

Influence of an innovative IMTA system (Mediterranean Sea, Italy) on environmental and biological parameters: Seasonal analysis

Jacopo Borghese ^{a,c,*}, Adriana Giangrande ^{a,c,f}, Daniele Arduini ^{a,c}, Roberta Trani ^d, Lorenzo Doria ^a, Marco Anglano ^a, Lucia Rizzo ^{b,c}, Sergio Rossi ^{a,c,e}

^a Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy

^b Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via Lecce Monteroni, 73100 Lecce, Italy

^c National Interuniversity Consortium for Marine Sciences (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy

^d Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy

^e Institute of Marine Sciences (LABOMAR), Federal University of Ceará (UFC), Fortaleza, Brazil

^f National Biodiversity Future Center, 90133 Palermo, Italy

ARTICLE INFO

Keywords:

Water column seston
Benthic suspension feeders
Fish farm
Long-term analysis
Waste mitigation

ABSTRACT

The influence of benthic suspension feeders as bioremediating organisms on water column seston and their ability to mitigate fish farm waste was assessed by monthly analyses for one year. A monthly monitoring from July 2020 to October 2021 of physico-chemical and biochemical variables of the water column and the sediment was performed in an in-shore mariculture plant located in the Mar Grande of Taranto (Italy), comparing two adjacent areas that differ in type of farming. The first (reference site) is a fish monoculture, while the second consists of an innovative Integrated Multi-Trophic Aquaculture system (IMTA site). The annual cycle of chlorophyll- α concentration showed values corresponding to mesotrophic/eutrophic conditions, with peak production in early fall ($4.64 \mu\text{g L}^{-1}$). During the spring and summer sampling times, when the amount of aquaculture waste is greater than during the rest of the year, the reference site showed the highest lipid ($151.73 \mu\text{g L}^{-1}$) and organic matter (189.00 mg g^{-1}) values with respect to those at the IMTA site. The IMTA bioremediating organisms possibly acted as underwater gardens changing the seston quality and availability and providing protection and food for the zooplankton community, which showed higher abundance of individuals for most sampling times at the IMTA site, peaking during September and October in both 2020 and 2021 (max $232,985.20 \text{ ind m}^{-3}$). Our results demonstrate the effectiveness of the considered IMTA system in mitigating the negative impact of organic matter release into the environment due to fish farming activities. The influence of bioremediating organisms on seston composition and concentration opened up mitigation as well as restoration scenarios.

1. Introduction

In the last 60 years, the global consumption of food from aquatic sources increased at an average annual rate of 3 %, about twice as fast as the annual growth rate of the global population (1.6 %) (FAO, 2022). Aquaculture has recently overtaken fishery as the largest producer of seafood products for human consumption and consequently the development of innovative methods to manage some of its environmental impacts (e.g., release of nutrients in the environment) has received more attention (FAO, 2022; Karakassis et al., 2000; Mazzola and Sarà, 2001). Even if the replacement of wild stock fisheries by aquaculture sounds

positive, several factors have to deeply change to render it sustainable and respectful of the environment (Hishamunda et al., 2009).

The Integrated Multi-Trophic Aquaculture (IMTA) system has been developed to improve sustainability in intensive aquaculture facilities, combining fed aquaculture species with additional commercially relevant organisms, capable of extracting organic and/or inorganic compounds from the surrounding seawater (fish farm waste), creating a balanced system to promote environmental sustainability (biomitigation), economic stability (product diversification), and social acceptability (better management practices) (Biswas et al., 2020; Chopin et al., 2001; Giangrande et al., 2020; Neori et al., 2004; Troell et al.,

* Corresponding author at: Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
E-mail address: jacopo.borghese@unisalento.it (J. Borghese).

2009). Most of these IMTA installations are based on two or four well known generally edible organisms, such as fishes, seaweeds and bivalves (FAO, 2022), but other options, including sponges, ascidians and polychaetes (benthic suspension feeders), are possible and profitable (Giangrande et al., 2020; Gökalp et al., 2019; Ju et al., 2015). Such suspension feeding organisms can form a highly biodiverse marine forest, enhancing species interaction, complexity and biodiversity (Rossi et al., 2017a).

The physiological and ecological characteristics of the bioremediating organisms determine the rate of capture and assimilation of particles or nutrients in the water column and consequently the bioremediation capacity of the IMTA system (Lamprianidou et al., 2015). The presence of benthic organisms, particularly suspension feeders, is known to be an important factor affecting near bottom seston composition and concentration (Rossi and Gili, 2005, 2009). Indeed, the efficiency of IMTA is related to the selection of reared species, belonging to different trophic levels, as well as the amount of filter feeder organisms acting on the system that capture detritus and the microbial components of the water column (filter feeder invertebrates), or of those species that assimilate dissolved nutrients (algal component; Granada et al., 2016). The variability in suspension feeding strategies may lead to a higher particle spectra filtration (Rossi et al., 2017b), as suspension feeding organisms have a wide size range of particle capture (Gili and Coma, 1998).

It is well known that there is high environmental and biological variability in coastal ecosystems (especially in the Mediterranean Sea), and the main interactions between physical and biological factors follow seasonal trends in temperate seas, with pulses of peak production in spring and autumn (Coma and Ribes, 2003; Estrada, 1996; Ribes et al., 1999; Rossi and Gili, 2005). In these periods, the primary and secondary productivities fuel the benthic suspension feeding organisms that store lipids for reproduction (Rossi et al., 2017b). However, the environments affected by finfish mariculture discharges, especially from in-shore facilities located in enclosed areas with limited waste dispersion, are exposed to a mixture of seston supplemented with daily fish wastes, which could influence the seasonal quantity and quality of seston. Such practices increase the risk of eutrophication of the area particularly during the summer period, when farmed fish growth is higher and intensive feeding occurs (Neofitou and Klaoudatos, 2008).

The present study refers to the innovative in-shore IMTA rearing model, performed within the EU REMEDIA Life project (LIFE16 ENV/IT/000343) in the Gulf of Taranto (Ionian Sea), where filter feeder bioremediating organisms, such as polychaetes, sponges and mussels, coupled with macroalgae and the natural fouling assemblages, have been reared within a fish farm for the first time in Europe (Giangrande et al., 2020).

The bioremediation effects of this IMTA system on benthic assemblages, the planktonic bacterial communities and the capture of microplastic have been already evaluated (Borghese et al., 2023; Fraissinet et al., 2024; Stabili et al., 2023), highlighting an environmental improvement related to the IMTA system. However, the integration of quantitative information on water column dynamics on a long-term basis would provide a more complete picture of the system, remarking the importance of these bioremediating organisms as cleaners, but also understanding their impact on the water column seston, highlighting trends in the seasonal interactions between physico-chemical (i.e., environmental) and biological factors.

Hence, trends of environmental variables, the quantification of organic matter in the sediment and seston composition at two different depths (1 m from the sea surface and 1 m from the bottom), were investigated through monthly analyses (from July 2020 to October 2021). Two different zones were considered: 1) the plant where the IMTA system has been implemented and 2) the area where fish monoculture is still present. Among all the seston variables, lipids, which are one of the more reliable for the calculation of available food in organic components of seston (Grémare et al., 1997), and the planktonic

component (chlorophyll-a concentration and zooplankton composition and abundance) have been monitored in the water column to assess temporal and spatial differences. The comparison of all measured variables between the multi-trophic and traditional aquaculture sites has been used to assess the potential environmental effects of the bioremediating organisms.

2. Materials and methods

2.1. Study area

The study area (Fig. 1) is located on the south-west side of the Mar Grande of Taranto ($40^{\circ}25'56''$ N; $17^{\circ}14'19''$ E) (Southeast Italy, Ionian Sea). The Mar Grande of Taranto is a semi-enclosed basin reaching a maximum depth of 45 m. The local water surface current direction is north-east to south-west at a speed of ~ 3 cm s $^{-1}$. At the bottom, the direction of the current is inverted, proceeding from south-west to north-east at a speed of ~ 1.3 cm s $^{-1}$ (Giangrande et al., 2020).

The investigation was performed at the aquaculture plant "Maricoltura Mar Grande", which covers a surface of 0.06 km 2 and is positioned at about 600 m from the coast. It consists of 15 cages (\varnothing 22 m), working at a depth ranging from 7 to 12 m and producing about 100 tons year $^{-1}$ of European seabass *Dicentrarchus labrax* (Linnaeus, 1758) or sea bream *Sparus aurata*, Linnaeus, 1758. The density and developmental stage of the reared fish remained similar in all cages throughout the time of the experiment.

At the beginning of the REMEDIA Life project (2019), part of the plant (6 cages) has been converted into an IMTA system, resulting in the formation of two distinct areas within which the respective sampling sites were established: a reference site (Ref), where the monoculture persisted; and the IMTA site, treated with the bioremediating organisms (Fig. 2).

The IMTA system was placed in the northernmost part of the plant,

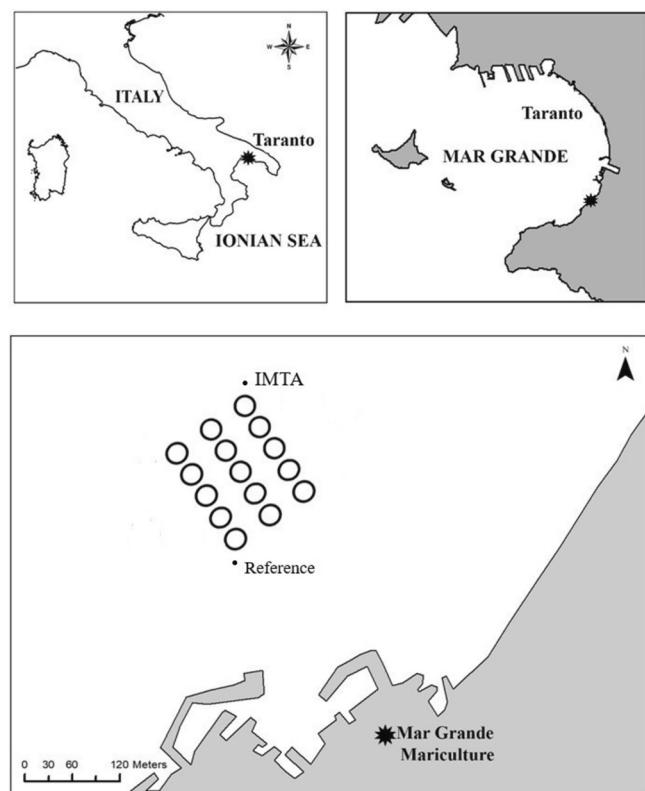
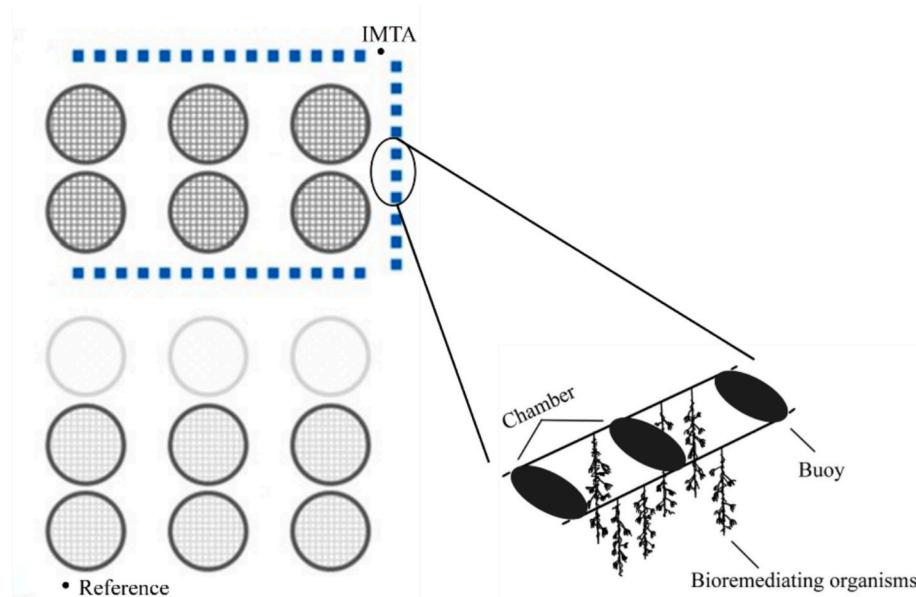



Fig. 1. Study area. Black dots: IMTA site and reference site. ●: Mar Grande Mariculture plant; ○: fish cages.

Fig. 2. Black dots: sampling sites. IMTA site on the upper right, reference site on the lower left. Blue squares: arrangement of the breeding chambers within the long lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where the farm wastes accumulate, according to the hydrodynamic regime of the area (Giangrande et al., 2022). The IMTA bioremediating system, utilizing the polychaete *Sabella spallanzanii* (Gmelin, 1791), the sponge *Sarcotragus spinosulus* Schmidt, 1862, the mollusc *Mytilus gallo-provincialis* Lamarck, 1819 and the macroalgae *Chaetomorpha linum* (O.F. Müller) Kützing, 1845 and *Gracilaria bursa-pastoris* (S. G. Gmelin) P.C. Silva, 1952, is described in detail in Giangrande et al. (2020).

The REMEDIA Life IMTA plant, consisting of about 400 collectors, was placed around six cages. The system was supported by buoys creating three long lines in which the space between two consecutive buoys constituted a breeding “chamber” hosting module, represented by different typologies of collectors to house the reared organisms: vertical bare collectors for the recruitment of polychaetes, modules with explant of sponges and horizontal collectors with explant of macroalgae. In each chamber, several 5 m long nets containing molluscs were also placed alternating with polychaetes and sponges in order to fill empty gaps. Macrofouling collectors consisted of coconut fibre ropes, 2 cm wide and 10 m long. The sponge-rearing modules were 7 m long ropes in which sponge explants were inserted within plastic nets at regular intervals every 40 cm. Macroalgae were instead placed at the surface within plastic socks. Many other organisms that are part of the fouling community have grown on the collectors, increasing the filtering capacity of the system.

2.2. Sampling activities

Several physico-chemical and biochemical variables were monitored approximately each month in the IMTA and in the reference sites, at two different depths: 1 m from the sea surface (surface = s) and 1 m from the bottom (depth = d), for a total of 13 samplings, from July 2020 to October 2021 (Table 1). Sampling activities were based on depth and area: IMTA (s); IMTA (d); Ref (s) and Ref (d). Samples were taken at two different depths to get a more complete picture of the water column for each site. Sampling at one meter above the seabed is considered a standard to sample the water column, away from the small turbulence of the upper water layers (Thomsen, 1999). The measurements have been carried out around 11:00 AM for each sampling site.

Table 1

Sampled variables and number of replicates made each time in the sampling area.

	Environmental variables	Chl-a	Lipids	Zoop. abundance	OM
N° of replicates	Single measurement	3	3	3	3
N° of stations	2	2	2	2	2
Sampling period	Jul 20–Oct 21	Jul 20–Oct 21	Jul 20–Oct 21	Jul 20–Oct 21	Jul 20–Oct 21
N° of samplings	13	13	13	13	13
N° of depths	2	2	2	Whole water column	Sea bottom

Chl-a = chlorophyll-a; Zoop = zooplankton; OM = organic matter.

2.3. Environmental variables

The measurement of the physico-chemical variables was carried out using a multiparameter probe (IDROMAR, IP050D, San Giuliano Milanese, Italy) for the evaluation of pH, dissolved oxygen (DO), and temperature (T).

2.4. Biochemical variables

Water samples were collected through Niskin bottle (ABTNK-02, 2.5 L, Aquatic BioTechnology, Cádiz, Spain) and placed into PVC containers. The samples were stored in ice (6–10 °C) and in the dark until arrival at the laboratory.

To determine the chlorophyll-a (chl-a) concentration three 200 mL replicates for each site, depth, and sampling time were filtered through GF/F pre-combusted (450 °C, 5 h) glass fibre filters. Filters were stored at -20 °C. Chl-a was extracted in 8 mL 90 % acetone in the dark at 4 °C for 24 h. The supernatant was read in a spectrophotometer at three different wavelengths: 630, 663 and 750 nm and chl-a concentrations were calculated according to the spectrometric equations reported in Jeffrey and Humphrey (1975): $chl-a = 11.43 E_{663} - 0.64 E_{630}$, where E_x denotes the extinction coefficient at wavelength x. The absorbance at

750 nm was subtracted from those two wavelengths to give the turbidity-corrected value.

To analyse total lipids of particulate suspended matter, three 1500 mL replicates for each site, depth, and sampling time were filtered through pre-combusted (450 °C, 5 h) GF/F filters. Total lipids were determined using Barnes and Blackstock (1973) spectrophotometrical (colorimetric) procedure, slightly changed as by Rossi and Fiorillo (2010). Filters were extracted in chloroform-methanol (2:1 v/v). The extract was dried, then sulphuric acid and vanillin were added to complete the colorimetric method. Blanks were made to control the interference of filter glass fibre particles and a calibration line was made using cholesterol as standard (Grémare et al., 1997). Colorimetric measurements were read at 520 nm using a spectrophotometer (UV Mini1240, Shimadzu). Results are expressed in $\mu\text{g L}^{-1}$.

2.5. Organic matter content

For the organic matter (OM) content, three replicates of the upper layer (3 cm) of the soft bottom sediment were collected for each site, depth, and sampling time in PVC containers (12 cm³) via scuba diving. Samples were stored in ice (6–10 °C) until arrival at the laboratory, where they were stored at –20 °C. Samples were dried (60 °C, 48 h), sieved (mesh size of 200 μm), placed in crucibles, weighed and ignited in a muffle furnace (450 °C, 5 h). Samples were weighed again to measure the inorganic component, and the organic matter was obtained from the difference between the two weight measurements. Percentage weight loss was calculated for each replicate.

2.6. Zooplankton concentration

Water samples were collected through a plankton net (mesh size of 80 μm). Each sampling was conducted by vertical towing along the entire water column (from ~10 m depth to the surface) to prevent interference of species vertical partitioning. The volume of water filtered during each tow, estimated with a flow meter (HYDRO-BIOS Model 438,115) placed at the net mouth, ranged from $0.113 \pm 0.006 \text{ m}^3$ to $0.905 \pm 0.045 \text{ m}^3$. Samples were stored in 90 % ethanol solution and the specimens were identified and counted under an inverted microscope.

2.7. Statistical analysis

The variability in chl-*a* and lipid concentrations was assessed in the IMTA and in the reference sites at two different depths [1 m from the sea surface (surface = *s*), and 1 m from the bottom (deep = *d*)] and 13 sampling points (from July 2020 to October 2021, Table 1) by permutational analyses of variance (PERMANOVA, Anderson, 2001). The design consisted of three factors: Sampling Time (ST, as a random factor with 13 levels), Depth (DE, as a fixed factor with 2 levels) and Treatment (TR, as a fixed factor with 2 levels) with $n = 3$. Replicate samples were randomly selected within each treatment. In addition, organic matter in sediments was assessed at 13 sampling times according to the following two-factor design: Sampling Time (ST, as a random factor with 13 levels), and Treatment (TR, as a fixed factor with 2 levels) with $n = 3$. PERMANOVA analyses were performed based on Euclidean distances of previously normalized data, using 999 random permutations of the appropriate units (Anderson and Braak, 2003). When significant differences were encountered ($P < 0.05$), post-hoc pairwise tests were carried out in order to ascertain the consistency of the differences across the conditions tested. Because of the restricted number of unique permutations in the pairwise tests, *P*-values were obtained from Monte Carlo tests. The analyses were performed using PRIMER v. 6 software (Anderson and Braak, 2003) including the PERMANOVA + add-on package (Clarke and Gorley., 2006; Anderson, 2008). Pearson's correlation matrices and *P*-values were calculated using the STATISTICA software.

3. Results

3.1. Environmental variables

Water temperature (T) values showed no marked differences between sites throughout the seasonal cycle, ranging from 13.9 °C, in March 2021, up to 28.3 °C in July 2020 (Fig. 3). The thermocline formation was observed in the period between May and July in both sites, intensifying the stratification and hindering vertical diffusion. For the rest of the year the water column temperature was almost homogenous.

The recorded values of pH ranged from a minimum of 7.85 in February 2021 up to a maximum of 8.26 in October 2021 (Fig. 3). No clear trend was observed seasonally.

The recorded values of dissolved oxygen (DO) ranged from 3.15 ppm in October 2020 up to 8.10 ppm in June 2021 (Fig. 3). Higher DO values were measured during periods of colder water temperatures, from November 2020 to June 2021.

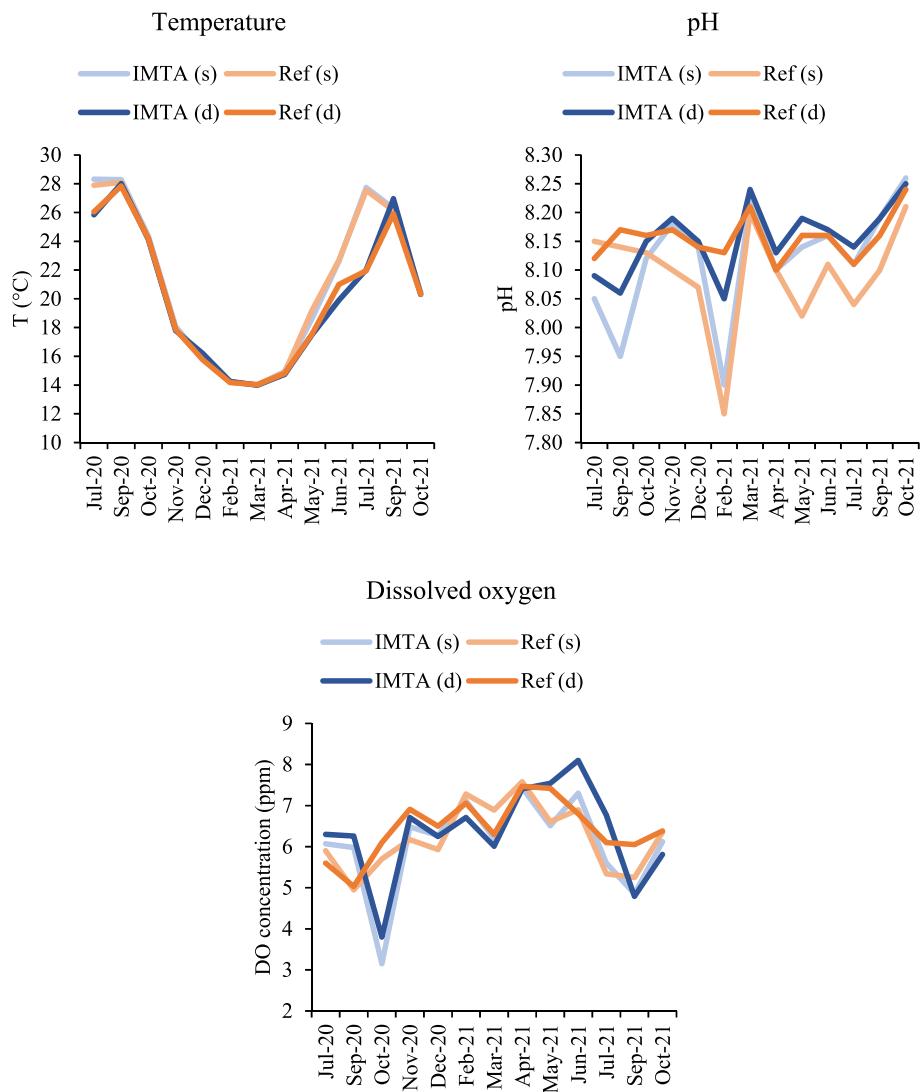
3.2. Biochemical variables

The recorded average values of chl-*a* ranged from $0.25 \mu\text{g L}^{-1}$ up to $4.64 \mu\text{g L}^{-1}$ (Fig. 4) and showed, as a general trend, higher overall values in warmer periods. Differences of chl-*a* contents were found between IMTA (d) and Ref (d), where in October and November 2020 the Ref (d) site showed significant higher values than IMTA site (October, $t = 18.018, P < 0.001$; November, $t = 6.202, P < 0.01$; see Table 3), while the significant lower values were observed in April 2021, ($t = 4.659, P < 0.01$; see Table 3).

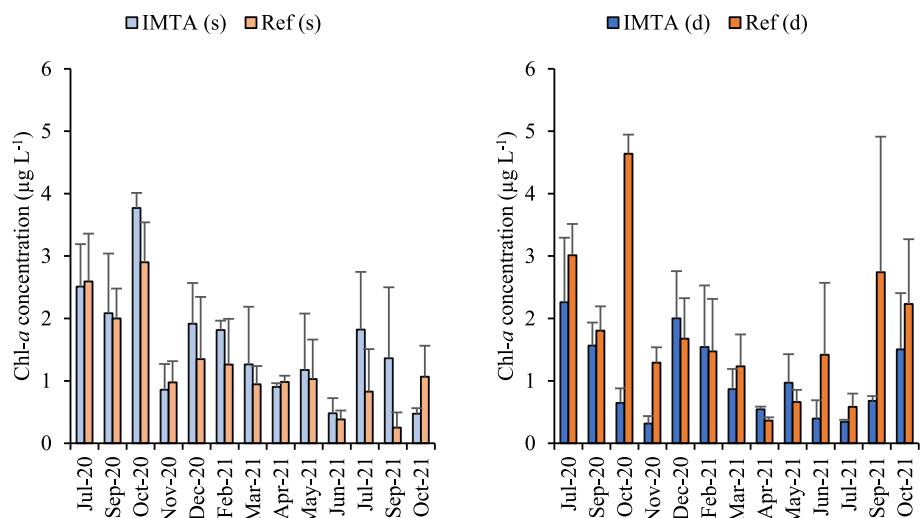
The recorded average lipid concentration values ranged from $0.00 \mu\text{g L}^{-1}$ up to $151.73 \mu\text{g L}^{-1}$ (Fig. 5). On average, higher values were found at both the depth sites. Significant higher values in lipid concentration values were observed at Ref (d) than IMTA (d) both in July ($t = 6.136, P < 0.01$; Table 3) and September 2021 ($t = 8.890, P < 0.001$, Table 3) and at Ref (s) than IMTA (s) in September 2021 ($t = 3.959, P < 0.05$, Table 3). The highest values measured in March/April 2021 did not show significant differences among IMTA and Ref sites (Table 3). Lipid concentration was found to be lower at the IMTA than Ref site during June at both depths (shallow, $t = 4.908, P < 0.01$; deep, $t = 8.010, P < 0.01$; Table 3), and in May ($t = 4.000, P < 0.05$; Table 3) and October 2020 ($t = 4.732, P < 0.01$; Table 3) at shallow seawaters.

3.3. Organic matter content

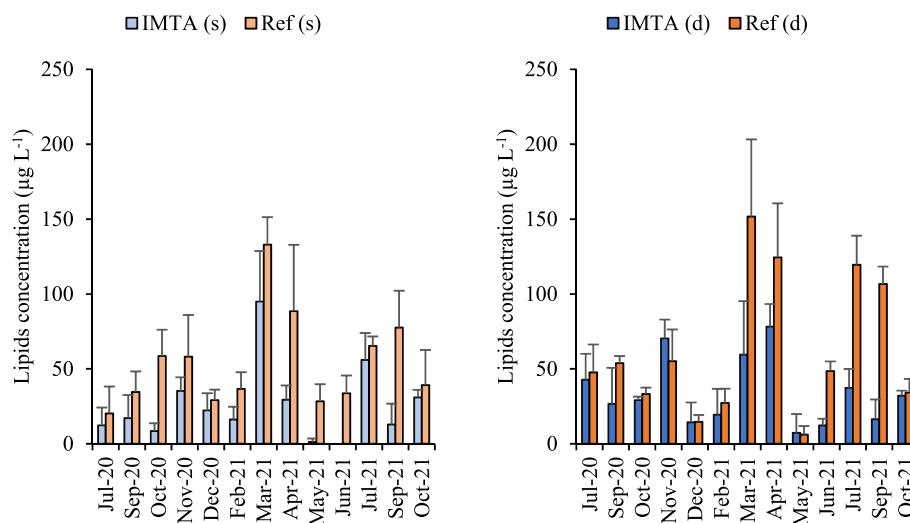
The recorded average values of the OM content present in the sediments below the fish cages ranged from 56.33 mg g^{-1} to 189.00 mg g^{-1} (Fig. 6). Significant higher values in organic matter were found at Ref site than IMTA site during July 2020 ($t = 3.332, P < 0.05$; Table 6) and June 2021 ($t = 2.863, P < 0.05$; Table 6), while lower values were observed in November ($t = 3.158, P < 0.05$; Table 6).


3.4. Zooplankton analysis

The zooplankton abundance ranged from 871.6 ind m^{-3} to $232,985.2 \text{ ind m}^{-3}$ (Fig. 7). The seasonal trend showed higher values of abundance at the IMTA site, with highest peaks during September and October both 2020 and 2021.


Zooplankton composition showed similar percentages of taxa present among sites, with crustaceans representing the most abundant taxon, comprising 60 % to 90 % of the population for each sampling (Fig. 8).

3.5. Statistical analysis


The results of the PERMANOVA tests revealed that both chl-*a* and lipid concentrations varied significantly between IMTA and Ref at different depths across sampling times as underlined by the significant

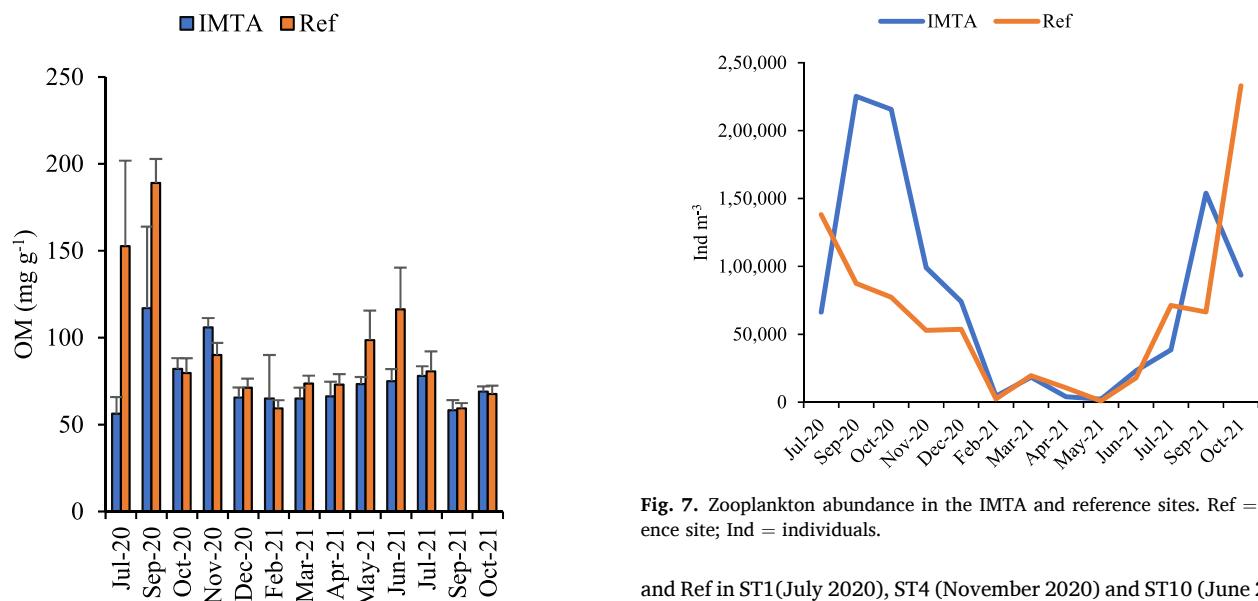

Fig. 3. Seasonal trend of temperature; pH and dissolved oxygen concentration in the IMTA and reference sites. Ref = reference; (s) = surface sites; (d) = depth sites; T = temperature; DO = dissolved oxygen.

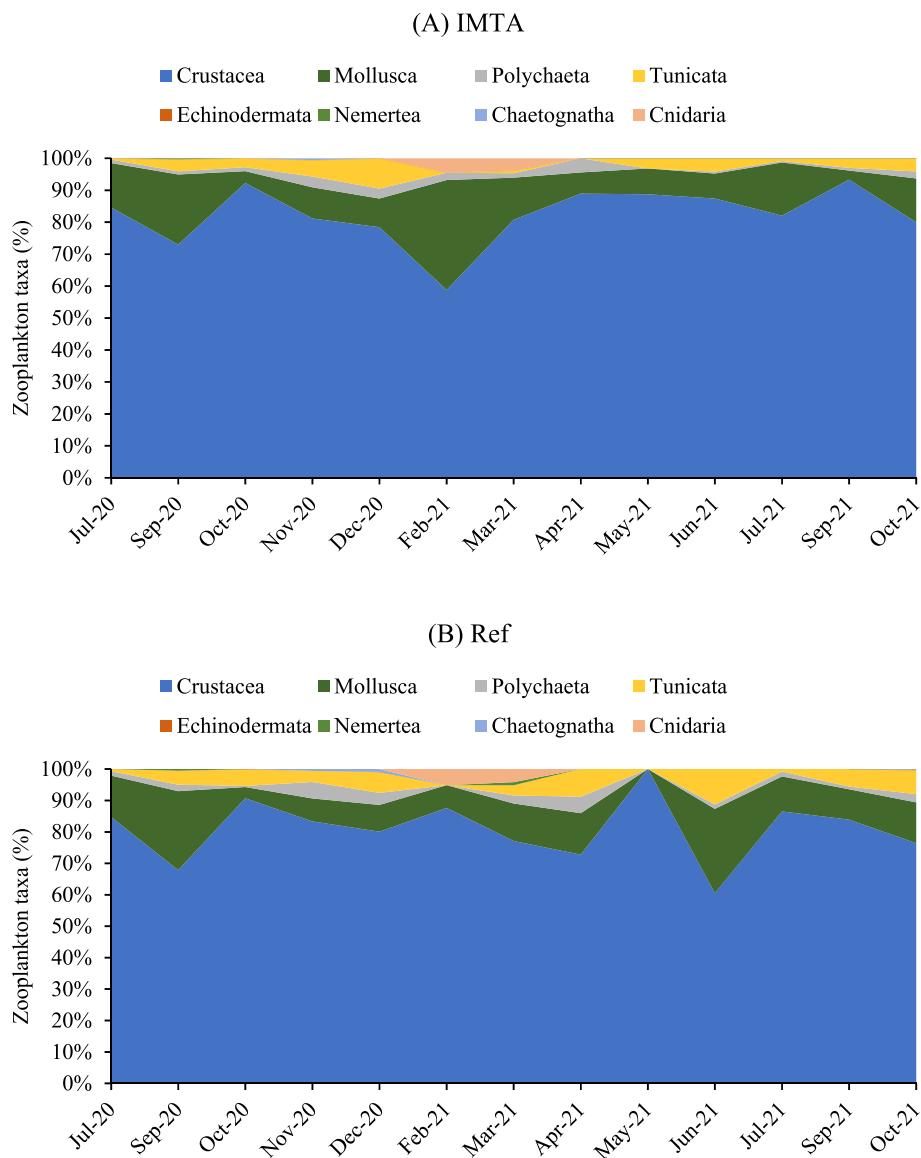
Fig. 4. Seasonal trend of chlorophyll-*a* concentration in the IMTA and reference sites. On the left: IMTA and reference surface sites; on the right: IMTA and reference depth sites. Ref = reference; Chl-*a* = chlorophyll-*a*; (s) = surface sites; (d) = depth sites.

Fig. 5. Seasonal trend of lipids concentration in the IMTA and reference sites. On the left: IMTA and reference surface sites; on the right: IMTA and reference depth sites. Ref = reference; (s) = surface sites; (d) = depth sites.

Fig. 6. Seasonal trend of organic matter concentration in the IMTA and reference sites. Ref = reference; OM = organic matter.

STxDExTR interaction term (Table 2). Post-hoc pairwise tests carried out separately within each sampling time and investigated depth showed significant differences in chl-*a* concentration among IMTA (d) and Ref (d) sites in ST3 (October 2020), ST4 (November 2020) and ST8 (April 2021) (Table 3), while significant differences in lipid concentration were found among IMTA (s) and Ref (s) sites in ST3 (October 2020), ST9 (May 2021), ST10 (June 2021) and ST12 (September 2021) and among IMTA (d) and Ref (d) sites in ST10 (June 2021), ST11 (July 2021), ST12 (September 2021) (Table 3). A significant negative correlation was reported between DO and chl-*a* concentration at (s) sites and between DO and T at (s) and (d) sites. In addition, weak positive correlations were observed between chl-*a* concentration and temperature (T) at (s) and (d) sites, while a negative correlation was found between lipid concentration and T at (s) sites (Table 4).

The organic matter contents in the sediments varied throughout the sampling times and treatment (IMTA and Ref; Table 5). Post-hoc pairwise tests showed significant differences in OM content among IMTA


and Ref in ST1 (July 2020), ST4 (November 2020) and ST10 (June 2021) (Table 6). Pearson's correlation matrices for chl-*a*, lipids OM and environmental variables near the sea bottom at (d) are reported in Table 7. Organic matter was positively correlated to T and, to a lesser degree, negatively to DO. A negative correlation was evidenced between DO and T and a positive correlation was found between chl-*a* and T (Table 7).

Zooplankton abundance was found to correlate positively with T, and negatively with DO (Table 8).

4. Discussion

The Mediterranean is generally defined as an oligotrophic sea characterized by low natural nutrient concentrations (Tanhua et al., 2013). Seasonal studies have shown that the Mediterranean is more productive at certain times of the year, particularly in the coastal and littoral zones (D'Alcalà et al., 2004; Lazzari et al., 2012; Rossi and Gili, 2005). Such productivity is essential to understand the response of secondary production, such as zooplankton concentration or the energy storage and reproduction of benthic suspension feeders (Calbet et al., 2001; Rossi et al., 2006).

Seasonal patterns of nutrient concentrations in the water column could be altered by human activities, particularly in-shore fish farming,

Fig. 8. Seasonal trend of zooplankton taxa percentage at: (A) the IMTA site and (B) the reference site. Ref = reference site.

Table 2

Results of PERMANOVA testing for the effects of IMTA on the chlorophyll-*a* and lipid concentration at different depths across the sampling times.

Source	df	Chlorophyll- <i>a</i> concentration			Lipid concentration		
		MS	Pseudo- <i>F</i>	P(perm)	MS	Pseudo- <i>F</i>	P(perm)
ST	12	5.493	13.825	0.001	6.536	28.808	0.001
DE	1	0.002	0.003	0.959	2.082	3.845	0.074
TR	1	1.618	1.985	0.177	21.938	17.163	0.003
STxDE	12	0.884	2.225	0.011	0.541	2.386	0.01
STxTR	12	0.815	2.051	0.029	1.278	5.634	0.001
DEXTR	1	9.147	6.612	0.029	0.005	0.009	0.932
STxDEXTR	12	1.383	3.482	0.001	0.593	2.614	0.004
Res	104	0.397			0.227		
Total	155						

ST = Sampling Time; DE = Depth; TR = Treatment; df = degree of freedom; MS = mean squares; Pseudo-*F* = *F* critic; P(perm) = permutational level of probability.

as the release of nutrients from mariculture facilities is a continuous year-round process, reaching maximal values during the summer (Neofitou and Klaoudatos, 2008; Pitta et al., 1998). Such continuous release of nutrients and detritus may have consequences for the surrounding habitat, sometimes impacting benthic communities (Mayr et al., 2014).

The results of the physico-chemical and biochemical analyses described in the present work showed consistent values with respect to studies previously conducted in the Mar Grande of Taranto as well as in other areas of the western Mediterranean influenced by mariculture activities (in terms of water column variables, Belmonte et al., 2013; Giangrande et al., 2022; Soriano-González et al., 2019; Stabili et al.,

Table 3

Results of the pairwise tests contrasting chlorophyll-*a* and lipid concentration between IMTA vs. reference at different depths across several sampling times.

	Chlorophyll- <i>a</i> concentration		Lipid concentration	
	IMTA vs. reference		IMTA vs. reference	
	t	P(MC)	t	P(MC)
ST1DE1	0.137	0.891	0.634	0.549
ST1DE2	1.135	0.352	0.327	0.769
ST2DE1	0.138	0.903	1.469	0.216
ST2DE2	0.772	0.512	1.920	0.128
ST3DE1	2.202	0.084	4.732	0.010
ST3DE2	18.018	0.001	1.455	0.249
ST4DE1	0.383	0.715	1.353	0.240
ST4DE2	6.202	0.006	1.069	0.352
ST5DE1	0.822	0.463	0.883	0.418
ST5DE2	0.565	0.619	0.038	0.980
ST6DE1	1.279	0.280	2.525	0.078
ST6DE2	0.094	0.935	0.684	0.496
ST7DE1	0.570	0.620	1.718	0.177
ST7DE2	1.055	0.333	2.547	0.061
ST8DE1	1.192	0.279	2.260	0.088
ST8DE2	4.659	0.008	2.048	0.096
ST9DE1	0.230	0.841	4.000	0.021
ST9DE2	1.078	0.338	0.151	0.880
ST10DE1	0.608	0.592	4.908	0.009
ST10DE2	1.487	0.214	8.010	0.003
ST11DE1	1.499	0.231	0.849	0.437
ST11DE2	1.959	0.130	6.136	0.002
ST12DE1	1.658	0.163	3.959	0.025
ST12DE2	1.643	0.174	8.890	0.001
ST13DE1	2.033	0.110	0.595	0.575
ST13DE2	0.915	0.408	0.392	0.704

ST = Sampling Time; DE = Depth; P(MC) = probability level after Monte Carlo simulations; t = pairwise tests.

2023) The Gulf of Taranto is a highly impacted area, not only due to massive mariculture activities (mainly fishes and mussels), but also because of an intense commercial, industrial and urban development (Buccolieri et al., 2006).

Regarding physico-chemical characteristics, the water temperature showed expected seasonal trend, with differences between depths in the warmer moments of the sampling period, where there was greater oxygen consumption, indicating a negative correlation between T and DO (Pearson's correlation, $r = -0.62$, $P < 0.01$, $n = 78$ at surface sites; $r = -0.56$, $P < 0.01$, $n = 78$ at depth sites; Table 4). Such results are related to the increase in oxygen consumption by biological respiration and to the bacterial activity, responsible for degrading part of the organic matter and consuming the available oxygen (Jacquet et al., 2021). The pH values did not show a significant correlation with the other investigated variables. In general, a slight tendency to acidification of the impacted waters due to biological activity of the farmed species has been observed globally, especially in more confined and shallow environments (Sarà, 2007). However, it seems that pH values are more dependent on intrinsic morphological and hydrodynamic features of the water bodies (depth, water movements, etc., Sarà, 2007). Since the pH may affect the phytoplankton cell growth (Johnson et al., 2022) further studies are needed to quantify composition and abundance of each phytoplankton group and clarify the relation between pH changes and

primary productivity in the traditional and IMTA plants.

The annual cycle of chl-*a* concentration showed values corresponding to mesotrophic/eutrophic condition (Beiras, 2018) throughout the

Table 5

Results of PERMANOVA testing for the effects of IMTA on the OM in sediments across the sampling times.

OM				
Source	df	MS	Pseudo-F	P(perm)
ST	12	3.405	13.803	0.001
TR	1	5.703	3.885	0.070
STxTR	12	1.468	5.950	0.001
Res	52	0.247		
Total	77			

OM = organic matter; ST = Sampling Time; TR = Treatment; df = degree of freedom; MS = mean squares; Pseudo-F = F critic; P(perm) = permutational level of probability.

Table 6

Results of the pairwise tests contrasting organic matter in sediments within IMTA vs. reference at different depths across several sampling times.

OM		
Groups	IMTA vs. reference	
	t	P(MC)
ST1	3.332	0.039
ST2	2.551	0.063
ST3	0.383	0.730
ST4	3.158	0.024
ST5	1.281	0.287
ST6	0.385	0.701
ST7	1.949	0.121
ST8	1.120	0.327
ST9	2.522	0.056
ST10	2.863	0.035
ST11	0.361	0.716
ST12	0.265	0.825
ST13	0.413	0.709

OM = organic matter; ST = Sampling Time; P(MC) = probability level after Monte Carlo simulations; t = pairwise tests.

Table 7

Pearson's correlation matrix for organic matter in the sediment and related environmental variables (T, DO, pH).

	OM (mg)	Chl- <i>a</i> (μg L ⁻¹)	Lipids (μg L ⁻¹)	T (°C)	DO (ppm)
Chl- <i>a</i> (μg L ⁻¹)	0.07				
Lipids (μg L ⁻¹)	0.03	-0.12			
T (°C)	0.40	0.32		-0.12	
DO (ppm)	-0.23	-0.17	-0.01		-0.56
pH	-0.08	-0.04	0.01	-0.14	-0.06

Number of samples = 78; OM = organic matter; Chl-*a* = chlorophyll-*a*; T = temperature; DO = dissolved oxygen.

Table 4

Pearson's correlation matrix for chl-*a* and lipid concentration and related environmental variables (T, DO, pH) at (s) and (d) sites.

	(s)				(d)			
	Chl- <i>a</i> (μg L ⁻¹)	Lipids (μg L ⁻¹)	T (°C)	DO (ppm)	Chl- <i>a</i> (μg L ⁻¹)	Lipids (μg L ⁻¹)	T (°C)	DO (ppm)
Lipids (μg L ⁻¹)	-0.21 ns				-0.12			
T (°C)	0.29	-0.26			0.32		-0.12	
DO (ppm)	-0.47	0.13	-0.62		-0.17	-0.01		-0.56
pH	-0.13	0.19	0.06	-0.20	-0.04	0.01	-0.14	-0.06

Number of samples = 78; Chl-*a* = chlorophyll-*a*; T = temperature; DO = dissolved oxygen.

Table 8

Pearson's correlation matrix for zooplankton abundance and related environmental variables (T, DO, pH, OM, chl-a, lipids).

	Ind m ⁻³	T (°C)	pH	DO (ppm)	Lipids (µg L ⁻¹)	Chl-a (µg L ⁻¹)
T (°C)	0.63					
pH	0.06	-0.14				
DO (ppm)	-0.61	-0.57	-0.13			
Lipids (µg L ⁻¹)	-0.16	-0.12	-0.04	0.00		
Chl-a (µg L ⁻¹)	0.19	0.24	-0.05	-0.19	-0.24	
OM (mg)	0.20	0.40	-0.08	-0.22	0.03	0.07

Number of samples = 78; Ind = individuals; T = temperature; DO = dissolved oxygen; Chl-a = chlorophyll-a; OM = organic matter.

year, with peak production in early fall at both the depth and surface sites. The chl-a concentration was correlated to temperature seasonal cycles, while no relevant impact of pH on the primary productivity has been observed here (Table 4). Peaks of chl-a are found in the Mediterranean Sea when the water starts to be stratified in late winter-spring (Estrada and Berdalet, 1998), which is in line with the present results. However, the continuous release of nutrient excretion from reared fish may have influenced the chl-a values recorded, fuelling the microbial communities of the water column. In this case, the significant differences between IMTA (d) and Ref (d) (Table 3) may be due to the synergistic activity of invertebrate bioremediating organisms, capable of filtering out the phytoplanktonic component. Also, we suggest that the reared macroalgae in the IMTA facilities is directly taking up dissolved phosphorus and nitrogen, reducing the risk of local eutrophication (Wu et al., 2015). Indeed, the greatest abundance of zooplanktonic organisms in the IMTA site that feeds on the phytoplankton may also be responsible for the observed chl-a concentrations. Thus, what we see is probably a synergy of three factors affecting the chl-a levels: 1) the presence of filter feeders capable of capturing different components of the seston, including phytoplankton; 2) the presence of macroalgae in the facilities, which limits the uptake of the phytoplankton cells; and 3) the higher abundance of zooplankters that are grazing on the seston. The IMTA has thus a triple effect on the abundance of the chl-a, and on the abundance of phytoplankton, as on other seston components (see below).

No significant difference in chl-a values between the surface sites was observed (Table 3), suggesting that environmental factors such as solar irradiance may have a greater influence than bioremediating and zooplankton organisms on the concentration of chl-a at surface level. The positive correlation between chl-a and T (Pearson's correlation, $r = 0.29, P < 0.05, n = 78$ at surface sites; $r = 0.32, P < 0.01, n = 78$ at depth sites; Table 4) confirms that chl-a pigment concentration is a convenient index of phytoplankton biomass and water temperature is a fundamental factor influencing phytoplankton growth (Solanki et al., 2008). Such phytoplankton will be boosted by a higher nutrient concentration, which may come from the fish activity in terms of food not consumed by the fishes and related waste production. On the surface, the influence of the benthic suspension feeders may be less significant because of their lower biomass concentration, so the phytoplankton may not be controlled by filter feeding organisms.

Most of the biomass of the reared bioremediating organisms was estimated to belong to *S. spallanzanii*, with an average annual production of ~800 kg in the IMTA facility (REMEDIA Life project observation). This polychaete has a broad range of trophic plasticity and may consume both phytoplankton and organic materials from the water column (Giangrande et al., 2005). Moreover, the pseudo-faeces are compacted with the mucus during tube building, ensuring their complete removal from the system (Giangrande et al., 2005). Laboratory experiments indicated a high nutrients removal efficiency of this species (~40 %) with increased activity in the warm periods (Clapin, 1996; Giangrande et al., 2005), suggesting a possible influence on the composition of the

water column seston for bioremediation purposes (Giangrande et al., 2005). This is in line with the chl-a depletion observed in the depth IMTA site, so the impact here may be considered relevant.

In addition, OM and lipids in the water column were mechanically trapped by the support system (coconut rope collectors) where the bioremediating organisms grow, and it has been estimated that ~600 kg of mud was subtracted from the water column (during an annual production cycle) in the IMTA facility, beyond the OM captured by the worms and all the other reared organisms (Giangrande et al., 2020). Such a "sediment trap" enhances the viability of other organisms, such as deposit feeders and detritivores, in the complex three-dimensional alive structure composed of these sabellids (and other sessile organisms).

Thus, the significant differences between the sites in both lipid concentration at both depths and in the concentration of OM in the sediment, reflecting what is occurring in the water column, are possibly related to the action of the bioremediating organisms, feeding on a wide range of particles from bacteria to detritus (Coma et al., 2001). Indeed, during spring and summer, when the amount of feed spilled and consequently the plant waste is greater than during the rest of the year (Neofitou and Klaoudatos, 2008), the IMTA system can take advantage of the greater filtering activity of the bioremediating organisms, mitigating the large daily waste release. As a result, at these sampling times the reference site showed the highest lipid and OM values compare to those at the IMTA site. These results are in line with a previous study of the benthic community, which has reported an improvement in the environmental quality status of the IMTA site since its creation in 2018 (Borghese et al., 2023). A negative correlation was found between OM and DO (Pearson's correlation, $r = -0.23, P < 0.05, n = 78$; Table 7), probably due to eutrophication processes that increase the amount of available nutrients, giving rise to high oxygen demands through respiration processes, as previously explained for the relationship between T and the DO (Bonsdorff et al., 1997). One interesting result is the potential effect of the IMTA on the zooplankton. The IMTA site showed overall higher zooplankton abundance compared to the reference site, especially in the late summer-autumn period of 2020 (when zooplankton may be abundant in Mediterranean coastal areas, Calbet et al., 2001). However, differently to other Mediterranean areas, where two zooplankton abundance peaks are reported per year (e.g., Kamburska and Fonda-Umani, 2009), Belmonte et al. (2013) highlighted that in the Taranto Sea the spring peak is negligible and maximum abundance is recorded once a year in late summer-early autumn, as confirmed by our results.

The fouling community settled on the collectors is likely to include organisms, such as hydrozoans, that feed by capturing the mesozooplankton component. However, the concentration of these passive suspension feeders that rely on zooplankton to feed (Gili et al., 1998) is not as abundant as those of other active suspension feeders. The main biomass present on the collectors belongs to the reared target organisms, which prefer the phytoplankton, detritus, bacteria and the dissolved organic matter (Coma et al., 2001; Giangrande et al., 2020). It is thus reliable to think that zooplankton will not be affected by the filtering activity of these organisms (ascidians, polychaetes, bivalves and sponges), taking advantage of the complexity of the system in terms of ecosystem engineering species (Rossi et al., 2017a).

It is known that zooplankton abundance could raise due to changes in local hydrodynamics more than a possible attraction by chemical cues, and the farms' structural components, including nets, mooring systems and tons of cultivated fish, alter the local oceanographic dynamics by reducing current velocity, favouring the retention of particles like plankton (Fernandez-Jover et al., 2016; Klebert et al., 2013; Madin et al., 2010). Therefore, it is possible that the hundreds of vertical collectors of the IMTA system may have further contributed to increase the complexity of the system by enhancing particle retention and trophic interactions, acting similarly to kelp forests, which are characterized by high abundance of zooplankton (Pakhomov et al., 2002). In the case of

the marine animal forests (i.e., three-dimensional alive structures dominated by sessile metazoans, Rossi et al., 2017a), the particle retention and the zooplankton abundance is observed within the canopy (Frutos et al., 2017; Guizen and Ghisalberti, 2015), thanks to the turbulence produced by the complex structures of the suspension feeding organisms. In fact, the community of a well-structured IMTA system in the Mediterranean Sea can be defined as an animal forest, providing protection, food, and avoiding drift of the zooplankton.

5. Conclusions

Significant differences were found between sites at several samplings in lipid, chl-*a* and OM values. In particular, the lipid content of the water, which may represent the direct source of the plant's waste, was found to be lower in the water column of the IMTA system, showing the effectiveness of this system in mitigating the negative impact of fish farming. The influence of the IMTA system on seston composition and zooplankton abundance revealed mitigation as well as restoration scenarios, with potential carbon sequestration as an added benefit. The changeover from in-shore fish farms, which cause environmental pressure, to well-designed IMTA systems, coupled with the creation of underwater gardens or animal forests, can then lead to the restoration of the habitat as a whole.

Further studies at different time scales are needed to better appreciate seasonal and daily trends of the environmental variables in other plants and environmental conditions, as well as to understand whether a generalization of the bioremediation patterns is possible.

Author statement

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Funding

This research was funded by EU LIFE Programme, grant number LIFE16 ENV/IT/000343.

CRediT authorship contribution statement

Jacopo Borgheze: Writing – original draft, Visualization, Validation, Resources, Investigation, Data curation, Conceptualization. **Adriana Giangrande:** Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. **Daniele Arduini:** Resources, Investigation. **Roberta Trani:** Resources, Investigation. **Lorenzo Doria:** Resources, Investigation. **Marco Anglano:** Resources, Investigation, Data curation. **Lucia Rizzo:** Writing – review & editing, Visualization, Validation, Formal analysis. **Sergio Rossi:** Writing – review & editing, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Thanks to Marta Mammone, Fabio Vignes and Antonio Pennetta for

support in the analysis of the biochemical variables.

References

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. *Austral Ecology* 26 (1), 32–46.

Anderson, M.J., 2008. Animal-sediment relationships re-visited: characterising species' distributions along an environmental gradient using canonical analysis and quantile regression splines. *J. Exp. Mar. Biol. Ecol.* 366 (1), 16–27. <https://doi.org/10.1016/j.jembe.2008.07.006>.

Anderson, M.J., Braak, C.T., 2003. Permutation tests for multi-factorial analysis of variance. *J. Stat. Comput. Simul.* 73 (2), 85–113. <https://doi.org/10.1080/00949650215733>.

Barnes, H., Blackstock, J., 1973. Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanilin method for 'total' lipids. *J. Exp. Mar. Biol. Ecol.* 12 (1), 103–118. [https://doi.org/10.1016/0022-0981\(73\)90040-3](https://doi.org/10.1016/0022-0981(73)90040-3).

Beiras, R., 2018. Chapter 3 - Nonpersistent inorganic pollution. In: Beiras, R. (Ed.), *Marine Pollution*, pp. 31–39. <https://doi.org/10.1016/B978-0-12-813736-9.00003-9>.

Belmonte, G., Vaglio, I., Rubino, F., Alabiso, G., 2013. Zooplankton composition along the confinement gradient of the Taranto Sea System (Ionian Sea, South-Eastern Italy). *J. Mar. Syst.* 128, 222–238. <https://doi.org/10.1016/j.jmarsys.2013.05.007>.

Biswas, G., Kumar, P., Ghoshal, T.K., Kailasam, M., De, D., Bera, A., Mandal, B., Sukumaran, K., Vijayan, K.K., 2020. Integrated multi-trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. *Aquaculture* 516, 734626. <https://doi.org/10.1016/j.aquaculture.2019.734626>.

Bonsdorff, E., Blomqvist, E.M., Mattila, J., Norkko, A., 1997. Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. *Estuar. Coast. Shelf Sci.* 44, 63–72. [https://doi.org/10.1016/S0272-7714\(97\)80008-X](https://doi.org/10.1016/S0272-7714(97)80008-X).

Borghese, J., Musco, L., Arduini, D., Tamburello, L., Del Pasqua, M., Giangrande, A., 2023. A comparative approach to detect macrobenthic response to the conversion of an inshore mariculture plant into an IMTA system in the mar Grande of Taranto (Mediterranean Sea, Italy). *Water (Switzerland)* 15 (1). <https://doi.org/10.3390/w15010068>.

Buccolieri, A., Buccolieri, G., Cardellichio, N., Dell'atti, A., Di Leo, A., Maci, A., 2006. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). *Mar. Chem.* 99 (1), 227–235. <https://doi.org/10.1016/j.marchem.2005.09.009>.

Calbet, A., Garrido, S., Saiz, E., Alcaraz, M., Duarte, C.M., 2001. Annual zooplankton succession in coastal NW mediterranean waters: the importance of the smaller size fractions. *J. Plankton Res.* 23 (3), 319–331. <https://doi.org/10.1093/plankt/23.3.319>.

Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-González, J.A., Yarish, C., Neefus, C., 2001. Minireview integrating seaweeds into marine aquaculture systems: a key toward sustainability. *In: J. Phycol.* 37, 975–986.

Clapin, G., 1996. The Filtration Rate, Oxygen Consumption and Biomass of the Introduced Polychaete *Sabella Spallanzanii* Gmelin within Cockburn Sound: Can it Control Phytoplankton Levels and Is it an Efficient Filter Feeder? *Theses : Honours*. https://ro.ecu.edu.au/theses_hons/321.

Clarke, K.R., Gorley, R.N., 2006. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth.

Coma, R., Ribes, M., 2003. Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. *Oikos* 101 (1), 205–215. <https://doi.org/10.1034/j.1600-0706.2003.12028.x>.

Coma, R., Ribes, M., Gili, J.-M., Hughes, R.N., 2001. The ultimate opportunists: consumers of seston. *Mar. Ecol. Prog. Ser.* 219, 305–308. <https://doi.org/10.3354/meps219305>.

D'Alcalà, M.R., Conversano, F., Corato, F., Licandro, P., Mangoni, O., Marino, D., Mazzocchi, M.G., Modigh, M., Montresor, M., Nardella, M., Saggiomo, V., Sarno, D., Zingone, A., 2004. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. *Sci. Mar.* 68 (S1). <https://doi.org/10.3989/scimar.2004.68s165>. Article S1.

Estrada, M., 1996. Primary Production in the Northwestern Mediterranean. <https://digit.al.csic.es/handle/10261/28336>.

Estrada, M., Berdalet, E., 1998. Phytoplankton in a turbulent world. *Oceanogr. Lit. Rev.* 3 (45), 502.

FAO, 2022. The State of World Fisheries and Aquaculture 2022. FAO. <https://doi.org/10.4060/cc0461en>.

Fernandez-Jover, D., Toledo-Guedes, K., Valero-Rodríguez, J.M., Fernandez-Gonzalez, V., Sanchez-Jerez, P., 2016. Potential retention effect at fish farms boosts zooplankton abundance. *Estuar. Coast. Shelf Sci.* 181, 144–152. <https://doi.org/10.1016/j.ecss.2016.08.015>.

Fraissinet, S., Arduini, D., Martines, A., De Benedetto, G.E., Malitesta, C., Giangrande, A., Rossi, S., 2024. Seasonal occurrence and distribution of microplastics in four different benthic suspension feeders from an Integrated Multi-Trophic Aquaculture (IMTA) facility: a bioremediation perspective. *Mar. Pollut. Bull.* 207, 116811. <https://doi.org/10.1016/j.marpolbul.2024.116811>.

Frutos, I., Brandt, A., Sorbe, J.C., 2017. Deep-sea suprabenthic communities: the forgotten biodiversity. In: Rossi, S., Bramanti, L., Gori, A., Orejas, C. (Eds.), *Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots*. Springer International Publishing, pp. 1–29. https://doi.org/10.1007/978-3-319-17001-5_21-1.

Giangrande, A., Cavallo, A., Licciano, M., Mola, E., Pierri, C., Trianni, L., 2005. Utilization of the filter feeder polychaete *Sabellida*. *Aquac. Int.* 13 (1), 129–136. <https://doi.org/10.1007/s10499-004-9025-3>.

Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Corriero, G., Basile, G., Cecere, E., Petrocelli, A., Stabili, L., Longo, C., 2020. An innovative IMTA system: polychaetes, sponges and macroalgae co-cultured in a southern Italian in-shore mariculture plant (Ionian Sea). *J. Mar. Sci. Eng.* 8 (10). <https://doi.org/10.3390/JMSE8100733>.

Giangrande, A., Licciano, M., Arduini, D., Borghese, J., Pierri, C., Trani, R., Longo, C., Petrocelli, A., Ricci, P., Alabiso, G., Cavallo, R.A., Acquaviva, M.I., Narracci, M., Stabili, L., 2022. An integrated monitoring approach to the evaluation of the environmental impact of an inshore mariculture plant (Mar Grande of Taranto, Ionian Sea). *Biology* 11 (4). <https://doi.org/10.3390/biology11040617>.

Gili, J.-M., Coma, R., 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. *Trends Ecol. Evol.* 13 (8), 316–321. [https://doi.org/10.1016/S0169-5347\(98\)01365-2](https://doi.org/10.1016/S0169-5347(98)01365-2).

Gili, J.-M., Alvà, V., Coma, R., Orejas, C., Pagès, F., Ribes, M., Zabala, M., Arntz, W., Bouillon, J., Boero, F., Hughes, R.G., 1998. The impact of small benthic passive suspension feeders in shallow marine ecosystems: the hydroids as an example. *Zool. Verh.* 323 (8), 99–105.

Gökalp, M., Wijgerde, T., Sarà, A., De Goeij, J.M., Osinga, R., 2019. Development of an integrated mariculture for the collagen-rich sponge *Chondrosia reniformis*. *Mar. Drugs* 17 (1), 29. <https://doi.org/10.3390/md17010029>.

Granada, L., Sousa, N., Lopes, S., Lemos, M.F.L., 2016. Is integrated multitrophic aquaculture the solution to the sectors' major challenges? – A review. *Rev. Aquac.* 8 (3), 283–300. <https://doi.org/10.1111/raq.12093>.

Grémare, A., Amouroux, J.M., Charles, F., Dinet, A., Riaux-Gobin, Baudart, J., Medernach, L., Bodiou, J., Vétion, G., Colomines, J., Albert, P., 1997. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: two year study. *Mar. Ecol. Prog. Ser.* 150, 195–206. <https://doi.org/10.3354/meps150195>.

Guizien, K., Ghisalberti, M., 2015. Living in the canopy of the animal forest: physical and biogeochemical aspects. In: Rossi, S., Bramanti, L., Gori, A., del Valle, C. Orejas Saco (Eds.), *Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots*. Springer International Publishing, pp. 1–22. https://doi.org/10.1007/978-3-319-17001-5_14-1.

Hishamunda, N., Poulain, F., Ridler, N., 2009. *Prospective Analysis of Aquaculture Development: The Delphi Method*. FAO.

Jacquet, S.H.M., Lefèvre, D., Tamburini, C., Garel, M., Le Moigne, F.A.C., Bhairy, N., Guasco, S., 2021. On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization. *Biogeosciences* 18 (6), 2205–2212. <https://doi.org/10.5194/bg-18-2205-2021>.

Jeffrey, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. *Biochem. Physiol. Pflanz.* 167 (2), 191–194. [https://doi.org/10.1016/s0015-3796\(17\)30778-3](https://doi.org/10.1016/s0015-3796(17)30778-3).

Johnson, R., Langer, G., Rossi, S., Probert, I., Mammone, M., Ziveri, P., 2022. Nutritional response of a coccolithophore to changing pH and temperature. *Limnol. Oceanogr.* 67 (10), 2309–2324. <https://doi.org/10.1002/lno.12204>.

Ju, B., Chen, L., Xing, R., Jiang, A., 2015. A new integrated multi-trophic aquaculture system consisting of *Styela clava*, microalgae, and *Stichopus japonicus*. *Aquac. Int.* 23 (2), 471–497. <https://doi.org/10.1007/s10499-014-9829-8>.

Kamburska, L., Fonda-Umani, S., 2009. From seasonal to decadal inter-annual variability of mesozooplankton biomass in the Northern Adriatic Sea (Gulf of Trieste). *J. Mar. Syst.* 78 (4), 490–504. <https://doi.org/10.1016/j.jmarsys.2008.12.007>.

Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K.N., Plaiti, W., 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. *ICES J. Mar. Sci.* 57 (5), 1462–1471. <https://doi.org/10.1006/jmsc.2000.0925>.

Kleber, P., Lader, P., Gansel, L., Oppedal, F., 2013. Hydrodynamic interactions on net panel and aquaculture fish cages: a review. *Ocean Eng.* 58, 260–274. <https://doi.org/10.1016/j.oceaneng.2012.11.006>.

Lamprianidou, F., Telfer, T., Ross, L.G., 2015. A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. *Estuar. Coast. Shelf Sci.* 164, 253–264. <https://doi.org/10.1016/j.ecss.2015.07.045>.

Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., Crise, A., 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. *Biogeosciences* 9 (1), 217–233. <https://doi.org/10.5194/bg-9-217-2012>.

Madin, J., Chong, V.C., Hartstein, N.D., 2010. Effects of water flow velocity and fish culture on net biofouling in fish cages. *Aquac. Res.* 41 (10), e602–e617. <https://doi.org/10.1111/j.1365-2109.2010.02567.x>.

Mayr, C., Rebolledo, L., Schulte, K., Schuster, A., Zolitschka, B., Försterra, G., Häussermann, V., 2014. Responses of nitrogen and carbon deposition rates in Comau Fjord (42°S, southern Chile) to natural and anthropogenic impacts during the last century. *Cont. Shelf Res.* 78, 29–38. <https://doi.org/10.1016/j.csr.2014.02.004>.

Mazzola, A., Sarà, G., 2001. The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED): stable carbon isotopic analysis. In: *Aquaculture* 192, 361–379. www.elsevier.nl/locate/aqua-online.

Neofitou, N., Klaoudatos, S., 2008. Effect of fish farming on the water column nutrient concentration in a semi-enclosed gulf of the Eastern Mediterranean. *Aquac. Res.* 39 (5), 482–490. <https://doi.org/10.1111/j.1365-2109.2008.01900.x>.

Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish, C., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. *Aquaculture* 231 (1–4), 361–391. <https://doi.org/10.1016/j.aquaculture.2003.11.015>.

Pakhomov, E., Kaehler, S., McQuaid, C., 2002. Zooplankton community structure in the kelp beds of the sub-Antarctic Prince Edward Archipelago: are they a refuge for larval stages? *Polar Biol.* 25 (10), 778–788. <https://doi.org/10.1007/s00300-002-0411-x>.

Pitta, P., Karakassis, I., Tsapakis, M., Zivanovic, S., 1998. Natural vs. Mariculture induced variability in nutrients and plankton in the eastern Mediterranean. *Hydrobiologia* 391 (1), 179–192. <https://doi.org/10.1023/A:1003501832069>.

Ribes, M., Coma, R., Gili, J.M., 1999. Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the Northwestern Mediterranean Sea. *J. Plankton Res.* 21 (6), 1077–1100. <https://doi.org/10.1093/plankt/21.6.1077>.

Rossi, S., Fiorillo, I., 2010. Biochemical features of a *Protoceratium reticulatum* red tide in Chilpan Bay (Northern Chile) in summer conditions. *Sci. Mar.* 74 (4), 633–642. <https://doi.org/10.3989/scimar.2010.74n4633>.

Rossi, S., Gili, J.M., 2005. Composition and temporal variation of the near-bottom seston in a Mediterranean coastal area. *Estuar. Coast. Shelf Sci.* 65 (3), 385–395. <https://doi.org/10.1016/j.ecss.2005.05.024>.

Rossi, S., Gili, J.M., 2009. Near bottom phytoplankton and seston: importance in the pelagic-benthic coupling processes. In: *Marine Phytoplankton*, pp. 45–85.

Rossi, S., Snyder, M.J., Gili, J.M., 2006. Protein, carbohydrate, lipid concentrations and HSP 70–HSP 90 (stress protein) expression over an annual cycle: useful tools to detect feeding constraints in a benthic suspension feeder. *Helgol. Mar. Res.* 60 (1). <https://doi.org/10.1007/s10152-005-0009-0>. Article 1.

Rossi, S., Bramanti, L., Gori, A., Orejas, C., Rossi, S., Bramanti, L., Gori, A., Orejas, C., 2017a. An Overview of the Animal Forests of the World, pp. 1–26. <https://doi.org/10.1007/978-3-319-17001-5-1-11007/978-3-319-17001-5-1-1>.

Rossi, S., Coppari, M., Viladrich, N., 2017b. Benthic-pelagic coupling: new perspectives in the animal forests. In: *Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots*, pp. 855–885. https://doi.org/10.1007/978-3-319-21012-4_23.

Sarà, G., 2007. Aquaculture effects on some physical and chemical properties of the water column: a meta-analysis. *Chem. Ecol.* 23 (3), 251–262.

Solanki, H.U., Mankodi, P.C., Dwivedi, R.M., Nayak, S.R., 2008. Satellite observations of main oceanographic processes to identify ecological associations in the Northern Arabian Sea for fishery resources exploration. *Hydrobiologia* 612 (1), 269–279. <https://doi.org/10.1007/s10750-008-9496-8>.

Soriano-González, J., Angelats, E., Fernández-Tejedor, M., Diogene, J., Alcaraz, C., 2019. First results of phytoplankton spatial dynamics in two NW-Mediterranean bays from chlorophyll-a estimates using Sentinel 2: potential implications for aquaculture. *Remote Sens.* 11 (15). <https://doi.org/10.3390/rs11151756>.

Stabili, L., Giangrande, A., Arduini, D., Borghese, J., Petrocelli, A., Alabiso, G., Ricci, P., Cavallo, R.A., Acquaviva, M.I., Narracci, M., Pierri, C., Trani, R., Longo, C., 2023. Environmental quality improvement of a mariculture plant after its conversion into a multi-trophic system. *Sci. Total Environ.* 884. <https://doi.org/10.1016/j.scitotenv.2023.163846>.

Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., Civitarese, G., 2013. The Mediterranean Sea system: a review and an introduction to the special issue. *Ocean Sci.* 9 (5), 789–803. <https://doi.org/10.5194/os-9-789-2013>.

Thomsen, L., 1999. Processes in the benthic boundary layer at continental margins and their implication for the benthic carbon cycle. *J. Sea Res.* 41 (1–2), 73–86. [https://doi.org/10.1016/S1385-1101\(98\)00039-2](https://doi.org/10.1016/S1385-1101(98)00039-2).

Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A.H., Fang, J.G., 2009. Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. *Aquaculture* 297 (1–4), 1–9. <https://doi.org/10.1016/j.aquaculture.2009.09.010>.

Wu, H., Huo, Y., Han, F., Liu, Y., He, P., 2015. Bioremediation using *Gracilaria chouae* co-cultured with *Sparus macrocephalus* to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. *Mar. Pollut. Bull.* 91 (1), 272–279. <https://doi.org/10.1016/j.marpolbul.2014.11.032>.