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RESUMO

A incidéncia de verminoses causadas pelo Haemonchus contortus (HC) tem gerado prejuizos
significativos a ovinocultura, afetando diretamente a satide dos rebanhos e reduzindo a produtivi-
dade dos criadores. Um dos métodos mais utilizados no diagndstico da anemia associada a essa
parasitose € o Faffa Malan Chart (FAMACHA®), que se baseia na avaliacdo visual da coloracio
da mucosa ocular para classificar os animais em cinco niveis. Apesar de sua simplicidade, o
método apresenta limitagdes como a subjetividade da andlise e a dependéncia de experiéncia
prévia por parte do avaliador. Com o avango das tecnologias para dispositivos moveis e das
técnicas de Aprendizado Profundo (do inglés, Deep Learning (DL)), surge a possibilidade de
automatizar esse processo, tornando-o mais preciso, padronizado e acessivel. Neste trabalho, foi
desenvolvido um Aplicativo Mével (APP) para a plataforma Android, utilizando a linguagem de
programacao Kotlin em conjunto com a biblioteca Jetpack Compose. O sistema proposto realiza
a detecgdo da regiao ocular, em seguida, sua classificagdo nos cinco niveis do FAMACHA®,
fornecendo ao criador a indicagdo se o animal estd sauddvel ou doente. A base de dados contém
165 imagens, distribuidas igualmente entre as cinco categorias definidas pelo FAMACHA®.
Para a etapa de detec¢do, empregou-se a arquitetura YOLOVS, que alcancou o desempenho
com mAP@0.5 de 0,995 no conjunto de testes com 17 amostras. Para a classificacdo, o melhor
modelo apresentou F1-Score médio de 0,9026 £ 0,0515 com validagdo cruzada em cinco folds.
O tempo de inferéncia aferido foi de 83 milissegundos para deteccao e 20 milissegundos para
classificagdo, validando o uso em dispositivos méveis. Em conclusao, o APP desenvolvido se
mostra vidvel e eficaz como ferramenta de apoio no manejo sanitario de ovinos, contribuindo

para a sustentabilidade da producao e para o uso racional de vermifugos.

Palavras-chave: Haemonchus contortus. FAMACHA. Aprendizado Profundo. Aplicativo

movel. Deteccao automadtica.



ABSTRACT

Infections caused by Haemonchus contortus (HC) have caused significant losses in sheep
farming, directly affecting herd health and reducing producer productivity. One of the most
widely used methods for diagnosing anemia associated with this parasitosis is the Faffa Malan
Chart (FAMACHA®), which is based on the visual assessment of the ocular mucosa coloration
to classify animals into five levels. Despite its simplicity, the method presents limitations such as
the subjectivity of the analysis and the dependence on prior experience by the evaluator. With
advances in mobile device technologies and Deep Learning (DL) techniques, the possibility arises
to automate this process, making it more accurate, standardized, and accessible. In this work, a
mobile application (APP) was developed for the Android platform, using the Kotlin programming
language together with the Jetpack Compose library. The proposed system performs ocular
region detection, followed by classification into the five FAMACHA® levels, providing the
producer with an indication of whether the animal is healthy or sick. The database contains 165
images, equally distributed among the five categories defined by FAMACHA®. For the detection
stage, the YOLOVS architecture was employed, achieving a mAP@0.5 of 0.995 on the test set
with 17 samples. For classification, the best model presented a mean F1-Score of 0.9026 + 0.0515
with five-fold cross-validation. The inference time measured was 83 milliseconds for detection
and 20 milliseconds for classification, validating its use on mobile devices. In conclusion, the
developed APP proved to be viable and effective as a support tool in the sanitary management of

sheep, contributing to production sustainability and the rational use of anthelmintics.

Keywords: Haemonchus contortus. FAMACHA. Deep Learning. Mobile Application. Automa-

ted Detection.
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1 INTRODUCAO

Um problema recorrente para produtores de pequenos ruminantes, em especial
ovinos, € a incidéncia da verminose provocada por Haemonchus contortus (HC). Essa parasitose
causa anemia severa nos animais, levando a perda de peso, reducao da producgdo de leite e 13,
e, em casos graves, a morte. A hemoncose, doenca causada por esse nematodide, gera grandes
prejuizos econdmicos para os criadores, afetando a rentabilidade das propriedades (BESIER ez
al., 2016).

Foi constatado uma forte correlacio entre a coloracdo da membrana mucosa ocular
e o grau de anemia do animal. Com base nisso, foi desenvolvido o método Faffa Malan Chart
(FAMACHA®), que utiliza um cartdo ilustrativo que categoriza as mucosas em cinco intervalos,
que vao de vermelho (indicando boa satide) a branco (indicando anemia severa). Essa correlacao
sugere que uma avaliacdo precisa pode auxiliar na identificacdo de animais que necessitam
de tratamento, permitindo intervengdes mais eficazes e reduzindo a selecdo de resisténcia aos
antiparasitarios (WYK; BATH, 2002).

Conforme observado na Figura 1, o cartido apresenta diferentes niveis de coloracao
da mucosa. Nos graus A(1) e B(2), a coloragdo € intensamente vermelha, indicando auséncia
ou minima presenc¢a de anemia. O tratamento com vermifugo € recomendado a partir do grau
C(3). Nos graus D(4) e E(5), a vermifugagdo torna-se essencial devido a palidez intensa da
mucosa, sendo que no grau E(5) é recomendada suplementacdo alimentar. Essa abordagem

reduz a invasividade para o animal e evita a pratica indiscriminada de vermifugacao do rebanho

(CHAGAS et al., 2007).

Figura 1 — Fotografia do cartio FAMACHA®.

Utilizacdo do Famacha®

Fonte: EMBRAPA (2024).
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O método mais preciso para o diagndstico de verminose em ovinos é¢ o Hematdcrito
(Ht), que consiste em um exame laboratorial utilizado para medir a proporcao de glébulos
vermelhos no sangue, detectando assim a anemia da cria. Embora confidvel, este método pode
ser demorado e apresentar custo elevado para o criador, especialmente em localidades humildes
e de dificil acesso, o que frequentemente impede sua adocao para a avaliacdo da condi¢do dos
animais.

O método FAMACHA® foi desenvolvido para monitorar a anemia causada pelo
parasita HC em ovinos e caprinos, por meio da avaliagdo da coloragdo da mucosa ocular. Contudo,
¢ importante destacar que o FAMACHA® identifica a anemia de forma geral, independentemente
da sua causa, o que implica que outras condi¢des, como doencas ou deficiéncias nutricionais,
também podem influenciar os resultados. Além disso, fatores como a sazonalidade das infeccoes,
a qualidade da gestdo da propriedade, incluindo taxas de lotag@o e a presenca de outras espécies
de nematdides, podem impactar a eficacia do método. A precisdo da avaliagdo depende ainda do
treinamento adequado dos usudrios e da assisténcia técnica disponivel, sendo essencial que as
andlises sejam realizadas com o suporte de profissionais de satide animal. Por fim, a manuteng¢do
adequada do cartaio FAMACHA®, incluindo sua protecao contra a luz e substituicao anual, é
fundamental para garantir a fidelidade das referéncias de cor (STOREY et al., 2017).

Para mitigar as varidveis humanas no processo de andlise da coloracdo da mucosa
e democratizar o acesso ao diagndstico, propde-se a implementac¢do de um Aplicativo Mével
(APP) que fornece, de forma instantinea, a indica¢do da condicao clinica do animal (saudével
ou doente). O APP captura uma imagem da mucosa ocular e, por meio de algoritmos baseados
em técnicas de Visao Computacional (do inglés, Computer Vision (CV)) e Inteligéncia Artificial
(do inglés, Artificial Intelligence (Al)), detecta e classifica o nivel de coloracao da mucosa,

permitindo um diagndstico preciso e automatizado.

1.1 Justificativa

A deteccdo precoce de anemia em ovinos € essencial para garantir a saide e produtivi-
dade desses animais, especialmente entre pequenos produtores rurais que dependem diretamente
da criagdo eficiente. A anemia, se ndo diagnosticada a tempo, pode comprometer o crescimento,
a reproducdo e a qualidade da carne e da 1a. Tradicionalmente, o método FAMACHA® ¢é
utilizado para identificar anemia com base na coloracdo da mucosa ocular, mas esta técnica

apresenta limitacoes. Como demonstrado por RABELO et al. (2023), a natureza subjetiva do
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método frequentemente leva a falhas na detec¢@o precoce da anemia e a variagdes entre diferentes
avaliadores, resultando em diagndsticos pouco confidveis que podem comprometer a eficicia dos
tratamentos.

Diante dessas limitagdes, a utilizacao de técnicas de Aprendizado de Maquina (do
inglés, Machine Learning (ML)) torna-se uma inovacdo promissora. Ao aplicar modelos de
ML € possivel aumentar a precisao e a eficiéncia na identificagdo de condi¢des patoldgicas. Os
modelos podem detectar sinais sutis de anemia que poderiam passar despercebidos no método
tradicional, proporcionando uma abordagem mais robusta. Assim, o uso da Al oferece uma
solugdo tecnoldgica avangada que complementa FAMACHA®, ajudando na tomada de decisdo
dos proprietérios e técnicos responsaveis.

A escolha deste tema torna-se ainda mais relevante devido a parceria com a Empresa
Brasileira de Pesquisa Agropecudria (EMBRAPA), que facilita a coleta de dados e conecta o
projeto diretamente as necessidades dos pequenos produtores rurais. Com a aplicacado de tais
tecnologias, espera-se aprimorar o manejo animal e promover a sustentabilidade da producao
ovina. A pesquisa também abre portas para futuros estudos e inovagdes tecnolégicas no campo
da saude animal, contribuindo para a modernizacao da agropecudria. Além disso, o potencial de
coleta de dados do APP, como geolocalizacdo, informagdes sobre vermifugos, datas de aplica¢do
e outros dados relevantes, enriquece a andlise e permite um estudo mais aprofundado da anemia
em ovinos, sendo de grande valor tanto para os produtores quanto para os 6rgaos publicos

responsaveis pela gestdo sanitaria.

1.2 Objetivos

1.2.1 Objetivo Geral

Desenvolver um APP que automatize o cartio FAMACHA®, utilizando modelos de

Deep Learning (DL) para detectar e classificar a mucosa de ovinos.

1.2.2 Objetivos Especificos

e Selecionar modelos de DL que sejam adequados para a detec¢do de objetos e
classificacdo de imagens.
e Implementar e treinar os modelos selecionados utilizando um conjunto de dados.

e Avaliar o desempenho dos modelos de DL com base em métricas como acurdcia,
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precisdo, recall e Fl-score.

e Comparar os resultados obtidos para determinar qual modelo apresenta o melhor
desempenho.

e Desenvolver uma interface amigavel no APP que integre os modelos de DL

selecionados.

1.3 Trabalhos Relacionados

Foi realizada uma pesquisa na literatura para identificar trabalhos que propdem
APPs ou métodos que automatizam o processo de decisdo baseado no cartio FAMACHA®. O
levantamento priorizou aqueles que utilizam técnicas de Aprendizado Profundo (do inglés, DL),
dado que este serd o foco central do trabalho.

O trabalho de ALMEIDA (2021) investigou a aplicacdo de redes neurais profundas
para segmentacdo e classificagcdo de imagens da mucosa ocular de ovinos, com o objetivo
de identificar sinais de anemia. Na segmentacao, a U-Net apresentou o melhor desempenho,
alcancando uma precisdo de 97,29% com base no indice de similaridade de Jaccard. Na
classificacdo, os modelos MobileNetV2 e ResNetl8 se destacaram, ambos atingindo uma
acurécia de 95,23%, com e sem normalizacdo. O estudo utilizou um conjunto de 106 imagens
coletadas na EMBRAPA Caprinos e Ovinos, localizada em Sobral-CE, e também resultou no
desenvolvimento de um APP que integra os modelos, demonstrando bom desempenho nos testes
realizados.

Em de Souza et al. (2023), foi desenvolvida uma aplicagdo Android para imitar o
processo de decisdo do veterindrio no método FAMACHA®. O software nao possui segmentagao
ou deteccao automdtica da mucosa conjuntival, exigindo um recorte manual realizado pelo
usudrio. Foram utilizadas 317 imagens de mucosas coletadas em fazendas do sul do Brasil, que
serviram como base de dados para avaliar o desempenho de dois classificadores: uma rede neural
sequencial e uma Mdaquina de Vetores de Suporte (do inglés, Support Vector Machine (SVM)). O
SVM apresentou o melhor desempenho, com precisao de 87%, demonstrando maior eficicia na
classificagdo dos animais em saudaveis ou anémicos. Esse resultado evidencia o potencial do
sistema para apoiar pequenos produtores no manejo seletivo de parasitas.

ROCHA et al. (2025) prop6s a automatizacdo do método FAMACHA® por meio
de visao computacional, utilizando o YOLOv8n para segmentar a mucosa ocular e o Random

Forest para classificacdo, com base em 450 imagens coletadas em campo. A validacdo cruzada
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revelou métricas como acuricia de 64%, precisao de 66%, recall de 77% e F1 Score de 71%,
evidenciando o potencial da abordagem, apesar de limitagdes relacionadas a segmentagdo e
variagoes de iluminacao.

O presente trabalho diferencia-se dos anteriores ao realizar a detec¢do automatica
da mucosa ocular por meio de algoritmos de deteccdo de objetos, eliminando a necessidade de
segmentacdes manuais ou recortes realizados pelo usudrio, como observado em de Souza et al.
(2023). Enquanto trabalhos como ALMEIDA (2021) e ROCHA et al. (2025) focam na segmenta-
cdo da mucosa, esta pesquisa opta pela deteccao direta, simplificando o processo. Nesse contexto,
propde-se comparar diversos classificadores baseados em Redes Neurais Convolucionais (do
inglés, Convolutional Neural Network (CNN)), buscando aprimorar sua precisdo e eficiéncia

computacional.
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2 FUNDAMENTACAO TEORICA

No presente capitulo, apresenta-se o referencial tedrico que fundamenta a compreen-
sdo dos temas abordados ao longo deste trabalho. S@o discutidos os principais conceitos técnicos

necessdrios para o entendimento da proposta desenvolvida.

2.1 Sistema FAMACHAO

A Tabela 1 sintetiza os critérios adotados pelo sistema FAMACHA® para a clas-
sificacdo clinica dos animais, associando a colora¢do da mucosa ocular aos niveis de Ht. Isso
permite determinar a gravidade da anemia e orientar a necessidade de intervengdo. A gradagdo

variade 1 a 5, servindo como referéncia para decisdes clinicas de ovinos e caprinos.

Tabela 1 — Classificacio FAMACHA segundo valores de Ht

Grau FAMACHA  Coloragdo da mucosa Hematdcrito (%) Atitude clinica
1 Vermelho robusto > 27 Nao tratar

2 Vermelho rosado 23a27 Nio tratar

3 Rosa 18 a 22 Tratar

4 Rosa pélido 13a17 Tratar

5 Branco <13 Tratar

Fonte: Adaptado de CHAGAS et al. (2007).

2.2 Aprendizado de Maquina

O ML € uma subdrea da Al que desenvolve algoritmos capazes de aprender e melho-
rar automaticamente a partir de dados e experiéncias anteriores, sem programacao explicita para
tarefas especificas. Este processo € fundamental para criar sistemas inteligentes que se adaptam
a novas informacdes. O ML € amplamente utilizado em aplicagdes como reconhecimento de
padrdes, classificacao de dados, recomendagdes personalizadas e diagnésticos médicos, sendo
essencial para a andlise de grandes volumes de dados e a tomada de decisdes eficazes (MONARD;
BARANAUSKAS, 2003).

Os algoritmos de ML sao classificados em trés categorias principais: aprendizado
supervisionado, aprendizado nio supervisionado e aprendizado por reforco. O aprendizado
supervisionado utiliza dados rotulados para prever resultados, com exemplos como regressao
linear e SVMs. O aprendizado ndo supervisionado busca identificar padrdoes em dados ndo

rotulados, utilizando técnicas como K-means e Analise de Componentes Principais (do inglés,
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Principal Component Analysis (PCA)). O aprendizado por reforco envolve um agente que
aprende a maximizar recompensas através da interagcdo com um ambiente dinamico, refletindo a

diversidade do ML (MONARD; BARANAUSKAS, 2003).

2.2.1 Funcgao de Perda

Na constru¢do de modelos de ML, a funcao de perda (loss function) desempenha um
papel crucial, sendo responsével por quantificar o erro entre a saida prevista (y) pelo modelo e o
valor real (y) da varidvel de interesse (GOODFELLOW et al., 2016). O resultado indica o quio
bem o modelo estd desempenhando em uma tnica amostra e orienta o processo de otimiza¢do ao
fornecer uma dire¢do para o ajuste dos paradmetros.

A partir da funcao de perda, define-se a fungdo de custo (cost function), que agrega

as perdas individuais ao longo do conjunto de treinamento por meio de uma média:

J(6) =

S| =

Y L(yi,5i), @2.1)
i=1

em que 0 representa os pardmetros do modelo, n é o nimero de amostras e L(y;,¥;) é a perda
associada a i-ésima amostra.

Para problemas de regressao, utiliza-se frequentemente o Erro Quadratico Médio
(do inglés, Mean Squared Error (MSE)). Ele penaliza erros de forma quadrética, tornando-se

sensivel a outliers.

Lyvse(vi,91) = (i — 9i)%. (2.2)

Em tarefas de classificacdo bindria, a funcdo de perda comumente utilizada € a
Entropia Cruzada Bindria (do inglés, Binary Cross-Entropy (BCE)), definida para uma amostra

como.

Lece(yi, i) = — [yilog($i) + (1 —y;i) log(1 = 3:)] , (2.3)

em que y; é a probabilidade prevista da classe positiva.
Para classificacdo multiclasse com codificagdo one-hot, utiliza-se a Entropia Cruzada

Categorica (do inglés, Categorical Cross-Entropy (CCE)):
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c
Lece(yi $i) = — Y vielog(ie), (2.4

c=1
em que C representa o nimero total de classes, y; . € o indicador bindrio (0 ou 1) da classe
verdadeira, e y; . € a probabilidade prevista para a classe ¢ (geralmente obtida pela func¢io

softmax).
2.2.2 Oftimizagdo

A otimizagdo no contexto de ML € responsavel por ajustar os parametros 6 com o
objetivo de minimizar a fung@o de custo J(6) definida na Subsegdo 2.2.1. O principal algoritmo
para esta minimizacao é o Gradiente Descendente Estocdstico (do inglés, Stochastic Gradient

Descent (SGD)), que atualiza os parametros utilizando o gradiente da fun¢do de perda individual:

0+ =00 —n.VoL(y;, ), -

em que 7 € a taxa de aprendizado (do inglés, learning rate (LR)), VgL(y;,¥;) € o gradiente da
fun¢do de perda em relacdo aos parametros, e ¢ denota a iteracdo atual. A Figura 2 ilustra este

Processo.

Figura 2 — Visualizacdo do Gradiente Descen-
dente.

—— Caminho do Gradiente Descendente
o Pontos de Iteragio

(%g"'0)7

Fonte: Préprio autor.
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Desenvolvimentos recentes introduziram otimizadores adaptativos que melhoram a
eficiéncia do SGD basico (FEDORENKO, 2019):
* Adam (Adaptive Moment Estimation): Adapta individualmente a LR para cada pardmetro
usando estimativas de primeiro e segundo momento dos gradientes.
* RMSProp (Root Mean Square Propagation): Normaliza a LR pela média mdvel exponen-

cial dos quadrados dos gradientes.

2.3 Aprendizado Profundo

O DL ¢ uma subdrea do ML que se destaca pelo uso de redes neurais artificiais
com multiplas camadas, conhecidas como redes neurais profundas. Essas redes, inspiradas na
arquitetura do cérebro humano, sdo compostas por camadas hierdrquicas de neur6nios artificiais,
onde cada camada processa e extrai caracteristicas de niveis crescentes de abstracdo a partir
dos dados de entrada. A capacidade dessas redes de modelar e resolver problemas complexos e
ndo lineares, como reconhecimento de imagens, processamento de linguagem natural e jogos
de tabuleiro, posiciona o0 DL como uma abordagem superior em comparacdo com métodos
tradicionais de ML (TAVANAEI et al., 2019).

A adocao generalizada do DL pode ser atribuida a sua eficiéncia em lidar com
grandes volumes de dados e em aprender representagdes sofisticadas, especialmente em tarefas
que exigem alta precisdo. Redes Neurais Convolucionais (do inglés, CNN) e Redes Neurais
Recorrentes (do inglés, Recurrent Neural Networks (RNN)) sdo exemplos proeminentes dessa
tecnologia, cada uma especializada em diferentes tipos de dados e aplicacdes (GUPTA et al.,

2022).
2.3.1 Perceptron

Proposto por Rosenblatt (1958), o Perceptron € um modelo de classificador linear
binario. Ele representa a unidade fundamental das redes neurais artificiais. Nesse modelo,
o vetor de entrada x = [x,x2,...,X,] é combinado linearmente com os pesos sindpticos w =
[wi,wa,...,wy,| e um viés b, conforme a Equacdo 2.6. O resultado z, chamado de potencial
de ativagdo, é entdo passado por uma fun¢do de ativacao do tipo degrau (step function), que
determina a saida bindria do neur6nio, conforme mostrado na Equacgado 2.7. Esse tipo de resposta

bindria reflete o funcionamento de um neur6nio biolégico, que apenas € ativado quando a soma
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ponderada de seus estimulos de entrada supera um determinado limiar.

n
=Y wixi+b, (2.6)
i=1
1, sez>0
y= (2.7)
0, sez<O.

Um diagrama clédssico de Perceptron € apresentado na Figura 3, seguindo a arqui-
tetura feed-forward. lIsso significa que as entradas sdo propagadas de forma unidirecional,
processadas e transmitidas para a saida. Caracterizando um fluxo de processamento da esquerda

para a direita.

Figura 3 — Diagrama de um Perceptron.

X WJ
z
> —— I v
W3

X3

Fonte: Adaptado de ARAUJO (2020).

2.3.2 Fungdo de Ativagdo

As fungdes de ativagdo sao operadores matemadticos nao lineares aplicados a combi-
nacdo ponderada das entradas de cada neur6nio, conferindo a arquitetura capacidade de modelar
relacdes complexas e altamente ndo lineares presentes em dados reais. Sem essas ndo linearida-
des, a composicao de multiplas camadas redundaria numa tnica transformacao afim, restringindo
severamente o poder de representacdo do modelo e inviabilizando o aprendizado de padroes
sofisticados (GOODFELLOW et al., 2016).

A seguir, apresentam-se as principais funcdes de ativacdo utilizadas em redes neurais:
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* Sigmoidal (Logistic Sigmoid): mapeia a entrada para o intervalo (0, 1), sendo frequente-

mente utilizada em classificacdes bindrias.

1

= ) 2.8
1+e 2 (2:8)

o(z)

* Tangente hiperbdlica (Hyperbolic Tangent): semelhante a sigmoide, porém centrada na
origem, mapeando em (—1,1).

eZ _ e—Z

tanh(z) = m

(2.9

* ReLU (Rectified Linear Unit): ativa somente valores positivos, promovendo esparsidade e

reduzindo o custo computacional.
ReLU(z) = max(0,z). (2.10)

* Softmax: transforma um vetor de valores reais em uma distribui¢do de probabilidade sobre

classes, sendo amplamente empregada na camada de saida de classificadores multiclasse.

esi
n
Jj=1

softmax(z); = (2.11)

%’
2.4 Perceptron Multicamadas (MLP)

Um modelo classico de rede neural é o Perceptron Multicamadas (do inglés, Multi-
layer Perceptron (MLP)), que aceita como entrada um vetor de caracteristicas unidimensional.
No caso de imagens, que possuem canais de cores Vermelho, Verde e Azul (do inglés, Red,
Green, Blue (RGB)), € necessario transformar a imagem em um Gnico vetor, em um processo
conhecido como flattening (SILVA, 2024). A Figura 4 ilustra a operagao de flattening, onde um

vetor multidimensional é convertido em um vetor 1D.

Figura 4 — Operacdo de flattening.

output features Flatten matrices

—
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Fonte: Cano et al. (2018).

L

O achatamento da imagem resulta em um niimero enorme de parametros a serem

treinados. Por exemplo, uma imagem de 240 x 240 pixels, com trés canais de cor, geraria
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um vetor de 172.800 posicdes. Dependendo do nimero de neurdnios na camada oculta, a
quantidade de parametros a serem ajustados pode se tornar extremamente alta. Como se pode
observar na Figura 5, as camadas da rede sao totalmente conectadas as camadas seguintes. Outra
desvantagem do MLP € sua falta de invariancia a perturbacdes, como translagdes, rotacoes,
escalas e mudancas na posicdo do objeto de interesse. Devido a sua arquitetura, que aprende a

posicdo exata de cada pixel, pequenas variagdes podem comprometer sua capacidade de avaliacao

(SILVA, 2024).

Figura 5 — Arquitetura de uma MLP.
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Fonte: Al-Naymat et al. (2016).

2.5 Redes Neurais Convolucionais (CNN)

As CNNs sdo uma classe de redes neurais profundas que se destacam no processa-
mento de dados visuais. Ao aplicar filtros sobre imagens, as CNNs extraem caracteristicas locais,
como bordas, texturas e formas, e constroem representacdes cada vez mais abstratas em camadas
sucessivas. Essa arquitetura permite que as CNNs aprendam hierarquias de caracteristicas de
forma automatica, tornando-as ideais para tarefas como classificacdo de imagens, detec¢do de
objetos e segmentacdo semantica. A capacidade das CNNs de generalizar para novos dados e sua
alta precisdo tornaram-nas ferramentas essenciais em diversas areas, como CV, processamento

de linguagem natural e andlise de dados (SINGH et al., 2023).

2.5.1 Arquitetura das CNN

As CNNs e MLPs sdo redes neurais que processam dados de forma distinta. Enquanto
as MLPs tém limitacdes em variacdes espaciais, as CNNs se destacam pela sua capacidade

de extrair caracteristicas locais da imagem. Essa capacidade torna as CNNs mais robustas a
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operacdes como rotagdo, escala e translagdo. A estrutura bisica de uma CNN ¢ ilustrada na
Figura 6, composta por trés camadas principais: convolucdo, pooling e camada totalmente

conectada.

Figura 6 — Estrutura basica de uma CNN.
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connected Softmax
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Fonte: You et al. (2020).

2.5.1.1 Camadas Convolucionais

As camadas convolucionais aplicam filtros (ou kernels) a imagem de entrada com o
objetivo de extrair caracteristicas relevantes, como bordas, texturas e formas. Cada kernel é uma
pequena matriz de pesos de tamanho k x k X D, onde k X k representa a dimensao espacial do
filtro e D corresponde a profundidade do canal da imagem (por exemplo, 3 para imagens RGB).
Durante a operacgdo de convolucio, o kernel percorre a imagem realizando multiplicacdes ponto
a ponto com a regido correspondente, e os resultados sdo somados para gerar um valor Ginico
que compde o mapa de ativacdo. O processo resulta em um valor tinico que compde o mapa
de ativagdo. A utilizacdo de multiplos kernels permite que a camada convolucional produza
diversos mapas de caracteristicas, capturando diferentes aspectos da imagem.

As camadas iniciais da rede capturam caracteristicas de baixo nivel, como bordas
e texturas, enquanto as camadas mais profundas identificam padrOes mais complexos. Os
parametros dos kernels sdo ajustados durante o processo de treinamento, permitindo a rede
otimizar os filtros para tarefas especificas (HIJAZI et al., 2015).

Para ilustrar o funcionamento da operagao de convolucao, considera-se uma matriz
de entrada / com dimensdes 3 x 3 e um kernel K com dimensdes 2 x 2, definidos, respectivamente

em (2.12) e (2.13).
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110

I=lo 1 1], (2.12)
1 01
1 0

K = . (2.13)
1 0

Neste exemplo, K percorre a matriz de entrada / de forma sequencial, sendo aplicado
sobre todas as submatrizes 2 x 2 extraidas de /. Conforme iliustrado na Figura 7, em cada
aplicagdo realiza-se o produto elemento a elemento seguido da soma dos resultados, produzindo
um valor escalar que compde o mapa de ativagao.

* Primeira aplicac@o: O kernel é sobreposto aos quatro elementos no canto superior esquerdo

da matriz I:

10
©) =(1-1)4+(1-0)+(0-1)+(1-00=14+04+0+0=1
0 1 1 0

* Segunda aplicacao: O kernel € deslocado uma coluna a direita:

10
® =(1-1)+(0-0)+(1-1)+(1-0)=140+1+0=2
11 10

* Terceira aplicacdo: O kernel € aplicado na linha inferior, reiniciando pela primeira coluna:

0 1 10
® =(0-1)+(1-0)4+(1-1)+(0-0)=0+0+1+0=1
10 10

* Quarta aplicacdo: O kernel se desloca novamente para a coluna a direita:

11 1 0
©) =(1-1)4+(1-0)+(0-1)+(1-0)=14+0+0+0=1
0 1 1 0

Com isso, o mapa de ativacao resultante € dado por:

A= (2.14)
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Figura 7 — Etapas da operacdo de convolugdo sobre a matriz de
entrada / com o kernel K.
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Fonte: Préprio autor.

2.5.1.2 Camada de Pooling

Apo6s a extracdo de caracteristicas relevantes por meio da aplicagcdo de filtros, a
camada de pooling desempenha um papel fundamental na reducdo da dimensionalidade dos
mapas de caracteristicas gerados. Essa camada tem como objetivo diminuir a dimensao espacial
das representacdes, o que resulta em uma reducao significativa na quantidade de computacdo
necessdria e nos pesos a serem ajustados durante o treinamento. A redu¢do nio apenas acelera
o processo de treinamento, mas também ajuda a preservar as caracteristicas mais importantes,
tornando a rede mais robusta a variagdes na entrada (BHATT et al., 2021).

Existem diferentes métodos de pooling, sendo os mais comuns o max pooling € o
average pooling. No max pooling, um kernel € movido sobre o mapa de caracteristicas, e o valor
maximo de cada regido € selecionado, o que ajuda a manter as caracteristicas mais proeminentes.
Por outro lado, o average pooling calcula a média dos valores na vizinhanga, resultando em uma

representacio mais suavizada.
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O filtro de pooling atua de forma anédloga ao filtro convolucional, deslocando o kernel
sobre o mapa de caracteristicas com um deslocamento definido pelo parametro de passo (stride).
Em cada posicdo da janela, € aplicada uma operacao de agregacdo (max pooling ou average
pooling). O resultado obtido em cada regido € entdo armazenado em uma matriz de saida, cuja
resolugdo espacial € inferior a do mapa original. A Figura 8 ilustra o processo utilizando a

técnica de max pooling com um kernel de 2 x 2 e stride igual a 2.

Figura 8 — Operagdo de Max Pooling.
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Fonte: Préprio autor.

Além das técnicas de pooling locais, existem estratégias de pooling globais, como a
camada Global Average Pooling. A agregacdo € aplicada sobre toda a extensdo espacial de cada
mapa de caracteristicas, calculando a média de seus valores e reduzindo-o a um dnico escalar. A
camada pode ser empregada como alternativa a utilizagdo de camadas totalmente conectadas,
assim como a camada flatten. Sua aplicacdo reduz significativamente o nimero de pardmetros

do modelo e diminui o risco de overfitting.

2.5.1.3 Camada Totalmente Conectada

A camada totalmente conectada € uma das etapas finais em uma CNN. Trata-se
de uma camada a qual cada neur6nio estd conectado a todos os neurdnios da camada anterior,
realizando uma soma ponderada das entradas. Essa operagdo utiliza todas as caracteristicas
extraidas nas camadas precedentes para gerar a saida final. O principal objetivo da camada
totalmente conectada € combinar as informagdes para produzir uma decisao definitiva sobre a
classe do objeto ou padrao reconhecido (HIJAZI et al., 2015). Sua estrutura € similar a de um

MLP, sendo responsdvel pela classificacao final.
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2.6 Técnicas de Regularizacao

Um problema comum no ML € desenvolver um algoritmo que apresente bom de-
sempenho tanto nos dados de treinamento quanto nos de teste. A regularizacido é uma técnica
utilizada para reduzir os erros de teste, geralmente as custas de um aumento no erro de trei-
namento. Seu principal objetivo € reduzir a complexidade excessiva dos modelos e auxiliar a
formular uma funcio mais simples, promovendo, assim, a generalizacgao.

Dentre as técnicas de regularizacdo mais empregadas em DL, destaca-se o dropout,
que consiste em desativar aleatoriamente uma fracdo dos neurénios durante o treinamento. Com
o intuito de evitar coadaptagdes excessivas entre unidades de processamento, obrigando cada
neurdnio a contribuir de forma autdonoma e a incorporar informagdes de todos os seus sinais
de entrada. Apds o treinamento, todos os neurdnios permanecem ativos. Em consequéncia,
obtém-se uma arquitetura mais robusta e com maior capacidade de generalizacio (GERON,
2019).

Considerando a fungdo de custo J(6) definida na Subsegdo 2.2.1 e o processo de
otimizacao discutido posteriormente, técnicas de regularizacdo podem ser incorporadas ao
modelo por meio da adi¢do de um termo penalizador a fun¢do objetivo. A nova formulacdo

assume a forma:

0(8) = J(8) + AR(8), (2.15)

em que A é um hiperpardmetro que regula a intensidade da penalizagdo, e R(6) representa a
fungdo de regularizacdo. As abordagens mais comuns para essa penalizacdo baseiam-se nas
normas ¢, e {1, conhecidas respectivamente como regularizacdo Ridge e Lasso. A regularizagdo

>, definida por

Ri2(0)=6]5=Y 67, (2.16)

i=1
impde uma penalidade quadratica sobre os parametros e favorece solu¢des com pesos menores,
embora ndo necessariamente nulos. Esse tipo de regularizacdo, associado a uma distribuicdo
normal como prior sobre os parametros, reduz a sensibilidade a valores extremos e melhora a

estabilidade numérica do treinamento. Por outro lado, a regularizacio ¢, é expressa como
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n

Rui(68) =61 =)_l6i, (2.17)
i=1

e introduz uma penalizacdo linear que promove esparsidade no vetor de parametros, zerando
coeficientes menos relevantes. Essa caracteristica torna a regularizacdo L1 especialmente util

quando se deseja realizar selecdo de varidveis de forma implicita.

2.7 Meétricas de Avaliacio

A avaliagdo do desempenho de modelos de ML constitui um aspecto fundamental
para compreender sua capacidade de generalizacdo e eficdcia. Diversas métricas cldssicas
sdo empregadas na literatura para quantificar o desempenho de modelos, tanto em tarefas de

classificagdo quanto em deteccao de objetos.
2.7.1 Acurdcia

A acurécia representa a propor¢ao de predi¢des corretas sobre o total de amostras

avaliadas, considerando os verdadeiros positivos (VP) e verdadeiros negativos (VN).

VP+VN
Acuracia = + (2.18)
VP+VN+FP+FN

2.7.2 Precisao

A precisdo (precision) quantifica a proporcdo de VP em relacdo ao total de instancias

previstas como positivas, ou seja, a soma entre verdadeiros positivos e falsos positivos (FP):

VP
Precisio = —— (2.19)
VP+FP

2.7.3 Recall

A revocacdo (recall) mede a proporcao de instancias positivas corretamente identi-

ficadas, isto €, a razdo entre VP e a soma entre verdadeiros positivos e falsos negativos (FN):

VP
Recall = ——— (2.20)
VP+FN
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2.7.4 FI1-Score

O F1-Score € a média harmodnica entre precisao e revocagao, sendo especialmente

util em cendrios com classes desbalanceadas, pois equilibra ambas as métricas:

Precisao x Recall

F1-Score =2 x —
Precisao + Recall

(2.21)

2.7.5 Matriz de Confusdo

A matriz de confusdo é uma representacao tabular do desempenho do modelo,
relacionando as classes reais com as predicOes realizadas. Cada linha representa uma classe real

e cada coluna uma classe predita:

Tabela 2 — Estrutura de uma Matriz de Confusio para clas-
sificagdo bindria.

Predito: Positivo | Predito: Negativo

Real: Positivo VP FN

Real: Negativo FP VN

Fonte: Préprio autor.

2.7.6 Intersecdo sobre Unido (IoU)

A métrica Intersecdo sobre Unido (do inglés, Intersection over Union (IoU)) é
fundamental para avaliar a qualidade das deteccdes. Ela quantifica a sobreposicao entre a caixas
delimitadoras (do inglés, Bounding Box (BB)) predita pelo modelo e a caixa real (ground truth),

sendo expressa pela equagdo abaixo:

Area de Interseco
IoU = ¢

z ; (2.22)
Area de Unido

O valor da IoU varia de 0 a 1, sendo que o 1 representa sobreposicdo perfeita entre a
predicdo e a anotacdo. Em aplicagdes praticas, ¢ comum estabelecer um limiar, como 0,5, para
definir se uma deteccao serd considerada VP. Quando a IoU € igual ou superior a esse valor,
a predicao € classificada como VP. Caso contrério, € tratada como FP em relagdo a anotagao
correspondente. A defini¢do desse limiar é uma escolha metodolégica que deve estar alinhada
aos objetivos do experimento. Valores mais elevados exigem maior precisao na localizagdo,
enquanto valores menores permitem maior tolerancia a variagdes na posi¢ao ou nas dimensoes

da caixa delimitadora.
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2.7.7 Average Precision (AP)

A precisao média (do inglés, Average Precision (AP)) é uma métrica que avalia o
desempenho de modelos de deteccdo de objetos em uma unica classe. Ela sintetiza a relacdo
entre precisdo e recall, considerando diferentes limiares de confianca. A AP € calculada com
base na curva Precision-Recall, a qual evidencia o equilibrio entre identificar corretamente todos
os objetos presentes na imagem e evitar detec¢des incorretas.

No PASCAL VOC, a AP € obtida por meio de uma interpolacio da curva Precision—
Recall em 11 pontos igualmente espacados, abrangendo valores de revocagdo de 0 a 1 com
incremento de 0,1 (EVERINGHAM et al., 2010). Essa abordagem suaviza as variacdes pontuais
na curva e facilita a comparagdo entre diferentes modelos. Em contraste, o benchmark Microsoft
COCO adota uma metodologia que calcula a AP integrando continuamente a curva Precision—
Recall com um limiar fixo de IoU igual a 0,5 (LIN et al., 2014), proporcionando uma avaliacdo

mais detalhada da precisdo do modelo.
2.7.8 Mean Average Precision (mAP)

A precisdao média média (do ingl€s, mean Average Precision (mAP)) é calculada
como a média das AP obtidas para cada classe do conjunto de dados, conforme expressa na

Equagdo 2.23:

1 N
AP = — AP; 2.23
m N Z] i (2.23)

em que N representa o numero total de classes e AP; corresponde a AP da classe i. Valores
elevados de mAP indicam que o modelo apresenta desempenho satisfatério na detec¢do de
objetos em diversas categorias. Em contrapartida, valores reduzidos podem revelar limita¢des
especificas, como dificuldades na identificacdo de objetos pequenos, oclusos ou com baixa

diferenciacdo visual.
Existem estratégias distintas para o cdlculo da mAP, destacando-se duas variagdes

principais:

* mAP@0,5: cilculo da média das APs usando um limiar fixo de IoU igual a 0,5, conforme
o protocolo do PASCAL VOC. Essa configuragdo € mais permissiva quanto a erros de

localizac@o.
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* mAP@[0,5:0,95]: média das APs obtidas em multiplos limiares de IoU de 0,5 a 0,95, com
incrementos de 0,05, metodologia adotada pelo COCO. Essa abordagem € mais rigorosa e

exige maior precisao.
2.7.9 Validagdo Cruzada

A validacdo cruzada k-fold é uma técnica fundamental em ML para a avaliagcdo de
modelos. Seu principio consiste em dividir o conjunto de dados em k subconjuntos (folds) de
tamanho aproximadamente igual, nos quais k — 1 folds sdo utilizados para treinamento € um
fold para teste, repetindo esse processo k vezes com diferentes folds de teste. Essa abordagem
ciclica permite que todos os dados sejam utilizados tanto para treinamento quanto para teste,
proporcionando uma estimativa mais confidvel do desempenho do modelo em comparacao a

métodos como a simples divisdo entre treinamento e teste (hold-out) (GORRIZ et al., 2024).

2.8 Modelos de CNN

A aplicagdo de CNNs em dispositivos com recursos computacionais limitados, como
smartphones e microcontroladores, tem impulsionado o desenvolvimento de arquiteturas oti-
mizadas que equilibram precisdo e eficiéncia computacional. Modelos como o MobileNet,
EfficientNet e NASNet foram projetados com o objetivo de manter altos niveis de acurécia, ao
mesmo tempo em que reduzem significativamente o nimero de parametros € o custo computaci-
onal. Elas possibilitam a realizacdo de inferéncias em tempo real, mesmo em ambientes com

restricoes de hardware, tornando-se adequadas para aplicacdes embarcadas e moveis.
2.8.1 MobileNetV2

O MobileNetV2 € uma arquitetura de CNN projetada para dispositivos moveis.
Como destacado por Sandler et al. (2018), esse modelo introduz duas inovagdes principais:
inverted residuals (residuos invertidos) e linear bottlenecks (gargalos lineares). Os inverted
residuals invertem a estrutura tradicional dos blocos residuais, conectando camadas estreitas
para reduzir o consumo de memoria, enquanto os linear bottlenecks removem as fungdes de
ativacdo em camadas de baixa dimensionalidade, a fim de preservar informacdes. Combinados
com convolucdes depthwise separable, esses mecanismos permitem que o MobileNetV?2 alcance

um equilibrio entre acuricia e eficiéncia computacional.
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A arquitetura do MobileNetV2, conforme apresentada na Tabela 3, é composta por
uma sequéncia de blocos bottleneck que seguem o padrao de expansao e projecao. A primeira
camada € uma convolucao tradicional 3 x3 com stride 2, seguida por uma série de blocos inverted
residual com diferentes fatores de expansdo. A rede finaliza com uma convolugdo 1x1, global

pooling e uma camada de classificacdo.

Tabela 3 — Arquitetura da MobileNetV2.

Entrada Operagdo t c n s
2242 % 3 conv2d - 32 1 2
1122 x 32 bottleneck 1 16 1 1
1122 x 16 bottleneck 6 24 2 2
56% x 24 bottleneck 6 32 3 2
282 % 32 bottleneck 6 64 4 2
14% x 64 bottleneck 6 9% 3 1
142 x 96 bottleneck 6 160 3 2
7% % 160 bottleneck 6 320 1 1
72 % 320 conv2d 1x1 - 1280 1 1
72 x 1280 avgpool 7x7 - - 1 -
1x1x1280 conv2d 1x1 - k - -

Fonte: Adaptado de Sandler et al. (2018).

Na tabela, as colunas representam:
* t: fator de expansdo dos canais;
e ¢: numero de canais de saida;
* n: nimero de repeticdes do bloco;

* s: stride da convolucao.
2.8.2 EfficientNet

O EfficientNet, introduzido por Tan e Le (2019), € uma familia de arquiteturas
de CNN projetada para maximizar a eficiéncia computacional e a precisd@o. Seu principal
diferencial estd no método de compound scaling (escalonamento composto), que equilibra de
forma conjunta a profundidade, a largura e a resolucdo da rede. A abordagem parte de uma
arquitetura base, o EfficientNet-B0, obtida por meio de uma busca neural por arquiteturas (do
inglés, Neural Architecture Search (NAS)). A partir do EfficientNet-B0, aplicam-se coeficientes
de escalonamento (¢, B, y) para gerar modelos mais complexos, variando de B1 a B7, que
mantém alta eficiéncia. Internamente, o modelo combina blocos MBConv com médulos squeeze-
and-excitation (compressao e excitacdo) e convolugdes depthwise separable (separdveis em

profundidade), reduzindo o custo computacional sem comprometer o desempenho.
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A Tabela 4 detalha a arquitetura do EfficientNet-B0, que serve como base para a
familia. Cada estdgio utiliza blocos MBConv com fatores de expansao variados, seguidos por
uma camada final de convolugdo 1x1 e pooling global. O escalonamento composto permite que

versoes posteriores (como o B7) atinjam a acurdcia 84,3% no ImageNet.

Tabela 4 — Arquitetura do EfficientNet-B0.

Estagio Operador Resolucao Canais Repeti¢coes
1 Conv 3x3 224x224 32 1
2 MBConvl1, k3x3 112x112 16 1
3 MBConv6, k3x3 112x112 24 2
4 MBConv6, k5x5 56x56 40 2
5 MBConv6, k3x3 28x28 80 3
6 MBConv6, k5x5 14x14 112 3
7 MBConv6, k55 14x14 192 4
8 MBConv6, k3x3 7x7 320 1
9 Conv 1x1 + Pooling ~ 7x7 1280 1

Fonte: Adaptado de Tan e Le (2019).

Na tabela, as variaveis e colunas informam:

* MBConvN: bloco Mobile Inverted Bottleneck com fator de expansdo N e ativacdo Swish;

K: tamanho do lado do kernel quadrado da convolucdo depthwise;
* Resolucdo: dimensdes espaciais do mapa de caracteristicas;

* Canais: nimero de mapas de ativacao gerados ao final de cada estagio;

Repeti¢des: nimero de vezes que a célula € repetida em cada estagio.
2.8.3 NASNetMobile

O NASNetMobile ¢ uma arquitetura de CNN projetada para dispositivos moveis
e sistemas embarcados. Como destacado por Zoph et al. (2018), esse modelo é uma versao
otimizada do NASNet original, reduzindo o custo computacional enquanto mantém uma precisao
competitiva. O NASNetMobile utiliza blocos convolucionais modulares (cells) aprendidos
automaticamente via busca por reforco, que sdo repetidos para formar a arquitetura final. Os
blocos incorporam operagdes como convolucdes separaveis (separable convolutions) € conexdes
residuais, otimizadas para eficiéncia.

A arquitetura do NASNetMobile, conforme apresentada na Tabela 5, é composta
por dois tipos de células: Normal Cell (preserva dimensoes espaciais) € Reduction Cell (reduz
resolucdo e aumenta canais). Cada célula € construida a partir de blocos bdsicos que combinam

operacgdes convolucionais e ndo lineares, seguindo uma topologia aprendida durante o processo
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de busca. A rede finaliza com uma camada de pooling global e classificacao.

Tabela 5 — Arquitetura do NASNetMobile.

Estdgio Operador Resolucdo Canais Repeticdes
1 Conv3x3 224 x 224 32 1
2 Normal Cell 112 x 112 44 1
3 Reduction Cell 112 x 112 44 2
4 Normal Cell 56 x 56 88 3
5 Reduction Cell 28 x 28 176 4
6 Normal Cell 14 x 14 352 3
7 Reduction Cell 7x7 704 3
8 Normal Cell Tx7 1408 1
9 Convixl + Pooling 7x7 1056 1

Fonte: Adaptado de Team (2018).

As colunas e varidveis da tabela representam:

Normal Cell: mantém as dimensdes espaciais, realizando operagdes aprendidas (por exemplo,

convolugdes separdveis e conexdes residuais);

Reduction Cell: reduz a resolugdo por stride 2 e dobra o nimero de canais, conforme
heuristicas de escalonamento;
* Canais: nimero de mapas de ativacao gerados ao final de cada estagio;

* Repeti¢des: nimero de vezes que a célula é repetida em cada estagio.

2.9 Deteccao de Objetos

Dentro da visdo computacional, uma atividade de extrema importincia para proble-
mas atuais € a detec¢do de objetos. Ela trata da deteccdo de instancias de objetos visuais de
uma determinada classe em imagens digitais. Em contextos nos quais € necessario ndo apenas
localizar e classificar, mas também reconhecer e determinar suas posi¢coes exatas na cena, a
deteccao de objetos configura-se como uma abordagem eficiente (ZOU et al., 2023).

Para representar a deteccao de objetos em uma imagem, utilizam-se as BB. Essas
caixas t€ém como objetivo indicar a localizacao dos objetos detectados. A BB € representada por
um vetor de coordenadas no formato [Xcenter, Ycenter, Width, height], onde Xcenter € Yeenter COITES-
pondem as coordenadas normalizadas do centro da caixa delimitadora, enquanto width e height
representam, respectivamente, a largura e a altura da caixa, também normalizadas. Na Figura 9
ilustra a deteccdo de varios objetos de classes distintas.

Os algoritmos de deteccao de objetos podem ser categorizados em duas abordagens

principais: One-Stage e Two-Stage. Os modelos Two-Stage diferenciam-se dos One-Stage pela
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utilizacao de propostas de regido, enquanto os One-Stage realizam a detec¢io diretamente em
um unico estagio. Essa distin¢do implica em diferencgas significativas de desempenho. Modelos
One-Stage, por operarem de forma mais simplificada, tendem a ser menos precisos, porém
significativamente mais rapidos em termos computacionais. Em contrapartida, os modelos
Two-Stage, ao incorporarem a geragao e refinamento de regides de interesse, alcancam maior

precisdo as custas de uma maior complexidade e laténcia.

Figura 9 — Exemplo de BBs.

Fonte: Sharma (2022).

210 YOLO

Algoritmos One-Stage tém como principal representante modelos que seguem a
arquitetura You Only Look Once (YOLO). Introduzida por Redmon et al. (2016), representou
um marco na detec¢do de objetos ao propor um modelo de inferéncia unificada, capaz de
realizar localizacdo e classificacdo em uma tnica etapa. Diferentemente de modelos baseados
em multiplas fases, como o Region-based Convolutional Neural Network (R-CNN), o YOLO
trata a tarefa como um problema de regressdo direta sobre a imagem inteira. A Figura 10 ilustra
a arquitetura da primeira versdo do YOLO, evidenciando o fluxo da imagem de entrada até a
predi¢do final.

A imagem de entrada € redimensionada para 448 x 448 pixels e subdividida em uma
grade espacial S x § (geralmente, 7 x 7). Cada célula dessa grade € responsavel por prever B

caixas delimitadoras, juntamente com os respectivos escores de confianca C. O escore, definido
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pela Equagdo (2.24), corresponde ao produto entre a probabilidade de existéncia de um objeto

na caixa e a métrica de IoU.

Confianga = Pr(objeto) x IoUpedicio,real (2.24)

Figura 10 — Arquitetura YOLO.
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Fonte: Redmon et al. (2016).

Adicionalmente, cada célula da grade estima as probabilidades condicionais das
classes presentes, representadas por P(C; | 0), conforme a Equag@o (2.25). A expressao define
a probabilidade de a classe C; estar presente, dado que hd um objeto (o) na célula em questio.
Essas estimativas sao fundamentais para a posterior combina¢do com o escore de confianga de
cada predicao, resultando na probabilidade final de uma determinada classe estar associada a

uma caixa delimitadora.

P(Ci | 0) (2.25)

Com base nessas informacdes, a saida da rede € organizada em um tensor tridimen-
sional de dimensdo S x S x (B x 54 C), em que S representa o nimero de células por eixo da
grade, B é o nimero de caixas delimitadoras previstas por célula, e C corresponde ao nimero
total de classes. O valor 5 refere-se aos pardmetros de cada caixa: coordenadas (x,y), dimensdes
(w,h) e escore de confianga. A Figura 11 ilustra esse processo, desde a divisdo da imagem em
células da grade até as predicdes de caixas delimitadoras.

A primeira versdo da arquitetura, o YOLOVI, iniciou uma evolugdo significativa
na abordagem de deteccdo de objetos em tempo real. Em seu sucessor, o YOLOv2, foram

introduzidas melhorias relevantes, como o uso de anchor boxes, normalizagdo por lote (batch
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normalization) e treinamento em multiplas escalas, resultando em ganhos substanciais de acu-
rdcia. Na versdo YOLOv3, foram incorporadas predi¢des em diferentes resolugdes e conexoes
residuais por meio do backbone Darknet-53, otimizando, em especial, a detec¢do de objetos de
pequeno porte (SAPKOTA et al., 2025). A Figura 12 ilustra a evolugdo das versdes do YOLO ao

longo do tempo.

Figura 11 — Representacdo do funcionamento do YOLO.
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Fonte: Redmon et al. (2016).

Figura 12 — Evolug¢do das arquiteturas YOLO.
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Fonte: Ali e Zhang (2024).

A arquitetura YOLOV4, desenvolvida por pesquisadores independentes, adotou
uma abordagem hibrida, combinando componentes como CSPDarknet53, PANet e estratégias
avancgadas de aumento de dados, como mosaic e DropBlock. Essa combinagio elevou a acuricia
do modelo a0 mesmo tempo em que manteve alta eficiéncia computacional, consolidando-o como
referéncia em aplicagdes em tempo real. Em seguida, o YOLOVS, desenvolvido pela empresa

Ultralytics, representou uma mudancga de paradigma ao migrar para o framework PyTorch, o que
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facilitou a disseminacdo e personalizacdo do modelo pela comunidade. A versdo cinco também
introduziu variantes escaldveis como nano, small, medium, large e extra-large que superaram
seus antecessores em termos de precisdo e velocidade, especialmente em conjuntos de dados

como o PASCAL VOC. A Figura 13 ilustra essas variantes para a versao oito do YOLO

Figura 13 — Comparacao entre as variantes do YOLOVS.

o o> > BB

Nano Small Medium Large XlLarge
YOLOv8n YOLOv8s YOLOv8m YOLOvsI YOLOv8x
6.5 MB 22.6 MB 52.1 MB 87.8 MB 136.9 MB
0.99 msp 00 1.2mspq00 1.83 msp109 2.39 mspq00 3.53 msa 00
37.3 MAPGoco 44.9 MAPcoco 50.2 MAPcoco 529 MAPcoco  53.9 MAPcoco

Fonte: Sharma (2023).

Nas versoes mais recentes, YOLOv6, YOLOvV7 ¢ YOLOVS, o foco tem sido o
aprimoramento da robustez e da precisao, por meio da introdugao de redes reparametrizadas,
mecanismos de atenc¢do e arquiteturas anchor-free. O YOLOVS, em particular, destaca-se por sua
estrutura modular e por sua capacidade de realizar maltiplas tarefas, como detec¢@o, segmentagao,

rastreamento e classificagdo (SAPKOTA et al., 2025).



44

3 METODOLOGIA

Para o desenvolvimento deste trabalho, serdo empregadas tecnologias e ferramentas
modernas para o treinamento de modelos de ML. Além disso, serd implementado um APP com o
objetivo de proporcionar uma visualizagc@o ripida e eficiente da imagem analisada. Nesta secao,

serdo discutidos esses aspectos em detalhes.

3.1 Materiais

Para a execucdo deste projeto, foram empregadas ferramentas e materiais essenciais
para o desenvolvimento e andlise dos modelos de ML. O Google Colab foi utilizado como
ambiente de desenvolvimento, oferecendo uma plataforma baseada em nuvem com suporte a
GPUs L4, facilitando o treinamento intensivo de redes neurais. Sua integragdo com o Google
Drive possibilitou o armazenamento e gerenciamento eficiente dos conjuntos de dados e modelos,
simplificando a importacdo e exportacdo de arquivos.

Além disso, adotou-se a linguagem de programacgdo Python, reconhecida por sua
simplicidade sintdtica e ampla aceitagdo na comunidade de ML. O desenvolvimento dos modelos
foi conduzido por meio do framework TensorFlow (TF), em conjunto com sua API de alto nivel,
o Keras, que proporcionou um ambiente abrangente para criagdo, treinamento e validagao dos
algoritmos.

Para validacdo em dispositivo mével, utilizou-se um smartphone Samsung Galaxy
AS52s, equipado com processador octa-core Snapdragon 778G, 6 GB de memoéria RAM e GPU
integrada Adreno 642L. A execucdo dos modelos diretamente no dispositivo permitiu avaliar
com precisdo os tempos de inferéncia tanto para detec¢do quanto para classificacio, garantindo
que a solucdo proposta fosse tecnicamente vidvel, funcional e responsiva em ambientes externos

ao laboratorio.

3.2 Base de Dados

As imagens utilizadas neste trabalho foram cedidas com a devida autoriza¢do por
ALMEIDA (2021), tendo sido coletadas na EMBRAPA, com o apoio dos colaboradores da
instituicdo. As imagens foram organizadas e classificadas com base no nimero do brinco do
animal, na raca e nos valores de Ht.

As amostras foram inicialmente organizadas conforme a data de captura e o disposi-
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tivo utilizado, o que resultou em multiplas ocorréncias do mesmo animal em diferentes aparelhos
de coleta. Para eliminar essa redundancia, adotou-se o critério de selecionar apenas as imagens
provenientes de um tunico aparelho por coleta.

Posteriormente, as amostras foram categorizadas e agrupadas de acordo com seus
respectivos niveis de Ht, seguindo como referéncia os valores contidos na Tabela 1. Resultando

na distribui¢ao observada na Figura 14.
Figura 14 — Distribui¢do de imagens por grau de anemia.
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Fonte: Préprio autor.

Na Figura 14, observa-se uma clara discrepancia entre os valores para animais
sauddveis (graus 1 e 2) e os doentes. Isso se deve ao fato de que a criacio da EMBRAPA
possui uma excelente estrutura, incluindo assisténcia veterindria, suplementacao vitaminica e
alimentacdo adequada, o que dificulta a progressao de doengas entre os animais.

Para a montagem da base de dados final, foram selecionadas amostras que apresenta-
vam boas condi¢Oes de nitidez e auséncia de ambiguidade na classificacdo. Essa curadoria foi
necessdria devido a frequente ocorréncia de casos em que, embora o nivel de Ht fosse compativel
com a classe atribuida, a coloracdo da mucosa ocular ndo refletia claramente essa condicao,
optando-se pela exclusdo dessas amostras.

Esse critério resultou em apenas 33 imagens para o grupo mais reduzido (grau 5).

Diante disso, adotou-se o equilibrio amostral, selecionando a mesma quantidade de imagens
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para todos os grupos, totalizando 165 amostras igualmente distribuidas entre as classes para o

presente trabalho.

3.3 Aumento de Dados

A técnica de Aumento de Dados (do inglés, Data Augmentation (DA)) foi aplicada
para ampliar o conjunto de dados e melhorar a performance dos modelos de ML. Segundo Rici et
al. (2021), essa técnica ajuda a reduzir o overfitting, permitindo que os modelos aprendam com
uma variedade maior de exemplos. No projeto, foram realizadas as seguintes transformacdes nas
imagens:

* Rotacdes (rotation range): alteragdo da orientacao das imagens para simular variagdes
angulares.

* Espelhamento horizontal (horizontal flip): aumento da diversidade por meio de inversao
horizontal.

* Espelhamento vertical (vertical flip): aumento da diversidade por meio de inversao vertical.

* Ajuste de brilho (brightness range): modificacdo dos niveis de brilho para simular diferen-
tes condi¢des de iluminagdo.

* Zoom (zoom range): alteracdo da escala das imagens para simular aproximagao ou
afastamento.

* Cisalhamento (shear range): distor¢cao angular para simular mudancas de perspectiva.

* Deslocamento horizontal (width shift range): deslocamento lateral para simular variagdes
na posicdo da imagem.

* Deslocamento vertical (height shift range): deslocamento vertical para simular variagdes
na posicao da imagem.

* Normalizacdo dos pixels (rescale): transformacao dos valores dos pixels para o intervalo

[0, 1], facilitando o aprendizado.

3.4 Pipeline de Deteccao e Classificacao

Para viabilizar a utiliza¢do dos modelos de DL no APP, foi desenvolvido um pipeline
de deteccao e classificagdo. O processo inicia-se com a aquisi¢cao e decodificagdo da imagem
para um objeto Bitmap, seguida do redimensionamento as dimensdes exigidas pelo modelo de

deteccdo. Essa etapa garante que os dados estejam no formato e escala adequados a inferéncia
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no TensorFlow Lite (TFLite), formato adotado para a exportacdo dos modelos.

Posteriormente, o modelo de detec¢do de objetos identifica possiveis mucosas na
imagem. Cada deteccdo gera uma BB acompanhada de uma pontuagdo de confianca. Para
eliminar sobreposi¢des e redundancias, aplica-se a técnica de Non-Maximum Suppression (NMS),
que seleciona apenas as caixas com maior confianca e IoU aceitdvel. Caso nenhuma deteccao
atenda aos critérios definidos, o sistema notifica o usudrio para realizar uma nova captura.

Com a BB mais confidvel identificada, extrai-se a Region of Interest (ROI) da imagem
original. Essa regido é entdo submetida a um pré-processamento especifico para a etapa de
classificacdo, o qual inclui redimensionamento e normalizac@o. O classificador gera como saida
um vetor de probabilidades, a partir do qual se seleciona a classe com o maior valor predito.

Sao utilizadas cinco classes distintas, posteriormente agrupadas em duas categorias
finais: “sauddvel” ou “doente” de acordo com a Tabela 1. O resultado da classificagdo é entdao
apresentado ao usudrio, juntamente com a imagem analisada. Caso desejado, o diagndstico pode
ser salvo para consultas futuras ou para fins de acompanhamento clinico. O fluxo completo esta

representado na Figura 15.

Figura 15 — Diagrama do pipeline de de-
teccdo e classificagdo.

Imagem s| Pré-processamento

Pos-processamento

NMS Deteccdo de Objetos

)

Classificagdo da
Imagem

Recorte da ROI

Resultado: Saudavel
ou Doente

Fonte: Préprio autor.
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3.5 Modelo de Deteccao

Conforme apresentado na Se¢@o 2.10, o YOLOVS oferece variantes escaldveis que
permitem ajustar o modelo a complexidade e restricdes da aplicacdo. Considerando que a
aplicacdo desenvolvida neste trabalho foi destinada a dispositivos méveis que possuem limitacdes
de processamento e memoria, foi necessario optar por uma versao leve do modelo.

A escolha pelo YOLOVS justifica-se pela ampla documentagdo disponivel, pela
maturidade do modelo e pela facilidade de integracdo, fatores que contribuiram para um de-
senvolvimento 4gil e confidvel. Optou-se pela variante YOLOv5n (nano), por sua adequagao a
ambientes com recursos computacionais reduzidos.

As 165 imagens foram anotadas utilizando a ferramenta Labellmg, conforme evi-
denciado na Figura 16, configurada para gerar arquivos no formato YOLO (. txt), contendo
cinco valores normalizados por linha: class_id, x_center, y_center, width e height. O
conjunto de dados foi dividido em 80% para treino, 10% para validacio e 10% para teste. Apos a
anotagdo, os arquivos foram organizados conforme a estrutura exigida pelo framework YOLOVS,
distribuidos nos diretdrios train, valid e test.

* train/images/ — imagens utilizadas para treinamento;

train/labels/ — rétulos correspondentes as imagens de treinamento;

valid/images/ —imagens utilizadas para validagao;

valid/labels/ — rétulos correspondentes as imagens de validacdo;

* test/images/ —imagens utilizadas para teste;

test/labels/ —rétulos correspondentes as imagens de teste.

Figura 16 — Anotag@o das mucosas com o software Labellmg.
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Fonte: Préprio autor.
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A organizacgdo reflete a estrutura tipica de datasets otimizados para esse tipo de mo-
delo, garantindo uma integracao direta e eficiente com o pipeline de treinamento. A configuracao
do modelo foi definida em um arquivo data.yaml, no qual foram especificados os caminhos
dos dados, o ndmero total de classes e seus respectivos nomes.

Para o treinamento do modelo, foi definida uma entrada de 320 x 320 pixels, com du-
racdo de 100 épocas e batch size igual a 32. Os hiperparametros obrigatdrios foram configurados
manualmente no arquivo custom_hyp.yaml, conforme apresentados na Tabela 6. Entre eles,
destacam-se: a taxa de aprendizado inicial (1r0), o fator de decaimento da taxa de aprendizado
(1rf), o momentum, a regularizacdo via weight_decay, o nimero de épocas de aquecimento
(warmup_epochs) e os pesos atribuidos as fungdes de perda associadas a detec¢ao de caixas
(box), a classificagcdo (cls) e a presenga de objetos (obj). Esses parametros sdo fundamentais

para o ajuste fino do processo de aprendizagem.

Tabela 6 — Hiperparametros utilizados no treinamento

do modelo YOLOVS
Hiperparametro Valor
1r0 0,01
1rf 0,1
momentum 0,937
weight_decay 0,0005
warmup_epochs 3,0
warmup_momentum 0,8
warmup_bias_1r 0,1
box 0,05
cls 0,5
cls_pw 1,0
obj 1,0
obj_pw 1,0
iou_t 0,20
anchor_t 4,0
f1_gamma 0,0

Fonte: Préprio autor.

Além dos hiperparametros de treinamento, foram definidos parametros especificos
para estratégias de DA. Esses hiperparametros também foram incluidos no arquivo custom_-
hyp.yaml e envolvem modificagdes nas propriedades de cor, geometria e composi¢ao das
imagens. Na Tabela 7 sdo definidos os pardmetros empregados. Destacam-se alteragdes no matiz
(hsv_h), saturacdo (hsv_s), valor (hsv_v), rotagdes (degrees), translagdes (translate), esca-
lonamento (scale), cisalhamento (shear), adi¢do de perspectiva (perspective), espelhamento

vertical (f1ipud) e horizontal (f1iplr), além de composi¢des por mosaico (mosaic), mistura
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de imagens (mixup) e colagem de objetos (copy_paste).

Tabela 7 — Hiperparametros de DA utilizados no trei-
namento do modelo YOLOvS5

Hiperparametro Valor
hsv_h 0,015
hsv_s 0,7
hsv_v 0,4
degrees 10,0
translate 0,1
scale 0,5
shear 2,0
perspective 0,0
flipud 0,0
fliplr 0,5
mosaic 1,0
mixup 0,0
copy_paste 0,0

Fonte: Préprio autor.

3.6 Modelos de Classificacao

A escolha dos classificadores considerou sua aplicabilidade em dispositivos moveis,
especialmente smartphones. Além disso, esses modelos possuem implementacdo nativa no
TF, o que facilitou o desenvolvimento e viabilizou o lancamento de versdes futuras de forma
mais 4gil. Com essas premissas, os modelos escolhidos foram MobileNetV2, EfficientNetBO e
NASNetMobile.

Além da utilizacdo de modelos consolidados e validados na literatura, foi imple-
mentada uma arquitetura CNN desenvolvida para este trabalho, com o objetivo de permitir
comparacdes experimentais entre modelos base e a arquitetura proposta.

O processo de recorte da mucosa foi realizado automaticamente pelo modelo de
deteccdo. A partir do dataset inicial, foi gerado um novo conjunto contendo apenas as regides
recortadas conforme ilustrado na Figura 17.

Neste trabalho ndo foi empregada transferéncia de aprendizado. Todos os classi-
ficadores foram treinados a partir de pesos aleatérios. Durante o treinamento, adotaram-se
hiperparametros padronizados para garantir consisténcia metodoldgica nas comparagdes. A base
de dados foi composta por cinco classes com distribuicdo equilibrada entre elas. As imagens
foram redimensionadas para 64 x 64 pixels e normalizadas para o intervalo [0, 1]. O processo de

treinamento foi conduzido por 700 épocas, com batch size de 16, e a avaliacao dos resultados
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foi realizada por meio de validagcdo cruzada do tipo k-fold, com k = 5. Em cada iteracao dessa
validag@o, as previsdes obtidas e os respectivos valores reais foram registrados para possibilitar

andlises posteriores mais detalhadas do desempenho dos modelos.

Figura 17 — Exemplo de mucosa cortada.

Fonte: Préprio autor.

Nos experimentos iniciais, constatou-se que as classes de grau 2 e grau 3, corres-
pondentes ao limiar entre casos sauddveis e anémicos, apresentaram desempenho inferior em
relacdo as demais categorias. Com o intuito de atenuar a discrepancia, aplicou-se um fator de
ponderacdo igual a 1,5 para essas classes, mantendo-se o peso unitario (1,0) para as demais.
Essa medida teve como objetivo elevar a acurdcia dessas classes especificas, aproximando seus
resultados daqueles observados nas demais categorias.

Para aumentar a capacidade de generalizacdo dos classificadores, aplicaram-se

técnicas de DA. Os valores correspondentes podem ser consultados na Tabela 8.

Tabela 8 — Hiperpardmetros de DA utilizados nos clas-

sificadores
Hiperparametro Valor
rescale 1,0/ 255
brightness_range 0,7;1,3)
zoom_range 0,2
rotation_range 15°
shear_range 0,15
width_shift_range 0,1
height_shift_range 0,1
horizontal_f1lip Ativado
vertical_flip Ativado

Fonte: Préprio autor.

3.6.1 MobileNetV2

O classificador foi baseado na arquitetura MobileNetV2 do TF. A agregacdo espacial

foi realizada por meio de GlobalAveragePooling2D. Em seguida, para mitigar o overfitting,
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foram inseridas duas camadas de dropout (0,5), intercaladas por uma camada densa de 128
neur6nios com ativa¢ao ReLU e regularizagao L2 (A = 0,01).

A saida final é composta por uma camada densa com cinco unidades e ativacao
Softmax, gerando distribuicdes de probabilidade para as cinco classes da base de dados. A com-
pilacdo foi efetuada com o otimizador Adam com 1 = 0,001, utilizando categorical crossentropy
como funcao de perda e a acurdcia como métrica de avaliacdo. As camadas com hiperparametros

estdo resumidas na Tabela 9.

Tabela 9 — Configuracdo do MobileNetV?2.

Camada Configuragdo
MobileNetV2 Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 128 neurdnios, ReLU, L2 (A = 0,01)
Dropout 0,5
Dense (saida) 5 neuro6nios, softmax

Fonte: Préprio autor.

3.6.2 EfficientNet-B0

Desenvolvido utilizando a arquitetura EfficientNet-B0O seguindo o mesmo padrao de
constru¢do do MobileNetV2, com a diferenca de que a camada densa intermedidria utiliza 256

neur6nios e a regularizacdo L2 de A = 0,001.

Tabela 10 — Configuracdo do EfficientNet-BO.

Camada Configuragdo
EfficientNet-BO Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 256 neurdnios, ReLU, L2 (A = 0,001)
Dropout 0,5
Dense (saida) 5 neur6nios, softmax

Fonte: Préprio autor.

3.6.3 NASNetMobile

Construido a partir da arquitetura NASNetMobile, segue o mesmo padrao das demais,

porém com regularizagdo L2 de A = 0,001 e 128 neurdnios na camada densa intermedidria.
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Tabela 11 — Configuragdo do NASNetMobile

Camada Configuragdo
NASNetMobile Base Sem pesos pré-treinados
GlobalAveragePooling2D —
Dropout 0,5
Dense 128 neurdnios, ReLU, L2 (A = 0,001)
Dropout 0,5
Dense (saida) 5 neur6nios, softmax

Fonte: Préprio autor.

3.6.4 Arquitetura Proposta

A arquitetura da CNN proposta foi composta por trés camadas convolucionais
sequenciais (Conv2D) com 32, 64 e 128 filtros, respectivamente. Cada camada convolucional foi
seguida por uma camada de BatchNormalization e uma camada de MaxPooling?2D.

Para mitigar o overfitting, aplicou-se regulariza¢do L2 com A = 0,01 em todas as
camadas convolucionais. Na etapa de classificacio, os mapas de caracteristicas sao transformados
em vetor por meio de uma camada Flatten, seguida por uma camada densa com 128 neur6nios,
fungdo de ativagdo ReLU e regularizagdo L2 (A = 0,01). Apds essa etapa, aplica-se um dropout
de 0,5.

Por fim, a camada de saida € uma densa com cinco unidades e ativacdo Softmax,
responsavel por gerar as distribui¢des de probabilidade finais para as cinco classes do problema. A
compilacido do modelo foi realizada com o otimizador Adam, configurado com LR de 11 = 0,0001,
funcdo de perda categorical crossentropy e métrica de avaliacdo a acurdcia. A Tabela 12 detalha

a arquitetura completa.

Tabela 12 — Configuracdo da Arquitetura Proposta.

Camada Configuragdo
Conv2D 32 filtros, (3x3), ReLU, L2 (A = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Conv2D 64 filtros, (3x3), ReLU, L2 (A = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Conv2D 128 filtros, (3x3), ReLU, L2 (A = 0,01)
BatchNormalization —
MaxPooling2D (2x2)
Flatten —
Dense 128 neurédnios, ReLU, L2 (A = 0,01)
Dropout 0,5
Dense (saida) 5 neuro6nios, softmax

Fonte: Préprio autor.
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3.7 Aplicativo

O APP foi desenvolvido utilizando a linguagem de programacao Kotlin, em conjunto
com o framework Jetpack Compose, que oferece uma abordagem moderna e declarativa para
a construgdo de interfaces de usudrio no sistema operacional Android. Esta combinacgdo de
ferramentas permitiu a criagdo de uma aplicacao responsiva, com um fluxo de navegacao intuitivo
e de fécil usabilidade para o publico-alvo.

Os requisitos do APP foram definidos de forma a atender aos objetivos propostos
neste trabalho, proporcionando uma ferramenta pratica e acessivel para a andlise de anemia em
ovinos. O software de funcionamento simples opera basicamente com duas tarefas principais, a

escolha da imagem e posteriormente a analise dessa amostra pelos modelos de DL.

3.7.1 Tela Inicial

Na tela inicial, o APP possibilita ao usudrio selecionar uma imagem da galeria ou
capturar uma nova utilizando a camera do dispositivo. A interface apresenta icones de tamanho
ampliado para facilitar a interagdo. O fluxo de navegacdo dessa etapa estd representado no

diagrama de sequéncia da Figura 18.

3.7.2 Tela de Resultado

Apos a selecdo ou captura da imagem na tela inicial, o usudrio € direcionado para
a tela de resultados. Nesta etapa, o sistema exibe a imagem recortada da ROI (mucosa do
animal) com a classificacdo gerada pelo modelo CNN . A interface oferece a opc¢do de salvar a
imagem processada, por meio de um didlogo de confirmagdo que permite ao usudrio atribuir um
nome ao arquivo antes do armazenamento. Caso nenhuma mucosa seja detectada na imagem,
o0 sistema apresenta uma mensagem informando a impossibilidade de realizar a andlise e, apds
confirmagdo, retorna automaticamente a tela inicial. O fluxo desta etapa estd ilustrado no

diagrama de sequéncia da Figura 19.



Figura 18 — Diagrama de sequéncia da tela inicial.
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Fonte: Préprio autor.
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Figura 19 — Diagrama de sequéncia da tela de resultados.
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Fonte: Préprio autor.
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4 RESULTADOS

Este capitulo apresenta os resultados da metodologia do Capitulo 3, detalhando
as métricas dos modelos de deteccdo e classificacao, além da andlise da usabilidade do APP

desenvolvido.

41 YOLO

O modelo YOLOVS foi avaliado utilizando um conjunto de teste composto por 17

amostras. As métricas de desempenho obtidas encontram-se na Tabela 13.

Tabela 13 — Resultados das métricas para detec¢ao da mu-

cosa.
Meétrica Valor
Precisio 0.996
Recall 1.000
mAP@0.5 0.995
mAP@0.5:0.95 0.598

Fonte: Préprio autor.

O modelo YOLOVS5 apresentou precisdo de 0,996, recall de 1,000 e mAP@0,5 de
0,995, indicando alta eficdcia na deteccao e localizacao das BB. O mAP@0,5:0,95 foi 0,598,
refletindo seu desempenho em multiplos limiares. A Figura 20 ilustra amostras do conjunto de

teste com as deteccdes e seus valores de confianga.

Figura 20 — Exemplos de deteccao da mu-
cosa utilizando YOLO.

mucosa 0.78|

Fonte: Proprio autor.
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4.2 Modelos de classificacao

Os modelos de classificacao apresentados na Sec¢do 3.6 foram avaliados por meio de
validacdo cruzada k-fold. Em cada iteragdo, as previsoes e os valores reais do conjunto de teste
foram registrados para anélises posteriores. Na Tabela 14 apresenta o desempenho médio e o

desvio padrao de cada modelo, considerando acuracia, precisao, recall e F1-Score.

Tabela 14 — Desempenho comparativo entre os modelos avaliados.

Modelo Acuracia Precisao Recall F1-Score

MobileNetV2 0,6061 +£0,1767 0,61184+0,2114 0,6076 +0,1702 0,5589 40,2125
EfficientNet-B0O 0,8303+0,1159 0,8797+0,0771 0,8324+0,1169 0,8326+0,1101
NASNetMobile 0,3939+0,0691 0,3182+0,0619 0,3905+0,0663 0,2995+0,0459

Arquitetura Proposta 0,9030£0,0521 0,9168+0,0432 0,9057+0,0500 0,9026£0,0515

Fonte: Préprio autor.

O MobileNetV2 apresentou limitagdes de generalizacdo, evidenciadas pela diver-
géncia progressiva entre as curvas de perda de treino e validagdo, caracterizando overfitting. A
andlise por classe indicou padrdes recorrentes de confusao entre as categorias grau 2 e grau 3,
com erros consistentes observados nas matrizes de confusdo, conforme descrito no Apéndice A.

O EfficientNet-B0O evidenciou volatilidade nas curvas de aprendizado, apesar do
desempenho superior em relacao ao MobileNetV2. Foram identificadas fragilidades nos graus
iniciais de anemia, com recall reduzido no grau 1 e precisdo baixa no grau 2, como apresentado
no Apéndice B.

O NASNetMobile apresentou reducao na capacidade discriminatéria, com tendéncia
a predi¢des concentradas nas classes grau 3 e grau 5. Observou-se degradagdo gradual da perda
de validagdo, associada a overfitting, e menor separabilidade entre classes, evidenciada nas
matrizes de confusio por fold, descritas no Apéndice C.

A arquitetura proposta apresentou desempenho consistente entre classes, com F1-
Score superior a 0,84 em todas as categorias. A convergéncia estavel das curvas de treino e
validacdo, juntamente com a precisdo elevada nos graus 4 e 5, indicam boa adaptagdo ao dominio
do problema, com detalhes adicionais no Apéndice D.

Os resultados indicam que a arquitetura proposta apresentou desempenho superior
aos demais modelos, evidenciando maior capacidade de discriminacdo entre os diferentes graus
de anemia e consisténcia nas métricas avaliadas. Essa vantagem pode ser explicada pela topologia

arquitetural especifica, desenvolvida para captar caracteristicas essenciais ao problema, sem
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a complexidade adicional encontrada em modelos de aplicagdo mais ampla. Em contraste,
MobileNetV2, NASNetMobile e EfficientNet-BO demonstraram limitacdes na generalizagcao e
na capacidade de classificacdo, possivelmente decorrentes de sua natureza mais abrangente, que
pode representar um excesso de complexidade para a tarefa em questao.

Assim, o modelo desenvolvido mostra-se mais apropriado para implementacao
no sistema moével, combinando precisdo elevada com flexibilidade para futuras adaptagoes.
Sua estrutura permite a incorporacao de novos dados e retreinamento simplificado, facilitando

atualizacdes e aprimoramentos continuos do sistema ao longo do tempo.

4.3 Aplicativo

A Figura 21 mostra dois screenshots da aplicacdo: a tela inicial para captura ou
selecdo de imagens, com interface simples e acessivel, e a tela de resultado que destaca a drea da
mucosa detectada e a classificacdo entre “sauddvel” ou “doente”.

Nos testes, o modelo YOLOVS foi utilizado para a detec¢ao, apresentando tempo
médio de inferéncia de 83 milissegundos, enquanto a CNN proposta realizou a classificagao
em 20 milissegundos. O pipeline completo consumiu cerca de 103 milissegundos no Samsung
Galaxy A52s, garantindo desempenho fluido em tempo quase real, sem necessidade de hardware

avancado.

Figura 21 — Telas de inicio e resultados do APP.

Fonte: Préprio autor.
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5 CONCLUSOES E TRABALHOS FUTUROS

Este trabalho desenvolveu com sucesso um APP capaz de automatizar a andlise
do cartio FAMACHA®O por meio de técnicas de DL. O sistema demonstrou alta eficicia na
detec¢do e classificagcdo da mucosa ocular de ovinos, cumprindo os objetivos propostos. O
modelo YOLOVS apresentou excelente desempenho na etapa de detec¢do, com precisao de
99,6%, garantindo a identificagdo precisa das mucosas. Para a classificacdo, a arquitetura
proposta superou modelos consolidados, como a MobileNetV2 e a EfficientNet-B0, alcan¢ando
uma acuracia média de 90,3% e um F1-Score de 90,3%.

A integragcdo dos modelos no APP resultou em uma ferramenta funcional e acessivel,
com tempos de inferéncia de 103 milissegundos no total, em um smartphone intermedidrio.
A interface, desenvolvida em Kotlin com Jetpack Compose, foi projetada para ser intuitiva,
permitindo a captura ou sele¢do de imagens e exibindo os resultados de forma clara e imediata.
A combinac¢io de desempenho e usabilidade torna a solugdo vidvel para uso em condi¢des reais
de campo, auxiliando produtores, técnicos e médicos-veterindrios na identificacdo da anemia em
ovinos.

Para trabalhos futuros, recomenda-se ampliar o banco de imagens, com €nfase nas
classes grau 4 e 5 de anemia, atualmente sub-representadas no conjunto de dados. A inclusdo de
um maior nimero de amostras desses estdgios avancados permitiria o uso de mais imagens no
treinamento, considerando a escassez de exemplos para essas classes. Como complemento ao
critério baseado no Ht, propde-se a utilizagdo conjunta do sistema FAMACHA® para selegao
das imagens. Essa abordagem hibrida, combinando um método quantitativo com um critério
clinico validado, possibilitaria uma triagem mais criteriosa dos casos, minimizando a exclusao
de imagens potencialmente tteis devido a variagdes naturais na coloracdo da mucosa ocular. A

convergéncia desses dois pardmetros aumentaria a confiabilidade do dataset final.
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APENDICE A - RESULTADOS DO CLASSIFICADOR MOBILENETV2

Figura 22 — Média das curvas de Loss de treinamento e validacao
do MobileNetV2.
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Fonte: Préprio autor.

Tabela 15 — Desempenho consolidado do MobileNetV2.

Meétrica Média

Acurécia 0,6061 +0,1767
Precisao 0,6118 +£0,2114
Recall 0,6076 +0,1702
F1-Score 0,5589 +0,2125

Fonte: Préprio autor.

Tabela 16 — Relatério de classificag@o por classe do Mobile-

NetV2.
Classe Precisio  Recall F1-Score Suporte
Grau 1 0.5179 0.8788 0.6517 33
Grau 2 0.4545 0.3030 0.3636 33
Grau 3 0.6400 0.4848 0.5517 33
Grau 4 0.6098 0.7576 0.6757 33
Grau 5 0.9524 0.6061 0.7407 33

Fonte: Préprio autor.



Figura 23 — Matriz de Confusdo agregada do

MobileNetV2.
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APENDICE B - RESULTADOS DO CLASSIFICADOR EFFICIENTNET-B0

Figura 24 — Média das curvas de Loss de treinamento e validagao
do EfficientNet-BO.
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Fonte: Préprio autor.

Tabela 17 — Desempenho consolidado do EfficientNet-BO.

Métrica Média

Acuricia 0,8303 +£0,1159
Precisao 0,8797 + 00,0771
Recall 0,8324 +£0,1169
F1-Score 0,8326 +0,1101

Fonte: Préprio autor.

Tabela 18 — Relatério de classificacdo por classe do
EfficientNet-B0.

Classe Precisio  Recall F1-Score Suporte
Grau 1 1.0000 0.6667 0.8000 33
Grau 2 0.7000  0.8485 0.7671 33
Grau 3 0.8158 0.9394 0.8732 33
Grau 4 0.8667 0.7879 0.8254 33
Grau 5 0.8571 0.9091 0.8824 33

Fonte: Préprio autor.



Figura 25 — Matriz de Confusao agregada do
EfficientNet-BO0.
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APENDICE C - RESULTADOS DO CLASSIFICADOR NASNETMOBILE

Figura 26 — Média das curvas de Loss de treinamento e validagao
do NASNetMobile.
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Fonte: Préprio autor.

Tabela 19 — Desempenho consolidado do NASNetMobile.

Métrica Média

Acurécia 0,3939 + 0,0691
Precisao 0,3182 £ 0,0619
Recall 0,3905 + 0,0663
F1-Score 0,2995 + 0,0459

Fonte: Préprio autor.

Tabela 20 — Relatério de classificagdo por classe do NAS-

NetMobile.
Classe Precisao  Recall F1-Score Suporte
Grau 1 0.3750 0.1818 0.2449 33
Grau 2 0.4444 0.1212 0.1905 33
Grau 3 0.2558 0.6667 0.3697 33
Grau 4 0.5385 0.2121 0.3043 33
Grau 5 0.6341 0.7879 0.7027 33

Fonte: Préprio autor.



Figura 27 — Matriz de Confusao agregada do

Classes Reais
Grau 4 Grau 3 Grau 2 Grau 1

Grau 5

Fonte

NASNetMobile.
- 6 2 2 0
- 5 4 0 1
- 4 2 1 4
- 1 1 7 10
- 0 0 4 B

| | | |
Grau 1 Grau 2 Grau 3 Grau 4 Grau 5
Classes Preditas

: Préprio autor.

70



APENDICE D - RESULTADOS DA ARQUITETURA PROPOSTA

Figura 28 — Média das curvas de Loss de treinamento e validagao
da Arquitetura Proposta.
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Fonte: Préprio autor.

Tabela 21 — Desempenho consolidado da Arquitetura Pro-

posta.
Meétrica Média
Acurécia 0,9030 = 0,0521
Precisao 0,9168 +0,0432
Recall 0,9057 = 0,0500
F1-Score 0,9026 + 0,0515

Fonte: Proprio autor.

Tabela 22 — Relatério de classificagdo por classe da Arquite-
tura Proposta.

Classe Precisio  Recall F1-Score Suporte
Grau 1 0.9333  0.8485 0.8889 33
Grau 2 0.8485 0.8485 0.8485 33
Grau 3 0.8333  0.9091 0.8696 33
Grau 4 0.9677 0.9091 0.9375 33
Grau 5 0.9429  1.0000 0.9706 33

Fonte: Préprio autor.



Figura 29 — Matriz de Confusdo agregada da Ar-
quitetura Proposta.
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