
UNIVERSIDADE FEDERAL DO CEARÁ

CENTER OF SCIENCES

DEPARTMENT OF COMPUTING

POST-GRADUATION PROGRAM IN COMPUTER SCIENCE

MASTER DEGREE IN COMPUTER SCIENCE

RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH

PROBABILITY

FORTALEZA

2025



RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH

PROBABILITY

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Center of
Sciences of the Universidade Federal do Ceará,
as a partial requirement for obtaining the title
of Master in Computer Science. Concentration
Area: Theory of Computation

Advisor: Prof. Dr. Victor Almeida Campos

FORTALEZA

2025



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

D275h David, Rodrigo.
    Hard Instances for the Maximum Clique Problem with High Probability / Rodrigo David. – 2025.
    69 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2025.
     Orientação: Prof. Dr. Victor Almeida Campos.

    1. Clique Máxima. 2. Branch & bound. 3. Grafos aleatórios. 4. Coloração de vértices. I. Título.
                                                                                                                                         CDD 005



RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH

PROBABILITY

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Center of
Sciences of the Universidade Federal do Ceará,
as a partial requirement for obtaining the title
of Master in Computer Science. Concentration
Area: Theory of Computation

Approved on: March 7th 2025

EXAMINATION BOARD

Prof. Dr. Victor Almeida Campos (Advisor)
Universidade Federal do Ceará (UFC)

Prof. Dr. Rudini Menezes Sampaio
Universidade Federal do Ceará (UFC)

Prof. Dr. Wladimir Araújo Tavares
Universidade Federal do Ceará (UFC)

Prof. Dr. Fabrício Siqueira Benevides
Universidade Federal do Ceará (UFC)

Prof. Dr. Guilherme Oliveira Mota
Universidade de São Paulo (USP)



ACKNOWLEDGEMENTS

I would like to first express my deepest gratitude to my family for their unwavering

support and encouragement; specially to my mother, Sandra, for all the investment she made

in me — far beyond financial — believing in my potential every step of the way. I also want to

thank all the friends I made during my undergraduate and master’s studies, especially Amanda,

my girlfriend, who stood by me in the most difficult moments and was often responsible for the

lighter ones.

I am grateful to everyone at ParGO for creating such a welcoming and stimulating

environment, particularly Professor Victor for advising me throughout this work and since

my undergraduate Scientific Initiation. I also thank Professors Fabrício, Guilherme, Rudini,

and Wladimir for taking the time to be part of the examination committee and for providing

constructive feedback on this work. A special thanks as well to Professor Manoel, who, although

not my advisor during my master’s, was during part of my undergraduate studies and, besides

introducing me to ParGO, continued to guide me occasionally.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

� � �

Agradeço primeiramente à minha família pelo apoio e suporte constantes; especi-

almente à minha mãe, Sandra, por todo o investimento — muito mais do que financeiro — que

fez em mim. Também, a todos os amigos que fiz na graduação e no mestrado, especialmente à

Amanda, minha namorada, que esteve comigo nos momentos mais difíceis e foi muitas vezes

responsável pelos mais leves.

Agradeço a todos do ParGO por criarem um ambiente tão acolhedor e estimulante,

especialmente ao professor Victor por ter me orientado nesse trabalho e por já o fazer desde a

minha iniciação científica na graduação. Também agradeço aos professores Fabrício, Guilherme,

Rudini e Wladimir por cederem seus tempos participando da banca e fornecendo comentários

construtivos para o trabalho. Um obrigado também ao professor Manoel, que embora não tenha

sido meu orientador no mestrado, foi durante um período da minha graduação e, além de ter me

introduzido ao ParGO, continuou me orientando informal e esporadicamente.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento

de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.



“I, at any rate, am convinced that God does not

throw dice.”

(Albert Einstein)

“But still, it cannot be for us to tell Him how He

is to run the universe.”

(Niels Bohr)



RESUMO

O problema da Clique Máxima é um problema clássico de otimização em grafos com o

objetivo de encontrar uma clique máxima em um grafo de entrada. A despeito da existência de

diversos resultados teóricos de dificuldade, estudos empíricos sugerem que o problema costuma

ser mais fácil do que o esperado. Nesse trabalho, exploramos uma classe de algoritmos Branch &

Bound para resolver Clique Máxima e como eles tornam o problema mais tratável na prática.

Nós abordamos a relação entre cliques e colorações próprias de vértices e determinamos com alta

probabilidade o crescimento assintótico do número de colorações em grafos aleatórios. Usando

este resultado junto a uma redução polinomial de coloração para clique da literatura, construímos

novas instâncias de Clique Máxima e analisamo-las. Ademais, examinamos uma família de

instâncias da literatura que induz tempo exponencial em uma subclasse de algoritmos Branch

& Bound amplamente utilizada, que utiliza um limite superior cromático para podar ramos.

Nós propomos um método de pré-processamento que habilita esses algoritmos a resolverem

tais instâncias em tempo linear no tamanho delas. Além disso, introduzimos uma construção

aleatorizada que produz grafos resistentes ao pré-processamento e que ainda exibem tempo de

execução exponencial para esses algoritmos, mesmo caso o limite superior utilize o número

cromático fracionário, que é uma cota mais apertada. Por fim, executamos testes computacionais

para validar nossas análises.

Palavras-chave: clique máxima; branch & bound; grafos aleatórios; coloração de vértices.



ABSTRACT

The Maximum Clique problem is a classic graph-theoretical optimization problem with the

objective of finding a maximum clique in a given input graph. Despite numerous theoretical

hardness results, empirical studies suggest that the problem is often easier than expected. In this

work, we explore a class of Branch & Bound algorithms for solving Maximum Clique and

how they make the problem more tractable in practice. We approach the relationship between

cliques and proper vertex colorings and derive the asymptotic growth of the number of colorings

in random graphs with high probability. Using this result paired with a coloring-to-clique

polynomial reduction in the literature, we generate new Maximum Clique instances and

analyze them. Moreover, we examine a family of instances from the literature that induce

exponential runtime on a widely adopted subclass of Branch & Bound algorithms that use a

chromatic upper bound to prune branches. We propose a preprocessing method that enables

these algorithms to solve such instances in linear time on their size. Furthermore, we introduce

a randomized construction that produces graphs resistant to this preprocessing and still exhibit

exponential runtime for these algorithms, even if the upper bound uses the fractional chromatic

number instead, which is a tighter bound. Finally, we run some computational tests to validate

our analyses.

Keywords: maximum clique; branch & bound; random graphs; vertex coloring.



LIST OF FIGURES

Figure 1 – A branching step on a subinstance .Q;R/ with pivot v on a standard algorithm. 22

Figure 2 – An example of the construction due to Wood [48]. . . . . . . . . . . . . . . 25

Figure 3 – An example of the construction due to Moon and Moser [50]. . . . . . . . . 26

Figure 4 – Modeling a coloring through its representatives. The smallest vertex of each

color class is a representative and represents vertices in the same class. . . . 28

Figure 5 – Using the Cornaz–Jost reduction to obtain the graphG� given a graphG and

a linear order �. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 6 – Vertex configurations in D that induce edges in QG. . . . . . . . . . . . . . . 35

Figure 7 – Outline of the L15 graph, where each vertex in a C5 is connected to all other

vertices in the other two C5’s. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 8 – The decomposition of a graph G using Algorithm 6.1. In each case, the

algorithm is called recursively for G1 and G2. . . . . . . . . . . . . . . . . 43

Figure 9 – An execution of Algorithm 6.2 with n D 5 and d D .0; 1; 2; 3; 4/. . . . . . . 46

Figure 10 – Problematic configurations when Algorithm 6.2 adds edges with both end-

points in the same C5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 11 – No triangle can be induced by vertices of different C5s. . . . . . . . . . . . 47

Figure 12 – An execution of Algorithm 6.4 with n D 15. . . . . . . . . . . . . . . . . . 50

Figure 13 – Plot of the average search tree sizes when using the nb algorithm on gnp,

cj_0.5 and gnm_0.5 instances. . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 14 – Plot of the average search tree sizes when using the kj algorithm with the

preprocessing step on gnp, cj_0.5 and gnm_0.5 instances. . . . . . . . . . . 58

Figure 15 – Plot of the ratio between the average search tree sizes when using the kj

algorithm with the preprocessing step on gnm_0.5 and cj_0.5 instances. . . 59

Figure 16 – Plot of the average solve times when using the kj algorithm with the prepro-

cessing step on gnp, cj_0.5 and gnm_0.5 instances. . . . . . . . . . . . . . 59

Figure 17 – Plot of the ratio between the average solve times when using the kj algorithm

with the preprocessing step on gnm_0.5 and cj_0.5 instances. . . . . . . . . 60

Figure 18 – Plot of the average search tree sizes when using the kj algorithm with the

preprocessing step on gnp, cj_0.1 and gnm_0.1 instances. . . . . . . . . . . 60

Figure 19 – Plot of the average search tree sizes when using the kj algorithm with the

preprocessing step on lav and p_lav instances. . . . . . . . . . . . . . . . 61

Figure 20 – Plot of the average search tree sizes when using the kj algorithm alone on

lav and p_lav instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF TABLES

Table 1 – Average results for gnp using the nb algorithm . . . . . . . . . . . . . . . . . 55

Table 2 – Average results for cj_0.5 and gnm_0.5 instances using the nb algorithm. . . 55

Table 3 – Average results for gnp using the kj algorithm with the preprocessing step. . 56

Table 4 – Average results for cj_0.5 and gnm_0.5 instances using the kj algorithm with

the preprocessing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 5 – Average results for cj_0.1 and gnm_0.1 instances using the kj algorithm with

the preprocessing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 6 – Average results for lav and p_lav instances using the kj algorithm with the

preprocessing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 7 – Average results for lav and p_lav instances using the kj algorithm alone. . . 57



LIST OF SYMBOLS

lgn Base 2 logarithm, i.e., lgn D log2 n

lnn Natural logarithm, i.e., lnn D loge n

nŠ Factorial, i.e., nŠ D 1 � 2 � � � � n

nŠŠ Double factorial, i.e., nŠŠ D 1 � 3 � 5 � � �n if n is odd and nŠŠ D 2 � 4 � 6 � � �n

if n is even
�

n

k

�

Binominomial coefficient, i.e.,
�

n

k

�

D nŠ

nŠ.n�k/Š

exp.x/ Exponential function, i.e., exp.x/ D ex

N Set of natural numbers, i.e., N D f1; 2; 3; : : : g

R Set of real numbers

2X Power set of the set X , i.e., the set of all its subsets

hI i Length of the binary string I

1Û o.1/ A term that is not constant, but is lower and upper bounded by constants



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Relation with Vertex Colorings . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Algorithms with an upper bound based on the chromatic number . . . . 11

1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Useful definitions, bounds and asymptotics . . . . . . . . . . . . . . . . . 19

3 A BRANCH AND BOUND FRAMEWORK . . . . . . . . . . . . . . . . 21

3.1 Basic structure of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Some properties of standard algorithms . . . . . . . . . . . . . . . . . . 23

4 INSTANCES IN THE LITERATURE . . . . . . . . . . . . . . . . . . . 25

4.1 Theoretical instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Practical instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 USING VERTEX COLORINGS TO BUILD CLIQUES . . . . . . . . . 28

5.1 The Representatives Model . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Counting colorings in random graphs . . . . . . . . . . . . . . . . . . . 31

5.3 Instances with more cliques than average . . . . . . . . . . . . . . . . . . 33

5.4 A final remark on random graphs . . . . . . . . . . . . . . . . . . . . . . 37

6 CHROMATIC UPPER BOUNDS FOR STANDARD ALGORITHMS . 40

6.1 Introducing a bounding rule . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Exponential running time inducing graphs . . . . . . . . . . . . . . . . . 41

6.3 A preprocessing heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Worst case instances resistant to the preprocessing . . . . . . . . . . . . 44

6.5 A fractional bounding rule . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 COMPUTATIONAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . 53

7.1 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 The instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 The algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



10

1 INTRODUCTION

A clique in a graph is a set of vertices in which any two elements are adjacent. In the

Maximum Clique problem, the objective is to find the largest clique in a given graph. This is

a classic graph-theoretical optimization problem with applications in robotics [1, 2], computer

vision [3, 4], distributed systems [5, 6], coding theory [7, 8, 9], bioinformatics [10, 11] and many

other research areas.

Algorithms for Maximum Clique date as early as 1957 [12], while the first

complexity results were published in 1972 [13] and mathematical programming formulations in

1974 [14]. In the ’90s, the interest in this problem grew rapidly — partly due to its popularization

and advances in the late ’80s, but also because of the Second DIMACS Challenge, which had

Maximum Clique as one of the three proposed problems — and many algorithmic results

followed, such as [15, 16, 17, 18, 19]. To this day, clique algorithms remain an active area of

research and many general combinatorial optimization techniques have been developed aiming

to deal with increasingly larger instances for this problem [20, 21].

In this work, however, we shift the focus from the study of efficient algorithms to that

of hard instances, as the problem seems to be much easier in practice than its theoretical worst

case [22]. This has been done in the literature [23, 24, 25], but most of the work is heuristic, in

the sense that the instances provided are said to be challenging because they exploit weaknesses

of efficient algorithms and these claims are supported only by computational experiments.

To the best of our knowledge, only one such work appeals to empirical arguments

and a formal proof of hardness [26]. Our aim is to build on this theoretical approach and provide

other challenging graph constructions together with proofs that they are indeed hard

1.1 Hardness results

The Maximum Clique problem is NP-hard [13] and n1�"-inapproximable in

polynomial time (unless P D NP) for any " > 0, where n denotes the number of vertices in the

input graph [27]. Its decision version consists in deciding, given an input graphG and an integer

k, if G has a clique of size at least k. Besides being NP-complete, it is also W[1]-complete

under the natural parameterization over k [28].

Although Maximum Clique is drawn intractable by this (non-exhaustive) list of

theoretical hardness results, several authors report exact algorithms that are able to tackle large

instances of practical interest for several application domains in reasonable time [15, 29, 20, 21].

This interesting contrast has been studied before [22, 30]. Carmo and Züge [22] approach a

widely used class of Branch and Bound (B&B) algorithms and show that their time complexity

is highly concentrated around the sub-exponential n‚.lglg n/ growth rate in the G.n; p/ model for

any constant p by counting the number of cliques in such graphs.



11

This result gives an intuition on why the problem is often easier in practice, given

that its worst case seems to be rare, but raises questions regarding the structure of such hard

instances. If a randomly sampled graph is not expected to demand exponential time to be solved,

what does a graph that comes close to the worst case look like?

1.2 Relation with Vertex Colorings

The Minimum Vertex Coloring problem, in which the objective is to partition

the vertices of a graph in the least number of parts in such a way that no adjacent vertices are

on the same part, shares some connections with Maximum Clique. This is another classic

NP-hard problem [13] and, moreover, it is also n1�"-inapproximable in polynomial time for any

" > 0 (unless P D NP), where n denotes the number of vertices in the input graph [27].

Because they are linked by a min-max inequality, vertex colorings and cliques tend

to appear together in algorithms, being upper or lower bounds for each other. Moreover, in

1992, the second DIMACS Implementation Challenge was held to encourage the development

of algorithmic results on three problems, two of them being Minimum Vertex Coloring

and Maximum Clique. Comparing the selected papers, the conclusion was that the coloring

problem was much harder than the clique one [31]. In this work, we also explore some relations

between cliques and vertex colorings.

We study the number of colorings in random graphs in a similar way to what was

done with cliques to argue that enumerating the former is, indeed, harder than enumerating the

latter, hence backing up the claim about the hardness disparity between the problems as most

algorithms were already enumerative at the time (as were since the first algorithm for Maximum

Clique and still are today). Furthermore, we adapt a reduction in the literature to provide

nondeterministic instances with more cliques than a G.n; p/ random graph for constant p and

count the expected number of cliques in denser G.n; p/ graphs that match the number of edges

of these instances.

1.3 Algorithms with an upper bound based on the chromatic number

Even though the worst case for Maximum Clique is not expected to be solved in

polynomial time, presenting instances that attend to this complexity in practice is a non-trivial

issue. Lavnikevich [26] focus on an even more restricted class of algorithms — B&B with an

upper bound based on the chromatic number, which are widely adopted and considered to be the

best among state-of-the-art algorithms — and introduces a family of graphs with n vertices, for

n � 0 .mod 5/, that require �.2n=5/ steps to be solved by any such algorithm. These instances,

however, are artificial, in the sense that it would be very unlikely to find one of those graphs in a

real problem and, besides that, their recognition is straightforward polynomial.



12

We argue they need not be explicitly recognized. We propose a simple preprocessing

heuristic that enables algorithms to solve Lavnikevich’s instances in linear time in their size

(quadratic in n, as they have a high edge density) while still being useful for many other inputs.

We also describe a randomized construction based on Lavnikevich’s graphs that outputs an

instance that still exhibits exponential time behavior, need not have a number of vertices that is

strictly a multiple of 5 and is unaffected by the proposed preprocessing. We show further that it

still demands exponential time even when the algorithm uses a specific infra-chromatic upper

bound, namely the fractional chromatic number.

1.4 Structure of this work

Chapter 2 lays out some basic definitions on graph theory, computational complexity,

combinatorial optimization and (discrete) probability theory. Chapter 3 introduces the B&B

algorithms that we study throughout the text and presents some of their basic properties. Chapter 4

reviews graph instances in the literature that concern the Maximum Clique problem. Chapter 5

presents the study of vertex colorings and their connections with cliques. Chapter 6 focus on

a more particular class of B&B algorithms, which use an upper bound based on the chromatic

number. Chapter 7 describes computational experiments regarding the algorithms and instances

in the text. Finally, Chapter 8 concludes the work and approaches future research topics.



13

2 PRELIMINARIES

We begin with a few definitions and basic results that are essential to this work.

2.1 Graph Theory

We follow conventions adopted by reference books [32, 33]. A graph G is defined

by a triple .V;E; / consisting of a set of vertices, a set of edges and an incidence function that

maps each edge into two (not necessarily distinct) vertices called endpoints, respectively. We

write V.G/ (resp. E.G/) for the set of vertices (resp. edges) of a graph G. The order (resp.

size) of a graph G, written v.G/ (resp. e.G/), is the number of vertices (resp. edges) in G. An

edge that is mapped into two equal vertices is called a loop and edges that are mapped into the

same pair of vertices are said to be parallel (or multiple edges). A graph is said to be simple if it

has neither loops nor multiple edges. All graphs in this work are presumed to be simple, unless

stated otherwise. The edge density of a graph G is the ratio e.G/=
�

n

2

�

and G is said to be dense

if this quantity is close to 1 or sparse if it is close to 0.

We abuse the notation and refer to an edge by its image through  , but there should

be no major issues with this practice if the graph is simple. When vertices u and v of a graph

G are endpoints of some edge, we write uv 2 E.G/ and say that u and v are adjacent (or

neighbors). We write N.v/ for the set of all neighbors of a vertex v. Two (simple) graphs G

and H are said to be isomorphic if there is a bijection f WV.G/! V.H/ such that uv 2 E.G/

if, and only if, f .u/f .v/ 2 E.H/ and we write G Š H do indicate this.

The degree of a vertex v, denoted by d.v/, is the number of edges in which v is an

endpoint. In a simple graph, d.v/ D jN.v/j. We denote by ı.G/ and �.G/ the minimum and

maximum degrees of G (taken over all its vertices), respectively. If all vertices in a graph G

have degree k, we say that G is k-regular.

A clique (resp. independent set) in a graph G is a set of vertices in which any two of

them are adjacent (resp. no two of them are adjacent). The sizes of the largest clique and largest

independent set in G are denoted by !.G/ and ˛.G/, respectively. A matching in G is a set of

edges that share no endpoints. The vertices that are endpoints to some edge in a matchingM are

said to be saturated by M , the others are said to be unsaturated. A perfect matching saturates

all vertices in the graph.

A (proper) vertex coloring of G is a function that maps each vertex into a color in

such a way that adjacent vertices are mapped into different colors (for all our purposes a color is

an integer). A k-coloring is a vertex coloring that uses exactly k colors. The set of all vertices

with some given color is called a color class and we sometimes refer to a coloring by its color

classes. The fewest colors needed by any vertex coloring of a graph G is the chromatic number

of G, written �.G/. Given two graphs G andH such that v.G/ � 0 .mod v.H//, anH -factor

of G is a collection of v.G/=v.H/ copies of H whose vertex sets partition V.G/.



14

A subgraph H of a graph G is a graph where V.H/ � V.G/, E.H/ � E.G/

and H ’s incidence function is a restriction of G’s incidence function and we write H � G to

indicate this. Given two graphsG andH , we sayG isH -free if no subgraph ofG is isomorphic

to H . A subgraph H spans G if V.H/ D V.G/, and we call H a spanning subgraph. A set

S � V.G/ induces a subgraph of G, which we denote by GŒS�, such that V.GŒS�/ D S and

E.GŒS�/ D fuv j u; v 2 S and uv 2 E.G/g. If a subgraph H is equal to GŒS� for some set S ,

we call H an induced subgraph.

An orientation of a graph G is a function � WE.G/! V.G/ � V.G/ that maps an

edge uv into an arc which is either .u; v/ or .v; u/ (the order of the vertices now matters). An

oriented graph is a pair .G; �/ of a graph and an orientation. It is common to represent an oriented

graph by drawing G and for each edge uv we draw an arrow from u to v if �.uv/ D .u; v/ and

vice-versa. The indegree d�.v/ (resp. outdegree dC.v/) of a vertex v in a oriented graph .G; �/

is the number of edges uv such that �.uv/ D .u; v/ (resp. �.uv/ D .v; u/).

A path (resp. cycle) on n vertices, denoted byPn (resp.Cn), is a graph whose vertices

can be linearly (resp. cyclically) ordered and two vertices are adjacent in the graph if they are

consecutive in the ordering. An oriented path (resp. oriented cycle) on n vertices is an oriented

graph whose vertices can be linearly (resp. cyclically) ordered and .u; v/ is an arc if v comes

immediately after u in the order. A complete graph on n vertices, denoted by Kn, is a graph

in which every two nodes are adjacent. A complete graph on 3 vertices is called a triangle.

An empty graph is a graph that has no edges. The trivial graph is the empty graph with only

one vertex. A bipartite graph is a graph in which its vertex set can be partitioned into two

independent sets. More generally, a k-partite graph (or simply a multipartite graph) is a graph

in which its vertex set can be partitioned into k independent sets.

A graph G with at least two vertices is said to be balanced if

e.G/

v.G/ � 1
D max

�

e.H/

v.H/ � 1

ˇ

ˇ

ˇ

ˇ

H is a proper induced subgraph with at least two vertices

�

:

Moreover, if

e.G/

v.G/ � 1
>

e.H/

v.H/ � 1
; for all proper induced subgraph H with at least two vertices;

we say G is strictly balanced. Complete graphs, for instance, are strictly balanced, while empty

graphs are not. In particular, K2 is strictly balanced by vacuity.

A graph G is said to be connected if between any two vertices u and v there is a

path in G starting in u and ending in v, G is disconnected otherwise. A graph G is said to be

k-connected if the removal of at most k � 1 vertices cannot disconnect the graph. A component

of a graph is a maximal connected subgraph.

The complement of a graphG, writtenG, is the graph with the same set of vertices of

G in which any two vertices are adjacent if they are not adjacent in G. The line graph of a graph

G, written L.G/, is a graph with V.L.G// D E.G/ such that two vertices of L.G/ are adjacent



15

if their respective edges in G share an endpoint. The disjoint union (resp. join) of two graph G

and H , denoted by G CH (resp. G _H ), is the graph whose vertex set is V.G/ [ V.H/ and

edge set is E.G/ [ E.H/ (resp. E.G/ [ E.H/ [ fuv j u 2 V.G/; v 2 V.H/g). We assume

that the vertex sets of G and H are always disjoint, and so are the edge sets, in these operations.

The union between two graphs G and H with non-disjoint sets of vertices is denoted by G [H

and is defined analogously to the disjoint union.

2.2 Computational Complexity

We again adopt conventions used by reference books [34, 35]. Given two functions

f; gWN! R, we say f .n/ D O.g.n// (resp. f .n/ D �.g.n//) if there exist a constant c > 0

and an integer n0 such that jf .n/j � cjg.n/j (resp. jf .n/j � cjg.n/j) for all n � n0. Similarly,

we say f .n/ D o.g.n// (resp. f .n/ D !.g.n//) if for every " > 0 there is an integer n0 such that

jf .n/j � "jg.n/j (resp. jf .n/j � "jg.n/j) for every n � n0. We also say that f .n/ D ‚.g.n//

if f .n/ D O.g.n// and f .n/ D �.g.n//.

We denote by poly.n/ the set of all functions f WN ! R such that f .n/ D O.nk/

for some k 2 N. We say a function f WN! R has exponential growth (or simply is exponential)

if f .n/ D 2�.n"/ for some " > 0. If f .n/ D 2o.n"/ for all " > 0, we say f is subexponential.

A (combinatorial) optimization problem is defined by a set of binary strings called

instances, a set of binary strings called feasible solutions for each instance, an objective function,

which maps a pair consisting of an instance and a feasible solutions into a rational number

called objective value, and an indication that specifies whether the problem is a maximization

or a minimization one. For each instance, the objective in a maximization (resp. minimization)

problem is to find a feasible solution that maximizes (resp. minimizes) the objective function

(among all possible feasible solutions).

A decision problem is defined by a set of binary strings called instances that can be

partitioned into two others, the set of positive instances and the set of negative instances, such

that for each instance the objective is to decide whether it is a positive or a negative instance.

For each minimization problem (resp. maximization problem), there is an associated decision

problem (or simply its decision version) in which its set of instances consists of pairs formed by

an instance of the optimization problem and a rational k and the positive instances are those that

admit some feasible solution with objective value at most k (resp. at least k).

We denote by NP the class of decision problems… that admit an algorithm V called

polynomial verifier that takes as inputs an instance I of … and a binary string C such that

hC i D poly.hI i/, runs in poly.hI i/ time and satisfies V.I; C / D 1 for some C if I is a positive

instance or V.I; C / D 0 for all C , otherwise. A polynomial reduction from a decision problem

… to another decision problem …0 is an algorithm that takes as input an instance I of … and

outputs in poly.hI i/ time an instance I0 of …0 that is a positive instance for …0 if and only if I

is a positive instance for …. A decision problem …0 is said to be NP-hard if for each problem



16

… 2 NP there exists a polynomial reduction from … to …0. A decision problem … is said to be

NP-complete if … 2 NP and … is NP-hard. We say an optimization problem is NP-hard if its

decision version is NP-hard.

We denote by P the class of all decision problems … that admit an algorithm that

takes as input an instance I of … and in poly.hI i/ time outputs 1 if I is a positive instance or

0 otherwise. It follows from the definition that P � NP, because any algorithm that decides a

problem … 2 P in polynomial time can be made a polynomial verifier by ignoring the auxiliary

binary string and solving the problem directly. It is widely believed that P ¤ NP, although no

proof has ever been found (but neither has a polynomial time algorithm that solves any NP-hard

problem, which would imply that P D NP).

2.3 Combinatorial Optimization

The definitions here follow conventions adopted by books such as the one due

to Wolsey [36]. A linear programming problem is an optimization problem where the objective

function and the constraints on the instances can be represented by linear functions and inequali-

ties. A (linear) integer programming problem is a linear programming problem with additional

constraints of integrality for some variables. The linear relaxation of an integer programming

problem is a linear programming problem obtained by dropping the integrality constraints on

the original problem.

A classic integer programming model for Maximum Clique in a graph G is

max
X

v2V.G/

yv

s.t:
X

v2I

yv � 1; 8I 2 I.G/

yv 2 f0; 1g; 8v 2 V.G/

(2.1)

where yv is an indicator variable with value 1 if the vertex v is chosen in the clique or 0 otherwise

and I.G/ is the set of all independent sets of the graph G. Even though adding the constraints
P

v2I yv � 1 only when jI j D 2 yields a more compact model, adding for all I has the advantage

that its linear relaxation gives a specific upper bound on !.G/, which we call the fractional

clique number of G, denoted by !f .G/.

Another classic integer programming model, now for the Minimum Vertex

Coloring problem in a graph G, is

min
X

I2I.G/

xI

s.t:
X

v2I;

I2I.G/

xI � 1; 8v 2 V.G/

xI 2 f0; 1g; 8I 2 I.G/

(2.2)



17

where xI is an indicator variable with value 1 if the independent set I is a color class in the

coloring or 0 otherwise. The linear relaxation of this model gives a lower bound on �.G/, which

we call the fractional chromatic number of G, denoted by �f .G/. The linear relaxations of

the models above are said to be dual to each other and satisfy, among many other properties,

!f .G/ D �f .G/.

A very common approach when solving optimization problems is to use Branch and

Bound algorithms, which enumerate feasible solutions by exhaustively trying all possibilities.

This is achieved by splitting the set of feasible solutions, analyzing smaller subsets and comparing

the objective values in order to find an optimal solution. To speed up further, the algorithm keeps

lower and upper bounds on the quality of the best solution of a subset to discard subsets that

cannot improve these bound (and, hence, cannot contain an optimal solution). In a maximization

problem, for instance, a lower bound can be any feasible solution, found either by some previous

state during the enumeration or by applying some heuristic, while an upper bound can be achieved

by some relaxation of the problem or by a valid inequality specific to the problem.

A B&B algorithm solves repeatedly a subproblem that is similar to the original

problem being solved, it is usually some variation that generalizes the inputs in order to make the

covering of the feasible solutions set easier. Once the algorithm takes on a subproblem, it checks

if one of its feasible solutions can have a better objective value than the best solution found so far.

If no such solution exists, the subproblem is discarded as any possible solution given by it would

be suboptimal. Otherwise, the algorithm branches the subproblem into others, following some

specific rule, and solves them recursively to obtain the best solution for the current subproblem.

This is repeated until all feasible solution have been either enumerated or safely discarded.

The algorithm’s execution is usually associated with a decision tree that keeps track

of all the decisions made — the search tree. The root of the tree is the original instance and any

given node has as children nodes associated with the subproblems generated by the branching

rule. When the algorithm decides to discard a subproblem, we say its associated node’s subtree

is pruned, as all its descendant nodes corresponding to subproblems are not explored and, thus,

are not in the tree.

2.4 Probability Theory

The definitions here also follow loosely those in reference books [37, 38]. A (discrete)

probability space is defined by a pair .�;P/, where� is a countable set called the sample space,

whose elements are called outcomes and PW 2� ! Œ0; 1� is a function that maps an event, which

is a subset of �, into the probability that it happens. The function P satisfies PŒ�� D 1 and for

any F � � such that all its elements are pairwise disjoint,

P

"

[

A2F
A

#

D
X

A2F
PŒA�:



18

We write A for the complement of an event A, i.e., the event � n A. The events A1,

A2; : : : ; Ak are said to be independent if

P

"

\

i2I

Ai

#

D
Y

i2I

PŒAi �; 8I � f1; : : : ; kg:

The conditional probability of an event A happening given that event B happened (assuming

PŒB� > 0) is defined as

PŒA j B� D
PŒA \ B�

PŒB�
:

We say a sequence of events .An/n2N occurs asymptotically almost surely (a.a.s.) if PŒAn�! 1

when n ! 1. In particular, if PŒAn� � 1 � n
��.1/, we say An happens with high probability

(w.h.p.). An event happening w.h.p. implies it happening a.a.s., but the converse need not hold.

The monotonicity property of P states that if two events A and B satisfy A � B ,

then PŒA� � PŒB�. Given events A1; A2; : : : ; An, the union bound is a common upper bound to

the probability of their union, given by

PŒA1 [ A2 [ � � � [ An� �

n
X

iD1

PŒAi �;

where equality occurs when the events are disjoint.

A random variable X on a sample space� is a function X W�! R. We use mainly

discrete random variables, which take on only a countable number of values. The set of events

f! 2 � j X.!/ D ag is denoted by fX D ag and we define

PŒX D a� D
X

!2�;
X.!/Da

PŒ!�:

The random variables X1, X2; : : : ; Xk are said to be independent if for any a1; a2; : : : ; ak

P

"

\

i2I

fXi D aig

#

D
Y

i2I

PŒXi D ai �; 8I � f1; : : : ; kg:

The expected value (or expectation) of a discrete random variable X , denoted by EŒX�, is

given by

EŒX� D
X

!2�

X.!/PŒ!�:

Particularly, if X is always a non-negative integer, we write

EŒX� D
X

k�0

kPŒX D k�:

The expected value is a linear operator, i.e., for any k 2 N, a1; a2; : : : ; ak 2 R and random

variables X1; X2; : : : ; Xk,

EŒa1X1 C a2X2 C � � � C akXk� D a1EŒX1�C a2EŒX2�C � � � C akEŒXk�:



19

The Markov inequality states that any non-negative random variable X satisfies

PŒX � tEŒX�� �
1

t
; for all t > 0:

A random variable X is said to follow an uniform distribution over the set fa;

aC 1; : : : ; bg if

PŒX D k� D

8

<

:

1=.b � aC 1/; if k 2 fa; aC 1; : : : ; bg

0; otherwise.

If X is a uniform random variable, then EŒX� D .a C b/=2. A random variable X is said to

follow a geometric distribution with parameter p 2 .0; 1� if

PŒX D k� D .1 � p/k�1p; for any k 2 N:

If X is a geometric random variable, then EŒX� D 1=p.

When � is a set of graphs, we say that the outcomes are random graphs. We focus

mainly on two models. In the first, denoted by G.n; p/, the outcomes are graphs on n vertices

where each edge appears independently of others with probability p (usually as a function of n)

and, thus, the probability of the outcome being a fixed graph G is equal to

pe.G/.1 � p/.
n
2/�e.G/:

In the second, denoted by G.n;m/, the outcomes are graphs on n vertices, m edges and all such

graphs are equaly likely to be sampled, hence, the probability of the outcome being a fixed graph

G is
�
�

n

2

�

m

��1

if G has n vertices and m edges or 0, otherwise. If a graph G belongs to the G.n; p/ (resp.

G.n;m/) model, we write G � G.n; p/ (resp. G � G.n;m/).

2.5 Useful definitions, bounds and asymptotics

The Lambert function W W Œ0;C1/! R satisfies the functional equation

W.x/ exp.W.x// D x; 8x � 0: (2.3)

Equation (2.3) has a real solution for all x � �1=e, but we define W.x/ only when x � 0 for

practical purposes, as the real solution is unique if x � 0. We refer the reader to a survey due

to Corless et al. [39] for a thorough introduction to some properties and uses of this function. In

particular, Hoorfar and Hassani [40] show that

W.´/ D ln ´ � ln ln ´C‚.ln ln ´=ln ´/: (2.4)



20

The exponential function expWR! R is defined as

exp.x/ D lim
n!C1

�

1C
x

n

�n

:

Using the Binomial Theorem, we can rewrite this in terms of an infinite series, namely

exp.x/ D
X

n�0

xn

nŠ
;

from whence follows that

exp.k/ �
kk

kŠ
; 8k 2 N: (2.5)

Moreover, by the convexity of x 7! exp.x/, we get exp.x/ � 1C x, as x 7! 1C x is the tangent

line to its graph on x D 0, hence,

exp.x/ � 1C x and exp.�x/ � 1 � x; 8x � 0: (2.6)

A simple lower bound for the binomial coefficient
�

n

k

�

is given by

�

n

k

�

D
nŠ

kŠ.n � k/Š
D
n

k
�
n � 1

k � 1
� � �
n � k C 1

1
�
�n

k

�k

; (2.7)

because for any k � n we have

i

n
�
i

k
= 1 �

i

n
� 1 �

i

k
=

n � i

k � i
�
n

k
:

A common upper bound can be derived using (2.5), as
�

n

k

�

D
n.n � 1/ � � � .n � k C 1/

kŠ
�
�en

k

�k

: (2.8)



21

3 A BRANCH AND BOUND FRAMEWORK

B&B methods are widely regarded as the most efficient way to address not only

Maximum Clique, but also several other NP-hard problems [41]. In this chapter, we study

a specific family of such procedures, whose main idea — to branch using pivot vertices — is

due to Bron and Kerbosch [42]. Although first proposed in 1973, this branching rule is still

used in most state-of-the-art algorithms. We discuss some of its properties and how they help

us understand the contrast between theoretical hardness results and the abundance of efficient

algorithms for Maximum Clique.

3.1 Basic structure of the algorithm

First, we define the instances of the subproblem that the algorithm solves.

Definition 3.1. A clique subinstance of a graph G (or simply a subinstance) is a pair .Q;R/

of disjoints subsets of V.G/ where Q is a clique and Q � N.u/, for each u 2 R. In each

subinstance .Q;R/, the objective is to find the largest cliqueQ� ofG such thatQ � Q� � Q[R.

An instance is solved if R D ;.

An instance now comes with a initial clique Q and the objective of the subproblem

is to find the largest clique containing Q by examining only vertices in R. Notice that an

instance of the original problem Maximum Clique with input graph G corresponds to the

subinstance .;; V .G//.

The branching step defines how any B&B method divides an instance into “smaller”

ones — its children. In order to branch a clique subinstance, the algorithm will consider two

cases. Intuitively, for any v 2 R, if Q� is the largest clique containing Q, then either v 2 Q� or

v … Q� and we will enumerate the possibilities as follows. If a subinstance .Q;R/ of G is not

already solved, then R ¤ ;, a pivot vertex v 2 R is chosen and this subinstance branches into

two others:

1. .Q [ fvg; R \ N.v//, which considers all cliques that contain v (and do not

contain any vertices that are not adjacent to v);

2. .Q;R n fvg/, which considers all cliques that do not contain v.

We do not specify how the algorithm chooses pivot vertices, but many implementations use

degree-based [15, 43] or coloring-based [44, 45] criteria.

One of the key steps in any B&B method is the bound phase, where the algorithm

computes an upper bound (in a maximization problem, or a lower bound in a minimization

one) on the value of the best solution available to some instance and decides whether or not to

branch. We do not define which bound rule is to be used yet, but the most common ones are

coloring-based (see Chapter 6).



22

We call any algorithm that implements this scheme a standard algorithm. All results

herein apply to any standard algorithm, regardless of its pivot choices and upper bounds. A

standard algorithm that does not have a bounding rule simply enumerates all possible cliques.

Figure 1 illustrates the branching of a subinstance in a standard algorithm.

Figure 1 – A branching step on a subinstance .Q;R/ with pivot v on a standard algorithm.

(a) The parent subinstance .Q;R/ and
the pivot v among vertices of R.

v

.Q; R/

(b) The left child of .Q;R/, obtained
by adding v to the current clique
and removing from R vertices non-
adjacent to v.

v

.Q [ fvg; R \ N.v//

(c) The right child of .Q;R/, obtained
by removing v from R without
adding it to the current clique.

v

.Q; R n fvg/

Source: prepared by the author.

The set of subinstances considered by some execution of a B&B algorithm naturally

induces a tree. For standard algorithms, its structure depends on the choice rule for pivots and

the upper bound used. The root node of this tree is the subinstance .;; V .G// and the children of

a node are given by its children subinstances according to the branching rule. If a node does not

branch, either because it is solved or because the algorithm pruned its children due to the upper

bound, it is a leaf. We now define a similar tree structure, but that is associated with graphs

instead of algorithms.

Definition 3.2. Given a graph G, a clique search tree T of G is a binary tree such that:

1. The root of T is the subinstance .;; V .G//;

2. The leaves of T are all subinstances in which R D ;;

3. The left and right children of an internal node .Q;R/ are .Q [ fvg; R \N.v//

and .Q;R n fvg/, for some v 2 R, respectively.

A clique search tree of a graph G can be seen as the result of an execution of a

standard algorithm with no bounding rule. A graph can have many clique search trees, as they



23

are defined by the pivot choices, but they all have the same size (see Proposition 3.3). We say an

execution E of a standard algorithm is contained in a clique search tree T of a graph G if the

subinstances analyzed in E induce a connected subgraph in T , this subgraph contains the root of

T and every pivot choice is the same in any subinstance of E and its equivalent node in T . In

the next section, we describe how to analyze standard algorithms through clique search trees.

3.2 Some properties of standard algorithms

We consider clique search trees as a description of a worst-case scenario for any

standard algorithm. The following proposition gives an intuition as to why this is true.

Proposition 3.3 (Carmo and Züge [22]). Let G be a graph and C be the set of all its cliques. If

T is a clique search tree of G, then T has 2jCj � 1 nodes. Furthermore, each execution of a

standard algorithm for Maximum Clique on G is contained in some clique search tree of G.

Indeed, by Proposition 3.3, the size of a clique search tree is an upper bound on the

number of instances considered by any standard algorithm. Therefore, if the clique search trees

are not too large, standard algorithms need not evaluate too many nodes. Carmo and Züge [22]

approach the gap between theoretical and empirical hardness results regarding Maximum

Clique by analyzing the average behavior of B&B algorithms through clique search trees.

Lemma 3.4 (See e.g. Carmo and Züge [22]). For any n 2 N and constant p 2 .0; 1/, if

G � G.n; p/, then the average number of cliques in G is at most n2Ccp lglg n, where cp D �1=lgp.

In other words, the expected number of cliques in a random graph (for constant p)

is nOO.lglg n/. Now, as the size of any clique tree grows at most as fast as the number of cliques

in the graph, their size is, on average, subexponential. This explains why standard algorithms

seem to be much faster on average than what they are expected to be in the worst case, for if the

time to process a single node is subexponential, the final execution time is still expected to be

subexponential and far from the worst case.

Chvátal [46] defines a structure that is similar to a clique search tree. The f -driven

tree (the “f ” stands for a function that selects pivots and, thus, defines the structure of the tree) is

a binary tree whose nodes are subinstances for Maximum Independent Set and the children

of a node are defined in an analogous way to those of a clique search tree node. Pittel [47] proves

that the size of a f -driven tree on G.n; p/ graphs for constant p is subexponential w.h.p. and

Carmo and Züge [22] point out that the same could be argued for clique search trees.

Theorem 3.5 (Pittel [47], Carmo and Züge [22]). For any n 2 N, constant p 2 .0; 1/ and " > 0,

if G � G.n; p/ and T is a clique search tree of G, then

P.n.0:25�"/cp lglg n � jT j � n.0:5C"/cp lglg n/ � 1 � exp.�c ln2 n/;

where c is a positive value depending on " and cp D �1=lgp.



24

Theorem 3.5 strengthens the explanation of the easiness in practice of Maximum

Clique. Not only the expected number of cliques in a G.n; p/ random graph for constant p is

nOO.lglg n/, but the number of cliques itself is n‚.lglg n/ w.h.p. So even if a standard algorithm uses no

upper bound, it still is very unlikely that it takes exponential time to solve an instance, provided

it uses at most subexponential time processing a subinstance. In other words, although the worst

case is indeed exponential, it is rare enough not to be too impactful.

These results raise the following question: “If almost always a maximum clique can

be found in subexponential time in G.n; p/ with constant p, when does it take more time to find

it?” We investigate some answers in the next chapter.



25

4 INSTANCES IN THE LITERATURE

In this chapter, we discuss some clique-related results that can be extended to graph

constructions. We split them into two categories: theoretical and practical. The first category

includes constructions designed to achieve specific properties, such as maximizing the number

of cliques or maximal cliques in graphs of a given size and order, with formal proofs confirming

them. The second one, on the other hand, focus on instances that were conceived as inherently

hard for Maximum Clique, following heuristic rules without any formal proof of hardness,

relying instead in empirical tests to display their difficulty.

4.1 Theoretical instances

When looking for hard instances to Maximum Clique, a natural first approach

is to find graphs that at least exhibit an asymptotically higher number of cliques compared to

G.n; p/ with constant p. In this sense, a complete graph on n vertices is best possible with

2n cliques and, indeed, any standard algorithm without an upper bound will take exponential

time to solve these instances. However, it is easy to find a maximum clique in Kn (just find any

maximal clique) and this can be exploited by algorithms to quickly prune all branches using

common upper bound rules (e.g. vertex coloring heuristics) and terminate.

If a high edge density is to be avoided, Wood [48] proves that the highest possible

number of cliques in a graph with n vertices and m edges is 2d C 2` C n � d � 1, where d and

` are defined as the unique integer solution to

m D

�

d

2

�

C `; 0 � ` � d � 1;

and shows instances that attend to this number. Such an instance consists of a graph with n

vertices which has the largest possible complete subgraph with at mostm edges (using d vertices)

and all the remaining edges have one common endpoint outside the large clique and one endpoint

inside the large clique, any other vertex is isolated. Figure 2 gives an example.

Figure 2 – A graph with 7 vertices, 9 edges and 24C 23C 7� 4� 1 D 26 cliques, the maximum
possible for any graph with these parameters, as described by Wood [48].

Source: prepared by the author.

The author also shows the maximum number of cliques in graphs with other

restrictions, such as both number of edges and maximum degree fixed, fixed number of edges

and d -degenerate, planar and planar with a fixed number of edges.



26

If many maximal cliques are desired, Miller and Müller [49] and Moon and

Moser [50] independently show that any graph with n vertices has at most O.3n=3/ maxi-

mal cliques and the latter authors prove that graphs that attain this value are complete multipartite

graphs where each part has size 2 or 3 and as many parts as possible have size 3. Figure 3 gives

an example.

Figure 3 – A graph with 8 vertices and 2 � 3.8�2/=3 D 18maximal cliques, the maximum possible
for any graph with this many vertices, as described by Moon and Moser [50].

Source: prepared by the author.

These graphs are a special case of the more general Turán graphs T .n; k/ due

to Turán [51], which have the maximum number of edges among graphs on n vertices without

cliques of size k C 1. Besides that, Zykov [52] shows that they also have the most number of

cliques of size k among any n vertex graph without cliques of size k C 1.

These are graphs that combine a high number of cliques with other desired properties

(fixed edge density or planarity, for example), but to the best of our knowledge have not been

benchmarked with standard algorithms.

As a final note, we mention the family of graphs due to Lavnikevich [26]. Its difficulty

is supported both by a formal proof on a lower bound for the solving time regarding a specific

type of algorithms and by computational tests using an implementation of such algorithms. This

construction will be discussed in more detail in Chapter 6 due to its unique nature — being

theoretically and empirically hard.

4.2 Practical instances

The DIMACS benchmark set [23] contains 66 instances that arise from many

contexts. They are split into nine families and were proposed in the Second DIMACS Imple-

mentation Challenge in 1992, but remain to this day as one of the main sources of hard inputs

to clique algorithms. Random graphs in the G.n; p/ model, usually with a constant p, are also

widely used. These are, however, much easier instances in practice (and in theory, as we have

seen in Chapter 3) and tend to serve only as a control group to be tested against some other graph

construction with similar order and size.



27

The first family of instances, denoted by “CFat”, consists of 7 graphs originated by

fault diagnosis problems on distributed systems [5]. The second and third, denoted by “Johnson”

and “Hamming”, contain 4 and 6 graphs, respectively, that come from problems in coding theory.

The fourth one, with 3 instances, is denoted by “Kel” and is based on Keller’s conjecture on

tiling using hypercubes [53]. The fifth, denoted by “San”, has 11 graphs and is originated by

problems concerning vertex covers [54]. The sixth, denoted by “SanR”, contains 4 random

graphs with sizes similar to those in the fifth family. The seventh, denoted by “Brock”, consists

of 12 instances that attempt to hide large cliques in quasi-random graphs, where the expected

clique size is much smaller [25]. The eigth, with 15 graphs, is denoted by “PHat” and is given

by a generalization of random graphs that has more parameters, a wider node degree spread

and larger clique sizes [55]. The ninth and last, denoted by “Stein”, contains 4 graphs which

correspond to instances of a clique translation of the set covering formulation of a problem

concerning Steiner Triples [56].

The idea of hiding cliques in quasi-random graphs, in particular, is widely adopted.

The “Brock” family of graphs, for example, focus on defeating a greedy heuristic that excels on

instances generated by a similar model due to Kučera [57]. The graphs are generated by using

two probabilities functions to decide if an edge should be added or not in the final graph, which

enables them to control the hardness for these greedy algorithms to detect a clique while still

being able to keep some desired average edge density.

A somewhat similar strategy is also used in the BHOSLIB [24], which is another

repository of hard instances for Maximum Clique (but also for vertex cover and coloring

problems) which is frequently used, although not as much as DIMACS. The main idea is to

generate k disjoint independent sets with size k", for some integer k and constant " > 0, and

all edges between vertices in different independent sets; select two of these independent sets

uniformly at random and remove pk2" edges between them, for some constant p 2 .0; 1/, and

repeat this process rk ln k � 1 times, where r > 0 is another constant. When this is done, any

clique in the resulting graph has size at most k. The key step is then to choose k vertices, one

in each independent set, and add back any missing edges to form a clique of size exactly k.

The expected hardness of these instances comes from choosing specific values of ", p and r

following principles of hardness of phase transitions, i.e., the problem is expected to be easy for

some choices of these parameters, but they can be tuned to make it challenging. This method

makes use of a reduction from a satisfiability problem to a clique one and hardness results due

to Xu and Li [58].

In the next chapter we propose a new family of hard instances, based on a particular

reduction from Minimum Vertex Coloring to Maximum Clique in the literature.



28

5 USING VERTEX COLORINGS TO BUILD CLIQUES

Chapter 3 stablished the fact that G.n; p/ random graphs for constant p, cannot be

too hard for Maximum Clique as they simply do not have enough cliques to be enumerated. In

Chapter 4, we introduced a natural way of obtaining harder instances, namely to find graphs that at

least have many more cliques. In this chapter, we describe a reduction from Minimum Vertex

Coloring to Maximum Clique in the literature and how to adapt it into an algorithm to

build graphs with many cliques.

5.1 The Representatives Model

Campêlo, Campos and Corrêa [59] introduce a linear integer programming formula-

tion for Minimum Vertex Coloring. This model, called the “Asymmetric Representatives

Model” establishes a connection between colorings and independent sets (and, consequently,

between cliques as well).

Given a graphG and a linear order� over its vertices, a k-coloring can be expressed

by representatives, one for each color class Si , i 2 f1; 2; : : : ; kg. The set of representatives

is a transversal to fS1; S2; : : : ; Skg, i.e., there is exactly one vi 2 Si that is a representative

for each i 2 f1; : : : ; kg, which is the minimum vertex with respect to � in the class, i.e.,

vi � u;8u 2 Si n fvig and every vertex in the graph is either a representative (and represents

itself) or is represented by exactly one other vertex. A coloring of G defines uniquely the set of

its representatives and who they represent, and the converse is also true (up to color relabeling).

Figure 4 shows the relation between a coloring and its representatives.

Figure 4 – Modeling a coloring through its representatives. The smallest vertex of each color
class is a representative and represents vertices in the same class.

(a) Coloring of a graph G. Each dashed
circle denotes a color class.

1

3

5

S1

2

4

8

S2

6

7
S3

: : : :::

:::

(b) Representatives of the coloring. An arc
from a vertex u to a vertex v indicates
that the former represents the latter.

1

3

5

S1

2

4

8

S2

6

7
S3

Source: prepared by the author.



29

This model was explored by Cornaz and Jost [60], who describe a construction that

takes a graph G and an acyclic orientation D of its complement (i.e., an orientation of G that

has no oriented cycle) as input and outputs a specific construction, which they call QG. The

transformation is presented in Algorithm 5.1.

Algorithm 5.1. CornazJostReduction.G;D/

1 Let L.G/ be the line graph of G
2 QG  L.G/

3 foreach xy 2 E. QG/ do
4 Let x D uv and y D u´, as x and y are adjacent edges of G
5 if .u; v/; .u; ´/ 2 E.D/ and v´ 2 E.G/ then
6 E. QG/ E. QG/ n xy

7 return QG

The authors then show that there is a bijection between colorings of G and indepen-

dent sets in QG, suggesting that graphs with many colorings could be transformed into graphs

with many independent sets (their complement having many cliques).

Theorem 5.1 (Cornaz and Jost [60]). For any graph G and any acyclic orientation of its

complementary graph, there is a one-to-one correspondence between the set of all colorings ofG

and the set of all stable sets of QG. Moreover, for any coloring V1; : : : ; Vk and its corresponding

stable set S in QG, we have: jS j C k D jV.G/j. In particular, ˛. QG/C �.G/ D jV.G/j.

Given a graph G, if no particular acyclic orientation is known, we can define an

arbitrary linear order � and orient each edge in G from the smallest endpoint to the largest

(according to �), and the orientation will be acyclic, as � is linear. The conditional on line 5

can then be rewritten as “if u � v, u � ´ and v´ 2 E.G/ then”.

As this work is primarily concerned with cliques, we also define G� as the comple-

ment of QG to avoid speaking in the language of independent sets. This adapted construction is

presented in Algorithm 5.2, assuming that instead of an acyclic ordering, the algorithm receives

as input a linear order over the vertex set of G.

Algorithm 5.2. CliqueCornazJostReduction.G;�/

1 Let L.G/ be the line graph of G
2 QG  L.G/

3 foreach xy 2 E. QG/ do
4 Let x D uv and y D u´, as x and y are adjacent edges of G
5 if u � v, u � ´ and v´ 2 E.G/ then
6 E. QG/ E. QG/ n xy

7 Let G� be the complement of QG
8 return G�



30

An example of this process is given in Figure 5. Even though the final steps of

defining and returning G� are not described by Cornaz and Jost [60], we hereon call this process

the Cornaz–Jost reduction.

Figure 5 – Using the Cornaz–Jost reduction to obtain the graph G� given a graph G and a linear
order �.

(a) A graph G and a linear order defined
over its vertices.

1

2

3

4 5

(b) The complementary graph G.

1

2

3

4 5

(c) The line graph L.G/ of the complemen-
tary graph G.

12

24

14

35 15

(d) The graph QG, in which the edge between
vertices 12 and 14 was removed due to
2 and 4 being neighbors in G.

12

24

14

35 15

(e) The final graph G�, the
complement of QG.

12

24

14

35 15

Source: prepared by the author.

Theorem 5.2. If G� is the output of Algorithm 5.2 with input G, then the number of cliques in

G� is equal to the number of colorings of G.

Proof. There is a natural bijection between the set of cliques in G� and the set of independent

sets in QG. As each clique in G� corresponds to an independent set in QG and each of these

corresponds to a coloring of G by Theorem 5.1, the number of cliques in G� is precisely the

same as the number of colorings of G.

The structure of G� depends on the input graph G, so it is natural to focus on a

specific family of inputs. Moreover, in order to determine the number of cliques in G�, we need

to know the number of colorings in G. We focus on the case where G is a random graph.



31

5.2 Counting colorings in random graphs

Following the observations made by Johnson and Trick [31] about the disparity of

the results concerning Maximum Clique and Minimum Vertex Coloring during the

DIMACS Second Implementation Challenge, Campos, Carmo and N. [61]1 study the average

number of colorings on random graphs, in a similar fashion to what was done to cliques.

Theorem 5.3 (Campos, Carmo and N. [61]). For any ˛ 2 .0; 1=3/, if G � G.n; p/ for

p � 1 � n�˛, then the expected number of colorings of G is n‚.n/.2

Note that Theorem 5.3 is stronger the closer ˛ is to 1=3, as p can be chosen from a

wider interval. This result enables counting the expected number of cliques in the Cornaz–Jost

reduction with such an input. It also suggests that it should be harder to enumerate colorings than

cliques, as random graphs are expected to have much more of the latter than of the former (In

the G.n; p/ model with constant p, for example, for a sufficiently large n we have p � 1 � n�˛

for any constant p and any ˛ 2 .0; 1=3/).

Theorem 5.3 (and the rest of this work) counts colorings as partitions of the vertex

set in which each part is an independent set, i.e., relabeling the color classes in a given partition

yields the same coloring. In particular, a complete graph has only one coloring.

We now improve Theorem 5.3 by relaxing the condition on ˛ and giving a concen-

tration inequality. To do so, we need the following result.

Theorem 5.4 (Johansson, Kahn and Vu [62]). Given a strictly balanced graphH with k vertices

and m edges, if G � G.n; p/ for p D !.n�.k�1/=m.lnn/1=m/ and n � 0 .mod k/, then the

number of H -factors in G is at least

.nk�1pm/n=k exp.�O.n//

with probability at least 1 � 1=n!.1/.

Johansson, Kahn and Vu [62] also argue that if we set m D p
�

n

2

�

instead and choose

G � G.n;m/, the conclusion of Theorem 5.4 is still valid. We are now ready to prove the first

main result of this work.

Theorem 5.5. Let ˛ 2 Œ0; 1/ and c 2 .0; 1�. If G � G.n; p/ for p � 1� cn�˛, then the number

of colorings of G is n‚.n/ with probability 1 � 1=n!.1/.

Proof. Let C be the random variable that counts the number of colorings of G. We search for

two positive constants " and ı such that n"n � C � nın with probability at least 1 � 1=n�!.1/.

1 This extended abstract published in 2022 contains a preliminary discussion of some of the results presented in
this work.

2 This theorem is stated slightly different from the original source. Originally, ˛ could be 0, but this lead to a
divison by 0 in the proof; moreover, G belonged to the G.n;m/ model for m �

�

n

2

�

.1 � n�˛/, but the first step
of the proof changed the model back to G.n; p/ (this was mainly due to page constraints).



32

For the upper bound, as any coloring can use at most n colors, there are at most nn colorings of

G with probability 1.

Now, for the lower bound, we count the number C2 of colorings where each color

class has size exactly 2, as C � C2. We assume that n is even, otherwise let G 0 be an induced

subgraph ofG with n� 1 vertices and note that any coloring ofG 0 can be extended to a coloring

of G, so the number of colorings of G is at least the number of colorings of G 0. Moreover,

G 0 � G.n � 1; p/ and
�

n � 1

n

��˛

D

�

n

n � 1

�˛

<
n

n � 1
� 2;

so we can take c0 D c=2 to get

1 � cn�˛ D 1 � 2c0n�˛ � 1 � c0
�

n � 1

n

��˛

n�˛ D 1 � c0.n � 1/�˛;

hence p � 1 � cn�˛ implies p � 1 � c0.n � 1/�˛, and we can work with G 0 instead.

If H D K2, then C2 is the number of H -factors in G. Letting q D 1 � p, we have

G � G.n; q/ and q � cn�˛, but, in order to apply Theorem 5.4, we need q D !.lnn=n/ and,

indeed, n�˛ D !.lnn=n/, because lnn D o.nˇ / for any ˇ > 0, thus, we can take ˇ D 1 � ˛.

This means that with probability at least 1 � 1=n!.1/

C2 � .nq/
n=2 exp.�O.n//

� nn=2.cn�˛/n=2 exp.�O.n//

D nn.1�˛/=2�OO.n=lglg n/

� n"n;

for some " > 0.

In Theorem 5.5, the parameter ˛ is now only required to be less than 1 instead of

1=3 and the result is now valid w.h.p. (to say with probability 1� 1=n!.1/ is in fact stronger than

to say w.h.p.). Hence, this result is much stronger than Theorem 5.3. To see this, consider the

following corollary regarding the expected value, which is still stronger than the old result.

Corollary 5.6. Let c 2 .0; 1� and ˛ 2 Œ0; 1/. If G � G.n; p/ for p � 1 � cn�˛, then the

expected number of colorings of G is n‚.n/.

Proof. Again, as C � nn, it follows that EŒC � � nn. Now, by Markov’s inequality, PŒC � t � �

EŒC �=t for any t > 0 and, by Theorem 5.5, there exists " > 0 such that C � n"n with probability

at least 1 � 1=n!.1/. Setting t D n"n we have

1 �
1

n!.1/
� PŒC � n"n� �

EŒC �

n"n
;

hence EŒC � � n"n.1 � 1=n!.1// � n"0n for some "0 > 0.



33

Theorem 5.5 thus strengthens the intuition that enumerating colorings should be

harder than enumerating cliques, as there are n‚.lglg n/ cliques w.h.p. versus n‚.n/ colorings w.h.p.

on graphs in the G.n; p/ model for constant p (Just take ˛ D 0). Nevertheless, it is possible to

decide in polynomial time if a graph has a clique of size at least k for any fixed k (just examine

all
�

n

k

�

subsets of size k searching for such a clique in time O.nk/), while deciding if a graph

has a proper coloring using at most k colors is still a NP-complete problem for any k � 3 [13].

So in a parameterized complexity point of view, Minimum Vertex Coloring is harder

than Maximum Clique, but our explanation differs in its essence, appealing to enumeration

complexity, which we find practical as almost all state-of-the-art algorithms are enumerative

(and already were when the second DIMACS challenge took place).

As a final remark, we note that Theorem 5.5 can be adapted to work in the G.n;m/

model, which is useful to fix the number of edges in the input graph, as this affects the number

of vertices in the transformed graph.

Corollary 5.7. Let ˛ 2 Œ0; 1/ and c 2 .0; 1�. If G � G.n;m/ for m �
�

n

2

�

.1 � cn�˛/, then the

number of colorings of G is n‚.n/ with probability 1 � 1=n!.1/.

Proof. The nn upper bound on the number of colorings with probability 1 is still valid. As

Johansson, Kahn and Vu [62] state that Theorem 5.4 also works for G � G.n;m/ if m D p
�

n

2

�

,

where p D !.n�.k�1/=m.lnn/1=m/, the lower bound given in the proof of Theorem 5.5 can be

used analogously.

We are now ready to move on to the Cornaz–Jost reduction analysis.

5.3 Instances with more cliques than average

Campos, Carmo and N. [61] use Theorem 5.3 to analyze the Cornaz–Jost reduction

when the inputs to Minimum Vertex Coloring are random graphs.

Theorem 5.8 (Campos, Carmo and N. [61]). For any n 2 N and " 2 .0; 1=10�, the Cornaz–Jost

reduction can build graphs with n vertices in which the expected number of cliques is n‚.n3=5�"/.

The algorithm behind this result is as simple as choosing a value of ˛ as a function of

the given ", sampling a random G.N;m/ graph for a particular choice of N and m and applying

the Cornaz–Jost reduction on it using a random linear ordering on V.G/. Theorem 5.8 can be

strengthened using Theorem 5.5 by repeating essentially the same idea but choosing a “better”

value of ˛. Algorithm 5.3 illustrates this method and Theorem 5.9 provides an analysis.

Algorithm 5.3. CornazJostInstances.n; "/

1 Let c 2 .0; 1� and N 2 N be such that 1C .2n/1�" � N � .2n=c/1�"

2 m 
�

N

2

�

� n

3 Sample G � G.N;m/ and a linear order � over V.G/ uniformly at random

4 return CliqueCornazJostReduction.G;�/



34

Theorem 5.9. For any n 2 N and " 2 .0; 1=2�, the output of Algorithm 5.3 with inputs n and "

has n vertices and n‚.n1�"/ cliques with probability at least 1 � 1=n!.1/.

Proof. Let G� be the output of Algorithm 5.3 and ˛ D .1 � 2"/=.1 � "/. As 0 < " � 1=2,

1

2 � ˛
D 1 � " and 0 � ˛ < 1: (5.1)

For any " 2 .0; 1=2� and n 2 N, there exists a small enough constant c" > 0 depending only on

" such that

Œ1C .2n/1�"; .2n=c/1�"� \ N ¤ ;; 8c 2 .0; c"/;

which means there is always some choice of c and N in line 1. Note that N � 1 C .2n/1�"

implies .N � 1/2�˛=2 � n by (5.1) and this means m is well defined, as

m D

�

N

2

�

� n �
.N � 1/2�˛

2
� n � 0:

Moreover,

m D

�

N

2

�

� n � .1 � cN�˛/

�

N

2

�

;

so G � G.N;m/ has N‚.N / colorings with probability at least 1 � 1=N !.1/ by Corollary 5.7.

Furthermore, by the choice of N , we have

N D ‚.n1�"/; (5.2)

hence, as the number of cliques in G� is equal to the number of colorings of G by Theorem 5.2

and N‚.N / D n‚.n1�"/ by (5.2), G� has N‚.N / D n‚.n1�"/ cliques with probability at least

1 � 1=N !.1/, which is 1 � 1=n!.1/.

In Theorem 5.9, the number of cliques is now n‚.n1�"/ instead of n‚.n3=5�"/ and this

is valid now w.h.p. The least number of cliques remains n‚.
p

n/, this was achieved before when

" D 1=10 and is now when " D 1=2. Hence, this result is much stronger than Theorem 5.8. To

see this, consider the following corollary regarding the expected number of cliques, which is still

stronger than the old result.

Corollary 5.10. For any n 2 N and " 2 .0; 1=2�, the output of Algorithm 5.3 with inputs n and

" has n vertices and its expected number of cliques is n‚.n1�"/.

Proof. Using a similar argument to that on Theorem 5.9’s proof, the expected number of cliques

in the output of Algorithm 5.3 is N‚.N / by Corollary 5.6. As N‚.N / D n‚.n1�"/ by (5.2), the

result follows.

These instances at least have asymptotically many more cliques than graphs in the

G.n; p/ model for constant p, putting them as candidates for being harder to solve. They are,

however, much denser.



35

Proposition 5.11. For any n 2 N and " 2 .0; 1=2�, the output of Algorithm 5.3 with inputs n

and " has expected density 1 �‚.n1�"/.

Proof. Let G� be the output of Algorithm 5.3. First, we count the expected number of edges in
QG, the complement of G�. If in line 3 of Algorithm 5.3 the sampled graph is G � G.N;m/ for

some choice of N and m made in line 1, then vertices of QG are non-edges of G and edges of QG

are forbidden pairs of non-edges in G, i.e., pairs that do not define a valid set of representatives

and who they represent.

Defining againD as the acyclic orientation ofG induced by�, there are four minimal

configurations of vertices i � j � k of G that create edges in QG:

1. If ij; ik … E.G/ and jk 2 E.G/, i.e., .i; j /; .i; k/ 2 E.D/;

2. If ik; jk … E.G/ and ij 2 E.G/, i.e., .i; k/; .j; k/ 2 E.D/;

3. If ij; jk … E.G/ and ik 2 E.G/, i.e., .i; j /; .j; k/ 2 E.D/;

4. If ij; jk; ik … E.G/, i.e., .i; j /; .j; k/; .i; k/ 2 E.D/.

Figure 6 illustrates all cases.

Figure 6 – Vertex configurations in D that induce edges in QG.

(a) Case 1.

i j k

(b) Case 2.

i j k

(c) Case 3.

i j k

(d) Case 4.

i j k
Source: prepared by the author.

In case 1, if i represents k, then j cannot be represented by i , so .i; j / and .i; k/

cannot be taken simultaneously in QG, meaning that .i; j /.j; k/ 2 E. QG/. In case 2, if i represents

k, then j cannot also represent k, so .i; k/.j; k/ 2 E. QG/ analogously. In case 3, if represents j ,

then k cannot be represented by j , so now .i; j /.j; k/ 2 E. QG/. Finally, in case 4, we have a

superposition of all three other cases, so again .i; k/.j; k/ and .i; j /.j; k/ are edges in D, but

now .i; j /.i; k/ is not because i can represent both j and k as they are not neighbors in G now.

The probability that case 1 occurs is the same as that of cases 2 and 3, being

�
�

N

2

�

� 3

m � 1

���
�

N

2

�

m

�

;



36

as (in case 1) jk must be in G and both ij and ik are forbidden, so anotherm� 1 edges must be

sampled among the
�

N

2

�

�3 remaining choices. The probability that case 4 occurs is, analogously,

�
�

N

2

�

� 3

m

���
�

N

2

�

m

�

:

Cases 1, 2 and 3 all induce one edge in QG, while case 4 induces two and all four

cases are defined by triples of vertices in G, thus,

EŒe. QG/� D

�

N

3

��

3

�
�

N

2

�

� 3

m � 1

�

C 2

�
�

N

2

�

� 3

m

����
�

N

2

�

m

�

D

�

N

3

���
�

N

2

�

� 3

m � 1

�

C 2

�
�

N

2

�

� 2

m

����
�

N

2

�

m

�

;

by Pascal’s rule. Now, symplifying, we get

EŒe. QG/� D

�

N

3

��

��

N

2

�

� 3
�

Š

.m � 1/Š
��

N

2

�

�m � 2
�

Š
C

2
��

N

2

��

mŠ
��

N

2

�

�m � 2
�

Š

���
�

N

2

�

m

�

D

�

N

3

��

m
��

N

2

�

�m
���

N

2

�

�m � 1
�

�

N

2

���

N

2

�

� 1
���

N

2

�

� 2
� C

2
��

N

2

�

�m
���

N

2

�

�m � 1
�

�

N

2

���

N

2

�

� 1
�

�

and letting p D m=
�

N

2

�

, it follows that

EŒe. QG/� D

�

N

3

��

�

N

2

�

p.1 � p/
��

N

2

�

.1 � p/ � 1
�

��

N

2

�

� 1
���

N

2

�

� 2
� C

2.1 � p/
��

N

2

�

.1 � p/ � 1
�

�

N

2

�

� 1

�

D

�

N

3

�

.1 � p/
��

N

2

�

.1 � p/ � 1
�

�

N

2

�

� 1

�

�

N

2

�

p
�

N

2

�

� 2
C 2

�

:

Now, we can define QG’s expected density to be EŒd. QG/� D EŒe. QG/�=
�

v. QG/

2

�

and, since v. QG/ D

n D
�

N

2

�

�m D .1 � p/
�

N

2

�

, we have

EŒd. QG/� D

�

N

3

�

.1 � p/
��

N

2

�

.1 � p/ � 1
�

�

N

2

�

� 1

�

�

N

2

�

p
�

N

2

�

� 2
C 2

�

�

2

.1 � p/
�

N

2

��

.1 � p/
�

N

2

�

� 1
�

D

�

N

3

�

2
�

N

2

���

N

2

�

� 1
�

�

�

N

2

�

p
�

N

2

�

� 2
C 2

�

D ‚.N 3/ �‚.N�4/ �‚.p/

D ‚.p=N/:

By (5.2),

p D
m
�

N

2

� D
‚.N 2/ �‚.N 2�˛/

‚.N 2/
D ‚.1/:



37

Therefore, as EŒd.G�/� D 1 � EŒd. QG/�, we get

EŒd.G�/� D 1 �‚.1=N/ D 1 �‚.1=n1�"/:

The actual hardness of these instances depends on the specific standard algorithm

being used. We leave the theoretical analysis of the behavior of these graphs under different algo-

rithm parameters, such as upper bound rules, for future work, but we test them in computational

experiments in Chapter 7.

5.4 A final remark on random graphs

We have seen that G.n; p/ random graphs for constant p have n‚.lglg n/ cliques w.h.p.

and their density is concentrated around p, as opposed to our instances given by the Cornaz–Jost

reduction with parameters n and ", which have expected density 1 � ‚.1=n1�"/. A natural

follow up question is to determine the number of cliques in a G.n; p/ random graph when p is

allowed to increase with n.

If p D 1, there are 2n cliques, which is the most number of cliques for any graph.

Bläsius, Katzmann and Stegehuis [63] show that if p D 1�‚.1=n/ and n is large enough, then

a graph in the G.n; p/ model has n‚.n=lglg n/ D 2‚.n/ cliques w.h.p. To the best of our knowledge,

there is no analogous result for p D 1 � ‚.1=n1�"/, which would allow us to compare our

instances to G.n; p/ graphs with a matching density. We provide an answer regarding the

expected number of clique of such graphs.

Theorem 5.12. For any " 2 .0; 1�, if G � G.n; p/ for p D 1 �‚.1=n1�"/, then the expected

number of cliques in G is n‚.n1�" lglg n/.

Proof. Take two positive constants c and c0 such that

1 �
c0

n1�"
� p � 1 �

c

n1�"
:

LetXk be the random variables that count the number of cliques of size k inG, for k D 0; : : : ; n

and X be the random variable that counts the total number of cliques in G. There are
�

n

k

�

sets

of k vertices and the probability that one such set is a clique is p.
k
2/, hence, by linearity of

expectation, it follows that
�

n

k

�

�

1 �
c0

n1�"

�.k
2/
� EŒXk� �

�

n

k

�

�

1 �
c

n1�"

�.k
2/
;

and
n
X

kD0

�

n

k

�

�

1 �
c0

n1�"

�.k
2/
� EŒX� �

n
X

kD0

�

n

k

�

�

1 �
c

n1�"

�.k
2/
: (5.3)

Now, by (2.5) and (2.6), we have
�

n

k

�

�

1 �
c

n1�"

�.k
2/
� exp

�

ck

2n1�"
C k �

ck2

2n1�"
C k lnn � k ln k

�

: (5.4)



38

If we define f W Œ0; n�! R as

f .x/ D
cx

2n1�"
C x �

cx2

2n1�"
C x lnn � x ln x;

we see that f is twice differentiable in .0; n/ and

f 0.x/ D
c

2n1�"
�
cx

n1�"
C lnn � ln x:

Note that f 0.x/ D 0 when

c

2n1�"
�
cx

n1�"
C lnn � ln x D 0;

that is,
c

2n1�"
C lnn D

cx

n1�"
C ln x: (5.5)

Let y D cx=n1�", so we can rewrite (5.5) as

c

2n1�"
C lnn D y C lny C .1 � "/ lnn � ln c

and apply the exponential function in both sides, getting

exp
� c

2n1�"
C " lnnC ln c

�

D y exp.y/: (5.6)

Equation (5.6) satisfies the functional equation of a Lambert function, as in (2.3). Its solution’s

asymptotics is given by (2.4), so

y D
c

2n1�"
C " lnnC ln c �‚.ln lnn/;

which means

x D
�"

c
Û o.1/

�

n1�" lnn:

Furthermore, f 00.x/ D �c=n1�" � 1=x, which is always negative, so f is concave and its

maximum happens at ."=c Û o.1//n1�" lnn. Plugging this value for k and (5.4) into (5.3), we

end up with

EŒX� � n exp

��

�
"2

2c
C
"

c
�
"

c
.1 � "/Û o.1/

�

n1�" ln2 n

�

D n exp

��

"2

2c
Û o.1/

�

n1�" ln2 n
�

D n‚.n1�" lglg n/:

For the lower bound, we start by noting that EŒX� � EŒXk� for any k and, by (2.6),

1 � x D
1

1=.1 � x/
D

1

1C x

1�x

�
1

exp
�

x

1�x

� D exp
�

�
x

1 � x

�

: (5.7)



39

Plugging (5.7) and (2.7) into (5.3), it follows that

EŒX� � EŒXk�

D

�

n

k

�

�

1 �
c0

n1�"

�.k
2/

�
�n

k

�k

exp

�

�

�

k

2

�

c0

n1�"

�

D exp

 

�

�

k

2

�

c0

n1�"
C k lnn � k ln k

!

:

For any " 2 .0; 1/, there are only finitely many integer values of n for which n1�" lnn > n.

Hence, choosing a constant ı (depending only on ") small enought such that

ın1�" lnn � n; 8n 2 N

we see that setting k D bın1�" lnnc implies k � n. Thus,

EŒX� � exp

��

�
c0ı2

2
C ı � ı.1 � "/Û o.1/

�

n1�" ln2 n

�

;

but

�
c0ı2

2
C ı � ı.1 � "/ D ı

�

" �
c0ı

2

�

and if ı < 2"=c0 (again we can take a small ı depending only on " and c0, which are constants),

this factor is positive. Therefore,

EŒX� � exp.‚.n1�" lg2 n//

D n‚.n1�" lg n/:

This result tells us that the expected number of cliques in G.n; p/ random graphs is

even higher than that of our instances built from the Cornaz–Jost reduction. In Chapter 7 we

compare them further using a standard algorithm with a strong upper bound in order to get an

idea of their hardness difference in practice.

As a final remark, we note that if set " D 1 in Theorem 5.12, we get a constant p

and n‚.lglg n/ cliques, agreeing with Lemma 3.4. If we were to set " D 0, however, we would

get p D 1 �‚.1=n/ but n‚.n lglg n/ cliques, which does not agree with the result due to Bläsius,

Katzmann and Stegehuis [63] (in particular this would not even be possible as the number of

cliques in any graph is at most nn=lglg n).

In the next chapter we analyze instances that are hard only for a subclass of standard

algorithms, characterized by the usage of a particular (and efficient) upper bound.



40

6 CHROMATIC UPPER BOUNDS FOR STANDARD ALGORITHMS

The instances’ analyses so far do not concern specific upper bound rules, which

makes them valid for any standard algorithm. On the other hand, all state-of-the-art algorithms

apply some sort of pruning rule to reduce the number of subinstances to be solved. When this is

done, a high number of cliques on its own (and even ideas described in Section 4.1 of Chapter 4)

may not be enough to ensure hardness, so we need more fine tuned arguments based on the

upper bound being used. Hence, we now turn our attention to a more specific type of standard

algorithms that have been vastly adopted and studied.

6.1 Introducing a bounding rule

Recall that standard algorithms are enumerative but need not implement any kind

of upper bound in order to avoid branching when it is not necessary. Introducing such bounds,

however, can lead to very efficient algorithms, provided the bound does not take up much time to

be evaluated. A common rule to stop a node from branching is comparing the size of the largest

clique already found to the least number of colors needed to color the graph induced by the

current node’s subinstance, where a graph G induced by the subinstance .Q;R/ is GŒQ [ R�.

We call this strategy a chromatic upper bound.

It is a well known fact that if a graph G has a clique Q, then any proper coloring of

G uses at least jQj colors, as each vertex on Q must have its own color, hence,

�.G/ � !.G/: (6.1)

Furthermore, if a subinstance .Q;R/ is such that �.GŒQ [ R�/ � k, then !.GŒQ [ R�/ � k

and if a clique of size k has already been found, there is no real reason to keep branching after

this node. This idea was first proposed by Babel and Tinhofer [16].

Note that computing the chromatic number of those subgraphs is not trivial in general,

so, in order to keep the upper bound feasible time-wise, a possibly non optimal number of colors

is computed by some heuristic instead, which still is an upper bound nonetheless. So, for each

node .Q;R/, the algorithm computes an upper bound, say �.GŒQ [ R�/, on �.GŒQ [ R�/

and checks if the largest clique found so far, say Q�, satisfies �.GŒQ [R�/ � jQ�j, and if so,

the algorithm prunes this branch. An algorithm that implements this pruning rule is called a

�-bounded algorithm. In particular, a �-bounded algorithm never discards a node .Q;R/ in

which �.GŒQ [ R�/ > !.G/. We remark that the vast majority of state-of-the-art algorithms

for Maximum Clique use some sort of chromatic upper bound, although newer results apply

graph reductions (usually to satisfiability problems) before the coloring to obtain infra-chromatic

upper bounds [21].

We now define a substructure of clique search trees.



41

Definition 6.1. Given a graph G and a clique search tree T of G, the �-pruned subtree of T ,

denoted by T�, is the (unique) subtree of T such that:

1. The root of T� is .;; V .G//;

2. In every leaf .Q;R/ of T�, we have �.GŒQ [R�/ � !.G/.

3. T� is minimal in size;

Intuitively, a �-pruned tree is obtained by pruning several branches of a clique search

tree. It can also be viewed as an “optimal” execution of a �-bounded algorithm, as in each step

the algorithm always colors the graph induced by the current subinstance with the least number

of colors possible and, at any point, the largest clique found is always a maximum one. The

following result describes the relation between �-bounded algorithms and �-pruned subtrees.

Proposition 6.2. For any execution E of a �-bounded algorithm on a graph G, there is a clique

search tree T of G such that E is contained in T and the set of subinstances considered by E

contain V.T�/.

Proof. By Proposition 3.3, there is a clique search tree T that contains E , because any �-bounded

algorithm is a standard algorithm. Let �.G/ be the upper bound on the chromatic number

evaluated by the �-bounded algorithm on a graph G. Both T and T� share the same node as

root, namely .;; V .G//, which is the first node considered in E . If .Q;R/ 2 V.T�/, then the

parent .QP ; RP / of .Q;R/ is not a leaf in T� and �.GŒQP [RP �/ > !.G/, but

�.GŒQP [RP �/ � �.GŒQP [RP �/ > !.G/;

so in E , .QP ; RP / cannot be a leaf and both its children are considered too, hence V.T�/ is

contained in the set of instances considered by E .

So, essentially, the number of subinstances considered in an execution of a�-bounded

algorithm is at most the size of some clique search tree T and at least the size of the �-pruned

subtree T�.

6.2 Exponential running time inducing graphs

We now define the class of Lavnikevich graphs. This notion was introduced

by Lavnikevich [26] and Figure 7 provides an example.

Definition 6.3. For any n � 0 .mod 5/, the Lavnikevich graph on n vertices, denoted by Ln, is

obtained by the graph join between n=5 C5’s.

With a different notation, the author proves the following.



42

Figure 7 – Outline of the L15 graph, where each vertex in a C5 is connected to all other vertices
in the other two C5’s.

C5

C5

C5

: : :

:::
:::

Source: prepared by the author.

Theorem 6.4 (Lavnikevich [26]). The �-pruned subtree of any clique search tree of the Ln

graph has size �.2n=5/.

The number of instances considered in a �-bounded algorithm is at least the size of

a �-pruned subtree contained in it by Proposition 6.2, hence, even if the algorithm takes ‚.1/

time to process each node (which is too optimistic as the algorithm needs to color de graph

induced by the node’s intances), it still needs to process an exponential number of nodes. This

establishes Lavnikevich graphs as exponential time instances for �-bounded algorithms.

6.3 A preprocessing heuristic

A Lavnikevich graph is hard to solve via �-bounded algorithms, but its structure

allows the usage of a simple preprocessing step that drastically speeds up the solving process.

Proposition 6.5. For any graph G, if G D G1 CG2 C � � � CGk, then

!.G/ D max
1�i�k

f!.Gi/g:

Proof. As there are no edges between Gi and Gj for any i ¤ j , any clique in G is contained in

a single Gi for some i , so its largest clique is also the largest clique in some Gi .

Proposition 6.6. For any graph G, if G D G1 _G2 _ � � � _Gk, then

!.G/ D

k
X

iD1

!.Gi/:

Proof. Given a clique Qi of Gi , each vertex of Qi is adjacent to every vertex in any clique Qj

of Gj . SoQ1 [Q2 [ � � � [Qk, whereQi is a clique in Gi , is a clique of G and if we chose each



43

Qi to be a maximum clique in Gi , we have a maximum clique in G, for ifQ0 was a larger clique

in G, then jQ0 \ V.Gi/j > !.Gi/ for some i 2 f1; 2; : : : ; kg by the pigeonhole principle.

By Propositions 6.5 and 6.6, we can preprocess a graph by recursively splitting it

into its components or into subgraphs induced by its complement’s components. Algorithm 6.1

sums up this process, taking as input a graph G and a standard algorithm A and applying one of

the two steps if possible. Figure 8 illustrates the strategy.

Algorithm 6.1. PreProcess.G;A/

1 Let C and C be the sets of the components of G and G, respectively
2 if jCj > 1 then
3 Q�  ;
4 foreach C 2 C do
5 Q PreProcess.C;A/

6 if jQj > jQ�j then
7 Q�  Q

8 return Q�

9 if jCj > 1 then
10 Q ;

11 foreach C 2 C do
12 Q Q [ PreProcess.C;A/

13 return Q
14 return A.G/

Figure 8 – The decomposition of a graph G using Algorithm 6.1. In each case, the algorithm is
called recursively for G1 and G2.

(a) If G D G1 CG2.

G1 G2

!.G1 C G2/ D maxf!.G1/; !.G2/g

(b) If G D G1 _G2.

G1 G2

:::

!.G1 _ G2/ D !.G1/ C !.G2/

Source: prepared by the author.

This procedure is a weaker version of a Modular Decomposition (see [64] for a

survey), but much easier to implement. For a graph on n vertices and m edges, it can be naïvely

implemented in O.n2/ time (just run a depth-first search in G then another in G), but Tedder

et al. [65] show how to compute a Modular Decomposition in O.nCm/ time, which indicates

that our preprocessing could be computed faster.

Now, if the preprocessing is applied using a �-bounded algorithm and Ln as the

inputs, the problem is greatly reduced. This is because Ln D C5 _ C5 _ � � � _ C5 where the join

is done n=5 times and, thus, the algorithm has to solve Maximum Clique in the C5 a linear

number of times. The preprocess takes ‚.n2/ time (even in a potential linear implementation,



44

as e.Ln/ D ‚.n2/) and the original problem is split in ‚.n/ problems of ‚.1/ size, that can

be solved in linear time in n. The whole solving process takes quadratic time, which is a great

improvement from the original exponential lower bound.

As the final step of this work, we focus our attention in graphs that maintain the

exponential solving time requirement for any �-bounded algorithm and resist the preprocessing

described above.

6.4 Worst case instances resistant to the preprocessing

Essentially, we search for graphs on n vertices that when given as input, together

with a �-bounded algorithm A, to Algorithm 6.1 ensure that at least one call to A has an input

graph with ‚.n/ vertices.

The first step to this intent is looking to Ln itself, searching for a way to shield it

against the preprocessing. Campos, Carmo and N. [61] describe a way to obtain subgraphs of

Ln that still exhibit exponential size �-pruned subtrees. We present a proof of Lemma 6.7 as the

authors omitted it from the original paper due to page constraints.

Lemma 6.7 (Campos, Carmo and N. [61]). For any n; d 2 N with n � 0 .mod 5/, if G is a

spanning subgraph of Ln where ˛.G/ � 2 and ı.G/ � n � d � 1, then the �-pruned subtree of

every clique search tree of G has �.2n=.5d// nodes.

Proof. Given a node .Q;R/ of the �-pruned subtree T� of a clique search tree in G and a pivot

v 2 R, a branching operation may discard one vertex from GŒQ [R] if it excludes v from the

current clique and at most d if v is included as there are at most d vertices non adjacent to it.

Therefore, if less than n=.5d/ branch operations happened in the path from the root to a node

.Q;R/, then less than n=5 vertices have been discarded in this subinstance and we have

�.GŒQ [R�/ �
n.GŒQ [R�/

˛.GŒQ [R�/
>
n � n=5

2
D
2n

5
D !.Ln/ � !.G/;

which means .Q;R/ is not a leaf in T�. Therefore, the size of T� is �.2n=.5d//.

The real matter is how to obtain such subgraphs that endure the preprocessing. If

we want a spanning subgraph of Ln, we can only remove some of its edges (not vertices), which

means we add edges to its complement. By asking the independent sets of this subgraph to have

size at most two, we ask its complement to be triangle-free and by asking its minimum degree to

be at least n � d � 1, we ask its complement’s maximum degree to be at most d . From now on,

then, we argue how to build the complement G of the subgraph G we want.

We build G by adding edges to Ln (removing edges from Ln) until it becomes

connected, while no triangle is created, its maximum degree does not exceed d and G remains

connected (initially G D Ln). We want d to be as small as possible so the lower bound on the

�-pruned subtrees’ size is as large as possible (although it is always exponentially large in n



45

for any fixed d ), but note that Ln is 2-regular, so setting d D 1 in Lemma 6.7 is of no use as

any possible G has maximum degree at least 2. Asking for d D 2 does not help either, as the

only possible choice for G here is Ln itself, which is disconnected. Hence, we need d � 3 and,

indeed, we argue d D 3 is enough.

Now, if d D 3, then any vertex in Ln gains at most one edge. Even though it is

possible to connect Ln adding only n=5 � 1 edges (just contract each C5 into a vertex and

build a tree), this would give G a tree-like structure that could be exploited in some other

preprocessing heuristic. Once one edge is added, we already have d D 3 and it would do no

harm (asymptotically) to add as many edges as possible, i.e., a maximum matching.

We use the Configuration Model due to Bollobás [66] to sample a random maximum

matching to be added in Ln. This is a tool for modeling random graphs with a prescribed

degree sequence. Algorithm 6.2 illustrates the sampling of a graph on n vertices with degree

distribution d D .d1; d2; : : : ; dn/, assuming
Pn

iD1 di is even. It associates each vertex vi with

di half-edges, and then randomly pairs half-edges to form a configuration, which essentially

describes the structure of the output graph, in which d.vi/ D di for each i 2 f1; 2; : : : ; ng.

Algorithm 6.2. Configuration.n;d/

1 Let G be a graph such that V.G/ D fv1; v2; : : : ; vng and E.G/ D fe1; e2; : : : ; emg,
where m D 1

2

Pn

iD1 di

2 Let S D fv1
1; : : : ; v

d1

1 ; v
1
2; : : : ; v

d2

2 ; : : : ; v
1
n; : : : ; v

dn
n g be the set of half-edges

3 for i  1; : : : ; m do
4 Pick x uniformly at random from S

5 S  S n fxg

6 Pick y uniformly at random from S

7 S  S n fyg

8 Map the edge ei to the unordered pair v0v00, where x is a half-edge of v0 and y is a
half-edge of v00

9 return G

Algorithm 6.2 may output a graph that is not simple, as lines 4 and 6 may sample

half-edges of the same vertex or half-edges of vertices already adjacent. Many configurations

lead to the same output, and the probability of it being some specific graph H depends on the

structure of H . If we condition the output to be simple, however, the distribution of the outputs

becomes uniform. We refer the reader to the classic book due to Bollobás [37] and a survey due

to Wormald [67] for a proof of this and many other results about this model. Figure 9 exemplifies

an execution of this process.

We now present two results regarding the structure of the output of Algorithm 6.2

that we use as lemmas. In each of them, we denote the (nondeterministic) output graph of

Algorithm 6.2 with inputs n and d by Gn;d.



46

Figure 9 – An execution of Algorithm 6.2 with n D 5 and d D .0; 1; 2; 3; 4/.

(a) Each vertex vi is assigned
di half-edges.

v1

v2

v3

v4 v5

(b) A random pairing of the
half-edges is sampled.

v1
2v

3
5 , v2

4v
1
3 , v2

3v
3
4 ,

v1
4v

2
5 , v1

5v
4
5

(c) The final configuration.

v1

v2

v3

v4 v5

Source: prepared by the author.

Theorem 6.8 (Bollobás [66]). If di D O.1/ for each i 2 f1; 2; : : : ; ng and
Pn

iD1 di D nC!.1/,

then the probability that Gn;d is loopless is

.1Û o.1// exp

�

�
1

2m

n
X

kD1

�

dk

2

��

:

Theorem 6.9 (Wormald [68]). Fix ı;� 2 N such that 3 � ı � �. If ı � di � � for each

i 2 f1; 2; : : : ; ng, then the probability that Gn;d is ı-connected is at least 1 �O.1=nı�2/.

Bollobás [66] actually proves a stronger version of Theorem 6.8 on the distribution

of cycles of length k for any k � 1. Algorithm 6.3 uses the spirit of the Configuration Model to

take as input a (simple) graph and add a random maximum matching to it.

Algorithm 6.3. AddMatching.G/

1 Let S be a list containing the vertices of G
2 while jS j > 1 do
3 Pick a vertex v 2 S uniformly at random
4 S  S n fvg

5 Pick a vertex u 2 S uniformly at random
6 S  S n fug

7 E.G/ E.G/ [ feg

8 Map e to uv
9 return G

Naturally, we wish to apply Algorithm 6.3 on Ln. The resulting graph need not

be connected, triangle-free or even simple. If it is not triangle-free, then we cannot apply

Lemma 6.7; if it is not connected, then the preprocessing step may break it into small parts and

if it is not simple, then we cannot build a subgraph of Ln based on it, because adding an edge

between vertices in Ln means removing an edge between vertices in Ln and if we add an edge

between adjacent vertices then we would have to remove an edge between non-adjacent vertices,

which is not a valid choice. We adress the probability that these events occur in the next lemma.

Lemma 6.10. Let Gn be the output of Algorithm 6.3 with input Ln. The probability that Gn is

simple, triangle-free and connected is exp.�2/Û o.1/.



47

Proof. We can view an execution of Algorithm 6.3 on Ln as an execution of Algorithm 6.2 on

n=5 vertices (one for each C5 in Ln) with degree sequence being 5 for every vertex when n is

even or 5 for n� 1 vertices and 4 for the last vertex when n is odd; for each vertex, its half-edges

are the vertices of its associated C5 (except some vertex in some C5 is ignored when n is odd).

Whenever two vertices are sampled and an edge is added to Ln, imagine that the two half-edges

corresponding to these vertices are paired.

Let H be the output graph of this simulation of Algorithm 6.2. A loop in H

corresponds to an edge being added between vertices of the same C5 in Ln. Note that if an

edge is added between vertices of the same C5 in Ln, then either Gn is not simple or it is not

triangle-free, as we can see in Figure 10.

Figure 10 – Problematic configurations when Algorithm 6.2 adds edges with both endpoints in
the same C5.

(a) In this configuration,Gn is not triangle-free. (b) In this configuration, Gn is not simple.

Source: prepared by the author.

Moreover, if no edge with both endpoints in the same C5 is added, then no triangle

is created, as vertices in different C5s can only induce a triangle in Gn if at least one of them

receives two new edges (see Figure 11), but we add only a matching.

Figure 11 – No triangle can be induced by vertices of different C5s.

(a) Two C5s. (b) Three C5s.

Source: prepared by the author.

If no edge is added between vertices of the same C5, then G must be simple as

vertices in differentC5s are initally non-adjacent and receive at most one edge each, so no parallel

edges exist. Hence, Gn is simple and triangle-free if, and only if, H has no loops.

Now, as Gn is connected if, and only if, H is connected, it follows that

PŒGn is simple, triangle-free and connected� D PŒH is loopless and connected�:



48

For an upper bound, consider the events fH is looplessg and fH is connectedg and note that

their probabilities are both at least the probability we want, as they contain the event we are

interested. When n!1, the lowest upper bound is PŒH is loopless�, as

PŒH is loopless� D .1Û o.1// exp

�

�
1

2m

n
X

kD1

�

dk

2

��

D .1Û o.1// exp
�

�
1

n

10n

5

�

D exp.�2/Û o.1/;

for even n and

PŒH is loopless� D .1Û o.1// exp
�

�
1

n � 1

�

10
�n

5
� 1

�

C 6
��

D .1Û o.1// exp
�

�
2n � 4

n � 1

�

D exp.�2/Û o.1/;

for odd n by Theorem 6.8. For a lower bound, note that

PŒH is loopless� D PŒH is loopless and disconnected�C

PŒH is loopless and connected�;

but

PŒH is loopless and disconnected� � PŒH is disconnected� D O.1=n2/;

by Theorem 6.9, because each vertex has degree at least 4, hence,

PŒH is loopless and connected� � exp.�2/Û o.1/ �O.1=n2/ D exp.�2/Û o.1/:

Therefore, PŒGn is simple, triangle-free and connected� D exp.�2/Û o.1/.

Altough not necessary for our proofs, it is worth noting the uniformness of the

distribution of outputs of Algorithm 6.3.

Proposition 6.11. The distribution of outputs of Algorithm 6.3 with input Ln is uniform even if

we condition on the output being simple, triangle-free and connected.

Proof. Let Gn be the output graph. As vertices are chosen uniformly at random, the edges

are added uniformly at random. There are .2m � 1/ŠŠ D .2m � 1/.2m � 3/ � � � 3 � 1 possible

matchings, where 2m D n if n is even and 2m D n � 1 if n is odd. This is because there are

2m endpoints and we can choose the m edges in
�

2m

2

��

2m�2

2

�

� � �
�

2

2

�

ways, but as the order of the

choices does not matter, each matching is counted mŠ times, so the total number is

1

mŠ

�

2m

2

��

2m � 2

2

�

� � �

�

2

2

�

D
.2m/.2m � 1/ � � � 2 � 1

mŠ2m
D .2m � 1/ŠŠ:



49

Hence, each graph in the output’s distribution happens with probability 1=.2m � 1/ŠŠ.

If we want to condition on Gn being simple, triangle-free and connected, let G be

the family of such output graphs and note that

PŒGn D G j Gn 2 G� D
PŒfGn D Gg \ fGn 2 Gg�

PŒGn 2 G�
;

for any G 2 G. But fGn D Gg � fGn 2 Gg, thus,

PŒGn D G j Gn 2 G� D
PŒGn D G�

PŒGn 2 G�
D

1

.2m � 1/ŠŠ

1

PŒGn 2 G�
;

which does not depend in G.

We are now ready to build our resistant instances. We achieve this by repeating

Algorithm 6.3 until the output is connected and none of its edges have endpoints in the same

C5. We also perform a small trick to create instances for values of n not multiple of 5. This is

described in Algorithm 6.4.

Algorithm 6.4. ResistantChromaticInstance.n/

1 k  n .mod 5/
2 do
3 G  AddMatching.Ln�k/

4 while G is not simple or is not triangle-free or is disconnected
5 if k D 0 then
6 return G
7 return G _Kk

Algorithm 6.4 depends on repeating Algorithm 6.3 an unknown number of times

and, thus, it need not terminate at all, but this event happens with probability 0.

Proposition 6.12. Algorithm 6.4 runs in time ‚.n2/ with probability at least 1 � 1=nOO.n=lglg n/.

Proof. We can build Ln�k once in ‚.n/ and cache it into memory to only spend linear time per

iteration of line 3, as Algorithm 6.3 also runs in linear time. Furthermore, we do need to pay

‚.n2/ to build the complementary graphG, as e.G/ D ‚.n2/. For large enough n, the expected

number of times Algorithm 6.3 is called is at most 8, as the number of calls is a geometric

random variable X with parameter p and 1=p ! exp.2/ � 8 when n!1 by Lemma 6.10. If

we let C � exp.�2/ be some constant such that EŒX� � C , then for any c > 0 we have

PŒX > cn� D 1 � PŒX � cn�

D 1 �

bcnc
X

iD1

.1 � p/i�1p

� .1 � p/cn

� .1 � 1=C /cn

D n�OO.n=lglg n/;



50

so with probability 1 � 1=nOO.n=lglg n/ there are at most a linear number of calls to Algorithm 6.3,

each costing linear time, giving us ‚.n2/ time.

Figure 12 exemplifies an execution of this process. We finish this section showing

that instances built by Algorithm 6.4 are indeed hard.

Figure 12 – An execution of Algorithm 6.4 with n D 15.

(a) The initial graph L15. (b) The complementary graph L15.

(c) A maximum matching M is sampled
uniformly at random until it has no edge
internal to any C5.

(d) The final graph L15 CM , which is im-
mune to the preprocessing step.

Source: prepared by the author.

Theorem 6.13. For any n 2 N, Algorithm 6.4 with input n outputs a graph on n vertices in

which any execution of a �-bounded algorithm needs �.2n=15/ subinstances to terminate even if

Algorithm 6.1 is used beforehand.

Proof. Suppose n � 0 .mod 5/ and let Hn be the graph given as input to Algorithm 6.1

(together with any �-bounded algorithm). In this case, both Hn and its complement are

connected. Moreover, ı.Hn/ D n � 4 and ˛.Hn/ D 2, so the �-pruned subtree of any clique

search tree of Hn has �.2n=15/ nodes by Lemma 6.7, hence, the �-bounded algorithm needs



51

to solve �.2n=15/ subinstances until optimality. Now, if n � k .mod 5/ for 1 � k � 4, after

Algorithm 6.1 is called on Hn the new instances are Gn�k, which is the output of Algorithm 6.3

with input Ln�k, and at most 4 trivial graphs. The trivial graphs’ �-pruned subtrees have only

one node, but Gn�k exhibits �.2.n�k/=15/ nodes in any �-pruned subtree by Lemma 6.7. Hence,

there are �.2n=15/ nodes in total, as k is constant.

Finally, if Hn is given as input directly to a �-bounded algorithm which does not

apply Algorithm 6.1, the result is similar and to show this we extend the proof of Lemma 6.7.

For any k, we have ı.Hn/ D n � 4, ˛.Hn/ D 2 and

!.Hn/ D !.Gn�k/C !.Kk/ � !.Ln�k/C !.Kk/ D
2.n � k/

5
C k D

2n

5
C
3k

5
:

Therefore, if less than n=15 � 2 branching operations have been made before a node .Q;R/ is

reached, then

�.HnŒQ [R�/ >
n � .n=15 � 2/ � 3

2
D
2n

5
C 3 > !.Hn/;

given that 3 > 3k=5 for any k 2 f1; 2; 3; 4g. Therefore, we have not reached a leaf yet, so there

are �.2n=15/ nodes in total.

6.5 A fractional bounding rule

Building on the idea of using graph parameters as upper bounds in standard al-

gorithms, the fractional chromatic number of a graph can be a particularly useful notion, as

it is directly connected with that of the chromatic number. A classical definition of the frac-

tional chromatic number is the optimal value of the linear relaxation of the Minimum Vertex

Coloring integer programming model given by (2.2), which is the dual of the linear relax-

ation of the Maximum Clique model given by (2.1). Particularly, for any graph G, we have

�f .G/ � �.G/, because of linear duality.

Now, evaluating �f .G/ for a graph G in the general case is still NP-hard [69] but

there are ways to cope with the complexity of this evaluation, such as column generation-based

methods for the linear program [70]. The benefit here is that the inequality

!.G/ � �f .G/ (6.2)

is tighter than (6.1), its usual discrete counterpart, and the gap between �f .G/ and �.G/ can be

arbitrarily large [71].

If we heuristically bound �f .G/ by some value strictly smaller than �.G/, then this

value is a better upper bound than any heuristic that approximates �.G/. Balas and Xue [72], for

instance, propose a B&B algorithm which uses an estimate on the fractional chromatic number

as an upper bound and remark that the size of the search three was cut almost in half compared

to regular B&B methods that used estimates on the chromatic number.



52

In this sense, we define �f -bounded algorithms in an analogous way to �-bounded

algorithms, except now an upper bound on the fractional chromatic number is used, and �f -

pruned subtrees in a similar fashion to that in Definition 6.1, except now in every leaf .Q;R/

of a �f -pruned subtree of a graph G we have �f .GŒQ [ R�/ � !.G/. We now wish to prove

analogous results to these types of algorithms and trees.

Lemma 6.14 (See e.g. Scheinerman and Ullman [73]). For any graph G, �f .G/ � v.G/=˛.G/.

This lemma is enough to adapt Lemma 6.7 to these trees.

Lemma 6.15. For any n; d 2 N with n � 0 .mod 5/, if G is a spanning subgraph of Ln where

˛.G/ � 2 and ı.G/ � n � d � 1, then the �f -pruned subtree of every clique search tree of G

has �.2n=.5d// nodes.

Proof. If less than n=.5d/ branching operations have been made in a path from the root to a

node .Q;R/, then less than n=5 vertices have been discarded and, by Lemma 6.14,

�f .GŒQ [R�/ �
n.GŒQ [R�/

˛.GŒQ [R�/
>
n � n=5

2
D
2n

5
D !.Ln/ � !.G/;

so any �f -pruned subtree has �.2n=.5d// nodes.

We end this chapter by showing that instances given by Algorithm 6.4 also work for

�f -bounded algorithms.

Theorem 6.16. For any n 2 N, Algorithm 6.4 with input n outputs a graph on n vertices in

which any execution of a �f -bounded algorithm needs �.2n=15/ subinstances to terminate even

if Algorithm 6.1 is used beforehand.

Proof. If n � 0 .mod 5/, then both the output Hn of Algorithm 6.4 and its complement are

connected, ı.Hn/ D n � 4 and ˛.Hn/ D 2, so by Lemma 6.15 the �f -pruned subtree of any of

its clique search trees has size �.2n=15/. If n � k .mod 5/ for 1 � k � 4, then the �f -bounded

algorithm needs to solve Gn�k, the output of Algorithm 6.3 with input Ln�k, and at most 4

trivial graphs. The �f -pruned subtree of any clique search tree of Gn�l has �.2n=15/ nodes as

k D ‚.1/. Finally, ifHn is given as input directly to a �f -bounded algorithm that does not apply

Algorithm 6.1, note that !.Hn/ D 2n=5C 3k=5 and if less than n=15� 2 branching operations

have been made in a path from the root to a node .Q;R/ in the �f -pruned subtree of some clique

search tree of Hn, then

�f .HnŒQ [R�/ >
n � .n=15 � 2/ � 3

2
D
2n

5
C 3 > !.Hn/;

where the first inequality also comes from Lemma 6.14. Hence, .Q;R/ is not a leaf, so any

�f -pruned subtree has �.2n=15/ nodes.



53

7 COMPUTATIONAL EXPERIMENTS

In this chapter we discuss empirical results gathered from tests with standard

algorithms. The input instances were chosen to match the theoretical results approached

throughout this text, namely Theorems 3.5, 5.9, 5.12, 6.4 and 6.13.

7.1 The setup

The computational environment consists of an Intel Core i7-12700 CPU with 24 GB

of RAM running Debian Linux. All algorithms are implemented in Python3 and transpiled

to C via Cython [74]. They make use of NetworkX [75], a Python3 package for storing and

manipulating graphs. The implementation of the clique algorithms are due to Carmo and

Züge [76] and these are available in a public code repository [77].

The algorithms return the size of the largest clique found, the number of subinstances

solved and the solving time. Each instance is given at most 48 h (i.e., 172800 s) of CPU time

before the algorithm halts the computation and returns the information gathered so far.

7.2 The instances

The first family of instances, denoted by gnp, consists of graphs in the G.n; p/model

for p D 1=2. This choice for p is arbitrary, as any constant value of p, no matter how close to

1, would lead to n‚.lglg n/ cliques w.h.p. in the graph, the main concern here is a rough idea in

practice of the growth rate of the number of cliques. There are 210 graphs in this family, 10

for each n 2 f50; 60; : : : ; 250g. As random graphs are non-deterministic by definition, we are

interested on the average results of the 10 instances for each value of n, in order to bring the

sample average closer to the actual average over all graphs in the model.

The second family of instances, denoted by cj_0.5, consists of graphs built by

Algorithm 5.3, which uses the Cornaz–Jost reduction. The algorithm asks for n and ", parameters

that control the numbers of vertices and cliques in the output graph (i.e., after the reduction),

respectively. For this family, we set " D 1=2 and n 2 f50; 60; : : : ; 250g. There are 210 instances,

10 graphs for each value of n, as they are also non-deterministic, and we average the values for

each n. Algorithm 5.3 uses internally two other parameters: N and c, which control the order and

size of the G.N;m/ graph that is fed to the Cornaz–Jost reduction. These parameters do affect

the number of cliques in the output graph, although their effect is hidden in the‚ notation. There

are multiple choices for c 2 .0; 1� and N 2 N, so we choose specifically c 2 Œ1=2� ı; 1=2C ı�,

with ı initially set to 0, and the smallest possible N and we slowly increase the value of ı if

there is no choice for N until the first feasible pair .c; N / is determined. Finally, when the base

random graph is sampled, the linear ordering over its vertices is implicitly sampled by NetworkX,

as it stores an integer label for each vertex and, hence, these are naturally ordered by their labels.



54

The third family of instances, denoted by cj_0.1, also consists of graphs built by

Algorithm 5.3, but with " D 1=10. We choose c, N and the linear order for the G.N;m/ graph

in the same way done for cj_0.5. Again, there are 210 instances, being 10 graphs for each value

of n 2 f50; 60; : : : ; 250g.

The fourth family of instances, denoted by gnm_0.5, consists of 210 G.n;m/

graphs that match the order and size of those in the cj_0.5 family, 10 for each value of

n 2 f50; 60; : : : ; 250g. These graphs are not the G.n;m/ graphs fed to the Cornaz–Jost

reduction; gnm_0.5 instances are sampled after each cj_0.5 instance is built, copying its number

of vertices and edges. This family is related to Theorem 5.12, which gives the expected number

of cliques in random graphs with a density similar to the instances built by Algorithm 5.3. We

choose specifically the G.n;m/ model in order to build graphs with order and size exatcly equal

to those in the cj_0.5 instances.

The fifth family of instances, denoted by gnm_0.1, also consists of G.n;m/ graphs,

but now matching the order and size of those in the cj_0.1 family. There are again 210 instances,

10 for each n 2 f50; 60; : : : ; 250g.

The sixth family, denoted by lav, consists of Lavnikevich graphs Ln for n 2

f50; 60; : : : ; 100g. These are only 6 graphs in total, as they are deterministic and multiple

executions of a standard algorithm yield the same results. No graph with over 100 vertices was

generated, as they proved to be indeed challenging for standard algorithms that do not implement

Algorithm 6.1 and their tests very time consuming.

The seventh family, denoted by p_lav, consists of the perturbed Lavnikevich graphs,

built by Algorithm 6.4. There are 60 graphs in total for this family, 10 for each value of

n 2 f50; 60; : : : ; 100g, and we average their results, as they are non-deterministic by nature.

7.3 The algorithms

We perform tests using two standard algorithms. The first, denoted by nb (short for

“no bound”), is the simplest method that implements the algorithmic framework of Chapter 3,

namely one that does not use upper bounds and chooses the pivot as the first vertex in the array

that represents the R set of an instance .Q;R/.

The second, denoted by kj (short for “Konc and Janežič”), is a �-bounded algorithm

due to Konc and Janežič [29]. Besides the chromatic upper bound, it uses a coloring-based

approach to choose the pivot vertices. We test the kj algorithm both when it is called after the

preprocessing step described by Algorithm 6.1, denoted pre, and when it is called alone.

The choice of algorithms should illustrate the speed up due to the usage of chromatic

upper bounds as well as the preprocessing step. Tests with the nb algorithm serve as the control

group to analyze the efficiency of the upper bound, while those with the kj algorithm without

the preprocess work analogously for the analysis of Algorithm 6.1.



55

7.4 The results

Tables 1 and 2 present results for the nb algorithm. Tests with cj_0.1 and gnm_0.1

graphs are lacking due to the fact that not a single instance in these families was solved within

the time limit. This is due to the sheer size of the search tree when " approaches 0, according to

Theorems 5.9 and 5.12.

Table 1 – Average results for gnp using the nb algorithm

gnp nb

v.G/ !.G/ #Nodes Time (s)

50 7:4 17950:4 0:01963

60 7:9 38857:4 0:03258

70 8:4 85607:6 0:06920

80 8:8 142630:2 0:11483

90 9:3 245339:4 0:19299

100 9:2 420843:6 0:32665

Source: prepared by the author.

Table 2 – Average results for cj_0.5 and gnm_0.5 instances using the nb algorithm.

cj_0.5 nb gnm_0.5 nb

v.G/ !.G/ #Nodes Time (s) !.G/ #Nodes Time (s)

50 9:8 1 150 123:6 0:81397 14:3 5 251 176:2 3:80183

60 10:6 6 245 612:6 4:46790 16:1 44 394 617:8 32:71266

70 12:0 36 514 493:8 27:16286 18:2 342 798 512:6 248:64842

80 12:7 187 596 209:8 142:04105 19:6 2 369 198 936:2 1 710:04047

90 13:7 901 798 549:2 670:48727 21:3 17 849 004 923:6 12 638:46593

100 14:9 5 829 034 274:8 4 212:48873 23:6 158 508 641 538:6 109 416:05243

Source: prepared by the author.

Tables 3, 4, 5 and 6 regard the kj algorithm with the preprocessing step, while

Table 7 regards kj alone. Rows with a � in Table 7 denote the fact that the algorithm could

not solve the instance in the prescribed time limit and reported only a lower bound for some

parameters.

7.5 Discussion

Results from Tables 1 through 7 mostly support the theoretical analyses provided

throughout this work.

Tables 1 and 2 show the asymptotic difference between the number of cliques in gnp,

cj_0.5 and gnm_0.5 graphs. The plot in Figure 13 illustrates that cj_0.5 instances have much

more cliques than those in gnp, as they differ by a polynomial factor in the exponent, and have

almost as many cliques as those in the gnm_0.5, as they differ only by a logarithmic factor in the



56

Table 3 – Average results for gnp using the kj algorithm with the preprocessing step.

gnp kj pre

v.G/ !.G/ #Nodes Time (s)

50 7:4 163:4 0:00933

60 7:9 223:6 0:00783

70 8:4 339:2 0:01109

80 8:8 414:6 0:01610

90 9:3 607:4 0:01873

100 9:2 957:6 0:02800

110 9:4 1 351:6 0:03487

120 9:6 1 863:0 0:04367

130 9:8 2 429:2 0:05431

140 10:3 2 806:4 0:06761

150 10:2 4 237:0 0:09035

160 10:2 5 564:8 0:12153

170 10:7 5 798:4 0:13588

180 10:8 7 980:2 0:17873

190 11:0 9 332:0 0:20799

200 10:8 14 683:4 0:27582

210 11:1 15 958:0 0:31435

220 11:0 20 260:0 0:38288

230 11:5 23 935:8 0:44882

240 11:8 29 755:0 0:54050

250 11:6 40 237:2 0:66763

Source: prepared by the author.

Table 4 – Average results for cj_0.5 and gnm_0.5 instances using the kj algorithm with the
preprocessing step.

cj_0.5 kj pre gnm_0.5 kj pre

v.G/ !.G/ #Nodes Time (s) !.G/ #Nodes Time (s)

50 9:8 670:0 0:01458 14:3 375:8 0:01334

60 10:6 1 445:2 0:02059 16:1 569:8 0:01522

70 12:0 2 329:4 0:03756 18:2 1 022:2 0:02838

80 12:7 4 191:6 0:06901 19:6 2 218:8 0:05887

90 13:7 11 275:2 0:16670 21:3 5 215:6 0:12860

100 14:9 17 221:2 0:29720 23:6 12 305:8 0:30345

110 15:9 36 810:8 0:62146 25:8 19 149:2 0:52159

120 16:0 137 320:2 2:16757 26:8 39 885:6 1:21182

130 17:0 207 645:8 3:65368 28:4 84 199:0 2:90597

140 18:0 356 706:6 8:12672 29:5 263 332:8 8:95589

150 18:6 499 376:4 12:04382 30:9 689 712:4 24:93412

160 19:3 1 564 050:0 39:84404 32:8 995 064:8 43:92872

170 20:0 5 007 625:0 116:81393 34:5 1 982 150:0 97:58425

180 20:4 7 407 345:6 171:09369 35:5 4 067 036:2 199:74870

190 21:0 16 601 933:2 465:76651 37:2 8 113 260:2 413:44183

200 22:1 35 721 362:6 866:64247 38:4 18 865 344:2 915:99224

210 22:0 62 609 205:6 1 664:24800 39:6 42 807 068:4 2 199:00176

220 23:1 118 553 865:2 3 288:66730 40:7 80 724 767:4 4 636:81364

230 23:9 166 787 242:0 5 304:88972 42:1 181 817 357:0 11 447:75480

240 24:0 443 961 083:0 14 504:52673 43:2 286 101 024:0 19 059:11599

250 24:7 1 067 281 104:4 34 384:80519 44:7 664 868 647:6 43 864:86124

Source: prepared by the author.



57

Table 5 – Average results for cj_0.1 and gnm_0.1 instances using the kj algorithm with the
preprocessing step.

cj_0.1 kj pre gnm_0.1 kj pre

v.G/ !.G/ #Nodes Time (s) !.G/ #Nodes Time (s)

50 29:1 127:0 0:01287 32:3 142:8 0:01364

60 34:1 157:1 0:01210 37:2 197:2 0:01507

70 40:7 182:0 0:01721 44:8 234:7 0:02283

80 46:7 212:4 0:02306 51:0 263:4 0:02730

90 50:2 238:8 0:02834 55:3 324:8 0:03971

100 55:5 258:6 0:03535 61:9 353:5 0:04946

110 61:7 282:0 0:04299 67:6 349:1 0:05721

120 67:7 309:8 0:04765 74:8 411:9 0:07189

130 72:6 338:6 0:05818 79:7 495:1 0:09420

140 78:0 369:5 0:06779 87:1 580:4 0:10926

150 83:8 398:3 0:07402 94:1 730:6 0:13941

160 89:3 448:0 0:08621 97:3 700:5 0:15528

170 95:4 442:6 0:09867 105:4 735:2 0:17802

180 100:8 466:6 0:10863 112:1 874:2 0:20683

190 104:6 580:5 0:12964 115:0 994:9 0:27076

200 111:3 529:6 0:13360 123:9 961:2 0:28021

210 115:4 646:9 0:14618 130:2 1 021:2 0:32954

220 121:1 587:4 0:16016 132:8 1 967:1 0:60132

230 126:1 647:1 0:17250 140:0 1 314:4 0:45654

240 129:5 699:9 0:19051 144:7 1 491:0 0:58461

250 136:4 694:8 0:20550 153:1 1 711:5 0:71111

Source: prepared by the author.

Table 6 – Average results for lav and p_lav instances using the kj algorithm with the prepro-
cessing step.

lav kj pre p_lav kj pre

v.G/ !.G/ #Nodes Time (s) !.G/ #Nodes Time (s)

50 20 90 0:00377 20 9 284:6 0:11365

60 24 108 0:00452 24 36 021:2 0:56496

70 28 126 0:00589 28 184 452:8 3:68521

80 32 144 0:00714 32 922 907:2 22:43834

90 36 162 0:00880 36 4 008 797:8 113:20505

100 40 180 0:01036 40 16 588 140:0 562:53972

Source: prepared by the author.

Table 7 – Average results for lav and p_lav instances using the kj algorithm alone.

lav kj p_lav kj

v.G/ !.G/ #Nodes Time (s) !.G/ #Nodes Time (s)

50 20 2 593 543 19:32607 20 9 284:6 0:11328

60 24 31 044 595 282:57747 24 36 021:2 0:58047

70 28 357 914 319 4 020:31492 28 184 452:8 3:78329

80 32 5 593 926 941 79 848:15856 32 922 907:2 22:14741

90 � 36 � 11 658 023 739 172 800:00005 36 40 08 797:8 109:37013

100 � 40 � 11 687 072 031 172 800:00020 40 16 588 140:0 546:67986

Source: prepared by the author.



58

exponent. We see that the graphs corresponding to cj_0.5 and gnm_0.5 instances seem to grow

resembling a linear function, while the graph corresponding to gnp is slightly concave, which is

expected when the exponent is only logarithmic.

Figure 13 – Log-linear plot of the average search tree sizes when using the nb algorithm on gnp,
cj_0.5 and gnm_0.5 instances vs. number of vertices.

50 100

gnp

cj_0.5

gnm_0.5

104

108

1012
Avg. search
tree size

Number of vertices

Source: prepared by the author.

Tables 3 and 4 illustrate how strong the chromatic upper bound used by kj is, as the

number of nodes in the search trees is several orders of magnitude smaller. They also indicate that

most of the time the cj_0.5 instances demand a larger search tree to be solved when compared

to gnm_0.5 (and even more when compared to gnp) if the kj algorithm is used, which implies

that the chromatic upper bound adopted is more effective in random graphs for that specific

density. Figure 14 shows that the average search trees’ sizes grows in a similar fashion, while

Figure 15 shows that although the cj_0.5 family demands less nodes to be solved in two cases,

overall its search trees are much larger than gnm_0.5 ones, with the ratios peaking at 3:44285

and averaging at 1:84872, i.e., on average the cj_0.5 instances demanded almost twice as many

nodes to be solved. This supports the usage of such instances in benchmarks, as they seem to be

more challenging, at least in the search tree size view.

Figure 14 – Log-linear plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, cj_0.5 and gnm_0.5 instances vs. number of vertices.

50 250

gnp

gnm_0.5

cj_0.5

102

106

1010
Avg. search
tree size

Number of vertices

Source: prepared by the author.



59

Figure 15 – Plot of the ratio between the average search tree sizes when using the kj algorithm
with the preprocessing step on gnm_0.5 and cj_0.5 instances vs. number of vertices.

50 250

cj_0.5

gnm_0.5

0

1

4
Ratio of avg.
search tree size

Number of vertices

Source: prepared by the author.

Figure 16 shows that the average time to solve cj_0.5 and gnm_0.5 instances also

grow very similarly. In Figure 17 we see few outliers where the gnm_0.5 graphs took more than

twice or less than half as much time to solve when compared to cj_0.5 graphs of same order,

which indicates that both families demand about the same time to be solved. In all other cases,

the ratio between times is close to 1 with the average ratio being 1:09285 and gnm_0.5 taking

more time in 11 out of the 21 averaged tests, which leaves both families almost tied in hardness

time wise. Graphs in the cj_0.5 family need a larger search tree for kj, but gnm_0.5 graphs need

slightly more time, hence the chromatic upper bound seems to run faster on the former instances,

although it seems to prune better in the latter ones. This is an interesting behaviour that calls for

tests using different upper bound rules and this is most definitely a priority in future works.

Figure 16 – Log-linear plot of the average solve times when using the kj algorithm with the
preprocessing step on gnp, cj_0.5 and gnm_0.5 instances vs. number of vertices.

50 250

cj_0.5

gnm_0.5

gnm_0.5

10–3

101

105
Avg. solve

time [ 105 s]

Number of vertices

Source: prepared by the author.

Table 5 displays a very different situation for cj_0.1 and gnm_0.1 when compared to

their _0.5 counterparts. These instances are now solved much faster and demand very few nodes

to be solved by kj, even less than gnp. In Figure 18 we see that the cj_0.1 family consistently

exhibits a smaller search tree size when compared to gnm_0.1 and they both loose by a fair

amount to simple gnp instances. This is aligned to the fact that complete graphs, for example,



60

Figure 17 – Plot of the ratio between the average solve times when using the kj algorithm with
the preprocessing step on gnm_0.5 and cj_0.5 instances vs. number of vertices.

50 250

gnm_0.5

cj_0.5

0

1

3
Ratio of avg.
solve time

Number of vertices

Source: prepared by the author.

are far too easy to solve, as they are quickly handled by heuristics that find optimal colorings.

Proposition 5.11 tells us that both cj_0.1 and gnm_0.1 instances have edge density close to 1

and this is likely what causes both of them to be easier to solve than the gnp family. Thus, denser

graphs can be harder than random graphs with constant density, but not always.

Figure 18 – Log-linear plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, cj_0.1 and gnm_0.1 instances vs. number of vertices.

50 250

gnp

cj_0.1
gnm_0.1

101

103

105
Avg. search
tree size

Number of vertices

Source: prepared by the author.

Table 6 shows how the p_lav instances endure the preprocessing of Algorithm 6.1

as opposed to the lav ones. Indeed, the growth of the search tree sizes for lav is perfectly linear.

In Figure 19 we see that the log-linearly lav graph looks almost constant, as it is actually a very

slow-growing logarithm, while the p_lav graph grows resembling a linear function, indicating

that the search trees’ sizes for p_lav grow exponentially fast.

Table 7 displays how much larger the search trees for lav instances must be when the

preprocessing step is not used. For n D 90 and n D 100, the kj is not even able to solve the lav

instances to optimality in the time limit, proving that these instances are indeed challenging for

this type of algorithm when lacking the preprocess. Figure 20 illustrates how the search trees for

both the lav and p_lav instances grows exponentially, as their log-linearly graphs grow almost

as a linear function. However, it is clear that when Algorithm 6.1 is not applied, the search



61

Figure 19 – Log-linear plot of the average search tree sizes when using the kj algorithm with
the preprocessing step on lav and p_lav instances vs. number of vertices.

50 100

lav

p_lav

100

104

108
Avg. search
tree size

Number of vertices

Source: prepared by the author.

tree size for the p_lav family looses by a fair amount to that of the lav, which is expected by

the worst lower bound on its size given by Theorem 6.13. Even so, the theorem describing the

exponential growth allied to the positive test results when the preprocessing step is used provide

an use case in which p_lav instances are very demanding for state-of-the-art algorithms.

Figure 20 – Log-linear plot of the average search tree sizes when using the kj algorithm alone
on lav and p_lav instances vs. number of vertices. Lighter line segments indicate
the tests did not finish.

50 100

lav

p_lav

103

107

1011
Avg. search
tree size

Number of vertices

Source: prepared by the author.



62

8 CONCLUSIONS

Intuitively, generating hard instances to NP-hard problems should be trivial. For

Maximum Clique this is not the case, as the worst case is far from the average one. The

instances provided in this work are a step towards the goal of obtaining challenging inputs to this

problem. Although it is common practice to test new algorithms with instances that are known

to be hard simply because historically they take a long time to be solved, we present theoretical

hardness analyses as a way to explain why such instance are expected to be hard.

For the instances with many cliques given by Algorithm 5.3, there is still potential

for future work analyzing their behaviour under specific upper bound rules. Computational

experiments empirically show that they are competitive when given as input to �-bounded

algorithms, as we have seen in Chapter 7. Even though the chromatic upper bound seems to

run faster when applied to these instances, it also seems to prune less nodes in the search tree

than it does when applied to random graphs of matching density. This motivates the study of the

behaviour of these instances under the chromatic upper bound point of view, similarly to what is

done in Theorems 6.4, 6.13 and 6.16, specially because their cliques are deeply connected with

colorings of random graphs, so their colorings could also be related to some other structure.

There is also space for experiments with other upper bounds, as positive results

could motivate a more in depth theoretical analysis. Another path to be explored is the study

of different reductions from other problems to Maximum Clique and how the final graph

instances stand against efficient clique algorithms, both in number of cliques and in resilience to

upper bounds.

For the �-bounded algorithms specialized instaces given by Algorithm 6.4, a natural

follow up is the analysis of their hardness for other infra-chromatic upper bounds. Furthermore,

it could be the case that the strategy used to make them immune to the preprocessing works

for other objectives, such as taking a dense graph that is easy to solve and remove edges in a

randomized way to prevent algorithms from closing the optimality gap quickly.

Another possibility is the study of different preprocessing steps for standard algo-

rithms. The first objective would be to generalize Algorithm 6.1 into a Modular or even a

Primeval Decomposition and analyse how our instances stand against them. Besides these two

decompositions, there are also other ideas to reduce the input graph size, such as identifying

universal vertices or false-twins to name a few.

Finally, we leave open for future work the exploration of both the enumeration

complexity and the contrast of worst and average case of other graph problems, for different

distributions of input graphs.



63

REFERENCES

1 SAN SEGUNDO, P.; RODRÍGUEZ-LOSADA, D.; MATÍA, F.; GALÁN, R. Fast exact
feature based data correspondence search with an efficient bit-parallel mcp solver. Applied

Intelligence, v. 32, n. 3, p. 311–329, Jun 2010. ISSN 1573-7497.

2 SAN SEGUNDO, P.; RODRÍGUEZ-LOSADA, D. Robust global feature based data
association with a sparse bit optimized maximum clique algorithm. Trans. Rob., IEEE Press,
v. 29, n. 5, p. 1332–1339, oct 2013. ISSN 1552-3098.

3 HOTTA, K.; TOMITA, E.; TAKAHASHI, H. A view-invariant human face detection method
based on maximum cliques. Trans. IPSJ, v. 44, p. 57–70, 01 2003.

4 STENTIFORD, F. Face recognition by detection of matching cliques of points. In: NIEL,
K. S.; BINGHAM, P. R. (Ed.). Image Processing: Machine Vision Applications VII. [S.l.]:
SPIE, 2014. v. 9024.

5 BERMAN, P.; PELC, A. Distributed probabilistic fault diagnosis for multiprocessor systems.
In: Digest of Papers. Fault-Tolerant Computing: 20th International Symposium. Los Alamitos,
CA, USA: IEEE Computer Society, 1990. p. 340–346.

6 DUARTE JR., E.; GARRETT, T.; BONA, L.; CARMO, R.; ZÜGE, A. Finding stable cliques
of planetlab nodes. In: 2010 IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). [S.l.]: IEEE, 2010. p. 317–322. ISBN 978-1-4244-7500-1.

7 BROUWER, A.; SHEARER, J.; SLOANE, N.; SMITH, W. A new table of constant weight
codes. IEEE Transactions on Information Theory, v. 36, n. 6, p. 1334–1380, 1990.

8 SLOANE, N. J. A. On single-deletion-correcting codes. In: ARASU, K. T.; SERESS,
A. (Ed.). Codes and Designs: Proceedings of a conference honoring Professor Dijen K.

Ray-Chaudhuri on the occasion of his 65th birthday. The Ohio State University May 18–21,

2000. [S.l.]: De Gruyter, 2002. p. 273–292. ISBN 9783110198119.

9 BUTENKO, S.; PARDALOS, P.; SERGIENKO, I.; SHYLO, V.; STETSYUK, P. Estimating
the size of correcting codes using extremal graph problems. In: . [S.l.]: Springer, 2009. p.
227–243. ISBN 978-0-387-98095-9.

10 BUTENKO, S.; WILHELM, W. Clique-detection models in computational biochemistry
and genomics. European Journal of Operational Research, v. 173, n. 1, p. 1–17, 2006. ISSN
0377-2217.

11 FUKAGAWA, D.; TAMURA, T.; TAKASU, A.; TOMITA, E.; AKUTSU, T. A clique-based
method for the edit distance between unordered trees and its application to analysis of glycan
structures. BMC Bioinformatics, v. 12, n. 1, p. S13, Feb 2011. ISSN 1471-2105.

12 HARARY, F.; ROSS, I. C. A procedure for clique detection using the group matrix.
Sociometry, American Sociological Association, Sage Publications, Inc., v. 20, n. 3, p. 205–215,
1957. ISSN 00380431, 23257938.

13 KARP, R. Reducibility among combinatorial problems. In: Complexity of computer

computations. [S.l.]: Springer, 1972. p. 85–103.



64

14 NEMHAUSER, G. L.; TROTTER, L. E. Properties of vertex packing and independence
system polyhedra. Mathematical Programming, v. 6, n. 1, p. 48–61, Dec 1974. ISSN 1436-4646.

15 CARRAGHAN, R.; PARDALOS, P. An exact algorithm for the maximum clique problem.
Operations Research Letters, v. 9, n. 6, p. 375–382, 1990. ISSN 0167-6377.

16 BABEL, L.; TINHOFER, G. A branch and bound algorithm for the maximum clique
problem. Zeitschrift für Operations Research, v. 34, n. 3, p. 207–217, May 1990. ISSN
1432-5217.

17 BALAS, E.; XUE, J. Minimum weighted coloring of triangulated graphs, with application
to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM Journal on

Computing, v. 20, n. 2, p. 209–221, 1991.

18 BABEL, L. A fast algorithm for the maximum weight clique problem. Computing, v. 52,
n. 1, p. 31–38, Mar 1994. ISSN 1436-5057.

19 ÖSTERGÅRD, P. R. A new algorithm for the maximum-weight clique problem. Electronic

Notes in Discrete Mathematics, v. 3, p. 153–156, 1999. ISSN 1571-0653. 6th Twente Workshop
on Graphs and Combinatorial Optimization.

20 LI, C.-M.; FANG, Z.; JIANG, H.; XU, K. Incremental upper bound for the maximum clique
problem. INFORMS Journal on Computing, v. 30, n. 1, p. 137–153, 2018.

21 SAN SEGUNDO, P.; FURINI, F.; ÁLVAREZ, D.; PARDALOS, P. M. Clisat: A new exact
algorithm for hard maximum clique problems. European Journal of Operational Research,
v. 307, n. 3, p. 1008–1025, 2023. ISSN 0377-2217.

22 CARMO, R.; ZÜGE, A. On comparing algorithms for the maximum clique problem.
Discrete Applied Mathematics, v. 247, 02 2018.

23 DIMACS. The DIMACS Second Implementation Challenge Clique Benchmark. 1992–1993.
Available in <http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/

clique/>.

24 XU, K. BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems

(Maximum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex Coloring).
2004. Available in <http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.nlsde.buaa.

edu.cn/~kexu/benchmarks/graph-benchmarks.htm>.

25 BROCKINGTON, M. G.; CULBERSON, J. C. Camouflaging independent sets in
quasi-random graphs. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation

Challenge. [S.l.]: American Mathematical Society, 1996. v. 26.

26 LAVNIKEVICH, N. On the complexity of maximum clique algorithms: usage of
coloring heuristics leads to the �.2n=5/ running time lower bound. Preprint available in
<http://arxiv.org/abs/1303.2546>. 2013.

27 ZUCKERMAN, D. Linear degree extractors and the inapproximability of max clique and
chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of

Computing. New York, NY, USA: Association for Computing Machinery, 2006. (STOC ’06), p.
681–690. ISBN 1595931341.



65

28 DOWNEY, R.; FELLOWS, M. Parameterized computational feasibility. In: CLOTE,
P.; REMMEL, J. (Ed.). Feasible Mathematics II. Boston, MA: Birkhäuser Boston, 1995. p.
219–244.

29 KONC, J.; JANEŽIČ, D. An improved branch and bound algorithm for the maximum clique
problem. MATCH Communications in Mathematical and in Computer Chemistry, jun 2007.

30 WALTEROS, J. L.; BUCHANAN, A. Why is maximum clique often easy in practice?
Operations Research, v. 68, n. 6, p. 1866–1895, 2020.

31 JOHNSON, D.; TRICK, M. (Ed.). Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge, October 11–13, 1993. Boston, MA, USA: American Mathematical
Society, 1996. v. 26. ISBN 0821866095.

32 WEST, D. Introduction to Graph Theory. [S.l.]: Prentice Hall, 2001. (Featured Titles for
Graph Theory). ISBN 9780130144003.

33 BONDY, A.; MURTY, U. Graph Theory. [S.l.]: Springer London, 2011. (Graduate Texts in
Mathematics). ISBN 9781846289699.

34 AUSIELLO, G.; MARCHETTI-SPACCAMELA, A.; CRESCENZI, P.; GAMBOSI, G.;
PROTASI, M.; KANN, V. Complexity and Approximation: Combinatorial Optimization

Problems and Their Approximability Properties. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999. ISBN 978-3-642-58412-1.

35 VAZIRANI, A. U.; PAPADIMITRIOU, A. C. H.; DASGUPTA, A. S. Algorithms. [S.l.]:
McGraw-Hill Education, 2006. ISBN 9780073523408.

36 WOLSEY, L. Integer Programming. [S.l.]: John Wiley & Sons, Ltd, 2020. ISBN
9781119606475.

37 BOLLOBÁS, B. Random Graphs. [S.l.]: Cambridge University Press, 2001. (Cambridge
Studies in Advanced Mathematics). ISBN 9780521797221.

38 MITZENMACHER, M.; UPFAL, E. Probability and Computing: Randomization and

Probabilistic Techniques in Algorithms and Data Analysis. 2nd. ed. USA: Cambridge University
Press, 2017. ISBN 110715488X.

39 CORLESS, R. M.; GONNET, G. H.; HARE, D. E. G.; JEFFREY, D. J.; KNUTH, D. E. On
the lambert w function. Advances in Computational Mathematics, v. 5, n. 1, p. 329–359, Dec
1996. ISSN 1572-9044.

40 HOORFAR, A.; HASSANI, M. Inequalities on the lambert function and hyperpower
function. Journal of Inequalities in Pure & Applied Mathematics (electronic only), Victoria
University, School of Communications and Informatics, v. 9, n. 2, 2008.

41 WU, Q.; HAO, J.-K. A review on algorithms for maximum clique problems. European

Journal of Operational Research, v. 242, n. 3, p. 693–709, 2015. ISSN 0377-2217.

42 BRON, C.; KERBOSCH, J. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, Association for Computing Machinery, New York, NY, USA, v. 16, n. 9, p.
575–577, set. 1973. ISSN 0001-0782.



66

43 FAHLE, T. Simple and fast: Improving a branch-and-bound algorithm for maximum clique.
In: MÖHRING, R.; RAMAN, R. (Ed.). Proceedings of the 10th Annual European Symposium

on Algorithms (ESA 2002). Berlin, Heidelberg: Springer, 2002. (Lecture Notes in Computer
Science, v. 2461), p. 485–498. ISBN 978-3-540-45749-7.

44 TOMITA, E.; TANAKA, A.; TAKAHASHI, H. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical Computer Science,
v. 363, n. 1, p. 28–42, out. 2006. ISSN 03043975.

45 TOMITA, E.; KAMEDA, T. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimization, Springer,
v. 37, n. 1, p. 95–111, jan. 2007. ISSN 0925-5001.

46 CHVÁTAL, V. Determining the stability number of a graph. SIAM Journal on Computing,
v. 6, n. 4, p. 643–662, 1977.

47 PITTEL, B. On the probable behaviour of some algorithms for finding the stability number
of a graph. Mathematical Proceedings of the Cambridge Philosophical Society, v. 92, p.
511–526, nov. 1982. ISSN 1469-8064.

48 WOOD, D. R. On the maximum number of cliques in a graph. Graphs and Combinatorics,
v. 23, n. 3, p. 337–352, Jun 2007. ISSN 1435-5914.

49 MILLER, R. E.; MÜLLER, D. E. A problem of maximum consistent subsets. [S.l.], 1960.

50 MOON, J. W.; MOSER, L. On cliques in graphs. Israel Journal of Mathematics, v. 3, n. 1,
p. 23–28, mar. 1965.

51 TURÁN, P. On an extremal problem in graph theory. Matematikai és Fizikai Lapok, v. 48,
p. 436–452, 1941.

52 ZYKOV, A. A. On some properties of linear complexes. Matematicheskii Sbornik, v. 24(66),
p. 163–188, 1949.

53 CORRÁDI, K.; SZABÓ, S. A combinatorial approach for keller’s conjecture. Periodica

Mathematica Hungarica, v. 21, n. 2, p. 95–100, Jun 1990. ISSN 1588-2829.

54 SANCHIS, L. A. Generating hard and diverse test sets for np-hard graph problems. Discrete

Applied Mathematics, v. 58, n. 1, p. 35–66, 1995. ISSN 0166-218X.

55 GENDREAU, M.; SORIANO, P.; SALVAIL, L. Solving the maximum clique problem
using a tabu search approach. Annals of Operations Research, v. 41, n. 4, p. 385–403, Dec 1993.
ISSN 1572-9338.

56 MANNINO, C.; SASSANO, A. Solving hard set covering problems. Operations Research

Letters, v. 18, n. 1, p. 1–5, 1995. ISSN 0167-6377.

57 KUČERA, L. A generalized encryption scheme based on random graphs. In: SCHMIDT,
G.; BERGHAMMER, R. (Ed.). Graph-Theoretic Concepts in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992. p. 180–186. ISBN 978-3-540-46735-9.

58 XU, K.; LI, W. Many hard examples in exact phase transitions. Theoretical Computer

Science, v. 355, n. 3, p. 291–302, 2006. ISSN 0304-3975.



67

59 CAMPÊLO, M.; CAMPOS, V.; CORRÊA, R. On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Applied Mathematics, Elsevier, v. 156,
n. 7, p. 1097–1111, 2008.

60 CORNAZ, D.; JOST, V. A one-to-one correspondence between colorings and stable sets.
Operations Research Letters, Elsevier, v. 36, n. 6, p. 673–676, 2008.

61 CAMPOS, V.; CARMO, R.; NOGUEIRA, R. Instances for the maximum clique problem
with hardness guarantees. In: Anais do VII Encontro de Teoria da Computação. Porto Alegre,
RS, Brasil: SBC, 2022. p. 125–128. ISSN 2595-6116.

62 JOHANSSON, A.; KAHN, J.; VU, V. Factors in random graphs. Random Structures &

Algorithms, v. 33, n. 1, p. 1–28, 2008.

63 BLÄSIUS, T.; KATZMANN, M.; STEGEHUIS, C. Maximal cliques in scale-free random
graphs. Preprint available in <https://arxiv.org/abs/2309.02990>. 2023.

64 HABIB, M.; PAUL, C. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, v. 4, n. 1, p. 41–59, 2010. ISSN 1574-0137.

65 TEDDER, M.; CORNEIL, D.; HABIB, M.; PAUL, C. Simpler linear-time modular
decomposition via recursive factorizing permutations. In: ACETO, L.; DAMGÅRD, I.;
GOLDBERG, L. A.; HALLDÓRSSON, M. M.; INGÓLFSDÓTTIR, A.; WALUKIEWICZ, I.
(Ed.). Automata, Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. p. 634–645.

66 BOLLOBÁS, B. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, v. 1, n. 4, p. 311–316, 1980. ISSN
0195-6698.

67 WORMALD, N. C. Models of random regular graphs. In: . Surveys in Combinatorics,

1999. [S.l.]: Cambridge University Press, 1999. (London Mathematical Society Lecture Note
Series), p. 239–298.

68 WORMALD, N. C. The asymptotic connectivity of labelled regular graphs. Journal of

Combinatorial Theory, Series B, v. 31, n. 2, p. 156–167, 1981. ISSN 0095-8956.

69 GRÖTSCHEL, M.; LOVÁSZ, L.; SCHRIJVER, A. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, v. 1, n. 2, p. 169–197, Jun 1981.
ISSN 1439-6912.

70 MEHROTRA, A.; TRICK, M. A. A column generation approach for graph coloring.
INFORMS Journal on Computing, v. 8, p. 344–354, 1995.

71 GODSIL, C.; MEAGHER, K. Erdős–Ko–Rado Theorems: Algebraic Approaches. [S.l.]:
Cambridge University Press, 2015. (Cambridge Studies in Advanced Mathematics).

72 BALAS, E.; XUE, J. Weighted and unweighted maximum clique algorithms with upper
bounds from fractional coloring. Algorithmica, v. 15, n. 5, p. 397–412, May 1996. ISSN
1432-0541.

73 SCHEINERMAN, E.; ULLMAN, D. Fractional Graph Theory: A Rational Approach to

the Theory of Graphs. [S.l.]: Dover Publications, 2011. (Dover books on mathematics). ISBN
9780486485935.



68

74 BEHNEL, S.; BRADSHAW, R.; CITRO, C.; DALCIN, L.; SELJEBOTN, D.; SMITH, K.
Cython: The best of both worlds. Computing in Science Engineering, v. 13, n. 2, p. 31–39, 2011.
ISSN 1521-9615.

75 HAGBERG, A. A.; SCHULT, D. A.; SWART, P. J. Exploring network structure, dynamics,
and function using networkx. In: VAROQUAUX, G.; VAUGHT, T.; MILLMAN, J. (Ed.).
Proceedings of the 7th Python in Science Conference. Pasadena, CA USA: [s.n.], 2008. p. 11–15.

76 CARMO, R.; ZÜGE, A. Branch and bound algorithms for the maximum clique problem
under a unified framework. Journal of the Brazilian Computer Society, Springer, v. 18, n. 2, p.
137–151, 2012.

77 ZÜGE, A.; CARMO, R.; ANJOS, C. S.; CORRÊA, M. V. MAXCLIQUEBB repository.
2017. Available in <https://gitlab.c3sl.ufpr.br/apzuge/maxcliquebb>.


	Title page
	Resumo
	Abstract
	List of figures
	List of tables
	List of symbols
	Contents
	Introduction
	Hardness results
	Relation with Vertex Colorings
	Algorithms with an upper bound based on the chromatic number
	Structure of this work

	Preliminaries
	Graph Theory
	Computational Complexity
	Combinatorial Optimization
	Probability Theory
	Useful definitions, bounds and asymptotics

	A Branch and Bound framework
	Basic structure of the algorithm
	Some properties of standard algorithms

	Instances in the literature
	Theoretical instances
	Practical instances

	Using vertex colorings to build cliques
	The Representatives Model
	Counting colorings in random graphs
	Instances with more cliques than average
	A final remark on random graphs

	Chromatic upper bounds for standard algorithms
	Introducing a bounding rule
	Exponential running time inducing graphs
	A preprocessing heuristic
	Worst case instances resistant to the preprocessing
	A fractional bounding rule

	Computational experiments
	The setup
	The instances
	The algorithms
	The results
	Discussion

	Conclusions
	References

