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RESUMO

O presente trabalho propõe regras de ajuste do Preditor de Smith Filtrado Simplificado para

sistemas de primeira ordem com atraso de transporte. Tais regras são obtidas a partir da condição

de estabilidade robusta do controlador e fornecem o menor parâmetro desejado para garantir

estabilidade e rápida rejeição de perturbações constantes, bastando para isso fornecer o ganho

do sistema, o polo, bem como o atraso e sua máxima incerteza e o ganho de controle. Uma vez

obtida a forma analítica de tais regras, determinam-se as soluções das equações transcendentais

envolvidas através de método aproximado ou numérico. Um programa para cálculo automático do

parâmetro de sintonia é desenvolvido a fim de facilitar o trabalho do projetista. Finalmente, cada

regra é testada nos respectivos sistemas de primeira ordem através da simulação e comparação

com outros trabalhos recentes da literatura. Os resultados mostram que as regras propostas são

eficazes na determinação do valor do parâmetro do filtro que seja pequeno o suficiente para

garantir bom desempenho na rejeição de perturbações e que ainda garanta estabilidade do sistema

de controle frente à incerteza no valor do atraso de transporte.

Palavras-chave: Atraso de transporte, Preditor de Smith Filtrado Simplificado, Sistemas de

primeira ordem, condição de robustez.



ABSTRACT

This paper proposes tuning rules for the Simplified Filtered Smith Predictor for first-order

systems with transport delay. These rules are derived from the robust stability condition of

the controller and provide the minimum desired parameter to ensure stability and fast rejection

of constant disturbances. To achieve this, it is only necessary to provide the system gain,

the pole, as well as the time delay along with its maximum uncertainty, and the control gain.

Once the analytical form of these rules is obtained, the solutions to the involved transcendental

equations are determined through an approximate or numerical method. A program for automatic

calculation of the tuning parameter is developed to ease the designer’s task. Finally, each rule is

tested on the respective first-order systems through simulation and compared with other recent

works in the literature. The results show that the proposed rules are effective in determining the

value of the filter parameter that is small enough to ensure good performance in disturbance

rejection while still ensuring the stability of the control system in the presence of uncertainty in

the transport delay value.

Keywords: Time-Delay, Simplified Filtered Smith Predictor, First-order systems, robustness

condition.
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1 INTRODUÇÃO

Diferentes fatores podem determinar o surgimento do atraso de transporte em proces-

sos, são eles: tempo demandado para transporte de massa, bem como de energia ou informação,

ou ainda, em sistemas de controle digitais, devido ao tempo para os dados serem processados e

ao período de ciclo do computador, em outras situações, pelo acúmulo de tempo de atrasos em

vários sistemas dinâmicos simples conectados em série e, finalmente, na modelagem de baixa

ordem de muitos sistemas industriais (NORMEY-RICO; CAMACHO, 2007).

Uma característica indesejada dos sistemas com atraso de transporte é o fato de a

ação de controle ter efeito na variável controlada somente após decorrer algum tempo, além

de levar-se um tempo considerável para o efeito das perturbações serem percebidas, conforme

consta em Normey-Rico e Camacho (2007).

No projeto de sistemas de controle, processos com atraso de transporte considerável

apresentam dificuldades para controlar quando se utiliza controle por realimentação como, por

exemplo, o fato do tempo morto provocar uma diminuição extra na fase do sistema em malha

fechada, podendo gerar instabilidade (NORMEY-RICO; CAMACHO, 2007). Nesse caso, a

utilização de um controle preditivo é recomendável, principalmente em situações em que o atraso

de transporte é elevado (ÅSTRÖM; HÄGGLUND, 1995). Uma alternativa consagrada são os

chamados compensadores de tempo-morto (Dead-Time Compensator (DTC)) (NORMEY-RICO;

CAMACHO, 2008a).

Neste trabalho são desenvolvidas regras de sintonia para um dos parâmetros do filtro

de um compensador de atraso, ou DTC, uma para cada tipo de sistema de primeira ordem com

atraso de transporte, tais que os controladores sejam capazes de rejeitar rapidamente perturbações

tipo degrau e que garantam estabilidade. As regras fornecem o parâmetro a partir de valores

característicos do processo, bem como da incerteza máxima considerada no atraso de transporte

e do valor de ganho do controle.

Finalmente, simulações de sistemas de controle ajustados por cada uma das regras

mostram que as mesmas são seguras quanto à previsão do parâmetro no sentido de garantir

estabilidade na saída do sistema.



16

1.1 Levantamento Bibliográfico

Um preditor integrado a um sistema de controle remonta do final da década de 1950,

quando Otto J. M. Smith (1917-2009) propôs, em um artigo, aquilo que viria a ser conhecido

como o Preditor de Smith (Smith Predictor (SP)) (SMITH, 1957), o algoritmo de compensação

de atraso de transporte mais conhecido e utilizado na indústria (NORMEY-RICO; CAMACHO,

2007).

Contudo, tratando-se de compensação de sistemas estáveis, o SP tem desempenho

na rejeição de perturbação de entrada limitado pela dinâmica de malha aberta do processo. Nesse

contexto, vários controladores foram desenvolvidos para resolver essa e outras limitações, como

a aplicação do SP em processos integradores e instáveis (TORRICO et al., 2024). Uma das

estratégias propostas foi o Preditor de Smith filtrado (Filtered Smith Predictor (FSP)) (NORMEY-

RICO; CAMACHO, 2009) em 2009, constituído de um controlador responsável pelo seguimento

de referência e de um filtro cuja função é garantir rejeição de perturbações, além de robustez e

estabilidade.

A partir do FSP, surgiu o Preditor de Smith filtrado simplificado (Simplified Filtered

Smith Predictor (SFSP)) (TORRICO et al., 2013), trazendo, como o nome indica, controladores

de ordem inferior àquele, mas com desempenho no mínimo equivalente quando se considera

rejeição de perturbações e robustez.

O artigo de Torrico et al. (2018), traz um novo conjunto de regras para ajuste de

filtro do SFSP que permitem o uso de filtros de ordem inferior capazes de garantir rejeição de

perturbações e robustez em malha fechada. Os autores mostram melhor desempenho da solução

proposta em comparação a outros trabalhos da literatura quanto à rejeição de perturbações e

ruídos, além de aplicá-la a um processo real representado por uma câmara térmica.

No trabalho de Torrico et al. (2019) é proposta a extensão do SFSP para sistemas

em espaço de estados visando a rejeição de perturbações desconhecidas no cenário de sistemas

lineares invariantes no tempo (Linear Time Invariant (LTI)) com atraso na entrada. O artigo

mostra que a estratégia proposta é simples, se comparada àquelas presentes na literatura, com a

vantagem de ser aplicável tanto a sistemas no tempo contínuo quanto no tempo discreto.

O artigo de Torrico et al. (2021) traz o desenvolvimento de uma estrutura de controle

do SFSP para processos de fase não mínima de ordem elevada. A principal vantagem proposta

é que o controle primário consiste de uma realimentação de estados com elemento integrador

implícito, resultando em filtros de ordem inferior, bem como menos parâmetros de ajuste.
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Através de simulações, observam-se resultados no mínimo equivalentes aos obtidos com outras

estratégias disponíveis na área de compensação de atraso de transporte.

Novos métodos de sintonia para o SFSP foram propostos nos últimos anos. Nos

trabalhos de Rodrigues (2021) e Sá Rodrigues et al. (2021), os autores desenvolvem uma regra

que fornece a sintonia do preditor para a compensação de sistemas de primeira ordem instáveis

em malha aberta com atraso de transporte a partir do seu valor, da máxima incerteza do mesmo

e da constante de tempo de malha fechada desejada. A lei de sintonia é obtida através da

otimização de simulações realizadas dentro da região desejada para sua validade. Além disso,

esses trabalhos fornecem um método para determinar o máximo tempo de amostragem sem

alterar de forma significativa o desempenho e a robustez do sistema de controle.

Oliveira et al. (2022) propõem a obtenção do preditor diretamente pela sintonia na

forma de filtro tipo Finite Impulse Response (FIR). Tal método apresenta a vantagem de garantir

intrinsecamente a rejeição de perturbações tipo degrau, bem como da dinâmica de malha aberta

do processo, além da simplicidade para a determinação dos parâmetros do controlador.

O artigo de Freitas et al. (2024) traz uma proposta de sintonia do SFSP para sistemas

integradores com atraso de transporte. O desempenho do compensador assim ajustado é compa-

rado com outros trabalhos recentes da literatura, onde se concluiu que a regra desenvolvida pelos

autores representa uma estratégia segura de ajuste do preditor dentro do cenário apresentado por

eles.

1.2 Motivação

Alguns parâmetros do SFSP são obtidos a partir de condições como, por exemplo,

o desempenho desejado em malha fechada. Porém, um dos parâmetros, α , tem sintonia livre.

Quanto menor o valor desse parâmetro, mais rápida a rejeição de perturbações. Por outro lado,

um valor muito baixo de α pode levar o sistema à instabilidade. Apesar de os trabalhos de

Rodrigues (2021) e Sá Rodrigues et al. (2021), bem como de Freitas et al. (2024) apresentarem

contribuições de regras para obtenção desse parâmetro, ambos se restringem a uma faixa restrita

de desempenho em malha fechada e a um único tipo de sistema cada. Diante disso, cabe ao

projetista resolver esse problema de compromisso através de um procedimento de tentativa e

erro nas demais situações não contempladas naqueles trabalhos.
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1.3 Objetivos

Esse trabalho objetiva determinar fórmulas que forneçam o valor do parâmetro α

pequeno o suficiente para rejeitar rapidamente as perturbações do tipo degrau, mas que ainda

garanta a robustez da estabilidade do sistema de controle. Serão desenvolvidas três fórmulas,

uma para cada tipo de sistema de primeira ordem (estável, instável e integrador), que fornecem o

valor do parâmetro do filtro a partir de valores característicos do processo, tais como: o ganho,

o valor do polo, o atraso e a incerteza no atraso e o ganho de controle. Assim, o problema

de compromisso desempenho-estabilidade na determinação do filtro será resolvido de forma a

facilitar o trabalho do projetista.

Objetivos específicos:

• Desenvolver procedimentos analíticos dos quais seja possível a obtenção do parâmetro α

do filtro do SFSP para cada tipo de sistema de primeira ordem;

• Determinar a solução das equações que permitem o cálculo de α (de forma aproximada ou

numérica);

• Criar uma função para fornecer automaticamente o valor do parâmetro do filtro a partir

dos valores característicos do sistema (ganho, polo, atraso de transporte e sua máxima

incerteza) e do ganho de controle;

• Validar as regras propostas para cada tipo de sistema comparando com outros trabalhos da

literatura.

1.4 Contribuição proposta

Obter o parâmetro α do filtro do SFSP através de procedimento analítico teórico-

numérico, para cada sistema de primeira ordem com atraso (polo estável, instável e integrador

puro), capaz de garantir ao controle tanto estabilidade robusta na presença de incertezas no valor

do atraso de transporte quanto rápida rejeição de perturbações tipo degrau.

1.5 Trabalho publicado

No decorrer do curso de Mestrado Acadêmico em Engenharia Elétrica da Universi-

dade Federal do Ceará, o autor dessa dissertação participou como autor do seguinte artigo:

1. Regra de sintonia para o preditor de Smith filtrado simplificado aplicado a processos

integradores com atraso de transporte. XXV Congresso Brasileiro de Automática (CBA) -
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2024.

1.6 Organização do texto

Esse texto está organizado da seguinte forma: no Capítulo 1 apresenta-se uma

revisão bibliográfica sobre os trabalhos publicados sobre o SFSP nos últimos anos. O Capítulo

2 apresenta o esquema de controle de alguns compensadores de atraso de transporte, como o

SP, o FSP e, especificamente, o SFSP, com sua estrutura de implementação estável, além da

determinação dos parâmetros do numerador do filtro. O Capítulo 3 traz uma revisão sobre

estabilidade robusta aplicada ao SFSP e o desenvolvimento das regras de ajuste do filtro a partir

dessa condição de robustez, bem como a obtenção prática do parâmetro do filtro através de um

programa ou por aproximação. No Capítulo 4 são mostrados os resultados de simulação do

sistema de controle ajustado pelas regras propostas para cada tipo de sistema em comparação

com outros trabalhos da literatura, além da discussão. O Capítulo 5 apresenta as conclusões do

trabalho e proposta de trabalhos futuros.
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2 COMPENSADORES DE ATRASO DE TRANSPORTE

No contexto de controle de processos com atraso de transporte, faz-se necessário

o uso de estruturas preditoras integradas ao controlador. As subseções seguintes trazem uma

descrição de três estruturas preditoras na ordem em que foram concebidas.

2.1 O Preditor de Smith (SP)

Uma das estratégias pioneiras de compensação de atraso foi o Preditor de Smith

(SP), cujo esquema se encontra ilustrado na Figura 1, onde s é o operador de Laplace, Gn(s) é o

modelo nominal sem atraso, C(s) é o controlador primário, Ln é o atraso de transporte nominal,

r é o sinal de referência, u é o sinal de controle, y é a saída, q é a perturbação de entrada e w é o

ruído de medição. O processo é dado por:

P(s) = Gn(s)e−Ls, (2.1)

onde L é o atraso real.

Figura 1 – Esquema do Preditor de Smith.

C(s) +u
P(s)

Gn(s) e−Lns

r + + + + y

+−

+

+

−

processo
q w

Fonte: Próprio autor.

Considerando o caso nominal, ou seja, o modelo Pn(s) = Gn(s)e−Lns representando

fielmente o processo P(s), podemos destacar as seguintes funções de transferência para o SP:

Hyr =
Y (s)
R(s)

=
C(s)Pn(s)

1+C(s)Gn(s)
, (2.2)

Hyq =
Y (s)
Q(s)

= Pn(s)
[

1− C(s)Pn(s)
1+C(s)Gn(s)

]
, (2.3)

Huw =
U(s)
W (s)

=
−C(s)

1+C(s)Gn(s)
. (2.4)
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A Eq. (2.3) evidencia o fato do SP apresentar problema ao ser aplicado em sistemas

instáveis em malha aberta, uma vez que tal dinâmica está presente na função de transferência que

relaciona a saída com a perturbação. Além disso, não há liberdade de ajuste para obter dinâmica

desejada de seguimento de referência sem interferir no desempenho desejado para rejeição de

perturbação e vice-versa.

2.2 O Preditor de Smith Filtrado (FSP)

Uma proposta simples de solução para o controle de sistemas de primeira ordem

instáveis em malha aberta com tempo morto é o chamado Preditor de Smith Filtrado (FSP)

(NORMEY-RICO; CAMACHO, 2008b). A Figura 2 mostra sua estrutura em diagrama de blocos,

onde C(s) é um controle proporcional e integrativo (PI) e F(s) é o filtro de referência.

O filtro Fr(s) garante rejeição de perturbações, bem como robustez do controle frente

a incerteza no atraso de transporte (NORMEY-RICO; CAMACHO, 2009).

Figura 2 – Estrutura do Preditor de Smith Filtrado.

F(s) C(s) +u
P(s)

Gn(s) e−Lns

Fr(s)

r + + + + y

+−

+

+

−

processo
q w

Fonte: Próprio autor.

As funções de transferência em malha fechada, quando o modelo do processo é

perfeito, são:

Hyr =
Y (s)
R(s)

=
F(s)C(s)Pn(s)
1+C(s)Gn(s)

, (2.5)

Hyq =
Y (s)
Q(s)

= Pn(s)
[

1−C(s)Pn(s)Fr(s)
1+C(s)Gn(s)

]
, (2.6)

Huw =
U(s)
W (s)

=
−C(s)Fr(s)

1+C(s)Gn(s)
. (2.7)

Analisando as Eqs. (2.5) e (2.6), vemos que é possível ajustar o filtro Fr(s) para

alcançar rejeição de perturbação e robustez sem alterar o desempenho saída-referência. Através
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desse filtro pode-se obter também um sistema internamente estável para o controle de processos

instáveis em malha aberta.

2.3 O Preditor de Smith filtrado simplificado (SFSP)

A Figura 3 mostra a estrutura do preditor de Smith filtrado simplificado para modelos

de primeira ordem. Os parâmetros do sistema de controle são: o ganho de referência Kr, o ganho

K e o filtro de robustez V (s).

Figura 3 – Esquema de controle do SFSP no domínio contínuo.

Kr
+u

P(s)

Gn(s) e−Lns

V (s)K

r + + + + y

+−

+

+

−

processo
q w

Fonte: Oliveira et al. (2021) adaptado.

O filtro V (s) é dado por:

V (s) =
b1s+b2

αs+1
. (2.8)

As funções de transferência associadas ao SFSP, quando o modelo é fiel ao processo

real, são:

Hyr =
Y (s)
R(s)

=
KrKPn(s)

1+KGn(s)
, (2.9)

Hyq =
Y (s)
Q(s)

= Pn(s)
[

1− V (s)KPn(s)
1+KGn(s)

]
, (2.10)

Huw =
U(s)
W (s)

=
−KV (s)

1+KGn(s)
. (2.11)

Considerando o modelo nominal sem atraso como

Gn(s) =
b

(s±a)
, (2.12)

em que a≥ 0, a função de transferência em malha fechada, que relaciona y com r é:

Hyr(s) =
Krbe−Lns

s±a+bK
. (2.13)
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O ganho K é tal que:

K > 0, (2.14)

para os sistemas integrador e estável, e

K >
a
b
, (2.15)

no caso do sistema instável.

Para o sistema integrador (a = 0), os coeficientes do numerador do filtro são obtidos

resolvendo-se as equações:

1+Gn(s)[K−V (s)eLns]|s=0 = 0, (2.16)

d
ds

(Gn(s)[K−V (s)eLns])

∣∣∣∣
s=0

= 0, (2.17)

o que resulta:

b1 =
1+(α +Ln)bK

b
, (2.18)

b2 =K. (2.19)

Caso o sistema seja instável, seu denominador será (s−a) e os coeficientes b1 e b2

do filtro são obtidos a partir da Eq. (2.16) e da equação abaixo:

K−V (s)eLns|s=a = 0, (2.20)

das quais obtemos:

b1 =
a−Kb+Kb(1+αa)eaLn

ab
, (2.21)

b2 =K− a
b
. (2.22)

Para o sistema estável, ou seja, com denominador (s+a), os parâmetros b1 e b2 do

filtro são obtidos resolvendo-se a Eq. (2.16) e também a seguinte equação:

K−V (s)eLns|s=−a = 0, (2.23)

que fornecem:

b1 =
a+Kb−Kb(1−αa)e−aLn

ab
, (2.24)

b2 =K +
a
b
. (2.25)
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2.3.1 Implementação Estável do SFSP

Há problema de instabilidade interna caso a estrutura de implementação mostrada

na Figura 3 seja utilizada para sistemas integradores ou instáveis. O trabalho de Oliveira et al.

(2021) propõe, para esses casos, a estrutura de implementação estável mostrada na Figura 4.

Figura 4 – Estrutura de implementação estável do SFSP.

F(z) ZOH
u + P(s)

S̃(z)

r + + + + y

V (z)

++

−

processo
q w

Fonte: Oliveira et al. (2021) adaptado.

Onde

F(s) =
Kr

V (s)
, (2.26)

e S̃(s) é a realização mínima de

S(s) = (K− e−LsV (s)C)(sI−A)−1B, (2.27)

dada por

S̃(s) = KS1(s)−S2(s)e−Ls, (2.28)

em que

S1(t) =
∫ t

t−L
eA(t−τ)Bu(τ)dτ, (2.29)

S2(s) =M[(V (s)−KeAL)Gn(s)], (2.30)

onde M[·] denota a realização mínima de um sistema LTI em espaço de estados, A, B e C são

matrizes da representação do sistema sem atraso na forma canônica observável.

Procedemos a seguir com a proposta de regra de sintonia para o filtro do SFSP para

diferentes tipos de sistemas com atraso de transporte: integrador puro, sistemas de primeira

ordem estável e instável.
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3 REGRAS DE SINTONIA

Nesse capítulo são revisados os conceitos para determinar a condição de estabilidade

robusta do sistema de controle, como o índice de robustez, além do desenvolvimento do proce-

dimento analítico-numérico para obtenção das regras de sintonia para cada tipo de sistema de

primeira ordem com atraso de transporte. Considera-se incerteza apenas no atraso do sistema,

uma vez que gera grande impacto na descrição dos erros de modelagem do processo, o que faz

do erro no atraso de transporte o principal fator que leva o sistema à instabilidade em malha

fechada (NORMEY-RICO; CAMACHO, 2007).

3.1 Estabilidade robusta

O sistema real P(s) essencialmente difere do seu modelo Pn(s) = Gn(s)e−Lns, sendo

melhor representado pela família de processos dada por:

P(s) = Pn(s)(1+δP(s)) = Pn(s)+∆P(s), (3.1)

onde ∆P(s) é a incerteza aditiva e δP(s) representa a incerteza multiplicativa.

Figura 5 – Representação do sistema real.

Pn(s)
u

δP(s)

+
+ y

P(s)

Fonte: Próprio autor.

Consideremos, por hipótese, que todas as plantas da família possuem o mesmo

número de polos no lado direito do plano s e que as normas das incertezas aditivas e multipli-

cativas são limitadas (NORMEY-RICO; CAMACHO, 2007). Assim, temos para a incerteza

multiplicativa:

|δP( jω)| ≤ δP(ω), ω > 0, (3.2)

em que δP é a norma limitada da incerteza multiplicativa.

A equação característica de malha fechada será:

1+C(s)P(s) = 1+C(s)(Pn(s)+∆P(s)) = 0, (3.3)
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onde C(s) é o controle em cascata com o processo, conforme a estrutura equivalente do SFSP

representada na Figura 6.

Figura 6 – Estrutura equivalente do SFSP.

Kr
V (s)

V (s)
1+S(s)

u + P(s)
r + + + + y

−

processoq w

Fonte: Próprio autor.

E S(s) é dado por:

S(s) = KGn(s)−Gn(s)V (s)e−Lns. (3.4)

Considere que o controle estabiliza o sistema nominal e que o diagrama correspon-

dente de C( jω)Pn( jω) não envolve o ponto (−1,0), então o controle estabiliza o processo real

caso o diagrama de Nyquist da família de processos C( jω)(Pn( jω)+∆P( jω)) também não en-

volva esse ponto, o que ocorre se, e somente se, a distância entre C( jω)Pn( jω) e o ponto (−1,0)

no diagrama de Nyquist for maior que |C( jω)∆P( jω)| (distância AB na Figura 7) (MORARI;

ZAFIRIOU, 1989):

|1+C( jω)Pn( jω)|> |C( jω)∆P( jω)|, ∀ω. (3.5)

Figura 7 – Diagrama de Nyquist para análise de robustez da estabilidade.

Fonte: (NORMEY-RICO; CAMACHO, 2007).
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Dividindo ambos os membros da expressão (3.5) por |C( jω)Pn( jω)|, obtemos:

|1+C( jω)Pn( jω)|
|C( jω)Pn( jω)| >

|C( jω)∆P( jω)|
|C( jω)Pn( jω)| = |δP( jω)|, ∀ω. (3.6)

Assim, obtemos a condição de estabilidade robusta em termos do índice de robustez, Ir(ω):

Ir(ω) =

∣∣∣∣
1+C(s)Pn(s)

C(s)Pn(s)

∣∣∣∣
s= jω

> δP(ω), ∀ω. (3.7)

Na situação considerada, temos C(s) =V (s)/(1+S(s)), então a Eq. (3.7) fica:

Ir(ω) =

∣∣∣∣
1+KGn(s)
Gn(s)V (s)

∣∣∣∣
s= jω

> δP(ω), ∀ω. (3.8)

Esta é a condição de estabilidade robusta do SFSP.

3.2 Obtenção das Regras de Sintonia

Seja a incerteza multiplicativa associada ao atraso, dada por:

δP(ω)≥ |P(s)−Pn(s)|
|Pn(s)|

∣∣∣∣
s= jω

= |e−∆Ls−1|s= jω , ω > 0, (3.9)

em que ∆L = L−Ln é a incerteza no atraso.

Substituindo as Eqs. (2.8) e (2.12) na Eq. (3.8) e combinando com a Eq. (3.9),

obtemos:
∣∣∣∣
(s±a+Kb)(αs+1)

b(b1s+b2)

∣∣∣∣
s= jω

> |e−∆Ls−1|s= jω . (3.10)

Rearranjando a expressão acima, temos:
∣∣∣∣

αs+1
b(b1(α)s+b2)

∣∣∣∣
s= jω

>

∣∣∣∣
e−∆Ls−1
s±a+Kb

∣∣∣∣
s= jω

. (3.11)

Que pode ser escrita como:

fα(ω)> g(ω), ∀ω, (3.12)

onde fα(ω) e g(ω) são as respectivas funções módulo na Eq. (3.11).

A Figura 8 mostra o comportamento das funções fα(ω), para diferentes valores de

α , e g(ω).
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Figura 8 – Comportamentos de g(ω) e fα(ω) para diferentes valores de α .

Fonte: Próprio autor.

Para os três valores de α , apenas α1 satisfaz a Eq. (3.12). A seguir, desenvolve-se

uma estratégia de sintonia para α que satisfaça tal desigualdade para um dado sistema dinâmico

e, consequentemente, a condição de estabilidade robusta do controle e que seja obtida através de

parâmetros da planta.

Uma condição para que a desigualdade da Eq. (3.12) seja satisfeita é:

ffinal > ḡmáximo, (3.13)

em que ḡmáximo é o valor máximo superior de g(ω) e

ffinal = lim
ω→∞

∣∣∣∣
α jω +1

b(b1(α) jω +b2)

∣∣∣∣=
α

bb1(α)
. (3.14)

A condição (3.13) fica:

α
bb1(α)

> ḡmáximo. (3.15)

A expressão acima mostra que o valor de α pode ser obtido explicitamente a partir

do parâmetro da planta, b, do valor de um parâmetro do filtro que depende de α , b1(α), e do

valor máximo superior de g(ω). Entretanto, o valor ḡmáximo não pode ser obtido analiticamente,

conforme se justifica a seguir.

Para o cálculo de g(ω), primeiro façamos:

e−∆Ls−1|s= jω = e− j∆Lω −1 = (cos(∆Lω)−1)− j sin(∆Lω). (3.16)
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Assim

|e−∆Ls−1|s= jω =
√

(cos(∆Lω)−1)2 +(sin(∆Lω))2 =
√

2(1− cos(∆Lω)). (3.17)

E g(ω) poderá ser escrita como:

g(ω) =

√
2(1− cos(∆Lω))

ω2 +(Kb±a)2 . (3.18)

O radicando da expressão acima possui um numerador periódico, que varia de 0 a 4,

e um denominador que cresce com o quadrado da frequência. Assim, g(ω) tem o aspecto de

sucessão de picos com amplitude decrescente, conforme mostra a Figura 8.

A função dada pela Eq. (3.18) possui máximo superior em uma frequência ω̄M que

satisfaz a equação:

tan
(

∆Lω̄M

2

)
=

∆Lω̄M

2
+

∆L(Kb±a)2

2ω̄M
. (3.19)

Ou seja, uma equação transcendental em ω̄M, cuja solução não pode ser obtida de

forma analítica. Há dois modos para a determinação da raiz dessa equação.

Utilizando os dois primeiros termos da expansão em série de tan(∆Lω̄M/2), obtemos

a aproximação, válida para ∆L < 1:

ω̄M ≈ 4
√

12
(

Kb±a
∆L

) 1
2

. (3.20)

Substituindo o valor da frequência acima na Eq. (3.18), determina-se:

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

(Kb±a)∆L))√
12(Kb±a)/∆L+(Kb±a)2

. (3.21)

Caso ∆L> 1 , o valor máximo superior de g(ω) é calculado substituindo na Eq. (3.18)

o valor de ω̄M obtido ao se resolver a Eq. (3.19) através de algum método numérico. Nesse

trabalho, utiliza-se o método de Newton-Raphson com precisão de 1× 10−5 e definindo a

seguinte função:

h(ω̄M) = tan
(

∆Lω̄M

2

)
− ∆Lω̄M

2
− ∆L(Kb±a)2

2ω̄M
, (3.22)

e suas derivadas primeira e segunda:

h′(ω̄M) =
∆L
2

(
sec2

(
∆Lω̄M

2

)
+

(Kb±a)2

ω̄2
M

−1
)
, (3.23)
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h′′(ω̄M) =
∆L2

2
sec2

(
∆Lω̄M

2

)
tan

(
∆Lω̄M

2

)
− ∆L(Kb±a)2

ω̄3
M

. (3.24)

O método de Newton-Raphson é iniciado com um valor inicial para a raiz. Nesse

caso, utilizou-se o valor ω̄0 = 2π/(3∆L) que está dentro do primeiro intervalo de frequências

em que g(ω) sai e retorna a zero, claramente o intervalo onde ocorre o valor máximo superior

procurado, dispensando a análise gráfica prévia para avaliar o valor do palpite inicial que inicia o

método numérico empregado.

A seguir, serão mostradas as fórmulas para obtenção do parâmetro α para cada tipo

de sistema de primeira ordem, uma vez já tendo em mãos o valor de g(ω) máximo superior.

3.2.1 Integrador puro

Considerando o caso do integrador puro, temos o sistema dado pela Eq. (2.1) em

que Gn(s) tem polo a = 0. O filtro possui parâmetros dados pelas Eqs. (2.18) e (2.19). Assim, a

condição (3.15) assume a forma:

α
1+(Ln +α)Kb

> ḡmáximo. (3.25)

A partir da qual obtêm-se:

α >
ḡmáximo(1+KbLn)

1− ḡmáximoKb
. (3.26)

A regra é válida caso:

1− ḡmáximoKb > 0, (3.27)

uma vez que α > 0.

Se ∆L < 1, o valor máximo superior de g(ω) é dado aproximadamente por:

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

Kb∆L))√
12Kb/∆L+K2b2

. (3.28)

3.2.2 Sistema de primeira ordem estável

O sistema estável de primeira ordem possui modelo dado pela Eq. (2.1) com Gn(s)

tendo o denominador (s+a). Os parâmetros do filtro são dados pelas Eqs. (2.24) e (2.25). A

desigualdade (3.15) fica:

aα
−Kb(1−αa)e−aLn +a+Kb

> ḡmáximo. (3.29)
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O que fornece:

α >
ḡmáximo[a+Kb(1− e−aLn)]

a(1− ḡmáximoKbe−aLn)
, (3.30)

onde

1− ḡmáximoKbe−aLn > 0. (3.31)

O valor ḡmáximo é tal que (se ∆L < 1):

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

(Kb+a)∆L))√
12(Kb+a)/∆L+(Kb+a)2

. (3.32)

3.2.3 Sistema de primeira ordem instável

Para o sistema instável, o modelo é dado pela Eq. (2.1) em que Gn(s) tem denomina-

dor (s−a). Têm-se os parâmetros do filtro dados pelas Eqs. (2.21) e (2.22). A desigualdade (3.15)

será:

aα
Kb(1+αa)eaLn +a−Kb

> ḡmáximo. (3.33)

Resultando:

α >
ḡmáximo[a+Kb(eaLn−1)]

a(1− ḡmáximoKbeaLn)
, (3.34)

tendo a condição:

1− ḡmáximoKbeaLn > 0. (3.35)

Caso ∆L < 1, a expressão do valor aproximado de g(ω) máximo superior é:

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

(Kb−a)∆L))√
12(Kb−a)/∆L+(Kb−a)2

. (3.36)

Uma vez determinadas as fórmulas das quais obtêm-se o parâmetro α para cada

tipo de sistema de primeira ordem, criou-se uma função que fornece automaticamente o valor

do parâmetro a partir do ganho de controle, do ganho do sistema, do polo, do valor nominal

do atraso e sua máxima incerteza. O método de Newton-Raphson para o cálculo do valor de

ḡmáximo é empregado dentro da referida função, válida para qualquer valor de incerteza no atraso

de transporte, cujo pseudocódigo está descrito no Algoritmo 1. No Apêndice B é mostrado um

exemplo de implementação em MATLAB®.
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Caso ∆L < 1, há a opção de usar as fórmulas aproximadas das regras de sintonia

para cada tipo de sistema de primeira ordem com atraso organizadas na Tabela 1.

Tabela 1 – Tabela de fórmulas das regras (caso ∆L < 1).

SISTEMA Parâmetros

INTEGRADOR

b1 =
1+(α +Ln)bK

b

b2 = K

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

Kb∆L))√
12Kb/∆L+K2b2

α >
ḡmáximo(1+KbLn)

1− ḡmáximoKb

ESTÁVEL

b1 =
a+Kb−Kb(1−αa)e−aLn

ab

b2 = K +
a
b

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

(Kb+a)∆L))√
12(Kb+a)/∆L+(Kb+a)2

α >
ḡmáximo[a+Kb(1− e−aLn)]

a(1− ḡmáximoKbe−aLn)

INSTÁVEL

b1 =
a−Kb+Kb(1+αa)eaLn

ab

b2 = K− a
b

ḡmáximo ≈
√

2(1− cos( 4
√

12
√

(Kb−a)∆L))√
12(Kb−a)/∆L+(Kb−a)2

α >
ḡmáximo[a+Kb(eaLn−1)]

a(1− ḡmáximoKbeaLn)

Fonte: Próprio autor.



Algoritmo 1: Função alpha
Entrada: a,b,L,dl,K: real

1 inı́cio
2 função alp(a,b,L,dl,K): real

3 x← 2π
3 ·dl ·L ▷ Valor inicial da raiz

4 calcula h(x),h′(x),h′′(x) ▷ Equações (3.22), (3.23) e (3.24)
5 k← 0
6 se h(x) ·h′′(x)≤ 0 ou h′(x) = 0 então
7 escreva (’Corrigir palpite inicial’)
8 senão
9 enquanto |h(x)|> 10−5 faça

10 x← x− h(x)
h′(x)

▷ Inı́cio do método de Newton-Raphson

11 calcula h(x),h′(x) ▷ Equações (3.22) e (3.23)
12 k← k+1
13 fim

14 gM ←
√

2(1− cos(∆Lx))
x2 +(Kb+a)2

15 se a = 0 então
16 alpha← alp(a,b,L,dl,K) ▷ Equação (3.26)
17 senão se a > 0
18 alpha← alp(a,b,L,dl,K) ▷ Equação (3.30)
19 senão
20 a←−a
21 alpha← alp(a,b,L,dl,K) ▷ Equação (3.34)
22 fim
23 retorna alpha
24 fim
25 fim

33
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4 RESULTADOS E DISCUSSÃO

A seguir, serão mostrados os desempenhos dos controladores ajustados pelas regras

propostas em seus respectivos sistemas. Todos os processos utilizados são exemplos numéricos

retirados dos seus artigos de origem. A análise de desempenho é feita tanto gráfica quanto

numericamente a partir de índices de desempenho específicos, considerando os cenários com e

sem incerteza no valor do atraso de transporte. O percentual de incerteza no atraso considerado

nos exemplos foi o mesmo de Singha et al. (2024). O capítulo encerra com a discussão dos

resultados obtidos.

4.1 Exemplos de Simulação

O SFSP sintonizado pelas regras de sintonia proposta é comparado com outros traba-

lhos da literatura recente. Para tanto, utilizam-se os seguintes índices de desempenho (DORF;

BISHOP, 2008; SKOGESTAD; POSTLETHWAITE, 1996): a integral do erro absoluto (Integra-

ted Absolute Error (IAE)), a integral do erro ao quadrado (Integrated Squared Error (ISE)), a

integral do erro absoluto ponderado no tempo (Integrated Time-weighted Absolute Error (ITAE)),

a integral do erro ao quadrado ponderado no tempo (Integrated Time-weighted Squared Error

(ITSE)), a variação total (Total Variation (TV)) e a variância do sinal de controle (Control

Variance (CV)), que são calculados por

IAE =
∫ tw

tq+2L
|e(t)|dt, (4.1)

ISE =
∫ tw

tq+2L
e2(t)dt, (4.2)

ITAE =
∫ tw

tq+2L
t|e(t)|dt, (4.3)

ITSE =
∫ tw

tq+2L
te2(t)dt, (4.4)

TV =
Nq

∑
i=1
|ui+1−ui|, (4.5)

CV =
1

Nw−1

Nw

∑
i=1
|ui−µ|2, (4.6)

onde t é o tempo, tq é o instante em que é aplicada a perturbação de entrada , tw é o instante

em que é aplicado o ruído, e(t) = r(t)− y(t) é o sinal de erro, i é a amostra, Nq é a quantidade

de amostras relacionada à rejeição de perturbação, µ é a média do sinal de controle e Nw é
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a quantidade de amostras relacionada à atenuação do ruído. Quanto menor o valor do índice,

melhor o desempenho do controlador.

4.1.1 Sistema Integrador

As Figuras 9 e 10 mostram o desempenho do SFSP, com o parâmetro α sintoni-

zado pela regra proposta, comparado ao controle proporcional integral-proporcional derivativo

(Proportional-Integral Proportional-Derivative (PI-PD)) com preditor de Singha et al. (2024),

ambos aplicados ao sistema utilizado por estes, dado pela Eq. (4.7), em que há um atraso de 4

segundos. Consideram-se as situações com atraso nominal e na presença de incerteza (20%, cor-

respondendo a 0,8 segundos), aplicação de uma perturbação degrau de 0,1 no instante tq = 100

segundos e um ruído branco com largura de banda limitada e densidade espectral de potência

(Power Spectral Density (PSD)) de 5× 10−5 foi adicionado à saída do processo no instante

tw = 180 segundos. Os seguintes valores foram utilizados no projeto do SFSP: K = Kr = 0,18 e

α = 1,5321 (fornecido pela regra).

P(s) =
1
s

e−4s. (4.7)

A fim de fazer uma comparação quantitativa, diferentes índices de desempenho

foram calculados. Os valores estão organizados na Tabela 2, onde os melhores índices estão em

negrito. Observa-se que o SFSP apresenta os menores índices, que correspondem ao melhor

desempenho.

Figura 9 – Simulação processo integrador com atraso nominal.
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Fonte: Próprio autor.



36

Figura 10 – Simulação processo integrador com incerteza de +20% no atraso.
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Fonte: Próprio autor.

Tabela 2 – Índices de desempenho sistema integrador.

Nominal Com incerteza

Índice Singha et al. (2024) SFSP Singha et al. (2024) SFSP

IAE 5,5549 4,4863 5,5489 4,9115
ISE 1,7472 1,2680 2,1856 1,6890

ITAE 631,1824 506,1712 630,2479 562,4594
ITSE 195,3343 140,5104 245,4308 188,5703
TV 0,2399 0,1990 0,3225 0,9032
CV 0,0139 2,4817×10−4 0,0140 3,1192×10−4

Fonte: Próprio autor.

Avaliou-se o sistema de controle com atraso incerto para α = 1,5 (um valor pouco

abaixo do fornecido pela regra). O resultado é apresentado na Figura 11.

Simulou-se ainda o sistema com incerteza e o SFSP com parâmetro α = 1,2, ou

seja, menor que o valor fornecido pela fórmula. O resultado mostrado na Figura 12 confirma a

previsão de que o sistema de controle poderia se tornar instável para esse valor de α .
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Figura 11 – Simulação processo integrador com incerteza de +20% no atraso e α = 1,5.
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Fonte: Próprio autor.

Figura 12 – Simulação processo integrador com incerteza de +20% no atraso e α = 1,2, inferior
ao fornecido pela regra.
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4.1.2 Sistema Estável

Considera-se agora o caso do sistema de primeira ordem estável. O sistema utilizado

na simulação, dado pela Eq. (4.8), é o mesmo de Singha et al. (2024), em que há um atraso de

0,3715 segundos. O controle utilizado por estes, ou seja, um PI-PD com preditor, é comparado

ao SFSP com parâmetro α sintonizado pela regra proposta (α = 0,0756) e os demais parâmetros:

K = 0,2 e Kr = 1,9307. Aplica-se uma perturbação degrau unitário no instante tq = 10 segundos,

além de um ruído branco com largura de banda limitada e PSD de 1,8×10−5 adicionado à saída

do processo no instante tw = 26 segundos. O resultado para o sistema com atraso nominal é

mostrado na Figura 13.

P(s) =
1,363

s+2,359
e−0,3715s. (4.8)

A Figura 14 mostra o desempenho dos controladores para a situação em que há

incerteza no atraso (20%, equivalente a 0,0743 segundos). Visando realizar uma comparação

quantitativa entre ambos, calculou-se alguns índices e os resultados estão disponíveis na Tabela 3.

Os gráficos e os valores dos índices demonstram melhor desempenho do SFSP

quanto à rejeição de perturbações, tanto na ausência quanto na presença de incerteza no atraso

de transporte.

Figura 13 – Simulação processo estável com atraso nominal.
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Figura 14 – Simulação processo estável com incerteza de +20% no atraso.
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Fonte: Próprio autor.

Tabela 3 – Índices de desempenho sistema estável.

Nominal Com incerteza

Índice Singha et al. (2024) SFSP Singha et al. (2024) SFSP

IAE 0,5179 0,2420 0,5311 0,2547
ISE 0,1458 0,0526 0,1607 0,0656

ITAE 5,8682 2,6584 6,0503 2,8201
ITSE 1,6296 0,5709 1,8083 0,7185
TV 1,0136 1,0554 1,0686 3,8795
CV 1,2734×10−4 0,0178 1,2746×10−4 0,0216

Fonte: Próprio autor.

Considerando novamente um valor pouco menor que o fornecido pela regra, α =

0,06, obtêm-se para o sistema com incerteza o resultado ilustrado na Figura 15.

O SFSP também foi avaliado para o caso em que α = 0,03997, ou seja, menor que o

valor fornecido pela fórmula proposta. O resultado pode ser visto na Figura 16, onde é possível

perceber que o sistema de controle se torna instável, confirmando a previsão da fórmula.
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Figura 15 – Simulação processo estável com incerteza de +20% no atraso e α = 0,06.
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Fonte: Próprio autor.

Figura 16 – Simulação processo estável com incerteza de +20% no atraso e α = 0,03997,
inferior ao fornecido pela regra.
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Fonte: Próprio autor.
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4.1.3 Sistema Instável

Para o caso instável, considerou-se o exemplo utilizado por Tsai et al. (2022),

conforme dado pela Eq. (4.9), onde o processo, que apresenta atraso de 0,2 segundos, foi

controlado por um controlador integral proporcional-derivativo (Integral Proportional-Derivative

(I-PD)).

P(s) =
1

s−1
e−0,2s. (4.9)

Seu desempenho é mostrado na Figura 17, juntamente com o do SFSP, cujos parâmetros

são K = 4,5, Kr = 3,5 e o filtro está sintonizado pela fórmula proposta, onde determinou-

se α = 0,0973. O desempenho de ambos os controladores também é comparado quando há

incerteza no atraso do processo (20%, ou 0,04 segundos), conforme mostra a Figura 18. Nas

duas situações, é aplicada uma perturbação degrau de 1,5 no instante tq = 5 segundos e um ruído

branco com largura de banda limitada e PSD de 1,25×10−5 foi adicionado à saída do processo

no instante tw = 13 segundos.

Por diferentes índices, o desempenho dos controladores foi medido de forma quanti-

tativa, sendo os valores fornecidos na Tabela 4.

Novamente, avaliando o desempenho do sistema de controle para o processo com

incerteza e α = 0,095, portanto pouco abaixo do valor obtido pela regra, têm-se o resultado

mostrado na Figura 19.

Figura 17 – Simulação processo instável com atraso nominal.
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Figura 18 – Simulação processo instável com incerteza de +20% no atraso.
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Tabela 4 – Índices de desempenho sistema instável.

Nominal Com incerteza

Índice Tsai et al. (2022) SFSP Tsai et al. (2022) SFSP

IAE 0,1883 0,2079 1,4244 0,2592
ISE 0,0490 0,0516 0,3869 0,0723

ITAE 1,0719 1,1788 11,4791 1,5616
ITSE 0,2713 0,2869 2,8067 0,4064
TV 7,5854 3,6980 60,3825 36,8030
CV 0,1827 0,0870 0,3900 0,1115

Fonte: Próprio autor.

Avaliou-se ainda o comportamento do SFSP quando o filtro é ajustado com um valor

de α = 0,0726, menor que o indicado pela fórmula proposta. A Figura 20 mostra que o sistema

de controle se torna instável, comprovando a previsão da fórmula proposta para o caso de sistema

instável.
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Figura 19 – Simulação processo instável com incerteza de +20% no atraso e α = 0,095.

0 5 10 15

0

0.5

1

1.5

y

Saída

Referência

Tsai et al. (2022)

SFSP

0 5 10 15

tempo (s)

-5

0

5

u

Sinal de controle

Fonte: Próprio autor.

Figura 20 – Simulação processo instável com incerteza de +20% no atraso e α = 0,0726,
inferior ao fornecido pela regra.
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Fonte: Próprio autor.

Nos três exemplos de sistemas vistos anteriormente, é válida a aproximação: ∆L < 1

(incerteza menor que a unidade de tempo considerada). A Tabela 5 mostra os valores de α

aproximado e o obtido numericamente.
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Tabela 5 – Valores de α .

SISTEMA APROXIMADO NUMÉRICO

INTEGRADOR 1,532126904687234 1,532149175503782
ESTÁVEL 0,075607360879191 0,075609724699146
INSTÁVEL 0,097255195791358 0,097256616424344

Fonte: Próprio autor.

Todos os sistemas utilizados para comparação representam exemplos numéricos nos

respectivos artigos de origem. Contudo, as regras não se limitam a sistemas hipotéticos, mas

podem ser aplicadas a sistemas reais, uma vez que todas se originam de um procedimento que

tem por base a condição de estabilidade robusta e fornecem o parâmetro α a partir de valores

característicos do sistema em questão e do valor de projeto do ganho de controle, não havendo

qualquer restrição se a origem desses valores é hipotética ou obtidos de um sistema real.

Os resultados mostram que as três regras de obtenção do parâmetro α do filtro são

eficazes para os respectivos tipos de sistemas aos quais se destinam, tanto nas suas versões

aproximadas quanto numéricas. Isso se traduz no valor mínimo necessário de α fornecido por

cada uma das regras para rápida rejeição de perturbações sem provocar instabilidade nos sistemas

de controle. Para valores pouco abaixo dos fornecidos pelas regras, o sistema de controle ainda

apresenta estabilidade na presença de incerteza. Isso se deve ao fato de as regras serem derivadas

da condição de estabilidade robusta, possuindo portanto o conservadorismo presente na mesma.

Cada uma das regras apresentou segurança na previsão do valor mínimo do parâmetro

a fim de garantir estabilidade, uma vez que apenas valores abaixo dos fornecidos causaram

instabilidade do SFSP. Além disso, as regras permitem ao projetista obter o ajuste do filtro

sem necessidade de análise dos gráficos do índice de robustez e da norma da incerteza versus

frequência.

O SFSP sintonizado pela regra proposta apresentou melhor desempenho que os

demais controladores na maior parte dos índices em ambos os cenários, nominal ou com

incerteza, exceto no caso nominal do sistema instável, mas por uma diferença pouco significativa.

Os valores do parâmetro do filtro para os quais cada sistema de controle apresenta

instabilidade foram obtidos de forma arbitrária. As fórmulas de sintonia do parâmetro do filtro

foram obtidas através da condição de estabilidade robusta. Assim, não é necessário uma busca

exaustiva para comprovar a estabilidade para valores maiores ou iguais aos fornecidos pelas

mesmas, nem para mostrar que há instabilidade na faixa de valores abaixo dos fornecidos. Isso
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porque valores maiores ou iguais aos fornecidos pelas regras equivalem ao caso em que a curva

do índice de robustez do sistema de controle está acima ou interceptando a curva da norma

da incerteza do atraso de transporte e, de forma semelhante, valores abaixo dos fornecidos

pelos métodos de sintonia equivalem ao caso da curva do índice de robustez abaixo daquela

representativa da norma da incerteza do atraso em algum intervalo de frequências. Os valores de

α para os quais ocorre instabilidade dos sistemas de controle nos exemplos provavelmente não

são os limites para os quais começa haver instabilidade nos respectivos controles, pois foram

escolhidos de forma arbitrária apenas para comprovar a instabilidade na faixa abaixo da fornecida

pelos métodos em cada um dos tipos de sistema de primeira ordem, bastando para isso utilizar

apenas um valor para cada caso.

Através da análise da Tabela 5, percebe-se que a fórmula aproximada fornece o

parâmetro com uma diferença pequena daquele fornecido pelo método numérico. Os valores

serão os mesmos se for adotada apenas quatro casas decimais, ainda que se faça o arredondamento.

Isso mostra que as fórmulas aproximadas são uma boa opção com a vantagem de não ser preciso

utilizar um método numérico na determinação do parâmetro. Vale ressaltar que utilizou-se um

valor de α com muitas casas decimais para comprovar a precisão das fórmulas aproximadas, mas

para fins de utilização em controle são necessárias apenas uma ou duas casas decimais não nulas.
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5 CONCLUSÕES E TRABALHOS FUTUROS

Neste trabalho desenvolveu-se regras de sintonia para o filtro do SFSP, mais especifi-

camente do parâmetro α , para cada tipo de sistema de primeira ordem com atraso de transporte:

integrador, estável e instável. Assim, determinou-se a partir da condição de estabilidade robusta

as referidas regras, tais que fornecem o menor valor de α capaz de garantir rápida rejeição de

perturbações tipo degrau sem perda da robustez da estabilidade do sistema, bastando para isso

fornecer os parâmetros do processo, o valor da incerteza no atraso e o ganho de controle.

O valor do referido parâmetro do filtro possui relação com a estabilidade do sistema

de controle. Portanto, suas regras de sintonia só poderiam ter origem em alguma condição de

estabilidade, sendo preferível aquela em que se leva em consideração a robustez da estabilidade.

Os resultados de simulação, em que aplicaram-se as regras propostas para a deter-

minação de α , mostram que as fórmulas desenvolvidas cumprem de forma segura o objetivo

de resolver automaticamente o problema de compromisso desempenho-estabilidade do filtro

do SFSP, tanto na versão aproximada quanto numérica, para cada um dos diferentes tipos de

sistemas de primeira ordem com atraso, dispensando a etapa de análise gráfica do índice de

robustez e da norma da incerteza. Para valores pouco abaixo dos fornecidos pela fórmula,

ainda é possível obter sistemas de controle estáveis na presença de incerteza, uma vez que as

regras possuem o mesmo grau de conservadorismo da condição de estabilidade robusta que as

originaram. Nesse caso, se preciso, a rejeição de perturbação pode ser melhorada, mas diferente

de antes da existência das leis de sintonia propostas, o projetista tem apenas o trabalho de fazer

um ajuste fino a partir do valor fornecido.

Como proposta de trabalhos futuros, pretende-se implementar um sistema de controle

sintonizado pelas regras em um processo real com atraso de transporte, desenvolver métodos de

obtenção do parâmetro α para sistemas de segunda ordem e/ou de fase não-mínima com atraso e

para sistemas de primeira ordem em que se consideram incertezas no ganho, na constante de

tempo e no atraso de transporte.
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APÊNDICE A – DEMONSTRAÇÃO DAS EQUAÇÕES.

Demonstração da Eq. (3.19):

Sabendo-se que:

e−∆Ls−1|s= jω = e− j∆Lω −1 = (cos(∆Lω)−1)− j sin(∆Lω).

Temos

|e−∆Ls−1|s= jω =
√

(cos(∆Lω)−1)2 +(sin(∆Lω))2 =
√

2(1− cos(∆Lω)).

Dessa forma:

g(ω) =

√
2(1− cos(∆Lω))

ω2 +(Kb±a)2 . (A.1)

A frequência ωM, onde g(ω) é máxima determina-se fazendo:

d
dω

[
2(1− cos(∆Lω))

ω2 +(Kb±a)2

]

ω=ωM

= 0 (A.2)

⇒ (2∆Lsin(∆LωM))(ω2
M +(Kb±a)2)−2(1− cos(∆ωM)) ·2ωM

(ω2
M +(Kb±a)2)2 = 0 (A.3)

⇒ 2∆Lsin(∆LωM)(ω2
M +(Kb±a)2)−4(1− cos(∆ωM))ωM = 0 (A.4)

ou ainda

⇒ ∆Lsin(∆LωM)(ω2
M +(Kb±a)2)−2(1− cos(∆ωM))ωM = 0 (A.5)

⇒ sin(∆LωM)

1− cos(∆LωM)
=

2ωM

∆L(ω2
M +(Kb±a)2)

. (A.6)

Como sin(∆LωM) = 2sin
(

∆LωM
2

)
cos

(
∆LωM

2

)
e 1− cos(∆LωM) = 2sin2

(
∆LωM

2

)
,

a equação Eq. (A.6) fica:

2sin
(

∆LωM
2

)
cos

(
∆LωM

2

)

2sin2
(

∆LωM
2

) =
2ωM

∆L(ω2
M +(Kb±a)2)

. (A.7)
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Uma vez que, em ω = ωM, sin
(

∆LωM
2

)
̸= 0, então

cos
(

∆LωM
2

)

sin
(

∆LωM
2

) = cot
(

∆LωM

2

)
=

2ωM

∆L(ω2
M +(Kb±a)2)

. (A.8)

Invertendo-se ambos os membros da Eq. (A.8), vem:

tan
(

∆LωM

2

)
=

∆L(ω2
M +(Kb±a)2)

2ωM
=

∆LωM

2
+

∆L(Kb±a)2

2ωM
, (A.9)

demonstrando a Eq. (3.19), especificamente quando se faz ωM = ω̄M.

Obtenção da expressão dada pela Eq. (3.20):

Expandindo tan
(

∆LωM
2

)
em série de MacLaurin, temos:

∆LωM

2
+

1
3

(
∆LωM

2

)3

+
2

15

(
∆LωM

2

)5

+ · · ·= ∆LωM

2
+

∆L(Kb±a)2

2ωM
. (A.10)

Desprezando os termos de ordem maiores que 3, uma vez supondo ∆L < 1, vem:

∆LωM

2
+

1
3

(
∆LωM

2

)3

≈ ∆LωM

2
+

∆L(Kb±a)2

2ωM
(A.11)

⇒ 1
3

(
∆LωM

2

)3

≈ ∆L(Kb±a)2

2ωM
(A.12)

⇒ 1
24

∆L3ω3
M ≈

∆L(Kb±a)2

2ωM
(A.13)

⇒ ω4
M ≈

12(Kb±a)2

∆L2 , (A.14)

ωM ≈ 4
√

12
(

Kb±a
∆L

) 1
2

, (A.15)

demonstrando a Eq. (3.20) quando ωM = ω̄M.
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APÊNDICE B – CÓDIGO DA FUNÇÃO QUE FORNECE O PARÂMETRO α .

1 % Funcao que retorna o parametro alpha do SFSP utilizando o

Metodo de Newton - Raphson

2

3 % h(x)=tan(dl*L*x/2)-dl*L*x/2-dl*L*(K*b+/-a)^2/(2*x)

4 % h'(x)=(dl*L/2)*(( sec(dl*L*x/2))^2-1+(K*b+/-a)^2/x^2)

5 % h''(x)=((dl*L)^2/2) *(sec(dl*L*x/2))^2*tan(dl*L*x/2)-dl*L

*(K*b+/-a)^2/(x^3)

6 % palpite inicial seria x0=2*pi/(3*dl*L) e dl a incerteza

percentual

7

8 function alpha=alp(a,b,L,dl ,K)

9

10 x=2*pi/(3*dl*L);

11

12 hx=tan(dl*L*x/2)-dl*L*x/2-dl*L*(K*b+a)^2/(2*x);

13 dhx=(dl*L/2)*(( sec(dl*L*x/2))^2-1+(K*b+a)^2/x^2);

14 dh2x =((dl*L)^2/2) *(sec(dl*L*x/2))^2* tan(dl*L*x/2)-dl*L*(K*b

+a)^2/(x^3);

15

16 k=0;

17

18 if (hx*dh2x) <=0 || dhx==0

19 disp('Corrigir palpite inicial ');

20 else

21 while abs(hx) >1e-5

22

23 x=x-hx/dhx;

24 hx=tan(dl*L*x/2)-dl*L*x/2-dl*L*(K*b+a)^2/(2*x);

25 dhx=(dl*L/2)*((sec(dl*L*x/2))^2-1+(K*b+a)^2/x^2);

26 k=k+1;
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27 end

28

29 g=sqrt (2*(1- cos(x*dl*L))/(x^2+(K*b+a)^2));

30 if a<0

31 a=-a;

32 alpha=g*(a+K*b*(exp(a*L) -1))/(a*(1-g*K*b*exp(a*L

)));

33 elseif a==0

34 alpha=g*(1+L*K*b)/(1-g*K*b);

35 else

36 alpha=g*(a+K*b*(1-exp(-a*L)))/(a*(1-g*K*b*exp(-a

*L)));

37 end

38 end

39

40 end
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