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RESUMO

O Transtorno do Déficit de Atenção e Hiperatividade (TDAH) é um dos transtornos psiquiátricos

mais diagnosticados na infância, afetando significativamente o comportamento e desenvolvi-

mento das crianças. O TDAH não identificado e tratado adequadamente, pode resultar em

consequências graves na idade adulta, desde baixo desempenho acadêmico e profissional ao

abuso de substâncias. Apesar dos avanços nas pesquisas sobre o tema, o diagnóstico do TDAH

ainda apresenta limitações, pois se baseia principalmente na observação de sintomas compor-

tamentais. O eletroencefalograma (EEG) tem se mostrado uma alternativa promissora para a

identificação de transtornos mentais, pois permite o monitoramento das ondas cerebrais, forne-

cendo informações diretas sobre a atividade cognitiva do indivíduo. Neste contexto, este trabalho

tem como objetivo analisar a viabilidade do uso auxiliar do EEG na identificação do TDAH

em crianças. Para isso, foram aplicadas técnicas de pré-processamento robustas e testadas nos

modelos de machine learning SVM, KNN e Random Forest. Seguindo a metodologia proposta,

o presente estudo conclui a superioridade do modelo KNN com 98,91% de acurácia para a

classificação das ondas de EEG de crianças com TDAH.

Palavras-chave: TDAH; EEG; Aprendizado de máquina; SVM; KNN; RF



ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly diagnosed

psychiatric disorders in childhood, significantly affecting children’s behavior and development.

If ADHD is not identified and treated appropriately, it can result in serious consequences

in adulthood, ranging from poor academic and professional performance to substance abuse.

Despite advances in research on the topic, ADHD diagnosis still has limitations, as it relies

primarily on the observation of behavioral symptoms. The electroencephalogram (EEG) has

proven to be a promising alternative for identifying mental disorders, as it allows for the

monitoring of brain waves, providing direct information about an individual’s cognitive activity.

In this context, this work aims to analyze the feasibility of using EEG to identify ADHD in

children. To this end, robust preprocessing techniques were applied and tested using SVM, KNN,

and Random Forest machine learning models. Following the proposed methodology, this study

concludes the superiority of the KNN model with 98.91classifying EEG waves of children with

ADHD.

Keywords: ADHD; EEG; Machine Learning; SVM; KNN; RF
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1 INTRODUÇÃO

O Transtorno de Déficit de Atenção e Hiperatividade (TDAH) é um distúrbio neuro-

desenvolvimental caracterizado por padrões pertinentes de desatenção, hiperatividade e compor-

tamento impulsivo (AMERICAN PSYCHIATRIC ASSOCIATION, 2013). O TDAH é um dos

transtornos psiquiátricos mais comuns entre crianças e adolescentes, com uma taxa de prevalên-

cia infantil de 5,29% na população mundial (POLANCZYK et al., 2007). Embora comumente

identificado na infância, o TDAH pode trazer, a longo prazo, consequências na vida adulta como

dificuldade com relacionamentos pessoais, baixo desempenho acadêmico e profissional, uso e

abuso de substâncias e incidência de acidentes e ferimentos não intencionais (KOSHELEFF et

al., 2023). Esses impactos evidenciam a importância de um diagnóstico e tratamento precoce.

O TDAH resulta de uma combinação de fatores genéticos, neurológicos e/ou am-

bientais, assim os sintomas se apresentam de forma heterogênea nos pacientes. Pela ausência

de um marcador biológico diagnóstico, a identificação clínica do TDAH é baseada na avali-

ação dos critérios do Diagnostic and Statistical Manual of Mental Disorders (DSM), relatos

comportamentais e testes neuropsicológicos. Ademais, o TDAH tem uma relação frequente de

comorbidade com outros Transtornos de Neurodesenvolvimento (TNDs), como o Transtorno

do espectro autista ou Transtorno específico da aprendizagem, dificultando sua identificação

precisa (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).

Apesar de estudos de neuroimagem já identificarem alterações anatômicas e funcio-

nais em regiões cerebrais importantes, como o aumento de ondas lentas por Eletroencefalografia

(EEG), e o volume encefálico total reduzido por Ressonância Magnética (RM), essas descobertas

ainda não possuem evidências suficientes e comprobatórias para uso diagnóstico, reforçando a

necessidade de pesquisas. O EEG, importante fonte de dados para muitos estudos da neuroci-

ência, tem ganhado destaque devido a natureza não invasiva, custo-beneficio e segurança. Por

meio de eletrodos posicionados no couro cabeludo, o EEG mostra a atividade elétrica cerebral do

indivíduo, ajudando na compreensão de aspectos relacionados à cognição e ao comportamento

humano, usada por exemplo no diagnóstico de doenças neurológicas como Epilepsia e doença

de Alzheimer (CORSI, 2023).

A atual expansão e acessibilidade aos modelos de aprendizado de máquina trouxe o

uso crescente dos mesmos na aplicação para fim investigativo de transtornos mentais, bem como o

TDAH (UDDIN et al., 2019). Os algoritmos de aprendizado de máquina são capazes de detectar

interações complexas e padrões entre múltiplas variáveis com mais facilidade, velocidade e
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precisão do que os métodos estatísticos tradicionais. Os padrões detectados podem ser usados

para predição em um novo conjunto de dados, podendo situar a qual grupo um novo dado pertence,

além de destacar quais variáveis são mais impactantes na criação dessa predição (HARRISON et

al., 2023).

Diante dos desafios clínicos para o diagnóstico objetivo do TDAH, este trabalho

propõe uma abordagem baseada no uso de aprendizado de máquina para auxiliar de forma

automatizada esse processo. Sabendo que diversos fatores influenciam o desempenho de modelos

classificadores, como a qualidade do conjunto de dados, as técnicas de pré-processamento e os

métodos de extração de características, este estudo busca aplicar técnicas de machine learning,

analisar os resultados obtidos e compará-los com a literatura. A finalidade é testar e avaliar

alternativas que possam aprimorar a precisão dos modelos, contribuindo para avanços na área e

promovendo soluções mais eficazes para a identificação do transtorno.

1.1 Objetivo Geral

Este estudo tem como objetivo utilizar novas abordagens de técnicas de aprendizado

de máquina já existentes, em busca de aprimorá-los para avaliar a eficácia da análise de sinais de

EEG na detecção de TDAH em crianças.

1.2 Objetivos Específicos

a) Investigar as características do EEG que podem indicar a presença de TDAH.

b) Avaliar a contribuição do EEG para compreensão do diagnóstico de TDAH.

c) Avaliar a combinação de métodos de pré-processamento e técnicas de classificação para

análise de EEG.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, será reforçada a importância da identificação precoce do TDAH,

do uso de exames de EEG como ferramenta de análise do TDAH e da aplicação de Machine

Learning (ML) com finalidade classificatória. Nas seções 2.1 e 2.2, serão abordados tópicos

sobre a definição do TDAH, sua identificação, causas e tratamento. Na seção 2.3 será explicado

o funcionamento dos estudos com ondas obtidas por meio do EEG. Por fim, na seção 2.4, será

apresentado o uso de ML na classificação de dados.

2.1 Transtorno de Déficit de Atenção e Hiperatividade (TDAH)

O (TDAH) é um transtorno do neurodesenvolvimento caracterizado por padrões

persistentes de desatenção e hiperatividade/impulsividade, que prejudicam o funcionamento, e

o desenvolvimento do sujeito quando criança (AMERICAN PSYCHIATRIC ASSOCIATION,

2013). Assim como outros TNDs, o TDAH resulta de um desenvolvimento neural atípico,

afetando processos cerebrais desde as primeiras fases da formação embrionária (ABDELNOUR

et al., 2022).

O TDAH começou a ser descrito em publicações científicas em 1957, inicialmente

denominado transtorno do impulso hipercinético. Naquela época, o termo era utilizado de forma

genérica e precipitada para designar crianças com comportamentos inquietos e impulsivos, fre-

quentemente rotuladas como “"imperfeitas"”. Atualmente, o TDAH é amplamente reconhecido

e estudado, especialmente após sua inclusão no Manual Diagnóstico e Estatístico de Transtornos

Mentais (DSM-5), principal referência para as diretrizes diagnósticas de transtornos mentais.

Além disso, pesquisas evidenciam que a prevalência global do TDAH é de aproximadamente

5,29%, o que destaca seu caráter universal, com variações nas taxas explicadas por diferenças

metodológicas nos critérios diagnósticos (SMITH, 2017).

Há três subtipos do transtorno: apresentação predominantemente desatento, apre-

sentação predominantemente hiperativo-impulsivo e apresentação combinada. A desatenção

é caracterizada por distração, incapacidade de permanecer em tarefas e desorganização. A

hiperatividade é reconhecida por inquietação constante e sem controle, incapacidade de aguardar

e manter-se sentado. E por último a impulsividade, designada por ações repentinas, inesperadas e

sem planejamento. Sintomas esses que são incomuns para a idade ou o nível de desenvolvimento

do paciente (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).
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A etiologia do TDAH é resultado de uma combinação de fatores ambientais, neuro-

biológicos e genéticos. Por exemplo, influência nas condições pré-concepcionais, gestacionais e

perinatais, como nascimento pré-maturo, nutrição da mãe grávida, exposição a metais pesados

durante o desenvolvimento infantil, além de problemas relacionados ao sono estão associadas ao

TDAH. Os pacientes não apresentam as mesmas alterações neurofisiológicas, e os sintomas do

TDAH no indivíduo são variáveis ao longo do tempo (ABDELNOUR et al., 2022). Além disso,

há situações frequentes de condições comórbidas de neurodesenvolvimento. Por exemplo, muitas

crianças com TDAH apresentam também um transtorno específico da aprendizagem, dificul-

tando ainda mais a identificação do transtorno (AMERICAN PSYCHIATRIC ASSOCIATION,

2013).

Atualmente, os profissionais de saúde estão utilizando o DSM-5, em sua 5ª edição

(2013), e o Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision

(DSM-5-TR) (2022) para suas diretrizes. O diagnóstico clínico do TDAH, é realizado por meio

de coletas de informações e avaliações detalhadas do paciente. Os neurologistas/neuropediatras

utilizam escalas de classificação validadas pelos pais, professores ou pessoas do convívio com

a criança, que avaliam o comportamento do paciente em situações cotidianas e em vários

ambientes. Já no caso de adultos e adolescentes, o auto-relato é utilizado como referência para

o diagnóstico (FELDMAN; REIFF, 2014; FIRST et al., 2022; AMERICAN PSYCHIATRIC

ASSOCIATION, 2013).

Os critérios do DSM-5 são válidos quando a criança apresenta seis ou mais dos

nove sintomas estabelecidos característicos de desatenção para diagnóstico predominantemente

desatento, ou seis ou mais dos nove sintomas de hiperatividade-impulsividade para diagnós-

tico predominante hiperativo-impulsivo, mostrados na Tabela 1. A apresentação combinada

é determinada quando são atendidos ambos os critérios. Já para jovens e adultos pelo menos

cinco desses sintomas são suficientes para identificação do transtorno. Vários desses indícios

qualificantes devem estar evidentes com idade máxima para início aos 12 anos, e observados em

mais de um ambiente há pelo menos 6 meses, seja casa, escola, trabalho, amigos e parentes entre

outros (AMERICAN PSYCHIATRIC ASSOCIATION, 2013).
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Tabela 1 – Sintomas característicos de Desatenção e Hiperatividade para o Diagnóstico de TDAH,
de acordo com o DSM-5.

Sintomas

Item Desatenção Hiperatividade

1 Frequentemente não presta atenção
a detalhes ou comete erros por des-
cuido.

Mexe as mãos ou os pés ou se re-
mexe na cadeira.

2 Dificuldade em manter a atenção em
tarefas ou atividades recreativas.

Levanta-se em situações em que se
espera que permaneça sentado.

3 Parece não escutar quando se fala
diretamente com ele/ela.

Corre ou sobe em móveis em situa-
ções inadequadas (em adultos, pode
haver sensação de inquietação).

4 Não segue instruções e não conse-
gue terminar tarefas escolares, do-
mésticas ou de trabalho.

É incapaz de brincar ou se envolver
silenciosamente em atividades recre-
ativas.

5 Tem dificuldade em organizar tare-
fas e atividades.

Parece estar "sempre em movi-
mento", agindo como se estivesse
"a todo vapor".

6 Evita, não gosta ou reluta em
envolver-se em tarefas que exigem
esforço mental contínuo.

Fala excessivamente.

7 Perde objetos necessários para tare-
fas ou atividades.

Responde precipitadamente antes
que as perguntas sejam concluídas.

8 Distrai-se facilmente com estímulos
externos.

Tem dificuldade para esperar a sua
vez.

9 Esquece-se de compromissos ou ta-
refas diárias.

Interrompe ou se intromete nas con-
versas ou atividades dos outros.

Fonte: Adaptado do DSM-5, 2013.

É necessário levar em consideração outros fatores do histórico social do paciente,

tais como conflitos familiares, bullying, privação de sono, sequelas de trauma, etc. Por exemplo,

mudanças frequentes de escola podem causar problemas acadêmicos que podem ser confundidos

com TDAH (AUSTERMAN, 2015). O TDAH frequentemente se apresenta com outras con-

dições comórbidas, principalmente distúrbios de aprendizagem e linguagem, comportamento

oposicional e distúrbio de conduta. O TDAH também pode acompanhar o autismo, a síndrome

do X frágil, epilepsia e lesão cerebral traumática. O processo de diagnóstico deve identificar

quaisquer condições coexistentes para um diagnóstico assertivo (FELDMAN; REIFF, 2014).

O tratamento do TDAH envolve a combinação de medicamentos e terapia compor-

tamental. O uso de estimulantes como anfetaminas e metilfenidato, tem se mostrado eficaz,

apresentando resultados comprovados e eficácia em até 70% dos casos. No entanto, esses medi-
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camentos podem causar efeitos colaterais, como insônia e anorexia, como é visto em até 15%

dos pacientes (AUSTERMAN, 2015). É importante ressaltar que por ser uma doença crônica,

esses tratamentos são temporários e não curam o TDAH. Assim, a compreensão dos mecanismos

neurológicos do TDAH é fundamental para o desenvolvimento de abordagens terapêuticas mais

eficazes, o que será explorado na próxima seção.

2.2 Neurociência Infantil

A Neurociência é a área de estudo que investiga a estrutura e a função do sistema

nervoso, com ênfase no cérebro. A resposta nervosa, fenômeno central da neurociência, refere-se

aos sinais elétricos e químicos que ocorrem no cérebro e no sistema nervoso. Esses sinais são

a base de funções cognitivas como pensamento, memória, atenção e emoção, permitindo a

compreensão e identificação de distúrbios neurológicos, além de contribuir para diagnósticos e

tratamentos mais eficientes (ZHANG et al., 2023).

A neuroplasticidade, um dos principais objetos de estudo da neurociência, refere-

se à capacidade do Sistema Nervoso Central (SNC) de se adaptar e modificar em resposta a

experiências, mudanças estruturais e funcionais ou mesmo lesões. Esse processo ocorre com

maior intensidade durante o desenvolvimento cerebral (períodos pré e pós-natal), mas persiste,

em menor grau, ao longo da adolescência e da vida adulta. O cérebro infantil apresenta maior

plasticidade do que o cérebro adulto, tornando as intervenções na infância potencialmente mais

eficazes, pois o sistema nervoso está mais predisposto à formação de novas conexões (ISMAIL

et al., 2017). Isso enfatiza a importância da realização precoce de estudos e exames, aumentando

as chances de eficácia dos tratamentos.

Padrões anormais de neuroplasticidade são reconhecidos como fatores centrais em

distúrbios pediátricos, tanto congênitos quanto adquiridos, que afetam o SNC, como o TDAH.

Por exemplo, estudos com EEG indicam que indivíduos com TDAH tendem a apresentar um

aumento da atividade de ondas lentas theta (4–7 Hz) e uma redução das ondas rápidas beta

(13–21 Hz), conhecida como razão theta/beta ou Theta/Beta Ratio (TBR) (CORTESE, 2012).

Essa razão foi utilizada como base para o desenvolvimento do dispositivo Neuropsy-

chiatric EEG-Based ADHD Assessment Aid (NEBA), aprovado pela Food and Drug Adminis-

tration (FDA) em 2013 para auxiliar no diagnóstico do TDAH. Entretanto, conforme apontado

por Arns Martijn e Loo (2016), há incertezas quanto à utilidade clínica do dispositivo, o que

levanta questionamentos sobre sua eficácia e reforça a necessidade de embasamento empírico
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sólido antes da comercialização de tecnologias diagnósticas.

Dentre as ferramentas de neuroimagem utilizadas para explorar a função cerebral, o

(EEG) destaca-se por sua alta resolução temporal e pelo baixo custo dos equipamentos, tornando-

se uma técnica amplamente empregada, como será discutido na próxima seção (ZHANG et al.,

2023).

2.3 Eletroencefalografia (EEG)

O (EEG) é um método não invasivo de medição das oscilações elétricas do cérebro.

O primeiro registro dessa atividade foi mostrado por Hans Berger em 1929, ao demonstrar que

eletrodos em contato com o couro cabeludo, com amplificação do sinal, mostravam mudanças nas

tensões resultantes da atividade elétrica no cérebro, e que podiam ser plotadas e medidas (READ;

INNIS, 2017). Essas oscilações, provenientes da camada externa do cérebro, é associada aos

nossos pensamentos, comportamentos e emoções. Dessa forma, o EEG revela a ação sináptica

que está relacionada ao estado cerebral do indivíduo (NUNEZ; SRINIVASAN, 2007).

2.3.1 Origem dos Sinais

O EEG mede a atividade que acontece quando os neurônios se comunicam entre si.

Quando um neurônio envia uma mensagem, ele gera um pequeno impulso elétrico que passa pelo

seu "fio"(o axônio), até alcançar outro neurônio. Nesse ponto de encontro, chamado sinapse, ele

libera substâncias químicas chamadas neurotransmissores. Esses produtos químicos fazem com

que o próximo neurônio também gere sinais elétricos. Esses sinais criam pequenas correntes

elétricas ao redor dos neurônios. Como a parte de fora da célula é onde a eletricidade se move

mais livremente, é isso que o EEG consegue registrar, as correntes que passam por fora das

células, indo do cérebro até os sensores colocados na cabeça (CORSI, 2023).

2.3.2 Bandas de Frequência

As atividades eletrofisiológicas são classificadas por faixa de frequência, como

mostrado na Figura 1. As ondas cerebrais são divididas em Delta (0,5 - 3Hz), correspondente a

sono profundo, Theta (4 - 8Hz), relaxamento ou estado de sonolência, Alfa (8 - 13Hz) repouso

ou olhos fechados, Beta (18 - 30 Hz), estado de vigília ativa e atividades cognitivas com

planejamento ou imaginação motora, e Gama (30 - 70 Hz ou mais), processamento cognitivo de
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alta complexidade, como percepção e atenção.

Figura 1 – Ondas cerebrais

Fonte: Adaptado de Electrical e-Library (2019).

2.3.3 Gravação de EEG

Os materiais utilizados para a gravação das ondas cerebrais, são não polarizados

como prata/cloreto de prata ou ouro, evitando alterações nos sinais elétricos captados. A

superfície de contato é um disco com forma de concha de até 10 mm de diâmetro, preenchido

com pasta eletrolítica e um gel condutor para melhorar a condução elétrica e reduzir a resistência.

O potencial do eletrodo, é devido a polaridade oposta da superfície metálica do eletrodo e a pasta

eletrolítica, devido o fluxo em equilíbrio dos íons. Assim, quando há uma diferença de tensão

entre os eletrodos, uma corrente flui entre o tecido biológico ao redor e o eletrodo (BENICZKY;

SCHOMER, 2020).

Os eletrodos ou canais de EEG são nomeados de acordo com a sua localização em

comparação com a linha média da cabeça e sua distância da testa ou da parte de trás da cabeça,

e identificados por uma letra e número. Geralmente os canais ímpares ficam localizados no

hemisfério esquerdo e os pares no hemisfério direito. As letras correspondem a área: fronto-polar

(Fp), frontal (F), temporal (T), pariental (P), central (C) e occipital (O), já os eletrodos A1 e

A2 estão como referências nos lóbulos das orelhas.(SCHAUL, 1998). Na Figura 2 vemos um
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exemplo de montagem de EEG, onde cada círculo representa um sensor com sua identificação.

Figura 2 – Montagem e representação da vista superior de um EEG.

Fonte: Marina Pousheva / Shutterstock.

2.4 Aprendizado de máquina para classificação de EEG

Os algoritmos de ML surgiram em torno das décadas de 1940 e 1950, em paralelo

as evoluções dos computadores, desde então, proporciona avanços recorrentes em diversos

campos da ciência (ALAN, 1950). O aprendizado de máquina na área da saúde é satisfatório

em previsões promissoras considerando o reconhecimento de padrões e experiências. Como

disse o cientista da computação e autor do livro Machine Learning, Michell(1997), “Diz-se que

um programa de computador aprende com a experiência E em uma certa classe de tarefas T e

medida de desempenho P, se seu desempenho nas tarefas em T, conforme medido por P, melhora

com a experiência" (ZHOU, 2021).

A aprendizagem de máquina supera limitações de métodos estatísticos tradicionais ao

identificar padrões complexos em grandes volumes de dados, permitindo tanto a distinção entre

pacientes e controles quanto a identificação de variáveis relevantes. Aplicações incluem o uso de

dados clínicos, neuroimagem (como RM e EEG), genética e dados multimodais, com modelos

atingindo acurácias de até 96%. Apesar dos avanços, ainda há desafios, como a limitação de

amostras, risco de overfitting, ou seja, quando o modelo memoriza o conjunto de treinamento de
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forma tão próxima que o modelo não consegue fazer previsões corretas em novos dados, e baixa

interpretabilidade de alguns modelos (HARRISON et al., 2023).

O uso de técnicas de ML e Deep Learning (DL) tem ganhado destaque como fer-

ramenta de apoio ao diagnóstico de transtornos mentais, conforme demonstrado na revisão

sistemática apresentada por Iyortsuun et al. (2023). Os estudos analisados mostram que modelos

como Support Vectors Machine (SVM), Random Forest (RF) e redes neurais profundas têm

alcançado altos níveis de desempenho na identificação de condições como esquizofrenia, depres-

são, ansiedade, transtorno bipolar, anorexia nervosa e TDAH. Por exemplo, no diagnóstico de

esquizofrenia, modelos DL alcançaram até 94,44% de acurácia, superando métodos tradicionais.

Para TDAH, abordagens híbridas e redes neurais baseadas em Imagens de Ressonância Magné-

tica funcional (IRMf) mostraram acurácias que variam entre 66% e 95%. Apesar das limitações

como tamanhos amostrais reduzidos, os modelos de ML e DL demonstram robustez e precisão,

indicando seu potencial como suporte clínico (IYORTSUUN et al., 2023).

O EEG é uma técnica de neuroimagem que se destaca no estudo do TDAH devido

às suas características vantajosas e às aplicações promissoras em conjunto com a aprendizagem

de máquina. Trata-se de um método acessível, de baixo custo e não invasivo, o que o torna

popular na investigação do TDAH. Fatores como o tipo de tarefa experimental, a condição do

registro (repouso ou tarefa), a combinação de múltiplas condições e a divisão por faixas etárias

mostraram influenciar a acurácia dos modelos. As pesquisas seguem em busca de características,

como medidas baseadas em entropia e dimensão fractal, para melhorar ainda mais o desempenho

dos algoritmos. A fim de garantir que essas informações extraídas do EEG sejam confiáveis e

adequadas para análise por modelos de aprendizagem de máquina, é fundamental realizar um

pré-processamento eficiente dos sinais (HARRISON et al., 2023).

2.4.1 Processamento de Sinais de EEG

A análise do sinal de EEG geralmente é dividida em quatro etapas: coleta de dados

brutos, pré-processamento, extração de características e classificação. Os dados brutos de EEG

correspondem à atividade neuronal registrada diretamente do couro cabeludo, podendo conter

ruídos provenientes do ambiente, como vibrações e interferências da rede elétrica, movimentos

oculares, musculares, cardíacos, ou do próprio sistema de aquisição, como sensores defeituosos

(PADFIELD et al., 2019). Em muitos casos, os artefatos presentes no sinal de EEG comprometem

a identificação da atividade cerebral relevante, tornando essencial a aplicação de técnicas para a
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remoção ou correção dessas interferências (KEIL et al., 2014).

O pré-processamento de sinais de EEG visa remover ruídos e artefatos sem com-

prometer informações relevantes do sinal cerebral. Entre os métodos mais comuns estão os

filtros passa-banda, que restringem a análise à faixa de frequência de interesse, e o filtro notch,

utilizado para eliminar interferências específicas, como o ruído de linha de energia. Técnicas

mais avançadas, como Independent Component Analysis (ICA) e Empirical Mode Decomposition

(EMD), também são empregadas para separar artefatos do sinal original. A EMD, por exemplo,

é eficaz para lidar com a natureza não linear e não estacionária do EEG, permitindo uma análise

mais adaptativa ao tempo. No entanto, esses métodos apresentam limitações, podendo resultar

em subcorreção, com artefatos residuais, ou supercorreção, com perda de dados relevantes, o

que pode comprometer a precisão das análises (KEIL et al., 2014).

As características extraídas do EEG podem ser divididas em duas principais cate-

gorias: domínio do tempo e domínio da frequência. No domínio do tempo, são usadas séries

temporais que mostram respostas rápidas do cérebro a estímulos. No domínio da frequência,

analisam-se as potências em diferentes bandas (alfa, beta, delta, theta, gama), que refletem aos

ritmos cerebrais. Além disso, características espaciais combinam sinais de vários eletrodos para

melhorar a qualidade do dado, e métricas de conectividade avaliam como diferentes regiões

do cérebro se comunicam. Juntas, essas características ajudam a capturar várias informações

importantes para análises e classificações com ML (CORSI, 2023).

2.4.2 Classificadores

Não existe um modelo de ML que seja ideal para todos os tipos de dados. Por

isso, é necessário realizar testes para avaliar qual modelo apresenta o melhor desempenho em

cada situação-problema. Diversos estudos mostraram que o SVM, por exemplo, é eficaz na

classificação de EEG (TASPINAR; OZKURT, 2024). Já o K-nearest neighbors (KNN), por sua

vez, é um dos classificadores mais simples de implementar e de fácil compreensão, ainda sendo

capaz de apresentar bons resultados, dependendo da aplicação (ZHANG, 2022). E o modelo RF

possui sua abordagem baseada na combinação de múltiplos modelos (árvores de decisão), o que

geralmente resulta em melhor desempenho com grandes volumes de dados, embora com maior

custo computacional (BIAU; SCORNET, 2016).
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2.4.2.1 Support Vector Machines (SVM)

O modelo Máquina de Vetores de Suporte, do inglês Support Vector Machines, é um

modelo computacional de aprendizado supervisionado voltado para classificação linear binária

e regressão. O SVM realiza a classificação construindo hiperplanos que buscam uma margem

ótima entre dados de diferentes classes (CHAUHAN et al., 2019). A Figura 3, representa a

visão geométrica do SVM, na qual os dados pertencentes a cada classe são representados por

diferentes marcadores: cruzes (x) para uma classe e círculos (o) para a outra.

Figura 3 – Representação do modelo de classificação SVM.

Fonte: Elaborado pela Autora.

O SVM tem base lógica, matemática e estatística, e pode ser considerado uma

extensão matemática das redes neurais (CORTES; VAPNIK, 1995). Para dados que não são line-

armente separáveis, utilizam-se os kernels. Os kernels são funções matemáticas que transformam

os dados de treinamento em um espaço multidimensional. Dessa forma, dados que não podem

ser separados por uma linha reta (ou plano) no espaço original podem, ao serem projetados em

um espaço de maior dimensão, tornar-se linearmente separáveis. Isso facilita a definição de um

hiperplano linear que separe as classes de forma eficaz (CHAUHAN et al., 2019).

Algumas das principais funções utilizadas para o kernel do SVM são a linear, a

polinomial e a radial ou Radial Basis Function (RBF) (PATLE ARTI E CHOUHAN, 2013). O

RBF geralmente é a função mais utilizada em problemas não lineares. As Equações
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Klinear(xi,x j) = x⊤i x j (2.1)

Kpolinomial(xi,x j) =
(

γ x⊤i x j + r
)d

(2.2)

KRBF(xi,x j) = exp
(

−γ ∥xi −x j∥
2) (2.3)

representam as funções linear, polinomial e RBF respectivamente. Os vetores xi e x j representam

amostras de entrada que estão sendo comparadas. O termo x⊤i x j indica o produto escalar entre

esses vetores, servindo como medida de similaridade. O parâmetro γ controla a influência de

cada ponto de dado no modelo, assim, valores maiores tornam a separação mais sensível às

variações locais. No kernel polinomial, o termo r atua como um ajuste adicional (bias), enquanto

d define o grau do polinômio e, consequentemente, a complexidade da função de separação.

A expressão ∥xi −x j∥ representa a distância euclidiana entre as amostras, utilizada no kernel

RBF (PATLE ARTI E CHOUHAN, 2013).

De acordo com Patle Arti e Chouhan (2013), o SVM possui algumas limitações. A

mais notável é a escolha da função kernel, pois encontrar a mais adequada para o problema não é

uma decisão simples. Outra limitação do modelo é seu custo computacional que requer grande

quantidade de memória e processamento, no treinamento e classificação.

2.4.2.2 K-Nearest Neighbor (KNN)

O método K-vizinhos mais próximos, do inglês K-Nearest Neighbors, é um algoritmo

de ML supervisionado amplamente utilizado em tarefas de classificação, regressão e na previsão

de valores faltantes. A classificação de um novo dado é feita com base na votação da maioria

entre os k vizinhos mais próximos, ou seja, os mais semelhantes (ZHANG, 2022).

A classificação KNN é dividida em duas fases principais. Na fase de treinamento, o

objetivo é encontrar um valor adequado de K para o conjunto de dados, sendo a validação cruzada

o método mais utilizado para essa escolha. Já na fase de predição, para cada nova amostra (dado

de teste), o algoritmo identifica os K pontos mais próximos no conjunto de treinamento e realiza
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a classificação com base na classe mais frequente entre esses vizinhos, aplicando a chamada

regra da maioria.

O KNN realiza essa classificação com base no cálculo de similaridade entre a nova

amostra e as instâncias previamente rotuladas. Essa similaridade geralmente é medida por

distâncias matemáticas, sendo a distância Euclidiana a mais utilizada. A Equação

d(xi,x j) =

√

n

∑
k=1

(xik − x jk)2 (2.4)

descreve matematicamente o cálculo da distância Euclidiana. Onde d(xi,x j) representa a

distância Euclidiana entre as duas instâncias, xi e x j são vetores com n atributos, e xik e x jk

representam os valores do k-ésimo atributo das instâncias i e j, respectivamente.

A Figura 4 ilustra a visão geométrica do KNN. O novo dado, representado por um

círculo (o) destacado preenchido por tom escuro, pode pertencer à classe das cruzes (x) ou à

classe dos círculos (o). Considerando k = 3, o algoritmo analisa os três vizinhos mais próximos e

atribui o dado à classe predominante, neste exemplo, a classe das cruzes (x).

Figura 4 – Representação do modelo de classificação KNN.

Fonte: Elaborado pela Autora.

O KNN, sob condições bastante leves, demonstra que sua taxa de erro tende ao

erro ótimo de Bayes à medida que o tamanho da amostra tende ao infinito. Um classificador é

considerado Bayes ótimo quando nenhum outro classificador consegue atingir uma taxa de erro
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de classificação esperada menor. Basicamente, isso significa que todo o erro de classificação se

deve ao ruído genuíno presente nos dados (ZHANG, 2022).

2.4.2.3 Random Forest (RF)

O modelo Floresta Aleatória, do inglês Random Forest, é uma técnica de classificação

que utiliza como classificador um conjunto de árvores de decisão. A abordagem combina várias

árvores de decisão randomizadas e agrega suas previsões por meio de votação ou média.

O RF opera com base no princípio simples, porém eficaz, de "dividir para conquistar".

Inicialmente, múltiplas amostras aleatórias dos dados de treinamento são geradas, por meio do

método conhecido por bootstrap). Para cada uma dessas amostras, é construída uma árvore

de decisão de forma independente, utilizando apenas um subconjunto aleatório das variáveis

disponíveis em cada divisão do nó. Esse processo reduz a correlação entre as árvores individuais,

tornando o conjunto mais robusto (BIAU; SCORNET, 2016).

Após todas as árvores serem treinadas, suas previsões são combinadas, no caso de

classificação, por votação majoritária, e em regressão, por média. Essa agregação final resulta em

um modelo mais estável, preciso e menos suscetível ao overfitting do que uma única árvore de

decisão. Um dos fatores que mais contribuíram para a popularidade do RF é sua capacidade de

lidar com uma ampla variedade de problemas preditivos, exigindo poucos ajustes de parâmetros e

funcionando bem mesmo com conjuntos de dados de alta dimensionalidade (BIAU; SCORNET,

2016). A Figura 5 representa uma visão esquemática do funcionamento do RF. O modelo conta

com três árvores de decisão. Cada árvore é treinada a partir de um subconjunto aleatório dos

dados e das variáveis preditoras, produzindo uma classificação individual para a nova amostra.

A decisão final do modelo é obtida por meio de votação majoritária entre as classificações

fornecidas pelas três árvores.
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Figura 5 – Representação do modelo de classificação RF.

Fonte: Elaborado pela Autora.

O RF é reconhecido por sua eficácia em diferentes tipos de dados e em conjuntos

com grande número de características. O RF também demonstrou excelente desempenho em

cenários onde o número de variáveis é muito maior do que o número de observações (BIAU;

SCORNET, 2016).
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3 TRABALHOS RELACIONADOS

Neste capítulo são apresentados alguns trabalhos que servirão como base para

comparação com o presente trabalho.

3.1 Rede neural profunda baseada em siamês para detecção de TDAH usando sinal de

EEG

Em Alajmi et al. (2024) foi proposto uma Convolutional Neural Network (CNN)

Siamesa para analisar mapas cerebrais de EEG. A CNN siamesa consiste em processar duas

entradas por vez, para gerar uma única saída representando a métrica de similaridade com base

na distância euclidiana.

O conjunto de dados utilizado é disponibilizado livremente pela Institute of Electrical

and Electronic Engineers (IEEE). Para a coleta de dados de EEG, foi apresentada atividades

de atenção visual para um grupo de 121 crianças, sendo 60 crianças controle e 61 crianças

diagnosticas com TDAH. Contudo, o estudo enfatizou a necessidade de técnicas de aumento de

dados, afim de melhorar a generalização e a robustez do modelo. A técnica apresentada utilizada

consiste em embaralhar sub-bandas de frequência de dados TDAH e Controle em minilotes, e

substituindo os dados de uma sub-banda pelos de outro sujeito da mesma classe.

O estudo apresentou resultados significativos com o uso de Gradient-weighted Class

Activation Mapping (Grad-CAM), técnica de visualização que aponta quais partes dos dados de

entrada são mais influentes nos resultados da previsão do modelo. Então, foi mostrado que a

potência de banda theta nos lobos frontal e occipital entre indivíduos saudáveis e com TDAH

apresentam contraste, confirmando indicações já feitas por pesquisas anteriores. Como resultado,

o modelo indicou uma precisão de 99,17% em detecção de crianças com TDAH.

3.2 Identificação automática de crianças com TDAH a partir de ondas cerebrais de EEG

Em Jalilpour et al. (2024), um modelo de SVM gaussiano foi treinado para classificar

sinais de EEG, utilizando como diferencial a extração de características no domínio do tempo e

da frequência, considerando apenas as quatro primeiras sub-bandas (alfa, beta, delta e teta). O

estudo também se destacou pelo uso de dados lineares simples.

Os experimentos foram realizados com a mesma base de dados descrita no trabalho

anterior, composto por uma amostra de 121 crianças. Para a seleção das características mais
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relevantes, foi empregado o método não supervisionado Principal Component Analysis (PCA).

A classificação foi realizada com um modelo de SVM e avaliada por meio de validação cruzada

holdout e k-fold, resultando em uma precisão média de 93%.

3.3 Detecção de TDAH a partir de sinais de EEG usando novas técnicas de decomposição

híbrida e aprendizado profundo

Em Esas e Latifoğlu (2023), foi utilizada uma CNN com o diferencial da aplicação

das técnicas de decomposição Robust Local Mode Decomposition (RLMD) e Variational Mode

Decomposition (VMD), empregadas para lidar com sinais não estacionários e variáveis no tempo,

como o EEG, facilitando sua análise e interpretação. O RLMD é um método que separa um

sinal modulado em frequência (FM) de um sinal de envelope modulado em amplitude (AM).

Já o VMD separa diferentes padrões dentro do sinal, dividindo séries temporais em submodos

reproduzíveis com largura de banda limitada.

Os experimentos com a mesma base de dados usada anteriormente mostraram que,

ao utilizar apenas o canal Fp1 com um algoritmo de aprendizado profundo, a precisão foi de

65,82%. No entanto, ao combinar RLMD e VMD, a taxa aumentou para 87,38%. Quando

as técnicas foram aplicadas separadamente, a precisão foi de 80% para RLMD e 77,08% para

VMD.

Além disso, o estudo identificou os canais de EEG mais eficazes para a detecção

de TDAH, utilizando-os como entrada para um algoritmo de aprendizado profundo. A região

frontal (Fp1 e Fz) apresentou maior precisão na classificação em comparação com os demais

canais. Com o aprimoramento do algoritmo, estima-se que uma taxa de sucesso superior a 95%

possa ser alcançada utilizando um único canal de EEG com VMD e RLMD.

3.4 Detecção automatizada de transtorno de conduta e transtorno de déficit de atenção e

hiperatividade usando técnicas de decomposição e não lineares com sinais de EEG

Em Tor et al. (2021), foi desenvolvido um sistema automatizado para a classificação

das classes TDAH, Transtorno de Conduta (TC) e ambos, utilizando sinais de EEG. Para isso,

foram empregados os métodos EMD e Discrete Wavelet Transform (DWT) na decomposição dos

sinais.

A técnica EMD permite decompor os sinais em funções de modo intrínseco, co-



33

nhecidas por Intrinsic Mode Functions (IMFs), enquanto a DWT é uma abordagem popular

para decomposição de sinais, destacando-se por sua capacidade de capturar simultaneamente

informações de frequência e localização.

A base de dados utilizada na pesquisa, de domínio público, é composta por sinais

de EEG de 123 crianças, recrutadas de uma clínica psiquiátrica infantil em Singapura (Child

Guidance Clinic), distribuídas nas seguintes classes: TDAH 45 participantes, TDAH + TC 62

participantes, TC apenas 16 participantes. O modelo de machine learning utilizado foi o KNN,

que obteve a maior precisão no estudo, atingindo uma taxa de acerto de 97,88%.

Na Tabela 2 temos um resumo dos modelos de aprendizado de máquina, quantidade

pessoas nas amostras, e as métricas de desempenho utilizados.

Tabela 2 – Trabalhos relevantes e suas respectivas metodologias de classificação.

Trabalhos Métodos de classifi-
cação

Extração de recursos Precisão(%)

Alajmi et al. (2024) CNN Siamesa Mapas cerebrais deri-
vados da Densidade
Espectral de Potência
(PSD)

99,17%

Jalilpour et al.

(2024)
SVM gaussiana Extração de caracterís-

ticas estatísticas, de do-
mínio de tempo e de do-
mínio de frequência dos
dados

94,2%

Esas e Latifoğlu
(2023)

CNN Decomposição por
Modo Variacional
(VMD ) e Decomposi-
ção por Média Local
Robusta (RLMD )

95,24%

Tor et al. (2021) KNN Decomposição por
Modo Empírico (EMD)
e Transformada Wavelet
Discreta (DWT)

97,88%

Fonte: Elaborado pela Autora.
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4 METODOLOGIA

Neste capítulo, são abordadas as etapas de seleção do conjunto de dados, pré-

processamento, extração de características, classificação e as métricas de avaliação adotadas,

cujas etapas serão descritas nas seções a seguir. A Figura 6 apresenta um resumo da metodologia

proposta.

Figura 6 – Etapas da Metodologia.

Fonte: Elaborado pela Autora.

Para a implementação e teste da análise do EEG, foi utilizada a linguagem Python

versão 3.12.6, na IDE Visual Studio Code versão 1.101.2, juntamente com a biblioteca MNE. A

MNE é uma biblioteca de código aberta específica para o processamento de dados eletrofisiológi-

cos, como o EEG, oferecendo ferramentas robustas para leitura, visualização, pré-processamento,

análise e extração de características dos sinais. Os scripts desenvolvidos para este trabalho estão

disponíveis no Apêndice A para mais detalhes.
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4.1 Seleção de Dados

A base de dados eeg-data-adhd-control-children é de acesso público e é disponibili-

zada pela IEEE 1. Os arquivos contém registros de EEG de 121 crianças entre 7 e 12 anos. As

crianças diagnosticadas com TDAH foram identificadas por profissionais de sáude de acordo com

as normas do DSM-5 e usaram Ritalina por até seis meses. Foi constatado que nenhuma das cri-

anças do grupo de controle tinha histórico de transtorno psiquiátrico, epilepsia ou comportamento

de alto risco. A Tabela 3 resume as informações sobre os participantes.

Tabela 3 – Informações sobre os participantes.

Meninos Meninas Idade
Crianças Saudáveis 50 10 7–10

Crianças com TDAH 48 13 7–12

Fonte: Elaborado pela Autora.

A coleta do sinal de EEG foi obtido por 19 canais no sistema 10-20 á uma frequência

de amostragem de 128 Hz. O protocolo de gravação foi baseado em atividades de atenção

visual, ao estimulá-los a contar o número de personagens animados que apareciam em tela, como

mostrado em exemplo da Figura 7. Como a duração de cada sessão individual era de acordo

com o tempo de resposta da criança, o período geral das gravações de EEG diferiu em todo o

conjunto de dados.

Figura 7 – Atividade visual utilizada na coleta de Dados

Fonte: (ALAJMI et al., 2024).

1 <https://ieee-dataport.org/open-access/eeg-data-adhd-control-children>
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Todos os procedimentos para obtenção desse conjunto de dados foram aprovados

pelo Institutional Review Board (IRB) e pelo Comitê de Ética da Universidade de Ciências

Médicas de Teerã. Além disso, os dados foram coletados em duas sessões distintas e em dois

locais diferentes, reduzindo o viés de medição na coleta.

4.2 Pré-processamento dos dados

Como mencionado anteriormente, o sinal do EEG é muito sensível a ruídos, como

os causados por movimentos oculares, do pescoço e pela rede elétrica do local. Para mitigar

esses ruídos, foram aplicados os filtros passa-banda e notch.

O filtro passa-banda tem a função de eliminar ou atenuar os componentes de alta

e baixa frequência de um espectro, permitindo apenas a passagem de uma faixa específica de

frequências. Neste estudo, será utilizado um filtro passa-banda para atenuar os sinais fora da

faixa de 0,5 – 30 Hz, intervalo escolhido por abranger as bandas de maior interesse (delta, theta,

alfa e beta), devido à relação TBR.

Já o filtro notch será utilizado para eliminar a interferência do ruído de linha (Power

Line Noise), causado pela interferência eletromagnética da rede elétrica. O local de registro está

situado em uma região onde a frequência da rede é de 50 Hz (JANAPATI et al., 2023).

4.2.1 Limpeza de artefatos com EMD e Wavelet Adaptativa

A decomposição de sinais busca desmembrar um sinal complexo em componentes

mais simples, permitindo uma melhor compreensão e análise de suas características e padrões.

O EMD realiza a decomposição intrínseca do sinal em componentes oscilatórios, resultando nas

chamadas IMFs através de um processo repetitivo de peneiramento. O intuito do peneiramento é

eliminar ondas superpostas e suavizar amplitudes irregulares (BOUDRAA et al., 2004).

Para cada canal do EEG, o sinal é decomposto em várias funções intrínsecas usando

o algoritmo EMD. Essas IMFs representam diferentes componentes oscilatórios do sinal, e o

número de componentes é controlado por um parâmetro definido. Caso o número de IMFs

obtidas seja muito pequeno, o processamento sofisticado é ignorado e o sinal original é mantido

para aquele canal.

Para que haja uma separação entre sinal limpo e artefato, precisa-se estimar um

limiar, e neste estudo, a curtose, a entropia e desvio padrão, serão usados com esse propósito.
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A curtose é uma medida da cauda ou achatamento de uma distribuição. Em EEG, artefatos

(como piscadas, movimentos musculares, etc.) frequentemente se manifestam como eventos

de alta amplitude e curta duração, o que tende a resultar em IMFs com alta curtose. Sinais

neurais, por outro lado, tendem a ter uma curtose menor, ou mais próxima de uma distribuição

normal. Portanto, a ideia de usar a curtose para identificar e remover IMFs com artefatos é

válida. A entropia, mede o grau de desordem, sabendo que artefatos tendem a deixar o sinal

desorganizado ou irregular, o que pode aumentar a entropia em certas regiões do tempo ou

canais. Já o desvio padrão mostra a variabilidade do sinal, sabendo que movimentos oculares ou

musculares geralmente com amplitude alta causam um aumento abrupto no desvio padrão. Com

base na distribuição dessas métricas, é definido um limite adaptativo para identificar quais IMFs

provavelmente contêm ruído.

As IMFs consideradas ruidosas passam por um processo de filtragem por wavelets.

A Transformada Wavelet decompõe o sinal das IMFs em coeficientes que representam sua

informação em diferentes escalas de tempo e frequência. Artefatos, que frequentemente se

manifestam como picos de alta frequência e curta duração, tendem a gerar coeficientes de maior

magnitude em determinadas escalas. Com base em um limiar adaptativo, esses coeficientes

ruidosos são identificados e atenuados ou zerados. Por fim, o sinal das IMFs são reconstruídos a

partir dos coeficientes filtrados, resultando em uma versão mais limpa e livre de ruídos. As IMFs

consideradas limpas, com base nas métricas de curtose, entropia e desvio padrão, não sofrem

essa etapa de filtragem por wavelets, preservando sua integridade.

Em resumo, o método de limpeza de artefatos utilizado neste trabalho combina

análise adaptativa do sinal com técnicas matemáticas sofisticadas para limpar o EEG de forma

eficiente, preservando as informações importantes e reduzindo ruídos indesejados.

4.2.2 Segmentação dos dados

Após a limpeza de ruídos, é proposta uma segmentação em janelas, assim o sinal de

EEG da série temporal foi dividido em segmentos de tamanho de 2 segundos para cada canal e

com sobreposição de 50%. Dessa forma cada janela de EEG tem 2 segundos, com 1 segundo do

janela anterior e 1 segundo da janela atual. Na obtenção do sinal, a duração mínimo de sessões

para crianças saudáveis era de 50 segundos e para uma criança com TDAH o mínimo foi de 258

segundos. Como o tempo de cada tarefa diferiu em cada sujeito, o número de segmentos variou

pra cada criança.
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4.3 Extração de características

Para representar de forma eficaz os sinais de EEG no processo de classificação, foram

selecionadas 11 características estatísticas que capturam diferentes aspectos do comportamento

do sinal. Essas métricas abrangem desde medidas de dispersão (como desvio padrão e Root Mean

Square (RMS)), forma da distribuição (assimetria e curtose), até indicadores de complexidade e

desordem (atividade, mobilidade e complexidade de Hjorth). Além disso, foi incluída a potência

relativa nas bandas de frequência delta, theta, alfa e beta, que refletem padrões rítmicos relevantes

da atividade cerebral. Juntas, essas características fornecem uma representação abrangente dos

dados de EEG, contribuindo para uma análise mais robusta e informativa. Abaixo temos uma

breve descrição dessas características.

• STD (Desvio Padrão): Mede a dispersão dos valores do sinal em torno da média.

• RMS (Raiz Quadrada Média ou Root Mean Square): Uma medida da magnitude média do

sinal ao longo do tempo.

• Assimetria ou Skewness: Mede o grau de assimetria na distribuição de amplitude do sinal.

• Curtose ou Kurtosis: Mede o achatamento ou o pico da distribuição de amplitude do sinal.

• Atividade ou Activity (Parâmetro de Hjorth): É a variância da amplitude do sinal, como

mostrado na Equação

Atividade = Var(x(t)) , (4.1)

a atividade reflete a potência ou energia média do sinal.

• Mobilidade ou Mobility (Parâmetro de Hjorth): É a raiz quadrada da razão entre a variância

da primeira derivada do sinal e a variância do próprio sinal, como mostrado na Equação

Mobilidade =

√

Var(∆x(t))

Var(x(t))
, (4.2)

a mobilidade retorna a frequência média do sinal ou a proporção de mudanças de amplitude.

• Complexidade ou Complexity (Parâmetro de Hjorth): É a razão entre a mobilidade da

primeira derivada do sinal e a mobilidade do próprio sinal, como mostrado na Equação

Complexidade =

√

Var(∆2x(t))
Var(∆x(t))

Mobilidade
, (4.3)
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a complexidade reflete a mudança na frequência do sinal.

Já para as características no domínio da frequência, o sinal de cada canal individual

é transformado para o domínio da frequência utilizando a Transformada Rápida de Fourier (Fast

Fourier Transform (FFT)), sendo então obtida a potência total nas quatro bandas de frequência

do EEG (delta, theta, alfa e beta). Isso resulta em 11 características ( 7 no domínio do tempo e 4

no domínio da frequência ) por canal, totalizando em uma matriz de 19 × 11 = 209 features por

indivíduo.

O pré-processamento das características incluiu as etapas de imputação de valores

ausentes, padronização, seleção de características e redução de dimensionalidade. Essas etapas

são fundamentais para garantir que os dados estejam em condições adequadas para o treinamento

dos modelos de aprendizado de máquina.

A imputação de valores ausentes foi realizada substituindo os valores faltantes pela

mediana de cada característica, o que é especialmente útil em dados com outliers, por ser uma

medida robusta.

Em seguida, foi aplicada a padronização dos dados, transformando as características

para que tenham média zero e desvio padrão igual a um. Esse processo é importante porque

muitos algoritmos de aprendizado de máquina são sensíveis à escala dos dados, especialmente

aqueles baseados em distância como o KNN.

Na etapa de seleção de características, utilizou-se o método SelectKBest com o

método estatístico ANOVA F-value, selecionando as 40 características mais discriminativas.

Esse método avalia a relação entre cada feature e a variável alvo, mantendo apenas aquelas que

apresentam maior relevância estatística.

Por fim, foi aplicada a Análise de Componentes Principais PCA, com o parâmetro

número de componentes de variância explicada em 0,95. Isso significa que foram mantidos os

componentes principais suficientes para explicar 95% da variância total dos dados, reduzindo a

dimensionalidade sem perder informações relevantes.

4.4 Classificação

Este estudo utilizou os algoritmos SVM, KNN e RF, cujas características principais

foram apresentadas explicitamente nas seções anteriores. A divisão do conjunto de dados foi

realizada em 70% para treino e 30% para teste. Também foi aplicada validação cruzada com 5

partes (5-fold cross-validation).
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Os parâmetros definidos para o classificador SVM foram: kernel = ’rbf’, C = 10,

o que representa um controle maior sobre a penalização dos erros, e gamma = ’scale’, que

ajusta automaticamente o parâmetro com base nas variáveis de entrada. Para o algoritmo KNN,

utilizou-se o número de vizinhos igual a 5 (valor intermediário), com a métrica de distância

Euclidiana. Já para o Random Forest, foram utilizados 100 estimadores, profundidade máxima

das árvores (max depth) igual a 5, e random state igual a 42, a fim de garantir a reprodutibilidade

dos resultados.

4.5 Métricas de Avaliação

As métricas de avaliação mais comumente utilizadas para classificação binária são

acurácia, sensibilidade, especificidade, precisão e matriz de confusão, como assim será feito

neste experimento.

4.5.1 Acurácia

A acurácia é uma das métricas mais comuns de desempenho de modelos de ML.

Refere-se à qualidade ou exatidão a qual um modelo estatístico prediz uma resposta ou se ajusta

aos dados. Essa taxa de acerto é medida dividindo o número de acertos verdadeiros nos testes

pelo número total de testes, como mostrado na Equação

Acurácia =
V P+V N

V P+V N +FP+FN
(4.4)

onde Verdadeiro Positivo (VP) é o número de amostras em que a classe positiva é predita de

forma verdadeira pelo modelo, Verdadeiro Negativo (VN) é o número de amostras em que a

classe negativa é predita de forma verdadeira pelo modelo, Falso Positivo (FP) é o número de

amostras em que a classe positiva é prevista de forma falsa pelo modelo e Falso Negativo (FN) é

o número de amostras em que a classe negativa é predita de forma falsa pelo modelo (JAMES et

al., 2023).

É importante ressaltar que a acurácia pode não ser suficiente em casos de conjuntos

de dados desbalanceados, onde as classes têm tamanhos significativamente diferentes.
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4.5.2 Sensibilidade

A sensibilidade ou recall também é conhecida como taxa de verdadeiros positivos.

É importante em situações em que a identificação correta de positivos é crítica, e é calculada

conforme mostra a Equação 4.5 (RAINIO et al., 2024):

Sensibilidade =
V P

V P+FN
(4.5)

4.5.3 Especificidade

A especificidade ou taxa de verdadeiros negativos, mostra a porcentagem de amos-

tras verdadeiramente negativas que foram corretamente classificadas (RAINIO et al., 2024).

Essa métrica é útil em situações em que falsos positivos devem ser evitados. O cálculo da

especificidade é mostrado na Equação 4.6.

Especificidade =
V N

V N +FP
(4.6)

4.5.4 Precisão

A precisão mostra a proporção entre as predições verdadeiras positivas e o total de

predições verdadeiras (RAINIO et al., 2024). O cálculo da precisão é mostrado na Equação 4.7

Precisão =
V P

V P+FP
(4.7)

4.5.5 Matriz de confusão

A matriz de confusão é uma ferramenta essencial para a avaliação detalhada do

desempenho de algoritmos de classificação. Ela apresenta as taxas de acertos e erros entre

diferentes classes e serve como base para o cálculo de diversas métricas de avaliação. A

matriz exibe as contagens de Verdadeiros Positivos (VP), Verdadeiros Negativos (VN), Falsos

Positivos (FP) e Falsos Negativos (FN). Em classificadores multiclasse, os resultados podem

ser organizados em uma matriz de confusão de dimensão k x k, onde k representa o número de

classes (RAINIO et al., 2024). A representação de uma matriz de confusão é apresentada na

Figura 8.
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Figura 8 – Representação da Tabela Verdade.

Fonte: Adaptado de (NOGARE, 2020).
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5 RESULTADOS

Neste capítulo serão mostrados os resultados dos testes aplicados, seguindo a metodo-

logia proposta. Este capítulo está organizado da seguinte forma: a Seção 5.1 trata dos resultados

experimentais dos modelos e a Seção 5.2 discorre sobre os resultados obtidos, realizando uma

análise e comparação com os trabalhos encontrados na literatura para análise de desempenho.

5.1 Resultados experimentais

Após a aquisição e leitura dos sinais de EEG, iniciou-se o processo de remoção

de ruídos e artefatos. A Figura 9 apresenta o espectro de potência, evidenciando a eficácia da

aplicação do filtro passa-banda (0,5–30 Hz) e do filtro notch (50 Hz) nos sinais de todos os canais

do EEG.

Figura 9 – Aplicação de filtros no sinal de EEG.

Fonte: Elaborado pela Autora.

A Figura 9 apresenta dois quadros com o espectro de potência dos sinais de EEG.

O primeiro (superior) mostra o sinal bruto, no qual é possível observar a presença de ruídos,
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evidenciados por picos acentuados, especialmente em torno de 50 Hz, frequência característica

de interferência da rede elétrica. No segundo quadro (inferior), nota-se o efeito da aplicação dos

filtros, onde os picos foram significativamente atenuados, com destaque para a redução do ruído

em 50 Hz e a queda progressiva da potência a partir de aproximadamente 33 Hz, resultado do

filtro passa-banda adotado para a análise mais específica dos dados.

5.1.1 Desempenho no conjunto de treinamento

Para os três modelos foi calculado a margem de erro, calculada através do desvio

padrão e verificado a quantidade de acertos dos valores preditos pra cada um dos modelos

no treinamento, utilizando um grau de confiança de 95%. Os resultados desta aplicação são

apresentados na Tabela 4.

Tabela 4 – Quadro comparativo de desempenho dos modelos no treinamento.

Modelo Margem de Erro % de Acertos (Acurácia)

SVM 0,29% 97,90%
KNN 0,27% 98,62%
RF 1,21% 78,45%

Fonte: Elaborado pela Autora.

A análise comparativa dos três modelos no conjunto de treinamento indica que

tanto o SVM quanto o KNN apresentaram ótimos resultados, com acurácia acima de 97% e

baixos erros médios absolutos (0,29% e 0,27%, respectivamente), demonstrando consistência

e confiabilidade nas previsões. O KNN obteve os melhores resultados em termos de precisão

e menor margem de erro, o que sugere que ele foi o mais eficaz para os dados utilizados. Em

contrapartida, o Random Forest apresentou desempenho significativamente inferior (acurácia

de 78,45% e maior margem de erro, 1,21%), indicando que o modelo pode não ter se ajustado

bem às características do conjunto de treinamento ou que sofreu com overfitting em relação à

complexidade dos dados.

Portanto, conclui-se que, para este cenário específico e com as características extraí-

das, o KNN foi o modelo mais eficiente, seguido de perto pelo SVM, sendo o Random Forest o

menos adequado entre os três.
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5.1.2 Desempenho no conjunto de teste

Para os três modelos foi especificado a sensibilidade, especificidade, precisão e

acurácia no conjunto de teste. Os resultados desta aplicação são apresentados na Tabela 5.

Tabela 5 – Quadro comparativo de desempenho dos modelos no treinamento e teste.

Modelo Precisão Sensibilidade Especificidade Acurácia

SVM 98,04% 98,29% 97,52% 97,95%
KNN 99,03% 99,00% 98,78% 98,91%
RF 73,67% 90,87% 59,05% 76,80%

Fonte: Elaborado pela Autora.

O modelo KNN apresentou o melhor desempenho entre os três algoritmos avaliados,

com acurácia de 98,91%, além de valores equilibrados e altos de precisão, sensibilidade e

especificidade. A precisão de 99,03% indica baixo índice de falsos positivos. A sensibilidade

de 99,00% indica excelente capacidade de identificar corretamente os casos de TDAH. E a

especificidade de 98,78% mostra o ótimo desempenho também na detecção de controles. Esse

equilíbrio mostra que o KNN foi eficaz tanto para detecção quanto para exclusão da condição

(TDAH), o que é extremamente importante em contextos clínicos, onde erros de classificação

podem ter consequências significativas.

O SVM também apresentou alto desempenho, com acurácia de 97,95% e métricas

levemente inferiores às do KNN. O SVM obteve uma precisão de 98,04%, sensibilidade de

98,29% e especificidade de 97,52%. Embora tenha ficado um pouco abaixo do KNN, o SVM se

mostra uma alternativa confiável, com ótima capacidade de generalização e bom desempenho

em ambas as classes.

E por último o Random Forest, mostrou um desempenho inferior e desigual. O

modelo Random Forest teve a acurácia de apenas 76,80%. A especificidade baixa (59,05%),

indica alto número de falsos positivos (ex: controles classificados incorretamente como TDAH).

E a sensibilidade alta de 90,87%, sugere que o modelo acerta muitos casos de TDAH, mas erra

demais os negativos. Esse comportamento indica um viés do modelo em favorecer uma classe

(neste caso o TDAH), o que pode ser um reflexo de parâmetros incorretos.
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5.1.3 Matriz de confusão

Na matriz de confusão do modelo SVM, expressa na Tabela 6, é possível observar

que o modelo teve 103 (48 + 55) classificações errôneas e 4.922 (2167 + 2755) classificações

assertivas, de no total 5.025 features.

Tabela 6 – Matriz de Confusão do Modelo SVM.

Classe Real Predito: Controle Predito: TDAH

Controle 2167 (VN) 55 (FP)
TDAH 48 (FN) 2755 (VP)

Fonte: Elaborado pela Autora.

Na matriz de confusão do modelo KNN, expressa na Tabela 7, é possível observar

que o modelo teve 55 (28 + 27) classificações errôneas e 4.970 (2195 + 2755) classificações

assertivas, de no total 5.025 features.

Tabela 7 – Matriz de Confusão do Modelo KNN.

Classe Real Predito: Controle Predito: TDAH

Controle 2195 (VN) 27 (FP)
TDAH 28 (FN) 2755 (VP)

Fonte: Elaborado pela Autora.

E na matriz de confusão do modelo RF, expressa na Tabela 8, é possível observar

que o modelo teve 1.166 (256 + 910) classificações errôneas e 3859 (1312 + 2547) classificações

assertivas, de no total 5.025 features.

Tabela 8 – Matriz de Confusão do Modelo RF.

Classe Real Predito: Controle Predito: TDAH

Controle 1312 (VN) 910 (FP)
TDAH 256 (FN) 2547 (VP)

Fonte: Elaborado pela Autora.

O modelo KNN se destacou como o mais eficiente, tanto na classificação correta

geral quanto em equilíbrio entre as classes, sendo o mais indicado para aplicação prática no
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contexto estudado. O SVM também se mostrou eficaz, com desempenho semelhante, podendo

ser preferido em cenários que exijam mais estabilidade ou escalabilidade. Já o Random Forest

não apresentou desempenho satisfatório, sugerindo que sua estrutura ou parametrização não foi

ideal para os dados utilizados.

5.1.4 Análise das características

O uso do SelectKBest selecionou 40 características para irem pro treinamento, mas

para uma análise das melhores características envolvidas, será dissertado sobre as 10 melhores

características com seus canais em relação ao Score ANOVA que estão mostradas na Tabela 9.

Tabela 9 – Top 10 características selecionadas pelo SelectKBest, ordenadas por Score ANOVA.

Característica Score ANOVA

Mobilidade no canal F8 591,20
RMS no canal P4 575,78
STD no canal P4 571,81
Complexidade no canal F8 560,10
Mobilidade no canal C3 469,03
Potência Beta no canal C3 432,72
Mobilidade no canal P3 379,31
RMS no canal F8 363,49
STD no canal F8 357,65
Mobilidade no canal Fp1 275,75

Fonte: Resultados do SelectKBest com teste ANOVA.

Como mencionado anteriormente, na análise de sinais, a mobilidade é uma medida

de dispersão espectral, relacionada à taxa de variação da frequência do sinal. Variações nessa

métrica podem refletir a agilidade ou rigidez do funcionamento neural, características que podem

ser atípicas em indivíduos com TDAH.

O valor RMS mede a magnitude ou a amplitude total do EEG ao longo do tempo,

representando o nível de energia do sinal. Dessa forma, um RMS alterado pode indicar regiões

com hiperatividade em comparação a um cérebro neurologicamente típico. Já o (Standard

Deviation (STD)), expressa a variabilidade ou dispersão dos valores do sinal EEG em torno da

média. Um STD elevado indica que os valores do sinal flutuam significativamente, o que pode

sugerir menor estabilidade na atividade neural.

A complexidade, por sua vez, capta a dinâmica e a previsibilidade do sinal EEG. A



48

perda de complexidade pode indicar perturbações nas redes neurais, e sua redução pode refletir

um funcionamento menos adaptativo dessas redes.

Dessa forma, as características que se mostraram mais discriminativas segundo o

método ANOVA apresentam correlação com padrões típicos do TDAH.

Já em relação aos canais, F8 (Frontal Direita), parte do lobo frontal, esta envolvido

em funções executivas, como atenção, planejamento e controle de impulsos. Disfunções nesta

área são indicadores para o TDAH. O canal P4 (Parietal Direita) faz parte do lobo parietal,

que desempenham um papel crucial na atenção espacial, integração sensorial e processamento

de informações. Embora associada principalmente ao controle motor, esta área também está

envolvida na integração sensório-motora. A inquietação e o movimento excessivo observados no

TDAH podem ter correlações com a atividade nesta região.

5.2 Análise dos Resultados

A Tabela 10 apresenta uma comparação entre os resultados deste experimento e aque-

les reportados na literatura. Para representar este experimento na comparação, foi selecionado o

classificador com o melhor desempenho em acurácia.

Os resultados demonstram que a utilização da Transformada Wavelet, combinada

com métodos tradicionais de decomposição (EMD), pode alcançar um bom desempenho na

remoção de artefatos em sinais de EEG, mesmo em modelos já aplicados anteriormente. No

entanto, essa abordagem apresenta limitações em relação à acurácia quando comparada a

técnicas mais modernas. Em Jalilpour et al. (2024), por exemplo, foi utilizado o mesmo método

de extração de características, porém sem uma limpeza aprofundada dos dados, e apenas o

classificador SVM foi testado, obtendo uma acurácia de 94,2%. Já neste estudo, utilizando as

mesmas características, mas com uma etapa mais robusta de limpeza de artefatos e a avaliação

de três modelos de classificação distintos, foi possível atingir uma acurácia superior, de 98,91%.

Em Tor et al. (2021), foram aplicadas a Transformada Wavelet discreta e o EMD, de forma

semelhante ao presente trabalho, mas com foco na extração de recursos, e também obtiveram

resultados satisfatórios com acurácia de 97,88%. Apesar disso, técnicas mais recentes utilizadas

no estado da arte, como a aplicação de mapas cerebrais por Alajmi et al. (2024), têm alcançado

desempenhos ainda mais elevados, atingindo acurácia de até 99,17%.



49

Tabela 10 – Trabalhos relevantes e suas respectivas metodologias de classificação.

Trabalhos Métodos de classifi-
cação

Extração de recursos Precisão(%)

Alajmi et al. (2024) CNN Siamesa Mapas cerebrais deri-
vados da Densidade
Espectral de Potência
(PSD)

99,17%

Jalilpour et al.

(2024)
SVM gaussiana Extração de caracterís-

ticas estatísticas, de do-
mínio de tempo e de do-
mínio de frequência dos
dados

94,2%

Esas e Latifoğlu
(2023)

CNN Decomposição por
Modo Variacional
(VMD ) e Decomposi-
ção por Média Local
Robusta (RLMD )

95,24%

Tor et al. (2021) KNN Decomposição por
Modo Empírico (EMD)
e Transformada Wavelet
Discreta (DWT)

97,88%

Este Trabalho
(2025)

KNN Extração de caracterís-
ticas estatísticas, de do-
mínio de tempo e de do-
mínio de frequência dos
dados

98,91%

Fonte: Elaborado pela Autora.

5.2.1 Limitações do estudo

Uma das limitações deste estudo refere-se ao tamanho da amostra utilizada. Embora

os dados tenham permitido a obtenção de resultados relevantes, uma amostra maior poderia

ampliar a generalização dos achados, especialmente no que diz respeito à diversidade das

características dos participantes. Além disso, o uso de dados provenientes de uma única base

restringe a comparação com estudos que utilizam conjuntos de dados distintos. Outro fator

limitante foi o desempenho da máquina utilizada para as análises, pois algumas execuções

chegavam a levar cerca de três horas e, em determinados casos, o computador travava, dificultando

a realização de testes mais complexos ou demorados.
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6 CONCLUSÃO E TRABALHOS FUTUROS

O presente trabalho demonstrou que o uso de sinais de EEG como ferramenta para a

classificação do TDAH apresenta grande potencial, embora ainda esteja em processo de aprofun-

damento na literatura científica. Foi proposta uma abordagem baseada em pré-processamento

eficiente, com a decomposição de sinais com EMD em conjunto com a Transformada Wavelet, e

extração de características nos domínios do tempo e da frequência.

Os resultados obtidos indicam que a extração de características como mobilidade,

RMS e desvio padrão se destaca na representação das informações relevantes do sinal de EEG,

evidenciando aspectos tempo-frequência associados ao transtorno. Além disso, os classificadores

avaliados SVM, KNN e RF, apresentaram desempenhos satisfatórios, com destaque para o SVM

e o KNN, que alcançaram acurácias de 97,95% e 98,45%, respectivamente. Já o RF obteve

desempenho inferior, com acurácia de 76,80%.

Esses resultados reforçam a efetividade das métricas extraídas e indicam que métodos

baseados em distância, como o KNN, podem ser especialmente adequados para a tarefa de

classificação dos sinais de EEG. Também indicam que a implementação do modelo KNN pode

ter obtido resultados ótimos devido à sua simplicidade de implementação, ao contrário do SVM e

do RF, que exigem a definição de um número maior de hiperparâmetros. Além disso, a natureza

dos dados favorecia mais fronteiras de decisão como as do SVM e do KNN, ou seja, estavam mais

linearmente separáveis, o que não seria o ideal para o RF. Mesmo com a heterogeneidade dos

sinais associados ao TDAH, o KNN apresentou o melhor desempenho, possivelmente por tomar

decisões com base nas amostras mais próximas no conjunto de dados, conseguindo identificar

padrões locais mesmo em cenários com sobreposição entre as classes.

Em comparação com o Estado da Arte, os modelos desenvolvidos alcançaram

resultados compatíveis com estudos anteriores, embora mais investigações sejam necessárias

para validar a eficácia dos métodos de processamento utilizados e sua generalização em diferentes

bases de dados.

6.1 Trabalho Futuros

No sentido de dar continuidade a esta pesquisa, é possível pensar em algumas

abordagens a serem exploradas:

• Realizar outras combinações de extração de features, como o uso de diferentes característi-
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cas estatísticas ou da Densidade Espectral de Potência de apenas duas faixas de frequência,

analisando seu impacto na classificação final;

• Adaptar o modelo desenvolvido para aplicação em outras bases de dados;

• Testar outros classificadores, como arquiteturas de Redes Neurais Artificiais (RNA);

• Aplicar o modelo a outros problemas de classificação de sinais de EEG, como a detecção

de TDAH com comorbidades, ou de epilepsia.
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