X
&

UNIVERSIDADE FEDERAL DO CEARA

CAMPUS DE RUSSAS
CURSO DE GRADUACAO EM ENGENHARIA DE SOFTWARE

JULIO CESAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA 10T USANDO DJANGO E UM BROKER MQTT
PARA REALIZAR AUTOMACAO NA AGRICULTURA

RUSSAS
2025

JULIO CESAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA 10T USANDO DJANGO E UM BROKER MQTT PARA
REALIZAR AUTOMACAO NA AGRICULTURA

Trabalho de Conclusdo de Curso apresentado ao
Curso de Graduacido em Engenharia de Software
do Campus de Russas da Universidade Federal
do Ceard, como requisito parcial a obtencdo do
grau de bacharel em Engenharia de Software.

Orientador: Prof. Dr. Reuber Regis de
Melo

RUSSAS
2025

Dados Internacionais de Catalogacdo na Publicacio
Universidade Federal do Ceard
Sistema de Bibliotecas
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

D465d Deolino, Julio César Maia.
Desenvolvendo um sistema IoT usando Django e um broker MQTT para realizar automagéo na
agricultura / Jilio César Maia Deolino. — 2025.
63 f. : il. color.

Trabalho de Conclusio de Curso (graduag@o) — Universidade Federal do Ceard, Campus de Russas,
Curso de Ciéncia da Computagdo, Russas, 2025.
Orientacdo: Prof. Dr. Reuber Regis de Melo.

1. internet das coisas. 2. automagdo. 3. MQTT. 4. Django. 5. agricultura inteligente. I. Titulo.
CDD 005

JULIO CESAR MAIA DEOLINO

DESENVOLVENDO UM SISTEMA 10T USANDO DJANGO E UM BROKER MQTT PARA
REALIZAR AUTOMACAO NA AGRICULTURA

Trabalho de Conclusdo de Curso apresentado ao
Curso de Graduagdo em Engenharia de Software
do Campus de Russas da Universidade Federal
do Ceara, como requisito parcial a obtencao do
grau de bacharel em Engenharia de Software.

Aprovada em: 01/08/2025

BANCA EXAMINADORA

Prof. Dr. Reuber Regis de Melo (Orientador)
Universidade Federal do Ceara (UFC)

Prof. Dr. Cenez Araijo de Rezende
Universidade Federal do Ceara (UFC)

Prof. Ms. Hugo Nathan Barbosa Regis
Universidade Federal do Ceara (UFC)

Dedico esse trabalho a Deus e aos meus pais,
César Cals de Souza Deolino e Maria Lirete

Maia da Costa.

AGRADECIMENTOS

Sou grato a Deus por me dar for¢as nesta caminhada e por todas as oportunidades
que me concedeu.

Aos meus pais, César Cals de Sousa Deolino e Maria Lirete Maia, por todo o apoio
e carinho que me foi dado.

Ao meu orientador, Prof. Dr. Reuber Regis de Melo, sem o qual ndo poderia ter
realizado este trabalho.

Por fim, & Universidade Federal do Ceara (UFC), pela oportunidade de me aprimorar

e obter um ensino de nivel superior.

“ A maior gléria em viver ndo reside em nunca
cair, mas em levantar-se cada vez que caimos.”

(Nelson Mandela)

RESUMO

O avanco da tecnologia tem impactado diversas dreas, incluindo a agricultura, que precisa se
modernizar para atender a crescente demanda mundial por alimentos. O aumento populacional
impde desafios como o controle de pragas, a utilizacdo eficiente de recursos naturais (como
agua e fertilizantes) e 0 monitoramento climédtico. Diante desse cendrio, a Internet das Coisas
(Internet of Things (IoT)) surge como uma solucdo promissora para otimizar processos agricolas.
Este trabalho apresenta a continuidade do desenvolvimento do sistema Agrolnfo, aprimorando
0 backend para possibilitar automacdo e integracdo de novas funcionalidades. O sistema atual
dispde de um sistema de cadastro de usudrios, propriedades, plantio, e visualizacdo de dados
recebidos pelo sensor transmitidos através de um sistema broker. Com o desenvolvimento de
novas funcionalidades € possivel, além de receber dados, enviar comandos para atuadores como
valvulas ou bombas o0 que torna possivel realizar a automacao de propriedades agricolas, além
de melhorar a escalabilidade, permitir o cadastro de sensores para cada plantio e aprimorar o
gerenciamento de dados. O sistema utiliza plataformas embarcadas com sensores para coletar
dados das plantagdes e atuadores que recebem comandos remotamente, que sdo disponibilizados
via broker (MQTT), permitindo a tomada de decisdes mais eficientes e praticas com base nos
dados coletados. Para a implementacgao, é adotada a arquitetura MVT (Model-Template-View),
que organiza a estrutura da aplicacgdo, e utilizados diagramas UML, como casos de uso, sequéncia
e classes, para representar a interagdo dos usudrios e o fluxo do sistema. O desenvolvimento
utiliza os frameworks Django e Django Rest Framework. Com isso, os testes preliminares vém
confirmando a viabilidade bidirecional via Message Queuing Telemetry Transport (MQTT)
para a automacgao, afirmando a capacidade de leitura de dados e envio de comandos eficazes.
Espera-se disponibilizar uma ferramenta que possa auxiliar na modernizacdo da agricultura no

Vale do Jaguaribe, proporcionando maior efici€ncia e sustentabilidade na gestao agricola.

Palavras-chave: internet das coisas. Automac¢dao. MQTT. Django. Agricultura Inteligente.

ABSTRACT

The advancement of technology has impacted several areas, including agriculture, which needs
to modernize to meet the growing worldwide demand for food. Population increase imposes
challenges such as pest control, efficient use of natural resources (such as water and fertilizers)
and climate monitoring. Given this scenario, the Internet of Things (IoT) emerges as a promising
solution to optimize agricultural processes. This work proposes the continuity of the development
of the Agrolnfo System, improving Backend to enable automation and integration of new features.
The current system has a user registration system, properties, planting, and viewing data received
by the sensor transmitted through a broker system. This work will allow us to receive data, send
commands to actuators such as valves or pumps which enables the automation of agricultural
properties, as well as improving scalability, enabling the registration of sensor for each planting
and improving data management. The system uses sensors embedded platforms to collect data
from plantations and actuators who receive remote commands, which are made available via
Broker MQTT, allowing more efficient and practical decisions based on the collected data. For
implementation, Model, Template, View (MVT) (Model-Template-View) architecture, which
organizes the application structure, and used UML diagrams, such as use cases, sequence and
classes, to represent users interaction and system flow is adopted. Development uses Django
and Django Rest Framework frameworks. As a result, preliminary tests have been confirming
bidirectional viability via MQTT for automation, affirming the data reading capacity and sending
effective commands, it is expected to make available a tool that can assist in the modernization of
agriculture in the Jaguaribe Valley, providing greater efficiency and sustainability in agricultural

management.

Keywords: internet of things. Automation. MQTT. Django. Intelligent Agriculture.

LISTA DE FIGURAS

Figural — Conceito da Internetdas Coisas 18
Figura2 — Arquitetura da Computacioem Nuvem 19
Figura3 — Fluxode Mensagens MQTT 21
Figura4 — Visao geral do sistema AgrolnfoV1 27
Figura5 — Passos 28
Figura 6 — Diagrama de Fluxo geral do sistema AgrolnfoV2 33
Figura7 — Diagramadecasosdeuso 34
Figura 8 — Diagrama de sequéncia com comando para sensor 35
Figura9 — Diagrama de sequéncia Verificacdo Periddica de Status e Alertas do sensor . 36
Figura 10 — Diagramade Classe 37
Figura 11 — Representacdo esquematicado MVT. 39
Figura 12 — Diagramade Testes 41
Figura 13 — Interface do software Postman 42
Figura 14 — Graficos dos resultados de testes 58

Figura 15 — Gréfico da severidade das falhas 59

LISTA DE TABELAS

Tabela 1 — Comparativo dos trabalhos relacionados 26
Tabela 2 — Tabela de identificacdo e especificagdo de requisitos funcionais 29
Tabela 3 — Tabela de identificacdo e especificacdo de requisitos nao Funcionais 30
Tabela4 — Cronograma 2025 e 42
Tabela5 — Tabelade CasosdeTeste 43
Tabela 6 — Tabela de Ferramentas e Recursos 44
Tabela 7 — Caso de teste O1 - Ligarregistro. 45
Tabela 8 — Casodeteste 02 - Ligarregistro 46
Tabela 9 — Caso de teste 03 - Desligarregistro 47
Tabela 10 — Caso de teste 04 - Agendarregistro 48
Tabela 11 — Caso de teste 05 - Filtragem de Histérico por comando desligar 49
Tabela 12 — Caso de teste 06 - Filtragem de Historico por data de inicio 50
Tabela 13 — Caso de teste 07 - Filtragem de Histérico por data final 51
Tabela 14 — Caso de teste 08 - Filtragem de Histérico por combinacao de filtros 52
Tabela 15 — Caso de teste 09 - Filtragem de Historico por comando ligar 53
Tabela 16 — Caso de teste 10 - Historico Registro 54
Tabela 17 — Caso de teste 11 - Cadastrar Sensor 55
Tabela 18 — Caso de teste 12 - Cadastrar Atuador 56

Tabela 19 — Tabela de Resultados dos Casos de Teste 57

API
CP4E
INMET
IoT
LCD
MQTT
MVT
NPK
PHP
PIB
RFID
RTC
SCADA

LISTA DE ABREVIATURAS E SIGLAS

Application Programming Interface
Computer programming for everybody
Instituto Nacional de Meteorologia
Internet of Things

Liquid Crystal Display

Message Queuing Telemetry Transport
Model, Template, View

Nitrogénio (N), Fésforo (P) e Potéssio (K)
Hypertext Preprocessor

Produto Interno Bruto

Radio Frequency IDentification
Real-Time Clock

Supervisory Control and Data Acquisition

1.1
1.2
1.2.1
1.2.2
1.3

2.1
2.2
23
24
2.5
2.6
2.7

3.1

3.2

3.3
34

3.5

4.1

4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3

SUMARIO

INTRODUCAO . . . ittt et e e e et e e e et 14
Motivacdo 15
Objetivo 15
Objetivogeral 15
Objetivos especificos 15
Organizacdodotrabalho 16
FUNDAMENTACAOTEORICAo ittt i e eeeeeenn. 17
AgriculturanoBrasil o Lo 17
Internet das Coisas (IoT) 17
Computacdoem Nuvem 18
Python e 19
Django Rest Framework 20
Protocolo MQTT 20
Arquitetura Publish-Subscribe 21
TRABALHOS RELACIONADOS 22

IoT na Agricultura - Automacao de Pivos e Canais de Irrigacdo com
Arduino e Webservice 22
Sistema IoT para monitoramento de variaveis climatolégicas em culturas
de agriculturaurbana L L. 23
Utilizacao da IoT na agricultura sustentavel 24

Sistema IoT baseado em ESP32 para o controle e monitoramento de

cultura em estufas com foco na agricultura4.0. 25
Comparacio entre os trabalhos relacionados 26
METODOLOGIA it it i it ettt ittt ee e an 27
Visao geraldotrabalho 27
Levantamento de requisitos 28
Requisitos Funcionais 28
Alertade Falhas e 28
Automacdo da Irrigacdo e 29

Filtragem de Registros e 29

4.2.14
4.2.1.5
4.2.1.6
4.2.2
4.2.3
4.2.4
4.3
4.3.1
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.4.1
4.5.5
4.5.5.1
4.6
4.6.1
4.6.2
4.7

5.1

5.2
5.2.1
522
52.2.1
52.2.2

Registro de Irrigacdo 29
Cadastrar Sensor e e 29
Cadastrar Atuador e 29
Tabela de identificagdo e especificacdo de requisitos funcionais 29
Requisitos ndo Funcionais 30

Tabela de identificacdo e especificacdo de requisitos ndo funcionais 30

Relacionamento Geraldo Sistema 31
Diagrama de Fluxo Geral do Sistema 31
Modelagem do Sistema L 33
Diagrama de Casosde Uso 33

Diagrama de sequéncia comando para sensor (Acionar /desligar Irrigacdo) 34

Verificagcdo Periodica de Status e Alertas do sensor 35
Diagramade Classe 36
Tecnologias e Ferramentas Utilizadas 37
Ferramentas Utilizadas 37
Arquitetura do Backend 38
Broker MOTT e 39
Softwares utilizados 41
Postman e e e 41
Hardware Utilizado 41
Computador e 41
Testese Validacao 42
Cronograma dos Testes 42
Funcionalidades a serem testadas 43
Recursos necessarios oL 44
RESULTADOS o ittt et e e it ettt ii e 45
CasosdeTeste 45
Relatériodeteste 57
Introdugao 57
Funcionalidades testadas 57
Visdo geral dos resultados 58

Visao Geral da severidade das falhas 59

CONCLUSAO
REFERENCIAS

oooooooooooooooooooooooooooooooo

14
1 INTRODUCAO

De acordo com pesquisas realizadas pela Organizacdo das Nacoes Unidas para a
Alimentagdo e Agricultura (FAO), estima-se que até o ano de 2050 o crescimento populacional
mundial alcance aproximadamente 9 bilhdes de pessoas, o que exigird um aumento de 60% na
producgdo de alimentos para suprir a demanda global (FAO, 2018). Esse cendrio impde desafios
significativos para o setor agricola, que precisa modernizar-se para garantir maior eficiéncia na
producdo e uso sustentdvel dos recursos naturais.

Um dos principais desafios para a producdo de alimentos em larga escala esta
na otimizacdo do uso de insumos agricolas, na reducdo de desperdicios e na melhoria da
produtividade. A IoT (Internet das Coisas) surge como uma solu¢do promissora para enfrentar
esses desafios, pois permite a coleta e andlise de dados ambientais em tempo real, além da
automacao de processos agricolas. Essa abordagem viabiliza préticas mais eficientes, como
0 uso racional da dgua, fertilizantes e defensivos agricolas, garantindo maior produtividade e
sustentabilidade no campo (Godfray, 2010).

A transformagdo digital vem evoluindo rapidamente, tornando a tecnologia mais
acessivel a populacdo. A internet, por exemplo, € uma das inovacdes que mais impactaram o
cotidiano, possibilitando o desenvolvimento de novas solucdes tecnoldgicas (Jesus, 2021). No
entanto, muitos pequenos agricultores ainda enfrentam dificuldades para acessar essas inovagdes
devido a barreiras financeiras e estruturais. No Brasil, 76,8% das propriedades rurais sao
caracterizadas como agricultura familiar (IBGE, 2017), e grande parte dessas propriedades
carece de acesso a tecnologias acessiveis e eficazes para modernizar sua producio (Gomes,
2023).

Diante desse contexto, este trabalho propde a continuidade do desenvolvimento do
sistema Agrolnfo, focado na implementa¢do de novas funcionalidades no backend para permitir
a automacao de processos agricolas e a integracdo com sensores para monitoramento ambiental.
Para isso, serdo analisados o protocolo MQTT (Message Queue Telemetry Transport), utilizado
para a comunicagdo eficiente entre dispositivos IoT, e o framework Django, empregado no
desenvolvimento da aplicacdo. Esse sistema serd projetado para oferecer uma solug@o acessivel
aos agricultores do Vale do Jaguaribe (Regido localizada no centro-leste do Ceard), permitindo

que tenham acesso a dados precisos para otimizar suas decisdes propiedades.

15

1.1 Motivacao

A agricultura € um dos setores mais importantes da economia brasileira, represen-
tando até 21% do Produto Interno Bruto (PIB) nacional (CEPEA, 2023). Além disso, a agricultura
familiar desempenha um papel fundamental na producdo de alimentos no pais, correspondendo a
60% da producao total de alimentos consumidos internamente (IBGE, 2017).

Apesar de sua relevancia, muitos agricultores enfrentam dificuldades para adotar
tecnologias modernas devido aos altos custos e a falta de infraestrutura digital. Pequenos
produtores, em especial, possuem recursos limitados para investir em solugdes tecnoldgicas,
0 que impacta diretamente sua produtividade e eficiéncia operacional. Para esses agricultores,
a adocdo de ferramentas tecnoldgicas acessiveis pode ser determinante para a otimizacao da
producdo e para a adogdo de praticas mais sustentaveis (Gomes, 2023).

Dessa forma, o presente trabalho busca desenvolver uma solucao de baixo custo para
agricultores da regido do Vale do Jaguaribe, utilizando [oT para automatizar processos agricolas

e fornecer informacdes estratégicas que possibilitem a melhoria na gestio das lavouras.

1.2 Objetivo

1.2.1 Objetivo geral

Este trabalho tem como objetivo adicionar funcionalidades ao backend de um sistema
IoT de gestao agricola, permitindo a automacao de processos no campo e a integracao com

sensores para coleta de dados ambientais via broker MQTT.

1.2.2 Objetivos especificos

* Realizar uma revisao bibliografica sobre solu¢des tecnoldgicas aplicadas a agricultura
digital;

* Estudar e analisar o framework Django e suas funcionalidades para o desenvolvimento do
backend;

* Revisar o funcionamento do protocolo MQTT e sua arquitetura Publish/Subscribe para
comunicacao entre dispositivos [oT;

* Projetar e implementar novas funcionalidades no sistema, permitindo a automagao agricola

baseada na comunicacdo MQTT.

16

1.3 Organizacao do trabalho

Este trabalho esté estruturado em seis capitulos, além da introdu¢do e conclusao.

No Capitulo 2 — Fundamentacao Tedrica, sdo descritas as principais tecnologias
utilizadas no desenvolvimento da aplica¢do, incluindo conceitos sobre [oT, MQTT, Django e
agricultura digital.

No Capitulo 3 — Trabalhos Relacionados, sdo apresentados estudos e projetos
semelhantes, destacando suas abordagens e contribuicdes para o setor agricola.

No Capitulo 4 — Metodologia, sdo detalhados os passos seguidos para o desenvol-
vimento do sistema, incluindo a estruturacdo da aplica¢do, modelagem dos dados e integracao
com sensores.

No Capitulo 5 — Resultados, sdo detalhados os passos dos testes realizados na
aplicacdo, além de detalhar as ferramentas utilizadas.

No Capitulo 6 — Conclusées Trabalho Futuros, Apresentaremos a conclusio final

e ideias para trabalhos futuros.

17
2 FUNDAMENTACAO TEORICA
2.1 Agricultura no Brasil

O Brasil € responsavel por boa parte da producdo de alimentos no mundo. No ano
de 2021, o agronegdcio foi responsdvel por 27,4% do PIB brasileiro e representou 48% do total
das exportacdes do pais (Caligaris, 2022).

Nos ultimos anos, a modernizagdo no setor agricola tem se intensificado com o
crescimento no uso de tecnologias como sensores, drones e inteligéncia artificial. Essas inovagdes
sa0 essenciais para melhorar a eficiéncia das plantagdes, aumentar a produtividade e diminuir os
gastos de 4gua e terras.

Com o avango da [oT e dos dispositivos conectados, as fazendas inteligentes vém se
tornando realidade, o que permite aos agricultores tomarem decisdes mais precisas, pois contam
com o apoio das varidveis obtidas pelos sensores como umidade, luminosidade, temperatura,
entre outros, além de poder automatizar algumas atividades que antes eram manuais.

Apesar dos avangos tecnoldgicos, o Brasil ainda enfrenta uma infraestrutura precaria
e acesso limitado a internet, o que gera uma série de desafios a serem superados, juntamente com

a falta de capacitacao para a utilizacdo de novas tecnologias.

2.2 Internet das Coisas (IoT)

O termo 10T (Internet of Things) € usado para se referir a infraestruturas tecnol6-
gicas e servicos. No tocante a infraestrutura, a [oT pode ser definida como uma rede global
de dispositivos inteligentes, que sdo conectados a internet e dependentes de tecnologias de
processamento, comunicacio e sensores como a Radio Frequency IDentification (RFID) (Radio
Frequency IDentification) e as Redes de Sensores Sem Fio (Wireless Sensor Networks). Eles
utilizam essas tecnologias para se comunicarem de maneira independente entre dispositivos e
usuarios finais (Silva, 2020).

As tecnologias mais importantes para a [oT sdo a tecnologia de identificagdao por
radiofrequéncia (RFID) e a de sensores sem fio (Wireless Sensor Network). A RFID ¢ utilizada
para permitir que microchips transmitam informag¢des de identificagdo para leitores sem fio de
outros dispositivos que compartilhem da mesma tecnologia. Os sensores sdo utilizados de forma

interconectada para monitorar e detectar as varidveis do ambiente (Silva, 2020).

18

Figura 1 — Conceito da Internet das Coisas

Fonte: (CODEMEC, 2016).

2.3 Computacio em Nuvem

A computacdo em nuvem pode ser definida como a utilizagdo massiva da virtualiza-
¢ao para fornecer recursos computacionais sob demanda, por meio da internet. As tecnologias
ja existentes usadas no dia a dia foram adaptadas para realizar um novo modelo de acesso aos
recursos computacionais (Carissimi; Barbosa, 2016).

No inicio, o poder de processamento em nuvem passou por ciclos de centralizagdo e
descentralizacdo. Na década de 60, o poder computacional de processamento e armazenamento
era concentrado em um unico grande mainframe, € o acesso aos recursos era feito por terminais.
Apbs isso, com o desenvolvimento dos computadores pessoais, houve a descentraliza¢do do poder
da computacdo em nuvem, permitindo que os usudrios processassem dados e armazenassem em
seus proprios computadores (Carissimi; Barbosa, 2016).

Com a infraestrutura fornecida pela computagdo em nuvem, as plataformas de
softwares como servico sdao beneficiadas pela virtualizacao, pois ela permite a execucdo de
vdrias instancias em um mesmo hardware. Com os custos dos data centers sdo reduzidos, o que
favorece a computacao verde.

Um dos conceitos-chave da computacdo em nuvem € a elasticidade, que permite
alocar recursos conforme a demanda. Um exemplo disso € o comércio eletronico, onde sdao
alugados os recursos necessdrios € a empresa ndo precisa investir em recursos proprios. “Pague
0 quanto usa” (pay-as-you-go) € o modelo responsdvel por flexibilizar o uso da computacdo em

nuvem, permitindo que o cliente pague somente pelos recursos desejados.

19

Figura 2 - Arquitetura da Computacdo em Nuvem

(11}
= a
eee
Applications
]
L—

Database

Cloud Private Hybrid Cloud Public Cloud

Fonte: (Planton, 2024).

2.4 Python

No ano de 1982, em Amsterda, capital da Holanda, Guido Van Rossum, que traba-
lhava no desenvolvimento da linguagem de programacdo ABC, estava envolvido no Instituto de
Pesquisa Nacional para Matemadtica e Ciéncia da Computa¢do em um sistema chamado Amoeba.
Devido a grandes falhas no sistema, que era feito na linguagem C, Guido resolveu desenvolver
sua prépria linguagem. Ele queria criar uma tecnologia ficil e intuitiva, pois alguns sistemas
programados em C, por terem uma codificagdo extensa, apenas programadores experientes
conseguiam entender.

Na década de 90, o projeto Python foi concluido. Guido entdo se mudou para os EUA,
onde iniciou o projeto Computer programming for everybody (CP4E) (Computer Programming
for Everybody), no qual ele ensinava programacdo de forma acessivel. No ano de 2001, foi
fundada a PSF (Python Software Foundation), que é uma organizagdo sem fins lucrativos que
coordena o uso da linguagem.

Com o tempo, o Python teve evolu¢gdes em sua estrutura e foram adicionados com-
ponentes como as compreensdes de lista, fungdes e diversos outros. Hoje € altamente usada no

mercado e ja vem instalada em alguns sistemas operacionais como Linux e macOS.

20
2.5 Django Rest Framework

O framework Django REST Framework dispde de uma biblioteca que estende a
capacidade do Django, tornando-o mais eficiente e agil para criar Application Programming
Interface (API)s para a internet. Ela dispde de ferramentas que s@o verséteis e modulares (Dantas,
2023).

Este framework é de c6digo aberto, criado em Python, e tem seu foco em agilizar o
desenvolvimento, diminuindo as duplica¢des no c6digo, disponibilizando assim mais tempo para
que os desenvolvedores se concentrem em tarefas mais cruciais (Dantas, 2023).

E amplamente utilizado por conta de suas vantagens, uma vez que oferece estruturas
prontas para identificagdo de usudrio e administracdo de conteido. Usa o padrao MVT e a
linguagem Python, o que permite a criacdo de aplicagdes com poucas linhas de cédigo (Carmo,

2023).

2.6 Protocolo MQTT

MQTT € um protocolo responsavel por transmitir a comunica¢do principalmente
entre dispositivos IoT. Foi projetado para ter uma simples implementagdo e poder transmitir os
dados mesmo com uma rede de baixa qualidade. Este protocolo segue o modelo Publish/Subs-
cribe, que € amplamente utilizado para dispositivos que tém limitagdes, principalmente com
relacdo a armazenamento, processamento de dados e largura de banda.

O protocolo MQTT segue o modelo Publish/Subscribe, onde os dispositivos nao
se comunicam diretamente, mas hd um intermediério entre eles: o broker. Os publicadores
(publishers) sdo os que enviam as mensagens para o broker, que as organiza de forma hierar-
quica. Os assinantes (subscribers) se inscrevem no tépico de interesse e recebem as mensagens
correspondentes.

Este protocolo € amplamente usado por dar suporte a curtas mensagens. Ele também
pode ser utilizado em redes com alta laténcia e ndo confidveis, ja que o publicador e o assinante
nao necessitam estar online ao mesmo tempo. Ele se adequa a dispositivos limitados tanto em

armazenamento, processamento de dados, quanto em limita¢Oes de largura de banda.

21

Figura 3 - Fluxo de Mensagens MQTT

0

Subscriber

- ¥

e

Publisher .

S

- ﬂ
Fy

Subscriber

Fonte: (Lena; Oliveira, 2018).

2.7 Arquitetura Publish-Subscribe

Nesta arquitetura, as mensagens sdo chamadas de eventos. Os componentes sao
os publicadores (publishers) e os assinantes (subscribers) de eventos. Os publicadores enviam
mensagens que sdo executadas no broker. Os assinantes devem assinar previamente os eventos
de seu interesse.

Em alguns sistemas que utilizam a arquitetura Publish/Subscribe, os eventos podem
ser organizados com base em tépicos. Quando o publicador envia um evento, ele informa seu

tépico, assim os clientes ndo precisam assinar todos os eventos do sistema.

22
3 TRABALHOS RELACIONADOS

Neste capitulo, serdo abordados trabalhos com uma proposta semelhante ao tema
escolhido, com o objetivo de comparar as tecnologias utilizadas em outras obras. Na secdo 3.1 é
apresentada uma solucdo tecnoldgica para a automacao de pivos e canais de irrigacdo. A secao
3.2 apresenta um sistema para monitoramento de varidveis climatoldgicas. A se¢ao 3.3 apresenta
um sistema IoT e Supervisory Control and Data Acquisition (SCADA) para um sistema de
monitoramento de baixo custo. A secdo 3.4 aborda um Sistema loT baseado em ESP32 para o
controle e monitoramento de cultura em estufas. Por fim, a se¢@o 3.5 apresenta uma andlise sobre
os trabalhos relacionados e este trabalho, comparando as tecnologias utilizadas e as escolhas de

desenvolvimento.

3.1 IoT na Agricultura - Automaciao de Pivos e Canais de Irrigacio com Arduino e

Webservice

Este artigo aborda os problemas e necessidades enfrentadas pelos produtores agrico-
las, pois mesmo a agricultura sendo um setor produtivo e evoluido, também apresenta um déficit
quanto a aplicagdo de tecnologia que possa promover a agricultura de precisao e a automacao
de processos produtivos. Dentre alguns dos motivos para ndo haver o aproveitamento em larga
escala da tecnologia, podemos citar o alto custo e a possibilidade de vantagens alcangadas ainda
serem prematuras. Artefatos computacionais integrados, como sensores de coleta e mecanismos
de tomadas de decisdo, t€ém se tornado mais acessiveis a partir dos dltimos anos (Muxito, 2018).

Este trabalho tem como principal objetivo experimentar uma proposta de melhoria e
controle de um sistema de irrigagdo na agricultura de precisao, de forma que possa ser de facil
implantagdo e de baixo custo. E proposto utilizar IoT para a constru¢do de um protétipo que
simula e testa os pivOs juntamente com uma nova solucdo tecnolégica de monitoramento. O
protétipo € composto por trés ambientes: o ambiente mecanico, que é automatizado a partir da
plataforma Arduino; o ambiente central, que se baseia no Webservice para integracdo; e também
o ambiente de controle funcional, que se trata de um sistema web (Muxito, 2018).

O autor descreve as aplicagdes para a resolugdo do problema que foram um conjunto
de elementos: foram escolhidos trés moédulos: o Real-Time Clock (RTC) (RTC DS1307),
implementado para possibilitar a sincronizacio e a programacgao da data e hora para irrigacao; o

ESP8266 ESP-01 de Wi-Fi, que permite a criacdo de Webservice e o acesso do sistema em longo

23

alcance (nele, os dados fornecidos pelo sensor e pelo RTC (dateTime) podem ser usados para
upload e acessados por qualquer dispositivo conectado a internet); e o I2C, que funciona como
adaptador para Liquid Crystal Display (LCD) e permite uma conexdo mais facil e econdmica
dos jumpers e dos pinos do Arduino. Além dos médulos, foram utilizados Display LCD como
monitor, e botdes fisicos e operacionais no circuito, sendo cada botao responsavel por uma
determinada fun¢do (Muxito, 2018).

O autor descreve os principais softwares de apoio utilizados que foram: Visual
Studio Code v.1.26.1, um editor de cédigo-fonte gratuito; a linguagem Hypertext Preprocessor
(PHP) v.5.4 (PHP, 2015), linguagem de scripts de propoésito geral que € especialmente adequada
para o desenvolvimento web; e o banco de dados MySQL v5.5 (MySQL, 2015), um sistema de
gerenciador de banco de dados de cédigo aberto (Muxito, 2018).

O autor conclui enfatizando a contribui¢do direta para a drea da computagdo e a pre-
ocupac¢do com os problemas e desafios na agricultura, destacando o envolvimento e colaboragao

a partir de parcerias realizadas junto as empresas de tecnologia que possibilitam o projeto.

3.2 Sistema IoT para monitoramento de variaveis climatolégicas em culturas de agricul-

tura urbana

Este artigo tem como objetivo o desenvolvimento de um sistema IoT para monito-
ramento de varidveis climdticas de interesse agricola em dreas urbanas ou em hortas caseiras.
Também pode servir como referéncia para implementagdo de sistemas de rastreamento e moni-
toramento IoT em cendrios de agricultura urbana, de forma que possam ser customizados para
caracteristicas de diferentes culturas (Golondrino, 2022).

O autor propde a utilizagdo da arquitetura [oT de quatro camadas (captura, armaze-
namento, anélise e visualizac¢do):

* Camada de captura: através de sensores, sao adquiridas algumas varidveis como tempe-
ratura, umidade e luminosidade, que sdo enviadas para uma placa de captura que utiliza
um pequeno servidor para leitura das informacdes;

* Camada de armazenamento: as varidveis sdo solicitadas a placa de captura e sdo
armazenadas em um banco de dados relacional;

* Camada de analise: os dados sdo usados para medidas estatisticas e como modelos de
aprendizagem;

* Na camada de visualizacdo: ¢ possivel acompanhar as varidveis de interesse e as andlises

24

estatisticas (Golondrino, 2022).
Para a metodologia de trabalho, o autor dividiu o trabalho em quatro fases metodol6-
gicas:

* Selecao de ferramentas e tecnologias: que se deu pela selecio de um conjunto de
ferramentas e tecnologias e softwares livres para a captura de varidveis tteis na agricultura
urbana;

* Design da arquitetura IoT: por meio de especificacdes baseadas nas quatro camadas
convencionais dos sistemas que utilizam IoT (captura, armazenamento, andlise e visualiza-
¢d0);

* Construcao do protétipo do sistema: com base nas andlises das camadas e tecnologias
definidas;

* Estudo de caso: aplicacdo pratica do protétipo.

O autor conclui que o uso do sistema [oT foi ttil para monitoramento de varidveis climatolégicas
em agricultura urbana. Embora tenha sido utilizado apenas em plantagcdes de alface, os modelos

podem ser usados em diferentes culturas de alimentos.

3.3 Utilizacao da IoT na agricultura sustentavel

O objetivo desse artigo € desenvolver um sistema de monitoramento de baixo custo
usando tecnologias como [oT e SCADA (Supervisory Control and Data Acquisition) para auxiliar
pequenos agricultores que enfrentam dificuldades climéticas e financeiras, tendo em vista que
o grande desafio da agricultura até os anos 2050 serd o aumento da demanda de alimentos por
conta do crescimento populacional, segundo a Organizacio das Nagdes Unidas para Alimentacio
e Agricultura (Gomes, 2023).

Para beneficiar de forma acessivel e eficaz os pequenos agricultores familiares, o
autor propoe a criacdo de um ambiente de monitoramento open source com base num sistema
SCADA integrado a sensores. A finalidade desse sistema é melhorar a precisdo das coletas de da-
dos de umidade e temperatura do solo. Pequenos agricultores podem se beneficiar enormemente
dessa solucao que pode potencializar a eficicia e sustentabilidade de suas plantacdes (Gomes,
2023).

O sistema proposto utilizou um servidor web Apache Tomcat. Os dados sdo coletados
por meio de sensores de vazao, umidade e temperatura, e foram armazenados em um banco

de dados relacional MySQL que € integrado a um sistema SCADA. Para testar o programa, ele

25

utilizou o sistema em uma horta experimental no Campus de Passos. Os sensores foram usados
para coletar os dados que foram comparados com os dados do Instituto Nacional de Meteorologia
(INMET) (Instituto Nacional de Meteorologia) para garantir a precisdo (Gomes, 2023).

O autor conclui que os resultados obtidos sdo confidveis e podem ser usados para
tomadas de decisdes mais concisas e eficientes na agricultura. A utilizagdo do sistema 10T é
vidvel e eficaz, fazendo com que haja maior aproveitamento da d4gua nas planta¢des, reduzindo o
desperdicio e o custo. Ele ainda planeja incluir sensores de pH, Nitrogénio (N), Fosforo (P) e

Potéssio (K) (NPK) e gases para auxiliar as propriedades sustentaveis.

3.4 Sistema IoT baseado em ESP32 para o controle e monitoramento de cultura em

estufas com foco na agricultura 4.0

O artigo tem como objetivo desenvolver um sistema mobile baseado no ESP32 para
realizar o0 monitoramento de varidveis como temperatura, umidade do ambiente, além do nivel
de dgua para irrigagdo em estufas de cultivo de alface. O sistema possibilita otimizar o gasto
de dgua, aumentando assim a produtividade. Os fatores que podem limitar o crescimento da
agricultura sdo principalmente a escassez de dgua e terra, sendo assim, no futuro, os cultivos
dependerdo da mecanizacdo das atividades, inclusive das de pequena escala (Berrios, 2022).

O autor propde a criagdo de um sistema IoT utilizando o microcontrolador ESP32
para monitorar e acessar os dados gerados no cultivo de alface em estufas, com o objetivo de
otimizar o uso dos recursos agricolas. E utilizado o sistema supervisério ScadaBR e algumas
tecnologias como Firebase Real Time Database e sensores que permitem uma gestao inteligente
conectada (Berrios, 2022).

Na metodologia, realizou-se um estudo das caracteristicas do cultivo em estufas e
estabeleceram-se as restricdes necessdrias para as condi¢des ideais para as plantacdes. Para
realizar a medi¢do das varidveis (temperatura, umidade, ambiente, umidade do solo e nivel de
liquido no tanque de dgua), foi utilizado o ESP32-DeviKitC, sensores e atuadores de baixo custo,
e a tecnologia sem fio ESP-NOW para comunicagdo. A solucio consiste em uma rede tipo estrela
com né central e trés nds sensores. E utilizado Firebase Realtime Database, uma aplicacio
movel baseada em Android Studio. Os nds sensores coletam os dados que sdo enviados para o nd
central e depois recolhidos na base de dados, acionando ou desativando atuadores conforme o
necessario (Berrios, 2022).

O autor conclui que o sistema [oT baseado no microcomputador ESP32 e na rede

26

sem fio de sensores sob protocolos ESP-NOW cumpre seu papel de monitorar e controlar a

temperatura, umidade e nivel de dgua de irrigac@o, além de mostrar os dados em tempo real

através de um aplicativo Android.

3.5 Comparacao entre os trabalhos relacionados

Este trabalho trata-se da continuagdo do trabalho SANTOS (2024), onde foi sele-

cionada a arquitetura MVT e o framework Django, que foi considerado a melhor opg¢ao para

o desenvolvimento do backend do sistema Agrolnfo. A aplicagdo do sistema foi realizada em

Python, o que proporcionou um cédigo mais reduzido e claro. O framework também oferece

uma interface de controle e gerenciamento, com uma péagina de administracao, sendo apenas

preciso definir o banco de dados a ser utilizado, que no caso foi o SQLite3. A hospedagem foi

mantida em nivel local.

Tabela 1 — Comparativo dos trabalhos relacionados

Caracteristica Este Tra- Ezequiel Gabriel Gomes Berrios
balho (2018) (2022) (2023) (2022)
Arquitetura de Software MVT Camadas Camadas Client/Serv Camadas
Framework / Plataforma Django Webservice Flask — Firebase
Linguagem Python PHP Python Java C++
Armazenamento SQLite3 MySQL TinyDB MySQL Firebase
Hospedagem Local Nuvem Nuvem Nuvem Nuvem

Fonte: Elaborado pelo autor.

27

4 METODOLOGIA

4.1 Visao geral do trabalho

Este trabalho tem como objetivo dar continuidade ao trabalho desenvolvido pelo

autor (Santos, 2024). Para a realizagcao do trabalho, houve uma revisao bibliografica e andlise de

trabalhos relacionados.

Na Figura 4 € ilustrada a representacao da visao geral de todo o sistema backend,

considerando as funcionalidades e as escolhas de arquitetura.

Figura 4 - Visdo geral do sistema Agrolnfo V1

MQTT CLIENTE
FACKENDY n}M 0. Fublisher. Sensor de Temperatura
Subscriber: Sistema de Backend
aticsda pars & vapice 5
T e
— 48
E= @)
i
\._/ MQTT CLIENTE
Il HIVEMQ Fublisher: Sansor de Umidade
Protocolo MQTT o) P
—_— " umidode 3 O
MQTT Brak €
rakar contral Center
Request
Response
MQIT CLIENTE
Publither-Caminda de
Canurale
FRONT END
E
MQTT CLIENTE MQTT CLIENTE
Subscribee Divpositiva Subscriber: Dispasitive
wctle win

Fonte: (Santos, 2024).

A Figura 4 mostra o principal protocolo utilizado para comunicag@o entre os sensores,
broker e o backend. Nesse caso, foi utilizado o protocolo MQTT, do tipo Publish/Subscribe, para
possibilitar a troca de mensagens entre diversos dispositivos. E a arquitetura Cliente/Servidor
foi usada para o processamento de dados. A arquitetura € capaz de se comunicar entre diversos
dispositivos.

A Figura 5 mostra os passos seguidos para adicionar as funcionalidades definidas ao
sistema com base na arquitetura definida. Serdo especificados os passos para o desenvolvimento

das funcionalidades adicionadas, juntamente com o resumo geral do sistema e o detalhamento

dos testes realizados para a validagdo.

28

Figura 5 — Passos

Fundamentagao
Tedrica

Trabalhaos
Relacionados

Modelagem do
sistema

Definicda de Tema

Modelagem

Diagramas de
Classe

Digrama de
Sequencia

Digrama de Casos
de Uso

Definicao de
Requisitos

Tecnologias e
Hardware

Fonte: Elaborado pelo autor.
4.2 Levantamento de requisitos

Para definir os requisitos do sistema, foi realizada uma anélise comparativa com
estudos prévios na drea, incluindo os trabalhos de (Muxito, 2018), (Golondrino, 2022), (Gomes,
2023) e (Berrios, 2022). A partir dessas andlises, foram identificadas funcionalidades relevantes
que poderiam ser incorporadas ao Agrolnfo, tornando-o mais eficiente para auxiliar os agricultores

do Vale do Jaguaribe.
Os requisitos do sistema foram classificados em funcionais e ndo funcionais, con-

forme descrito a seguir.
4.2.1 Requisitos Funcionais

Os requisitos funcionais representam as funcionalidades essenciais que o sistema de-

verd oferecer para atender as necessidades dos usudrios. Foram definidos os seguintes requisitos:

4.2.1.1 Alerta de Falhas

O sistema deve ser capaz de identificar quando ha uma falha na comunicagdo com o

sensor e notificar no sistema.

29

4.2.1.2 Automagdo da Irrigacdo

O sistema deve permitir o acionamento e desligamento automatico dos atuadores,

além de permitir a configuracio de hordrios programados.

4.2.1.3 Filtragem de Registros

O sistema deve possibilitar a filtragem dos registros armazenados por data e hora.

4.2.1.4 Registro de Irrigacdo

O sistema deve manter um histérico de acionamentos do sistema de irrigagao.

4.2.1.5 Cadastrar Sensor

O sistema deve permitir cadastrar um sensor para cada plantio registrado no sistema,

definindo por nome, tipo, ID e plantio correspondente.

4.2.1.6 Cadastrar Atuador

O sistema deve permitir cadastrar um atuador para cada plantio registrado no sistema,

definindo por nome, tipo, ID e plantio correspondente.

4.2.2 Tabela de identificagdo e especificacdo de requisitos funcionais

A Tabela 2 apresenta a identificacdo e prioridade atribuida a cada requisito funcional,

facilitando a rastreabilidade durante o desenvolvimento e os testes.

Tabela 2 - Tabela de identifi¢ao e especificagdo de requisitos funcionais

Identificacio Nome da Funcionalidade Prioridade

RF001 Alerta de falhas Essencial
RF002 Automacao da Irrigacao Importante
RF003 Filtragem de registros Importante
RF004 Registro de Irrigacdo Importante
RF005 Cadastrar Sensor Essencial
RF006 Cadastrar Atuador Essencial

Fonte: (Elaborado pelo autor).

4.2.3

30

Requisitos ndo Funcionais

Os requisitos ndo funcionais referem-se a caracteristicas desejaveis do sistema rela-

cionadas a sua performance, confiabilidade e escalabilidade. Foram estabelecidos os seguintes

requisitos:

4.2.4

RNFO001 — Desempenho da Leitura: O sistema deve processar e exibir as leituras ambientais
em tempo real.

RNF002 — Desempenho da Irrigacdo: O tempo de resposta para ativagdo e desligamento
do sistema de irrigacdo nao deve ultrapassar 2 segundos.

RNFO003 — Confiabilidade e Disponibilidade: O sistema deve operar de forma continua,
garantindo disponibilidade 24 horas por dia, 7 dias por semana.

RNF004 — Recuperacao: Em caso de falhas, o sistema deve ser capaz de reiniciar automa-
ticamente e retomar sua operacgao.

RNF005 — Escalabilidade: O sistema deve ser projetado para suportar um nimero crescente
de sensores sem perda significativa de desempenho.

RNFO006 — Manutenibilidade: O cédigo deve seguir boas préticas de desenvolvimento para
facilitar futuras atualizagdes e correcoes.

RNF007 — Suporte a Multiplos Sensores/Atuadores: O sistema deve permitir a conexao

simultanea de diversos sensores/atuadores sem comprometer a eficiéncia da comunicagao.

Tabela de identificagdo e especificacdo de requisitos ndo funcionais

A Tabela 3 apresenta a especificacio desses requisitos e suas respectivas prioridades

no desenvolvimento do sistema.

Tabela 3 - Tabela de identificao e especificagdao de requisitos ndo funcionais

Identificacio Nome da funcionalidade Prioridade
RNFO001 Desempenho da leitura Essencial
RNF002 Desempenho da Irrigacao Desejavel
RNF003 Confiabilidade e Disponibilidade Essencial
RNF004 Recuperacio Importante
RNFO005 Escalabilidade Importante
RNF006 Manutenibilidade Desejavel
RNFO007 Muiltiplos Sensores/Atuadores Essencial

Fonte: (Elaborado pelo autor).

31
4.3 Relacionamento Geral do Sistema

Identificamos os principais requisitos e aspectos necessarios para desenvolver o
sistema de maneira que seja de facil acesso e escaldvel. Na Figura ?? temos a visdo geral do
sistema e com base nas funcionalidades definidas.

Isso possibilita a escalabilidade tanto de processos quanto de sensores atuando ao
mesmo tempo, e a possibilidade de executar tarefas em segundo plano sem consumir muitos

recursos.
4.3.1 Diagrama de Fluxo Geral do Sistema

Este diagrama de componentes ilustra o fluxo de dados do sistema, com as novas
relacdes do Celery Broker. Demonstra como os diferentes elementos do sistema interagem para
coletar, processar e enviar comandos.

Para facilitar a visualizag@o das relacdes, dividimos o diagrama em areas funcionais:

* Dispositivos IoT:

— Sensores: dispositivos que coletam dados do ambiente (temperatura, umidade,
luminosidade).

— Atuadores: dispositivos que recebem comandos do sistema e executam agdes no
ambiente.

* Servicos de Fila:

— MQTT Broker (HiveM(Q): Atua como “correio” central para mensagens [oT. Os
sensores enviam os dados para ele, que os distribui para o backend e também é
responsavel por receber comandos do backend e enviar para os atuadores.

— Redis - Celery Broker: E responsavel pelo armazenamento em meméria de dados
que o Celery usa como uma fila de mensagens de alta performance. Ele armazena as
tarefas que serdo processadas no backend, garantindo que um worker as realize.

* Backend:

— API/Cliente MQTT: Esta API expde os endpoints que o sistema ird interagir (ex:
buscar histéricos, ligar atuador, agendar comandos).

— Tasks Celery: Sao fungdes responsaveis por encapsular a 16gica de processamento
de dados e envio de comandos para posteriormente serem executadas em segundo

plano.

32

— Banco de Dados: Onde todos os dados sdao armazenados, incluindo dados dos
sensores, atuadores e informacgdes do usudrio.
* Processamento:
— Celery Worker: E o trabalhador que escuta o Redis (Celery Broker), recebe as tarefas
que estdo disponiveis na fila e as executa. Ele é responsédvel por executar as “Tasks
Celery” em segundo plano.
* Interface:
— APP Web/Mobile: Trata-se da interface onde os usudrios interagem com o sistema.
Através dela pode-se configurar os dispositivos, visualizar dados e realizar comandos.
Fluxos de dados e comandos:
1. Dados dos Sensores:
* Os sensores coletam os dados e enviam para o MQTT Broker.
* O MQTT Broker encaminha esses dados para a API/Cliente MQTT no backend
Django.
* O backend enfileira a tarefa desses dados no Redis Celery Broker.
* O Celery Worker executa a tarefa do Redis, que roda a l6gica (Task), e essa logica
salva os dados no Banco de Dados.
2. Fluxo de Interacao do Usuario:
* O App Web/Mobile interage com a API do Backend solicitando dados do histoérico,
ou aplicando comandos.
* O backend responde o App Web/Mobile com os dados esperados.
3. Comandos para Atuadores:
* Quando um comando desse € enviado (Por uma requisi¢cao do App Web/Mobile ou
uma tarefa agendada), o Celery Worker executa uma fask que decide o comando e
envia para o MQTT Broker.
* O MQTT Broker envia o comando para os atuadores IoT correspondentes, que
executam a acao fisica.
Para realizar a comunica¢@o backend, sensores e broker MQTT, foram utilizados os
protocolos Publish/Subscribe, responsavel por criar topicos onde € possivel se comunicar entre
os sensores e a aplicagdo backend, e o protocolo Producer/Consumer, que utiliza o broker Redis

responsavel por executar operacdes em fila, o que torna a aplicacdo mais rapida e escaldvel.

33

Figura 6 — Diagrama de Fluxo geral do sistema Agrolnfo V2

Backend Dispasitivos 1oT

‘ Atuadares | | Sensores

APL/Cliente MQTT A

Comandos para Envia :_}.Jdn;-;

Interage

Enfileira tarefa Sefvicos de Fila

Ericaminha dados

MQTT Broker

Responde

Interface /?'/’/_’_J
App Web/Mobile | \
Envia comandos
Roda Logica task) ————————————— \
Redis - Celery Broker

Tasks Celery

Exécuta taref
Salva dados Executa tarefa

Processamento
B o] S !
2nco de bados

Fonte: Elaborado pelo autor.
4.4 Modelagem do Sistema
4.4.1 Diagrama de Casos de Uso

Com o objetivo de melhorar a visdo das acdes dos usudrios no sistema, foi desen-
volvido o diagrama de casos de uso na Figura ??. Contamos com a representacdo de 2 atores:
primeiramente, o usudrio do sistema, que poderd acessar as funcionalidades do sistema res-
ponsdveis por monitorar as varidveis ambientais e os registros dos dados, como monitorar a
temperatura, monitorar a umidade, acessar histérico de dados, ligar/desligar sistema de irrigacao.
O segundo trata-se do sistema em nuvem, o broker MQTT, que serd responsavel por intermediar
a comunicagdo entre os sensores € o aplicativo, postando os dados captados pelos sensores,
identificando falhas nos sensores caso ocorra, além de postar os dados que serdo armazenados
no banco de dados (SQLite3) posteriormente.

O diagrama de casos de uso demonstra as funcionalidades do sistema que promovem
a interacdo dos usudrios do sistema, podendo haver dependéncias entre eles para visualizar a
l6gica da aplicacao.

* Ligar/Desligar irrigacdo: Este caso mostra a funcionalidade que possibilita o usudrio
realizar a acao de ligar ou desligar o sistema de irrigacao.

* Consultar Historico: Este caso demonstra o cendrio em que os usudrios podem acessar o

histérico de dados que foram detectados pelos sensores.

34

Consultar Registro de irrigacao: Este caso descreve o cendrio onde o usudrio tem acesso

ao registro de todas as requisi¢oes de ligar e desligar o sistema de irrigacdo.

Filtragem de Registro: Este caso mostra o cendrio onde o usudrio pode realizar a filtragem

por data/hora dos dados armazenados no banco de dados do sistema.

Alerta de falhas: Este cenario mostra o caso onde ha uma falha nos sensores € identificada

pelo broker MQTT, o sistema envia uma notificacio de aviso.

Armazenamento de dados: Este caso mostra o cendrio que os dados postados pelo broker

sdo armazenados no banco de dados do sistema.

Figura 7 - Diagrama de casos de uso

Sistema

Merta de falhas

<<gxlend>>
-~

<inchuirss

Armazenamento
de dados

Ligar/Desligar

Manitoramenta
de Varaveis

Imigacio

Cliente

Consultar
Histarico

Consultar

—_—— o SN — —

Fillragem de
Registros

Registro de
Irrigacan

Fonte: (Elaborado pelo autor).

Broker

4.4.2 Diagrama de sequéncia comando para sensor (Acionar /desligar Irrigacdo)

Para auxiliar na visualizacdo da interagdo do usudrio ao utilizar o sistema, foram

criados dois diagramas de sequéncia para representar o fluxo de dados entre os componentes.

Neste diagrama, demonstramos o fluxo de dados para o envio de comandos para o sensor.

Na interface do sistema, o usudrio seleciona “Acionar Irriga¢dao” ou “Desligar Irri-

gacdo”. Seguidamente, o frontend envia uma requisicio HTTP do tipo POST para a API do

backend. ApOs receber essa requisi¢ao, em vez de processar diretamente o comando, o backend

35

aciona uma tarefa chamada ‘enviar_comando_sensor‘ para o Celery Broker (Redis). Um
Celery Worker disponivel executa essa tarefa que chama ‘enviar_comando_mqtt () * do cliente
MQTT. Esta func¢do ird publicar a mensagem MQTT com o comando escolhido (ligar ou desligar)
no topico de comando. O HiveMQ leva esta mensagem MQTT para o Sensor/Dispositivo [oT
correspondente, que havia se inscrito no mesmo topico. O Dispositivo recebe a mensagem e
executa a acdo que foi definida pelo usudrio.

Figura 8 — Diagrama de sequéncia com comando para sensor

usugrio || Fron tend Backend Django (View/APr) Celery Broker (Redis) Celery Worker Qliente MQIT (matt_utils.py) HiveMQ (MQTT Broker) Sensor/Dispositivo 1o

Requisigdo HTTP (POST /api/plantio/{id}/comandoy)
e el e il i,

Enfileira tarefa “enviar_comando_sensor"!

rrrrrrr d Backend Django (View/aPr) celery Broker (Redis] celery Worker Quiente MQTT (matt_utils.py) HiveMQ (MQTT Broker) Sensor/Dispositivo To

Fonte: Elaborado pelo autor.

4.4.3 Verificacao Periodica de Status e Alertas do sensor

No processo da funcionalidade de Verificagdo periddica dos sensores e alertas, cria-
mos um diagrama de sequéncia para sua visualiza¢do detalhada. Neste processo, o Celery Beat de-
sempenha o papel de agendador de tarefas, enfileirando a tarefa ‘verificar_status_sensores*
no Celery Broker (Redis) em intervalos regulares. Isso torna a verificacdo automatica, sem neces-
sidade de interven¢do manual.

O Celery Worker esta sempre aguardando tarefas na fila para processar. Ele pega a
tarefa ‘verificar_status_sensores‘ do Celery Broker. Quando a executa, utiliza a 16gica
contida no backend e entdo realiza a consulta no banco de dados para obter a tltima leitura dos
sensores cadastrados. Com essa informacao, o backend calcula um limite offline (nesse sistema
foi definido o tempo de 10 minutos) e assim determina se o sensor enviou dados recentemente.

Caso o sistema identifique que os sensores nao reportam dados desde o limite offline
e ainda estdo identificados como online, o backend atualiza o status de online para offline no
banco de dados. Em um fluxo adicional, o sistema também verifica se algum sensor que estava
antes marcado como offline retornou a enviar dados; nesse caso, o sistema atualiza o banco de

dados para o status de online. Apds esse processo, o sistema finaliza as atividades relacionadas a

essas tarefas e aguarda a préxima atividade agendada pelo Celery Beat.

Figura 9 — Diagrama de sequéncia Verificacdo Periddica de Status e Alertas do sensor

Celery Beat (Agendador) Celery Broker (Redis) Celery Worker Backend Django (Tasks, Models)

A Lda X minutos: Enfileira tarefa "verificar_status_sensoreg"

istribui tarefa "verificar_status_sensores'|

Executa a funcio vervhcarstatussensurss(J

Consulta: Buscar 'last_reading_at"' de todos os sensore|

Banco de Dados

Retorna dados dos sensores

Calcula 'limite_offline' e compara co

m 'last_reading_at'

Servico de Alerta (Opcional)

alt

[Sensores OFFLINE encontrados]

Atualiza: 'status' do sensor para 'offline’

Confirmagdo de atualizagao

Envia alerta (Ex: Email/SMS: "Sensor {]

D} Offline!")

Confirmagio de envio

[Nenhum sensor OFFLINE]

Nenhuma agao (sensores online)

Celery Beat (Agendador) Celery Broker (Redis) Celery Worker Backend Django (Tasks, Models)

Fonte: Elaborado pelo autor.

4.4.4 Diagrama de Classe

O diagrama da Figura 10 é uma representagdo da estrutura das funcionalidades a

alt

[Sensores ONLINE que estavai

onsulta: Sensores 'offline’ com 'last_reading_at' recen

OFFLINE]

e

Retorna sensores que voltaram

Atualiza: 'status' do sensor para ‘online’

Confirmagdo de atualizagio

Envia alerta (Ex: Email/SMS: "Sensor {IDH

[Voltou Online!

)

Confirmagdo de envio

I

Banco de Dados

I

Servico de Alerta (Opcional)

36

serem adicionadas ao sistema, mostrando visualmente as classes, relacionamentos e associagcdes,

assim fornecendo uma visao estatica do sistema.

Definicdo das classes:

* MVT: A sigla MVT nao € uma classe e sim uma arquitetura. A se¢do 4.5.2 aborda isso

em detalhes.

« Plantio: E utilizada para criar objetos de plantio e possui uma chave estrangeira que

referencia o objeto Property, que € ponto de acesso para seus métodos.

* Property: E utilizada para criaciio de objetos no banco de dados. Possui uma chave

estrangeira para o objeto User, que torna possivel acessar seus métodos.

« User: E utilizada para criacdo de objetos de usudrio.

* Sensor: E utilizado para a criac@o de objetos de sensores no banco de dados. Possui uma

chave estrangeira que referencia um objeto Plantio ao qual tem relacao.

37

* Histérico: E utilizado para criacio de objetos de histérico geral da aplicagdo no banco de
dados, possui uma chave estrangeira para um (CustomUser), armazenando quem realizou
a tarefa.

* HistéricoDeRegistro: E utilizada para criacdo de objetos de registro de comandos no
banco de dados. Registra cada vez que o comando ligar/desligar a irrigagc@o € enviada.

« AgendamentoDeComando: E utilizado para criagio de objetos de agendamentos de
comandos no banco de dados, tornando possivel programar o agendamento para ligar/-
desligar o sistema de irrigagdo automaticamente em horarios especificos. Possui chaves
estrangeiras para um objeto CustomUser e para um objeto Plantio, especificando o local

da acdo.

Figura 10 — Diagrama de Classe

Sensor
Property Plantio

+intid

+int id +intid ous| +str nome

Customuser | * str endereco ous| +str dimensao | _contém > planti——| + str tipo

&dono de > + str distrit i [—tem > propriedade— + str tipodegraoplantado 1 + str sensor_id_externo
+str username +str numero 1 + str localizacao + DateTime last_reading_at
+str email +str cidade + DateTime created_at +str status

+str password + DateTime created_at + str tokensensores
+5str cep

+str sobrenome

+str cidade

+str estado

+ Date datadenascimento
+ bool ativo

+ DateTime created_at 1

para > plantio
Historico

0¥ +intid

registra atividade > usuario
+ DateTime data_hora AgendamentoComando

+ str informacao

+ set_password(password) .
+ check_password(password) +intid

+ str comando

-*| + DateTime horario_execucao
+ bool repetir_diariamente

+ str status

°

ria > usuari

HistoricoRegistro + DateTime created_at

+intid
+ str estado

+ DateTime data_hora

Fonte: Elaborado pelo autor.

4.5 Tecnologias e Ferramentas Utilizadas

4.5.1 Ferramentas Utilizadas

Para o desenvolvimento do sistema, foram selecionadas as seguintes tecnologias e
ferramentas:
* Linguagem de Programacao: Python, devido a sua flexibilidade e vasta disponibilidade
de bibliotecas para desenvolvimento web e [oT.
» Frameworks: Django e Django REST Framework, para implementacdo do backend e

exposicao de APIs REST.

4.5.2

38

Protocolo de Comunicacao: MQTT (Message Queuing Telemetry Transport), por ser
leve e eficiente na transmissao de dados entre sensores e servidores.

Broker de Mensagens para o Celery: Utilizado com Broker de mensagens para o
Celery. O Redis atua como uma fila de alta performance, onde as tarefas sdo armazenadas
temporariamente antes de serem executadas.

Sistema de Filas de Tarefas: O Celery é essencial para execugdo em segundo plano das
tarefas enfileiradas pelo Redis.

Agendador de Tarefas Periddicas: Uma extensao do Celery que permite o agendamento
de tarefas periddicas diretamente a partir do banco de dados do sistema.

Banco de Dados: SQLite3, utilizado para armazenar as leituras ambientais e logs do
sistema.

Plataforma de Hospedagem: Inicialmente, o sistema serd executado em ambiente local,

com possibilidade de migracdo para servidores em nuvem.

Arquitetura do Backend

Para o desenvolvimento desse projeto, foi utilizado o padrao MVT (Model, Template,

View), que se trata de uma variacdo do padrao MVC (Model, View, Controller), mais adaptada

para a utilizacdo do Django, framework que foi utilizado neste trabalho.

E baseado em separagdes em trés camadas que estdo conectadas e desempenham

papéis diferentes na aplicacdo.

Template: Responsdvel por apresentar a parte visual e demonstrar dados, onde os arquivos
HTML serdo renderizados.

View: E onde os dados serdo formatados, exibindo a interface e as informagdes contidas
no Model.

Model: Onde é realizada a 16gica para estruturar os dados, manipula os dados que serdo

coletados pelo broker, além de mapear o banco de dados.

39

Figura 11 - Representacdo esquematica do MVT

Browser

TEMPLATE
A

WVIEW) Server

r

-

M

r

{ MODEL :I

Fonte: Elaborado pelo autor.

Database

4.5.3 Broker MQTT

O broker MQTT utilizado no desenvolvimento da aplicacdo trata-se do sistema
disponibilizado pela HiveM Q. Neste projeto, foi utilizado o plano gratuito. Ao criar uma conta
no cluster, € possivel ter acesso as informacdes que sdo essenciais para conectar o broker para
clientes, produtores e consumidores. A plataforma fornece as informacdes de conexdo como a
URL de acesso. Como a plataforma HiveMQ é disponibilizada via AWS, a URL ¢ utilizada por
clientes produtores e clientes consumidores para terem acesso ao broker.

A seguranga da comunicagao € garantida pela utilizagdo de URLs de TLS (Transport
Layer Security) para MQTT e WebSocket, o que garante a seguranga por meio de criptografia dos
dados de comunicagdo, protegendo as informagdes enquanto viajam entre os dispositivos e 0

broker.

40

Para iniciar o recebimento de dados e ativar o broker, € necessario criar credenciais.
A prépria plataforma HiveMQ pode criar de forma automdtica as credenciais necessdrias para a
aplicacdo. Uma vez que o broker estd ativo com as credenciais, o proximo passo € definir os
topicos. Os tépicos servem para separar os dados dos produtores, garantindo que cada um receba
as suas informagdes pertinentes. O nome dos tépicos € definido por um serial token obtido pelo
usudrio, de forma que cada usudrio terd acesso ao seu proprio topico para recebimento dos dados
coletados e enviados pelos sensores. O backend da aplicacdo realiza a tarefa de coletar e salvar
os dados no banco de dados, considerando os dados e o tdpico referente ao usudrio que esta
conectado a aplicagdo.

Um aspecto importante do HiveMQ € o Quality of Service (QoS) das mensagens,
que se trata de um sistema de niveis que garantem a entrega das mensagens. Nos niveis 1 e 2, o
broker rastreia as mensagens nao confirmadas e as armazena em uma fila, garantindo a entrega
mesmo que haja interrupcdes. No nivel 0, ndo ha rastreamento ou armazenamento de dados apds
uma perda de conexdo, e neste nivel as mensagens podem ser descartadas.

Quando o broker entra em execucgdo e os topicos estdo definidos, o HiveMQ recebe
os dados enviados pelos sensores e armazena as principais informacdes como o conteudo
da mensagem, os niveis de garantia (QoS) € o0 momento em que a mensagem foi recebida

(Timestamp). Essas informacdes ficam disponiveis aos consumidores.

41

4.5.4 Softwares utilizados

Nesta secdo, detalharemos os softwares utilizados na aplicacio, a configuracio

utilizada e como foram realizados os testes.
4.5.4.1 Postman

Os testes das funcionalidades do sistema foram realizados no Postman em suas
configuragdes padrdes. A plataforma funciona como uma API que permite publicar, consumir
e gerenciar APIs, podendo simular as requisicdes que um frontend geraria. Nesta aplicac¢ao, o
Postman foi utilizado para enviar requisi¢des e receber as respostas das APIs e verificar se eram
as esperadas. Na ferramenta, foi definido o método utilizado (POST ou GET), depois informamos
a URL da API a ser testada e o formato da entrada de dados JSON, quando necessario haver uma
entrada. O sistema € desenvolvido em Django REST. Na Figura 13, visualizamos a execugao.
Ao clicar em “Send”, a API retorna os dados que s@o exibidos no Body. Na Figura 12, podemos

ver o diagrama que mostra a relacio entre o programa de teste e o sistema backend.

Figura 12 — Diagrama de Testes

Fonte: Elaborado pelo autor.

4.5.5 Hardware Utilizado

Nesta secdo, detalharemos o hardware utilizado para o desenvolvimento da aplicagdo

e para a realizacdo dos testes.
4.5.5.1 Computador

Para o desenvolvimento da aplicacdo do backend e para a realizacao dos testes, foi

utilizado um computador com as seguintes especificacoes:

42

Figura 13 — Interface do software Postman

Fonte: Elaborado pelo autor.

* Sistema Operacional: Windows 11 Home Single Language 64 bits Versao 22H2.
* Processador: AMD Ryzen 5 3600 3.6GHz.
e Memoria RAM: 16,0GB.

4.6 Testes e Validacao

Os resultados dos testes que foram realizados para avaliar o grau de desenvolvimento
serdo classificados desta maneira:

* Sucesso: A API executou e respondeu de forma esperada.

Falha Média: A API executou, mas respondeu de forma incorreta.

Falha Alta: A API executou, mas niao houve resposta.

Falha Critica: A API nio executou.

4.6.1 Cronograma dos Testes

Este cronograma mostra o periodo aproximado em que as atividades de planejamento

e aplicacao deverao ser realizadas.

Tabela 4 — Cronograma 2025
Atividades Marco Abril Maio Junho Julho
Realizacao do teste de Unidade X X
Planejamento do documento de testes X
Especificacdo do caso de testes
Realizacao do teste funcional
Realizacao do teste de Integracao
Realizacao do teste de Desempenho X

elRaiRelle

elkalle

Fonte: Elaborada pelo autor.

43

4.6.2 Funcionalidades a serem testadas

Nesta secao, detalharemos as funcionalidades a serem testadas no sistema. Cada
funcionalidade terd uma breve descri¢do, sua identificacdo, nome do caso de teste e a qual

requisito a funcionalidade esté relacionada.

Tabela 5 — Tabela de Casos de Teste
Identificacdo Nome da Funcio- Requisito Funcional Descricao

nalidade

CTO1 Alerta de Falhas RF001 Verificar se o sensor estd envi-

ando dados.

CT02 Ligar registro RF002 Enviar o comando ligar para o

Atuador.
CTO03 Desligar registro RF002 Enviar o comando desligar para
o Atuador.

CT04 Agendar atuador RF002 Verificar o agendamento para ati-

vacdo dos atuadores.

CTO05 Filtragem de RF003 Realizar filtragem nos dados do
Histoérico por histérico por comando “desli-
comando desligar gar”.

CT06 Filtragem de His- RF003 Realizar filtragem nos dados do
térico por data de histérico por data de inicio.
inicio

CTO07 Filtragem de His- RF003 Realizar filtragem nos dados do
térico por data fi- histérico por ultima data regis-
nal trada.

CTO8 Filtragem de His- RF003 Realizar filtragem nos dados do
térico por combi- histérico por comando e data
nacdo de filtros combinados.

CT09 Filtragem de RF003 Realizar filtragem nos dados do
Histérico por histérico por comando “ligar”.
comando ligar

CT10 Histérico de Re- RF004 Salvar dados de comando ligar/-
gistro desligar no banco de dados.

CT11 Cadastrar Sensor RF005 Criar um objeto do tipo sensor.

CT12 Cadastrar Atua- RF006 Criar um objeto do tipo Atuador.

dor

Fonte: Elaborada pelo autor.

44

4.7 Recursos necessarios

Para a realizacdo dos testes, € necessaria a utilizacao de hardware, software e sistema
de testes. Para uma melhor avaliacdo dos testes, especificamos o ambiente de execugdo e os

recursos utilizados.

Tabela 6 — Tabela de Ferramentas e Recursos

Nome Justificativa

Postman A ferramenta € utilizada para simular um frontend e enviar
entrada de dados.

VS Code A ferramenta € necessdria para a execugdo da aplicagdo.

Computador O dispositivo € necessdrio para a execugao de todas as

ferramentas utilizadas nos testes.
Simulador de Sensor em Python Atuard simulando um sensor enviando dados para o broker.

Fonte: Elaborada pelo autor.

45

S RESULTADOS

5.1 Casos de Teste

Foram elaborados casos de teste onde foram enviadas entradas de dados que simulam
um ambiente real onde se esperam o retorno de determinadas saidas correspondentes. Seguindo
os passos determinados, os testes buscam imitar um cendrio de producio onde o usuério do
sistema realizard suas tarefas. Com base no sistema desenvolvido, foram realizados testes para

avaliar as saidas obtidas pelas APIs da aplicacao.

Tabela 7 — Caso de teste 01 - Ligar registro
Caso de Teste 01 Ligar registro
Descricao Verificar se o endpoint api/controle-registro/ligar/ esta envi-
ando o comando ligar/
Funcionalidade RF1
Pré condicao

« E necessdrio realizar o login no admin.

* O servidor estd iniciado.

« E necessdrio ter um cadastro de uma propriedade e de um
plantio.

* A task verificar_status_sensores deve estar implementada

Passos
1. Abrir o Django admin:
* Fazer login como superusudrio
* Definir a las_reading 30s segundo no passado
* Definir o status como online
2. Salvar
Resultados Espe- 1 — Exibicdo da mensagem no terminal “ALERTA: Sen-
rados sor [ID DO SENSOR] - [NOME DO SENSOR] estd OF-
FLINE!”.

Fonte: Elaborada pelo autor.

Tabela 8 — Caso de teste 02 - Ligar registro

Caso de Teste 02 Ligar registro

Descricao Verificar se o endpoint api/controle-registro/ligar/ esta envi-
ando o comando ligar/

Funcionalidade RF2

Pré condicao
°

E necessdrio realizar o login no sistema.

O servidor estd iniciado.

E necessdrio ter um cadastro de uma propriedade e de um
plantio.

O endpoint api/controle-registro/ligar/ deve estar imple-
mentado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:
* Método: POST
* URL: http://127.0.0.1:8000/api/controle-
registro/ligar/
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

2.

HTTP_200_OK.
Recebimento no Postman em JSON o Body informado
na requisicao.

Fonte: Elaborada pelo autor.

46

Tabela 9 — Caso de teste 03 - Desligar registro

Caso de Teste 03 Desligar registro

Descricao Verificar se o endpoint api/controle-registro/desligar/ esta
enviando o comando desligar/

Funcionalidade RF2

Pré condicao
°

E necessdrio realizar o login no sistema.

O servidor estd iniciado.

E necessdrio ter um cadastro de uma propriedade e de um
plantio.

O endpoint api/controle-registro/desligar/ deve estar im-
plementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:
* Método: POST
* URL: http://127.0.0.1:8000/api/controle-
registro/desligar/
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

2.

HTTP_200_OK.
Recebimento no Postman em JSON o Body informado
na requisicao.

Fonte: Elaborada pelo autor.

47

Tabela 10 — Caso de teste 04 - Agendar registro

Caso de Teste 04 Agendar registro

Descricao Verificar se o endpoint /api/agendamentos/ estd enviando o
comando para agendamento./

Funcionalidade RF2

Pré condicao
« E necessdrio realizar o login no sistema.
* O servidor estd iniciado.
« E necessdrio ter um cadastro de uma propriedade e de um
plantio.
* O endpoint /api/agendamentos/ deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisigdes:

* Método: POST

* URL: http://127.0.0.1:8000/api/agendamentos/

* Headers: Content-type: application/json

* Authorization: Bearer “token serial”

* Body: “plantio”: “2”, “comando”: “ligar”, “ho-
rario_execucao”: “2025-06-30T12:00:00Z”, “repe-
tir_diariamente”’: “false”

2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado
na requisi¢ao.

Fonte: Elaborada pelo autor.

48

Tabela 11 — Caso de teste 05 - Filtragem de Histérico por comando desligar

Caso de Teste 05 Filtragem de Historico por comando desligar

Descricao Verificar se 0 endpoint /api/histo-
rico_comandos/?estado=desligar est4 enviando o comando
estd respondendo os dados corretamente.

Funcionalidade RF3

Pré condicao

« E necessdrio realizar o login no sistema.

* O servidor estd iniciado.

* E necessdrio ter um cadastro de uma propriedade e de um
plantio.
O endpoint api/controle-registro/?estado=<valor>/ deve
estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:
* Método: GET
e URL: http://127.0.0.1:8000/api/historico_ coman-
dos/?estado=desligar
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor
HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-
gens.

Fonte: Elaborada pelo autor.

49

Tabela 12 — Caso de teste 06 - Filtragem de Histérico por data de inicio

Caso de Teste 06 Filtragem de Histérico por data de inicio

Descricao Verificar se 0 endpoint
/api/historico_comandos/?data_inicio=<data-inicio>
estd enviando o comando estd respondendo os dados
corretamente.

Funcionalidade RF3

Pré condicao

« E necessdrio realizar o login no sistema.

* O servidor est4 iniciado.

* E necessdrio ter um cadastro de uma propriedade e de um
plantio.

* O endpoint http://127.0.0.1:8000/api/historico_comandos/
?data_inicio=<data-inicio> deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢do com algumas
requisicoes:
* Método: GET
e URL:http://127.0.0.1:8000/api/historico_
comandos/?data_inicio=2025-06-20
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-
gens.

Fonte: Elaborada pelo autor.

50

51

Tabela 13 — Caso de teste 07 - Filtragem de Histdrico por data final
Caso de Teste 07 Filtragem de Histérico por data final
Descricao Verificar se 0 endpoint
/api/historico_comandos/?data_final=<data-final> esta envi-
ando o comando estd respondendo os dados corretamente.
Funcionalidade RF3
Pré condicao

« E necessdrio realizar o login no sistema.

* O servidor estd iniciado.

* E necessdrio ter um cadastro de uma propriedade e de um
plantio.

* O endpoint /api/historico_comandos/?data_final=<data-
final> deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:
* Método: GET
* URL: http://127.0.0.1:8000/api/historico_
comandos/?data_fim=2025-07-09
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor
HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-
gens.

Fonte: Elaborada pelo autor.

52

Tabela 14 — Caso de teste 08 - Filtragem de Histérico por combinacdo de filtros

Caso de Teste 08 Filtragem de Histdrico por combinacao de filtros

Descricao Verificar se 0 endpoint
/api/historico_comandos/?estado=<valor>&data_inicio=<data-
inicio>&data_fim=<data-fim> esta enviando o comando
estd respondendo os dados corretamente.

Funcionalidade RF3

Pré condicao

« E necessdrio realizar o login no sistema.

* O servidor est4 iniciado.

* E necessdrio ter um cadastro de uma propriedade e de um
plantio.

* O endpoint /api/historico_comandos/?estado=<valor>
&data_inicio=<data-inicio>&data_fim=<data-fim> deve
estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisigoes:
* Método: GET
e URL: http://127.0.0.1:8000/api/historico_ coman-
dos/?estado=ligar& data_inicio=2025-06-25&
data_fim=2025-07-09
* Headers: Content-type: application/json
 Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-
gens.

Fonte: Elaborada pelo autor.

Tabela 15 — Caso de teste 09 - Filtragem de Histdrico por comando ligar

Caso de Teste 09 Filtragem de Histérico por comando ligar

Descricao Verificar se 0 endpoint /api/histo-
rico_comandos/?estado=ligar estd enviando o comando esta
respondendo os dados corretamente.

Funcionalidade RF3

Pré condicao

« E necessdrio realizar o login no sistema.

* O servidor estd iniciado.

* E necessdrio ter um cadastro de uma propriedade e de um
plantio.
O endpoint api/controle-registro/?estado=<valor>/ deve
estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:
* Método: GET
e URL: http://127.0.0.1:8000/api/historico_ coman-
dos/?estado=ligar
* Headers: Content-type: application/json
* Authorization: Bearer “token serial”
2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor
HTTP_200_OK.
2. Recebimento no Postman em JSON uma lista de mensa-
gens.

Fonte: Elaborada pelo autor.

53

Tabela 16 — Caso de teste 10 - Historico Registro

Caso de Teste 10 Histérico Registro

Descricao Verifique se o endpoint /api/historico/ estd cadastrando o
sensor corretamente no banco de dados./

Funcionalidade RF5

Pré condicao
« E necessdrio realizar o login no sistema.
* O servidor estd iniciado.
« E necessdrio ter um cadastro de uma propriedade e de um
plantio.
* O endpoint /api/historico/ deve estar implementado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisigdes:

* Método: POST

» URL: /api/sensores/cadastrar/

* Headers: Content-type: application/json

* Authorization: Bearer “token serial”

* Body: “comando”: “desligar”, “timestamp”: “2025-
06-25T10:05:00Z”, “comando”: “ligar”, ‘“times-
tamp”: “2025-06-25T10:00:00Z2”

2. Enviar Requisicao
Resultados Espe-
rados 1. Exibicdo da mensagem no terminal do servidor

HTTP_200_OK.
2. Recebimento no Postman em JSON o Body informado
na requisi¢ao.

Fonte: Elaborada pelo autor.

54

Tabela 17 — Caso de teste 11 - Cadastrar Sensor

Caso de Teste 11 Cadastrar Sensor

Descricao Verifique se o endpoint /api/sensores/cadastrar/ estd cadas-
trando o sensor corretamente no banco de dados./

Funcionalidade RF5

Pré condicao
« E necessdrio realizar o login no sistema.
* O servidor estd iniciado.
« E necessdrio ter um cadastro de uma propriedade e de um
plantio.
* O endpoint /api/sensores/cadastrar/ deve estar implemen-
tado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:

* Método: POST

» URL: /api/sensores/cadastrar/

* Headers: Content-type: application/json

* Authorization: Bearer “token serial”

* Body: “plantio”: “2”, “nome”: “Sensor de Umi-

dade do Solo Sul”, “tipo”: “umidade”, “sen-
sor_id_externo”: “UMIDADE-SUL-001"

2. Enviar Requisicao

Resultados Espe-
rados 1. Exibicio da mensagem no terminal do servidor
HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado
na requisi¢ao.

Fonte: Elaborada pelo autor.

55

Tabela 18 — Caso de teste 12 - Cadastrar Atuador

Caso de Teste 12 Cadastrar Atuador

Descricao Verifique se o endpoint /api/atuadores/cadastrar/ esta cadas-
trando o atuador corretamente no banco de dados./

Funcionalidade RF6

Pré condicao
« E necessdrio realizar o login no sistema.
* O servidor estd iniciado.
« E necessdrio ter um cadastro de uma propriedade e de um
plantio.
* O endpoint /api/atuadores/cadastrar/ deve estar implemen-
tado.

Passos
1. Abrir o Postman e criar uma requisi¢cdo com algumas
requisicoes:

* Método: POST

» URL: /api/atuadores/cadastrar/

* Headers: Content-type: application/json

* Authorization: Bearer “token serial”

* Body: “plantio”: “2”, “nome”: “Valvula Prin-
cipal Setor Norte”, “tipo”: “irrigacao”, “atua-
dor_id_externo”: “VALVULA-NORT-001”

2. Enviar Requisicao

Resultados Espe-
rados 1. Exibicio da mensagem no terminal do servidor
HTTP_201_CREATED.
2. Recebimento no Postman em JSON o Body informado
na requisi¢ao.

Fonte: Elaborada pelo autor.

56

57

5.2 Relatorio de teste

5.2.1 Introdugao

Esta secdo detalha e apresenta de forma relativamente proxima as falhas encontradas

durante todo o periodo de desenvolvimento e testes na aplicac@o deste trabalho.

5.2.2 Funcionalidades testadas

Tabela 19 — Tabela de Resultados dos Casos de Teste

ID Caso de Teste 30/04 01/06 15/06 30/06 28/07
CTO1 Alerta de Falhas Sem Impl. Sem Impl. Sem Impl. Falha Cri- Sucesso
tica
CTO02 Ligar registro Sem Impl. Sucesso Sucesso Sucesso Sucesso
CT03 Desligar registro Sem Impl. Falha Mé- Sucesso Sucesso Sucesso
dia

CT04 Agendar registro Sem Impl. Sucesso Sucesso Sucesso Sucesso

CTO05 Filtragem Histérico ~ Sem Impl. Sucesso Sucesso Sucesso Sucesso
por comando desli-
gar

CTO06 Filtragem Histérico ~ Sem Impl. Falha M¢- Falha Mé- Sucesso Sucesso
por data inicio dia dia

CTO07 Filtragem Histérico ~ Sem Impl. Sucesso Sucesso Sucesso Sucesso
por data final

CTO08 Filtragem Histérico ~ Sem Impl. Falha Alta Falha Alta Sucesso Sucesso
por combinagao fil-
tros

CT09 Filtragem Histérico ~ Sem Impl. Sucesso Sucesso Sucesso Sucesso
por comando ligar

CT10 Histdrico de Regis- Sem Impl. Sem Impl. Sem Impl. Sucesso Sucesso
tro

CT11 Cadastrar Sensor Sem Impl. Sem Impl. Sem Impl. Sucesso Sucesso

CT12 Cadastrar Atuador Sem Impl. Sem Impl. Sem Impl. Sem Impl Sucesso

Fonte: Elaborada pelo autor.

58

5.2.2.1 Visdo geral dos resultados

Os gréficos a seguir mostram a visualizacdo dos resultados aproximados dos testes,

destacando os periodos em que houverem maiores taxas de sucesso. No periodo de 30/04/2025 e

28/07/2025 nao foram incluidas pois constavam cem por cento.

Figura 14 — Graficos dos resultados de testes
Resultados dos Testes em 01/06

® Sucesso

® Falha Media

® Falha Alta

® Falha Critica

® Sem Implementacac

Resultados dos Testes em 30/06

8.3%

Fonte: Elaborada pelo autor.

Resultados dos Testes em 15/06

® Sucesso

® Falha Media

® Falha Alta

@ Falha Critica

® Sem Implementacao

® Sucesso

#® Falha Media

® Falha Alta

@ Falha Critica

® Sem Implementacao

59

5.2.2.2 Visdo Geral da severidade das falhas

O gréfico a seguir mostra o grau de severidade das falhas ao decorrer de todo o

periodo de testes.

Figura 15 — Gréfico da severidade das falhas
Proporgao de Severidade das Falhas (Periodo Total)

® Falha Critica
® Falha Alta
® Falha Media

Fonte: Elaborada pelo autor.

60

6 CONCLUSAO

Este trabalho busca aprimorar um sistema IoT existente, expandindo seu escopo para
permitir, além do recebimento de dados de sensores, o envio de comandos para atuadores. Essa
funcionalidade, essencial para uma maior automacdo e controle de plantios, € viabilizada por
uma nova aplicagdo. Ela se conecta a um novo broker, responséavel por fazer o processamento de
dados em segundo plano e possibilitar a execucio automdtica de acdes em horérios pré-definidos,
conferindo assim uma capacidade autbnoma ao sistema de irrigacao.

Neste trabalho, observou-se que uma solucao capaz de otimizar e automatizar pro-
priedades agricolas pode ser de baixo custo. Mesmo com uma aplicacio simples, foi possivel
alcancar os resultados esperados, demonstrando a eficicia da abordagem. Diferente dos trabalhos
relacionados, que por vezes se aplicam a resolver problemas especificos, este projeto mantém
um escopo abrangente, capaz de solucionar desafios em diversas situagdes. A abrangéncia desta
aplicacdo se da por permitir, além da visualizacdo dos dados transmitidos pelos sensores, a
atuacdo remota do usudrio, que pode enviar comandos aos atuadores, receber alertas de falhas
(em caso de problemas de comunicagdo entre o sensor e o broker) e ter um maior gerenciamento
dos dados armazenados no banco de dados.

Com o desenvolvimento de novas funcionalidades para o controle da automacao
foi significantemente aprimorado, aumentando assim a interag¢do do usudrio. O sistema agora
possibilita ao usudrio nao somente obter as varidveis dos plantios, mas também realizar acdes
remotamente. Apesar dos avancos, podemos apontar algumas limitacdes que persistem no
sistema atual. A principal delas € que, embora o sistema armazene os registros para todos os
usudrios, a dependéncia de banco de dados local pode ocasionalmente provocar a sobrecarga de
dados ao longo do tempo. Para aumentar a escalabilidade, poderia haver o armazenamento desses
dados na nuvem diretamente no broker; no entanto, essa solu¢do ainda ndo foi implementada.

Outra limitacdo que permanece € a restricdo do broker gratuito (HiveMQ), que
somente permite a retencao de dados durante trés dias e impede a configuracdo manual de
topicos, que sdo criados dinamicamente. Mesmo com o desenvolvimento do banco de dados para
o armazenamento do histérico e do gerenciamento pelas aplicac¢des, foi somente uma solucdo
paliativa, que ndo eliminou a necessidade de um broker com mais flexibilidade, o que se torna
um desafio técnico de infraestrutura do sistema.

Esta aplicacdo possibilita nio somente analisar, mas também automatizar areas

agricolas nao somente no Vale do Jaguaribe, mas em diferentes regides onde podem ser obtidas

61

varidveis de diferentes préticas agricolas. O sistema atual deixou uma sélida base que possibilita
a automacao e controle de plantios, tendo em mente que outras regides podem ter seus proprios
sistemas de avaliagc@o e gerenciamento de plantios, pode-se haver um aprimoramento da aplicagdo
com base nas descobertas alcangadas neste trabalho.

Este trabalho abre espaco para futuras investigacdes e implementacdo de novas
solugdes que aumentem a efici€ncia e a escalabilidade. Pode ser realizada a migragcdo de
dados para a nuvem através do broker ou a implementacdo de banco de dados NoSQL (com
MongoDB); que permitiria gerenciar de maneira escalavel o volume crescente de dados obtidos
pelos sensores, o que eliminaria a preocupac¢ao com sobrecarga de dados, essa possibilidade
poderiam ser explorada.

Outro ponto a ser melhorado seria a substituicdo do broker atualmente utilizado por
um broker de c6digo aberto com maior flexibilidade e escalabilidade (como o Mosquitto) que
permite a configuragcdo de dados ou soluc¢des 0T na nuvem (AWS IloT Core, Azure 1oT). Isso
permitiria a retencdo de dados por periodos mais longos.

O desenvolvimento de um médulo de dashboard personalizavel que permitiria ao
usudrio criar seus proprios painéis para visualizacao de dados, com graficos gerados conforme
sua necessidade. Essas e outras possibilidades podem ser implementadas para aprimorar o
sistema.

Em suma, este trabalho possibilita grandes beneficios para as propriedades agricolas
do Vale do Jaguaribe. Ele entrega aos usudrios um sistema de baixo custo e facil manutencao
capaz de modernizar plantios, tornando-os mais eficientes. A aplicagdo se mostra promissora,

mesmo com limitacdes que podem ser superadas futuramente.

62

REFERENCIAS

Berrios, C. e. a. H. Sistema iot baseado em esp32 para monitoramento em estufas agricolas.
Revista de Tecnologias Sustentaveis, v. 11, n. 3, p. 95-104, 2022.

Caligaris, M. A. e. a. Desafios e oportunidades da agricultura brasileira frente as mudancas
climaticas. 2022. Disponivel em: <https://www.embrapa.br/busca-de-publicacoes/-/publicacao/
1144211>. Acesso em: 10 jun. 2025.

Carissimi, A.; Barbosa, D. Computacao em Nuvem. [S.1.]: SENAIL, 2016.

Carmo, J. H. Frameworks para aplicacoes web em Python. 2023. Trabalho de Conclusao de
Curso — Universidade Federal do Ceara.

CEPEA. PIB do agronegocio brasileiro cresceu 2,5% em 2023. 2023. Disponivel em:
<https://www.cepea.esalq.usp.br/>. Acesso em: 10 jun. 2025.

CODEMEC. IoT. Ou a Internet das Coisas. 2016. <https://codemec.org.br/
iot-ou-a-internet-das-coisas/>. [Online]. Acesso em: 17 de jul. de 2025.

Dantas, M. V. Desenvolvimento de apis rest com django. In: Anais do Simpésio Brasileiro de
Engenharia de Software (SBES). [S.1.: s.n.], 2023.

FAO. O futuro da alimentacio e da agricultura — Caminhos alternativos para 2050. 2018.
Disponivel em: <https://www.fao.org/3/18429PT/i8429pt.pdf>. Acesso em: 10 jun. 2025.

Godfray, H. C. J. e. a. Food security: The challenge of feeding 9 billion people. Science, v. 327,
n. 5967, p. 812-818, 2010.

Golondrino, G. A. e. a. Sistema iot para monitoramento de varidveis climatolégicas em
agricultura urbana. Revista Brasileira de Agricultura Urbana, v. 2, n. 1, p. 40-50, 2022.

Gomes, J. S. e. a. Utilizacdo da iot na agricultura sustentdvel. In: Anais do Congresso
Brasileiro de Agroinformatica (SBIAgro). [S.1.: s.n.], 2023.

IBGE. Censo Agropecuario 2017 — Resultados definitivos. 2017. Disponivel em:
<https://censoagro2017.ibge.gov.br>. Acesso em: 10 jun. 2025.

Jesus, L. F. d. Impactos da tecnologia da informacao na transformacao digital. 2021.
Disponivel em: <https://repositorio.ifba.edu.br/jspui/handle/123456789/901>. Acesso em: 10
jun. 2025.

LENA, F. Q.; OLIVEIRA, A. M. d. Utilizacao do Protocolo MQTT para Sistemas de IoT

Voltado para Automacao Residencial. Santa Maria, RS, Brasil: [s.n.], 2018. 4 p. Disponivel
em: <https://www.tfgonline.lapinf.ufn.edu.br/media/midias/FabioLena.pdf>. Acesso em: 17 jul.
2025.

Muxito, E. e. a. Iot na agricultura — automacao de pivos e canais de irrigacdo com arduino e
webservice. In: Anais do Congresso de Engenharia Agricola. [S.1.: s.n.], 2018.

Planton. Cloud Computing. Guia Completo para Iniciantes. 2024. <https://blog.platon.com.
br/cloud-computing-guia-completo-para-iniciantes/>. [Online]. Acesso em: 25 de jul. de 2025.

63

Santos, J. Agrolnfo: Sistema de monitoramento agricola com Django e IoT. 2024. Trabalho
de Conclusdo de Curso — Universidade Federal do Ceara.

Silva, J. P. d. e. a. Conceitos e aplicacdes da internet das coisas: uma revisao bibliografica.
Revista de Informatica Aplicada, v. 6, n. 1, p. 24-35, 2020.

