
UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ALYSSON LUCAS BRAGA PINHEIRO

GRAMÁTICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM

LINGUAGEM DE PROGRAMAÇÃO

RUSSAS

2025

ALYSSON LUCAS BRAGA PINHEIRO

GRAMÁTICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM LINGUAGEM

DE PROGRAMAÇÃO

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Ciência da Computação
do Campus de Russas da Universidade Federal
do Ceará, como requisito parcial à obtenção do
grau de bacharel em Ciência da Computação.

Orientador: Prof. Dr. Cenez Araújo de
Rezende.

RUSSAS

2025

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

P718g Pinheiro, Alysson.
 Gramática livre de contexto para tipagem de grafos em linguagem de programação /
Alysson Pinheiro. – 2025.
 63 f.

 Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus
de Russas, Curso de Ciência da Computação, Russas, 2025.
 Orientação: Prof. Dr. Cenez Araújo de Rezende.

 1. gramática livre de contexto. 2. ipagem de grafos. 3. sistemas de tipos. 4. antlr4. 5.
verificação semântica. I. Título.

 CDD 005

ALYSSON LUCAS BRAGA PINHEIRO

GRAMÁTICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM LINGUAGEM

DE PROGRAMAÇÃO

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Ciência da Computação
do Campus de Russas da Universidade Federal
do Ceará, como requisito parcial à obtenção do
grau de bacharel em Ciência da Computação.

Aprovada em: 30/07/2025.

BANCA EXAMINADORA

Prof. Dr. Cenez Araújo de Rezende (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Eurinardo Rodrigues Costa
Universidade Federal do Ceará (UFC)

Prof. Dr. Alexandre Matos Arruda
Universidade Federal do Ceará (UFC)

À minha família, por toda confiança e apoio.

Mãe, Socorro Morais, sua dedicação e cui-

dado foram essenciais nos momentos difíceis

— nunca esquecerei. À minha irmã, Layza Nas-

cimento, pelo companheirismo e leveza nos dias

mais pesados.

AGRADECIMENTOS

Agradeço, primeiramente, ao Prof. Dr. Cenez Araújo de Rezende, meu orientador e

professor na disciplina de Compiladores, cuja orientação criteriosa e inspiradora foi essencial

para a realização deste projeto. Suas aulas, sua abordagem didática e seu vasto conhecimento

foram fundamentais na construção deste trabalho. Foi, sobretudo, sua dedicação que despertou e

alimentou minha curiosidade pelo universo das gramáticas formais.

Expresso minha sincera gratidão aos meus amigos discentes do Laboratório de

Tecnologias Inovadoras — Samuel Lima, Mateus Daniel, Naum Josafá, Paulo Henrique, Pedro

Ítalo e Yan Rodrigues — pelo apoio constante e incentivo ao longo da graduação. Em uma cidade

nova e em um ambiente universitário repleto de desafios, vocês foram pilares na construção de

uma rede de amizade que tornou esse percurso mais leve, significativo e inesquecível.

Aos meus pais e à minha irmã, agradeço pelo amor incondicional, pelo apoio

contínuo e pela confiança em cada etapa da minha jornada. À minha mãe, em especial, sou grato

pelos ensinamentos que me guiaram a reconhecer aquilo pelo qual realmente vale a pena lutar.

Estendo meus agradecimentos a todos os professores que contribuíram para a minha

formação, não apenas transmitindo conhecimento, mas também sendo exemplos de ética, huma-

nidade e dedicação. Entre eles, agradeço de forma especial aos professores da banca: Prof. Dr.

Alexandre Matos Arruda — também coordenador do Laboratório de Tecnologias Inovadoras,

cuja estrutura e visão tornaram este ambiente de pesquisa ainda mais fértil — e ao Prof. Dr.

Eurinardo Rodrigues Costa, cujo ensino em Linguagens Formais e Autômatos foi essencial para

consolidar os fundamentos teóricos que sustentam este trabalho.

A todos que, de forma direta ou indireta, contribuíram para essa trajetória, meu mais

sincero obrigado.

RESUMO

Este Trabalho de Conclusão de Curso investiga, formaliza e valida uma Gramática Livre de

Contexto (GLC) dedicada à tipagem estática de grafos, com vistas a suprir lacunas metodológicas

em linguagens formais e compiladores orientados a grafos. A gramática foi especificada em

Extended Backus–Naur Form (EBNF), convertida para Another Tool for Language Recognition

(ANTLR 4) e acompanhada de uma semântica executável em Python, implementada via visitor

pattern. Essa infraestrutura permite, em tempo de compilação, detectar usos de vértices e arestas

sem declaração prévia, violação de cardinalidade, incompatibilidades típicas de multigrafos

direcionados e ausência de atributos obrigatórios, além de identificar ciclos ou identificadores

duplicados quando tais restrições são impostas. Do ponto de vista acadêmico, o trabalho contribui

ao oferecer uma base teórica rigorosa que pode ser empregada tanto no ensino de Teoria de

Grafos quanto em disciplinas de Compiladores e Linguagens Formais, servindo como caso

de estudo completo — da definição lexical e sintática ao ciclo de análise semântica — para

estudantes e pesquisadores. Ademais, a proposta estabelece um framework extensível que pode

ser reutilizado em futuras linhas de pesquisa sobre sistemas de tipos para grafos, transformação

de grafos baseada em regras, integração de grafos a DSLs e geração automática de código. A

validação com um conjunto de onze casos de teste sintéticos evidenciou cobertura integral das

regras gramaticais, reforçando a robustez do método e seu potencial como artefato de pesquisa

replicável.

Palavras-chave: gramática livre de contexto; tipagem de grafos; sistemas de tipos; antlr4;

verificação semântica.

ABSTRACT

This work proposes the development of a context-free grammar for graph typing, aiming to

formalize the characteristics of these structures in computational systems. The increasing

complexity of graph-based systems, used in domains such as social networks, logistics systems,

and data science, demands tools that ensure consistency and safety in handling these structures.

The proposed grammar defines types for vertices and edges, as well as establishes composition

rules and semantic validation. The project focuses on planning the grammar and modeling an

interpreter capable of validating and inferring properties of graphs. It is expected that the future

implementation of this proposal (in a subsequent thesis) will result in a formal and efficient

approach to graph typing, contributing to the reliability of computational systems that rely on

these structures.

Keywords: context-free grammar; graph typing; type systems; antlr4; semantic validation.

LISTA DE QUADROS

Quadro 1 – Comparação entre trabalhos relacionados e a proposta deste TCC 25

Quadro 2 – Cobertura semântica da gramática por teste executado 34

LISTA DE CÓDIGOS-FONTE

Código-fonte 1 – Código-fonte completo do grafo flightNetwork 48

Código-fonte 2 – Código-fonte completo do grafo socialNet 49

Código-fonte 3 – Gramática EBNF para tipagem robusta de grafos 50

Código-fonte 4 – Código-fonte completo do grafo companyNetwork 51

Código-fonte 5 – invalido_vertice_tipo_nao_declarado.txt 52

Código-fonte 6 – valido01.txt . 53

Código-fonte 7 – valido02_undirected.txt . 54

Código-fonte 8 – valido03_multigrafo.txt . 55

Código-fonte 9 – valido04_heranca_profunda.txt 56

Código-fonte 10 – valido05_atributos_opcionais.txt 57

Código-fonte 11 – invalido_atributo_ausente.txt 58

Código-fonte 12 – invalido_ciclo_nao_permitido.txt 59

Código-fonte 13 – invalido_duplicata_vertice.txt 60

Código-fonte 14 – invalido_multiplo_erro.txt 61

Código-fonte 15 – invalido_tipo_aresta.txt . 62

LISTA DE ABREVIATURAS E SIGLAS

ANTLR 4 Another Tool for Language Recognition

API Application Programming Interface (Interface de Progra-

mação de Aplicações)

AST Abstract Syntax Tree (Árvore Sintática Abstrata)

BFS Breadth-First Search (Busca em Largura)

BNF Backus–Naur Form

DFS Depth-First Search

DOT Linguagem de descrição de grafos do Graphviz

DSL Domain-Specific Language (Linguagem de Domínio Espe-

cífico)

EBNF Extended Backus–Naur Form

GLC Gramática Livre de Contexto

GNU Bison GNU Bison Parser Generator (Gerador de Analisadores

Bison do Projeto GNU)

IDE Integrated Development Environment (Ambiente de De-

senvolvimento Integrado)

JSON JavaScript Object Notation

LL(1) Parser LL com look-ahead de 1 símbolo

LR Left-to-Right, Rightmost derivation (Análise Sintática

Esquerda-para-Direita com Derivação mais à Direita)

SVG Scalable Vector Graphics

UML Unified Modeling Language

XML Extensible Markup Language

LISTA DE SÍMBOLOS

G Grafo representado como um par ordenado G = (V,E).

V Conjunto de vértices do grafo.

E Conjunto de arestas do grafo.

vi Vértice específico, com i como identificador único.

TV Tipo associado a um vértice.

AV Conjunto de atributos de um vértice.

ei Aresta específica, com i como identificador único.

TE Tipo associado a uma aresta.

AE Conjunto de atributos de uma aresta.

vorigem Vértice de origem de uma aresta.

vdestino Vértice de destino de uma aresta.

Γ Contexto de tipagem.

→ Representação de mapeamento ou direção.

× Produto cartesiano entre conjuntos.

↝ Implicação de compatibilidade (“resulta em”).

∗ Fecho de Kleene (zero ou mais repetições).

L Linguagem formal gerada pela gramática.

Σ Alfabeto de símbolos terminais da gramática.

G Gramática formal G = (N,Σ,P,S).

N Conjunto de símbolos não-terminais da gramática.

P Conjunto de regras de produção da gramática.

S Símbolo inicial da gramática.

λ Função ou expressão anônima.

VT Conjunto de tipos de vértices

ET Conjunto de tipos de arestas

Card Anotação de cardinalidade mínima–máxima [m..n]

SUMÁRIO

1 INTRODUÇÃO . 14

2 FUNDAMENTAÇÃO TEÓRICA . 16

2.1 Grafo . 16

2.1.1 Origem Histórica e Definições Básicas . 16

2.1.2 Classificações Estruturais . 16

2.1.3 Representações Computacionais . 17

2.1.4 Algoritmos Fundamentais . 17

2.2 Gramática para Tipagem de Grafos . 18

2.2.1 Gramáticas em Linguagens Formais . 18

2.2.2 Tipagem Estática e Sistema de Tipos . 18

2.2.3 Gramática Livre de Contexto (GLC) para Tipagem de Grafos 18

2.2.4 Exemplo Ilustrativo de código . 19

2.2.5 Recursos Expressivos da Gramática Proposta 19

2.2.6 Benefícios Didáticos e Práticos . 20

3 TRABALHOS RELACIONADOS . 21

3.1 Panorama das Pesquisas . 21

3.2 Comparação entre os Trabalhos . 25

4 METODOLOGIA . 26

4.1 Construção da Gramática . 26

4.2 Definição dos Elementos Fundamentais 26

4.3 Formalização da Gramática . 27

4.3.1 Escolha da Notação EBNF . 27

4.3.2 Estrutura da Gramática . 27

4.3.3 Especificação em EBNF . 28

4.3.4 Recursos Expressivos da Gramática . 28

4.3.5 Exemplo de Grafo Válido . 28

4.3.6 Validação da Gramática . 28

4.3.7 Arquitetura de Validação e Execução . 29

4.3.8 Fluxo de Execução dos Testes . 30

4.3.9 Ferramentas Utilizadas . 31

4.3.10 Exemplo de Saída . 31

4.4 Conclusão da Metodologia . 31

5 RESULTADOS . 33

5.1 GLC para Tipagem de Grafos . 33

5.1.1 Quadro-Resumo de Cobertura dos Testes 34

5.1.2 Relatório de Testes Realizados . 35

5.2 Validação Formal da Gramática . 36

5.3 Contribuições Consolidadas . 36

6 CONCLUSÕES E TRABALHOS FUTUROS 38

6.1 Conclusões . 38

6.2 Trabalhos Futuros . 38

6.3 Considerações Finais . 39

REFERÊNCIAS . 40

GLOSSÁRIO . 42

APÊNDICE A –DECLARAÇÃO COMPLETA DO GRAFO FLIGHTNETWORK 48

APÊNDICE B –DECLARAÇÃO COMPLETA DO GRAFO SOCIALNET 49

APÊNDICE C –GRAMÁTICA COMPLETA EM EBNF PARA TIPA-

GEM DE GRAFOS 50

APÊNDICE D –EXEMPLO COMPLETO DO GRAFO COMPANYNETWORK 51

APÊNDICE E –ARQUIVOS DE TESTE DA GRAMÁTICA 52

14

1 INTRODUÇÃO

Os grafos são estruturas matemáticas fundamentais para a modelagem de relações

entre entidades e têm sido amplamente utilizados em domínios como Ciência da Computação,

engenharia, redes sociais, logística e biologia computacional West (2001) e Bondy e Murty

(1976). Essa ampla aplicabilidade decorre de sua capacidade de representar sistemas complexos

por meio de uma estrutura relacional abstrata, que pode modelar desde rotas de transporte e

fluxos de dados até interações sociais e biológicas.

Com o avanço das aplicações baseadas em grafos, cresce a necessidade de meca-

nismos que assegurem a consistência, segurança e reutilização semântica dessas estruturas em

sistemas computacionais Cormen et al. (2009). Nesse contexto, este trabalho propõe o desen-

volvimento de uma GLC dedicada à tipagem de grafos, cuja função é conferir uma semântica

formal aos seus elementos — vértices, arestas e atributos — possibilitando a validação sintática e

semântica, a inferência de tipos de propriedades e a integração com compiladores Pierce (2002).

Diferentemente de tipos estruturados clássicos como registros e classes, que assumem

uma organização hierárquica, os grafos modelam relações arbitrárias e dinâmicas. Assim, por

exemplo, em um grafo representando uma rede social, seria possível definir vértices dos tipos

"Usuário", "Empresa"e "Evento", e arestas como "Segue", "TrabalhaEm"ou "Participa", cujas

conexões seriam validadas automaticamente pela gramática segundo regras de tipagem declaradas

previamente. Tal mecanismo favorece a segurança semântica, reduz erros lógicos e aprimora a

robustez de sistemas complexos.

A principal motivação deste trabalho é propor uma gramática de tipagem de grafos

que possa contribuir para uma linguagem de programação voltada ao ensino e pesquisa, como

em Teoria dos Grafos, na qual os grafos sejam tratados como entidade de primeira classe. Essa

abordagem oferece uma ferramenta didática inovadora que permite ao discente experimentar

diretamente os conceitos teóricos de grafos direcionados, ponderados, regras de conectividade,

subgrafos e inferência de tipos. A interação prática com grafos fortemente tipados promove um

aprendizado mais ativo, intuitivo e contextualizado.

Apesar da difusão de sistemas de tipos em linguagens de programação modernas,

ainda há uma lacuna quanto ao suporte nativo à tipagem estática de grafos com regras semânticas

formais. A gramática proposta neste trabalho visa preencher essa lacuna, aliando a expressividade

dos grafos à segurança de um sistema de tipos robusto e extensível Milner (1978) e Hindley

(1969).

15

Espera-se, portanto, que esta gramática constitua uma base formal e reutilizável tanto

para o desenvolvimento de ferramentas computacionais quanto para a criação de uma linguagem

acadêmica especializada, incentivando a inovação didática e a evolução teórica na área de grafos

Diestel (2017).

Além desta Introdução, o Capítulo 2 apresenta a Fundamentação Teórica, revi-

sitando os principais conceitos de Grafos, Sistemas de Tipos e Gramáticas em Linguagens

Formais que embasam a proposta. O Capítulo 3 discute os Trabalhos Relacionados, situando

esta pesquisa frente às soluções mais relevantes da literatura. No Capítulo 4, a Metodologia é

detalhada, desde a definição dos elementos fundamentais até a formalização da gramática em

EBNF e o pipeline de validação semântica. O Capítulo 5 apresenta os Resultados, destacando a

gramática final, os testes executados e as contribuições obtidas. Por fim, o Capítulo 6 expõe as

Conclusões e Trabalhos Futuros, sintetizando as principais realizações, limitações e perspectivas

de continuidade desta pesquisa.

16

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os principais fundamentos teóricos que sustentam a proposta

desta pesquisa. Primeiramente, revisitam-se os conceitos essenciais da Teoria dos Grafos,

abordando sua origem histórica, classificações estruturais, representações computacionais e

algoritmos basilares. Em seguida, discute-se o arcabouço de Gramáticas em Linguagens Formais

e de sistema de tipos, ressaltando como tais ferramentas fornecem o rigor necessário para

especificar e validar estruturas relacionais complexas. Por fim, introduz-se a Gramática Livre de

Contexto para Tipagem de Grafos proposta, destacando seus recursos expressivos, motivações

didáticas e benefícios práticos. Essa fundamentação estabelece o pano de fundo conceitual

indispensável para compreender, no restante do trabalho, a construção, a aplicação e a avaliação

da gramática desenvolvida.

2.1 Grafo

2.1.1 Origem Histórica e Definições Básicas

O conceito de grafo surgiu formalmente com o trabalho de Euler sobre o problema

das Pontes de Königsberg em 1736, considerado o marco inaugural da combinatória moderna

Euler (1736). A generalização e sistematização desses estudos deu origem à Teoria dos Grafos,

área da Matemática Discreta dedicada ao estudo de estruturas compostas por vértices (ou nós)

e Arestas (ou arcos), representadas formalmente como um par ordenado G = (V,E) Harary

(1969) e West (2001). Cada vértice v ∈V modela uma entidade abstrata, enquanto cada aresta

e = (vi,v j) ∈ E, onde vi,v j ∈V , modela uma relação binária entre duas entidades.

2.1.2 Classificações Estruturais

– Direcionamento. Se as Arestas possuem orientação, o grafo é direcionado (digrafo); caso

contrário, é não-direcionado. A distinção determina se cada aresta é ordenado ou não.

grafos direcionados são essenciais em modelagem de fluxos, precedências e autômatos

Diestel (2017).

– Multiplicidade e laços. Em grafos simples não há laços (vi = v j) nem múltiplas Arestas

paralelas entre dois vértices, enquanto multigrafos permitem ambas as situações Bondy

e Murty (1976). multigrafos são comuns em redes de transporte, onde diferentes rotas

17

conectam as mesmas cidades.

– Ponderação. Um grafo ponderado associa um peso w : E → R+ a cada Aresta, permi-

tindo expressar custo, capacidade ou distância — condição indispensável a algoritmos de

caminho mínimo, como Dijkstra e Bellman–Ford Cormen et al. (2009).

– Conectividade. Um é grafo conexo se existe pelo menos um caminho entre quaisquer

vi,v j ∈V ; caso contrário, apresenta componentes conexas disjuntas. A conectividade é

verificada em O(|V |+ |E|) via Depth-First Search (DFS) Tarjan (1972).

– Planaridade. grafos planares podem ser desenhados no plano sem cruzamento de Arestas;

o Teorema de Kuratowski caracteriza essa propriedade via subgrafos homeomorfo (em

grafos) a K5 ou K3,3 Gross e Yellen (2014).

2.1.3 Representações Computacionais

Para uso algorítmico, um grafo G = (V,E) pode ser tipicamente codificados como:

1. Matrizes de adjacência: estrutura |V | × |V | densa, com ponto flutuante para grafos

completos; acesso O(1) para consulta de Aresta, porém O(|V |2) de memória.

2. Listas de adjacência: vetor de listas A[v] contendo vizinhos de v; requer O(|V |+ |E|) de

memória e é a representação preferencial para grafos esparsos Cormen et al. (2009).

3. Listas de incidência ou edge-list, útil em algoritmos baseados em ordenação de Arestas,

como Kruskal.

Essas representações afetam a complexidade de muitos algoritmos tais como: traver-

sal, cobertura mínima, fluxo máximo e isomorfismo.

2.1.4 Algoritmos Fundamentais

– Breadth-First Search (Busca em Largura) (BFS). Explora o grafo camada a camada,

identificando o menor número de Arestas num caminho entre um vértice fonte e os demais;

base para provas de bipartição, cálculo de diâmetro e construção de árvores geradoras

Cormen et al. (2009).

– Depth-First Search (Busca em Profundidade) DFS. Fundamenta algoritmos de detecção

de ciclos, ordenação topológica e componentes fortemente conexas (Kosaraju, Tarjan).

– Dijkstra e A*. Dijkstra resolve o problema de caminhos mínimos de fonte única em grafos

ponderados com pesos não negativos (com fila de prioridade: O((|V |+ |E|) log |V |)). A*

generaliza Dijkstra com busca informada, priorizando por g(n)+ h(n); com heurística

18

admissível/consistente, mantém otimalidade Hart et al. (1968).

Esses algoritmos ilustram como a estrutura de grafo é explorada computacionalmente,

reforçando a necessidade de representações e tipagens rigorosas para garantir corretude.

2.2 Gramática para Tipagem de Grafos

2.2.1 Gramáticas em Linguagens Formais

No contexto de linguagens formais, uma gramática é definida como uma 4-upla

GM = (N, Σ, P, S), em que N é um conjunto finito de símbolos não-terminais, Σ é um conjunto

de terminais, P é um conjunto finito de regras de produção e S ∈ N é o símbolo inicial Hopcroft

et al. (2006). As GLCs caracterizam a classe LCF de linguagens reconhecíveis por autômatos de

pilha determinísticos.

2.2.2 Tipagem Estática e Sistema de Tipos

Um sistema de tipos associa a cada expressão de um programa um construtor

semântico capaz de restringir operações inválidas (soundness) e, idealmente, de não rejeitar

programas corretos (completeness) Pierce (2002). Extender o sistema de tipos às instâncias de

grafos implica:

– atribuir conjuntos de tipos aos vértices e às arestas: VT (tipos de vértice) e ET (tipos de

aresta), o que permite verificar propriedades de domínio (ex.: Aluno conecta-se apenas a

Curso);

– estabelecer regras de formação P que descrevem as conexões válidas entre tipos, por

exemplo como triplas P ⊆VT ×ET ×VT do tipo (τs,τe,τt) (origem, aresta, destino);

– manter um contexto de tipagem Γ (um mapeamento de identificadores para tipos), e usar

a notação de julgamento de tipagem Γ ⊢ e : T , lida como: “sob as hipóteses de Γ, a

expressão e tem tipo T ”, durante a análise semântica Milner (1978).

2.2.3 GLC para Tipagem de Grafos

A gramática proposta neste trabalho utiliza EBNF para modelar estruturas tipadas de

grafos. A seguir, apresenta-se um extrato simplificado, adequado a leitores iniciantes:

19

S → GraphDecl+

GraphDecl→ graph ID {TypeSec VertSec EdgeSec}

TypeSec→ types {VTypeDecl∗ ETypeDecl∗ }

VTypeDecl→ vertex ID [extends ID] [Card] [AttrBlock]

ETypeDecl→ edge ID (ID, ID) [directed | undirected] [Card] [AttrBlock]

Onde Card descreve a Cardinalidade [m..n] e AttrBlock encapsula atributos tipa-

dos. A escolha de GLC permite:

1. Parsing determinístico. Ferramentas Parser LL com look-ahead de 1 símbolo (LL(1)),

como ANTLR 4, geram analisadores compatíveis com compiladores educacionais.

2. Validação semântica incremental. Após a derivação sintática, um visitor pattern percorre

a árvore anotando tipos e verificando restrições declaradas em P.

3. Extensibilidade modular. Novos tipos, atributos ou restrições podem ser adicionados

sem modificar o núcleo da gramática, respeitando o princípio de open-closed.

2.2.4 Exemplo Ilustrativo de código

O código-fonte completo que exemplifica a declaração de um grafo de rotas aéreas

encontra-se no Apêndice A. A listagem ilustra (i) herança de vértices (Hub extends Airport);

(ii) atributos obrigatórios (code, city); e (iii) arestas direcionadas (Flight), todos validados

pela gramática proposta. Durante a fase semântica, o analisador assegura que Flight conecta

unicamente vértices do tipo Airport (ou seus subtipos), reportando erro caso contrário.

2.2.5 Recursos Expressivos da Gramática Proposta

– Herança (entre tipos) entre tipos de vértices (extends) — um tipo especializado reaproveita

atributos e restrições do supertipo, promovendo reutilização Cardelli (1985).

– Cardinalidade [m..n] — especifica o número mínimo m e máximo n de ocorrências permiti-

das, inspirado na notação Unified Modeling Language (UML) Rumbaugh et al. (2004).

– Atributos tipados, obrigatórios e com valor-padrão — cada elemento declara atributo:Tipo

seguido de required ou default = valor, evitando nullability Pierce (2002).

20

– Arestas direcionadas (directed) ou não (undirected) — definem orientação semântica

explícita; a escolha impacta algoritmos de travessia Diestel (2017).

– Múltiplos grafos no mesmo programa — várias declarações graph compartilham arquivo,

mas mantêm namespaces isolados Mens e Gorp (2006).

Exemplo completo dos recursos

Para uma demonstração integrada de herança, cardinalidade, atributos opcionais,

múltiplos tipos de aresta e validação semântica, consulte o Apêndice B, que apresenta o grafo

socialNet. Nessa listagem observa-se, por exemplo, a herança de Student a Person, arestas

simétricas (Knows) e assimétricas (Follows), além do uso de valores-padrão de atributos.

Validação semântica do exemplo

– O vértice b herda atributos obrigatórios de Person.

– A restrição [1..*] é satisfeita (há ao menos um Person).

– O atributo age usa o valor padrão 18 quando omitido.

– Follows é assimétrico; Knows é simétrico.

– Os grafos socialNet e logistics têm namespaces distintos.

2.2.6 Benefícios Didáticos e Práticos

– Segurança estática. Erros de modelagem são detectados em tempo de compilação,

antecipando inconsistências lógicas difíceis de depurar em tempo de execução.

– Abstração de alto nível. grafos deixam de ser simulados por matrizes ou listas; passam

a ser entidade de primeira classes, capazes de receber operações semânticas próprias

(subgrafo, contração, pattern-matching).

– Integração com Domain-Specific Language (Linguagem de Domínio Específico)s

(DSLs). A gramática pode ser embutida em linguagens específicas de domínio, oferecendo

suporte nativo a problemas de roteamento, dependências ou fluxos de dados.

– Ferramenta de ensino. Em ambientes acadêmicos, fornece um laboratório seguro onde

estudantes experimentam transformações de grafos com garantias formais de corretude.

A combinação de Teoria dos Grafos clássica e Sistemas de Tipos modernos resulta,

portanto, em um arcabouço robusto para modelagem, validação e manipulação de estruturas

relacionais complexas, alinhado às demandas de aplicações contemporâneas em Ciência da

Computação.

21

3 TRABALHOS RELACIONADOS

Este capítulo revisita as principais pesquisas que abordam a tipagem e a transforma-

ção de grafos, situando o estado-da-arte em relação à proposta deste trabalho. Inicia-se com um

Panorama das Pesquisas, que delineia as linhas teóricas e aplicadas mais relevantes. Em seguida,

cada subseção analisa criticamente estudos representativos — desde abordagens baseadas em

type graphs, sistemas de tipos para transformações, formalismos algébricos e bancos de dados

orientados a grafos, até propostas acadêmicas emergentes. Por fim, apresenta-se uma tabela com-

parativa que sintetiza os aspectos avaliados e evidencia como a gramática livre de contexto aqui

desenvolvida preenche lacunas identificadas na literatura. Essa revisão fundamenta e justifica as

escolhas metodológicas adotadas ao longo do TCC.

3.1 Panorama das Pesquisas

A tipagem formal de grafos tem sido explorada em diversas linhas de pesquisa, so-

bretudo no contexto da transformação de grafos, especificações baseadas em regras e engenharia

de software model-driven. No entanto, permanece uma lacuna metodológica significativa quanto

à construção de gramáticas formais — especialmente gramáticas livres de contexto (GLCs) —

voltadas à definição textual e tipada de grafos como estruturas de primeira classe em linguagens

de programação. Esta seção examina trabalhos de base teórica e técnica que influenciam a

proposta deste TCC, apresentando suas metodologias, restrições e distinções em relação ao

sistema gramatical aqui desenvolvido.

Specifying Graph Languages with Type Graphs

(Corradini et al., 1997)

Corradini et al. Corradini et al. (1997) introduzem os type graphs como construtos

formais para definição de linguagens de grafos. A proposta parte do paradigma categórico de

grafos e homomorfismos, onde grafos válidos são definidos como instâncias de um grafo-tipo,

respeitando restrições estruturais como tipos de vértices e aridade de arestas.

O método adotado consiste na composição de morfismos entre grafos usando técnicas

de categorização em diagramas comutativos. As operações de substituição, extensão e restrição

são validadas através de preservação da tipagem e consistência estrutural. O trabalho enfatiza a

modelagem em ambientes visuais, com foco em editores gráficos de modelagem e Engenharia

22

de Software.

Contudo, a ausência de uma linguagem textual declarativa impede a aplicação direta

desse modelo em linguagens de programação, dificultando sua integração com compiladores,

interpretadores ou ambientes de ensino. A proposta deste TCC avança ao propor uma gramática

formal textual — escrita em EBNF e implementada em ANTLR — que permite definir grafos

com tipos e atributos diretamente na linguagem, realizando validações sintáticas e semânticas

durante o parsing.

Type Systems for Graph Transformation Systems

(Heckel e Taentzer, 2006)

Heckel e Taentzer Heckel e Taentzer (2006) apresentam um sistema de tipos para

transformação de grafos baseado em regras formais de correspondência e preservação de pro-

priedades. A abordagem parte da definição de grafos-tipo e operações de reescrita, propondo

um mecanismo para garantir que transformações (como inserção, exclusão e substituição de

subgrafos) não violem restrições semânticas estabelecidas previamente.

O método baseia-se na identificação de pré-condições e pós-condições para regras

de transformação, com foco na consistência de tipagem durante a aplicação dessas regras. O

sistema admite subtipagem e inferência parcial de tipos, e é validado por meio de provas formais

e implementação prototípica em ferramentas baseadas em visualização de grafos.

Apesar de sua robustez teórica, a proposta não contempla uma gramática formal

textual nem oferece suporte a linguagens com análise sintática tradicional (ex: análise LL ou

LR). Em contrapartida, a gramática desenvolvida neste TCC é explicitamente textual, escrita

em EBNF, permitindo que grafos sejam definidos como declarações tipadas, com validação

semântica embutida e suporte a atributos, cardinalidade, herança e multigrafos, diretamente

integráveis a compiladores.

Graph Transformation: A Specification Technique and Its Applications

(Ehrig et al., 1991)

Ehrig et al. Ehrig et al. (1991) sistematizam a teoria de transformação de grafos

com um enfoque em especificação algébrica. A técnica apresentada define regras formais para

reescrita de grafos, caracterizadas por tripletos (L,K,R), onde L representa o subgrafo a ser

substituído, R o grafo resultante, e K os elementos preservados.

23

A metodologia inclui o uso de condições aplicáveis (application conditions), controle

de conflitos e critérios de aplicabilidade baseados em homomorfismos. A proposta é eficaz

para transformação computacional, e influenciou diversos formalismos como AGG, GROOVE e

Henshin.

Entretanto, sua ênfase é prescritiva e operacional, voltada à reescrita e execução, não

abordando a tipagem como elemento central. A estrutura tipada, quando presente, é embutida

nos grafos, e não gerada por gramática textual formal com regras sintáticas explícitas. Diferente

disso, a proposta deste TCC define uma GLC textual que permite, por exemplo, especificar que

um vértice do tipo Manager herda atributos de Person e só pode conectar-se a vértices do tipo

Company, sendo essas restrições verificadas automaticamente por meio de análise semântica

estruturada.

Introduction to Automata Theory, Languages, and Computation

(Hopcroft et al., 2006)

O trabalho de Hopcroft, Motwani e Ullman Hopcroft et al. (2006) constitui o alicerce

teórico de linguagens formais, autômatos e gramáticas. A obra cobre com profundidade a

definição de GLCs, suas propriedades de derivação, algoritmos de normalização (ex: forma

normal de Chomsky) e técnicas de análise como parsing descendente e ascendente.

O método didático da obra oferece algoritmos detalhados para conversão entre

notações (BNF e EBNF), construção de autômatos de pilha (PDA) e tabelas de parsing. Embora

não trate de grafos, fornece o embasamento técnico fundamental que permite a este TCC construir

uma gramática textual com estrutura EBNF validada via ANTLR, realizando análise sintática

descendente com look-ahead (LL(1)).

A gramática proposta deste TCC aplica esses conceitos diretamente a grafos: define

blocos para tipos de vértices e arestas, instâncias de elementos, regras de ligação e atribuição

semântica, utilizando mecanismos de parsing formal e visitors para validação contextual. O

uso de EBNF permite ainda transcrição automatizada para compiladores, diferentemente de

abordagens exclusivamente visuais.

Webber, Robinson e Eifrem (2012) — Modelo de Grafos com Tipagem Implícita no Neo4j

Webber et al. (2012) apresentam o Neo4j como um sistema de gerenciamento de

banco de dados orientado a grafos que adota o modelo Property Graph. Nesse modelo, os

24

vértices e arestas podem conter rótulos (labels) e atributos arbitrários no formato chave-valor.

A linguagem de consulta Cypher é utilizada para expressar padrões de correspondência entre

nós e relacionamentos de forma declarativa, permitindo navegação, filtragem e atualização das

estruturas de grafo com sintaxe semelhante ao SQL.

Embora o Neo4j permita representar grafos ricos e heterogêneos, seu sistema de

tipos é implícito e não formalizado. Os rótulos servem apenas como convenções semânticas, não

havendo mecanismos formais para herança entre tipos, verificação de cardinalidade, obrigatorie-

dade de atributos ou restrições entre conexões. A validação de consistência estrutural deve ser

feita manualmente, e erros de modelagem só são detectados em tempo de execução, caso afetem

a lógica das consultas.

Em contraste, a proposta deste TCC define uma gramática livre de contexto textual

para grafos tipados, com suporte a atributos, cardinalidade, herança e validação semântica

automática. Enquanto o Neo4j prioriza flexibilidade e execução dinâmica, a abordagem deste

TCC foca em rigor sintático e semântico, permitindo que estruturas de grafo sejam analisadas

e validadas formalmente em tempo de compilação, com aplicação em ambientes acadêmicos,

compiladores e linguagens específicas de domínio.

Jaguar-Lang: Linguagem Acadêmica com Perspectiva de Tipagem Gráfica (Rezende, 2025)

O projeto Jaguar-Lang, atualmente em andamento sob coordenação do Prof. Dr.

Cenez Araújo de Rezende, tem como objetivo o desenvolvimento de uma linguagem de pro-

gramação acadêmica com fins didáticos e de pesquisa na área de compiladores e linguagens

formais. Segundo Rezende (2025), a proposta visa à construção de uma infraestrutura para

experimentação de técnicas de compilação em contextos de alto desempenho (High-Performance

Computing), com especial atenção à paralelização e distribuição computacional.

Embora o foco principal do Jaguar-Lang seja a experimentação em ambientes HPC,

o projeto contempla a inclusão de recursos expressivos de linguagem voltados ao ensino de com-

piladores e linguagens específicas de domínio. Entre os tópicos prospectivos, está a introdução

de mecanismos de representação de grafos como estruturas de primeira classe (tipos nativos e

manipuláveis diretamente na linguagem), incluindo a possibilidade futura de definição de uma

tipagem estática para essas estruturas no próprio núcleo da linguagem.

A relação com este TCC se estabelece na convergência conceitual: ambos visam

a representação e manipulação de grafos em linguagens de programação com respaldo formal.

25

No entanto, enquanto o Jaguar-Lang se estrutura como uma plataforma ampla, este trabalho

se concentra especificamente na definição e validação de uma gramática livre de contexto para

tipagem de grafos, que poderá futuramente se integrar ou inspirar a arquitetura do Jaguar-Lang

como subsistema ou módulo de linguagem fortemente tipada orientada a grafos. Como o projeto

está em adamento, não será adicionado a tabela de comparação a este trabalho.

3.2 Comparação entre os Trabalhos

Quadro 1 – Comparação entre trabalhos relacionados e a proposta deste TCC
Aspecto Avaliado Corr. Heck. Hopc. Neo4j Este

Trabalho
Tipagem formal de vértices e
arestas

✓ ✓ ✓

Tipagem nativa de grafos ✓
Transformação de grafos ✓ ✓ ✓
Uso de GLC ✓ ✓
Gramática textual com
EBNF

✓

Validação semântica automá-
tica

✓ ✓

Integração com compilado-
res

✓ ✓

Atributos e herança com ve-
rificação estática

✓ ✓

Proposta deste trabalho Uma gramática textual formal para grafos tipados com
EBNF, validação semântica e sintática, herança, atributos,
cardinalidade e integração com ferramentas de análise e
compilação.

Legenda: Corr. = Corradini et al. (1997); Heck. = Heckel e Taentzer (2006); Hopc. = Hopcroft et al. (2006).
Fonte: Elaborado pelo autor.

Os trabalhos analisados fornecem contribuições valiosas em suas respectivas áreas,

mas nenhum deles propõe uma solução formal textual que integre tipagem estática, análise

sintática e semântica, e regras gramaticais específicas para grafos como entidades de primeira

classe. A proposta deste trabalho avança ao combinar fundamentos de linguagens formais

com requisitos estruturais e semânticos dos grafos, preenchendo uma lacuna metodológica na

literatura atual.

26

4 METODOLOGIA

Este capítulo descreve, passo a passo, o processo empregado para conceber, formali-

zar, implementar e validar a GLC proposta para a tipagem de grafos. Inicialmente, são delineados

os elementos fundamentais (vértices, Arestas, atributos e Cardinalidade) que servem de base ao

modelo. Em seguida, explicita-se a escolha da notação EBNF e a estrutura modular da gramática,

destacando como cada bloco (types, vertices e edges) contribui para a expressividade e a

segurança do sistema de tipos. Na sequência, apresentam-se a especificação completa em EBNF,

exemplos ilustrativos e os recursos avançados oferecidos (herança, múltiplos grafos, comentários,

etc.). Por fim, detalham-se a arquitetura de validação, o conjunto de testes, as ferramentas

utilizadas (ANTLR 4, Python e anytree) e o fluxo de execução automatizado que garante a

correção sintática e semântica dos grafos definidos.

4.1 Construção da Gramática

A construção de uma GLC para tipagem de grafos exige uma rigorosa abordagem

sistemática, de modo a permitir que grafos sejam tratados como entidades de primeira classe em

linguagens de programação, com validação sintática e semântica garantidas. Esta metodologia é

dividida em quatro fases:

1. Definição dos elementos fundamentais da gramática;

2. Formalização das regras de formação (em EBNF, sem recursão à esquerda, com equiva-

lência Backus–Naur Form (BNF) assegurada);

3. Elaboração da gramática completa e robusta — com suporte a herança de tipos,

cardinalidade, atributos com metadados, múltiplos grafos e direcionalidade explícita

de arestas;

4. Validação da gramática por meio de testes formais e ferramentas automáticas.

4.2 Definição dos Elementos Fundamentais

A gramática considera os seguintes elementos estruturais de grafos:

– Vértices V , com:

– Identificador único (id);

– Tipo associado (TV);

– Atributos (AV);

27

– Cardinalidade mínima e máxima.

– Arestas E, com:

– Identificador único (id);

– Tipo (TE);

– Origem e destino (vorigem,vdestino);

– Direcionalidade (direcionada ou não);

– Cardinalidade;

– Atributos (AE).

4.3 Formalização da Gramática

4.3.1 Escolha da Notação EBNF

A notação EBNF (Extended Backus-Naur Form) foi adotada para representar a

gramática com maior clareza e concisão. Diferente da BNF tradicional, a EBNF permite o uso

direto de operadores de repetição e opcionais, como *, + e ?, além de suportar agrupamentos

explícitos.

Essa notação facilita:

– A escrita formal das regras de produção;

– A transcrição direta para ferramentas como ANTLR 4;

– A compreensão por parte de leitores com familiaridade com linguagens formais.

A escolha da EBNF baseia-se em sua ampla utilização em especificações formais

modernas, conforme discutido em Wirth (1996) e Hopcroft et al. (2006).

4.3.2 Estrutura da Gramática

A gramática foi projetada com três blocos principais, seguindo a estrutura lógica dos

grafos:

1. Bloco types: define os tipos de vértices e arestas. Suporta herança entre vértices

extends), atributos tipados com metadados (obrigatoriedade e valores padrão), além

de cardinalidade explícita.

2. Bloco vertices: instancia os vértices do grafo. Cada vértice é associado a um tipo

previamente declarado, e seus atributos devem obedecer ao contrato do tipo.

3. Bloco edges: define as conexões entre vértices. Cada aresta possui tipo, orientação

28

(via ->), e atributos opcionais. A verificação de compatibilidade entre tipos de vértices

conectados é realizada durante a análise semântica.

4.3.3 Especificação em EBNF

A seguir apresenta-se a gramática completa na notação EBNF:

O código-fonte completo da gramática em EBNF foi transferido para o Apêndice C,

evitando sobrecarregar esta seção.

4.3.4 Recursos Expressivos da Gramática

A gramática suporta os seguintes recursos formais:

– Herança entre tipos de vértices com extends ;

– Cardinalidade mínima e máxima com notação [m..n];

– Atributos com tipo, obrigatoriedade e valor padrão;

– Arestas direcionadas (directed) ou não (undirected);

– Definição de múltiplos grafos no mesmo programa;

– Comentários em estilo // ou #.

4.3.5 Exemplo de Grafo Válido

O grafo usado como estudo de caso (companyNetwork) encontra-se integralmente

descrito no Apêndice D.

4.3.6 Validação da Gramática

A gramática formal desenvolvida foi implementada diretamente em ANTLR 4, a

partir da tradução sistemática da especificação em EBNF. O objetivo da validação foi garantir

que:

– A sintaxe da linguagem fosse corretamente interpretada por analisadores lexicais e sintáti-

cos gerados automaticamente;

– A semântica de grafos tipados fosse rigorosamente verificada via análise personalizada;

– A estrutura e coerência dos dados fossem passíveis de inspeção via geração de árvores

sintáticas.

29

Para isso, foi desenvolvido um projeto completo disponível publicamente no GitHub1,

contendo:

– Arquivo Graph.g4: especificação da gramática em ANTLR 4;

– Implementações auxiliares em Python e anytree para validação semântica e renderização

das árvores sintáticas;

– Script main.py: responsável por realizar parsing, análise semântica e geração de relató-

rios;

– Diretório tests/2: contém todos os arquivos de entrada utilizados na validação, incluindo

os grafos válidos (arquivos de texto simples) e inválidos, cobrindo as regras grama-

ticais e semânticas;

– Diretório tree_tests/: armazena as árvores sintáticas geradas automaticamente, facili-

tando a depuração.

– Resultados dos testes/3: apresenta a saída gerada durante a execução dos testes,

indicando quais grafos foram aceitos ou rejeitados pelo validador, de acordo com as regras

gramaticais e semânticas definidas.

Essa estrutura modular permite a replicação completa dos experimentos conduzidos

neste trabalho, favorecendo a reprodutibilidade acadêmica e a futura extensão da proposta por

outros pesquisadores.

4.3.7 Arquitetura de Validação e Execução

A validação foi conduzida com base no projeto GramaticaTipagemGrafosGLC,

disponível publicamente em Pinheiro (2025), cuja arquitetura encontra-se estruturada da seguinte

forma:

– Graph.g4 — arquivo principal contendo a gramática formal para grafos tipados em

ANTLR 44;

– GraphLexer.py, GraphParser.py, GraphVisitor.py — arquivos gerados automatica-

mente a partir de Graph.g4 usando ANTLR 4;

– GraphValidator.py — módulo de validação semântica desenvolvido manualmente,

derivado do GraphVisitor;
1 https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
2 https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main/tests
3 https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#

resultados-dos-testes---tests

https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main/tests
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#resultados-dos-testes---tests
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#resultados-dos-testes---tests

30

– main.py — script que percorre todos os arquivos de teste, realiza parsing, validação

semântica e geração da árvore sintática;

– tests/ — conjunto de arquivos de entrada representando grafos válidos e inválidos;

– tree_tests/ — diretório gerado automaticamente contendo as árvores sintáticas de cada

grafo analisado, em formato de texto.

4.3.8 Fluxo de Execução dos Testes

A verificação da conformidade sintática e semântica da gramática foi conduzida de

forma automatizada por meio do script main.py, responsável por orquestrar todo o pipeline de

análise. O fluxo completo de execução dos testes pode ser descrito conforme as etapas abaixo:

1. Leitura dos arquivos de teste: todos os arquivos presentes no diretório tests/ são

percorridos de forma recursiva. Cada arquivo contém uma definição textual de um ou mais

grafos com diferentes configurações de tipos, atributos e conexões.

2. Análise léxica e sintática: utilizando o parser gerado pelo ANTLR 4 4 (via os arquivos

GraphLexer.py e GraphParser.py), a entrada textual é transformada em uma Abstract

Syntax Tree (Árvore Sintática Abstrata) (AST), representando a estrutura hierárquica do

grafo conforme definido pela gramática.

3. Geração da árvore sintática: com apoio da biblioteca anytree, a árvore sintática gerada

é renderizada e exportada para o diretório tree_tests/. Isso permite inspeção visual da

árvore para depuração ou documentação.

4. Análise semântica com GraphValidator.py: um visitor pattern customizado percorre

a árvore sintática verificando invariantes semânticos do grafo:

– Se todos os tipos utilizados estão previamente declarados;

– Se todos os atributos obrigatórios estão presentes;

– Se os tipos de origem e destino nas arestas são compatíveis com as assinaturas;

– Se não há identificadores duplicados para vértices ou arestas;

– Se estruturas inválidas como ciclos proibidos (self-loops) ocorrem.

5. Geração do relatório de validação: ao final de cada verificação, o resultado é impresso

no terminal. Casos válidos são confirmados com uma mensagem positiva, enquanto erros

semânticos são listados de forma detalhada para cada elemento inválido detectado.

6. Cobertura total: esse processo é repetido automaticamente para todos os arquivos da

pasta de testes, permitindo cobertura sistemática de todas as produções e regras semânticas

31

da gramática.

Esse processo garante que tanto a estrutura gramatical quanto as propriedades de

integridade dos grafos definidos sejam rigorosamente testadas. A arquitetura modular, baseada

em ANTLR, Python e anytree, provê flexibilidade para expandir o conjunto de testes ou adaptar

as regras semânticas conforme novas funcionalidades sejam incorporadas à gramática.

4.3.9 Ferramentas Utilizadas

– ANTLR 4 Parr (2013): geração de analisadores LL(1) e estrutura básica de GraphParser,

GraphLexer e GraphVisitor;

– Python, Python Software Foundation (2021) + anytree Brunner (2023): geração de árvores

sintáticas com indentação hierárquica por meio de render tree ;

– Casos de teste sintéticos: mais de 10 arquivos foram projetados cobrindo todas as

possibilidades da gramática.

Embora ferramentas como o GNU Bison Parser Generator (Gerador de Analisadores

Bison do Projeto GNU) (GNU Bison) (baseado em análise Left-to-Right, Rightmost derivation

(Análise Sintática Esquerda-para-Direita com Derivação mais à Direita) (LR)) também sejam

compatíveis com o domínio, optou-se por ANTLR 44 devido à maior legibilidade e facilidade na

construção de analisadores descendentes para linguagens com estrutura hierárquica como grafos.

4.3.10 Exemplo de Saída

Testando: tests\invalido_multiplo_erro.txt

Erros semânticos encontrados:

- Vértice ’x1’ falta atributo obrigatório ’val’.

- Identificador duplicado: ’x1’.

- Vértice ’x2’ usa tipo indefinido ’Y’.

- Aresta ’e1’ espera conexão (X -> X), recebeu (X -> Y).

- Aresta ’e2’ usa tipo indefinido ’Z’.

4.4 Conclusão da Metodologia

A metodologia adotada permitiu a construção de uma gramática livre de contexto

robusta e extensível, validada de forma sistemática. A estrutura modular da linguagem, separando

32

tipos e instâncias, aliada à análise semântica automatizada, garantiu consistência e precisão.

A gramática demonstrou capacidade de representar grafos complexos, com suporte

a herança, cardinalidade, atributos opcionais e múltiplos grafos. A próxima etapa consiste na

integração da linguagem com um ambiente de compilação experimental para permitir inferência

de tipos e geração de código orientado a grafos.

33

5 RESULTADOS

Este capítulo apresenta os principais resultados obtidos e as contribuições conso-

lidadas ao final da implementação da gramática livre de contexto para tipagem de grafos. O

projeto alcançou plenamente os objetivos estabelecidos, com a criação de uma linguagem formal

validada sintática e semanticamente, capaz de representar grafos com propriedades avançadas

como herança, multigrafos, atributos opcionais e verificação de restrições de tipo.

5.1 GLC para Tipagem de Grafos

O principal resultado do trabalho é a definição e implementação de uma GLC para

grafos tipados, expressa inicialmente em notação EBNF e posteriormente traduzida para ANTLR

4 4. A gramática é:

– Completa: Cobre todas as construções essenciais de grafos: vértices, arestas, tipos,

herança, cardinalidade, atributos opcionais, conexões múltiplas e grafos compostos;

– Consistente: A semântica é verificada por um visitor pattern customizado que impõe

verificações de integridade, como compatibilidade de tipos e ausência de ciclos, com

mensagens de erro claras e informativas;

– Extensível: Permite a introdução de novos tipos e regras sem modificar a estrutura

principal da linguagem.

34

5.1.1 Quadro-Resumo de Cobertura dos Testes

Quadro 2 – Cobertura semântica da gramática por teste executado
Arquivo Objetivo e saída semântica Resultado
valido01.txt Grafo com herança simples, atribu-

tos e conexões válidas. Nenhum erro
semântico encontrado.

Aceito

valido02_undirected.txt Aresta não-direcionada entre vérti-
ces do mesmo tipo. Nenhum erro
semântico encontrado.

Aceito

valido03_multigrafo.txt Dois grafos em uma só entrada. Ne-
nhum erro semântico encontrado.

Aceito

valido04_heranca_profunda.txt Herança em múltiplos níveis (C →
B → A). Erro: Aresta ’l1’ espera
conexão (A → A), recebeu (C → A).

Rejeitado

valido05_atributos_opcionais.txt Tipos com atributos opcionais e valo-
res padrão. Nenhum erro semântico
encontrado.

Aceito

invalido_atributo_ausente.txt Atributo obrigatório ausente em vér-
tice. Erro: Vértice ’u1’ falta atributo
obrigatório ’name’.

Rejeitado

invalido_ciclo_nao_permitido.txt Aresta com self-loop explícito (x →
x). Erro: Aresta ’c1’ forma ciclo
(self-loop) não permitido.

Rejeitado

invalido_duplicata_vertice.txt Identificador de vértice repetido.
Erro: Identificador duplicado: ’n1’.

Rejeitado

invalido_multiplo_erro.txt Caso extremo com múltiplos erros.
Erros: Vértice ’x1’ falta atributo
obrigatório ’val’; Identificador dupli-
cado: ’x1’; Vértice ’x2’ usa tipo in-
definido ’Y’; Aresta ’e1’ espera (X
→ X), recebeu (X → Y); Aresta ’e2’
usa tipo indefinido ’Z’.

Rejeitado

invalido_tipo_aresta.txt Tipos invertidos na assinatura da
aresta. Erro: Aresta ’e1’ espera co-
nexão (B → A), recebeu (A → B).

Rejeitado

invalido_vertice_tipo_nao_declarado.txt Uso de tipo de vértice não declarado.
Erro: Vértice ’p1’ usa tipo indefinido
’Human’.

Rejeitado

Fonte: Elaborado pelo autor.

Como complemento à Quadro-Resumo de Cobertura dos Testes, o Apêndice E apresenta

a listagem integral de cada arquivo de entrada — um por página — permitindo a inspeção

detalhada das construções sintáticas e dos cenários de validação empregados. Desse modo, o

35

leitor pode replicar todos os experimentos e verificar, linha a linha, como cada caso de teste

exercita as produções gramaticais e as regras semânticas descritas neste trabalho.

5.1.2 Relatório de Testes Realizados

– valido01.txt

Contém um grafo com vértices e arestas tipados, atributos obrigatórios e opcionais cor-

retamente atribuídos, além de herança simples. Nenhuma inconsistência foi encontrada.

Resultado: aceito.

– valido02_undirected.txt

Testa a correta interpretação de uma aresta simétrica entre dois usuários. A estrutura foi

corretamente interpretada e aceita. Resultado: aceito.

– valido03_multigrafo.txt

Apresenta dois grafos distintos no mesmo arquivo. O parser separa corretamente os

escopos e nenhuma colisão de identificadores foi detectada. Resultado: aceito.

– valido04_heranca_profunda.txt

Embora atributos sejam herdados corretamente, a semântica das conexões exige tipos

exatos, e não subtipos. Resultado: rejeitado, conforme esperado.

– valido05_atributos_opcionais.txt

A gramática permite atributos não obrigatórios e com valores padrão. Nenhum erro

semântico foi detectado. Resultado: aceito.

– invalido_atributo_ausente.txt

O vértice omite um campo name marcado como required. O verificador semântico

rejeitou corretamente. Resultado: rejeitado.

– invalido_ciclo_nao_permitido.txt

Uma aresta direcionada conecta um vértice a ele mesmo. A gramática não proíbe, mas a

semântica rejeita explicitamente self-loops. Resultado: rejeitado.

– invalido_duplicata_vertice.txt

O identificador do vértice aparece duas vezes. O validador detecta a duplicidade e rejeita.

Resultado: rejeitado.

– invalido_multiplo_erro.txt

Caso extremo com cinco erros: ausência de atributo, tipo inexistente, duplicação, assinatura

de aresta incompatível e uso de aresta indefinida. Todos os erros foram reportados.

36

Resultado: rejeitado.

– invalido_tipo_aresta.txt

Aresta com assinatura invertida em relação à especificação da gramática. Detectado e

rejeitado corretamente. Resultado: rejeitado.

– invalido_vertice_tipo_nao_declarado.txt

Tipo Human não declarado. O verificador rejeitou como esperado. Resultado: rejeitado.

A gramática mostrou-se adequada para modelar estruturas complexas, sendo po-

tencialmente aplicável em domínios como linguagens orientadas a grafos, DSLs acadêmicas e

compiladores.

5.2 Validação Formal da Gramática

A validação foi realizada com o uso de ANTLR 4 4, Python e bibliotecas auxiliares

como anytree. A seguir, os resultados consolidados:

– Testes de Conformidade: Todos os casos positivos (ex: herança simples, multigrafos,

atributos opcionais) foram corretamente aceitos;

– Testes de Rejeição: Casos negativos como atributos ausentes, tipos indefinidos, duplicação

e assinaturas incompatíveis foram todos corretamente identificados e rejeitados;

– Robustez: Foram testados grafos com estruturas complexas, subgrafos independentes,

self-loops proibidos, erros combinados e carga elevada de elementos. Todos os erros

semânticos esperados foram reportados.

Além disso, a ferramenta main.py gera automaticamente árvores sintáticas para

cada grafo testado, com formatação legível, armazenadas na pasta tree_tests/. A análise

dessas árvores ajudou a depurar a estrutura da gramática.

5.3 Contribuições Consolidadas

Com base na execução bem-sucedida dos testes e nos arquivos de validação gerados,

as contribuições deste trabalho podem ser assim sintetizadas:

– Gramática validada e funcional: com cobertura de propriedades semânticas ricas e

implementada em ferramentas modernas de análise sintática;

– Ferramenta de análise de grafos: capaz de aceitar entradas textuais, gerar árvores e

validar restrições de integridade;

37

– Repositório funcional e reutilizável: O projeto encontra-se publicado em (PINHEIRO,

2025), permitindo sua replicação e extensão por pesquisadores e estudantes;

– Base para experimentação acadêmica: linguagem clara, modular e segura, que pode ser

estendida para aplicações pedagógicas e de pesquisa;

– Integração com compiladores: a estrutura de tipos, atributos e herança reflete abstrações

comuns em linguagens modernas, facilitando a integração com estágios como análise

semântica e geração de código.

Em resumo, o trabalho entregou uma infraestrutura formal sólida e validada, com

resultados consistentes entre os testes planejados e os comportamentos esperados da gramática,

contribuindo diretamente para avanços no uso de grafos em linguagens formais e compiladores.

Para ter acesso aos resultados, todos os arquivos testados e ao projeto de validação da gramática

acesse o projeto feito pelo autor, Pinheiro (2025).

38

6 CONCLUSÕES E TRABALHOS FUTUROS

Este capítulo encerra o trabalho apresentando uma síntese dos resultados alcançados

com a GLC proposta, destacando sua contribuição para a tipagem estática de grafos e a validação

automática de estruturas complexas. Em seguida, são delineadas perspectivas de evolução que

incluem o suporte a grafos temporais, a incorporação de metadados e anotações avançadas, a

integração com Integrated Development Environment (Ambiente de Desenvolvimento Integrado)s

(IDEs), a geração de bytecode ou artefatos intermediários e a interoperabilidade com bibliotecas

externas como NetworkX e Neo4j. Por fim, as considerações finais reforçam a relevância

acadêmica e prática da gramática, bem como seu potencial de servir de base para futuras DSLs,

compiladores e pipelines de análise orientados a grafos.

6.1 Conclusões

Este trabalho apresentou a construção de uma GLC para tipagem de grafos, com foco

em garantir consistência sintática e semântica, validada formalmente por meio de ferramentas

como ANTLR 4 e análise baseada em visitor pattern s. A gramática foi implementada,

testada e avaliada por uma série de arquivos que simulam aplicações reais e cenários extremos.

Os principais resultados obtidos foram:

– Gramática formal completa: Capaz de representar grafos com herança de tipos, múltiplas

arestas, atributos obrigatórios e opcionais, cardinalidade e subgrafos distintos.

– Validação automatizada: A gramática foi integrada a um pipeline de testes estruturado,

com suporte à geração de árvores sintáticas e relatórios de erro precisos.

– Repositório funcional e reutilizável: O projeto encontra-se publicado em (PINHEIRO,

2025), permitindo sua replicação e extensão por pesquisadores e estudantes.

A estrutura modular e extensível da linguagem torna a gramática útil tanto para fins

acadêmicos quanto para aplicações práticas em DSLs, ambientes de compilação e sistemas de

análise orientados a grafos.

6.2 Trabalhos Futuros

As possibilidades de evolução deste trabalho são amplas. Algumas propostas viáveis

incluem:

– Generalização para Grafos Temporais e Dinâmicos: Adicionar suporte à modelagem

39

de grafos que variam ao longo do tempo, com atributos temporais ou históricos.

– Suporte a Metadados e Anotações: Permitir comentários, documentação inline ou

restrições avançadas por meio de expressões lógicas associadas aos tipos.

– Integração com Ambientes de Desenvolvimento: Construção de editores visuais e IDEs

com validação sintática e semântica em tempo real.

– Backend para Compiladores: Estender a gramática com instruções operacionais que

possibilitem sua tradução para bytecode, código intermediário ou estruturas de execução

(ex: JavaScript Object Notation (JSON), Extensible Markup Language (XML), AST).

– Visualização e Exportação: Ferramentas para exportar os grafos validados para formatos

de visualização (Linguagem de descrição de grafos do Graphviz (DOT), Scalable Vector

Graphics (SVG)) ou interoperabilidade com bibliotecas externas (ex: NetworkX, Neo4j).

6.3 Considerações Finais

Este trabalho representou um avanço importante na formalização da tipagem de

grafos por meio de uma gramática robusta, validada e implementada em ferramentas modernas.

Combinando clareza sintática e expressividade semântica, a proposta se mostra viável como base

para DSLs, modelos de compiladores e aplicações acadêmicas.

A gramática proposta atendeu aos critérios de completude, consistência e extensibi-

lidade. Os testes realizados comprovaram sua capacidade de detectar erros, validar restrições

complexas e lidar com múltiplas topologias. Com isso, ela se consolida como uma ferramenta

formal de alto potencial para representar grafos em linguagens de programação estruturadas.

Espera-se que as futuras extensões e aplicações derivadas desta base fortaleçam o

uso de grafos como estruturas de primeira classe em ambientes formais e produtivos.

40

REFERÊNCIAS

BONDY, J.; MURTY, U. Graph Theory with Applications. [S. l.]: Elsevier, 1976.

BRUNNER, C. anytree: Powerful and Lightweight Tree Data Structures in Python. 2023.
https://anytree.readthedocs.io/. Biblioteca para representação hierárquica de árvores sintáticas
em Python.

CARDELLI, L. A semantics of multiple inheritance. Information and Computation, v. 76,
n. 2-3, p. 138–164, 1985.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms.
[S. l.]: MIT Press, 2009.

CORRADINI, A.; EHRIG, H.; MONTANARI, U.; RIBEIRO, L.; ROSSI, F. Specifying graph
languages with type graphs. In: Handbook of Graph Grammars and Computing by Graph
Transformation. Singapore: World Scientific, 1997. v. 1, p. 1–61.

DIESTEL, R. Graph Theory. [S. l.]: Springer, 2017.

EHRIG, H.; ENGELS, G.; KREOWSKI, H.-J.; ROZENBERG, G. Graph grammars and their
application to computer science. Lecture Notes in Computer Science, Springer, v. 532, p. 1–20,
1991.

EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae
Scientiarum Imperialis Petropolitanae, v. 8, p. 128–140, 1736.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Reading, MA: Addison–Wesley, 1995. ISBN
978-0201633610.

GROSS, J. L.; YELLEN, J. Graph Theory and Its Applications. 3. ed. [S. l.]: CRC Press,
2014.

HARARY, F. Graph Theory. [S. l.]: Addison–Wesley, 1969.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, v. 4, n. 2, p.
100–107, 1968.

HECKEL, R.; TAENTZER, G. Type systems for graph transformation. Electronic Notes in
Theoretical Computer Science, Elsevier, v. 148, n. 1, p. 19–40, 2006.

HINDLEY, R. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, JSTOR, v. 146, p. 29–60, 1969.

HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introduction to Automata Theory,
Languages, and Computation. 3rd. ed. [S. l.]: Pearson, 2006. Seção 4.2 discute transformações
de EBNF para BNF.

MENS, T.; GORP, P. V. A taxonomy of model transformation. In: ICMT 2006. [S. l.]: Springer,
2006, (LNCS, v. 4066). p. 125–142.

https://anytree.readthedocs.io/

41

MILNER, R. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, Elsevier, v. 17, n. 3, p. 348–375, 1978.

PARR, T. ANTLR (Another Tool for Language Recognition). [S. l.], 2013. Versão 4.
Disponível em: https://www.antlr.org/.

PIERCE, B. C. Types and Programming Languages. [S. l.]: MIT Press, 2002.

PINHEIRO, A. GramaticaTipagemGrafosGLC. 2025. https://github.com/alyssonlcss/
GramaticaTipagemGrafosGLC. Projeto de validação semântica de grafos com ANTLR4 e
Python.

Python Software Foundation. Python Language Reference, version 3.10. 2021.
https://www.python.org/. Linguagem de programação de alto nível, interpretada e de tipagem
dinâmica.

REZENDE, C. A. d. R. Jaguar-Lang: Uma Linguagem de Programação para Fins de
Ensino e Pesquisa em Compiladores: Uma Abordagem Paralela e Distribuída. 2025.
https://cadproj.ufc.br/projects/592. Projeto em andamento na Universidade Federal do Ceará.
Aprovado em 08/05/2025.

RUMBAUGH, J.; JACOBSON, I.; BOOCH, G. The Unified Modeling Language Reference
Manual. 2. ed. [S. l.]: Addison–Wesley, 2004.

TARJAN, R. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
v. 1, n. 2, p. 146–160, 1972.

WEBBER, J.; ROBINSON, I.; EIFREM, E. Graph Databases: New Opportunities for
Connected Data. 1st. ed. [S. l.]: O’Reilly Media, 2012. ISBN 978-1449356262.

WEST, D. B. Introduction to Graph Theory. [S. l.]: Prentice Hall, 2001.

WIRTH, N. Compiler Construction. [S. l.]: Addison–Wesley, 1996.

https://www.antlr.org/
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://www.python.org/
https://cadproj.ufc.br/projects/592

42

GLOSSÁRIO

anytree Biblioteca Python que oferece estruturas de árvore genéri-

cas e utilitários para percorrê-las, manipulá-las e renderizá-

las de forma simples

directed Qualificador de aresta que especifica orientação explícita,

definindo dígrafos em que cada aresta possui vértice de

origem e vértice de destino distintos

extends Palavra-chave da gramática que indica Herança (entre ti-

pos) entre tipos de vértice, permitindo que um subtipo

reutilize atributos e restrições do supertipo

namespace Espaço de nomes isolado que evita colisões entre identifi-

cadores em diferentes grafos ou contextos

parser módulo de análise sintática que, a partir da sequência de

tokens produzida pelo lexer e de uma gramática, decide se a

entrada pertence à linguagem e constrói uma representação

estrutural (árvore de derivação ou AST). Exemplos de

famílias: LL, LR, Earley e CYK; pode incluir estratégias

de recuperação de erros

pipeline Sequência ordenada de etapas de processamento (stages)

que transformam dados ou artefatos de software de forma

incremental, favorecendo paralelismo, modularidade e au-

tomação — por exemplo, o pipeline de validação que exe-

cuta parsing, visitação da AST e geração de relatórios

43

render tree Função da biblioteca anytree que imprime uma árvore

hierárquica em formato textual, facilitando a visualização

da AST gerada após o parsing

self-loop Aresta que conecta um vértice a si mesmo; sua validade

depende das regras semânticas vigentes

undirected Qualificador de aresta que especifica ausência de orienta-

ção, caracterizando grafos não direcionados onde as cone-

xões são bidirecionais

visitor pattern Padrão de projeto orientado a objetos que permite aplicar

operações a estruturas de árvore (como ASTs) sem alterar

suas classes (GAMMA et al., 1995)

A* algoritmo de busca informada para caminhos mínimos que

usa a função f (n) = g(n)+h(n), combinando o custo já

percorrido g com uma heurística h até o objetivo. Com

heurística admissível garante otimalidade; com heurística

consistente evita reaberturas. Para h≡ 0, reduz-se ao Dijks-

tra’s algorithm

analisador sintático sinônimo de parser

aresta elemento de um grafo que conecta dois vértices, podendo

ser direcionada ou não

44

bytecode Código intermediário de baixo nível, independente de ar-

quitetura, gerado por compiladores e executado por uma

máquina virtual; combina portabilidade com desempenho,

como o bytecode produzido pela JVM ou pelo interpreta-

dor Python

caminho sequência finita de vértices (v0, . . . ,vk) tal que, para todo i,

existe {vi,vi+1} ∈ E (ou (vi,vi+1)∈ E no caso dirigido). O

comprimento do caminho é k, isto é, o número de arestas

percorridas

cardinalidade Restrição que especifica a quantidade mínima e máxima

de ocorrências de um elemento (como vértice ou aresta),

inspirada na notação da UML (RUMBAUGH et al., 2004)

Dijkstra’s algorithm Algoritmo de caminhos mínimos de fonte única em grafos

ponderados com pesos não negativos, proposto por Eds-

ger W. Dijkstra em 1959; utiliza fila de prioridade e tem

complexidade O
(︁
(|V |+ |E|) log |V |

)︁
.

entidade de primeira classe Elemento que pode ser criado, atribuído a variáveis, pas-

sado como argumento e retornado por funções. Tratado

como valor nativo pelas construções da linguagem (PI-

ERCE, 2002)

grafo estrutura matemática G = (V,E) que representa relações

entre vértices por meio de Arestas

grafo conexo grafo no qual existe ao menos um caminho entre quais-

quer dois vértices; caso contrário, o grafo é desconexo e

decompõe-se em componentes conexas

45

grafo direcionado grafo cujas Arestas possuem orientação, isto é, cada aresta

representa um par ordenado (vi,v j)

grafo planar grafo que pode ser desenhado no plano sem cruzamento

de Arestas; pela caracterização de Kuratowski, grafos con-

tendo um subgrafo homeomorfo a K5 ou K3,3 não são

planares

grafo ponderado grafo no qual a cada Aresta é associado um peso w : E →R

(p. ex. custo, capacidade ou distância)

grafo simples grafo que não admite laços (vi = v j) nem múltiplas Arestas

paralelas entre o mesmo par de vértices

herança (entre tipos) Recurso que permite que um tipo derivado reutilize atribu-

tos e regras de um tipo base (CARDELLI, 1985)

homeomorfo (em grafos) dois grafos são homeomorfos se um pode ser obtido do

outro por uma sequência de subdivisões de arestas e supres-

sões de vértices de grau 2; de forma equivalente, possuem

subdivisões isomorfas. A noção é central na caracterização

de planaridade de Kuratowski (DIESTEL, 2017; GROSS;

YELLEN, 2014)

inferência de tipos Mecanismo que permite ao compilador deduzir automati-

camente os tipos das expressões sem anotações explícitas

(HINDLEY, 1969; MILNER, 1978)

lexer fase de compilador que converte o fluxo de caracteres de

entrada em uma sequência de tokens, a ser consumida pelo

analisador sintático

46

lista de adjacência vetor de listas A[v] contendo os vizinhos de cada v ∈ V ;

ocupa O(|V |+ |E|) de memória e é preferível para grafos

esparsos

lista de incidência representação que armazena explicitamente todas as Ares-

tas como pares (ou triplas com peso) de vértices incidentes;

útil em algoritmos que ordenam/percorrrem arestas, como

Kruskal

matriz de adjacência matriz |V | × |V | em que a célula (i, j) indica presença

(e opcionalmente o peso) da Aresta entre vi e v j; acesso

O(1) e custo de memória O(|V |2) (simétrica em grafos

não-direcionados)

metadado Dados que descrevem outros dados, oferecendo contexto

semântico ou estrutural adicional (por exemplo, rótulos de

atributos, unidades de medida ou restrições de validação)

multigrafo grafo que admite múltiplas Arestas distintas entre o mesmo

par de vértices; laços podem ser permitidos conforme a

definição adotada

Neo4j Sistema de gerenciamento de banco de dados orientado

a grafos baseado no modelo Property Graph; utiliza a

linguagem declarativa Cypher para consultar e manipular

vértices e arestas com rótulos e propriedades

NetworkX Biblioteca de análise de grafos em Python que fornece

estruturas de dados flexíveis e algoritmos para criação,

manipulação, visualização e estudo de grafos complexos

47

Python Linguagem de programação de alto nível, interpretada e

multiparadigma, criada por Guido van Rossum em 1991;

amplamente utilizada em ciência de dados, automação,

Application Programming Interface (Interface de Progra-

mação de Aplicações)s (APIs) e desenvolvimento web

sistema de tipos Conjunto de regras formais que associa tipos às expressões

de uma linguagem de programação, prevenindo operações

inválidas e proporcionando garantias de segurança como

soundness e completeness

subgrafo subconjunto de vértices e Arestas de um grafo original que

preserva incidência

tipagem estática Sistema no qual os tipos são verificados em tempo de

compilação, permitindo detectar erros antes da execução

(PIERCE, 2002; MILNER, 1978)

vértice elemento de um grafo que representa uma entidade ou

objeto; também chamado de nó

48

APÊNDICE A – DECLARAÇÃO COMPLETA DO GRAFO FLIGHTNETWORK

Código-fonte 1 – Código-fonte completo do grafo flightNetwork

1 graph flightNetwork {

2 types {

3 vertex Airport [1..*] attributes {

4 code : string required;

5 city : string required;

6 };

7 vertex Hub extends Airport;

8

9 edge Flight (Airport, Airport) directed

10 attributes { duration : int; };

11 }

12

13 vertices {

14 gru : Hub [code="GRU", city="Sao Paulo"];

15 jfk : Airport [code="JFK", city="New York"];

16 }

17

18 edges {

19 f1 : Flight (gru -> jfk) [duration = 540];

20 }

21 }

49

APÊNDICE B – DECLARAÇÃO COMPLETA DO GRAFO SOCIALNET

Código-fonte 2 – Código-fonte completo do grafo socialNet

1 graph socialNet {

2 types {

3 vertex Person [1..*] attributes {

4 id : int required;

5 name : string required;

6 age : int default = 18;

7 };

8

9 vertex Student extends Person

10 attributes { university : string; };

11

12 edge Knows (Person, Person) undirected;

13 edge Follows (Person, Person) directed;

14 }

15

16 vertices {

17 a : Person [id=1, name="Ana", age=21];

18 b : Student [id=2, name="Bruno", university="UFC"];

19 }

20

21 edges {

22 e1 : Knows (a -- b);

23 e2 : Follows (a -> b);

24 }

25 }

50

APÊNDICE C – GRAMÁTICA COMPLETA EM EBNF PARA TIPAGEM DE

GRAFOS

Código-fonte 3 – Gramática EBNF para tipagem robusta de grafos

1 <program> ::= { <graph> }

2

3 <graph> ::= "graph" <id> "{" <type_section> <vertex_section> <edge_section> "}"

4

5 <type_section> ::= "types" "{" { <vertex_type_decl> | <edge_type_decl> } "}"

6

7 <vertex_type_decl> ::= "vertex" <id> ["extends" <id>]

8 [<cardinality>]

9 [<attribute_block>] ";"

10

11 <edge_type_decl> ::= "edge" <id> "(" <id> "," <id> ")"

12 ["directed" | "undirected"]

13 [<cardinality>]

14 [<attribute_block>] ";"

15

16 <cardinality> ::= "[" <min_card> ".." <max_card> "]"

17 <min_card> ::= <int>

18 <max_card> ::= <int> | "*"

19

20 <attribute_block> ::= "attributes" "{" { <attribute_decl> } "}"

21 <attribute_decl> ::= <id> ":" <type> ["required" | "optional"] ["=" <value>] ";"

22

23 <vertex_section> ::= "vertices" "{" { <vertex_instance> } "}"

24 <vertex_instance> ::= <id> ":" <id> [<attribute_assign_block>] ";"

25

26 <edge_section> ::= "edges" "{" { <edge_instance> } "}"

27 <edge_instance> ::= <id> ":" <id> "(" <id> "->" <id> ")" [<attribute_assign_block>] ";"

28

29 <attribute_assign_block> ::= "[" { <attribute_assignment> "," } <attribute_assignment> "]"

30 <attribute_assignment> ::= <id> "=" <value>

31

32 <type> ::= "int" | "float" | "string" | "bool" | "date" | <id>

33 <value> ::= <int> | <float> | <string> | "true" | "false" | <date>

34

35 <id> ::= (letter | "_") { letter | digit | "_" }

36 <int> ::= digit { digit }

37 <float> ::= <int> "." <int>

38 <string> ::= '"' { character - '"' } '"'

39 <date> ::= <int> "-" <int> "-" <int>

40

41 <comment> ::= "//" { character } | "#" { character }

51

APÊNDICE D – EXEMPLO COMPLETO DO GRAFO COMPANYNETWORK

Código-fonte 4 – Código-fonte completo do grafo companyNetwork

1 graph companyNetwork {

2 types {

3 vertex Person [1..*] attributes {

4 name: string required;

5 age: int;

6 };

7

8 vertex Manager extends Person attributes {

9 level: string = "senior";

10 };

11

12 vertex Company [1..*] attributes {

13 name: string required;

14 };

15

16 edge WorksAt (Person, Company) directed [0..*];

17 edge Manages (Manager, Person) directed [0..*];

18 }

19

20 vertices {

21 p1 : Person [name="Alice", age=30];

22 p2 : Person [name="Bob", age=25];

23 m1 : Manager [name="Carol", age=40, level="executive"];

24 c1 : Company [name="OpenAI"];

25 }

26

27 edges {

28 e1 : WorksAt (p1 -> c1);

29 e2 : WorksAt (p2 -> c1);

30 e3 : Manages (m1 -> p2);

31 }

32 }

52

APÊNDICE E – ARQUIVOS DE TESTE DA GRAMÁTICA

Códigos-fonte 5 até 15

Código-fonte 5 – invalido_vertice_tipo_nao_declarado.txt

1 graph invalidVertexType {

2 types {

3 vertex Person;

4 }

5

6 vertices {

7 x : Human; // tipo Human nao declarado

8 }

9 }

53

Código-fonte 6 – valido01.txt

1 graph companyNetwork {

2 types {

3 vertex Person [1..*] attributes {

4 name: string required;

5 age: int;

6 };

7

8 vertex Manager extends Person attributes {

9 level: string = "senior";

10 };

11

12 vertex Company [1..*] attributes {

13 name: string required;

14 };

15

16 edge WorksAt (Person, Company) directed [0..*];

17 edge Manages (Manager, Person) directed [0..*];

18 }

19

20 vertices {

21 p1 : Person [name="Alice", age=30];

22 p2 : Person [name="Bob", age=25];

23 m1 : Manager [name="Carol", age=40, level="executive"];

24 c1 : Company [name="OpenAI"];

25 }

26

27 edges {

28 e1 : WorksAt (p1 -> c1);

29 e2 : WorksAt (p2 -> c1);

30 e3 : Manages (m1 -> p2);

31 }

32 }

54

Código-fonte 7 – valido02_undirected.txt

1 graph friendship {

2 types {

3 vertex Person;

4 edge Knows (Person, Person) undirected;

5 }

6

7 vertices {

8 a : Person;

9 b : Person;

10 }

11

12 edges {

13 e1 : Knows (a -- b);

14 }

15 }

55

Código-fonte 8 – valido03_multigrafo.txt

1 graph transport {

2 types {

3 vertex City;

4 edge Road (City, City) undirected;

5 edge Train (City, City) undirected;

6 }

7

8 vertices {

9 s : City;

10 p : City;

11 }

12

13 edges {

14 r1 : Road (s -- p);

15 t1 : Train (s -- p); // multigrafo: duas arestas paralelas

16 }

17 }

56

Código-fonte 9 – valido04_heranca_profunda.txt

1 graph academic {

2 types {

3 vertex Person;

4 vertex Student extends Person;

5 vertex PhD extends Student;

6 }

7

8 vertices {

9 x : PhD;

10 }

11 }

57

Código-fonte 10 – valido05_atributos_opcionais.txt

1 graph sensors {

2 types {

3 vertex Device attributes {

4 id : int required;

5 temp : float optional;

6 };

7 }

8

9 vertices {

10 d1 : Device [id = 10];

11 d2 : Device [id = 11, temp = 22.5];

12 }

13 }

58

Código-fonte 11 – invalido_atributo_ausente.txt

1 graph missingAttr {

2 types {

3 vertex User attributes {

4 name : string required;

5 };

6 }

7

8 vertices {

9 u1 : User; // falta atributo obrigatorio 'name'

10 }

11 }

59

Código-fonte 12 – invalido_ciclo_nao_permitido.txt

1 graph noLoops {

2 types {

3 vertex Node;

4 edge Link (Node, Node) directed;

5 }

6

7 vertices {

8 x : Node;

9 }

10

11 edges {

12 l1 : Link (x -> x); // self-loop proibido

13 }

14 }

60

Código-fonte 13 – invalido_duplicata_vertice.txt

1 graph dupVertex {

2 vertices {

3 x : vertex;

4 x : vertex; // identificador duplicado

5 }

6 }

61

Código-fonte 14 – invalido_multiplo_erro.txt

1 graph multiError {

2 types {

3 vertex X attributes { val : int required; };

4 edge E (X, X);

5 }

6

7 vertices {

8 x1 : X; // falta atributo 'val'

9 x1 : X [val = 1]; // duplicado

10 x2 : Y; // tipo Y nao existe

11 }

12

13 edges {

14 e1 : E (x1 -> x2); // destino de tipo incompativel

15 e2 : Z (x1 -> x1); // aresta de tipo indefinido

16 }

17 }

62

Código-fonte 15 – invalido_tipo_aresta.txt

1 graph badEdgeType {

2 types {

3 vertex A;

4 vertex B;

5 edge E (A, A) directed;

6 }

7

8 vertices {

9 a : A;

10 b : B;

11 }

12

13 edges {

14 e1 : E (a -> b); // origem/destino nao batem com assinatura de E

15 }

16 }

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Sumário
	Introdução
	Fundamentação Teórica
	Grafo
	Origem Histórica e Definições Básicas
	Classificações Estruturais
	Representações Computacionais
	Algoritmos Fundamentais

	Gramática para Tipagem de Grafos
	Gramáticas em Linguagens Formais
	Tipagem Estática e Sistema de Tipos
	GLC para Tipagem de Grafos
	Exemplo Ilustrativo de código
	Recursos Expressivos da Gramática Proposta
	Benefícios Didáticos e Práticos

	Trabalhos Relacionados
	Panorama das Pesquisas
	Comparação entre os Trabalhos

	Metodologia
	Construção da Gramática
	Definição dos Elementos Fundamentais
	Formalização da Gramática
	Escolha da Notação EBNF
	Estrutura da Gramática
	Especificação em EBNF
	Recursos Expressivos da Gramática
	Exemplo de Grafo Válido
	Validação da Gramática
	Arquitetura de Validação e Execução
	Fluxo de Execução dos Testes
	Ferramentas Utilizadas
	Exemplo de Saída

	Conclusão da Metodologia

	Resultados
	GLC para Tipagem de Grafos
	Quadro-Resumo de Cobertura dos Testes
	Relatório de Testes Realizados

	Validação Formal da Gramática
	Contribuições Consolidadas

	Conclusões e Trabalhos Futuros
	Conclusões
	Trabalhos Futuros
	Considerações Finais

	REFERÊNCIAS
	GLOSSÁRIO
	Declaração completa do grafo flightNetwork
	Declaração completa do grafo socialNet
	Gramática completa em EBNF para tipagem de grafos
	Exemplo completo do grafo companyNetwork
	Arquivos de teste da gramática

