
UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

CURSO DE GRADUAÇÃO EM ENGENHARIA DE SOFTWARE

JÚLIO CÉSAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA IOT USANDO DJANGO E UM BROKER MQTT

PARA REALIZAR AUTOMAÇÃO NA AGRICULTURA

RUSSAS

2025

JÚLIO CÉSAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA IOT USANDO DJANGO E UM BROKER MQTT PARA

REALIZAR AUTOMAÇÃO NA AGRICULTURA

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Engenharia de Software
do Campus de Russas da Universidade Federal
do Ceará, como requisito parcial à obtenção do
grau de bacharel em Engenharia de Software.

Orientador: Prof. Dr. Reuber Regis de
Melo

RUSSAS

2025

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

D465d Deolino, Júlio César Maia.
 Desenvolvendo um sistema IoT usando Django e um broker MQTT para realizar automação na
agricultura / Júlio César Maia Deolino. – 2025.
 63 f. : il. color.

 Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Russas,
Curso de Ciência da Computação, Russas, 2025.
 Orientação: Prof. Dr. Reuber Regis de Melo.

 1. internet das coisas. 2. automação. 3. MQTT. 4. Django. 5. agricultura inteligente. I. Título.
 CDD 005

JÚLIO CÉSAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA IOT USANDO DJANGO E UM BROKER MQTT PARA

REALIZAR AUTOMAÇÃO NA AGRICULTURA

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Engenharia de Software
do Campus de Russas da Universidade Federal
do Ceará, como requisito parcial à obtenção do
grau de bacharel em Engenharia de Software.

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Reuber Regis de Melo (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Cenez Araújo de Rezende
Universidade Federal do Ceará (UFC)

Prof. Ms. Hugo Nathan Barbosa Regis
Universidade Federal do Ceará (UFC)

01/08/2025

Dedico esse trabalho a Deus e aos meus pais,

César Cals de Souza Deolino e Maria Lirete

Maia da Costa.

AGRADECIMENTOS

Sou grato a Deus por me dar forças nesta caminhada e por todas as oportunidades

que me concedeu.

Aos meus pais, César Cals de Sousa Deolino e Maria Lirete Maia, por todo o apoio

e carinho que me foi dado.

Ao meu orientador, Prof. Dr. Reuber Regis de Melo, sem o qual não poderia ter

realizado este trabalho.

Por fim, à Universidade Federal do Ceará (UFC), pela oportunidade de me aprimorar

e obter um ensino de nível superior.

“ A maior glória em viver não reside em nunca

cair, mas em levantar-se cada vez que caímos.”

(Nelson Mandela)

RESUMO

O avanço da tecnologia tem impactado diversas áreas, incluindo a agricultura, que precisa se

modernizar para atender à crescente demanda mundial por alimentos. O aumento populacional

impõe desafios como o controle de pragas, a utilização eficiente de recursos naturais (como

água e fertilizantes) e o monitoramento climático. Diante desse cenário, a Internet das Coisas

(Internet of Things (IoT)) surge como uma solução promissora para otimizar processos agrícolas.

Este trabalho apresenta a continuidade do desenvolvimento do sistema AgroInfo, aprimorando

o backend para possibilitar automação e integração de novas funcionalidades. O sistema atual

dispõe de um sistema de cadastro de usuários, propriedades, plantio, e visualização de dados

recebidos pelo sensor transmitidos através de um sistema broker. Com o desenvolvimento de

novas funcionalidades é possível, além de receber dados, enviar comandos para atuadores como

válvulas ou bombas o que torna possível realizar a automação de propriedades agrícolas, além

de melhorar a escalabilidade, permitir o cadastro de sensores para cada plantio e aprimorar o

gerenciamento de dados. O sistema utiliza plataformas embarcadas com sensores para coletar

dados das plantações e atuadores que recebem comandos remotamente, que são disponibilizados

via broker (MQTT), permitindo a tomada de decisões mais eficientes e práticas com base nos

dados coletados. Para a implementação, é adotada a arquitetura MVT (Model-Template-View),

que organiza a estrutura da aplicação, e utilizados diagramas UML, como casos de uso, sequência

e classes, para representar a interação dos usuários e o fluxo do sistema. O desenvolvimento

utiliza os frameworks Django e Django Rest Framework. Com isso, os testes preliminares vêm

confirmando a viabilidade bidirecional via Message Queuing Telemetry Transport (MQTT)

para a automação, afirmando a capacidade de leitura de dados e envio de comandos eficazes.

Espera-se disponibilizar uma ferramenta que possa auxiliar na modernização da agricultura no

Vale do Jaguaribe, proporcionando maior eficiência e sustentabilidade na gestão agrícola.

Palavras-chave: internet das coisas. Automação. MQTT. Django. Agricultura Inteligente.

ABSTRACT

The advancement of technology has impacted several areas, including agriculture, which needs

to modernize to meet the growing worldwide demand for food. Population increase imposes

challenges such as pest control, efficient use of natural resources (such as water and fertilizers)

and climate monitoring. Given this scenario, the Internet of Things (IoT) emerges as a promising

solution to optimize agricultural processes. This work proposes the continuity of the development

of the AgroInfo System, improving Backend to enable automation and integration of new features.

The current system has a user registration system, properties, planting, and viewing data received

by the sensor transmitted through a broker system. This work will allow us to receive data, send

commands to actuators such as valves or pumps which enables the automation of agricultural

properties, as well as improving scalability, enabling the registration of sensor for each planting

and improving data management. The system uses sensors embedded platforms to collect data

from plantations and actuators who receive remote commands, which are made available via

Broker MQTT, allowing more efficient and practical decisions based on the collected data. For

implementation, Model, Template, View (MVT) (Model-Template-View) architecture, which

organizes the application structure, and used UML diagrams, such as use cases, sequence and

classes, to represent users interaction and system flow is adopted. Development uses Django

and Django Rest Framework frameworks. As a result, preliminary tests have been confirming

bidirectional viability via MQTT for automation, affirming the data reading capacity and sending

effective commands, it is expected to make available a tool that can assist in the modernization of

agriculture in the Jaguaribe Valley, providing greater efficiency and sustainability in agricultural

management.

Keywords: internet of things. Automation. MQTT. Django. Intelligent Agriculture.

LISTA DE FIGURAS

Figura 1 – Conceito da Internet das Coisas . 18

Figura 2 – Arquitetura da Computação em Nuvem . 19

Figura 3 – Fluxo de Mensagens MQTT . 21

Figura 4 – Visão geral do sistema AgroInfoV1 . 27

Figura 5 – Passos . 28

Figura 6 – Diagrama de Fluxo geral do sistema AgroInfo V2 33

Figura 7 – Diagrama de casos de uso . 34

Figura 8 – Diagrama de sequência com comando para sensor 35

Figura 9 – Diagrama de sequência Verificação Periódica de Status e Alertas do sensor . 36

Figura 10 – Diagrama de Classe . 37

Figura 11 – Representação esquemática do MVT. 39

Figura 12 – Diagrama de Testes . 41

Figura 13 – Interface do software Postman . 42

Figura 14 – Gráficos dos resultados de testes . 58

Figura 15 – Gráfico da severidade das falhas . 59

LISTA DE TABELAS

Tabela 1 – Comparativo dos trabalhos relacionados 26

Tabela 2 – Tabela de identificação e especificação de requisitos funcionais 29

Tabela 3 – Tabela de identificação e especificação de requisitos não Funcionais 30

Tabela 4 – Cronograma 2025 . 42

Tabela 5 – Tabela de Casos de Teste . 43

Tabela 6 – Tabela de Ferramentas e Recursos . 44

Tabela 7 – Caso de teste 01 - Ligar registro . 45

Tabela 8 – Caso de teste 02 - Ligar registro . 46

Tabela 9 – Caso de teste 03 - Desligar registro . 47

Tabela 10 – Caso de teste 04 - Agendar registro . 48

Tabela 11 – Caso de teste 05 - Filtragem de Histórico por comando desligar 49

Tabela 12 – Caso de teste 06 - Filtragem de Histórico por data de início 50

Tabela 13 – Caso de teste 07 - Filtragem de Histórico por data final 51

Tabela 14 – Caso de teste 08 - Filtragem de Histórico por combinação de filtros 52

Tabela 15 – Caso de teste 09 - Filtragem de Histórico por comando ligar 53

Tabela 16 – Caso de teste 10 - Histórico Registro . 54

Tabela 17 – Caso de teste 11 - Cadastrar Sensor . 55

Tabela 18 – Caso de teste 12 - Cadastrar Atuador . 56

Tabela 19 – Tabela de Resultados dos Casos de Teste 57

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

CP4E Computer programming for everybody

INMET Instituto Nacional de Meteorologia

IoT Internet of Things

LCD Liquid Crystal Display

MQTT Message Queuing Telemetry Transport

MVT Model, Template, View

NPK Nitrogênio (N), Fósforo (P) e Potássio (K)

PHP Hypertext Preprocessor

PIB Produto Interno Bruto

RFID Radio Frequency IDentification

RTC Real-Time Clock

SCADA Supervisory Control and Data Acquisition

SUMÁRIO

1 INTRODUÇÃO . 14

1.1 Motivação . 15

1.2 Objetivo . 15

1.2.1 Objetivo geral . 15

1.2.2 Objetivos específicos . 15

1.3 Organização do trabalho . 16

2 FUNDAMENTAÇÃO TEÓRICA . 17

2.1 Agricultura no Brasil . 17

2.2 Internet das Coisas (IoT) . 17

2.3 Computação em Nuvem . 18

2.4 Python . 19

2.5 Django Rest Framework . 20

2.6 Protocolo MQTT . 20

2.7 Arquitetura Publish-Subscribe . 21

3 TRABALHOS RELACIONADOS . 22

3.1 IoT na Agricultura - Automação de Pivôs e Canais de Irrigação com

Arduino e Webservice . 22

3.2 Sistema IoT para monitoramento de variáveis climatológicas em culturas

de agricultura urbana . 23

3.3 Utilização da IoT na agricultura sustentável 24

3.4 Sistema IoT baseado em ESP32 para o controle e monitoramento de

cultura em estufas com foco na agricultura 4.0 25

3.5 Comparação entre os trabalhos relacionados 26

4 METODOLOGIA . 27

4.1 Visão geral do trabalho . 27

4.2 Levantamento de requisitos . 28

4.2.1 Requisitos Funcionais . 28

4.2.1.1 Alerta de Falhas . 28

4.2.1.2 Automação da Irrigação . 29

4.2.1.3 Filtragem de Registros . 29

4.2.1.4 Registro de Irrigação . 29

4.2.1.5 Cadastrar Sensor . 29

4.2.1.6 Cadastrar Atuador . 29

4.2.2 Tabela de identificação e especificação de requisitos funcionais 29

4.2.3 Requisitos não Funcionais . 30

4.2.4 Tabela de identificação e especificação de requisitos não funcionais 30

4.3 Relacionamento Geral do Sistema . 31

4.3.1 Diagrama de Fluxo Geral do Sistema . 31

4.4 Modelagem do Sistema . 33

4.4.1 Diagrama de Casos de Uso . 33

4.4.2 Diagrama de sequência comando para sensor (Acionar /desligar Irrigação) 34

4.4.3 Verificação Periódica de Status e Alertas do sensor 35

4.4.4 Diagrama de Classe . 36

4.5 Tecnologias e Ferramentas Utilizadas . 37

4.5.1 Ferramentas Utilizadas . 37

4.5.2 Arquitetura do Backend . 38

4.5.3 Broker MQTT . 39

4.5.4 Softwares utilizados . 41

4.5.4.1 Postman . 41

4.5.5 Hardware Utilizado . 41

4.5.5.1 Computador . 41

4.6 Testes e Validação . 42

4.6.1 Cronograma dos Testes . 42

4.6.2 Funcionalidades a serem testadas . 43

4.7 Recursos necessários . 44

5 RESULTADOS . 45

5.1 Casos de Teste . 45

5.2 Relatório de teste . 57

5.2.1 Introdução . 57

5.2.2 Funcionalidades testadas . 57

5.2.2.1 Visão geral dos resultados . 58

5.2.2.2 Visão Geral da severidade das falhas . 59

6 CONCLUSÃO . 60

REFERÊNCIAS . 62

14

1 INTRODUÇÃO

De acordo com pesquisas realizadas pela Organização das Nações Unidas para a

Alimentação e Agricultura (FAO), estima-se que até o ano de 2050 o crescimento populacional

mundial alcance aproximadamente 9 bilhões de pessoas, o que exigirá um aumento de 60% na

produção de alimentos para suprir a demanda global (FAO, 2018). Esse cenário impõe desafios

significativos para o setor agrícola, que precisa modernizar-se para garantir maior eficiência na

produção e uso sustentável dos recursos naturais.

Um dos principais desafios para a produção de alimentos em larga escala está

na otimização do uso de insumos agrícolas, na redução de desperdícios e na melhoria da

produtividade. A IoT (Internet das Coisas) surge como uma solução promissora para enfrentar

esses desafios, pois permite a coleta e análise de dados ambientais em tempo real, além da

automação de processos agrícolas. Essa abordagem viabiliza práticas mais eficientes, como

o uso racional da água, fertilizantes e defensivos agrícolas, garantindo maior produtividade e

sustentabilidade no campo (Godfray, 2010).

A transformação digital vem evoluindo rapidamente, tornando a tecnologia mais

acessível à população. A internet, por exemplo, é uma das inovações que mais impactaram o

cotidiano, possibilitando o desenvolvimento de novas soluções tecnológicas (Jesus, 2021). No

entanto, muitos pequenos agricultores ainda enfrentam dificuldades para acessar essas inovações

devido a barreiras financeiras e estruturais. No Brasil, 76,8% das propriedades rurais são

caracterizadas como agricultura familiar (IBGE, 2017), e grande parte dessas propriedades

carece de acesso a tecnologias acessíveis e eficazes para modernizar sua produção (Gomes,

2023).

Diante desse contexto, este trabalho propõe a continuidade do desenvolvimento do

sistema AgroInfo, focado na implementação de novas funcionalidades no backend para permitir

a automação de processos agrícolas e a integração com sensores para monitoramento ambiental.

Para isso, serão analisados o protocolo MQTT (Message Queue Telemetry Transport), utilizado

para a comunicação eficiente entre dispositivos IoT, e o framework Django, empregado no

desenvolvimento da aplicação. Esse sistema será projetado para oferecer uma solução acessível

aos agricultores do Vale do Jaguaribe (Região localizada no centro-leste do Ceará), permitindo

que tenham acesso a dados precisos para otimizar suas decisões propiedades.

15

1.1 Motivação

A agricultura é um dos setores mais importantes da economia brasileira, represen-

tando até 21% do Produto Interno Bruto (PIB) nacional (CEPEA, 2023). Além disso, a agricultura

familiar desempenha um papel fundamental na produção de alimentos no país, correspondendo a

60% da produção total de alimentos consumidos internamente (IBGE, 2017).

Apesar de sua relevância, muitos agricultores enfrentam dificuldades para adotar

tecnologias modernas devido aos altos custos e à falta de infraestrutura digital. Pequenos

produtores, em especial, possuem recursos limitados para investir em soluções tecnológicas,

o que impacta diretamente sua produtividade e eficiência operacional. Para esses agricultores,

a adoção de ferramentas tecnológicas acessíveis pode ser determinante para a otimização da

produção e para a adoção de práticas mais sustentáveis (Gomes, 2023).

Dessa forma, o presente trabalho busca desenvolver uma solução de baixo custo para

agricultores da região do Vale do Jaguaribe, utilizando IoT para automatizar processos agrícolas

e fornecer informações estratégicas que possibilitem a melhoria na gestão das lavouras.

1.2 Objetivo

1.2.1 Objetivo geral

Este trabalho tem como objetivo adicionar funcionalidades ao backend de um sistema

IoT de gestão agrícola, permitindo a automação de processos no campo e a integração com

sensores para coleta de dados ambientais via broker MQTT.

1.2.2 Objetivos específicos

• Realizar uma revisão bibliográfica sobre soluções tecnológicas aplicadas à agricultura

digital;

• Estudar e analisar o framework Django e suas funcionalidades para o desenvolvimento do

backend;

• Revisar o funcionamento do protocolo MQTT e sua arquitetura Publish/Subscribe para

comunicação entre dispositivos IoT;

• Projetar e implementar novas funcionalidades no sistema, permitindo a automação agrícola

baseada na comunicação MQTT.

16

1.3 Organização do trabalho

Este trabalho está estruturado em seis capítulos, além da introdução e conclusão.

No Capítulo 2 – Fundamentação Teórica, são descritas as principais tecnologias

utilizadas no desenvolvimento da aplicação, incluindo conceitos sobre IoT, MQTT, Django e

agricultura digital.

No Capítulo 3 – Trabalhos Relacionados, são apresentados estudos e projetos

semelhantes, destacando suas abordagens e contribuições para o setor agrícola.

No Capítulo 4 – Metodologia, são detalhados os passos seguidos para o desenvol-

vimento do sistema, incluindo a estruturação da aplicação, modelagem dos dados e integração

com sensores.

No Capítulo 5 – Resultados, são detalhados os passos dos testes realizados na

aplicação, além de detalhar as ferramentas utilizadas.

No Capítulo 6 – Conclusões Trabalho Futuros, Apresentaremos a conclusão final

e ideias para trabalhos futuros.

17

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Agricultura no Brasil

O Brasil é responsável por boa parte da produção de alimentos no mundo. No ano

de 2021, o agronegócio foi responsável por 27,4% do PIB brasileiro e representou 48% do total

das exportações do país (Caligaris, 2022).

Nos últimos anos, a modernização no setor agrícola tem se intensificado com o

crescimento no uso de tecnologias como sensores, drones e inteligência artificial. Essas inovações

são essenciais para melhorar a eficiência das plantações, aumentar a produtividade e diminuir os

gastos de água e terras.

Com o avanço da IoT e dos dispositivos conectados, as fazendas inteligentes vêm se

tornando realidade, o que permite aos agricultores tomarem decisões mais precisas, pois contam

com o apoio das variáveis obtidas pelos sensores como umidade, luminosidade, temperatura,

entre outros, além de poder automatizar algumas atividades que antes eram manuais.

Apesar dos avanços tecnológicos, o Brasil ainda enfrenta uma infraestrutura precária

e acesso limitado à internet, o que gera uma série de desafios a serem superados, juntamente com

a falta de capacitação para a utilização de novas tecnologias.

2.2 Internet das Coisas (IoT)

O termo IoT (Internet of Things) é usado para se referir a infraestruturas tecnoló-

gicas e serviços. No tocante à infraestrutura, a IoT pode ser definida como uma rede global

de dispositivos inteligentes, que são conectados à internet e dependentes de tecnologias de

processamento, comunicação e sensores como a Radio Frequency IDentification (RFID) (Radio

Frequency IDentification) e as Redes de Sensores Sem Fio (Wireless Sensor Networks). Eles

utilizam essas tecnologias para se comunicarem de maneira independente entre dispositivos e

usuários finais (Silva, 2020).

As tecnologias mais importantes para a IoT são a tecnologia de identificação por

radiofrequência (RFID) e a de sensores sem fio (Wireless Sensor Network). A RFID é utilizada

para permitir que microchips transmitam informações de identificação para leitores sem fio de

outros dispositivos que compartilhem da mesma tecnologia. Os sensores são utilizados de forma

interconectada para monitorar e detectar as variáveis do ambiente (Silva, 2020).

18

Figura 1 – Conceito da Internet das Coisas

Fonte: (CODEMEC, 2016).

2.3 Computação em Nuvem

A computação em nuvem pode ser definida como a utilização massiva da virtualiza-

ção para fornecer recursos computacionais sob demanda, por meio da internet. As tecnologias

já existentes usadas no dia a dia foram adaptadas para realizar um novo modelo de acesso aos

recursos computacionais (Carissimi; Barbosa, 2016).

No início, o poder de processamento em nuvem passou por ciclos de centralização e

descentralização. Na década de 60, o poder computacional de processamento e armazenamento

era concentrado em um único grande mainframe, e o acesso aos recursos era feito por terminais.

Após isso, com o desenvolvimento dos computadores pessoais, houve a descentralização do poder

da computação em nuvem, permitindo que os usuários processassem dados e armazenassem em

seus próprios computadores (Carissimi; Barbosa, 2016).

Com a infraestrutura fornecida pela computação em nuvem, as plataformas de

softwares como serviço são beneficiadas pela virtualização, pois ela permite a execução de

várias instâncias em um mesmo hardware. Com os custos dos data centers são reduzidos, o que

favorece a computação verde.

Um dos conceitos-chave da computação em nuvem é a elasticidade, que permite

alocar recursos conforme a demanda. Um exemplo disso é o comércio eletrônico, onde são

alugados os recursos necessários e a empresa não precisa investir em recursos próprios. “Pague

o quanto usa” (pay-as-you-go) é o modelo responsável por flexibilizar o uso da computação em

nuvem, permitindo que o cliente pague somente pelos recursos desejados.

19

Figura 2 – Arquitetura da Computação em Nuvem

Fonte: (Planton, 2024).

2.4 Python

No ano de 1982, em Amsterdã, capital da Holanda, Guido Van Rossum, que traba-

lhava no desenvolvimento da linguagem de programação ABC, estava envolvido no Instituto de

Pesquisa Nacional para Matemática e Ciência da Computação em um sistema chamado Amoeba.

Devido a grandes falhas no sistema, que era feito na linguagem C, Guido resolveu desenvolver

sua própria linguagem. Ele queria criar uma tecnologia fácil e intuitiva, pois alguns sistemas

programados em C, por terem uma codificação extensa, apenas programadores experientes

conseguiam entender.

Na década de 90, o projeto Python foi concluído. Guido então se mudou para os EUA,

onde iniciou o projeto Computer programming for everybody (CP4E) (Computer Programming

for Everybody), no qual ele ensinava programação de forma acessível. No ano de 2001, foi

fundada a PSF (Python Software Foundation), que é uma organização sem fins lucrativos que

coordena o uso da linguagem.

Com o tempo, o Python teve evoluções em sua estrutura e foram adicionados com-

ponentes como as compreensões de lista, funções e diversos outros. Hoje é altamente usada no

mercado e já vem instalada em alguns sistemas operacionais como Linux e macOS.

Figura 2 - Arquitetura da Computação em Nuvem

Fonte: (Planton, 2024).

20

2.5 Django Rest Framework

O framework Django REST Framework dispõe de uma biblioteca que estende a

capacidade do Django, tornando-o mais eficiente e ágil para criar Application Programming

Interface (API)s para a internet. Ela dispõe de ferramentas que são versáteis e modulares (Dantas,

2023).

Este framework é de código aberto, criado em Python, e tem seu foco em agilizar o

desenvolvimento, diminuindo as duplicações no código, disponibilizando assim mais tempo para

que os desenvolvedores se concentrem em tarefas mais cruciais (Dantas, 2023).

É amplamente utilizado por conta de suas vantagens, uma vez que oferece estruturas

prontas para identificação de usuário e administração de conteúdo. Usa o padrão MVT e a

linguagem Python, o que permite a criação de aplicações com poucas linhas de código (Carmo,

2023).

2.6 Protocolo MQTT

MQTT é um protocolo responsável por transmitir a comunicação principalmente

entre dispositivos IoT. Foi projetado para ter uma simples implementação e poder transmitir os

dados mesmo com uma rede de baixa qualidade. Este protocolo segue o modelo Publish/Subs-

cribe, que é amplamente utilizado para dispositivos que têm limitações, principalmente com

relação a armazenamento, processamento de dados e largura de banda.

O protocolo MQTT segue o modelo Publish/Subscribe, onde os dispositivos não

se comunicam diretamente, mas há um intermediário entre eles: o broker. Os publicadores

(publishers) são os que enviam as mensagens para o broker, que as organiza de forma hierár-

quica. Os assinantes (subscribers) se inscrevem no tópico de interesse e recebem as mensagens

correspondentes.

Este protocolo é amplamente usado por dar suporte a curtas mensagens. Ele também

pode ser utilizado em redes com alta latência e não confiáveis, já que o publicador e o assinante

não necessitam estar online ao mesmo tempo. Ele se adequa a dispositivos limitados tanto em

armazenamento, processamento de dados, quanto em limitações de largura de banda.

21

Figura 3 – Fluxo de Mensagens MQTT

Fonte: (LENA; OLIVEIRA, 2018).

2.7 Arquitetura Publish-Subscribe

Nesta arquitetura, as mensagens são chamadas de eventos. Os componentes são

os publicadores (publishers) e os assinantes (subscribers) de eventos. Os publicadores enviam

mensagens que são executadas no broker. Os assinantes devem assinar previamente os eventos

de seu interesse.

Em alguns sistemas que utilizam a arquitetura Publish/Subscribe, os eventos podem

ser organizados com base em tópicos. Quando o publicador envia um evento, ele informa seu

tópico, assim os clientes não precisam assinar todos os eventos do sistema.

Fonte: (Lena; Oliveira, 2018).

Figura 3 - Fluxo de Mensagens MQTT

22

3 TRABALHOS RELACIONADOS

Neste capítulo, serão abordados trabalhos com uma proposta semelhante ao tema

escolhido, com o objetivo de comparar as tecnologias utilizadas em outras obras. Na seção 3.1 é

apresentada uma solução tecnológica para a automação de pivôs e canais de irrigação. A seção

3.2 apresenta um sistema para monitoramento de variáveis climatológicas. A seção 3.3 apresenta

um sistema IoT e Supervisory Control and Data Acquisition (SCADA) para um sistema de

monitoramento de baixo custo. A seção 3.4 aborda um Sistema IoT baseado em ESP32 para o

controle e monitoramento de cultura em estufas. Por fim, a seção 3.5 apresenta uma análise sobre

os trabalhos relacionados e este trabalho, comparando as tecnologias utilizadas e as escolhas de

desenvolvimento.

3.1 IoT na Agricultura - Automação de Pivôs e Canais de Irrigação com Arduino e

Webservice

Este artigo aborda os problemas e necessidades enfrentadas pelos produtores agríco-

las, pois mesmo a agricultura sendo um setor produtivo e evoluído, também apresenta um déficit

quanto à aplicação de tecnologia que possa promover a agricultura de precisão e a automação

de processos produtivos. Dentre alguns dos motivos para não haver o aproveitamento em larga

escala da tecnologia, podemos citar o alto custo e a possibilidade de vantagens alcançadas ainda

serem prematuras. Artefatos computacionais integrados, como sensores de coleta e mecanismos

de tomadas de decisão, têm se tornado mais acessíveis a partir dos últimos anos (Muxito, 2018).

Este trabalho tem como principal objetivo experimentar uma proposta de melhoria e

controle de um sistema de irrigação na agricultura de precisão, de forma que possa ser de fácil

implantação e de baixo custo. É proposto utilizar IoT para a construção de um protótipo que

simula e testa os pivôs juntamente com uma nova solução tecnológica de monitoramento. O

protótipo é composto por três ambientes: o ambiente mecânico, que é automatizado a partir da

plataforma Arduino; o ambiente central, que se baseia no Webservice para integração; e também

o ambiente de controle funcional, que se trata de um sistema web (Muxito, 2018).

O autor descreve as aplicações para a resolução do problema que foram um conjunto

de elementos: foram escolhidos três módulos: o Real-Time Clock (RTC) (RTC DS1307),

implementado para possibilitar a sincronização e a programação da data e hora para irrigação; o

ESP8266 ESP-01 de Wi-Fi, que permite a criação de Webservice e o acesso do sistema em longo

23

alcance (nele, os dados fornecidos pelo sensor e pelo RTC (dateTime) podem ser usados para

upload e acessados por qualquer dispositivo conectado à internet); e o I2C, que funciona como

adaptador para Liquid Crystal Display (LCD) e permite uma conexão mais fácil e econômica

dos jumpers e dos pinos do Arduino. Além dos módulos, foram utilizados Display LCD como

monitor, e botões físicos e operacionais no circuito, sendo cada botão responsável por uma

determinada função (Muxito, 2018).

O autor descreve os principais softwares de apoio utilizados que foram: Visual

Studio Code v.1.26.1, um editor de código-fonte gratuito; a linguagem Hypertext Preprocessor

(PHP) v.5.4 (PHP, 2015), linguagem de scripts de propósito geral que é especialmente adequada

para o desenvolvimento web; e o banco de dados MySQL v5.5 (MySQL, 2015), um sistema de

gerenciador de banco de dados de código aberto (Muxito, 2018).

O autor conclui enfatizando a contribuição direta para a área da computação e a pre-

ocupação com os problemas e desafios na agricultura, destacando o envolvimento e colaboração

a partir de parcerias realizadas junto às empresas de tecnologia que possibilitam o projeto.

3.2 Sistema IoT para monitoramento de variáveis climatológicas em culturas de agricul-

tura urbana

Este artigo tem como objetivo o desenvolvimento de um sistema IoT para monito-

ramento de variáveis climáticas de interesse agrícola em áreas urbanas ou em hortas caseiras.

Também pode servir como referência para implementação de sistemas de rastreamento e moni-

toramento IoT em cenários de agricultura urbana, de forma que possam ser customizados para

características de diferentes culturas (Golondrino, 2022).

O autor propõe a utilização da arquitetura IoT de quatro camadas (captura, armaze-

namento, análise e visualização):

• Camada de captura: através de sensores, são adquiridas algumas variáveis como tempe-

ratura, umidade e luminosidade, que são enviadas para uma placa de captura que utiliza

um pequeno servidor para leitura das informações;

• Camada de armazenamento: as variáveis são solicitadas à placa de captura e são

armazenadas em um banco de dados relacional;

• Camada de análise: os dados são usados para medidas estatísticas e como modelos de

aprendizagem;

• Na camada de visualização: é possível acompanhar as variáveis de interesse e as análises

24

estatísticas (Golondrino, 2022).

Para a metodologia de trabalho, o autor dividiu o trabalho em quatro fases metodoló-

gicas:

• Seleção de ferramentas e tecnologias: que se deu pela seleção de um conjunto de

ferramentas e tecnologias e softwares livres para a captura de variáveis úteis na agricultura

urbana;

• Design da arquitetura IoT: por meio de especificações baseadas nas quatro camadas

convencionais dos sistemas que utilizam IoT (captura, armazenamento, análise e visualiza-

ção);

• Construção do protótipo do sistema: com base nas análises das camadas e tecnologias

definidas;

• Estudo de caso: aplicação prática do protótipo.

O autor conclui que o uso do sistema IoT foi útil para monitoramento de variáveis climatológicas

em agricultura urbana. Embora tenha sido utilizado apenas em plantações de alface, os modelos

podem ser usados em diferentes culturas de alimentos.

3.3 Utilização da IoT na agricultura sustentável

O objetivo desse artigo é desenvolver um sistema de monitoramento de baixo custo

usando tecnologias como IoT e SCADA (Supervisory Control and Data Acquisition) para auxiliar

pequenos agricultores que enfrentam dificuldades climáticas e financeiras, tendo em vista que

o grande desafio da agricultura até os anos 2050 será o aumento da demanda de alimentos por

conta do crescimento populacional, segundo a Organização das Nações Unidas para Alimentação

e Agricultura (Gomes, 2023).

Para beneficiar de forma acessível e eficaz os pequenos agricultores familiares, o

autor propõe a criação de um ambiente de monitoramento open source com base num sistema

SCADA integrado a sensores. A finalidade desse sistema é melhorar a precisão das coletas de da-

dos de umidade e temperatura do solo. Pequenos agricultores podem se beneficiar enormemente

dessa solução que pode potencializar a eficácia e sustentabilidade de suas plantações (Gomes,

2023).

O sistema proposto utilizou um servidor web Apache Tomcat. Os dados são coletados

por meio de sensores de vazão, umidade e temperatura, e foram armazenados em um banco

de dados relacional MySQL que é integrado a um sistema SCADA. Para testar o programa, ele

25

utilizou o sistema em uma horta experimental no Campus de Passos. Os sensores foram usados

para coletar os dados que foram comparados com os dados do Instituto Nacional de Meteorologia

(INMET) (Instituto Nacional de Meteorologia) para garantir a precisão (Gomes, 2023).

O autor conclui que os resultados obtidos são confiáveis e podem ser usados para

tomadas de decisões mais concisas e eficientes na agricultura. A utilização do sistema IoT é

viável e eficaz, fazendo com que haja maior aproveitamento da água nas plantações, reduzindo o

desperdício e o custo. Ele ainda planeja incluir sensores de pH, Nitrogênio (N), Fósforo (P) e

Potássio (K) (NPK) e gases para auxiliar as propriedades sustentáveis.

3.4 Sistema IoT baseado em ESP32 para o controle e monitoramento de cultura em

estufas com foco na agricultura 4.0

O artigo tem como objetivo desenvolver um sistema mobile baseado no ESP32 para

realizar o monitoramento de variáveis como temperatura, umidade do ambiente, além do nível

de água para irrigação em estufas de cultivo de alface. O sistema possibilita otimizar o gasto

de água, aumentando assim a produtividade. Os fatores que podem limitar o crescimento da

agricultura são principalmente a escassez de água e terra, sendo assim, no futuro, os cultivos

dependerão da mecanização das atividades, inclusive das de pequena escala (Berrios, 2022).

O autor propõe a criação de um sistema IoT utilizando o microcontrolador ESP32

para monitorar e acessar os dados gerados no cultivo de alface em estufas, com o objetivo de

otimizar o uso dos recursos agrícolas. É utilizado o sistema supervisório ScadaBR e algumas

tecnologias como Firebase Real Time Database e sensores que permitem uma gestão inteligente

conectada (Berrios, 2022).

Na metodologia, realizou-se um estudo das características do cultivo em estufas e

estabeleceram-se as restrições necessárias para as condições ideais para as plantações. Para

realizar a medição das variáveis (temperatura, umidade, ambiente, umidade do solo e nível de

líquido no tanque de água), foi utilizado o ESP32-DeviKitC, sensores e atuadores de baixo custo,

e a tecnologia sem fio ESP-NOW para comunicação. A solução consiste em uma rede tipo estrela

com nó central e três nós sensores. É utilizado Firebase Realtime Database, uma aplicação

móvel baseada em Android Studio. Os nós sensores coletam os dados que são enviados para o nó

central e depois recolhidos na base de dados, acionando ou desativando atuadores conforme o

necessário (Berrios, 2022).

O autor conclui que o sistema IoT baseado no microcomputador ESP32 e na rede

26

sem fio de sensores sob protocolos ESP-NOW cumpre seu papel de monitorar e controlar a

temperatura, umidade e nível de água de irrigação, além de mostrar os dados em tempo real

através de um aplicativo Android.

3.5 Comparação entre os trabalhos relacionados

Este trabalho trata-se da continuação do trabalho SANTOS (2024), onde foi sele-

cionada a arquitetura MVT e o framework Django, que foi considerado a melhor opção para

o desenvolvimento do backend do sistema AgroInfo. A aplicação do sistema foi realizada em

Python, o que proporcionou um código mais reduzido e claro. O framework também oferece

uma interface de controle e gerenciamento, com uma página de administração, sendo apenas

preciso definir o banco de dados a ser utilizado, que no caso foi o SQLite3. A hospedagem foi

mantida em nível local.

Tabela 1 – Comparativo dos trabalhos relacionados

Característica Este Tra-
balho

Ezequiel
(2018)

Gabriel
(2022)

Gomes
(2023)

Berrios
(2022)

Arquitetura de Software MVT Camadas Camadas Client/Serv Camadas

Framework / Plataforma Django Webservice Flask — Firebase

Linguagem Python PHP Python Java C++

Armazenamento SQLite3 MySQL TinyDB MySQL Firebase

Hospedagem Local Nuvem Nuvem Nuvem Nuvem

Fonte: Elaborado pelo autor.

27

4 METODOLOGIA

4.1 Visão geral do trabalho

Este trabalho tem como objetivo dar continuidade ao trabalho desenvolvido pelo

autor (Santos, 2024). Para a realização do trabalho, houve uma revisão bibliográfica e análise de

trabalhos relacionados.

Na Figura 4 é ilustrada a representação da visão geral de todo o sistema backend,

considerando as funcionalidades e as escolhas de arquitetura.

Figura 4 – Visão geral do sistema AgroInfoV1

Fonte: (Santos, 2024).

A Figura 4 mostra o principal protocolo utilizado para comunicação entre os sensores,

broker e o backend. Nesse caso, foi utilizado o protocolo MQTT, do tipo Publish/Subscribe, para

possibilitar a troca de mensagens entre diversos dispositivos. E a arquitetura Cliente/Servidor

foi usada para o processamento de dados. A arquitetura é capaz de se comunicar entre diversos

dispositivos.

A Figura 5 mostra os passos seguidos para adicionar as funcionalidades definidas ao

sistema com base na arquitetura definida. Serão especificados os passos para o desenvolvimento

das funcionalidades adicionadas, juntamente com o resumo geral do sistema e o detalhamento

dos testes realizados para a validação.

Figura 4 - Visão geral do sistema AgroInfo V1

Fonte: (Santos, 2024).

28

Figura 5 – Passos

Fonte: Elaborado pelo autor.

4.2 Levantamento de requisitos

Para definir os requisitos do sistema, foi realizada uma análise comparativa com

estudos prévios na área, incluindo os trabalhos de (Muxito, 2018), (Golondrino, 2022), (Gomes,

2023) e (Berrios, 2022). A partir dessas análises, foram identificadas funcionalidades relevantes

que poderiam ser incorporadas ao AgroInfo, tornando-o mais eficiente para auxiliar os agricultores

do Vale do Jaguaribe.

Os requisitos do sistema foram classificados em funcionais e não funcionais, con-

forme descrito a seguir.

4.2.1 Requisitos Funcionais

Os requisitos funcionais representam as funcionalidades essenciais que o sistema de-

verá oferecer para atender às necessidades dos usuários. Foram definidos os seguintes requisitos:

4.2.1.1 Alerta de Falhas

O sistema deve ser capaz de identificar quando há uma falha na comunicação com o

sensor e notificar no sistema.

29

4.2.1.2 Automação da Irrigação

O sistema deve permitir o acionamento e desligamento automático dos atuadores,

além de permitir a configuração de horários programados.

4.2.1.3 Filtragem de Registros

O sistema deve possibilitar a filtragem dos registros armazenados por data e hora.

4.2.1.4 Registro de Irrigação

O sistema deve manter um histórico de acionamentos do sistema de irrigação.

4.2.1.5 Cadastrar Sensor

O sistema deve permitir cadastrar um sensor para cada plantio registrado no sistema,

definindo por nome, tipo, ID e plantio correspondente.

4.2.1.6 Cadastrar Atuador

O sistema deve permitir cadastrar um atuador para cada plantio registrado no sistema,

definindo por nome, tipo, ID e plantio correspondente.

4.2.2 Tabela de identificação e especificação de requisitos funcionais

A Tabela 2 apresenta a identificação e prioridade atribuída a cada requisito funcional,

facilitando a rastreabilidade durante o desenvolvimento e os testes.

Tabela 2 – Tabela de identificação e especificação de requisitos funcionais
Identificação Nome da Funcionalidade Prioridade
RF001 Alerta de falhas Essencial
RF002 Automação da Irrigação Importante
RF003 Filtragem de registros Importante
RF004 Registro de Irrigação Importante
RF005 Cadastrar Sensor Essencial
RF006 Cadastrar Atuador Essencial

Fonte: Elaborado pelo autor.Fonte: (Elaborado pelo autor).

Tabela 2 - Tabela de identifição e especificação de requisitos funcionais

30

4.2.3 Requisitos não Funcionais

Os requisitos não funcionais referem-se a características desejáveis do sistema rela-

cionadas à sua performance, confiabilidade e escalabilidade. Foram estabelecidos os seguintes

requisitos:

• RNF001 – Desempenho da Leitura: O sistema deve processar e exibir as leituras ambientais

em tempo real.

• RNF002 – Desempenho da Irrigação: O tempo de resposta para ativação e desligamento

do sistema de irrigação não deve ultrapassar 2 segundos.

• RNF003 – Confiabilidade e Disponibilidade: O sistema deve operar de forma contínua,

garantindo disponibilidade 24 horas por dia, 7 dias por semana.

• RNF004 – Recuperação: Em caso de falhas, o sistema deve ser capaz de reiniciar automa-

ticamente e retomar sua operação.

• RNF005 – Escalabilidade: O sistema deve ser projetado para suportar um número crescente

de sensores sem perda significativa de desempenho.

• RNF006 – Manutenibilidade: O código deve seguir boas práticas de desenvolvimento para

facilitar futuras atualizações e correções.

• RNF007 – Suporte a Múltiplos Sensores/Atuadores: O sistema deve permitir a conexão

simultânea de diversos sensores/atuadores sem comprometer a eficiência da comunicação.

4.2.4 Tabela de identificação e especificação de requisitos não funcionais

A Tabela 3 apresenta a especificação desses requisitos e suas respectivas prioridades

no desenvolvimento do sistema.

Tabela 3 – Tabela de identificação e especificação de requisitos não Funcionais
Identificação Nome da funcionalidade Prioridade
RNF001 Desempenho da leitura Essencial
RNF002 Desempenho da Irrigação Desejável
RNF003 Confiabilidade e Disponibilidade Essencial
RNF004 Recuperação Importante
RNF005 Escalabilidade Importante
RNF006 Manutenibilidade Desejável
RNF007 Múltiplos Sensores/Atuadores Essencial

Fonte: Elaborado pelo autor.

Tabela 3 - Tabela de identifição e especificação de requisitos não funcionais

Fonte: (Elaborado pelo autor).

31

4.3 Relacionamento Geral do Sistema

Identificamos os principais requisitos e aspectos necessários para desenvolver o

sistema de maneira que seja de fácil acesso e escalável. Na Figura ?? temos a visão geral do

sistema e com base nas funcionalidades definidas.

Isso possibilita a escalabilidade tanto de processos quanto de sensores atuando ao

mesmo tempo, e a possibilidade de executar tarefas em segundo plano sem consumir muitos

recursos.

4.3.1 Diagrama de Fluxo Geral do Sistema

Este diagrama de componentes ilustra o fluxo de dados do sistema, com as novas

relações do Celery Broker. Demonstra como os diferentes elementos do sistema interagem para

coletar, processar e enviar comandos.

Para facilitar a visualização das relações, dividimos o diagrama em áreas funcionais:

• Dispositivos IoT:

– Sensores: dispositivos que coletam dados do ambiente (temperatura, umidade,

luminosidade).

– Atuadores: dispositivos que recebem comandos do sistema e executam ações no

ambiente.

• Serviços de Fila:

– MQTT Broker (HiveMQ): Atua como “correio” central para mensagens IoT. Os

sensores enviam os dados para ele, que os distribui para o backend e também é

responsável por receber comandos do backend e enviar para os atuadores.

– Redis - Celery Broker: É responsável pelo armazenamento em memória de dados

que o Celery usa como uma fila de mensagens de alta performance. Ele armazena as

tarefas que serão processadas no backend, garantindo que um worker as realize.

• Backend:

– API/Cliente MQTT: Esta API expõe os endpoints que o sistema irá interagir (ex:

buscar históricos, ligar atuador, agendar comandos).

– Tasks Celery: São funções responsáveis por encapsular a lógica de processamento

de dados e envio de comandos para posteriormente serem executadas em segundo

plano.

32

– Banco de Dados: Onde todos os dados são armazenados, incluindo dados dos

sensores, atuadores e informações do usuário.

• Processamento:

– Celery Worker: É o trabalhador que escuta o Redis (Celery Broker), recebe as tarefas

que estão disponíveis na fila e as executa. Ele é responsável por executar as “Tasks

Celery” em segundo plano.

• Interface:

– APP Web/Mobile: Trata-se da interface onde os usuários interagem com o sistema.

Através dela pode-se configurar os dispositivos, visualizar dados e realizar comandos.

Fluxos de dados e comandos:

1. Dados dos Sensores:

• Os sensores coletam os dados e enviam para o MQTT Broker.

• O MQTT Broker encaminha esses dados para a API/Cliente MQTT no backend

Django.

• O backend enfileira a tarefa desses dados no Redis Celery Broker.

• O Celery Worker executa a tarefa do Redis, que roda a lógica (Task), e essa lógica

salva os dados no Banco de Dados.

2. Fluxo de Interação do Usuário:

• O App Web/Mobile interage com a API do Backend solicitando dados do histórico,

ou aplicando comandos.

• O backend responde o App Web/Mobile com os dados esperados.

3. Comandos para Atuadores:

• Quando um comando desse é enviado (Por uma requisição do App Web/Mobile ou

uma tarefa agendada), o Celery Worker executa uma task que decide o comando e

envia para o MQTT Broker.

• O MQTT Broker envia o comando para os atuadores IoT correspondentes, que

executam a ação física.

Para realizar a comunicação backend, sensores e broker MQTT, foram utilizados os

protocolos Publish/Subscribe, responsável por criar tópicos onde é possível se comunicar entre

os sensores e a aplicação backend, e o protocolo Producer/Consumer, que utiliza o broker Redis

responsável por executar operações em fila, o que torna a aplicação mais rápida e escalável.

33

Figura 6 – Diagrama de Fluxo geral do sistema AgroInfo V2

Fonte: Elaborado pelo autor.

4.4 Modelagem do Sistema

4.4.1 Diagrama de Casos de Uso

Com o objetivo de melhorar a visão das ações dos usuários no sistema, foi desen-

volvido o diagrama de casos de uso na Figura ??. Contamos com a representação de 2 atores:

primeiramente, o usuário do sistema, que poderá acessar as funcionalidades do sistema res-

ponsáveis por monitorar as variáveis ambientais e os registros dos dados, como monitorar a

temperatura, monitorar a umidade, acessar histórico de dados, ligar/desligar sistema de irrigação.

O segundo trata-se do sistema em nuvem, o broker MQTT, que será responsável por intermediar

a comunicação entre os sensores e o aplicativo, postando os dados captados pelos sensores,

identificando falhas nos sensores caso ocorra, além de postar os dados que serão armazenados

no banco de dados (SQLite3) posteriormente.

O diagrama de casos de uso demonstra as funcionalidades do sistema que promovem

a interação dos usuários do sistema, podendo haver dependências entre eles para visualizar a

lógica da aplicação.

• Ligar/Desligar irrigação: Este caso mostra a funcionalidade que possibilita o usuário

realizar a ação de ligar ou desligar o sistema de irrigação.

• Consultar Histórico: Este caso demonstra o cenário em que os usuários podem acessar o

34

histórico de dados que foram detectados pelos sensores.

• Consultar Registro de irrigação: Este caso descreve o cenário onde o usuário tem acesso

ao registro de todas as requisições de ligar e desligar o sistema de irrigação.

• Filtragem de Registro: Este caso mostra o cenário onde o usuário pode realizar a filtragem

por data/hora dos dados armazenados no banco de dados do sistema.

• Alerta de falhas: Este cenário mostra o caso onde há uma falha nos sensores é identificada

pelo broker MQTT, o sistema envia uma notificação de aviso.

• Armazenamento de dados: Este caso mostra o cenário que os dados postados pelo broker

são armazenados no banco de dados do sistema.

Figura 7 – Diagrama de casos de uso

Fonte: Elaborado pelo autor.

4.4.2 Diagrama de sequência comando para sensor (Acionar /desligar Irrigação)

Para auxiliar na visualização da interação do usuário ao utilizar o sistema, foram

criados dois diagramas de sequência para representar o fluxo de dados entre os componentes.

Neste diagrama, demonstramos o fluxo de dados para o envio de comandos para o sensor.

Na interface do sistema, o usuário seleciona “Acionar Irrigação” ou “Desligar Irri-

gação”. Seguidamente, o frontend envia uma requisição HTTP do tipo POST para a API do

backend. Após receber essa requisição, em vez de processar diretamente o comando, o backend

Figura 7 - Diagrama de casos de uso

Fonte: (Elaborado pelo autor).

35

aciona uma tarefa chamada ‘enviar_comando_sensor‘ para o Celery Broker (Redis). Um

Celery Worker disponível executa essa tarefa que chama ‘enviar_comando_mqtt()‘ do cliente

MQTT. Esta função irá publicar a mensagem MQTT com o comando escolhido (ligar ou desligar)

no tópico de comando. O HiveMQ leva esta mensagem MQTT para o Sensor/Dispositivo IoT

correspondente, que havia se inscrito no mesmo tópico. O Dispositivo recebe a mensagem e

executa a ação que foi definida pelo usuário.

Figura 8 – Diagrama de sequência com comando para sensor

Fonte: Elaborado pelo autor.

4.4.3 Verificação Periódica de Status e Alertas do sensor

No processo da funcionalidade de Verificação periódica dos sensores e alertas, cria-

mos um diagrama de sequência para sua visualização detalhada. Neste processo, o Celery Beat de-

sempenha o papel de agendador de tarefas, enfileirando a tarefa ‘verificar_status_sensores‘

no Celery Broker (Redis) em intervalos regulares. Isso torna a verificação automática, sem neces-

sidade de intervenção manual.

O Celery Worker está sempre aguardando tarefas na fila para processar. Ele pega a

tarefa ‘verificar_status_sensores‘ do Celery Broker. Quando a executa, utiliza a lógica

contida no backend e então realiza a consulta no banco de dados para obter a última leitura dos

sensores cadastrados. Com essa informação, o backend calcula um limite offline (nesse sistema

foi definido o tempo de 10 minutos) e assim determina se o sensor enviou dados recentemente.

Caso o sistema identifique que os sensores não reportam dados desde o limite offline

e ainda estão identificados como online, o backend atualiza o status de online para offline no

banco de dados. Em um fluxo adicional, o sistema também verifica se algum sensor que estava

antes marcado como offline retornou a enviar dados; nesse caso, o sistema atualiza o banco de

dados para o status de online. Após esse processo, o sistema finaliza as atividades relacionadas a

36

essas tarefas e aguarda a próxima atividade agendada pelo Celery Beat.

Figura 9 – Diagrama de sequência Verificação Periódica de Status e Alertas do sensor

Fonte: Elaborado pelo autor.

4.4.4 Diagrama de Classe

O diagrama da Figura 10 é uma representação da estrutura das funcionalidades a

serem adicionadas ao sistema, mostrando visualmente as classes, relacionamentos e associações,

assim fornecendo uma visão estática do sistema.

Definição das classes:

• MVT: A sigla MVT não é uma classe e sim uma arquitetura. A seção 4.5.2 aborda isso

em detalhes.

• Plantio: É utilizada para criar objetos de plantio e possui uma chave estrangeira que

referencia o objeto Property, que é ponto de acesso para seus métodos.

• Property: É utilizada para criação de objetos no banco de dados. Possui uma chave

estrangeira para o objeto User, que torna possível acessar seus métodos.

• User: É utilizada para criação de objetos de usuário.

• Sensor: É utilizado para a criação de objetos de sensores no banco de dados. Possui uma

chave estrangeira que referencia um objeto Plantio ao qual tem relação.

37

• Histórico: É utilizado para criação de objetos de histórico geral da aplicação no banco de

dados, possui uma chave estrangeira para um (CustomUser), armazenando quem realizou

a tarefa.

• HistóricoDeRegistro: É utilizada para criação de objetos de registro de comandos no

banco de dados. Registra cada vez que o comando ligar/desligar a irrigação é enviada.

• AgendamentoDeComando: É utilizado para criação de objetos de agendamentos de

comandos no banco de dados, tornando possível programar o agendamento para ligar/-

desligar o sistema de irrigação automaticamente em horários específicos. Possui chaves

estrangeiras para um objeto CustomUser e para um objeto Plantio, especificando o local

da ação.

Figura 10 – Diagrama de Classe

Fonte: Elaborado pelo autor.

4.5 Tecnologias e Ferramentas Utilizadas

4.5.1 Ferramentas Utilizadas

Para o desenvolvimento do sistema, foram selecionadas as seguintes tecnologias e

ferramentas:

• Linguagem de Programação: Python, devido à sua flexibilidade e vasta disponibilidade

de bibliotecas para desenvolvimento web e IoT.

• Frameworks: Django e Django REST Framework, para implementação do backend e

exposição de APIs REST.

38

• Protocolo de Comunicação: MQTT (Message Queuing Telemetry Transport), por ser

leve e eficiente na transmissão de dados entre sensores e servidores.

• Broker de Mensagens para o Celery: Utilizado com Broker de mensagens para o

Celery. O Redis atua como uma fila de alta performance, onde as tarefas são armazenadas

temporariamente antes de serem executadas.

• Sistema de Filas de Tarefas: O Celery é essencial para execução em segundo plano das

tarefas enfileiradas pelo Redis.

• Agendador de Tarefas Periódicas: Uma extensão do Celery que permite o agendamento

de tarefas periódicas diretamente a partir do banco de dados do sistema.

• Banco de Dados: SQLite3, utilizado para armazenar as leituras ambientais e logs do

sistema.

• Plataforma de Hospedagem: Inicialmente, o sistema será executado em ambiente local,

com possibilidade de migração para servidores em nuvem.

4.5.2 Arquitetura do Backend

Para o desenvolvimento desse projeto, foi utilizado o padrão MVT (Model, Template,

View), que se trata de uma variação do padrão MVC (Model, View, Controller), mais adaptada

para a utilização do Django, framework que foi utilizado neste trabalho.

É baseado em separações em três camadas que estão conectadas e desempenham

papéis diferentes na aplicação.

• Template: Responsável por apresentar a parte visual e demonstrar dados, onde os arquivos

HTML serão renderizados.

• View: É onde os dados serão formatados, exibindo a interface e as informações contidas

no Model.

• Model: Onde é realizada a lógica para estruturar os dados, manipula os dados que serão

coletados pelo broker, além de mapear o banco de dados.

39

Figura 11 – Representação esquemática do MVT.

Fonte: Elaborado pelo autor.

4.5.3 Broker MQTT

O broker MQTT utilizado no desenvolvimento da aplicação trata-se do sistema

disponibilizado pela HiveMQ. Neste projeto, foi utilizado o plano gratuito. Ao criar uma conta

no cluster, é possível ter acesso às informações que são essenciais para conectar o broker para

clientes, produtores e consumidores. A plataforma fornece as informações de conexão como a

URL de acesso. Como a plataforma HiveMQ é disponibilizada via AWS, a URL é utilizada por

clientes produtores e clientes consumidores para terem acesso ao broker.

A segurança da comunicação é garantida pela utilização de URLs de TLS (Transport

Layer Security) para MQTT e WebSocket, o que garante a segurança por meio de criptografia dos

dados de comunicação, protegendo as informações enquanto viajam entre os dispositivos e o

broker.

Figura 11 - Representação esquematica do MVT

40

Para iniciar o recebimento de dados e ativar o broker, é necessário criar credenciais.

A própria plataforma HiveMQ pode criar de forma automática as credenciais necessárias para a

aplicação. Uma vez que o broker está ativo com as credenciais, o próximo passo é definir os

tópicos. Os tópicos servem para separar os dados dos produtores, garantindo que cada um receba

as suas informações pertinentes. O nome dos tópicos é definido por um serial token obtido pelo

usuário, de forma que cada usuário terá acesso ao seu próprio tópico para recebimento dos dados

coletados e enviados pelos sensores. O backend da aplicação realiza a tarefa de coletar e salvar

os dados no banco de dados, considerando os dados e o tópico referente ao usuário que está

conectado à aplicação.

Um aspecto importante do HiveMQ é o Quality of Service (QoS) das mensagens,

que se trata de um sistema de níveis que garantem a entrega das mensagens. Nos níveis 1 e 2, o

broker rastreia as mensagens não confirmadas e as armazena em uma fila, garantindo a entrega

mesmo que haja interrupções. No nível 0, não há rastreamento ou armazenamento de dados após

uma perda de conexão, e neste nível as mensagens podem ser descartadas.

Quando o broker entra em execução e os tópicos estão definidos, o HiveMQ recebe

os dados enviados pelos sensores e armazena as principais informações como o conteúdo

da mensagem, os níveis de garantia (QoS) e o momento em que a mensagem foi recebida

(Timestamp). Essas informações ficam disponíveis aos consumidores.

41

4.5.4 Softwares utilizados

Nesta seção, detalharemos os softwares utilizados na aplicação, a configuração

utilizada e como foram realizados os testes.

4.5.4.1 Postman

Os testes das funcionalidades do sistema foram realizados no Postman em suas

configurações padrões. A plataforma funciona como uma API que permite publicar, consumir

e gerenciar APIs, podendo simular as requisições que um frontend geraria. Nesta aplicação, o

Postman foi utilizado para enviar requisições e receber as respostas das APIs e verificar se eram

as esperadas. Na ferramenta, foi definido o método utilizado (POST ou GET), depois informamos

a URL da API a ser testada e o formato da entrada de dados JSON, quando necessário haver uma

entrada. O sistema é desenvolvido em Django REST. Na Figura 13, visualizamos a execução.

Ao clicar em “Send”, a API retorna os dados que são exibidos no Body. Na Figura 12, podemos

ver o diagrama que mostra a relação entre o programa de teste e o sistema backend.

Figura 12 – Diagrama de Testes

Fonte: Elaborado pelo autor.

4.5.5 Hardware Utilizado

Nesta seção, detalharemos o hardware utilizado para o desenvolvimento da aplicação

e para a realização dos testes.

4.5.5.1 Computador

Para o desenvolvimento da aplicação do backend e para a realização dos testes, foi

utilizado um computador com as seguintes especificações:

42

Figura 13 – Interface do software Postman

Fonte: Elaborado pelo autor.

• Sistema Operacional: Windows 11 Home Single Language 64 bits Versão 22H2.

• Processador: AMD Ryzen 5 3600 3.6GHz.

• Memória RAM: 16,0GB.

4.6 Testes e Validação

Os resultados dos testes que foram realizados para avaliar o grau de desenvolvimento

serão classificados desta maneira:

• Sucesso: A API executou e respondeu de forma esperada.

• Falha Média: A API executou, mas respondeu de forma incorreta.

• Falha Alta: A API executou, mas não houve resposta.

• Falha Crítica: A API não executou.

4.6.1 Cronograma dos Testes

Este cronograma mostra o período aproximado em que as atividades de planejamento

e aplicação deverão ser realizadas.

Tabela 4 – Cronograma 2025
Atividades Março Abril Maio Junho Julho
Realização do teste de Unidade X X X
Planejamento do documento de testes X X
Especificação do caso de testes X X
Realização do teste funcional X X
Realização do teste de Integração X
Realização do teste de Desempenho X

Fonte: Elaborada pelo autor.

43

4.6.2 Funcionalidades a serem testadas

Nesta seção, detalharemos as funcionalidades a serem testadas no sistema. Cada

funcionalidade terá uma breve descrição, sua identificação, nome do caso de teste e a qual

requisito a funcionalidade está relacionada.

Tabela 5 – Tabela de Casos de Teste
Identificação Nome da Funcio-

nalidade
Requisito Funcional Descrição

CT01 Alerta de Falhas RF001 Verificar se o sensor está envi-
ando dados.

CT02 Ligar registro RF002 Enviar o comando ligar para o
Atuador.

CT03 Desligar registro RF002 Enviar o comando desligar para
o Atuador.

CT04 Agendar atuador RF002 Verificar o agendamento para ati-
vação dos atuadores.

CT05 Filtragem de
Histórico por
comando desligar

RF003 Realizar filtragem nos dados do
histórico por comando “desli-
gar”.

CT06 Filtragem de His-
tórico por data de
início

RF003 Realizar filtragem nos dados do
histórico por data de início.

CT07 Filtragem de His-
tórico por data fi-
nal

RF003 Realizar filtragem nos dados do
histórico por última data regis-
trada.

CT08 Filtragem de His-
tórico por combi-
nação de filtros

RF003 Realizar filtragem nos dados do
histórico por comando e data
combinados.

CT09 Filtragem de
Histórico por
comando ligar

RF003 Realizar filtragem nos dados do
histórico por comando “ligar”.

CT10 Histórico de Re-
gistro

RF004 Salvar dados de comando ligar/-
desligar no banco de dados.

CT11 Cadastrar Sensor RF005 Criar um objeto do tipo sensor.
CT12 Cadastrar Atua-

dor
RF006 Criar um objeto do tipo Atuador.

Fonte: Elaborada pelo autor.

44

4.7 Recursos necessários

Para a realização dos testes, é necessária a utilização de hardware, software e sistema

de testes. Para uma melhor avaliação dos testes, especificamos o ambiente de execução e os

recursos utilizados.

Tabela 6 – Tabela de Ferramentas e Recursos
Nome Justificativa
Postman A ferramenta é utilizada para simular um frontend e enviar

entrada de dados.
VS Code A ferramenta é necessária para a execução da aplicação.
Computador O dispositivo é necessário para a execução de todas as

ferramentas utilizadas nos testes.
Simulador de Sensor em Python Atuará simulando um sensor enviando dados para o broker.

Fonte: Elaborada pelo autor.

45

5 RESULTADOS

5.1 Casos de Teste

Foram elaborados casos de teste onde foram enviadas entradas de dados que simulam

um ambiente real onde se esperam o retorno de determinadas saídas correspondentes. Seguindo

os passos determinados, os testes buscam imitar um cenário de produção onde o usuário do

sistema realizará suas tarefas. Com base no sistema desenvolvido, foram realizados testes para

avaliar as saídas obtidas pelas APIs da aplicação.

Tabela 7 – Caso de teste 01 - Ligar registro
Caso de Teste 01 Ligar registro
Descrição Verificar se o endpoint api/controle-registro/ligar/ está envi-

ando o comando ligar/
Funcionalidade RF1
Pré condição

• É necessário realizar o login no admin.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• A task verificar_status_sensores deve estar implementada

Passos
1. Abrir o Django admin:

• Fazer login como superusuário
• Definir a las_reading 30s segundo no passado
• Definir o status como online

2. Salvar
Resultados Espe-
rados

1 – Exibição da mensagem no terminal “ALERTA: Sen-
sor [ID DO SENSOR] - [NOME DO SENSOR] está OF-
FLINE!”.

Fonte: Elaborada pelo autor.

46

Tabela 8 – Caso de teste 02 - Ligar registro
Caso de Teste 02 Ligar registro
Descrição Verificar se o endpoint api/controle-registro/ligar/ está envi-

ando o comando ligar/
Funcionalidade RF2
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint api/controle-registro/ligar/ deve estar imple-

mentado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: POST
• URL: http://127.0.0.1:8000/api/controle-

registro/ligar/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

47

Tabela 9 – Caso de teste 03 - Desligar registro
Caso de Teste 03 Desligar registro
Descrição Verificar se o endpoint api/controle-registro/desligar/ está

enviando o comando desligar/
Funcionalidade RF2
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint api/controle-registro/desligar/ deve estar im-

plementado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: POST
• URL: http://127.0.0.1:8000/api/controle-

registro/desligar/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

48

Tabela 10 – Caso de teste 04 - Agendar registro
Caso de Teste 04 Agendar registro
Descrição Verificar se o endpoint /api/agendamentos/ está enviando o

comando para agendamento./
Funcionalidade RF2
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/agendamentos/ deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisição com algumas

requisições:

• Método: POST
• URL: http://127.0.0.1:8000/api/agendamentos/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”
• Body: “plantio”: “2”, “comando”: “ligar”, “ho-

rario_execucao”: “2025-06-30T12:00:00Z”, “repe-
tir_diariamente”: “false”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

49

Tabela 11 – Caso de teste 05 - Filtragem de Histórico por comando desligar
Caso de Teste 05 Filtragem de Histórico por comando desligar
Descrição Verificar se o endpoint /api/histo-

rico_comandos/?estado=desligar está enviando o comando
está respondendo os dados corretamente.

Funcionalidade RF3
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint api/controle-registro/?estado=<valor>/ deve

estar implementado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: GET
• URL: http://127.0.0.1:8000/api/historico_ coman-

dos/?estado=desligar
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-

gens.
Fonte: Elaborada pelo autor.

50

Tabela 12 – Caso de teste 06 - Filtragem de Histórico por data de início
Caso de Teste 06 Filtragem de Histórico por data de início
Descrição Verificar se o endpoint

/api/historico_comandos/?data_inicio=<data-início>
está enviando o comando está respondendo os dados
corretamente.

Funcionalidade RF3
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint http://127.0.0.1:8000/api/historico_comandos/

?data_inicio=<data-início> deve estar implementado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: GET
• URL:http://127.0.0.1:8000/api/historico_

comandos/?data_inicio=2025-06-20
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-

gens.
Fonte: Elaborada pelo autor.

51

Tabela 13 – Caso de teste 07 - Filtragem de Histórico por data final
Caso de Teste 07 Filtragem de Histórico por data final
Descrição Verificar se o endpoint

/api/historico_comandos/?data_final=<data-final> está envi-
ando o comando está respondendo os dados corretamente.

Funcionalidade RF3
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/historico_comandos/?data_final=<data-

final> deve estar implementado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: GET
• URL: http://127.0.0.1:8000/api/historico_

comandos/?data_fim=2025-07-09
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-

gens.
Fonte: Elaborada pelo autor.

52

Tabela 14 – Caso de teste 08 - Filtragem de Histórico por combinação de filtros
Caso de Teste 08 Filtragem de Histórico por combinação de filtros
Descrição Verificar se o endpoint

/api/historico_comandos/?estado=<valor>&data_inicio=<data-
inicio>&data_fim=<data-fim> está enviando o comando
está respondendo os dados corretamente.

Funcionalidade RF3
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/historico_comandos/?estado=<valor>

&data_inicio=<data-inicio>&data_fim=<data-fim> deve
estar implementado.

Passos
1. Abrir o Postman e criar uma requisição com algumas

requisições:

• Método: GET
• URL: http://127.0.0.1:8000/api/historico_ coman-

dos/?estado=ligar& data_inicio=2025-06-25&
data_fim=2025-07-09

• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-

gens.
Fonte: Elaborada pelo autor.

53

Tabela 15 – Caso de teste 09 - Filtragem de Histórico por comando ligar
Caso de Teste 09 Filtragem de Histórico por comando ligar
Descrição Verificar se o endpoint /api/histo-

rico_comandos/?estado=ligar está enviando o comando está
respondendo os dados corretamente.

Funcionalidade RF3
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint api/controle-registro/?estado=<valor>/ deve

estar implementado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: GET
• URL: http://127.0.0.1:8000/api/historico_ coman-

dos/?estado=ligar
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-

gens.
Fonte: Elaborada pelo autor.

54

Tabela 16 – Caso de teste 10 - Histórico Registro
Caso de Teste 10 Histórico Registro
Descrição Verifique se o endpoint /api/historico/ está cadastrando o

sensor corretamente no banco de dados./
Funcionalidade RF5
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/historico/ deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisição com algumas

requisições:

• Método: POST
• URL: /api/sensores/cadastrar/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”
• Body: “comando”: “desligar”, “timestamp”: “2025-

06-25T10:05:00Z”, “comando”: “ligar”, “times-
tamp”: “2025-06-25T10:00:00Z”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

55

Tabela 17 – Caso de teste 11 - Cadastrar Sensor
Caso de Teste 11 Cadastrar Sensor
Descrição Verifique se o endpoint /api/sensores/cadastrar/ está cadas-

trando o sensor corretamente no banco de dados./
Funcionalidade RF5
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/sensores/cadastrar/ deve estar implemen-

tado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: POST
• URL: /api/sensores/cadastrar/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”
• Body: “plantio”: “2”, “nome”: “Sensor de Umi-

dade do Solo Sul”, “tipo”: “umidade”, “sen-
sor_id_externo”: “UMIDADE-SUL-001”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

56

Tabela 18 – Caso de teste 12 - Cadastrar Atuador
Caso de Teste 12 Cadastrar Atuador
Descrição Verifique se o endpoint /api/atuadores/cadastrar/ está cadas-

trando o atuador corretamente no banco de dados./
Funcionalidade RF6
Pré condição

• É necessário realizar o login no sistema.
• O servidor está iniciado.
• É necessário ter um cadastro de uma propriedade e de um

plantio.
• O endpoint /api/atuadores/cadastrar/ deve estar implemen-

tado.
Passos

1. Abrir o Postman e criar uma requisição com algumas
requisições:

• Método: POST
• URL: /api/atuadores/cadastrar/
• Headers: Content-type: application/json
• Authorization: Bearer “token serial”
• Body: “plantio”: “2”, “nome”: “Válvula Prin-

cipal Setor Norte”, “tipo”: “irrigacao”, “atua-
dor_id_externo”: “VALVULA-NORT-001”

2. Enviar Requisição
Resultados Espe-
rados 1. Exibição da mensagem no terminal do servidor

HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado

na requisição.
Fonte: Elaborada pelo autor.

57

5.2 Relatório de teste

5.2.1 Introdução

Esta seção detalha e apresenta de forma relativamente próxima às falhas encontradas

durante todo o período de desenvolvimento e testes na aplicação deste trabalho.

5.2.2 Funcionalidades testadas

Tabela 19 – Tabela de Resultados dos Casos de Teste
ID Caso de Teste 30/04 01/06 15/06 30/06 28/07
CT01 Alerta de Falhas Sem Impl. Sem Impl. Sem Impl. Falha Crí-

tica
Sucesso

CT02 Ligar registro Sem Impl. Sucesso Sucesso Sucesso Sucesso
CT03 Desligar registro Sem Impl. Falha Mé-

dia
Sucesso Sucesso Sucesso

CT04 Agendar registro Sem Impl. Sucesso Sucesso Sucesso Sucesso
CT05 Filtragem Histórico

por comando desli-
gar

Sem Impl. Sucesso Sucesso Sucesso Sucesso

CT06 Filtragem Histórico
por data início

Sem Impl. Falha Mé-
dia

Falha Mé-
dia

Sucesso Sucesso

CT07 Filtragem Histórico
por data final

Sem Impl. Sucesso Sucesso Sucesso Sucesso

CT08 Filtragem Histórico
por combinação fil-
tros

Sem Impl. Falha Alta Falha Alta Sucesso Sucesso

CT09 Filtragem Histórico
por comando ligar

Sem Impl. Sucesso Sucesso Sucesso Sucesso

CT10 Histórico de Regis-
tro

Sem Impl. Sem Impl. Sem Impl. Sucesso Sucesso

CT11 Cadastrar Sensor Sem Impl. Sem Impl. Sem Impl. Sucesso Sucesso
CT12 Cadastrar Atuador Sem Impl. Sem Impl. Sem Impl. Sem Impl Sucesso

Fonte: Elaborada pelo autor.

58

5.2.2.1 Visão geral dos resultados

Os gráficos a seguir mostram a visualização dos resultados aproximados dos testes,

destacando os períodos em que houverem maiores taxas de sucesso. No período de 30/04/2025 e

28/07/2025 não foram incluídas pois constavam cem por cento.

Figura 14 – Gráficos dos resultados de testes

Fonte: Elaborada pelo autor.

59

5.2.2.2 Visão Geral da severidade das falhas

O gráfico a seguir mostra o grau de severidade das falhas ao decorrer de todo o

período de testes.

Figura 15 – Gráfico da severidade das falhas

Fonte: Elaborada pelo autor.

60

6 CONCLUSÃO

Este trabalho busca aprimorar um sistema IoT existente, expandindo seu escopo para

permitir, além do recebimento de dados de sensores, o envio de comandos para atuadores. Essa

funcionalidade, essencial para uma maior automação e controle de plantios, é viabilizada por

uma nova aplicação. Ela se conecta a um novo broker, responsável por fazer o processamento de

dados em segundo plano e possibilitar a execução automática de ações em horários pré-definidos,

conferindo assim uma capacidade autônoma ao sistema de irrigação.

Neste trabalho, observou-se que uma solução capaz de otimizar e automatizar pro-

priedades agrícolas pode ser de baixo custo. Mesmo com uma aplicação simples, foi possível

alcançar os resultados esperados, demonstrando a eficácia da abordagem. Diferente dos trabalhos

relacionados, que por vezes se aplicam a resolver problemas específicos, este projeto mantém

um escopo abrangente, capaz de solucionar desafios em diversas situações. A abrangência desta

aplicação se dá por permitir, além da visualização dos dados transmitidos pelos sensores, a

atuação remota do usuário, que pode enviar comandos aos atuadores, receber alertas de falhas

(em caso de problemas de comunicação entre o sensor e o broker) e ter um maior gerenciamento

dos dados armazenados no banco de dados.

Com o desenvolvimento de novas funcionalidades para o controle da automação

foi significantemente aprimorado, aumentando assim a interação do usuário. O sistema agora

possibilita ao usuário não somente obter as variáveis dos plantios, mas também realizar ações

remotamente. Apesar dos avanços, podemos apontar algumas limitações que persistem no

sistema atual. A principal delas é que, embora o sistema armazene os registros para todos os

usuários, a dependência de banco de dados local pode ocasionalmente provocar a sobrecarga de

dados ao longo do tempo. Para aumentar a escalabilidade, poderia haver o armazenamento desses

dados na nuvem diretamente no broker; no entanto, essa solução ainda não foi implementada.

Outra limitação que permanece é a restrição do broker gratuito (HiveMQ), que

somente permite a retenção de dados durante três dias e impede a configuração manual de

tópicos, que são criados dinamicamente. Mesmo com o desenvolvimento do banco de dados para

o armazenamento do histórico e do gerenciamento pelas aplicações, foi somente uma solução

paliativa, que não eliminou a necessidade de um broker com mais flexibilidade, o que se torna

um desafio técnico de infraestrutura do sistema.

Esta aplicação possibilita não somente analisar, mas também automatizar áreas

agrícolas não somente no Vale do Jaguaribe, mas em diferentes regiões onde podem ser obtidas

61

variáveis de diferentes práticas agrícolas. O sistema atual deixou uma sólida base que possibilita

a automação e controle de plantios, tendo em mente que outras regiões podem ter seus próprios

sistemas de avaliação e gerenciamento de plantios, pode-se haver um aprimoramento da aplicação

com base nas descobertas alcançadas neste trabalho.

Este trabalho abre espaço para futuras investigações e implementação de novas

soluções que aumentem a eficiência e a escalabilidade. Pode ser realizada a migração de

dados para a nuvem através do broker ou a implementação de banco de dados NoSQL (com

MongoDB); que permitiria gerenciar de maneira escalavel o volume crescente de dados obtidos

pelos sensores, o que eliminaria a preocupação com sobrecarga de dados, essa possibilidade

poderiam ser explorada.

Outro ponto a ser melhorado seria a substituição do broker atualmente utilizado por

um broker de código aberto com maior flexibilidade e escalabilidade (como o Mosquitto) que

permite a configuração de dados ou soluções IoT na nuvem (AWS IoT Core, Azure IoT). Isso

permitiria a retenção de dados por períodos mais longos.

O desenvolvimento de um módulo de dashboard personalizável que permitiria ao

usuário criar seus próprios painéis para visualização de dados, com gráficos gerados conforme

sua necessidade. Essas e outras possibilidades podem ser implementadas para aprimorar o

sistema.

Em suma, este trabalho possibilita grandes benefícios para as propriedades agrícolas

do Vale do Jaguaribe. Ele entrega aos usuários um sistema de baixo custo e fácil manutenção

capaz de modernizar plantios, tornando-os mais eficientes. A aplicação se mostra promissora,

mesmo com limitações que podem ser superadas futuramente.

62

REFERÊNCIAS

Berrios, C. e. a. H. Sistema iot baseado em esp32 para monitoramento em estufas agrícolas.
Revista de Tecnologias Sustentáveis, v. 11, n. 3, p. 95–104, 2022.

Caligaris, M. A. e. a. Desafios e oportunidades da agricultura brasileira frente às mudanças
climáticas. 2022. Disponível em: <https://www.embrapa.br/busca-de-publicacoes/-/publicacao/
1144211>. Acesso em: 10 jun. 2025.

Carissimi, A.; Barbosa, D. Computação em Nuvem. [S.l.]: SENAI, 2016.

Carmo, J. H. Frameworks para aplicações web em Python. 2023. Trabalho de Conclusão de
Curso – Universidade Federal do Ceará.

CEPEA. PIB do agronegócio brasileiro cresceu 2,5% em 2023. 2023. Disponível em:
<https://www.cepea.esalq.usp.br/>. Acesso em: 10 jun. 2025.

CODEMEC. IoT. Ou a Internet das Coisas. 2016. <https://codemec.org.br/
iot-ou-a-internet-das-coisas/>. [Online]. Acesso em: 17 de jul. de 2025.

Dantas, M. V. Desenvolvimento de apis rest com django. In: Anais do Simpósio Brasileiro de
Engenharia de Software (SBES). [S.l.: s.n.], 2023.

FAO. O futuro da alimentação e da agricultura – Caminhos alternativos para 2050. 2018.
Disponível em: <https://www.fao.org/3/I8429PT/i8429pt.pdf>. Acesso em: 10 jun. 2025.

Godfray, H. C. J. e. a. Food security: The challenge of feeding 9 billion people. Science, v. 327,
n. 5967, p. 812–818, 2010.

Golondrino, G. A. e. a. Sistema iot para monitoramento de variáveis climatológicas em
agricultura urbana. Revista Brasileira de Agricultura Urbana, v. 2, n. 1, p. 40–50, 2022.

Gomes, J. S. e. a. Utilização da iot na agricultura sustentável. In: Anais do Congresso
Brasileiro de Agroinformática (SBIAgro). [S.l.: s.n.], 2023.

IBGE. Censo Agropecuário 2017 – Resultados definitivos. 2017. Disponível em:
<https://censoagro2017.ibge.gov.br>. Acesso em: 10 jun. 2025.

Jesus, L. F. d. Impactos da tecnologia da informação na transformação digital. 2021.
Disponível em: <https://repositorio.ifba.edu.br/jspui/handle/123456789/901>. Acesso em: 10
jun. 2025.

LENA, F. Q.; OLIVEIRA, A. M. d. Utilização do Protocolo MQTT para Sistemas de IoT
Voltado para Automação Residencial. Santa Maria, RS, Brasil: [s.n.], 2018. 4 p. Disponível
em: <https://www.tfgonline.lapinf.ufn.edu.br/media/midias/FabioLena.pdf>. Acesso em: 17 jul.
2025.

Muxito, E. e. a. Iot na agricultura – automação de pivôs e canais de irrigação com arduino e
webservice. In: Anais do Congresso de Engenharia Agrícola. [S.l.: s.n.], 2018.

Planton. Cloud Computing. Guia Completo para Iniciantes. 2024. <https://blog.platon.com.
br/cloud-computing-guia-completo-para-iniciantes/>. [Online]. Acesso em: 25 de jul. de 2025.

63

Santos, J. AgroInfo: Sistema de monitoramento agrícola com Django e IoT. 2024. Trabalho
de Conclusão de Curso – Universidade Federal do Ceará.

Silva, J. P. d. e. a. Conceitos e aplicações da internet das coisas: uma revisão bibliográfica.
Revista de Informática Aplicada, v. 6, n. 1, p. 24–35, 2020.

