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RESUMO

A incidência de verminoses causadas pelo Haemonchus contortus (HC) tem gerado prejuízos

significativos à ovinocultura, afetando diretamente a saúde dos rebanhos e reduzindo a produtivi-

dade dos criadores. Um dos métodos mais utilizados no diagnóstico da anemia associada a essa

parasitose é o Faffa Malan Chart (FAMACHA©), que se baseia na avaliação visual da coloração

da mucosa ocular para classificar os animais em cinco níveis. Apesar de sua simplicidade, o

método apresenta limitações como a subjetividade da análise e a dependência de experiência

prévia por parte do avaliador. Com o avanço das tecnologias para dispositivos móveis e das

técnicas de Aprendizado Profundo (do inglês, Deep Learning (DL)), surge a possibilidade de

automatizar esse processo, tornando-o mais preciso, padronizado e acessível. Neste trabalho, foi

desenvolvido um Aplicativo Móvel (APP) para a plataforma Android, utilizando a linguagem de

programação Kotlin em conjunto com a biblioteca Jetpack Compose. O sistema proposto realiza

a detecção da região ocular, em seguida, sua classificação nos cinco níveis do FAMACHA©,

fornecendo ao criador a indicação se o animal está saudável ou doente. A base de dados contém

165 imagens, distribuídas igualmente entre as cinco categorias definidas pelo FAMACHA©.

Para a etapa de detecção, empregou-se a arquitetura YOLOv5, que alcançou o desempenho

com mAP@0.5 de 0,995 no conjunto de testes com 17 amostras. Para a classificação, o melhor

modelo apresentou F1-Score médio de 0,9026 ± 0,0515 com validação cruzada em cinco folds.

O tempo de inferência aferido foi de 83 milissegundos para detecção e 20 milissegundos para

classificação, validando o uso em dispositivos móveis. Em conclusão, o APP desenvolvido se

mostra viável e eficaz como ferramenta de apoio no manejo sanitário de ovinos, contribuindo

para a sustentabilidade da produção e para o uso racional de vermífugos.

Palavras-chave: Haemonchus contortus. FAMACHA. Aprendizado Profundo. Aplicativo

móvel. Detecção automática.



ABSTRACT

Infections caused by Haemonchus contortus (HC) have caused significant losses in sheep

farming, directly affecting herd health and reducing producer productivity. One of the most

widely used methods for diagnosing anemia associated with this parasitosis is the Faffa Malan

Chart (FAMACHA©), which is based on the visual assessment of the ocular mucosa coloration

to classify animals into five levels. Despite its simplicity, the method presents limitations such as

the subjectivity of the analysis and the dependence on prior experience by the evaluator. With

advances in mobile device technologies and Deep Learning (DL) techniques, the possibility arises

to automate this process, making it more accurate, standardized, and accessible. In this work, a

mobile application (APP) was developed for the Android platform, using the Kotlin programming

language together with the Jetpack Compose library. The proposed system performs ocular

region detection, followed by classification into the five FAMACHA© levels, providing the

producer with an indication of whether the animal is healthy or sick. The database contains 165

images, equally distributed among the five categories defined by FAMACHA©. For the detection

stage, the YOLOv5 architecture was employed, achieving a mAP@0.5 of 0.995 on the test set

with 17 samples. For classification, the best model presented a mean F1-Score of 0.9026 ± 0.0515

with five-fold cross-validation. The inference time measured was 83 milliseconds for detection

and 20 milliseconds for classification, validating its use on mobile devices. In conclusion, the

developed APP proved to be viable and effective as a support tool in the sanitary management of

sheep, contributing to production sustainability and the rational use of anthelmintics.

Keywords: Haemonchus contortus. FAMACHA. Deep Learning. Mobile Application. Automa-

ted Detection.
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1 INTRODUÇÃO

Um problema recorrente para produtores de pequenos ruminantes, em especial

ovinos, é a incidência da verminose provocada por Haemonchus contortus (HC). Essa parasitose

causa anemia severa nos animais, levando à perda de peso, redução da produção de leite e lã,

e, em casos graves, à morte. A hemoncose, doença causada por esse nematóide, gera grandes

prejuízos econômicos para os criadores, afetando a rentabilidade das propriedades (BESIER et

al., 2016).

Foi constatado uma forte correlação entre a coloração da membrana mucosa ocular

e o grau de anemia do animal. Com base nisso, foi desenvolvido o método Faffa Malan Chart

(FAMACHA©), que utiliza um cartão ilustrativo que categoriza as mucosas em cinco intervalos,

que vão de vermelho (indicando boa saúde) a branco (indicando anemia severa). Essa correlação

sugere que uma avaliação precisa pode auxiliar na identificação de animais que necessitam

de tratamento, permitindo intervenções mais eficazes e reduzindo a seleção de resistência aos

antiparasitários (WYK; BATH, 2002).

Conforme observado na Figura 1, o cartão apresenta diferentes níveis de coloração

da mucosa. Nos graus A(1) e B(2), a coloração é intensamente vermelha, indicando ausência

ou mínima presença de anemia. O tratamento com vermífugo é recomendado a partir do grau

C(3). Nos graus D(4) e E(5), a vermifugação torna-se essencial devido à palidez intensa da

mucosa, sendo que no grau E(5) é recomendada suplementação alimentar. Essa abordagem

reduz a invasividade para o animal e evita a prática indiscriminada de vermifugação do rebanho

(CHAGAS et al., 2007).

Figura 1 – Fotografia do cartão FAMACHA©.

Fonte: EMBRAPA (2024).
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O método mais preciso para o diagnóstico de verminose em ovinos é o Hematócrito

(Ht), que consiste em um exame laboratorial utilizado para medir a proporção de glóbulos

vermelhos no sangue, detectando assim a anemia da cria. Embora confiável, este método pode

ser demorado e apresentar custo elevado para o criador, especialmente em localidades humildes

e de difícil acesso, o que frequentemente impede sua adoção para a avaliação da condição dos

animais.

O método FAMACHA© foi desenvolvido para monitorar a anemia causada pelo

parasita HC em ovinos e caprinos, por meio da avaliação da coloração da mucosa ocular. Contudo,

é importante destacar que o FAMACHA© identifica a anemia de forma geral, independentemente

da sua causa, o que implica que outras condições, como doenças ou deficiências nutricionais,

também podem influenciar os resultados. Além disso, fatores como a sazonalidade das infecções,

a qualidade da gestão da propriedade, incluindo taxas de lotação e a presença de outras espécies

de nematóides, podem impactar a eficácia do método. A precisão da avaliação depende ainda do

treinamento adequado dos usuários e da assistência técnica disponível, sendo essencial que as

análises sejam realizadas com o suporte de profissionais de saúde animal. Por fim, a manutenção

adequada do cartão FAMACHA©, incluindo sua proteção contra a luz e substituição anual, é

fundamental para garantir a fidelidade das referências de cor (STOREY et al., 2017).

Para mitigar as variáveis humanas no processo de análise da coloração da mucosa

e democratizar o acesso ao diagnóstico, propõe-se a implementação de um Aplicativo Móvel

(APP) que fornece, de forma instantânea, a indicação da condição clínica do animal (saudável

ou doente). O APP captura uma imagem da mucosa ocular e, por meio de algoritmos baseados

em técnicas de Visão Computacional (do inglês, Computer Vision (CV)) e Inteligência Artificial

(do inglês, Artificial Intelligence (AI)), detecta e classifica o nível de coloração da mucosa,

permitindo um diagnóstico preciso e automatizado.

1.1 Justificativa

A detecção precoce de anemia em ovinos é essencial para garantir a saúde e produtivi-

dade desses animais, especialmente entre pequenos produtores rurais que dependem diretamente

da criação eficiente. A anemia, se não diagnosticada a tempo, pode comprometer o crescimento,

a reprodução e a qualidade da carne e da lã. Tradicionalmente, o método FAMACHA© é

utilizado para identificar anemia com base na coloração da mucosa ocular, mas esta técnica

apresenta limitações. Como demonstrado por RABELO et al. (2023), a natureza subjetiva do
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método frequentemente leva a falhas na detecção precoce da anemia e a variações entre diferentes

avaliadores, resultando em diagnósticos pouco confiáveis que podem comprometer a eficácia dos

tratamentos.

Diante dessas limitações, a utilização de técnicas de Aprendizado de Máquina (do

inglês, Machine Learning (ML)) torna-se uma inovação promissora. Ao aplicar modelos de

ML é possível aumentar a precisão e a eficiência na identificação de condições patológicas. Os

modelos podem detectar sinais sutis de anemia que poderiam passar despercebidos no método

tradicional, proporcionando uma abordagem mais robusta. Assim, o uso da AI oferece uma

solução tecnológica avançada que complementa FAMACHA©, ajudando na tomada de decisão

dos proprietários e técnicos responsáveis.

A escolha deste tema torna-se ainda mais relevante devido à parceria com a Empresa

Brasileira de Pesquisa Agropecuária (EMBRAPA), que facilita a coleta de dados e conecta o

projeto diretamente às necessidades dos pequenos produtores rurais. Com a aplicação de tais

tecnologias, espera-se aprimorar o manejo animal e promover a sustentabilidade da produção

ovina. A pesquisa também abre portas para futuros estudos e inovações tecnológicas no campo

da saúde animal, contribuindo para a modernização da agropecuária. Além disso, o potencial de

coleta de dados do APP, como geolocalização, informações sobre vermífugos, datas de aplicação

e outros dados relevantes, enriquece a análise e permite um estudo mais aprofundado da anemia

em ovinos, sendo de grande valor tanto para os produtores quanto para os órgãos públicos

responsáveis pela gestão sanitária.

1.2 Objetivos

1.2.1 Objetivo Geral

Desenvolver um APP que automatize o cartão FAMACHA©, utilizando modelos de

Deep Learning (DL) para detectar e classificar a mucosa de ovinos.

1.2.2 Objetivos Específicos

• Selecionar modelos de DL que sejam adequados para a detecção de objetos e

classificação de imagens.

• Implementar e treinar os modelos selecionados utilizando um conjunto de dados.

• Avaliar o desempenho dos modelos de DL com base em métricas como acurácia,



19

precisão, recall e F1-score.

• Comparar os resultados obtidos para determinar qual modelo apresenta o melhor

desempenho.

• Desenvolver uma interface amigável no APP que integre os modelos de DL

selecionados.

1.3 Trabalhos Relacionados

Foi realizada uma pesquisa na literatura para identificar trabalhos que propõem

APPs ou métodos que automatizam o processo de decisão baseado no cartão FAMACHA©. O

levantamento priorizou aqueles que utilizam técnicas de Aprendizado Profundo (do inglês, DL),

dado que este será o foco central do trabalho.

O trabalho de ALMEIDA (2021) investigou a aplicação de redes neurais profundas

para segmentação e classificação de imagens da mucosa ocular de ovinos, com o objetivo

de identificar sinais de anemia. Na segmentação, a U-Net apresentou o melhor desempenho,

alcançando uma precisão de 97,29% com base no índice de similaridade de Jaccard. Na

classificação, os modelos MobileNetV2 e ResNet18 se destacaram, ambos atingindo uma

acurácia de 95,23%, com e sem normalização. O estudo utilizou um conjunto de 106 imagens

coletadas na EMBRAPA Caprinos e Ovinos, localizada em Sobral-CE, e também resultou no

desenvolvimento de um APP que integra os modelos, demonstrando bom desempenho nos testes

realizados.

Em de Souza et al. (2023), foi desenvolvida uma aplicação Android para imitar o

processo de decisão do veterinário no método FAMACHA©. O software não possui segmentação

ou detecção automática da mucosa conjuntival, exigindo um recorte manual realizado pelo

usuário. Foram utilizadas 317 imagens de mucosas coletadas em fazendas do sul do Brasil, que

serviram como base de dados para avaliar o desempenho de dois classificadores: uma rede neural

sequencial e uma Máquina de Vetores de Suporte (do inglês, Support Vector Machine (SVM)). O

SVM apresentou o melhor desempenho, com precisão de 87%, demonstrando maior eficácia na

classificação dos animais em saudáveis ou anêmicos. Esse resultado evidencia o potencial do

sistema para apoiar pequenos produtores no manejo seletivo de parasitas.

ROCHA et al. (2025) propôs a automatização do método FAMACHA© por meio

de visão computacional, utilizando o YOLOv8n para segmentar a mucosa ocular e o Random

Forest para classificação, com base em 450 imagens coletadas em campo. A validação cruzada
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revelou métricas como acurácia de 64%, precisão de 66%, recall de 77% e F1 Score de 71%,

evidenciando o potencial da abordagem, apesar de limitações relacionadas à segmentação e

variações de iluminação.

O presente trabalho diferencia-se dos anteriores ao realizar a detecção automática

da mucosa ocular por meio de algoritmos de detecção de objetos, eliminando a necessidade de

segmentações manuais ou recortes realizados pelo usuário, como observado em de Souza et al.

(2023). Enquanto trabalhos como ALMEIDA (2021) e ROCHA et al. (2025) focam na segmenta-

ção da mucosa, esta pesquisa opta pela detecção direta, simplificando o processo. Nesse contexto,

propõe-se comparar diversos classificadores baseados em Redes Neurais Convolucionais (do

inglês, Convolutional Neural Network (CNN)), buscando aprimorar sua precisão e eficiência

computacional.
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2 FUNDAMENTAÇÃO TEÓRICA

No presente capítulo, apresenta-se o referencial teórico que fundamenta a compreen-

são dos temas abordados ao longo deste trabalho. São discutidos os principais conceitos técnicos

necessários para o entendimento da proposta desenvolvida.

2.1 Sistema FAMACHA©

A Tabela 1 sintetiza os critérios adotados pelo sistema FAMACHA© para a clas-

sificação clínica dos animais, associando a coloração da mucosa ocular aos níveis de Ht. Isso

permite determinar a gravidade da anemia e orientar a necessidade de intervenção. A gradação

varia de 1 a 5, servindo como referência para decisões clínicas de ovinos e caprinos.

Tabela 1 – Classificação FAMACHA segundo valores de Ht

Grau FAMACHA Coloração da mucosa Hematócrito (%) Atitude clínica

1 Vermelho robusto > 27 Não tratar
2 Vermelho rosado 23 a 27 Não tratar
3 Rosa 18 a 22 Tratar
4 Rosa pálido 13 a 17 Tratar
5 Branco < 13 Tratar

Fonte: Adaptado de CHAGAS et al. (2007).

2.2 Aprendizado de Máquina

O ML é uma subárea da AI que desenvolve algoritmos capazes de aprender e melho-

rar automaticamente a partir de dados e experiências anteriores, sem programação explícita para

tarefas específicas. Este processo é fundamental para criar sistemas inteligentes que se adaptam

a novas informações. O ML é amplamente utilizado em aplicações como reconhecimento de

padrões, classificação de dados, recomendações personalizadas e diagnósticos médicos, sendo

essencial para a análise de grandes volumes de dados e a tomada de decisões eficazes (MONARD;

BARANAUSKAS, 2003).

Os algoritmos de ML são classificados em três categorias principais: aprendizado

supervisionado, aprendizado não supervisionado e aprendizado por reforço. O aprendizado

supervisionado utiliza dados rotulados para prever resultados, com exemplos como regressão

linear e SVMs. O aprendizado não supervisionado busca identificar padrões em dados não

rotulados, utilizando técnicas como K-means e Análise de Componentes Principais (do inglês,
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Principal Component Analysis (PCA)). O aprendizado por reforço envolve um agente que

aprende a maximizar recompensas através da interação com um ambiente dinâmico, refletindo a

diversidade do ML (MONARD; BARANAUSKAS, 2003).

2.2.1 Função de Perda

Na construção de modelos de ML, a função de perda (loss function) desempenha um

papel crucial, sendo responsável por quantificar o erro entre a saída prevista (ŷ) pelo modelo e o

valor real (y) da variável de interesse (GOODFELLOW et al., 2016). O resultado indica o quão

bem o modelo está desempenhando em uma única amostra e orienta o processo de otimização ao

fornecer uma direção para o ajuste dos parâmetros.

A partir da função de perda, define-se a função de custo (cost function), que agrega

as perdas individuais ao longo do conjunto de treinamento por meio de uma média:

J(θ) =
1
n

n

∑
i=1

L(yi, ŷi), (2.1)

em que θ representa os parâmetros do modelo, n é o número de amostras e L(yi, ŷi) é a perda

associada à i-ésima amostra.

Para problemas de regressão, utiliza-se frequentemente o Erro Quadrático Médio

(do inglês, Mean Squared Error (MSE)). Ele penaliza erros de forma quadrática, tornando-se

sensível a outliers.

LMSE(yi, ŷi) = (yi − ŷi)
2. (2.2)

Em tarefas de classificação binária, a função de perda comumente utilizada é a

Entropia Cruzada Binária (do inglês, Binary Cross-Entropy (BCE)), definida para uma amostra

como:

LBCE(yi, ŷi) =− [yi log(ŷi)+(1− yi) log(1− ŷi)] , (2.3)

em que ŷi é a probabilidade prevista da classe positiva.

Para classificação multiclasse com codificação one-hot, utiliza-se a Entropia Cruzada

Categórica (do inglês, Categorical Cross-Entropy (CCE)):





24

Desenvolvimentos recentes introduziram otimizadores adaptativos que melhoram a

eficiência do SGD básico (FEDORENKO, 2019):

• Adam (Adaptive Moment Estimation): Adapta individualmente a LR para cada parâmetro

usando estimativas de primeiro e segundo momento dos gradientes.

• RMSProp (Root Mean Square Propagation): Normaliza a LR pela média móvel exponen-

cial dos quadrados dos gradientes.

2.3 Aprendizado Profundo

O DL é uma subárea do ML que se destaca pelo uso de redes neurais artificiais

com múltiplas camadas, conhecidas como redes neurais profundas. Essas redes, inspiradas na

arquitetura do cérebro humano, são compostas por camadas hierárquicas de neurônios artificiais,

onde cada camada processa e extrai características de níveis crescentes de abstração a partir

dos dados de entrada. A capacidade dessas redes de modelar e resolver problemas complexos e

não lineares, como reconhecimento de imagens, processamento de linguagem natural e jogos

de tabuleiro, posiciona o DL como uma abordagem superior em comparação com métodos

tradicionais de ML (TAVANAEI et al., 2019).

A adoção generalizada do DL pode ser atribuída à sua eficiência em lidar com

grandes volumes de dados e em aprender representações sofisticadas, especialmente em tarefas

que exigem alta precisão. Redes Neurais Convolucionais (do inglês, CNN) e Redes Neurais

Recorrentes (do inglês, Recurrent Neural Networks (RNN)) são exemplos proeminentes dessa

tecnologia, cada uma especializada em diferentes tipos de dados e aplicações (GUPTA et al.,

2022).

2.3.1 Perceptron

Proposto por Rosenblatt (1958), o Perceptron é um modelo de classificador linear

binário. Ele representa a unidade fundamental das redes neurais artificiais. Nesse modelo,

o vetor de entrada x = [x1,x2, . . . ,xn] é combinado linearmente com os pesos sinápticos w =

[w1,w2, . . . ,wn] e um viés b, conforme a Equação 2.6. O resultado z, chamado de potencial

de ativação, é então passado por uma função de ativação do tipo degrau (step function), que

determina a saída binária do neurônio, conforme mostrado na Equação 2.7. Esse tipo de resposta

binária reflete o funcionamento de um neurônio biológico, que apenas é ativado quando a soma
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ponderada de seus estímulos de entrada supera um determinado limiar.

z =
n

∑
i=1

wixi +b, (2.6)

y =











1, se z ≥ 0

0, se z < 0.
(2.7)

Um diagrama clássico de Perceptron é apresentado na Figura 3, seguindo a arqui-

tetura feed-forward. Isso significa que as entradas são propagadas de forma unidirecional,

processadas e transmitidas para a saída. Caracterizando um fluxo de processamento da esquerda

para a direita.

Figura 3 – Diagrama de um Perceptron.

Fonte: Adaptado de ARAUJO (2020).

2.3.2 Função de Ativação

As funções de ativação são operadores matemáticos não lineares aplicados à combi-

nação ponderada das entradas de cada neurônio, conferindo à arquitetura capacidade de modelar

relações complexas e altamente não lineares presentes em dados reais. Sem essas não linearida-

des, a composição de múltiplas camadas redundaria numa única transformação afim, restringindo

severamente o poder de representação do modelo e inviabilizando o aprendizado de padrões

sofisticados (GOODFELLOW et al., 2016).

A seguir, apresentam-se as principais funções de ativação utilizadas em redes neurais:
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• Sigmoidal (Logistic Sigmoid): mapeia a entrada para o intervalo (0,1), sendo frequente-

mente utilizada em classificações binárias.

σ(z) =
1

1+ e−z
. (2.8)

• Tangente hiperbólica (Hyperbolic Tangent): semelhante à sigmoide, porém centrada na

origem, mapeando em (−1,1).

tanh(z) =
ez − e−z

ez + e−z
. (2.9)

• ReLU (Rectified Linear Unit): ativa somente valores positivos, promovendo esparsidade e

reduzindo o custo computacional.

ReLU(z) = max(0,z). (2.10)

• Softmax: transforma um vetor de valores reais em uma distribuição de probabilidade sobre

classes, sendo amplamente empregada na camada de saída de classificadores multiclasse.

softmax(z)i =
ezi

∑
n
j=1 ez j

. (2.11)

2.4 Perceptron Multicamadas (MLP)

Um modelo clássico de rede neural é o Perceptron Multicamadas (do inglês, Multi-

layer Perceptron (MLP)), que aceita como entrada um vetor de características unidimensional.

No caso de imagens, que possuem canais de cores Vermelho, Verde e Azul (do inglês, Red,

Green, Blue (RGB)), é necessário transformar a imagem em um único vetor, em um processo

conhecido como flattening (SILVA, 2024). A Figura 4 ilustra a operação de flattening, onde um

vetor multidimensional é convertido em um vetor 1D.

Figura 4 – Operação de flattening.

Fonte: Cano et al. (2018).

O achatamento da imagem resulta em um número enorme de parâmetros a serem

treinados. Por exemplo, uma imagem de 240 × 240 pixels, com três canais de cor, geraria
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um vetor de 172.800 posições. Dependendo do número de neurônios na camada oculta, a

quantidade de parâmetros a serem ajustados pode se tornar extremamente alta. Como se pode

observar na Figura 5, as camadas da rede são totalmente conectadas às camadas seguintes. Outra

desvantagem do MLP é sua falta de invariância a perturbações, como translações, rotações,

escalas e mudanças na posição do objeto de interesse. Devido à sua arquitetura, que aprende a

posição exata de cada pixel, pequenas variações podem comprometer sua capacidade de avaliação

(SILVA, 2024).

Figura 5 – Arquitetura de uma MLP.

Fonte: Al-Naymat et al. (2016).

2.5 Redes Neurais Convolucionais (CNN)

As CNNs são uma classe de redes neurais profundas que se destacam no processa-

mento de dados visuais. Ao aplicar filtros sobre imagens, as CNNs extraem características locais,

como bordas, texturas e formas, e constroem representações cada vez mais abstratas em camadas

sucessivas. Essa arquitetura permite que as CNNs aprendam hierarquias de características de

forma automática, tornando-as ideais para tarefas como classificação de imagens, detecção de

objetos e segmentação semântica. A capacidade das CNNs de generalizar para novos dados e sua

alta precisão tornaram-nas ferramentas essenciais em diversas áreas, como CV, processamento

de linguagem natural e análise de dados (SINGH et al., 2023).

2.5.1 Arquitetura das CNN

As CNNs e MLPs são redes neurais que processam dados de forma distinta. Enquanto

as MLPs têm limitações em variações espaciais, as CNNs se destacam pela sua capacidade

de extrair características locais da imagem. Essa capacidade torna as CNNs mais robustas a
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operações como rotação, escala e translação. A estrutura básica de uma CNN é ilustrada na

Figura 6, composta por três camadas principais: convolução, pooling e camada totalmente

conectada.

Figura 6 – Estrutura básica de uma CNN.

Fonte: You et al. (2020).

2.5.1.1 Camadas Convolucionais

As camadas convolucionais aplicam filtros (ou kernels) à imagem de entrada com o

objetivo de extrair características relevantes, como bordas, texturas e formas. Cada kernel é uma

pequena matriz de pesos de tamanho k× k×D, onde k× k representa a dimensão espacial do

filtro e D corresponde à profundidade do canal da imagem (por exemplo, 3 para imagens RGB).

Durante a operação de convolução, o kernel percorre a imagem realizando multiplicações ponto

a ponto com a região correspondente, e os resultados são somados para gerar um valor único

que compõe o mapa de ativação. O processo resulta em um valor único que compõe o mapa

de ativação. A utilização de múltiplos kernels permite que a camada convolucional produza

diversos mapas de características, capturando diferentes aspectos da imagem.

As camadas iniciais da rede capturam características de baixo nível, como bordas

e texturas, enquanto as camadas mais profundas identificam padrões mais complexos. Os

parâmetros dos kernels são ajustados durante o processo de treinamento, permitindo à rede

otimizar os filtros para tarefas específicas (HIJAZI et al., 2015).

Para ilustrar o funcionamento da operação de convolução, considera-se uma matriz

de entrada I com dimensões 3×3 e um kernel K com dimensões 2×2, definidos, respectivamente

em (2.12) e (2.13).
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I =











1 1 0

0 1 1

1 0 1











, (2.12)

K =





1 0

1 0



 . (2.13)

Neste exemplo, K percorre a matriz de entrada I de forma sequencial, sendo aplicado

sobre todas as submatrizes 2× 2 extraídas de I. Conforme iliustrado na Figura 7, em cada

aplicação realiza-se o produto elemento a elemento seguido da soma dos resultados, produzindo

um valor escalar que compõe o mapa de ativação.

• Primeira aplicação: O kernel é sobreposto aos quatro elementos no canto superior esquerdo

da matriz I:




1 1

0 1



⊙





1 0

1 0



= (1 ·1)+(1 ·0)+(0 ·1)+(1 ·0) = 1+0+0+0 = 1

• Segunda aplicação: O kernel é deslocado uma coluna à direita:




1 0

1 1



⊙





1 0

1 0



= (1 ·1)+(0 ·0)+(1 ·1)+(1 ·0) = 1+0+1+0 = 2

• Terceira aplicação: O kernel é aplicado na linha inferior, reiniciando pela primeira coluna:




0 1

1 0



⊙





1 0

1 0



= (0 ·1)+(1 ·0)+(1 ·1)+(0 ·0) = 0+0+1+0 = 1

• Quarta aplicação: O kernel se desloca novamente para a coluna à direita:




1 1

0 1



⊙





1 0

1 0



= (1 ·1)+(1 ·0)+(0 ·1)+(1 ·0) = 1+0+0+0 = 1

Com isso, o mapa de ativação resultante é dado por:

A =





1 2

1 1



 (2.14)
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Figura 7 – Etapas da operação de convolução sobre a matriz de
entrada I com o kernel K.

Fonte: Próprio autor.

2.5.1.2 Camada de Pooling

Após a extração de características relevantes por meio da aplicação de filtros, a

camada de pooling desempenha um papel fundamental na redução da dimensionalidade dos

mapas de características gerados. Essa camada tem como objetivo diminuir a dimensão espacial

das representações, o que resulta em uma redução significativa na quantidade de computação

necessária e nos pesos a serem ajustados durante o treinamento. A redução não apenas acelera

o processo de treinamento, mas também ajuda a preservar as características mais importantes,

tornando a rede mais robusta a variações na entrada (BHATT et al., 2021).

Existem diferentes métodos de pooling, sendo os mais comuns o max pooling e o

average pooling. No max pooling, um kernel é movido sobre o mapa de características, e o valor

máximo de cada região é selecionado, o que ajuda a manter as características mais proeminentes.

Por outro lado, o average pooling calcula a média dos valores na vizinhança, resultando em uma

representação mais suavizada.
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O filtro de pooling atua de forma análoga ao filtro convolucional, deslocando o kernel

sobre o mapa de características com um deslocamento definido pelo parâmetro de passo (stride).

Em cada posição da janela, é aplicada uma operação de agregação (max pooling ou average

pooling). O resultado obtido em cada região é então armazenado em uma matriz de saída, cuja

resolução espacial é inferior à do mapa original. A Figura 8 ilustra o processo utilizando a

técnica de max pooling com um kernel de 2×2 e stride igual a 2.

Figura 8 – Operação de Max Pooling.

Fonte: Próprio autor.

Além das técnicas de pooling locais, existem estratégias de pooling globais, como a

camada Global Average Pooling. A agregação é aplicada sobre toda a extensão espacial de cada

mapa de características, calculando a média de seus valores e reduzindo-o a um único escalar. A

camada pode ser empregada como alternativa à utilização de camadas totalmente conectadas,

assim como à camada flatten. Sua aplicação reduz significativamente o número de parâmetros

do modelo e diminui o risco de overfitting.

2.5.1.3 Camada Totalmente Conectada

A camada totalmente conectada é uma das etapas finais em uma CNN. Trata-se

de uma camada à qual cada neurônio está conectado a todos os neurônios da camada anterior,

realizando uma soma ponderada das entradas. Essa operação utiliza todas as características

extraídas nas camadas precedentes para gerar a saída final. O principal objetivo da camada

totalmente conectada é combinar as informações para produzir uma decisão definitiva sobre a

classe do objeto ou padrão reconhecido (HIJAZI et al., 2015). Sua estrutura é similar à de um

MLP, sendo responsável pela classificação final.
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2.6 Técnicas de Regularização

Um problema comum no ML é desenvolver um algoritmo que apresente bom de-

sempenho tanto nos dados de treinamento quanto nos de teste. A regularização é uma técnica

utilizada para reduzir os erros de teste, geralmente às custas de um aumento no erro de trei-

namento. Seu principal objetivo é reduzir a complexidade excessiva dos modelos e auxiliar a

formular uma função mais simples, promovendo, assim, a generalização.

Dentre as técnicas de regularização mais empregadas em DL, destaca-se o dropout,

que consiste em desativar aleatoriamente uma fração dos neurônios durante o treinamento. Com

o intuito de evitar coadaptações excessivas entre unidades de processamento, obrigando cada

neurônio a contribuir de forma autônoma e a incorporar informações de todos os seus sinais

de entrada. Após o treinamento, todos os neurônios permanecem ativos. Em consequência,

obtém-se uma arquitetura mais robusta e com maior capacidade de generalização (GÉRON,

2019).

Considerando a função de custo J(θ) definida na Subseção 2.2.1 e o processo de

otimização discutido posteriormente, técnicas de regularização podem ser incorporadas ao

modelo por meio da adição de um termo penalizador à função objetivo. A nova formulação

assume a forma:

O(θ) = J(θ)+λR(θ), (2.15)

em que λ é um hiperparâmetro que regula a intensidade da penalização, e R(θ) representa a

função de regularização. As abordagens mais comuns para essa penalização baseiam-se nas

normas ℓ2 e ℓ1, conhecidas respectivamente como regularização Ridge e Lasso. A regularização

ℓ2, definida por

RL2(θ) = ∥θ∥2
2 =

n

∑
i=1

θ 2
i , (2.16)

impõe uma penalidade quadrática sobre os parâmetros e favorece soluções com pesos menores,

embora não necessariamente nulos. Esse tipo de regularização, associado a uma distribuição

normal como prior sobre os parâmetros, reduz a sensibilidade a valores extremos e melhora a

estabilidade numérica do treinamento. Por outro lado, a regularização ℓ1 é expressa como
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RL1(θ) = ∥θ∥1 =
n

∑
i=1

|θi|, (2.17)

e introduz uma penalização linear que promove esparsidade no vetor de parâmetros, zerando

coeficientes menos relevantes. Essa característica torna a regularização L1 especialmente útil

quando se deseja realizar seleção de variáveis de forma implícita.

2.7 Métricas de Avaliação

A avaliação do desempenho de modelos de ML constitui um aspecto fundamental

para compreender sua capacidade de generalização e eficácia. Diversas métricas clássicas

são empregadas na literatura para quantificar o desempenho de modelos, tanto em tarefas de

classificação quanto em detecção de objetos.

2.7.1 Acurácia

A acurácia representa a proporção de predições corretas sobre o total de amostras

avaliadas, considerando os verdadeiros positivos (VP) e verdadeiros negativos (VN).

Acurácia =
V P+V N

V P+V N +FP+FN
(2.18)

2.7.2 Precisão

A precisão (precision) quantifica a proporção de VP em relação ao total de instâncias

previstas como positivas, ou seja, a soma entre verdadeiros positivos e falsos positivos (FP):

Precisão =
V P

V P+FP
(2.19)

2.7.3 Recall

A revocação (recall) mede a proporção de instâncias positivas corretamente identi-

ficadas, isto é, a razão entre VP e a soma entre verdadeiros positivos e falsos negativos (FN):

Recall =
V P

V P+FN
(2.20)
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2.7.4 F1-Score

O F1-Score é a média harmônica entre precisão e revocação, sendo especialmente

útil em cenários com classes desbalanceadas, pois equilibra ambas as métricas:

F1-Score = 2×
Precisão×Recall
Precisão+Recall

(2.21)

2.7.5 Matriz de Confusão

A matriz de confusão é uma representação tabular do desempenho do modelo,

relacionando as classes reais com as predições realizadas. Cada linha representa uma classe real

e cada coluna uma classe predita:

Tabela 2 – Estrutura de uma Matriz de Confusão para clas-
sificação binária.

Predito: Positivo Predito: Negativo
Real: Positivo VP FN
Real: Negativo FP VN

Fonte: Próprio autor.

2.7.6 Interseção sobre União (IoU)

A métrica Interseção sobre União (do inglês, Intersection over Union (IoU)) é

fundamental para avaliar a qualidade das detecções. Ela quantifica a sobreposição entre a caixas

delimitadoras (do inglês, Bounding Box (BB)) predita pelo modelo e a caixa real (ground truth),

sendo expressa pela equação abaixo:

IoU =
Área de Interseção

Área de União
(2.22)

O valor da IoU varia de 0 a 1, sendo que o 1 representa sobreposição perfeita entre a

predição e a anotação. Em aplicações práticas, é comum estabelecer um limiar, como 0,5, para

definir se uma detecção será considerada VP. Quando a IoU é igual ou superior a esse valor,

a predição é classificada como VP. Caso contrário, é tratada como FP em relação à anotação

correspondente. A definição desse limiar é uma escolha metodológica que deve estar alinhada

aos objetivos do experimento. Valores mais elevados exigem maior precisão na localização,

enquanto valores menores permitem maior tolerância a variações na posição ou nas dimensões

da caixa delimitadora.
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2.7.7 Average Precision (AP)

A precisão média (do inglês, Average Precision (AP)) é uma métrica que avalia o

desempenho de modelos de detecção de objetos em uma única classe. Ela sintetiza a relação

entre precisão e recall, considerando diferentes limiares de confiança. A AP é calculada com

base na curva Precision-Recall, a qual evidencia o equilíbrio entre identificar corretamente todos

os objetos presentes na imagem e evitar detecções incorretas.

No PASCAL VOC, a AP é obtida por meio de uma interpolação da curva Precision–

Recall em 11 pontos igualmente espaçados, abrangendo valores de revocação de 0 a 1 com

incremento de 0,1 (EVERINGHAM et al., 2010). Essa abordagem suaviza as variações pontuais

na curva e facilita a comparação entre diferentes modelos. Em contraste, o benchmark Microsoft

COCO adota uma metodologia que calcula a AP integrando continuamente a curva Precision–

Recall com um limiar fixo de IoU igual a 0,5 (LIN et al., 2014), proporcionando uma avaliação

mais detalhada da precisão do modelo.

2.7.8 Mean Average Precision (mAP)

A precisão média média (do inglês, mean Average Precision (mAP)) é calculada

como a média das AP obtidas para cada classe do conjunto de dados, conforme expressa na

Equação 2.23:

mAP =
1
N

N

∑
i=1

APi, (2.23)

em que N representa o número total de classes e APi corresponde à AP da classe i. Valores

elevados de mAP indicam que o modelo apresenta desempenho satisfatório na detecção de

objetos em diversas categorias. Em contrapartida, valores reduzidos podem revelar limitações

específicas, como dificuldades na identificação de objetos pequenos, oclusos ou com baixa

diferenciação visual.

Existem estratégias distintas para o cálculo da mAP, destacando-se duas variações

principais:

• mAP@0,5: cálculo da média das APs usando um limiar fixo de IoU igual a 0,5, conforme

o protocolo do PASCAL VOC. Essa configuração é mais permissiva quanto a erros de

localização.
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• mAP@[0,5:0,95]: média das APs obtidas em múltiplos limiares de IoU de 0,5 a 0,95, com

incrementos de 0,05, metodologia adotada pelo COCO. Essa abordagem é mais rigorosa e

exige maior precisão.

2.7.9 Validação Cruzada

A validação cruzada k-fold é uma técnica fundamental em ML para a avaliação de

modelos. Seu princípio consiste em dividir o conjunto de dados em k subconjuntos (folds) de

tamanho aproximadamente igual, nos quais k− 1 folds são utilizados para treinamento e um

fold para teste, repetindo esse processo k vezes com diferentes folds de teste. Essa abordagem

cíclica permite que todos os dados sejam utilizados tanto para treinamento quanto para teste,

proporcionando uma estimativa mais confiável do desempenho do modelo em comparação a

métodos como a simples divisão entre treinamento e teste (hold-out) (GÓRRIZ et al., 2024).

2.8 Modelos de CNN

A aplicação de CNNs em dispositivos com recursos computacionais limitados, como

smartphones e microcontroladores, tem impulsionado o desenvolvimento de arquiteturas oti-

mizadas que equilibram precisão e eficiência computacional. Modelos como o MobileNet,

EfficientNet e NASNet foram projetados com o objetivo de manter altos níveis de acurácia, ao

mesmo tempo em que reduzem significativamente o número de parâmetros e o custo computaci-

onal. Elas possibilitam a realização de inferências em tempo real, mesmo em ambientes com

restrições de hardware, tornando-se adequadas para aplicações embarcadas e móveis.

2.8.1 MobileNetV2

O MobileNetV2 é uma arquitetura de CNN projetada para dispositivos móveis.

Como destacado por Sandler et al. (2018), esse modelo introduz duas inovações principais:

inverted residuals (resíduos invertidos) e linear bottlenecks (gargalos lineares). Os inverted

residuals invertem a estrutura tradicional dos blocos residuais, conectando camadas estreitas

para reduzir o consumo de memória, enquanto os linear bottlenecks removem as funções de

ativação em camadas de baixa dimensionalidade, a fim de preservar informações. Combinados

com convoluções depthwise separable, esses mecanismos permitem que o MobileNetV2 alcance

um equilíbrio entre acurácia e eficiência computacional.
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A arquitetura do MobileNetV2, conforme apresentada na Tabela 3, é composta por

uma sequência de blocos bottleneck que seguem o padrão de expansão e projeção. A primeira

camada é uma convolução tradicional 3×3 com stride 2, seguida por uma série de blocos inverted

residual com diferentes fatores de expansão. A rede finaliza com uma convolução 1×1, global

pooling e uma camada de classificação.

Tabela 3 – Arquitetura da MobileNetV2.

Entrada Operação t c n s

2242 ×3 conv2d - 32 1 2
1122 ×32 bottleneck 1 16 1 1
1122 ×16 bottleneck 6 24 2 2
562 ×24 bottleneck 6 32 3 2
282 ×32 bottleneck 6 64 4 2
142 ×64 bottleneck 6 96 3 1
142 ×96 bottleneck 6 160 3 2
72 ×160 bottleneck 6 320 1 1
72 ×320 conv2d 1×1 - 1280 1 1
72 ×1280 avgpool 7×7 - - 1 -
1×1×1280 conv2d 1×1 - k - -

Fonte: Adaptado de Sandler et al. (2018).

Na tabela, as colunas representam:

• t: fator de expansão dos canais;

• c: número de canais de saída;

• n: número de repetições do bloco;

• s: stride da convolução.

2.8.2 EfficientNet

O EfficientNet, introduzido por Tan e Le (2019), é uma família de arquiteturas

de CNN projetada para maximizar a eficiência computacional e a precisão. Seu principal

diferencial está no método de compound scaling (escalonamento composto), que equilibra de

forma conjunta a profundidade, a largura e a resolução da rede. A abordagem parte de uma

arquitetura base, o EfficientNet-B0, obtida por meio de uma busca neural por arquiteturas (do

inglês, Neural Architecture Search (NAS)). A partir do EfficientNet-B0, aplicam-se coeficientes

de escalonamento (α , β , γ) para gerar modelos mais complexos, variando de B1 a B7, que

mantêm alta eficiência. Internamente, o modelo combina blocos MBConv com módulos squeeze-

and-excitation (compressão e excitação) e convoluções depthwise separable (separáveis em

profundidade), reduzindo o custo computacional sem comprometer o desempenho.
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A Tabela 4 detalha a arquitetura do EfficientNet-B0, que serve como base para a

família. Cada estágio utiliza blocos MBConv com fatores de expansão variados, seguidos por

uma camada final de convolução 1×1 e pooling global. O escalonamento composto permite que

versões posteriores (como o B7) atinjam a acurácia 84,3% no ImageNet.

Tabela 4 – Arquitetura do EfficientNet-B0.

Estágio Operador Resolução Canais Repetições

1 Conv 3×3 224×224 32 1
2 MBConv1, k3×3 112×112 16 1
3 MBConv6, k3×3 112×112 24 2
4 MBConv6, k5×5 56×56 40 2
5 MBConv6, k3×3 28×28 80 3
6 MBConv6, k5×5 14×14 112 3
7 MBConv6, k5×5 14×14 192 4
8 MBConv6, k3×3 7×7 320 1
9 Conv 1×1 + Pooling 7×7 1280 1

Fonte: Adaptado de Tan e Le (2019).

Na tabela, as variáveis e colunas informam:

• MBConvN: bloco Mobile Inverted Bottleneck com fator de expansão N e ativação Swish;

• K: tamanho do lado do kernel quadrado da convolução depthwise;

• Resolução: dimensões espaciais do mapa de características;

• Canais: número de mapas de ativação gerados ao final de cada estágio;

• Repetições: número de vezes que a célula é repetida em cada estágio.

2.8.3 NASNetMobile

O NASNetMobile é uma arquitetura de CNN projetada para dispositivos móveis

e sistemas embarcados. Como destacado por Zoph et al. (2018), esse modelo é uma versão

otimizada do NASNet original, reduzindo o custo computacional enquanto mantém uma precisão

competitiva. O NASNetMobile utiliza blocos convolucionais modulares (cells) aprendidos

automaticamente via busca por reforço, que são repetidos para formar a arquitetura final. Os

blocos incorporam operações como convoluções separáveis (separable convolutions) e conexões

residuais, otimizadas para eficiência.

A arquitetura do NASNetMobile, conforme apresentada na Tabela 5, é composta

por dois tipos de células: Normal Cell (preserva dimensões espaciais) e Reduction Cell (reduz

resolução e aumenta canais). Cada célula é construída a partir de blocos básicos que combinam

operações convolucionais e não lineares, seguindo uma topologia aprendida durante o processo
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de busca. A rede finaliza com uma camada de pooling global e classificação.

Tabela 5 – Arquitetura do NASNetMobile.

Estágio Operador Resolução Canais Repetições

1 Conv3×3 224×224 32 1
2 Normal Cell 112×112 44 1
3 Reduction Cell 112×112 44 2
4 Normal Cell 56×56 88 3
5 Reduction Cell 28×28 176 4
6 Normal Cell 14×14 352 3
7 Reduction Cell 7×7 704 3
8 Normal Cell 7×7 1408 1
9 Conv1×1 + Pooling 7×7 1056 1

Fonte: Adaptado de Team (2018).

As colunas e variáveis da tabela representam:

• Normal Cell: mantém as dimensões espaciais, realizando operações aprendidas (por exemplo,

convoluções separáveis e conexões residuais);

• Reduction Cell: reduz a resolução por stride 2 e dobra o número de canais, conforme

heurísticas de escalonamento;

• Canais: número de mapas de ativação gerados ao final de cada estágio;

• Repetições: número de vezes que a célula é repetida em cada estágio.

2.9 Detecção de Objetos

Dentro da visão computacional, uma atividade de extrema importância para proble-

mas atuais é a detecção de objetos. Ela trata da detecção de instâncias de objetos visuais de

uma determinada classe em imagens digitais. Em contextos nos quais é necessário não apenas

localizar e classificar, mas também reconhecer e determinar suas posições exatas na cena, a

detecção de objetos configura-se como uma abordagem eficiente (ZOU et al., 2023).

Para representar a detecção de objetos em uma imagem, utilizam-se as BB. Essas

caixas têm como objetivo indicar a localização dos objetos detectados. A BB é representada por

um vetor de coordenadas no formato [xcenter,ycenter,width,height], onde xcenter e ycenter corres-

pondem às coordenadas normalizadas do centro da caixa delimitadora, enquanto width e height

representam, respectivamente, a largura e a altura da caixa, também normalizadas. Na Figura 9

ilustra a detecção de varios objetos de classes distintas.

Os algoritmos de detecção de objetos podem ser categorizados em duas abordagens

principais: One-Stage e Two-Stage. Os modelos Two-Stage diferenciam-se dos One-Stage pela
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utilização de propostas de região, enquanto os One-Stage realizam a detecção diretamente em

um único estágio. Essa distinção implica em diferenças significativas de desempenho. Modelos

One-Stage, por operarem de forma mais simplificada, tendem a ser menos precisos, porém

significativamente mais rápidos em termos computacionais. Em contrapartida, os modelos

Two-Stage, ao incorporarem a geração e refinamento de regiões de interesse, alcançam maior

precisão às custas de uma maior complexidade e latência.

Figura 9 – Exemplo de BBs.

Fonte: Sharma (2022).

2.10 YOLO

Algoritmos One-Stage têm como principal representante modelos que seguem a

arquitetura You Only Look Once (YOLO). Introduzida por Redmon et al. (2016), representou

um marco na detecção de objetos ao propor um modelo de inferência unificada, capaz de

realizar localização e classificação em uma única etapa. Diferentemente de modelos baseados

em múltiplas fases, como o Region-based Convolutional Neural Network (R-CNN), o YOLO

trata a tarefa como um problema de regressão direta sobre a imagem inteira. A Figura 10 ilustra

a arquitetura da primeira versão do YOLO, evidenciando o fluxo da imagem de entrada até a

predição final.

A imagem de entrada é redimensionada para 448×448 pixels e subdividida em uma

grade espacial S×S (geralmente, 7×7). Cada célula dessa grade é responsável por prever B

caixas delimitadoras, juntamente com os respectivos escores de confiança C. O escore, definido
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3 METODOLOGIA

Para o desenvolvimento deste trabalho, serão empregadas tecnologias e ferramentas

modernas para o treinamento de modelos de ML. Além disso, será implementado um APP com o

objetivo de proporcionar uma visualização rápida e eficiente da imagem analisada. Nesta seção,

serão discutidos esses aspectos em detalhes.

3.1 Materiais

Para a execução deste projeto, foram empregadas ferramentas e materiais essenciais

para o desenvolvimento e análise dos modelos de ML. O Google Colab foi utilizado como

ambiente de desenvolvimento, oferecendo uma plataforma baseada em nuvem com suporte a

GPUs L4, facilitando o treinamento intensivo de redes neurais. Sua integração com o Google

Drive possibilitou o armazenamento e gerenciamento eficiente dos conjuntos de dados e modelos,

simplificando a importação e exportação de arquivos.

Além disso, adotou-se a linguagem de programação Python, reconhecida por sua

simplicidade sintática e ampla aceitação na comunidade de ML. O desenvolvimento dos modelos

foi conduzido por meio do framework TensorFlow (TF), em conjunto com sua API de alto nível,

o Keras, que proporcionou um ambiente abrangente para criação, treinamento e validação dos

algoritmos.

Para validação em dispositivo móvel, utilizou-se um smartphone Samsung Galaxy

A52s, equipado com processador octa-core Snapdragon 778G, 6 GB de memória RAM e GPU

integrada Adreno 642L. A execução dos modelos diretamente no dispositivo permitiu avaliar

com precisão os tempos de inferência tanto para detecção quanto para classificação, garantindo

que a solução proposta fosse tecnicamente viável, funcional e responsiva em ambientes externos

ao laboratório.

3.2 Base de Dados

As imagens utilizadas neste trabalho foram cedidas com a devida autorização por

ALMEIDA (2021), tendo sido coletadas na EMBRAPA, com o apoio dos colaboradores da

instituição. As imagens foram organizadas e classificadas com base no número do brinco do

animal, na raça e nos valores de Ht.

As amostras foram inicialmente organizadas conforme a data de captura e o disposi-
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para todos os grupos, totalizando 165 amostras igualmente distribuídas entre as classes para o

presente trabalho.

3.3 Aumento de Dados

A técnica de Aumento de Dados (do inglês, Data Augmentation (DA)) foi aplicada

para ampliar o conjunto de dados e melhorar a performance dos modelos de ML. Segundo Rici et

al. (2021), essa técnica ajuda a reduzir o overfitting, permitindo que os modelos aprendam com

uma variedade maior de exemplos. No projeto, foram realizadas as seguintes transformações nas

imagens:

• Rotações (rotation range): alteração da orientação das imagens para simular variações

angulares.

• Espelhamento horizontal (horizontal flip): aumento da diversidade por meio de inversão

horizontal.

• Espelhamento vertical (vertical flip): aumento da diversidade por meio de inversão vertical.

• Ajuste de brilho (brightness range): modificação dos níveis de brilho para simular diferen-

tes condições de iluminação.

• Zoom (zoom range): alteração da escala das imagens para simular aproximação ou

afastamento.

• Cisalhamento (shear range): distorção angular para simular mudanças de perspectiva.

• Deslocamento horizontal (width shift range): deslocamento lateral para simular variações

na posição da imagem.

• Deslocamento vertical (height shift range): deslocamento vertical para simular variações

na posição da imagem.

• Normalização dos pixels (rescale): transformação dos valores dos pixels para o intervalo

[0, 1], facilitando o aprendizado.

3.4 Pipeline de Detecção e Classificação

Para viabilizar a utilização dos modelos de DL no APP, foi desenvolvido um pipeline

de detecção e classificação. O processo inicia-se com a aquisição e decodificação da imagem

para um objeto Bitmap, seguida do redimensionamento às dimensões exigidas pelo modelo de

detecção. Essa etapa garante que os dados estejam no formato e escala adequados à inferência
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no TensorFlow Lite (TFLite), formato adotado para a exportação dos modelos.

Posteriormente, o modelo de detecção de objetos identifica possíveis mucosas na

imagem. Cada detecção gera uma BB acompanhada de uma pontuação de confiança. Para

eliminar sobreposições e redundâncias, aplica-se a técnica de Non-Maximum Suppression (NMS),

que seleciona apenas as caixas com maior confiança e IoU aceitável. Caso nenhuma detecção

atenda aos critérios definidos, o sistema notifica o usuário para realizar uma nova captura.

Com a BB mais confiável identificada, extrai-se a Region of Interest (ROI) da imagem

original. Essa região é então submetida a um pré-processamento específico para a etapa de

classificação, o qual inclui redimensionamento e normalização. O classificador gera como saída

um vetor de probabilidades, a partir do qual se seleciona a classe com o maior valor predito.

São utilizadas cinco classes distintas, posteriormente agrupadas em duas categorias

finais: “saudável” ou “doente” de acordo com a Tabela 1. O resultado da classificação é então

apresentado ao usuário, juntamente com a imagem analisada. Caso desejado, o diagnóstico pode

ser salvo para consultas futuras ou para fins de acompanhamento clínico. O fluxo completo está

representado na Figura 15.

Figura 15 – Diagrama do pipeline de de-
tecção e classificação.

Fonte: Próprio autor.
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A organização reflete a estrutura típica de datasets otimizados para esse tipo de mo-

delo, garantindo uma integração direta e eficiente com o pipeline de treinamento. A configuração

do modelo foi definida em um arquivo data.yaml, no qual foram especificados os caminhos

dos dados, o número total de classes e seus respectivos nomes.

Para o treinamento do modelo, foi definida uma entrada de 320×320 pixels, com du-

ração de 100 épocas e batch size igual a 32. Os hiperparâmetros obrigatórios foram configurados

manualmente no arquivo custom_hyp.yaml, conforme apresentados na Tabela 6. Entre eles,

destacam-se: a taxa de aprendizado inicial (lr0), o fator de decaimento da taxa de aprendizado

(lrf), o momentum, a regularização via weight_decay, o número de épocas de aquecimento

(warmup_epochs) e os pesos atribuídos às funções de perda associadas à detecção de caixas

(box), à classificação (cls) e à presença de objetos (obj). Esses parâmetros são fundamentais

para o ajuste fino do processo de aprendizagem.

Tabela 6 – Hiperparâmetros utilizados no treinamento
do modelo YOLOv5

Hiperparâmetro Valor

lr0 0,01
lrf 0,1
momentum 0,937
weight_decay 0,0005
warmup_epochs 3,0
warmup_momentum 0,8
warmup_bias_lr 0,1
box 0,05
cls 0,5
cls_pw 1,0
obj 1,0
obj_pw 1,0
iou_t 0,20
anchor_t 4,0
fl_gamma 0,0

Fonte: Próprio autor.

Além dos hiperparâmetros de treinamento, foram definidos parâmetros específicos

para estratégias de DA. Esses hiperparâmetros também foram incluídos no arquivo custom_-

hyp.yaml e envolvem modificações nas propriedades de cor, geometria e composição das

imagens. Na Tabela 7 são definidos os parâmetros empregados. Destacam-se alterações no matiz

(hsv_h), saturação (hsv_s), valor (hsv_v), rotações (degrees), translações (translate), esca-

lonamento (scale), cisalhamento (shear), adição de perspectiva (perspective), espelhamento

vertical (flipud) e horizontal (fliplr), além de composições por mosaico (mosaic), mistura
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de imagens (mixup) e colagem de objetos (copy_paste).

Tabela 7 – Hiperparâmetros de DA utilizados no trei-
namento do modelo YOLOv5

Hiperparâmetro Valor

hsv_h 0,015
hsv_s 0,7
hsv_v 0,4
degrees 10,0
translate 0,1
scale 0,5
shear 2,0
perspective 0,0
flipud 0,0
fliplr 0,5
mosaic 1,0
mixup 0,0
copy_paste 0,0

Fonte: Próprio autor.

3.6 Modelos de Classificação

A escolha dos classificadores considerou sua aplicabilidade em dispositivos móveis,

especialmente smartphones. Além disso, esses modelos possuem implementação nativa no

TF, o que facilitou o desenvolvimento e viabilizou o lançamento de versões futuras de forma

mais ágil. Com essas premissas, os modelos escolhidos foram MobileNetV2, EfficientNetB0 e

NASNetMobile.

Além da utilização de modelos consolidados e validados na literatura, foi imple-

mentada uma arquitetura CNN desenvolvida para este trabalho, com o objetivo de permitir

comparações experimentais entre modelos base e a arquitetura proposta.

O processo de recorte da mucosa foi realizado automaticamente pelo modelo de

detecção. A partir do dataset inicial, foi gerado um novo conjunto contendo apenas as regiões

recortadas conforme ilustrado na Figura 17.

Neste trabalho não foi empregada transferência de aprendizado. Todos os classi-

ficadores foram treinados a partir de pesos aleatórios. Durante o treinamento, adotaram-se

hiperparâmetros padronizados para garantir consistência metodológica nas comparações. A base

de dados foi composta por cinco classes com distribuição equilibrada entre elas. As imagens

foram redimensionadas para 64×64 pixels e normalizadas para o intervalo [0,1]. O processo de

treinamento foi conduzido por 700 épocas, com batch size de 16, e a avaliação dos resultados
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foi realizada por meio de validação cruzada do tipo k-fold, com k = 5. Em cada iteração dessa

validação, as previsões obtidas e os respectivos valores reais foram registrados para possibilitar

análises posteriores mais detalhadas do desempenho dos modelos.

Figura 17 – Exemplo de mucosa cortada.

Fonte: Próprio autor.

Nos experimentos iniciais, constatou-se que as classes de grau 2 e grau 3, corres-

pondentes ao limiar entre casos saudáveis e anêmicos, apresentaram desempenho inferior em

relação às demais categorias. Com o intuito de atenuar a discrepância, aplicou-se um fator de

ponderação igual a 1,5 para essas classes, mantendo-se o peso unitário (1,0) para as demais.

Essa medida teve como objetivo elevar a acurácia dessas classes específicas, aproximando seus

resultados daqueles observados nas demais categorias.

Para aumentar a capacidade de generalização dos classificadores, aplicaram-se

técnicas de DA. Os valores correspondentes podem ser consultados na Tabela 8.

Tabela 8 – Hiperparâmetros de DA utilizados nos clas-
sificadores

Hiperparâmetro Valor

rescale 1,0 / 255
brightness_range (0,7 ; 1,3)
zoom_range 0,2
rotation_range 15°
shear_range 0,15
width_shift_range 0,1
height_shift_range 0,1
horizontal_flip Ativado
vertical_flip Ativado

Fonte: Próprio autor.

3.6.1 MobileNetV2

O classificador foi baseado na arquitetura MobileNetV2 do TF. A agregação espacial

foi realizada por meio de GlobalAveragePooling2D. Em seguida, para mitigar o overfitting,
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foram inseridas duas camadas de dropout (0,5), intercaladas por uma camada densa de 128

neurônios com ativação ReLU e regularização L2 (λ = 0,01).

A saída final é composta por uma camada densa com cinco unidades e ativação

Softmax, gerando distribuições de probabilidade para as cinco classes da base de dados. A com-

pilação foi efetuada com o otimizador Adam com η = 0,001, utilizando categorical crossentropy

como função de perda e a acurácia como métrica de avaliação. As camadas com hiperparâmetros

estão resumidas na Tabela 9.

Tabela 9 – Configuração do MobileNetV2.

Camada Configuração

MobileNetV2 Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 128 neurônios, ReLU, L2 (λ = 0,01)
Dropout 0,5
Dense (saída) 5 neurônios, softmax

Fonte: Próprio autor.

3.6.2 EfficientNet-B0

Desenvolvido utilizando a arquitetura EfficientNet-B0 seguindo o mesmo padrão de

construção do MobileNetV2, com a diferença de que a camada densa intermediária utiliza 256

neurônios e a regularização L2 de λ = 0,001.

Tabela 10 – Configuração do EfficientNet-B0.

Camada Configuração

EfficientNet-B0 Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 256 neurônios, ReLU, L2 (λ = 0,001)
Dropout 0,5
Dense (saída) 5 neurônios, softmax

Fonte: Próprio autor.

3.6.3 NASNetMobile

Construído a partir da arquitetura NASNetMobile, segue o mesmo padrão das demais,

porém com regularização L2 de λ = 0,001 e 128 neurônios na camada densa intermediária.
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Tabela 11 – Configuração do NASNetMobile

Camada Configuração

NASNetMobile Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 128 neurônios, ReLU, L2 (λ = 0,001)
Dropout 0,5
Dense (saída) 5 neurônios, softmax

Fonte: Próprio autor.

3.6.4 Arquitetura Proposta

A arquitetura da CNN proposta foi composta por três camadas convolucionais

sequenciais (Conv2D) com 32, 64 e 128 filtros, respectivamente. Cada camada convolucional foi

seguida por uma camada de BatchNormalization e uma camada de MaxPooling2D.

Para mitigar o overfitting, aplicou-se regularização L2 com λ = 0,01 em todas as

camadas convolucionais. Na etapa de classificação, os mapas de características são transformados

em vetor por meio de uma camada Flatten, seguida por uma camada densa com 128 neurônios,

função de ativação ReLU e regularização L2 (λ = 0,01). Após essa etapa, aplica-se um dropout

de 0,5.

Por fim, a camada de saída é uma densa com cinco unidades e ativação Softmax,

responsável por gerar as distribuições de probabilidade finais para as cinco classes do problema. A

compilação do modelo foi realizada com o otimizador Adam, configurado com LR de η = 0,0001,

função de perda categorical crossentropy e métrica de avaliação a acurácia. A Tabela 12 detalha

a arquitetura completa.

Tabela 12 – Configuração da Arquitetura Proposta.

Camada Configuração

Conv2D 32 filtros, (3x3), ReLU, L2 (λ = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Conv2D 64 filtros, (3x3), ReLU, L2 (λ = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Conv2D 128 filtros, (3x3), ReLU, L2 (λ = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Flatten —
Dense 128 neurônios, ReLU, L2 (λ = 0,01)
Dropout 0,5
Dense (saída) 5 neurônios, softmax

Fonte: Próprio autor.
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3.7 Aplicativo

O APP foi desenvolvido utilizando a linguagem de programação Kotlin, em conjunto

com o framework Jetpack Compose, que oferece uma abordagem moderna e declarativa para

a construção de interfaces de usuário no sistema operacional Android. Esta combinação de

ferramentas permitiu a criação de uma aplicação responsiva, com um fluxo de navegação intuitivo

e de fácil usabilidade para o público-alvo.

Os requisitos do APP foram definidos de forma a atender aos objetivos propostos

neste trabalho, proporcionando uma ferramenta prática e acessível para a análise de anemia em

ovinos. O software de funcionamento simples opera basicamente com duas tarefas principais, a

escolha da imagem e posteriormente a analise dessa amostra pelos modelos de DL.

3.7.1 Tela Inicial

Na tela inicial, o APP possibilita ao usuário selecionar uma imagem da galeria ou

capturar uma nova utilizando a câmera do dispositivo. A interface apresenta ícones de tamanho

ampliado para facilitar a interação. O fluxo de navegação dessa etapa está representado no

diagrama de sequência da Figura 18.

3.7.2 Tela de Resultado

Após a seleção ou captura da imagem na tela inicial, o usuário é direcionado para

a tela de resultados. Nesta etapa, o sistema exibe a imagem recortada da ROI (mucosa do

animal) com a classificação gerada pelo modelo CNN . A interface oferece a opção de salvar a

imagem processada, por meio de um diálogo de confirmação que permite ao usuário atribuir um

nome ao arquivo antes do armazenamento. Caso nenhuma mucosa seja detectada na imagem,

o sistema apresenta uma mensagem informando a impossibilidade de realizar a análise e, após

confirmação, retorna automaticamente à tela inicial. O fluxo desta etapa está ilustrado no

diagrama de sequência da Figura 19.
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4 RESULTADOS

Este capítulo apresenta os resultados da metodologia do Capítulo 3, detalhando

as métricas dos modelos de detecção e classificação, além da análise da usabilidade do APP

desenvolvido.

4.1 YOLO

O modelo YOLOv5 foi avaliado utilizando um conjunto de teste composto por 17

amostras. As métricas de desempenho obtidas encontram-se na Tabela 13.

Tabela 13 – Resultados das métricas para detecção da mu-
cosa.

Métrica Valor

Precisão 0.996
Recall 1.000
mAP@0.5 0.995
mAP@0.5:0.95 0.598

Fonte: Próprio autor.

O modelo YOLOv5 apresentou precisão de 0,996, recall de 1,000 e mAP@0,5 de

0,995, indicando alta eficácia na detecção e localização das BB. O mAP@0,5:0,95 foi 0,598,

refletindo seu desempenho em múltiplos limiares. A Figura 20 ilustra amostras do conjunto de

teste com as detecções e seus valores de confiança.

Figura 20 – Exemplos de detecção da mu-
cosa utilizando YOLO.

Fonte: Próprio autor.
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4.2 Modelos de classificação

Os modelos de classificação apresentados na Seção 3.6 foram avaliados por meio de

validação cruzada k-fold. Em cada iteração, as previsões e os valores reais do conjunto de teste

foram registrados para análises posteriores. Na Tabela 14 apresenta o desempenho médio e o

desvio padrão de cada modelo, considerando acurácia, precisão, recall e F1-Score.

Tabela 14 – Desempenho comparativo entre os modelos avaliados.

Modelo Acurácia Precisão Recall F1-Score

MobileNetV2 0,6061±0,1767 0,6118±0,2114 0,6076±0,1702 0,5589±0,2125
EfficientNet-B0 0,8303±0,1159 0,8797±0,0771 0,8324±0,1169 0,8326±0,1101
NASNetMobile 0,3939±0,0691 0,3182±0,0619 0,3905±0,0663 0,2995±0,0459
Arquitetura Proposta 0,9030±0,0521 0,9168±0,0432 0,9057±0,0500 0,9026±0,0515

Fonte: Próprio autor.

O MobileNetV2 apresentou limitações de generalização, evidenciadas pela diver-

gência progressiva entre as curvas de perda de treino e validação, caracterizando overfitting. A

análise por classe indicou padrões recorrentes de confusão entre as categorias grau 2 e grau 3,

com erros consistentes observados nas matrizes de confusão, conforme descrito no Apêndice A.

O EfficientNet-B0 evidenciou volatilidade nas curvas de aprendizado, apesar do

desempenho superior em relação ao MobileNetV2. Foram identificadas fragilidades nos graus

iniciais de anemia, com recall reduzido no grau 1 e precisão baixa no grau 2, como apresentado

no Apêndice B.

O NASNetMobile apresentou redução na capacidade discriminatória, com tendência

a predições concentradas nas classes grau 3 e grau 5. Observou-se degradação gradual da perda

de validação, associada a overfitting, e menor separabilidade entre classes, evidenciada nas

matrizes de confusão por fold, descritas no Apêndice C.

A arquitetura proposta apresentou desempenho consistente entre classes, com F1-

Score superior a 0,84 em todas as categorias. A convergência estável das curvas de treino e

validação, juntamente com a precisão elevada nos graus 4 e 5, indicam boa adaptação ao domínio

do problema, com detalhes adicionais no Apêndice D.

Os resultados indicam que a arquitetura proposta apresentou desempenho superior

aos demais modelos, evidenciando maior capacidade de discriminação entre os diferentes graus

de anemia e consistência nas métricas avaliadas. Essa vantagem pode ser explicada pela topologia

arquitetural específica, desenvolvida para captar características essenciais ao problema, sem
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a complexidade adicional encontrada em modelos de aplicação mais ampla. Em contraste,

MobileNetV2, NASNetMobile e EfficientNet-B0 demonstraram limitações na generalização e

na capacidade de classificação, possivelmente decorrentes de sua natureza mais abrangente, que

pode representar um excesso de complexidade para a tarefa em questão.

Assim, o modelo desenvolvido mostra-se mais apropriado para implementação

no sistema móvel, combinando precisão elevada com flexibilidade para futuras adaptações.

Sua estrutura permite a incorporação de novos dados e retreinamento simplificado, facilitando

atualizações e aprimoramentos contínuos do sistema ao longo do tempo.

4.3 Aplicativo

A Figura 21 mostra dois screenshots da aplicação: a tela inicial para captura ou

seleção de imagens, com interface simples e acessível, e a tela de resultado que destaca a área da

mucosa detectada e a classificação entre “saudável” ou “doente”.

Nos testes, o modelo YOLOv5 foi utilizado para a detecção, apresentando tempo

médio de inferência de 83 milissegundos, enquanto a CNN proposta realizou a classificação

em 20 milissegundos. O pipeline completo consumiu cerca de 103 milissegundos no Samsung

Galaxy A52s, garantindo desempenho fluido em tempo quase real, sem necessidade de hardware

avançado.

Figura 21 – Telas de início e resultados do APP.

Fonte: Próprio autor.
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5 CONCLUSÕES E TRABALHOS FUTUROS

Este trabalho desenvolveu com sucesso um APP capaz de automatizar a análise

do cartão FAMACHA© por meio de técnicas de DL. O sistema demonstrou alta eficácia na

detecção e classificação da mucosa ocular de ovinos, cumprindo os objetivos propostos. O

modelo YOLOv5 apresentou excelente desempenho na etapa de detecção, com precisão de

99,6%, garantindo a identificação precisa das mucosas. Para a classificação, a arquitetura

proposta superou modelos consolidados, como a MobileNetV2 e a EfficientNet-B0, alcançando

uma acurácia média de 90,3% e um F1-Score de 90,3%.

A integração dos modelos no APP resultou em uma ferramenta funcional e acessível,

com tempos de inferência de 103 milissegundos no total, em um smartphone intermediário.

A interface, desenvolvida em Kotlin com Jetpack Compose, foi projetada para ser intuitiva,

permitindo a captura ou seleção de imagens e exibindo os resultados de forma clara e imediata.

A combinação de desempenho e usabilidade torna a solução viável para uso em condições reais

de campo, auxiliando produtores, técnicos e médicos-veterinários na identificação da anemia em

ovinos.

Para trabalhos futuros, recomenda-se ampliar o banco de imagens, com ênfase nas

classes grau 4 e 5 de anemia, atualmente sub-representadas no conjunto de dados. A inclusão de

um maior número de amostras desses estágios avançados permitiria o uso de mais imagens no

treinamento, considerando a escassez de exemplos para essas classes. Como complemento ao

critério baseado no Ht, propõe-se a utilização conjunta do sistema FAMACHA© para seleção

das imagens. Essa abordagem híbrida, combinando um método quantitativo com um critério

clínico validado, possibilitaria uma triagem mais criteriosa dos casos, minimizando a exclusão

de imagens potencialmente úteis devido a variações naturais na coloração da mucosa ocular. A

convergência desses dois parâmetros aumentaria a confiabilidade do dataset final.
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