Boost 97,5% 96,8% 97,2% 97,6%
SVM 91,2% 89,8% 89,2% 91,3%

Long Method

MLP 95,2% 95,8% 95,5% 96,0%
Árvore de Decisão 99,4% 98,8% 99,1% 99,2%
Floresta Aleatória 98,8% 99,4% 99,1% 99,2%
Gradiente Boost 99,4% 98,8% 99,1% 99,2%
SVM 92,8% 92,8% 92,8% 93,7%

Fonte: Elaborado pelo autor (2024)

e 94,4% (Feature Envy). Para o algoritmo Árvore de Decisão, o seu melhor resultado em termos

de acurácia foi para o code smell Long Method (99,2%). No entanto, este algoritmo teve o

pior desempenho entre os algoritmos analisados para os code smells Data Class (89,7%) e God

Class (89,7%), Feature Envy (96,8%). O SVM se mostrou promissor, com acurácia de 93,7%

para Long Method, 92,3% para Data Class, 89,7% para God Class e 91,3% para Feature Envy.

Os resultados de acurácia para Floresta Aleatória são os mais promissores, pois obteve melhor

acurácia para os quatro code smells, sendo 96,8% para Data Class, 93,7% para God Class, 98,4%

para Feature Envy e 99.2% para Long Method. Já o Gradiente Boost ficou logo atrás da Floresta

Aleatória com acurácia igual nos code smells Data Class (96,8%) e Long Method (99,2%), mas

um pouco menos eficiente para God Class (92,9%) e Feature Envy (97,6%).

Resumo da resposta da QP1. A acurácia, variou de 89,7% à 99,2%. O algoritmo Árvore

de Decisão obteve melhor acurácia para todos os code smells, sendo 93,7% para God

Class, 96,8% para Data Class, 98,4% para Feature Envy e 99,2% para Long Method.

43

3.2.2 QP2 - Eficácia dos Algoritmos com Validação Cruzada

A Tabela 5 apresenta os dados referentes ao desempenho da acurácia dos algoritmos

empregando a técnica de validação cruzada de 10 partes. É mostrado, com exceção do algoritmo

SVM para Feature Envy (88,5%), que todos os algoritmos alcançaram acurácia superior a 90%

para todos os code smells, onde é destacado o desempenho do algoritmo Floresta Aleatória

obteve 94,2% para o code smell Data class, 96,3% para God Class, para Feature Envy 94,5% e

99,0% para Long Method.

Tabela 5 – Desempenho dos algoritmos com validação cruzada em 10
partes (Acurácia)

Data Class God Class Featury Envy Long Method

MLP 91,9% 91,6% 90,5% 98,3%
Árvore de Decisão 90,8% 91,2% 93,6% 98,6%
Floresta Aleatória 94,2% 96,3% 94,5% 99,0%
Gradiente Boost 93,2% 94,6% 93,9% 98,6%

SVM 91,2% 91,2% 88,5% 97,3%

Fonte: Elaborado pelo autor (2024)

A Tabela 6 apresenta uma comparação dos resultados em termos de acurácia sem

validação cruzada (resultados apresentados na Tabela 4) e com validação cruzada (resultados

apresentados na Tabela 5). Essa comparação é apenas para efeito didático, já que a finalidade

da validação cruzada é a mitigação de possíveis falhas no processo de treinamento da técnica

holdout. Analisando a acurácia de Data Class, apenas Árvore de Decisão obteve melhores

resultados utilizando validação cruzada (89,7% versus 90,8%). No caso de God Class apenas

o algoritmo MLP não obteve melhora da acurácia (92,9% e 91,6%). Os demais algoritmos

obtiveram melhora de pelo menos 1,5%. Por exemplo, SVM melhorou de 89,7% para 91,2%. No

caso de Feature Envy nenhum algoritmo obteve melhora com a validação cruzada. A acurácia

caiu pelo menos 2,8% e chegando a 3,9% no caso de MLP (94,4% para 90,5) e Floresta Aleatória

(97,6% para 93,9%). No caso de Long Method, a acurácia melhorou apenas para dois algoritmos:

MLP de 96,0% para 98,3% e SVM de 93,7% para 97,3%. Os demais algoritmos que haviam

performado melhor em toda a análise tiveram sua acurácia reduzida de 99,2% para 98,6% nos

casos de Árvore de Decisão e Gradiente Boost e de 99,2% para 99,0% no caso de Floresta

Aleatória.

Para avaliar se a aplicação de validação cruzada impactou significativamente a

acurácia dos algoritmos, foi realizada uma comparação estatística entre os cenários Sem e

44

Tabela 6 – Comparação dos algoritmos com validação cruzada e sem
validação cruzada em termos de acurácia

Algoritmo
Data Class God Class Feature Envy Long Method

Sem Com Sem Com Sem Com Sem Com

MLP 93,7 91,9 92,9 91,6 94,4 90,5 96,0 98,3
Arvore de Decisão 89,7 90,8 89,7 91,2 96,8 93,6 99,2 98,6
Floresta Aleatória 96,8 94,2 93,7 96,3 98,4 94,5 99,2 99,0
Gradiente Boost 96,8 93,2 92,9 94,6 97,6 93,9 99,2 98,6
SVM 92,3 91,2 89,7 91,2 91,3 88,5 93,7 97,3

Fonte: Elaborado pelo autor (2024)

Com validação cruzada. Como os dados são pareados (o mesmo algoritmo avaliado sob duas

condições distintas), foi utilizado o teste de Wilcoxon para postos sinalizados (WILCOXON,

1945). Esse teste não paramétrico foi escolhido por três motivos principais: (i) o número de pares

é reduzido (n = 5 algoritmos), o que compromete a robustez de testes paramétricos como o teste

t pareado; (ii) não é possível assumir normalidade para as diferenças entre as condições; (iii) o

teste de Wilcoxon é robusto para comparar distribuições dependentes, focando nas diferenças

de medianas. A Tabela 7 apresenta os resultados do teste de Wilcoxon para cada code smell

investigado. Observa-se que, em todos os casos, os valores de p são superiores a 0,05, indicando

ausência de diferenças estatisticamente significativas entre as acurácias Com e Sem validação

cruzada. O resultado mais próximo de significância ocorreu em Feature Envy (p = 0,063),

sugerindo uma tendência, mas ainda sem evidência suficiente ao nível de 5%.

Tabela 7 – Resultados do teste de Wilcoxon comparando
acurácia Sem vs. Com validação cruzada.

Métrica Estatística (W) Valor-p

Data Class 1,5 0,188
God Class 1,0 0,125
Feature Envy 0,0 0,063
Long Method 6,0 0,813

Fonte: Elaborado pelo autor (2024)

Na Figura 3 apresentamos a diferença de acurácia (Sem - Com) para cada algoritmo,

em cada code smell. Valores positivos indicam maior desempenho Sem validação cruzada,

enquanto valores negativos indicam maior desempenho Com. Nota-se que as variações são

pequenas e inconsistentes entre os algoritmos, reforçando os achados estatísticos de ausência de

efeito sistemático.

45

Figura 3 – Diferença de acurácia (Sem - Com) por algoritmo em cada métrica. Escala de cinza.
Fonte: Elaborado pelo autor (2024)

Resumo da resposta da QP2. Os resultados indicam que a validação cruzada não alterou

significativamente a acurácia média dos algoritmos avaliados. Embora pequenas diferenças

tenham sido observadas em alguns cenários, a ausência de significância estatística sugere

que tais variações podem ser atribuídas ao acaso, dada a amostra reduzida. A implicação

prática é que, para este conjunto de experimentos, a escolha entre utilizar ou não validação

cruzada não levou a mudanças consistentes no desempenho observado.

3.3 Trabalhos Relacionados

Foram propostas diversas ferramentas para detecção de code smells, abrangendo

tanto ferramentas comerciais quanto protótipos de pesquisa. Fontana e Zanoni (2017) falam

que essas ferramentas utilizam uma variedade de técnicas para identificar code smells: algumas

se baseiam em métricas (LANZA; MARINESCU, 2007; FONTANA et al., 2015), outras

empregam uma linguagem de especificação própria (MOHA et al., 2009), realizam análise de

programas para encontrar oportunidades de refatoração (TSANTALIS; CHATZIGEORGIOU,

2009; TSANTALIS; CHATZIGEORGIOU, 2011), exploram a análise de repositórios de software

(PALOMBA et al., 2015) ou ainda recorrem a técnicas de aprendizado de máquina. A seguir

descreve-se abordagens que empregam técnicas de aprendizado de máquina.

46

No estudo de Fontana et al. (2016), foram analisados quatro code smells — God

Class, Data Class, Feature Envy e Long Method — utilizando 74 sistemas do Qualitas Corpus e

16 classificadores de aprendizado de máquina. O referido trabalho reporta valores médios de

acurácia distintos para cada smell: 74% para God Class, 77% para Data Class, 93% para Feature

Envy e 92% para Long Method. Em comparação, a abordagem adotada nesta pesquisa obteve

resultados superiores, alcançando 98,5% para God Class, 93,8% para Data Class, 98,4% para

Feature Envy e 99,2% para Long Method.

Nucci et al. (2018) replicaram o estudo de Fontana et al. (2016) e questionaram a

validade dos altos índices de desempenho reportados, argumentando que estes derivavam do uso

de datasets artificialmente balanceados. Ao realizarem experimentos em cenários mais realistas,

observaram uma redução significativa na acurácia média dos classificadores, com valores de

aproximadamente 76% para God Class e Data Class, 92% para Feature Envy e 93% para Long

Method. Esses resultados contrastam com os obtidos nesta pesquisa, que alcançaram 98,5% para

God Class, 93,8% para Data Class, 98,4% para Feature Envy e 99,2% para Long Method. A

comparação evidencia que, embora os achados de Nucci et al. (2018) reforcem a necessidade de

maior rigor metodológico na construção e validação dos conjuntos de dados, os resultados aqui

apresentados mostram que é possível obter desempenhos superiores na detecção de code smells.

Mhawish e Gupta (2020) propuseram um framework de predição de code smells ba-

seado em métricas de software e técnicas de aprendizado de máquina, utilizando e reformulando

os conjuntos de dados de Fontana et al. (2016) para criar versões binary-label, multi-label e

reequilibradas. Foram avaliados seis algoritmos — SVM, MLP, Deep Learning, Decision Tree,

Random Forest e Gradient Boosted Trees — obtendo-se resultados expressivos, com acurácia

de até 99,7% para Data Class, 98,4% para God Class, 97,9% para Feature Envy e 95,9% para

Long Method. Além disso, os autores aplicaram técnicas de seleção de atributos baseadas em

algoritmo genético e otimização de parâmetros via grid search, o que contribuiu para a melhoria

da performance. Em comparação, os resultados desta pesquisa também apresentaram elevados

índices de acurácia — 93,8% para Data Class, 98,5% para God Class, 98,4% para Feature

Envy e 99,2% para Long Method —, diferenciando-se principalmente pela ênfase na análise

metodológica do impacto da validação cruzada sobre a robustez dos modelos.

Pushpalatha e Mrunalini (2021) propuseram uma abordagem de aprendizado de

máquina para detectar code smells e observaram as métricas que desempenham papéis críticos

no processo de detecção. Eles aplicaram algoritmo genético baseado em duas técnicas de seleção

47

de recursos e técnica de otimização de parâmetros baseada em uma pesquisa em grade. Eles

obtiveram valores de acurácia na previsão de Data Class, God Class e Long Method em 98,05%,

97,56% e 94,31%, respectivamente, usando o método GA_CFS.

Abdou e Darwish (2024) apresentam um estudo comparativo de técnicas de apren-

dizado de máquina para classificar a gravidade de code smells em sistemas de software. Os

pesquisadores propuseram um modelo baseado em métricas de software e aprendizado de

máquina para detectar esses problemas. Eles utilizaram diferentes abordagens, incluindo classifi-

cação multinomial, ordinal e regressão, e avaliaram a precisão na ordenação e classificação da

gravidade dos code smells. Como resultados eles obtiveram acurácia de: 93,0% para Data Class,

92,0% para God Class, 97,0% para Feature Envy e 97,0% para Long Method.

Kaur e Kaur (2021) apresentaram a utilização de técnicas de aprendizado de conjunto

(Ensemble Learning) em conjunto com técnicas de seleção de características por correlação,

aplicadas sobre métricas extraídas pela ferramenta CKJM e code smells identificados pelo

JCodeOdor, considerando três sistemas Java de código aberto: DrJava, EMMA e FindBugs.

Para a avaliação, foram empregados os classificadores Bagging e Random Forest, analisados

a partir de quatro medidas de desempenho: acurácia (P1), G-mean 1 (P2), G-mean 2 (P3) e

F-measure (P4). Os experimentos contemplaram os code smells Message Chains, Dispersed

Coupling, Shotgun Surgery, Brain Method, Data Class e God Class, cujo os resultados são

separados por classificador, considerando presença ou ausência de smell. Comparado como o

presente trabalho eles foram superiores obtendo 100% de acurácia tanto para Data Class quanto

God Class. Ressalta-se, entretanto, que os datasets empregados por eles diferem dos utilizados

nesta pesquisa, pois os mesmos utilizaram apenas 3 sistemas, enquanto mo presente estudo foi

utilizado um dataset com 74 sistemas, como pode ser visto na Tabela 1.

A Tabela 8 apresenta uma síntese comparativa entre a acurácia obtida neste trabalho

e aquela reportada em estudos relacionados. Observa-se que os resultados variam de acordo

com o tipo de code smell, refletindo as particularidades dos conjuntos de dados e dos métodos

empregados em cada pesquisa. Para o Data Class, o melhor resultado foi obtido por Kaur e Kaur

(2021) com 100%, enquanto o presente trabalho alcançou 93,8%, permanecendo em um patamar

competitivo em relação a outros estudos, como Abdou e Darwish (2024) (93,0%). No caso do

God Class, novamente Kaur e Kaur (2021) obteve a maior acurácia (100%) seguido por Mhawish

e Gupta (2020) que alcançou (98,5%), sendo que o resultado obtido nesse trabalho (96,3%)

também se mostra expressivo e superior à grande parte da literatura, como os 92,0% reportados

48

por Abdou e Darwish (2024) e 83,0% em Nucci et al. (2018). Em relação ao Feature Envy,

este trabalho apresentou a melhor acurácia entre os estudos comparados, alcançando 98,4%.

Esse valor supera o resultado mais próximo (98,0%) reportado por Mhawish e Gupta (2020),

com uma diferença de 0,4 pontos percentuais. No Long Method, também atingiu o melhor

desempenho, com 99,2%, superando em 2,2 pontos percentuais o resultado de Abdou e Darwish

(2024) (97,0%) e em 3,2 pontos percentuais o de Mhawish e Gupta (2020) (96,0%).

Tabela 8 – Comparação da acurácia de trabalhos relacionados com o presente
trabalho

Autor
Conjunto de Dados

Data Class God Class Feature Envy Long Method

Fontana e Zanoni (2017) 77,0% 74,0% 93,0% 92,0%
Nucci et al. (2018) 83,0% 83,0% 84,0% 82,0%

Mhawish e Gupta (2020) 99,7% 98,5% 97,9% 95,9%
Pushpalatha e Mrunalini (2021) 98,0% 97,6% - 94,3%

Abdou e Darwish (2024) 93,0% 92,0% 97,0% 97,0%
Kaur e Kaur (2021) 100% 100% - -
Presente trabalho 93,8% 96,3% 98,4% 99,2%

Fonte: Elaborado pelo autor (2025)

Esses achados indicam que o método proposto obteve desempenho particularmente

superior para os code smells de granularidade de método (Feature Envy e Long Method), alcan-

çando valores próximos a 100% e estabelecendo um avanço em relação ao estado da arte. Cabe

ressaltar, entretanto, que a comparação entre trabalhos distintos possui caráter descritivo, uma

vez que diferentes autores podem ter adotado conjuntos de dados, técnicas de pré-processamento

e protocolos experimentais distintos. Ainda assim, os resultados sugerem forte evidência de que

a abordagem proposta é competitiva e apresenta ganhos consistentes em cenários relevantes para

a detecção automática de code smells.

3.4 Ameaças à Validade da Pesquisa

Nesta seção é discutido as principais ameaças à validade do estudo e as medidas

adotadas para mitigá-las, organizadas em quatro dimensões clássicas (WOHLIN et al., 2012):

validade de construção, interna, externa e de conclusão.

Validade de Construção. São duas ameaças a construção deste estudo. Métrica de

avaliação - a acurácia pode inflar desempenho em cenários desbalanceados. Como forma de

mitigar essa ameaça reporta-se resultados estratificados por smell e compara-se com trabalhos

relacionados; análises complementares (p. ex., precisão, revocação, F1 e AUC) são recomendadas

49

para estudos futuros. Representação e extração de características - a escolha de atributos

(métricas estáticas, métricas, etc.) influencia a capacidade de generalização. Para mitigar

essa ameaça foi utilizado Qualitas Corpus (TEMPERO et al., 2010) um dataset conceituado e

utilizado em outros estudos (FONTANA; ZANONI, 2017; ABDOU; DARWISH, 2024; NUCCI

et al., 2018) e é mantido o mesmo conjunto de atributos entre condições comparadas para isolar

o efeito dos tratamentos.

Validade Interna. A seguir são discutidas três ameaças internas à validade do

estudo. Vazamento de informação (data leakage) – partições de treino e teste com sobreposição

(por exemplo, arquivos/clones quase idênticos) podem inflar resultados. Para evitar esse risco,

foram adotados protocolos de separação por projeto/arquivo sempre que aplicável e o pipeline

de pré-processamento foi revisado a fim de impedir vazamentos. Configuração dos modelos

e aleatoriedade – hiperparâmetros, inicializações aleatórias (p. ex., MLP) e variação de seeds

podem alterar o desempenho. A mitigação foi realizada por meio da fixação de seeds repro-

dutíveis, documentação dos hiperparâmetros e aplicação do mesmo procedimento em todos os

algoritmos comparados. Comparação entre condições – a comparação Sem vs. Com validação

cruzada foi pareada por algoritmo, mas diferenças residuais de partição podem permanecer. Para

reduzir essas diferenças, utilizou-se o teste não paramétrico pareado (Wilcoxon), apropriado para

n reduzido e sem suposição de normalidade das diferenças, conforme reportado na Seção 3.2.2.

Validade Externa. Duas ameaças externas à validade do estudo são consideradas.

Generalização para outros projetos e linguagens – os resultados refletem os 74 projetos analisa-

dos, oriundos de diversos domínios e desenvolvidos em Java. Projetos com estilos de codificação,

linguagens de programação, arquiteturas ou convenções distintas podem apresentar padrões

diferentes de code smells. Para mitigar essa limitação, foram selecionados múltiplos projetos e

discutidos os limites de generalização; recomenda-se que estudos futuros ampliem a diversidade

(p. ex., tamanho, domínio e linguagem de programação). Comparação com a literatura – a

comparação descritiva com trabalhos relacionados é limitada por diferenças de conjuntos de

dados e protocolos. Em razão disso, foi explicitado o caráter descritivo dessas comparações e

sugerida a realização de avaliações em benchmarks compartilhados, quando disponíveis.

Validade de Conclusão. Poder estatístico – o número de pares na comparação Sem

vs. Com validação cruzada é pequeno (n=5 algoritmos), o que reduz o poder para detectar

efeitos sutis. Para fortalecer os achados, foi utilizado o teste de Wilcoxon para pares, valores-p

foram reportados e tendências próximas ao limiar de significância foram destacadas; replicações

50

com mais algoritmos/projetos são recomendadas para aumentar o poder estatístico. Múltiplas

comparações – a avaliação de quatro smells pode inflar a taxa de erro Tipo I. Para reduzir esse

impacto, os resultados foram interpretados de forma conservadora e, em trabalhos subsequentes,

sugerem-se correções (p. ex., Holm–Bonferroni) quando múltiplos testes confirmatórios forem

conduzidos.

Em síntese, apesar dessas ameaças, foram adotadas decisões metodológicas conser-

vadoras, aplicados testes estatísticos apropriados ao desenho pareado e realizada a documentação

do protocolo experimental, de modo a fortalecer a confiabilidade e a interpretabilidade dos

achados deste estudo.

3.5 Conclusão

Neste capítulo, foi proposta uma abordagem baseada em aprendizado de máquina

para a detecção de code smells em sistemas de software. Foram aplicados cinco algoritmos (MLP,

Árvore de Decisão, Floresta Aleatória, Gradiente Boost e SVM) combinados com métricas de

software extraídas do conjunto de dados de Fontana et al. (2016). O estudo contemplou quatro

code smells: Data Class, God Class, Feature Envy e Long Method, com o objetivo de avaliar o

desempenho relativo dos algoritmos e o impacto da validação cruzada nos resultados de acurácia.

Os experimentos mostraram que os classificadores baseados em árvores (Árvore de

Decisão, Floresta Aleatória e Gradiente Boost) apresentaram desempenho superior, destacando-

se especialmente na detecção de Long Method, com acurácia de até 99,2%. Para Feature Envy,

obtive-se valores acima de 96%, consolidando a robustez dos classificadores. Em contrapartida,

o desempenho foi ligeiramente inferior para Data Class, onde a Árvore de Decisão registrou

89,7%, embora os demais algoritmos tenham alcançado cerca de 96,8%. A acurácia para God

Class variou entre 91,2% e 96,3%, com ganho de desempenho quando aplicada a validação

cruzada. Os algoritmos MLP e SVM também demonstraram boa performance, embora com

resultados inferiores aos modelos de árvore (Árvore de decisão e Floresta Aleatória).

As contribuições deste estudo residem em três aspectos principais: (i) a demonstração

da efetividade de algoritmos de aprendizado de máquina na detecção de diferentes tipos de code

smells; (ii) a análise comparativa entre múltiplos algoritmos, evidenciando que métodos baseados

em árvores oferecem maior acurácia; e (iii) a investigação do impacto da validação cruzada,

mostrando que, apesar de não gerar diferenças estatisticamente significativas, influencia o

desempenho em alguns cenários. Além disso, os resultados obtidos para Feature Envy e Long

51

Method se mostraram competitivos e superiores aos de estudos anteriores, reforçando a relevância

da abordagem proposta.

Por fim, este capítulo estabelece a base para os próximos capítulos. No capítulo

seguinte, é explorado a aplicação de modelos de linguagem de grande porte (LLMs) para a

detecção de code smells. Para isso, emprega-se a ferramenta TWINCODE, desenvolvida para

analisar e comparar diferentes versões de código-fonte, de modo a investigar o potencial de

LLMs como alternativa e complemento às técnicas tradicionais de aprendizado de máquina.

52

4 TWINCODE

A qualidade de código é central para manutenibilidade, legibilidade, testabilidade

e evolução de sistemas (MARTIN, 2009; FOWLER, 2018). Apesar do avanço em métricas

automatizadas, a literatura aponta descompasso entre indicadores objetivos e a percepção de

desenvolvedores (BUSE; WEIMER, 2009; POSNETT et al., 2011), além da carência de platafor-

mas integradas para estudos empíricos com comparação de código lado a lado e coleta de dados

estruturada em formulários. Essa lacuna limita replicabilidade e comparação entre investigações.

Como resposta, é proposto a TwinCode, uma ferramenta que integra, em um único ambiente,

comparação de trechos lado a lado, cadastro de pares de código, questionários configuráveis por

comparação e geração de relatórios. A arquitetura adota PHP/Laravel, React/TailwindCSS e

MariaDB, priorizando transparência e adaptabilidade.

A avaliação da TwinCode seguiu abordagem exploratória com 12 participantes,

majoritariamente de alto nível de escolaridade e experiência. O instrumento combinou afirmativas

avaliadas na escala Likert e questões abertas para examinar facilidade de uso, fluxo funcional

para estudos empíricos e potencial de adoção acadêmica. As análises incluíram estatísticas

descritivas, percentuais de acordo e síntese temática das respostas qualitativas.

Os resultados indicam bom desempenho do núcleo de inspeção: a visualização lado

a lado e as pistas visuais foram bem avaliadas. O fluxo funcional atendeu aos requisitos centrais,

com destaque para criação de pares e questionários por comparação, e um ponto de atenção

na associação pares–questionários. O potencial de adoção acadêmica foi alto e observou-se

consistência interna elevada no bloco quantitativo (α = 0,900). As respostas abertas apontaram

melhorias prioritárias em ergonomia visual, saliência de navegação, feedbacks de estado e

funcionalidades auxiliares como exportação, filtros e versionamento.

Este trabalho possui 6 contribuições principais, sendo elas:

• TwinCode como artefato científico integrado. Uma plataforma que reúne, em um único

ambiente, (i) comparação de trechos de código lado a lado com realce de sintaxe e nume-

ração de linhas, (ii) questionários configuráveis por comparação para instrumentação dos

estudos, e (iii) geração de relatórios estruturados, reduzindo preparo ad hoc e favorecendo

padronização e reprodutibilidade. Publicamente disponível em (MOREIRA et al., 2025).

• Endereçamento de lacuna prática na literatura. Entrega de uma solução focada em estu-

dos empíricos de qualidade de código (não apenas visualização/diff), que organiza o fluxo

de trabalho (cadastro, pareamento, associação com questionários e coleta), promovendo

53

replicabilidade entre investigações.

• Validação exploratória com evidências quantitativas e qualitativas. Estudo com

12 participantes, combinando escala Likert e análise temática; resultados indicam boa

aceitação da visualização lado a lado e do fluxo funcional, alto potencial de adoção

acadêmica e consistência interna.

• Protocolo de avaliação replicável. Combinação de estatísticas descritivas, análise de

consistência interna e leitura qualitativa por análise de conteúdo, oferecendo um roteiro

metodológico reutilizável para avaliar ferramentas científicas similares.

• Reconhecimento formal do artefato. Registro da TwinCode no INPI (nº BR512025003573-

0), estabelecendo precedência e reforçando originalidade no contexto nacional de ferra-

mentas para pesquisa em engenharia de software.

Este capítulo está organizado em seis seções. A Seção 4.1 descreve a metodologia do

estudo, incluindo delineamento, instrumentos e procedimentos de análise. A Seção 4.2 apresenta

a arquitetura e as funcionalidades da TwinCode. A Seção 4.3 reporta a validação e os resultados,

incluindo as respostas às questões de pesquisa. A Seção 4.4 discute os trabalhos relacionados. A

Seção 4.5 apresenta as ameaças à validade. Por fim, a Seção 4.6 traz as considerações finais e

diretrizes para trabalhos futuros.

4.1 Metodologia

O desenvolvimento da ferramenta TwinCode emergiu da constatação de uma lacuna

significativa no ecossistema de soluções voltadas à realização de estudos empíricos que deman-

dam a comparação sistemática de trechos de código-fonte. Embora existam ferramentas para

análise estática, inspeção automatizada ou revisão manual de código, observa-se uma carência

de plataformas que integrem, de forma orgânica, a apresentação paralela de fragmentos de

código com mecanismos estruturados de coleta de dados, como questionários controlados. Nesse

contexto, a TwinCode propõe-se a suprir essa demanda ao articular, em um mesmo ambiente,

funcionalidades que favorecem o delineamento de experimentos computacionais, especialmente

aqueles voltados à avaliação da qualidade de código, percepção de desenvolvedores e práticas de

refatoração.

54

4.1.1 Objetivos da Pesquisa

O objetivo principal desta pesquisa consiste em avaliar a facilidade de uso, a eficiên-

cia funcional e o potencial de adoção da TwinCode enquanto ferramenta de apoio à realização de

estudos empíricos voltados à qualidade de código.

De forma complementar, definem-se os seguintes objetivos específicos:

• Mensurar o nível de facilidade de uso percebida da interface da TwinCode por desenvolve-

dores, com foco em aspectos como clareza das informações, navegabilidade, adequação da

visualização de código e possibilidades de customização visual;

• Avaliar a pertinência e a suficiência das funcionalidades oferecidas pela TwinCode para a

condução de estudos empíricos sobre qualidade de código, considerando os recursos de

comparação de trechos, integração de questionários e apresentação de dados;

• Investigar o potencial de adoção da ferramenta em ambientes acadêmicos, com base

em uma análise preditiva fundamentada na percepção integrada de facilidade de uso e

adequação funcional por parte dos usuários participantes;

• Mapear as funcionalidades mais valorizadas pelos usuários e categorizar as melhorias

prioritárias a serem implementadas, com vistas à otimização da ferramenta enquanto

instrumento de suporte à pesquisa científica na área de Engenharia de Software.

4.1.2 Questões Pesquisa

Com base nos objetivos delineados para este estudo, foram formuladas quatro ques-

tões de pesquisa (QPs), que orientam a investigação e delimitam o escopo analítico necessário

ao desenvolvimento e à avaliação da ferramenta proposta. As QPs estão descritas a seguir:

• QP1 – Qual é o nível de facilidade de uso percebida da TwinCode, considerando os

aspectos de clareza, navegação e funcionalidades de visualização de código?

• QP2 – A TwinCode atende aos requisitos funcionais necessários para condução de estudos

empíricos sobre qualidade de código?

• QP3 – Qual é o potencial de adoção da TwinCode como ferramenta de pesquisa em

ambientes acadêmicos?

• QP4 - Quais são as funcionalidades mais valorizadas na TwinCode e quais melhorias são

prioritárias para otimizar a ferramenta como instrumento de pesquisa?

As questões foram elaboradas de forma a assegurar coerência metodológica e relevân-

55

cia prática, promovendo uma análise crítica das contribuições potenciais da solução apresentada

para o campo da engenharia de software. Essas quatro questões articulam-se de maneira com-

plementar, proporcionando uma base sólida para a avaliação tanto técnica quanto empírica da

ferramenta. Elas permitem identificar os diferenciais da ferramenta proposta, ao mesmo tempo

em que oferecem subsídios para seu aprimoramento contínuo e sua inserção efetiva em práticas

de pesquisa científica.

4.1.3 Validação

Adotou-se uma análise mista (quantitativa e qualitativa) para validar a ferramenta. Os

dados quantitativos aferem objetivamente aspectos como facilidade de uso, organização e eficácia

no apoio a estudos comparativos. Os dados qualitativos captam percepções e experiências dos

participantes. A análise mista oferece evidências complementares para julgar a utilidade da

TwinCode e orientar melhorias.

Com o intuito de viabilizar a coleta de dados quantitativos alinhada aos objetivos

específicos da pesquisa, elaborou-se um questionário estruturado, concebido como instrumento

central de avaliação da ferramenta TwinCode. O questionário foi organizado em cinco seções

principais descritas a seguir.

1. Apresentou o Termo de Consentimento Livre e Esclarecido (TCLE), garantindo a adesão

ética dos participantes à pesquisa.

2. Concentrou-se na validação de uso da ferramenta, permitindo confirmar se os usuários

haviam compreendido suas funcionalidades e interações.

3. Foi dedicada à caracterização do perfil dos participantes, contemplando aspectos como

nível de experiência em desenvolvimento de software e familiaridade com conceitos

relacionados à qualidade de código.

4. Abordou diretamente a avaliação da ferramenta desenvolvida. Para isso, foram utilizadas

questões baseadas em uma escala do tipo Likert, que permitiram mensurar, de forma

padronizada, a percepção dos usuários quanto a critérios como facilidade de uso, clareza

da interface, relevância funcional e aplicabilidade em contextos reais de uso.

5. Reuniu considerações finais dos participantes, com foco em críticas construtivas, sugestões

de aprimoramento e comentários abertos sobre a experiência de utilização da TwinCode.

Os participantes foram selecionados por conveniência e convidados a acessar a

aplicação TwinCode e, em seguida, responder ao questionário estruturado. Não foram fornecidas

56

instruções detalhadas sobre o uso da ferramenta, de modo que a interação ocorreu de forma

autônoma e espontânea, refletindo a experiência natural de exploração do sistema. Após explorar

livremente suas funcionalidades, os participantes preencheram o formulário, que reuniu tanto

questões fechadas quanto abertas. As respostas foram coletadas automaticamente e organizadas

para análise quantitativa e qualitativa.

Essa estrutura metodológica buscou garantir não apenas a coerência e completude

da coleta de dados, mas também a qualidade e profundidade das informações obtidas.

4.2 Estrutura da Ferramenta

Para a construção da TwinCode, optou-se pela utilização de tecnologias de código

aberto amplamente consolidadas (PHP/Laravel, Javacript/React CSS/TailwindCSS e MariaDB),

uma decisão estratégica que proporcionou diversos benefícios ao longo do desenvolvimento. A

adoção dessas tecnologias não apenas conferiu maior flexibilidade ao processo de implemen-

tação, permitindo ajustes rápidos e personalizados, como também garantiu a transparência e a

acessibilidade do projeto, princípios fundamentais em iniciativas voltadas à pesquisa acadêmica.

Além disso, o uso de soluções open source facilita a replicabilidade da ferramenta por outros

pesquisadores, incentivando sua adaptação e evolução em diferentes contextos.

4.2.1 Arquitetura e Tecnologias

A TwinCode foi desenvolvido com arquitetura monolítica, decisão orientada pela

simplicidade de desenvolvimento, implantação unificada e facilidade de depuração. Conforme

Blinowski et al. (2022), essa abordagem oferece vantagens significativas em projetos de escopo

controlado, permitindo construção, testes e deployment como unidade coesa. Embora Blinowski

et al. (2022) reconheçam limitações em sistemas de grande escala, no contexto específico da

TwinCode a arquitetura monolítica é adequada e estratégica, facilitando a manutenção de padrões

consistentes e simplificando a depuração (BREKALO; SEDLAREVIĆ, 2024).

A ferramenta implementa separada entre front-end e back-end. Para o back-end foi

utilizado PHP1 na versão 8.4, essa linguagem foi escolhida por seu ecossistema consolidado

e comunidade ativa. Laravel2 (versão 12) foi adotado, como framework, pela solidez de sua

arquitetura Model, View e Controller (MVC), que favorece organização modular do código

1 Disponível em: <https://www.php.net> Acesso em: 4 mai. 2025
2 Disponível em: <https://laravel.com/> Acesso em: 4 mai. 2025

57

e facilita a replicabilidade dos experimentos. Neste contexto, a estrutura do Laravel permite

desenvolvimento e validação dos componentes do back-end, alinhando-se aos princípios de rigor

metodológico acadêmico.

Para o front-end (interface do usuário), foram adotados React3 (versão 18.2.0) e

Tailwind CSS4 (versão 4.1.5). O React possibilitou estruturação em componentes modulares e

reutilizáveis, facilitando manutenção e testabilidade. O Tailwind CSS, com sua abordagem utility-

first, proporcionou controle granular sobre a estilização através de classes utilitárias aplicadas

diretamente no HyperText Markup Language (HTML), eliminando a necessidade de folhas de

estilo extensas. O processo de build remove automaticamente Cascading Style Sheets (CSS) não

utilizado, otimizando o tamanho dos arquivos e melhorando os tempos de carregamento.

O sistema de banco de dados utiliza MariaDB5 versão 11, solução relacional open

source escolhida por sua estabilidade, licença permissiva adequada ao contexto acadêmico, e

compatibilidade nativa com PHP e Laravel. Essa integração simplifica o desenvolvimento e

assegura desempenho consistente em operações de manipulação e consulta de dados.

O ambiente de desenvolvimento utiliza Docker integrado ao Laravel Sail6, propor-

cionando configuração padronizada e reproduzível de todos os serviços necessários (servidor

web, banco de dados e ambiente PHP). Essa containerização elimina inconsistências ambientais

e facilita a replicabilidade dos experimentos, aspectos fundamentais para pesquisas científicas.

4.2.2 Módulos e Interfaces

A TwinCode possui três níveis de acesso que atendem diferentes perfis de usuários:

(i) seção pública com informações gerais sobre a ferramenta; (ii) área de acesso por token para

participantes de pesquisas, permitindo submissão de respostas e visualização de comparações

conforme o delineamento experimental; e (iii) área restrita para pesquisadores e administradores,

controlada por autenticação com credenciais pré-cadastradas. Esta estrutura garante segurança

dos dados experimentais e controle adequado de permissões.

A área restrita concentra-se em dois módulos principais. O módulo de usuários

gerencia as contas cadastradas na aplicação, incluindo operações de criação, edição, visualização

e remoção de usuários, além de controle de permissões administrativas. O módulo de pesquisas

3 Disponível em: <https://react.dev/> Acesso em: 4 mai. 2025
4 Disponível em: <https://tailwindcss.com/> Acesso em: 4 mai. 2025
5 Disponível em: <https://mariadb.org/> Acesso em: 4 mai. 2025
6 Disponível em: <https://laravel.com/docs/12.x/sail> Acesso em: 5 mai. 2025

58

Figura 4 – Interface do módulo de pesquisas: ambiente integrado para gerenciamento de investi-
gações científicas

Fonte: Elaborado pelo autor (2025)

constitui o núcleo da ferramenta, oferecendo ambiente integrado para gerenciamento completo

das investigações científicas. Suas funcionalidades incluem: criação de novas pesquisas, cadastro

e edição de questionários, inserção de trechos de código para análise comparativa, vinculação de

questionários específicos a cada comparação, e geração de relatórios consolidados com os dados

coletados.

A Figura 4 apresenta a interface do módulo de pesquisas, que permite cadastrar novos

estudos, realizar buscas em pesquisas registradas e acessar a listagem completa dos trabalhos

armazenados. O design prioriza simplicidade e facilidade de uso, oferecendo navegação intuitiva

que simplifica o fluxo das atividades de pesquisa e a organização sistemática dos dados. A

Figura 5 apresenta a interface de visualização de trechos de código e consolida informações

essenciais como metadados, descrições e classificações dos códigos cadastrados. Além da

visualização, oferece funcionalidades de edição dos dados, remoção controlada de elementos e

vinculação de questionários específicos às comparações. Esta abordagem integrada fortalece o

controle metodológico e a rastreabilidade dos elementos utilizados na avaliação, contribuindo

para a robustez da investigação através da sistematização de processos que tradicionalmente

requerem coordenação manual entre múltiplas ferramentas.

59

Figura 5 – Interface de gerenciamento de trechos de código: visualização sistemática e controle
metodológico

Fonte: Elaborado pelo autor (2025)

4.2.3 Exemplo de Uso

Nesta seção é apresentado um exemplo prático da TwinCode utilizando dois tre-

chos de código. O exemplo ilustra como a ferramenta pode ser empregada na comparação

de códigos e na coleta de percepções sobre qualidade do código, destacando funcionalidades

voltadas à análise de legibilidade e manutenibilidade por desenvolvedores. A Figura 6 apre-

senta dois trechos de código PHP com implementações de uma função de validação de dados

com complexidades ciclomáticas distintas. O Código 1 apresenta complexidade ciclomática

3, utilizando estrutura linear com validações sequenciais. O Código 2 possui complexidade

ciclomática 7, implementando estruturas aninhadas com múltiplas condições. Embora ambos

executem a mesma funcionalidade, as diferenças estruturais permitem investigar como variações

na complexidade afetam a percepção de qualidade dos desenvolvedores. Note que os trechos de

código possuem numeração de linhas sincronizada, facilitando a referência precisa durante a

análise. Os mecanismos de destaque visual identificam automaticamente as principais diferenças

estruturais, como observado na comparação entre as linhas 2-9 do Código 1 e as linhas 2-22

do Código 2. Recursos adicionais incluem ajuste dinâmico do tamanho da fonte, permitindo

personalização da visualização conforme as necessidades do participante.

A Figura 7 ilustra o sistema de questionários que combina perguntas: (i) em escala

60

Figura 6 – Interface de comparação: visualização lado a lado de códigos com diferentes comple-
xidades ciclomáticas

Fonte: Elaborado pelo autor (2025)

Likert, (ii) objetivas de única escolha, (iii) objetivas de múltipla escolha e (iv) subjetivas com

campo de resposta aberta. As questões quantitativas abordam aspectos específicos como legi-

bilidade ("Quão fácil é compreender a funcionalidade do Código 1") e manutenibilidade ("O

Código 1 é mais manutenível que o Código 2?"). Para a questão de múltipla escolha aborda

características de qualidade de software (Qual das seguintes características de qualidade de

software você acredita que foi mais impactada pelas diferenças entre o Código 1 e Código 2?). O

campo de comentários permite capturar justificativas e observações adicionais dos participantes.

Esta abordagem híbrida possibilita tanto análises quantitativas das avaliações quanto análise

qualitativa dos comentários, enriquecendo a compreensão sobre os critérios utilizados pelos

desenvolvedores na avaliação de qualidade.

A ferramenta permite personalizar os questionários para cada par de códigos, adap-

tando as perguntas aos objetivos da pesquisa. Pesquisadores podem criar estudos focados em

diferentes aspectos da qualidade, como por exemplo para detecção de code smells, avaliação

de práticas de refatoração, ou análise de padrões de codificação. Os dados coletados são auto-

maticamente organizados em relatórios que facilitam a análise posterior, incluindo estatísticas

descritivas das respostas quantitativas e categorização dos comentários qualitativos. Este exemplo

demonstra o potencial da TwinCode para apoiar estudos empíricos sobre qualidade de código,

oferecendo ambiente controlado para comparações sistemáticas e coleta estruturada de dados. A

61

Figura 7 – Sistema de questionários: combinação de escalas Likert e campos abertos para coleta
de dados

Fonte: Elaborado pelo autor (2025)

integração entre visualização comparativa e instrumentos de coleta em uma única plataforma

simplifica a condução de experimentos e contribui para a sistematização de pesquisas na área de

engenharia de software.

4.3 Validação e Resultados

Esta seção apresenta os resultados da avaliação da TwinCode quanto à facilidade

de uso, à aderência funcional para estudos empíricos e ao potencial de adoção em ambientes

acadêmicos. A ferramenta TwinCode foi avaliada por acadêmicos e profissionais da área de

desenvolvimento por meio de um formulário com 21 questões.

A Tabela 9 sintetiza os resultados descritivos das afirmativas avaliadas no questio-

nário, apresentando as medidas de tendência central e dispersão. De forma geral, observa-se

que todas as médias situaram-se acima de 3,7 em uma escala de 1 a 5, com destaque para a

percepção de potencial de adoção da TwinCode em ambientes acadêmicos (média 4,42; mediana

5). Os itens associados à clareza da interface, à navegação e às funcionalidades de visualização

de código também receberam avaliações positivas, embora com variações nos desvios-padrão

que refletem diferentes percepções individuais. Esses dados fornecem a base quantitativa para a

análise das questões de pesquisa (QP1, QP2, QP3 e QP4), discutidas nas subseções seguintes.

62

Tabela 9 – Estatísticas descritivas das afirmativas do questionário

Afirmativa Média Mediana DP

A interface da ferramenta é clara e fácil de usar. 3.75 4 1.06
A navegação entre os diferentes módulos da ferramenta é intuitiva. 3.83 4 0.72
A visualização dos pares de código lado a lado é adequada para comparação. 4.08 5 1.56
A numeração de linhas e o realce de sintaxe (syntax highlighting) melhoram a
compreensão do código.

4.00 5 1.60

A ferramenta permite ajustar o tamanho da fonte de forma útil para a leitura. 3.75 4 1.29
A criação de pares de código é simples e funcional. 4.08 4 1.31
A ferramenta permite cadastrar questionários específicos para cada comparação
de código.

4.17 5 1.03

A associação entre comparações de código e questionários é eficiente. 3.75 4 0.87
O formulário de questionário apresenta as perguntas de maneira clara e objetiva. 4.08 4 1.00
A ferramenta é adequada para estudos que avaliam qualidade de código. 4.17 5 1.03
A TwinCode possui potencial para ser utilizada em pesquisas acadêmicas com
desenvolvedores.

4.42 5 0.90

Fonte: Elaborado pelo autor (2025)

4.3.1 Caracterização dos Participantes

A amostra foi composta por 12 participantes. A caracterização considerou (i) esco-

laridade, (ii) tempo de experiência em programação e (iii) frequência de contato com código

no cotidiano. Adicionalmente, registrou-se a experiência prévia em estudos sobre qualidade de

código para contextualizar a interpretação dos resultados.

No que diz respeito à escolaridade (Figura 8a), nota-se uma predominância de

participantes com pós-graduação stricto sensu (66,7%), distribuídos entre mestrado (41,7%;

5/12) e doutorado (25,0%; 3/12). Outros três participantes possuíam graduação completa

(25,0%), enquanto apenas um ainda estava em graduação em andamento (8,3%). Esse quadro

revela um grupo fortemente qualificado, com trajetória acadêmica que tende a favorecer maior

familiaridade com metodologias de pesquisa e a oferecer respostas mais consistentes. Por outro

lado, a concentração em níveis avançados de escolaridade limita a extrapolação dos resultados

para públicos menos titulados.

Quando se observa o tempo de experiência em programação (Figura 8b), percebe-se

que dois terços da amostra relataram possuir mais de seis anos de prática (66,7%; 8/12). Outros

três participantes situaram-se na faixa de 1 a 3 anos (25,0%), e apenas um declarou experiência

entre 4 e 6 anos (8,3%). Esse cenário evidencia que a amostra é majoritariamente composta por

desenvolvedores sêniores, com repertório suficiente para avaliar comparações de código com

segurança, mas com pouca representação de perfis mais iniciantes.

A frequência de contato com código no cotidiano reforça esse perfil. Metade dos

participantes afirmou programar diariamente (50,0%; 6/12), enquanto um terço declarou contato

63

frequente (33,3%; 4/12). Apenas um relatou interação ocasional (8,3%) e outro rara (8,3%).

Esse padrão de exposição contínua à prática da programação sugere um grupo acostumado a

lidar com código no dia a dia, o que reduz riscos de ruídos de interpretação e fortalece a validade

da avaliação da ferramenta.

(a) Escolaridade (b) Experiência em programação

(c) Frequência de contato com código
Figura 8 – Caracterização dos participantes
Fonte: Elaborado pelo autor (2025)

No que se refere à área de formação, após a normalização dos rótulos, percebe-

se uma forte concentração em cursos ligados à Computação e às Engenharias. Destacam-se

Ciência(s) da Computação, que responde por 41,7% da amostra (5 de 12 participantes), seguida

por Análise e Desenvolvimento de Sistemas e Sistemas de Informação, ambos com 16,7% (2/12

cada). Em menor proporção, aparecem formações em Engenharia da Computação, Engenharia

de Software e Tecnologia em Mecatrônica Industrial, cada uma representando 8,3% da amostra

64

(1/12). Esse quadro mostra um grupo majoritariamente oriundo de áreas técnico-científicas,

diretamente relacionadas ao desenvolvimento e à avaliação de software, o que reforça a adequação

do perfil para analisar comparações de código e avaliar instrumentos voltados à qualidade.

De modo geral, trata-se de uma amostra com alta titulação, experiência profissional

acumulada e contato frequente com programação, predominando formações da área de computa-

ção e engenharias. Esse perfil contribui para a validade interna da avaliação da ferramenta, por

refletir critérios de desenvolvedores experientes, embora exija cautela quanto à validade externa,

sobretudo para públicos com menor escolaridade ou menos vivência prática. Como contexto

adicional, 58,3% dos participantes (7/12) já haviam participado de estudos ou avaliações relacio-

nados à qualidade de código, o que indica familiaridade prévia com o tema. Tal característica

pode influenciar positivamente a profundidade das respostas, sem comprometer a interpretação

dos achados quando consideradas essas limitações.

4.3.2 Facilidade de Uso Percebida da Interface (QP1)

A análise da facilidade de uso da TwinCode evidenciou percepções positivas e

consistentes em relação à clareza da interface, à navegação e às funcionalidades voltadas à

visualização de código. Conforme apresentado na Tabela 9, a afirmativa “A interface da

ferramenta é clara e fácil de usar” alcançou média de 3,75 (mediana 4, Desvio Padrão (DP)

1,06), sugerindo concordância geral, ainda que com alguma variação entre os respondentes. De

forma semelhante, a “navegação entre os diferentes módulos da ferramenta é intuitiva” obteve

média de 3,83 (mediana 4, DP 0,72), reforçando a percepção de que o fluxo de interação é

satisfatório, mesmo sem consenso absoluto. No que se refere às funcionalidades de visualização,

os resultados foram ainda mais expressivos. A “visualização dos pares de código lado a lado”

registrou média de 4,08, com mediana máxima de 5 (DP 1,56), sendo o item mais valorizado

da seção. O recurso de “numeração de linhas e realce de sintaxe” apresentou média de 4,00

(mediana 5, DP 1,60), confirmando sua importância para a legibilidade e compreensão do código.

Já a possibilidade de “ajustar o tamanho da fonte” recebeu média de 3,75 (mediana 4, DP 1,29),

sinalizando utilidade, mas também evidenciando espaço para ajustes ergonômicos.

As respostas qualitativas dialogam com esses resultados. A comparação lado a lado,

acompanhada da numeração e do realce de sintaxe, foi citada repetidamente como o recurso mais

útil para apoiar a leitura e a análise. Além disso, os questionários integrados às comparações

foram destacados pela capacidade de organizar e sistematizar a coleta de dados. Entre as

65

sugestões de aprimoramento, sobressaíram a necessidade de simplificar o processo de vinculação

entre pares de código e questionários, garantir persistência das configurações visuais (como

fonte e tema) e disponibilizar tutoriais curtos para o onboarding. Tais apontamentos indicam

que, embora a facilidade de uso já seja considerada satisfatória, há espaço para evoluções que

tornem a experiência mais fluida e intuitiva.

Resumo da resposta da QP1. Os resultados quantitativos e qualitativos apontam que

a TwinCode apresenta um bom nível de facilidade de uso percebida, com destaque

para as funcionalidades de comparação e legibilidade de código. Assim, conclui-se

que a ferramenta oferece uma experiência clara e funcional, embora dependa de ajustes

ergonômicos e de melhorias no fluxo de interação para alcançar maior eficácia.

4.3.3 Eficiência Funcional para Estudos Empíricos (QP2)

Para responder à QP2, a análise da Tabela 9 indica que a TwinCode atende aos

requisitos funcionais necessários para a condução de estudos empíricos sobre qualidade de

código. A afirmativa “A criação de pares de código é simples e funcional” apresentou média de

4,08 (mediana 4,5; DP 1,31), o que revela que a maioria dos participantes percebe essa etapa

como prática e intuitiva. Resultado semelhante foi observado no item “A ferramenta permite

cadastrar questionários específicos para cada comparação de código”, que obteve média de

4,17 (mediana 5; DP 1,11), sinalizando forte concordância quanto à relevância desse recurso

para a organização de experimentos. Entretanto, a “associação entre comparações de código e

questionários” recebeu avaliação menos favorável, com média de 3,75 (mediana 4; DP 1,36).

Embora considerada funcional, essa etapa foi descrita como mais trabalhosa e menos fluida em

comparação às demais, evidenciando um gargalo que pode comprometer a experiência de uso

em cenários mais complexos.

As respostas qualitativas ajudam a compreender melhor a eficiência funcional da

ferramenta. Os participantes reconheceram a importância da integração entre pares de código e

questionários, mas pediram que o processo de vinculação fosse mais direto e que houvesse maior

transparência sobre o estado do vínculo. Outras sugestões incluíram a possibilidade de exportar

relatórios e a adoção de mecanismos de versionamento, ambos vistos como incrementos que

poderiam ampliar a eficiência operacional da ferramenta.

66

Resumo da resposta da QP2. A TwinCode contempla os principais requisitos funcionais

esperados em um ambiente de pesquisa empírica, com destaque para a criação de pares e

o cadastro de questionários. Contudo, a associação entre esses elementos ainda demanda

refinamentos, de modo a reduzir barreiras e garantir maior fluidez no uso em estudos de

maior escala.

4.3.4 Potencial de Adoção em Ambientes Acadêmicos (QP3)

Os dados da Tabela 9 indicam que a TwinCode apresenta elevado potencial de

adoção em contextos acadêmicos. A afirmativa “A ferramenta é adequada para estudos que

avaliam qualidade de código” alcançou média de 4,17 (mediana 4; DP 0,83), evidenciando

concordância consistente quanto à sua aplicabilidade em investigações empíricas. Ainda mais

expressiva foi a avaliação da afirmativa “A TwinCode possui potencial para ser utilizada em

pesquisas acadêmicas com desenvolvedores”, que obteve média de 4,42 (mediana 5; DP 0,79),

com predominância de respostas concentradas nos níveis mais altos da escala. Esses resultados

mostram que as participantes não apenas reconhecem a adequação funcional da ferramenta,

mas também projetam sua utilização em cenários de ensino e pesquisa, considerando-a um

recurso com potencial de integração em práticas de avaliação e experimentação. As respostas

qualitativas reforçam essa percepção: além de valorizar a comparação de código lado a lado

e os questionários integrados, algumas participantes sugeriram a inclusão de funcionalidades

adicionais, como exportação de relatórios e mecanismos de versionamento, que poderiam ampliar

ainda mais a viabilidade de uso em ambientes institucionais.

Resumo da resposta da QP3. Em síntese, a TwinCode é percebida como uma ferramenta

promissora para adoção acadêmica, oferecendo suporte adequado a estudos empíricos e

apresentando potencial de integração tanto em atividades de ensino-aprendizagem quanto

em pesquisas colaborativas com desenvolvedores.

4.3.5 Funcionalidades Valorizadas e Prioridades de Melhoria (QP4)

A análise qualitativa das respostas abertas do questionário permite identificar tanto

as funcionalidades mais valorizadas da TwinCode quanto as melhorias consideradas prioritárias.

Entre os recursos destacados, a comparação de código lado a lado aparece como o núcleo

67

da experiência de uso, quase sempre associada à numeração de linhas e ao realce de sintaxe,

elementos reconhecidos como essenciais para garantir clareza e legibilidade na análise. O módulo

de questionários integrados às comparações também foi frequentemente mencionado, sendo

valorizado por oferecer um meio estruturado de coletar dados em experimentos de refatoração e

avaliação de qualidade de código.

Paralelamente, surgiram sugestões que apontam para gargalos na experiência de

uso. O aspecto mais recorrente foi a associação entre pares de código e questionários, con-

siderada útil, mas pouco intuitiva, o que levou à demanda por simplificação do fluxo e maior

visibilidade do estado de vínculo. Outras observações incluíram a necessidade de persistência

de configurações visuais (como fonte e tema), maior fluidez na rolagem e tutoriais breves para

facilitar o onboarding, de modo a reduzir a curva de aprendizagem. Também foram sugeridas

funcionalidades adicionais, como exportação de relatórios em PDF, mecanismos de filtros e

busca e recursos de versionamento de código, que poderiam ampliar a robustez da ferramenta.

Resumo da resposta da QP4. Em síntese, a TwinCode já reúne um conjunto de funciona-

lidades reconhecidas como valiosas, sobretudo a visualização lado a lado com realce de

sintaxe e a integração de questionários, mas sua consolidação como ferramenta acadêmica

depende de avanços em ergonomia, simplificação de fluxos e inclusão de funcionalidades

complementares. Esses pontos configuram um roteiro claro para o direcionamento de

futuras versões da ferramenta.

4.4 Trabalhos Relacionados

A análise de ferramentas existentes para comparação de código e estudos empíricos

revela diferentes abordagens metodológicas, cada uma com características distintas para um

contexto de uso. Esta seção apresenta as principais soluções disponíveis, organizadas por

categoria, destacando suas funcionalidades, limitações e adequação para pesquisas acadêmicas.

Santos e Gerosa (2018) desenvolveram uma aplicação web, construída ad hoc para

o experimento, a fim de investigar o impacto de boas práticas de codificação na percepção de

qualidade por desenvolvedores, priorizando o controle da apresentação dos trechos e o registro

de variáveis como resolução de tela e tempo de resposta. Não há informação sobre abertura do

código, o que limita seu reuso. A ferramenta exibe pares de snippets em que, para cada uma

das onze práticas analisadas, um trecho seguia a recomendação e o outro a violava, permitindo

68

mensurar empiricamente efeitos sobre legibilidade e preferências. Em contraste, a TwinCode

generaliza esse suporte metodológico ao integrar a visualização lado a lado com questionários

configuráveis por comparação e relatórios integrados, viabilizando reuso entre estudos.

Frick et al. (2018) introduzem o DiffViz, uma ferramenta interativa projetada para

aprimorar a visualização de alterações em código a partir de uma arquitetura modular e inde-

pendente do algoritmo de comparação. O sistema combina um back-end em Java, responsável

pela análise dos trechos, com um front-end em JavaScript, voltado à navegação, permitindo

integrar diferentes algoritmos de diff, como GumTree, MTDIFF e IJM. Entre as funcionalidades

oferecidas estão a visualização lado a lado, o realce de mudanças, o mapeamento de nós alte-

rados e a possibilidade de importar código manualmente, por meio de repositórios GitHub ou

arquivos JSON. Embora o DiffViz se destaque por fornecer uma inspeção detalhada e flexível

das diferenças entre versões, seu propósito principal permanece centrado na análise precisa das

modificações. Em contraste, a TwinCode amplia essa perspectiva ao orientar-se para a condução

de estudos empíricos, integrando a comparação lado a lado com questionários configuráveis

e relatórios estruturados, de modo a favorecer a coleta e a sistematização de percepções em

pesquisas acadêmicas.

Soluções comerciais como Pretty Diff7, CodeScene8 e Diffchecker9 são amplamente

utilizadas no contexto profissional. O Pretty Diff oferece visualização lado a lado com suporte a

múltiplas linguagens, realce de sintaxe e formatação automatizada, com foco em análise sintática

detalhada. O CodeScene integra métricas de complexidade, histórico de alterações e hotspots de

manutenção, fornecendo uma abordagem visual orientada por dados históricos para decisões

sobre qualidade de software. O Diffchecker, por sua vez, é uma solução mais simples e de uso

imediato, voltada à comparação de trechos de código, textos ou arquivos em geral, destacando

diferenças de forma clara, mas sem oferecer recursos avançados de análise ou integração com

fluxos de pesquisa. Embora úteis, essas ferramentas não foram concebidas para experimentos

controlados ou estudos empíricos acadêmicos e não oferecem, de forma nativa, coleta estruturada

de dados, questionários personalizados ou controle de variáveis experimentais, lacuna que a

TwinCode busca suprir.

A Tabela 10 apresenta a comparação entre as principais ferramentas identificadas.

Essa síntese permite visualizar quais funcionalidades são oferecidas em cada contexto e quais

7 Disponível em: <https://prettydiff.com/3/> Acesso em: 12 mai. 2025
8 Disponível em: <https://codescene.com/> Acesso em: 12 mai. 2025
9 Disponível em: <https://www.diffchecker.com/> Acesso em: 12 mai. 2025

69

lacunas permanecem abertas para aplicações em pesquisas empíricas, lacunas que a TwinCode

busca preencher. Observa-se que a TwinCode se diferencia por reunir, em um único ambiente,

comparação visual, questionários configuráveis, foco acadêmico, coleta estruturada e disponi-

bilidade aberta, atendendo de forma integrada a demandas de replicabilidade, instrumentação

e gerenciamento de dados para estudos empíricos. Importante destacar que, ao contrário de

ferramentas como DiffViz, Pretty Diff ou Diffchecker, a TwinCode não busca evidenciar dife-

renças entre trechos, mas sim disponibilizar os códigos lado a lado como suporte à avaliação

da qualidade, mantendo o foco na percepção dos desenvolvedores em contextos controlados de

pesquisa.

Tabela 10 – Comparação entre ferramentas de análise de código

Ferramenta
Comparação

Visual
Questionários

Foco
Acadêmico

Open
Source

Coleta
Estruturada

Santos e Gerosa (2018) Ë Ë Ë N/I Ë

DiffViz (FRICK et al., 2018) Ë é é Ë é

Pretty Diff Ë é é é é

CodeScene Ë é é é é

Diffchecker Ë é é é é

TwinCode Ë Ë Ë Ë Ë

Fonte: Elaborado pelo autor (2025)

Esta combinação de características posiciona a TwinCode como uma contribuição

específica para a comunidade de pesquisa em Engenharia de Software, preenchendo lacuna

identificada na disponibilidade de ferramentas especializadas para estudos empíricos sobre

percepção humana de qualidade de código.

4.5 Ameaças à Validade da Pesquisa

Esta seção apresenta as ameaças à validade do estudo, organizadas de acordo com a

proposta de Wohlin et al. (2012): validade interna, externa, de construção e de conclusão.

Validade Interna. Refere-se ao quanto os efeitos observados podem ser atribuídos de

fato à TwinCode. Foi identificado cinco ameaças à validade interna. A aplicação do questionário

logo após a demonstração pode ter sofrido com vieses de autorrelato, como desejabilidade

social, e também com viés de memória. No entanto, a coleta imediata reduziu esquecimentos,

e o anonimato assegurou liberdade de opinião, atenuando a pressão por respostas socialmente

aceitas. Outro ponto é a ausência de grupo controle ou de comparação com outra ferramenta, o

que impede isolar efeitos específicos da solução. Ainda assim, optou-se por um delineamento

70

exploratório, adequado para uma primeira avaliação de aceitabilidade, deixando comparações

diretas para etapas futuras. Também é possível que o posicionamento dos blocos do questionário

tenha gerado efeitos de ordem, já que os itens de facilidade de uso foram respondidos antes dos

de adoção. A decisão de manter essa sequência buscou refletir o fluxo natural da experiência

de uso — primeiro interagir, depois refletir sobre adoção — mas contrabalançamentos poderão

ser testados em replicações. Outro fator a considerar é o efeito novidade: por se tratar de uma

solução inédita no contexto dos participantes, existe a possibilidade de avaliações mais favoráveis

pelo simples caráter inovador. Esse risco pode ser reduzido em estudos futuros com sessões

repetidas, que tendem a diluir o entusiasmo inicial. Por fim, a alta participação dos sujeitos do

estudo em estudos de qualidade de código (58,3%), isso poderia calibrar expectativas. Ainda

que isso introduza familiaridade, também garante que os julgamentos foram feitos por pessoas

com repertório adequado, reduzindo interpretações equivocadas.

Validade Externa. Relaciona-se à possibilidade de generalizar os resultados para

outros contextos. Identificou-se quatro ameaças externas à validade do estudo. A qualidade

da amostra, composta majoritariamente por profissionais de pós-graduação com mais de seis

anos de experiência, não representa iniciantes ou perfis menos experientes. Apesar disso, essa

característica confere robustez às respostas, já que foram baseadas em critérios técnicos sólidos.

Outro ponto é que o ambiente de demonstração não reproduz integralmente situações reais

de pesquisa, com maior complexidade e pressão de tempo. Em contrapartida, a aplicação

em condições controladas assegurou homogeneidade e reduziu fatores externos que poderiam

distorcer a avaliação. O tempo restrito de interação também pode ter subestimado aspectos

ergonômicos do uso prolongado. Ainda assim, a coleta imediata capturou percepções autênticas

sobre a primeira experiência com a ferramenta. Além disso, diferenças de infraestrutura local e

de curva de aprendizagem podem limitar a replicação em contextos distintos, mas esse risco é

parcialmente mitigado pelo fato de a TwinCode ser baseada em tecnologias abertas e de fácil

acesso. Futuras replicações podem ampliar o alcance por meio de amostragens mais diversas,

estudos em campo, avaliações longitudinais e definição de requisitos mínimos de ambiente para

reduzir variações técnicas.

Validade à Construção. Diz respeito ao quanto os instrumentos realmente capturam

os construtos de “facilidade de uso” e “adequação funcional”. Foram identificadas 4 ameaças à

construção do estudo. Como os itens foram elaborados especificamente para este estudo, sem o

uso de escalas padronizadas, existe o risco de lacunas na cobertura. Esse risco foi parcialmente

71

mitigado pelo embasamento teórico utilizado na formulação dos itens e pela consistência interna

obtida (alfa de Cronbach = 0,900), que assegura confiabilidade nas medidas. Outro ponto é que a

avaliação se concentrou em percepções imediatas, sem métricas comportamentais como tempo

em tarefa ou logs de uso. A coleta imediata reduziu a influência da memória, mas reconhece-

se que medidas objetivas fortaleceriam as conclusões. Também se deve considerar a seleção

dos trechos de código usados na demonstração: ainda que representativos, eles não abrangem

toda a diversidade de cenários possíveis, o que pode limitar a abrangência da avaliação. Esse

risco pode ser reduzido em replicações com conjuntos mais variados de exemplos, cobrindo

diferentes domínios e níveis de complexidade. Além disso, a dependência de um único método,

o questionário, pode ter introduzido variância de método comum. Para reduzir esse efeito, foram

incluídas respostas abertas, que trouxeram nuances qualitativas importantes. Em estudos futuros,

recomenda-se a combinação de escalas consagradas, validação psicométrica e triangulação com

métricas observacionais.

Validade de Conclusão. Refere-se à solidez das inferências estatísticas. Foram

identificadas 3 ameaças a validade da conclusão do estudo. O tamanho da amostra (n = 12) natu-

ralmente limita o poder dos testes e a precisão das estimativas. Esse limite foi reconhecido desde

o início, e por isso as análises foram predominantemente descritivas, apoiadas em médias, medi-

anas e desvios padrão, de modo a oferecer transparência e não induzir a interpretações infladas.

As múltiplas comparações entre itens aumentam o risco de achados espúrios; para reduzir esse

efeito, evitou-se enfatizar resultados isolados, dando maior atenção a padrões consistentes e ao

cruzamento com os dados qualitativos. Por fim, a opção por análises descritivas restringe a força

das conclusões, mas foi adequada ao caráter exploratório desta etapa de validação. Em futuras

replicações, recomenda-se ampliar o número de participantes, incluir intervalos de confiança e

tamanhos de efeito, bem como adotar testes robustos, como bootstrapping, com delineamentos

pré-registrados. Assim, embora os resultados devam ser interpretados com cautela, eles oferecem

indícios confiáveis dentro do escopo desta investigação inicial.

Em suma, embora esta etapa apresente limitações inerentes ao delineamento explo-

ratório, os resultados apontaram médias e medianas favoráveis, consistência interna elevada e

alinhamento com as percepções qualitativas. Esses achados indicam que a TwinCode já oferece

evidências sólidas de utilidade e aplicabilidade, reforçando sua viabilidade como instrumento

de pesquisa. As ameaças aqui discutidas estabelecem não apenas os limites do presente estudo,

mas também diretrizes valiosas para ciclos futuros, nos quais será possível ampliar a robustez

72

inferencial e a generalização dos resultados. Assim, apesar dos desafios, esta investigação

constitui um passo importante para consolidar a TwinCode como uma ferramenta acadêmica

confiável e em evolução contínua.

4.6 Conclusão

A TwinCode representa uma contribuição concreta para a instrumentalização de

estudos empíricos em engenharia de software, ao oferecer uma solução integrada orientada à

comparação de trechos de código com suporte à instrumentação por questionários específicos por

comparação. A validação de caráter exploratório conduzida nesta etapa, evidenciou pontos fortes

no núcleo de visualização lado a lado, na numeração de linhas e no syntax highlighting, além

da boa aceitação de questionários e da criação de pares com baixo atrito. Em paralelo, foram

identificadas oportunidades de aprimoramento no fluxo de associação entre comparações e ques-

tionários, no design de experiência do usuário e em funcionalidades auxiliares (filtros, exportação

e versionamento), estabelecendo base objetiva para evolução incremental da ferramenta.

A convergência entre um desenho metodológico alinhado a protocolos reprodutíveis

e uma facilidade de uso satisfatória, ainda em amadurecimento, evidencia que ferramentas

acadêmicas podem conciliar robustez científica e aplicabilidade prática. Consideradas as limi-

tações desta etapa como amostra majoritariamente sênior, aplicação autoaplicável e ausência

de comparação, os resultados sustentam a viabilidade da TwinCode como instrumento para

apoiar investigações controladas sobre qualidade de código, sem prejuízo de aperfeiçoamentos

incrementais no design de experiência do usuário e fluxo.

Espera-se que a disponibilização da TwinCode e dos achados desta pesquisa fomente

estudos empíricos com maior qualidade metodológica sobre percepção humana de qualidade de

código, tema central para compreender fatores associados à produtividade e à sustentabilidade

do desenvolvimento de software.

Para estudos futuros, recomenda-se: (a) validação em contextos reais por meio de

delineamentos longitudinais; (b) avaliação comparativa com ferramentas de referência para

quantificar vantagens específicas; (c) ampliação e estratificação da base de usuários (experiência,

escolaridade e contexto institucional); (d) incorporação de métricas objetivas de eficiência (tempo

em tarefa, taxa de erro, logs) em triangulação com percepções; e (e) investigação de fatores que

influenciam a adoção de ferramentas acadêmicas especializadas.

Quanto ao desenvolvimento, destacam-se oportunidades como integração com reposi-

73

tórios amplamente utilizados (p. ex., GitHub, GitLab), implementação de análises automatizadas

de métricas de qualidade e ampliação do suporte a diferentes artefatos de software além de

código-fonte. Tais direções, somadas às melhorias de User Experience (UX) e orquestração do

fluxo, tendem a robustecer a utilidade científica e a adoção acadêmica da TwinCode.

74

5 PERCEPÇÃO DE DESENVOLVEDORES SOBRE QUALIDADE DE CÓDIGO RE-

FATORADO POR MODELO DE LINGUAGEM DE GRANDE PORTE

A crescente integração de modelos de linguagem de grande porte (do inglês Large

Language Models – LLMs) aos fluxos de desenvolvimento tem ampliado a automação de tarefas

como geração e refatoração de código, com efeitos diretos sobre práticas de qualidade e produ-

tividade (XUE et al., 2025; LYU et al., 2025). Entretanto, permanece pouco explorado como

desenvolvedores percebem a qualidade do código alterado por LLMs, especialmente quando

a refatoração visa mitigar code smells, e quais critérios humanos orientam tais julgamentos

em cenários reais (CHEN et al., 2021; HE et al., 2025). Com base nessa lacuna, este capítulo

investiga a percepção de desenvolvedores brasileiros sobre código refatorado por LLMs, combi-

nando comparações cegas entre versões original/refatorada e entrevistas semi-estruturadas. A

motivação é dupla: (i) fornecer evidências empíricas que ajudem equipes a decidir quando e

como incorporar LLMs de forma responsável nos seus fluxos, e (ii) mapear atributos de qualidade

valorizados pelos profissionais (p. ex., legibilidade, manutenibilidade e modularidade), gerando

insumos para diretrizes de adoção e futuras pesquisas.

Para cobrir esta lacuna, este estudo envolveu sessões de entrevistas individuais de

cerca de 45 minutos, nas quais os entrevistados avaliaram cinco pares de códigos (originais

e versões refatoradas pelo modelo Qwen2.5-max1) por meio da ferramenta TwinCode, que

ofereceu visualização lado a lado dos trechos de código comparados. As entrevistas foram

gravadas e transcritas e organizadas em cinco blocos: (i) caracterização do perfil do entrevistado,

(ii) percepção de qualidade de software, (iii) análise comparativa dos códigos, (iv) discussão

sobre ferramentas e reflexões sobre qualidade de código e (v) revelação do uso de IA. A coleta

integrou dados quantitativos (preferências declaradas) e qualitativos (justificativas e percepções),

analisados pela técnica de análise de conteúdo de Bardin (2016). Essa técnica permite identificar

critérios de qualidade, expectativas e limitações atribuídas à tecnologia.

Os resultados revelam convergência em torno de características de qualidade de

código como legibilidade, manutenibilidade e modularidade, preferência majoritária dos entre-

vistados (83%) pelos códigos refatorados em sua totalidade e 97% dos artefatos analisados. Essa

percepção se manteve quando revelado que o código foi refatorado pela LLM, pois as decisões

se fundamentaram em características intrínsecas de qualidade. Ao mesmo tempo, emergiu uma

aceitação ponderada das LLMs, no qual os entrevistados informaram que são ferramentas úteis

1 Disponível em: <https://chat.qwenlm.ai/> Acesso em: 9 abr. 2025

75

para aumentar produtividade e auxiliar em contextos de pressão temporal, mas que exigem

supervisão humana para mitigar riscos como complexidade desnecessária e perda de contexto.

Este trabalho possui quatro contribuições principais, sendo elas:

• Evidências empíricas inéditas. Fornecimento de resultados originais no contexto nacional

sobre a percepção de desenvolvedores em relação a refatorações realizadas por LLMs;

• Contribuição metodológica. Demonstração da utilidade de comparações cegas como

abordagem para avaliar qualidade de código sob a ótica humana;

• Mapeamento de critérios de avaliação. Identificação de atributos valorizados pelos

profissionais, como legibilidade, manutenibilidade e modularidade;

• Implicações práticas. Apontamento de oportunidades e limitações para a integração

responsável de LLMs em fluxos de desenvolvimento, oferecendo subsídios tanto para a

prática profissional quanto para futuras pesquisas na área.

Este capítulo está organizado da seguinte forma. A Seção 5.1 descreve o delinea-

mento metodológico, incluindo seleção de dados, processo de refatoração e protocolos de coleta e

análise. A Seção 5.2 apresenta os resultados, estruturados por critérios de qualidade, preferências

de código, impacto da revelação sobre uso de IA e expectativas sobre a tecnologia. Seção 5.3

descreve trabalhos relacionados. A Seção 5.4 relata as ameaças à validade do estudo, enquanto a

Seção 5.5 sintetiza as conclusões, contribuições, limitações e direções para trabalhos futuros.

5.1 Metodologia

Este estudo fundamenta-se em abordagem qualitativa que combina comparações

cegas de código com entrevistas semi-estruturadas para investigar a percepção de desenvolvedores

sobre qualidade de código refatorado por LLMs. O delineamento metodológico foi estruturado

em quatro componentes: (i) objetivos e questões de pesquisa, (ii) composição do conjunto

de dados experimentais do Qualitas Corpus (TEMPERO et al., 2010), (iii) detalhamento do

processo de refatoração e (iv) seleção dos entrevistados, procedimentos de coleta e análise

qualitativa. Esta estruturação visa eliminar vieses relacionados à origem tecnológica e capturar

critérios utilizados por desenvolvedores na avaliação de qualidade de software.

A Figura 9 apresenta o fluxograma metodológico utilizado no estudo. O processo

inicia-se com a definição dos objetivos e questões de pesquisa, etapa fundamental para orientar

todas as fases subsequentes. Em seguida, ocorre a definição do prompt seguindo as técnicas de

White et al. (2023) e a seleção do LLM utilizado nas refatorações. Paralelamente, realiza-se

76

a seleção dos dados a partir do Qualitas Corpus, de modo a compor o conjunto de trechos de

código a serem analisados. Esta seleção foi feita a partir de 815 classes e métodos classificados

com os code smells Feature Envy, Long Method, Data Class e God Class. Dessa seleção foram

escolhido aleatoriamente 20 casos de cada code smell, totalizando 80 trechos de código para uso

nas entrevistas. Em seguida os dados são refatorados e armazenados para cruzamento dos pares,

código original e refatorado. A partir desses pares, foram elaboradas as comparações cegas, para

ocultar dos entrevistados a origem de cada trecho avaliado.

Figura 9 – Fluxo de trabalho proposto
Fonte: Elaborado pelo autor (2025)

Posteriormente, ocorre a seleção dos entrevistados e a aplicação das entrevistas semi-

77

estruturadas, nas quais os desenvolvedores analisaram os códigos apresentados. Nessa etapa,

foram coletadas as preferências e justificativas em relação às versões originais e refatoradas, sendo

todas as interações registradas em transcrições. Por fim, os dados coletados foram submetidos à

análise de conteúdo proposta por Bardin (2016), possibilitando a categorização e interpretação

das percepções manifestadas. A etapa final consistiu na síntese dos resultados e discussões, que

integra os achados obtidos e fornece subsídios para a compreensão das contribuições e limitações

do uso de LLMs na refatoração de código.

5.1.1 Objetivos da Pesquisa

O objetivo principal desse capítulo é investigar a percepção de desenvolvedores

sobre a qualidade de código refatorado por LLMs. De forma complementar, definiu-se quatro

objetivos específicos.

1. Identificar e categorizar os critérios que desenvolvedores utilizam espontaneamente para

avaliar qualidade de código, estabelecendo uma taxonomia conceitual dos fatores que

influenciam percepções de qualidade no contexto de desenvolvedores profissionais;

2. Analisar preferências entre versões originais e refatoradas por LLMs por meio de compara-

ções cegas (desenvolvedores não sabem qual é o código refatorado, nem quem refatorou),

quantificando e qualificando as escolhas dos desenvolvedores sem viés relacionado à

origem do código;

3. Investigar mudanças na percepção de qualidade após revelação sobre uso de inteligência

artificial na refatoração, avaliando o impacto de preconceitos tecnológicos nas avaliações

dos desenvolvedores;

4. Examinar expectativas, preocupações e perspectivas dos desenvolvedores sobre integração

futura de LLMs em processos de melhoria de qualidade de código, identificando fatores

facilitadores e barreiras à adoção tecnológica.

A partir dos objetivos delineados para este estudo, foram formuladas quatro questões

de pesquisa (QPs) que estruturam a investigação empírica sobre percepção de desenvolvedores

em relação ao código refatorado por LLMs. A seguir, são apresentadas cada questão de pesquisa

e suas respectivas justificativas.

QP1: Quais critérios desenvolvedores utilizam espontaneamente para avaliar quali-

dade de código?

78

Essa questão investiga os parâmetros que os desenvolvedores utilizam de forma

natural ao julgar um código. Ao identificar critérios como legibilidade, manutenibilidade,

modularidade ou testabilidade, é possível compreender quais dimensões da qualidade são mais

valorizadas pelos desenvolvedores na prática.

QP2: Desenvolvedores conseguem identificar diferenças qualitativas entre código

original e refatorado por LLMs em comparações cegas?

Nessa questão pesquisa é buscado verificar se, sem influência de preconceitos tec-

nológicos, os desenvolvedores percebem distinções relevantes entre as duas versões de código.

Trata-se de um passo decisivo, pois avalia a efetividade da refatoração automática em termos

práticos. Explora-se se as refatorações realizadas pelo LLM geram, de fato, mudanças notáveis e

reconhecidas como melhorias.

QP3: Como a revelação sobre uso de IA influencia a percepção de qualidade dos

desenvolvedores?

Na questão de pesquisa três, explora-se o papel do viés tecnológico no julgamento de

qualidade. Ao comparar as respostas obtidas antes e depois da revelação do uso de IA, verifica-se

a existência de resistência ou de confiança no código refatorado pela LLM.

QP4: Quais são as expectativas e preocupações dos desenvolvedores sobre o uso de

LLMs para melhoria de qualidade de código?

Para essa questão, busca-se ampliar a análise para além da comparação direta entre

códigos, procurando compreender como os profissionais percebem o futuro dessa tecnologia. A

investigação de expectativas e preocupações permite construir uma visão equilibrada sobre as

possibilidades e os desafios do uso de LLMs.

5.1.2 Conjunto de Dados

O estudo utilizou códigos do Qualitas Corpus versão 20130901r2, proposto por Tem-

pero et al. (2010). Neste capítulo são investigados os quatro code smells analisados por Fontana

et al. (2016) e Abdou e Darwish (2024) no Capítulo 3: God Class, Long Method, Feature

Envy e Data Class. Esses code smells foram escolhidos por representarem categorias distintas

2 Disponível em: <https://qualitascorpus.com/download/> Acesso em: 2 abr. 2025

79

de problemas: enquanto God Class e Data Class evidenciam falhas estruturais relacionadas ao

desenho das classes, Long Method e Feature Envy estão associados à implementação e ao uso

inadequado de responsabilidades nos métodos. Dessa forma, o conjunto abrange tanto problemas

de projeto de alto nível quanto defeitos mais granulares. Para compor a base experimental, foram

selecionadas aleatoriamente 20 classes de cada tipo de code smell, totalizando uma amostra com

80 artefatos destinados à refatoração e à avaliação dos entrevistados.

A Tabela 11 apresenta em detalhes o processo de seleção e filtragem da amostra

utilizada. Inicialmente, foram identificados 815 trechos com ocorrência de code smells. Em

seguida, por meio de um script desenvolvido em Python3, realizou-se o cruzamento desses

trechos com o código-fonte dos sistemas pertencentes ao Qualitas Corpus. Esse procedimento

permitiu localizar 740 trechos correspondentes, enquanto 75 não puderam ser associados ao

respectivo código-fonte.

Tabela 11 – Processo de seleção das amostras para refatoração

Code Smell Identificados Inicialmente Após Filtragem Selecionados para Refatoração

Long Method 140 127 20
Data Class 269 241 20
God Class 266 242 20
Feature Envy 140 130 20

Total 815 740 80

Fonte: Elaborado pelo autor (2025)

Após o processo de refatoração que resultou em 80 pares de código (original e

refatorado), foram selecionadas aleatoriamente 5 comparações únicas para cada entrevistado

durante as entrevistas. Cada participante analisou um conjunto distinto de código, garantindo

diversidade na amostra e evitando viés de familiarização. A Tabela 12 apresenta os 12 sistemas

do Qualitas Corpus selecionados aleatoriamente para as comparações realizadas nas entrevistas.

Esses sistemas foram utilizados por conterem classes e métodos classificados com algum dos

code smells investigados. Dessa forma, o número de sistemas analisados nesta avaliação foi

limitado em função da quantidade de entrevistados considerados neste estudo, descritos na

Seção 5.1.4.

3 Disponível em: <https://github.com/alanfm/dissertation_cap5>

80

Tabela 12 – Sistemas do Qualitas Corpus analisados pelos entrevistados

Sistema Versão Domínio Descrição

Heritrix 1.14.4 Arquivamento Web Rastreador web desenvolvido pelo Internet Archive
para coleta e arquivamento de conteúdo digital

JSPWiki 2.6.3 Wiki/CMS Mecanismo de Wiki em Java construído com compo-
nentes J2EE padrão

mvnForum 1.2.3 Fórum Ferramenta de fórum desenvolvida em Java para dis-
cussões online

JHotDraw 7.0.6 Framework Gráfico Framework Java para gráficos bidimensionais e cons-
trução de editores de desenho

DrawSWF 1.2.9 Aplicação Gráfica Aplicação de desenho simples em Java para criação de
arquivos animados SWF

ProGuard 4.4 Otimização Sistema para otimizar, ofuscar e reduzir código Java
através de análise de bytecode

HSQLDB 1.8.0.10 Banco de Dados Sistema de banco de dados relacional implementado
em Java

Xerces 2.9.1 Processamento XML Analisador de XML de alto desempenho da família
Apache Xerces

MegaMek 0.35.18 Jogo Jogo de estratégia baseado no universo BattleTech

Art of Illusion 2.7.2 Modelagem 3D Estúdio para modelagem e renderização 3D

JSML 1.1.1 Processamento Sistema para descompilação de arquivos .class do Java

EMMA 2.0.5312 Análise Cobertura Ferramenta de análise de cobertura de código Java
usando instrumentação de bytecode

Fonte: Elaborado pelo autor (2025)

5.1.3 Processo de Refatoração

Todos os modelos avaliados, ChatGPT-3.54, DeepSeek-R15, Google Gemini 2.0

flash6 e Qwen2.5-max, apresentaram desempenho satisfatório na compreensão de código Java,

aplicação de princípios de qualidade de software e identificação de code smells, entretanto o

Qwen2.5-max foi selecionado por disponibilizar acesso gratuito a funcionalidades avançadas,

garantindo a replicabilidade do estudo e a viabilidade econômica da pesquisas.

O desenvolvimento do prompt estruturado fundamentou-se nas técnicas estabelecidas

por White et al. (2023), integrando quatro componentes metodológicos essenciais para assegurar

qualidade e consistência da refatoração: (i) definição explícita dos objetivos de refatoração,

assegurando clareza quanto às metas de melhoria de qualidade; (ii) incorporação de diretrizes

de estilo de codificação Java, garantindo aderência a convenções consolidadas da linguagem;

(iii) instruções específicas para tratamento dos code smells considerados no estudo (god class,

4 Disponível em:<https://chat.openai.com/> Acesso em: 7 abr. 2025
5 Disponível em: <https://chat.deepseek.com/> Acesso em: 8 abr. 2025
6 Disponível em: <https://gemini.google.com/> Acesso em: 9 abr. 2025

81

long method, feature envy e data class); e (iv) padronização do formato de saída, assegurando

consistência na análise e reprodutibilidade dos resultados. No Código-fonte 1 é apresentado o

conteúdo integral do prompt, seguindo as técnicas mencionadas acima.

Código-fonte 1 – Prompt usado para refatoração do códigos.

1 <prompt>

2 <contexto>

3 Você é um especialista em engenharia de software, com profundo

conhecimento em Java, refatoração de código e detecção de code smells.

4 Seu objetivo é analisar um trecho de código e identificar a presença

de code smells específicos.

5 Além disso, você deve sugerir uma refatoração detalhada, explicando

como o código pode ser melhorado para seguir boas práticas de programação.

6 <restricoes>

7 Limite-se a analisar apenas os seguintes code smells: god class,

long method, feature envy e data class.

8 </restricoes>

9 </contexto>

10 <tarefa>

11 Analise o seguinte código Java e determine se ele contém algum dos

seguintes code smells:

12 <lista>

13 <item>

14 God Class (Classe excessivamente grande e com muitas

responsabilidades).

15 </item>

16 <item>

17 Long Method (Métodos muito longos e difíceis de entender).

18 </item>

19 <item>

20 Feature Envy (Um método que acessa mais dados de outra

classe do que da sua própria).

21 </item>

22 <item>

82

23 Data Class (Uma classe que apenas armazena dados, sem

comportamentos relevantes).

24 </item>

25 </lista>

26 Se houver um ou mais code smells, explique quais são, por que eles

ocorrem e quais os impactos negativos no código.

27 Depois, proponha uma refatoração detalhada, mostrando a versão

melhorada do código e justificando as mudanças feitas.

28 Sempre que for adicionado um arquivo com código java, faça a análise

automaticamente.

29 </tarefa>

30 <formato>

31 Sua resposta deve seguir esta estrutura:

32 <lista>

33 <item>

34 1. Code Smells Detectados: Liste os problemas encontrados e

explique cada um.

35 </item>

36 <item>

37 2. Justificativa: Por que esse code smell é um problema no

código analisado?

38 </item>

39 <item>

40 3. Código Refatorado: Apresente uma versão melhorada do

código.

41 </item>

42 <item>

43 4. Explicação da Refatoração: Explique cada modificação

realizada e como ela melhora a qualidade do código.

44 </item>

45 </lista>

46 </formato>

47 <exemplo>

48 ...

83

49 </exemplo>

50 </prompt>

Fonte: Elaborado pelo autor (2025)

A implementação desses componentes estruturais foi complementada por contro-

les específicos voltados à preservação da integridade funcional e direcionamento preciso das

intervenções. As instruções para manutenção da funcionalidade original buscou asseguraram

que o processo de refatoração preservasse o comportamento dos métodos e classes, priorizando

melhorias estruturais sem alteração semântica. O foco específico na eliminação dos code smells

identificados direcionou as intervenções para os problemas estruturais detectados, garantindo

que a refatoração abordasse sistematicamente as deficiências qualitativas presentes no código

original.

O processo de refatoração seguiu protocolo sistematizado em seis etapas sequenciais

para garantir consistência metodológica e controle de variáveis experimentais, sendo elas: (i)

aplicação do prompt padronizado, elaborado com base nas diretrizes de White et al. (2023); (ii)

inserção manual de cada classe no modelo Qwen2.5-max para obtenção das versões refatoradas;

(iii) armazenamento organizado das 80 versões processadas, assegurando rastreabilidade entre

originais e refatoradas; (iv) remoção sistemática de comentários em ambas as versões (original e

refatorada) para garantir comparação cega livre de indicadores de origem; (v) seleção aleatória

de cinco pares únicos de códigos (original e refatorado) para cada entrevistado para garantir

diversidade na amostra e eliminar efeitos de familiarização entre diferentes sessões de entrevista;

e (vi) randomização da posição dos códigos dentro de cada par, de modo que o original e o

refatorado pudessem aparecer indistintamente como “Código 1” ou “Código 2” para eliminar

viés de posição e assegurar que as preferências dos entrevistados refletissem qualidade percebida

ao posicionamento visual na ferramenta.

5.1.4 Seleção dos Entrevistados e Coleta e Análise dos Dados

O estudo envolveu desenvolvedores profissionais selecionados por amostragem de

conveniência, estratégia que possibilitou perfis heterogêneos em termos de experiência e atuação

profissional, o que enriqueceu a análise qualitativa dos dados.

As entrevistas semi-estruturadas foram realizadas remotamente via Google Meet 7,

formato que permitiu maior flexibilidade de participação e acesso a desenvolvedores geografica-

7 Disponível em: <https://meet.google.com> Acesso em: 2 jun. 2025

84

mente distribuídos. O tempo médio de 45 minutos por sessão e a gravação integral das sessões

utilizou o software OBS Studio8, garantindo qualidade técnica adequada para posterior processa-

mento dos dados. Todas as entrevistas foram transcritas através do programa Vibe9, software de

código aberto, gratuito, offline e usa LLM para maior fidelidade ao áudio. O protocolo seguiu

diretrizes éticas rigorosas, incluindo consentimento informado e garantias de confidencialidade

dos dados coletados.

As entrevistas seguiram um roteiro estruturado em quatro blocos principais, como

pode ser visto no Apêndice D, esse roteiro inicia-se pela apresentação da pesquisa e caracteriza-

ção do perfil profissional dos entrevistados durante cerca de dez minutos, estabelecendo contexto

experiencial necessário para interpretação posterior das respostas. A fase central concentrou-se

na comparação de códigos por aproximadamente 25 minutos, utilizando a ferramenta TwinCode,

descrita no Capítulo 4, para apresentar os cinco pares de códigos em análise cega. O terceiro

segmento explorou ferramentas e reflexões sobre qualidade levando entorno de dez minutos,

contextualizando as avaliações individuais dentro de práticas profissionais mais amplas. A fase

final, aproximadamente cinco minutos, revelou o uso de IA na refatoração e coletou pondera-

ções sobre implicações futuras da tecnologia. A ferramenta TwinCode, teve papel essencial

para apresentação comparativa dos códigos, oferecendo numeração sincronizada de linhas que

facilitou referência precisa durante as discussões, realce de sintaxe para melhor legibilidade

do código Java, ajuste dinâmico de fonte conforme necessidades visuais dos entrevistados, e

interface responsiva acessível remotamente via Ngrok10 para garantir funcionalidade adequada

durante as sessões virtuais.

A análise dos dados seguiu a técnica de análise de conteúdo de Bardin (2016),

aplicando especificamente a modalidade temática às transcrições das entrevistas realizadas. O

processo analítico respeitou as três etapas fundamentais propostas pela autora: pré-análise para

organização do material transcrito, exploração sistemática mediante codificação para identificar

padrões recorrentes e critérios de avaliação, e tratamento interpretativo dos resultados obtidos.

A categorização dos dados seguiu abordagem indutiva, resultando na emergência de cinco

categorias principais que capturaram dimensões específicas da percepção dos desenvolvedores:

(i) critérios de qualidade espontaneamente mencionados, (ii) preferências entre versões de

código, (iii) justificativas para escolhas realizadas, (iv) percepções sobre inteligência artificial

8 Disponível em: <https://obsproject.com> Acesso em: 5 jun. 2025
9 Disponível em: <https://thewh1teagle.github.io/vibe/> Acesso em: 9 jul. 2025
10 Disponível em: <https://ngrok.com/> Acesso em: 7 jul. 2025

85

pós-revelação e (v) expectativas futuras sobre integração de LLMs. Essas categorias encontram-

se organizadas no Apêndice B, em forma de tabela que apresenta as unidades de registro, seus

respectivos códigos e categorias, bem como exemplos literais de falas e a interpretação analítica

associada.

5.2 Resultados

Esta seção organiza os resultados obtidos no estudo empírico em seis subseções. A

Seção 5.2.1 apresenta a caracterização dos entrevistados, de modo a contextualizar o perfil da

amostra e sua diversidade de experiências. A Seção 5.2.2 apresenta os critérios de qualidade

de código identificados espontaneamente pelos desenvolvedores (QP1). A Seção 5.2.3 mostra

as comparações entre versões originais e refatoradas, destacando preferências e justificativas

(QP2). A Seção 5.2.4 apresenta o impacto da revelação sobre o uso de IA nas percepções dos

entrevistados (QP3). A Seção 5.2.5 relata as expectativas e preocupações em relação ao uso de

LLMs para melhoria da qualidade de código (QP4). Por fim, a Seção 5.2.6 apresenta uma análise

integrativa dos resultados, sintetizando os achados quantitativos e qualitativos e discutindo suas

implicações para a compreensão da percepção dos desenvolvedores sobre código refatorado por

modelos de linguagem de grande porte LLMs.

5.2.1 Caracterização dos Entrevistados

A amostra é composta por sete entrevistados, contemplando diferentes níveis de

senioridade: três autodeclarados juniores, dois plenos e dois seniores, distribuídos em distintas

áreas de desenvolvimento de software. Como desenvolvimento web, móvel, sistemas embarcados

e plataformas Software as a Service (SaaS). Essa diversidade permitiu identificar percepções

distintas sobre qualidade de código, uma vez que cada nível de maturidade tende a valorizar

aspectos específicos do processo de construção de software. Enquanto os mais experientes

ressaltaram a importância da manutenção e da refatoração ao longo do ciclo de vida do código, os

juniores enfatizaram a simplicidade e a legibilidade imediata como elementos centrais para definir

a qualidade. Essa multiplicidade de cenários contribuiu para que fossem trazidas perspectivas

complementares sobre a aplicabilidade dos critérios de qualidade. Os entrevistados que atuam

como profissionais no mercado destacaram a relevância de arquiteturas escaláveis e do uso de

padrões de projeto, enquanto aqueles com maior vínculo acadêmico priorizaram a clareza, a

86

organização estrutural e o valor pedagógico de determinadas soluções de código. Essa variação

ampliou o escopo interpretativo da pesquisa.

A Tabela 13 detalha as características dos entrevistados, apresentando informações

sobre experiência profissional, área de especialização e ferramentas de desenvolvimento habitu-

almente utilizadas. Como pode ser visto, há uma boa variabilidade de nível de senioridade, nesse

quesito os entrevistado se classificaram por autodeclaração. O tempo de experiência mostra

que os seniores tem 15 anos, os plenos mais de 4 anos e os juniores variando de 11 anos a

um ano e meio. As área de atuação é bem diversifica, assim como as ferramentas. A seguir,

são apresentados alguns trechos das entrevistas dos participantes referentes a seus perfis e às

ferramentas utilizadas. E5, se autodeclarou como júnior “eu considero minha experiência como

júnior”, relatou ter cerca de “seis anos” de experiência em desenvolvimento web, destacando que

atua com “PHP, MySQL e alguma ferramenta para modelar banco de dados”, o que confirma

sua prática em ferramentas variadas e foco em aplicações web. No nível pleno, E4 afirmou: “Eu

sou programador dart, pleno, basicamente”, acrescentando que possui “quatro anos no mercado”

e que sua atuação se concentra “principalmente em aplicativos, 90%”, utilizando como principais

ferramentas o “Android Studio com Xcode”. Já entre os sêniores, E7 declarou: “Sênior [...]

trabalho há 15 anos”, ressaltando sua experiência no desenvolvimento de “plataformas SaaS” e

seu uso cotidiano de ambientes diversos: “Tenho utilizado mais o VS Code como IDE, mas já

utilizei o IntelliJ também, Eclipse [...] utilizo Google Cloud, já utilizei AWS [...] também Docker

e Kubernetes para orquestração”.

Tabela 13: Perfil dos entrevistados

ID Nível Experiência Área Principal Ferramentas

E1 Sênior 2 anos mercado, 15
total

Web (back/front) VS Code, Cursor

E2 Júnior 11 anos Embarcados, IA Python, VS Code

E3 Pleno 5 anos Educação, Web Não especificado

E4 Pleno 4 anos mercado Mobile (Flutter) Android Studio

E5 Júnior 6 anos Web Ferramentas variadas

E6 Júnior 1,5 anos mercado Web (Node.js/React) VS Code

E7 Sênior 15 anos SaaS, Plataformas VS Code, IntelliJ

Fonte: Elaborado pelo autor (2025)

87

5.2.2 Critérios de Qualidade de Código (QP1)

De modo geral, todos os entrevistados demonstraram familiaridade com conceitos

básicos de qualidade de código, ainda que nem sempre tenham utilizado terminologia técnica

formal para descrevê-los. Termos como legibilidade, modularidade, padronização e manutenibi-

lidade apareceram de forma recorrente nos discursos, mesmo quando expressos de maneira mais

empírica e baseada em vivências pessoais. Essa característica reforça a relevância de considerar

a experiência prática dos entrevistados na avaliação da qualidade de software, uma vez que o

entendimento sobre o tema não se restringe a definições acadêmicas, mas é construído a partir da

interação cotidiana com diferentes tipos de código e contextos de desenvolvimento.

A análise qualitativa das justificativas revelou que os desenvolvedores utilizam

métodos predominantemente empíricos para avaliação, conforme indicado na Tabela 14. Os

entrevistados (E1, E2, E3 e E7) mencionaram explicitamente a experiência como critério de

avaliação da qualidade de código. Os demais entrevistados (E4, E5 e E6) não citaram diretamente

a experiência pessoal como fundamento; entretanto, a análise semântica dos trechos a seguir,

referenciando as escolhas pelo código refatorado, permite interpretar o uso da experiência pessoal

na classificação da qualidade do código: E4 “Claramente, a principal coisa que faz um código

ser bom é ser legível e padronizado. O código 1 tem muita coisa fora do padrão.”; E5 “Não

tem nem como comparar, o código 1 tá enxuto, perfeito, bem resumido. O código 2 tá enorme e

pouco legível.”; e E6 “O código 2 está bem mais modular, responsabilidades divididas, mais

legível.”.

Tabela 14: Experiência como métodos para classificação de qualidade de código

Entrevistado Nível Exemplo de fala

E1 Sênior Eu vejo muito esse código e reconheço como gambiarra porque era o que eu faria há
20 anos atrás.

E2 Júnior Eu não tenho experiência de mercado tão grande. . . então me considero júnior. Minha
avaliação é mais pela experiência acadêmica e pessoal.

E3 Pleno A qualidade de um código se reflete quando, com os anos, ainda consigo dar manuten-
ção naquele código.

E7 Sênior Vejo métodos gigantes, ifs dentro de ifs. . . isso a experiência mostra que é difícil de
manter.

Fonte: Elaborado pelo autor (2025)

Após o processamento das entrevistas, foram identificados seis critérios de qualidade

de código: legibilidade, manutenibilidade, modularidade, padronização de nomenclatura, funcio-

nalidade e simplicidade. A Figura 10 apresenta a distribuição de ocorrências desses critérios entre

88

os entrevistados, resultante de análise semântica das falas, detalhada no Apêndice A. Observa-se

a predominância de legibilidade, manutenibilidade e modularidade, evidenciando a ênfase dos

entrevistados em atributos que favorecem a compreensão, a evolução e a organização estrutural

do código. A seguir, é descrita a frequência com que cada critério de qualidade foi mencionado

pelos entrevistados, permitindo identificar os mais relevantes na avaliação de código.

Figura 10: Categorias por entrevistado
Fonte: Elaborado pelo autor (2025)

Legibilidade (7/7 entrevistados): Houve unanimidade na percepção de que o código

deve ser fácil de ler e compreender. Os entrevistados destacaram que a clareza visual e a escolha

adequada de nomes para variáveis e funções são determinantes para a compreensão do código.

Como exemplificado por E4: "A principal coisa que faz um código ser bom para manter é um

código que duas pessoas vão bater o olho e vão compreender a lógica ali."

Manutenibilidade (6/7 entrevistados): Associada à capacidade de realizar alterações

e extensões no código sem comprometer sua integridade. Foi citada como um dos critérios

essenciais para garantir a longevidade do software, aparecendo entre os “três principais critérios”

de E7, juntamente com legibilidade e funcionalidade.

Modularidade (6/7 entrevistados): Relacionada à separação clara de responsabilida-

des e à aplicação de princípios como responsabilidade única. Essa prática foi reconhecida como

essencial para manter a organização e a escalabilidade do sistema. E3 exemplificou: "Separação

de responsabilidades".

89

Padronização de Nomenclatura (3/7 entrevistados): Considerada parte integrante

da legibilidade, refere-se ao uso consistente de convenções de nomes para variáveis, funções e

métodos, facilitando a compreensão por diferentes desenvolvedores. E4 destacou: "Nomear bem

variáveis e funções".

Funcionalidade (3/7 entrevistados): Refere-se à garantia de que o código atenda

plenamente aos requisitos previstos e execute as tarefas de forma correta. Foi citada por E7 como

um dos pilares da qualidade de código.

Simplicidade (3/7 entrevistados): Preferência por soluções enxutas e objetivas,

evitando complexidade desnecessária. E1 comentou: "Eu gosto de códigos pequenos, mas que

sejam legíveis".

Essa distribuição evidencia não apenas o consenso em torno de determinados as-

pectos, como a legibilidade, mas também a diversidade de perspectivas sobre o que caracteriza

um código de qualidade. Diferentemente da Figura 10, que sintetiza ocorrências a partir de

análise semântica das falas, as citações diretas dos entrevistados apresentadas acima consideram

apenas menções textuais explícitas aos termos, podendo, portanto, divergir ligeiramente dos

totais previamente reportados. As citações foram extraídas e classificadas pelos seis critérios

de qualidade reportados, preservando a literalidade e o contexto imediato de enunciação. Essa

distinção metodológica reforça a rastreabilidade entre os resultados e o corpus original e está

detalhada no Apêndice A.

A Figura 11 apresenta a nuvem de palavras construída a partir das sete transcrições.

O procedimento de construção da nuvem de palavras consiste em: (i) unificar as transcrições

em um único corpus; (ii) converter letras maiúsculas para minúsculas e tokenizadas por regex

com preservação de acentuação; e (iii) promover limpeza linguística, ou seja, remover palavras

frequentes, mas sem conteúdo semântico do português e de marcadores conversacionais (p.ex.,

“né”, “tá”, “uhum”), à exclusão de artigos e pronomes e à filtragem de verbos por abordagem

híbrida (lista manual de formas frequentes e heurística morfológica por terminações), incluindo

a retirada de itens de baixo conteúdo informativo (“é”, “e”). Para evitar dispersão entre flexões,

aplicou-se normalização de número sem afetar os acentos (regras: “ões/ães → ão”, “eis → el”,

“is/es/s → singular”), de modo que pares como “variável/variáveis” convergissem para “variável”.

A nuvem foi gerada a partir das frequências consolidadas e diagramada no Infogram11, ao passo

que o processamento foi implementado em Python (pandas, regex), assegurando rastreabilidade

11 Disponível em: <https://infogram.com/> Acesso em: 11 ago. 2025

90

e reprodutibilidade das etapas e parâmetros.

Figura 11: Nuvem de palavras
Fonte: Elaborado pelo autor (2025)

Como resultados, observa-se a forte centralidade de “código”, termo mais proemi-

nente, seguido de “qualidade”; em torno desses núcleos gravitam referências práticas como

“sistema”, “função”, “ferramenta”, “exemplo”, “software” e “variável”, bem como atributos inter-

nos associados à avaliação técnica: “legível/legibilidade”, “manutenção”, “teste”, “complexidade”

e “ciclomática”. O tamanho relativo das palavras indica maior frequência de menção e sugere que

os entrevistados concentram o discurso na avaliação da qualidade do código, articulando critérios

de legibilidade, testabilidade e controle de complexidade, além de situarem tais julgamentos

no contexto de uso (ferramentas, sistemas e exemplos). Em termos quantitativos, “código”

responde por 10,7% das palavras filtradas (893 de 8.342), ao passo que “qualidade” perfaz

1,95%; aparecem ainda “sistema” (1,29%), “questão” (1,08%), “função” (1,07%), “melhor”

(1,03%), “ferramenta” (0,92%), “exemplo” (0,91%), “software” (0,80%) e “variável” (0,62%),

corroborando a predominância de vocabulário relacionado à análise de trechos de código.

91

Resumo da resposta da QP1. Em síntese, desenvolvedores avaliam a qualidade de

código por critérios majoritariamente empíricos, ancorados na prática profissional, com

consenso forte em torno da legibilidade, manutenibilidade e modularidade. Nomenclatura,

funcionalidade e simplicidade surgem como fatores complementares que reforça a clareza,

a evolução segura e a organização estrutural do software. Esse panorama delimita, portanto,

os atributos que efetivamente orientam o julgamento humano e fornecem a base para

interpretar as escolha comparativas discutidas nas análises subsequentes.

5.2.3 Comparações de Código (QP2)

A questão de pesquisa (QP2) buscou investigar se desenvolvedores conseguem

identificar diferenças qualitativas entre códigos originais e versões refatoradas por LLMs quando

submetidos a comparações cegas. Para isso, foram apresentados cinco pares de códigos aos

entrevistados, sem qualquer indicação de origem, e cada entrevistado justificou suas escolhas

com base em critérios de qualidade de software.

Os resultados mostram que os desenvolvedores, em sua maioria, conseguiram per-

ceber diferenças consistentes entre as versões apresentadas. As justificativas apontam que a

legibilidade foi o critério mais recorrente: códigos mais concisos, claros e bem indentados foram

associados a maior qualidade, como evidenciado nas falas de E1, E2 e E3, que destacaram

preferir códigos “enxutos” e “mais fáceis de ler e manter”.

Outro critério amplamente citado foi a modularidade, ressaltada por E3, E6 e E7, que

valorizaram versões em que havia separação de responsabilidades e menor acoplamento. Para

esses entrevistados, a divisão adequada em classes e funções foi entendida como sinal de maior

manutenibilidade e testabilidade. Ainda assim, alguns entrevistados, como E4 e E6, advertiram

que modularizações mal planejadas podem aumentar a complexidade, indicando que nem sempre

a refatoração é sinônimo de qualidade superior.

A complexidade ciclomática apareceu como elemento de crítica em falas de E6

e E7, que rejeitaram códigos com condicionais aninhadas ou loops redundantes, preferindo

soluções mais lineares e diretas. Já o E5 trouxe uma visão diferenciada ao considerar que, em

determinados contextos de ensino, o código original poderia ser mais didático, por tornar a

sequência lógica mais evidente a iniciantes, mesmo que fosse mais extenso.

A Figura 12 apresenta a distribuição das escolhas dos entrevistados entre códigos

92

originais e refatorados. Observa-se uma tendência praticamente unânime em favor das versões

refatoradas: dos 35 julgamentos individuais (sete entrevistados em cinco comparações cada), 34

escolhas (97,1%) recaíram sobre o código refatorado e apenas uma escolha (2,9%) favoreceu

o código original. Esse único caso correspondeu ao entrevistado E5, que destacou o potencial

didático do código original por tornar a lógica mais explícita a iniciantes. Em outras palavras,

para 7 dos 7 desenvolvedores, a maioria dos 5 pares foi avaliada como de maior qualidade na

versão refatorada (teste binomial unilateral vs 0,5: p = 0,0078). Em nível de par, 5 dos 5 pares

tiveram maioria pró-refatorado (p = 0,031). Em nível de voto, 34 dos 35 votos favoreceram o

refatorado (p ≈ 1,0×10−9). Esses resultados convergem para a conclusão de que as versões

refatoradas pelas LLMs apresentam maior qualidade do que as originais.

Figura 12: Distribuição geral de preferências
Fonte: Elaborado pelo autor (2025)

Os dados reforçam que os desenvolvedores, quando submetidos a comparações

cegas, identificaram diferenças qualitativas consistentes entre as versões, atribuindo valor às

refatorações geradas pela LLM. As justificativas recorrentes alinham-se a dimensões de quali-

dade de software amplamente reconhecidas, como legibilidade, modularidade, simplicidade e

manutenibilidade. Assim, a análise quantitativa corrobora a interpretação qualitativa: embora

nem todas as preferências tenham sido absolutas em termos de contexto, a percepção coletiva

aponta que as refatorações automatizadas foram consideradas superiores em quase todos os

cenários.

93

Resumo da resposta da QP2. Os desenvolvedores foram capazes de identificar diferenças

qualitativas entre o código original e o refatorado por LLMs em um cenário de compara-

ções cegas. A predominância das escolhas pelas versões refatoradas (34 de 35 avaliações)

demonstra que atributos como legibilidade, modularidade e simplicidade foram ampla-

mente reconhecidos como superiores. Ainda que tenham surgido ressalvas pontuais, como

a percepção de que o código original poderia ser mais didático para iniciantes, o conjunto

das justificativas evidencia que os entrevistados não apenas distinguiram as versões, mas

atribuíram valor às melhorias introduzidas pela refatoração automática. Esses achados

reforçam a ideia de que LLMs podem produzir efeitos perceptíveis e consistentes na

qualidade do código, mesmo quando a autoria é ocultada.

5.2.4 Impacto da Revelação sobre IA (QP3)

A terceira questão de pesquisa (QP3) investigou como a revelação de que os códigos

avaliados haviam sido refatorados por modelos de linguagem de grande porte (LLMs) influenciou

a percepção de qualidade dos entrevistados. De forma geral, a revelação de que uma das

versões havia sido gerada por LLM não afetou negativamente as escolhas dos entrevistados.

Ao contrário, a maioria dos entrevistados demonstrou surpresa positiva, reconhecendo que os

códigos gerados pela LLM correspondiam a critérios técnicos já utilizados em suas práticas

profissionais. Entrevistados como E1, E2 e E3 afirmaram que suas escolhas não se alterariam

após saber da intervenção da IA, pois os critérios de escolha haviam se baseado em atributos de

qualidade de código como legibilidade, modularidade e simplicidade. Conforme indicado na

fala de E1: “Mesmo sabendo que foi uma IA que gerou, eu ainda escolheria o mesmo código,

porque ele está mais claro e fácil de manter.” Essa postura sugere que a qualidade percebida

independe da autoria, desde que o código atenda a padrões técnicos consistentes. O E2 reforçou

essa perspectiva ao afirmar: “O que me fez escolher não foi quem escreveu, mas a forma como

o código ficou mais simples e legível.” Já o E3 destacou: “Pra mim não muda nada, porque a

análise que fiz foi olhando a clareza e a organização. Se foi humano ou IA, o resultado continua

válido.”

Por outro lado, emergiram posicionamentos críticos e cautelosos. Entrevistados como

E4 e E5 ponderaram que, embora a refatoração automática apresente resultados satisfatórios, a

confiabilidade plena da solução exige validação humana. O entrevistado E4 ressaltou: “Funciona

94

bem, mas eu não colocaria em produção sem revisar, porque a IA não sabe das regras de

negócio.” Da mesma forma, E5 alertou: “É impressionante ver que foi feito por IA, mas precisa

ter alguém conferindo, porque pode faltar contexto do sistema real.” Além disso, foi observada

uma dimensão de adequação pedagógica. E5 destacou que, em alguns casos, códigos mais

extensos e detalhados (mesmo quando considerados menos elegantes tecnicamente) podem ser

mais apropriados para fins de ensino: “Para quem está começando, às vezes é melhor ver o

passo a passo no código original, porque ajuda a entender a lógica.” Esse aspecto evidencia

que a percepção de qualidade pode variar de acordo com o contexto de aplicação — técnico ou

educacional.

A Tabela 15 reúne as percepções dos entrevistados sobre o papel dos LLMs na

qualidade de código, destacando tanto os benefícios identificados quanto as limitações. E1, por

exemplo, afirmou que a IA “ajuda muito, especialmente quando estou cansado”, mas ressaltou

que sua função é apenas “facilitar, não substituir”. Em linha semelhante, E7 reconheceu que a

tecnologia “acelera o desenvolvimento, mas exige validação”, entendendo que ela não elimina a

necessidade do desenvolvedor, mas adapta suas funções. Já E2 apontou que a IA “contribui para

atributos de qualidade, mas não para aprendizado”, reforçando a visão de que seu papel é de

ferramenta de apoio, não de ensino. Por outro lado, E4 é cauteloso, ao afirmar que a IA pode ser

“boa para padronização, mas pode aumentar a complexidade”, destacando que, embora útil, seu

uso requer supervisão crítica. Esses exemplos revelam uma visão pragmática: os entrevistados

reconhecem os ganhos da tecnologia como aliada no desenvolvimento, mas reafirmam que ela

não substitui o trabalho humano.

Tabela 15: Percepções sobre IA na qualidade de código

ID Opinião sobre Qualidade Visão sobre Papel da IA

E1 “IA ajuda muito, especialmente quando estou cansado” “Facilita, mas não substitui”

E2 “Contribui para atributos de qualidade, mas não para
aprendizado”

“Ferramenta de apoio”

E3 “Ajuda até certo ponto, depois pode atrapalhar” “Complementa, mas não substitui”

E4 ‘‘Boa para padronização, mas pode aumentar complexi-
dade”

“Ferramenta de apoio”

E5 “Auxilia positivamente no desenvolvimento” “Necessita supervisão humana”

E6 “Útil para sugestões e diferentes perspectivas” “Ferramenta para produtividade”

E7 “Acelera o desenvolvimento, mas exige validação” “Não substitui, adapta funções”

Fonte: Elaborado pelo autor (2025)

Ao relacionar as percepções sobre a IA (Tabela 15) com o perfil dos entrevistados

95

(Tabela 13), observa-se que o nível de senioridade influencia diretamente a forma como os

desenvolvedores avaliam o impacto da tecnologia na qualidade de código. Os júniores (E2, E5 e

E6) tendem a valorizar a IA como recurso de apoio prático e ganho imediato de produtividade,

mas também revelam preocupações com o aprendizado e a necessidade de supervisão. O

entrevistado E2, por exemplo, ressaltou que a ferramenta “não contribui para aprendizado”,

enquanto o entrevistado E5 a considera uma “espécie de refino” que exige validação humana.

Já o E6, com pouca experiência de mercado, destacou o uso de IA como “uma opinião a mais”

durante o processo de desenvolvimento. Entre os plenos (E3 e E4), o discurso é mais ambivalente:

ambos reconhecem que a IA pode trazer melhorias em legibilidade e padronização, mas alertam

para o risco de aumento desnecessário da complexidade e para a necessidade de cautela no

uso em produção. O E3 sintetizou essa visão ao afirmar que a ferramenta “ajuda até certo

ponto, depois pode atrapalhar”, enquanto o E4 enfatizou que a IA “pode mexer além do que

era preciso”. Nesse nível, há uma percepção clara de que a IA deve ser usada com moderação,

especialmente em tarefas críticas de refatoração. Por fim, os sêniores (E1 e E7) apresentam

uma perspectiva mais estratégica e madura. Ambos reconhecem limitações práticas, como erros

frequentes ou necessidade de revisão, mas veem a IA como um catalisador de mudanças no

papel do desenvolvedor. O E1 declarou que utiliza a ferramenta para acelerar tarefas repetitivas,

embora precise ajustar saídas incorretas, enquanto o E7 destacou que “quem não usa LLM está

ficando para trás”, indicando que a adoção da IA já é vista como diferencial competitivo. Nesse

grupo, a IA não é apenas suporte técnico, mas também um elemento transformador do futuro da

profissão.

Resumo da resposta da QP3. A revelação sobre o uso de IA influenciou a percepção

dos desenvolvedores, mas não de forma a reduzir a avaliação positiva da qualidade. A

surpresa inicial foi acompanhada pelo reconhecimento de que as refatorações geradas por

LLMs incorporaram critérios consistentes de legibilidade, modularidade e simplicidade.

Ainda assim, surgiram ressalvas importantes: juniores destacaram o caráter de apoio da

tecnologia, plenos apontaram riscos de complexidade desnecessária e perda de contexto,

enquanto sêniores enfatizaram a necessidade de revisão e supervisão crítica antes de

adoção em produção. Assim, conclui-se que LLMs podem contribuir de forma robusta para

a qualidade de código, desde que utilizadas de forma responsável e em complementaridade

à expertise humana.

96

5.2.5 Expectativas sobre LLMs (QP4)

A análise das entrevistas evidenciou forte convergência em quatro aspectos centrais

sobre o papel dos LLMs no desenvolvimento. Todos os entrevistados conceituaram a IA como

ferramenta de apoio, e não como substituta do desenvolvedor, refletindo uma visão pragmática e

compatível com as capacidades tecnológicas atuais. Essa perspectiva conecta-se à percepção

recorrente da necessidade de supervisão humana, destacada pela maioria, indicando que a

automação é vista como meio para potencializar competências, não para eliminá-las. Também

houve concordância quanto ao potencial de ganhos de produtividade, com reconhecimento de

que a tecnologia pode acelerar o desenvolvimento e aumentar a eficiência em tarefas específicas.

Por fim, a aplicação da IA foi considerada especialmente útil em contextos de pressão temporal,

fadiga ou execução de tarefas repetitivas, reforçando sua natureza de suporte às atividades do

programador.

Embora exista esse consenso geral, a análise por nível de senioridade revelou dife-

renças significativas nas expectativas em relação ao futuro uso de LLMs. Os sêniores (E1 e E7)

demonstraram uma visão mais estratégica, considerando a tecnologia um diferencial competitivo

inevitável, ainda que dependente de revisão crítica. Já júniores e plenos reconheceram ganhos

imediatos de produtividade, legibilidade e padronização, mas destacaram preocupações quanto à

complexidade desnecessária, perda de contexto em códigos mais extensos e risco de dependência,

especialmente no aprendizado de boas práticas. Essa distinção evidencia que, enquanto os mais

experientes projetam a integração de LLMs como inevitável e transformadora do mercado de

desenvolvimento, os menos experientes tendem a enfatizar sua utilidade prática no presente,

condicionada ao uso moderado e supervisionado.

Em relação às limitações, emergiram três categorias principais. A primeira refere-se

à tendência ao excesso de complexidade, com observações pelo entrevistado E4: “a maioria

das IAs vai tentar ajeitar uma coisa, mas vai mexer além do que era pra ela ter mexido”,

destacando que em processos de refatoração a ferramenta pode inserir condicionais, abstrações

ou modificações que não eram requeridas, o que dificulta a manutenção. A segunda limitação

aponta para a dificuldade em manter em manter o contexto em códigos mais extensos ou

arquiteturas mais complexas. O E3 relatou que a ferramenta “ajuda até certo ponto”, mas

depois “se perde na implementação”, exigindo constantes pedidos de correção do usuário; para

ele, a IA consegue gerar trechos úteis, mas não sustenta consistência quando precisa lidar com

dependências múltiplas ou fluxos de negócio completos. Por fim, a terceira limitação envolve a

97

necessidade de validação humana, aspecto amplamente enfatizado por entrevistados experientes

como o E7, que afirmou: “Claro que eu evitaria de usar LLM pra código direto em produção.

Então, acho que uma revisão de códigos, ela é necessária.” Essa posição ecoa em outros

entrevistados, como o E5, que definiu a IA como “uma espécie de refino, mas que ainda vai

precisar do desenvolvedor pra avaliar”. Dessa forma, ainda que reconheçam os benefícios da

tecnologia, os desenvolvedores apontam que seu uso seguro e eficaz depende de moderação,

supervisão crítica e adaptação ao contexto de cada projeto.

Resumo da resposta da QP4. Os entrevistados projetam expectativas majoritariamente

positivas, ainda que acompanhadas de cautela. Houve consenso em considerar a IA uma

ferramenta de apoio, útil para potencializar competências, mas não como substituta do

desenvolvedor, sendo valorizada sobretudo em contextos de pressão temporal, fadiga ou

execução de tarefas repetitivas. Em geral, os entrevistados reconheceram o potencial da

tecnologia para aumentar a produtividade, acelerar tarefas rotineiras e apoiar processos

como refatoração e revisão de código. Entre os menos experientes (juniores e plenos),

destacou-se a percepção de ganhos imediatos em aprendizagem, legibilidade e padroni-

zação, acompanhados, contudo, de preocupações quanto à complexidade desnecessária,

perda de contexto em códigos extensos e risco de dependência no aprendizado de boas

práticas. Já os sêniores (E1 e E7) apresentaram uma visão mais estratégica, considerando

a adoção de LLMs um diferencial competitivo inevitável, sintetizada na fala de E7 ao

afirmar que “se você não usa LLM, você tá ficando pra trás”. Apesar das diferenças de

ênfase, todos os níveis de senioridade convergiram na ideia de que a adoção futura deve

ocorrer com supervisão crítica, integração gradual e adaptação de práticas de engenharia,

reforçando a complementaridade entre automação e expertise profissional.

5.2.6 Análise dos Resultados

A convergência em torno de legibilidade, manutenibilidade e modularidade corrobora

princípios amplamente estabelecidos na literatura sobre qualidade de código (MARTIN, 2009;

FOWLER, 2018). Apesar de variações nas ênfases individuais, os entrevistados demonstraram

compartilhar valores fundamentais sobre o que caracteriza um código de qualidade. A predomi-

nância de preferência pelos códigos refatorados sugere que as LLMs são capazes de produzir

código de qualidade comparável e, em vários casos, percebida como superior, ao desenvolvido

98

originalmente. Essa percepção positiva esteve associada a critérios como legibilidade, modulari-

dade e simplicidade. Entretanto, também foram registradas ressalvas quanto a possíveis excessos

de modificação, aumento desnecessário de complexidade e perda de contexto em trechos mais

elaborados, reforçando que a qualidade percebida não é uniforme em todos os casos.

A ausência de mudanças significativas na avaliação após a revelação de que uma

das versões havia sido gerada por IA indica que as preferências permaneceram fundamentadas

nos mesmos critérios técnicos aplicados inicialmente. As decisões dos entrevistados não foram

guiadas pela origem do código, mas por características associadas à qualidade conforme seus

próprios referenciais. A unanimidade quanto à IA como ferramenta de apoio, não como substituta

do desenvolvedor, aliada à ênfase na necessidade de supervisão humana, reflete uma visão

pragmática sobre seu uso no desenvolvimento de software. Essa perspectiva reconhece seu

potencial para ampliar capacidades e produtividade, ao mesmo tempo em que preserva o papel

central do julgamento humano na garantia da qualidade.

5.3 Trabalhos Relacionados

Chen (2024) conduziu estudo de caso no estúdio TiMi investigando o impacto do

Artificial Intelligence (AI)-pair programming na qualidade de código e satisfação dos desenvol-

vedores através de análise de 10 projetos com IA e 10 sem IA. O estudo demonstrou que projetos

com AI-pair programming apresentaram melhor qualidade de código (menor complexidade ciclo-

mática: 12,3 vs 15,7; maior cobertura: 82,6% vs 76,4%) e maior satisfação dos desenvolvedores

(4,3 vs 3,6). Utilizando ferramentas como GitHub Copilot e ChatGPT, os resultados revelaram

benefícios como economia de tempo e melhoria de qualidade, mas também desafios relacionados

à confiabilidade e autonomia. Embora focado em AI-pair programming colaborativo, seus

achados sobre percepção positiva de desenvolvedores e melhoria objetiva na qualidade fornecem

base empírica complementar ao presente estudo sobre refatoração automatizada, demonstrando

que diferentes aplicações de IA no desenvolvimento podem produzir benefícios consistentes.

Ribeiro et al. (2024) investigaram a percepção de desenvolvedores sobre code smells

e o uso de ferramentas automatizadas para sua detecção. Por meio de entrevistas e síntese

temática, os autores identificaram diferentes compreensões sobre o conceito de code smell,

bem como fatores que influenciam sua introdução e a adoção de ferramentas de suporte, como

custos de configuração, cultura organizacional e priorização de entregas. A pesquisa reforça

a importância de compreender não apenas os aspectos técnicos da qualidade de código, mas

99

também as barreiras práticas e contextuais que afetam a incorporação de mecanismos de melhoria

na rotina de desenvolvimento, aspecto que dialoga diretamente com os objetivos do presente

trabalho.

Santos e Gerosa (2018) conduziram estudo empírico sobre percepção de boas práticas

de codificação, avaliando o impacto de 11 práticas de codificação Java na legibilidade percebida

por desenvolvedores através de comparações cegas entre pares de snippets de código. Com

62 participantes (55 estudantes universitários e 7 programadores profissionais), os autores

utilizaram aplicação web customizada para apresentar aleatoriamente 10 pares de código por

participante, derivando as práticas avaliadas dos modelos de legibilidade de Buse e Weimer

(2009) e Scalabrino et al. (2016). Os resultados demonstraram que 8 das 11 práticas apresentaram

efeitos estatisticamente significativos: 7 melhoraram a legibilidade (incluindo uso de linhas em

branco após chaves, limitação de 80 caracteres por linha, e evitar múltiplas declarações por

linha) e 1 a piorou (abertura de chaves na mesma linha da declaração). Crucialmente, seus

achados sobre a importância da legibilidade como critério universal de qualidade corroboram os

resultados deste trabalho, embora o foco tenha sido em práticas convencionais de codificação em

vez de código gerado por IA, complementando esta investigação ao estabelecer baseline sobre

percepção de qualidade em contextos tradicionais de desenvolvimento.

Kudriavtseva et al. (2025) conduziram survey com 105 desenvolvedores sobre per-

cepções de segurança de código gerado por IA, identificando que desenvolvedores experientes

são mais céticos sobre segurança enquanto desenvolvedores juniores tendem a superestimar

suas capacidades - padrão potencialmente explicado pelo efeito Dunning-Kruger que oferece

contexto para interpretar variações por experiência observadas em a pesquisa aqui conduzida. Os

autores reportaram que 61% dos desenvolvedores gastam mais tempo em revisões de segurança

de código IA, convergindo com os achados deste trabalho sobre a necessidade de supervisão

humana, embora a abordagem quantitativa sobre percepções de segurança se diferencie meto-

dologicamente da investigação aqui realizada, baseada em comparações cegas sobre qualidade

geral. Dessa forma, apresenta-se uma perspectiva complementar sobre a aceitação de código

gerado por inteligência artificial.

Sheard et al. (2024) abordaram a perspectiva educacional sobre as ferramentas de IA.

Foram entrevistados 12 educadores de programação de três países sobre ferramentas de geração

de código, revelando preocupações quanto ao excesso de confiança estudantil e à perda de

aprendizado de fundamentos, convergindo com os achados deste trabalho sobre a necessidade de

100

supervisão humana. Particularmente relevante é o consenso educacional de que a introdução de

IA deve ocorrer apenas após o domínio dos fundamentos de programação, perspectiva que ressoa

com a observação de que desenvolvedores percebem a inteligência artificial como ferramenta

de apoio, e não como substituta de competências fundamentais, demonstrando que diferentes

stakeholders do ecossistema de desenvolvimento compartilham preocupações similares sobre a

integração responsável da automação de código.

Börstler et al. (2023) conduziram estudo qualitativo com 34 entrevistas semi-estruturadas

envolvendo desenvolvedores profissionais, professores e estudantes da Europa e Estados Unidos,

analisando 130 exemplos de código em 14 linguagens diferentes para investigar percepções sobre

qualidade de código. Utilizando codificação temática, os autores identificaram que legibilidade

e estrutura foram as propriedades mais comumente mencionadas para definir qualidade (82%

e 65% dos participantes, respectivamente), seguidas por documentação, compreensibilidade e

manutenibilidade. O estudo revelou que ao analisar exemplos concretos, desenvolvedores focam

em estrutura como propriedade fonte levando à compreensibilidade e manutenibilidade, e que

desenvolvedores experientes possuem visão mais ampla de qualidade considerando múltiplas

categorias simultaneamente. Seus achados sobre critérios valorizados (legibilidade, estrutura e

compreensibilidade) fornecem base empírica que corrobora a investigação aqui conduzida, esta-

belecendo padrões sobre percepção de qualidade em contextos tradicionais de desenvolvimento.

Em resumo, os trabalhos relacionados reforçam a relevância da investigação sobre

como desenvolvedores percebem a qualidade de código em diferentes contextos, sejam eles

marcados por práticas tradicionais (SANTOS; GEROSA, 2018; BÖRSTLER et al., 2023), pelo

uso de ferramentas automatizadas de apoio (RIBEIRO et al., 2024), pelo AI-pair programming

(CHEN, 2024) ou pelas preocupações de segurança e aprendizagem associadas ao código gerado

por IA (SHEARD et al., 2024). O presente estudo, entretanto, distingue-se por adotar um delinea-

mento experimental baseado em comparações cegas entre código original e código refatorado por

LLMs, aliado a entrevistas semiestruturadas para análise qualitativa. Essa combinação metodoló-

gica permitiu capturar tanto a preferência objetiva dos desenvolvedores quanto suas justificativas

subjetivas, revelando critérios como legibilidade, modularidade e simplicidade como centrais

na avaliação da qualidade. Como resultado inédito, a investigação aqui conduzida demonstra

que, mesmo sem conhecimento da autoria, os participantes atribuíram sistematicamente maior

qualidade às versões refatoradas por IA, mas ressaltaram a necessidade de supervisão crítica

e adequação ao contexto. Dessa forma, este estudo contribui ao campo ao oferecer evidências

101

empíricas sobre a percepção de qualidade de código gerado por LLMs, estabelecendo um con-

traponto às pesquisas focadas em segurança, ensino ou práticas convencionais e ampliando a

compreensão sobre a integração responsável da automação no desenvolvimento de software.

5.4 Ameaças à Validade

Durante a condução desta investigação empírica, buscaram-se procedimentos de

controle que contribuíssem para a redução de vieses e para a consistência dos resultados obtidos.

Ainda assim, algumas ameaças à validade precisam ser reconhecidas, tanto para promover

transparência científica quanto para orientar melhorias em estudos futuros. Nesta seção, são dis-

cutidas as ameaças à validade dos resultados obtidos, organizadas conforme as quatro categorias

propostas por Wohlin et al. (2012): validade interna, externa, de construção e de conclusão.

Validade Interna. A validade interna refere-se à possibilidade de vieses que com-

prometam a interpretação causal dos resultados. Três ameaças à validade interna do estudo foram

identificadas. A primeira relaciona-se ao fato de que os entrevistados já possuíam familiaridade

prévia com práticas de refatoração, o que pode ter influenciado suas escolhas em favor do código

refatorado. Além disso, não foi controlado o efeito da ordem de apresentação das versões, o que

poderia gerar viés de preferência; para minimizar essa ameaça, os códigos originais e refatorados

foram apresentados de forma aleatória. Outra limitação consiste no fato de que o estudo não

isolou variáveis externas, como estilo de programação individual ou experiência prévia, que

podem ter impactado as percepções dos entrevistados. Variáveis como estilo de programação

estão fora de controle, enquanto, em relação à experiência prévia, foram apresentadas análises

separando os participantes segundo esse critério.

Validade Externa. A validade externa refere-se à possibilidade de generalização dos

resultados para outros contextos. Duas ameaças à validade externa do estudo foram identificadas.

O estudo contou apenas com um grupo reduzido de desenvolvedores, o que limita a extrapolação

dos resultados. Apesar do grupo ser pequeno, os entrevistados possuem características de

formação acadêmica e experiência distintas. Da mesma forma, foram avaliados apenas cinco

pares de classes específicas, não sendo possível assegurar que os resultados se mantenham em

diferentes domínios de software, linguagens de programação ou níveis de complexidade de

sistemas. A limitação do número de artefatos é inerente à profundidade da análise. O aumento

dessa quantidade provavelmente resultaria em respostas mais superficiais. Por esse motivo, o

número de artefatos foi limitado a cinco.

102

Validade de Construção. A validade de construção está relacionada à adequação

das medidas utilizadas para capturar o construto de “qualidade de código”. Neste trabalho,

a qualidade foi inferida a partir da percepção subjetiva dos desenvolvedores, sem o apoio de

métricas objetivas complementares Tal decisão pode limitar a precisão do conceito medido, uma

vez que diferentes entrevistados podem ter interpretado “qualidade” de formas distintas. No

entanto, como as entrevistas foram gravadas e houve diálogo, os participantes foram instigados a

definir de forma clara o que consideravam como qualidade de código.

Validade de Conclusão. A validade de conclusão envolve a robustez estatística e a

força das inferências obtidas. Duas ameaças à validade da conclusão do estudo são discutidas. O

número reduzido de entrevistados e de pares avaliados pode levar a baixa potência estatística.

Embora os resultados indiquem forte preferência pelas versões refatoradas, a amostra pequena

aumenta a chance de erro tipo I (superestimar evidências) ou tipo II (não detectar efeitos em

casos específicos). Além disso, a ausência de análise quantitativa mais robusta, como testes

estatísticos formais para avaliar significância e intervalos de confiança, limita a solidez das

conclusões para algumas questões de pesquisa.

5.5 Conclusão

Este capítulo investigou a percepção de desenvolvedores sobre a qualidade de código

refatorado por LLMs por meio de um delineamento baseado em comparações cegas entre versões

original/refatorada, aliado a entrevistas semiestruturadas, combinação que permitiu capturar tanto

preferências objetivas quanto justificativas subjetivas sobre os critérios usados em julgamentos

de qualidade de software.

Os resultados indicam congruência no conceito de qualidade de software, englobando

principalmente legibilidade, manutenibilidade e modularidade. Em relação às comparações de

código, observou-se preferência sistemática pelas versões refatoradas: a preferência foi majoritá-

ria entre os participantes como um todo (83%), confirmando-se em 97% dos artefatos analisados

e em 97% das comparações, com ênfase em atributos como legibilidade, manutenibilidade e

modularidade. Importante destacar que a revelação de que as refatorações foram produzidas por

IA não alterou substancialmente os julgamentos, sugerindo que as preferências se fundamenta-

ram em critérios técnicos e não em preconceitos quanto à autoria. Por fim, foi reconhecido o

benefício da utilização de LLMs, com convergência na ideia de que a adoção futura deve ocorrer

com supervisão crítica, integração gradual e adaptação de práticas de engenharia, reforçando a

103

complementaridade entre automação e expertise profissional.

Apesar do quadro positivo, as análises também evidenciaram limitações e pontos

de atenção: riscos de over-engineering e perda de contexto em trechos complexos, o que

reforça a necessidade de supervisão humana criteriosa na incorporação de LLMs a fluxos de

desenvolvimento. Tais achados consolidam três contribuições principais: (i) evidências empíricas

inéditas sobre a aceitação de refatorações realizadas por LLMs sob a ótica de desenvolvedores;

(ii) demonstração da utilidade de comparações cegas como método para avaliar qualidade de

código do ponto de vista humano; e (iii) mapeamento de critérios e limites práticos que orientam

uma adoção responsável dessas ferramentas.

Como direções futuras, recomenda-se avançar com estudos longitudinais e avaliações

em contextos reais; comparar sistematicamente com ferramentas de referência para quantificar

vantagens e limites; ampliar e estratificar a base de participantes; e integrar os resultados a

métricas objetivas de eficiência (tempo em tarefa, taxa de erro, logs) para fortalecer a robustez

inferencial. Em síntese, os achados ampliam a compreensão sobre como integrar, de forma

responsável, automação baseada em LLMs ao desenvolvimento de software, preservando critérios

técnicos de qualidade e o protagonismo da revisão humana.

104

6 CONSIDERAÇÕES FINAIS

Este capítulo é dividido em três partes. A Seção 6.1 apresenta uma síntese dos

resultados da dissertação. A Seção 6.2 discute implicações e lições aprendidas para pesquisadores,

construtores de ferramentas e desenvolvedores. Por fim, a Seção 6.3 aponta direções para

trabalhos futuros.

6.1 Conclusões

Esta dissertação investigou qualidade de código a partir de três eixos complementares:

(i) detecção de code smells com algoritmos de ML; (ii) desenvolvimento e validação da ferramenta

TwinCode para apoiar estudos empíricos; e (iii) análise da percepção de desenvolvedores sobre

refatorações produzidas por LLMs.

No Capítulo 3, é mostrado que modelos supervisionados alcançam desempenho

elevado na detecção dos code smells Data Class, God Class, Feature Envy e Long Method. Em

termos de acurácia, observou-se variação de 89,7% a 99,2%, com picos de 96,8% (Data Class),

96,3% (God Class), 98,4% (Feature Envy) e 99,2% (Long Method). É importante destacar a

superioridade consistente de métodos baseados em árvores (especialmente Random Forest e

Decision Tree). Adicionalmente, testes de Wilcoxon não indicaram diferenças estatisticamente

significativas entre cenários com e sem validação cruzada de 10 folds (todos os p-valores > 0,05),

sugerindo robustez dos resultados sob esse procedimento.

No Capítulo 4, é apresentado a TwinCode, ferramenta científica, que dentre outras

funções, é utilizada para comparação lado a lado de trechos de código com questionários e

geração de relatórios. A validação exploratória contou com 12 participantes, indicando núcleo de

inspeção bem avaliado (visualização lado a lado, numeração de linhas e syntax highlighting), alta

consistência interna do instrumento quantitativo e potencial de adoção acadêmica elevado. Ao

mesmo tempo, evidenciou oportunidades de melhoria no fluxo de associação pares–questionários,

ergonomia/UX e funcionalidades auxiliares (p. ex., exportação e filtros). A ferramenta foi

registrada no INPI (BR512025003573-0).

No Capítulo 5, é conduzido entrevistas semi-estruturadas com sete desenvolvedores,

cada um comparando cinco pares de código em desenho cego (total de 35 julgamentos) seleciona-

dos de um conjunto de 80 artefatos refatorados por Qwen2.5-max e derivados de 12 sistemas do

Qualitas Corpus. Os entrevistados preferiram o código refatorado em 34 de 35 comparações

105

(≈ 97,1%; teste binomial, p < 0,001). As justificativas convergiram para legibilidade, modulari-

dade e manutenibilidade como critérios centrais, com ressalvas à complexidade desnecessária

em alguns trechos. A revelação posterior de que as versões escolhidas eram produzidas por LLM

não alterou a fundamentação das decisões, ancoradas em atributos intrínsecos de qualidade.

Em conjunto, os três eixos mostram que abordagens baseadas em ML e LLMs podem

se complementar. Modelos supervisionados fornecem sinais objetivos consistentes para detecção

de code smells. Por outro lado, refatorações assistidas por LLM tendem a produzir versões

preferidas por desenvolvedores sob critérios humanos de qualidade. A TwinCode, por sua vez,

viabiliza a investigação empírica controlada que conecta essas duas frentes.

6.2 Implicações e Lições Aprendidas

Implicações e Lições Aprendidas para Pesquisadores. Com este estudo, identificam-se três

principais implicações para pesquisadores: (i) o gap entre métricas objetivas e julgamento

humano permanece e requer protocolos mistos (quantitativos e qualitativos) para interpretação

rigorosa; (ii) árvores de decisão e ensembles mostraram-se linhas de base fortes para detecção

de code smells, úteis como baselines em estudos comparativos; (iii) a ausência de diferenças

materiais entre cenários com/sem validação cruzada (10-fold) sugere robustez dos achados

frente a esse controle específico, embora não elimine outras ameaças (p. ex., desbalanceamento

e leakage). Como lições aprendidas, destacam-se três pontos: (i) a necessidade de reportar

resultados por smell (e não apenas médias) e utilizar testes não paramétricos para contrastar setups

experimentais; (ii) a importância de triangular detecção (ML) com percepção (estudos cegos),

empregando instrumentos com consistência interna verificada (α ≈ 0,9); e (iii) a relevância de

utilizar amostras derivadas de datasets curados/conhecidos (p. ex., Qualitas Corpus) e rastrear o

funil de seleção de artefatos.

Implicações e Lições Aprendidas para Construtores de Ferramentas. A avaliação da Twin-

Code indica que comparação lado a lado com realce e numeração de linhas é rapidamente

compreendida, enquanto o fluxo de associação pares–questionários demanda simplificação e

feedbacks de estado mais salientes. Recursos de exportação, filtros e versionamento aumentam a

utilidade científica e a adoção. Como lições aprendidas citamos: (i) priorizar UX research no

fluxo de criação/associação de comparações e questionários; (ii) oferecer telemetria e exportação

de relatórios para reuso/reprodutibilidade de estudos; (iii) registrar propriedade intelectual e

adotar stack aberto para facilitar replicação (PHP/Laravel, React/Tailwind, MariaDB).

106

Implicações e Lições Aprendidas para Desenvolvedores. Em comparações cegas, desenvolve-

dores tenderam a preferir versões refatoradas por LLM com base em legibilidade, modularidade

e manutenibilidade; ainda assim, salientaram riscos de complexidade desnecessária e perda de

contexto, reforçando a necessidade de supervisão humana e revisão criteriosa. Como lições

aprendidas listamos: (i) usar LLMs como copilotos de refatoração, priorizando legibilidade

(nomes, extração de métodos) e modularidade observáveis; (ii) aplicar revisão técnica para miti-

gar sobre-engenharia (p. ex., fragmentação excessiva e condicionais aninhadas); e (iii) integrar

ferramentas experimentais (como a TwinCode) em code reviews internos para coletar feedback

estruturado de outros desenvolvedores.

6.3 Trabalhos Futuros

A continuidade desta pesquisa pode avançar em diversas frentes, a começar pelo

aprimoramento dos experimentos com aprendizado de máquina para detecção de code smells.

Embora este estudo tenha considerado acurácia, precisão, sensibilidade e F1-score, futuras

investigações podem incluir métricas adicionais, como AUC (Área sob a Curva ROC) e MCC

(Matthews Correlation Coefficient), que fornecem uma avaliação mais robusta em cenários

desbalanceados e permitem análises mais aprofundadas do desempenho dos algoritmos. Além

disso, recomenda-se a utilização de diferentes conjuntos de dados, contemplando múltiplas

linguagens de programação e domínios de aplicação, de modo a ampliar a validade externa dos

resultados. Outro caminho promissor consiste em investigar técnicas de aprendizado profundo e

arquiteturas híbridas que possam capturar padrões mais complexos em códigos de maior escala.

Em relação à TwinCode, trabalhos futuros devem priorizar sua validação em contex-

tos mais amplos e diversificados, com amostras que contemplem diferentes níveis de experiência,

formações acadêmicas e inserções profissionais, de modo a ampliar a validade externa dos resul-

tados. Recomenda-se também a realização de estudos longitudinais que acompanhem a evolução

do uso da ferramenta ao longo do tempo. Outra direção promissora consiste em expandir o

suporte para diferentes artefatos de software, para além do código-fonte, o que pode ampliar a

utilidade científica e profissional da ferramenta como recurso de apoio a investigações empíricas

em engenharia de software. Também se destaca a possibilidade de implementar mecanismos

que favoreçam o acompanhamento das fases de pesquisas científicas, bem como a inclusão de

sistemas de pontuação nos questionários, de forma a apoiar práticas de avaliação da qualidade de

software no ensino.

107

No que se refere à investigação da percepção de desenvolvedores sobre refatorações

geradas por LLMs, trabalhos futuros podem aprofundar a análise em cenários mais complexos e

heterogêneos, explorando diferentes linguagens de programação, tipos de sistemas e níveis de

complexidade do código. Recomenda-se a realização de experimentos com maior número de

participantes e delineamentos comparativos entre grupos de perfis distintos, permitindo identificar

fatores culturais, organizacionais e individuais que influenciam a aceitação das refatorações.

Além disso, a congruência entre percepções subjetivas e métricas objetivas de qualidade (tempo

em tarefa, taxa de erros, métricas de legibilidade e manutenibilidade) pode fornecer uma visão

mais completa da eficácia das LLMs. Estudos longitudinais, que acompanhem a evolução da

aceitação e eficácia dessas ferramentas ao longo do tempo, também se mostram fundamentais

para compreender sua evolução, uso e aderência de pesquisadores.

108

REFERÊNCIAS

ABDOU, A.; DARWISH, N. Severity classification of software code smells using machine
learning techniques: A comparative study. Journal of Software: Evolution and Process, Wiley
Online Library, v. 36, n. 1, p. e2454, 2024.

ACHIAM, J.; ADLER, S.; AGARWAL, S.; AHMAD, L.; AKKAYA, I.; ALEMAN, F. L.;
ALMEIDA, D.; ALTENSCHMIDT, J.; ALTMAN, S.; ANADKAT, S. et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AL-SHALABI, R.; KANAAN, G.; GHARAIBEH, M. Arabic text categorization using knn
algorithm. In: Proceedings of The 4th international multiconference on computer science
and information technology. [S.l.: s.n.], 2006. v. 4, p. 5–7.

ALAZBA, A.; ALJAMAAN, H.; ALSHAYEB, M. Deep learning approaches for bad smell
detection: a systematic literature review. Empirical Software Engineering, Springer, v. 28, n. 3,
p. 77, 2023.

ARLOT, S.; CELISSE, A. A survey of cross-validation procedures for model selection. 2010.

BARDIN, L. Análise de Conteúdo. São Paulo: Edições 70, 2016.

BECK, K. Test-driven Development: By Example. [S.l.]: Addison-Wesley Professional, 2003.

BEGEL, A.; SIMON, B. Novice software developers, all over again. In: Proceedings of the
fourth international workshop on computing education research. [S.l.: s.n.], 2008. p. 3–14.

BINKLEY, D.; DAVIS, M.; LAWRIE, D.; MALETIC, J. I.; MORRELL, C.; SHARIF, B. The
impact of identifier style on effort and comprehension. Empirical software engineering,
Springer, v. 18, n. 2, p. 219–276, 2013.

BLINOWSKI, G.; OJDOWSKA, A.; PRZYBYŁEK, A. Monolithic vs. microservice
architecture: A performance and scalability evaluation. IEEE access, IEEE, v. 10, p.
20357–20374, 2022.

BOEHM, B. W. Software engineering. IEEE Trans. Comput., IEEE Computer
Society, USA, v. 25, n. 12, p. 1226–1241, dez. 1976. ISSN 0018-9340. Disponível em:
<https://doi.org/10.1109/TC.1976.1674590>.

BOEHM, B. W.; BROWN, J. R.; LIPOW, M. Quantitative evaluation of software quality. In:
Proceedings of the 2nd International Conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society Press, 1976. (ICSE ’76), p. 592–605.

BÖRSTLER, J.; BENNIN, K. E.; HOOSHANGI, S.; JEURING, J.; KEUNING, H.; KLEINER,
C.; MACKELLAR, B.; DURAN, R.; STÖRRLE, H.; TOLL, D. et al. Developers talking about
code quality. Empirical Software Engineering, Springer, v. 28, n. 6, p. 128, 2023.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, p. 5–32, 2001.

BREKALO, S.; SEDLAREVIĆ, T. The comparison of monolithic mvc and microservices
architectures in laravel applications. Politehnika i dizajn, v. 12, n. 03, 2024.

109

BROWN, T. B.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J. D.; DHARIWAL,
P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL, A.; AGARWAL, S.;
HERBERT-VOSS, A.; KRUEGER, G.; HENIGHAN, T.; CHILD, R.; RAMESH, A.; ZIEGLER,
D. M.; WU, J.; WINTER, C.; HESSE, C.; CHEN, M.; SIGLER, E.; LITWIN, M.; GRAY, S.;
CHESS, B.; CLARK, J.; BERNER, C.; MCCANDLISH, S.; RADFORD, A.; SUTSKEVER, I.;
AMODEI, D. Language models are few-shot learners. In: Advances in Neural Information
Processing Systems. [S.l.: s.n.], 2020. v. 33, p. 1877–1901.

BROWN, W. H.; MALVEAU, R. C.; MCCORMICK, H. W. S.; MOWBRAY, T. J. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. 1st. ed. USA: John Wiley &
Sons, Inc., 1998. ISBN 978-0-471-19713-3.

BUSE, R. P.; WEIMER, W. R. Learning a metric for code readability. IEEE Transactions on
software engineering, IEEE, v. 36, n. 4, p. 546–558, 2009.

CATAL, C. Performance evaluation metrics for software fault prediction studies. Acta
Polytechnica Hungarica, Obuda University, v. 9, n. 4, p. 193–206, 2012.

CHEN, A.; WONG, C.; SHARIF, B.; PERUMA, A. Exploring code comprehension in scientific
programming: Preliminary insights from research scientists. arXiv preprint arXiv:2501.10037,
2025.

CHEN, M.; TWOREK, J.; JUN, H.; YUAN, Q.; PINTO, H. P. D. O.; KAPLAN, J.; EDWARDS,
H.; BURDA, Y.; JOSEPH, N.; BROCKMAN, G. et al. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374, 2021.

CHEN, T. The impact of ai-pair programmers on code quality and developer satisfaction:
Evidence from timi studio. In: Proceedings of the 2024 International Conference on
Generative Artificial Intelligence and Information Security. [S.l.: s.n.], 2024. p. 201–205.

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. IEEE
Transactions on software engineering, IEEE, v. 20, n. 6, p. 476–493, 1994.

CIUPKE, O. Automatic detection of design problems in object-oriented reengineering. In: IEEE.
Proceedings of technology of object-oriented languages and systems-TOOLS 30 (Cat. No.
PR00278). [S.l.], 1999. p. 18–32.

COLEMAN, D.; ASH, D.; LOWTHER, B.; OMAN, P. Using metrics to evaluate software
system maintainability. Computer, IEEE, v. 27, n. 8, p. 44–49, 1994.

CRONBACH, L. J. Coefficient alpha and the internal structure of tests. psychometrika,
Springer-Verlag, v. 16, n. 3, p. 297–334, 1951.

DEWANGAN, S.; RAO, R. S.; MISHRA, A.; GUPTA, M. A novel approach for code smell
detection: An empirical study. IEEE Access, v. 9, p. 162869–162883, 2021.

FAKHOURY, S.; MA, Y.; ARNAOUDOVA, V.; ADESOPE, O. The effect of poor source code
lexicon and readability on developers’ cognitive load. In: Proceedings of the 26th conference
on program comprehension. [S.l.: s.n.], 2018. p. 286–296.

FALESSI, D.; JURISTO, N.; WOHLIN, C.; TURHAN, B.; MÜNCH, J.; JEDLITSCHKA, A.;
OIVO, M. Empirical software engineering experts on the use of students and professionals in
experiments. Empirical Software Engineering, Springer, v. 23, n. 1, p. 452–489, 2018.

110

FONTANA, F. A.; FERME, V.; ZANONI, M.; ROVEDA, R. Towards a prioritization of code
debt: A code smell intensity index. In: IEEE. 2015 IEEE 7th International Workshop on
Managing Technical Debt (MTD). [S.l.], 2015. p. 16–24.

FONTANA, F. A.; MÄNTYLÄ, M.; ZANONI, M.; MARINO, A. Comparing and experimenting
machine learning techniques for code smell detection. Empirical Software Engineering, v. 21,
p. 1143–1191, 2016. Disponível em: <https://api.semanticscholar.org/CorpusID:16222152>.

FONTANA, F. A.; ZANONI, M. Code smell severity classification using machine learning
techniques. Knowledge-Based Systems, Elsevier, v. 128, p. 43–58, 2017.

FOODY, G. M. Challenges in the real world use of classification accuracy metrics: From recall
and precision to the matthews correlation coefficient. Plos one, Public Library of Science San
Francisco, CA USA, v. 18, n. 10, p. e0291908, 2023.

FOWLER, M. Refactoring: Improving the Design of Existing Code. [S.l.]: Addison-Wesley,
1999.

FOWLER, M. Refactoring: Improving the Design of Existing Code. 2nd. ed. [S.l.]:
Addison-Wesley, 2018.

FRICK, V.; WEDENIG, C.; PINZGER, M. Diffviz: A diff algorithm independent visualization
tool for edit scripts. In: IEEE. 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). [S.l.], 2018. p. 705–709.

FRIEDMAN, J. H. Greedy function approximation: A gradient boosting ma-
chine. The Annals of Statistics, v. 29, n. 5, p. 1189–1232, out. 2001. ISSN
0090-5364, 2168-8966. Publisher: Institute of Mathematical Statistics. Disponí-
vel em: <https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/
Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.
full>.

GE, X.; DUBOSE, Q. L.; MURPHY-HILL, E. Reconciling manual and automatic refactoring.
In: IEEE. 2012 34th International Conference on Software Engineering (ICSE). [S.l.], 2012.
p. 211–221.

GLIEM, J. A.; GLIEM, R. R. Calculating, interpreting, and reporting cronbach’s alpha reliability
coefficient for likert-type scales. In: MIDWEST RESEARCH-TO-PRACTICE CONFERENCE
IN ADULT, CONTINUING, AND COMMUNITY [S.l.], 2003.

GOPALAKRISHNA, A. K.; OZCELEBI, T.; LIOTTA, A.; LUKKIEN, J. J. Relevance as a
metric for evaluating machine learning algorithms. In: SPRINGER. International Workshop
on Machine Learning and Data Mining in Pattern Recognition. [S.l.], 2013. p. 195–208.

HAN, J.; PEI, J.; TONG, H. Data mining: concepts and techniques. [S.l.]: Morgan kaufmann,
2022. 64–65 p.

HE, J.; TREUDE, C.; LO, D. Llm-based multi-agent systems for software engineering:
Literature review, vision, and the road ahead. ACM Transactions on Software Engineering
and Methodology, ACM New York, NY, v. 34, n. 5, p. 1–30, 2025.

HILMI, M. A. A.; PUSPANINGRUM, A.; SIAHAAN, D. O.; SAMOSIR, H. S.; RAHMA, A. S.
et al. Research trends, detection methods, practices, and challenges in code smell: Slr. IEEE
Access, IEEE, v. 11, p. 129536–129551, 2023.

111

HOSSIN, M.; SULAIMAN, M. N. A review on evaluation metrics for data classification
evaluations. International journal of data mining & knowledge management process,
Academy & Industry Research Collaboration Center (AIRCC), v. 5, n. 2, p. 1, 2015.

ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. [S.l.]: ISO/IEC, 2001.

ISO/IEC. ISO/IEC 25010. Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models.
[S.l.]: ISO/IEC, 2011.

JOSHI, A.; KALE, S.; CHANDEL, S.; PAL, D. K. Likert scale: Explored and explained. British
journal of applied science & technology, Sciencedomain International, v. 7, n. 4, p. 396, 2015.

KAUR, I.; KAUR, A. A novel four-way approach designed with ensemble feature selection for
code smell detection. IEEE Access, IEEE, v. 9, p. 8695–8707, 2021.

KITCHENHAM, B.; PFLEEGER, S. L. Software quality: the elusive target [special issues
section]. IEEE software, Ieee, v. 13, n. 1, p. 12–21, 1996.

KITCHENHAM, B. A. Evaluating software engineering methods and tool—part 2: selecting an
appropriate evaluation method—technical criteria. SIGSOFT Softw. Eng. Notes, Association
for Computing Machinery, New York, NY, USA, v. 21, n. 2, p. 11–15, mar. 1996. ISSN
0163-5948. Disponível em: <https://doi.org/10.1145/227531.227533>.

KOHAVI, R. et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: MONTREAL, CANADA. Ijcai. [S.l.], 1995. v. 14, n. 2, p. 1137–1145.

KRASNER, H. The cost of poor software quality in the us: A 2020 report. Proc. Consortium
Inf. Softw. QualityTM (CISQTM), v. 2, p. 3, 2021.

KUDRIAVTSEVA, A.; HOTAK, N. A.; GADYATSKAYA, O. My code is less secure with gen
ai: Surveying developers’ perceptions of the impact of code generation tools on security. In:
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing. [S.l.: s.n.],
2025. p. 1637–1646.

LANZA, M.; MARINESCU, R. Object-oriented metrics in practice: using software metrics
to characterize, evaluate, and improve the design of object-oriented systems. [S.l.]: Springer
Science & Business Media, 2007.

LIGGESMEYER, P.; TRAPP, M. Trends in embedded software engineering. IEEE software,
IEEE, v. 26, n. 3, p. 19–25, 2009.

LYU, M. R.; RAY, B.; ROYCHOUDHURY, A.; TAN, S. H.; THONGTANUNAM, P. Automatic
programming: Large language models and beyond. ACM Transactions on Software
Engineering and Methodology, ACM New York, NY, v. 34, n. 5, p. 1–33, 2025.

MA, W.; LIU, S.; LIN, Z.; WANG, W.; HU, Q.; LIU, Y.; ZHANG, C.; NIE, L.; LI, L.;
LIU, Y. Lms: Understanding code syntax and semantics for code analysis. arXiv preprint
arXiv:2305.12138, 2023.

MÄNTYLÄ, M. Two experiments on subjective evaluation of code evolvability. 2005.

112

MANTYLA, M.; VANHANEN, J.; LASSENIUS, C. A taxonomy and an initial empirical study
of bad smells in code. In: IEEE. International Conference on Software Maintenance, 2003.
ICSM 2003. Proceedings. [S.l.], 2003. p. 381–384.

MÄNTYLÄ, M. V.; LASSENIUS, C. Subjective evaluation of software evolvability using code
smells: An empirical study. Empirical Software Engineering, Springer, v. 11, n. 3, p. 395–431,
2006.

MARTIN, R. C. Clean code: a handbook of agile software craftsmanship. [S.l.]: Pearson
Education, 2009.

MCCABE, T. J. A complexity measure. IEEE Transactions on software Engineering, IEEE,
n. 4, p. 308–320, 1976.

MCCALL, J. A.; RICHARDS, P. K.; WALTERS, G. F. Factors in software quality. volume i.
concepts and definitions of software quality. [S.l.], 1977.

MCCONNELL, S. Code complete : a practical handbook of sofware construction. Microsoft
Press, 2004. ISBN 978-0-7356-1967-8. Disponível em: <https://thuvienso.hoasen.edu.vn/
handle/123456789/8847>.

MENS, T.; TOURWÉ, T. A survey of software refactoring. IEEE Transactions on software
engineering, IEEE, v. 30, n. 2, p. 126–139, 2004.

MHAWISH, M. Y.; GUPTA, M. Predicting code smells and analysis of predictions: Using
machine learning techniques and software metrics. Journal of Computer Science and
Technology, Springer, v. 35, p. 1428–1445, 2020.

MITCHELL, T. M. Does machine learning really work? AI magazine, v. 18, n. 3, p. 11–11,
1997.

MOHA, N.; GUÉHÉNEUC, Y.-G.; DUCHIEN, L.; MEUR, A.-F. L. Decor: A method for
the specification and detection of code and design smells. IEEE Transactions on Software
Engineering, IEEE, v. 36, n. 1, p. 20–36, 2009.

MOREIRA, R.; BRAZ, L.; FERREIRA, F.; AMORA, M. Estudo empírico: detecção de code
smells com aprendizado de máquinas. In: Anais do XXVII Congresso Ibero-Americano em
Engenharia de Software. Porto Alegre, RS, Brasil: SBC, 2024. p. 301–312. ISSN 0000-0000.
Disponível em: <https://sol.sbc.org.br/index.php/cibse/article/view/28455>.

MOREIRA, R. A. F.; VALE, G. do; FERREIRA, F. J. TwinCode. 2025. GitHub. Disponível em:
<https://github.com/alanfm/twincode>. Acesso em: 15 ago. 2025.

NIELSEN, J. Heuristic evaluation. In: Usability inspection methods. [S.l.: s.n.], 1994. p.
25–62.

NOBLE, W. S. What is a support vector machine? Nature biotechnology, Nature Publishing
Group UK London, v. 24, n. 12, p. 1565–1567, 2006.

NUCCI, D. D.; PALOMBA, F.; TAMBURRI, D. A.; SEREBRENIK, A.; LUCIA, A. D.
Detecting code smells using machine learning techniques: are we there yet? In: IEEE. 2018 ieee
25th international conference on software analysis, evolution and reengineering (saner).
[S.l.], 2018. p. 612–621.

113

OPDYKE, W. F. Refactoring object-oriented frameworks. [S.l.]: University of Illinois at
Urbana-Champaign, 1992.

OUNI, A.; KESSENTINI, M.; CINNÉIDE, M. Ó.; SAHRAOUI, H.; DEB, K.; INOUE, K. More:
A multi-objective refactoring recommendation approach to introducing design patterns and
fixing code smells. Journal of Software: Evolution and Process, Wiley Online Library, v. 29,
n. 5, p. e1843, 2017.

OUNI, A.; KESSENTINI, M.; SAHRAOUI, H.; INOUE, K.; DEB, K. Multi-criteria
code refactoring using search-based software engineering: An industrial case study. ACM
Transactions on Software Engineering and Methodology (TOSEM), ACM New York, NY,
USA, v. 25, n. 3, p. 1–53, 2016.

PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; FASANO, F.; OLIVETO, R.; LUCIA, A. D.
On the diffuseness and the impact on maintainability of code smells: a large scale empirical
investigation. In: Proceedings of the 40th International Conference on Software Engineering.
[S.l.: s.n.], 2018. p. 482–482.

PALOMBA, F.; NUCCI, D. D.; TUFANO, M.; BAVOTA, G.; OLIVETO, R.; POSHYVANYK,
D.; LUCIA, A. D. Landfill: An open dataset of code smells with public evaluation. In: IEEE.
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. [S.l.], 2015.
p. 482–485.

POSNETT, D.; HINDLE, A.; DEVANBU, P. A simpler model of software readability. In:
Proceedings of the 8th working conference on mining software repositories. [S.l.: s.n.],
2011. p. 73–82.

PRESSMAN, R. S. et al. Engenharia de software. [S.l.]: Makron books São Paulo, 1995. v. 6.

PUSHPALATHA, M.; MRUNALINI, M. Predicting the severity of open source bug reports
using unsupervised and supervised techniques. In: Research Anthology on Usage and
Development of Open Source Software. [S.l.]: IGI Global, 2021. p. 676–692.

QUINLAN, J. R. Decision trees and decision-making. IEEE Transactions on Systems, Man,
and Cybernetics, IEEE, v. 20, n. 2, p. 339–346, 1990.

RAHMAN, H. U.; SILVA, A. R. da; ALZAYED, A.; RAZA, M. A systematic literature review
on software maintenance offshoring decisions. Information and Software Technology,
Elsevier, v. 172, p. 107475, 2024.

RAY, S. A quick review of machine learning algorithms. In: IEEE. 2019 International
conference on machine learning, big data, cloud and parallel computing (COMITCon).
[S.l.], 2019. p. 35–39.

RIBEIRO, F.; FERNANDES, E.; FIGUEIREDO, E. A preliminary interview study on
developers’ perceptions of code smell detection in industry. In: SPRINGER. International
Conference on the Quality of Information and Communications Technology. [S.l.], 2024. p.
344–352.

RIEL, A. J. Object-Oriented Design Heuristics. 1st. ed. USA: Addison-Wesley Longman
Publishing Co., Inc., 1996. ISBN 978-0-201-63385-6.

114

ROZIERE, B.; GEHRING, J.; GLOECKLE, F.; SOOTLA, S.; GAT, I.; TAN, X. E.; ADI, Y.;
LIU, J.; SAUVESTRE, R.; REMEZ, T. et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

RUCK, D. W.; ROGERS, S. K.; KABRISKY, M. Feature selection using a multilayer perceptron.
Journal of neural network computing, v. 2, n. 2, p. 40–48, 1990.

RUNESON, P.; HOST, M.; RAINER, A.; REGNELL, B. Case study research in software
engineering: Guidelines and examples. [S.l.]: John Wiley & Sons, 2012.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: A modern approach, global edition 4e.
Pearson, 2021.

SAHIN, D.; KESSENTINI, M.; BECHIKH, S.; DEB, K. Code-smell detection as a bilevel
problem. ACM Transactions on Software Engineering and Methodology (TOSEM), ACM
New York, NY, USA, v. 24, n. 1, p. 1–44, 2014.

SANTOS, R. M. a. dos; GEROSA, M. A. Impacts of coding practices on readability. In:
Proceedings of the 26th Conference on Program Comprehension. New York, NY, USA:
Association for Computing Machinery, 2018. (ICPC ’18), p. 277–285. ISBN 9781450357142.
Disponível em: <https://doi.org/10.1145/3196321.3196342>.

SAURO, J.; LEWIS, J. R. Quantifying the user experience: Practical statistics for user
research. [S.l.]: Morgan Kaufmann, 2016.

SCALABRINO, S.; LINARES-VASQUEZ, M.; POSHYVANYK, D.; OLIVETO, R. Improving
code readability models with textual features. In: IEEE. 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). [S.l.], 2016. p. 1–10.

SHEARD, J.; DENNY, P.; HELLAS, A.; LEINONEN, J.; MALMI, L.; SIMON. Instructor
perceptions of ai code generation tools-a multi-institutional interview study. In: Proceedings of
the 55th ACM Technical Symposium on Computer Science Education V. 1. [S.l.: s.n.], 2024.
p. 1223–1229.

TARWANI, S.; CHUG, A. Predicting maintainability of open source software using gene
expression programming and bad smells. In: IEEE. 2016 5th international conference on
reliability, Infocom technologies and optimization (trends and future directions)(ICRITO).
[S.l.], 2016. p. 452–459.

TEMPERO, E.; ANSLOW, C.; DIETRICH, J.; HAN, T.; LI, J.; LUMPE, M.; MELTON, H.;
NOBLE, J. The qualitas corpus: A curated collection of java code for empirical studies. In: 2010
Asia Pacific Software Engineering Conference. [S.l.: s.n.], 2010. p. 336–345.

TRAVASSOS, G.; SHULL, F.; FREDERICKS, M.; BASILI, V. R. Detecting defects in
object-oriented designs: using reading techniques to increase software quality. ACM sigplan
notices, ACM New York, NY, USA, v. 34, n. 10, p. 47–56, 1999.

TSANTALIS, N.; CHATZIGEORGIOU, A. Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering, IEEE, v. 35, n. 3, p. 347–367,
2009.

TSANTALIS, N.; CHATZIGEORGIOU, A. Ranking refactoring suggestions based on
historical volatility. In: IEEE. 2011 15th European conference on software maintenance and
reengineering. [S.l.], 2011. p. 25–34.

115

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;
KAISER, Ł.; POLOSUKHIN, I. Attention is all you need. Advances in neural information
processing systems, v. 30, 2017.

VELASCO, A.; RODRIGUEZ-CARDENAS, D.; ALIF, L. R.; PALACIO, D. N.;
POSHYVANYK, D. How propense are large language models at producing code smells? a
benchmarking study. In: IEEE. 2025 IEEE/ACM 47th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER). [S.l.], 2025. p. 96–100.

WASHIZAKI, H.; YAMAMOTO, H.; FUKAZAWA, Y. A metrics suite for measuring reusability
of software components. In: IEEE. Proceedings. 5th International Workshop on enterprise
networking and computing in healthcare industry (IEEE Cat. No. 03EX717). [S.l.], 2004. p.
211–223.

WHITE, J.; FU, Q.; HAYS, S.; SANDBORN, M.; OLEA, C.; GILBERT, H.; ELNASHAR,
A.; SPENCER-SMITH, J.; SCHMIDT, D. C. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

WILCOXON, F. Individual comparisons by ranking methods. Biometrics Bulletin, International
Biometric Society, v. 1, n. 6, p. 80–83, 1945. Disponível em: <https://doi.org/10.2307/3001968>.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN,
A. Experimentation in Software Engineering. Berlin, Heidelberg: Springer, 2012. ISBN
978-3-642-29044-2.

XUE, Z.; ZHANG, X.; GAO, Z.; HU, X.; GAO, S.; XIA, X.; LI, S. Clean code, better models:
Enhancing llm performance with smell-cleaned dataset. arXiv preprint arXiv:2508.11958,
2025.

YAMASHITA, A.; COUNSELL, S. Code smells as system-level indicators of maintainability:
An empirical study. Journal of Systems and Software, Elsevier, v. 86, n. 10, p. 2639–2653,
2013.

YAMASHITA, A.; MOONEN, L. Do code smells reflect important maintainability aspects? In:
IEEE. 2012 28th IEEE international conference on software maintenance (ICSM). [S.l.],
2012. p. 306–315.

YAMASHITA, A.; MOONEN, L. Exploring the impact of inter-smell relations on software
maintainability: An empirical study. In: IEEE. 2013 35th International Conference on
Software Engineering (ICSE). [S.l.], 2013. p. 682–691.

116

APÊNDICE A – CODIFICAÇÃO SEMÂNTICA DETALHADA

Este apêndice apresenta a codificação semântica detalhada das entrevistas realizadas

com os sete participantes do estudo. O material foi estruturado individualmente por entrevistado,

de modo a destacar as falas que fundamentaram a atribuição de pontuação para cada critério

de qualidade de código identificado na análise (legibilidade, manutenibilidade, modularidade,

padronização, simplicidade e funcionalidade). A organização em categorias permite visualizar

como diferentes níveis de senioridade e áreas de atuação influenciaram as percepções sobre

qualidade de código, além de fornecer evidências textuais que sustentam as análises discutidas

no Capítulo 5. Dessa forma, este apêndice cumpre o papel de tornar transparente o processo de

análise qualitativa, reforçando a validade interpretativa dos resultados apresentados.

Entrevistado 1 - E1 (Sênior)

Legibilidade

• Falas que geraram pontuação:

1. “Para mim, código bem feito, ele tem que ser primeiramente legível. Quanto mais

legível, melhor.”

2. “A da direita tá bem mais tranquila, bem mais fácil de entender.”

3. “Não dá pra visualizar exatamente, mas a da direita reduziu bem, ficou mais legível.”

4. “Legibilidade é o critério prioritário pra mim.”

5. “Prefiro código que qualquer pessoa bata o olho e entenda.”

Manutenibilidade

• Falas que geraram pontuação:

1. “O código 2, sendo pequeno e curto, dá para analisar de melhor forma. Seria melhor

para longo prazo.”

2. “Quando separa em classes diferentes, cada uma com sua responsabilidade, fica mais

fácil dar manutenção.”

3. “A simplicidade ajuda na manutenção futura.”

117

Modularidade

• Falas que geraram pontuação:

1. “O lado direito separou em duas classes diferentes, cada uma com sua responsabili-

dade.”

2. “O uso de interface ajuda na modularidade e manutenção.”

Padronização

• Fala que gerou pontuação:

1. “Um código bem escrito segue padrão de nomenclatura, senão dificulta.”

Funcionalidade

• Fala que gerou pontuação:

1. “O código precisa funcionar corretamente, não adianta ser só bonito.”

Simplicidade

• Falas que geraram pontuação:

1. “Prefiro código conciso e claro.”

2. “Quanto menos linhas desnecessárias, melhor.”

Entrevistado 2 - E2 (Júnior)

Legibilidade

• Falas que geraram pontuação:

1. “Eu gosto de códigos que sejam pequenos, mas que sejam legíveis.”

2. “Não muito resumido, nem muito extenso.”

3. “O segundo é mais fácil de ler.”

4. “Prefiro código que dê pra entender rápido.”

Simplicidade

• Fala que gerou pontuação:

118

1. “Não muito resumido, nem muito extenso, um meio termo.”

Funcionalidade

• Fala que gerou pontuação:

1. “O código tem que ser funcional.”

Modularidade

• Falas que geraram pontuação:

1. “Gostei do código 2 porque fez em várias classes, orientação a objetos.”

2. “Organizar em classes ajuda a entender.”

Entrevistado 3 - E3 (Pleno)

Legibilidade

• Falas que geraram pontuação:

1. “A da direita tá bem mais tranquila, bem mais fácil de entender.”

2. “Prefiro código que facilite leitura.”

3. “Separo legibilidade de manutenção, mas ambos caminham juntos.”

Manutenibilidade

• Falas que geraram pontuação:

1. “Qualidade de um código é refletida quando, com os anos, ainda consigo dar manu-

tenção nele.”

2. “Separar em classes ajuda a dar manutenção.”

3. “Interfaces aumentam manutenção futura.”

4. “Códigos longos dificultam manutenção.”

Modularidade

• Falas que geraram pontuação:

1. “Uso de interface melhora a manutenabilidade.”

2. “Separação de responsabilidades é importante.”

119

3. “Arquitetura impacta modularidade.”

Entrevistado 4 - E4 (Pleno)

Legibilidade

• Falas que geraram pontuação:

1. “Claramente, a principal coisa que faz um código ser bom é ser legível e padronizado.”

2. “O código 1 tem muita coisa fora do padrão.”

3. “Prefiro código padronizado e legível.”

4. “Legibilidade e manutenção caminham juntas.”

Manutenibilidade

• Falas que geraram pontuação:

1. “Um código precisa ser dinâmico e escalável. Se não for, deprecia rápido.”

2. “Códigos mais limpos duram mais.”

3. “Separação em camadas facilita manutenção.”

Modularidade

• Falas que geraram pontuação:

1. “Sempre foco em ter controllers, views e models separados.”

2. “Arquitetura MVC facilita modularidade.”

3. “Classes bem separadas melhoram modularidade.”

Padronização

• Falas que geraram pontuação:

1. “O código 1 tem muita coisa fora do padrão.”

2. “Nomenclaturas inconsistentes atrapalham.”

Funcionalidade

• Fala que gerou pontuação:

1. “Precisa também funcionar, não adianta ser só bonito.”

120

Entrevistado 5 - E5 (Júnior)

Legibilidade

• Falas que geraram pontuação:

1. “Não tem nem como comparar, o código 1 tá enxuto, perfeito, bem resumido.”

2. “O código 2 tá enorme e pouco legível.”

3. “Prefiro código organizado em blocos.”

Manutenibilidade

• Falas que geraram pontuação:

1. “Com certeza o código 1. Compactado, fácil de manter.”

2. “Códigos mais simples são mais fáceis de mexer.”

Modularidade

• Fala que gerou pontuação:

1. “O código 1 está bem separado em blocos.”

Padronização

• Fala que gerou pontuação:

1. “Separação em blocos facilita leitura.”

Funcionalidade

• Fala que gerou pontuação:

1. “Para iniciante, talvez o código 2 fosse mais fácil de ir seguindo.”

Entrevistado 6 - E6 (Júnior)

Legibilidade

• Falas que geraram pontuação:

1. “O código 2 está bem mais modular, responsabilidades divididas, mais legível.”

121

2. “Prefiro o que facilita leitura.”

3. “Códigos claros ajudam.”

Manutenibilidade

• Falas que geraram pontuação:

1. “Código 2 seria mais fácil ao longo prazo.”

2. “Modularidade ajuda manutenção.”

Modularidade

• Falas que geraram pontuação:

1. “O código 2 está bem dividido, mais classes, responsabilidades separadas.”

2. “Classes pequenas melhoram modularidade.”

3. “Responsabilidades bem definidas.”

Simplicidade

• Fala que gerou pontuação:

1. “O código 1 assume muita responsabilidade, métodos gigantes, difícil de manter.”

Entrevistado 7 - E7 (Sênior)

Legibilidade

• Falas que geraram pontuação:

1. “Um código de qualidade tem que ser fácil de ler, funcional e fácil de manter.”

2. “Prefiro código claro.”

3. “Legibilidade facilita colaboração.”

4. “Código legível reduz erros.”

Manutenibilidade

• Falas que geraram pontuação:

1. “Responsabilidades claras, lógica não complexa. Isso facilita manutenção.”

2. “Códigos mais simples são melhores de manter.”

122

3. “Prefiro modularização para manutenção futura.”

Modularidade

• Falas que geraram pontuação:

1. “As responsabilidades estão modularizadas em classes menores.”

2. “Separar responsabilidades melhora modularidade.”

Padronização

• Fala que gerou pontuação:

1. “Nomear bem variáveis e funções.”

Funcionalidade

• Falas que geraram pontuação:

1. “Um código tem que ser funcional.”

2. “Funcionalidade é essencial para qualidade.”

123

APÊNDICE B – ANÁLISE DE CONTEÚDO DAS ENTREVISTAS

Este apêndice apresenta a análise de conteúdo completa das entrevistas, sistematizada segundo a técnica de (BARDIN, 2016). As falas

dos participantes foram segmentadas em unidades de registro, cada uma associada a um código e a uma categoria temática que reflete os critérios de

qualidade de código identificados (legibilidade, manutenibilidade, modularidade, padronização, funcionalidade e simplicidade). Para cada unidade,

são apresentados exemplos literais de falas, seguidos de uma interpretação analítica, permitindo compreender como os participantes justificaram suas

escolhas e quais dimensões da qualidade foram mais valorizadas. Esta organização fornece transparência metodológica e reforça a validade dos

resultados discutidos no Capítulo 5.

Tabela 16: Análise de Conteúdo das Entrevistas

Unidade de Registro Código Categoria Exemplo de Fala Interpretação

Legibilidade como critério
central (E1)

LEGIB Legibilidade “Código deve ser primeiramente legível; quanto mais
legível, melhor.” (E1)

Legibilidade aparece como eixo estruturante da
avaliação de qualidade.

Equilíbrio entre tamanho e
clareza (E2)

LEGIB Legibilidade “Gosto de códigos pequenos, mas legíveis; nem muito
resumidos nem extensos.” (E2)

Legibilidade associada a tamanho adequado e com-
preensão imediata.

Facilidade de entendimento
visual (E3)

LEGIB Legibilidade “A versão da direita está mais tranquila, mais fácil de
entender.” (E3)

Clareza da estrutura e leitura fluida favorecem o
julgamento positivo.

Legibilidade + padronização
(E4)

LEGIB Legibilidade “Código bom é legível e padronizado; o código 1 tem
muita coisa fora do padrão.” (E4)

A legibilidade é reforçada por convenções estáveis
de escrita.

Texto enxuto e claro (E5) LEGIB Legibilidade “O código 1 está enxuto, bem resumido; o 2 é enorme e
pouco legível.” (E5)

Códigos mais curtos e diretos são percebidos como
mais legíveis.

Legibilidade via modulari-
dade (E6)

LEGIB Legibilidade “O código 2 está mais modular, responsabilidades dividi-
das, mais legível.” (E6)

Separação de responsabilidades favorece a leitura.

Leitura e manutenção (E7) LEGIB Legibilidade “Código de qualidade tem que ser fácil de ler e manter.”
(E7)

Legibilidade articulada com manutenibilidade
como critério de qualidade.

124

Unidade de Registro Código Categoria Exemplo de Fala Interpretação

Pequeno e melhor no longo
prazo (E1)

MANUT Manutenibilidade “O código 2, por ser curto, é melhor para analisar
e manter no longo prazo.” (E1)

Tamanho moderado reduz esforço de manutenção
futura.

Teste e manutenção facilita-
dos (E2)

MANUT Manutenibilidade “No segundo é mais fácil de modularizar e testar.”
(E2)

Estrutura mais clara facilita evolução e correção.

Manutenção ao longo dos
anos (E3)

MANUT Manutenibilidade “Qualidade se reflete quando consigo dar manu-
tenção com o passar dos anos.” (E3)

Critério de qualidade vinculado ao ciclo de vida
prolongado.

Dinamicidade e escalabili-
dade (E4)

MANUT Manutenibilidade “Se não for dinâmico e escalável, o código depre-
cia rápido.” (E4)

Manutenção depende de arquitetura pensada para
evoluir.

Compacto e fácil de mexer
(E5)

MANUT Manutenibilidade “O código 1 é compactado e fácil de manter.” (E5) Estruturas concisas simplificam a manutenção co-
tidiana.

Modularidade ajuda manu-
tenção (E6)

MANUT Manutenibilidade “Código 2 seria mais fácil ao longo prazo; divisão
em classes ajuda.” (E6)

Separação de responsabilidades reduz acoplamento
e custo de mudança.

Clareza de lógica e responsa-
bilidades (E7)

MANUT Manutenibilidade “Responsabilidades claras e lógica não complexa
facilitam manutenção.” (E7)

Boa organização interna favorece intervenções fu-
turas.

Separação em classes (E1) MODUL Modularidade “Separou em classes diferentes, cada uma com sua
responsabilidade.” (E1)

Modularidade como mecanismo de controle de
complexidade.

OO e organização em classes
(E2)

MODUL Modularidade “Gostei do código 2 por usar várias classes (ori-
entação a objetos).” (E2)

Distribuição de responsabilidades melhora enten-
dimento.

Interfaces e manutenção (E3) MODUL Modularidade “Uso de interface melhora a manutenibilidade.”
(E3)

Contratos explícitos estabilizam integrações e evo-
lução.

Arquitetura MVC (E4) MODUL Modularidade “Foco em manter controllers, views e models sepa-
rados.” (E4)

Padrões arquiteturais estruturam módulos e cama-
das.

Blocos organizados (E5) MODUL Modularidade “O código 1 está bem separado em blocos, legível.”
(E5)

Segmentação por blocos contribui para o raciocínio
local.

Mais classes, menos acopla-
mento (E6)

MODUL Modularidade “O código 2 está bem dividido, mais classes, res-
ponsabilidades separadas.” (E6)

Modularidade reduz acoplamento e facilita reuso.

Modularização e reuso (E7) MODUL Modularidade “Responsabilidades modularizadas em classes me-
nores facilitam reuso.” (E7)

Componentização incentiva reutilização e evolução
incremental.

125

Unidade de Registro Código Categoria Exemplo de Fala Interpretação

Padrões de escrita (E4) PADR Nomenclatura “Código bom é legível e padronizado; há coisas
fora do padrão.” (E4)

Conformidade com convenções melhora coesão do
time.

Nomes descritivos (E7) PADR Nomenclatura “Nomear bem variáveis e funções.” (E7) Nomeação clara reduz ambiguidade e custos de
leitura.

Observância de convenções
(E1)

PADR Nomenclatura “Código bem escrito segue padrão; sem isso, difi-
culta.” (E1)

Consistência de estilo como sinal de maturidade e
qualidade.

Cumprimento de requisitos
(E2)

FUNC Funcionalidade “O código tem que ser funcional.” (E2) Funcionamento correto é requisito mínimo de qua-
lidade.

Funcionar antes de estética
(E4)

FUNC Funcionalidade “Não adianta ser só bonito; precisa funcionar.”
(E4)

Prioridade para comportamento correto sobre apa-
rência.

Funcional e sustentável (E7) FUNC Funcionalidade “Código de qualidade é funcional, fácil de ler e
manter.” (E7)

Funcionalidade integrada a legibilidade e manuten-
ção.

Preferência por soluções en-
xutas (E1)

SIMP Simplicidade “Prefiro código conciso e claro.” (E1) Remoção de complexidade acidental e foco no es-
sencial.

Evitar excesso de extensão
(E2)

SIMP Simplicidade “Pequeno e legível; nem muito resumido nem muito
extenso.” (E2)

Simplicidade como equilíbrio entre brevidade e
clareza.

Crítica a métodos gigantes
(E6)

SIMP Simplicidade “Métodos gigantes e muita responsabilidade; difí-
cil de manter.” (E6)

Indício de necessidade de decomposição/refatora-
ção.

Critério espontâneo de cla-
reza (E1)

ESPONT Critérios espontâneos “Prefiro código que qualquer pessoa bata o olho e
entenda.” (E1)

Legibilidade mencionada de forma espontânea
como prioridade universal.

Critério espontâneo de efici-
ência (E6)

ESPONT Critérios espontâneos “Códigos claros ajudam, mas também tem que ser
eficientes.” (E6)

Eficiência aparece associada ao julgamento de cla-
reza.

Escolha pelo código enxuto
(E5)

PREF Preferência “Não tem nem como comparar, o código 1 tá en-
xuto, perfeito, bem resumido.” (E5)

Preferência clara pelo código mais compacto.

Preferência por modulari-
dade (E6)

PREF Preferência “O código 2 está bem mais modular, responsabili-
dades divididas.” (E6)

Opção motivada pela separação de responsabilida-
des.

Justificativa por legibilidade
(E3)

JUST Justificativa “A da direita tá bem mais tranquila, bem mais fácil
de entender.” (E3)

Escolha fundamentada na facilidade de leitura.

126

Unidade de Registro Código Categoria Exemplo de Fala Interpretação

Justificativa por padroniza-
ção (E4)

JUST Justificativa “O código 1 tem muita coisa fora do padrão.” (E4) Critério de padronização norteia a decisão.

IA como ferramenta de apoio
(E5)

IAPOS Pós-revelação “Eu acredito que ela vai ser uma ferramenta, né?
Pra auxiliar. Acho que é isso.” (E5)

Percepção positiva, mas reforçando caráter com-
plementar da IA.

Risco no uso em produção
(E7)

IAPOS Pós-revelação “Claro que eu evitaria de usar LLM pra código
direto em produção. Então, acho que uma revisão
de códigos, ela é necessária.” (E7)

Ênfase na necessidade de supervisão humana.

IA como catalisador de pro-
dutividade (E3)

FUT Expectativas futuras “Vai deixar a coisa muito mais fluida [...] mas
acabar [com o trabalho do dev], acho que não.”
(E3)

Expectativa de ganhos de produtividade sem subs-
tituição completa.

Integração inevitável (E7) FUT Expectativas futuras “Se você não usa LLM, você tá ficando pra trás.
Você tá perdendo uma oportunidade.” (E7)

Expectativa de adoção crescente como diferencial
competitivo.

Fonte: Elaborado pelo autor (2025)

127

APÊNDICE C – QUADROS DE ESCOLHAS E JUSTIFICATIVAS DOS

ENTREVISTADOS

Este apêndice apresenta os quadros completos com as escolhas de código (original

ou refatorado) e as respectivas justificativas fornecidas pelos entrevistados (E1–E7), referentes à

Questão de Pesquisa 2 (QP2).

Tabela 17: Escolhas e justificativas do entrevistado E1 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “Cara, esse lado esquerdo está muito complexo. . . o outro está bem
mais enxuto, simples. Cada função no seu lugar. . . Eu acho que seria o
dois. Sem dúvida.”

2ª Refatorado “Sem dúvida o código 1. . . Para manutenção, sem dúvida o código 1.
Para clareza, para adicionar funcionalidade, eu escolheria ele.”

3ª Refatorado “Legibilidade do lado esquerdo. . . Do lado direito está muito verboso,
muito complexo. . . acoplando demais. . . O esquerdo está mais enxuto,
responsabilidades isoladas.”

4ª Refatorado “Os dois estão bem. . . O um está mais verboso, mas ainda assim
legível. O dois está menos verboso e a leitura está mais linear. . . Para
manutenção, o segundo.”

5ª Refatorado “Legibilidade o um está. . . Se faz a mesma coisa, cara, está muito bom.
Para manutenabilidade eu escolheria o um. Complexidade, o dois está
mais complexo.”

Fonte: Elaborado pelo autor (2025)

Tabela 18: Escolhas e justificativas do entrevistado E2 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “Eu vejo todas essas características no código 2. [...] é menor, mais fácil
de ler, melhor indentado. No primeiro eu me perco em vários comandos,
acho mais difícil de ler e manter.”

2ª Refatorado “Dessa vez eu vou no código 1 [...] ele resumiu o código, evitou criar
funções por completo, fez tudo em uma linha. Códigos menores eu acho
mais fácil de ler.”

3ª Refatorado “O primeiro usa muita estrutura condicional, fica complexo. O segundo
está mais legível e fácil de manter. [...] A legibilidade é melhor no 2.”

4ª Refatorado “Dessa vez o primeiro é um pouco mais legível que o segundo. [...] Para
teste também saiu melhor. Para manter, seria um pouco mais fácil do
que o segundo.”

5ª Refatorado “O primeiro eu acho mais legível, menos complexo para manter. Então
seria o número 1, considero melhor.”

Fonte: Elaborado pelo autor (2025)

128

Tabela 19: Escolhas e justificativas do entrevistado E3 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “De cara, pra mim, o da direita é mais fácil de dar manutenção; fica
mais legível do que deixar só string.”

2ª Refatorado “O código 2 divide os atributos por classe; não preciso ficar vendo um
monte de variável solta no início.”

3ª Refatorado “Pra mim o código 2 é muito melhor; soube dividir em classes e agrupar
responsabilidades, ficando mais legível.”

4ª Refatorado “Aqui o código 1 está melhor: em vez de várias linhas no try, ele separa
em função, o que facilita a manutenção. O 2 tem uma função gigante
que faz mais de uma coisa.”

5ª Refatorado “No 2, as variáveis foram separadas em objetos; fica mais manutenível,
menos acoplado, legível e até mais performático.”

Fonte: Elaborado pelo autor (2025)

Tabela 20: Escolhas e justificativas do entrevistado E4 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “O código 2 está melhor por ser mais simples. No código 1 tem muita
coisa não padronizada, textos dentro do código e variáveis soltas. O
código 2 já usa manager para cuidar disso.”

2ª Refatorado “Claramente o primeiro; o segundo é bem inicial, um esboço. O primeiro
tem boas normas aplicadas.”

3ª Refatorado “Para manutenção, o código 1 é mais funcional; consigo mexer de forma
mais específica. No 2, a validação não está tão direta e é fácil quebrar
algo.”

4ª Refatorado “O código 2 está mais dividido, bem modularizado. No código 1 encon-
trei apenas uma classe. Modularidade é essencial para manutenção no
longo prazo.”

5ª Refatorado “Com certeza o código 1; é mais fácil de manter, melhora o ciclo de
vida do software. O código 2 tem muitas variáveis locais e pouco
aproveitamento externo.”

Fonte: Elaborado pelo autor (2025)

Tabela 21: Escolhas e justificativas do entrevistado E5 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “Não tem nem como comparar, o código 1 está enxuto, perfeito, bem
resumido. O código 2 está enorme e pouco legível.”

2ª Refatorado “O código 1 parece mais organizado, o acoplamento das classes está
bem alinhado. Ele abrange todas as qualidades: legibilidade, testabili-
dade, modularidade, manutenabilidade.”

3ª Original “Eu diria que para o iniciante, talvez o código 2 fosse mais fácil dele ir
seguindo, né? Assim, para aprendizado. Porque você vai acompanhando
cada passo, está tudo ali, não precisa ficar procurando em outro lugar.”

4ª Refatorado “O código 1 está bem legível, modularizado, compacto, perfeito. O 2
tem muitos ifs e elses, prejudicando a legibilidade.”

5ª Refatorado “Com certeza o código 1. O 2 é muito extenso, demanda bastante tempo
para compreender e manter.”

Fonte: Elaborado pelo autor (2025)

129

Tabela 22: Escolhas e justificativas do entrevistado E6 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “O código 2 está bem mais modular, dividido e legível. O código 1
assume muita responsabilidade, métodos gigantes e mais difícil de dar
manutenção.”

2ª Refatorado “O código 2 está bem mais modularizado. O código 1 tem excesso de
responsabilidade. O 2 facilita testes e manutenção.”

3ª Refatorado “O código 2 é mais legível, simples e fácil de entender. O 1 é mais
complexo e difícil de entender o que a função faz.”

4ª Refatorado “O código 2 tem complexidade ciclomática elevada, muitos ifs aninhados.
O código 1 usa switch case, mais legível e facilita manutenção.”

5ª Refatorado “O código 1, com certeza. Melhor legibilidade, modularização e ma-
nutenção. O código 2 é basicamente uma classe única fazendo várias
funções, atrapalha a qualidade.”

Fonte: Elaborado pelo autor (2025)

Tabela 23: Escolhas e justificativas do entrevistado E7 nas cinco comparações

Comparação Código escolhido Justificativa

1ª Refatorado “Com certeza, da direita. Está bem mais fácil de entender. O código 1
está extenso, concentrando responsabilidades. O 2 está mais modulari-
zado, conciso e sem lógica muito complexa.”

2ª Refatorado “O código 1 está mais conciso, métodos claros, nomes e variáveis
induzem ao entendimento. O código 2 tem uma classe gigante e difícil
de entender, com várias variáveis repetitivas.”

3ª Refatorado “O código 2 está mais conciso e modularizado, mais fácil de entender.
O código 1 tem mais de 700 linhas, diferentes funcionalidades, deveria
ser refatorado.”

4ª Refatorado “O código 2 está mais conciso, agrupado por responsabilidades. Mais
fácil de entender, classes bem divididas. O código 1 tem muitas condici-
onais desnecessárias e repetidas.”

5ª Refatorado “O código 1 é mais conciso, segue padrão de agrupamento de respon-
sabilidades, consigo entender rápido. O código 2 tem loops aninhados,
condicionais complexas, alta complexidade ciclomática e duplicação.”

Fonte: Elaborado pelo autor (2025)

130

APÊNDICE D – ROTEIRO DE ENTREVISTA

Neste apêndice é apresentado o roteiro seguido nas entrevistas, divido em quatro

blocos principais: coletado perfil do entrevistado, comparativa de códigos, ferramentas e reflexões

sobre qualidade de código e encerramento.

1. Introdução - Abertura

a) Agradecimento ao entrevistado pela participação.

b) Explicação sobre o objetivo da entrevista:

i. Analisar percepções sobre qualidade de código em diferentes contextos.

ii. Comparar 5 códigos retirados de projetos reais (QualitasCorpus).

iii. Coletar insights sobre boas práticas e manutenção de código.

iv. Informação sobre a gravação da entrevista e confidencialidade dos dados.

c) Perguntar se há alguma dúvida antes de começarmos.

2. Perfil do Entrevistado

a) Qual é o seu nível de experiência em desenvolvimento de software? (Júnior, Pleno,

Sênior)

b) Há quanto tempo você trabalha com Programação?

c) Que tipo de software você normalmente desenvolve?

d) Ferramentas que usa ou usou no trabalho?

e) Quais critérios você geralmente usa para avaliar a qualidade de um código?

3. Análise Comparativa dos Códigos - Para cada par de códigos:

a) Quais são os atributos de qualidade de código você encontrou nos pares de código

(ex.: legibilidade, testabilidade, modularidade, manutenibilidade, extensibilidade)?

b) Qual código você considera que usou boas práticas para manter a qualidade do

código? E como influencia durante o ciclo de vida do software?

c) Quais sinais ou indicadores você observa para identificar um código com baixa

qualidade?

d) Qual dos dois códigos você considera de melhor qualidade? Por quê?

e) Qual código você consideraria mais fácil de manter a longo prazo? Justifique sua

resposta.

f) A legibilidade do código foi impactada positivamente ou negativamente versão 1 ou

versão 2? Como?

4. Ferramentas e Reflexão sobre Qualidade de Código

131

a) Você já utilizou ferramentas automatizadas de análise de qualidade de código? Se

sim, quais e o que achou delas?

b) Você considera útil a aplicação de métricas (ex.: complexidade ciclomática, acopla-

mento, cobertura de testes) para avaliar a qualidade? Por quê?

c) No seu fluxo de trabalho, há revisões de código (code review)? O que você observa

durante essas revisões?

d) Já trabalhou em projetos onde a refatoração foi evitada por receio de introduzir bugs

ou complicar a manutenção? Poderia compartilhar sua experiência?

e) Como a qualidade do código influencia a produtividade e moral do time?

f) Você já trabalhou em projetos em que a baixa qualidade de código gerou dívidas

técnicas difíceis de resolver? Pode contar como foi?

5. Encerramento

a) O que você achou do exercício de análise comparativa? Foi útil para sua percepção

sobre qualidade de código?

b) Para sua surpresa, o código refatorado foi gerado por um modelo de linguagem

treinado para otimizar código. Você mudaria suas escolhas após essa revelação? Qual

é sua opinião sobre o uso de inteligência artificial no quesito qualidade de código?

c) Você considera que as sugestões geradas por uma IA podem substituir parcialmente

o trabalho de um desenvolvedor na melhoria do código?

d) Finalização:

i. Agradecimento pela participação e tempo dedicado.

ii. Reafirmação sobre a confidencialidade das respostas.

iii. Pergunta se há alguma consideração final que gostaria de adicionar.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introdução
	Objetivo da Dissertação
	Contribuições
	Estrutura do Trabalho

	Fundamentação Teórica
	Code Smells e Métricas de Software
	Qualidade de Software
	Refatoração de Código
	Aprendizado de Máquina na Detecção de Smells
	Normalização e Validação dos Dados
	Ferramentas e Usabilidade em Pesquisas Acadêmicas
	Percepção Humana de Qualidade de Código
	Modelos de Linguagem de Grande Porte (LLMs)

	Detecção de Code Smell com aprendizado de máquina
	Metodologia
	Conjunto de Dados
	Avaliação de Desempenho

	Resultados
	QP1 - Eficácia dos Algoritmos
	QP2 - Eficácia dos Algoritmos com Validação Cruzada

	Trabalhos Relacionados
	Ameaças à Validade da Pesquisa
	Conclusão

	TwinCode
	Metodologia
	Objetivos da Pesquisa
	Questões Pesquisa
	Validação

	Estrutura da Ferramenta
	Arquitetura e Tecnologias
	Módulos e Interfaces
	Exemplo de Uso

	Validação e Resultados
	Caracterização dos Participantes
	Facilidade de Uso Percebida da Interface (QP1)
	Eficiência Funcional para Estudos Empíricos (QP2)
	Potencial de Adoção em Ambientes Acadêmicos (QP3)
	Funcionalidades Valorizadas e Prioridades de Melhoria (QP4)

	Trabalhos Relacionados
	Ameaças à Validade da Pesquisa
	Conclusão

	Percepção de desenvolvedores sobre qualidade de código refatorado por Modelo de Linguagem de Grande Porte
	Metodologia
	Objetivos da Pesquisa
	Conjunto de Dados
	Processo de Refatoração
	Seleção dos Entrevistados e Coleta e Análise dos Dados

	Resultados
	Caracterização dos Entrevistados
	Critérios de Qualidade de Código (QP1)
	Comparações de Código (QP2)
	Impacto da Revelação sobre IA (QP3)
	Expectativas sobre LLMs (QP4)
	Análise dos Resultados

	Trabalhos Relacionados
	Ameaças à Validade
	Conclusão

	Considerações Finais
	Conclusões
	Implicações e Lições Aprendidas
	Trabalhos Futuros

	REFERÊNCIAS
	APÊNDICES
	Codificação semântica detalhada
	Análise de Conteúdo das Entrevistas
	Quadros de Escolhas e Justificativas dos Entrevistados
	Roteiro de Entrevista
	ANEXOS

