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RESUMO

O Transtorno do Déficit de Atencao e Hiperatividade (TDAH) é um dos transtornos psiquidtricos
mais diagnosticados na infancia, afetando significativamente o comportamento e desenvolvi-
mento das criancas. O TDAH nao identificado e tratado adequadamente, pode resultar em
consequéncias graves na idade adulta, desde baixo desempenho académico e profissional ao
abuso de substancias. Apesar dos avangos nas pesquisas sobre o tema, o diagnéstico do TDAH
ainda apresenta limitacdes, pois se baseia principalmente na observagdo de sintomas compor-
tamentais. O eletroencefalograma (EEG) tem se mostrado uma alternativa promissora para a
identificacdo de transtornos mentais, pois permite o monitoramento das ondas cerebrais, forne-
cendo informagdes diretas sobre a atividade cognitiva do individuo. Neste contexto, este trabalho
tem como objetivo analisar a viabilidade do uso auxiliar do EEG na identificacdo do TDAH
em criangas. Para isso, foram aplicadas técnicas de pré-processamento robustas e testadas nos
modelos de machine learning SVM, KNN e Random Forest. Seguindo a metodologia proposta,
o presente estudo conclui a superioridade do modelo KNN com 98,91% de acuracia para a

classificacdo das ondas de EEG de criancas com TDAH.

Palavras-chave: TDAH; EEG; Aprendizado de maquina; SVM; KNN; RF



ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly diagnosed
psychiatric disorders in childhood, significantly affecting children’s behavior and development.
If ADHD is not identified and treated appropriately, it can result in serious consequences
in adulthood, ranging from poor academic and professional performance to substance abuse.
Despite advances in research on the topic, ADHD diagnosis still has limitations, as it relies
primarily on the observation of behavioral symptoms. The electroencephalogram (EEG) has
proven to be a promising alternative for identifying mental disorders, as it allows for the
monitoring of brain waves, providing direct information about an individual’s cognitive activity.
In this context, this work aims to analyze the feasibility of using EEG to identify ADHD in
children. To this end, robust preprocessing techniques were applied and tested using SVM, KNN,
and Random Forest machine learning models. Following the proposed methodology, this study
concludes the superiority of the KNN model with 98.91classifying EEG waves of children with
ADHD.

Keywords: ADHD; EEG; Machine Learning; SVM; KNN; RF
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1 INTRODUCAO

O Transtorno de Déficit de Atengao e Hiperatividade (TDAH) € um distirbio neuro-
desenvolvimental caracterizado por padrdes pertinentes de desatenc¢do, hiperatividade e compor-
tamento impulsivo (AMERICAN PSYCHIATRIC ASSOCIATION, 2013). O TDAH € um dos
transtornos psiquidtricos mais comuns entre criancas e adolescentes, com uma taxa de prevalén-
cia infantil de 5,29% na populacdo mundial (POLANCZYK et al., 2007). Embora comumente
identificado na infancia, o TDAH pode trazer, a longo prazo, consequéncias na vida adulta como
dificuldade com relacionamentos pessoais, baixo desempenho académico e profissional, uso e
abuso de substincias e incidéncia de acidentes e ferimentos nao intencionais (KOSHELEFF et
al., 2023). Esses impactos evidenciam a importancia de um diagnoéstico e tratamento precoce.

O TDAH resulta de uma combinagdo de fatores genéticos, neurolégicos e/ou am-
bientais, assim os sintomas se apresentam de forma heterogénea nos pacientes. Pela auséncia
de um marcador biolégico diagndstico, a identificacao clinica do TDAH é baseada na avali-
acao dos critérios do Diagnostic and Statistical Manual of Mental Disorders (DSM), relatos
comportamentais e testes neuropsicolégicos. Ademais, o TDAH tem uma relacdo frequente de
comorbidade com outros Transtornos de Neurodesenvolvimento (TNDs), como o Transtorno
do espectro autista ou Transtorno especifico da aprendizagem, dificultando sua identificacdo
precisa (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).

Apesar de estudos de neuroimagem jd identificarem alteragdes anatdmicas e funcio-
nais em regides cerebrais importantes, como o aumento de ondas lentas por Eletroencefalografia
(EEQG), e o volume encefdlico total reduzido por Ressonancia Magnética (RM), essas descobertas
ainda ndo possuem evidéncias suficientes e comprobatdrias para uso diagnéstico, reforcando a
necessidade de pesquisas. O EEG, importante fonte de dados para muitos estudos da neuroci-
éncia, tem ganhado destaque devido a natureza ndo invasiva, custo-beneficio e seguranca. Por
meio de eletrodos posicionados no couro cabeludo, o EEG mostra a atividade elétrica cerebral do
individuo, ajudando na compreensao de aspectos relacionados a cognicdo e ao comportamento
humano, usada por exemplo no diagndstico de doengas neuroldgicas como Epilepsia e doenca
de Alzheimer (CORSI, 2023).

A atual expansdo e acessibilidade aos modelos de aprendizado de maquina trouxe o
uso crescente dos mesmos na aplicagdo para fim investigativo de transtornos mentais, bem como o
TDAH (UDDIN et al., 2019). Os algoritmos de aprendizado de mdquina sdo capazes de detectar

interacdes complexas e padrdes entre multiplas varidveis com mais facilidade, velocidade e
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precisdo do que os métodos estatisticos tradicionais. Os padroes detectados podem ser usados
para predicdo em um novo conjunto de dados, podendo situar a qual grupo um novo dado pertence,
além de destacar quais varidveis sdo mais impactantes na criacdo dessa predicio (HARRISON et
al., 2023).

Diante dos desafios clinicos para o diagndstico objetivo do TDAH, este trabalho
propde uma abordagem baseada no uso de aprendizado de méiquina para auxiliar de forma
automatizada esse processo. Sabendo que diversos fatores influenciam o desempenho de modelos
classificadores, como a qualidade do conjunto de dados, as técnicas de pré-processamento e 0s
métodos de extracdo de caracteristicas, este estudo busca aplicar técnicas de machine learning,
analisar os resultados obtidos e compard-los com a literatura. A finalidade € testar e avaliar
alternativas que possam aprimorar a precisdo dos modelos, contribuindo para avancos na drea e

promovendo solu¢des mais eficazes para a identificacio do transtorno.

1.1 Objetivo Geral

Este estudo tem como objetivo utilizar novas abordagens de técnicas de aprendizado
de mdquina ja existentes, em busca de aprimora-los para avaliar a eficdcia da andlise de sinais de

EEG na deteccdo de TDAH em criangas.

1.2 Objetivos Especificos

a) Investigar as caracteristicas do EEG que podem indicar a presenga de TDAH.
b) Avaliar a contribui¢do do EEG para compreensdo do diagnéstico de TDAH.
¢) Avaliar a combinacdo de métodos de pré-processamento e técnicas de classificagdo para

analise de EEG.
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2 FUNDAMENTACAO TEORICA

Neste capitulo, serd refor¢cada a importancia da identificacdo precoce do TDAH,
do uso de exames de EEG como ferramenta de anélise do TDAH e da aplicacdo de Machine
Learning (ML) com finalidade classificatoria. Nas se¢des 2.1 e 2.2, serdo abordados tépicos
sobre a definicdo do TDAH, sua identificacdo, causas e tratamento. Na se¢ao 2.3 serd explicado
o funcionamento dos estudos com ondas obtidas por meio do EEG. Por fim, na se¢do 2.4, serd

apresentado o uso de ML na classificacdo de dados.

2.1 Transtorno de Déficit de Atencao e Hiperatividade (TDAH)

O (TDAH) € um transtorno do neurodesenvolvimento caracterizado por padroes
persistentes de desatencdo e hiperatividade/impulsividade, que prejudicam o funcionamento, e
o desenvolvimento do sujeito quando crianga (AMERICAN PSYCHIATRIC ASSOCIATION,
2013). Assim como outros TNDs, o TDAH resulta de um desenvolvimento neural atipico,
afetando processos cerebrais desde as primeiras fases da formagdo embrionaria (ABDELNOUR
et al., 2022).

O TDAH comecgou a ser descrito em publicagcdes cientificas em 1957, inicialmente
denominado transtorno do impulso hipercinético. Naquela época, o termo era utilizado de forma
genérica e precipitada para designar criangas com comportamentos inquietos e impulsivos, fre-

ceny

quentemente rotuladas como “"imperfeitas

"

. Atualmente, o TDAH é amplamente reconhecido
e estudado, especialmente apds sua inclusao no Manual Diagndstico e Estatistico de Transtornos
Mentais (DSM-5), principal referéncia para as diretrizes diagnosticas de transtornos mentais.
Além disso, pesquisas evidenciam que a prevaléncia global do TDAH € de aproximadamente
5,29%, o que destaca seu carater universal, com variacdes nas taxas explicadas por diferencas
metodoldgicas nos critérios diagndsticos (SMITH, 2017).

H4 trés subtipos do transtorno: apresentacao predominantemente desatento, apre-
sentacdo predominantemente hiperativo-impulsivo e apresentacdo combinada. A desatencao
€ caracterizada por distracdo, incapacidade de permanecer em tarefas e desorganizacdo. A
hiperatividade € reconhecida por inquietaciao constante e sem controle, incapacidade de aguardar
e manter-se sentado. E por tltimo a impulsividade, designada por agdes repentinas, inesperadas e
sem planejamento. Sintomas esses que sdo incomuns para a idade ou o nivel de desenvolvimento

do paciente (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).
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A etiologia do TDAH ¢€ resultado de uma combinacdo de fatores ambientais, neuro-
bioldgicos e genéticos. Por exemplo, influéncia nas condi¢des pré-concepcionais, gestacionais e
perinatais, como nascimento pré-maturo, nutricdo da mae gravida, exposi¢cdo a metais pesados
durante o desenvolvimento infantil, além de problemas relacionados ao sono estdo associadas ao
TDAH. Os pacientes ndo apresentam as mesmas alteragdes neurofisioldgicas, e os sintomas do
TDAH no individuo sdo varidveis ao longo do tempo (ABDELNOUR et al., 2022). Além disso,
ha situagdes frequentes de condigdes comodrbidas de neurodesenvolvimento. Por exemplo, muitas
criancas com TDAH apresentam também um transtorno especifico da aprendizagem, dificul-
tando ainda mais a identificacao do transtorno (AMERICAN PSYCHIATRIC ASSOCIATION,
2013).

Atualmente, os profissionais de satde estdo utilizando o DSM-5, em sua 5 edi¢ao
(2013), e o Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision
(DSM-5-TR) (2022) para suas diretrizes. O diagndstico clinico do TDAH, € realizado por meio
de coletas de informacdes e avaliagdes detalhadas do paciente. Os neurologistas/neuropediatras
utilizam escalas de classificacdo validadas pelos pais, professores ou pessoas do convivio com
a crianga, que avaliam o comportamento do paciente em situacdes cotidianas e em varios
ambientes. J4 no caso de adultos e adolescentes, o auto-relato € utilizado como referéncia para
o diagnéstico (FELDMAN; REIFF, 2014; FIRST et al., 2022; AMERICAN PSYCHIATRIC
ASSOCIATION, 2013).

Os critérios do DSM-5 sao vélidos quando a crianga apresenta seis ou mais dos
nove sintomas estabelecidos caracteristicos de desatencao para diagndstico predominantemente
desatento, ou seis ou mais dos nove sintomas de hiperatividade-impulsividade para diagnds-
tico predominante hiperativo-impulsivo, mostrados na Tabela 1. A apresentacdo combinada
€ determinada quando sdo atendidos ambos os critérios. Ja para jovens e adultos pelo menos
cinco desses sintomas sdo suficientes para identificagdo do transtorno. Vdarios desses indicios
qualificantes devem estar evidentes com idade maxima para inicio aos 12 anos, e observados em
mais de um ambiente hd pelo menos 6 meses, seja casa, escola, trabalho, amigos e parentes entre

outros (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).
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Tabela 1 — Sintomas caracteristicos de Desatencao e Hiperatividade para o Diagndstico de TDAH,

de acordo com o DSM-5.

Sintomas

Item  Desatencdo Hiperatividade

1 Frequentemente ndo presta atencio Mexe as maos ou os pés ou se re-
a detalhes ou comete erros por des- mexe na cadeira.
cuido.

2 Dificuldade em manter a atengdo em Levanta-se em situagdes em que se
tarefas ou atividades recreativas. espera que permaneca sentado.

3 Parece ndo escutar quando se fala Corre ou sobe em mdveis em situa-
diretamente com ele/ela. coes inadequadas (em adultos, pode

haver sensacdo de inquietagao).

4 Nio segue instrucdes e ndo conse- E incapaz de brincar ou se envolver
gue terminar tarefas escolares, do- silenciosamente em atividades recre-
mésticas ou de trabalho. ativas.

5 Tem dificuldade em organizar tare- Parece estar "sempre em movi-
fas e atividades. mento", agindo como se estivesse

"a todo vapor".

6 Evita, ndo gosta ou reluta em Fala excessivamente.
envolver-se em tarefas que exigem
esforco mental continuo.

7 Perde objetos necessdrios para tare- Responde precipitadamente antes
fas ou atividades. que as perguntas sejam concluidas.

8 Distrai-se facilmente com estimulos Tem dificuldade para esperar a sua
externos. Vvez.

9 Esquece-se de compromissos ou ta- Interrompe ou se intromete nas con-

refas diarias.

versas ou atividades dos outros.

Fonte: Adaptado do DSM-5, 2013.

E necessério levar em consideracao outros fatores do historico social do paciente,

tais como conflitos familiares, bullying, privacao de sono, sequelas de trauma, etc. Por exemplo,

mudancas frequentes de escola podem causar problemas académicos que podem ser confundidos

com TDAH (AUSTERMAN, 2015). O TDAH frequentemente se apresenta com outras con-

di¢des comorbidas, principalmente distirbios de aprendizagem e linguagem, comportamento

oposicional e distirbio de conduta. O TDAH também pode acompanhar o autismo, a sindrome

do X fragil, epilepsia e lesdo cerebral traumaética. O processo de diagnéstico deve identificar

quaisquer condi¢des coexistentes para um diagnostico assertivo (FELDMAN; REIFF, 2014).

O tratamento do TDAH envolve a combinacdo de medicamentos e terapia compor-

tamental. O uso de estimulantes como anfetaminas e metilfenidato, tem se mostrado eficaz,

apresentando resultados comprovados e eficacia em até 70% dos casos. No entanto, esses medi-
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camentos podem causar efeitos colaterais, como insdnia e anorexia, como € visto em até 15%
dos pacientes (AUSTERMAN, 2015). E importante ressaltar que por ser uma doenca cronica,
esses tratamentos sdo tempordrios € nao curam o TDAH. Assim, a compreensdo dos mecanismos
neurolégicos do TDAH € fundamental para o desenvolvimento de abordagens terapéuticas mais

eficazes, o que serd explorado na préxima secao.

2.2 Neurociéncia Infantil

A Neurociéncia € a area de estudo que investiga a estrutura e a funcio do sistema
nervoso, com énfase no cérebro. A resposta nervosa, fendmeno central da neurociéncia, refere-se
aos sinais elétricos e quimicos que ocorrem no cérebro e no sistema nervoso. Esses sinais sao
a base de fungdes cognitivas como pensamento, memoria, atencdo e emog¢ao, permitindo a
compreensdo e identificagdo de distirbios neuroldgicos, além de contribuir para diagnésticos e
tratamentos mais eficientes (ZHANG et al., 2023).

A neuroplasticidade, um dos principais objetos de estudo da neurociéncia, refere-
se a capacidade do Sistema Nervoso Central (SNC) de se adaptar e modificar em resposta a
experiéncias, mudancas estruturais e funcionais ou mesmo lesdes. Esse processo ocorre com
maior intensidade durante o desenvolvimento cerebral (periodos pré e pds-natal), mas persiste,
em menor grau, ao longo da adolescéncia e da vida adulta. O cérebro infantil apresenta maior
plasticidade do que o cérebro adulto, tornando as intervengdes na infancia potencialmente mais
eficazes, pois o sistema nervoso estd mais predisposto a formacao de novas conexdes (ISMAIL
et al.,2017). Isso enfatiza a importancia da realizac¢do precoce de estudos e exames, aumentando
as chances de eficdcia dos tratamentos.

Padrdes anormais de neuroplasticidade sdo reconhecidos como fatores centrais em
distdrbios pedidtricos, tanto congénitos quanto adquiridos, que afetam o SNC, como o TDAH.
Por exemplo, estudos com EEG indicam que individuos com TDAH tendem a apresentar um
aumento da atividade de ondas lentas theta (4—7 Hz) e uma reducao das ondas rapidas beta
(13-21 Hz), conhecida como razao theta/beta ou Theta/Beta Ratio (TBR) (CORTESE, 2012).

Essa razdo foi utilizada como base para o desenvolvimento do dispositivo Neuropsy-
chiatric EEG-Based ADHD Assessment Aid (NEBA), aprovado pela Food and Drug Adminis-
tration (FDA) em 2013 para auxiliar no diagnéstico do TDAH. Entretanto, conforme apontado
por Arns Martijn e Loo (2016), hd incertezas quanto a utilidade clinica do dispositivo, o que

levanta questionamentos sobre sua eficicia e refor¢a a necessidade de embasamento empirico
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solido antes da comercializagdo de tecnologias diagndsticas.

Dentre as ferramentas de neuroimagem utilizadas para explorar a funcdo cerebral, o
(EEQG) destaca-se por sua alta resolucdo temporal e pelo baixo custo dos equipamentos, tornando-
se uma técnica amplamente empregada, como serd discutido na préxima secao (ZHANG et al.,

2023).

2.3 Eletroencefalografia (EEG)

O (EEG) € um método ndo invasivo de medicao das oscilagdes elétricas do cérebro.
O primeiro registro dessa atividade foi mostrado por Hans Berger em 1929, ao demonstrar que
eletrodos em contato com o couro cabeludo, com amplificacdo do sinal, mostravam mudangas nas
tensoes resultantes da atividade elétrica no cérebro, e que podiam ser plotadas e medidas (READ;
INNIS, 2017). Essas oscilacdes, provenientes da camada externa do cérebro, é associada aos
nossos pensamentos, comportamentos e emogdes. Dessa forma, o EEG revela a agao sindptica

que estd relacionada ao estado cerebral do individuo (NUNEZ; SRINIVASAN, 2007).

2.3.1 Origem dos Sinais

O EEG mede a atividade que acontece quando os neurOnios se comunicam entre si.
Quando um neurdnio envia uma mensagem, ele gera um pequeno impulso elétrico que passa pelo
seu "fio" (o axdnio), até alcancar outro neur6nio. Nesse ponto de encontro, chamado sinapse, ele
libera substancias quimicas chamadas neurotransmissores. Esses produtos quimicos fazem com
que o proximo neurdnio também gere sinais elétricos. Esses sinais criam pequenas correntes
elétricas ao redor dos neurdonios. Como a parte de fora da célula € onde a eletricidade se move
mais livremente, € isso que o EEG consegue registrar, as correntes que passam por fora das

células, indo do cérebro até os sensores colocados na cabeca (CORSI, 2023).

2.3.2 Bandas de Frequéncia

As atividades eletrofisiologicas sdo classificadas por faixa de frequéncia, como
mostrado na Figura 1. As ondas cerebrais sao divididas em Delta (0,5 - 3Hz), correspondente a
sono profundo, Theta (4 - 8Hz), relaxamento ou estado de sonoléncia, Alfa (8 - 13Hz) repouso
ou olhos fechados, Beta (18 - 30 Hz), estado de vigilia ativa e atividades cognitivas com

planejamento ou imagina¢do motora, € Gama (30 - 70 Hz ou mais), processamento cognitivo de
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alta complexidade, como percep¢ao e atencao.

Figura 1 — Ondas cerebrais
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Fonte: Adaptado de Electrical e-Library (2019).

2.3.3 Gravagcdo de EEG

Os materiais utilizados para a gravacdo das ondas cerebrais, sdo ndo polarizados
como prata/cloreto de prata ou ouro, evitando alteracdes nos sinais elétricos captados. A
superficie de contato € um disco com forma de concha de até 10 mm de didmetro, preenchido
com pasta eletrolitica e um gel condutor para melhorar a condugao elétrica e reduzir a resisténcia.
O potencial do eletrodo, € devido a polaridade oposta da superficie metdlica do eletrodo e a pasta
eletrolitica, devido o fluxo em equilibrio dos fons. Assim, quando hd uma diferenca de tensdao
entre os eletrodos, uma corrente flui entre o tecido bioldgico ao redor e o eletrodo (BENICZKY;
SCHOMER, 2020).

Os eletrodos ou canais de EEG sdo nomeados de acordo com a sua localizagdo em
comparacdo com a linha média da cabeca e sua distancia da testa ou da parte de trds da cabecga,
e identificados por uma letra e nimero. Geralmente os canais impares ficam localizados no
hemisfério esquerdo e os pares no hemisfério direito. As letras correspondem a érea: fronto-polar
(Fp), frontal (F), temporal (T), pariental (P), central (C) e occipital (O), ja os eletrodos Al e

A2 estdo como referéncias nos lébulos das orelhas.(SCHAUL, 1998). Na Figura 2 vemos um
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exemplo de montagem de EEG, onde cada circulo representa um sensor com sua identificagdo.

Figura 2 — Montagem e representagdo da vista superior de um EEG.

i
7 -
S - Fp1 i Fp2 N \\\
H
" ELETRODO DE REFERENCIA / // i \\ \\ ELETRODO DE REFERENCIA
) F7 F8 \
/ N F3 Fz F4 .o\
,’ / i \\ ‘\
) |
A1 L g3 eee C3 == Cz === C4 T4 -1 A2
v \ l\ : i ; -
TR ! i
\
\ 15 P3 p P4 1 [
\\ ;S ; S /
\\ o E P /
N ~01_ i 02 S

Fonte: Marina Pousheva / Shutterstock.

2.4 Aprendizado de maquina para classificacio de EEG

Os algoritmos de ML surgiram em torno das décadas de 1940 e 1950, em paralelo
as evolugdes dos computadores, desde entdo, proporciona avangos recorrentes em diversos
campos da ciéncia (ALAN, 1950). O aprendizado de médquina na 4rea da saude € satisfatério
em previsdes promissoras considerando o reconhecimento de padrdes e experiéncias. Como
disse o cientista da computagdo e autor do livro Machine Learning, Michell(1997), “Diz-se que
um programa de computador aprende com a experi€ncia E em uma certa classe de tarefas T e
medida de desempenho P, se seu desempenho nas tarefas em T, conforme medido por P, melhora
com a experiéncia" (ZHOU, 2021).

A aprendizagem de mdquina supera limitacdes de métodos estatisticos tradicionais ao
identificar padrdes complexos em grandes volumes de dados, permitindo tanto a distin¢g@o entre
pacientes e controles quanto a identificacdo de varidveis relevantes. Aplica¢des incluem o uso de
dados clinicos, neuroimagem (como RM e EEG), genética e dados multimodais, com modelos
atingindo acurécias de até 96%. Apesar dos avangos, ainda ha desafios, como a limitacao de

amostras, risco de overfitting, ou seja, quando o modelo memoriza o conjunto de treinamento de
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forma tdo préxima que o modelo ndo consegue fazer previsdes corretas em novos dados, e baixa
interpretabilidade de alguns modelos (HARRISON et al., 2023).

O uso de técnicas de ML e Deep Learning (DL) tem ganhado destaque como fer-
ramenta de apoio ao diagndstico de transtornos mentais, conforme demonstrado na revisao
sistemadtica apresentada por Iyortsuun et al. (2023). Os estudos analisados mostram que modelos
como Support Vectors Machine (SVM), Random Forest (RF) e redes neurais profundas t€ém
alcancado altos niveis de desempenho na identificacio de condi¢cdes como esquizofrenia, depres-
sdo, ansiedade, transtorno bipolar, anorexia nervosa e TDAH. Por exemplo, no diagndstico de
esquizofrenia, modelos DL alcangaram até 94,44% de acuricia, superando métodos tradicionais.
Para TDAH, abordagens hibridas e redes neurais baseadas em Imagens de Ressonincia Magné-
tica funcional (IRMf) mostraram acuricias que variam entre 66% e 95%. Apesar das limitacdes
como tamanhos amostrais reduzidos, os modelos de ML e DL demonstram robustez e precisao,
indicando seu potencial como suporte clinico I'YORTSUUN et al., 2023).

O EEG € uma técnica de neuroimagem que se destaca no estudo do TDAH devido
as suas caracteristicas vantajosas e as aplicagdes promissoras em conjunto com a aprendizagem
de maquina. Trata-se de um método acessivel, de baixo custo e ndo invasivo, o que o torna
popular na investigagdo do TDAH. Fatores como o tipo de tarefa experimental, a condi¢ao do
registro (repouso ou tarefa), a combinacdo de multiplas condi¢des e a divisao por faixas etarias
mostraram influenciar a acurdcia dos modelos. As pesquisas seguem em busca de caracteristicas,
como medidas baseadas em entropia e dimensao fractal, para melhorar ainda mais o desempenho
dos algoritmos. A fim de garantir que essas informagdes extraidas do EEG sejam confidveis e
adequadas para andlise por modelos de aprendizagem de mdquina, é¢ fundamental realizar um

pré-processamento eficiente dos sinais (HARRISON et al., 2023).

2.4.1 Processamento de Sinais de EEG

A andlise do sinal de EEG geralmente € dividida em quatro etapas: coleta de dados
brutos, pré-processamento, extragdo de caracteristicas e classificagdo. Os dados brutos de EEG
correspondem a atividade neuronal registrada diretamente do couro cabeludo, podendo conter
ruidos provenientes do ambiente, como vibragdes e interferéncias da rede elétrica, movimentos
oculares, musculares, cardiacos, ou do proprio sistema de aquisicdo, como sensores defeituosos
(PADFIELD et al., 2019). Em muitos casos, os artefatos presentes no sinal de EEG comprometem

a identificacdo da atividade cerebral relevante, tornando essencial a aplicacdo de técnicas para a



25

remogao ou correcdo dessas interferéncias (KEIL et al., 2014).

O pré-processamento de sinais de EEG visa remover ruidos e artefatos sem com-
prometer informagdes relevantes do sinal cerebral. Entre os métodos mais comuns estdo os
filtros passa-banda, que restringem a andlise a faixa de frequéncia de interesse, e o filtro notch,
utilizado para eliminar interferéncias especificas, como o ruido de linha de energia. Técnicas
mais avancadas, como Independent Component Analysis (ICA) e Empirical Mode Decomposition
(EMD), também sdo empregadas para separar artefatos do sinal original. A EMD, por exemplo,
¢ eficaz para lidar com a natureza nao linear e ndo estaciondria do EEG, permitindo uma andlise
mais adaptativa ao tempo. No entanto, esses métodos apresentam limitagcdes, podendo resultar
em subcorre¢ao, com artefatos residuais, ou supercorre¢ao, com perda de dados relevantes, o
que pode comprometer a precisdo das andlises (KEIL et al., 2014).

As caracteristicas extraidas do EEG podem ser divididas em duas principais cate-
gorias: dominio do tempo e dominio da frequéncia. No dominio do tempo, sdo usadas séries
temporais que mostram respostas rapidas do cérebro a estimulos. No dominio da frequéncia,
analisam-se as poténcias em diferentes bandas (alfa, beta, delta, theta, gama), que refletem aos
ritmos cerebrais. Além disso, caracteristicas espaciais combinam sinais de varios eletrodos para
melhorar a qualidade do dado, e métricas de conectividade avaliam como diferentes regides
do cérebro se comunicam. Juntas, essas caracteristicas ajudam a capturar vérias informagdes

importantes para andlises e classificacdoes com ML (CORSI, 2023).

2.4.2 Classificadores

N3ao existe um modelo de ML que seja ideal para todos os tipos de dados. Por
1sso, € necessario realizar testes para avaliar qual modelo apresenta o melhor desempenho em
cada situacdo-problema. Diversos estudos mostraram que o SVM, por exemplo, € eficaz na
classificacdo de EEG (TASPINAR; OZKURT, 2024). J4 o K-nearest neighbors (KNN), por sua
vez, € um dos classificadores mais simples de implementar e de facil compreensao, ainda sendo
capaz de apresentar bons resultados, dependendo da aplicagao (ZHANG, 2022). E o modelo RF
possui sua abordagem baseada na combinacido de multiplos modelos (4rvores de decisdo), o que
geralmente resulta em melhor desempenho com grandes volumes de dados, embora com maior

custo computacional (BIAU; SCORNET, 2016).



26
2.4.2.1 Support Vector Machines (SVM)

O modelo Mdquina de Vetores de Suporte, do inglés Support Vector Machines, ¢ um
modelo computacional de aprendizado supervisionado voltado para classificacdo linear binéria
e regressdo. O SVM realiza a classificagdo construindo hiperplanos que buscam uma margem
otima entre dados de diferentes classes (CHAUHAN et al., 2019). A Figura 3, representa a
visdo geométrica do SVM, na qual os dados pertencentes a cada classe sdo representados por

diferentes marcadores: cruzes (x) para uma classe e circulos (0) para a outra.

Figura 3 — Representacdo do modelo de classificagdo SVM.
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Fonte: Elaborado pela Autora.

O SVM tem base 16gica, matematica e estatistica, € pode ser considerado uma
extensdo matemadtica das redes neurais (CORTES; VAPNIK, 1995). Para dados que nio sdo line-
armente separaveis, utilizam-se os kernels. Os kernels sao fun¢des matematicas que transformam
os dados de treinamento em um espago multidimensional. Dessa forma, dados que ndo podem
ser separados por uma linha reta (ou plano) no espaco original podem, ao serem projetados em
um espago de maior dimensio, tornar-se linearmente separaveis. Isso facilita a definicao de um
hiperplano linear que separe as classes de forma eficaz (CHAUHAN et al., 2019).

Algumas das principais func¢des utilizadas para o kernel do SVM sao a linear, a
polinomial e a radial ou Radial Basis Function (RBF) (PATLE ARTI E CHOUHAN, 2013). O

RBF geralmente € a funcao mais utilizada em problemas nao lineares. As Equagdes
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Kiinear(Xi,X;) = X, X; 2.1

T d
Kpolinomial (thj) = (YXZ' X +r> (22)
KRBF(Xi;Xj) = eXp (—’}/||Xi—Xj||2) (23)

representam as fungdes linear, polinomial e RBF respectivamente. Os vetores X; € X; representam
T

amostras de entrada que estdo sendo comparadas. O termo X; X; indica o produto escalar entre
esses vetores, servindo como medida de similaridade. O parametro Yy controla a influéncia de
cada ponto de dado no modelo, assim, valores maiores tornam a separagdo mais sensivel as
variagdes locais. No kernel polinomial, o termo r atua como um ajuste adicional (bias), enquanto
d define o grau do polindmio e, consequentemente, a complexidade da fun¢do de separagao.
A expressdo ||x; — X;|| representa a distancia euclidiana entre as amostras, utilizada no kernel
RBF (PATLE ARTI E CHOUHAN, 2013).

De acordo com Patle Arti e Chouhan (2013), o SVM possui algumas limitagdes. A
mais notdvel € a escolha da funcdo kernel, pois encontrar a mais adequada para o problema nao é

uma decisdo simples. Outra limitacdo do modelo € seu custo computacional que requer grande

quantidade de memdria e processamento, no treinamento e classificagao.
2.4.2.2 K-Nearest Neighbor (KNN)

O método K-vizinhos mais préximos, do inglés K-Nearest Neighbors, € um algoritmo
de ML supervisionado amplamente utilizado em tarefas de classificacdo, regressdo e na previsao
de valores faltantes. A classificacdo de um novo dado € feita com base na vota¢do da maioria
entre os k vizinhos mais préximos, ou seja, os mais semelhantes (ZHANG, 2022).

A classificacdo KNN € dividida em duas fases principais. Na fase de treinamento, o
objetivo € encontrar um valor adequado de K para o conjunto de dados, sendo a validacao cruzada
o método mais utilizado para essa escolha. Ja na fase de predic¢do, para cada nova amostra (dado

de teste), o algoritmo identifica os K pontos mais préximos no conjunto de treinamento e realiza
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a classificacdo com base na classe mais frequente entre esses vizinhos, aplicando a chamada
regra da maioria.

O KNN realiza essa classificacdo com base no célculo de similaridade entre a nova
amostra e as instancias previamente rotuladas. Essa similaridade geralmente € medida por

distancias matemadticas, sendo a distancia Euclidiana a mais utilizada. A Equacao

(2.4)

descreve matematicamente o calculo da distancia Euclidiana. Onde d(x;,X;) representa a
distancia Euclidiana entre as duas insténcias, X; € X; sd0 vetores com n atributos, € xj; € xjx
representam os valores do k-ésimo atributo das instancias i e j, respectivamente.

A Figura 4 ilustra a visdo geométrica do KNN. O novo dado, representado por um
circulo (o) destacado preenchido por tom escuro, pode pertencer a classe das cruzes (x) ou a
classe dos circulos (0). Considerando k = 3, o algoritmo analisa os trés vizinhos mais proximos e

atribui o dado a classe predominante, neste exemplo, a classe das cruzes (x).

Figura 4 — Representagdo do modelo de classificagdo KNN.
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Fonte: Elaborado pela Autora.

O KNN, sob condic¢des bastante leves, demonstra que sua taxa de erro tende ao
erro 6timo de Bayes a medida que o tamanho da amostra tende ao infinito. Um classificador é

considerado Bayes Jtimo quando nenhum outro classificador consegue atingir uma taxa de erro
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de classificacdo esperada menor. Basicamente, isso significa que todo o erro de classificagcdo se

deve ao ruido genuino presente nos dados (ZHANG, 2022).

2.4.2.3 Random Forest (RF)

O modelo Floresta Aleatdria, do inglés Random Forest, ¢ uma técnica de classificacao
que utiliza como classificador um conjunto de drvores de decisdo. A abordagem combina varias
arvores de decisdo randomizadas e agrega suas previsoes por meio de votacdo ou média.

O RF opera com base no principio simples, porém eficaz, de "dividir para conquistar”.
Inicialmente, multiplas amostras aleatérias dos dados de treinamento sdo geradas, por meio do
método conhecido por bootstrap). Para cada uma dessas amostras, é construida uma arvore
de decisdao de forma independente, utilizando apenas um subconjunto aleatério das varidveis
disponiveis em cada divisdo do n6. Esse processo reduz a correlacio entre as arvores individuais,
tornando o conjunto mais robusto (BIAU; SCORNET, 2016).

ApOs todas as drvores serem treinadas, suas previsdes sdo combinadas, no caso de
classificac@o, por votagdo majoritédria, e em regressao, por média. Essa agregacao final resulta em
um modelo mais estdvel, preciso e menos suscetivel ao overfitting do que uma Unica arvore de
decisdo. Um dos fatores que mais contribuiram para a popularidade do RF € sua capacidade de
lidar com uma ampla variedade de problemas preditivos, exigindo poucos ajustes de parametros e
funcionando bem mesmo com conjuntos de dados de alta dimensionalidade (BIAU; SCORNET,
2016). A Figura 5 representa uma visao esquemadtica do funcionamento do RF. O modelo conta
com trés arvores de decisdo. Cada arvore € treinada a partir de um subconjunto aleatdrio dos
dados e das varidveis preditoras, produzindo uma classificacdo individual para a nova amostra.
A decisao final do modelo € obtida por meio de votagdo majoritaria entre as classificagoes

fornecidas pelas trés arvores.
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Figura 5 — Representagdo do modelo de classificagdo RF.
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Fonte: Elaborado pela Autora.

O RF é reconhecido por sua eficicia em diferentes tipos de dados e em conjuntos
com grande nimero de caracteristicas. O RF também demonstrou excelente desempenho em
cendrios onde o ndmero de varidveis € muito maior do que o nimero de observacdes (BIAU;

SCORNET, 2016).
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3 TRABALHOS RELACIONADOS

Neste capitulo sao apresentados alguns trabalhos que servirdo como base para

comparacdo com o presente trabalho.

3.1 Rede neural profunda baseada em siamés para deteccao de TDAH usando sinal de

EEG

Em Alajmi et al. (2024) foi proposto uma Convolutional Neural Network (CNN)
Siamesa para analisar mapas cerebrais de EEG. A CNN siamesa consiste em processar duas
entradas por vez, para gerar uma Unica saida representando a métrica de similaridade com base
na distancia euclidiana.

O conjunto de dados utilizado € disponibilizado livremente pela Institute of Electrical
and Electronic Engineers (IEEE). Para a coleta de dados de EEG, foi apresentada atividades
de atencdo visual para um grupo de 121 criancas, sendo 60 criangas controle e 61 criangas
diagnosticas com TDAH. Contudo, o estudo enfatizou a necessidade de técnicas de aumento de
dados, afim de melhorar a generalizacdo e a robustez do modelo. A técnica apresentada utilizada
consiste em embaralhar sub-bandas de frequéncia de dados TDAH e Controle em minilotes, e
substituindo os dados de uma sub-banda pelos de outro sujeito da mesma classe.

O estudo apresentou resultados significativos com o uso de Gradient-weighted Class
Activation Mapping (Grad-CAM), técnica de visualizagdo que aponta quais partes dos dados de
entrada sdo mais influentes nos resultados da previsao do modelo. Entdo, foi mostrado que a
poténcia de banda theta nos lobos frontal e occipital entre individuos saudaveis e com TDAH
apresentam contraste, confirmando indicagdes jd feitas por pesquisas anteriores. Como resultado,

o modelo indicou uma precisdo de 99,17% em deteccdo de criangas com TDAH.

3.2 Identificacao automatica de criancas com TDAH a partir de ondas cerebrais de EEG

Em Jalilpour et al. (2024), um modelo de SVM gaussiano foi treinado para classificar
sinais de EEG, utilizando como diferencial a extragdo de caracteristicas no dominio do tempo e
da frequéncia, considerando apenas as quatro primeiras sub-bandas (alfa, beta, delta e teta). O
estudo também se destacou pelo uso de dados lineares simples.

Os experimentos foram realizados com a mesma base de dados descrita no trabalho

anterior, composto por uma amostra de 121 criancas. Para a sele¢do das caracteristicas mais
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relevantes, foi empregado o método nao supervisionado Principal Component Analysis (PCA).
A classificacdo foi realizada com um modelo de SVM e avaliada por meio de validagao cruzada

holdout e k-fold, resultando em uma precisao média de 93%.

3.3 Deteccao de TDAH a partir de sinais de EEG usando novas técnicas de decomposiciao

hibrida e aprendizado profundo

Em Esas e Latifoglu (2023), foi utilizada uma CNN com o diferencial da aplicacao
das técnicas de decomposi¢do Robust Local Mode Decomposition (RLMD) e Variational Mode
Decomposition (VMD), empregadas para lidar com sinais ndo estaciondrios e varidveis no tempo,
como o EEG, facilitando sua anélise e interpretacdo. O RLMD ¢ um método que separa um
sinal modulado em frequéncia (FM) de um sinal de envelope modulado em amplitude (AM).
J4 0 VMD separa diferentes padrdes dentro do sinal, dividindo séries temporais em submodos
reproduziveis com largura de banda limitada.

Os experimentos com a mesma base de dados usada anteriormente mostraram que,
ao utilizar apenas o canal Fpl com um algoritmo de aprendizado profundo, a precisao foi de
65,82%. No entanto, ao combinar RLMD e VMD, a taxa aumentou para 87,38%. Quando
as técnicas foram aplicadas separadamente, a precisao foi de 80% para RLMD e 77,08% para
VMD.

Além disso, o estudo identificou os canais de EEG mais eficazes para a deteccao
de TDAH, utilizando-os como entrada para um algoritmo de aprendizado profundo. A regidao
frontal (Fpl e Fz) apresentou maior precisdo na classificacdo em comparagdo com os demais
canais. Com o aprimoramento do algoritmo, estima-se que uma taxa de sucesso superior a 95%

possa ser alcancada utilizando um dnico canal de EEG com VMD e RLMD.

3.4 Deteccao automatizada de transtorno de conduta e transtorno de déficit de atencao e

hiperatividade usando técnicas de decomposicao e nao lineares com sinais de EEG

Em Tor et al. (2021), foi desenvolvido um sistema automatizado para a classificagdo
das classes TDAH, Transtorno de Conduta (TC) e ambos, utilizando sinais de EEG. Para isso,
foram empregados os métodos EMD e Discrete Wavelet Transform (DWT) na decomposi¢ao dos
sinais.

A técnica EMD permite decompor os sinais em fun¢des de modo intrinseco, co-
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nhecidas por Intrinsic Mode Functions (IMFs), enquanto a DWT é uma abordagem popular
para decomposicao de sinais, destacando-se por sua capacidade de capturar simultaneamente
informacdes de frequéncia e localizacdo.

A base de dados utilizada na pesquisa, de dominio publico, € composta por sinais
de EEG de 123 criancas, recrutadas de uma clinica psiquidtrica infantil em Singapura (Child
Guidance Clinic), distribuidas nas seguintes classes: TDAH 45 participantes, TDAH + TC 62
participantes, TC apenas 16 participantes. O modelo de machine learning utilizado foi o KNN,
que obteve a maior precisdo no estudo, atingindo uma taxa de acerto de 97,88%.

Na Tabela 2 temos um resumo dos modelos de aprendizado de maquina, quantidade

pessoas nas amostras, e as métricas de desempenho utilizados.

Tabela 2 — Trabalhos relevantes e suas respectivas metodologias de classificagao.

Trabalhos Meétodos de classifi- Extragcdo de recursos Precisao(%)
cagao
Alajmi et al. (2024) CNN Siamesa Mapas cerebrais deri- 99,17%

vados da Densidade
Espectral de Poténcia

(PSD)
Jalilpour et al. SVM gaussiana Extracdo de caracteris- 94,2%
(2024) ticas estatisticas, de do-

minio de tempo e de do-
minio de frequéncia dos

dados
Esas e Latifoglu CNN Decomposi¢io por 95,24%
(2023) Modo Variacional

(VMD ) e Decomposi-
¢do por Média Local
Robusta (RLMD )
Tor et al. (2021) KNN Decomposi¢ao por 97,88%
Modo Empirico (EMD)
e Transformada Wavelet
Discreta (DWT)

Fonte: Elaborado pela Autora.
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4 METODOLOGIA
Neste capitulo, sdo abordadas as etapas de selecdo do conjunto de dados, pré-

processamento, extracao de caracteristicas, classificacdo e as métricas de avaliagdo adotadas,

cujas etapas serdo descritas nas secodes a seguir. A Figura 6 apresenta um resumo da metodologia

proposta.
Figura 6 — Etapas da Metodologia.
Selecao de , Extracga e -
¢ Pré-processamento aga.o ,de Classificacao
Dados Caracteristicas
Aquisicao dos dados
EEG Filtro passa banda > Desvio Padrao > SVM
Filtro Notch RMS KNN
Decomposicao do Assimetria
sinal (EMD) + RANDOM FOREST
Wavelet Adaptativa
Segmentacao dos Curtose
dados
Atividade
Mobilidade
Complexidade
Poténcia Espectral
por Banda (delta,
theta, beta e alfa)

Fonte: Elaborado pela Autora.

Para a implementacao e teste da andlise do EEG, foi utilizada a linguagem Python
versao 3.12.6, na IDE Visual Studio Code versao 1.101.2, juntamente com a biblioteca MNE. A
MNE ¢ uma biblioteca de c6digo aberta especifica para o processamento de dados eletrofisiol6gi-
cos, como o EEG, oferecendo ferramentas robustas para leitura, visualizag¢do, pré-processamento,

andlise e extragdo de caracteristicas dos sinais. Os scripts desenvolvidos para este trabalho estdo

disponiveis no Apéndice A para mais detalhes.
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4.1 Selecao de Dados

A base de dados eeg-data-adhd-control-children € de acesso pitiblico e € disponibili-
zada pela IEEE !. Os arquivos contém registros de EEG de 121 criancas entre 7 e 12 anos. As
criancas diagnosticadas com TDAH foram identificadas por profissionais de saude de acordo com
as normas do DSM-5 e usaram Ritalina por até seis meses. Foi constatado que nenhuma das cri-
ancas do grupo de controle tinha histdrico de transtorno psiquidtrico, epilepsia ou comportamento

de alto risco. A Tabela 3 resume as informacdes sobre os participantes.

Tabela 3 — Informagdes sobre os participantes.

Meninos Meninas Idade
Criancas Saudéveis 50 10 7-10
Criancas com TDAH 48 13 7-12

Fonte: Elaborado pela Autora.

A coleta do sinal de EEG foi obtido por 19 canais no sistema 10-20 4 uma frequéncia
de amostragem de 128 Hz. O protocolo de gravacdo foi baseado em atividades de atencdo
visual, ao estimuld-los a contar o nimero de personagens animados que apareciam em tela, como
mostrado em exemplo da Figura 7. Como a duracdo de cada sessao individual era de acordo
com o tempo de resposta da crianga, o periodo geral das gravacdes de EEG diferiu em todo o

conjunto de dados.

Figura 7 — Atividade visual utilizada na coleta de Dados

Fonte: (ALAJMI et al., 2024).

I <https://ieee-dataport.org/open-access/eeg-data-adhd-control-children>
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Todos os procedimentos para obtengdo desse conjunto de dados foram aprovados
pelo Institutional Review Board (IRB) e pelo Comité de Etica da Universidade de Ciéncias
M¢édicas de Teera. Além disso, os dados foram coletados em duas sessoes distintas € em dois

locais diferentes, reduzindo o viés de medicao na coleta.

4.2 Pré-processamento dos dados

Como mencionado anteriormente, o sinal do EEG é muito sensivel a ruidos, como
os causados por movimentos oculares, do pescoco e pela rede elétrica do local. Para mitigar
esses ruidos, foram aplicados os filtros passa-banda e notch.

O filtro passa-banda tem a fun¢do de eliminar ou atenuar os componentes de alta
e baixa frequéncia de um espectro, permitindo apenas a passagem de uma faixa especifica de
frequéncias. Neste estudo, serd utilizado um filtro passa-banda para atenuar os sinais fora da
faixa de 0,5 — 30 Hz, intervalo escolhido por abranger as bandas de maior interesse (delta, theta,
alfa e beta), devido a relagcdo TBR.

Jé o filtro notch sera utilizado para eliminar a interferéncia do ruido de linha (Power
Line Noise), causado pela interferéncia eletromagnética da rede elétrica. O local de registro esta

situado em uma regido onde a frequéncia da rede é de 50 Hz (JANAPATI et al., 2023).
4.2.1 Limpeza de artefatos com EMD e Wavelet Adaptativa

A decomposic¢do de sinais busca desmembrar um sinal complexo em componentes
mais simples, permitindo uma melhor compreensao e andlise de suas caracteristicas e padroes.
O EMD realiza a decomposig¢ao intrinseca do sinal em componentes oscilatorios, resultando nas
chamadas IMFs através de um processo repetitivo de peneiramento. O intuito do peneiramento é
eliminar ondas superpostas e suavizar amplitudes irregulares (BOUDRAA et al., 2004).

Para cada canal do EEG, o sinal é decomposto em vdrias fun¢des intrinsecas usando
o algoritmo EMD. Essas IMFs representam diferentes componentes oscilatérios do sinal, € o
nimero de componentes € controlado por um parametro definido. Caso o ndmero de IMFs
obtidas seja muito pequeno, o processamento sofisticado € ignorado e o sinal original € mantido
para aquele canal.

Para que haja uma separacado entre sinal limpo e artefato, precisa-se estimar um

limiar, e neste estudo, a curtose, a entropia e desvio padrao, serdo usados com esse proposito.
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A curtose € uma medida da cauda ou achatamento de uma distribuicdao. Em EEG, artefatos
(como piscadas, movimentos musculares, etc.) frequentemente se manifestam como eventos
de alta amplitude e curta duragdo, o que tende a resultar em IMFs com alta curtose. Sinais
neurais, por outro lado, tendem a ter uma curtose menor, ou mais préxima de uma distribui¢dao
normal. Portanto, a ideia de usar a curtose para identificar e remover IMFs com artefatos €
valida. A entropia, mede o grau de desordem, sabendo que artefatos tendem a deixar o sinal
desorganizado ou irregular, o que pode aumentar a entropia em certas regidoes do tempo ou
canais. J4 o desvio padrdo mostra a variabilidade do sinal, sabendo que movimentos oculares ou
musculares geralmente com amplitude alta causam um aumento abrupto no desvio padrdo. Com
base na distribui¢cdo dessas métricas, € definido um limite adaptativo para identificar quais IMFs
provavelmente contém ruido.

As IMFs consideradas ruidosas passam por um processo de filtragem por wavelets.
A Transformada Wavelet decompde o sinal das IMFs em coeficientes que representam sua
informacdo em diferentes escalas de tempo e frequéncia. Artefatos, que frequentemente se
manifestam como picos de alta frequéncia e curta duragdo, tendem a gerar coeficientes de maior
magnitude em determinadas escalas. Com base em um limiar adaptativo, esses coeficientes
ruidosos sdo identificados e atenuados ou zerados. Por fim, o sinal das IMFs sdo reconstruidos a
partir dos coeficientes filtrados, resultando em uma versao mais limpa e livre de ruidos. As IMFs
consideradas limpas, com base nas métricas de curtose, entropia e desvio padrao, ndo sofrem
essa etapa de filtragem por wavelets, preservando sua integridade.

Em resumo, o método de limpeza de artefatos utilizado neste trabalho combina
andlise adaptativa do sinal com técnicas matematicas sofisticadas para limpar o EEG de forma

eficiente, preservando as informagdes importantes e reduzindo ruidos indesejados.

4.2.2 Segmentagdo dos dados

Ap6s a limpeza de ruidos, € proposta uma segmentacao em janelas, assim o sinal de
EEG da série temporal foi dividido em segmentos de tamanho de 2 segundos para cada canal e
com sobreposi¢do de 50%. Dessa forma cada janela de EEG tem 2 segundos, com 1 segundo do
janela anterior e 1 segundo da janela atual. Na obtencdo do sinal, a duracdo minimo de sessdes
para criangas sauddveis era de 50 segundos e para uma crianga com TDAH o minimo foi de 258
segundos. Como o tempo de cada tarefa diferiu em cada sujeito, o nimero de segmentos variou

pra cada crianga.
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4.3 Extracao de caracteristicas

Para representar de forma eficaz os sinais de EEG no processo de classificacao, foram

selecionadas 11 caracteristicas estatisticas que capturam diferentes aspectos do comportamento

do sinal. Essas métricas abrangem desde medidas de dispersdo (como desvio padrdo e Root Mean

Square (RMS)), forma da distribui¢do (assimetria e curtose), até indicadores de complexidade e

desordem (atividade, mobilidade e complexidade de Hjorth). Além disso, foi incluida a poténcia

relativa nas bandas de frequéncia delta, theta, alfa e beta, que refletem padrdes ritmicos relevantes

da atividade cerebral. Juntas, essas caracteristicas fornecem uma representagao abrangente dos

dados de EEG, contribuindo para uma analise mais robusta e informativa. Abaixo temos uma

breve descri¢do dessas caracteristicas.

STD (Desvio Padrao): Mede a dispersao dos valores do sinal em torno da média.

RMS (Raiz Quadrada Média ou Root Mean Square): Uma medida da magnitude média do
sinal ao longo do tempo.

Assimetria ou Skewness: Mede o grau de assimetria na distribui¢do de amplitude do sinal.
Curtose ou Kurtosis: Mede o achatamento ou o pico da distribui¢do de amplitude do sinal.
Atividade ou Activity (ParAmetro de Hjorth): E a variancia da amplitude do sinal, como

mostrado na Equagao

Atividade = Var (x(1)), 4.1)

a atividade reflete a poténcia ou energia média do sinal.
Mobilidade ou Mobility (Parimetro de Hjorth): E a raiz quadrada da razdo entre a varidncia

da primeira derivada do sinal e a variancia do préprio sinal, como mostrado na Equac¢do

Mobilidade = 4.2)

a mobilidade retorna a frequéncia média do sinal ou a propor¢cdo de mudancgas de amplitude.

Complexidade ou Complexity (Parametro de Hjorth): E a razdo entre a mobilidade da

primeira derivada do sinal e a mobilidade do préprio sinal, como mostrado na Equagdo

Var(A2x(t))
Var(Ax(t))

lexidade = V-
Complexidade = - dade

4.3)
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a complexidade reflete a mudanca na frequéncia do sinal.

Ja para as caracteristicas no dominio da frequéncia, o sinal de cada canal individual
€ transformado para o dominio da frequéncia utilizando a Transformada Rapida de Fourier (Fast
Fourier Transform (FFT)), sendo entdo obtida a poténcia total nas quatro bandas de frequéncia
do EEG (delta, theta, alfa e beta). Isso resulta em 11 caracteristicas ( 7 no dominio do tempo e 4
no dominio da frequéncia ) por canal, totalizando em uma matriz de 19 x 11 =209 features por
individuo.

O pré-processamento das caracteristicas incluiu as etapas de imputagdo de valores
ausentes, padronizacgao, selec@o de caracteristicas e redu¢do de dimensionalidade. Essas etapas
sdo fundamentais para garantir que os dados estejam em condi¢des adequadas para o treinamento
dos modelos de aprendizado de médquina.

A imputagdo de valores ausentes foi realizada substituindo os valores faltantes pela
mediana de cada caracteristica, o que € especialmente util em dados com outliers, por ser uma
medida robusta.

Em seguida, foi aplicada a padronizacdo dos dados, transformando as caracteristicas
para que tenham média zero e desvio padrao igual a um. Esse processo € importante porque
muitos algoritmos de aprendizado de maquina sdo sensiveis a escala dos dados, especialmente
aqueles baseados em distancia como o KNN.

Na etapa de selecdo de caracteristicas, utilizou-se o método SelectKBest com o
método estatistico ANOVA F-value, selecionando as 40 caracteristicas mais discriminativas.
Esse método avalia a relacdo entre cada feature e a varidvel alvo, mantendo apenas aquelas que
apresentam maior relevancia estatistica.

Por fim, foi aplicada a Andlise de Componentes Principais PCA, com o parametro
numero de componentes de varincia explicada em 0,95. Isso significa que foram mantidos os
componentes principais suficientes para explicar 95% da variancia total dos dados, reduzindo a

dimensionalidade sem perder informacdes relevantes.

4.4 Classificacao

Este estudo utilizou os algoritmos SVM, KNN e RF, cujas caracteristicas principais
foram apresentadas explicitamente nas se¢des anteriores. A divisdo do conjunto de dados foi
realizada em 70% para treino e 30% para teste. Também foi aplicada validagao cruzada com 5

partes (5-fold cross-validation).



40

Os parametros definidos para o classificador SVM foram: kernel = 'rbf’, C = 10,
0 que representa um controle maior sobre a penalizacdo dos erros, € gamma = ’scale’, que
ajusta automaticamente o parametro com base nas varidveis de entrada. Para o algoritmo KNN,
utilizou-se o nimero de vizinhos igual a 5 (valor intermedidrio), com a métrica de distancia
Euclidiana. J4 para o Random Forest, foram utilizados 100 estimadores, profundidade méxima
das arvores (max depth) igual a 5, e random state igual a 42, a fim de garantir a reprodutibilidade

dos resultados.

4.5 Métricas de Avaliacao

As métricas de avaliagdo mais comumente utilizadas para classificacdo bindria sao
acurdcia, sensibilidade, especificidade, precisdo e matriz de confusdo, como assim seréa feito

neste experimento.

4.5.1 Acurdcia

A acuricia é uma das métricas mais comuns de desempenho de modelos de ML.
Refere-se a qualidade ou exatidao a qual um modelo estatistico prediz uma resposta ou se ajusta
aos dados. Essa taxa de acerto é medida dividindo o nlimero de acertos verdadeiros nos testes
pelo niimero total de testes, como mostrado na Equacao
VP+VN

Acuracia = “4.4)
VP+VN+FP+FN

onde Verdadeiro Positivo (VP) € o numero de amostras em que a classe positiva € predita de
forma verdadeira pelo modelo, Verdadeiro Negativo (VN) € o nimero de amostras em que a
classe negativa € predita de forma verdadeira pelo modelo, Falso Positivo (FP) é o nimero de
amostras em que a classe positiva € prevista de forma falsa pelo modelo e Falso Negativo (FN) é
o numero de amostras em que a classe negativa € predita de forma falsa pelo modelo (JAMES et
al., 2023).

E importante ressaltar que a acurdcia pode néo ser suficiente em casos de conjuntos

de dados desbalanceados, onde as classes t€ém tamanhos significativamente diferentes.
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4.5.2 Sensibilidade

A sensibilidade ou recall também é conhecida como taxa de verdadeiros positivos.
E importante em situa¢des em que a identificacdo correta de positivos é critica, e é calculada
conforme mostra a Equacao 4.5 (RAINIO et al., 2024):
VP

Sensibilidade = ———— 4.5)
VP+FN

4.5.3 Especificidade

A especificidade ou taxa de verdadeiros negativos, mostra a porcentagem de amos-
tras verdadeiramente negativas que foram corretamente classificadas (RAINIO et al., 2024).
Essa métrica € util em situagdes em que falsos positivos devem ser evitados. O célculo da

especificidade € mostrado na Equacao 4.6.

VN

Especificidade = ————
VN+FP

(4.6)

4.5.4 Precisdo

A precisdo mostra a proporcao entre as predi¢des verdadeiras positivas e o total de
predi¢des verdadeiras (RAINIO et al., 2024). O célculo da precisdo € mostrado na Equagao 4.7
VP

Precisio = —— 4.7)
VP+FP

4.5.5 Matriz de confusao

A matriz de confusdo € uma ferramenta essencial para a avaliacdo detalhada do
desempenho de algoritmos de classificacdo. Ela apresenta as taxas de acertos e erros entre
diferentes classes e serve como base para o cédlculo de diversas métricas de avaliagdo. A
matriz exibe as contagens de Verdadeiros Positivos (VP), Verdadeiros Negativos (VN), Falsos
Positivos (FP) e Falsos Negativos (FN). Em classificadores multiclasse, os resultados podem
ser organizados em uma matriz de confusao de dimensao k x k, onde k representa o nimero de
classes (RAINIO et al., 2024). A representacdo de uma matriz de confusdo é apresentada na

Figura 8.



Figura 8 — Representacao da Tabela Verdade.

VALOR PREDITO
SiM NAC
VERDADEIRO POSITIVO FALSO NEGATIVO
. SiM (vP) (FN)
E NﬁuO FALSO POSITIVO VERDADEIRO NEGATIVO
(FP) (VN)

Fonte: Adaptado de (NOGARE, 2020).
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S RESULTADOS

Neste capitulo serdo mostrados os resultados dos testes aplicados, seguindo a metodo-
logia proposta. Este capitulo esta organizado da seguinte forma: a Se¢do 5.1 trata dos resultados
experimentais dos modelos e a Secdo 5.2 discorre sobre os resultados obtidos, realizando uma

andlise e comparagao com os trabalhos encontrados na literatura para andlise de desempenho.

5.1 Resultados experimentais

ApOs a aquisicdo e leitura dos sinais de EEG, iniciou-se o processo de remocao
de ruidos e artefatos. A Figura 9 apresenta o espectro de poténcia, evidenciando a eficdcia da

aplicagdo do filtro passa-banda (0,5-30 Hz) e do filtro notch (50 Hz) nos sinais de todos os canais
do EEG.

Figura 9 — Aplicacao de filtros no sinal de EEG.
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Fonte: Elaborado pela Autora.

A Figura 9 apresenta dois quadros com o espectro de poténcia dos sinais de EEG.

O primeiro (superior) mostra o sinal bruto, no qual € possivel observar a presenca de ruidos,
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evidenciados por picos acentuados, especialmente em torno de 50 Hz, frequéncia caracteristica
de interferéncia da rede elétrica. No segundo quadro (inferior), nota-se o efeito da aplicagdo dos
filtros, onde os picos foram significativamente atenuados, com destaque para a redu¢@o do ruido
em 50 Hz e a queda progressiva da poténcia a partir de aproximadamente 33 Hz, resultado do

filtro passa-banda adotado para a andlise mais especifica dos dados.

5.1.1 Desempenho no conjunto de treinamento

Para os trés modelos foi calculado a margem de erro, calculada através do desvio
padrao e verificado a quantidade de acertos dos valores preditos pra cada um dos modelos
no treinamento, utilizando um grau de confianca de 95%. Os resultados desta aplicacdo sao

apresentados na Tabela 4.

Tabela 4 — Quadro comparativo de desempenho dos modelos no treinamento.

Modelo Margem de Erro % de Acertos (Acurdcia)

SVM 0,29% 97,90%
KNN 0,27% 98,62%
RF 1,21% 78,45%

Fonte: Elaborado pela Autora.

A andlise comparativa dos trés modelos no conjunto de treinamento indica que
tanto o SVM quanto o KNN apresentaram 6timos resultados, com acurécia acima de 97% e
baixos erros médios absolutos (0,29% e 0,27%, respectivamente), demonstrando consisténcia
e confiabilidade nas previsdes. O KNN obteve os melhores resultados em termos de precisao
e menor margem de erro, o que sugere que ele foi o mais eficaz para os dados utilizados. Em
contrapartida, o Random Forest apresentou desempenho significativamente inferior (acuricia
de 78,45% e maior margem de erro, 1,21%), indicando que o modelo pode nao ter se ajustado
bem as caracteristicas do conjunto de treinamento ou que sofreu com overfitting em relagao a
complexidade dos dados.

Portanto, conclui-se que, para este cendrio especifico e com as caracteristicas extrai-
das, o KNN foi o modelo mais eficiente, seguido de perto pelo SVM, sendo o Random Forest o

menos adequado entre os trés.
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5.1.2 Desempenho no conjunto de teste

Para os trés modelos foi especificado a sensibilidade, especificidade, precisao e

acurdcia no conjunto de teste. Os resultados desta aplicacdo sdo apresentados na Tabela 5.

Tabela 5 — Quadro comparativo de desempenho dos modelos no treinamento e teste.

Modelo Precisdo Sensibilidade Especificidade Acuricia

SVM  98,04% 98,29% 97,52% 97,95%
KNN  99,03% 99,00% 98,78% 98,91%
RF 73,67% 90,87% 59,05% 76,80%

Fonte: Elaborado pela Autora.

O modelo KNN apresentou o melhor desempenho entre os trés algoritmos avaliados,
com acuracia de 98,91%, além de valores equilibrados e altos de precisdo, sensibilidade e
especificidade. A precisdao de 99,03% indica baixo indice de falsos positivos. A sensibilidade
de 99,00% indica excelente capacidade de identificar corretamente os casos de TDAH. E a
especificidade de 98,78% mostra o 6timo desempenho também na deteccdo de controles. Esse
equilibrio mostra que o KNN foi eficaz tanto para deteccao quanto para exclusdao da condi¢@o
(TDAH), o que ¢é extremamente importante em contextos clinicos, onde erros de classificacdo
podem ter consequéncias significativas.

O SVM também apresentou alto desempenho, com acuracia de 97,95% e métricas
levemente inferiores as do KNN. O SVM obteve uma precisio de 98,04%, sensibilidade de
98,29% e especificidade de 97,52%. Embora tenha ficado um pouco abaixo do KNN, o SVM se
mostra uma alternativa confidvel, com 6tima capacidade de generaliza¢ao e bom desempenho
em ambas as classes.

E por dltimo o Random Forest, mostrou um desempenho inferior e desigual. O
modelo Random Forest teve a acuracia de apenas 76,80%. A especificidade baixa (59,05%),
indica alto nimero de falsos positivos (ex: controles classificados incorretamente como TDAH).
E a sensibilidade alta de 90,87%, sugere que o modelo acerta muitos casos de TDAH, mas erra
demais os negativos. Esse comportamento indica um viés do modelo em favorecer uma classe

(neste caso o TDAH), o que pode ser um reflexo de parametros incorretos.
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5.1.3 Matriz de confusdo

Na matriz de confusao do modelo SVM, expressa na Tabela 6, é possivel observar
que o modelo teve 103 (48 + 55) classificagdes erroneas e 4.922 (2167 + 2755) classificacdes

assertivas, de no total 5.025 features.

Tabela 6 — Matriz de Confusdo do Modelo SVM.

Classe Real Predito: Controle Predito: TDAH

Controle 2167 (VN) 55 (FP)
TDAH 48 (FN) 2755 (VP)

Fonte: Elaborado pela Autora.

Na matriz de confusdao do modelo KNN, expressa na Tabela 7, é possivel observar
que o modelo teve 55 (28 + 27) classificagdes erroneas e 4.970 (2195 + 2755) classificagdes

assertivas, de no total 5.025 features.

Tabela 7 — Matriz de Confusio do Modelo KNN.

Classe Real Predito: Controle Predito: TDAH

Controle 2195 (VN) 27 (FP)
TDAH 28 (FN) 2755 (VP)

Fonte: Elaborado pela Autora.

E na matriz de confusdo do modelo RF, expressa na Tabela 8, é possivel observar
que o modelo teve 1.166 (256 + 910) classificacdes erroneas e 3859 (1312 + 2547) classificagdes

assertivas, de no total 5.025 features.

Tabela 8 — Matriz de Confusdo do Modelo RF.

Classe Real Predito: Controle Predito: TDAH

Controle 1312 (VN) 910 (FP)
TDAH 256 (FN) 2547 (VP)

Fonte: Elaborado pela Autora.

O modelo KNN se destacou como o mais eficiente, tanto na classificagdo correta

geral quanto em equilibrio entre as classes, sendo o mais indicado para aplicagcdo prética no
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contexto estudado. O SVM também se mostrou eficaz, com desempenho semelhante, podendo
ser preferido em cendrios que exijam mais estabilidade ou escalabilidade. J4 o Random Forest
ndo apresentou desempenho satisfatorio, sugerindo que sua estrutura ou parametrizacao nao foi

ideal para os dados utilizados.

5.1.4 Anadlise das caracteristicas

O uso do SelectKBest selecionou 40 caracteristicas para irem pro treinamento, mas
para uma andlise das melhores caracteristicas envolvidas, serd dissertado sobre as 10 melhores

caracteristicas com seus canais em relacao ao Score ANOVA que estdo mostradas na Tabela 9.

Tabela 9 — Top 10 caracteristicas selecionadas pelo SelectKBest, ordenadas por Score ANOVA.

Caracteristica Score ANOVA
Mobilidade no canal F8 591,20
RMS no canal P4 575,78
STD no canal P4 571,81

Complexidade no canal F§ 560,10
Mobilidade no canal C3 469,03
Poténcia Beta no canal C3 432,72
Mobilidade no canal P3 379,31
RMS no canal F8 363,49
STD no canal F8 357,65
Mobilidade no canal Fpl 275,75

Fonte: Resultados do SelectKBest com teste ANOVA.

Como mencionado anteriormente, na analise de sinais, a mobilidade € uma medida
de dispersdo espectral, relacionada a taxa de variacao da frequéncia do sinal. Variacdes nessa
métrica podem refletir a agilidade ou rigidez do funcionamento neural, caracteristicas que podem
ser atipicas em individuos com TDAH.

O valor RMS mede a magnitude ou a amplitude total do EEG ao longo do tempo,
representando o nivel de energia do sinal. Dessa forma, um RMS alterado pode indicar regides
com hiperatividade em comparag@o a um cérebro neurologicamente tipico. Ja o (Standard
Deviation (STD)), expressa a variabilidade ou dispersdo dos valores do sinal EEG em torno da
média. Um STD elevado indica que os valores do sinal flutuam significativamente, o que pode
sugerir menor estabilidade na atividade neural.

A complexidade, por sua vez, capta a dindmica e a previsibilidade do sinal EEG. A
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perda de complexidade pode indicar perturbacdes nas redes neurais, e sua reducdo pode refletir
um funcionamento menos adaptativo dessas redes.

Dessa forma, as caracteristicas que se mostraram mais discriminativas segundo o
método ANOVA apresentam correlacdo com padrdes tipicos do TDAH.

Ja em relacdo aos canais, F8 (Frontal Direita), parte do lobo frontal, esta envolvido
em fungdes executivas, como aten¢do, planejamento e controle de impulsos. Disfunc¢des nesta
area sdo indicadores para o TDAH. O canal P4 (Parietal Direita) faz parte do lobo parietal,
que desempenham um papel crucial na aten¢do espacial, integracio sensorial e processamento
de informagdes. Embora associada principalmente ao controle motor, esta drea também esta
envolvida na integracdo sensorio-motora. A inquietagdo € 0 movimento excessivo observados no

TDAH podem ter correlagdes com a atividade nesta regido.

5.2 Analise dos Resultados

A Tabela 10 apresenta uma comparagao entre os resultados deste experimento e aque-
les reportados na literatura. Para representar este experimento na comparagao, foi selecionado o
classificador com o melhor desempenho em acurécia.

Os resultados demonstram que a utilizacdo da Transformada Wavelet, combinada
com métodos tradicionais de decomposi¢do (EMD), pode alcancar um bom desempenho na
remogdo de artefatos em sinais de EEG, mesmo em modelos j4 aplicados anteriormente. No
entanto, essa abordagem apresenta limitacdes em relacdo a acurdcia quando comparada a
técnicas mais modernas. Em Jalilpour et al. (2024), por exemplo, foi utilizado o mesmo método
de extracdo de caracteristicas, porém sem uma limpeza aprofundada dos dados, e apenas o
classificador SVM foi testado, obtendo uma acuracia de 94,2%. Ja neste estudo, utilizando as
mesmas caracteristicas, mas com uma etapa mais robusta de limpeza de artefatos e a avaliagao
de trés modelos de classificagdo distintos, foi possivel atingir uma acuricia superior, de 98,91%.
Em Tor et al. (2021), foram aplicadas a Transformada Wavelet discreta e o EMD, de forma
semelhante ao presente trabalho, mas com foco na extra¢ao de recursos, e também obtiveram
resultados satisfatérios com acuracia de 97,88%. Apesar disso, técnicas mais recentes utilizadas
no estado da arte, como a aplicacdo de mapas cerebrais por Alajmi et al. (2024), tém alcancado

desempenhos ainda mais elevados, atingindo acurécia de até 99,17%.
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Tabela 10 — Trabalhos relevantes e suas respectivas metodologias de classificacao.

Trabalhos Métodos de classifi- Extracdo de recursos Precisao(%)
cacao
Alajmi et al. (2024) CNN Siamesa Mapas cerebrais deri- 99,17%

vados da Densidade
Espectral de Poténcia

(PSD)
Jalilpour et al. SVM gaussiana Extracdo de caracteris- 94,2%
(2024) ticas estatisticas, de do-

minio de tempo e de do-
minio de frequéncia dos

dados
Esas e Latifoglu CNN Decomposi¢do por 95,24%
(2023) Modo Variacional

(VMD ) e Decomposi-
cdao por Média Local
Robusta (RLMD )
Tor et al. (2021) KNN Decomposi¢ao por 97,88%
Modo Empirico (EMD)
e Transformada Wavelet
Discreta (DWT)
Este Trabalho KNN Extracdo de caracteris- 98,91%
(2025) ticas estatisticas, de do-
minio de tempo e de do-
minio de frequéncia dos
dados

Fonte: Elaborado pela Autora.

5.2.1 Limitagoes do estudo

Uma das limitacdes deste estudo refere-se ao tamanho da amostra utilizada. Embora
os dados tenham permitido a obtencao de resultados relevantes, uma amostra maior poderia
ampliar a generalizacdo dos achados, especialmente no que diz respeito a diversidade das
caracteristicas dos participantes. Além disso, o uso de dados provenientes de uma tnica base
restringe a comparacdo com estudos que utilizam conjuntos de dados distintos. Outro fator
limitante foi o desempenho da mdaquina utilizada para as andlises, pois algumas execugdes
chegavam a levar cerca de trés horas e, em determinados casos, o computador travava, dificultando

a realizacdo de testes mais complexos ou demorados.
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6 CONCLUSAO E TRABALHOS FUTUROS

O presente trabalho demonstrou que o uso de sinais de EEG como ferramenta para a
classificacdo do TDAH apresenta grande potencial, embora ainda esteja em processo de aprofun-
damento na literatura cientifica. Foi proposta uma abordagem baseada em pré-processamento
eficiente, com a decomposicao de sinais com EMD em conjunto com a Transformada Wavelet, e
extracdo de caracteristicas nos dominios do tempo e da frequéncia.

Os resultados obtidos indicam que a extracdo de caracteristicas como mobilidade,
RMS e desvio padrao se destaca na representacao das informagdes relevantes do sinal de EEG,
evidenciando aspectos tempo-frequéncia associados ao transtorno. Além disso, os classificadores
avaliados SVM, KNN e RF, apresentaram desempenhos satisfatrios, com destaque para o SVM
e o KNN, que alcancaram acurdcias de 97,95% e 98,45%, respectivamente. J4 o RF obteve
desempenho inferior, com acuricia de 76,80%.

Esses resultados reforcam a efetividade das métricas extraidas e indicam que métodos
baseados em distancia, como o KNN, podem ser especialmente adequados para a tarefa de
classificacdo dos sinais de EEG. Também indicam que a implementa¢do do modelo KNN pode
ter obtido resultados 6timos devido a sua simplicidade de implementacdo, ao contrario do SVM e
do RF, que exigem a defini¢do de um nimero maior de hiperparametros. Além disso, a natureza
dos dados favorecia mais fronteiras de decisao como as do SVM e do KNN, ou seja, estavam mais
linearmente separdveis, o que nao seria o ideal para o RF. Mesmo com a heterogeneidade dos
sinais associados ao TDAH, o KNN apresentou o melhor desempenho, possivelmente por tomar
decisdes com base nas amostras mais préximas no conjunto de dados, conseguindo identificar
padrdes locais mesmo em cendrios com sobreposi¢cdo entre as classes.

Em compara¢do com o Estado da Arte, os modelos desenvolvidos alcancaram
resultados compativeis com estudos anteriores, embora mais investigacdes sejam necessarias
para validar a eficdcia dos métodos de processamento utilizados e sua generalizacdo em diferentes

bases de dados.

6.1 Trabalho Futuros

No sentido de dar continuidade a esta pesquisa, € possivel pensar em algumas
abordagens a serem exploradas:

* Realizar outras combinacdes de extracdo de features, como o uso de diferentes caracteristi-
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cas estatisticas ou da Densidade Espectral de Poténcia de apenas duas faixas de frequéncia,
analisando seu impacto na classificacdo final;

* Adaptar o modelo desenvolvido para aplicacdo em outras bases de dados;

* Testar outros classificadores, como arquiteturas de Redes Neurais Artificiais (RNA);

* Aplicar o modelo a outros problemas de classificacdo de sinais de EEG, como a deteccao

de TDAH com comorbidades, ou de epilepsia.
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APENDICE A -
A.1 Codigo

Os scripts implementados em plataforma Visual Studo Code®, versao 1.101.2,
Linguagem Python versdo 3.12.6 estao disponiveis no GitHub. O repositério pode ser acessado

através do QR CODE abaixo e do link <https://github.com/laraAmancio/Analise EEG>.
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