X
&

UNIVERSIDADE FEDERAL DO CEARA

CENTER OF SCIENCES
DEPARTMENT OF COMPUTING
POST-GRADUATION PROGRAM IN COMPUTER SCIENCE
MASTER DEGREE IN COMPUTER SCIENCE

RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH
PROBABILITY

FORTALEZA
2025

RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH
PROBABILITY

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Center of
Sciences of the Universidade Federal do Ceara,
as a partial requirement for obtaining the title
of Master in Computer Science. Concentration
Area: Theory of Computation

Advisor: Prof. Dr. Victor Almeida Campos

FORTALEZA
2025

Dados Internacionais de Catalogacdo na Publicacdo
Universidade Federal do Ceard
Sistema de Bibliotecas
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

D275h David, Rodrigo.
Hard Instances for the Maximum Clique Problem with High Probability / Rodrigo David. — 2025.
69 f. : il. color.

Dissertacdo (mestrado) — Universidade Federal do Cear4, Centro de Ciéncias, Programa de Pds-Graduagao
em Ciéncia da Computacio, Fortaleza, 2025.
Orientacdo: Prof. Dr. Victor Almeida Campos.

1. Clique Méxima. 2. Branch & bound. 3. Grafos aleatérios. 4. Coloragdo de vértices. I. Titulo.
CDD 005

RODRIGO NOGUEIRA LIMA DAVID

HARD INSTANCES FOR THE MAXIMUM CLIQUE PROBLEM WITH HIGH
PROBABILITY

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Center of
Sciences of the Universidade Federal do Ceara,
as a partial requirement for obtaining the title
of Master in Computer Science. Concentration
Area: Theory of Computation

Approved on: March 7th 2025

EXAMINATION BOARD

Prof. Dr. Victor Almeida Campos (Advisor)
Universidade Federal do Ceara (UFC)

Prof. Dr. Rudini Menezes Sampaio
Universidade Federal do Ceara (UFC)

Prof. Dr. Wladimir Araujo Tavares
Universidade Federal do Ceara (UFC)

Prof. Dr. Fabricio Siqueira Benevides
Universidade Federal do Ceara (UFC)

Prof. Dr. Guilherme Oliveira Mota
Universidade de Sao Paulo (USP)

ACKNOWLEDGEMENTS

I would like to first express my deepest gratitude to my family for their unwavering
support and encouragement; specially to my mother, Sandra, for all the investment she made
in me — far beyond financial — believing in my potential every step of the way. I also want to
thank all the friends I made during my undergraduate and master’s studies, especially Amanda,
my girlfriend, who stood by me in the most difficult moments and was often responsible for the
lighter ones.

I am grateful to everyone at ParGO for creating such a welcoming and stimulating
environment, particularly Professor Victor for advising me throughout this work and since
my undergraduate Scientific Initiation. I also thank Professors Fabricio, Guilherme, Rudini,
and Wladimir for taking the time to be part of the examination committee and for providing
constructive feedback on this work. A special thanks as well to Professor Manoel, who, although
not my advisor during my master’s, was during part of my undergraduate studies and, besides
introducing me to ParGO, continued to guide me occasionally.

This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001.

Agradeco primeiramente a minha familia pelo apoio e suporte constantes; especi-
almente 2 minha mae, Sandra, por todo o investimento — muito mais do que financeiro— que
fez em mim. Também, a todos os amigos que fiz na graduacdo e no mestrado, especialmente a
Amanda, minha namorada, que esteve comigo nos momentos mais dificeis e foi muitas vezes
responsével pelos mais leves.

Agradeco a todos do ParGO por criarem um ambiente tao acolhedor e estimulante,
especialmente ao professor Victor por ter me orientado nesse trabalho e por ja o fazer desde a
minha inicia¢do cientifica na graduacdo. Também agradeco aos professores Fabricio, Guilherme,
Rudini e Wladimir por cederem seus tempos participando da banca e fornecendo comentérios
construtivos para o trabalho. Um obrigado também ao professor Manoel, que embora ndo tenha
sido meu orientador no mestrado, foi durante um periodo da minha graduacao e, além de ter me
introduzido ao ParGO, continuou me orientando informal e esporadicamente.

O presente trabalho foi realizado com apoio da Coordenagdo de Aperfeicoamento
de Pessoal de Nivel Superior - Brasil (CAPES) - Cédigo de Financiamento 001.

“I, at any rate, am convinced that Gobp does not
throw dice.”
(Albert Einstein)

“But still, it cannot be for us to tell Him how HE
is to run the universe.”
(Niels Bohr)

RESUMO

O problema da CLIQUE MAXIMA é um problema cldssico de otimizacdo em grafos com o
objetivo de encontrar uma clique mdxima em um grafo de entrada. A despeito da existéncia de
diversos resultados tedricos de dificuldade, estudos empiricos sugerem que o problema costuma
ser mais facil do que o esperado. Nesse trabalho, exploramos uma classe de algoritmos Branch &
Bound para resolver CLIQUE MAXIMA e como eles tornam o problema mais tratavel na préatica.
No6s abordamos a relag@o entre cliques e coloragdes proprias de vértices e determinamos com alta
probabilidade o crescimento assintético do nimero de coloragdes em grafos aleatérios. Usando
este resultado junto a uma reducio polinomial de coloracdo para clique da literatura, construimos
novas instancias de CLIQUE MAXIMA e analisamo-las. Ademais, examinamos uma familia de
instancias da literatura que induz tempo exponencial em uma subclasse de algoritmos Branch
& Bound amplamente utilizada, que utiliza um limite superior cromético para podar ramos.
No6s propomos um método de pré-processamento que habilita esses algoritmos a resolverem
tais instancias em tempo linear no tamanho delas. Além disso, introduzimos uma constru¢cao
aleatorizada que produz grafos resistentes ao pré-processamento e que ainda exibem tempo de
execucao exponencial para esses algoritmos, mesmo caso o limite superior utilize o nimero
cromdtico fraciondrio, que € uma cota mais apertada. Por fim, executamos testes computacionais

para validar nossas andlises.

Palavras-chave: clique maxima; branch & bound; grafos aleatérios; coloragao de vértices.

ABSTRACT

The MAxiMUM CLIQUE problem is a classic graph-theoretical optimization problem with the
objective of finding a maximum clique in a given input graph. Despite numerous theoretical
hardness results, empirical studies suggest that the problem is often easier than expected. In this
work, we explore a class of Branch & Bound algorithms for solving MAXxiMuM CLIQUE and
how they make the problem more tractable in practice. We approach the relationship between
cliques and proper vertex colorings and derive the asymptotic growth of the number of colorings
in random graphs with high probability. Using this result paired with a coloring-to-clique
polynomial reduction in the literature, we generate new MAXIMUM CLIQUE instances and
analyze them. Moreover, we examine a family of instances from the literature that induce
exponential runtime on a widely adopted subclass of Branch & Bound algorithms that use a
chromatic upper bound to prune branches. We propose a preprocessing method that enables
these algorithms to solve such instances in linear time on their size. Furthermore, we introduce
a randomized construction that produces graphs resistant to this preprocessing and still exhibit
exponential runtime for these algorithms, even if the upper bound uses the fractional chromatic
number instead, which is a tighter bound. Finally, we run some computational tests to validate

our analyses.

Keywords: maximum clique; branch & bound; random graphs; vertex coloring.

Figure 1 —
Figure 2 —
Figure 3 —
Figure 4 —

Figure 5 —

Figure 6 —
Figure 7 —

Figure 8 —

Figure 9
Figure 10 —

Figure 11 —
Figure 12 —
Figure 13 —
Figure 14 —
Figure 15 -
Figure 16 —
Figure 17 —
Figure 18 —

Figure 19 —

Figure 20 —

LIST OF FIGURES

A branching step on a subinstance (Q, R) with pivot v on a standard algorithm. 22
An example of the construction due to Wood [48]. 25
An example of the construction due to Moon and Moser [50]. 26
Modeling a coloring through its representatives. The smallest vertex of each

color class is a representative and represents vertices in the same class. . . . 28
Using the Cornaz—Jost reduction to obtain the graph G* given a graph G and

alinearorder <. Lo 30
Vertex configurations in D that induce edgesin G. 35
Outline of the L5 graph, where each vertex in a Cs is connected to all other

verticesin the othertwo Cs’s. 42

The decomposition of a graph G using Algorithm 6.1. In each case, the

algorithm is called recursively for Gy and G,. 43
An execution of Algorithm 6.2 withn = 5andd = (0,1,2,3,4). 46
Problematic configurations when Algorithm 6.2 adds edges with both end-

pointsinthesame Cs.o 47
No triangle can be induced by vertices of different Css. 47
An execution of Algorithm 6.4 withn =15, 50

Plot of the average search tree sizes when using the nb algorithm on gnp,
cj_0.5and gnm_0.51InStances. e e e e 58
Plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, ¢j_0.5 and gnm_0.5 instances. 58
Plot of the ratio between the average search tree sizes when using the kj
algorithm with the preprocessing step on gnm_0.5 and cj_0.5 instances. . . 59
Plot of the average solve times when using the kj algorithm with the prepro-
cessing step on gnp, cj_0.5 and gnm_@.5 instances. 59
Plot of the ratio between the average solve times when using the kj algorithm
with the preprocessing step on gnm_0.5 and ¢j_0.5 instances. 60
Plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, ¢j_0.1 and gnm_0.1 instances. 60
Plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on lav and p_lav instances. 61
Plot of the average search tree sizes when using the kj algorithm alone on

lavand p_lavinstances. oo 61

LIST OF TABLES

Table 1 — Average results for gnp using the nb algorithm 55
Table 2 — Average results for cj_0.5 and gnm_0.5 instances using the nb algorithm. . . 55
Table 3 — Average results for gnp using the kj algorithm with the preprocessing step. . 56

Table 4 — Average results for ¢j_0.5 and gnm_0.5 instances using the kj algorithm with

the preprocessing Step.o e 56
Table 5 — Average results for cj_0.1 and gnm_0. 1 instances using the kj algorithm with

the preprocessing Step. e e e 57
Table 6 — Average results for lav and p_lav instances using the kj algorithm with the

Preprocessing SteP.o i e e e e e e e e e 57

Table 7 — Average results for lav and p_lav instances using the kj algorithm alone. . . 57

lgn
Inn

n!

(&)

exp(x)

2X
(1)
14 o0(1)

LIST OF SYMBOLS

Base 2 logarithm, i.e., Ign = log, n
Natural logarithm, i.e., Inn = log, n
Factorial,ie.,n!'=1-2----n

Double factorial, i.e.,n!' =1-3-5.---nifnisoddandn!' =2-4-6---n
if n is even

n!

Binominomial coefficient, i.e., (}) = T

Exponential function, i.e., exp(x) = e*

Set of natural numbers, i.e., N = {1,2,3,...}

Set of real numbers

Power set of the set X, i.e., the set of all its subsets
Length of the binary string /

A term that is not constant, but is lower and upper bounded by constants

1.1
1.2
1.3
14

2.1
2.2
23
24
2.5

3.1
3.2

4.1
4.2

5.1
5.2
5.3
54

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

CONTENTS

INTRODUCTIONottt it e e ittt et ee e a
Hardnessresults
Relation with Vertex Colorings
Algorithms with an upper bound based on the chromatic number
Structure of thiswork
PRELIMINARIES it i it it ettt e et e e a o s as
GraphTheory
Computational Complexity
Combinatorial Optimization
Probability Theory,
Useful definitions, bounds and asymptotics
A BRANCH AND BOUND FRAMEWORK
Basic structure of the algorithm
Some properties of standard algorithms
INSTANCES IN THE LITERATURE
Theoretical instances,
Practicalinstances L oL
USING VERTEX COLORINGS TO BUILD CLIQUES
The Representatives Model
Counting colorings in random graphs
Instances with more cliques than average
A final remark on randomgraphs
CHROMATIC UPPER BOUNDS FOR STANDARD ALGORITHMS

Introducing a boundingrule
Exponential running time inducing graphs
A preprocessing heuristic oo
Worst case instances resistant to the preprocessing
A fractional boundingrule Lo
COMPUTATIONALEXPERIMENTS
Thesetap
Theinstances
The algorithms
Theresults
Discussion
CONCLUSIONS . . ittt ittt ettt ettt et en o e
REFERENCES i ittt i ettt et e e nesas

10

1 INTRODUCTION

A clique in a graph is a set of vertices in which any two elements are adjacent. In the
MaxiMuM CLIQUE problem, the objective is to find the largest clique in a given graph. This is
a classic graph-theoretical optimization problem with applications in robotics [1, 2], computer
vision [3, 4], distributed systems [5, 6], coding theory [7, 8, 9], bioinformatics [10, 11] and many
other research areas.

Algorithms for MAxiMUuM CLIQUE date as early as 1957 [12], while the first
complexity results were published in 1972 [13] and mathematical programming formulations in
1974 [14]. In the *90s, the interest in this problem grew rapidly — partly due to its popularization
and advances in the late *80s, but also because of the Second DIMACS Challenge, which had
MaxiMuM CLIQUE as one of the three proposed problems — and many algorithmic results
followed, such as [15, 16, 17, 18, 19]. To this day, clique algorithms remain an active area of
research and many general combinatorial optimization techniques have been developed aiming
to deal with increasingly larger instances for this problem [20, 21].

In this work, however, we shift the focus from the study of efficient algorithms to that
of hard instances, as the problem seems to be much easier in practice than its theoretical worst
case [22]. This has been done in the literature [23, 24, 25], but most of the work is heuristic, in
the sense that the instances provided are said to be challenging because they exploit weaknesses
of efficient algorithms and these claims are supported only by computational experiments.

To the best of our knowledge, only one such work appeals to empirical arguments
and a formal proof of hardness [26]. Our aim is to build on this theoretical approach and provide

other challenging graph constructions together with proofs that they are indeed hard

1.1 Hardness results

The MAxiMUM CLIQUE problem is NP-hard [13] and n'~®-inapproximable in
polynomial time (unless P = NP) for any ¢ > 0, where n denotes the number of vertices in the
input graph [27]. Its decision version consists in deciding, given an input graph G and an integer
k, if G has a clique of size at least k. Besides being NP-complete, it is also W[1]-complete
under the natural parameterization over k [28].

Although MAxiMuM CLIQUE is drawn intractable by this (non-exhaustive) list of
theoretical hardness results, several authors report exact algorithms that are able to tackle large
instances of practical interest for several application domains in reasonable time [15, 29, 20, 21].
This interesting contrast has been studied before [22, 30]. Carmo and Ziige [22] approach a
widely used class of Branch and Bound (B&B) algorithms and show that their time complexity
is highly concentrated around the sub-exponential n®%2" growth rate in the G(n, p) model for

any constant p by counting the number of cliques in such graphs.

11

This result gives an intuition on why the problem is often easier in practice, given
that its worst case seems to be rare, but raises questions regarding the structure of such hard
instances. If a randomly sampled graph is not expected to demand exponential time to be solved,

what does a graph that comes close to the worst case look like?

1.2 Relation with Vertex Colorings

The MINIMUM VERTEX COLORING problem, in which the objective is to partition
the vertices of a graph in the least number of parts in such a way that no adjacent vertices are
on the same part, shares some connections with MAxiMuM CLIQUE. This is another classic
NP-hard problem [13] and, moreover, it is also 7' ~#-inapproximable in polynomial time for any
¢ > 0 (unless P = NP), where n denotes the number of vertices in the input graph [27].

Because they are linked by a min-max inequality, vertex colorings and cliques tend
to appear together in algorithms, being upper or lower bounds for each other. Moreover, in
1992, the second DIMACS Implementation Challenge was held to encourage the development
of algorithmic results on three problems, two of them being MINIMUM VERTEX COLORING
and MAxXxiMUM CLIQUE. Comparing the selected papers, the conclusion was that the coloring
problem was much harder than the clique one [31]. In this work, we also explore some relations
between cliques and vertex colorings.

We study the number of colorings in random graphs in a similar way to what was
done with cliques to argue that enumerating the former is, indeed, harder than enumerating the
latter, hence backing up the claim about the hardness disparity between the problems as most
algorithms were already enumerative at the time (as were since the first algorithm for MAXIMUM
CLIQUE and still are today). Furthermore, we adapt a reduction in the literature to provide
nondeterministic instances with more cliques than a G(n, p) random graph for constant p and
count the expected number of cliques in denser G(n, p) graphs that match the number of edges

of these instances.

1.3 Algorithms with an upper bound based on the chromatic number

Even though the worst case for MAxiMUM CLIQUE is not expected to be solved in
polynomial time, presenting instances that attend to this complexity in practice is a non-trivial
issue. Lavnikevich [26] focus on an even more restricted class of algorithms — B&B with an
upper bound based on the chromatic number, which are widely adopted and considered to be the
best among state-of-the-art algorithms — and introduces a family of graphs with n vertices, for
n =0 (mod 5), that require ©2(2"/°) steps to be solved by any such algorithm. These instances,
however, are artificial, in the sense that it would be very unlikely to find one of those graphs in a

real problem and, besides that, their recognition is straightforward polynomial.

12

We argue they need not be explicitly recognized. We propose a simple preprocessing
heuristic that enables algorithms to solve Lavnikevich’s instances in linear time in their size
(quadratic in n, as they have a high edge density) while still being useful for many other inputs.
We also describe a randomized construction based on Lavnikevich’s graphs that outputs an
instance that still exhibits exponential time behavior, need not have a number of vertices that is
strictly a multiple of 5 and is unaffected by the proposed preprocessing. We show further that it
still demands exponential time even when the algorithm uses a specific infra-chromatic upper

bound, namely the fractional chromatic number.

1.4 Structure of this work

Chapter 2 lays out some basic definitions on graph theory, computational complexity,
combinatorial optimization and (discrete) probability theory. Chapter 3 introduces the B&B
algorithms that we study throughout the text and presents some of their basic properties. Chapter 4
reviews graph instances in the literature that concern the MAxiMum CLIQUE problem. Chapter 5
presents the study of vertex colorings and their connections with cliques. Chapter 6 focus on
a more particular class of B&B algorithms, which use an upper bound based on the chromatic
number. Chapter 7 describes computational experiments regarding the algorithms and instances

in the text. Finally, Chapter 8 concludes the work and approaches future research topics.

13

2 PRELIMINARIES

We begin with a few definitions and basic results that are essential to this work.

2.1 Graph Theory

We follow conventions adopted by reference books [32, 33]. A graph G is defined
by a triple (V, E, ¥) consisting of a set of vertices, a set of edges and an incidence function that
maps each edge into two (not necessarily distinct) vertices called endpoints, respectively. We
write V(G) (resp. E(G)) for the set of vertices (resp. edges) of a graph G. The order (resp.
size) of a graph G, written v(G) (resp. e(G)), is the number of vertices (resp. edges) in G. An
edge that is mapped into two equal vertices is called a loop and edges that are mapped into the
same pair of vertices are said to be parallel (or multiple edges). A graph is said to be simple if it
has neither loops nor multiple edges. All graphs in this work are presumed to be simple, unless
stated otherwise. The edge density of a graph G is the ratio e(G)/ (;) and G is said to be dense
if this quantity is close to 1 or sparse if it is close to 0.

We abuse the notation and refer to an edge by its image through v, but there should
be no major issues with this practice if the graph is simple. When vertices u and v of a graph
G are endpoints of some edge, we write uv € E(G) and say that u and v are adjacent (or
neighbors). We write N(v) for the set of all neighbors of a vertex v. Two (simple) graphs G
and H are said to be isomorphic if there is a bijection f:V(G) — V(H) such that uv € E(G)
if, and only if, f(u) f(v) € E(H) and we write G =~ H do indicate this.

The degree of a vertex v, denoted by d(v), is the number of edges in which v is an
endpoint. In a simple graph, d(v) = |N(v)|. We denote by §(G) and A(G) the minimum and
maximum degrees of G (taken over all its vertices), respectively. If all vertices in a graph G
have degree k, we say that G is k-regular.

A clique (resp. independent set) in a graph G is a set of vertices in which any two of
them are adjacent (resp. no two of them are adjacent). The sizes of the largest clique and largest
independent set in G are denoted by w(G) and «(G), respectively. A matching in G is a set of
edges that share no endpoints. The vertices that are endpoints to some edge in a matching M are
said to be saturated by M , the others are said to be unsaturated. A perfect matching saturates
all vertices in the graph.

A (proper) vertex coloring of G is a function that maps each vertex into a color in
such a way that adjacent vertices are mapped into different colors (for all our purposes a color is
an integer). A k-coloring is a vertex coloring that uses exactly k colors. The set of all vertices
with some given color is called a color class and we sometimes refer to a coloring by its color
classes. The fewest colors needed by any vertex coloring of a graph G is the chromatic number
of G, written y(G). Given two graphs G and H such that v(G) = 0 (mod v(H)), an H -factor
of G is a collection of v(G)/v(H) copies of H whose vertex sets partition V(G).

14

A subgraph H of a graph G is a graph where V(H) C V(G), E(H) € E(G)
and H'’s incidence function is a restriction of G’s incidence function and we write H € G to
indicate this. Given two graphs G and H, we say G is H -free if no subgraph of G is isomorphic
to H. A subgraph H spans G if V(H) = V(G), and we call H a spanning subgraph. A set
S € V(G) induces a subgraph of G, which we denote by G[S], such that V(G[S]) = S and
E(G[S]) = {uv | u,v € S anduv € E(G)}. If a subgraph H is equal to G[S] for some set S,
we call H an induced subgraph.

An orientation of a graph G is a function o: E(G) — V(G) x V(G) that maps an
edge uv into an arc which is either (1, v) or (v, u) (the order of the vertices now matters). An
oriented graph is a pair (G, o) of a graph and an orientation. Itis common to represent an oriented
graph by drawing G and for each edge uv we draw an arrow from u to v if o (uv) = (u, v) and
vice-versa. The indegree d~(v) (resp. outdegree d ™+ (v)) of a vertex v in a oriented graph (G, o)
is the number of edges uv such that o (uv) = (u, v) (resp. o(uv) = (v, u)).

A path (resp. cycle) on n vertices, denoted by P, (resp. C,), is a graph whose vertices
can be linearly (resp. cyclically) ordered and two vertices are adjacent in the graph if they are
consecutive in the ordering. An oriented path (resp. oriented cycle) on n vertices is an oriented
graph whose vertices can be linearly (resp. cyclically) ordered and (u, v) is an arc if v comes
immediately after u in the order. A complete graph on n vertices, denoted by K,,, is a graph
in which every two nodes are adjacent. A complete graph on 3 vertices is called a triangle.
An empty graph is a graph that has no edges. The trivial graph is the empty graph with only
one vertex. A bipartite graph is a graph in which its vertex set can be partitioned into two
independent sets. More generally, a k-partite graph (or simply a multipartite graph) is a graph
in which its vertex set can be partitioned into k£ independent sets.

A graph G with at least two vertices is said to be balanced if

e(G) e(H))) . .
———— = max {———— | H is a proper induced subgraph with at least two vertices.
v(G)—1 v(H)—1
Moreover, if

eG) __e(H)
WG =1~ v(H) =1

for all proper induced subgraph H with at least two vertices,

we say G is strictly balanced. Complete graphs, for instance, are strictly balanced, while empty
graphs are not. In particular, K, is strictly balanced by vacuity.

A graph G is said to be connected if between any two vertices u and v there is a
path in G starting in ¥ and ending in v, G is disconnected otherwise. A graph G is said to be
k-connected if the removal of at most k — 1 vertices cannot disconnect the graph. A component
of a graph is a maximal connected subgraph.

The complement of a graph G, written G, is the graph with the same set of vertices of
G in which any two vertices are adjacent if they are not adjacent in G. The line graph of a graph
G, written L(G), is a graph with V(L(G)) = E(G) such that two vertices of L(G) are adjacent

15

if their respective edges in G share an endpoint. The disjoint union (resp. join) of two graph G
and H, denoted by G + H (resp. G V H), is the graph whose vertex setis V(G) U V(H) and
edge setis E(G) U E(H) (resp. E(G)U E(H)U {uv | u € V(G),v € V(H)}). We assume
that the vertex sets of G and H are always disjoint, and so are the edge sets, in these operations.
The union between two graphs G and H with non-disjoint sets of vertices is denoted by G U H

and is defined analogously to the disjoint union.

2.2 Computational Complexity

We again adopt conventions used by reference books [34, 35]. Given two functions
.8 N —> R, wesay f(n) = O(g(n)) (resp. f(n) = Q2(g(n))) if there exist a constant ¢ > 0
and an integer n, such that | f(n)| < c|g(n)| (resp. | f(n)| > c|g(n)|) for all n > n,. Similarly,
wesay f(n) = o(g(n)) (resp. f(n) = w(g(n)))if forevery e > 0 there is an integer n, such that
| f(n)| < elg(n)| (resp. | f(n)| > ¢|g(n)|) for every n > n,. We also say that f(n) = ®(g(n))
if f(n) = 0O(g(n)) and f(n) = Q2(g(n)).

We denote by poly(n) the set of all functions f:N — R such that f(n) = O(n*)
for some k € N. We say a function f:N — R has exponential growth (or simply is exponential)
if £(n) =29 for some & > 0. If f(n) = 2°"" forall ¢ > 0, we say f is subexponential.

A (combinatorial) optimization problem is defined by a set of binary strings called
instances, a set of binary strings called feasible solutions for each instance, an objective function,
which maps a pair consisting of an instance and a feasible solutions into a rational number
called objective value, and an indication that specifies whether the problem is a maximization
or a minimization one. For each instance, the objective in a maximization (resp. minimization)
problem is to find a feasible solution that maximizes (resp. minimizes) the objective function
(among all possible feasible solutions).

A decision problem is defined by a set of binary strings called instances that can be
partitioned into two others, the set of positive instances and the set of negative instances, such
that for each instance the objective is to decide whether it is a positive or a negative instance.
For each minimization problem (resp. maximization problem), there is an associated decision
problem (or simply its decision version) in which its set of instances consists of pairs formed by
an instance of the optimization problem and a rational k and the positive instances are those that
admit some feasible solution with objective value at most k (resp. at least k).

We denote by NP the class of decision problems IT that admit an algorithm V' called
polynomial verifier that takes as inputs an instance / of Il and a binary string C such that
(C) = poly({(1)), runs in poly({/)) time and satisfies V' (I, C) = 1 for some C if [is a positive
instance or V(I, C) = 0 for all C, otherwise. A polynomial reduction from a decision problem
IT to another decision problem I, is an algorithm that takes as input an instance / of IT and
outputs in poly({/)) time an instance I, of I1, that is a positive instance for I, if and only if /

is a positive instance for IT. A decision problem I1, is said to be NP-hard if for each problem

16

IT € NP there exists a polynomial reduction from IT to ITy. A decision problem IT is said to be
NP-complete if I1 € NP and IT is NP-hard. We say an optimization problem is NP-hard if its
decision version is NP-hard.

We denote by P the class of all decision problems IT that admit an algorithm that
takes as input an instance / of IT and in poly({/)) time outputs 1 if / is a positive instance or
0 otherwise. It follows from the definition that P € NP, because any algorithm that decides a
problem IT € P in polynomial time can be made a polynomial verifier by ignoring the auxiliary
binary string and solving the problem directly. It is widely believed that P # NP, although no
proof has ever been found (but neither has a polynomial time algorithm that solves any NP-hard

problem, which would imply that P = NP).

2.3 Combinatorial Optimization

The definitions here follow conventions adopted by books such as the one due
to Wolsey [36]. A linear programming problem is an optimization problem where the objective
function and the constraints on the instances can be represented by linear functions and inequali-
ties. A (linear) integer programming problem is a linear programming problem with additional
constraints of integrality for some variables. The linear relaxation of an integer programming
problem is a linear programming problem obtained by dropping the integrality constraints on
the original problem.

A classic integer programming model for MAXIMUM CLIQUE in a graph G is

max Z Vo

veEV(G)

st: » y, <1, VI eI(G) (2.1)

vel
y» €140, 1}, Yv e V(G)

where y, is an indicator variable with value 1 if the vertex v is chosen in the clique or O otherwise
and Z(G) is the set of all independent sets of the graph G. Even though adding the constraints
Y ver Yo < lonly when |/| = 2 yields a more compact model, adding for all / has the advantage
that its linear relaxation gives a specific upper bound on @ (G), which we call the fractional
cliqgue number of G, denoted by w;(G).

Another classic integer programming model, now for the MINIMUM VERTEX
COLORING problem in a graph G, is

min E Xy

1€Z(G)

s.t: Z xy > 1, Yv € V(G) 2.2)

veEl,
I1€Z(G)

x; €0, 1}, VI € Z(G)

17

where x; is an indicator variable with value 1 if the independent set / is a color class in the
coloring or 0 otherwise. The linear relaxation of this model gives a lower bound on x(G), which
we call the fractional chromatic number of G, denoted by y(G). The linear relaxations of
the models above are said to be dual to each other and satisfy, among many other properties,
0y (G) = x7(G).

A very common approach when solving optimization problems is to use Branch and
Bound algorithms, which enumerate feasible solutions by exhaustively trying all possibilities.
This is achieved by splitting the set of feasible solutions, analyzing smaller subsets and comparing
the objective values in order to find an optimal solution. To speed up further, the algorithm keeps
lower and upper bounds on the quality of the best solution of a subset to discard subsets that
cannot improve these bound (and, hence, cannot contain an optimal solution). In a maximization
problem, for instance, a lower bound can be any feasible solution, found either by some previous
state during the enumeration or by applying some heuristic, while an upper bound can be achieved
by some relaxation of the problem or by a valid inequality specific to the problem.

A B&B algorithm solves repeatedly a subproblem that is similar to the original
problem being solved, it is usually some variation that generalizes the inputs in order to make the
covering of the feasible solutions set easier. Once the algorithm takes on a subproblem, it checks
if one of its feasible solutions can have a better objective value than the best solution found so far.
If no such solution exists, the subproblem is discarded as any possible solution given by it would
be suboptimal. Otherwise, the algorithm branches the subproblem into others, following some
specific rule, and solves them recursively to obtain the best solution for the current subproblem.
This is repeated until all feasible solution have been either enumerated or safely discarded.

The algorithm’s execution is usually associated with a decision tree that keeps track
of all the decisions made — the search tree. The root of the tree is the original instance and any
given node has as children nodes associated with the subproblems generated by the branching
rule. When the algorithm decides to discard a subproblem, we say its associated node’s subtree
is pruned, as all its descendant nodes corresponding to subproblems are not explored and, thus,

are not in the tree.

2.4 Probability Theory

The definitions here also follow loosely those in reference books [37, 38]. A (discrete)
probability space is defined by a pair (€2, IP), where €2 is a countable set called the sample space,
whose elements are called outcomes and P; 2% — [0, 1] is a function that maps an event, which
is a subset of €2, into the probability that it happens. The function [P satisfies P[2] = 1 and for

any J C 2 such that all its elements are pairwise disjoint,

IP[U A} =Y P[4].

AeF AEF

18

We write A for the complement of an event A, i.e., the event 2 \ A. The events A,

A,, ..., Ay are said to be independent if
]P’[ﬂA,} =[[Pl4]. vIc.... k.
iel iel

The conditional probability of an event A happening given that event B happened (assuming

P[B] > 0) is defined as
P[A N B]

P[A | B] = BB

We say a sequence of events (A,),en occurs asymptotically almost surely (a.a.s.) if P[4,] — 1
when n — oo. In particular, if P[4,] > 1 —n~%® we say A, happens with high probability
(w.h.p.). An event happening w.h.p. implies it happening a.a.s., but the converse need not hold.

The monotonicity property of [P states that if two events A and B satisfy A C B,
then P[A] < P[B]. Given events A, A,, ..., A,, the union bound is a common upper bound to

the probability of their union, given by
P[4, UA, U - UA,] <> P4,
i=1

where equality occurs when the events are disjoint.

A random variable X on a sample space €2 is a function X: 2 — R. We use mainly
discrete random variables, which take on only a countable number of values. The set of events
{w € Q| X(w) = a} is denoted by {X = a} and we define

PX =a]l=) Plo
Xcch)si,a

The random variables X, X», ..., X are said to be independent if for any a,, a,, ..., a;

P[ﬂ{X,- = a,.}} =[[PX: =a]. VIC{l... k.

i€l i€l
The expected value (or expectation) of a discrete random variable X, denoted by E[X], is
given by
E(X] =) X(o)Pw].

WER

Particularly, if X is always a non-negative integer, we write
E[X] =) kP[X = k].
k>0
The expected value is a linear operator, i.e., for any k € N, a;,a,,...,a; € R and random

variables X, X5, ..., Xx,

Ela: X1 + a, X, + -+ + ar Xi] = a1 E[X1] + a,E[X,] + -+ + arE[X].

19

The Markov inequality states that any non-negative random variable X satisfies

p—

P[X > (E[X]] < -, for all 7 > 0.

'
A random variable X is said to follow an uniform distribution over the set {a,
a+1,...,b}if

1/b—a+1), ifkefa,a+1,...,b
o =1 = |11) {)
0, otherwise.
If X is a uniform random variable, then E[X] = (a 4+ b)/2. A random variable X is said to

follow a geometric distribution with parameter p € (0, 1] if
PX =k]=(1-p)'p, for any k € N.

If X is a geometric random variable, then E[X] = 1/ p.

When €2 is a set of graphs, we say that the outcomes are random graphs. We focus
mainly on two models. In the first, denoted by G(n, p), the outcomes are graphs on n vertices
where each edge appears independently of others with probability p (usually as a function of n)
and, thus, the probability of the outcome being a fixed graph G is equal to

PO - p)@,

In the second, denoted by G(n, m), the outcomes are graphs on n vertices, m edges and all such

graphs are equaly likely to be sampled, hence, the probability of the outcome being a fixed graph

G is
((Z))

if G has n vertices and m edges or 0, otherwise. If a graph G belongs to the G(n, p) (resp.
G(n,m)) model, we write G ~ G(n, p) (resp. G ~ G(n,m)).

—1

2.5 Useful definitions, bounds and asymptotics

The Lambert function W: [0, 4+00) — R satisfies the functional equation
W(x)exp(W(x)) = x, Vx > 0. (2.3)

Equation (2.3) has a real solution for all x > —1/e, but we define W(x) only when x > 0 for
practical purposes, as the real solution is unique if x > 0. We refer the reader to a survey due
to Corless et al. [39] for a thorough introduction to some properties and uses of this function. In

particular, Hoorfar and Hassani [40] show that

W(z) =Inz —Inlnz + ©(Inlnz/Inz). (2.4)

20

The exponential function exp: R — R is defined as

exp(x) = lim (1 + %) .

n—-+00
Using the Binomial Theorem, we can rewrite this in terms of an infinite series, namely
xn
exp(x) = E —
n!
n>0

from whence follows that .

k
exp(k) > R Vk € N. (2.5)

Moreover, by the convexity of x — exp(x), we get exp(x) > 1+ x, as x — 1 + x is the tangent

line to its graph on x = 0, hence,
exp(x) >1+x and exp(—x)>1—ux, Vx > 0. (2.6)

A simple lower bound for the binomial coefficient (}) is given by

n n! n n—1 n—k+1 n\k
— - _. > (=), 2.7
(k) kln—k)! k k-1 1 _(k> 2.7)
because for any k < n we have
i <l — I -1 I n—i n
n_ k n - k k—i — k

A common upper bound can be derived using (2.5), as

n nn—1)---(n—k+1) en\k
(k) = Kl = (7) ' (2.8)

21

3 A BRANCH AND BOUND FRAMEWORK

B&B methods are widely regarded as the most efficient way to address not only
MaxiMuM CLIQUE, but also several other NP-hard problems [41]. In this chapter, we study
a specific family of such procedures, whose main idea— to branch using pivot vertices —is
due to Bron and Kerbosch [42]. Although first proposed in 1973, this branching rule is still
used in most state-of-the-art algorithms. We discuss some of its properties and how they help
us understand the contrast between theoretical hardness results and the abundance of efficient

algorithms for MAXiMUM CLIQUE.

3.1 Basic structure of the algorithm

First, we define the instances of the subproblem that the algorithm solves.

Definition 3.1. A clique subinstance of a graph G (or simply a subinstance) is a pair (Q, R)
of disjoints subsets of V(G) where Q is a clique and Q € N(u), for each u € R. In each
subinstance (Q, R), the objective is to find the largest clique Q* of G suchthat 0 € Q* € QUR.

An instance is solved if R = 0.

An instance now comes with a initial clique Q and the objective of the subproblem
is to find the largest clique containing Q by examining only vertices in R. Notice that an
instance of the original problem MAXxiMuM CLIQUE with input graph G corresponds to the
subinstance (9, V(G)).

The branching step defines how any B&B method divides an instance into “smaller”
ones —its children. In order to branch a clique subinstance, the algorithm will consider two
cases. Intuitively, for any v € R, if Q* is the largest clique containing Q, then either v € Q* or
v ¢ Q* and we will enumerate the possibilities as follows. If a subinstance (Q, R) of G is not
already solved, then R # @, a pivot vertex v € R is chosen and this subinstance branches into

two others:

1. (Q U{v}, RN N(v)), which considers all cliques that contain v (and do not

contain any vertices that are not adjacent to v);
2. (Q, R\ {v}), which considers all cliques that do not contain v.

We do not specify how the algorithm chooses pivot vertices, but many implementations use
degree-based [15, 43] or coloring-based [44, 45] criteria.

One of the key steps in any B&B method is the bound phase, where the algorithm
computes an upper bound (in a maximization problem, or a lower bound in a minimization
one) on the value of the best solution available to some instance and decides whether or not to
branch. We do not define which bound rule is to be used yet, but the most common ones are

coloring-based (see Chapter 6).

22

We call any algorithm that implements this scheme a standard algorithm. All results
herein apply to any standard algorithm, regardless of its pivot choices and upper bounds. A
standard algorithm that does not have a bounding rule simply enumerates all possible cliques.

Figure 1 illustrates the branching of a subinstance in a standard algorithm.

Figure 1 — A branching step on a subinstance (Q, R) with pivot v on a standard algorithm.

(a) The parent subinstance (Q, R) and
the pivot v among vertices of R.

v

O O

(Q.R)

(b) The left child of (Q, R), obtained
by adding v to the current clique
and removing from R vertices non-

(c) The right child of (Q, R), obtained
by removing v from R without
adding it to the current clique.

adjacent to v.

= it L
% | O 2 O
<~ <~ ~Aa

(Q U{v}, RN N(v))

Source: prepared by the author.

(Q. R\ {v})

The set of subinstances considered by some execution of a B&B algorithm naturally
induces a tree. For standard algorithms, its structure depends on the choice rule for pivots and
the upper bound used. The root node of this tree is the subinstance (9, V(G)) and the children of
a node are given by its children subinstances according to the branching rule. If a node does not
branch, either because it is solved or because the algorithm pruned its children due to the upper
bound, it is a leaf. We now define a similar tree structure, but that is associated with graphs

instead of algorithms.

Definition 3.2. Given a graph G, a clique search tree T of G 1is a binary tree such that:
1. The root of T is the subinstance (9, V(G));
2. The leaves of T are all subinstances in which R = @;

3. The left and right children of an internal node (Q, R) are (Q U {v}, RN N(v))
and (Q, R\ {v}), for some v € R, respectively.

A clique search tree of a graph G can be seen as the result of an execution of a

standard algorithm with no bounding rule. A graph can have many clique search trees, as they

23

are defined by the pivot choices, but they all have the same size (see Proposition 3.3). We say an
execution & of a standard algorithm is contained in a clique search tree T of a graph G if the
subinstances analyzed in £ induce a connected subgraph in 7', this subgraph contains the root of
T and every pivot choice is the same in any subinstance of £ and its equivalent node in 7. In

the next section, we describe how to analyze standard algorithms through clique search trees.

3.2 Some properties of standard algorithms

We consider clique search trees as a description of a worst-case scenario for any

standard algorithm. The following proposition gives an intuition as to why this is true.

Proposition 3.3 (Carmo and Ziige [22]). Let G be a graph and C be the set of all its cliques. If
T is a clique search tree of G, then T has 2|C| — 1 nodes. Furthermore, each execution of a

standard algorithm for MAXIMUM CLIQUE on G is contained in some clique search tree of G .

Indeed, by Proposition 3.3, the size of a clique search tree is an upper bound on the
number of instances considered by any standard algorithm. Therefore, if the clique search trees
are not too large, standard algorithms need not evaluate too many nodes. Carmo and Ziige [22]
approach the gap between theoretical and empirical hardness results regarding MAXIMUM

CLIQUE by analyzing the average behavior of B&B algorithms through clique search trees.

Lemma 3.4 (See e.g. Carmo and Ziige [22]). For any n € N and constant p € (0,1), if
G ~ G(n, p), then the average number of cliques in G is at most n>*<»'¢" 'where ¢, = —1/1g p.

In other words, the expected number of cliques in a random graph (for constant p)
is 902" Now, as the size of any clique tree grows at most as fast as the number of cliques
in the graph, their size is, on average, subexponential. This explains why standard algorithms
seem to be much faster on average than what they are expected to be in the worst case, for if the
time to process a single node is subexponential, the final execution time is still expected to be
subexponential and far from the worst case.

Chvatal [46] defines a structure that is similar to a clique search tree. The f-driven
tree (the ““ f stands for a function that selects pivots and, thus, defines the structure of the tree) is
a binary tree whose nodes are subinstances for MAXIMUM INDEPENDENT SET and the children
of a node are defined in an analogous way to those of a clique search tree node. Pittel [47] proves
that the size of a f-driven tree on G(n, p) graphs for constant p is subexponential w.h.p. and

Carmo and Ziige [22] point out that the same could be argued for clique search trees.

Theorem 3.5 (Pittel [47], Carmo and Ziige [22]). For anyn € N, constant p € (0,1) ande > 0,
if G ~ G(n, p) and T is a clique search tree of G, then

]P)(n(O.ZS—e)cplgn < |T| < n(O.S—i—s)cplgn) > 1 — exp(—c 1n2 l’l),

where c is a positive value depending on ¢ and ¢, = —1/1g p.

24

Theorem 3.5 strengthens the explanation of the easiness in practice of MAXIMUM
CLIQUE. Not only the expected number of cliques in a G(n, p) random graph for constant p is
n®Uem but the number of cliques itself is 721%™ w.h.p. So even if a standard algorithm uses no
upper bound, it still is very unlikely that it takes exponential time to solve an instance, provided
it uses at most subexponential time processing a subinstance. In other words, although the worst
case is indeed exponential, it is rare enough not to be too impactful.

These results raise the following question: “If almost always a maximum clique can
be found in subexponential time in G(n, p) with constant p, when does it take more time to find

it?” We investigate some answers in the next chapter.

25

4 INSTANCES IN THE LITERATURE

In this chapter, we discuss some clique-related results that can be extended to graph
constructions. We split them into two categories: theoretical and practical. The first category
includes constructions designed to achieve specific properties, such as maximizing the number
of cliques or maximal cliques in graphs of a given size and order, with formal proofs confirming
them. The second one, on the other hand, focus on instances that were conceived as inherently
hard for MAxiMUM CLIQUE, following heuristic rules without any formal proof of hardness,

relying instead in empirical tests to display their difficulty.

4.1 Theoretical instances

When looking for hard instances to MAXiMUM CLIQUE, a natural first approach
is to find graphs that at least exhibit an asymptotically higher number of cliques compared to
G(n, p) with constant p. In this sense, a complete graph on n vertices is best possible with
2" cliques and, indeed, any standard algorithm without an upper bound will take exponential
time to solve these instances. However, it is easy to find a maximum clique in K,, (just find any
maximal clique) and this can be exploited by algorithms to quickly prune all branches using
common upper bound rules (e.g. vertex coloring heuristics) and terminate.

If a high edge density is to be avoided, Wood [48] proves that the highest possible
number of cliques in a graph with n vertices and m edges is 2¢ + 2° +n —d — 1, where d and

¢ are defined as the unique integer solution to
d
m=\, + £, 0<{=<d-1,

and shows instances that attend to this number. Such an instance consists of a graph with n
vertices which has the largest possible complete subgraph with at most m edges (using d vertices)
and all the remaining edges have one common endpoint outside the large clique and one endpoint

inside the large clique, any other vertex is isolated. Figure 2 gives an example.

Figure 2 — A graph with 7 vertices, 9 edges and 2* + 2° + 7 —4 — 1 = 26 cliques, the maximum
possible for any graph with these parameters, as described by Wood [48].

O O

Source: prepared by the author.

The author also shows the maximum number of cliques in graphs with other
restrictions, such as both number of edges and maximum degree fixed, fixed number of edges

and d -degenerate, planar and planar with a fixed number of edges.

26

If many maximal cliques are desired, Miller and Miiller [49] and Moon and
Moser [50] independently show that any graph with n vertices has at most O(3"/?) maxi-
mal cliques and the latter authors prove that graphs that attain this value are complete multipartite
graphs where each part has size 2 or 3 and as many parts as possible have size 3. Figure 3 gives

an example.

Figure 3 — A graph with 8 vertices and 2 - 37?/3 = 18 maximal cliques, the maximum possible
for any graph with this many vertices, as described by Moon and Moser [50].

Source: prepared by the author.

These graphs are a special case of the more general Turdn graphs 7' (n, k) due
to Turdn [51], which have the maximum number of edges among graphs on n vertices without
cliques of size k + 1. Besides that, Zykov [52] shows that they also have the most number of
cliques of size k among any n vertex graph without cliques of size k + 1.

These are graphs that combine a high number of cliques with other desired properties
(fixed edge density or planarity, for example), but to the best of our knowledge have not been
benchmarked with standard algorithms.

As a final note, we mention the family of graphs due to Lavnikevich [26]. Its difficulty
is supported both by a formal proof on a lower bound for the solving time regarding a specific
type of algorithms and by computational tests using an implementation of such algorithms. This
construction will be discussed in more detail in Chapter 6 due to its unique nature — being

theoretically and empirically hard.

4.2 Practical instances

The DIMACS benchmark set [23] contains 66 instances that arise from many
contexts. They are split into nine families and were proposed in the Second DIMACS Imple-
mentation Challenge in 1992, but remain to this day as one of the main sources of hard inputs
to clique algorithms. Random graphs in the G(n, p) model, usually with a constant p, are also
widely used. These are, however, much easier instances in practice (and in theory, as we have
seen in Chapter 3) and tend to serve only as a control group to be tested against some other graph

construction with similar order and size.

27

The first family of instances, denoted by “CFat”, consists of 7 graphs originated by
fault diagnosis problems on distributed systems [5]. The second and third, denoted by “Johnson”
and “Hamming”, contain 4 and 6 graphs, respectively, that come from problems in coding theory.
The fourth one, with 3 instances, is denoted by “Kel” and is based on Keller’s conjecture on
tiling using hypercubes [53]. The fifth, denoted by “San”, has 11 graphs and is originated by
problems concerning vertex covers [54]. The sixth, denoted by “SanR”, contains 4 random
graphs with sizes similar to those in the fifth family. The seventh, denoted by “Brock”, consists
of 12 instances that attempt to hide large cliques in quasi-random graphs, where the expected
clique size is much smaller [25]. The eigth, with 15 graphs, is denoted by “PHat” and is given
by a generalization of random graphs that has more parameters, a wider node degree spread
and larger clique sizes [55]. The ninth and last, denoted by ‘““Stein”, contains 4 graphs which
correspond to instances of a clique translation of the set covering formulation of a problem
concerning Steiner Triples [56].

The idea of hiding cliques in quasi-random graphs, in particular, is widely adopted.
The “Brock” family of graphs, for example, focus on defeating a greedy heuristic that excels on
instances generated by a similar model due to Kucera [57]. The graphs are generated by using
two probabilities functions to decide if an edge should be added or not in the final graph, which
enables them to control the hardness for these greedy algorithms to detect a clique while still
being able to keep some desired average edge density.

A somewhat similar strategy is also used in the BHOSLIB [24], which is another
repository of hard instances for MAxiMuM CLIQUE (but also for vertex cover and coloring
problems) which is frequently used, although not as much as DIMACS. The main idea is to
generate k disjoint independent sets with size k°, for some integer k and constant & > 0, and
all edges between vertices in different independent sets; select two of these independent sets
uniformly at random and remove pk?¢ edges between them, for some constant p € (0, 1), and
repeat this process rk Ink — 1 times, where r > 0 is another constant. When this is done, any
clique in the resulting graph has size at most k. The key step is then to choose k vertices, one
in each independent set, and add back any missing edges to form a clique of size exactly k.
The expected hardness of these instances comes from choosing specific values of €, p and r
following principles of hardness of phase transitions, i.e., the problem is expected to be easy for
some choices of these parameters, but they can be tuned to make it challenging. This method
makes use of a reduction from a satisfiability problem to a clique one and hardness results due
to Xu and Li [58].

In the next chapter we propose a new family of hard instances, based on a particular
reduction from MINIMUM VERTEX COLORING to MAXIMUM CLIQUE in the literature.

28

5 USING VERTEX COLORINGS TO BUILD CLIQUES

Chapter 3 stablished the fact that G(n, p) random graphs for constant p, cannot be
too hard for MAXIMUM CLIQUE as they simply do not have enough cliques to be enumerated. In
Chapter 4, we introduced a natural way of obtaining harder instances, namely to find graphs that at
least have many more cliques. In this chapter, we describe a reduction from MINIMUM VERTEX
COLORING to MAXIMUM CLIQUE in the literature and how to adapt it into an algorithm to

build graphs with many cliques.

5.1 The Representatives Model

Campélo, Campos and Corréa [59] introduce a linear integer programming formula-
tion for MINIMUM VERTEX COLORING. This model, called the “Asymmetric Representatives
Model” establishes a connection between colorings and independent sets (and, consequently,
between cliques as well).

Given a graph G and a linear order < over its vertices, a k-coloring can be expressed
by representatives, one for each color class S;, i € {1,2,...,k}. The set of representatives
is a transversal to {S;, S,,..., Sk}, i.e., there is exactly one v; € §; that is a representative
for each i € {l,...,k}, which is the minimum vertex with respect to < in the class, i.e.,
v; < u,Vu € S; \ {v;} and every vertex in the graph is either a representative (and represents
itself) or is represented by exactly one other vertex. A coloring of G defines uniquely the set of
its representatives and who they represent, and the converse is also true (up to color relabeling).

Figure 4 shows the relation between a coloring and its representatives.

Figure 4 — Modeling a coloring through its representatives. The smallest vertex of each color
class is a representative and represents vertices in the same class.

(a) Coloring of a graph G. Each dashed (b) Representatives of the coloring. An arc
circle denotes a color class. from a vertex u to a vertex v indicates
that the former represents the latter.

@, @
®<—D

@_
® O
©
©~>Q

Source: prepared by the author.

29

This model was explored by Cornaz and Jost [60], who describe a construction that
takes a graph G and an acyclic orientation D of its complement (i.e., an orientation of G that
has no oriented cycle) as input and outputs a specific construction, which they call G. The

transformation is presented in Algorithm 5.1.

Algorithm 5.1. CorNAZJOSTREDUCTION(G, D)
1 Let L(G) be the line graph of G
2 G < L(G)
3 foreach xy € E(G) do
4 Let x = yv and y = uz, as x and y are adjacent edges of G
s | if (u,v),(u,z) € E(D) and vz € E(G) then
6 ‘ E(G~)<—E(G)\xy
7 return G

The authors then show that there is a bijection between colorings of G and indepen-
dent sets in G, suggesting that graphs with many colorings could be transformed into graphs

with many independent sets (their complement having many cliques).

Theorem 5.1 (Cornaz and Jost [60]). For any graph G and any acyclic orientation of its
complementary graph, there is a one-to-one correspondence between the set of all colorings of G
and the set of all stable sets of G. Moreover, for any coloring V1, ..., V) and its corresponding
stable set S in G, we have: |S| + k = |V(G)|. In particular, a(G) + x(G) = |V(G)].

Given a graph G, if no particular acyclic orientation is known, we can define an
arbitrary linear order < and orient each edge in G from the smallest endpoint to the largest
(according to <), and the orientation will be acyclic, as < is linear. The conditional on line 5
can then be rewritten as “if u < v, u < z and vz € E(G) then”.

As this work is primarily concerned with cliques, we also define G* as the comple-
ment of G to avoid speaking in the language of independent sets. This adapted construction is
presented in Algorithm 5.2, assuming that instead of an acyclic ordering, the algorithm receives

as input a linear order over the vertex set of G.

Algorithm 5.2. CLIQUECORNAZJOSTREDUCTION(G, <)

1 Let L(G) be the line graph of G

2 G < L(G)

3 foreach xy € E(G) do

4 Let x = yv and y = uz, as x and y are adjacent edges of G
5 if u < v, u <zand vz € E(G) then

6 ‘ E(G) < E(G) \ xy

7 Let G* be the complement of G

8 return G*

30

An example of this process is given in Figure 5. Even though the final steps of
defining and returning G* are not described by Cornaz and Jost [60], we hereon call this process

the Cornaz—Jost reduction.

Figure 5 — Using the Cornaz—Jost reduction to obtain the graph G* given a graph G and a linear
order <.

(a) A graph G and a linear order defined (b) The complementary graph G.
over its vertices.

VD0
&

(¢) The line graph L(G) of the complemen- (d) The graph G, in which the edge between
tary graph G. vertices 12 and 14 was removed due to
2 and 4 being neighbors in G.

(e) The final graph G*, the
complement of G.

i
3y ©
Source: prepared by the author.

Theorem 5.2. If G* is the output of Algorithm 5.2 with input G, then the number of cliques in

G* is equal to the number of colorings of G.

Proof. There is a natural bijection between the set of cliques in G* and the set of independent
sets in G. As each clique in G* corresponds to an independent set in G and each of these
corresponds to a coloring of G by Theorem 5.1, the number of cliques in G* is precisely the

same as the number of colorings of G. (]

The structure of G* depends on the input graph G, so it is natural to focus on a
specific family of inputs. Moreover, in order to determine the number of cliques in G*, we need

to know the number of colorings in G. We focus on the case where G is a random graph.

31

5.2 Counting colorings in random graphs

Following the observations made by Johnson and Trick [31] about the disparity of
the results concerning MAXIMUM CLIQUE and MINIMUM VERTEX COLORING during the
DIMACS Second Implementation Challenge, Campos, Carmo and N. [61]! study the average

number of colorings on random graphs, in a similar fashion to what was done to cliques.

Theorem 5.3 (Campos, Carmo and N. [61]). For any o« € (0,1/3), ift G ~ G(n, p) for

p <1 —n~%, then the expected number of colorings of G is n®™ 2

Note that Theorem 5.3 is stronger the closer « is to 1/3, as p can be chosen from a
wider interval. This result enables counting the expected number of cliques in the Cornaz—Jost
reduction with such an input. It also suggests that it should be harder to enumerate colorings than
cliques, as random graphs are expected to have much more of the latter than of the former (In
the G(n, p) model with constant p, for example, for a sufficiently large n we have p < 1 —n=*
for any constant p and any « € (0, 1/3)).

Theorem 5.3 (and the rest of this work) counts colorings as partitions of the vertex
set in which each part is an independent set, i.e., relabeling the color classes in a given partition
yields the same coloring. In particular, a complete graph has only one coloring.

We now improve Theorem 5.3 by relaxing the condition on « and giving a concen-

tration inequality. To do so, we need the following result.

Theorem 5.4 (Johansson, Kahn and Vu [62]). Given a strictly balanced graph H with k vertices
and m edges, if G ~ G(n, p) for p = w(m~%*Y/"(nn)"™) and n = 0 (mod k), then the

number of H -factors in G is at least

(n*™! p™)" " exp(=O(n))
with probability at least 1 — 1/n®W.

Johansson, Kahn and Vu [62] also argue that if we set m = p(;) instead and choose
G ~ G(n,m), the conclusion of Theorem 5.4 is still valid. We are now ready to prove the first

main result of this work.

Theorem 5.5. Leta € [0,1) andc € (0,1]. IfG ~ G(n, p) for p < 1 —cn™*, then the number
of colorings of G is n®™ with probability 1 — 1/n®W,

Proof. Let C be the random variable that counts the number of colorings of G. We search for

two positive constants ¢ and § such that n" < C < n’" with probability at least 1 — 1/n~°®,

1 This extended abstract published in 2022 contains a preliminary discussion of some of the results presented in
this work.

2 This theorem is stated slightly different from the original source. Originally, & could be 0, but this lead to a
divison by 0 in the proof; moreover, G belonged to the G(n, m) model for m < (’2’)(1 — n~%), but the first step
of the proof changed the model back to G(n, p) (this was mainly due to page constraints).

32

For the upper bound, as any coloring can use at most n colors, there are at most n" colorings of
G with probability 1.

Now, for the lower bound, we count the number C, of colorings where each color
class has size exactly 2, as C > C,. We assume that n is even, otherwise let G’ be an induced
subgraph of G with n — 1 vertices and note that any coloring of G’ can be extended to a coloring

of G, so the number of colorings of G is at least the number of colorings of G’. Moreover,

G' ~G(n—1,p)and
n—1\" n \“ n
= < <2,
(n) (n—l) n—1

so we can take ¢’ = ¢/2 to get

l—cn™®=1-2cn""<1 —c/(n ; 1) n*=1-cmn-1)7"7,
hence p <1 —cn™® implies p < 1 —c¢'(n — 1)™*, and we can work with G’ instead.
If H = K, then C, is the number of H -factors in G. Letting ¢ = 1 — p, we have
G ~ G(n,q) and g > cn™®, but, in order to apply Theorem 5.4, we need ¢ = w(Inn/n) and,
indeed, n™® = w(lnn/n), because Inn = o(n?) for any B > 0, thus, we can take B = 1 — a.
This means that with probability at least 1 — 1/n*®

C, = (nq)"* exp(—=O(n))

> n"(cn™*)"? exp(—=O(n))

— nn(l—a)/2—(9(n/1gn)

Z nen

b

for some ¢ > 0. O

In Theorem 5.5, the parameter « is now only required to be less than 1 instead of
1/3 and the result is now valid w.h.p. (to say with probability 1 — 1/n*® is in fact stronger than
to say w.h.p.). Hence, this result is much stronger than Theorem 5.3. To see this, consider the

following corollary regarding the expected value, which is still stronger than the old result.

Corollary 5.6. Letc € (0,1] and o € [0,1). If G ~ G(n, p) tor p < 1 —cn™%, then the

expected number of colorings of G is n®™.

Proof. Again, as C < n”, it follows that E[C] < n". Now, by Markov’s inequality, P[C > t] <
E[C]/t for any t > 0 and, by Theorem 5.5, there exists ¢ > 0 such that C > n®" with probability

at least 1 — 1/n°W, Setting = n®" we have

E[C
<P[C =n""] < g,
nw(l) nen

hence E[C] > n®"(1 — 1/n°M) > n®™ for some & > 0. O

33

Theorem 5.5 thus strengthens the intuition that enumerating colorings should be

©lgn cliques w.h.p. versus n®® colorings w.h.p.

harder than enumerating cliques, as there are n
on graphs in the G(n, p) model for constant p (Just take @ = 0). Nevertheless, it is possible to
decide in polynomial time if a graph has a clique of size at least k for any fixed k (just examine
all (Z) subsets of size k searching for such a clique in time O(n*)), while deciding if a graph
has a proper coloring using at most k colors is still a NP-complete problem for any & > 3 [13].
So in a parameterized complexity point of view, MINIMUM VERTEX COLORING is harder
than MAxiMuM CLIQUE, but our explanation differs in its essence, appealing to enumeration
complexity, which we find practical as almost all state-of-the-art algorithms are enumerative
(and already were when the second DIMACS challenge took place).

As a final remark, we note that Theorem 5.5 can be adapted to work in the G(n, m)
model, which is useful to fix the number of edges in the input graph, as this affects the number

of vertices in the transformed graph.

Corollary 5.7. Leta € [0,1) and ¢ € (0,1]. If G ~ G(n,m) form < (})(1 —cn™®), then the
number of colorings of G is n®™ with probability 1 — 1/n®®.

Proof. The n" upper bound on the number of colorings with probability 1 is still valid. As
Johansson, Kahn and Vu [62] state that Theorem 5.4 also works for G ~ G(n,m) if m = p(g)
where p = w(n=%=Y/m(Inn)'/™), the lower bound given in the proof of Theorem 5.5 can be

used analogously. O

We are now ready to move on to the Cornaz—Jost reduction analysis.

5.3 Instances with more cliques than average

Campos, Carmo and N. [61] use Theorem 5.3 to analyze the Cornaz—Jost reduction

when the inputs to MINIMUM VERTEX COLORING are random graphs.

Theorem 5.8 (Campos, Carmo and N. [61]). Foranyn € N and ¢ € (0, 1/10], the Cornaz—Jost

reduction can build graphs with n vertices in which the expected number of cliques is nOw*7),

The algorithm behind this result is as simple as choosing a value of « as a function of
the given &, sampling a random G (N, m) graph for a particular choice of N and m and applying
the Cornaz—Jost reduction on it using a random linear ordering on V(G). Theorem 5.8 can be
strengthened using Theorem 5.5 by repeating essentially the same idea but choosing a “better”

value of «. Algorithm 5.3 illustrates this method and Theorem 5.9 provides an analysis.

Algorithm 5.3. CORNAZJOSTINSTANCES(7, €)
1 Letc € (0,1]and N € Nbe such that 1 + 2n)'* < N < 2n/c)'~*
2m < (3)—n
3 Sample G ~ G(N, m) and a linear order < over V(G) uniformly at random

4 return CLIQUECORNAZJOSTREDUCTION(G, <)

34

Theorem 5.9. Foranyn € N and ¢ € (0, 1/2], the output of Algorithm 5.3 with inputs n and &

@(nl—s

has n vertices and n) cliques with probability at least 1 — 1/n®®.

Proof. Let G* be the output of Algorithm 5.3 and @ = (1 —2¢)/(1 —¢). As0 < e <1/2,
1
2—«
For any ¢ € (0, 1/2] and n € N, there exists a small enough constant ¢, > 0 depending only on
¢ such that

=1l—¢ and 0<a <. (5.1

[14+ (2n)'°, (2n/c)'*] NN # @, Ve € (0,c,),

which means there is always some choice of ¢ and N in line 1. Note that N > 1 + (2n)'¢
implies (N — 1)>7%/2 > n by (5.1) and this means m is well defined, as

N N — 1)«
m=()—n2¥—n20.
2 2

m = (ZZ) —n <(1 —cN_“)(];),

so G ~ G(N,m) has N®®™ colorings with probability at least 1 — 1/N*® by Corollary 5.7.

Furthermore, by the choice of N, we have

Moreover,

N =0®xn'™), (5.2)

hence, as the number of cliques in G* is equal to the number of colorings of G by Theorem 5.2
and NOW) = p®'™) by (5.2), G* has NO™) = n®@'™) (liques with probability at least
1 —1/N*D, whichis 1 —1/n®®, O

In Theorem 5.9, the number of cliques is now n©@' ™" instead of n®®”°™" and this
is valid now w.h.p. The least number of cliques remains n®~" this was achieved before when
¢ = 1/10 and is now when ¢ = 1/2. Hence, this result is much stronger than Theorem 5.8. To
see this, consider the following corollary regarding the expected number of cliques, which is still

stronger than the old result.

Corollary 5.10. For anyn € N and ¢ € (0, 1/2], the output of Algorithm 5.3 with inputs n and

. . . . 1—
¢ has n vertices and its expected number of cliques is n®® .

Proof. Using a similar argument to that on Theorem 5.9’s proof, the expected number of cliques
in the output of Algorithm 5.3 is N®®™ by Corollary 5.6. As N®™) = n®@'™) py (5.2), the

result follows. O

These instances at least have asymptotically many more cliques than graphs in the
G(n, p) model for constant p, putting them as candidates for being harder to solve. They are,

however, much denser.

35
Proposition 5.11. For anyn € N and ¢ € (0, 1/2], the output of Algorithm 5.3 with inputs n
and ¢ has expected density 1 — ®(n'~¢).

Proof. Let G* be the output of Algorithm 5.3. First, we count the expected number of edges in
G, the complement of G*. If in line 3 of Algorithm 5.3 the sampled graph is G ~ G(N, m) for
some choice of N and m made in line 1, then vertices of G are non-edges of G and edges of G
are forbidden pairs of non-edges in G, i.e., pairs that do not define a valid set of representatives
and who they represent.

Defining again D as the acyclic orientation of G induced by <, there are four minimal

configurations of vertices i < j < k of G that create edges in G:
1. Ifij,ik ¢ E(G)and jk € E(G),1i.e., (i,]),(i,k) € E(D);
2. Ifik, jk ¢ E(G)andij € E(G),ie., (i,k),(j,k) € E(D);
3. Ifij, jk ¢ E(G)andik € E(G),ie. (i,]),(j,k) € E(D);
4. Ifij, jk,ik ¢ E(G),ie., (i,]),(j, k), (i,k) € E(D).

Figure 6 illustrates all cases.

Figure 6 — Vertex configurations in D that induce edges in G.

(a) Case 1. (b) Case 2.

0 o o o

(c) Case 3. (d) Case 4.

O—0D—® O/@\Qa

Source: prepared by the author.

In case 1, if i represents k, then j cannot be represented by i, so (7, j) and (i, k)
cannot be taken simultaneously in G, meaning that (i, j)(j, k) € E(G). Incase 2, if i represents
k, then j cannot also represent k, so (i, k)(j, k) € E(G) analogously. In case 3, if represents
then k cannot be represented by j, so now (i, j)(j, k) € E(G). Finally, in case 4, we have a
superposition of all three other cases, so again (i, k)(j, k) and (i, j)(J, k) are edges in D, but
now (i, j)(i, k) is not because i can represent both j and k as they are not neighbors in G now.

The probability that case 1 occurs is the same as that of cases 2 and 3, being

(=07

36

as (in case 1) jk must be in G and both ij and i k are forbidden, so another m — 1 edges must be

sampled among the (IZ) — 3 remaining choices. The probability that case 4 occurs is, analogously,

(/)

Cases 1, 2 and 3 all induce one edge in G, while case 4 induces two and all four

cases are defined by triples of vertices in G, thus,

won- () (5 /)
)5 /)

by Pascal’s rule. Now, symplifying, we get

Ele(G)] = (1;]) ((m — 1§$](2v()§;j);'n —2)! " m!((;)((—lzvzq) - 2)!)/((;2:))
-C) e B)

and letting p = m/(7), it follows that

)(p(l—p)(’zv (l—p)—l)+2(1—p)((§)(1—p)—1))
)

D((3) -2 (5) -1
(1= p)(((1—p)—1)(

Ele(G)] = (
-4 (g{g +2).

Now, we can define G’s expected density to be E[d(G)] = E[e(G)]/ (”(f)) and, since v(G) =
n=(Y)—m=(1-p)(). wehave

E[d(G)] = (Z) = p)(g;(: e ((g)_pz - 2) -
2

1= =p(3)-1)

- (jsv) <Z><<§>) («g)—p 2" 2)

= 0O(N?)- 0N -0O(p)
= O(p/N).

By (5.2),
’ _m B(NY) - W)
P T e

— 0(1).

37

Therefore, as E[d(G*)] = 1 — E[d(G)], we get
E[d(G*)]=1-0(1/N)=1-06(1/n""). O

The actual hardness of these instances depends on the specific standard algorithm
being used. We leave the theoretical analysis of the behavior of these graphs under different algo-
rithm parameters, such as upper bound rules, for future work, but we test them in computational

experiments in Chapter 7.

5.4 A final remark on random graphs

We have seen that G(n, p) random graphs for constant p have n©1"

cliques w.h.p.
and their density is concentrated around p, as opposed to our instances given by the Cornaz—Jost
reduction with parameters n and &, which have expected density 1 — ®(1/n'~¢). A natural
follow up question is to determine the number of cliques in a G(n, p) random graph when p is
allowed to increase with n.

If p = 1, there are 2" cliques, which is the most number of cliques for any graph.
Blasius, Katzmann and Stegehuis [63] show that if p = 1 — ®(1/n) and n is large enough, then
a graph in the G(n, p) model has n®®/12m = 200 cliques w.h.p. To the best of our knowledge,
there is no analogous result for p = 1 — ®(1/n'~¢), which would allow us to compare our
instances to G(n, p) graphs with a matching density. We provide an answer regarding the

expected number of clique of such graphs.

Theorem 5.12. Forany ¢ € (0,1],ifG ~ G(n, p) for p = 1 — ©(1/n'"%), then the expected

. . . 1—¢
number of cliques in G is n®® " 18m,

Proof. Take two positive constants ¢ and ¢’ such that

nl—s

Let X} be the random variables that count the number of cliques of size k in G, fork = 0,...,n

n

k
of k vertices and the probability that one such set is a clique is p(g), hence, by linearity of

and X be the random variable that counts the total number of cliques in G. There are () sets

expectation, it follows that

(Z)(l - nf/_) J . E[X,] < (Z) (1 - nf_) 2)

Y ()0 sma=y (-2 e

k=0 k=0

and

Now, by (2.5) and (2.6), we have

" (1 ¢)(§)< kK fmn—knk (5.4)
— X — nn — n . .
k ni—¢ = P\ 2pie 2nl-e

38

If we define f:[0,n] —> R as

2

cX 4
x p—
2n1—8 2nl—s

f(x) =

+xInn —xInx,

we see that f is twice differentiable in (0, n) and

C cX
1—e¢

— Inn —Inx.
n + Inn nx

f(x) =

nl—s

Note that f/(x) = 0 when

c cX

2n1—£ nl—e

+Inn —Inx =0,

that is,

= . (5.5)
n—¢ n—¢

Let y = cx/n'"¢, so we can rewrite (5.5) as

- +Inn=y+Iny+(1—¢)lnn—Inc

and apply the exponential function in both sides, getting

c
exp(znl_a +elnn + lnc) = yexp(y). (5.6)

Equation (5.6) satisfies the functional equation of a Lambert function, as in (2.3). Its solution’s

asymptotics is given by (2.4), so

y = +eéelnn +1Inc — B(Inlnn),
2nl—e
which means
€
X = (— + 0(1))}11_8 Inn.
c
Furthermore, f”(x) = —c/n'~% — 1/x, which is always negative, so f is concave and its

maximum happens at (¢/c¢ + o(1))n'~¢ Inn. Plugging this value for k and (5.4) into (5.3), we
end up with

2

E[X] < nexp((— ;—c + ; — ;(1 —8) + o(l))nl_'3 In? n)

2
=n exp((;— + 0(1))111_8 In® n)
c

1—e
— n@(n lgn)’

For the lower bound, we start by noting that E[X] > E[X,] for any k and, by (2.6),

1 1 1
= = > = eX (—
1/(1-x) 1+ 7 exp(i) P

1

1—x

). (5.7)

39

Plugging (5.7) and (2.7) into (5.3), it follows that

E[X] > E[X;]
n ¢ \O)
= (k)(l - nl—e)
= (1) e (-(5))
—\k 2)nt—¢
< k\ ¢
= exp —() — +klnn—klnk).
2 nl &

For any ¢ € (0, 1), there are only finitely many integer values of n for which n'~*Inn > n.

Hence, choosing a constant § (depending only on &) small enought such that
Sn'"flnn <n, Vn e N

we see that setting k = |Sn'~¢Inn | implies k < n. Thus,

E[X] > exp((—cfz +5—8(1—¢)+ 0(1));11—8 In? n)

but

_0/252 +5_5(1—8):8(8—?)

and if § < 2¢/c’ (again we can take a small § depending only on ¢ and ¢’, which are constants),

this factor is positive. Therefore,

E[X] = exp(©(n'~*1g* n))

n@(nlfflgn)_ 0

This result tells us that the expected number of cliques in G(n, p) random graphs is
even higher than that of our instances built from the Cornaz—Jost reduction. In Chapter 7 we
compare them further using a standard algorithm with a strong upper bound in order to get an
idea of their hardness difference in practice.

As a final remark, we note that if set ¢ = 1 in Theorem 5.12, we get a constant p
and n®®" cliques, agreeing with Lemma 3.4. If we were to set &¢ = 0, however, we would
get p = 1 — O(1/n) but n®"8" cliques, which does not agree with the result due to Blisius,
Katzmann and Stegehuis [63] (in particular this would not even be possible as the number of
cliques in any graph is at most n"/18"),

In the next chapter we analyze instances that are hard only for a subclass of standard

algorithms, characterized by the usage of a particular (and efficient) upper bound.

40

6 CHROMATIC UPPER BOUNDS FOR STANDARD ALGORITHMS

The instances’ analyses so far do not concern specific upper bound rules, which
makes them valid for any standard algorithm. On the other hand, all state-of-the-art algorithms
apply some sort of pruning rule to reduce the number of subinstances to be solved. When this is
done, a high number of cliques on its own (and even ideas described in Section 4.1 of Chapter 4)
may not be enough to ensure hardness, so we need more fine tuned arguments based on the
upper bound being used. Hence, we now turn our attention to a more specific type of standard

algorithms that have been vastly adopted and studied.

6.1 Introducing a bounding rule

Recall that standard algorithms are enumerative but need not implement any kind
of upper bound in order to avoid branching when it is not necessary. Introducing such bounds,
however, can lead to very efficient algorithms, provided the bound does not take up much time to
be evaluated. A common rule to stop a node from branching is comparing the size of the largest
clique already found to the least number of colors needed to color the graph induced by the
current node’s subinstance, where a graph G induced by the subinstance (Q, R) is G[Q U R].
We call this strategy a chromatic upper bound.

It is a well known fact that if a graph G has a clique Q, then any proper coloring of

G uses at least | Q] colors, as each vertex on Q must have its own color, hence,
x(G) = w(G). (6.1)

Furthermore, if a subinstance (Q, R) is such that y(G[Q U R]) < k, then o(G[Q U R]) <k
and if a clique of size k has already been found, there is no real reason to keep branching after
this node. This idea was first proposed by Babel and Tinhofer [16].

Note that computing the chromatic number of those subgraphs is not trivial in general,
s0, in order to keep the upper bound feasible time-wise, a possibly non optimal number of colors
is computed by some heuristic instead, which still is an upper bound nonetheless. So, for each
node (@, R), the algorithm computes an upper bound, say I'(G[Q U R]), on x(G[Q U R])
and checks if the largest clique found so far, say Q*, satisfies ['(G[Q U R]) < |Q*|, and if so,
the algorithm prunes this branch. An algorithm that implements this pruning rule is called a
x-bounded algorithm. In particular, a y-bounded algorithm never discards a node (Q, R) in
which y(G[Q U R]) > w(G). We remark that the vast majority of state-of-the-art algorithms
for MAXxIMUM CLIQUE use some sort of chromatic upper bound, although newer results apply
graph reductions (usually to satisfiability problems) before the coloring to obtain infra-chromatic
upper bounds [21].

We now define a substructure of clique search trees.

41

Definition 6.1. Given a graph G and a clique search tree 7" of G, the y-pruned subtree of T,
denoted by T, is the (unique) subtree of 7" such that:

1. The root of T, is (9, V(G));
2. Inevery leaf (Q, R) of T}, we have y(G[Q U R]) < o(G).
3. T, is minimal in size;

Intuitively, a y-pruned tree is obtained by pruning several branches of a clique search
tree. It can also be viewed as an “optimal” execution of a y-bounded algorithm, as in each step
the algorithm always colors the graph induced by the current subinstance with the least number
of colors possible and, at any point, the largest clique found is always a maximum one. The

following result describes the relation between y-bounded algorithms and y-pruned subtrees.

Proposition 6.2. For any execution £ of a y-bounded algorithm on a graph G, there is a clique
search tree T of G such that £ is contained in T and the set of subinstances considered by £
contain V(T,).

Proof. By Proposition 3.3, there is a clique search tree T that contains £, because any y-bounded
algorithm is a standard algorithm. Let I'(G) be the upper bound on the chromatic number
evaluated by the y-bounded algorithm on a graph G. Both 7" and T, share the same node as
root, namely (9, V(G)), which is the first node considered in £. If (Q, R) € V(T,), then the
parent (Qp, Rp) of (Q, R) isnotaleafin 7, and x(G[Qp U Rp]) > w(G), but

[(G[Qp U Rp]) = x(G[Qp U Rp]) > w(G),

soin &, (Qp, Rp) cannot be a leaf and both its children are considered too, hence V(7)) is

contained in the set of instances considered by £. O

So, essentially, the number of subinstances considered in an execution of a y-bounded
algorithm is at most the size of some clique search tree 7" and at least the size of the y-pruned

subtree 7).

6.2 Exponential running time inducing graphs

We now define the class of Lavnikevich graphs. This notion was introduced

by Lavnikevich [26] and Figure 7 provides an example.

Definition 6.3. For any n = 0 (mod 5), the Lavnikevich graph on n vertices, denoted by L,,, is
obtained by the graph join between n/5 Cs’s.

With a different notation, the author proves the following.

42

Figure 7 — Outline of the L5 graph, where each vertex in a Cs is connected to all other vertices
in the other two Cs’s.

Source: prepared by the author.

Theorem 6.4 (Lavnikevich [26]). The y-pruned subtree of any clique search tree of the L,
graph has size Q(2"/°).

The number of instances considered in a y-bounded algorithm is at least the size of
a y-pruned subtree contained in it by Proposition 6.2, hence, even if the algorithm takes ®(1)
time to process each node (which is too optimistic as the algorithm needs to color de graph
induced by the node’s intances), it still needs to process an exponential number of nodes. This

establishes Lavnikevich graphs as exponential time instances for y-bounded algorithms.

6.3 A preprocessing heuristic

A Lavnikevich graph is hard to solve via y-bounded algorithms, but its structure

allows the usage of a simple preprocessing step that drastically speeds up the solving process.
Proposition 6.5. For any graph G, it G = G, + G, + - -+ 4+ Gy, then

»(G) = max {o(Gi)}.

Proof. As there are no edges between G; and G; for any i # j, any clique in G is contained in

a single G; for some i, so its largest clique is also the largest clique in some G;. (]

Proposition 6.6. For any graph G, it G = G; vV G, V --- V Gy, then

k
o(G) =Y w(G)).

Proof. Given a clique Q; of G;, each vertex of Q; is adjacent to every vertex in any clique Q;
of G;. So O, U Q,U---U Qy, where Q; is aclique in G;, is a clique of G and if we chose each

43

Q; to be a maximum clique in G;, we have a maximum clique in G, for if Q" was a larger clique
in G, then |Q’' N V(G;)| > w(G;) for some i € {1,2,...,k} by the pigeonhole principle. [

By Propositions 6.5 and 6.6, we can preprocess a graph by recursively splitting it
into its components or into subgraphs induced by its complement’s components. Algorithm 6.1
sums up this process, taking as input a graph G and a standard algorithm .A and applying one of
the two steps if possible. Figure 8 illustrates the strategy.

Algorithm 6.1. PREPROCESS(G, A)

1 Let C and C be the sets of the components of G and G, respectively
2 if |C| > 1 then

3 0«0

4 foreach C € C do

5 QO < PREPROCESS(C, A)
6 if |Q| > |Q*| then

7 | 0*< 0

8 return Q*

9 if |C| > 1 then

10 0«90

1 | foreach C € Cdo

12 | O < Q UPREPROCESS(C, A)
13 return Q

14 return A(G)

Figure 8 — The decomposition of a graph G using Algorithm 6.1. In each case, the algorithm is
called recursively for G, and G,.

(a) IfG = Gl + Gz.

e N e * e < 7 R
LGl Gy LG i Gy
(G, + G,) = max{w(G,), w(G,)} o(G,V Gy) = 0(G)) + w(Gy)

Source: prepared by the author.

This procedure is a weaker version of a Modular Decomposition (see [64] for a
survey), but much easier to implement. For a graph on n vertices and m edges, it can be naively
implemented in O (n?) time (just run a depth-first search in G then another in G), but Tedder
et al. [65] show how to compute a Modular Decomposition in O(n + m) time, which indicates
that our preprocessing could be computed faster.

Now, if the preprocessing is applied using a y-bounded algorithm and L, as the
inputs, the problem is greatly reduced. This is because L, = Cs v Cs V --- V Cs where the join
is done n/5 times and, thus, the algorithm has to solve MAXIMUM CLIQUE in the Cs a linear

number of times. The preprocess takes ®(n?) time (even in a potential linear implementation,

44

as e(L,) = ©(n?)) and the original problem is split in ®(n) problems of ®(1) size, that can
be solved in linear time in 7. The whole solving process takes quadratic time, which is a great
improvement from the original exponential lower bound.

As the final step of this work, we focus our attention in graphs that maintain the
exponential solving time requirement for any y-bounded algorithm and resist the preprocessing

described above.

6.4 Worst case instances resistant to the preprocessing

Essentially, we search for graphs on n vertices that when given as input, together
with a y-bounded algorithm A, to Algorithm 6.1 ensure that at least one call to .A has an input
graph with ®(n) vertices.

The first step to this intent is looking to L, itself, searching for a way to shield it
against the preprocessing. Campos, Carmo and N. [61] describe a way to obtain subgraphs of
L, that still exhibit exponential size y-pruned subtrees. We present a proof of Lemma 6.7 as the

authors omitted it from the original paper due to page constraints.

Lemma 6.7 (Campos, Carmo and N. [61]). Foranyn,d € N withn = 0 (mod 5), if G is a
spanning subgraph of L, where «(G) < 2 and §(G) > n — d — 1, then the y-pruned subtree of

every clique search tree of G has (2" nodes.

Proof. Given anode (Q, R) of the y-pruned subtree 7, of a clique search tree in G and a pivot

v € R, a branching operation may discard one vertex from G[Q U R] if it excludes v from the

current clique and at most d if v is included as there are at most d vertices non adjacent to it.

Therefore, if less than n/(5d) branch operations happened in the path from the root to a node

(Q, R), then less than n/5 vertices have been discarded in this subinstance and we have
n(GIQUR]) n—n/5 2n

HGIQUR) = T s s > g = = lly) = 0(G),

which means (Q, R) is not a leaf in T,. Therefore, the size of T, is (2"/G®), O

The real matter is how to obtain such subgraphs that endure the preprocessing. If
we want a spanning subgraph of L,, we can only remove some of its edges (not vertices), which
means we add edges to its complement. By asking the independent sets of this subgraph to have
size at most two, we ask its complement to be triangle-free and by asking its minimum degree to
be at least n — d — 1, we ask its complement’s maximum degree to be at most d. From now on,
then, we argue how to build the complement G of the subgraph G we want.

We build G by adding edges to L, (removing edges from L,) until it becomes
connected, while no triangle is created, its maximum degree does not exceed d and G remains
connected (initially G = L,). We want d to be as small as possible so the lower bound on the

x-pruned subtrees’ size is as large as possible (although it is always exponentially large in n

45

for any fixed d), but note that L, is 2-regular, so setting ¢ = 1 in Lemma 6.7 is of no use as
any possible G has maximum degree at least 2. Asking for d = 2 does not help either, as the
only possible choice for G here is L_,, itself, which is disconnected. Hence, we need d > 3 and,
indeed, we argue d = 3 is enough.

Now, if d = 3, then any vertex in L, gains at most one edge. Even though it is
possible to connect L, adding only n/5 — 1 edges (just contract each Cs into a vertex and
build a tree), this would give G a tree-like structure that could be exploited in some other
preprocessing heuristic. Once one edge is added, we already have d = 3 and it would do no
harm (asymptotically) to add as many edges as possible, i.e., a maximum matching.

We use the Configuration Model due to Bollobds [66] to sample a random maximum
matching to be added in L,. This is a tool for modeling random graphs with a prescribed
degree sequence. Algorithm 6.2 illustrates the sampling of a graph on n vertices with degree
distribution d = (d,, d,, ..., d,), assuming Z?=1 d; is even. It associates each vertex v; with
d; half-edges, and then randomly pairs half-edges to form a configuration, which essentially
describes the structure of the output graph, in which d(v;) = d; foreachi € {1,2,...,n}.

Algorithm 6.2. CONFIGURATION(7, d)

1 Let G be a graph such that V(G) = {vy,v,,...,v,} and E(G) = {e},ea,...,€n},
wherem = 33" d;

2 Let S = {vy,..., vf‘,vzl, e vfz, ...,vl ... v} be the set of half-edges

3fori < 1,...,mdo

4 Pick x uniformly at random from S

5 S« S\ {x}

6 Pick y uniformly at random from S

7 S S\{yj

8 Map the edge e; to the unordered pair v'v”, where x is a half-edge of v" and y is a
half-edge of v”

9 return G

Algorithm 6.2 may output a graph that is not simple, as lines 4 and 6 may sample
half-edges of the same vertex or half-edges of vertices already adjacent. Many configurations
lead to the same output, and the probability of it being some specific graph H depends on the
structure of H . If we condition the output to be simple, however, the distribution of the outputs
becomes uniform. We refer the reader to the classic book due to Bollobds [37] and a survey due
to Wormald [67] for a proof of this and many other results about this model. Figure 9 exemplifies
an execution of this process.

We now present two results regarding the structure of the output of Algorithm 6.2
that we use as lemmas. In each of them, we denote the (nondeterministic) output graph of
Algorithm 6.2 with inputs n and d by G,, 4.

46

Figure 9 — An execution of Algorithm 6.2 withn = 5andd = (0, 1, 2, 3, 4).

(a) Each vertex v; is assigned (b) A random pairing of the (c) The final configuration.
d; half-edges. half-edges is sampled.

©) ©)
@ @) VU3, vivl, viv}, ©3) @)

\@9 vivZ, vivd % D

Source: prepared by the author.

Theorem 6.8 (Bollobds [66]). Ifd; = O(1) foreachi € {1,2,...,n}and) ;_, d; = n+w(1),
then the probability that G, 4 is loopless is

" (d
(1+0(1)) exp(—ﬁ > (2"))

k=1

Theorem 6.9 (Wormald [68]). Fix §, A € Nsuchthat3 < § < A. If§ < d; < A for each
i €{1,2,...,n}, then the probability that G, 4 is §-connected is at least 1 — O(1/n’~2).

Bollobds [66] actually proves a stronger version of Theorem 6.8 on the distribution
of cycles of length k for any k > 1. Algorithm 6.3 uses the spirit of the Configuration Model to

take as input a (simple) graph and add a random maximum matching to it.

Algorithm 6.3. ADDMATCHING(G)

1 Let § be a list containing the vertices of G

2 while |S| > 1 do

3 Pick a vertex v € S uniformly at random
4 S <« S\ {v}

5 Pick a vertex u € S uniformly at random
6 S <« S\ {u}

7 E(G) < E(G) U {e}

8 Map e to uv

9 return G

Naturally, we wish to apply Algorithm 6.3 on L,. The resulting graph need not
be connected, triangle-free or even simple. If it is not triangle-free, then we cannot apply
Lemma 6.7; if it is not connected, then the preprocessing step may break it into small parts and
if it is not simple, then we cannot build a subgraph of L, based on it, because adding an edge
between vertices in L, means removing an edge between vertices in L, and if we add an edge
between adjacent vertices then we would have to remove an edge between non-adjacent vertices,

which is not a valid choice. We adress the probability that these events occur in the next lemma.

Lemma 6.10. Let G, be the output of Algorithm 6.3 with input L,.. The probability that G,, is

simple, triangle-free and connected is exp(—2) &+ o(1).

47

Proof. We can view an execution of Algorithm 6.3 on L,, as an execution of Algorithm 6.2 on
n/5 vertices (one for each Cs in L,) with degree sequence being 5 for every vertex when n is
even or 5 for n — 1 vertices and 4 for the last vertex when # is odd; for each vertex, its half-edges
are the vertices of its associated Cs (except some vertex in some Cs is ignored when 7 is odd).
Whenever two vertices are sampled and an edge is added to L, imagine that the two half-edges
corresponding to these vertices are paired.

Let H be the output graph of this simulation of Algorithm 6.2. A loop in H
corresponds to an edge being added between vertices of the same Cs in L,. Note that if an
edge is added between vertices of the same Cs in L,, then either G, is not simple or it is not

triangle-free, as we can see in Figure 10.
Figure 10 — Problematic configurations when Algorithm 6.2 adds edges with both endpoints in
the same Cs.

(a) In this configuration, G, is not triangle-free. (b) In this configuration, G, is not simple.

Source: prepared by the author.

Moreover, if no edge with both endpoints in the same Cs is added, then no triangle
is created, as vertices in different Css can only induce a triangle in G, if at least one of them

receives two new edges (see Figure 11), but we add only a matching.

Figure 11 — No triangle can be induced by vertices of different Css.

(a) Two Css. (b) Three Css.

g

Source: prepared by the author.

If no edge is added between vertices of the same Cs, then G must be simple as
vertices in different Css are initally non-adjacent and receive at most one edge each, so no parallel
edges exist. Hence, G, is simple and triangle-free if, and only if, H has no loops.

Now, as G, is connected if, and only if, H is connected, it follows that

P[G, is simple, triangle-free and connected] = P[H is loopless and connected].

48

For an upper bound, consider the events { H is loopless} and { H is connected} and note that
their probabilities are both at least the probability we want, as they contain the event we are

interested. When n — oo, the lowest upper bound is P[H is loopless], as

. —_ 1 n dk

IP[H is loopless] = (1 £ o(1)) exp (_% kzzl (2))
110

= (1 £o(1)) exp (—;Tn)

= exp(—2) £ o(1),
for even n and

P[H is loopless] = (1 = o(1)) exp (—L(lo(% . 1) + 6))

n—1
= (1=£o(1))exp (—%)

= exp(=2) £ o(1),
for odd n by Theorem 6.8. For a lower bound, note that

P[H is loopless] = IP[H is loopless and disconnected] +

P[H is loopless and connected],

but
IP[H is loopless and disconnected] < P[H is disconnected] = O(1/n?),

by Theorem 6.9, because each vertex has degree at least 4, hence,
IP[H is loopless and connected] > exp(—2) £ o(1) — O(1/n?) = exp(—2) £ o(1).
Therefore, P[G,, is simple, triangle-free and connected] = exp(—2) £ o(1). O

Altough not necessary for our proofs, it is worth noting the uniformness of the

distribution of outputs of Algorithm 6.3.

Proposition 6.11. The distribution of outputs of Algorithm 6.3 with input L,, is uniform even if

we condition on the output being simple, triangle-free and connected.

Proof. Let G, be the output graph. As vertices are chosen uniformly at random, the edges
are added uniformly at random. There are 2m — 1)!! = 2m — 1)(2m — 3)---3 - 1 possible
matchings, where 2m = n if n is even and 2m = n — 1 if n is odd. This is because there are
2'"2_2) .- (;) ways, but as the order of the
choices does not matter, each matching is counted m! times, so the total number is

L(2m)(2m—2)m(2) _ em)2m—1)---2-1 — @m— DL
m!\ 2 2 2 ml2m

2m endpoints and we can choose the m edges in (2;")(

49

Hence, each graph in the output’s distribution happens with probability 1/(2m — 1)!!.
If we want to condition on G, being simple, triangle-free and connected, let G be

the family of such output graphs and note that

PG, = G | G, € §] = T1Gn = G} N{G, € G)]

P[G, € G] ’
forany G € G. But {G, = G} C {G, € G}, thus,
P[G, = G] 1 1
PG, =G | G, = = ,
| 1Gn €9l = 3G <a] = @m—DIPG, <G|
which does not depend in G. O

We are now ready to build our resistant instances. We achieve this by repeating
Algorithm 6.3 until the output is connected and none of its edges have endpoints in the same
Cs. We also perform a small trick to create instances for values of » not multiple of 5. This is
described in Algorithm 6.4.

Algorithm 6.4. RESISTANTCHROMATICINSTANCE (1)

1 k < n (mod 5)

2 do

3 | G < ADDMATCHING(L,_¢)

4 while G is not simple or is not triangle-free or is disconnected
5 if k = 0 then

6 | returnG

7 return G v K,

Algorithm 6.4 depends on repeating Algorithm 6.3 an unknown number of times

and, thus, it need not terminate at all, but this event happens with probability 0.

Proposition 6.12. Algorithm 6.4 runs in time ©(n?) with probability at least 1 — 1/n©®/1em

Proof. We can build L,_; once in ®(n) and cache it into memory to only spend linear time per
iteration of line 3, as Algorithm 6.3 also runs in linear time. Furthermore, we do need to pay
®(n?) to build the complementary graph G, as e(G) = ©(n?). For large enough n, the expected
number of times Algorithm 6.3 is called is at most 8, as the number of calls is a geometric
random variable X with parameter p and 1/p — exp(2) < 8 when n — co by Lemma 6.10. If

we let C > exp(—2) be some constant such that E[X] < C, then for any ¢ > 0 we have

P[X > cn] =1—-P[X <cn]
Len]

=1-2_(=p)"p

=({1-p
=(1-1/C)"
— p=Ow/ign)

50
so with probability 1 — 1/n©®/18" there are at most a linear number of calls to Algorithm 6.3,
each costing linear time, giving us ©(n?) time. O

Figure 12 exemplifies an execution of this process. We finish this section showing

that instances built by Algorithm 6.4 are indeed hard.

Figure 12 — An execution of Algorithm 6.4 with n = 15.

(a) The initial graph Ls. (b) The complementary graph L 5.

FO-O-O~0

(¢) A maximum matching M is sampled (d) The final graph L5 + M, which is im-
uniformly at random until it has no edge mune to the preprocessing step.
internal to any Cs.

Source: prepared by the author.

Theorem 6.13. For any n € N, Algorithm 6.4 with input n outputs a graph on n vertices in
which any execution of a y-bounded algorithm needs 2(2"/'°) subinstances to terminate even if
Algorithm 6.1 is used beforehand.

Proof. Suppose n = 0 (mod 5) and let H, be the graph given as input to Algorithm 6.1
(together with any y-bounded algorithm). In this case, both H, and its complement are
connected. Moreover, §(H,) = n — 4 and a(H,) = 2, so the y-pruned subtree of any clique

search tree of H, has Q(2"/'°) nodes by Lemma 6.7, hence, the y-bounded algorithm needs

51

to solve (2"/'%) subinstances until optimality. Now, if n = k (mod 5) for 1 < k < 4, after
Algorithm 6.1 is called on H,, the new instances are G,—_;, which is the output of Algorithm 6.3
with input L, _, and at most 4 trivial graphs. The trivial graphs’ y-pruned subtrees have only
one node, but G,_; exhibits Q(2"%/15) nodes in any y-pruned subtree by Lemma 6.7. Hence,
there are ©(2"/'%) nodes in total, as k is constant.

Finally, if H, is given as input directly to a y-bounded algorithm which does not
apply Algorithm 6.1, the result is similar and to show this we extend the proof of Lemma 6.7.
For any k, we have 6(H,) = n — 4, «(H,) = 2 and
2(n — k) . 2n %

w(H,) = 0(Gyr—k) + 0(Ki) < o(Ly—) + o(Ky) = 5 k = s T35
Therefore, if less than n/15 — 2 branching operations have been made before a node (Q, R) is

reached, then

n—(n/15—2)-3:2n

given that 3 > 3k /5 for any k € {1,2, 3, 4}. Therefore, we have not reached a leaf yet, so there
are ©(2"/'%) nodes in total. O

6.5 A fractional bounding rule

Building on the idea of using graph parameters as upper bounds in standard al-
gorithms, the fractional chromatic number of a graph can be a particularly useful notion, as
it is directly connected with that of the chromatic number. A classical definition of the frac-
tional chromatic number is the optimal value of the linear relaxation of the MINIMUM VERTEX
COLORING integer programming model given by (2.2), which is the dual of the linear relax-
ation of the MAx1iMuM CLIQUE model given by (2.1). Particularly, for any graph G, we have
xr(G) < x(G), because of linear duality.

Now, evaluating xs(G) for a graph G in the general case is still NP-hard [69] but
there are ways to cope with the complexity of this evaluation, such as column generation-based

methods for the linear program [70]. The benefit here is that the inequality
w(G) < xr(G) (6.2)

is tighter than (6.1), its usual discrete counterpart, and the gap between y,(G) and y(G) can be
arbitrarily large [71].

If we heuristically bound y(G) by some value strictly smaller than y(G), then this
value is a better upper bound than any heuristic that approximates y(G). Balas and Xue [72], for
instance, propose a B&B algorithm which uses an estimate on the fractional chromatic number
as an upper bound and remark that the size of the search three was cut almost in half compared

to regular B&B methods that used estimates on the chromatic number.

52

In this sense, we define yr-bounded algorithms in an analogous way to y-bounded
algorithms, except now an upper bound on the fractional chromatic number is used, and y-
pruned subtrees in a similar fashion to that in Definition 6.1, except now in every leaf (Q, R)
of a ys-pruned subtree of a graph G we have y,(G[Q U R]) < w(G). We now wish to prove

analogous results to these types of algorithms and trees.
Lemma 6.14 (See e.g. Scheinerman and Ullman [73]). For any graph G, x,(G) > v(G)/a(G).
This lemma is enough to adapt Lemma 6.7 to these trees.

Lemma 6.15. Foranyn,d € N withn =0 (mod 5), if G is a spanning subgraph of L, where
@(G) <2and§(G) > n —d — 1, then the yr-pruned subtree of every clique search tree of G
has Q(2"/6D) nodes.

Proof. If less than n/(5d) branching operations have been made in a path from the root to a

node (Q, R), then less than n /5 vertices have been discarded and, by Lemma 6.14,

n(GIQUR]) n—n/5 2n _ -
1(GIQUR) = T s > P = T = (L) 2 0(0).

so any y-pruned subtree has €(2"/©4)) nodes. O

We end this chapter by showing that instances given by Algorithm 6.4 also work for
Xr-bounded algorithms.

Theorem 6.16. For any n € N, Algorithm 6.4 with input n outputs a graph on n vertices in
which any execution of a y s -bounded algorithm needs $2(2"/'%) subinstances to terminate even
if Algorithm 6.1 is used beforehand.

Proof. If n = 0 (mod 5), then both the output H, of Algorithm 6.4 and its complement are
connected, §(H,) = n — 4 and o(H,) = 2, so by Lemma 6.15 the y,-pruned subtree of any of
its clique search trees has size Q(2"/'%). If n = k (mod 5) for 1 < k < 4, then the y,-bounded
algorithm needs to solve G,_, the output of Algorithm 6.3 with input L,_, and at most 4
trivial graphs. The y,-pruned subtree of any clique search tree of G,—; has €(2"/!°) nodes as
k = ©(1). Finally, if H, is given as input directly to a y,-bounded algorithm that does not apply
Algorithm 6.1, note that w(H,) = 2n/5 + 3k /5 and if less than /15 — 2 branching operations
have been made in a path from the root to a node (Q, R) in the y,-pruned subtree of some clique

search tree of H,, then

wHjoUR) > "D),

where the first inequality also comes from Lemma 6.14. Hence, (Q, R) is not a leaf, so any

x7-pruned subtree has €2(2"/1%) nodes. O

53

7 COMPUTATIONAL EXPERIMENTS

In this chapter we discuss empirical results gathered from tests with standard
algorithms. The input instances were chosen to match the theoretical results approached
throughout this text, namely Theorems 3.5, 5.9, 5.12, 6.4 and 6.13.

7.1 The setup

The computational environment consists of an Intel Core 17-12700 CPU with 24 GB
of RAM running Debian Linux. All algorithms are implemented in Python3 and transpiled
to C via Cython [74]. They make use of NetworkX [75], a Python3 package for storing and
manipulating graphs. The implementation of the clique algorithms are due to Carmo and
Ziige [76] and these are available in a public code repository [77].

The algorithms return the size of the largest clique found, the number of subinstances
solved and the solving time. Each instance is given at most 48 h (i.e., 172800 s) of CPU time

before the algorithm halts the computation and returns the information gathered so far.

7.2 The instances

The first family of instances, denoted by gnp, consists of graphs in the G(n, p) model
for p = 1/2. This choice for p is arbitrary, as any constant value of p, no matter how close to
1, would lead to n®%™ cliques w.h.p. in the graph, the main concern here is a rough idea in
practice of the growth rate of the number of cliques. There are 210 graphs in this family, 10
for each n € {50, 60, ...,250}. As random graphs are non-deterministic by definition, we are
interested on the average results of the 10 instances for each value of n, in order to bring the
sample average closer to the actual average over all graphs in the model.

The second family of instances, denoted by cj_0.5, consists of graphs built by
Algorithm 5.3, which uses the Cornaz—Jost reduction. The algorithm asks for n and €, parameters
that control the numbers of vertices and cliques in the output graph (i.e., after the reduction),
respectively. For this family, we sete = 1/2 and n € {50, 60, ..., 250}. There are 210 instances,
10 graphs for each value of n, as they are also non-deterministic, and we average the values for
each n. Algorithm 5.3 uses internally two other parameters: N and ¢, which control the order and
size of the G(N, m) graph that is fed to the Cornaz—Jost reduction. These parameters do affect
the number of cliques in the output graph, although their effect is hidden in the ® notation. There
are multiple choices for ¢ € (0, 1] and N € N, so we choose specifically ¢ € [1/2—6,1/2 4 4],
with § initially set to 0, and the smallest possible N and we slowly increase the value of § if
there is no choice for N until the first feasible pair (c, N) is determined. Finally, when the base
random graph is sampled, the linear ordering over its vertices is implicitly sampled by NetworkX,

as it stores an integer label for each vertex and, hence, these are naturally ordered by their labels.

54

The third family of instances, denoted by c¢j_0.1, also consists of graphs built by
Algorithm 5.3, but with ¢ = 1/10. We choose ¢, N and the linear order for the G(N, m) graph
in the same way done for cj_0.5. Again, there are 210 instances, being 10 graphs for each value
of n € {50, 60,...,250}.

The fourth family of instances, denoted by gnm_0.5, consists of 210 G(n,m)
graphs that match the order and size of those in the cj_0.5 family, 10 for each value of
n € {50,60,...,250}. These graphs are not the G(n,m) graphs fed to the Cornaz—Jost
reduction; gnm_0. 5 instances are sampled after each cj_0.5 instance is built, copying its number
of vertices and edges. This family is related to Theorem 5.12, which gives the expected number
of cliques in random graphs with a density similar to the instances built by Algorithm 5.3. We
choose specifically the G(n, m) model in order to build graphs with order and size exatcly equal
to those in the cj_0.5 instances.

The fifth family of instances, denoted by gnm_0. 1, also consists of G(n, m) graphs,
but now matching the order and size of those in the cj_0.1 family. There are again 210 instances,
10 for each n € {50, 60, ..., 250}.

The sixth family, denoted by lav, consists of Lavnikevich graphs L, for n €
{50, 60, ...,100}. These are only 6 graphs in total, as they are deterministic and multiple
executions of a standard algorithm yield the same results. No graph with over 100 vertices was
generated, as they proved to be indeed challenging for standard algorithms that do not implement
Algorithm 6.1 and their tests very time consuming.

The seventh family, denoted by p_lav, consists of the perturbed Lavnikevich graphs,
built by Algorithm 6.4. There are 60 graphs in total for this family, 10 for each value of

n € {50, 60, ..., 100}, and we average their results, as they are non-deterministic by nature.

7.3 The algorithms

We perform tests using two standard algorithms. The first, denoted by nb (short for
“no bound”), is the simplest method that implements the algorithmic framework of Chapter 3,
namely one that does not use upper bounds and chooses the pivot as the first vertex in the array
that represents the R set of an instance (Q, R).

The second, denoted by kj (short for “Konc and Janezi¢”), is a y-bounded algorithm
due to Konc and Janezi¢ [29]. Besides the chromatic upper bound, it uses a coloring-based
approach to choose the pivot vertices. We test the kj algorithm both when it is called after the
preprocessing step described by Algorithm 6.1, denoted pre, and when it is called alone.

The choice of algorithms should illustrate the speed up due to the usage of chromatic
upper bounds as well as the preprocessing step. Tests with the nb algorithm serve as the control
group to analyze the efficiency of the upper bound, while those with the kj algorithm without

the preprocess work analogously for the analysis of Algorithm 6.1.

55

7.4 The results

Tables 1 and 2 present results for the nb algorithm. Tests with cj_0.1 and gnm_0. 1
graphs are lacking due to the fact that not a single instance in these families was solved within
the time limit. This is due to the sheer size of the search tree when & approaches 0, according to
Theorems 5.9 and 5.12.

Table 1 — Average results for gnp using the nb algorithm

gnp nb
v(G) w(G) #Nodes Time (s)

50 7.4 17950.4 0.01963
60 7.9 38857.4 0.03258
70 8.4 85607.6 0.06920
80 8.8 142630.2 0.11483
90 9.3 2453394 0.19299
100 9.2 420843.6 0.32665

Source: prepared by the author.

Table 2 — Average results for cj_0.5 and gnm_@. 5 instances using the nb algorithm.

cj_0.5 nb gnm_0.5 nb
v(G) w(G) #Nodes Time (s) o(G) #Nodes Time (s)
50 9.8 1150123.6 0.81397 143 5251176.2 3.80183
60 10.6 6245612.6 4.46790 16.1 44394617.8 32.71266
70 12.0 36514493.8 27.16286 18.2 342798 512.6 248.64842

80 12.7 187596 209.8 142.04105 19.6 2369198 936.2 1710.04047
90 13.7 901798 549.2 670.48727 21.3 17849004 923.6 12638.46593
100 14.9 5829034274.8 4212.48873 23.6 158508641538.6 109416.05243

Source: prepared by the author.

Tables 3, 4, 5 and 6 regard the kj algorithm with the preprocessing step, while
Table 7 regards kj alone. Rows with a > in Table 7 denote the fact that the algorithm could
not solve the instance in the prescribed time limit and reported only a lower bound for some

parameters.

7.5 Discussion

Results from Tables 1 through 7 mostly support the theoretical analyses provided
throughout this work.

Tables 1 and 2 show the asymptotic difference between the number of cliques in gnp,
cj_0.5and gnm_0.5 graphs. The plot in Figure 13 illustrates that cj_0.5 instances have much
more cliques than those in gnp, as they differ by a polynomial factor in the exponent, and have

almost as many cliques as those in the gnm_0. 5, as they differ only by a logarithmic factor in the

56

Table 3 — Average results for gnp using the kj algorithm with the preprocessing step.

gnp kj pre

v(G) w(G) #Nodes Time (s)
50 7.4 163.4 0.00933
60 7.9 223.6 0.00783
70 8.4 339.2 0.01109
80 8.8 414.6 0.01610
90 9.3 607.4 0.01873
100 9.2 957.6 0.02800
110 9.4 1351.6 0.03487
120 9.6 1863.0 0.04367
130 9.8 2429.2 0.05431
140 10.3 2806.4 0.06761
150 10.2 4237.0 0.09035
160 10.2 5564.8 0.12153
170 10.7 5798.4 0.13588
180 10.8 7980.2 0.17873
190 11.0 9332.0 0.20799
200 10.8 14683.4 0.27582
210 11.1 15958.0 0.31435
220 11.0 20260.0 0.38288
230 11.5 23935.8 0.44882
240 11.8 29755.0 0.54050
250 11.6 402372 0.66763

Source: prepared by the author.

Table 4 — Average results for cj_0.5 and gnm_0.5 instances using the kj algorithm with the
preprocessing step.

cj_0.5 kj pre gnm_0.5 kj pre

v(G) w(G) #Nodes Time (s) w(G) #Nodes Time (s)
50 9.8 670.0 0.01458 14.3 375.8 0.01334
60 10.6 14452 0.02059 16.1 569.8 0.01522
70 12.0 2329.4 0.03756 18.2 1022.2 0.02838
80 12.7 4191.6 0.06901 19.6 2218.8 0.05887
90 13.7 11275.2 0.16670 21.3 5215.6 0.12860

100 14.9 17221.2 0.29720 23.6 12305.8 0.30345
110 15.9 36810.8 0.62146 25.8 19149.2 0.52159
120 16.0 137320.2 2.16757 26.8 39885.6 1.21182
130 17.0 207 645.8 3.65368 28.4 84199.0 2.90597
140 18.0 356706.6 8.12672 29.5 263332.8 8.95589
150 18.6 499376.4 12.04382 30.9 689712.4 24.93412
160 19.3 1564 050.0 39.84404 32.8 995064.8 43.92872
170 20.0 5007 625.0 116.81393 34.5 1982150.0 97.58425
180 204 7407345.6 171.09369 35.5 4067036.2 199.74870
190 21.0 16601 933.2 465.76651 37.2 8113260.2 413.44183

200 22.1 35721362.6 866.64247 38.4 18865344.2 915.99224

210 22.0 62 609205.6 1664.24800 39.6 42807068.4 2199.00176

220 23.1 118553865.2 3288.66730 40.7 80724767.4 4 636.81364

230 23.9 166787242.0 5304.88972 42.1 181817357.0 11447.75480

240 24.0 443961083.0 14504.52673 432 286101024.0 19059.11599

250 24.7 1067281104.4 34384.80519 44.7 664868647.6 43864.86124

Source: prepared by the author.

57

Table 5 — Average results for cj_0.1 and gnm_0. 1 instances using the kj algorithm with the
preprocessing step.

cj_0.1 kj pre gnm_0.1 kj pre
v(G) w(G) #Nodes Time(s) w(G) #Nodes Time (s)

50 29.1 127.0 0.01287 323 142.8 0.01364

60 34.1 157.1 0.01210 37.2 197.2 0.01507

70 40.7 182.0 0.01721 44.8 234.7 0.02283

80 46.7 2124 0.02306 51.0 263.4 0.02730

90 50.2 238.8 0.02834 553 324.8 0.03971
100 55.5 258.6 0.03535 61.9 353.5 0.04946
110 61.7 282.0 0.04299 67.6 349.1 0.05721
120 67.7 309.8 0.04765 74.8 411.9 0.07189
130 72.6 338.6 0.05818 79.7 495.1 0.09420
140 78.0 369.5 0.06779 87.1 580.4 0.10926
150 83.8 398.3 0.07402 9.1 730.6 0.13941
160 89.3 448.0 0.08621 97.3 700.5 0.15528
170 95.4 442.6 0.09867 1054 7352 0.17802
180 100.8 466.6 0.10863 112.1 874.2 0.20683
190 104.6 580.5 0.12964 115.0 994.9 0.27076
200 111.3 529.6 0.13360 123.9 961.2 0.28021
210 1154 646.9 0.14618 130.2 1021.2 0.32954
220 121.1 5874 0.16016 132.8 1967.1 0.60132
230 126.1 647.1 0.17250 140.0 1314.4 0.45654
240 1295 6999 0.19051 144.7 1491.0 0.58461
250 1364 694.8 0.20550 153.1 1711.5 0.71111

Source: prepared by the author.

Table 6 — Average results for lav and p_lav instances using the kj algorithm with the prepro-
cessing step.

lav kj pre p_lav kj pre
v(G) w(G) #Nodes Time(s) w(G) #Nodes Time (s)
50 20 90 0.00377 20 9284.6 0.11365
60 24 108 0.00452 24 36021.2 0.56496
70 28 126 0.00589 28 184452.8 3.68521
80 32 144 0.00714 32 922907.2 22.43834

90 36 162 0.00880 36 4008797.8 113.20505
100 40 180 0.01036 40 16588 140.0 562.53972

Source: prepared by the author.

Table 7 — Average results for 1av and p_lav instances using the kj algorithm alone.

lav kj p_lav kj
v(G) w(G) #Nodes Time (s) w(G) #Nodes Time (s)
50 20 2593543 19.32607 20 9284.6 0.11328
60 24 31044595 282.57747 24 36021.2 0.58047
70 28 357914319 4020.31492 28 184452.8 3.78329
80 32 5593926941 79848.15856 32 922907.2 22.14741

90 >36 >11658023739 172800.00005 36 4008797.8 109.37013
100 >40 >11687072031 172800.00020 40 16588 140.0 546.67986

Source: prepared by the author.

58

exponent. We see that the graphs corresponding to cj_0.5 and gnm_0. 5 instances seem to grow
resembling a linear function, while the graph corresponding to gnp is slightly concave, which is

expected when the exponent is only logarithmic.

Figure 13 — Log-linear plot of the average search tree sizes when using the nb algorithm on gnp,
cj_0.5 and gnm_0.5 instances vs. number of vertices.

Avg. search

. 012 —
tree size gnm_0.5
cj_0.5
108 L
// gnp
104 L

L |
50 100
Number of vertices

Source: prepared by the author.

Tables 3 and 4 illustrate how strong the chromatic upper bound used by kj is, as the
number of nodes in the search trees is several orders of magnitude smaller. They also indicate that
most of the time the cj_0.5 instances demand a larger search tree to be solved when compared
to gnm_0.5 (and even more when compared to gnp) if the kj algorithm is used, which implies
that the chromatic upper bound adopted is more effective in random graphs for that specific
density. Figure 14 shows that the average search trees’ sizes grows in a similar fashion, while
Figure 15 shows that although the cj_0.5 family demands less nodes to be solved in two cases,
overall its search trees are much larger than gnm_0.5 ones, with the ratios peaking at 3.44285
and averaging at 1.84872, i.e., on average the cj_0.5 instances demanded almost twice as many
nodes to be solved. This supports the usage of such instances in benchmarks, as they seem to be

more challenging, at least in the search tree size view.

Figure 14 — Log-linear plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, ¢j_0.5 and gnm_0.5 instances vs. number of vertices.

Avg. search 10 .
tree size B cj_0.5
gnm_0.5
106 L
// o
102 -
L |
50 250

Number of vertices

Source: prepared by the author.

59

Figure 15 — Plot of the ratio between the average search tree sizes when using the kj algorithm
with the preprocessing step on gnm_0.5 and cj_0. 5 instances vs. number of vertices.

Ratio of avg.

search tree size 3T

cj_0.5
gnm_0.5

0 N L |
50 250
Number of vertices

Source: prepared by the author.

Figure 16 shows that the average time to solve cj_0.5 and gnm_0.5 instances also
grow very similarly. In Figure 17 we see few outliers where the gnm_0.5 graphs took more than
twice or less than half as much time to solve when compared to cj_0.5 graphs of same order,
which indicates that both families demand about the same time to be solved. In all other cases,
the ratio between times is close to 1 with the average ratio being 1.09285 and gnm_0.5 taking
more time in 11 out of the 21 averaged tests, which leaves both families almost tied in hardness
time wise. Graphs in the cj_0.5 family need a larger search tree for kj, but gnm_0.5 graphs need
slightly more time, hence the chromatic upper bound seems to run faster on the former instances,
although it seems to prune better in the latter ones. This is an interesting behaviour that calls for

tests using different upper bound rules and this is most definitely a priority in future works.

Figure 16 — Log-linear plot of the average solve times when using the kj algorithm with the
preprocessing step on gnp, ¢j_0.5 and gnm_0.5 instances vs. number of vertices.

Avg. solve
time [x10° s] 10° gnn-0-5
cj_0.5
10' |
"//—//—”——//’_’/_________— gnm_0.5
103 -

50 250
Number of vertices

Source: prepared by the author.

Table 5 displays a very different situation for ¢j_0.1 and gnm_0. 1 when compared to
their _0.5 counterparts. These instances are now solved much faster and demand very few nodes
to be solved by kj, even less than gnp. In Figure 18 we see that the cj_0.1 family consistently
exhibits a smaller search tree size when compared to gnm_0@.1 and they both loose by a fair

amount to simple gnp instances. This is aligned to the fact that complete graphs, for example,

60

Figure 17 — Plot of the ratio between the average solve times when using the kj algorithm with
the preprocessing step on gnm_@.5 and cj_0.5 instances vs. number of vertices.

Ratio of avg.
solve time 3r
gnm_0.5
1+t cj_0.5
0 -
L |
50 250

Number of vertices

Source: prepared by the author.

are far too easy to solve, as they are quickly handled by heuristics that find optimal colorings.
Proposition 5.11 tells us that both cj_0.1 and gnm_0@. 1 instances have edge density close to 1
and this is likely what causes both of them to be easier to solve than the gnp family. Thus, denser

graphs can be harder than random graphs with constant density, but not always.

Figure 18 — Log-linear plot of the average search tree sizes when using the kj algorithm with the
preprocessing step on gnp, ¢j_0.1 and gnm_0. 1 instances vs. number of vertices.

Avg. search

. 5
tree size 0 gnp
gnm_0.1
il % €3-0.1
10" -
L |
50 250

Number of vertices

Source: prepared by the author.

Table 6 shows how the p_lav instances endure the preprocessing of Algorithm 6.1
as opposed to the 1av ones. Indeed, the growth of the search tree sizes for lav is perfectly linear.
In Figure 19 we see that the log-linearly 1av graph looks almost constant, as it is actually a very
slow-growing logarithm, while the p_lav graph grows resembling a linear function, indicating
that the search trees’ sizes for p_lav grow exponentially fast.

Table 7 displays how much larger the search trees for lav instances must be when the
preprocessing step is not used. For n = 90 and n = 100, the kj is not even able to solve the lav
instances to optimality in the time limit, proving that these instances are indeed challenging for
this type of algorithm when lacking the preprocess. Figure 20 illustrates how the search trees for
both the lav and p_lav instances grows exponentially, as their log-linearly graphs grow almost

as a linear function. However, it is clear that when Algorithm 6.1 is not applied, the search

61

Figure 19 — Log-linear plot of the average search tree sizes when using the kj algorithm with
the preprocessing step on lav and p_lav instances vs. number of vertices.

Avg. search

. 08 —
tree size / p_lav
104 |
lav
100 N L |
50 100

Number of vertices

Source: prepared by the author.

tree size for the p_lav family looses by a fair amount to that of the lav, which is expected by
the worst lower bound on its size given by Theorem 6.13. Even so, the theorem describing the
exponential growth allied to the positive test results when the preprocessing step is used provide

an use case in which p_lav instances are very demanding for state-of-the-art algorithms.

Figure 20 — Log-linear plot of the average search tree sizes when using the kj algorithm alone
on lav and p_lav instances vs. number of vertices. Lighter line segments indicate
the tests did not finish.

Avg. search

. 1 -
tree size

lav
107 | / p_lav

108 -
L 1

50 100
Number of vertices

Source: prepared by the author.

62

8 CONCLUSIONS

Intuitively, generating hard instances to NP-hard problems should be trivial. For
MaxiMuM CLIQUE this is not the case, as the worst case is far from the average one. The
instances provided in this work are a step towards the goal of obtaining challenging inputs to this
problem. Although it is common practice to test new algorithms with instances that are known
to be hard simply because historically they take a long time to be solved, we present theoretical
hardness analyses as a way to explain why such instance are expected to be hard.

For the instances with many cliques given by Algorithm 5.3, there is still potential
for future work analyzing their behaviour under specific upper bound rules. Computational
experiments empirically show that they are competitive when given as input to y-bounded
algorithms, as we have seen in Chapter 7. Even though the chromatic upper bound seems to
run faster when applied to these instances, it also seems to prune less nodes in the search tree
than it does when applied to random graphs of matching density. This motivates the study of the
behaviour of these instances under the chromatic upper bound point of view, similarly to what is
done in Theorems 6.4, 6.13 and 6.16, specially because their cliques are deeply connected with
colorings of random graphs, so their colorings could also be related to some other structure.

There is also space for experiments with other upper bounds, as positive results
could motivate a more in depth theoretical analysis. Another path to be explored is the study
of different reductions from other problems to MAXIMUM CLIQUE and how the final graph
instances stand against efficient clique algorithms, both in number of cliques and in resilience to
upper bounds.

For the y-bounded algorithms specialized instaces given by Algorithm 6.4, a natural
follow up is the analysis of their hardness for other infra-chromatic upper bounds. Furthermore,
it could be the case that the strategy used to make them immune to the preprocessing works
for other objectives, such as taking a dense graph that is easy to solve and remove edges in a
randomized way to prevent algorithms from closing the optimality gap quickly.

Another possibility is the study of different preprocessing steps for standard algo-
rithms. The first objective would be to generalize Algorithm 6.1 into a Modular or even a
Primeval Decomposition and analyse how our instances stand against them. Besides these two
decompositions, there are also other ideas to reduce the input graph size, such as identifying
universal vertices or false-twins to name a few.

Finally, we leave open for future work the exploration of both the enumeration
complexity and the contrast of worst and average case of other graph problems, for different

distributions of input graphs.

63

REFERENCES

1 SAN SEGUNDO, P.; RODRIGUEZ-LOSADA, D.; MATIA, F.; GALAN, R. Fast exact
feature based data correspondence search with an efficient bit-parallel mcp solver. Applied
Intelligence, v. 32, n. 3, p. 311-329, Jun 2010. ISSN 1573-7497.

2 SAN SEGUNDO, P.; RODRIGUEZ-LOSADA, D. Robust global feature based data
association with a sparse bit optimized maximum clique algorithm. Trans. Rob., IEEE Press,
v. 29, n. 5, p. 1332-1339, oct 2013. ISSN 1552-3098.

3 HOTTA, K.; TOMITA, E.; TAKAHASHI, H. A view-invariant human face detection method
based on maximum cliques. Trans. IPSJ, v. 44, p. 57-70, 01 2003.

4 STENTIFORD, F. Face recognition by detection of matching cliques of points. In: NIEL,
K. S.; BINGHAM, P. R. (Ed.). Image Processing: Machine Vision Applications VII. [S.1.]:
SPIE, 2014. v. 9024.

5 BERMAN, P,; PELC, A. Distributed probabilistic fault diagnosis for multiprocessor systems.
In: Digest of Papers. Fault-Tolerant Computing: 20th International Symposium. Los Alamitos,
CA, USA: IEEE Computer Society, 1990. p. 340-346.

6 DUARTE JR., E.; GARRETT, T.; BONA, L.; CARMO, R.; ZUGE, A. Finding stable cliques
of planetlab nodes. In: 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). [S.1.]: IEEE, 2010. p. 317-322. ISBN 978-1-4244-7500-1.

7 BROUWER, A.; SHEARER, J.; SLOANE, N.; SMITH, W. A new table of constant weight
codes. IEEE Transactions on Information Theory, v. 36, n. 6, p. 1334-1380, 1990.

8 SLOANE, N. J. A. On single-deletion-correcting codes. In: ARASU, K. T.; SERESS,
A. (Ed.). Codes and Designs: Proceedings of a conference honoring Professor Dijen K.
Ray-Chaudhuri on the occasion of his 65th birthday. The Ohio State University May 18-21,
2000. [S.1.]: De Gruyter, 2002. p. 273-292. ISBN 9783110198119.

9 BUTENKO, S.; PARDALOS, P.; SERGIENKO, I.; SHYLO, V.; STETSYUK, P. Estimating
the size of correcting codes using extremal graph problems. In: [S.L]: Springer, 2009. p.
227-243. ISBN 978-0-387-98095-9.

10 BUTENKQO, S.; WILHELM, W. Clique-detection models in computational biochemistry
and genomics. European Journal of Operational Research, v. 173, n. 1, p. 1-17, 2006. ISSN
0377-2217.

11 FUKAGAWA, D.; TAMURA, T.; TAKASU, A.; TOMITA, E.; AKUTSU, T. A clique-based
method for the edit distance between unordered trees and its application to analysis of glycan
structures. BMC Bioinformatics, v. 12, n. 1, p. S13, Feb 2011. ISSN 1471-2105.

12 HARARY, F.; ROSS, 1. C. A procedure for clique detection using the group matrix.
Sociometry, American Sociological Association, Sage Publications, Inc., v. 20, n. 3, p. 205-215,
1957. ISSN 00380431, 23257938.

13 KARP, R. Reducibility among combinatorial problems. In: Complexity of computer
computations. [S.1.]: Springer, 1972. p. 85-103.

64

14 NEMHAUSER, G. L.; TROTTER, L. E. Properties of vertex packing and independence
system polyhedra. Mathematical Programming, v. 6, n. 1, p. 48—61, Dec 1974. ISSN 1436-4646.

15 CARRAGHAN, R.; PARDALOS, P. An exact algorithm for the maximum clique problem.
Operations Research Letters, v. 9, n. 6, p. 375-382, 1990. ISSN 0167-6377.

16 BABEL, L.; TINHOFER, G. A branch and bound algorithm for the maximum clique
problem. Zeitschrift fiir Operations Research, v. 34, n. 3, p. 207-217, May 1990. ISSN
1432-5217.

17 BALAS, E.; XUE, J. Minimum weighted coloring of triangulated graphs, with application
to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM Journal on
Computing, v. 20, n. 2, p. 209-221, 1991.

18 BABEL, L. A fast algorithm for the maximum weight clique problem. Computing, v. 52,
n. 1, p. 31-38, Mar 1994. ISSN 1436-5057.

19 OSTERGARD, P. R. A new algorithm for the maximum-weight clique problem. Electronic
Notes in Discrete Mathematics, v. 3, p. 153—156, 1999. ISSN 1571-0653. 6th Twente Workshop
on Graphs and Combinatorial Optimization.

20 LI, C.-M.; FANG, Z.; JIANG, H.; XU, K. Incremental upper bound for the maximum clique
problem. INFORMS Journal on Computing, v. 30, n. 1, p. 137-153, 2018.

21 SAN SEGUNDO, P; FURINI, F.; ALVAREZ, D.; PARDALOS, P. M. Clisat: A new exact
algorithm for hard maximum clique problems. European Journal of Operational Research,
v. 307, n. 3, p. 1008-1025, 2023. ISSN 0377-2217.

22 CARMO, R.; ZUGE, A. On comparing algorithms for the maximum clique problem.
Discrete Applied Mathematics, v. 247, 02 2018.

23 DIMACS. The DIMACS Second Implementation Challenge Clique Benchmark. 1992-1993.
Available in <http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/
clique/>.

24 XU, K. BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems
(Maximum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex Coloring).
2004. Available in <http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.nlsde.buaa.
edu.cn/~kexu/benchmarks/graph-benchmarks.htm>.

25 BROCKINGTON, M. G.; CULBERSON, J. C. Camouflaging independent sets in
quasi-random graphs. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge. [S.1.]: American Mathematical Society, 1996. v. 26.

26 LAVNIKEVICH, N. On the complexity of maximum clique algorithms: usage of
coloring heuristics leads to the ©2(2"/°) running time lower bound. Preprint available in
<http://arxiv.org/abs/1303.2546>. 2013.

27 ZUCKERMAN, D. Linear degree extractors and the inapproximability of max clique and
chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing. New York, NY, USA: Association for Computing Machinery, 2006. (STOC ’06), p.
681-690. ISBN 1595931341.

65

28 DOWNEY, R.; FELLOWS, M. Parameterized computational feasibility. In: CLOTE,
P.; REMMEL, J. (Ed.). Feasible Mathematics II. Boston, MA: Birkhduser Boston, 1995. p.
219-244.

29 KONC, J.; JANEZIC, D. An improved branch and bound algorithm for the maximum clique
problem. MATCH Communications in Mathematical and in Computer Chemistry, jun 2007.

30 WALTEROS, J. L.; BUCHANAN, A. Why is maximum clique often easy in practice?
Operations Research, v. 68, n. 6, p. 1866—1895, 2020.

31 JOHNSON, D.; TRICK, M. (Ed.). Cligues, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, October 11-13, 1993. Boston, MA, USA: American Mathematical
Society, 1996. v. 26. ISBN 0821866095.

32 WEST, D. Introduction to Graph Theory. [S.1.]: Prentice Hall, 2001. (Featured Titles for
Graph Theory). ISBN 9780130144003.

33 BONDY, A.; MURTY, U. Graph Theory. [S.1.]: Springer London, 2011. (Graduate Texts in
Mathematics). ISBN 9781846289699.

34 AUSIELLO, G.; MARCHETTI-SPACCAMELA, A.; CRESCENZI, P.; GAMBOSI, G.;
PROTASI, M.; KANN, V. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999. ISBN 978-3-642-58412-1.

35 VAZIRANI, A. U.; PAPADIMITRIOU, A. C. H.; DASGUPTA, A. S. Algorithms. [S.1.]:
McGraw-Hill Education, 2006. ISBN 9780073523408.

36 WOLSEY, L. Integer Programming. [S.1.]: John Wiley & Sons, Ltd, 2020. ISBN
9781119606475.

37 BOLLOBAS, B. Random Graphs. [S.1.]: Cambridge University Press, 2001. (Cambridge
Studies in Advanced Mathematics). ISBN 9780521797221.

38 MITZENMACHER, M.; UPFAL, E. Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. 2nd. ed. USA: Cambridge University
Press, 2017. ISBN 110715488X.

39 CORLESS, R. M.; GONNET, G. H.; HARE, D. E. G.; JEFFREY, D. J.; KNUTH, D. E. On
the lambert w function. Advances in Computational Mathematics, v. 5, n. 1, p. 329-359, Dec
1996. ISSN 1572-9044.

40 HOORFAR, A.; HASSANI, M. Inequalities on the lambert function and hyperpower
function. Journal of Inequalities in Pure & Applied Mathematics (electronic only), Victoria
University, School of Communications and Informatics, v. 9, n. 2, 2008.

41 WU, Q.; HAO, J.-K. A review on algorithms for maximum clique problems. European
Journal of Operational Research, v. 242, n. 3, p. 693-709, 2015. ISSN 0377-2217.

42 BRON, C.; KERBOSCH, J. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, Association for Computing Machinery, New York, NY, USA, v. 16, n. 9, p.
575-5717, set. 1973. ISSN 0001-0782.

66

43 FAHLE, T. Simple and fast: Improving a branch-and-bound algorithm for maximum clique.
In: MOHRING, R.; RAMAN, R. (Ed.). Proceedings of the 10th Annual European Symposium
on Algorithms (ESA 2002). Berlin, Heidelberg: Springer, 2002. (Lecture Notes in Computer
Science, v. 2461), p. 485-498. ISBN 978-3-540-45749-7.

44 TOMITA, E.; TANAKA, A.; TAKAHASHI, H. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical Computer Science,
v. 363, n. 1, p. 28-42, out. 2006. ISSN 03043975.

45 TOMITA, E.; KAMEDA, T. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimization, Springer,
v.37,n. 1, p. 95-111, jan. 2007. ISSN 0925-5001.

46 CHVATAL, V. Determining the stability number of a graph. SIAM Journal on Computing,
v. 6, n. 4, p. 643-662, 1977.

47 PITTEL, B. On the probable behaviour of some algorithms for finding the stability number

of a graph. Mathematical Proceedings of the Cambridge Philosophical Society, v. 92, p.
511-526, nov. 1982. ISSN 1469-8064.

48 WOOD, D. R. On the maximum number of cliques in a graph. Graphs and Combinatorics,
v. 23, n. 3, p. 337-352, Jun 2007. ISSN 1435-5914.

49 MILLER, R. E.; MULLER, D. E. A problem of maximum consistent subsets. [S.1.], 1960.

50 MOON, J. W.; MOSER, L. On cliques in graphs. Israel Journal of Mathematics, v. 3, n. 1,
p.- 23-28, mar. 1965.

51 TURAN, P. On an extremal problem in graph theory. Matematikai és Fizikai Lapok, v. 48,
p. 436452, 1941.

52 ZYKOV, A. A. On some properties of linear complexes. Matematicheskii Sbornik, v. 24(66),
p. 163-188, 1949.

53 CORRADI, K.; SZABO, S. A combinatorial approach for keller’s conjecture. Periodica
Mathematica Hungarica, v. 21, n. 2, p. 95-100, Jun 1990. ISSN 1588-2829.

54 SANCHIS, L. A. Generating hard and diverse test sets for np-hard graph problems. Discrete
Applied Mathematics, v. 58, n. 1, p. 35-66, 1995. ISSN 0166-218X.

55 GENDREAU, M.; SORIANO, P.; SALVAIL, L. Solving the maximum clique problem
using a tabu search approach. Annals of Operations Research, v. 41, n. 4, p. 385-403, Dec 1993.
ISSN 1572-9338.

56 MANNINO, C.; SASSANO, A. Solving hard set covering problems. Operations Research
Letters, v. 18, n. 1, p. 1-5, 1995. ISSN 0167-6377.

57 KUCERA, L. A generalized encryption scheme based on random graphs. In: SCHMIDT,
G.; BERGHAMMER, R. (Ed.). Graph-Theoretic Concepts in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992. p. 180-186. ISBN 978-3-540-46735-9.

58 XU, K.; LI, W. Many hard examples in exact phase transitions. Theoretical Computer
Science, v. 355, n. 3, p. 291-302, 2006. ISSN 0304-3975.

67

59 CAMPELO, M.; CAMPOS, V.; CORREA, R. On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Applied Mathematics, Elsevier, v. 156,
n.7,p. 1097-1111, 2008.

60 CORNAZ, D.; JOST, V. A one-to-one correspondence between colorings and stable sets.
Operations Research Letters, Elsevier, v. 36, n. 6, p. 673-676, 2008.

61 CAMPOS, V.; CARMO, R.; NOGUEIRA, R. Instances for the maximum clique problem
with hardness guarantees. In: Anais do VII Encontro de Teoria da Computagdo. Porto Alegre,
RS, Brasil: SBC, 2022. p. 125-128. ISSN 2595-6116.

62 JOHANSSON, A.; KAHN, J.; VU, V. Factors in random graphs. Random Structures &
Algorithms, v. 33, n. 1, p. 1-28, 2008.

63 BLASIUS, T.; KATZMANN, M.;: STEGEHUIS, C. Maximal cliques in scale-free random
graphs. Preprint available in <https://arxiv.org/abs/2309.02990>. 2023.

64 HABIB, M.; PAUL, C. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, v. 4,n. 1, p. 41-59, 2010. ISSN 1574-0137.

65 TEDDER, M.; CORNEIL, D.; HABIB, M.; PAUL, C. Simpler linear-time modular
decomposition via recursive factorizing permutations. In: ACETO, L.; DAMGARD, 1;
GOLDBERG, L. A.; HALLDORSSON, M. M.; INGOLFSDOTTIR, A.; WALUKIEWICZ, I.
(Ed.). Automata, Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. p. 634-645.

66 BOLLOBAS, B. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, v. 1, n. 4, p. 311-316, 1980. ISSN
0195-6698.

67 WORMALD, N. C. Models of random regular graphs. In: . Surveys in Combinatorics,
1999. [S.1.]: Cambridge University Press, 1999. (London Mathematical Society Lecture Note
Series), p. 239-298.

68 WORMALD, N. C. The asymptotic connectivity of labelled regular graphs. Journal of
Combinatorial Theory, Series B, v. 31, n. 2, p. 156-167, 1981. ISSN 0095-8956.

69 GROTSCHEL, M.; LOVASZ, L.; SCHRIJVER, A. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, v. 1, n. 2, p. 169—197, Jun 1981.
ISSN 1439-6912.

70 MEHROTRA, A.; TRICK, M. A. A column generation approach for graph coloring.
INFORMS Journal on Computing, v. 8, p. 344-354, 1995.

71 GODSIL, C.; MEAGHER, K. Erdés—Ko—Rado Theorems: Algebraic Approaches. [S.1.]:
Cambridge University Press, 2015. (Cambridge Studies in Advanced Mathematics).

72 BALAS, E.; XUE, J. Weighted and unweighted maximum clique algorithms with upper
bounds from fractional coloring. Algorithmica, v. 15, n. 5, p. 397-412, May 1996. ISSN
1432-0541.

73 SCHEINERMAN, E.; ULLMAN, D. Fractional Graph Theory: A Rational Approach to
the Theory of Graphs. [S.1.]: Dover Publications, 2011. (Dover books on mathematics). ISBN
9780486485935.

68

74 BEHNEL, S.; BRADSHAW, R.; CITRO, C.; DALCIN, L.; SELJEBOTN, D.; SMITH, K.
Cython: The best of both worlds. Computing in Science Engineering, v. 13, n. 2, p. 31-39, 2011.
ISSN 1521-9615.

75 HAGBERG, A. A.; SCHULT, D. A.; SWART, P. J. Exploring network structure, dynamics,
and function using networkx. In: VAROQUAUX, G.; VAUGHT, T.; MILLMAN, J. (Ed.).
Proceedings of the 7th Python in Science Conference. Pasadena, CA USA: [s.n.], 2008. p. 11-15.

76 CARMO, R.; ZUGE, A. Branch and bound algorithms for the maximum clique problem
under a unified framework. Journal of the Brazilian Computer Society, Springer, v. 18, n. 2, p.
137-151, 2012.

77 ZUGE, A.; CARMO, R.; ANJOS, C. S.; CORREA, M. V. MAXCLIQUEBB repository.
2017. Available in <https://gitlab.c3sl.ufpr.br/apzuge/maxcliquebb>.

	Title page
	Resumo
	Abstract
	List of figures
	List of tables
	List of symbols
	Contents
	Introduction
	Hardness results
	Relation with Vertex Colorings
	Algorithms with an upper bound based on the chromatic number
	Structure of this work

	Preliminaries
	Graph Theory
	Computational Complexity
	Combinatorial Optimization
	Probability Theory
	Useful definitions, bounds and asymptotics

	A Branch and Bound framework
	Basic structure of the algorithm
	Some properties of standard algorithms

	Instances in the literature
	Theoretical instances
	Practical instances

	Using vertex colorings to build cliques
	The Representatives Model
	Counting colorings in random graphs
	Instances with more cliques than average
	A final remark on random graphs

	Chromatic upper bounds for standard algorithms
	Introducing a bounding rule
	Exponential running time inducing graphs
	A preprocessing heuristic
	Worst case instances resistant to the preprocessing
	A fractional bounding rule

	Computational experiments
	The setup
	The instances
	The algorithms
	The results
	Discussion

	Conclusions
	References

