X
&

UNIVERSIDADE FEDERAL DO CEARA

CAMPUS DE RUSSAS
CURSO DE GRADUACAO EM CIENCIA DA COMPUTACAO

ALYSSON LUCAS BRAGA PINHEIRO

GRAMATICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM
LINGUAGEM DE PROGRAMACAO

RUSSAS
2025

ALYSSON LUCAS BRAGA PINHEIRO

GRAMATICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM LINGUAGEM
DE PROGRAMACAO

Trabalho de Conclusdo de Curso apresentado ao
Curso de Graduagdo em Ciéncia da Computacio
do Campus de Russas da Universidade Federal
do Ceard, como requisito parcial a obtencdo do
grau de bacharel em Ciéncia da Computacao.

Orientador: Prof. Dr. Cenez Aratjo de
Rezende.

RUSSAS
2025

Dados Internacionais de Catalogacdo na Publicacao
Universidade Federal do Ceara
Sistema de Bibliotecas
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

P718g Pinheiro, Alysson.
Gramatica livre de contexto para tipagem de grafos em linguagem de programacao /
Alysson Pinheiro. — 2025.
63 f.

Trabalho de Concluséo de Curso (graduacgédo) — Universidade Federal do Ceara, Campus
de Russas, Curso de Ciéncia da Computacao, Russas, 2025.
Orientacgéo: Prof. Dr. Cenez Araujo de Rezende.

1. gramatica livre de contexto. 2. ipagem de grafos. 3. sistemas de tipos. 4. antlr4. 5.
verificagdo semantica. I. Titulo.

CDD 005

ALYSSON LUCAS BRAGA PINHEIRO

GRAMATICA LIVRE DE CONTEXTO PARA TIPAGEM DE GRAFOS EM LINGUAGEM
DE PROGRAMACAO

Trabalho de Conclusdo de Curso apresentado ao
Curso de Graduagdo em Ciéncia da Computagcdo
do Campus de Russas da Universidade Federal
do Ceara, como requisito parcial a obtencao do
grau de bacharel em Ciéncia da Computacao.

Aprovada em: 30/07/2025.

BANCA EXAMINADORA

Prof. Dr. Cenez Aradjo de Rezende (Orientador)
Universidade Federal do Ceara (UFC)

Prof. Dr. Eurinardo Rodrigues Costa
Universidade Federal do Ceara (UFC)

Prof. Dr. Alexandre Matos Arruda
Universidade Federal do Ceara (UFC)

A minha familia, por toda confianga e apoio.
Mae, Socorro Morais, sua dedicac¢do e cui-
dado foram essenciais nos momentos dificeis
— nunca esquecerei. A minha irma, Layza Nas-
cimento, pelo companheirismo e leveza nos dias

mais pesados.

AGRADECIMENTOS

Agradeco, primeiramente, ao Prof. Dr. Cenez Araujo de Rezende, meu orientador e
professor na disciplina de Compiladores, cuja orienta¢do criteriosa e inspiradora foi essencial
para a realizacdo deste projeto. Suas aulas, sua abordagem didética e seu vasto conhecimento
foram fundamentais na construc¢ao deste trabalho. Foi, sobretudo, sua dedicacdo que despertou e
alimentou minha curiosidade pelo universo das graméticas formais.

Expresso minha sincera gratiddo aos meus amigos discentes do Laboratério de
Tecnologias Inovadoras — Samuel Lima, Mateus Daniel, Naum Josafa, Paulo Henrique, Pedro
Italo e Yan Rodrigues — pelo apoio constante e incentivo ao longo da graduacio. Em uma cidade
nova e em um ambiente universitario repleto de desafios, voc€s foram pilares na construcao de
uma rede de amizade que tornou esse percurso mais leve, significativo e inesquecivel.

Aos meus pais e a minha irma, agradeco pelo amor incondicional, pelo apoio
continuo e pela confianca em cada etapa da minha jornada. A minha mée, em especial, sou grato
pelos ensinamentos que me guiaram a reconhecer aquilo pelo qual realmente vale a pena lutar.

Estendo meus agradecimentos a todos os professores que contribuiram para a minha
formacao, ndo apenas transmitindo conhecimento, mas também sendo exemplos de ética, huma-
nidade e dedicacao. Entre eles, agradeco de forma especial aos professores da banca: Prof. Dr.
Alexandre Matos Arruda — também coordenador do Laboratério de Tecnologias Inovadoras,
cuja estrutura e visao tornaram este ambiente de pesquisa ainda mais fértil — e ao Prof. Dr.
Eurinardo Rodrigues Costa, cujo ensino em Linguagens Formais e Autdmatos foi essencial para
consolidar os fundamentos tedricos que sustentam este trabalho.

A todos que, de forma direta ou indireta, contribuiram para essa trajetoria, meu mais

sincero obrigado.

RESUMO

Este Trabalho de Conclusao de Curso investiga, formaliza e valida uma Gramadtica Livre de
Contexto (GLC) dedicada a tipagem estatica de grafos, com vistas a suprir lacunas metodoldgicas
em linguagens formais e compiladores orientados a grafos. A gramdtica foi especificada em
Extended Backus—Naur Form (EBNF), convertida para Another Tool for Language Recognition
(ANTLR 4) e acompanhada de uma semantica executavel em Python, implementada via visitor
pattern. Essa infraestrutura permite, em tempo de compilacao, detectar usos de vértices e arestas
sem declaracdo prévia, violacdo de cardinalidade, incompatibilidades tipicas de multigrafos
direcionados e auséncia de atributos obrigatdrios, além de identificar ciclos ou identificadores
duplicados quando tais restri¢cdes sao impostas. Do ponto de vista académico, o trabalho contribui
ao oferecer uma base tedrica rigorosa que pode ser empregada tanto no ensino de Teoria de
Grafos quanto em disciplinas de Compiladores e Linguagens Formais, servindo como caso
de estudo completo — da definicdo lexical e sintatica ao ciclo de andlise semantica — para
estudantes e pesquisadores. Ademais, a proposta estabelece um framework extensivel que pode
ser reutilizado em futuras linhas de pesquisa sobre sistemas de tipos para grafos, transformacao
de grafos baseada em regras, integragcao de grafos a DSLs e geracdo automatica de cédigo. A
validacdo com um conjunto de onze casos de teste sintéticos evidenciou cobertura integral das
regras gramaticais, reforcando a robustez do método e seu potencial como artefato de pesquisa
replicdvel.

Palavras-chave: gramatica livre de contexto; tipagem de grafos; sistemas de tipos; antlr4;

verificacio semantica.

ABSTRACT

This work proposes the development of a context-free grammar for graph typing, aiming to
formalize the characteristics of these structures in computational systems. The increasing
complexity of graph-based systems, used in domains such as social networks, logistics systems,
and data science, demands tools that ensure consistency and safety in handling these structures.
The proposed grammar defines types for vertices and edges, as well as establishes composition
rules and semantic validation. The project focuses on planning the grammar and modeling an
interpreter capable of validating and inferring properties of graphs. It is expected that the future
implementation of this proposal (in a subsequent thesis) will result in a formal and efficient
approach to graph typing, contributing to the reliability of computational systems that rely on
these structures.

Keywords: context-free grammar; graph typing; type systems; antlr4; semantic validation.

LISTA DE QUADROS

Quadro 1 — Comparagdo entre trabalhos relacionados e a proposta deste TCC

Quadro 2 — Cobertura semantica da gramatica por teste executado

Cdédigo-fonte 1
Codigo-fonte 2
Cdédigo-fonte 3
Cédigo-fonte 4
Codigo-fonte 5
Cdédigo-fonte 6
Cdédigo-fonte 7
Cdodigo-fonte 8
Cédigo-fonte 9
Cdédigo-fonte 10
Cédigo-fonte 11
Codigo-fonte 12
Cdédigo-fonte 13
Cdédigo-fonte 14
Codigo-fonte 15

LISTA DE CODIGOS-FONTE

Cdédigo-fonte completo do grafo f1ightNetwork 48
Codigo-fonte completo do grafo socialNet 49
Gramatica EBNF para tipagem robusta de grafos 50
Cdédigo-fonte completo do grafo companyNetwork 51
invalido_vertice_tipo_nao_declarado.txt 52
validoOl.txt 53
validoO2_undirected.txt 54
validoO3_multigrafo.txt 55
validoO4_heranca_profunda.txt 56
validoO5_atributos_opcionais.txt 57
invalido_atributo_ausente.txt 58
invalido_ciclo_nao_permitido.txt 59
invalido_duplicata_vertice.txt 60
invalido_multiplo_erro.txt 61

invalido_tipo_aresta.txt 62

ANTLR 4

API

AST

BFS

BNF

DFS

DOT

DSL

EBNF

GLC

GNU Bison

IDE

JSON

LISTA DE ABREVIATURAS E SIGLAS

Another Tool for Language Recognition

Application Programming Interface (Interface de Progra-

macao de Aplicacoes)

Abstract Syntax Tree (Arvore Sintitica Abstrata)

Breadth-First Search (Busca em Largura)

Backus—Naur Form

Depth-First Search

Linguagem de descricao de grafos do Graphviz

Domain-Specific Language (Linguagem de Dominio Espe-

cifico)

Extended Backus—Naur Form

Gramadtica Livre de Contexto

GNU Bison Parser Generator (Gerador de Analisadores

Bison do Projeto GNU)

Integrated Development Environment (Ambiente de De-

senvolvimento Integrado)

JavaScript Object Notation

LL(1)

LR

SVG

UML

XML

Parser LL com look-ahead de 1 simbolo

Left-to-Right, Rightmost derivation (Anélise Sintatica

Esquerda-para-Direita com Deriva¢do mais a Direita)

Scalable Vector Graphics

Unified Modeling Language

Extensible Markup Language

LISTA DE SIMBOLOS

G Grafo representado como um par ordenado G = (V,E).
Vv Conjunto de vértices do grafo.

E Conjunto de arestas do grafo.

Vi Vértice especifico, com i como identificador tnico.
Ty Tipo associado a um vértice.

Ay Conjunto de atributos de um vértice.

e; Aresta especifica, com i como identificador unico.
T Tipo associado a uma aresta.

AEg Conjunto de atributos de uma aresta.

Vorigem Vértice de origem de uma aresta.

Vdestino Vértice de destino de uma aresta.

r Contexto de tipagem.

— Representagdo de mapeamento ou dire¢ao.

X Produto cartesiano entre conjuntos.

~ Implicacdo de compatibilidade (“resulta em”).

* Fecho de Kleene (zero ou mais repeti¢cdes).

Z Linguagem formal gerada pela gramatica.

XY Alfabeto de simbolos terminais da gramdtica.

9 Gramadtica formal 4 = (N,X, P,S).

N Conjunto de simbolos ndo-terminais da gramética.
P Conjunto de regras de producao da gramatica.

Simbolo inicial da gramética.

A Fungdo ou expressdo andnima.
Vr Conjunto de tipos de vértices
Er Conjunto de tipos de arestas

Card Anotagéo de cardinalidade minima—-mdxima [m..n |

2.1

2.1.1
2.1.2
2.1.3
2.14
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6

3.1
3.2

4.1

4.2

4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9

SUMARIO

INTRODUCAO . . . ottt et e e e ettt e e e et 14
FUNDAMENTACAOTEORICAttt it iie e eeeenn 16
Grafo 16
Origem Historica e Definigoes Bdsicas 16
Classificacdes Estruturais 16
Representacoes Computacionais 17
Algoritmos Fundamentais 17
Gramatica para Tipagem de Grafos 18
Gramdticas em Linguagens Formais 18
Tipagem Estdtica e Sistema de Tipos 18
Gramdtica Livre de Contexto (GLC) para Tipagem de Grafos 18
Exemplo Ilustrativo de codigo, 19
Recursos Expressivos da Gramdtica Proposta 19
Beneficios Diddticos e Prdticos 20
TRABALHOS RELACIONADOS 21
Panorama das Pesquisas 21
Comparacao entre os Trabalhos 25
METODOLOGIA i it ittt it e et e 26
Construcao da Gramatica 26
Definicao dos Elementos Fundamentais 26
Formalizacdo da Gramatica 27
Escolha da Notagao EBNF 27
Estrutura da Gramdtica 27
Especificac@o em EBNF 28
Recursos Expressivos da Gramdtica 28
Exemplo de Grafo Valido 28
Validacao da Gramadtica 28
Arquitetura de Validagdo e Execu¢ao 29
Fluxo de Execucdo dos Testes 30

Ferramentas Utilizadas 31

4.3.10
4.4

5.1
5.1.1
5.1.2
5.2
5.3

6.1
6.2
6.3

Exemplode Saida 31
Conclusao da Metodologia 31
RESULTADOS i i ittt i e e e ettt ettt e e 33
GLC para Tipagem de Grafos 33
Quadro-Resumo de Cobertura dos Testes 34
Relatorio de Testes Realizados 35
Validacao Formal da Gramatica 36
Contribuicoes Consolidadas 36
CONCLUSOES E TRABALHOSFUTUROS 38
Conclusdes 38
Trabalhos Futuros 38
Consideracoes Finais 39
REFERENCIASttt ittt iieeenn. 40
GLOSSARIOottt t it ettt et i e e 42

APENDICE A -DECLARACAO COMPLETA DO GRAFO FLIGHTNETWORK 48
APENDICE B -DECLARACAO COMPLETA DO GRAFO SOCIALNET 49
APENDICE C -GRAMATICA COMPLETA EM EBNF PARA TIPA-
GEMDEGRAFOS0uiuiuuin... 50
APENDICE D -EXEMPLO COMPLETO DO GRAFO COMPANYNETWORK 51
APENDICE E -ARQUIVOS DE TESTE DA GRAMATICA 52

14
1 INTRODUCAO

Os grafos sdo estruturas matemadticas fundamentais para a modelagem de relacoes
entre entidades e tém sido amplamente utilizados em dominios como Ciéncia da Computagao,
engenharia, redes sociais, logistica e biologia computacional West (2001) e Bondy e Murty
(1976). Essa ampla aplicabilidade decorre de sua capacidade de representar sistemas complexos
por meio de uma estrutura relacional abstrata, que pode modelar desde rotas de transporte e
fluxos de dados até interagdes sociais e bioldgicas.

Com o avanco das aplicacdes baseadas em grafos, cresce a necessidade de meca-
nismos que assegurem a consisténcia, seguranca e reutilizacdo semantica dessas estruturas em
sistemas computacionais Cormen et al. (2009). Nesse contexto, este trabalho propde o desen-
volvimento de uma GLC dedicada a tipagem de grafos, cuja funcao é conferir uma semantica
formal aos seus elementos — vértices, arestas e atributos — possibilitando a validagdo sintética e
semantica, a inferéncia de tipos de propriedades e a integragdo com compiladores Pierce (2002).

Diferentemente de tipos estruturados cldssicos como registros e classes, que assumem
uma organizacdo hierdrquica, os grafos modelam relagdes arbitrérias e dindmicas. Assim, por
exemplo, em um grafo representando uma rede social, seria possivel definir vértices dos tipos
"Usuério", "Empresa"e "Evento", e arestas como "Segue", "TrabalhaEm"ou "Participa", cujas
conexdes seriam validadas automaticamente pela gramatica segundo regras de tipagem declaradas
previamente. Tal mecanismo favorece a seguranga semantica, reduz erros 16gicos e aprimora a
robustez de sistemas complexos.

A principal motivacdo deste trabalho é propor uma gramatica de tipagem de grafos
que possa contribuir para uma linguagem de programacao voltada ao ensino e pesquisa, como
em Teoria dos Grafos, na qual os grafos sejam tratados como entidade de primeira classe. Essa
abordagem oferece uma ferramenta diddtica inovadora que permite ao discente experimentar
diretamente os conceitos tedricos de grafos direcionados, ponderados, regras de conectividade,
subgrafos e inferéncia de tipos. A interacdo pratica com grafos fortemente tipados promove um
aprendizado mais ativo, intuitivo e contextualizado.

Apesar da difusdo de sistemas de tipos em linguagens de programa¢do modernas,
ainda hd uma lacuna quanto ao suporte nativo a tipagem estatica de grafos com regras semanticas
formais. A gramatica proposta neste trabalho visa preencher essa lacuna, aliando a expressividade
dos grafos a seguranca de um sistema de tipos robusto e extensivel Milner (1978) e Hindley

(1969).

15

Espera-se, portanto, que esta gramdtica constitua uma base formal e reutilizavel tanto
para o desenvolvimento de ferramentas computacionais quanto para a criacdo de uma linguagem
académica especializada, incentivando a inovagdo didética e a evolucao tedrica na drea de grafos
Diestel (2017).

Além desta Introducdo, o Capitulo 2 apresenta a Fundamentacdo Tedrica, revi-
sitando os principais conceitos de Grafos, Sistemas de Tipos e Gramaéticas em Linguagens
Formais que embasam a proposta. O Capitulo 3 discute os Trabalhos Relacionados, situando
esta pesquisa frente as solugdes mais relevantes da literatura. No Capitulo 4, a Metodologia é
detalhada, desde a definicao dos elementos fundamentais até a formaliza¢do da gramética em
EBNF e o pipeline de validagdo semantica. O Capitulo 5 apresenta os Resultados, destacando a
gramatica final, os testes executados e as contribui¢des obtidas. Por fim, o Capitulo 6 expde as
Conclusoes e Trabalhos Futuros, sintetizando as principais realizagdes, limitagdes e perspectivas

de continuidade desta pesquisa.

16
2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os principais fundamentos tedricos que sustentam a proposta
desta pesquisa. Primeiramente, revisitam-se os conceitos essenciais da Teoria dos Grafos,
abordando sua origem histdrica, classificagdes estruturais, representacdes computacionais €
algoritmos basilares. Em seguida, discute-se o arcabougo de Gramdticas em Linguagens Formais
e de sistema de tipos, ressaltando como tais ferramentas fornecem o rigor necessdrio para
especificar e validar estruturas relacionais complexas. Por fim, introduz-se a Gramdtica Livre de
Contexto para Tipagem de Grafos proposta, destacando seus recursos expressivos, motivagdes
didaticas e beneficios praticos. Essa fundamentagdo estabelece o pano de fundo conceitual
indispensével para compreender, no restante do trabalho, a construcdo, a aplicagdo e a avaliagdao

da gramatica desenvolvida.

2.1 Grafo
2.1.1 Origem Historica e Definicoes Bdsicas

O conceito de grafo surgiu formalmente com o trabalho de Euler sobre o problema
das Pontes de Konigsberg em 1736, considerado o marco inaugural da combinatéria moderna
Euler (1736). A generalizacao e sistematizacdo desses estudos deu origem a Teoria dos Grafos,
area da Matematica Discreta dedicada ao estudo de estruturas compostas por vértices (ou nos)
e Arestas (ou arcos), representadas formalmente como um par ordenado G = (V,E) Harary
(1969) e West (2001). Cada vértice v € V modela uma entidade abstrata, enquanto cada aresta

e = (v;,vj) € E, onde v;,v; € V, modela uma relagdo bindria entre duas entidades.
2.1.2 Classificacdoes Estruturais

— Direcionamento. Se as Arestas possuem orientacao, o grafo é direcionado (digrafo); caso
contrario, € ndo-direcionado. A distin¢do determina se cada aresta é ordenado ou ndo.
grafos direcionados s@o essenciais em modelagem de fluxos, precedéncias e autdmatos
Diestel (2017).

— Multiplicidade e lacos. Em grafos simples nio hd lagos (v; = v;) nem multiplas Arestas
paralelas entre dois vértices, enquanto multigrafos permitem ambas as situacdes Bondy

e Murty (1976). multigrafos sdo comuns em redes de transporte, onde diferentes rotas

2.1.3

17

conectam as mesmas cidades.

Ponderacio. Um grafo ponderado associa um peso w : E — R™ a cada Aresta, permi-
tindo expressar custo, capacidade ou distdncia — condicao indispensavel a algoritmos de
caminho minimo, como Dijkstra e Bellman—Ford Cormen et al. (2009).

Conectividade. Um € grafo conexo se existe pelo menos um caminho entre quaisquer
vi,v;j € V; caso contrario, apresenta componentes conexas disjuntas. A conectividade €
verificada em O(|V| + |E|) via Depth-First Search (DFS) Tarjan (1972).

Planaridade. grafos planares podem ser desenhados no plano sem cruzamento de Arestas;
o Teorema de Kuratowski caracteriza essa propriedade via subgrafos homeomorfo (em

grafos) a K5 ou K3 3 Gross e Yellen (2014).

Representagcoes Computacionais

Para uso algoritmico, um grafo G = (V, E) pode ser tipicamente codificados como:

. Matrizes de adjacéncia: estrutura |V| x |V| densa, com ponto flutuante para grafos

completos; acesso O(1) para consulta de Aresta, porém O(|V|?) de meméria.
Listas de adjacéncia: vetor de listas A[v] contendo vizinhos de v; requer O(|V|+ |E|) de

memodria e € a representacdo preferencial para grafos esparsos Cormen et al. (2009).

. Listas de incidéncia ou edge-list, ttil em algoritmos baseados em ordenacdo de Arestas,

como Kruskal.

Essas representacdes afetam a complexidade de muitos algoritmos tais como: traver-

sal, cobertura minima, fluxo maximo e isomorfismo.

2.1.4 Algoritmos Fundamentais

— Breadth-First Search (Busca em Largura) (BFS). Explora o grafo camada a camada,

identificando o menor nimero de Arestas num caminho entre um vértice fonte e os demais;
base para provas de biparticao, cdlculo de didmetro e construcdo de arvores geradoras

Cormen et al. (2009).

— Depth-First Search (Busca em Profundidade) DFS. Fundamenta algoritmos de detec¢do

de ciclos, ordenacao topoldgica e componentes fortemente conexas (Kosaraju, Tarjan).

— Dijkstra e A*. Dijkstra resolve o problema de caminhos minimos de fonte tnica em grafos

ponderados com pesos ndo negativos (com fila de prioridade: O((|V|+ |E|)log|V])). A*

generaliza Dijkstra com busca informada, priorizando por g(n) 4 h(n); com heuristica

18

admissivel/consistente, mantém otimalidade Hart et al. (1968).
Esses algoritmos ilustram como a estrutura de grafo € explorada computacionalmente,

refor¢ando a necessidade de representagdes e tipagens rigorosas para garantir corretude.

2.2 Gramatica para Tipagem de Grafos

2.2.1 Gramadticas em Linguagens Formais

No contexto de linguagens formais, uma gramatica € definida como uma 4-upla
GM = (N, %, P,S), em que N é um conjunto finito de simbolos ndo-terminais, £ ¢ um conjunto
de terminais, P € um conjunto finito de regras de producdo e S € N € o simbolo inicial Hopcroft
et al. (2006). As GLCs caracterizam a classe -Z¢f de linguagens reconheciveis por autdmatos de

pilha deterministicos.

2.2.2 Tipagem Estdtica e Sistema de Tipos

Um sistema de tipos associa a cada expressao de um programa um construtor
semantico capaz de restringir operagdes invélidas (soundness) e, idealmente, de nao rejeitar
programas corretos (completeness) Pierce (2002). Extender o sistema de tipos as instancias de

grafos implica:

atribuir conjuntos de tipos aos vértices e as arestas: Vr (tipos de vértice) e E7 (tipos de

aresta), o que permite verificar propriedades de dominio (ex.: Aluno conecta-se apenas a

Curso);

— estabelecer regras de formacao P que descrevem as conexdes validas entre tipos, por
exemplo como triplas P C Vy x Er X Vr do tipo (7, T, T;) (origem, aresta, destino);

— manter um contexto de tipagem I" (um mapeamento de identificadores para tipos), e usar

a notacdo de julgamento de tipagem I' - ¢ : T, lida como: “sob as hipéteses de I, a

expressdo e tem tipo 7, durante a andlise semantica Milner (1978).

2.2.3 GLC para Tipagem de Grafos

A gramdtica proposta neste trabalho utiliza EBNF para modelar estruturas tipadas de

grafos. A seguir, apresenta-se um extrato simplificado, adequado a leitores iniciantes:

19

S — GraphDecl™

GraphDecl — graph ID { TypeSec VertSec EdgeSec }
TypeSec — types { VTypeDecl® ETypeDecl™ }
VTypeDecl — vertex ID [extends ID] [Card] [AttrBlock]

ETypeDecl — edge ID (ID,ID) [directed |undirected| [Card] [AttrBlock]

Onde Card descreve a Cardinalidade [m..n| e AttrBlock encapsula atributos tipa-
dos. A escolha de GLC permite:
1. Parsing deterministico. Ferramentas Parser LL com look-ahead de 1 simbolo (LL(1)),
como ANTLR 4, geram analisadores compativeis com compiladores educacionais.
2. Validacio semantica incremental. Apds a derivacdo sintdtica, um visitor pattern percorre
a arvore anotando tipos e verificando restricdes declaradas em P.
3. Extensibilidade modular. Novos tipos, atributos ou restricdes podem ser adicionados

sem modificar o nicleo da gramatica, respeitando o principio de open-closed.
2.2.4 Exemplo Ilustrativo de codigo

O cédigo-fonte completo que exemplifica a declaracdo de um grafo de rotas aéreas
encontra-se no Apéndice A. A listagem ilustra (i) heranca de vértices (Hub extends Airport);
(i1) atributos obrigatdrios (code, city); e (iii) arestas direcionadas (Flight), todos validados
pela gramatica proposta. Durante a fase semantica, o analisador assegura que Flight conecta

unicamente vértices do tipo Airport (ou seus subtipos), reportando erro caso contrario.
2.2.5 Recursos Expressivos da Gramdtica Proposta

— Heranca (entre tipos) entre tipos de vértices (extends) — um tipo especializado reaproveita
atributos e restricoes do supertipo, promovendo reutilizacdo Cardelli (1985).

— Cardinalidade | m..n | — especifica o nimero minimo m e maximo n de ocorréncias permiti-
das, inspirado na notagdo Unified Modeling Language (UML) Rumbaugh et al. (2004).

— Atributos tipados, obrigatérios e com valor-padrao — cada elemento declara atributo:Tipo

seguido de required ou default = valor, evitando nullability Pierce (2002).

20

— Arestas direcionadas (directed) ou nao (undirected) — definem orientacdo semantica
explicita; a escolha impacta algoritmos de travessia Diestel (2017).
— Muiltiplos grafos no mesmo programa — varias declaragdes graph compartilham arquivo,

mas mantém namespaces isolados Mens e Gorp (2006).

Exemplo completo dos recursos

Para uma demonstracado integrada de heranca, cardinalidade, atributos opcionais,
multiplos tipos de aresta e validacdo semantica, consulte o Apéndice B, que apresenta o grafo
socialNet. Nessa listagem observa-se, por exemplo, a heranga de Student a Person, arestas

simétricas (Knows) e assimétricas (Follows), além do uso de valores-padrao de atributos.

Validaciao semantica do exemplo

— O vértice b herda atributos obrigatérios de Person.

— Avrestricdo [1..x*] é satisfeita (h4 a0 menos um Person).
— O atributo age usa o valor padrido 18 quando omitido.

— Follows é assimétrico; Knows é simétrico.

— Os grafos socialNet e logistics t€ém namespaces distintos.

2.2.6 Beneficios Diddticos e Prdticos

— Seguranca estatica. Erros de modelagem sdo detectados em tempo de compilacio,
antecipando inconsisténcias légicas dificeis de depurar em tempo de execucao.

— Abstracio de alto nivel. grafos deixam de ser simulados por matrizes ou listas; passam
a ser entidade de primeira classes, capazes de receber operacdes semanticas proprias
(subgrafo, contracdo, pattern-matching).

— Integracao com Domain-Specific Language (Linguagem de Dominio Especifico)s
(DSLs). A gramadtica pode ser embutida em linguagens especificas de dominio, oferecendo
suporte nativo a problemas de roteamento, dependéncias ou fluxos de dados.

— Ferramenta de ensino. Em ambientes académicos, fornece um laboratério seguro onde
estudantes experimentam transformacoes de grafos com garantias formais de corretude.

A combinacdo de Teoria dos Grafos cldssica e Sistemas de Tipos modernos resulta,
portanto, em um arcabouco robusto para modelagem, validacdo e manipulacdo de estruturas
relacionais complexas, alinhado as demandas de aplicagdes contemporaneas em Ciéncia da

Computagdo.

21

3 TRABALHOS RELACIONADOS

Este capitulo revisita as principais pesquisas que abordam a tipagem e a transforma-
cdo de grafos, situando o estado-da-arte em relacdo a proposta deste trabalho. Inicia-se com um
Panorama das Pesquisas, que delineia as linhas tedricas e aplicadas mais relevantes. Em seguida,
cada subsec¢do analisa criticamente estudos representativos — desde abordagens baseadas em
type graphs, sistemas de tipos para transformagdes, formalismos algébricos e bancos de dados
orientados a grafos, até propostas académicas emergentes. Por fim, apresenta-se uma tabela com-
parativa que sintetiza os aspectos avaliados e evidencia como a gramética livre de contexto aqui
desenvolvida preenche lacunas identificadas na literatura. Essa revisdo fundamenta e justifica as

escolhas metodoldgicas adotadas ao longo do TCC.

3.1 Panorama das Pesquisas

A tipagem formal de grafos tem sido explorada em diversas linhas de pesquisa, so-
bretudo no contexto da transformacao de grafos, especificacdes baseadas em regras e engenharia
de software model-driven. No entanto, permanece uma lacuna metodoldgica significativa quanto
a construgdo de gramdticas formais — especialmente gramaticas livres de contexto (GLCs) —
voltadas a definicdo textual e tipada de grafos como estruturas de primeira classe em linguagens
de programacdo. Esta secdo examina trabalhos de base tedrica e técnica que influenciam a
proposta deste TCC, apresentando suas metodologias, restricdes e distingdes em relacao ao

sistema gramatical aqui desenvolvido.

Specifying Graph Languages with Type Graphs
(Corradini et al., 1997)

Corradini et al. Corradini et al. (1997) introduzem os type graphs como construtos
formais para definicdo de linguagens de grafos. A proposta parte do paradigma categérico de
grafos e homomorfismos, onde grafos vélidos sdo definidos como instancias de um grafo-tipo,
respeitando restri¢des estruturais como tipos de vértices e aridade de arestas.

O método adotado consiste na composi¢ao de morfismos entre grafos usando técnicas
de categoriza¢do em diagramas comutativos. As operagdes de substitui¢do, extensao e restricao
sao validadas através de preservagdo da tipagem e consisténcia estrutural. O trabalho enfatiza a

modelagem em ambientes visuais, com foco em editores graficos de modelagem e Engenharia

22

de Software.

Contudo, a auséncia de uma linguagem textual declarativa impede a aplicacao direta
desse modelo em linguagens de programacao, dificultando sua integracdo com compiladores,
interpretadores ou ambientes de ensino. A proposta deste TCC avanga ao propor uma gramadtica
formal textual — escrita em EBNF e implementada em ANTLR — que permite definir grafos
com tipos e atributos diretamente na linguagem, realizando valida¢des sintdticas e semanticas

durante o parsing.

Type Systems for Graph Transformation Systems
(Heckel e Taentzer, 2006)

Heckel e Taentzer Heckel e Taentzer (2006) apresentam um sistema de tipos para
transformacao de grafos baseado em regras formais de correspondéncia e preservagao de pro-
priedades. A abordagem parte da defini¢do de grafos-tipo e operagdes de reescrita, propondo
um mecanismo para garantir que transformacdes (como inser¢ao, exclusdo e substituicao de
subgrafos) ndo violem restricdes semanticas estabelecidas previamente.

O método baseia-se na identificacdo de pré-condicdes e pds-condicdes para regras
de transformacdo, com foco na consisténcia de tipagem durante a aplicacao dessas regras. O
sistema admite subtipagem e inferéncia parcial de tipos, e € validado por meio de provas formais
e implementacdo prototipica em ferramentas baseadas em visualizacdo de grafos.

Apesar de sua robustez tedrica, a proposta ndo contempla uma gramatica formal
textual nem oferece suporte a linguagens com andlise sintatica tradicional (ex: anélise LL ou
LR). Em contrapartida, a gramédtica desenvolvida neste TCC € explicitamente textual, escrita
em EBNF, permitindo que grafos sejam definidos como declarag¢des tipadas, com validacao
semantica embutida e suporte a atributos, cardinalidade, heranca e multigrafos, diretamente

integraveis a compiladores.

Graph Transformation: A Specification Technique and Its Applications
(Ehrig et al., 1991)

Ehrig et al. Ehrig et al. (1991) sistematizam a teoria de transformacgdo de grafos
com um enfoque em especificacao algébrica. A técnica apresentada define regras formais para
reescrita de grafos, caracterizadas por tripletos (L,K,R), onde L representa o subgrafo a ser

substituido, R o grafo resultante, e K os elementos preservados.

23

A metodologia inclui o uso de condi¢des aplicaveis (application conditions), controle
de conflitos e critérios de aplicabilidade baseados em homomorfismos. A proposta € eficaz
para transformac¢do computacional, e influenciou diversos formalismos como AGG, GROOVE e
Henshin.

Entretanto, sua énfase € prescritiva e operacional, voltada a reescrita e execuc¢do, ndo
abordando a tipagem como elemento central. A estrutura tipada, quando presente, € embutida
nos grafos, e ndo gerada por gramdtica textual formal com regras sintaticas explicitas. Diferente
disso, a proposta deste TCC define uma GLC textual que permite, por exemplo, especificar que
um vértice do tipo Manager herda atributos de Person e s6 pode conectar-se a vértices do tipo
Company, sendo essas restricoes verificadas automaticamente por meio de andlise semantica

estruturada.

Introduction to Automata Theory, Languages, and Computation

(Hopcroft et al., 2006)

O trabalho de Hopcroft, Motwani e Ullman Hopcroft et al. (2006) constitui o alicerce
tedrico de linguagens formais, automatos e gramaticas. A obra cobre com profundidade a
definicdo de GLCs, suas propriedades de derivacdo, algoritmos de normalizacdo (ex: forma
normal de Chomsky) e técnicas de andlise como parsing descendente e ascendente.

O método didatico da obra oferece algoritmos detalhados para conversao entre
notacdes (BNF e EBNF), construcao de autdomatos de pilha (PDA) e tabelas de parsing. Embora
ndo trate de grafos, fornece o embasamento técnico fundamental que permite a este TCC construir
uma gramadtica textual com estrutura EBNF validada via ANTLR, realizando andlise sintdtica
descendente com look-ahead (LL(1)).

A gramatica proposta deste TCC aplica esses conceitos diretamente a grafos: define
blocos para tipos de vértices e arestas, instancias de elementos, regras de ligacdo e atribui¢cdo
semantica, utilizando mecanismos de parsing formal e visitors para valida¢do contextual. O
uso de EBNF permite ainda transcri¢do automatizada para compiladores, diferentemente de

abordagens exclusivamente visuais.

Webber, Robinson e Eifrem (2012) — Modelo de Grafos com Tipagem Implicita no Neodj

Webber et al. (2012) apresentam o Neo4j como um sistema de gerenciamento de

banco de dados orientado a grafos que adota o modelo Property Graph. Nesse modelo, os

24

vértices e arestas podem conter rétulos (labels) e atributos arbitrarios no formato chave-valor.
A linguagem de consulta Cypher € utilizada para expressar padrdes de correspondéncia entre
nos e relacionamentos de forma declarativa, permitindo navegacao, filtragem e atualizagdo das
estruturas de grafo com sintaxe semelhante ao SQL.

Embora o Neo4j permita representar grafos ricos e heterogéneos, seu sistema de
tipos € implicito e ndo formalizado. Os rétulos servem apenas como convencoes semanticas, nao
havendo mecanismos formais para heranca entre tipos, verificacdo de cardinalidade, obrigatorie-
dade de atributos ou restri¢des entre conexdes. A validagdo de consisténcia estrutural deve ser
feita manualmente, e erros de modelagem s6 sdo detectados em tempo de execugdo, caso afetem
a logica das consultas.

Em contraste, a proposta deste TCC define uma gramatica livre de contexto textual
para grafos tipados, com suporte a atributos, cardinalidade, heranca e validacao semantica
automadtica. Enquanto o Neo4;j prioriza flexibilidade e execu¢do dindmica, a abordagem deste
TCC foca em rigor sintdtico e semantico, permitindo que estruturas de grafo sejam analisadas
e validadas formalmente em tempo de compilacdo, com aplicacdo em ambientes académicos,

compiladores e linguagens especificas de dominio.

Jaguar-Lang: Linguagem Académica com Perspectiva de Tipagem Grdfica (Rezende, 2025)

O projeto Jaguar-Lang, atualmente em andamento sob coordenacdo do Prof. Dr.
Cenez Araudjo de Rezende, tem como objetivo o desenvolvimento de uma linguagem de pro-
gramagdo académica com fins didaticos e de pesquisa na area de compiladores e linguagens
formais. Segundo Rezende (2025), a proposta visa a constru¢do de uma infraestrutura para
experimentacdo de técnicas de compilacdo em contextos de alto desempenho (High-Performance
Computing), com especial atencdo a paralelizagdo e distribuicdo computacional.

Embora o foco principal do Jaguar-Lang seja a experimentacdo em ambientes HPC,
o projeto contempla a inclusio de recursos expressivos de linguagem voltados ao ensino de com-
piladores e linguagens especificas de dominio. Entre os topicos prospectivos, estd a introdugao
de mecanismos de representagdo de grafos como estruturas de primeira classe (tipos nativos e
manipuldveis diretamente na linguagem), incluindo a possibilidade futura de defini¢cdo de uma
tipagem estatica para essas estruturas no proprio nucleo da linguagem.

A relagdo com este TCC se estabelece na convergéncia conceitual: ambos visam

a representacao e manipulacio de grafos em linguagens de programacao com respaldo formal.

25

No entanto, enquanto o Jaguar-Lang se estrutura como uma plataforma ampla, este trabalho
se concentra especificamente na defini¢do e validagao de uma gramaética livre de contexto para
tipagem de grafos, que poderd futuramente se integrar ou inspirar a arquitetura do Jaguar-Lang
como subsistema ou médulo de linguagem fortemente tipada orientada a grafos. Como o projeto

estd em adamento, ndo serd adicionado a tabela de comparacao a este trabalho.

3.2 Comparacao entre os Trabalhos

Quadro 1 —Comparacao entre trabalhos relacionados e a proposta deste TCC

Aspecto Avaliado Corr. Heck. Hopc. Neodj Este
Trabalho

Tipagem formal de vértices e v v v

arestas

Tipagem nativa de grafos v

Transformacao de grafos v v v

Uso de GLC v v

Gramadtica textual com v

EBNF

Validacao semantica automa- v v

tica

Integragdo com compilado- v v

res

Atributos e heranca com ve- v v

rificagdo estdtica

Proposta deste trabalho Uma gramatica textual formal para grafos tipados com
EBNEF, validacao seméantica e sintatica, heranca, atributos,
cardinalidade e integracao com ferramentas de analise e
compilacao.

Legenda: Corr. = Corradini et al. (1997); Heck. = Heckel e Taentzer (2006); Hopc. = Hopcroft et al. (2006).
Fonte: Elaborado pelo autor.

Os trabalhos analisados fornecem contribui¢des valiosas em suas respectivas areas,
mas nenhum deles propde uma solucao formal textual que integre tipagem estatica, andlise
sintdtica e semantica, e regras gramaticais especificas para grafos como entidades de primeira
classe. A proposta deste trabalho avanca ao combinar fundamentos de linguagens formais
com requisitos estruturais e semanticos dos grafos, preenchendo uma lacuna metodolégica na

literatura atual.

26

4 METODOLOGIA

Este capitulo descreve, passo a passo, o processo empregado para conceber, formali-
zar, implementar e validar a GLC proposta para a tipagem de grafos. Inicialmente, sdo delineados
os elementos fundamentais (vértices, Arestas, atributos e Cardinalidade) que servem de base ao
modelo. Em seguida, explicita-se a escolha da notagao EBNF e a estrutura modular da gramatica,
destacando como cada bloco (types, vertices e edges) contribui para a expressividade e a
seguranca do sistema de tipos. Na sequéncia, apresentam-se a especificacdo completa em EBNF,
exemplos ilustrativos e os recursos avangados oferecidos (heranca, multiplos grafos, comentérios,
etc.). Por fim, detalham-se a arquitetura de validagdo, o conjunto de testes, as ferramentas
utilizadas (ANTLR 4, Python e anytree) e o fluxo de execucido automatizado que garante a

correcdo sintdtica e semantica dos grafos definidos.

4.1 Construcio da Gramatica

A construcdo de uma GLC para tipagem de grafos exige uma rigorosa abordagem
sistemdtica, de modo a permitir que grafos sejam tratados como entidades de primeira classe em
linguagens de programacdo, com validacdo sintdtica e semantica garantidas. Esta metodologia é
dividida em quatro fases:

1. Definicao dos elementos fundamentais da gramatica;

2. Formalizacao das regras de formacao (em EBNF, sem recursdo a esquerda, com equiva-
1éncia Backus—Naur Form (BNF) assegurada);

3. Elaboracao da gramatica completa e robusta — com suporte a heranca de tipos,
cardinalidade, atributos com metadados, multiplos grafos e direcionalidade explicita
de arestas;

4. Validacido da gramatica por meio de testes formais e ferramentas automaticas.

4.2 Definicao dos Elementos Fundamentais

A gramidtica considera os seguintes elementos estruturais de grafos:
— Vértices V, com:
— Identificador unico (id);
— Tipo associado (Ty);

— Atributos (Ay);

27

— Cardinalidade minima e maxima.

— Arestas £, com:

Identificador tnico (id);

Tipo (Tk);

Origem e destino (Vorigem Vdestino)

Direcionalidade (direcionada ou nao);
— Cardinalidade;
— Atributos (Ag).

4.3 Formalizacao da Gramatica

4.3.1 Escolha da Notagdo EBNF

A notacdo EBNF (Extended Backus-Naur Form) foi adotada para representar a
gramdtica com maior clareza e concisao. Diferente da BNF tradicional, a EBNF permite o uso
direto de operadores de repeti¢do e opcionais, como *, + e 7, além de suportar agrupamentos
explicitos.

Essa notacdo facilita:

— A escrita formal das regras de produgdo;
— A transcricdo direta para ferramentas como ANTLR 4;
— A compreensao por parte de leitores com familiaridade com linguagens formais.
A escolha da EBNF baseia-se em sua ampla utilizacdo em especificagdes formais

modernas, conforme discutido em Wirth (1996) e Hopcroft et al. (2006).

4.3.2 Estrutura da Gramdtica

A gramadtica foi projetada com trés blocos principais, seguindo a estrutura l6gica dos
grafos:

1. Bloco types: define os tipos de vértices e arestas. Suporta heranca entre vértices
extends), atributos tipados com metadados (obrigatoriedade e valores padrao), além
de cardinalidade explicita.

2. Bloco vertices: instancia os vértices do grafo. Cada vértice é associado a um tipo
previamente declarado, e seus atributos devem obedecer ao contrato do tipo.

3. Bloco edges: define as conexdes entre vértices. Cada aresta possui tipo, orientagdo

28

(via ->), e atributos opcionais. A verificacdo de compatibilidade entre tipos de vértices

conectados € realizada durante a analise semantica.
4.3.3 Especificagdo em EBNF

A seguir apresenta-se a gramatica completa na notacdo EBNF:
O codigo-fonte completo da gramética em EBNF foi transferido para o Apéndice C,

evitando sobrecarregar esta secao.
4.3.4 Recursos Expressivos da Gramadtica

A gramitica suporta os seguintes recursos formais:
— Heranga entre tipos de vértices com extends;
— Cardinalidade minima e maxima com notag¢do [m. .n];
— Atributos com tipo, obrigatoriedade e valor padrio;
— Arestas direcionadas (directed) ou ndo (undirected);
— Defini¢do de multiplos grafos no mesmo programa;

— Comentarios em estilo // ou #.
4.3.5 Exemplo de Grafo Vilido

O grafo usado como estudo de caso (companyNetwork) encontra-se integralmente

descrito no Apéndice D.
4.3.6 Validacdo da Gramadtica

A gramidtica formal desenvolvida foi implementada diretamente em ANTLR 4, a
partir da traducdo sistemadtica da especificagdo em EBNF. O objetivo da validacao foi garantir
que:

— A sintaxe da linguagem fosse corretamente interpretada por analisadores lexicais e sintati-
cos gerados automaticamente;

— A semantica de grafos tipados fosse rigorosamente verificada via andlise personalizada;

— A estrutura e coeréncia dos dados fossem passiveis de inspecdo via geracao de arvores

sintaticas.

29

Para isso, foi desenvolvido um projeto completo disponivel publicamente no GitHub!,
contendo:

— Arquivo Graph. g4: especificagdo da gramdtica em ANTLR 4;

— Implementacdes auxiliares em Python e anytree para validacdo semantica e renderizacio
das arvores sintaticas;

— Script main. py: responsavel por realizar parsing, analise semantica e geracao de relato-
rios;

— Diretério tests/?: contém todos os arquivos de entrada utilizados na validacdo, incluindo
os grafos vdlidos (arquivos de texto simples) e invdlidos, cobrindo as regras grama-
ticais e semanticas;

— Diretério tree_tests/: armazena as arvores sintdticas geradas automaticamente, facili-
tando a depuracdo.

— Resultados dos testes/>: apresenta a saida gerada durante a execugio dos testes,
indicando quais grafos foram aceitos ou rejeitados pelo validador, de acordo com as regras
gramaticais e semanticas definidas.

Essa estrutura modular permite a replicagdo completa dos experimentos conduzidos
neste trabalho, favorecendo a reprodutibilidade académica e a futura extensdo da proposta por

outros pesquisadores.
4.3.7 Arquitetura de Validagao e Execugdo

A validagdo foi conduzida com base no projeto GramaticaTipagemGrafosGLC,
disponivel publicamente em Pinheiro (2025), cuja arquitetura encontra-se estruturada da seguinte
forma:

— Graph.g4 — arquivo principal contendo a gramatica formal para grafos tipados em
ANTLR 44;

— GraphLexer.py, GraphParser.py, GraphVisitor.py — arquivos gerados automatica-
mente a partir de Graph. g4 usando ANTLR 4;

— GraphValidator.py — modulo de validacdo semantica desenvolvido manualmente,

derivado do GraphVisitor;

https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main/tests
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#
resultados-dos-testes---tests

https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main/tests
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#resultados-dos-testes---tests
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC/tree/main?tab=readme-ov-file#resultados-dos-testes---tests

4.3.8

30

main.py — script que percorre todos os arquivos de teste, realiza parsing, validacao
semantica e geracdo da drvore sintdtica;

tests/ — conjunto de arquivos de entrada representando grafos vélidos e invalidos;
tree_tests/ — diretério gerado automaticamente contendo as drvores sintdticas de cada

grafo analisado, em formato de texto.

Fluxo de Execucdo dos Testes

A verificacdo da conformidade sintdtica e semantica da gramadtica foi conduzida de

forma automatizada por meio do script main. py, responsavel por orquestrar todo o pipeline de

analise. O fluxo completo de execucdo dos testes pode ser descrito conforme as etapas abaixo:

1.

Leitura dos arquivos de teste: todos os arquivos presentes no diretério tests/ sao
percorridos de forma recursiva. Cada arquivo contém uma defini¢ao textual de um ou mais
grafos com diferentes configuragdes de tipos, atributos e conexdes.

Analise léxica e sintatica: utilizando o parser gerado pelo ANTLR 4 4 (via os arquivos
GraphLexer.py e GraphParser.py), a entrada textual é transformada em uma Abstract
Syntax Tree (Arvore Sintatica Abstrata) (AST), representando a estrutura hierdrquica do

grafo conforme definido pela gramadtica.

. Geracao da arvore sintatica: com apoio da biblioteca anytree, a drvore sintética gerada

€ renderizada e exportada para o diretério tree_tests/. Isso permite inspecao visual da

arvore para depuragdo ou documentacao.

. Anadlise seméntica com GraphValidator.py: um visifor pattern customizado percorre

a arvore sintética verificando invariantes semanticos do grafo:

Se todos os tipos utilizados estao previamente declarados;

Se todos os atributos obrigatdrios estdo presentes;
— Se os tipos de origem e destino nas arestas sa3o compativeis com as assinaturas;

— Se nao hd identificadores duplicados para vértices ou arestas;

Se estruturas invalidas como ciclos proibidos (self-loops) ocorrem.

. Geracao do relatério de validagio: ao final de cada verificagdo, o resultado é impresso

no terminal. Casos validos sdo confirmados com uma mensagem positiva, enquanto erros

semanticos sao listados de forma detalhada para cada elemento invalido detectado.

. Cobertura total: esse processo € repetido automaticamente para todos os arquivos da

pasta de testes, permitindo cobertura sistemadtica de todas as producdes e regras semanticas

31

da gramatica.
Esse processo garante que tanto a estrutura gramatical quanto as propriedades de
integridade dos grafos definidos sejam rigorosamente testadas. A arquitetura modular, baseada
em ANTLR, Python e anytree, prové flexibilidade para expandir o conjunto de testes ou adaptar

as regras semanticas conforme novas funcionalidades sejam incorporadas a gramatica.

4.3.9 Ferramentas Utilizadas

— ANTLR 4 Parr (2013): geracdo de analisadores LL(1) e estrutura basica de GraphParser,
GraphLexer e GraphVisitor;

— Python, Python Software Foundation (2021) + anytree Brunner (2023): geracdo de arvores
sintaticas com indenta¢do hierdrquica por meio de render tree;

— Casos de teste sintéticos: mais de 10 arquivos foram projetados cobrindo todas as

possibilidades da gramatica.

Embora ferramentas como o GNU Bison Parser Generator (Gerador de Analisadores
Bison do Projeto GNU) (GNU Bison) (baseado em andlise Left-to-Right, Rightmost derivation
(Analise Sintatica Esquerda-para-Direita com Deriva¢ao mais a Direita) (LR)) também sejam
compativeis com o dominio, optou-se por ANTLR 44 devido a maior legibilidade e facilidade na

construcdo de analisadores descendentes para linguagens com estrutura hierdrquica como grafos.

4.3.10 Exemplo de Saida

Testando: tests\invalido_multiplo_erro.txt

Erros semdnticos encontrados:

Vértice ’x1’ falta atributo obrigatdrio ’val’.

Identificador duplicado: ’x17.

Vértice ’x2’ usa tipo indefinido ’Y’.

Aresta ’el’ espera conexdo (X -> X), recebeu (X -> Y).

Aresta ’e2’ usa tipo indefinido ’Z’.

4.4 Conclusao da Metodologia

A metodologia adotada permitiu a constru¢do de uma gramatica livre de contexto

robusta e extensivel, validada de forma sistemética. A estrutura modular da linguagem, separando

32

tipos e instancias, aliada a andlise semantica automatizada, garantiu consisténcia e precisao.

A gramdtica demonstrou capacidade de representar grafos complexos, com suporte
a herancga, cardinalidade, atributos opcionais e multiplos grafos. A préxima etapa consiste na
integracao da linguagem com um ambiente de compilacdo experimental para permitir inferéncia

de tipos e geracdo de cddigo orientado a grafos.

33

5 RESULTADOS

Este capitulo apresenta os principais resultados obtidos e as contribui¢des conso-
lidadas ao final da implementacdo da gramatica livre de contexto para tipagem de grafos. O
projeto alcangou plenamente os objetivos estabelecidos, com a criagdo de uma linguagem formal
validada sintdtica e semanticamente, capaz de representar grafos com propriedades avancadas

como heranca, multigrafos, atributos opcionais e verificacao de restricdes de tipo.

5.1 GLC para Tipagem de Grafos

O principal resultado do trabalho € a defini¢do e implementacao de uma GLC para
grafos tipados, expressa inicialmente em notagcdo EBNF e posteriormente traduzida para ANTLR
4 4. A gramatica é:

— Completa: Cobre todas as construcdes essenciais de grafos: vértices, arestas, tipos,
heranca, cardinalidade, atributos opcionais, conexdes multiplas e grafos compostos;

— Consistente: A semantica € verificada por um visitor pattern customizado que impoe
verificacOes de integridade, como compatibilidade de tipos e auséncia de ciclos, com
mensagens de erro claras e informativas;

— Extensivel: Permite a introdugdo de novos tipos e regras sem modificar a estrutura

principal da linguagem.

5.1.1 Quadro-Resumo de Cobertura dos Testes

Quadro 2 —Cobertura semantica da gramadtica por teste executado

34

Arquivo

Objetivo e saida semantica

Resultado

validoO1.txt

Grafo com heranca simples, atribu-
tos e conexOes validas. Nenhum erro
semantico encontrado.

Aceito

valido02_undirected.txt

Aresta nio-direcionada entre vérti-
ces do mesmo tipo. Nenhum erro
semantico encontrado.

Aceito

validoO3_multigrafo.txt

Dois grafos em uma s6 entrada. Ne-
nhum erro semantico encontrado.

Aceito

validoO4_heranca_profunda.txt

Heranga em multiplos niveis (C —
B — A). Erro: Aresta 11’ espera
conexdo (A — A), recebeu (C — A).

Rejeitado

valido05_atributos_opcionais.txt

Tipos com atributos opcionais e valo-
res padrdo. Nenhum erro semantico
encontrado.

Aceito

invalido_atributo_ausente.txt

Atributo obrigatério ausente em vér-
tice. Erro: Vértice 'ul’ falta atributo
obrigatdrio ‘'name’.

Rejeitado

invalido_ciclo_nao_permitido.txt

Aresta com self-loop explicito (x —
X). Erro: Aresta 'cl’ forma ciclo
(self-loop) nao permitido.

Rejeitado

invalido_duplicata_vertice.txt

Identificador de vértice repetido.
Erro: Identificador duplicado: 'nl’.

Rejeitado

invalido_multiplo_erro.txt

Caso extremo com multiplos erros.
Erros: Vértice ’x1° falta atributo
obrigatdrio ’val’; Identificador dupli-
cado: 'x1’; Vértice x2’ usa tipo in-
definido "Y’; Aresta ’el’ espera (X
— X)), recebeu (X — Y); Aresta ’e2’
usa tipo indefinido °Z’.

Rejeitado

invalido_tipo_aresta.txt

Tipos invertidos na assinatura da
aresta. Erro: Aresta ’el’ espera co-
nexdo (B — A), recebeu (A — B).

Rejeitado

invalido_vertice_tipo_nao_declarado.txt

Uso de tipo de vértice ndo declarado.
Erro: Vértice 'pl’ usa tipo indefinido
’Human’.

Rejeitado

Fonte: Elaborado pelo autor.

Como complemento a Quadro-Resumo de Cobertura dos Testes, o Apéndice E apresenta

a listagem integral de cada arquivo de entrada — um por pagina — permitindo a inspecao

detalhada das construgdes sintéticas e dos cendrios de validacao empregados. Desse modo, o

35

leitor pode replicar todos os experimentos e verificar, linha a linha, como cada caso de teste

exercita as produgdes gramaticais e as regras semanticas descritas neste trabalho.

5.1.2 Relatorio de Testes Realizados

— validoO1l.txt
Contém um grafo com vértices e arestas tipados, atributos obrigatdrios e opcionais cor-
retamente atribuidos, além de heranca simples. Nenhuma inconsisténcia foi encontrada.
Resultado: aceito.

— validoO2_undirected.txt
Testa a correta interpretagdo de uma aresta simétrica entre dois usudrios. A estrutura foi
corretamente interpretada e aceita. Resultado: aceito.

— validoO3_multigrafo.txt
Apresenta dois grafos distintos no mesmo arquivo. O parser separa corretamente os
escopos € nenhuma colisdo de identificadores foi detectada. Resultado: aceito.

— validoO4_heranca_profunda.txt
Embora atributos sejam herdados corretamente, a semantica das conexodes exige tipos
exatos, e ndo subtipos. Resultado: rejeitado, conforme esperado.

— validoO5_atributos_opcionais.txt
A gramdtica permite atributos nio obrigatdérios e com valores padrdao. Nenhum erro
semantico foi detectado. Resultado: aceito.

— invalido_atributo_ausente.txt
O vértice omite um campo name marcado como required. O verificador semantico
rejeitou corretamente. Resultado: rejeitado.

— invalido_ciclo_nao_permitido.txt
Uma aresta direcionada conecta um vértice a ele mesmo. A gramdtica ndo proibe, mas a
semantica rejeita explicitamente self-loops. Resultado: rejeitado.

— invalido_duplicata_vertice.txt
O identificador do vértice aparece duas vezes. O validador detecta a duplicidade e rejeita.
Resultado: rejeitado.

— invalido_multiplo_erro.txt
Caso extremo com cinco erros: auséncia de atributo, tipo inexistente, duplicagdo, assinatura

de aresta incompativel e uso de aresta indefinida. Todos os erros foram reportados.

36

Resultado: rejeitado.
— invalido_tipo_aresta.txt
Aresta com assinatura invertida em relacdo a especificagdo da gramatica. Detectado e
rejeitado corretamente. Resultado: rejeitado.
— invalido_vertice_tipo_nao_declarado.txt
Tipo Human ndo declarado. O verificador rejeitou como esperado. Resultado: rejeitado.
A gramatica mostrou-se adequada para modelar estruturas complexas, sendo po-
tencialmente aplicdvel em dominios como linguagens orientadas a grafos, DSLs académicas e

compiladores.

5.2 Validacao Formal da Gramatica

A validagao foi realizada com o uso de ANTLR 4 4, Python e bibliotecas auxiliares
como anytree. A seguir, os resultados consolidados:

— Testes de Conformidade: Todos os casos positivos (ex: heranga simples, multigrafos,
atributos opcionais) foram corretamente aceitos;

— Testes de Rejeicao: Casos negativos como atributos ausentes, tipos indefinidos, duplicagdo
e assinaturas incompativeis foram todos corretamente identificados e rejeitados;

— Robustez: Foram testados grafos com estruturas complexas, subgrafos independentes,
self-loops proibidos, erros combinados e carga elevada de elementos. Todos os erros
semanticos esperados foram reportados.

Além disso, a ferramenta main.py gera automaticamente arvores sintdticas para
cada grafo testado, com formatacao legivel, armazenadas na pasta tree_tests/. A andlise

dessas arvores ajudou a depurar a estrutura da gramatica.

5.3 Contribuicoes Consolidadas

Com base na execu¢do bem-sucedida dos testes e nos arquivos de validagdo gerados,
as contribui¢des deste trabalho podem ser assim sintetizadas:
— Gramatica validada e funcional: com cobertura de propriedades semanticas ricas e
implementada em ferramentas modernas de andlise sintética;
— Ferramenta de analise de grafos: capaz de aceitar entradas textuais, gerar arvores e

validar restri¢des de integridade;

37

— Repositorio funcional e reutilizavel: O projeto encontra-se publicado em (PINHEIRO,
2025), permitindo sua replicacdo e extensdo por pesquisadores e estudantes;

— Base para experimentacao académica: linguagem clara, modular e segura, que pode ser
estendida para aplicacdes pedagdgicas e de pesquisa;

— Integracao com compiladores: a estrutura de tipos, atributos e heranca reflete abstracdes
comuns em linguagens modernas, facilitando a integracdo com estdgios como andlise
semantica e geracdo de cddigo.

Em resumo, o trabalho entregou uma infraestrutura formal sélida e validada, com
resultados consistentes entre os testes planejados e os comportamentos esperados da gramética,
contribuindo diretamente para avancos no uso de grafos em linguagens formais e compiladores.
Para ter acesso aos resultados, todos os arquivos testados e ao projeto de valida¢do da gramadtica

acesse o projeto feito pelo autor, Pinheiro (2025).

38

6 CONCLUSOES E TRABALHOS FUTUROS

Este capitulo encerra o trabalho apresentando uma sintese dos resultados alcangados
com a GLC proposta, destacando sua contribui¢@o para a tipagem estatica de grafos e a validacio
automdtica de estruturas complexas. Em seguida, sdo delineadas perspectivas de evoluciao que
incluem o suporte a grafos temporais, a incorporacao de metadados e anotacdes avangadas, a
integracao com Integrated Development Environment (Ambiente de Desenvolvimento Integrado)s
(IDEs), a geracdo de bytecode ou artefatos intermediarios e a interoperabilidade com bibliotecas
externas como NetworkX e Neo4j. Por fim, as consideracdes finais reforcam a relevancia
académica e prética da gramatica, bem como seu potencial de servir de base para futuras DSLs,

compiladores e pipelines de anélise orientados a grafos.

6.1 Conclusoes

Este trabalho apresentou a constru¢iao de uma GLC para tipagem de grafos, com foco
em garantir consisténcia sintdtica e semantica, validada formalmente por meio de ferramentas
como ANTLR 4 e andlise baseada em visttor patterns. A gramadtica foi implementada,
testada e avaliada por uma série de arquivos que simulam aplica¢des reais e cendrios extremos.

Os principais resultados obtidos foram:

— Gramatica formal completa: Capaz de representar grafos com heranga de tipos, miltiplas
arestas, atributos obrigatdrios e opcionais, cardinalidade e subgrafos distintos.

— Validacao automatizada: A gramatica foi integrada a um pipeline de testes estruturado,
com suporte a geracao de drvores sintdticas e relatorios de erro precisos.

— Repositorio funcional e reutilizavel: O projeto encontra-se publicado em (PINHEIRO,
2025), permitindo sua replicacio e extensdo por pesquisadores e estudantes.

A estrutura modular e extensivel da linguagem torna a gramatica ttil tanto para fins
académicos quanto para aplicacdes praticas em DSLs, ambientes de compilagdo e sistemas de

andlise orientados a grafos.

6.2 Trabalhos Futuros

As possibilidades de evolugado deste trabalho sdo amplas. Algumas propostas vidveis
incluem:

— Generalizacao para Grafos Temporais e Dinamicos: Adicionar suporte a modelagem

39

de grafos que variam ao longo do tempo, com atributos temporais ou histdricos.

— Suporte a Metadados e Anotacoes: Permitir comentérios, documentagdo inline ou
restricdes avancadas por meio de expressoes ldgicas associadas aos tipos.

— Integracao com Ambientes de Desenvolvimento: Construcio de editores visuais e IDEs
com validacdo sintdtica e semantica em tempo real.

— Backend para Compiladores: Estender a gramdtica com instru¢des operacionais que
possibilitem sua traducdo para bytecode, cddigo intermedidrio ou estruturas de execucao
(ex: JavaScript Object Notation (JSON), Extensible Markup Language (XML), AST).

— Visualizacao e Exportaciao: Ferramentas para exportar os grafos validados para formatos
de visualizacdo (Linguagem de descri¢ao de grafos do Graphviz (DOT), Scalable Vector

Graphics (SVGQG)) ou interoperabilidade com bibliotecas externas (ex: NetworkX, Neo4j).

6.3 Consideracoes Finais

Este trabalho representou um avango importante na formalizacdo da tipagem de
grafos por meio de uma gramadtica robusta, validada e implementada em ferramentas modernas.
Combinando clareza sintitica e expressividade semantica, a proposta se mostra vidvel como base
para DSLs, modelos de compiladores e aplicacdes académicas.

A gramitica proposta atendeu aos critérios de completude, consisténcia e extensibi-
lidade. Os testes realizados comprovaram sua capacidade de detectar erros, validar restricdes
complexas e lidar com multiplas topologias. Com isso, ela se consolida como uma ferramenta
formal de alto potencial para representar grafos em linguagens de programacao estruturadas.

Espera-se que as futuras extensoes e aplicagdes derivadas desta base fortalecam o

uso de grafos como estruturas de primeira classe em ambientes formais e produtivos.

40

REFERENCIAS

BONDY, J.; MURTY, U. Graph Theory with Applications. [S. [.]: Elsevier, 1976.

BRUNNER, C. anytree: Powerful and Lightweight Tree Data Structures in Python. 2023.
https://anytree.readthedocs.io/. Biblioteca para representacdo hierdrquica de arvores sintéticas
em Python.

CARDELLLI, L. A semantics of multiple inheritance. Information and Computation, v. 76,
n. 2-3, p. 138-164, 1985.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms.
[S. I.]: MIT Press, 2009.

CORRADINI, A.; EHRIG, H.; MONTANARI, U.; RIBEIRO, L.; ROSSI, F. Specifying graph
languages with type graphs. In: Handbook of Graph Grammars and Computing by Graph
Transformation. Singapore: World Scientific, 1997. v. 1, p. 1-61.

DIESTEL, R. Graph Theory. [S. L.]: Springer, 2017.

EHRIG, H.; ENGELS, G.; KREOWSKI, H.-J.; ROZENBERG, G. Graph grammars and their
application to computer science. Lecture Notes in Computer Science, Springer, v. 532, p. 1-20,
1991.

EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae
Scientiarum Imperialis Petropolitanae, v. 8, p. 128-140, 1736.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Reading, MA: Addison—Wesley, 1995. ISBN
978-0201633610.

GROSS, J. L.; YELLEN, J. Graph Theory and Its Applications. 3. ed. [S. l.]: CRC Press,
2014.

HARARY, F. Graph Theory. [S. [.]: Addison—Wesley, 1969.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, v. 4, n. 2, p.
100-107, 1968.

HECKEL, R.; TAENTZER, G. Type systems for graph transformation. Electronic Notes in
Theoretical Computer Science, Elsevier, v. 148, n. 1, p. 19-40, 2006.

HINDLEY, R. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, JSTOR, v. 146, p. 29-60, 1969.

HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introduction to Automata Theory,
Languages, and Computation. 3rd. ed. [S. L.]: Pearson, 2006. Secdo 4.2 discute transformagdes
de EBNF para BNF.

MENS, T.; GORP, P. V. A taxonomy of model transformation. In: ICMT 2006. [S. L.]: Springer,
2006, (LNCS, v. 4066). p. 125-142.

https://anytree.readthedocs.io/

41

MILNER, R. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, Elsevier, v. 17, n. 3, p. 348-375, 1978.

PARR, T. ANTLR (Another Tool for Language Recognition). [S. I.], 2013. Versao 4.
Disponivel em: https://www.antlr.org/.

PIERCE, B. C. Types and Programming Languages. [S. [.]: MIT Press, 2002.

PINHEIRO, A. GramaticaTipagemGrafosGLC. 2025. https://github.com/alyssonlcss/
GramaticaTipagemGrafosGLC. Projeto de validacdo semantica de grafos com ANTLR4 e
Python.

Python Software Foundation. Python Language Reference, version 3.10. 2021.
https://www.python.org/. Linguagem de programacao de alto nivel, interpretada e de tipagem
dindmica.

REZENDE, C. A. d. R. Jaguar-Lang: Uma Linguagem de Programacao para Fins de
Ensino e Pesquisa em Compiladores: Uma Abordagem Paralela e Distribuida. 2025.
https://cadproj.ufc.br/projects/592. Projeto em andamento na Universidade Federal do Ceara.
Aprovado em 08/05/2025.

RUMBAUGH, J.; JACOBSON, I.; BOOCH, G. The Unified Modeling Language Reference
Manual. 2. ed. [S. [.]: Addison—Wesley, 2004.

TARJAN, R. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
v. 1, n. 2, p. 146-160, 1972.

WEBBER, J.; ROBINSON, I.; EIFREM, E. Graph Databases: New Opportunities for
Connected Data. 1st. ed. [S. L]: O’Reilly Media, 2012. ISBN 978-1449356262.

WEST, D. B. Introduction to Graph Theory. [S. [.]: Prentice Hall, 2001.

WIRTH, N. Compiler Construction. [S. [.]: Addison—Wesley, 1996.

https://www.antlr.org/
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://github.com/alyssonlcss/GramaticaTipagemGrafosGLC
https://www.python.org/
https://cadproj.ufc.br/projects/592

anytree

directed

extends

namespace

parser

pipeline

GLOSSARIO

Biblioteca Python que oferece estruturas de drvore genéri-
cas e utilitarios para percorré-las, manipulé-las e renderiza-

las de forma simples

Qualificador de aresta que especifica orientagdo explicita,
definindo digrafos em que cada aresta possui vértice de

origem e vértice de destino distintos

Palavra-chave da gramatica que indica Heranca (entre ti-
pos) entre tipos de vértice, permitindo que um subtipo

reutilize atributos e restricdes do supertipo

Espaco de nomes isolado que evita colisdes entre identifi-

cadores em diferentes grafos ou contextos

modulo de andlise sintdtica que, a partir da sequéncia de
tokens produzida pelo lexer e de uma gramatica, decide se a
entrada pertence a linguagem e constréi uma representacao
estrutural (arvore de derivacdo ou AST). Exemplos de
familias: LL, LR, Earley e CYK; pode incluir estratégias

de recuperagdo de erros

Sequéncia ordenada de etapas de processamento (stages)
que transformam dados ou artefatos de software de forma
incremental, favorecendo paralelismo, modularidade e au-
tomagdo — por exemplo, o pipeline de validacido que exe-

cuta parsing, visitacdo da AST e geracdo de relatdrios

42

render tree

self-loop

undirected

visitor pattern

analisador sintatico

aresta

Func¢do da biblioteca anytree que imprime uma arvore
hierarquica em formato textual, facilitando a visualizacao

da AST gerada ap6s o parsing

Aresta que conecta um vértice a si mesmo; sua validade

depende das regras semanticas vigentes

Qualificador de aresta que especifica auséncia de orienta-
¢do, caracterizando grafos nao direcionados onde as cone-

x0es sdo bidirecionais

Padrao de projeto orientado a objetos que permite aplicar
operagdes a estruturas de arvore (como ASTs) sem alterar

suas classes (GAMMA et al., 1995)

algoritmo de busca informada para caminhos minimos que
usa a fungdo f(n) = g(n) + h(n), combinando o custo ja
percorrido g com uma heuristica & até o objetivo. Com
heuristica admissivel garante otimalidade; com heuristica
consistente evita reaberturas. Para 4 = 0, reduz-se ao Dijks-

tra’s algorithm

sinonimo de parser

elemento de um grafo que conecta dois vértices, podendo

ser direcionada ou nao

43

bytecode

caminho

cardinalidade

Dijkstra’s algorithm

entidade de primeira classe

grafo

grafo conexo

Codigo intermedidrio de baixo nivel, independente de ar-
quitetura, gerado por compiladores e executado por uma
madquina virtual; combina portabilidade com desempenho,
como o bytecode produzido pela JVM ou pelo interpreta-

dor Python

sequéncia finita de vértices (vo,...,vy) tal que, para todo i,
existe {vi,vir1} € E (ou (vi,viy1) € E no caso dirigido). O
comprimento do caminho € £, isto €, o nimero de arestas

percorridas

Restri¢ao que especifica a quantidade minima e méaxima
de ocorréncias de um elemento (como vértice ou aresta),

inspirada na notacdo da UML (RUMBAUGH et al., 2004)

Algoritmo de caminhos minimos de fonte unica em grafos
ponderados com pesos ndo negativos, proposto por Eds-
ger W. Dijkstra em 1959; utiliza fila de prioridade e tem
complexidade O((|V|+ |E|)log|V|).

Elemento que pode ser criado, atribuido a varidveis, pas-
sado como argumento e retornado por fungdes. Tratado
como valor nativo pelas constru¢gdes da linguagem (PI-

ERCE, 2002)

estrutura matemadtica G = (V,E) que representa relagdes

entre vértices por meio de Arestas

grafo no qual existe a0 menos um caminho entre quais-
quer dois vértices; caso contrario, o grafo é desconexo e

decompée-se em componentes conexas

44

grafo direcionado

grafo planar

grafo ponderado

grafo simples

heranca (entre tipos)

homeomorfo (em grafos)

inferéncia de tipos

lexer

grafo cujas Arestas possuem orientagdo, isto €, cada aresta

representa um par ordenado (v;,v;)

grafo que pode ser desenhado no plano sem cruzamento
de Arestas; pela caracterizagdo de Kuratowski, grafos con-
tendo um subgrafo homeomorfo a K5 ou K33 ndo sio

planares

grafo no qual a cada Aresta € associadoum pesow : E — R

(p. ex. custo, capacidade ou distancia)

grafo que ndo admite lagos (v; = v;) nem miltiplas Arestas

paralelas entre 0 mesmo par de vértices

Recurso que permite que um tipo derivado reutilize atribu-

tos e regras de um tipo base (CARDELLI, 1985)

dois grafos sao homeomorfos se um pode ser obtido do
outro por uma sequéncia de subdivisdes de arestas e supres-
soes de vértices de grau 2; de forma equivalente, possuem
subdivisdes isomorfas. A nocdo € central na caracteriza¢ao
de planaridade de Kuratowski (DIESTEL, 2017; GROSS;
YELLEN, 2014)

Mecanismo que permite ao compilador deduzir automati-
camente os tipos das expressdes sem anotagdes explicitas

(HINDLEY, 1969; MILNER, 1978)

fase de compilador que converte o fluxo de caracteres de
entrada em uma sequéncia de fokens, a ser consumida pelo

analisador sintatico

45

lista de adjacéncia

lista de incidéncia

matriz de adjacéncia

metadado

multigrafo

Neo4j

NetworkX

vetor de listas A[v] contendo os vizinhos de cada v € V,;
ocupa O(|V| + |E|) de memdria e é preferivel para grafos

esparsos

representacdo que armazena explicitamente todas as Ares-
tas como pares (ou triplas com peso) de vértices incidentes;
util em algoritmos que ordenam/percorrrem arestas, cOmo

Kruskal

matriz |V| x |V| em que a célula (i, j) indica presencga
(e opcionalmente o peso) da Aresta entre v; € vj; acesso
O(1) e custo de meméria O(|V|?) (simétrica em grafos

nao-direcionados)

Dados que descrevem outros dados, oferecendo contexto
semantico ou estrutural adicional (por exemplo, rétulos de

atributos, unidades de medida ou restri¢des de validacdo)

grafo que admite multiplas Arestas distintas entre 0 mesmo
par de vértices; lagos podem ser permitidos conforme a

defini¢do adotada

Sistema de gerenciamento de banco de dados orientado
a grafos baseado no modelo Property Graph; utiliza a
linguagem declarativa Cypher para consultar e manipular

vértices e arestas com rétulos e propriedades

Biblioteca de andlise de grafos em Python que fornece
estruturas de dados flexiveis e algoritmos para criacao,

manipulacdo, visualizagdo e estudo de grafos complexos

46

Python

sistema de tipos

subgrafo

tipagem estatica

vértice

Linguagem de programacao de alto nivel, interpretada e
multiparadigma, criada por Guido van Rossum em 1991;
amplamente utilizada em ciéncia de dados, automacao,
Application Programming Interface (Interface de Progra-

macao de Aplicacdes)s (APIs) e desenvolvimento web

Conjunto de regras formais que associa tipos as expressoes
de uma linguagem de programacao, prevenindo operacoes
invélidas e proporcionando garantias de seguranca como

soundness e completeness

subconjunto de vértices e Arestas de um grafo original que

preserva incidéncia

Sistema no qual os tipos sdo verificados em tempo de
compilagdo, permitindo detectar erros antes da execugdo

(PIERCE, 2002; MILNER, 1978)

elemento de um grafo que representa uma entidade ou

objeto; também chamado de n6

47

(3]

w

W

6

APENDICE A - DECLARACAO COMPLETA DO GRAFO FLIGHTNETWORK

Cédigo-fonte 1 —Codigo-fonte completo do grafo f1ightNetwork

48

graph flightNetwork {
types {
vertex Airport [1..*] attributes {
code : string required;
city : string required;
}

vertex Hub extends Airport;

edge Flight (Airport, Airport) directed

attributes { duration : int; };

vertices {
gru : Hub [code="GRU", city="Sao Paulo"];
jfk : Airport [code="JFK", city="New York"];

edges {
f1 : Flight (gru -> jfk) [duration = 540];

(3]

w

W

6

APENDICE B - DECLARACAO COMPLETA DO GRAFO SOCIALNET

Cédigo-fonte 2 — Codigo-fonte completo do grafo socialNet

49

graph sociallNet {
types {
vertex Person [1..x] attributes {
id : int required;
name : string required;
age : int default = 18;
}

vertex Student extends Person

attributes { university : string; };

edge Knows (Person, Person) undirected;

edge Follows (Person, Person) directed;

vertices {
a : Person [id=1, name="Ana", age=21 1;

b : Student [id=2, name="Bruno", university="UFC"];

edges {
el : Knows (a -- b);

e2 : Follows (a -> b);

APENDICE C - GRAMATICA COMPLETA EM EBNF PARA TIPAGEM DE
GRAFOS

Coédigo-fonte 3 — Gramatica EBNF para tipagem robusta de grafos

50

<program> ::= { <graph> }

<graph> ::= "graph" <id> "{" <type_section> <vertex_section> <edge_section> "}"
<type_section> ::= "types" "{" { <vertex_type_decl> | <edge_type_decl> } "}"
<vertex_type_decl> ::= "vertex" <id> ["extends" <id>]

[<cardinality>]

[<attribute_block>] ";"

<edge_type_decl> ::= "edge" <id> "(" <id> "," <id> ")"
["directed" | "undirected"]
[<cardinality>]

[<attribute_block>] ";"

<cardinality> ::= "[" <min_card> ".." <max_card> "]"

<min_card> ::= <int>

<max_card> ::= <int> | "x"

<attribute_block> ::= "attributes" "{" { <attribute_decl> } "}"

<attribute_decl> ::= <id> ":" <type> ["required" | "optional"] ["=" <value>] ";"
<vertex_section> ::= "vertices" "{" { <vertex_instance> } "}"

<vertex_instance> ::= <id> ":" <id> [<attribute_assign_block>] ";"

<edge_section> ::= "edges" "{" { <edge_instance> } "}"

<edge_instance> ::= <id> ":" <id> "(" <id> "->" <id> ")" [<attribute_assign_block>] ";"
<attribute_assign_block> ::= "[" { <attribute_assignment> "," } <attribute_assignment> "]"
<attribute_assignment> ::= <id> "=" <value>

<type> ::= "int" | "float" | "string" | "bool" | "date" | <id>

<value> ::= <int> | <float> | <string> | "true" | "false" | <date>

<id> ::= (letter | "_") { letter | digit | "_" }

<int> ::= digit { digit }

<float> ::= <int> "." <int>

<string> ::= '"' { character - '"' } '™'

<date> ::= <int> "-" <int> "-" <int>

<comment> ::= "//" { character } | "#" { character }

APENDICE D - EXEMPLO COMPLETO DO GRAFO COMPANYNETWORK

Cédigo-fonte 4 — Codigo-fonte completo do grafo companyNetwork

graph companyNetwork {
types {
vertex Person [1..x] attributes {
name: string required;
age: int;

};

vertex Manager extends Person attributes {
level: string = "senior";

};
vertex Company [1..%] attributes {
name: string required;

};

edge WorksAt (Person, Company) directed [0..%];

edge Manages (Manager, Person) directed [0..x];

vertices {

pl : Person [name="Alice", age=30];
p2 : Person [name="Bob", age=25];
mil : Manager [name="Carol", age=40, level="executive"];

cl : Company [name="OpenAI"];

edges {
el : WorksAt (pl -> cl);
e2 : WorksAt (p2 -> cl);

e3 : Manages (ml -> p2);

W N =

~

APENDICE E - ARQUIVOS DE TESTE DA GRAMATICA

Cédigos-fonte 5 até 15

Cédigo-fonte 5 —invalido_vertice_tipo_nao_declarado.txt

52

graph invalidVertexType {
types {
vertex Person;

}

vertices {
x : Human; // tipo Human nao declarado
}
}

Cédigo-fonte 6 —validoO1.txt

53

graph companyNetwork {
types {
vertex Person [1..*] attributes {
name: string required;
age: int;

};

vertex Manager extends Person attributes {
level: string = "senior";

};

vertex Company [1..*] attributes {
name: string required;

};

edge WorksAt (Person, Company) directed [0..x];

edge Manages (Manager, Person) directed [0..*];

vertices {
pl : Person [name="Alice", age=30 1;
p2 : Person [name="Bob", age=25];
ml : Manager [name="Carol", age=40, level="executive"];

cl : Company [name="OpenAI"];

edges {
el : WorksAt (pl -> cl);
e2 : WorksAt (p2 -> cl1);

e3 : Manages (ml -> p2);

Cédigo-fonte 7 —valido02_undirected.txt

54

graph friendship {
types {
vertex Person;

edge Knows (Person, Person) undirected;

vertices {
a : Person;

b : Person;

edges {

el : Knows (a -- b);

Cédigo-fonte 8 —validoO3_multigrafo.txt

55

graph transport {
types {
vertex City;
edge Road (City, City) undirected;

edge Train (City, City) undirected;

vertices {

s : City;
p : City;
}
edges {

rl : Road (s -- p);

tl : Train (s -- p); // multigrafo: duas arestas paralelas

Coédigo-fonte 9 —validoO4_heranca_profunda.txt

56

graph academic {
types {
vertex Person;
vertex Student extends Person;

vertex PhD extends Student;

vertices {

x : PhD;

Cédigo-fonte 10 —validoO5_atributos_opcionais.txt

57

graph sensors {
types {
vertex Device attributes {
id : int required;
temp : float optional;
};

vertices {

dl : Device [id

10 1;

d2 : Device [id = 11, temp = 22.5];

Cédigo-fonte 11 —invalido_atributo_ausente.txt

58

graph missingAttr {
types {
vertex User attributes {
name : string required;

};

vertices {

ul : User; // falta atributo obrigatorio 'name'

Cédigo-fonte 12 —invalido_ciclo_nao_permitido.txt

59

graph noLoops {
types {
vertex Node;

edge Link (Node, Node) directed;

vertices {

x : Node;

edges {
11 : Link (x -> x); // self-loop proibido

Codigo-fonte 13 —invalido_duplicata_vertice.txt

60

graph dupVertex {
vertices {
X : vertex;

X : vertex;

// identificador duplicado

Cdédigo-fonte 14 —invalido_multiplo_erro.txt

61

graph multiError {
types {
vertex X attributes { val : int required; };

edge E (X, X);

vertices {

x1 : X; // falta atributo 'val'
x1 : X [val =11]; // duplicado
x2 : Y; // tipo Y nao existe
}
edges {
el : E (x1 > x2); // destino de tipo incompativel
e2 : Z (x1 -> x1); // aresta de tipo indefinido
}

Cédigo-fonte 15 —invalido_tipo_aresta.txt

62

graph badEdgeType {
types {
vertex A;
vertex B;

edge E (A, A) directed

vertices {

a : A;
b : B;
}
edges {

el : E (a -> b);

5

// origem/destino nao batem

com assinatura de E

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Sumário
	Introdução
	Fundamentação Teórica
	Grafo
	Origem Histórica e Definições Básicas
	Classificações Estruturais
	Representações Computacionais
	Algoritmos Fundamentais

	Gramática para Tipagem de Grafos
	Gramáticas em Linguagens Formais
	Tipagem Estática e Sistema de Tipos
	GLC para Tipagem de Grafos
	Exemplo Ilustrativo de código
	Recursos Expressivos da Gramática Proposta
	Benefícios Didáticos e Práticos

	Trabalhos Relacionados
	Panorama das Pesquisas
	Comparação entre os Trabalhos

	Metodologia
	Construção da Gramática
	Definição dos Elementos Fundamentais
	Formalização da Gramática
	Escolha da Notação EBNF
	Estrutura da Gramática
	Especificação em EBNF
	Recursos Expressivos da Gramática
	Exemplo de Grafo Válido
	Validação da Gramática
	Arquitetura de Validação e Execução
	Fluxo de Execução dos Testes
	Ferramentas Utilizadas
	Exemplo de Saída

	Conclusão da Metodologia

	Resultados
	GLC para Tipagem de Grafos
	Quadro-Resumo de Cobertura dos Testes
	Relatório de Testes Realizados

	Validação Formal da Gramática
	Contribuições Consolidadas

	Conclusões e Trabalhos Futuros
	Conclusões
	Trabalhos Futuros
	Considerações Finais

	REFERÊNCIAS
	GLOSSÁRIO
	Declaração completa do grafo flightNetwork
	Declaração completa do grafo socialNet
	Gramática completa em EBNF para tipagem de grafos
	Exemplo completo do grafo companyNetwork
	Arquivos de teste da gramática

