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“Qualquer tolo pode escrever cddigo que um
computador entende. Bons programadores es-
crevem codigo que humanos podem entender.”

(Martin Fowler)



RESUMO

A qualidade de software € determinante para a manutenibilidade, legibilidade, testabilidade
e evolugdo de sistemas, sendo que grande parte do custo de manuten¢do estd associada a
compreensdo de codigo existente. Nesse contexto, os code smells surgem como indicios de
problemas estruturais ou estilisticos que degradam a arquitetura e alimentam o débito técnico.
Embora detectores de code smells baseados em métricas sejam amplamente utilizados, eles
enfrentam limites de interpretabilidade e generalizacdo. Algoritmos de aprendizado de médquina
(machine learning — ML) e modelos de linguagem de grande porte (large language models —
LLMs) ampliam as possibilidades de automacao na deteccdo de code smells, no entanto, podem
introduzir anomalias. Esta dissertacao investiga como técnicas de inteligéncia artificial podem
apoiar a melhoria da qualidade de software, conectando sinais objetivos de ML a percep¢ao
humana em refatoracdes realizadas por LLMs. O estudo foi conduzido em trés etapas. Na
primeira, cinco classificadores supervisionados foram aplicados a quatro code smells nos sistemas
do Qualitas Corpus. Modelos baseados em arvores performaram melhor e superaram 96% de
acurdcia estabelecendo baselines replicdveis. Na segunda etapa, foi desenvolvida a ferramenta
TwinCode, para experimentos empiricos com comparac¢ao lado a lado de trechos de codigo
e questiondrios estruturados, validada com 12 participantes que apontaram alta usabilidade e
consisténcia. Na terceira etapa, investigou-se a percepcao de desenvolvedores sobre refatoragdes
com LLMs, por meio de comparagdes cegas e entrevistas. Em 97% das escolhas os entrevistados
escolheram as versoes refatoradas e associaram a escolha a ganhos de legibilidade, modularidade
e manutenibilidade, ainda que com alertas para riscos de over-engineering. Os resultados
demonstram que: (i) algoritmos de ML oferecem sinais robustos para detec¢do de code smells,
(i1) TwinCode contribui para padronizacdo metodolégica de estudos empiricos e (iii) LLMs
possuem potencial de apoiar refatoragdes quando aplicados com supervisao critica. Contudo, esta
dissertacdo integra métricas objetivas e julgamentos humanos, oferecendo evidéncias aplicdveis

a pesquisa académica e a pratica profissional de desenvolvimento de software.

Palavras-chave: qualidade de c6digo; code smells; aprendizado de méaquina; modelos de

linguagem de grande porte; ferramentas para pesquisa empirica.



ABSTRACT

Software quality is essential for maintainability, readability, testability, and the long-term evolu-
tion of systems, with a large portion of maintenance costs related to understanding existing code.
In this context, code smells emerge as indicators of structural or stylistic issues that degrade
architecture and introduce technical debt. While metric-based detectors are widely used, they
face limits of interpretability and generalization, whereas recent advances with machine learning
(ML) algorithms and large language models (LLMs) expand automation possibilities but might
introduce anomalies. This dissertation investigates how artificial intelligence techniques can sup-
port software quality improvement by connecting objective ML signals with human perception
in refactorings produced by LLMs. The study was organized in three stages. In the first, five
supervised classifiers were applied to four smells identified in systems from Qualitas Corpus.
Tree-based models performed better and surpassing accuracy of 96% establishing replicable
baselines. In the second stage, we propose TwinCode a open source tool developed to support
empirical experiments with side by side code comparison and structured questionnaires. The
tool was validated with 12 participants who reported high usability and consistency. In the
third stage, we examined the developers’ perceptions of LLM-based refactorings through blind
comparisons and interviews. In 97% of choices, intervieews chose the refactored versions and
associated their choice with improvements in readability, modularity, and maintainability, even
though they reported over-engineering issues. Our results demonstrate that: (i) ML algorithms
provide robust signals for code smell detection, (ii) TwinCode contributes to the methodological
standardization of empirical studies, and (iii)) LLMs have potential to support refactorings when
applied with critical supervision.Taken together, this dissertation integrates objective metrics and
human judgments, offering evidence applicable to both academical and professional software

development.

Keywords: code quality; code smells; machine learning; large language models; empirical

research tools.
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1 INTRODUCAO

A qualidade de software € determinante para a manutenibilidade, legibilidade, testa-
bilidade e evolugdo de sistemas ao longo do seu ciclo de vida; estima-se que até 80% do custo
total de um sistema esteja associado a manutencao, em grande parte dedicada a compreensdo de
codigo existente (KRASNER, 2021; RAHMAN et al., 2024). Nesse cendrio, code smells surgem
como indicios de problemas estruturais/estilisticos que, embora ndo inviabilizem a execugao,
degradam a arquitetura e alimentam o débito técnico, afetando a sustentabilidade de projetos (FO-
WLER, 2018; YAMASHITA; MOONEN, 2013; OUNI et al., 2017; PALOMBA et al., 2018).
Detectores baseados em métricas e analise estdtica tém sido amplamente utilizados (FONTANA
et al., 2016), enquanto avangos recentes incorporam técnicas de aprendizado de maquina (do
inglés Machine Learning (ML)). Modelos baseados em arvores (ABDOU; DARWISH, 2024)
tém alcancado alta acuricia da deteccao de code smells. Por outro lado, modelos de linguagem
de grande porte (do inglés Large Language Models (LLMs)) tém sido eficazes e mantido boas
praticas quando refatorando artefatos de cddigo (CHEN et al., 2021; ROZIERE et al., 2023;
ACHIAM et al., 2023). Ao mesmo tempo, estudos apontam limites e riscos, como a geracao de
novos smells e dificuldades de consisténcia semantica em refatoracdes complexas (VELASCO
et al., 2025; BORSTLER et al., 2023). Para minimizar essas anomalias, alguns pesquisadores
destacam o papel de engenharia de prompt para melhorar a qualidade das refatoracdes e solugdes
propostas por LLMs (WHITE et al., 2023).

Apesar do aparato técnico disponivel, persiste uma tensao entre marcacoes algorit-
micas e julgamentos humanos, pois desenvolvedores frequentemente discordam de detectores
automaticos por avaliarem a qualidade de forma mais ampla (clareza semantica, consisténcia
estilistica, esfor¢o cognitivo) (BUSE; WEIMER, 2009; POSNETT et al., 2011; BINKLEY et al.,
2013). Rahman et al. (2024), por meio de uma revisdo sistemadtica da literatura, apontam desafios
de interpretabilidade e generalizacdo em contextos heterogéneos. No campo da refatoracdo
com LLMs, a literatura carece de evidéncias sobre como desenvolvedores percebem o c6digo
produzido e quais critérios humanos orientam tais julgamentos. Adicionalmente, ha fragilidades
metodoldgicas, pois estudos frequentemente recorrem a solucdes ad hoc para coleta/compara-
cao de versdes, o que prejudica padronizagao e replicabilidade entre investigagdes (SANTOS;
GEROSA, 2018).

Diante desse quadro, ha oportunidade para uma abordagem integrada que conecte

(i) sinais objetivos de ML na detec¢do de smells, (ii) protocolos/infraestruturas que viabilizem
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estudos empiricos replicdveis (comparagdes cegas com coleta estruturada) e (iii) a anélise da
percepgao de desenvolvedores sobre refatoracdes por LLMs. Tal integracao busca, simultanea-
mente, reduzir o hiato entre métricas e julgamento humano, orientar a ado¢ao responsével de
LLMs em fluxos de trabalho (potencializando beneficios e mitigando riscos (VELASCO et al.,
2025; BORSTLER et al., 2023)) e prover evidéncias tteis tanto para a comunidade cientifica
quanto para a pratica profissional, em linha com a evolugao recente da drea de engenharia de
software e computacdo como um todo (FONTANA et al., 2016; ABDOU; DARWISH, 2024;
CHEN et al., 2021; ROZIERE et al., 2023; ACHIAM et al., 2023; WHITE et al., 2023).

1.1 Objetivo da Dissertacao

O objetivo principal € investigar como técnicas de inteligéncia artificial podem
apoiar a melhoria da qualidade de software, conectando sinais objetivos de detec¢@o de code
smells a julgamentos humanos sobre qualidade de cédigo. Para alcancar este objetivo, definimos

dois objetivos especificos:

* OE1 — Deteccao de Code Smells com ML. Investigar, de forma sistematica, o desempe-
nho de classificadores supervisionados na identificacao de quatro code smells (Data Class,

God Class, Feature Envy e Long Method).

* OE2 — Percepcao Humana de Qualidade de Software e Refatoracoes com LLM:s.
Investigar, por meio de comparagoes cegas e entrevistas, como desenvolvedores julgam
versOes originais versus refatoradas por LLMs e guais critérios orientam tais julgamentos

(p. ex., legibilidade, modularidade, manutenibilidade).

O OE1 ¢é motivado pelo papel central de detectores baseados em métricas e ML
na identificac@o de indicios de baixa qualidade, bem como pelos desafios de generalizacao e
interpretabilidade reportados na literatura (FONTANA et al., 2016; RAHMAN et al., 2024;
ABDOU; DARWISH, 2024). O OE2 decorre da necessidade de compreender a qualidade
percebida do codigo gerado/refatorado por LLMs, dada a tensdo conhecida entre marcacoes
automdticas e julgamentos humanos (BUSE; WEIMER, 2009; POSNETT et al., 2011; BINKLEY
et al., 2013), bem como dos riscos e limites na prética de refatoracao automatica e do papel
da engenharia de prompt adequado (WHITE et al., 2023; CHEN et al., 2021; ROZIERE et

al., 2023; ACHIAM et al., 2023). Para viabilizar estudos empiricos replicdveis nesse segundo
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objetivo especifico, desenvolvemos a ferramenta TwinCode, que integra comparacao lado a lado
e questiondrios estruturados, reduzindo solucdes ad hoc e favorecendo padronizacdo (SANTOS;

GEROSA, 2018). A Figura 1 mostra a relacio entre os objetivos do estudo.

Técnicas de IA como auxilio da Melhoria da Qualidade de Software

I

!
TwinCode
Capitulo 4
A\ \
OE1 - Deteccao de OE2 - Percepcao Humana de
Code Smells com ML Qualidade de Software e Refatoracao
com LLMs
Capitulo 3 Capitulo 5

Figura 1 — Visdo geral da dissertacdo
Fonte: Elaborado pelo autor (2025)

1.2 Contribuicoes

Nesta dissertacdo s@o apresentadas diversas contribui¢cdes que utilizam técnicas
de inteligéncia artificial como auxilio na melhoria da qualidade de software. A seguir, s@ao

mencionadas e explicadas as principais extensdes dessas contribuigdes.

1. Deteccao de code smells com ML. Foi criado um benchmark sistemético de cinco clas-
sificadores supervisionados (Arvore de Decisao, Floresta Aleatoria, Gradient Boosting,
Support Vector Machines (SVM) e Multilayer Perceptron (MLP)) para quatro smells (Data
Class, God Class, Feature Envy, Long Method) com dados derivados do Qualitas Corpus
de Tempero et al. (2010) e comparagdo com/sem validacdo cruzada. Com resultado,
obtive-se acurdcias entre 89,7% e 99,2%, com picos de 96,8% (Data Class), 96,3%
(God Class), 98,4% (Feature Envy) e 99,2% (Long Method). Modelos baseados em
arvores mostraram desempenho consistentemente superior. Diferencas entre cendrios
com/sem valida¢do cruzada ndo foram estatisticamente significativas. Dentre as principais

contribui¢des, destaca-se o estabelecimento de baselines fortes e protocolo comparativo
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replicavel para deteccdo de code smells. E a publicacdo do estudo nos anais da XXVII
Ibero-American Conference on Software Engineering (CIbSE 2024) - (MOREIRA et al.,
2024).

2. Ferramenta TwinCode. Foi realizado o projeto e implementacdo de uma ferramenta
para comparacao lado a lado de artefatos de cédigo com realce de sintaxe, numeragao de
linhas e questiondrios por comparacdo. Desenvolvida em PHP: Hypertext Preprocessor
(PHP)/Laravel para backend e a biblioteca Javascript React junto com TailwindCSS para
estilizacao das paginas. Realizou-se uma avaliacdo exploratéria com 12 participantes.
Como resultados, obteve-se boa aceitacao do niucleo de inspecao (comparacao, syntax
highlighting, numeracdo); consisténcia interna elevada e indicadores favoraveis de po-
tencial de adocdo (p. ex., média ~ 4,42 para uso académico em escala de 1-5). O estudo
também mostrou oportunidades priorizadas de melhoria no fluxo pares—questionarios
e em funcionalidades auxiliares (exportagdo, filtros, versionamento). A ferramenta foi
registrada no INPI (BR512025003573-0). Dentre as contribui¢des do estudo destaca-se a
disponibiliza¢do do cédigo-fonte da ferramenta que busca padronizar a coleta de evidéncias

em estudos de comparacdo de cédigo e viabiliza replicabilidade metodolégica.

3. Percepcao de Desenvolvedores sobre Qualidade do Software e Refatoracoes com
LLMs. Foi elaborado uma investigacao as cegas e randomizada com 7 desenvolvedores, §
pares por entrevistado (total 35 julgamentos), amostrados de um conjunto de 80 artefatos
(12 sistemas do Qualitas Corpus). Cada par continha o c6digo original e o cédigo com
refatoracdes produzidas pelo modelo Qwen2.5-Max. Como resultado, 34 de 35 escolhas
(=~ 97,1%) favoreceram as versdes refatoradas; critérios centrais de decisao incluiram
legibilidade, modularidade € manutenibilidade. A revelacdo posterior da autoria dos
codigos refatorados por LLM nio alterou as opinides dos entrevistados, pois a escolha veio
por meio de andlise técnica. Os entrevistados mencionaram riscos de over-engineering e
perda de contexto em casos especificos quanto ao uso de LLMs para refatoracdo de codigo.
Como contribui¢des, pode-se mencionar evidéncia empirica exploratéria sobre a aceitacao
e critérios humanos aplicados a refatoracdes por LLMs e insumos praticos para adog¢io

responsavel dessas ferramentas em fluxos de desenvolvimento de software.

Como pode-se ver, os trés estudos se complementam. A deteccdo baseada em ML

prové sinais objetivos robustos. O estudo com LLMs revela preferéncias e critérios humanos
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de qualidade e a TiwinCode conecta ambos por meio de um instrumento replicavel. Em conjunto,
o estudo contribui para a drea ao (i) consolidar baselines e protocolos para deteccao de codes
smells; (ii) oferecer um artefato/ferramenta que padroniza e acelera a pesquisa empirica; e
(ii1) produzir evidéncias centradas no desenvolvedor sobre refatoragdes assistidas por LLLM,
orientando pesquisadores, construtores de ferramentas e desenvolvedores rumo a uma adogao

mais informada e responsavel de IA na melhoria da qualidade de software.

1.3 Estrutura do Trabalho

Os restante deste trabalho estd organizado em cinco capitulos. O Capitulo 2 con-
solida conceitos e trabalhos relacionados sobre qualidade de c6digo, code smells, métricas de
software, técnicas de ML aplicadas a deteccdo e o papel de LLMs na refatoracio, além de
discutir lacunas que motivam este estudo. O Capitulo 3 detalha a formulagdo do problema de
deteccao de code smells, o conjunto de smells investigados e os classificadores supervisionados
considerados, apresentando o delineamento comparativo dos resultados obtidos, bem como os
resultados alcancados em estudos anteriores. O Capitulo 4 descreve a TwinCode desenvolvida
para comparacao lado a lado de trechos de c6digo com coleta estruturada via questiondrios, sua
arquitetura e o papel da ferramenta como infraestrutura para estudos empiricos replicaveis, bem
como a avaliacdo da ferramenta. O Capitulo 5 apresenta o estudo baseado em comparagdes
cegas e entrevistas, conduzido para compreender como desenvolvedores julgam versdes originais
versus refatoradas por LLMs e quais critérios orientam tais julgamentos. Por fim, o Capitulo 6
sintetiza os resultados, discute implicacdes para a pratica e para a pesquisa e apresenta dire¢oes

de trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os fundamentos que embasam esta pesquisa. A Secdo 2.1
apresenta conceitos basicos e historicos sobre code smells e métricas de software. A Secdo 2.2
apresenta historico sobre qualidade de software. A Secdo 2.3 aprofunda-se em praticas de
refatoracdo de cédigo. A Secdo 2.4 apresenta técnicas de aprendizado de maquina. A Secdo 2.5
apresenta uma abordagem sobre normalizacao e validagcdo de dados. A Secdo 2.6 discute sobre
ferramentas e usabilidade. A Sec¢do 2.7 trata da percep¢ao humana sobre qualidade de software.

Por fim, a Secdo 2.8 analisa a insercdo das LLLMs em estudos na drea de engenharia de software.

2.1 Code Smells e Métricas de Software

O termo code smell foi introduzido por Riel (1996) e popularizado por Fowler (1999)
para designar indicios de problemas estruturais ou estilisticos em um cédigo-fonte que, embora
ndo representem defeitos funcionais imediatos, podem comprometer sua qualidade a longo prazo.
Esses indicios atuam como “sinais de alerta” que sugerem a necessidade de refatoracdo, uma vez
que estdo frequentemente associados a degradacdo da manutenibilidade, a perda de legibilidade e
ao aumento da complexidade (BROWN et al., 1998; YAMASHITA; COUNSELL, 2013). Dessa
forma, os code smells ndo sdo erros de compilac@o ou execu¢ao, mas sintomas de design pobre
que aumentam os custos de manutenc¢do e elevam o risco de falhas futuras.

Entre os diversos tipos catalogados por (FOWLER, 1999), esta pesquisa concentra-se
em quatro dos mais recorrentes e estudados: (i) God Class, caracterizada por classes excessi-
vamente grandes, com multiplas responsabilidades e baixo nivel de coesdao (FONTANA et al.,
2016); (ii) Data Class, definida por classes que funcionam apenas como contéineres de dados,
apresentando atributos publicos ou getters/setters sem encapsulamento adequado (FONTANA et
al., 2016; DEWANGAN et al., 2021); (iii) Feature Envy, smell em nivel de método que acessa
mais atributos de outras classes do que da sua prépria, revelando alto acoplamento e violacdo
de encapsulamento (BROWN et al., 1998; FONTANA et al., 2016); e (iv) Long Method, que
ocorre quando um método € demasiadamente extenso, combinando multiplas funcionalidades e
prejudicando a legibilidade (MCCONNELL, 2004; DEWANGAN et al., 2021). Esses quatro
smells foram selecionados pela literatura devido a sua alta incidéncia em sistemas reais € ao
impacto negativo significativo na qualidade do software (FONTANA et al., 2016; ABDOU;
DARWISH, 2024).
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A detecgdo de smells estd intimamente ligada ao uso de métricas de software, que
oferecem uma base quantitativa para avaliagdo objetiva de atributos internos do cédigo. Métricas
sdo definidas como medidas que capturam propriedades do software em diferentes niveis de
granularidade, tais como método, classe, pacote e projeto (FONTANA et al., 2016). Entre as
mais utilizadas destacam-se: (i) complexidade ciclomdtica (MCCABE, 1976), que quantifica a
quantidade de caminhos independentes em um método, servindo como indicador de dificuldade
de teste e compreensdo; (i1) coesdo e acoplamento, métricas fundamentais da qualidade orientada
a objetos propostas por Chidamber e Kemerer (1994), que medem respectivamente o grau de
inter-relac@o interna de uma classe e sua dependéncia de outras classes; (iii) tamanho de métodos
e classes, associado ao niimero de linhas de cddigo e de atributos; (iv) indices compostos como
0 Maintainability Index, que agregam multiplas métricas para inferir a facilidade de manuten¢do
(COLEMAN et al., 1994).

Embora as métricas fornegcam evidéncias objetivas, diversos estudos apontam que
sua interpretacdo nem sempre € trivial e pode divergir da percepcdo de desenvolvedores sobre
qualidade (BUSE; WEIMER, 2009; POSNETT et al., 2011). Essa tensao entre medidas automa-
ticas e avaliacdo humana justifica a necessidade de abordagens empiricas que combinem anélise
quantitativa e julgamento subjetivo, como proposto neste trabalho.

Assim, a compreensdo de code smells e métricas de software constitui a base tedrica
que sustenta a presente pesquisa, permitindo tanto a avalia¢do algoritmica por meio de técnicas
de aprendizado de maquina quanto a investiga¢ao da percep¢do humana em relagdo a qualidade

de cédigo refatorado.

2.2 Qualidade de Software

A avaliagdo da qualidade de software é um tema muito importante em Engenharia
de Software, buscando oferecer parametros objetivos e subjetivos que orientem tanto o desen-
volvimento quanto a manuten¢do de sistemas. Diferentes modelos foram propostos ao longo
da histdria para estruturar a no¢do de qualidade, traduzindo-a em dimensdes mensuraveis e
relacionadas a atributos internos e externos do produto (MCCALL et al., 1977, BOEHM, 1976;
PRESSMAN et al., 1995; KITCHENHAM; PFLEEGER, 1996). Os primeiros esfor¢os siste-
matizados surgiram no final da década de 1970. McCall et al. (1977) propuseram um modelo
que agrupava atributos em trés categorias: fatores de produto, critérios de qualidade e métricas,

com énfase em caracteristicas como confiabilidade, manutenibilidade e eficiéncia. Boehm et
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al. (1976) sugeriram um modelo hierdrquico que organizava a qualidade em atributos de alto
nivel (como utilidade e portabilidade) e métricas mais especificas, estabelecendo a relagao entre
requisitos de usudrios e propriedades técnicas do software.

Posteriormente, com a consolida¢do da normalizagdo internacional, foi publicada
a ISO/IEC 9126 (ISO/IEC, 2001), que se tornou referéncia para a avaliagdo de qualidade de
produto de software. Esse modelo definiu seis caracteristicas principais: funcionalidade, confia-
bilidade, usabilidade, eficiéncia, manutenibilidade e portabilidade, cada uma delas desdobrada
em subcaracteristicas que permitiam operacionalizar a avaliacdo. Apesar de sua relevancia, a
norma recebeu criticas pela auséncia de diretrizes claras para defini¢ao de métricas especificas, o
que dificulta sua aplicacdo pratica em cenarios reais (KITCHENHAM, 1996; WASHIZAKI et
al., 2004). A evolugdo natural desse esfor¢o resultou no ISO/IEC 25010, publicado em 2011, que
ampliou e refinou a estrutura anterior. O novo modelo passou a contemplar oito caracteristicas:
adequacdo funcional, desempenho e efici€ncia, compatibilidade, usabilidade, confiabilidade,
seguranca, manutenibilidade e portabilidade. Além disso, introduziu a disting@o entre qualidade
de produto e qualidade em uso, reconhecendo que a experiéncia do usudrio final constitui
parte essencial da avaliacdo (ISO/IEC, 2011). Essa abordagem responde a criticas anteriores ao
incorporar explicitamente dimensdes de percepcao e contexto de uso.

No ambito da pesquisa em qualidade de cédigo, tais modelos sdo fundamentais para
situar métricas e indicadores empregados em andlises automatizadas. Métricas como complexi-
dade ciclomética (MCCABE, 1976), acoplamento e coesdao (CHIDAMBER; KEMERER, 1994),
bem como indices compostos como o Maintainability Index (COLEMAN et al., 1994), podem
ser mapeadas a dimensdes dos modelos ISO, particularmente manutenibilidade, eficiéncia e
confiabilidade. Por outro lado, aspectos subjetivos como legibilidade e clareza, apontados por
estudos empiricos como os de Posnett ef al. (2011) e Binkley et al. (2013), dialogam com as
caracteristicas de usabilidade e qualidade em uso.

Em sintese, os modelos de qualidade de software ndo se limitam a organizar atributos
em categorias conceituais: eles possibilitam estabelecer conexdes entre medi¢des quantitativas,
obtidas a partir de métricas, e interpretagdes qualitativas realizadas por desenvolvedores e
usudrios. Nesse cendrio, o ISO/IEC 25010 destaca-se por oferecer um quadro de referéncia que
articula dimensdes objetivas, como manutenibilidade e eficiéncia, com aspectos subjetivos, como

clareza e usabilidade, favorecendo uma visdo mais integrada da qualidade do cédigo.
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2.3 Refatoracao de Codigo

A refatoracdo de codigo € definida como o processo sistematico de reestruturar
o codigo-fonte existente de um sistema de software sem alterar seu comportamento externo
(FOWLER, 1999). O objetivo € melhorar atributos internos do c6digo, tais como legibilidade,
simplicidade, manutenibilidade e extensibilidade, reduzindo a complexidade acidental que tende
a se acumular durante o ciclo de vida do software. Assim, enquanto a corre¢cdo de defeitos
visa restaurar a funcionalidade, a refatoracdo concentra-se em melhorar a qualidade estrutural
e nao funcional do sistema. Historicamente, a nocdo de refatoracdo remonta a trabalhos de
Opdyke (1992), que introduziu o conceito em sua tese de doutorado, propondo operagdes de
transformacao (refactorings) para melhorar a estrutura interna de sistemas orientados a objetos.
Posteriormente, Fowler (1999) sistematizou e popularizou um catdlogo de 22 tipos de code
smells acompanhados de refatoracdes correspondentes, como Extract Method, Move Method,
Encapsulate Field e Replace Conditional with Polymorphism. Essa sistematiza¢do consolidou a
refatoracdo como prética na engenharia de software, integrada a metodologias dgeis e praticas de
desenvolvimento como Continuous Integration e Test-Driven Development (BECK, 2003).

Métodos de refatoragdo podem ser classificadas em cinco principais categorias:
(1) refatoragdes de extragdo e decomposi¢do, como a criagdo de métodos ou classes menores;
(i1) refatoracdes de movimentagdo, que reposicionam atributos ou métodos em classes mais
adequadas; (iii) refatora¢des de encapsulamento, que melhoram o controle de acesso a dados;
(iv) refatoracdes de simplificacdo de expressoes e estruturas condicionais; (v) refatoracdes de
heranca, que reorganizam hierarquias de classes para melhorar coesao e reduzir acoplamento
(FOWLER, 1999; MENS; TOURWE, 2004).

Diversos estudos tém ressaltado que a refatorac@o ndo se limita a um exercicio de
“embelezamento” do c6digo, mas atua como um mecanismo estratégico de contencao do débito
técnico e de preservacao da arquitetura ao longo do tempo (YAMASHITA; COUNSELL, 2013).
Essa perspectiva ganha for¢a quando se observa que a presenga de smells esta frequentemente
associada a falhas futuras e a dificuldades de compreensdo. Nesse sentido, a refatoracdo funciona
como uma espécie de “manutencdo preventiva’, capaz de reduzir riscos e sustentar a evolugdo
do sistema (SAHIN et al., 2014). Evidéncias empiricas refor¢am esse papel: Ouni et al. (2016)
e Hilmi ef al. (2023) apontam que a remoc¢ao de smells contribui ndo apenas para diminuir
a incidéncia de defeitos, mas também para ampliar a produtividade de desenvolvedores, que

passam a interagir com um cédigo mais legivel, modular e previsivel. No contexto desta pesquisa,
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0 uso de algoritmos de ML e LLLMs buscam apoiar esse processo de refatoracdo, fornecendo
alternativas automdticas que podem ser comparadas a percepcao critica de programadores.

Embora tradicionalmente realizada de forma manual, a refatoracdo tem sido progres-
sivamente apoiada por ferramentas automatizadas, tais como Eclipse, IntelliJ] IDEA e NetBeans,
que incorporam catdlogos de refatoracdes seguras e auxiliam no processo. Contudo, essas ferra-
mentas ainda apresentam limitagcdes, especialmente em cendrios mais complexos que exigem
julgamento humano, como a decisdo sobre modularizacdo adequada ou clareza de nomencla-
turas (GE et al., 2012). Mais recentemente, pesquisas t€ém explorado a aplicacao de técnicas
de aprendizado de maquina e, em particular, de LLMs, como forma de sugerir refatoragdes
de maneira automadtica e contextualizada (CHEN et al., 2025). Essa abordagem representa
uma evolucdo importante, pois permite aliar a sistematizagdo de boas praticas codificadas em
catdlogos cldssicos ao potencial de generalizacio e adaptacao de modelos de A, promovendo
refatoracdes que preservam funcionalidade e atendem a padrdes de estilo e clareza cognitiva.

A refatoragdo de cddigo desempenha um papel estratégico ao articular a deteccao de
code smells com a melhoria efetiva da qualidade de software. Mais do que uma técnica corretiva,
ela funciona como ponto de convergéncia entre métricas objetivas, andlises automatizadas e
percepgdes subjetivas de desenvolvedores. Esse cardter hibrido explica sua relevincia nao apenas
para a avaliacdo de algoritmos de detec¢do, mas também para a andlise critica de refatoragdes

sugeridas por modelos de linguagem.

2.4 Aprendizado de Maquina na Deteccao de Smells

A deteccdo automatica de code smells € um campo de pesquisa que tem ganhado
relevancia crescente, pois busca reduzir a subjetividade inerente ao processo manual e aumentar a
escalabilidade da andlise de qualidade de cddigo. A abordagem tradicional de deteccdo, baseada
em inspecOes humanas e em ferramentas estaticas de andlise, apresenta limitacdes relacionadas a
consisténcia dos resultados e a dificuldade de lidar com grandes bases de cddigo (MANTYLA
et al., 2003). Nesse contexto, o uso de técnicas de ML representa um avanco significativo, ao
permitir que algoritmos aprendam padrdes associados a smells a partir de métricas de software e
bases rotuladas.

O Aprendizado de Mdquina (AM), ou ML, € um subcampo da Inteligéncia Artificial
voltado ao desenvolvimento de algoritmos capazes de aprender padrdes a partir de dados e, com

isso, realizar previsdes ou tomar decisdes sem que tenham sido explicitamente programados para
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cada tarefa (MITCHELL, 1997; RUSSELL; NORVIG, 2021). No Aprendizado de Maquina,
segundo Ray (2019), um programa de computador é designado para realizar determinadas tarefas
e diz-se que a miquina aprendeu com sua experiéncia se seu desempenho mensurdvel nessas
tarefas melhora a medida que adquire cada vez mais experiéncia na execugdo delas. Dessa
forma, os modelos de ML tomam decisdes e fazem previsdes baseadas em dados, explorando
regularidades presentes em grandes volumes de informacao.

Neste estudo, foram selecionados cinco algoritmos de aprendizado de maquina para
comparagdo quanto ao desempenho na detec¢do de code smells. Sao eles: Multilayer Perceptron
(MLP), uma rede neural multicamada com capacidade de capturar relacdes ndo lineares (RUCK
et al., 1990); Arvore de Decisao, algoritmo hierdrquico baseado em regras de divisdo sucessiva
dos dados (QUINLAN, 1990); Floresta Aleatéria, técnica de ensemble learning que combina
multiplas drvores para aumentar robustez (BREIMAN, 2001); Gradiente Boost, método aditivo
que corrige iterativamente os erros de modelos anteriores (FRIEDMAN, 2001); e Support
Vector Machines (SVM), que busca hiperplanos 6timos para separar classes em espacos de
alta dimensionalidade (NOBLE, 2006). Esses algoritmos foram escolhidos por representarem
abordagens cldssicas e consolidadas na literatura, além de oferecerem diferentes formas de lidar
com a complexidade do problema de classificacdo de smells.

Fontana et al. (2016) realizaram um dos estudos de referéncia nesse campo, utilizando
74 sistemas do Qualitas Corpus, repositorio criado por Tempero et al. (2010), e 16 classificadores
de aprendizado de maquina para detectar quatro smells — God Class, Data Class, Feature Envy
e Long Method. Os resultados mostraram que diferentes algoritmos apresentam desempenhos
variados dependendo do smell em anélise, sugerindo que ndo hd um modelo universalmente 6timo.
Trabalhos posteriores, como os Kaur e Kaur (2021) e Abdou e Darwish (2024), reforcam essa
constatacdo, apontando que técnicas baseadas em ensembles, como Random Forest e Gradient
Boosting, tendem a alcancar maior acuricia e robustez em comparagdo a algoritmos individuais.

A aplicac@o de ML na deteccdo de smells geralmente segue um processo composto
por quatro etapas principais: (i) extragdo de métricas do cédigo-fonte, como complexidade,
coesdo, acoplamento e tamanho; (ii) pré-processamento dos dados, incluindo normalizacdo e
tratamento de desbalanceamento de classes; (iii) treinamento supervisionado de classificadores a
partir de bases rotuladas por especialistas ou heuristicas; e (iv) avaliacdo por meio de métricas
de desempenho, tais como acurécia, precisao, sensibilidade e F1-score (MHAWISH; GUPTA,
2020; NUCCI et al., 2018).
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Além disso, recentes avangos tém explorado o uso de deep learning na detec¢do de
smells, empregando redes neurais convolucionais (CNNs) e recorrentes (RNNs) para capturar
padrOes semanticos e estruturais diretamente do codigo (ALAZBA et al., 2023). Contudo,
esses modelos ainda enfrentam desafios relacionados a interpretabilidade e a necessidade de
grandes volumes de dados rotulados, o que limita sua aplicabilidade em contextos industriais. A
principal contribui¢do do uso de ML para deteccao de smells estd na possibilidade de transformar
um processo subjetivo em um procedimento mais objetivo e automatizado, sem perder de
vista a complexidade inerente ao julgamento humano. Nesse sentido, a literatura indica que a
combinacdo entre abordagens algoritmicas e avaliacdo por desenvolvedores pode gerar resultados
mais confidaveis (POSNETT er al., 2011; SANTOS; GEROSA, 2018).

O aprendizado de miquina desempenha papel duplo: de um lado, fornece modelos
de predicdo de elevada acurdcia para identificar code smells em larga escala; de outro, serve como
contraponto objetivo as percepcdes humanas coletadas via experimentos empiricos, permitindo

investigar convergéncias e divergéncias entre medidas automadticas e julgamentos subjetivos.

2.5 Normalizacio e Validacao dos Dados

A qualidade dos resultados obtidos em experimentos com aprendizado de maquina
depende ndo apenas da escolha de algoritmos, mas também do tratamento prévio dos dados
e da forma como o desempenho dos modelos € avaliado. Nesse sentido, a normalizagdo e a
validacdo dos dados representam etapas fundamentais para garantir consisténcia, comparabilidade
e generalizacao dos resultados (HAN et al., 2022). Em problemas de classificacao de code
smells, as métricas extraidas do cddigo-fonte apresentam escalas heterogéneas: enquanto a
complexidade ciclomadtica é expressa em valores inteiros e potencialmente altos, o acoplamento
pode assumir valores pequenos, e o nimero de atributos ou métodos tende a variar em escalas
intermedidrias. Essa heterogeneidade pode induzir viés em algoritmos de ML, sobretudo em
métodos baseados em distancia, como k-NN, ou em modelos sensiveis a escala de atributos,
como Redes Neurais e SVM (AL-SHALABI et al., 2006).

A normalizacao busca reduzir esse viés ao transformar os dados para uma escala
compardvel. De modo geral, pode-se representar o processo de transformacdo de um vetor de
atributos x em x’ por meio de um escalonamento (E) e um fator de tradugdo (7): X' = Ex+T.
Diferentes técnicas podem ser aplicadas, dependendo da distribui¢do dos dados e das exigéncias

do modelo: escalonamento para intervalos, transformacio logaritmica, padronizag¢do por Z-score
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e normalizacdo Min-Max (HAN et al., 2022). Neste trabalho, optou-se pela normalizacdo

Min-Max, que dimensiona os valores para o intervalo [0, 1], sendo dada pela expressdo: x' =

x—min(x)
max (x)—min(x)

Outro aspecto essencial é a forma de avaliar a capacidade de generalizacdo dos
modelos treinados. Em contextos de pesquisa académica, a simples divisdo dos dados em treino e
teste pode levar a estimativas instdveis, sobretudo quando os conjuntos de dados s@o limitados ou
desbalanceados. Para mitigar esse problema, a validacio cruzada (cross-validation) tornou-se
pratica consolidada (ARLOT; CELISSE, 2010).

Na validagao cruzada k-fold, o conjunto de dados € dividido em k subconjuntos
de tamanho aproximadamente igual. Em cada iteracdo, k — 1 subconjuntos sdo usados para
treinamento e o subconjunto restante € reservado para teste. Esse procedimento € repetido k
vezes, de forma que cada subconjunto seja utilizado exatamente uma vez como conjunto de teste.
A média dos resultados obtidos constitui uma estimativa mais robusta do desempenho real do
modelo, reduzindo a variabilidade associada a uma tnica parti¢ao dos dados (ARLOT; CELISSE,
2010; KOHAVI et al., 1995).

A avalia¢do do desempenho dos modelos requer também a aplicacdo de métodos
estatisticos. Medidas como média e desvio padrio sintetizam tendéncias centrais e dispersao

em torno dos resultados. Para um conjunto de n observacoes x1,xz,...,x,, a média é dada por:

1yvn
n =i=1

X= x; e o desvio padrao amostral por: s = \/ Ly (i —%)?

Para comparagdes entre condi¢cdes pareadas, como desempenho de algoritmos com e
sem validag@o cruzada, pode-se utilizar o teste de Wilcoxon para postos sinalizados, adequado
para pequenas amostras e sem pressuposicao de normalidade (WILCOXON, 1945). O estatistico
de Wilcoxon € dado pela soma dos postos positivos: W =Y | R;L onde R;“ representa o posto
atribuido aos casos em que a diferenca d; > 0. A hipétese nula (Hp) assume que a mediana
das diferencas € zero. A andlise também deve considerar os riscos de erro: o erro tipo I,
com probabilidade «, ocorre quando se rejeita Hy sendo ela verdadeira; e o erro tipo II, com
probabilidade f3, ocorre quando nao se rejeita Hy mesmo sendo falsa. O poder estatistico do teste
¢ expresso como 1 — 3.

Em experimentos que envolvem percep¢do humana, como questiondrios aplicados
a desenvolvedores, utiliza-se frequentemente a escala Likert, estruturada em multiplos niveis

de concordancia (JOSHI et al., 2015). Para avaliar a consisténcia interna dos itens, emprega-se

k 2
o Alfa de Cronbach (CRONBACH, 1951), definido como: & = ¢&; (1~ E2b% ) onde k ¢ 0
T
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nimero de itens, 67 € a varidncia de cada item e 07 é a variéncia total do escore composto.
Valores de @ > (0.7 sdo geralmente considerados indicativos de consisténcia aceitavel (GLIEM;
GLIEM, 2003). No contexto da detec¢do de code smells, a normalizacio assegura que métricas
como complexidade, coesdo e acoplamento sejam analisadas em bases comparaveis, evitando
que atributos em maior escala dominem o processo de classificacdo. A validacdo cruzada, por sua
vez, confere robustez as estimativas de desempenho, reduzindo vieses decorrentes de particoes
especificas dos dados.

Complementarmente, a aplicacdao de fundamentos estatisticos, como médias, des-
vios padrao e testes nao paramétricos, como Wilcoxon, possibilita avaliar de forma critica as
diferencas de desempenho entre algoritmos, a0 mesmo tempo em que a consideragdo dos erros
tipo I e II garante interpretacdo mais cautelosa dos resultados. Em paralelo, instrumentos de
medicdo aplicados em pesquisas empiricas, como escalas Likert e o Alfa de Cronbach, permitem
avaliar a consisténcia interna e a confiabilidade das percepg¢des coletadas junto a desenvolvedores,

integrando assim dimensdes subjetivas ao processo de andlise.

2.6 Ferramentas e Usabilidade em Pesquisas Académicas

A evolucao de ferramentas de apoio a Engenharia de Software tem desempenhado
papel fundamental na andlise e detec¢io de code smells, bem como na avaliagdo de qualidade
de cédigo em ambientes académicos e industriais. Solu¢des como PMD, Checkstyle, iPlasma
e JCodeOdor se destacam por automatizar a coleta de métricas e identificacdo de padrdes
problematicos (LIGGESMEYER; TRAPP, 2009; FONTANA et al., 2016). No entanto, tais
ferramentas apresentam limitacdes quanto a interpretabilidade dos resultados e a replicabilidade
de experimentos, o que impacta diretamente sua ado¢iio em pesquisas empiricas (MANTYLA;
LASSENIUS, 2006; SAHIN et al., 2014). No contexto académico, a disponibilidade de ferramen-
tas que conciliem anélise técnica com coleta estruturada de percepc¢oes € especialmente relevante.
Estudos empiricos em Engenharia de Software demandam nao apenas métricas quantitativas,
mas também instrumentos que capturem dimensdes subjetivas, como legibilidade e clareza,
sob a otica de desenvolvedores (BINKLEY er al., 2013; POSNETT et al., 2011). Diversos
autores ressaltam que a confiabilidade dos resultados depende de procedimentos sistemdticos e
do suporte de ferramentas capazes de reduzir vieses e assegurar a rastreabilidade das evidéncias
(WOHLIN et al., 2012; RUNESON et al., 2012; FALESSI et al., 2018).

A usabilidade dessas ferramentas € um aspecto critico. Segundo Nielsen (1994), a
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usabilidade pode ser avaliada por meio de heuristicas que incluem facilidade de aprendizagem,
eficiéncia, memorabilidade, redugao de erros e satisfacdo do usudrio. Esses critérios tornaram-se
referéncia no campo de Interagdo Humano-Computador (IHC) e t€m sido aplicados também a
avaliacdo de sistemas de apoio a pesquisa (SAURO; LEWIS, 2016). Em pesquisas empiricas,
a adogdo de ferramentas com baixa usabilidade pode introduzir vieses significativos, como
aumento da carga cognitiva dos participantes ou dificuldades na execugdo de tarefas propostas.
Evidéncias nesse sentido foram relatadas por Méntyld (2005), ao demonstrar que mesmo em
avaliacdes de code smells héa baixa concordancia entre avaliadores humanos, indicando que
o uso de métricas ou ferramentas pouco intuitivas pode comprometer a confiabilidade dos
resultados. De forma complementar, Fakhoury ef al. (2018) mostraram que 1éxicos de c6digo
pobres e problemas de legibilidade elevam a carga cognitiva dos desenvolvedores, sugerindo que
ferramentas com baixa usabilidade podem potencializar esses efeitos, interferindo na validade
interna de experimentos empiricos.

Outro elemento importante € a integracao de métodos de coleta de dados qualitati-
vos e quantitativos. Questiondrios baseados em escalas Likert, por exemplo, sdo amplamente
utilizados para medir percep¢des subjetivas de forma padronizada (JOSHI et al., 2015), en-
quanto técnicas de andlise de contetido (BARDIN, 2016) permitem examinar respostas abertas e
identificar categorias emergentes. Uma ferramenta bem projetada deve incorporar tais mecanis-
mos, de forma a apoiar ndo apenas a execuc¢ao técnica de experimentos, mas também a andlise
metodoldgica robusta de seus resultados.

Nesse cendrio, iniciativas recentes, como a TwinCode (Capitulo 4), buscam preencher
essa lacuna ao aliar funcionalidades de comparacao de c6digo com instrumentos integrados de
coleta de dados, alinhando-se as demandas metodologicas da Engenharia de Software empirica.
Portanto, a discussdo sobre ferramentas e usabilidade em pesquisas académicas ndo se restringe
a aspectos técnicos, mas se estende a viabilidade de experimentos replicdveis, a confiabilidade

das percepcoes coletadas e ao fortalecimento do rigor cientifico.

2.7 Percep¢iao Humana de Qualidade de Cddigo

A avaliagdo da qualidade de software ndo pode ser reduzida apenas a indicadores
objetivos, visto que a percep¢do humana desempenha papel central na interpretacio e julgamento
de atributos de codigo. Desenvolvedores, revisores e pesquisadores frequentemente avaliam

trechos de software ndo apenas com base em métricas estruturais, mas também a partir de
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fatores cognitivos, como clareza, familiaridade e consisténcia estilistica (POSNETT et al., 2011;
BINKLEY et al., 2013).

Estudos empiricos tém mostrado que a percep¢do de qualidade de cédigo € influenci-
ada por multiplos elementos. Buse e Weimer (2009), por exemplo, evidenciaram que atributos
como legibilidade e nomenclatura t€ém impacto direto na avaliagc@o subjetiva dos desenvolvedores,
muitas vezes mais do que métricas tradicionais como acoplamento ou complexidade. Nesse
sentido, fatores como o tempo necessdrio para compreender um trecho, o esfor¢o cognitivo
associado e a facilidade de navegacdo na estrutura do c6digo tornam-se determinantes para a
percepcao de qualidade. Posnett et al. (2011) destacam que a legibilidade é fortemente associada
a compreensibilidade do c6digo, mas ndo € totalmente capturada por métricas objetivas. Binkley
et al. (2013), em um estudo com 120 participantes, concluiram que mudancas em elementos
aparentemente superficiais, como estilo de indentac@o e nomes de varidveis, impactam signifi-
cativamente a percepc¢do dos desenvolvedores sobre a clareza e simplicidade do cédigo. Isso
demonstra que medidas estritamente quantitativas ndo sdo suficientes para explicar a experiéncia
humana de interacdo com software.

No ambito da Engenharia de Software empirica, a andlise da percep¢do humana é
frequentemente realizada por meio de experimentos controlados, entrevistas e questionarios
estruturados, que capturam tanto respostas quantitativas quanto qualitativas (via andlise de
conteido). Santos e Gerosa (2018) enfatizam que tais abordagens sdo fundamentais para
compreender como desenvolvedores interpretam atributos como modularidade, manutenibilidade
e legibilidade, uma vez que o julgamento humano € inevitdvel em processos como revisao de
codigo e avaliacdo de solugdes alternativas de design. Outro aspecto importante refere-se as
diferencas entre niveis de experiéncia. Pesquisadores como Begel e Simon (2008) mostraram
que programadores juniores tendem a valorizar mais a clareza superficial e a consisténcia
visual, enquanto desenvolvedores séniores concentram-se em dimensdes mais abstratas, como
modularidade e custo de manutencao. Essa heterogeneidade sugere que a percepcao de qualidade
ndo € homogénea, mas mediada por fatores de experiéncia, contexto de uso e objetivos de

desenvolvimento.

2.8 Modelos de Linguagem de Grande Porte (LLMs)

LLMs representam um avanco recente no campo do Processamento de Linguagem

Natural (PLN), sendo baseados em arquiteturas de deep learning, em particular nos transformers
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propostos por Vaswani et al. (2017). Esses modelos sdo treinados em grandes volumes de texto,
utilizando mecanismos de atenc@o para capturar relacdes contextuais de longo alcance entre
tokens, o que lhes permite gerar, completar e reescrever trechos de linguagem natural e de
programacdo com alta fluidez e coeréncia (BROWN et al., 2020).

Na 4rea da Engenharia de Software, pesquisas recentes t€m explorado o uso de LLMs
para apoiar diretamente o processo de refatoracdo de codigo. Modelos como Codex (CHEN et
al., 2021), Code LLaMA (ROZIERE et al., 2023) e GPT-4 (ACHIAM et al., 2023) demonstraram
capacidade de propor modificacdes estruturais em classes e métodos, frequentemente alinhadas a
praticas descritas em catdlogos classicos de refatoracdo (FOWLER, 1999). White et al. (2023)
mostram que os LLMs conseguem sugerir transformagdes como Extract Method e Move Method
preservando a semantica do programa, enquanto Chen et al. (2025) apontam sua eficicia na
remocgao de determinados code smells.

Entre as principais vantagens do uso de LLMs nesse dominio estdo: (i) a capacidade
de lidar com multiplos contextos de programacao, inclusive linguagens diferentes; (ii) a possibi-
lidade de gerar explicacdes textuais que auxiliam na compreensao das refatoragdes propostas;
(iii) a integracdo natural com fluxos de trabalho de desenvolvimento, como revisdes de codigo
em sistemas de controle de versdo. Por outro lado, limitacdes relevantes ainda precisam ser
enfrentadas: estudos indicam que os modelos tém propensdo a gerar code smells (VELASCO et
al., 2025) e enfrentam desafios em compreensao semantica dindmica e riscos de alucinacao, o
que compromete a interpretabilidade das saidas (MA et al., 2023).

Do ponto de vista metodolégico, os LLMs oferecem uma oportunidade tnica de
combinar a objetividade de algoritmos de aprendizado com a subjetividade da avaliacdo humana.
Ao propor refatoragdes, os modelos tornam-se passiveis de avaliacdo empirica por desenvol-
vedores, permitindo investigar ndo apenas sua eficdcia técnica, mas também sua aceitacao e
adequacao no contexto do trabalho real de programacao.

Assim, os LLMs configuram-se como elemento promissor na investigacdo aqui
proposta, funcionando como ponte entre a detec¢do automatizada de code smells, tradicional-
mente apoiada em métricas e aprendizado de médquina, e a refatoracao de c6digo mediada por
julgamentos humanos. Essa intersec¢ao reforca o cardter interdisciplinar da pesquisa, ao integrar

fundamentos de Engenharia de Software, PLN e IHC.
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3 DETECCAO DE CODE SMELL COM APRENDIZADO DE MAQUINA

Este capitulo compartilha material com uma publicacdo: “Estudo Empirico: Detec-

cdo de Code Smells com Aprendizado de Mdquinas" (MOREIRA et al., 2024)

Code smell € uma caracteristica estrutural do software que indica um aspecto no
c6digo ou no design que pode causar problemas na manutencdo do software. Code smell nao
€ um erro no sistema, pois nao impede o funcionamento do programa, mas pode aumentar o
risco de falha do software ou desacelerar o desempenho. Notavelmente, a predi¢do precoce do
code smell durante a fase de desenvolvimento € muito importante, especialmente em projetos
grandes (ABDOU; DARWISH, 2024). O processo de refatoracio € fundamental para eliminar
code smells e melhorar a qualidade do software. Fowler (2018) apresenta uma defini¢do de
22 tipos de code smells no cédigo-fonte e oferecem algumas operagdes de refatoracdo para
corrigi-los.

O impacto dos code smells no software foram examinados por varios estudos e
revelaram seu efeito indesejdvel na qualidade do software (YAMASHITA; MOONEN, 2012;
YAMASHITA; MOONEN, 2013; SAHIN et al., 2014). Outros autores também investigaram os
resultados da remocao dos code smells na redugdo da probabilidade de falhas e erros no sistema
de software. Hilmi et al. (2023) analisaram os desafios decorrentes dos code smells, os quais t€m
efeitos adversos no processo de desenvolvimento de software. Ouni et al. (2016) e Fowler (2018)
recomendaram a aplicacdo de refatoracao no software para eliminar code smells. Dewangan et
al. (2021) mostraram evidéncias do papel fundamental das métricas na deteccio de code smells.
Além disso, eles identificaram que as métricas ajudam na compreensio do cédigo-fonte medindo
tanto aspectos funcionais quanto nao funcionais do software.

Travassos et al. (1999) e Ciupke (1999) investigaram a detec¢dao de Code Smell por
meio de deteccdo manual. Moha et al. (2009) e Tsantalis e Chatzigeorgiou (2009) introduziram
abordagens baseados em métricas. Yamashita e Moonen (2013) e Tarwani e Chug (2016) avaliam
problemas de manutenibilidade causado por code smells. Fontana et al. (2016) e Dewangan
et al. (2021) abordaram a deteccdo por aprendizado de maquina. Ferramentas de apoio ao

desenvolvimento, como SonarQube! e PMD?, ji incorporam mecanismos de identificacdo de

Disponivel em: <https://www.sonarsource.com/products/sonarqube/> Acesso em: 3 fev. 2024

2 Disponivel em: <https://pmd.github.io/> Acesso em: 4 fev. 2024
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code smells durante o processo de construcdo do software, ainda que baseados majoritariamente
em regras estdticas e métricas pré-definidas. Entretanto, observa-se que a maioria dos estudos
sobre aprendizado de maquina na detec¢do de code smells ocorre em ambientes experimentais
isolados, sem integragdo direta com o fluxo continuo de desenvolvimento e manutencio. Essa
lacuna evidencia a necessidade de investigar como técnicas de IA podem ser incorporadas de
forma prética e sistemaética ao ciclo de vida do software. Nesse sentido, a detec¢do automatizada
de code smells por meio de ML pode representar uma alternativa viavel para ampliar o suporte
ao desenvolvedor em todas as etapas do ciclo de vida do software.

O objetivo deste capitulo € investigar a eficicia dos algoritmos de aprendizado de
madquina na detec¢do de code smells. Além disso, foi analisado se a técnica de validacdo cruzada
contribui para melhorar os resultados e reduzir as ameacas a validade deste estudo. Para isso,
adota-se um conjunto de dados com quatro tipos de code smells: God Class, Data Class, Feature
Envy e Long Method. Cinco algoritmos de aprendizado de maquina (MLP, Arvore de Decisio,
Floresta Aleatdria, Gradiente Boost e SVM) sdo aplicados nos conjuntos de dados. Como
resultado, o algoritmo de Floresta Aleatéria (97,0%) obteve o melhor desempenho médio, em
termos de acurdcia, comparado com MLP (94,3%), Arvore de Decisdo (93,9%), Gradiente Boost
(96,6%) e SVM (91,8%).

Este trabalho possui 5 contribui¢des principais, sendo elas:

* Avaliacao Sistematica Multi-smell e Multi-algoritmo. O estudo utiliza um benchmark
de cinco classificadores supervisionados (MLP, Arvore de Decisao, Floresta Aleatoria,
Gradient Boosting e SVM) aplicados aos code smells Data Class, God Class, Feature Envy
e Long Method, com justificativa técnica para a selecdo e descri¢do do processo tipico de
aplicacao de ML a deteccao de code smells.

* Base de Dados Curada e Mensuraciao Ampla.: Uso do Qualitas Corpus de Tempero
et al. (2010) (74 sistemas, 51.826 classes, 404.316 métodos) e de multiplos detectores
(iPlasma, PMD, Fluid Tool, Anti-Pattern Scanner), cobrindo seis dimensdes de métricas
(tamanho, complexidade, coesdo, acoplamento, encapsulamento e heranca).

* Desempenho Elevado e Baselines Fortes. Acuracia variando de 89,7% a 99,2% entre
code smells e algoritmos, com picos de 96,8 % para Data Class, 93,7% para God Class,
98,4% para Feature Envy e 99,2% para Long Method.

* Robustez Frente a Validacao Cruzada. Teste de Wilcoxon (pares Sem vs. Com validacédo

cruzada, n = 5 algoritmos) nao indicou diferencgas significativas nas acurdcias (todos p >
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0,05; Feature Envy com tendéncia, p = 0,063), corroborando estabilidade dos resultados.

* Sintese Comparativa da Literatura. Confirmagao de que nao ha modelo universalmente

6timo e de que algoritmos de drvore e ensembles (como Floresta Aleatéria e Gradient
Boosting) tendem a maior acuricia/robustez para deteccao de code smells.

O restante deste capitulo estd organizado da seguinte forma. Na Sec¢ao 3.1, € descrito

a metodologia usada para o desenvolvimento deste trabalho. Na Secdo 3.2, apresenta-se os

resultados e analise dos dados. Na Secdo 3.3, descreve-se trabalhos relacionados. Na Secdo 3.4,

¢ discutido as ameacas a validade da pesquisa. Finalmente, na Se¢do 3.5, é dada as conclusdes o

estudo.

3.1 Metodologia

O objetivo principal deste estudo € avaliar o desempenho de técnicas de aprendizado
de miquina para a detec¢do de code smells. Como objetivo especifico, busca-se avaliar o impacto
da validacao cruzada na precisdo dos algoritmos utilizados. Para alcancar tais objetivos, sao

exploradas as duas questdes de pesquisa descritas a seguir.

 QP1. Qual a eficdcia de cinco técnicas de machine learning (MLP, Arvore de Decisio,

Floresta Aleatoria, Gradiente Boost e SVM) para deteccdo de code smells?

* QP2. Qual o impacto da validagcdo cruzada no conjunto de dados utilizado?

A Figura 2 apresenta as etapas seguidas neste trabalho. Inicialmente, o conjunto
de dados é coletado, seguido pelas etapas de pré-processamento e normalizacdo. Esse pré-
processamento € necessario para minimizar diferencas nas faixas dos conjuntos de dados e
possibilitar a obtencdo de melhores parametros pelos algoritmos. Em seguida, os dados sdo
divididos em trés grupos/conjuntos: treinamento, validacdo cruzada e teste. Apds essa divisao, o
desempenho dos algoritmos de aprendizado de maquina € calculado no conjunto de treinamento.
Na sequéncia, aplica-se a técnica de validag¢do cruzada em 10 partes, a fim de avaliar e comparar
o desempenho de cada experimento durante o processo de treinamento. Por fim, realiza-se a
avaliacdo final com o conjunto de testes. A seguir, sdo detalhados o processo de coleta de dados

e a avaliacdo de desempenho.
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Figura 2 — Fluxo de trabalho proposto.
Fonte: Elaborado pelo autor (2024)

3.1.1 Conjunto de Dados

O conjunto de dados usado foi obtido por Abdou e Darwish (2024) que se basearam
no trabalho de Fontana et al. (2016). Este conjunto de dados é compostos por 74 sistemas
desenvolvidos em Java de diferentes tamanhos e dominios, chamado de Qualitas Corpus (QC).
Esses sistemas possuem um conjunto de métricas orientadas a objetos coletadas abrangendo os
niveis de método, classe, pacote e projeto (TEMPERO et al., 2010). Algumas dessas métricas
foram definidas conforme o aspecto da qualidade de software, como complexidade, tamanho e
acoplamento. Outras métricas dependem da contagem da composi¢do em pacotes ou classes. Os
code smells foram definidos no nivel de método ou classe. No nivel de método, foi escolhido
para detectar Feature Envy e Long Method, enquanto no nivel de classe, detectamos Data Class
e God Class. Os autores do conjunto de dados escolheram estes quatro code smells devido sua
alta incidéncia e pelo impacto negativo na qualidade dos sistemas.

A Tabela 1 apresenta o tamanho geral dos sistemas selecionados por Fontana et al.
(2016). Na pesquisa de Abdou e Darwish (2024) foram utilizados apenas os dados correspon-
dentes aos code smells God Class, Data Class, Feature Envy e Long Method, que sdo o foco
dos experimentos descritos deste estudo. Como destacado por Fontana ef al. (2016) e Abdou e
Darwish (2024), o uso de multiplos sistemas heterogéneos é fundamental para assegurar que

os resultados de aprendizado de mdquina ndo dependam de um conjunto de dados especifico e
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possam ser generalizados.

Tabela 1 — Visdo geral dos sistemas do
Qualitas Corpus

Caracteristica Quantidade
Numero de Sistemas 74
Niimero de Pacotes 3.420
Numero de Classes 51.826
Numero de Métodos 404.316

Numero de Linhas de Cédigo 6.785.568

Fonte: Fontana et al. (2016)

A Tabela 2 apresenta as ferramentas utilizadas para identificar os code smells investi-
gados. A iPlasma foi empregada na detec¢ao de todos os smells, enquanto a PMD contribuiu
especificamente para Long Method e God Class, a Fluid Tool para Data Class e Feature Envy, €
o Anti-Pattern Scanner exclusivamente para Data Class. A selecio dessas ferramentas conside-
rou trés critérios: (i) gratuidade, (ii) facilidade de configuracdo e generalizagcdo dos resultados e
(111) diversidade nas regras de deteccdo. As métricas utilizadas por elas abrangem seis dimensdes
de qualidade de software: tamanho, complexidade, coesdo, acoplamento, encapsulamento e
heranca. As descri¢cdes detalhadas podem ser consultadas em material complementar .

4 ¢ uma plataforma de andlise estética que fornece métricas

A ferramenta iPlasma
de codigo orientadas a objetos e permite identificar potenciais smells com base em limiares
pré-definidos. O PMD? é uma ferramenta de c6digo aberto que analisa cédigo-fonte em diversas
linguagens, identificando problemas recorrentes como varidveis nao utilizadas, métodos longos
ou complexos e estruturas de controle aninhadas. A Fluid Tool foi desenvolvida no contexto da
abordagem DECOR e utiliza regras declarativas para especificar e detectar code smells (MOHA
et al., 2009). Por fim, o Anti-Pattern Scanner foi projetado para identificar anti-padrdes de
projeto que frequentemente se manifestam como code smells, combinando métricas de cédigo e
heuristicas especificas (TSANTALIS; CHATZIGEORGIOU, 2009).

A Tabela 3 apresenta a divisdo do conjunto de dados apds a andlise das ferramentas
e a andlise manual descrita em Fontana et al. (2016). A classificacdo foi realizada em dois

grupos, de forma semelhante a trabalho anterior (ABDOU; DARWISH, 2024). O primeiro

grupo corresponde aos artefatos sem presenca de code smells, denominados falsos positives. O

3 Disponivel em: <https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/>

4 Disponivel em: <http://loose.upt.ro/research/tools/iplasma>. Acesso em: 15 set. 2025
3> Disponivel em: <https://pmd.github.io/>. Acesso em: 15 set. 2025
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Tabela 2 — Detectores de code smells

Code Smell  Ferramenta/ Regra de Detecgao

Long method iPlasma, PMD
Data class iPlasma, Fluid Tool, Anti-Pattern Scanner
God class iPlasma, PMD

Feature Envy  iPlasma, Fluid Tool

Fonte: Fontana et al. (2016)

segundo grupo reune os artefatos classificados como verdadeiros positivos, indicando que a

andlise dos autores apontou a presenca de code smells.

Tabela 3 — Composi¢do do conjunto de dados

Code Smell Falsos Positivos Verdadeiros Positivos Total

Long method 280 140 420
Data class 151 269 420
God class 154 266 420
Feature Envy 280 140 420

Fonte: Elaborado pelo autor

3.1.2 Avaliagdo de Desempenho

Para medir o desempenho dos algoritmos de aprendizado de maquina considera-se
quatro métricas: Precisao, Sensibilidade, F1-score e Acuracia. O célculo das quatro métricas
investigadas baseia-se nos valores de verdadeiro positivo (TP), verdadeiro negativo (TN), falso
positivo (FP) e falso negativo (FN) que s@o definidos a seguir.

* Verdadeiro Positivo (TP): casos em que o algoritmo identificou corretamente a presencga
de um code smell.

* Falso Positivo (FP): casos em que o algoritmo classificou incorretamente um trecho como
contendo code smell, quando na realidade ndo continha.

* Verdadeiro Negativo (TN): casos em que o algoritmo identificou corretamente a auséncia
de code smell.

* Falso Negativo (FN): casos em que o algoritmo deixou de identificar um code smell
existente, classificando-o como inexistente.

Esses parametros sdo calculados usando uma matriz de confusdo que contém as
informacdes reais e previstas reconhecidas pelos classificadores de deteccao de padrdes de projeto
(CATAL, 2012). As equacgdes para o calculo das avaliacoes de desempenho sdo mostradas a

seguir.
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* Precisao € a proporcao de casos em que o modelo acertou ao prever uma classe positiva,
em relacdo a todas as vezes que ele previu essa classe — incluindo os acertos e os erros.

Essa descri¢do € representada na Equacao 3.1.

. TP
Precisdo = ——— (3.1
TP+FP

* Acuriacia € a razdo entre o nimero total de previsdes corretas (verdadeiros positivos e
verdadeiros negativos) e o nimero total de previsdes realizadas (incluindo verdadeiros
positivos, falsos positivos, verdadeiros negativos e falsos negativos). Essa descricdo é

representada na Equacdo 3.2.

TP+TN
Accurdcia = + (3.2)
TP+FP+TN+FN

* Sensibilidade ou revocacao ¢ a proporcao de casos positivos que o modelo identificou
corretamente em relacdo ao total de casos que realmente sao positivos, como exposto na

Equacao 3.3.

TP
Sensibilidade = ———— (3.3)
TP+ FN

* F1-Score ¢ a média harmonica entre a Precisdo e a Sensibilidade, como visto na Equacdo
3.4. Hossin e Sulaiman (2015) fala que F1-score busca equilibrio entre essas precisao e
sensibilidade, especialmente ttil quando hd uma distribui¢do desigual entre classes. Por
exemplo, quando o nimeros de classes sem code smells ¢ muito maior que o nimero de

classes sem nenhum code smell).

Precisao x Sensibilidade
FI1-S =2 3.4
core % Precisao + Sensibilidade 3-4)
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A acuracia foi adotada como métrica principal por sintetizar, em um tnico valor, a
proporcao de acertos do classificador, sendo intuitiva e amplamente utilizada em problemas de
classificacdo supervisionada (FOODY, 2023). Embora métricas como Precisao, Sensibilidade
e Fl-score oferecam informagdes complementares, a acuricia se destaca por sua simplicidade
interpretativa e por refletir de forma direta a capacidade dos algoritmos em distinguir corretamente

trechos com e sem code smells (GOPALAKRISHNA et al., 2013).

3.2 Resultados

Nesta secdo, os resultados obtidos sdo descritos a partir da aplicagdo dos algoritmos
de aprendizado de maquina ao conjunto de dados. A apresentacdo estd organizada em duas
subsecdes principais: a subsecdo 3.2.1 analisa a eficacia dos algoritmos considerando a acuricia
em diferentes tipos de code smells, destacando aqueles que alcangaram melhor desempenho e
discutindo suas variagdes. A subsecdo 3.2.2 avalia o impacto da técnica de validacdo cruzada nos
experimentos, comparando os resultados com o procedimento tradicional de particao simples e

discutindo suas implicacdes metodoldgicas.
3.2.1 QPI - Eficdcia dos Algoritmos

Como mencionado anteriormente, utilizou-se cinco algoritmos de aprendizado de
méaquina para deteccdo de quatro code smells em projetos de software. Os quatro tipos de
code smells possuem dois niveis de granularidade: classes e métodos. A Tabela 4 compara
os resultados das métricas com todos os code smells, sem validagdo cruzada, usando a técnica
holdout dividindo o conjunto de dados em 70% para treino e 30% para teste e também foi usado
para validacdo, pois esses dados ndo foram usados no treinamento dos algoritmos. Como pode-se
observar os algoritmos obtiveram bom desempenho. Com resultados da acuricia variando entre
89,7% para os algoritmo Arvore de Decisio e SVM nos code smells Data class e God Class,
respectivamente e 99,2% para os algoritmos Arvore de Decisdo, Floresta Aleatéria e Gradiente
Boost para o code smell Long Method.

Analisando os dados gerado pelo algoritmo MLP, pode ser visto que seu melhor
desempenho em termos de acurdcia € para o code smell Long Method (96,0%), porém o mesmo
ainda se mostra muito eficiente na deteccao dos demais code smells com valor minimo de

acuracia de 92,9% para God Class, os demais smells alcancaram valores de 93,7% (Data Class)
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Tabela 4 — Comparacao das métricas

Code Smell  Algoritmo Precisdo  Sensibilidade FI1-Score Acuricia
MLP 93,1% 93,7% 93,4% 93,7%

Arvore de Decisio  88,9% 90,0% 89,3% 89,7%

Data Class Floresta Aleatdria 96,7% 96,7 % 96,7 % 96,8 %
Gradiente Boost 97,0 % 96,3% 96,6% 96,8 %

SVM 91,3% 91,2% 91,3% 92.,3%

MLP 92,9 % 91,7% 92,3% 92,9%

Arvore de Decisdo 88,9% 89,2% 89,0% 89,7%

God Class Floresta Aleatéria 84,1% 92,4 % 93,1% 93,7 %
Gradiente Boost 92,9 % 91,7% 92,3% 92,9%

SVM 91,1% 87,0% 88.,5% 89,7%

MLP 93,2% 93,8% 93,5% 94,4%

Arvore de Decisdo 95,7% 96,6% 96,3% 96,8%

Feature Envy  Floresta Aleatéria 98,1% 98,1% 98,1% 98,4 %
Gradiente Boost 97,5% 96,8% 97.2% 97,6%

SVM 91,2% 89,8% 89,2% 91,3%

MLP 95,2% 95,8% 95,5% 96,0%

Arvore de Decisdo 99,4 % 98,8% 99,1% 99,2 %

Long Method  Floresta Aleatéria 98,8% 99.4% 99,1% 99,2 %
Gradiente Boost 99,4 % 98,8% 99,1% 99,2 %

SVM 92,8% 92,8% 92,8% 93,7%

Fonte: Elaborado pelo autor (2024)

e 94,4% (Feature Envy). Para o algoritmo Arvore de Decisdo, o seu melhor resultado em termos
de acuricia foi para o code smell Long Method (99,2%). No entanto, este algoritmo teve o
pior desempenho entre os algoritmos analisados para os code smells Data Class (89,7%) e God
Class (89,7%), Feature Envy (96,8%). O SVM se mostrou promissor, com acuracia de 93,7%
para Long Method, 92,3% para Data Class, 89,7% para God Class e 91,3% para Feature Envy.
Os resultados de acuricia para Floresta Aleatdria sdo os mais promissores, pois obteve melhor
acurdcia para os quatro code smells, sendo 96,8% para Data Class, 93,7% para God Class, 98,4%
para Feature Envy € 99.2% para Long Method. Ja o Gradiente Boost ficou logo atras da Floresta
Aleatdria com acurdcia igual nos code smells Data Class (96,8%) e Long Method (99,2%), mas

um pouco menos eficiente para God Class (92,9%) e Feature Envy (97,6%).

Resumo da resposta da QP1. A acuricia, variou de 89,7% a 99,2%. O algoritmo Arvore
de Decisdo obteve melhor acurdcia para todos os code smells, sendo 93,7% para God

Class, 96,8% para Data Class, 98,4% para Feature Envy e 99,2% para Long Method.
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3.2.2 QP2 - Eficdcia dos Algoritmos com Validagdo Cruzada

A Tabela 5 apresenta os dados referentes ao desempenho da acurécia dos algoritmos
empregando a técnica de validacio cruzada de 10 partes. E mostrado, com excecio do algoritmo
SVM para Feature Envy (88,5%), que todos os algoritmos alcangaram acurécia superior a 90%
para todos os code smells, onde € destacado o desempenho do algoritmo Floresta Aleatéria
obteve 94,2% para o code smell Data class, 96,3% para God Class, para Feature Envy 94,5% e
99,0% para Long Method.

Tabela 5 — Desempenho dos algoritmos com validacao cruzada em 10

partes (Acurécia)
Data Class God Class  Featury Envy  Long Method

MLP 91,9% 91,6% 90,5% 98.,3%
Arvore de Decisdo 90,8% 91,2% 93,6% 98,6%
Floresta Aleatdria 94,2 % 96,3 % 94,5 % 99,0 %

Gradiente Boost 93,2% 94,6% 93,9% 98,6%

SVM 91,2% 91,2% 88,5% 97,3%

Fonte: Elaborado pelo autor (2024)

A Tabela 6 apresenta uma comparagao dos resultados em termos de acuricia sem
validagao cruzada (resultados apresentados na Tabela 4) e com validagdo cruzada (resultados
apresentados na Tabela 5). Essa comparacdo é apenas para efeito didatico, ja que a finalidade
da validacao cruzada é a mitigacao de possiveis falhas no processo de treinamento da técnica
holdout. Analisando a acurécia de Data Class, apenas Arvore de Decisdo obteve melhores
resultados utilizando validagdo cruzada (89,7% versus 90,8%). No caso de God Class apenas
o algoritmo MLP ndo obteve melhora da acurécia (92,9% e 91,6%). Os demais algoritmos
obtiveram melhora de pelo menos 1,5%. Por exemplo, SVM melhorou de 89,7% para 91,2%. No
caso de Feature Envy nenhum algoritmo obteve melhora com a validagdo cruzada. A acuricia
caiu pelo menos 2,8% e chegando a 3,9% no caso de MLP (94,4% para 90,5) e Floresta Aleatéria
(97,6% para 93,9%). No caso de Long Method, a acurdcia melhorou apenas para dois algoritmos:
MLP de 96,0% para 98,3% ¢ SVM de 93,7% para 97,3%. Os demais algoritmos que haviam
performado melhor em toda a andlise tiveram sua acurdcia reduzida de 99,2% para 98,6% nos
casos de Arvore de Decisdo e Gradiente Boost e de 99,2% para 99,0% no caso de Floresta
Aleatéria.

Para avaliar se a aplicacdo de validacdo cruzada impactou significativamente a

acurécia dos algoritmos, foi realizada uma comparacao estatistica entre os cendarios Sem e
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Tabela 6 — Comparagao dos algoritmos com validacdo cruzada e sem
validacdo cruzada em termos de acurdcia

Data Class God Class  Feature Envy  Long Method
Sem Com Sem Com Sem Com Sem Com

Algoritmo

MLP 937 919 929 91,6 944 90,5 960 98,3
Arvore de Decisio 89,7 90,8 89,7 912 968 936 992 986
Floresta Aleatéria 96,8 942 937 96,3 984 945 992 990
Gradiente Boost 96,8 932 929 94,6 97,6 939 992 986
SVM 923 912 897 91,2 91,3 885 937 97,3

Fonte: Elaborado pelo autor (2024)

Com validacdo cruzada. Como os dados sao pareados (o mesmo algoritmo avaliado sob duas
condig¢des distintas), foi utilizado o teste de Wilcoxon para postos sinalizados (WILCOXON,
1945). Esse teste ndo paramétrico foi escolhido por trés motivos principais: (i) o nimero de pares
€ reduzido (n = 5 algoritmos), o que compromete a robustez de testes paramétricos como o teste
t pareado; (i1) ndo € possivel assumir normalidade para as diferencas entre as condi¢des; (iii) 0
teste de Wilcoxon é robusto para comparar distribui¢des dependentes, focando nas diferencas
de medianas. A Tabela 7 apresenta os resultados do teste de Wilcoxon para cada code smell
investigado. Observa-se que, em todos os casos, os valores de p sdo superiores a 0,05, indicando
auséncia de diferencas estatisticamente significativas entre as acuriacias Com e Sem validagao
cruzada. O resultado mais préximo de significincia ocorreu em Feature Envy (p = 0,063),

sugerindo uma tendéncia, mas ainda sem evidéncia suficiente ao nivel de 5%.

Tabela 7 — Resultados do teste de Wilcoxon comparando
acurécia Sem vs. Com validagdo cruzada.

Métrica Estatistica (W) Valor-p
Data Class 1,5 0,188
God Class 1,0 0,125
Feature Envy 0,0 0,063
Long Method 6,0 0,813

Fonte: Elaborado pelo autor (2024)

Na Figura 3 apresentamos a diferenca de acurdcia (Sem - Com) para cada algoritmo,
em cada code smell. Valores positivos indicam maior desempenho Sem validacdo cruzada,
enquanto valores negativos indicam maior desempenho Com. Nota-se que as variagdes sao
pequenas e inconsistentes entre os algoritmos, refor¢ando os achados estatisticos de auséncia de

efeito sistematico.
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Figura 3 — Diferenca de acuricia (Sem - Com) por algoritmo em cada métrica. Escala de cinza.
Fonte: Elaborado pelo autor (2024)

Resumo da resposta da QP2. Os resultados indicam que a validag¢do cruzada ndo alterou
significativamente a acurdcia média dos algoritmos avaliados. Embora pequenas diferencas
tenham sido observadas em alguns cendrios, a auséncia de significancia estatistica sugere
que tais variacdes podem ser atribuidas ao acaso, dada a amostra reduzida. A implicacdo
prética € que, para este conjunto de experimentos, a escolha entre utilizar ou nio validacdo

cruzada ndo levou a mudancas consistentes no desempenho observado.

3.3 Trabalhos Relacionados

Foram propostas diversas ferramentas para deteccao de code smells, abrangendo
tanto ferramentas comerciais quanto protétipos de pesquisa. Fontana e Zanoni (2017) falam
que essas ferramentas utilizam uma variedade de técnicas para identificar code smells: algumas
se baseiam em métricas (LANZA; MARINESCU, 2007; FONTANA et al., 2015), outras
empregam uma linguagem de especificacdo propria (MOHA et al., 2009), realizam anélise de
programas para encontrar oportunidades de refatoragdo (TSANTALIS; CHATZIGEORGIOU,
2009; TSANTALIS; CHATZIGEORGIOU, 2011), exploram a anélise de repositérios de software
(PALOMBA et al., 2015) ou ainda recorrem a técnicas de aprendizado de maquina. A seguir

descreve-se abordagens que empregam técnicas de aprendizado de mdquina.
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No estudo de Fontana et al. (2016), foram analisados quatro code smells — God
Class, Data Class, Feature Envy e Long Method — utilizando 74 sistemas do Qualitas Corpus e
16 classificadores de aprendizado de maquina. O referido trabalho reporta valores médios de
acurdcia distintos para cada smell: 74% para God Class, 77% para Data Class, 93% para Feature
Envy e 92% para Long Method. Em comparacao, a abordagem adotada nesta pesquisa obteve
resultados superiores, alcancando 98,5% para God Class, 93,8% para Data Class, 98,4% para
Feature Envy e 99,2% para Long Method.

Nucci et al. (2018) replicaram o estudo de Fontana et al. (2016) e questionaram a
validade dos altos indices de desempenho reportados, argumentando que estes derivavam do uso
de datasets artificialmente balanceados. Ao realizarem experimentos em cendrios mais realistas,
observaram uma redugdo significativa na acurdcia média dos classificadores, com valores de
aproximadamente 76% para God Class e Data Class, 92% para Feature Envy e 93% para Long
Method. Esses resultados contrastam com os obtidos nesta pesquisa, que alcangaram 98,5% para
God Class, 93,8% para Data Class, 98,4% para Feature Envy e 99,2% para Long Method. A
comparagdo evidencia que, embora os achados de Nucci et al. (2018) reforcem a necessidade de
maior rigor metodolégico na construcdo e valida¢do dos conjuntos de dados, os resultados aqui
apresentados mostram que € possivel obter desempenhos superiores na detec¢cdo de code smells.

Mhawish e Gupta (2020) propuseram um framework de predi¢dao de code smells ba-
seado em métricas de software e técnicas de aprendizado de maquina, utilizando e reformulando
os conjuntos de dados de Fontana et al. (2016) para criar versdes binary-label, multi-label e
reequilibradas. Foram avaliados seis algoritmos — SVM, MLP, Deep Learning, Decision Tree,
Random Forest e Gradient Boosted Trees — obtendo-se resultados expressivos, com acuricia
de até 99,7% para Data Class, 98,4% para God Class, 97,9% para Feature Envy e 95,9% para
Long Method. Além disso, os autores aplicaram técnicas de selec¢do de atributos baseadas em
algoritmo genético e otimizagdo de parametros via grid search, o que contribuiu para a melhoria
da performance. Em comparacdo, os resultados desta pesquisa também apresentaram elevados
indices de acurdcia — 93,8% para Data Class, 98,5% para God Class, 98,4% para Feature
Envy e 99,2% para Long Method —, diferenciando-se principalmente pela énfase na analise
metodolégica do impacto da validagdo cruzada sobre a robustez dos modelos.

Pushpalatha e Mrunalini (2021) propuseram uma abordagem de aprendizado de
maquina para detectar code smells e observaram as métricas que desempenham papéis criticos

no processo de detec¢do. Eles aplicaram algoritmo genético baseado em duas técnicas de selecao
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de recursos e técnica de otimizacdo de parametros baseada em uma pesquisa em grade. Eles
obtiveram valores de acurécia na previsao de Data Class, God Class e Long Method em 98,05%,
97,56% e 94,31%, respectivamente, usando o método GA_CFS.

Abdou e Darwish (2024) apresentam um estudo comparativo de técnicas de apren-
dizado de maquina para classificar a gravidade de code smells em sistemas de software. Os
pesquisadores propuseram um modelo baseado em métricas de software e aprendizado de
madquina para detectar esses problemas. Eles utilizaram diferentes abordagens, incluindo classifi-
ca¢do multinomial, ordinal e regressao, e avaliaram a precisdo na ordenagdo e classificacao da
gravidade dos code smells. Como resultados eles obtiveram acurécia de: 93,0% para Data Class,
92,0% para God Class, 97,0% para Feature Envy e 97,0% para Long Method.

Kaur e Kaur (2021) apresentaram a utilizacdo de técnicas de aprendizado de conjunto
(Ensemble Learning) em conjunto com técnicas de selecdo de caracteristicas por correlacao,
aplicadas sobre métricas extraidas pela ferramenta CKJM e code smells identificados pelo
JCodeOdor, considerando trés sistemas Java de codigo aberto: DrJava, EMMA e FindBugs.
Para a avaliacdo, foram empregados os classificadores Bagging e Random Forest, analisados
a partir de quatro medidas de desempenho: acurécia (P1), G-mean 1 (P2), G-mean 2 (P3) e
F-measure (P4). Os experimentos contemplaram os code smells Message Chains, Dispersed
Coupling, Shotgun Surgery, Brain Method, Data Class e God Class, cujo os resultados sdo
separados por classificador, considerando presenca ou auséncia de smell. Comparado como o
presente trabalho eles foram superiores obtendo 100% de acurdcia tanto para Data Class quanto
God Class. Ressalta-se, entretanto, que os datasets empregados por eles diferem dos utilizados
nesta pesquisa, pois os mesmos utilizaram apenas 3 sistemas, enquanto mo presente estudo foi
utilizado um dataset com 74 sistemas, como pode ser visto na Tabela 1.

A Tabela 8 apresenta uma sintese comparativa entre a acuracia obtida neste trabalho
e aquela reportada em estudos relacionados. Observa-se que os resultados variam de acordo
com o tipo de code smell, refletindo as particularidades dos conjuntos de dados e dos métodos
empregados em cada pesquisa. Para o Data Class, o melhor resultado foi obtido por Kaur e Kaur
(2021) com 100%, enquanto o presente trabalho alcangou 93,8%, permanecendo em um patamar
competitivo em relacao a outros estudos, como Abdou e Darwish (2024) (93,0%). No caso do
God Class, novamente Kaur e Kaur (2021) obteve a maior acurdcia (100%) seguido por Mhawish
e Gupta (2020) que alcancou (98,5%), sendo que o resultado obtido nesse trabalho (96,3%)

também se mostra expressivo e superior a grande parte da literatura, como os 92,0% reportados
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por Abdou e Darwish (2024) e 83,0% em Nucci et al. (2018). Em relacdo ao Feature Envy,
este trabalho apresentou a melhor acurécia entre os estudos comparados, alcangando 98,4%.
Esse valor supera o resultado mais proximo (98,0%) reportado por Mhawish e Gupta (2020),
com uma diferenca de 0,4 pontos percentuais. No Long Method, também atingiu o melhor
desempenho, com 99,2%, superando em 2,2 pontos percentuais o resultado de Abdou e Darwish

(2024) (97,0%) e em 3,2 pontos percentuais o de Mhawish e Gupta (2020) (96,0%).

Tabela 8 — Comparacgdo da acuricia de trabalhos relacionados com o presente

trabalho
Autor Conjunto de Dados

Data Class  God Class  Feature Envy Long Method
Fontana e Zanoni (2017) 77,0% 74,0% 93,0% 92.,0%
Nucci et al. (2018) 83,0% 83,0% 84,0% 82,0%
Mhawish e Gupta (2020) 99,7% 98,5% 97,9% 95,9%
Pushpalatha e Mrunalini (2021) 98,0% 97,6% - 94,3%
Abdou e Darwish (2024) 93,0% 92,0% 97,0% 97,0%

Kaur e Kaur (2021) 100% 100% - -
Presente trabalho 93,8% 96,3% 98,4 % 99,2 %

Fonte: Elaborado pelo autor (2025)

Esses achados indicam que o método proposto obteve desempenho particularmente
superior para os code smells de granularidade de método (Feature Envy e Long Method), alcan-
cando valores proximos a 100% e estabelecendo um avango em relacdo ao estado da arte. Cabe
ressaltar, entretanto, que a comparacao entre trabalhos distintos possui cardter descritivo, uma
vez que diferentes autores podem ter adotado conjuntos de dados, técnicas de pré-processamento
e protocolos experimentais distintos. Ainda assim, os resultados sugerem forte evidéncia de que
a abordagem proposta é competitiva e apresenta ganhos consistentes em cendrios relevantes para

a deteccdo automética de code smells.

3.4 Ameacas a Validade da Pesquisa

Nesta secdo € discutido as principais ameacas a validade do estudo e as medidas
adotadas para mitiga-las, organizadas em quatro dimensdes classicas (WOHLIN et al., 2012):
validade de construgdo, interna, externa e de conclusdo.

Validade de Construcao. Sao duas ameacas a construcio deste estudo. Métrica de
avaliacdo - a acuracia pode inflar desempenho em cenérios desbalanceados. Como forma de
mitigar essa ameaca reporta-se resultados estratificados por smell e compara-se com trabalhos

relacionados; andlises complementares (p. ex., precisdo, revocacgdo, F1 e AUC) sdo recomendadas
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para estudos futuros. Representacdo e extracdo de caracteristicas - a escolha de atributos
(métricas estdticas, métricas, etc.) influencia a capacidade de generalizacdo. Para mitigar
essa ameaca foi utilizado Qualitas Corpus (TEMPERO et al., 2010) um dataset conceituado e
utilizado em outros estudos (FONTANA; ZANONI, 2017; ABDOU; DARWISH, 2024; NUCCI
et al., 2018) e € mantido o mesmo conjunto de atributos entre condi¢des comparadas para isolar
o efeito dos tratamentos.

Validade Interna. A seguir sdo discutidas trés ameacas internas a validade do
estudo. Vazamento de informacdo (data leakage) — parti¢des de treino e teste com sobreposi¢ao
(por exemplo, arquivos/clones quase idénticos) podem inflar resultados. Para evitar esse risco,
foram adotados protocolos de separacdo por projeto/arquivo sempre que aplicdvel e o pipeline
de pré-processamento foi revisado a fim de impedir vazamentos. Configuracdo dos modelos
e aleatoriedade — hiperparametros, inicializa¢des aleatérias (p. ex., MLP) e variacdo de seeds
podem alterar o desempenho. A mitigacado foi realizada por meio da fixacdo de seeds repro-
dutiveis, documentagdo dos hiperpardmetros e aplicagdo do mesmo procedimento em todos os
algoritmos comparados. Comparagdo entre condigoes — a comparagao Sem vs. Com validacao
cruzada foi pareada por algoritmo, mas diferencas residuais de particdo podem permanecer. Para
reduzir essas diferencas, utilizou-se o teste ndo paramétrico pareado (Wilcoxon), apropriado para
n reduzido e sem suposi¢do de normalidade das diferencgas, conforme reportado na Sec¢do 3.2.2.

Validade Externa. Duas ameacas externas a validade do estudo sdo consideradas.
Generalizagdo para outros projetos e linguagens — os resultados refletem os 74 projetos analisa-
dos, oriundos de diversos dominios e desenvolvidos em Java. Projetos com estilos de codificagao,
linguagens de programacao, arquiteturas ou convengdes distintas podem apresentar padrdoes
diferentes de code smells. Para mitigar essa limitacao, foram selecionados multiplos projetos e
discutidos os limites de generalizacdo; recomenda-se que estudos futuros ampliem a diversidade
(p. ex., tamanho, dominio e linguagem de programacdo). Comparacdo com a literatura — a
comparacao descritiva com trabalhos relacionados € limitada por diferencas de conjuntos de
dados e protocolos. Em razao disso, foi explicitado o cardter descritivo dessas comparagdes e
sugerida a realizacdo de avaliagdes em benchmarks compartilhados, quando disponiveis.

Validade de Conclusao. Poder estatistico — o nimero de pares na comparacao Sem
vs. Com validagdo cruzada é pequeno (n=5 algoritmos), o que reduz o poder para detectar
efeitos sutis. Para fortalecer os achados, foi utilizado o teste de Wilcoxon para pares, valores-p

foram reportados e tendéncias proximas ao limiar de significancia foram destacadas; replicagdes
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com mais algoritmos/projetos sdo recomendadas para aumentar o poder estatistico. Miiltiplas
comparagoes — a avaliagdo de quatro smells pode inflar a taxa de erro Tipo 1. Para reduzir esse
impacto, os resultados foram interpretados de forma conservadora e, em trabalhos subsequentes,
sugerem-se correcoes (p. ex., Holm—Bonferroni) quando multiplos testes confirmatérios forem
conduzidos.

Em sintese, apesar dessas ameacas, foram adotadas decisdes metodoldgicas conser-
vadoras, aplicados testes estatisticos apropriados ao desenho pareado e realizada a documentacao
do protocolo experimental, de modo a fortalecer a confiabilidade e a interpretabilidade dos

achados deste estudo.

3.5 Conclusao

Neste capitulo, foi proposta uma abordagem baseada em aprendizado de maquina
para a detec¢@o de code smells em sistemas de software. Foram aplicados cinco algoritmos (MLP,
Arvore de Decisdo, Floresta Aleatéria, Gradiente Boost e SVM) combinados com métricas de
software extraidas do conjunto de dados de Fontana et al. (2016). O estudo contemplou quatro
code smells: Data Class, God Class, Feature Envy e Long Method, com o objetivo de avaliar o
desempenho relativo dos algoritmos e o impacto da validagc@o cruzada nos resultados de acurécia.

Os experimentos mostraram que os classificadores baseados em drvores (Arvore de
Decisdo, Floresta Aleatdria e Gradiente Boost) apresentaram desempenho superior, destacando-
se especialmente na detec¢do de Long Method, com acurécia de até 99,2%. Para Feature Envy,
obtive-se valores acima de 96%, consolidando a robustez dos classificadores. Em contrapartida,
o desempenho foi ligeiramente inferior para Data Class, onde a Arvore de Decisio registrou
89,7%, embora os demais algoritmos tenham alcancado cerca de 96,8%. A acurécia para God
Class variou entre 91,2% e 96,3%, com ganho de desempenho quando aplicada a validag¢ao
cruzada. Os algoritmos MLP e SVM também demonstraram boa performance, embora com
resultados inferiores aos modelos de drvore (Arvore de decisdo e Floresta Aleatéria).

As contribui¢des deste estudo residem em trés aspectos principais: (i) a demonstragdo
da efetividade de algoritmos de aprendizado de maquina na deteccao de diferentes tipos de code
smells; (i1) a andlise comparativa entre multiplos algoritmos, evidenciando que métodos baseados
em darvores oferecem maior acuricia; e (iii) a investigacao do impacto da validacdo cruzada,
mostrando que, apesar de ndo gerar diferencas estatisticamente significativas, influencia o

desempenho em alguns cenarios. Além disso, os resultados obtidos para Feature Envy e Long
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Method se mostraram competitivos e superiores aos de estudos anteriores, refor¢cando a relevancia
da abordagem proposta.

Por fim, este capitulo estabelece a base para os proximos capitulos. No capitulo
seguinte, é explorado a aplicacdo de modelos de linguagem de grande porte (LLMs) para a
deteccdo de code smells. Para isso, emprega-se a ferramenta TWINCODE, desenvolvida para
analisar e comparar diferentes versoes de codigo-fonte, de modo a investigar o potencial de

LLMs como alternativa e complemento as técnicas tradicionais de aprendizado de mdquina.
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4 TWINCODE

A qualidade de cddigo € central para manutenibilidade, legibilidade, testabilidade
e evolugdo de sistemas (MARTIN, 2009; FOWLER, 2018). Apesar do avango em métricas
automatizadas, a literatura aponta descompasso entre indicadores objetivos e a percep¢ao de
desenvolvedores (BUSE; WEIMER, 2009; POSNETT et al., 2011), além da caréncia de platafor-
mas integradas para estudos empiricos com comparacio de cédigo lado a lado e coleta de dados
estruturada em formuldrios. Essa lacuna limita replicabilidade e comparacao entre investigagdes.
Como resposta, € proposto a TwinCode, uma ferramenta que integra, em um tnico ambiente,
comparagdo de trechos lado a lado, cadastro de pares de c6digo, questiondrios configurdveis por
comparacdo e geragdo de relatdrios. A arquitetura adota PHP/Laravel, React/TailwindCSS e
MariaDB, priorizando transparéncia e adaptabilidade.

A avaliagdo da TwinCode seguiu abordagem exploratéria com 12 participantes,
majoritariamente de alto nivel de escolaridade e experiéncia. O instrumento combinou afirmativas
avaliadas na escala Likert e questdes abertas para examinar facilidade de uso, fluxo funcional
para estudos empiricos e potencial de ado¢do académica. As andlises incluiram estatisticas
descritivas, percentuais de acordo e sintese tematica das respostas qualitativas.

Os resultados indicam bom desempenho do ntcleo de inspecdo: a visualizacdo lado
a lado e as pistas visuais foram bem avaliadas. O fluxo funcional atendeu aos requisitos centrais,
com destaque para criagdo de pares e questiondrios por comparagdo, € um ponto de atengdo
na associacao pares—questiondrios. O potencial de ado¢do académica foi alto e observou-se
consisténcia interna elevada no bloco quantitativo (o = 0,900). As respostas abertas apontaram
melhorias prioritdrias em ergonomia visual, saliéncia de navegacao, feedbacks de estado e
funcionalidades auxiliares como exportagdo, filtros e versionamento.

Este trabalho possui 6 contribui¢des principais, sendo elas:

* TwinCode como artefato cientifico integrado. Uma plataforma que retine, em um tnico
ambiente, (i) comparacdo de trechos de cédigo lado a lado com realce de sintaxe e nume-
racdo de linhas, (i1) questionérios configurdveis por comparacao para instrumentacao dos
estudos, e (iii) geragcdo de relatérios estruturados, reduzindo preparo ad hoc e favorecendo
padronizacao e reprodutibilidade. Publicamente disponivel em (MOREIRA et al., 2025).

* Enderecamento de lacuna pratica na literatura. Entrega de uma solugdo focada em estu-
dos empiricos de qualidade de c6digo (ndo apenas visualizacio/diff), que organiza o fluxo

de trabalho (cadastro, pareamento, associagdo com questiondrios e coleta), promovendo
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replicabilidade entre investigacdes.

* Validacao exploratéria com evidéncias quantitativas e qualitativas. Estudo com
12 participantes, combinando escala Likert e andlise temaética; resultados indicam boa
aceitacdo da visualizacdo lado a lado e do fluxo funcional, alto potencial de adogdo
académica e consisténcia interna.

* Protocolo de avaliaciao replicavel. Combinagdo de estatisticas descritivas, andlise de
consisténcia interna e leitura qualitativa por anélise de contetido, oferecendo um roteiro
metodoldgico reutilizavel para avaliar ferramentas cientificas similares.

* Reconhecimento formal do artefato. Registro da TwinCode no INPI (n® BR512025003573-
0), estabelecendo precedéncia e reforcando originalidade no contexto nacional de ferra-
mentas para pesquisa em engenharia de software.

Este capitulo estd organizado em seis se¢des. A Secdo 4.1 descreve a metodologia do
estudo, incluindo delineamento, instrumentos e procedimentos de andlise. A Sec¢do 4.2 apresenta
a arquitetura e as funcionalidades da TwinCode. A Sec¢do 4.3 reporta a validag@o e os resultados,
incluindo as respostas as questoes de pesquisa. A Secdo 4.4 discute os trabalhos relacionados. A
Secdo 4.5 apresenta as ameacas a validade. Por fim, a Secdo 4.6 traz as consideragdes finais e

diretrizes para trabalhos futuros.

4.1 Metodologia

O desenvolvimento da ferramenta TwinCode emergiu da constatacdo de uma lacuna
significativa no ecossistema de solugdes voltadas a realizacdo de estudos empiricos que deman-
dam a comparacao sistematica de trechos de cddigo-fonte. Embora existam ferramentas para
andlise estatica, inspecdo automatizada ou revisao manual de c6digo, observa-se uma caréncia
de plataformas que integrem, de forma organica, a apresentacdo paralela de fragmentos de
codigo com mecanismos estruturados de coleta de dados, como questiondrios controlados. Nesse
contexto, a TwinCode propde-se a suprir essa demanda ao articular, em um mesmo ambiente,
funcionalidades que favorecem o delineamento de experimentos computacionais, especialmente
aqueles voltados a avalia¢do da qualidade de c6digo, percepcao de desenvolvedores e praticas de

refatoracgdo.
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Objetivos da Pesquisa

O objetivo principal desta pesquisa consiste em avaliar a facilidade de uso, a eficién-

cia funcional e o potencial de ado¢ao da TwinCode enquanto ferramenta de apoio a realizacio de

estudos empiricos voltados a qualidade de cédigo.

4.1.2

De forma complementar, definem-se os seguintes objetivos especificos:
Mensurar o nivel de facilidade de uso percebida da interface da TwinCode por desenvolve-
dores, com foco em aspectos como clareza das informagdes, navegabilidade, adequacao da
visualizacdo de codigo e possibilidades de customizagdo visual;
Avaliar a pertinéncia e a suficiéncia das funcionalidades oferecidas pela TwinCode para a
conducdo de estudos empiricos sobre qualidade de c6digo, considerando os recursos de
comparacao de trechos, integracdo de questiondrios e apresentacao de dados;
Investigar o potencial de ado¢do da ferramenta em ambientes académicos, com base
em uma andlise preditiva fundamentada na percepg¢do integrada de facilidade de uso e
adequacao funcional por parte dos usudrios participantes;
Mapear as funcionalidades mais valorizadas pelos usudrios e categorizar as melhorias
prioritdrias a serem implementadas, com vistas a otimizacdo da ferramenta enquanto

instrumento de suporte a pesquisa cientifica na drea de Engenharia de Software.

Questoes Pesquisa

Com base nos objetivos delineados para este estudo, foram formuladas quatro ques-

toes de pesquisa (QPs), que orientam a investigac@o e delimitam o escopo analitico necessario

ao desenvolvimento e a avaliagdo da ferramenta proposta. As QPs estdo descritas a seguir:

QP1 — Qual é o nivel de facilidade de uso percebida da TwinCode, considerando os
aspectos de clareza, navegacado e funcionalidades de visualiza¢do de cédigo?
QP2 - A TwinCode atende aos requisitos funcionais necessarios para conducao de estudos

empiricos sobre qualidade de c6digo?

* QP3 - Qual ¢é o potencial de ado¢ao da TwinCode como ferramenta de pesquisa em

ambientes académicos?

* QP4 - Quais sao as funcionalidades mais valorizadas na TwinCode e quais melhorias sdo

prioritdrias para otimizar a ferramenta como instrumento de pesquisa?

As questdes foram elaboradas de forma a assegurar coeréncia metodoldgica e relevan-
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cia prética, promovendo uma andlise critica das contribui¢des potenciais da solug@o apresentada
para o campo da engenharia de software. Essas quatro questdes articulam-se de maneira com-
plementar, proporcionando uma base sélida para a avaliagdo tanto técnica quanto empirica da
ferramenta. Elas permitem identificar os diferenciais da ferramenta proposta, a0 mesmo tempo
em que oferecem subsidios para seu aprimoramento continuo e sua insercao efetiva em praticas

de pesquisa cientifica.

4.1.3 Validagao

Adotou-se uma andlise mista (quantitativa e qualitativa) para validar a ferramenta. Os
dados quantitativos aferem objetivamente aspectos como facilidade de uso, organizagdo e eficicia
no apoio a estudos comparativos. Os dados qualitativos captam percepgdes e experiéncias dos
participantes. A andlise mista oferece evidéncias complementares para julgar a utilidade da
TwinCode e orientar melhorias.

Com o intuito de viabilizar a coleta de dados quantitativos alinhada aos objetivos
especificos da pesquisa, elaborou-se um questiondrio estruturado, concebido como instrumento
central de avaliacao da ferramenta TwinCode. O questionario foi organizado em cinco se¢oes
principais descritas a seguir.

1. Apresentou o Termo de Consentimento Livre e Esclarecido (TCLE), garantindo a adesdo
ética dos participantes a pesquisa.

2. Concentrou-se na validacdo de uso da ferramenta, permitindo confirmar se os usuarios
haviam compreendido suas funcionalidades e interagoes.

3. Foi dedicada a caracterizac@o do perfil dos participantes, contemplando aspectos como
nivel de experiéncia em desenvolvimento de software e familiaridade com conceitos
relacionados a qualidade de cédigo.

4. Abordou diretamente a avaliacdo da ferramenta desenvolvida. Para isso, foram utilizadas
questdes baseadas em uma escala do tipo Likert, que permitiram mensurar, de forma
padronizada, a percepg¢do dos usudrios quanto a critérios como facilidade de uso, clareza
da interface, relevancia funcional e aplicabilidade em contextos reais de uso.

5. Reuniu consideragdes finais dos participantes, com foco em criticas construtivas, sugestdes
de aprimoramento e comentarios abertos sobre a experiéncia de utilizacdo da TwinCode.

Os participantes foram selecionados por conveniéncia e convidados a acessar a

aplicacdo TwinCode e, em seguida, responder ao questiondrio estruturado. Nao foram fornecidas
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instru¢cdes detalhadas sobre o uso da ferramenta, de modo que a interagdo ocorreu de forma
autdbnoma e espontanea, refletindo a experiéncia natural de exploracdo do sistema. Apds explorar
livremente suas funcionalidades, os participantes preencheram o formulario, que reuniu tanto
questdes fechadas quanto abertas. As respostas foram coletadas automaticamente e organizadas
para andlise quantitativa e qualitativa.

Essa estrutura metodolédgica buscou garantir ndo apenas a coeréncia e completude

da coleta de dados, mas também a qualidade e profundidade das informagdes obtidas.

4.2 Estrutura da Ferramenta

Para a constru¢ao da TwinCode, optou-se pela utiliza¢ao de tecnologias de cédigo
aberto amplamente consolidadas (PHP/Laravel, Javacript/React CSS/TailwindCSS e MariaDB),
uma decisdo estratégica que proporcionou diversos beneficios ao longo do desenvolvimento. A
adog¢do dessas tecnologias ndo apenas conferiu maior flexibilidade ao processo de implemen-
tacdo, permitindo ajustes rapidos e personalizados, como também garantiu a transparéncia e a
acessibilidade do projeto, principios fundamentais em iniciativas voltadas a pesquisa académica.
Além disso, o uso de solucdes open source facilita a replicabilidade da ferramenta por outros

pesquisadores, incentivando sua adaptacdo e evolucao em diferentes contextos.
4.2.1 Arquitetura e Tecnologias

A TwinCode foi desenvolvido com arquitetura monolitica, decisio orientada pela
simplicidade de desenvolvimento, implantacdo unificada e facilidade de depuragcdo. Conforme
Blinowski ef al. (2022), essa abordagem oferece vantagens significativas em projetos de escopo
controlado, permitindo constru¢ao, testes e deployment como unidade coesa. Embora Blinowski
et al. (2022) reconhecam limitagdes em sistemas de grande escala, no contexto especifico da
TwinCode a arquitetura monolitica é adequada e estratégica, facilitando a manuten¢do de padrdes
consistentes e simplificando a depura¢io (BREKALO; SEDLAREVIC, 2024).

A ferramenta implementa separada entre front-end e back-end. Para o back-end foi
utilizado PHP' na versio 8.4, essa linguagem foi escolhida por seu ecossistema consolidado
e comunidade ativa. Laravel® (versdo 12) foi adotado, como framework, pela solidez de sua

arquitetura Model, View e Controller (MVC), que favorece organizacdo modular do cédigo

Disponivel em: <https://www.php.net> Acesso em: 4 mai. 2025

2 Disponivel em: <https:/laravel.com/> Acesso em: 4 mai. 2025
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e facilita a replicabilidade dos experimentos. Neste contexto, a estrutura do Laravel permite
desenvolvimento e validacdo dos componentes do back-end, alinhando-se aos principios de rigor
metodoldgico académico.

Para o front-end (interface do usudrio), foram adotados React® (versdo 18.2.0) e
Tailwind CSS* (versdo 4.1.5). O React possibilitou estruturacio em componentes modulares e
reutilizdveis, facilitando manutencao e testabilidade. O Tailwind CSS, com sua abordagem utility-
first, proporcionou controle granular sobre a estilizagdo através de classes utilitarias aplicadas
diretamente no HyperText Markup Language (HTML), eliminando a necessidade de folhas de
estilo extensas. O processo de build remove automaticamente Cascading Style Sheets (CSS) nao
utilizado, otimizando o tamanho dos arquivos e melhorando os tempos de carregamento.

O sistema de banco de dados utiliza MariaDB?> versdo 11, solucio relacional open
source escolhida por sua estabilidade, licenca permissiva adequada ao contexto académico, e
compatibilidade nativa com PHP e Laravel. Essa integracdo simplifica o desenvolvimento e
assegura desempenho consistente em operagdes de manipulacdo e consulta de dados.

O ambiente de desenvolvimento utiliza Docker integrado ao Laravel Sail®, propor-
cionando configuracao padronizada e reproduzivel de todos os servicos necessarios (servidor
web, banco de dados e ambiente PHP). Essa containerizacdo elimina inconsisténcias ambientais

e facilita a replicabilidade dos experimentos, aspectos fundamentais para pesquisas cientificas.
4.2.2 Modulos e Interfaces

A TwinCode possui trés niveis de acesso que atendem diferentes perfis de usudrios:
(i) secao publica com informacdes gerais sobre a ferramenta; (ii) drea de acesso por token para
participantes de pesquisas, permitindo submissao de respostas e visualizacdo de comparacoes
conforme o delineamento experimental; e (ii1) drea restrita para pesquisadores e administradores,
controlada por autenticacdo com credenciais pré-cadastradas. Esta estrutura garante seguranca
dos dados experimentais e controle adequado de permissoes.

A éarea restrita concentra-se em dois moédulos principais. O médulo de usudrios
gerencia as contas cadastradas na aplicacdo, incluindo operacdes de criagdo, edicdo, visualizacio

e remocao de usudrios, além de controle de permissdes administrativas. O médulo de pesquisas

Disponivel em: <https://react.dev/> Acesso em: 4 mai. 2025

Disponivel em: <https://tailwindcss.com/> Acesso em: 4 mai. 2025
Disponivel em: <https://mariadb.org/> Acesso em: 4 mai. 2025

Disponivel em: <https://laravel.com/docs/12.x/sail> Acesso em: 5 mai. 2025

AN AW



58

H Principa
{J TwinCode
Pesquisas

{ar Principal

{2 Pesquisas ‘ Digite sua pesquisa

& Usudrios

Titulo Descricdo Situagdo  Detalhes
©

= Sair

Copyright © 2025 - TwinCode - Analise comparativa de codigo
Figura 4 — Interface do mddulo de pesquisas: ambiente integrado para gerenciamento de investi-
gacdes cientificas
Fonte: Elaborado pelo autor (2025)

constitui o nicleo da ferramenta, oferecendo ambiente integrado para gerenciamento completo
das investigacdes cientificas. Suas funcionalidades incluem: cria¢do de novas pesquisas, cadastro
e edi¢do de questiondrios, insercao de trechos de cddigo para andlise comparativa, vinculagdo de
questiondrios especificos a cada comparacdo, e geracao de relatérios consolidados com os dados
coletados.

A Figura 4 apresenta a interface do médulo de pesquisas, que permite cadastrar novos
estudos, realizar buscas em pesquisas registradas e acessar a listagem completa dos trabalhos
armazenados. O design prioriza simplicidade e facilidade de uso, oferecendo navegacgao intuitiva
que simplifica o fluxo das atividades de pesquisa e a organizagdo sistemdtica dos dados. A
Figura 5 apresenta a interface de visualizagdo de trechos de cddigo e consolida informagdes
essenciais como metadados, descricdes e classificacdes dos codigos cadastrados. Além da
visualiza¢do, oferece funcionalidades de edi¢do dos dados, remocdo controlada de elementos e
vinculagdo de questiondrios especificos as comparacoes. Esta abordagem integrada fortalece o
controle metodoldgico e a rastreabilidade dos elementos utilizados na avaliagdo, contribuindo
para a robustez da investigac@o através da sistematizacdo de processos que tradicionalmente

requerem coordena¢do manual entre multiplas ferramentas.
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Figura 5 — Interface de gerenciamento de trechos de cddigo: visualizacdo sistemadtica e controle
metodologico
Fonte: Elaborado pelo autor (2025)
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4.2.3 Exemplo de Uso

Nesta secdo € apresentado um exemplo pratico da TwinCode utilizando dois tre-
chos de codigo. O exemplo ilustra como a ferramenta pode ser empregada na comparacdo
de codigos e na coleta de percepcdes sobre qualidade do cédigo, destacando funcionalidades
voltadas a andlise de legibilidade e manutenibilidade por desenvolvedores. A Figura 6 apre-
senta dois trechos de codigo PHP com implementacdes de uma funcao de validagao de dados
com complexidades ciclomdticas distintas. O Codigo 1 apresenta complexidade ciclomatica
3, utilizando estrutura linear com valida¢des sequenciais. O Cédigo 2 possui complexidade
ciclomadtica 7, implementando estruturas aninhadas com multiplas condi¢cdes. Embora ambos
executem a mesma funcionalidade, as diferencas estruturais permitem investigar como variagdes
na complexidade afetam a percepcio de qualidade dos desenvolvedores. Note que os trechos de
codigo possuem numeragdo de linhas sincronizada, facilitando a referéncia precisa durante a
andlise. Os mecanismos de destaque visual identificam automaticamente as principais diferengas
estruturais, como observado na comparagdo entre as linhas 2-9 do Cédigo 1 e as linhas 2-22
do Cédigo 2. Recursos adicionais incluem ajuste dindmico do tamanho da fonte, permitindo
personalizacdo da visualiza¢do conforme as necessidades do participante.

A Figura 7 ilustra o sistema de questiondrios que combina perguntas: (i) em escala
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U TwinCode lusto ad tempore molestiae fuga consequatur fuga. ®-6-0-0

6 - Complexidade Ciclomatica

codigo1 - Gadigo2
<?php
<?php function calcularDescontoComplexo(
function calcularDescontoSimples($valeTotoal, $percentualDesconto) { $total,
if ($valorTotal > @ && $percentualdesconto > 8) { $percentualDesconto,
$valorDesconto = $valorTotal * ($percentualDesconto / 168@); StipoCliente,
return $valerTotal - $valorDesconto; $mesPromocao
} else { )£
return $valorTotal; $descontoFinal = @;
¥ if ($total > @) {
} if ($percentualDesconto > @) {

$descontoFinal = $total * ($percentualDesconto / 188);

}

if ($tipoCliente === 'VIP") {
$descontoFinal += $total * 8.18;
} elseif ($tipoCliente == 'Novo') {

if ($mesPromocao == 'Julho’ $mesPromocao == 'Dezembro') {
$descontoFinal += $total = 8.85;

}
}

return $total - $descontoFinal;

i

[ ] =3

Figura 6 — Interface de comparagdo: visualizacdo lado a lado de cédigos com diferentes comple-
xidades ciclomdticas

Fonte: Elaborado pelo autor (2025)

Likert, (i1) objetivas de unica escolha, (iii) objetivas de multipla escolha e (iv) subjetivas com
campo de resposta aberta. As questdes quantitativas abordam aspectos especificos como legi-
bilidade ("Quado fdcil é compreender a funcionalidade do Codigo 1") e manutenibilidade ("O
Codigo 1 é mais manutenivel que o Codigo 2?"). Para a questdo de multipla escolha aborda
caracteristicas de qualidade de software (Qual das seguintes caracteristicas de qualidade de
software vocé acredita que foi mais impactada pelas diferencas entre o Codigo 1 e Codigo 2?). O
campo de comentdrios permite capturar justificativas e observacdes adicionais dos participantes.
Esta abordagem hibrida possibilita tanto andlises quantitativas das avaliacdes quanto andlise
qualitativa dos comentdrios, enriquecendo a compreensao sobre os critérios utilizados pelos
desenvolvedores na avaliacdo de qualidade.

A ferramenta permite personalizar os questiondrios para cada par de cédigos, adap-
tando as perguntas aos objetivos da pesquisa. Pesquisadores podem criar estudos focados em
diferentes aspectos da qualidade, como por exemplo para detec¢do de code smells, avaliacao
de préticas de refatoracio, ou andlise de padrdes de codificagdo. Os dados coletados siao auto-
maticamente organizados em relatérios que facilitam a andlise posterior, incluindo estatisticas
descritivas das respostas quantitativas e categorizacao dos comentdrios qualitativos. Este exemplo
demonstra o potencial da TwinCode para apoiar estudos empiricos sobre qualidade de codigo,

oferecendo ambiente controlado para comparagdes sistemdticas e coleta estruturada de dados. A
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Questionario sobre o Codigo

Avaliacao

1- Em uma escala de 1a 5 (onde 1 - Muito facil, 5 - Muito Dificil), quo facil & compreender a
funcionalidade do Codigo 17

1 2 3 4 5

2 - Em uma escala de 1a 5 (onde 1 - Muito facil, 5 - Muito Dificil), qual facil & compreender a
funcionalidade do Codigo 27

1 2 3 4 b
3 - Em uma escala de 1 a 5 (onde 1- Discordo Totalmente, 5 - Concordo Totalmente), o Codigo
1€ mais manutenivel que o Codigo 2.

1 2 3 4 5

4 - Com base nas métricas de complexidade ciclomatica, vocé acredita que elas refletem sua
percepcao de legibilidade e manutenibilidade para este par?

Sim Néo tenho certeza Ndo

5 - Expligue o porqué da sua resposta anterior e adicione quaisquer outro comentario sobre
legibilidade e manutenibilidade dos codigos.

Digite sua resposta

6 - Qual das seguintes caracteristicas de qualidade de software vocé acredita que foi mais
impactada pelas diferencas entre o Codigo A e o Codigo 2?7

Funcionalidade

Figura 7 — Sistema de questiondrios: combinagao de escalas Likert e campos abertos para coleta
de dados
Fonte: Elaborado pelo autor (2025)

integracdo entre visualizacdo comparativa e instrumentos de coleta em uma dnica plataforma
simplifica a condu¢do de experimentos e contribui para a sistematiza¢do de pesquisas na area de

engenharia de software.

4.3 Validacao e Resultados

Esta secao apresenta os resultados da avaliacdo da TwinCode quanto a facilidade
de uso, a aderéncia funcional para estudos empiricos e ao potencial de ado¢cao em ambientes
académicos. A ferramenta TwinCode foi avaliada por académicos e profissionais da area de
desenvolvimento por meio de um formulario com 21 questdes.

A Tabela 9 sintetiza os resultados descritivos das afirmativas avaliadas no questio-
ndrio, apresentando as medidas de tendéncia central e dispersdo. De forma geral, observa-se
que todas as médias situaram-se acima de 3,7 em uma escala de 1 a 5, com destaque para a
percepciao de potencial de ado¢do da TwinCode em ambientes académicos (média 4,42; mediana
5). Os itens associados a clareza da interface, a navegacao e as funcionalidades de visualizacao
de cédigo também receberam avaliacdes positivas, embora com variagdes nos desvios-padrao
que refletem diferentes percepg¢des individuais. Esses dados fornecem a base quantitativa para a

andlise das questdes de pesquisa (QP1, QP2, QP3 e QP4), discutidas nas subsecdes seguintes.
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Tabela 9 — Estatisticas descritivas das afirmativas do questionario

Afirmativa Média Mediana DP
A interface da ferramenta € clara e facil de usar. 3.75 4 1.06
A navegacdo entre os diferentes médulos da ferramenta € intuitiva. 3.83 4 0.72
A visualizagdo dos pares de codigo lado a lado € adequada para comparagao. 4.08 5 1.56
A numeragdo de linhas e o realce de sintaxe (syntax highlighting) melhorama  4.00 5 1.60
compreensdo do codigo.

A ferramenta permite ajustar o tamanho da fonte de forma qtil para a leitura. 3.75 4 1.29
A criacdo de pares de c6digo é simples e funcional. 4.08 4 1.31
A ferramenta permite cadastrar questiondrios especificos para cada comparacio  4.17 5 1.03
de cddigo.

A associacdo entre comparagdes de c6digo e questiondrios € eficiente. 3.75 4 0.87
O formulério de questiondrio apresenta as perguntas de maneira clara e objetiva. ~ 4.08 4 1.00
A ferramenta é adequada para estudos que avaliam qualidade de cédigo. 4.17 5 1.03
A TwinCode possui potencial para ser utilizada em pesquisas académicas com  4.42 5 0.90

desenvolvedores.

Fonte: Elaborado pelo autor (2025)

4.3.1 Caracterizacdo dos Participantes

A amostra foi composta por 12 participantes. A caracterizacdo considerou (1) esco-
laridade, (i) tempo de experiéncia em programagdo e (iil) frequéncia de contato com codigo
no cotidiano. Adicionalmente, registrou-se a experiéncia prévia em estudos sobre qualidade de
codigo para contextualizar a interpretacdo dos resultados.

No que diz respeito a escolaridade (Figura 8a), nota-se uma predominéncia de
participantes com pds-graduacgdo stricto sensu (66,7%), distribuidos entre mestrado (41,7%;
5/12) e doutorado (25,0%; 3/12). Outros trés participantes possuiam graduacao completa
(25,0%), enquanto apenas um ainda estava em graduacao em andamento (8,3%). Esse quadro
revela um grupo fortemente qualificado, com trajetdria académica que tende a favorecer maior
familiaridade com metodologias de pesquisa e a oferecer respostas mais consistentes. Por outro
lado, a concentragdo em niveis avangados de escolaridade limita a extrapolagao dos resultados
para publicos menos titulados.

Quando se observa o tempo de experiéncia em programagdo (Figura 8b), percebe-se
que dois tercos da amostra relataram possuir mais de seis anos de pratica (66,7%; 8/12). Outros
trés participantes situaram-se na faixa de 1 a 3 anos (25,0%), e apenas um declarou experiéncia
entre 4 e 6 anos (8,3%). Esse cendrio evidencia que a amostra é majoritariamente composta por
desenvolvedores s€niores, com repertorio suficiente para avaliar comparagdes de codigo com
seguranca, mas com pouca representacao de perfis mais iniciantes.

A frequéncia de contato com cédigo no cotidiano reforga esse perfil. Metade dos

participantes afirmou programar diariamente (50,0%; 6/12), enquanto um ter¢o declarou contato
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frequente (33,3%; 4/12). Apenas um relatou intera¢do ocasional (8,3%) e outro rara (8,3%).
Esse padrao de exposi¢ao continua a pratica da programacao sugere um grupo acostumado a
lidar com cddigo no dia a dia, o que reduz riscos de ruidos de interpretacdo e fortalece a validade

da avaliacdo da ferramenta.

B Graduacdo em andamento B Mestrado B 1-3anos B Mais de 6 anos
I Graduagao completa B Doutorado m 4-6 anos
(a) Escolaridade (b) Experiéncia em programacio

Bl Diariamente Bl Ocasionalmente
I Frequentemente I Raramente

(c) Frequéncia de contato com c6digo
Figura 8 — Caracterizacao dos participantes
Fonte: Elaborado pelo autor (2025)

No que se refere a drea de formacdo, apds a normalizacao dos rétulos, percebe-
se uma forte concentracdo em cursos ligados a Computacdo e as Engenharias. Destacam-se
Ciéncia(s) da Computagdo, que responde por 41,7% da amostra (5 de 12 participantes), seguida
por Andlise e Desenvolvimento de Sistemas e Sistemas de Informacdo, ambos com 16,7% (2/12
cada). Em menor propor¢ao, aparecem formacdes em Engenharia da Computagdo, Engenharia

de Software e Tecnologia em Mecatrénica Industrial, cada uma representando 8,3% da amostra
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(1/12). Esse quadro mostra um grupo majoritariamente oriundo de dreas técnico-cientificas,
diretamente relacionadas ao desenvolvimento e a avalia¢do de software, o que reforca a adequagao
do perfil para analisar comparacdes de c6digo e avaliar instrumentos voltados a qualidade.

De modo geral, trata-se de uma amostra com alta titulacdo, experiéncia profissional
acumulada e contato frequente com programacao, predominando formacdes da drea de computa-
¢do e engenharias. Esse perfil contribui para a validade interna da avaliagio da ferramenta, por
refletir critérios de desenvolvedores experientes, embora exija cautela quanto a validade externa,
sobretudo para publicos com menor escolaridade ou menos vivéncia pratica. Como contexto
adicional, 58,3% dos participantes (7/12) ja haviam participado de estudos ou avaliagdes relacio-
nados a qualidade de cddigo, o que indica familiaridade prévia com o tema. Tal caracteristica
pode influenciar positivamente a profundidade das respostas, sem comprometer a interpretacao

dos achados quando consideradas essas limitacoes.

4.3.2 Facilidade de Uso Percebida da Interface (QP1)

A andlise da facilidade de uso da TwinCode evidenciou percepgdes positivas e
consistentes em relacao a clareza da interface, a navegagdo e as funcionalidades voltadas a
visualizagdo de cdédigo. Conforme apresentado na Tabela 9, a afirmativa “A interface da
ferramenta é clara e fdcil de usar” alcancou média de 3,75 (mediana 4, Desvio Padrdao (DP)
1,06), sugerindo concordancia geral, ainda que com alguma variacao entre os respondentes. De
forma semelhante, a “navegacdo entre os diferentes modulos da ferramenta é intuitiva” obteve
média de 3,83 (mediana 4, DP 0,72), reforcando a percep¢ao de que o fluxo de interacdo é
satisfatorio, mesmo sem consenso absoluto. No que se refere as funcionalidades de visualizacao,
os resultados foram ainda mais expressivos. A “visualizacdo dos pares de codigo lado a lado”
registrou média de 4,08, com mediana maxima de 5 (DP 1,56), sendo o item mais valorizado
da secdo. O recurso de “numeracdo de linhas e realce de sintaxe” apresentou média de 4,00
(mediana 5, DP 1,60), confirmando sua importancia para a legibilidade e compreensao do cédigo.
J4 a possibilidade de “ajustar o tamanho da fonte” recebeu média de 3,75 (mediana 4, DP 1,29),
sinalizando utilidade, mas também evidenciando espaco para ajustes ergondmicos.

As respostas qualitativas dialogam com esses resultados. A comparacio lado a lado,
acompanhada da numeracgdo e do realce de sintaxe, foi citada repetidamente como o recurso mais
util para apoiar a leitura e a andlise. Além disso, os questiondrios integrados as comparagdes

foram destacados pela capacidade de organizar e sistematizar a coleta de dados. Entre as



65

sugestoes de aprimoramento, sobressairam a necessidade de simplificar o processo de vinculagdo
entre pares de cdigo e questiondrios, garantir persisténcia das configuragdes visuais (como
fonte e tema) e disponibilizar tutoriais curtos para o onboarding. Tais apontamentos indicam
que, embora a facilidade de uso ja seja considerada satisfatéria, ha espago para evolugdes que

tornem a experiéncia mais fluida e intuitiva.

Resumo da resposta da QP1. Os resultados quantitativos e qualitativos apontam que
a TwinCode apresenta um bom nivel de facilidade de uso percebida, com destaque
para as funcionalidades de comparacdo e legibilidade de cddigo. Assim, conclui-se
que a ferramenta oferece uma experiéncia clara e funcional, embora dependa de ajustes

ergondmicos e de melhorias no fluxo de interacao para alcangar maior eficicia.

4.3.3 Eficiéncia Funcional para Estudos Empiricos (QP2)

Para responder a QP2, a andlise da Tabela 9 indica que a TwinCode atende aos
requisitos funcionais necessdarios para a conducdo de estudos empiricos sobre qualidade de
codigo. A afirmativa “A criacdo de pares de cédigo é simples e funcional” apresentou média de
4,08 (mediana 4,5; DP 1,31), o que revela que a maioria dos participantes percebe essa etapa
como prética e intuitiva. Resultado semelhante foi observado no item “A ferramenta permite
cadastrar questiondrios especificos para cada comparagdo de coédigo”, que obteve média de
4,17 (mediana 5; DP 1,11), sinalizando forte concordancia quanto a relevancia desse recurso
para a organizacdo de experimentos. Entretanto, a “associacdo entre comparagoes de codigo e
questiondrios” recebeu avaliagcdo menos favordvel, com média de 3,75 (mediana 4; DP 1,36).
Embora considerada funcional, essa etapa foi descrita como mais trabalhosa e menos fluida em
comparacdo as demais, evidenciando um gargalo que pode comprometer a experiéncia de uso
em cendrios mais complexos.

As respostas qualitativas ajudam a compreender melhor a eficiéncia funcional da
ferramenta. Os participantes reconheceram a importancia da integracao entre pares de codigo e
questiondrios, mas pediram que o processo de vinculac¢do fosse mais direto e que houvesse maior
transparéncia sobre o estado do vinculo. Outras sugestdes incluiram a possibilidade de exportar
relatorios e a adocdo de mecanismos de versionamento, ambos vistos como incrementos que

poderiam ampliar a eficiéncia operacional da ferramenta.
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Resumo da resposta da QP2. A TwinCode contempla os principais requisitos funcionais
esperados em um ambiente de pesquisa empirica, com destaque para a criagdo de pares e
o cadastro de questiondrios. Contudo, a associacdo entre esses elementos ainda demanda
refinamentos, de modo a reduzir barreiras e garantir maior fluidez no uso em estudos de

maior escala.

4.3.4 Potencial de Adocao em Ambientes Académicos (QP3)

Os dados da Tabela 9 indicam que a TwinCode apresenta elevado potencial de
ado¢do em contextos académicos. A afirmativa “A ferramenta é adequada para estudos que
avaliam qualidade de codigo” alcancou média de 4,17 (mediana 4; DP 0,83), evidenciando
concordancia consistente quanto a sua aplicabilidade em investigacdes empiricas. Ainda mais
expressiva foi a avaliacdo da afirmativa “A TwinCode possui potencial para ser utilizada em
pesquisas académicas com desenvolvedores”, que obteve média de 4,42 (mediana 5; DP 0,79),
com predominancia de respostas concentradas nos niveis mais altos da escala. Esses resultados
mostram que as participantes nao apenas reconhecem a adequacao funcional da ferramenta,
mas também projetam sua utilizacdo em cendrios de ensino e pesquisa, considerando-a um
recurso com potencial de integracdao em préaticas de avaliacdo e experimentacdo. As respostas
qualitativas reforcam essa percepcao: além de valorizar a comparacao de cédigo lado a lado
e 0s questiondrios integrados, algumas participantes sugeriram a inclusdo de funcionalidades
adicionais, como exportacdo de relatdrios e mecanismos de versionamento, que poderiam ampliar

ainda mais a viabilidade de uso em ambientes institucionais.

Resumo da resposta da QP3. Em sintese, a TwinCode € percebida como uma ferramenta
promissora para adog¢do académica, oferecendo suporte adequado a estudos empiricos e
apresentando potencial de integracdo tanto em atividades de ensino-aprendizagem quanto

em pesquisas colaborativas com desenvolvedores.

4.3.5 Funcionalidades Valorizadas e Prioridades de Melhoria (QP4)

A andlise qualitativa das respostas abertas do questiondrio permite identificar tanto
as funcionalidades mais valorizadas da TwinCode quanto as melhorias consideradas prioritdrias.

Entre os recursos destacados, a comparagdo de codigo lado a lado aparece como o nucleo
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da experiéncia de uso, quase sempre associada a numeracdo de linhas e ao realce de sintaxe,
elementos reconhecidos como essenciais para garantir clareza e legibilidade na anélise. O médulo
de questiondrios integrados as comparagoes também foi frequentemente mencionado, sendo
valorizado por oferecer um meio estruturado de coletar dados em experimentos de refatoracio e
avaliacdo de qualidade de cédigo.

Paralelamente, surgiram sugestdes que apontam para gargalos na experiéncia de
uso. O aspecto mais recorrente foi a associacdo entre pares de codigo e questiondrios, con-
siderada util, mas pouco intuitiva, o que levou a demanda por simplificacdo do fluxo e maior
visibilidade do estado de vinculo. Outras observacdes incluiram a necessidade de persisténcia
de configuragoes visuais (como fonte e tema), maior fluidez na rolagem e tutoriais breves para
facilitar o onboarding, de modo a reduzir a curva de aprendizagem. Também foram sugeridas
funcionalidades adicionais, como exportacdo de relatorios em PDF, mecanismos de filtros e

busca e recursos de versionamento de codigo, que poderiam ampliar a robustez da ferramenta.

Resumo da resposta da QP4. Em sintese, a TwinCode ja retine um conjunto de funciona-
lidades reconhecidas como valiosas, sobretudo a visualizacdo lado a lado com realce de
sintaxe e a integracdo de questiondrios, mas sua consolidacdo como ferramenta académica
depende de avancos em ergonomia, simplificacdo de fluxos e inclusao de funcionalidades
complementares. Esses pontos configuram um roteiro claro para o direcionamento de

futuras versdes da ferramenta.

4.4 Trabalhos Relacionados

A andlise de ferramentas existentes para comparagao de cdigo e estudos empiricos
revela diferentes abordagens metodoldgicas, cada uma com caracteristicas distintas para um
contexto de uso. Esta sec@o apresenta as principais solu¢des disponiveis, organizadas por
categoria, destacando suas funcionalidades, limita¢des e adequacdo para pesquisas académicas.

Santos e Gerosa (2018) desenvolveram uma aplica¢do web, construida ad hoc para
0 experimento, a fim de investigar o impacto de boas praticas de codificacdo na percepgao de
qualidade por desenvolvedores, priorizando o controle da apresentacdo dos trechos e o registro
de varidveis como resolugdo de tela e tempo de resposta. Nao ha informacao sobre abertura do
codigo, o que limita seu reuso. A ferramenta exibe pares de snippets em que, para cada uma

das onze praticas analisadas, um trecho seguia a recomendacgdo e o outro a violava, permitindo
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mensurar empiricamente efeitos sobre legibilidade e preferéncias. Em contraste, a TwinCode
generaliza esse suporte metodoldgico ao integrar a visualizagdo lado a lado com questionarios
configurdveis por comparacgdo e relatorios integrados, viabilizando reuso entre estudos.

Frick et al. (2018) introduzem o DiffViz, uma ferramenta interativa projetada para
aprimorar a visualizacdo de alteracdes em cddigo a partir de uma arquitetura modular e inde-
pendente do algoritmo de comparagdo. O sistema combina um back-end em Java, responsavel
pela anélise dos trechos, com um front-end em JavaScript, voltado a navegacdo, permitindo
integrar diferentes algoritmos de diff, como GumTree, MTDIFF e IJM. Entre as funcionalidades
oferecidas estdo a visualizacdo lado a lado, o realce de mudancgas, o mapeamento de nds alte-
rados e a possibilidade de importar c6digo manualmente, por meio de repositorios GitHub ou
arquivos JSON. Embora o DiffViz se destaque por fornecer uma inspe¢ao detalhada e flexivel
das diferencas entre versoes, seu proposito principal permanece centrado na andlise precisa das
modificacdes. Em contraste, a TwinCode amplia essa perspectiva ao orientar-se para a condugao
de estudos empiricos, integrando a comparagdo lado a lado com questiondrios configurdveis
e relatdrios estruturados, de modo a favorecer a coleta e a sistematizacido de percepgdes em
pesquisas académicas.

Solugdes comerciais como Pretty Diff’, CodeScene® e Diffchecker” sio amplamente
utilizadas no contexto profissional. O Pretty Diff oferece visualiza¢do lado a lado com suporte a
multiplas linguagens, realce de sintaxe e formatacdo automatizada, com foco em andlise sintédtica
detalhada. O CodeScene integra métricas de complexidade, historico de alteracdes e hotspots de
manutencao, fornecendo uma abordagem visual orientada por dados histéricos para decisdes
sobre qualidade de software. O Diffchecker, por sua vez, € uma solucao mais simples e de uso
imediato, voltada a comparacao de trechos de codigo, textos ou arquivos em geral, destacando
diferencas de forma clara, mas sem oferecer recursos avancados de andlise ou integracdo com
fluxos de pesquisa. Embora tteis, essas ferramentas ndo foram concebidas para experimentos
controlados ou estudos empiricos académicos e nao oferecem, de forma nativa, coleta estruturada
de dados, questiondrios personalizados ou controle de varidveis experimentais, lacuna que a
TwinCode busca suprir.

A Tabela 10 apresenta a comparacao entre as principais ferramentas identificadas.

Essa sintese permite visualizar quais funcionalidades sdao oferecidas em cada contexto e quais

7
8
9

Disponivel em: <https://prettydiff.com/3/> Acesso em: 12 mai. 2025
Disponivel em: <https://codescene.com/> Acesso em: 12 mai. 2025
Disponivel em: <https://www.diffchecker.com/> Acesso em: 12 mai. 2025
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lacunas permanecem abertas para aplicacdes em pesquisas empiricas, lacunas que a TwinCode
busca preencher. Observa-se que a TwinCode se diferencia por reunir, em um tnico ambiente,
comparacao visual, questiondrios configurdveis, foco académico, coleta estruturada e disponi-
bilidade aberta, atendendo de forma integrada a demandas de replicabilidade, instrumentagdo
e gerenciamento de dados para estudos empiricos. Importante destacar que, ao contrario de
ferramentas como DiffViz, Pretty Diff ou Diffchecker, a TwinCode ndo busca evidenciar dife-
rengas entre trechos, mas sim disponibilizar os c6digos lado a lado como suporte a avaliagdo
da qualidade, mantendo o foco na percep¢ao dos desenvolvedores em contextos controlados de

pesquisa.

Tabela 10 — Comparagdo entre ferramentas de andlise de cddigo

Ferramenta Comparagio Questionarios Foco Open Coleta
Visual Académico Source Estruturada
Santos e Gerosa (2018) v v v N/T v
DiffViz (FRICK et al., 2018) v X b 4 v X
Pretty Diff v X X x X
CodeScene v b 4 b 4 b 4 b 4
Diffchecker v X X b b 4
TwinCode v v v v v

Fonte: Elaborado pelo autor (2025)

Esta combinacao de caracteristicas posiciona a TwinCode como uma contribui¢ao
especifica para a comunidade de pesquisa em Engenharia de Software, preenchendo lacuna
identificada na disponibilidade de ferramentas especializadas para estudos empiricos sobre

percep¢do humana de qualidade de cédigo.

4.5 Ameacas a Validade da Pesquisa

Esta secdo apresenta as ameacas a validade do estudo, organizadas de acordo com a
proposta de Wohlin et al. (2012): validade interna, externa, de constru¢do e de conclusao.

Validade Interna. Refere-se ao quanto os efeitos observados podem ser atribuidos de
fato a TwinCode. Foi identificado cinco ameacas a validade interna. A aplicac¢do do questiondrio
logo apos a demonstragdo pode ter sofrido com vieses de autorrelato, como desejabilidade
social, e também com viés de memdria. No entanto, a coleta imediata reduziu esquecimentos,
e o anonimato assegurou liberdade de opinido, atenuando a pressao por respostas socialmente
aceitas. Outro ponto € a auséncia de grupo controle ou de comparagao com outra ferramenta, o

que impede isolar efeitos especificos da solu¢do. Ainda assim, optou-se por um delineamento
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exploratério, adequado para uma primeira avaliacao de aceitabilidade, deixando comparagdes
diretas para etapas futuras. Também é possivel que o posicionamento dos blocos do questiondrio
tenha gerado efeitos de ordem, ja que os itens de facilidade de uso foram respondidos antes dos
de adogdo. A decisdo de manter essa sequéncia buscou refletir o fluxo natural da experiéncia
de uso — primeiro interagir, depois refletir sobre adocdo — mas contrabalangcamentos poderao
ser testados em replicacdes. Outro fator a considerar € o efeito novidade: por se tratar de uma
solu¢do inédita no contexto dos participantes, existe a possibilidade de avaliacdes mais favoraveis
pelo simples cardter inovador. Esse risco pode ser reduzido em estudos futuros com sessdes
repetidas, que tendem a diluir o entusiasmo inicial. Por fim, a alta participagdo dos sujeitos do
estudo em estudos de qualidade de codigo (58,3%), isso poderia calibrar expectativas. Ainda
que isso introduza familiaridade, também garante que os julgamentos foram feitos por pessoas
com repertério adequado, reduzindo interpretacdes equivocadas.

Validade Externa. Relaciona-se a possibilidade de generalizar os resultados para
outros contextos. Identificou-se quatro ameacas externas a validade do estudo. A qualidade
da amostra, composta majoritariamente por profissionais de pds-graduacdo com mais de seis
anos de experiéncia, ndo representa iniciantes ou perfis menos experientes. Apesar disso, essa
caracteristica confere robustez as respostas, ja que foram baseadas em critérios técnicos solidos.
Outro ponto é que o ambiente de demonstracdo ndo reproduz integralmente situacdes reais
de pesquisa, com maior complexidade e pressdao de tempo. Em contrapartida, a aplicacdo
em condi¢des controladas assegurou homogeneidade e reduziu fatores externos que poderiam
distorcer a avaliacdo. O tempo restrito de intera¢do também pode ter subestimado aspectos
ergondmicos do uso prolongado. Ainda assim, a coleta imediata capturou percepg¢des auténticas
sobre a primeira experi€éncia com a ferramenta. Além disso, diferencas de infraestrutura local e
de curva de aprendizagem podem limitar a replicagdo em contextos distintos, mas esse risco €
parcialmente mitigado pelo fato de a TwinCode ser baseada em tecnologias abertas e de facil
acesso. Futuras replicacdes podem ampliar o alcance por meio de amostragens mais diversas,
estudos em campo, avaliagdes longitudinais e definicdo de requisitos minimos de ambiente para
reduzir variagdes técnicas.

Validade a Construcao. Diz respeito ao quanto os instrumentos realmente capturam
os construtos de “facilidade de uso” e “adequagao funcional”. Foram identificadas 4 ameacas a
constru¢do do estudo. Como os itens foram elaborados especificamente para este estudo, sem o

uso de escalas padronizadas, existe o risco de lacunas na cobertura. Esse risco foi parcialmente
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mitigado pelo embasamento tedrico utilizado na formulag@o dos itens e pela consisténcia interna
obtida (alfa de Cronbach = 0,900), que assegura confiabilidade nas medidas. Outro ponto € que a
avaliagdo se concentrou em percepgoes imediatas, sem métricas comportamentais como tempo
em tarefa ou logs de uso. A coleta imediata reduziu a influéncia da memdria, mas reconhece-
se que medidas objetivas fortaleceriam as conclusdes. Também se deve considerar a selecdo
dos trechos de codigo usados na demonstracdo: ainda que representativos, eles ndo abrangem
toda a diversidade de cendrios possiveis, o que pode limitar a abrangéncia da avaliagdo. Esse
risco pode ser reduzido em replicacdes com conjuntos mais variados de exemplos, cobrindo
diferentes dominios e niveis de complexidade. Além disso, a dependéncia de um vinico método,
0 questiondrio, pode ter introduzido variancia de método comum. Para reduzir esse efeito, foram
incluidas respostas abertas, que trouxeram nuances qualitativas importantes. Em estudos futuros,
recomenda-se a combinagdo de escalas consagradas, validacdo psicométrica e triangulacdo com
métricas observacionais.

Validade de Conclusiao. Refere-se a solidez das inferéncias estatisticas. Foram
identificadas 3 ameacas a validade da conclusdo do estudo. O tamanho da amostra (n = 12) natu-
ralmente limita o poder dos testes e a precisdo das estimativas. Esse limite foi reconhecido desde
0 inicio, e por isso as andlises foram predominantemente descritivas, apoiadas em médias, medi-
anas e desvios padrdo, de modo a oferecer transparéncia e ndo induzir a interpretacdes infladas.
As muiltiplas comparagoes entre itens aumentam o risco de achados espurios; para reduzir esse
efeito, evitou-se enfatizar resultados isolados, dando maior aten¢do a padrdes consistentes e ao
cruzamento com os dados qualitativos. Por fim, a op¢ao por andlises descritivas restringe a forga
das conclusdes, mas foi adequada ao caréter exploratério desta etapa de validagdo. Em futuras
replicagdes, recomenda-se ampliar o nimero de participantes, incluir intervalos de confiancga e
tamanhos de efeito, bem como adotar testes robustos, como bootstrapping, com delineamentos
pré-registrados. Assim, embora os resultados devam ser interpretados com cautela, eles oferecem
indicios confidveis dentro do escopo desta investigacao inicial.

Em suma, embora esta etapa apresente limitacdes inerentes ao delineamento explo-
ratdrio, os resultados apontaram médias e medianas favordveis, consisténcia interna elevada e
alinhamento com as percepg¢des qualitativas. Esses achados indicam que a TwinCode ja oferece
evidéncias sélidas de utilidade e aplicabilidade, refor¢cando sua viabilidade como instrumento
de pesquisa. As ameacas aqui discutidas estabelecem ndo apenas os limites do presente estudo,

mas também diretrizes valiosas para ciclos futuros, nos quais serd possivel ampliar a robustez
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inferencial e a generalizacdo dos resultados. Assim, apesar dos desafios, esta investigacdo
constitui um passo importante para consolidar a TwinCode como uma ferramenta académica

confidvel e em evolucdo continua.

4.6 Conclusao

A TwinCode representa uma contribuicdo concreta para a instrumentalizacdo de
estudos empiricos em engenharia de software, ao oferecer uma solugao integrada orientada a
comparacdo de trechos de c6digo com suporte a instrumentacdo por questiondrios especificos por
comparacdo. A validacdo de cardter exploratério conduzida nesta etapa, evidenciou pontos fortes
no nucleo de visualizacdo lado a lado, na numeragao de linhas e no syntax highlighting, além
da boa aceitagcdo de questiondrios e da criagdo de pares com baixo atrito. Em paralelo, foram
identificadas oportunidades de aprimoramento no fluxo de associacdo entre comparagdes e ques-
tiondrios, no design de experiéncia do usudrio e em funcionalidades auxiliares (filtros, exportacio
e versionamento), estabelecendo base objetiva para evolucao incremental da ferramenta.

A convergéncia entre um desenho metodoldgico alinhado a protocolos reprodutiveis
e uma facilidade de uso satisfatéria, ainda em amadurecimento, evidencia que ferramentas
académicas podem conciliar robustez cientifica e aplicabilidade pratica. Consideradas as limi-
tacOes desta etapa como amostra majoritariamente sénior, aplicacdo autoaplicdvel e auséncia
de comparagdo, os resultados sustentam a viabilidade da TwinCode como instrumento para
apoiar investigagcdes controladas sobre qualidade de c6digo, sem prejuizo de aperfeicoamentos
incrementais no design de experiéncia do usudrio e fluxo.

Espera-se que a disponibilizacdo da TwinCode e dos achados desta pesquisa fomente
estudos empiricos com maior qualidade metodolégica sobre percep¢ao humana de qualidade de
codigo, tema central para compreender fatores associados a produtividade e a sustentabilidade
do desenvolvimento de software.

Para estudos futuros, recomenda-se: (a) validacdo em contextos reais por meio de
delineamentos longitudinais; (b) avaliagdo comparativa com ferramentas de referéncia para
quantificar vantagens especificas; (c) ampliacdo e estratificacdo da base de usudrios (experiéncia,
escolaridade e contexto institucional); (d) incorporacao de métricas objetivas de efici€éncia (tempo
em tarefa, taxa de erro, logs) em triangulacdo com percepgoes; e (e) investigacao de fatores que
influenciam a adogdo de ferramentas académicas especializadas.

Quanto ao desenvolvimento, destacam-se oportunidades como integracdo com reposi-
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térios amplamente utilizados (p. ex., GitHub, GitLab), implementa¢do de andlises automatizadas
de métricas de qualidade e ampliacdo do suporte a diferentes artefatos de software além de
codigo-fonte. Tais direcdes, somadas as melhorias de User Experience (UX) e orquestracdao do

fluxo, tendem a robustecer a utilidade cientifica e a ado¢dao académica da TwinCode.
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5 PERCEPCAO DE DESENVOLVEDORES SOBRE QUALIDADE DE CODIGO RE-
FATORADO POR MODELO DE LINGUAGEM DE GRANDE PORTE

A crescente integracdo de modelos de linguagem de grande porte (do inglés Large
Language Models — LLMs) aos fluxos de desenvolvimento tem ampliado a automacdo de tarefas
como geragao e refatoracdo de c6digo, com efeitos diretos sobre praticas de qualidade e produ-
tividade (XUE et al., 2025; LYU et al., 2025). Entretanto, permanece pouco explorado como
desenvolvedores percebem a qualidade do cédigo alterado por LLMs, especialmente quando
a refatoracdo visa mitigar code smells, e quais critérios humanos orientam tais julgamentos
em cendrios reais (CHEN et al., 2021; HE et al., 2025). Com base nessa lacuna, este capitulo
investiga a percepc¢ao de desenvolvedores brasileiros sobre cdigo refatorado por LLMs, combi-
nando comparacdes cegas entre versoes original/refatorada e entrevistas semi-estruturadas. A
motivacdo € dupla: (i) fornecer evidéncias empiricas que ajudem equipes a decidir quando e
como incorporar LLMs de forma responsdvel nos seus fluxos, e (ii) mapear atributos de qualidade
valorizados pelos profissionais (p. ex., legibilidade, manutenibilidade e modularidade), gerando
insumos para diretrizes de adocdo e futuras pesquisas.

Para cobrir esta lacuna, este estudo envolveu sessdes de entrevistas individuais de
cerca de 45 minutos, nas quais os entrevistados avaliaram cinco pares de cédigos (originais
e versoes refatoradas pelo modelo Qwen2.5-max') por meio da ferramenta TwinCode, que
ofereceu visualizagdo lado a lado dos trechos de cddigo comparados. As entrevistas foram
gravadas e transcritas e organizadas em cinco blocos: (i) caracterizacio do perfil do entrevistado,
(i1) percepcao de qualidade de software, (iii) andlise comparativa dos cédigos, (iv) discussao
sobre ferramentas e reflexdes sobre qualidade de codigo e (v) revelagcdao do uso de IA. A coleta
integrou dados quantitativos (preferéncias declaradas) e qualitativos (justificativas e percepgdes),
analisados pela técnica de andlise de contetido de Bardin (2016). Essa técnica permite identificar
critérios de qualidade, expectativas e limitacdes atribuidas a tecnologia.

Os resultados revelam convergéncia em torno de caracteristicas de qualidade de
codigo como legibilidade, manutenibilidade e modularidade, preferéncia majoritaria dos entre-
vistados (83%) pelos cédigos refatorados em sua totalidade e 97% dos artefatos analisados. Essa
percepc¢ao se manteve quando revelado que o cédigo foi refatorado pela LLM, pois as decisdes
se fundamentaram em caracteristicas intrinsecas de qualidade. Ao mesmo tempo, emergiu uma

aceitacdo ponderada das LLMs, no qual os entrevistados informaram que sao ferramentas uteis

! Disponivel em: <https://chat.qwenlm.ai/> Acesso em: 9 abr. 2025
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para aumentar produtividade e auxiliar em contextos de pressdo temporal, mas que exigem
supervisao humana para mitigar riscos como complexidade desnecesséria e perda de contexto.
Este trabalho possui quatro contribui¢des principais, sendo elas:

» Evidéncias empiricas inéditas. Fornecimento de resultados originais no contexto nacional
sobre a percepcao de desenvolvedores em relacdo a refatoracdes realizadas por LLMs;

* Contribuicao metodolégica. Demonstracdo da utilidade de comparagdes cegas como
abordagem para avaliar qualidade de c6digo sob a 6tica humana;

* Mapeamento de critérios de avaliacao. Identificacdo de atributos valorizados pelos
profissionais, como legibilidade, manutenibilidade e modularidade;

* Implicacoes praticas. Apontamento de oportunidades e limitagdes para a integragio
responsdvel de LLMs em fluxos de desenvolvimento, oferecendo subsidios tanto para a
pratica profissional quanto para futuras pesquisas na drea.

Este capitulo estd organizado da seguinte forma. A Secdo 5.1 descreve o delinea-
mento metodoldgico, incluindo sele¢do de dados, processo de refatoragc@o e protocolos de coleta e
andlise. A Sec¢do 5.2 apresenta os resultados, estruturados por critérios de qualidade, preferéncias
de codigo, impacto da revelagcao sobre uso de IA e expectativas sobre a tecnologia. Secao 5.3
descreve trabalhos relacionados. A Secdo 5.4 relata as ameacas a validade do estudo, enquanto a

Secdo 5.5 sintetiza as conclusdes, contribui¢des, limitagdes e direcdes para trabalhos futuros.

5.1 Metodologia

Este estudo fundamenta-se em abordagem qualitativa que combina comparagdes
cegas de cddigo com entrevistas semi-estruturadas para investigar a percepcao de desenvolvedores
sobre qualidade de cédigo refatorado por LLMs. O delineamento metodolégico foi estruturado
em quatro componentes: (i) objetivos e questdes de pesquisa, (ii) composi¢do do conjunto
de dados experimentais do Qualitas Corpus (TEMPERO et al., 2010), (ii1) detalhamento do
processo de refatoracdo e (iv) selecdo dos entrevistados, procedimentos de coleta e andlise
qualitativa. Esta estruturacdo visa eliminar vieses relacionados a origem tecnoldgica e capturar
critérios utilizados por desenvolvedores na avaliagdao de qualidade de software.

A Figura 9 apresenta o fluxograma metodoldgico utilizado no estudo. O processo
inicia-se com a definicao dos objetivos e questdes de pesquisa, etapa fundamental para orientar
todas as fases subsequentes. Em seguida, ocorre a defini¢cdo do prompt seguindo as técnicas de

White et al. (2023) e a selecao do LLM utilizado nas refatoracdes. Paralelamente, realiza-se
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a selecao dos dados a partir do Qualitas Corpus, de modo a compor o conjunto de trechos de
codigo a serem analisados. Esta selecao foi feita a partir de 815 classes e métodos classificados
com os code smells Feature Envy, Long Method, Data Class e God Class. Dessa selecio foram
escolhido aleatoriamente 20 casos de cada code smell, totalizando 80 trechos de cédigo para uso
nas entrevistas. Em seguida os dados sdo refatorados e armazenados para cruzamento dos pares,
codigo original e refatorado. A partir desses pares, foram elaboradas as comparagdes cegas, para

ocultar dos entrevistados a origem de cada trecho avaliado.

Definicao de objetivos e
Questbes Pesquisa

|

Definigao do
prompt

Selecdo do Selegao aletdria
LLM dos dados Qualitas Copus

:

Armazenamento
dos dados
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Cruzamento dos pares
- original e refatorado

Y

Selecao dos
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Semi-estruturadas comparagodes cegas
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Analise de conteudo Coleta das
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Sintese dos

Resultados e
discussodes

Figura 9 — Fluxo de trabalho proposto
Fonte: Elaborado pelo autor (2025)

Posteriormente, ocorre a selecdo dos entrevistados e a aplicacdo das entrevistas semi-
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estruturadas, nas quais os desenvolvedores analisaram os cédigos apresentados. Nessa etapa,
foram coletadas as preferéncias e justificativas em relacdo as versdes originais e refatoradas, sendo
todas as interagdes registradas em transcricdes. Por fim, os dados coletados foram submetidos a
andlise de conteido proposta por Bardin (2016), possibilitando a categorizacdo e interpretacao
das percepcdes manifestadas. A etapa final consistiu na sintese dos resultados e discussdes, que
integra os achados obtidos e fornece subsidios para a compreensao das contribui¢des e limitagdes

do uso de LLMs na refatoracdo de cédigo.

5.1.1 Objetivos da Pesquisa

O objetivo principal desse capitulo € investigar a percepc¢ao de desenvolvedores
sobre a qualidade de cédigo refatorado por LLLMs. De forma complementar, definiu-se quatro
objetivos especificos.

1. Identificar e categorizar os critérios que desenvolvedores utilizam espontaneamente para
avaliar qualidade de cddigo, estabelecendo uma taxonomia conceitual dos fatores que
influenciam percepg¢des de qualidade no contexto de desenvolvedores profissionais;

2. Analisar preferéncias entre versdes originais e refatoradas por LLMs por meio de compara-
coes cegas (desenvolvedores ndo sabem qual € o cddigo refatorado, nem quem refatorou),
quantificando e qualificando as escolhas dos desenvolvedores sem viés relacionado a
origem do c6digo;

3. Investigar mudancgas na percep¢do de qualidade apds revelagdo sobre uso de inteligéncia
artificial na refatoracdo, avaliando o impacto de preconceitos tecnoldgicos nas avaliacdes
dos desenvolvedores;

4. Examinar expectativas, preocupagdes e perspectivas dos desenvolvedores sobre integra¢ao
futura de LLLMs em processos de melhoria de qualidade de cédigo, identificando fatores
facilitadores e barreiras a adocao tecnolégica.

A partir dos objetivos delineados para este estudo, foram formuladas quatro questdes
de pesquisa (QPs) que estruturam a investigacdo empirica sobre percep¢ao de desenvolvedores
em relag@o ao cddigo refatorado por LLMs. A seguir, sdo apresentadas cada questdo de pesquisa

e suas respectivas justificativas.

QP1: Quais critérios desenvolvedores utilizam espontaneamente para avaliar quali-

dade de codigo?
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Essa questdo investiga os parametros que os desenvolvedores utilizam de forma
natural ao julgar um cédigo. Ao identificar critérios como legibilidade, manutenibilidade,
modularidade ou testabilidade, € possivel compreender quais dimensdes da qualidade sdo mais

valorizadas pelos desenvolvedores na prética.

QP2: Desenvolvedores conseguem identificar diferencas qualitativas entre codigo

original e refatorado por LLMs em comparacgdes cegas?

Nessa questao pesquisa € buscado verificar se, sem influéncia de preconceitos tec-
noldgicos, os desenvolvedores percebem distincdes relevantes entre as duas versoes de codigo.
Trata-se de um passo decisivo, pois avalia a efetividade da refatoracao automdtica em termos
praticos. Explora-se se as refatoracdes realizadas pelo LLM geram, de fato, mudancas notaveis e

reconhecidas como melhorias.

QP3: Como a revelacao sobre uso de 1A influencia a percepcao de qualidade dos

desenvolvedores?

Na questao de pesquisa trés, explora-se o papel do viés tecnoldgico no julgamento de
qualidade. Ao comparar as respostas obtidas antes e depois da revelacdo do uso de IA, verifica-se

a existéncia de resisténcia ou de confianca no cédigo refatorado pela LLM.

QP4: Quais sdo as expectativas e preocupacdes dos desenvolvedores sobre o uso de

LLMs para melhoria de qualidade de c6digo?

Para essa questdo, busca-se ampliar a andlise para além da comparacdo direta entre
cddigos, procurando compreender como os profissionais percebem o futuro dessa tecnologia. A
investigacdo de expectativas e preocupacdes permite construir uma visao equilibrada sobre as

possibilidades e os desafios do uso de LLMs.
5.1.2 Conjunto de Dados

O estudo utilizou cédigos do Qualitas Corpus versio 2013090112, proposto por Tem-
pero et al. (2010). Neste capitulo sdo investigados os quatro code smells analisados por Fontana

et al. (2016) e Abdou e Darwish (2024) no Capitulo 3: God Class, Long Method, Feature

Envy e Data Class. Esses code smells foram escolhidos por representarem categorias distintas

2 Disponivel em: <https:/qualitascorpus.com/download/> Acesso em: 2 abr. 2025
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de problemas: enquanto God Class e Data Class evidenciam falhas estruturais relacionadas ao
desenho das classes, Long Method e Feature Envy estdo associados a implementacao e ao uso
inadequado de responsabilidades nos métodos. Dessa forma, o conjunto abrange tanto problemas
de projeto de alto nivel quanto defeitos mais granulares. Para compor a base experimental, foram
selecionadas aleatoriamente 20 classes de cada tipo de code smell, totalizando uma amostra com
80 artefatos destinados a refatoracdo e a avaliacdo dos entrevistados.

A Tabela 11 apresenta em detalhes o processo de selecdo e filtragem da amostra
utilizada. Inicialmente, foram identificados 815 trechos com ocorréncia de code smells. Em
seguida, por meio de um script desenvolvido em Python?, realizou-se o cruzamento desses
trechos com o cédigo-fonte dos sistemas pertencentes ao Qualitas Corpus. Esse procedimento
permitiu localizar 740 trechos correspondentes, enquanto 75 ndo puderam ser associados ao

respectivo codigo-fonte.

Tabela 11 — Processo de sele¢do das amostras para refatoracao

Code Smell Identificados Inicialmente Apds Filtragem Selecionados para Refatoracio

Long Method 140 127 20
Data Class 269 241 20
God Class 266 242 20
Feature Envy 140 130 20
Total 815 740 80

Fonte: Elaborado pelo autor (2025)

Ap6s o processo de refatoracdo que resultou em 80 pares de cddigo (original e
refatorado), foram selecionadas aleatoriamente 5 comparacdes tnicas para cada entrevistado
durante as entrevistas. Cada participante analisou um conjunto distinto de cdigo, garantindo
diversidade na amostra e evitando viés de familiarizagdo. A Tabela 12 apresenta os 12 sistemas
do Qualitas Corpus selecionados aleatoriamente para as comparacdes realizadas nas entrevistas.
Esses sistemas foram utilizados por conterem classes e métodos classificados com algum dos
code smells investigados. Dessa forma, o nimero de sistemas analisados nesta avaliacdo foi
limitado em fun¢do da quantidade de entrevistados considerados neste estudo, descritos na

Secdo 5.1.4.

3

Disponivel em: <https://github.com/alanfm/dissertation_cap5>



Tabela 12 — Sistemas do Qualitas Corpus analisados pelos entrevistados

Sistema Versao Dominio Descricao

Heritrix 1.14.4 Arquivamento Web Rastreador web desenvolvido pelo Internet Archive
para coleta e arquivamento de contetdo digital

JSPWiki 2.6.3 Wiki/CMS Mecanismo de Wiki em Java construido com compo-
nentes J2EE padrao

mvnForum 123 Férum Ferramenta de férum desenvolvida em Java para dis-
cussdes online

JHotDraw 7.0.6 Framework Grafico Framework Java para graficos bidimensionais e cons-
trucdo de editores de desenho

DrawSWF 1.2.9 Aplicacdo Gréfica Aplicagdo de desenho simples em Java para criacdo de
arquivos animados SWF

ProGuard 4.4 Otimizacdo Sistema para otimizar, ofuscar e reduzir c6digo Java
através de andlise de bytecode

HSQLDB 1.8.0.10  Banco de Dados Sistema de banco de dados relacional implementado
em Java

Xerces 29.1 Processamento XML  Analisador de XML de alto desempenho da familia
Apache Xerces

MegaMek 0.35.18  Jogo Jogo de estratégia baseado no universo BattleTech

Art of Illusion  2.7.2 Modelagem 3D Estddio para modelagem e renderizagdo 3D

JSML 1.1.1 Processamento Sistema para descompilagdo de arquivos .class do Java

EMMA 2.0.5312  Andlise Cobertura Ferramenta de andlise de cobertura de cédigo Java

usando instrumentacdo de bytecode

Fonte: Elaborado pelo autor (2025)

5.1.3 Processo de Refatoracdo

80

Todos os modelos avaliados, ChatGPT-3.5%, DeepSeek—Rl5 , Google Gemini 2.0

flash® e Qwen?2.5-max, apresentaram desempenho satisfatério na compreensio de cédigo Java,
aplicagdo de principios de qualidade de software e identificagdo de code smells, entretanto o
Qwen2.5-max foi selecionado por disponibilizar acesso gratuito a funcionalidades avangadas,
garantindo a replicabilidade do estudo e a viabilidade econdmica da pesquisas.

O desenvolvimento do prompt estruturado fundamentou-se nas técnicas estabelecidas
por White et al. (2023), integrando quatro componentes metodolégicos essenciais para assegurar
qualidade e consisténcia da refatoragdo: (i) defini¢do explicita dos objetivos de refatoracdo,
assegurando clareza quanto as metas de melhoria de qualidade; (ii) incorporagio de diretrizes
de estilo de codificagdo Java, garantindo aderéncia a convengdes consolidadas da linguagem:;

(ii1) instrucdes especificas para tratamento dos code smells considerados no estudo (god class,

4 Disponivel em:<https://chat.openai.com/> Acesso em: 7 abr. 2025
> Disponivel em: <https://chat.deepseek.com/> Acesso em: 8 abr. 2025
¢  Disponivel em: <https://gemini.google.com/> Acesso em: 9 abr. 2025
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long method, feature envy e data class); e (iv) padronizacdo do formato de saida, assegurando

consisténcia na anélise e reprodutibilidade dos resultados. No Cédigo-fonte 1 € apresentado o

conteudo integral do prompt, seguindo as técnicas mencionadas acima.

Cdédigo-fonte 1 — Prompt usado para refatoragao do codigos.

3]

w

W

6

9

<prompt>

<contexto>
Vocé & um especialista em engenharia de software, com profundo
conhecimento em Java, refatoragdo de cédigo e detecgdo de code smells.
Seu objetivo & analisar um trecho de cdédigo e identificar a presenga
de code smells especificos.
Além disso, vocé deve sugerir uma refatoragdo detalhada, explicando
como o cbédigo pode ser melhorado para seguir boas praticas de programagéo.
<restricoes>
Limite-se a analisar apenas os seguintes code smells: god class,
long method, feature envy e data class.
</restricoes>
</contexto>
<tarefa>
Analise o seguinte cdédigo Java e determine se ele contém algum dos
seguintes code smells:
<lista>
<item>
God Class (Classe excessivamente grande e com muitas
responsabilidades) .
</item>
<item>
Long Method (Métodos muito longos e dificeis de entender).
</item>
<item>
Feature Envy (Um método que acessa mais dados de outra
classe do que da sua prépria).
</item>

<item>
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Data Class (Uma classe que apenas armazena dados, sem
comportamentos relevantes).
</item>
</lista>
Se houver um ou mais code smells, explique quais sdo, por que eles
ocorrem e quais os impactos negativos no coédigo.
Depois, proponha uma refatoracdo detalhada, mostrando a verséo
melhorada do cédigo e justificando as mudangas feitas.
Sempre que for adicionado um arquivo com cédigo java, faga a andlise
automaticamente.
</tarefa>
<formato>
Sua resposta deve seguir esta estrutura:
<lista>
<item>
1. Code Smells Detectados: Liste os problemas encontrados e
explique cada um.
</item>
<item>
2. Justificativa: Por que esse code smell & um problema no
cédigo analisado?
</item>
<item>
3. Coédigo Refatorado: Apresente uma versdo melhorada do
cédigo.
</item>
<item>
4. Explicagdo da Refatoragdo: Explique cada modificagéo
realizada e como ela melhora a qualidade do cédigo.
</item>
</lista>
</formato>

<exemplo>
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49 </exemplo>

50 | </prompt>

Fonte: Elaborado pelo autor (2025)

A implementacdo desses componentes estruturais foi complementada por contro-
les especificos voltados a preservacao da integridade funcional e direcionamento preciso das
intervengdes. As instrucdes para manutengao da funcionalidade original buscou asseguraram
que o processo de refatoracao preservasse o comportamento dos métodos e classes, priorizando
melhorias estruturais sem alteracdo semantica. O foco especifico na eliminacao dos code smells
identificados direcionou as intervencdes para os problemas estruturais detectados, garantindo
que a refatoracdo abordasse sistematicamente as deficiéncias qualitativas presentes no c6digo
original.

O processo de refatoracdo seguiu protocolo sistematizado em seis etapas sequenciais
para garantir consisténcia metodoldgica e controle de varidveis experimentais, sendo elas: (1)
aplicacdo do prompt padronizado, elaborado com base nas diretrizes de White et al. (2023); (ii)
inser¢cdo manual de cada classe no modelo Qwen2.5-max para obten¢do das versdes refatoradas;
(iii) armazenamento organizado das 80 versdes processadas, assegurando rastreabilidade entre
originais e refatoradas; (iv) remocao sistemdtica de comentdrios em ambas as versoes (original e
refatorada) para garantir comparacao cega livre de indicadores de origem; (v) selecdo aleatéria
de cinco pares unicos de cédigos (original e refatorado) para cada entrevistado para garantir
diversidade na amostra e eliminar efeitos de familiarizacao entre diferentes sessoes de entrevista;
e (vi) randomizacgdo da posi¢do dos cédigos dentro de cada par, de modo que o original e o
refatorado pudessem aparecer indistintamente como “Cdédigo 17 ou “Cddigo 2” para eliminar
viés de posicdo e assegurar que as preferéncias dos entrevistados refletissem qualidade percebida

ao posicionamento visual na ferramenta.
5.1.4 Selecdo dos Entrevistados e Coleta e Andlise dos Dados

O estudo envolveu desenvolvedores profissionais selecionados por amostragem de
conveniéncia, estratégia que possibilitou perfis heterogéneos em termos de experiéncia e atuacao
profissional, o que enriqueceu a andlise qualitativa dos dados.

As entrevistas semi-estruturadas foram realizadas remotamente via Google Meet 7

formato que permitiu maior flexibilidade de participacdo e acesso a desenvolvedores geografica-

7 Disponivel em: <https://meet.google.com> Acesso em: 2 jun. 2025
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mente distribuidos. O tempo médio de 45 minutos por sessdo e a gravacao integral das sessdes
utilizou o software OBS Studio®, garantindo qualidade técnica adequada para posterior processa-
mento dos dados. Todas as entrevistas foram transcritas através do programa Vibe®, software de
codigo aberto, gratuito, offline e usa LLM para maior fidelidade ao dudio. O protocolo seguiu
diretrizes éticas rigorosas, incluindo consentimento informado e garantias de confidencialidade
dos dados coletados.

As entrevistas seguiram um roteiro estruturado em quatro blocos principais, como
pode ser visto no Apéndice D, esse roteiro inicia-se pela apresentacdo da pesquisa e caracteriza-
cdo do perfil profissional dos entrevistados durante cerca de dez minutos, estabelecendo contexto
experiencial necessério para interpretacao posterior das respostas. A fase central concentrou-se
na comparagdo de cédigos por aproximadamente 25 minutos, utilizando a ferramenta TwinCode,
descrita no Capitulo 4, para apresentar os cinco pares de codigos em andlise cega. O terceiro
segmento explorou ferramentas e reflexdes sobre qualidade levando entorno de dez minutos,
contextualizando as avaliagdes individuais dentro de préticas profissionais mais amplas. A fase
final, aproximadamente cinco minutos, revelou o uso de IA na refatoracdo e coletou pondera-
¢coes sobre implicacdes futuras da tecnologia. A ferramenta TwinCode, teve papel essencial
para apresentacdo comparativa dos codigos, oferecendo numeragdo sincronizada de linhas que
facilitou referéncia precisa durante as discussdes, realce de sintaxe para melhor legibilidade
do cédigo Java, ajuste dinamico de fonte conforme necessidades visuais dos entrevistados, e
interface responsiva acessivel remotamente via Ngrok!” para garantir funcionalidade adequada
durante as sessdes virtuais.

A andlise dos dados seguiu a técnica de andlise de conteido de Bardin (2016),
aplicando especificamente a modalidade temadtica as transcricdes das entrevistas realizadas. O
processo analitico respeitou as trés etapas fundamentais propostas pela autora: pré-anélise para
organiza¢do do material transcrito, exploracao sistematica mediante codificac@o para identificar
padrdes recorrentes e critérios de avaliacdo, e tratamento interpretativo dos resultados obtidos.
A categorizacdo dos dados seguiu abordagem indutiva, resultando na emergéncia de cinco
categorias principais que capturaram dimensdes especificas da percepcao dos desenvolvedores:
(i) critérios de qualidade espontaneamente mencionados, (ii) preferéncias entre versdes de

codigo, (iii) justificativas para escolhas realizadas, (iv) percep¢des sobre inteligéncia artificial

8
9

Disponivel em: <https://obsproject.com> Acesso em: 5 jun. 2025
Disponivel em: <https://thewhlteagle.github.io/vibe/> Acesso em: 9 jul. 2025
10" Disponivel em: <https://ngrok.com/> Acesso em: 7 jul. 2025
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pos-revelagdo e (v) expectativas futuras sobre integracdo de LLMs. Essas categorias encontram-
se organizadas no Apéndice B, em forma de tabela que apresenta as unidades de registro, seus
respectivos codigos e categorias, bem como exemplos literais de falas e a interpretacdo analitica

associada.

5.2 Resultados

Esta secdo organiza os resultados obtidos no estudo empirico em seis subse¢des. A
Secdo 5.2.1 apresenta a caracterizacao dos entrevistados, de modo a contextualizar o perfil da
amostra e sua diversidade de experiéncias. A Se¢do 5.2.2 apresenta os critérios de qualidade
de cédigo identificados espontaneamente pelos desenvolvedores (QP1). A Secdo 5.2.3 mostra
as comparagdes entre versoes originais e refatoradas, destacando preferéncias e justificativas
(QP2). A Secido 5.2.4 apresenta o impacto da revelacdo sobre o uso de IA nas percepgdes dos
entrevistados (QP3). A Secdo 5.2.5 relata as expectativas e preocupagdes em relacao ao uso de
LLMs para melhoria da qualidade de cédigo (QP4). Por fim, a Se¢ao 5.2.6 apresenta uma analise
integrativa dos resultados, sintetizando os achados quantitativos e qualitativos e discutindo suas
implicacdes para a compreensdo da percep¢do dos desenvolvedores sobre cédigo refatorado por

modelos de linguagem de grande porte LLMs.

5.2.1 Caracterizacdo dos Entrevistados

A amostra € composta por sete entrevistados, contemplando diferentes niveis de
senioridade: trés autodeclarados juniores, dois plenos e dois seniores, distribuidos em distintas
areas de desenvolvimento de software. Como desenvolvimento web, mével, sistemas embarcados
e plataformas Software as a Service (SaaS). Essa diversidade permitiu identificar percep¢des
distintas sobre qualidade de c6digo, uma vez que cada nivel de maturidade tende a valorizar
aspectos especificos do processo de construcdo de software. Enquanto os mais experientes
ressaltaram a importancia da manutencdo e da refatoracdo ao longo do ciclo de vida do c6digo, os
juniores enfatizaram a simplicidade e a legibilidade imediata como elementos centrais para definir
a qualidade. Essa multiplicidade de cendrios contribuiu para que fossem trazidas perspectivas
complementares sobre a aplicabilidade dos critérios de qualidade. Os entrevistados que atuam
como profissionais no mercado destacaram a relevancia de arquiteturas escaldveis e do uso de

padrdes de projeto, enquanto aqueles com maior vinculo académico priorizaram a clareza, a



86

organizagdo estrutural e o valor pedagégico de determinadas solucdes de codigo. Essa variagdao
ampliou o escopo interpretativo da pesquisa.

A Tabela 13 detalha as caracteristicas dos entrevistados, apresentando informacgdes
sobre experiéncia profissional, drea de especializacdo e ferramentas de desenvolvimento habitu-
almente utilizadas. Como pode ser visto, hd uma boa variabilidade de nivel de senioridade, nesse
quesito os entrevistado se classificaram por autodeclaracdao. O tempo de experiéncia mostra
que os seniores tem 15 anos, os plenos mais de 4 anos e os juniores variando de 11 anos a
um ano e meio. As drea de atuacdo é bem diversifica, assim como as ferramentas. A seguir,
sao apresentados alguns trechos das entrevistas dos participantes referentes a seus perfis e as
ferramentas utilizadas. ES, se autodeclarou como junior “eu considero minha experiéncia como
Junior”, relatou ter cerca de “seis anos” de experiéncia em desenvolvimento web, destacando que
atua com “PHP, MySQL e alguma ferramenta para modelar banco de dados”, o que confirma
sua prdtica em ferramentas variadas e foco em aplicacdes web. No nivel pleno, E4 afirmou: “Eu
sou programador dart, pleno, basicamente”, acrescentando que possui “quatro anos no mercado”
€ que sua atuacdo se concentra “principalmente em aplicativos, 90%”, utilizando como principais
ferramentas o “Android Studio com Xcode”. Ja entre os séniores, E7 declarou: “Sénior [...]
trabalho hd 15 anos”, ressaltando sua experiéncia no desenvolvimento de “plataformas SaaS” e
seu uso cotidiano de ambientes diversos: “Tenho utilizado mais o VS Code como IDE, mas jd
utilizei o IntelliJ também, Eclipse [...] utilizo Google Cloud, jd utilizei AWS [...] também Docker

e Kubernetes para orquestracdo’.

Tabela 13: Perfil dos entrevistados

ID Nivel Experiéncia Area Principal Ferramentas

El  Sénior 2 anos mercado, 15 Web (backl/front) VS Code, Cursor
total

E2 Janior 11 anos Embarcados, IA Python, VS Code

E3 Pleno 5 anos Educacao, Web Nao especificado

E4 Pleno 4 anos mercado Mobile (Flutter) Android Studio

E5 Jdnior 6 anos Web Ferramentas variadas

E6 Janior 1,5 anos mercado Web (Node.js/React) VS Code

E7 Sénior 15 anos SaaS, Plataformas VS Code, Intelli]

Fonte: Elaborado pelo autor (2025)
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5.2.2 Critérios de Qualidade de Cédigo (QP1)

De modo geral, todos os entrevistados demonstraram familiaridade com conceitos
bésicos de qualidade de c6digo, ainda que nem sempre tenham utilizado terminologia técnica
formal para descrevé-los. Termos como legibilidade, modularidade, padronizagdo e manutenibi-
lidade apareceram de forma recorrente nos discursos, mesmo quando expressos de maneira mais
empirica e baseada em vivéncias pessoais. Essa caracteristica refor¢a a relevancia de considerar
a experiéncia prética dos entrevistados na avaliagdo da qualidade de software, uma vez que o
entendimento sobre o tema nio se restringe a definicdes académicas, mas € construido a partir da
interacao cotidiana com diferentes tipos de cddigo e contextos de desenvolvimento.

A andlise qualitativa das justificativas revelou que os desenvolvedores utilizam
métodos predominantemente empiricos para avaliacao, conforme indicado na Tabela 14. Os
entrevistados (E1, E2, E3 e E7) mencionaram explicitamente a experiéncia como critério de
avaliacdo da qualidade de codigo. Os demais entrevistados (E4, ES e E6) ndo citaram diretamente
a experiéncia pessoal como fundamento; entretanto, a andlise semantica dos trechos a seguir,
referenciando as escolhas pelo codigo refatorado, permite interpretar o uso da experiéncia pessoal
na classificagdo da qualidade do cédigo: E4 “Claramente, a principal coisa que faz um coédigo
ser bom é ser legivel e padronizado. O codigo 1 tem muita coisa fora do padrdo.”; ES “Ndo
tem nem como comparar, o codigo 1 td enxuto, perfeito, bem resumido. O cédigo 2 td enorme e
pouco legivel.”; e E6 “O codigo 2 estd bem mais modular, responsabilidades divididas, mais

legivel.”.

Tabela 14: Experiéncia como métodos para classificacao de qualidade de codigo

Entrevistado Nivel Exemplo de fala

El Sénior  Eu vejo muito esse codigo e reconheco como gambiarra porque era o que eu faria hd
20 anos atrds.

E2 Janior  Eu ndo tenho experiéncia de mercado tdo grande. .. entdo me considero junior. Minha
avaliagcdo é mais pela experiéncia académica e pessoal.

E3 Pleno A qualidade de um cédigo se reflete quando, com os anos, ainda consigo dar manuten-
¢do naquele codigo.

E7 Sénior  Vejo métodos gigantes, ifs dentro de ifs. .. isso a experiéncia mostra que é dificil de
manter.

Fonte: Elaborado pelo autor (2025)

Ap6s o processamento das entrevistas, foram identificados seis critérios de qualidade
de cddigo: legibilidade, manutenibilidade, modularidade, padronizacdo de nomenclatura, funcio-

nalidade e simplicidade. A Figura 10 apresenta a distribuicao de ocorréncias desses critérios entre
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os entrevistados, resultante de andlise semantica das falas, detalhada no Apéndice A. Observa-se
a predominancia de legibilidade, manutenibilidade e modularidade, evidenciando a énfase dos
entrevistados em atributos que favorecem a compreensao, a evolugdo e a organizacao estrutural
do codigo. A seguir, € descrita a frequéncia com que cada critério de qualidade foi mencionado

pelos entrevistados, permitindo identificar os mais relevantes na avaliacdo de codigo.

Ocorréncias semanticas

E1 E2 E3 E4 E5 E6 E7
Entrevistados

mm |egibilidade W Manutenibilidade mms Modularidade B Padronizagao B Funcionalidade mmm simplicidade

Figura 10: Categorias por entrevistado
Fonte: Elaborado pelo autor (2025)

Legibilidade (7/7 entrevistados): Houve unanimidade na percepcao de que o cddigo
deve ser facil de ler e compreender. Os entrevistados destacaram que a clareza visual e a escolha
adequada de nomes para varidveis e funcdes sdo determinantes para a compreensdo do codigo.
Como exemplificado por E4: "A principal coisa que faz um codigo ser bom para manter é um
codigo que duas pessoas vdo bater o olho e vdo compreender a logica ali."

Manutenibilidade (6/7 entrevistados): Associada a capacidade de realizar alteracdes
e extensdes no codigo sem comprometer sua integridade. Foi citada como um dos critérios
essenciais para garantir a longevidade do software, aparecendo entre os “trés principais critérios”
de E7, juntamente com legibilidade e funcionalidade.

Modularidade (6/7 entrevistados): Relacionada a separacdo clara de responsabilida-
des e a aplicacdo de principios como responsabilidade inica. Essa prética foi reconhecida como
essencial para manter a organizacdo e a escalabilidade do sistema. E3 exemplificou: "Separacdo

de responsabilidades".
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Padronizacao de Nomenclatura (3/7 entrevistados): Considerada parte integrante
da legibilidade, refere-se ao uso consistente de convencdes de nomes para varidveis, funcoes e
métodos, facilitando a compreensao por diferentes desenvolvedores. E4 destacou: "Nomear bem
varidveis e funcoes".

Funcionalidade (3/7 entrevistados): Refere-se a garantia de que o cédigo atenda
plenamente aos requisitos previstos e execute as tarefas de forma correta. Foi citada por E7 como
um dos pilares da qualidade de cédigo.

Simplicidade (3/7 entrevistados): Preferéncia por solu¢cdes enxutas e objetivas,
evitando complexidade desnecessaria. E1 comentou: "Eu gosto de cédigos pequenos, mas que
sejam legiveis".

Essa distribui¢do evidencia ndo apenas o consenso em torno de determinados as-
pectos, como a legibilidade, mas também a diversidade de perspectivas sobre o que caracteriza
um cdodigo de qualidade. Diferentemente da Figura 10, que sintetiza ocorréncias a partir de
andlise semantica das falas, as citacdes diretas dos entrevistados apresentadas acima consideram
apenas mengdes textuais explicitas aos termos, podendo, portanto, divergir ligeiramente dos
totais previamente reportados. As citacdes foram extraidas e classificadas pelos seis critérios
de qualidade reportados, preservando a literalidade e o contexto imediato de enunciacdo. Essa
distingdo metodoldgica reforca a rastreabilidade entre os resultados e o corpus original e esta
detalhada no Apéndice A.

A Figura 11 apresenta a nuvem de palavras construida a partir das sete transcrig¢des.
O procedimento de construcao da nuvem de palavras consiste em: (1) unificar as transcri¢cdes
em um unico corpus; (ii) converter letras maitsculas para minudsculas e ftokenizadas por regex
com preservagao de acentuagdo; e (iii) promover limpeza linguistica, ou seja, remover palavras
frequentes, mas sem contetido semantico do portugués e de marcadores conversacionais (p.ex.,
“né”, “ta”, “uhum”), a exclusdo de artigos e pronomes e a filtragem de verbos por abordagem
hibrida (lista manual de formas frequentes e heuristica morfoldgica por terminagdes), incluindo
a retirada de itens de baixo conteudo informativo (“€”, “e”). Para evitar dispersao entre flexdes,
aplicou-se normalizacdo de numero sem afetar os acentos (regras: “Oes/des — a0”, “‘eis — el”,
“is/es/s — singular”’), de modo que pares como “varidvel/varidveis” convergissem para “varidvel”.

11

A nuvem foi gerada a partir das frequéncias consolidadas e diagramada no Infogram'', ao passo

que o processamento foi implementado em Python (pandas, regex), assegurando rastreabilidade

' Disponivel em: <https://infogram.com/> Acesso em: 11 ago. 2025
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e reprodutibilidade das etapas e parametros.
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Figura 11: Nuvem de palavras
Fonte: Elaborado pelo autor (2025)

Como resultados, observa-se a forte centralidade de “codigo”, termo mais proemi-

nente, seguido de “qualidade’”; em torno desses nucleos gravitam referéncias praticas como

9 ¢ 99 (¢

“sistema”, “fungdo”, “ferramenta”, “exemplo”, “software” e “varidvel”, bem como atributos inter-

99 ¢ 99 ¢ 99 ¢ 29

nos associados a avaliagdo técnica: “legivel/legibilidade”, teste”, “complexidade

manuten¢do”,
e “ciclomdtica”. O tamanho relativo das palavras indica maior frequéncia de mencao e sugere que
os entrevistados concentram o discurso na avalia¢do da qualidade do cédigo, articulando critérios
de legibilidade, testabilidade e controle de complexidade, além de situarem tais julgamentos
no contexto de uso (ferramentas, sistemas e exemplos). Em termos quantitativos, “cddigo”
responde por 10,7% das palavras filtradas (893 de 8.342), ao passo que “qualidade” perfaz
1,95%; aparecem ainda “sistema” (1,29%), “questdo” (1,08%), “funcdo” (1,07%), “melhor”
(1,03%), “ferramenta” (0,92%), “exemplo” (0,91%), “software” (0,80%) e “varidvel” (0,62%),

corroborando a predominancia de vocabuldrio relacionado a andlise de trechos de cddigo.
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Resumo da resposta da QP1. Em sintese, desenvolvedores avaliam a qualidade de
codigo por critérios majoritariamente empiricos, ancorados na pratica profissional, com
consenso forte em torno da legibilidade, manutenibilidade e modularidade. Nomenclatura,
funcionalidade e simplicidade surgem como fatores complementares que reforca a clareza,
a evolucdo segura e a organizacao estrutural do software. Esse panorama delimita, portanto,
os atributos que efetivamente orientam o julgamento humano e fornecem a base para

interpretar as escolha comparativas discutidas nas andlises subsequentes.

5.2.3 Comparagoes de Codigo (QP2)

A questdo de pesquisa (QP2) buscou investigar se desenvolvedores conseguem
identificar diferengas qualitativas entre c6digos originais e versdes refatoradas por LLMs quando
submetidos a comparagdes cegas. Para isso, foram apresentados cinco pares de codigos aos
entrevistados, sem qualquer indicacdo de origem, e cada entrevistado justificou suas escolhas
com base em critérios de qualidade de software.

Os resultados mostram que os desenvolvedores, em sua maioria, conseguiram per-
ceber diferencas consistentes entre as versoes apresentadas. As justificativas apontam que a
legibilidade foi o critério mais recorrente: c6digos mais concisos, claros e bem indentados foram
associados a maior qualidade, como evidenciado nas falas de E1, E2 e E3, que destacaram
preferir codigos “enxutos” e “mais fdceis de ler e manter”.

Outro critério amplamente citado foi a modularidade, ressaltada por E3, E6 e E7, que
valorizaram versdes em que havia separacao de responsabilidades e menor acoplamento. Para
esses entrevistados, a divisdo adequada em classes e func¢des foi entendida como sinal de maior
manutenibilidade e testabilidade. Ainda assim, alguns entrevistados, como E4 e E6, advertiram
que modularizagdes mal planejadas podem aumentar a complexidade, indicando que nem sempre
a refatoracdo € sindnimo de qualidade superior.

A complexidade ciclomdtica apareceu como elemento de critica em falas de E6
e E7, que rejeitaram cédigos com condicionais aninhadas ou loops redundantes, preferindo
solugOes mais lineares e diretas. Ja o ES trouxe uma visao diferenciada ao considerar que, em
determinados contextos de ensino, o c6digo original poderia ser mais didatico, por tornar a
sequéncia légica mais evidente a iniciantes, mesmo que fosse mais extenso.

A Figura 12 apresenta a distribui¢do das escolhas dos entrevistados entre codigos
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originais e refatorados. Observa-se uma tendéncia praticamente unanime em favor das versoes
refatoradas: dos 35 julgamentos individuais (sete entrevistados em cinco comparacdes cada), 34
escolhas (97,1%) recairam sobre o c6digo refatorado e apenas uma escolha (2,9%) favoreceu
o codigo original. Esse tnico caso correspondeu ao entrevistado ES, que destacou o potencial
didético do cédigo original por tornar a 16gica mais explicita a iniciantes. Em outras palavras,
para 7 dos 7 desenvolvedores, a maioria dos 5 pares foi avaliada como de maior qualidade na
versdo refatorada (teste binomial unilateral vs 0,5: p = 0,0078). Em nivel de par, 5 dos 5 pares
tiveram maioria pré-refatorado (p = 0,031). Em nivel de voto, 34 dos 35 votos favoreceram o
refatorado (p ~ 1,0 x 1077). Esses resultados convergem para a conclusio de que as versdes

refatoradas pelas LLMs apresentam maior qualidade do que as originais.
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B Original @m Pefatorado

Figura 12: Distribuigdo geral de preferéncias
Fonte: Elaborado pelo autor (2025)

Os dados reforcam que os desenvolvedores, quando submetidos a comparacoes
cegas, identificaram diferencgas qualitativas consistentes entre as versoes, atribuindo valor as
refatoracdes geradas pela LLM. As justificativas recorrentes alinham-se a dimensdes de quali-
dade de software amplamente reconhecidas, como legibilidade, modularidade, simplicidade e
manutenibilidade. Assim, a andlise quantitativa corrobora a interpretacdo qualitativa: embora
nem todas as preferéncias tenham sido absolutas em termos de contexto, a percepgao coletiva
aponta que as refatoragdes automatizadas foram consideradas superiores em quase todos os

cenarios.
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Resumo da resposta da QP2. Os desenvolvedores foram capazes de identificar diferengas
qualitativas entre o cédigo original e o refatorado por LLMs em um cendrio de compara-
¢oes cegas. A predominancia das escolhas pelas versodes refatoradas (34 de 35 avaliagdes)
demonstra que atributos como legibilidade, modularidade e simplicidade foram ampla-
mente reconhecidos como superiores. Ainda que tenham surgido ressalvas pontuais, como
a percepc¢ao de que o codigo original poderia ser mais diddtico para iniciantes, o conjunto
das justificativas evidencia que os entrevistados ndo apenas distinguiram as versdes, mas
atribuiram valor as melhorias introduzidas pela refatoracdo automatica. Esses achados
reforcam a ideia de que LLMs podem produzir efeitos perceptiveis e consistentes na

qualidade do c6digo, mesmo quando a autoria € ocultada.

5.2.4 Impacto da Revelagdo sobre IA (QP3)

A terceira questdo de pesquisa (QP3) investigou como a revelacao de que os c6digos
avaliados haviam sido refatorados por modelos de linguagem de grande porte (LLMs) influenciou
a percepcao de qualidade dos entrevistados. De forma geral, a revelacdao de que uma das
versoes havia sido gerada por LLM nao afetou negativamente as escolhas dos entrevistados.
Ao contrario, a maioria dos entrevistados demonstrou surpresa positiva, reconhecendo que os
cddigos gerados pela LLM correspondiam a critérios técnicos ja utilizados em suas praticas
profissionais. Entrevistados como E1, E2 e E3 afirmaram que suas escolhas nio se alterariam
apos saber da intervengdo da IA, pois os critérios de escolha haviam se baseado em atributos de
qualidade de cédigo como legibilidade, modularidade e simplicidade. Conforme indicado na
fala de E1: “Mesmo sabendo que foi uma IA que gerou, eu ainda escolheria o mesmo cédigo,
porque ele estd mais claro e fdcil de manter.” Essa postura sugere que a qualidade percebida
independe da autoria, desde que o c6digo atenda a padrdes técnicos consistentes. O E2 reforcou
essa perspectiva ao afirmar: “O que me fez escolher ndo foi quem escreveu, mas a forma como
o codigo ficou mais simples e legivel.” Ja o E3 destacou: “Pra mim ndo muda nada, porque a
andlise que fiz foi olhando a clareza e a organizacdo. Se foi humano ou IA, o resultado continua
vdlido.”

Por outro lado, emergiram posicionamentos criticos e cautelosos. Entrevistados como
E4 e E5 ponderaram que, embora a refatoracio automatica apresente resultados satisfatdrios, a

confiabilidade plena da soluc¢do exige valida¢cdo humana. O entrevistado E4 ressaltou: “Funciona
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bem, mas eu ndo colocaria em produgcdo sem revisar, porque a IA ndo sabe das regras de
negdcio.” Da mesma forma, ES alertou: “E impressionante ver que foi feito por IA, mas precisa
ter alguém conferindo, porque pode faltar contexto do sistema real.” Além disso, foi observada
uma dimensao de adequacdo pedagdgica. ES destacou que, em alguns casos, c6digos mais
extensos e detalhados (mesmo quando considerados menos elegantes tecnicamente) podem ser
mais apropriados para fins de ensino: “Para quem estd comegando, as vezes é melhor ver o
passo a passo no codigo original, porque ajuda a entender a légica.” Esse aspecto evidencia
que a percepcdo de qualidade pode variar de acordo com o contexto de aplicacdo — técnico ou
educacional.

A Tabela 15 retne as percep¢des dos entrevistados sobre o papel dos LLMs na
qualidade de c6digo, destacando tanto os beneficios identificados quanto as limitag¢des. E1, por
exemplo, afirmou que a IA “ajuda muito, especialmente quando estou cansado”, mas ressaltou
que sua func¢do é apenas “facilitar, ndo substituir’. Em linha semelhante, E7 reconheceu que a
tecnologia “acelera o desenvolvimento, mas exige validag¢do”, entendendo que ela ndo elimina a
necessidade do desenvolvedor, mas adapta suas funcdes. J4 E2 apontou que a IA “contribui para
atributos de qualidade, mas ndo para aprendizado”, refor¢ando a visdo de que seu papel é de
ferramenta de apoio, ndo de ensino. Por outro lado, E4 € cauteloso, ao afirmar que a IA pode ser
“boa para padronizagcdo, mas pode aumentar a complexidade”, destacando que, embora 1til, seu
uso requer supervisao critica. Esses exemplos revelam uma visao pragmaética: os entrevistados
reconhecem os ganhos da tecnologia como aliada no desenvolvimento, mas reafirmam que ela

ndo substitui o trabalho humano.

Tabela 15: Percepg¢des sobre 1A na qualidade de cédigo

ID Opinido sobre Qualidade Visao sobre Papel da IA
El “IA ajuda muito, especialmente quando estou cansado” “Facilita, mas ndo substitui”
E2 “Contribui para atributos de qualidade, mas ndo para “Ferramenta de apoio”

aprendizado”

E3 “Ajuda até certo ponto, depois pode atrapalhar” “Complementa, mas ndo substitui”
E4 *‘Boa para padronizagdo, mas pode aumentar complexi- “Ferramenta de apoio”

dade”
ES “Auxilia positivamente no desenvolvimento” “Necessita supervisdo humana”
E6 “Util para sugestées e diferentes perspectivas” “Ferramenta para produtividade”
E7 “Acelera o desenvolvimento, mas exige valida¢do” “Ndo substitui, adapta fungées”

Fonte: Elaborado pelo autor (2025)

Ao relacionar as percepgoes sobre a IA (Tabela 15) com o perfil dos entrevistados
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(Tabela 13), observa-se que o nivel de senioridade influencia diretamente a forma como os
desenvolvedores avaliam o impacto da tecnologia na qualidade de c6digo. Os juniores (E2, E5 e
E6) tendem a valorizar a IA como recurso de apoio prético e ganho imediato de produtividade,
mas também revelam preocupagcdes com o aprendizado e a necessidade de supervisdao. O
entrevistado E2, por exemplo, ressaltou que a ferramenta “ndo contribui para aprendizado”,
enquanto o entrevistado ES a considera uma “espécie de refino” que exige validacao humana.
J4a 0 E6, com pouca experiéncia de mercado, destacou o uso de IA como “uma opinido a mais”
durante o processo de desenvolvimento. Entre os plenos (E3 e E4), o discurso é mais ambivalente:
ambos reconhecem que a IA pode trazer melhorias em legibilidade e padronizag¢ao, mas alertam
para o risco de aumento desnecessadrio da complexidade e para a necessidade de cautela no
uso em produgdo. O E3 sintetizou essa visdo ao afirmar que a ferramenta “ajuda até certo
ponto, depois pode atrapalhar”, enquanto o E4 enfatizou que a IA “pode mexer além do que
era preciso”. Nesse nivel, hd uma percepc¢ao clara de que a IA deve ser usada com moderacao,
especialmente em tarefas criticas de refatoracdo. Por fim, os séniores (E1 e E7) apresentam
uma perspectiva mais estratégica e madura. Ambos reconhecem limitacdes praticas, como erros
frequentes ou necessidade de revisdo, mas veem a IA como um catalisador de mudangas no
papel do desenvolvedor. O E1 declarou que utiliza a ferramenta para acelerar tarefas repetitivas,
embora precise ajustar saidas incorretas, enquanto o E7 destacou que “quem ndo usa LLM estd
ficando para trds”, indicando que a adoc¢do da IA j4 € vista como diferencial competitivo. Nesse
grupo, a IA ndo é apenas suporte técnico, mas também um elemento transformador do futuro da

profissao.

Resumo da resposta da QP3. A revelacdo sobre o uso de IA influenciou a percep¢do
dos desenvolvedores, mas niao de forma a reduzir a avaliagdo positiva da qualidade. A
surpresa inicial foi acompanhada pelo reconhecimento de que as refatoragcdes geradas por
LLMs incorporaram critérios consistentes de legibilidade, modularidade e simplicidade.
Ainda assim, surgiram ressalvas importantes: juniores destacaram o cardter de apoio da
tecnologia, plenos apontaram riscos de complexidade desnecesséria e perda de contexto,
enquanto séniores enfatizaram a necessidade de revisdo e supervisao critica antes de
adocdo em producdo. Assim, conclui-se que LLMs podem contribuir de forma robusta para
a qualidade de cddigo, desde que utilizadas de forma responsdvel e em complementaridade

a expertise humana.
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5.2.5 Expectativas sobre LLMs (QP4)

A andlise das entrevistas evidenciou forte convergéncia em quatro aspectos centrais
sobre o papel dos LLMs no desenvolvimento. Todos os entrevistados conceituaram a IA como
ferramenta de apoio, e ndo como substituta do desenvolvedor, refletindo uma visao pragmética e
compativel com as capacidades tecnoldgicas atuais. Essa perspectiva conecta-se a percepcao
recorrente da necessidade de supervisao humana, destacada pela maioria, indicando que a
automacdo € vista como meio para potencializar competéncias, ndo para elimind-las. Também
houve concordancia quanto ao potencial de ganhos de produtividade, com reconhecimento de
que a tecnologia pode acelerar o desenvolvimento e aumentar a eficiéncia em tarefas especificas.
Por fim, a aplicacdo da IA foi considerada especialmente util em contextos de pressdo temporal,
fadiga ou execugdo de tarefas repetitivas, reforcando sua natureza de suporte as atividades do
programador.

Embora exista esse consenso geral, a andlise por nivel de senioridade revelou dife-
rengas significativas nas expectativas em relacdo ao futuro uso de LLMs. Os séniores (E1 e E7)
demonstraram uma visao mais estratégica, considerando a tecnologia um diferencial competitivo
inevitavel, ainda que dependente de revisdo critica. J4 juniores e plenos reconheceram ganhos
imediatos de produtividade, legibilidade e padronizacdo, mas destacaram preocupacdes quanto a
complexidade desnecessdria, perda de contexto em cddigos mais extensos e risco de dependéncia,
especialmente no aprendizado de boas praticas. Essa distingao evidencia que, enquanto os mais
experientes projetam a integracdo de LLMs como inevitdvel e transformadora do mercado de
desenvolvimento, os menos experientes tendem a enfatizar sua utilidade prética no presente,
condicionada ao uso moderado e supervisionado.

Em relacdo as limitagdes, emergiram trés categorias principais. A primeira refere-se
a tendéncia ao excesso de complexidade, com observacdes pelo entrevistado E4: “a maioria
das IAs vai tentar ajeitar uma coisa, mas vai mexer além do que era pra ela ter mexido”,
destacando que em processos de refatoracao a ferramenta pode inserir condicionais, abstracoes
ou modifica¢des que ndo eram requeridas, o que dificulta a manutencdo. A segunda limitacdo
aponta para a dificuldade em manter em manter o contexto em c6digos mais extensos ou
arquiteturas mais complexas. O E3 relatou que a ferramenta “ajuda até certo ponto”, mas
depois “se perde na implementagdo”, exigindo constantes pedidos de corre¢do do usudrio; para
ele, a A consegue gerar trechos uteis, mas ndo sustenta consisténcia quando precisa lidar com

dependéncias multiplas ou fluxos de negécio completos. Por fim, a terceira limitacdo envolve a
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necessidade de validagdo humana, aspecto amplamente enfatizado por entrevistados experientes
como o E7, que afirmou: “Claro que eu evitaria de usar LLM pra codigo direto em produgdo.
Entdo, acho que uma revisdo de codigos, ela é necessdria.” Essa posi¢cdo ecoa em outros
entrevistados, como o E5, que definiu a IA como “uma espécie de refino, mas que ainda vai
precisar do desenvolvedor pra avaliar”. Dessa forma, ainda que reconhecam os beneficios da
tecnologia, os desenvolvedores apontam que seu uso seguro e eficaz depende de moderacao,

supervisao critica e adaptacdo ao contexto de cada projeto.

Resumo da resposta da QP4. Os entrevistados projetam expectativas majoritariamente
positivas, ainda que acompanhadas de cautela. Houve consenso em considerar a IA uma
ferramenta de apoio, util para potencializar competéncias, mas ndo como substituta do
desenvolvedor, sendo valorizada sobretudo em contextos de pressao temporal, fadiga ou
execugdo de tarefas repetitivas. Em geral, os entrevistados reconheceram o potencial da
tecnologia para aumentar a produtividade, acelerar tarefas rotineiras e apoiar processos
como refatoragdo e revisao de codigo. Entre os menos experientes (juniores € plenos),
destacou-se a percepcado de ganhos imediatos em aprendizagem, legibilidade e padroni-
zagdo, acompanhados, contudo, de preocupagdes quanto a complexidade desnecessaria,
perda de contexto em codigos extensos e risco de dependéncia no aprendizado de boas
praticas. Ja os séniores (E1 e E7) apresentaram uma visao mais estratégica, considerando
a adocdo de LLMs um diferencial competitivo inevitavel, sintetizada na fala de E7 ao
afirmar que ‘““se vocé ndo usa LLM, vocé td ficando pra tras”. Apesar das diferencas de
énfase, todos os niveis de senioridade convergiram na ideia de que a adocao futura deve
ocorrer com supervisao critica, integracao gradual e adaptacao de praticas de engenharia,

refor¢cando a complementaridade entre automacao e expertise profissional.

5.2.6 Anadlise dos Resultados

A convergéncia em torno de legibilidade, manutenibilidade e modularidade corrobora
principios amplamente estabelecidos na literatura sobre qualidade de c6digo (MARTIN, 2009;
FOWLER, 2018). Apesar de variagdes nas €nfases individuais, os entrevistados demonstraram
compartilhar valores fundamentais sobre o que caracteriza um cédigo de qualidade. A predomi-
nancia de preferéncia pelos c6digos refatorados sugere que as LLLMs sdo capazes de produzir

codigo de qualidade comparavel e, em varios casos, percebida como superior, ao desenvolvido
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originalmente. Essa percep¢do positiva esteve associada a critérios como legibilidade, modulari-
dade e simplicidade. Entretanto, também foram registradas ressalvas quanto a possiveis excessos
de modificacdo, aumento desnecessario de complexidade e perda de contexto em trechos mais
elaborados, reforcando que a qualidade percebida nao € uniforme em todos os casos.

A auséncia de mudancas significativas na avaliacdo apds a revelagdo de que uma
das versdes havia sido gerada por IA indica que as preferéncias permaneceram fundamentadas
nos mesmos critérios técnicos aplicados inicialmente. As decisdes dos entrevistados nio foram
guiadas pela origem do c6digo, mas por caracteristicas associadas a qualidade conforme seus
proprios referenciais. A unanimidade quanto a IA como ferramenta de apoio, ndo como substituta
do desenvolvedor, aliada a énfase na necessidade de supervisdo humana, reflete uma visao
pragmatica sobre seu uso no desenvolvimento de software. Essa perspectiva reconhece seu
potencial para ampliar capacidades e produtividade, ao mesmo tempo em que preserva o papel

central do julgamento humano na garantia da qualidade.

5.3 Trabalhos Relacionados

Chen (2024) conduziu estudo de caso no estidio TiMi investigando o impacto do
Artificial Intelligence (Al)-pair programming na qualidade de cédigo e satisfagdao dos desenvol-
vedores através de andlise de 10 projetos com IA e 10 sem IA. O estudo demonstrou que projetos
com Al-pair programming apresentaram melhor qualidade de c6digo (menor complexidade ciclo-
matica: 12,3 vs 15,7; maior cobertura: 82,6% vs 76,4%) e maior satisfacdo dos desenvolvedores
(4,3 vs 3,6). Utilizando ferramentas como GitHub Copilot e ChatGPT, os resultados revelaram
beneficios como economia de tempo e melhoria de qualidade, mas também desafios relacionados
a confiabilidade e autonomia. Embora focado em Al-pair programming colaborativo, seus
achados sobre percepg¢ao positiva de desenvolvedores e melhoria objetiva na qualidade fornecem
base empirica complementar ao presente estudo sobre refatoracdo automatizada, demonstrando
que diferentes aplica¢des de IA no desenvolvimento podem produzir beneficios consistentes.

Ribeiro et al. (2024) investigaram a percep¢ao de desenvolvedores sobre code smells
e o uso de ferramentas automatizadas para sua deteccao. Por meio de entrevistas e sintese
temdtica, os autores identificaram diferentes compreensdes sobre o conceito de code smell,
bem como fatores que influenciam sua introducdo e a adoc¢ao de ferramentas de suporte, como
custos de configuracao, cultura organizacional e priorizacdo de entregas. A pesquisa reforca

a importancia de compreender nao apenas os aspectos técnicos da qualidade de cddigo, mas
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também as barreiras praticas e contextuais que afetam a incorporacdo de mecanismos de melhoria
na rotina de desenvolvimento, aspecto que dialoga diretamente com os objetivos do presente
trabalho.

Santos e Gerosa (2018) conduziram estudo empirico sobre percepcao de boas praticas
de codificacdo, avaliando o impacto de 11 praticas de codificacdo Java na legibilidade percebida
por desenvolvedores através de comparagdes cegas entre pares de snippets de codigo. Com
62 participantes (55 estudantes universitarios e 7 programadores profissionais), os autores
utilizaram aplicacdo web customizada para apresentar aleatoriamente 10 pares de cédigo por
participante, derivando as préticas avaliadas dos modelos de legibilidade de Buse e Weimer
(2009) e Scalabrino et al. (2016). Os resultados demonstraram que 8 das 11 préticas apresentaram
efeitos estatisticamente significativos: 7 melhoraram a legibilidade (incluindo uso de linhas em
branco apds chaves, limitacao de 80 caracteres por linha, e evitar miltiplas declaracdes por
linha) e 1 a piorou (abertura de chaves na mesma linha da declaracdo). Crucialmente, seus
achados sobre a importancia da legibilidade como critério universal de qualidade corroboram os
resultados deste trabalho, embora o foco tenha sido em préaticas convencionais de codificacdo em
vez de codigo gerado por IA, complementando esta investigagao ao estabelecer baseline sobre
percepcdo de qualidade em contextos tradicionais de desenvolvimento.

Kudriavtseva et al. (2025) conduziram survey com 105 desenvolvedores sobre per-
cepcoes de seguranca de codigo gerado por IA, identificando que desenvolvedores experientes
sdo mais céticos sobre seguranga enquanto desenvolvedores juniores tendem a superestimar
suas capacidades - padrdo potencialmente explicado pelo efeito Dunning-Kruger que oferece
contexto para interpretar variacdes por experiéncia observadas em a pesquisa aqui conduzida. Os
autores reportaram que 61% dos desenvolvedores gastam mais tempo em revisdes de seguranca
de cddigo 1A, convergindo com os achados deste trabalho sobre a necessidade de supervisdo
humana, embora a abordagem quantitativa sobre percep¢des de seguranca se diferencie meto-
dologicamente da investigacdo aqui realizada, baseada em comparagdes cegas sobre qualidade
geral. Dessa forma, apresenta-se uma perspectiva complementar sobre a aceitacdo de codigo
gerado por inteligéncia artificial.

Sheard et al. (2024) abordaram a perspectiva educacional sobre as ferramentas de IA.
Foram entrevistados 12 educadores de programacao de trés paises sobre ferramentas de geragao
de cddigo, revelando preocupagdes quanto ao excesso de confianca estudantil e a perda de

aprendizado de fundamentos, convergindo com os achados deste trabalho sobre a necessidade de
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supervisao humana. Particularmente relevante é o consenso educacional de que a introducdo de
IA deve ocorrer apenas apds o dominio dos fundamentos de programacao, perspectiva que ressoa
com a observacgdo de que desenvolvedores percebem a inteligéncia artificial como ferramenta
de apoio, e ndo como substituta de competéncias fundamentais, demonstrando que diferentes
stakeholders do ecossistema de desenvolvimento compartilham preocupagdes similares sobre a
integracdo responsavel da automacdo de codigo.

Borstler et al. (2023) conduziram estudo qualitativo com 34 entrevistas semi-estruturadas
envolvendo desenvolvedores profissionais, professores e estudantes da Europa e Estados Unidos,
analisando 130 exemplos de codigo em 14 linguagens diferentes para investigar percepgdes sobre
qualidade de cddigo. Utilizando codificagdo temdtica, os autores identificaram que legibilidade
e estrutura foram as propriedades mais comumente mencionadas para definir qualidade (82%
e 65% dos participantes, respectivamente), seguidas por documentacao, compreensibilidade e
manutenibilidade. O estudo revelou que ao analisar exemplos concretos, desenvolvedores focam
em estrutura como propriedade fonte levando a compreensibilidade e manutenibilidade, e que
desenvolvedores experientes possuem visao mais ampla de qualidade considerando multiplas
categorias simultaneamente. Seus achados sobre critérios valorizados (legibilidade, estrutura e
compreensibilidade) fornecem base empirica que corrobora a investigacao aqui conduzida, esta-
belecendo padrdes sobre percepcao de qualidade em contextos tradicionais de desenvolvimento.

Em resumo, os trabalhos relacionados reforcam a relevancia da investigagcao sobre
como desenvolvedores percebem a qualidade de c6digo em diferentes contextos, sejam eles
marcados por préticas tradicionais (SANTOS; GEROSA, 2018; BORSTLER et al., 2023), pelo
uso de ferramentas automatizadas de apoio (RIBEIRO et al., 2024), pelo Al-pair programming
(CHEN, 2024) ou pelas preocupagdes de seguranca e aprendizagem associadas ao codigo gerado
por IA (SHEARD et al., 2024). O presente estudo, entretanto, distingue-se por adotar um delinea-
mento experimental baseado em comparagdes cegas entre codigo original e cédigo refatorado por
LLMs, aliado a entrevistas semiestruturadas para andlise qualitativa. Essa combinag¢ao metodol6-
gica permitiu capturar tanto a preferéncia objetiva dos desenvolvedores quanto suas justificativas
subjetivas, revelando critérios como legibilidade, modularidade e simplicidade como centrais
na avaliacdo da qualidade. Como resultado inédito, a investigacdo aqui conduzida demonstra
que, mesmo sem conhecimento da autoria, os participantes atribuiram sistematicamente maior
qualidade as versdes refatoradas por IA, mas ressaltaram a necessidade de supervisdo critica

e adequagdo ao contexto. Dessa forma, este estudo contribui ao campo ao oferecer evidéncias
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empiricas sobre a percepcao de qualidade de cdigo gerado por LLMs, estabelecendo um con-
traponto as pesquisas focadas em seguranga, ensino ou praticas convencionais e ampliando a

compreensao sobre a integragdo responsavel da automacao no desenvolvimento de software.

5.4 Ameacas a Validade

Durante a conducgio desta investigagdo empirica, buscaram-se procedimentos de
controle que contribuissem para a redugao de vieses e para a consisténcia dos resultados obtidos.
Ainda assim, algumas ameacas a validade precisam ser reconhecidas, tanto para promover
transparéncia cientifica quanto para orientar melhorias em estudos futuros. Nesta se¢do, sdo dis-
cutidas as ameacas a validade dos resultados obtidos, organizadas conforme as quatro categorias
propostas por Wohlin et al. (2012): validade interna, externa, de construcao e de conclusao.

Validade Interna. A validade interna refere-se a possibilidade de vieses que com-
prometam a interpretacdo causal dos resultados. Trés ameacas a validade interna do estudo foram
identificadas. A primeira relaciona-se ao fato de que os entrevistados jd possuiam familiaridade
prévia com prdticas de refatoragdo, o que pode ter influenciado suas escolhas em favor do cédigo
refatorado. Além disso, ndo foi controlado o efeito da ordem de apresentacdo das versoes, o que
poderia gerar viés de preferéncia; para minimizar essa ameaca, os cdigos originais e refatorados
foram apresentados de forma aleatéria. Outra limitacdo consiste no fato de que o estudo ndo
isolou varidveis externas, como estilo de programacao individual ou experiéncia prévia, que
podem ter impactado as percep¢des dos entrevistados. Varidveis como estilo de programacgao
estao fora de controle, enquanto, em relagcao a experi€ncia prévia, foram apresentadas analises
separando os participantes segundo esse critério.

Validade Externa. A validade externa refere-se a possibilidade de generalizagcdo dos
resultados para outros contextos. Duas ameagas a validade externa do estudo foram identificadas.
O estudo contou apenas com um grupo reduzido de desenvolvedores, o que limita a extrapolagdo
dos resultados. Apesar do grupo ser pequeno, os entrevistados possuem caracteristicas de
formacdo académica e experiéncia distintas. Da mesma forma, foram avaliados apenas cinco
pares de classes especificas, ndo sendo possivel assegurar que os resultados se mantenham em
diferentes dominios de software, linguagens de programacdo ou niveis de complexidade de
sistemas. A limitagdo do nimero de artefatos € inerente a profundidade da andlise. O aumento
dessa quantidade provavelmente resultaria em respostas mais superficiais. Por esse motivo, o

namero de artefatos foi limitado a cinco.
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Validade de Construcao. A validade de construgdo estd relacionada a adequacao
das medidas utilizadas para capturar o construto de “qualidade de c6digo”. Neste trabalho,
a qualidade foi inferida a partir da percep¢ao subjetiva dos desenvolvedores, sem o apoio de
métricas objetivas complementares Tal decisdo pode limitar a precisdo do conceito medido, uma
vez que diferentes entrevistados podem ter interpretado “qualidade” de formas distintas. No
entanto, como as entrevistas foram gravadas e houve didlogo, os participantes foram instigados a
definir de forma clara o que consideravam como qualidade de cddigo.

Validade de Conclusido. A validade de conclusdo envolve a robustez estatistica e a
forca das inferéncias obtidas. Duas ameagas a validade da conclusdo do estudo sao discutidas. O
niimero reduzido de entrevistados e de pares avaliados pode levar a baixa poténcia estatistica.
Embora os resultados indiquem forte preferéncia pelas versoes refatoradas, a amostra pequena
aumenta a chance de erro tipo I (superestimar evidéncias) ou tipo II (ndo detectar efeitos em
casos especificos). Além disso, a auséncia de andlise quantitativa mais robusta, como testes
estatisticos formais para avaliar significincia e intervalos de confianca, limita a solidez das

conclusdes para algumas questdes de pesquisa.

5.5 Conclusao

Este capitulo investigou a percepc¢do de desenvolvedores sobre a qualidade de codigo
refatorado por LLMs por meio de um delineamento baseado em comparagées cegas entre versdes
original/refatorada, aliado a entrevistas semiestruturadas, combina¢@o que permitiu capturar tanto
preferéncias objetivas quanto justificativas subjetivas sobre os critérios usados em julgamentos
de qualidade de software.

Os resultados indicam congruéncia no conceito de qualidade de software, englobando
principalmente legibilidade, manutenibilidade e modularidade. Em relagdo as comparacgdes de
codigo, observou-se preferéncia sistematica pelas versoes refatoradas: a preferéncia foi majorité-
ria entre os participantes como um todo (83%), confirmando-se em 97% dos artefatos analisados
e em 97% das comparacdes, com €nfase em atributos como legibilidade, manutenibilidade e
modularidade. Importante destacar que a revelagao de que as refatoragdes foram produzidas por
IA ndo alterou substancialmente os julgamentos, sugerindo que as preferéncias se fundamenta-
ram em critérios técnicos e ndo em preconceitos quanto a autoria. Por fim, foi reconhecido o
beneficio da utilizacdo de LLMs, com convergéncia na ideia de que a adocao futura deve ocorrer

com supervisao critica, integracdo gradual e adaptacdo de praticas de engenharia, refor¢ando a
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complementaridade entre automacdo e expertise profissional.

Apesar do quadro positivo, as andlises também evidenciaram limitagdes e pontos
de atencdo: riscos de over-engineering e perda de contexto em trechos complexos, o que
reforca a necessidade de supervisdo humana criteriosa na incorporacao de LLMs a fluxos de
desenvolvimento. Tais achados consolidam trés contribui¢cdes principais: (i) evidéncias empiricas
inéditas sobre a aceitacio de refatoracoes realizadas por LLMs sob a 6tica de desenvolvedores;
(i1) demonstracao da utilidade de comparacdes cegas como método para avaliar qualidade de
c6digo do ponto de vista humano; e (iii) mapeamento de critérios e limites priticos que orientam
uma adogdo responsavel dessas ferramentas.

Como dire¢des futuras, recomenda-se avangar com estudos longitudinais e avaliacdes
em contextos reais; comparar sistematicamente com ferramentas de referéncia para quantificar
vantagens e limites; ampliar e estratificar a base de participantes; e integrar os resultados a
métricas objetivas de eficiéncia (tempo em tarefa, taxa de erro, logs) para fortalecer a robustez
inferencial. Em sintese, os achados ampliam a compreensdo sobre como integrar, de forma
responsavel, automacao baseada em LLMs ao desenvolvimento de software, preservando critérios

técnicos de qualidade e o protagonismo da revisao humana.
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6 CONSIDERACOES FINAIS

Este capitulo € dividido em trés partes. A Secdo 6.1 apresenta uma sintese dos
resultados da dissertacdo. A Secdo 6.2 discute implicacgdes e ligdes aprendidas para pesquisadores,
construtores de ferramentas e desenvolvedores. Por fim, a Secdo 6.3 aponta direcOes para

trabalhos futuros.

6.1 Conclusoes

Esta dissertagdo investigou qualidade de c6digo a partir de trés eixos complementares:
(1) deteccdo de code smells com algoritmos de ML; (ii) desenvolvimento e validacdo da ferramenta
TwinCode para apoiar estudos empiricos; e (iii) andlise da percepcao de desenvolvedores sobre
refatoragcdes produzidas por LLMs.

No Capitulo 3, € mostrado que modelos supervisionados alcangam desempenho
elevado na deteccdo dos code smells Data Class, God Class, Feature Envy e Long Method. Em
termos de acurdcia, observou-se variagdo de 89,7% a 99,2%, com picos de 96,8% (Data Class),
96,3% (God Class), 98,4% (Feature Envy) e 99,2% (Long Method). E importante destacar a
superioridade consistente de métodos baseados em arvores (especialmente Random Forest e
Decision Tree). Adicionalmente, testes de Wilcoxon ndo indicaram diferengas estatisticamente
significativas entre cendrios com e sem validacdo cruzada de 10 folds (todos os p-valores > 0,05),
sugerindo robustez dos resultados sob esse procedimento.

No Capitulo 4, € apresentado a TwinCode, ferramenta cientifica, que dentre outras
funcgdes, € utilizada para comparacdo lado a lado de trechos de c6digo com questionarios e
geracdo de relatdrios. A validacdo exploratéria contou com 12 participantes, indicando niicleo de
inspegdo bem avaliado (visualizacdo lado a lado, numeragao de linhas e syntax highlighting), alta
consisténcia interna do instrumento quantitativo e potencial de ado¢do académica elevado. Ao
mesmo tempo, evidenciou oportunidades de melhoria no fluxo de associagdo pares—questionérios,
ergonomia/UX e funcionalidades auxiliares (p.ex., exportacdo e filtros). A ferramenta foi
registrada no INPI (BR512025003573-0).

No Capitulo 5, € conduzido entrevistas semi-estruturadas com sete desenvolvedores,
cada um comparando cinco pares de codigo em desenho cego (total de 35 julgamentos) seleciona-
dos de um conjunto de 80 artefatos refatorados por Qwen2.5-max e derivados de 12 sistemas do

Qualitas Corpus. Os entrevistados preferiram o cédigo refatorado em 34 de 35 comparacoes
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(=~ 97,1%; teste binomial, p < 0,001). As justificativas convergiram para legibilidade, modulari-
dade e manutenibilidade como critérios centrais, com ressalvas a complexidade desnecessdria
em alguns trechos. A revelagdo posterior de que as versdes escolhidas eram produzidas por LLM
ndo alterou a fundamentagdo das decisdes, ancoradas em atributos intrinsecos de qualidade.
Em conjunto, os trés eixos mostram que abordagens baseadas em ML e LLMs podem
se complementar. Modelos supervisionados fornecem sinais objetivos consistentes para detec¢ao
de code smells. Por outro lado, refatoragdes assistidas por LLM tendem a produzir versdes
preferidas por desenvolvedores sob critérios humanos de qualidade. A TwinCode, por sua vez,

viabiliza a investigacdo empirica controlada que conecta essas duas frentes.

6.2 Implicacoes e Licoes Aprendidas

Implicacoes e Licoes Aprendidas para Pesquisadores. Com este estudo, identificam-se trés
principais implicagdes para pesquisadores: (i) o gap entre métricas objetivas e julgamento
humano permanece e requer protocolos mistos (quantitativos e qualitativos) para interpretacao
rigorosa; (i) drvores de decisdo e ensembles mostraram-se linhas de base fortes para detec¢ao
de code smells, tteis como baselines em estudos comparativos; (iii) a auséncia de diferencas
materiais entre cendrios com/sem validacao cruzada (10-fold) sugere robustez dos achados
frente a esse controle especifico, embora ndo elimine outras ameagas (p. ex., desbalanceamento
e leakage). Como li¢Oes aprendidas, destacam-se trés pontos: (i) a necessidade de reportar
resultados por smell (e nao apenas médias) e utilizar testes ndo paramétricos para contrastar setups
experimentais; (ii) a importancia de triangular deteccdo (ML) com percepcdo (estudos cegos),
empregando instrumentos com consisténcia interna verificada (@ ~ 0,9); e (iii) a relevancia de
utilizar amostras derivadas de datasets curados/conhecidos (p. ex., Qualitas Corpus) e rastrear o
funil de selecdo de artefatos.

Implicacoes e Licoes Aprendidas para Construtores de Ferramentas. A avaliagdao da Twin-
Code indica que comparagdo lado a lado com realce e numeragdo de linhas é rapidamente
compreendida, enquanto o fluxo de associacdo pares—questiondrios demanda simplificacao e
feedbacks de estado mais salientes. Recursos de exportacgdo, filtros e versionamento aumentam a
utilidade cientifica e a ado¢do. Como li¢Oes aprendidas citamos: (i) priorizar UX research no
fluxo de criagdo/associacdo de comparacdes e questiondrios; (ii) oferecer telemetria e exportacao
de relatérios para reuso/reprodutibilidade de estudos; (iii) registrar propriedade intelectual e

adotar stack aberto para facilitar replicacdo (PHP/Laravel, React/Tailwind, MariaDB).
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Implicacoes e Licoes Aprendidas para Desenvolvedores. Em comparacgdes cegas, desenvolve-
dores tenderam a preferir versdes refatoradas por LLM com base em legibilidade, modularidade
e manutenibilidade; ainda assim, salientaram riscos de complexidade desnecessdria e perda de
contexto, refor¢cando a necessidade de supervisdo humana e revisao criteriosa. Como li¢des
aprendidas listamos: (i) usar LLMs como copilotos de refatoragdo, priorizando legibilidade
(nomes, extracdo de métodos) e modularidade observaveis; (i1) aplicar revisdo técnica para miti-
gar sobre-engenharia (p. ex., fragmentacio excessiva e condicionais aninhadas); e (iii) integrar
ferramentas experimentais (como a TwinCode) em code reviews internos para coletar feedback

estruturado de outros desenvolvedores.

6.3 Trabalhos Futuros

A continuidade desta pesquisa pode avancar em diversas frentes, a comegar pelo
aprimoramento dos experimentos com aprendizado de maquina para deteccao de code smells.
Embora este estudo tenha considerado acurécia, precisdo, sensibilidade e Fl-score, futuras
investiga¢des podem incluir métricas adicionais, como AUC (Area sob a Curva ROC) e MCC
(Matthews Correlation Coefficient), que fornecem uma avaliacdo mais robusta em cendrios
desbalanceados e permitem andlises mais aprofundadas do desempenho dos algoritmos. Além
disso, recomenda-se a utilizacdo de diferentes conjuntos de dados, contemplando multiplas
linguagens de programacgdo e dominios de aplica¢do, de modo a ampliar a validade externa dos
resultados. Outro caminho promissor consiste em investigar técnicas de aprendizado profundo e
arquiteturas hibridas que possam capturar padrdes mais complexos em codigos de maior escala.

Em relacdo a TwinCode, trabalhos futuros devem priorizar sua validagdo em contex-
tos mais amplos e diversificados, com amostras que contemplem diferentes niveis de experiéncia,
formagdes académicas e inser¢des profissionais, de modo a ampliar a validade externa dos resul-
tados. Recomenda-se também a realizacio de estudos longitudinais que acompanhem a evolugdo
do uso da ferramenta ao longo do tempo. Outra direcdo promissora consiste em expandir o
suporte para diferentes artefatos de software, para além do cédigo-fonte, o que pode ampliar a
utilidade cientifica e profissional da ferramenta como recurso de apoio a investigagdes empiricas
em engenharia de software. Também se destaca a possibilidade de implementar mecanismos
que favorecam o acompanhamento das fases de pesquisas cientificas, bem como a inclusdo de
sistemas de pontuag@o nos questiondrios, de forma a apoiar préticas de avaliacdo da qualidade de

software no ensino.
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No que se refere a investigacao da percep¢ao de desenvolvedores sobre refatoracdes
geradas por LLMs, trabalhos futuros podem aprofundar a andlise em cendrios mais complexos e
heterogéneos, explorando diferentes linguagens de programacao, tipos de sistemas e niveis de
complexidade do cédigo. Recomenda-se a realizacdo de experimentos com maior nimero de
participantes e delineamentos comparativos entre grupos de perfis distintos, permitindo identificar
fatores culturais, organizacionais e individuais que influenciam a aceitacdo das refatoragoes.
Além disso, a congruéncia entre percep¢des subjetivas e métricas objetivas de qualidade (tempo
em tarefa, taxa de erros, métricas de legibilidade e manutenibilidade) pode fornecer uma visao
mais completa da eficacia das LLMs. Estudos longitudinais, que acompanhem a evolugdo da
aceitacdo e eficacia dessas ferramentas ao longo do tempo, também se mostram fundamentais

para compreender sua evolugdo, uso e aderéncia de pesquisadores.
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APENDICE A - CODIFICACAO SEMANTICA DETALHADA

Este apéndice apresenta a codificacdo semantica detalhada das entrevistas realizadas
com os sete participantes do estudo. O material foi estruturado individualmente por entrevistado,
de modo a destacar as falas que fundamentaram a atribui¢cao de pontuagdo para cada critério
de qualidade de c6digo identificado na analise (legibilidade, manutenibilidade, modularidade,
padronizacdo, simplicidade e funcionalidade). A organizacao em categorias permite visualizar
como diferentes niveis de senioridade e dreas de atuagdo influenciaram as percepgdes sobre
qualidade de cédigo, além de fornecer evidéncias textuais que sustentam as andlises discutidas
no Capitulo 5. Dessa forma, este apéndice cumpre o papel de tornar transparente o processo de

andlise qualitativa, reforcando a validade interpretativa dos resultados apresentados.

Entrevistado 1 - E1 (Sénior)
Legibilidade

* Falas que geraram pontuacio:
1. “Para mim, c6édigo bem feito, ele tem que ser primeiramente legivel. Quanto mais

legivel, melhor.”

2. “A da direita td bem mais tranquila, bem mais facil de entender.”
3. “Nao da pra visualizar exatamente, mas a da direita reduziu bem, ficou mais legivel.”
4. “Legibilidade € o critério prioritdrio pra mim.”
5. “Prefiro c6digo que qualquer pessoa bata o olho e entenda.”
Manutenibilidade

» Falas que geraram pontuacio:
1. “O codigo 2, sendo pequeno e curto, dd para analisar de melhor forma. Seria melhor
para longo prazo.”
2. “Quando separa em classes diferentes, cada uma com sua responsabilidade, fica mais
facil dar manutengdo.”

3. “A simplicidade ajuda na manuteng¢do futura.”
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Modularidade

» Falas que geraram pontuacao:
1. “O lado direito separou em duas classes diferentes, cada uma com sua responsabili-

dade.”

2. “O uso de interface ajuda na modularidade e manutengao.”

Padronizacdo

* Fala que gerou pontuacao:

1. “Um cddigo bem escrito segue padrao de nomenclatura, sendo dificulta.”

Funcionalidade

* Fala que gerou pontuacao:

1. “O codigo precisa funcionar corretamente, ndo adianta ser s6 bonito.”

Simplicidade

» Falas que geraram pontuacio:
1. “Prefiro c6digo conciso e claro.”

2. “Quanto menos linhas desnecessarias, melhor.”

Entrevistado 2 - E2 (Janior)

Legibilidade

* Falas que geraram pontuacao:
1. “Eu gosto de cddigos que sejam pequenos, mas que sejam legiveis.”
2. “Nao muito resumido, nem muito extenso.”
3. “O segundo é mais facil de ler.”

4. “Prefiro c6digo que dé pra entender rapido.”

Simplicidade

* Fala que gerou pontuacao:
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1. “Nao muito resumido, nem muito extenso, um meio termo.”

Funcionalidade

* Fala que gerou pontuacio:

1. “O cédigo tem que ser funcional.”

Modularidade

* Falas que geraram pontuacao:
1. “Gostei do codigo 2 porque fez em varias classes, orientacdo a objetos.”

2. “Organizar em classes ajuda a entender.”

Entrevistado 3 - E3 (Pleno)

Legibilidade

* Falas que geraram pontuacio:
1. “A da direita td bem mais tranquila, bem mais facil de entender.”
2. “Prefiro codigo que facilite leitura.”

3. “Separo legibilidade de manuten¢do, mas ambos caminham juntos.”

Manutenibilidade

» Falas que geraram pontuacio:
1. “Qualidade de um cd6digo € refletida quando, com os anos, ainda consigo dar manu-
tencao nele.”
2. “Separar em classes ajuda a dar manuten¢do.”
3. “Interfaces aumentam manuteng¢do futura.”

4. “Codigos longos dificultam manuten¢do.”

Modularidade

* Falas que geraram pontuacao:
1. “Uso de interface melhora a manutenabilidade.”

2. “Separacgdo de responsabilidades € importante.”
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3. “Arquitetura impacta modularidade.”

Entrevistado 4 - E4 (Pleno)

Legibilidade

* Falas que geraram pontuacao:
1. “Claramente, a principal coisa que faz um cédigo ser bom é ser legivel e padronizado.”
2. “O cbdigo 1 tem muita coisa fora do padrdo.”
3. “Prefiro codigo padronizado e legivel.”

4. “Legibilidade e manutencdo caminham juntas.”

Manutenibilidade

» Falas que geraram pontuacao:
1. “Um co6digo precisa ser dinamico e escaldvel. Se ndo for, deprecia rapido.”
2. “Cédigos mais limpos duram mais.”

3. “Separacdo em camadas facilita manutencdo.”

Modularidade

» Falas que geraram pontuacio:
1. “Sempre foco em ter controllers, views e models separados.”
2. “Arquitetura MVC facilita modularidade.”

3. “Classes bem separadas melhoram modularidade.”

Padronizacao

» Falas que geraram pontuacio:
1. “O cédigo 1 tem muita coisa fora do padrao.”

2. “Nomenclaturas inconsistentes atrapalham.”

Funcionalidade

* Fala que gerou pontuacao:

1. “Precisa também funcionar, ndo adianta ser s bonito.”
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Entrevistado 5 - ES (Junior)

Legibilidade

* Falas que geraram pontuacao:
1. “Nao tem nem como comparar, o cédigo 1 t4 enxuto, perfeito, bem resumido.”
2. “O cdbdigo 2 t4 enorme e pouco legivel.”

3. “Prefiro codigo organizado em blocos.”

Manutenibilidade

» Falas que geraram pontuacio:
1. “Com certeza o cédigo 1. Compactado, facil de manter.”

2. “Codigos mais simples sdo mais faceis de mexer.”

Modularidade

* Fala que gerou pontuacao:

1. “O cddigo 1 estd bem separado em blocos.”

Padronizagao

* Fala que gerou pontuacao:

1. “Separagdo em blocos facilita leitura.”

Funcionalidade

* Fala que gerou pontuacio:

1. “Para iniciante, talvez o c6digo 2 fosse mais facil de ir seguindo.”

Entrevistado 6 - E6 (Junior)

Legibilidade

* Falas que geraram pontuacao:

1. “O cddigo 2 estda bem mais modular, responsabilidades divididas, mais legivel.”
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2. “Prefiro o que facilita leitura.”

3. “Cddigos claros ajudam.”

Manutenibilidade

* Falas que geraram pontuacao:
1. “Cddigo 2 seria mais fécil ao longo prazo.”

2. “Modularidade ajuda manuten¢do.”

Modularidade

» Falas que geraram pontuacio:
1. “O cddigo 2 estd bem dividido, mais classes, responsabilidades separadas.”
2. “Classes pequenas melhoram modularidade.”

3. “Responsabilidades bem definidas.”

Simplicidade

» Fala que gerou pontuacao:

1. “O cédigo 1 assume muita responsabilidade, métodos gigantes, dificil de manter.”

Entrevistado 7 - E7 (Sénior)

Legibilidade

» Falas que geraram pontuacio:
1. “Um cédigo de qualidade tem que ser facil de ler, funcional e facil de manter.”
2. “Prefiro codigo claro.”
3. “Legibilidade facilita colaborac¢do.”

4. “Codigo legivel reduz erros.”

Manutenibilidade

* Falas que geraram pontuacao:
1. “Responsabilidades claras, 16gica nao complexa. Isso facilita manutengao.”

2. “Codigos mais simples sdo melhores de manter.”
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3. “Prefiro modulariza¢do para manutenc¢do futura.”

Modularidade

* Falas que geraram pontuacao:
1. “As responsabilidades estdo modularizadas em classes menores.”

2. “Separar responsabilidades melhora modularidade.”

Padronizagao

* Fala que gerou pontuacao:

1. “Nomear bem varidveis e funcdes.”

Funcionalidade

» Falas que geraram pontuacio:
1. “Um cédigo tem que ser funcional.”

2. “Funcionalidade € essencial para qualidade.”



APENDICE B - ANALISE DE CONTEUDO DAS ENTREVISTAS

Este apéndice apresenta a anélise de conteido completa das entrevistas, sistematizada segundo a técnica de (BARDIN, 2016). As falas
dos participantes foram segmentadas em unidades de registro, cada uma associada a um c6digo e a uma categoria temadtica que reflete os critérios de
qualidade de cddigo identificados (legibilidade, manutenibilidade, modularidade, padronizagdo, funcionalidade e simplicidade). Para cada unidade,
sdo apresentados exemplos literais de falas, seguidos de uma interpretacdo analitica, permitindo compreender como os participantes justificaram suas
escolhas e quais dimensdes da qualidade foram mais valorizadas. Esta organizacao fornece transparéncia metodoldgica e reforca a validade dos

resultados discutidos no Capitulo 5.

Tabela 16: Analise de Conteudo das Entrevistas

Unidade de Registro Coédigo Categoria Exemplo de Fala Interpretacao

Legibilidade como critério LEGIB Legibilidade “Codigo deve ser primeiramente legivel; quanto mais Legibilidade aparece como eixo estruturante da

central (E1) legivel, melhor.” (E1) avaliag@o de qualidade.

Equilibrio entre tamanho e LEGIB Legibilidade “Gosto de codigos pequenos, mas legiveis; nem muito  Legibilidade associada a tamanho adequado e com-

clareza (E2) resumidos nem extensos.” (E2) preensdo imediata.

Facilidade de entendimento LEGIB Legibilidade “A versdo da direita estd mais tranquila, mais fdcil de  Clareza da estrutura e leitura fluida favorecem o

visual (E3) entender.” (E3) julgamento positivo.

Legibilidade + padronizacdo LEGIB Legibilidade “Codigo bom é legivel e padronizado; o codigo I tem A legibilidade é refor¢ada por convencgdes estaveis

(E4) muita coisa fora do padrdo.” (E4) de escrita.

Texto enxuto e claro (ES) LEGIB Legibilidade “O cddigo 1 estd enxuto, bem resumido; o 2 é enorme e ~ C6digos mais curtos e diretos sdo percebidos como
pouco legivel.” (ES) mais legiveis.

Legibilidade via modulari- LEGIB Legibilidade “O cddigo 2 estd mais modular, responsabilidades dividi- Separacgio de responsabilidades favorece a leitura.

dade (E6) das, mais legivel.” (E6)

Leitura e manutencao (E7) LEGIB Legibilidade “Cddigo de qualidade tem que ser fdcil de ler e manter.” Legibilidade articulada com manutenibilidade

(E7)

como critério de qualidade.

eCl



Unidade de Registro Codigo Categoria Exemplo de Fala Interpretacio

Pequeno e melhor no longo MANUT  Manutenibilidade  “O cddigo 2, por ser curto, é melhor para analisar ~ Tamanho moderado reduz esfor¢co de manutencao

prazo (E1) e manter no longo prazo.” (E1) futura.

Teste e manutencgdo facilita- MANUT Manutenibilidade “No segundo é mais fdcil de modularizar e testar.” Estrutura mais clara facilita evolugado e correcao.

dos (E2) (E2)

Manutengdo ao longo dos MANUT Manutenibilidade “Qualidade se reflete quando consigo dar manu- Critério de qualidade vinculado ao ciclo de vida

anos (E3) tengdo com o passar dos anos.” (E3) prolongado.

Dinamicidade e escalabili- MANUT Manutenibilidade “Se ndo for dindmico e escaldvel, o codigo depre- Manutengdo depende de arquitetura pensada para

dade (E4) cia rdpido.” (E4) evoluir.

Compacto e facil de mexer MANUT Manutenibilidade “O cédigo 1 é compactado e fdcil de manter”” (ES) Estruturas concisas simplificam a manutencdo co-

(E5) tidiana.

Modularidade ajuda manu- MANUT Manutenibilidade “Cddigo 2 seria mais fdcil ao longo prazo; divisGo  Separagdo de responsabilidades reduz acoplamento

tencao (E6) em classes ajuda.” (E6) e custo de mudancga.

Clareza de logica e responsa- MANUT  Manutenibilidade  “Responsabilidades claras e l6gica ndo complexa Boa organizagdo interna favorece intervencdes fu-

bilidades (E7) facilitam manutencdo.” (ET) turas.

Separacgdo em classes (E1) MODUL Modularidade “Separou em classes diferentes, cada uma com sua Modularidade como mecanismo de controle de
responsabilidade.” (E1) complexidade.

OO e organizacdo em classes MODUL  Modularidade “Gostei do codigo 2 por usar vdrias classes (ori- Distribuicdo de responsabilidades melhora enten-

(E2) entagdo a objetos).” (E2) dimento.

Interfaces e manutenc¢do (E3) MODUL Modularidade “Uso de interface melhora a manutenibilidade.” Contratos explicitos estabilizam integragdes e evo-
(E3) lucdo.

Arquitetura MVC (E4) MODUL  Modularidade “Foco em manter controllers, views e models sepa- Padrdes arquiteturais estruturam médulos e cama-
rados.” (E4) das.

Blocos organizados (ES) MODUL Modularidade “O cadigo 1 estd bem separado em blocos, legivel.” Segmentagdo por blocos contribui para o raciocinio
(ES) local.

Mais classes, menos acopla- MODUL  Modularidade “O codigo 2 estd bem dividido, mais classes, res- Modularidade reduz acoplamento e facilita reuso.

mento (E6) ponsabilidades separadas.” (E6)

Modularizagdo e reuso (E7) MODUL  Modularidade “Responsabilidades modularizadas em classes me- Componentizagdo incentiva reutiliza¢@o e evolugdo

nores facilitam reuso.” (E7)

incremental.
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Unidade de Registro Codigo Categoria Exemplo de Fala Interpretacio

Padrdes de escrita (E4) PADR Nomenclatura “Codigo bom é legivel e padronizado; hd coisas Conformidade com convengdes melhora coesdo do
fora do padrdo.” (E4) time.

Nomes descritivos (E7) PADR Nomenclatura “Nomear bem varidveis e funcoes.” (ET) Nomeacao clara reduz ambiguidade e custos de

leitura.

Observancia de convengdes PADR Nomenclatura “Codigo bem escrito segue padrdo; sem isso, difi- Consisténcia de estilo como sinal de maturidade e

(E1) culta.” (E1) qualidade.

Cumprimento de requisitos FUNC Funcionalidade “0O codigo tem que ser funcional.” (E2) Funcionamento correto € requisito minimo de qua-

(E2) lidade.

Funcionar antes de estética FUNC Funcionalidade “Ndo adianta ser so bonito; precisa funcionar.” Prioridade para comportamento correto sobre apa-

(E4) (E4) réncia.

Funcional e sustentdvel (E7) FUNC Funcionalidade “Codigo de qualidade é funcional, fdcil de ler e  Funcionalidade integrada a legibilidade e manuten-
manter.” (E7) ¢do.

Preferéncia por solucdes en- SIMP Simplicidade “Prefiro codigo conciso e claro.” (E1) Remociao de complexidade acidental e foco no es-

xutas (E1) sencial.

Evitar excesso de extensdio SIMP Simplicidade “Pequeno e legivel; nem muito resumido nem muito ~ Simplicidade como equilibrio entre brevidade e

(E2) extenso.” (E2) clareza.

Critica a métodos gigantes SIMP Simplicidade “Métodos gigantes e muita responsabilidade; difi- Indicio de necessidade de decomposigao/refatora-

(E6) cil de manter.” (E6) cdo.

Critério espontaneo de cla- ESPONT Critérios espontidneos  “Prefiro codigo que qualquer pessoa bata o olho e  Legibilidade mencionada de forma espontdnea

reza (E1) entenda.” (E1) como prioridade universal.

Critério espontaneo de efici- ESPONT  Critérios espontineos  “Cddigos claros ajudam, mas também tem que ser  Eficiéncia aparece associada ao julgamento de cla-

éncia (E6) eficientes.” (E6) reza.

Escolha pelo cédigo enxuto PREF Preferéncia “Ndo tem nem como comparar, o cédigo 1 td en- Preferéncia clara pelo cédigo mais compacto.

(ES) xuto, perfeito, bem resumido.” (ES)

Preferéncia por modulari- PREF Preferéncia “0O codigo 2 estd bem mais modular, responsabili- Opg¢ao motivada pela separacdo de responsabilida-

dade (E6) dades divididas.” (E6) des.

Justificativa por legibilidade JUST Justificativa “A da direita td bem mais tranquila, bem mais fdcil ~ Escolha fundamentada na facilidade de leitura.

(E3)

de entender.” (E3)

gcl



Unidade de Registro Codigo Categoria Exemplo de Fala Interpretacio

Justificativa por padroniza- JUST Justificativa “O codigo 1 tem muita coisa fora do padrdo.” (E4) Critério de padronizacdo norteia a decisdo.

cdo (E4)

IA como ferramenta de apoio TAPOS  Pés-revelacdo “Eu acredito que ela vai ser uma ferramenta, né?  Percep¢do positiva, mas refor¢ando cariter com-
(ES) Pra auxiliar. Acho que é isso.” (ES) plementar da [A.

Risco no uso em producdo IAPOS  Pés-revelacdo “Claro que eu evitaria de usar LLM pra cédigo  Enfase na necessidade de supervisdo humana.

(E7)

direto em produgdo. Entdo, acho que uma revisdo
de codigos, ela é necessdria.” (E7)

IA como catalisador de pro- FUT
dutividade (E3)

Expectativas futuras

“Vai deixar a coisa muito mais fluida [...] mas
acabar [com o trabalho do dev], acho que ndo.”
(E3)

Expectativa de ganhos de produtividade sem subs-
tituicdo completa.

Integracdo inevitavel (E7) FUT

Expectativas futuras

“Se vocé ndo usa LLM, vocé td ficando pra trds.
Vocé td perdendo uma oportunidade.” (ET)

Expectativa de adogdo crescente como diferencial
competitivo.

Fonte: Elaborado pelo autor (2025)
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APENDICE C - QUADROS DE ESCOLHAS E JUSTIFICATIVAS DOS
ENTREVISTADOS

Este apéndice apresenta os quadros completos com as escolhas de codigo (original
ou refatorado) e as respectivas justificativas fornecidas pelos entrevistados (E1-E7), referentes a

Questao de Pesquisa 2 (QP2).

Tabela 17: Escolhas e justificativas do entrevistado E1 nas cinco comparagdes

Comparacao Cdédigo escolhido Justificativa

1# Refatorado “Cara, esse lado esquerdo estd muito complexo... o outro estd bem
mais enxuto, simples. Cada fungdo no seu lugar... Eu acho que seria o
dois. Sem divida.”

2° Refatorado “Sem duvida o codigo 1... Para manutencdo, sem diivida o codigo 1.
Fara clareza, para adicionar funcionalidade, eu escolheria ele.”

32 Refatorado “Legibilidade do lado esquerdo. .. Do lado direito estd muito verboso,
muito complexo. .. acoplando demais. .. O esquerdo estd mais enxuto,
responsabilidades isoladas.”

42 Refatorado “Os dois estdo bem... O um estd mais verboso, mas ainda assim
legivel. O dois estd menos verboso e a leitura estd mais linear... Para
manutengdo, o segundo.”

52 Refatorado “Legibilidade o um estd. .. Se faz a mesma coisa, cara, estd muito bom.
Para manutenabilidade eu escolheria o um. Complexidade, o dois estd
mais complexo.”

Fonte: Elaborado pelo autor (2025)

Tabela 18: Escolhas e justificativas do entrevistado E2 nas cinco comparagdes

Comparacio Cdédigo escolhido Justificativa

1? Refatorado “Eu vejo todas essas caracteristicas no codigo 2. [...] é menor, mais fdcil
de ler; melhor indentado. No primeiro eu me perco em vdrios comandos,
acho mais dificil de ler e manter.”

2? Refatorado “Dessa vez eu vou no codigo 1 [...] ele resumiu o codigo, evitou criar
fungdes por completo, fez tudo em uma linha. Codigos menores eu acho
mais fdcil de ler.”’

3* Refatorado “O primeiro usa muita estrutura condicional, fica complexo. O segundo
estd mais legivel e fdcil de manter. [...] A legibilidade é melhor no 2.”

42 Refatorado “Dessa vez o primeiro € um pouco mais legivel que o segundo. [...] Para
teste também saiu melhor. Para manter, seria um pouco mais fdcil do
que o segundo.”

5° Refatorado “O primeiro eu acho mais legivel, menos complexo para manter. Entdo
seria o numero 1, considero melhor.”

Fonte: Elaborado pelo autor (2025)
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Tabela 19: Escolhas e justificativas do entrevistado E3 nas cinco comparagdes

Comparacio Cdédigo escolhido Justificativa

1? Refatorado “De cara, pra mim, o da direita é mais fdcil de dar manutengdo; fica
mais legivel do que deixar so string.”

2° Refatorado “0 cddigo 2 divide os atributos por classe; ndo preciso ficar vendo um
monte de varidvel solta no inicio.”

3 Refatorado “Pra mim o codigo 2 é muito melhor; soube dividir em classes e agrupar
responsabilidades, ficando mais legivel.”

42 Refatorado “Aqui o codigo 1 estd melhor: em vez de vdrias linhas no try, ele separa
em funcdo, o que facilita a manutengdo. O 2 tem uma fungdo gigante
que faz mais de uma coisa.”

5° Refatorado “No 2, as varidveis foram separadas em objetos, fica mais manutenivel,
menos acoplado, legivel e até mais performdtico.”

Fonte: Elaborado pelo autor (2025)

Tabela 20: Escolhas e justificativas do entrevistado E4 nas cinco comparagdes

Comparacao Cdédigo escolhido Justificativa

1# Refatorado “O codigo 2 estd melhor por ser mais simples. No codigo 1 tem muita
coisa ndo padronizada, textos dentro do cddigo e varidveis soltas. O
codigo 2 jd usa manager para cuidar disso.”

2° Refatorado “Claramente o primeiro; o segundo é bem inicial, um esbogo. O primeiro
tem boas normas aplicadas.”

3? Refatorado “Para manutengdo, o cédigo 1 é mais funcional; consigo mexer de forma
mais especifica. No 2, a validagdo ndo estd tdo direta e é fdcil quebrar
algo.”

42 Refatorado “0 codigo 2 estd mais dividido, bem modularizado. No cédigo 1 encon-
trei apenas uma classe. Modularidade é essencial para manutengdo no
longo prazo.”

52 Refatorado “Com certeza o codigo 1; é mais fdcil de manter, melhora o ciclo de
vida do software. O codigo 2 tem muitas varidveis locais e pouco
aproveitamento externo.”

Fonte: Elaborado pelo autor (2025)

Tabela 21: Escolhas e justificativas do entrevistado ES nas cinco comparagdes

Comparacio Cédigo escolhido Justificativa

1? Refatorado “Ndo tem nem como comparar, o codigo 1 estd enxuto, perfeito, bem
resumido. O codigo 2 estd enorme e pouco legivel.”

2° Refatorado “O codigo 1 parece mais organizado, o acoplamento das classes estd
bem alinhado. Ele abrange todas as qualidades: legibilidade, testabili-
dade, modularidade, manutenabilidade.”

3 Original “Eu diria que para o iniciante, talvez o codigo 2 fosse mais fdcil dele ir
seguindo, né? Assim, para aprendizado. Porque vocé vai acompanhando
cada passo, estd tudo ali, ndo precisa ficar procurando em outro lugar.”

42 Refatorado “O codigo 1 estd bem legivel, modularizado, compacto, perfeito. O 2
tem muitos ifs e elses, prejudicando a legibilidade.”

5% Refatorado “Com certeza o codigo 1. O 2 é muito extenso, demanda bastante tempo
para compreender e manter.”

Fonte: Elaborado pelo autor (2025)
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Tabela 22: Escolhas e justificativas do entrevistado E6 nas cinco comparagdes

Comparacio Cédigo escolhido Justificativa

1? Refatorado “O codigo 2 estd bem mais modular, dividido e legivel. O codigo 1
assume muita responsabilidade, métodos gigantes e mais dificil de dar
manutengdo.”

2° Refatorado “0O codigo 2 estd bem mais modularizado. O cédigo I tem excesso de

responsabilidade. O 2 facilita testes e manuteng¢do.”

32 Refatorado “O codigo 2 é mais legivel, simples e fdcil de entender. O 1 é mais
complexo e dificil de entender o que a fungdo faz.”

42 Refatorado “O codigo 2 tem complexidade ciclomdtica elevada, muitos ifs aninhados.
O cdédigo 1 usa switch case, mais legivel e facilita manutengdo.”

52 Refatorado “0O cddigo 1, com certeza. Melhor legibilidade, modulariza¢do e ma-
nutencdo. O codigo 2 é basicamente uma classe tinica fazendo vdrias
fungoes, atrapalha a qualidade.”

Fonte: Elaborado pelo autor (2025)

Tabela 23: Escolhas e justificativas do entrevistado E7 nas cinco comparagdes

Comparacio Cddigo escolhido Justificativa

1? Refatorado “Com certeza, da direita. Estd bem mais fdcil de entender. O codigo 1
estd extenso, concentrando responsabilidades. O 2 estd mais modulari-
zado, conciso e sem logica muito complexa.”

22 Refatorado “O codigo 1 estd mais conciso, métodos claros, nomes e varidveis
induzem ao entendimento. O codigo 2 tem uma classe gigante e dificil
de entender, com vdrias varidveis repetitivas.”

3 Refatorado “O cddigo 2 estd mais conciso e modularizado, mais fdcil de entender.
O codigo 1 tem mais de 700 linhas, diferentes funcionalidades, deveria
ser refatorado.”

42 Refatorado “0 codigo 2 estd mais conciso, agrupado por responsabilidades. Mais
fdcil de entender, classes bem divididas. O codigo 1 tem muitas condici-
onais desnecessdrias e repetidas.”

5° Refatorado “0O codigo 1 é mais conciso, segue padrdo de agrupamento de respon-
sabilidades, consigo entender rdpido. O cddigo 2 tem loops aninhados,
condicionais complexas, alta complexidade ciclomdtica e duplicacdo.”

Fonte: Elaborado pelo autor (2025)
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APENDICE D - ROTEIRO DE ENTREVISTA

Neste apéndice € apresentado o roteiro seguido nas entrevistas, divido em quatro
blocos principais: coletado perfil do entrevistado, comparativa de c6digos, ferramentas e reflexdes
sobre qualidade de cédigo e encerramento.

1. Introducao - Abertura
a) Agradecimento ao entrevistado pela participagdo.
b) Explicacao sobre o objetivo da entrevista:
i. Analisar percep¢des sobre qualidade de cédigo em diferentes contextos.
1. Comparar 5 codigos retirados de projetos reais (QualitasCorpus).
iii. Coletar insights sobre boas praticas e manutencio de codigo.
iv. Informacdo sobre a gravacao da entrevista e confidencialidade dos dados.
¢) Perguntar se hd alguma davida antes de comegarmos.
2. Perfil do Entrevistado
a) Qual € o seu nivel de experiéncia em desenvolvimento de software? (Junior, Pleno,
Sénior)
b) Ha quanto tempo vocé trabalha com Programacao?
¢) Que tipo de software voc€ normalmente desenvolve?
d) Ferramentas que usa ou usou no trabalho?
e) Quais critérios vocé geralmente usa para avaliar a qualidade de um cédigo?
3. Anilise Comparativa dos Codigos - Para cada par de cédigos:
a) Quais sdo os atributos de qualidade de c6digo vocé encontrou nos pares de c6digo

(ex.: legibilidade, testabilidade, modularidade, manutenibilidade, extensibilidade)?

b) Qual cddigo vocé considera que usou boas praticas para manter a qualidade do
c6digo? E como influencia durante o ciclo de vida do software?

¢) Quais sinais ou indicadores vocé observa para identificar um cédigo com baixa
qualidade?

d) Qual dos dois codigos vocé considera de melhor qualidade? Por qué?

e) Qual cédigo vocé consideraria mais facil de manter a longo prazo? Justifique sua
resposta.

f) A legibilidade do cddigo foi impactada positivamente ou negativamente versao 1 ou
versdo 2?7 Como?

4. Ferramentas e Reflexido sobre Qualidade de Cédigo
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a) Voce ja utilizou ferramentas automatizadas de andlise de qualidade de c6digo? Se
sim, quais e o que achou delas?

b) Voceé considera util a aplicacao de métricas (ex.: complexidade ciclomatica, acopla-
mento, cobertura de testes) para avaliar a qualidade? Por qué?

¢) No seu fluxo de trabalho, ha revisdes de c6digo (code review)? O que vocé observa
durante essas revisoes?

d) J4 trabalhou em projetos onde a refatoragdo foi evitada por receio de introduzir bugs
ou complicar a manutenc¢do? Poderia compartilhar sua experiéncia?

e) Como a qualidade do cédigo influencia a produtividade e moral do time?

f) Voce ja trabalhou em projetos em que a baixa qualidade de cédigo gerou dividas
técnicas dificeis de resolver? Pode contar como foi?

5. Encerramento

a) O que vocé achou do exercicio de anélise comparativa? Foi util para sua percep¢ao
sobre qualidade de c6digo?

b) Para sua surpresa, o cddigo refatorado foi gerado por um modelo de linguagem
treinado para otimizar cédigo. Voc€ mudaria suas escolhas apds essa revelacao? Qual
€ sua opinido sobre o uso de inteligéncia artificial no quesito qualidade de c6digo?

¢) Vocé considera que as sugestdes geradas por uma IA podem substituir parcialmente
o trabalho de um desenvolvedor na melhoria do c6digo?

d) Finalizacao:

1. Agradecimento pela participacdo e tempo dedicado.
ii. Reafirmacdo sobre a confidencialidade das respostas.

iii. Pergunta se h4 alguma consideragdo final que gostaria de adicionar.
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