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RESUMO 

 

Este TCC apresenta uma metodologia para a calibração de dados de irradiação solar 

provenientes de satélite, utilizando medições in situ como referência. O estudo propõe uma 

abordagem inovadora que combina modelos de regressão linear com técnicas de clusterização 

para ajustar as componentes de Irradiância Global Horizontal (GHI) e Irradiância Difusa 

(DIF). Inicialmente, os dados são submetidos a um rigoroso pré-processamento, que inclui a 

remoção de valores ausentes e negativos, além da correção de inconsistências, garantindo a 

qualidade da base utilizada para a modelagem. Em seguida, são desenvolvidos modelos 

estatísticos que correlacionam as medições de campo com as estimativas de satélite, 

segmentando os dados em função do ângulo zenital solar para capturar comportamentos 

específicos em diferentes condições. Os resultados evidenciam ganhos significativos na 

precisão das estimativas, demonstrando que a integração de medições in situ com dados 

satelitais pode reduzir os vieses inerentes às estimativas e aumentar a confiabilidade para 

aplicações em dimensionamento de sistemas fotovoltaicos e estudos climáticos. Conclui-se 

que a abordagem proposta é robusta, viável em diferentes cenários geográficos e 

atmosféricos, e contribui de forma relevante para o aprimoramento das estimativas de 

irradiação solar. 

 

Palavras-chave: irradiação solar; calibração de dados; regressão linear; clusterização. 



 

ABSTRACT 

 

This paper presents a methodology for the calibration of solar irradiance data from satellites, 

using in situ measurements as a reference. The study proposes an innovative approach that 

combines linear regression models with clustering techniques to adjust the Global Horizontal 

Irradiance (GHI) and Diffuse Irradiance (DIF) components. Initially, the data are subjected to 

rigorous pre-processing, which includes the removal of missing and negative values, in 

addition to the correction of inconsistencies, ensuring the quality of the basis used for 

modeling. Then, statistical models are developed that correlate the field measurements with 

the satellite estimates, segmenting the data according to the solar zenith angle to capture 

specific behaviors in different conditions. The results show significant gains in the accuracy 

of the estimates, demonstrating that the integration of in situ measurements with satellite data 

can reduce the biases inherent in the estimates and increase the reliability for applications in 

photovoltaic system sizing and climate studies. It is concluded that the proposed approach is 

robust, viable in different geographic and atmospheric scenarios, and contributes significantly 

to the improvement of solar irradiation estimates. 

 

Keywords: solar irradiation; data calibration; linear regression; clustering. 
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1. INTRODUÇÃO 

 

A crescente demanda por fontes de energia renováveis tem intensificado o 

interesse em métodos e ferramentas que auxiliem no planejamento e na análise de viabilidade 

de projetos solares. Nesse contexto, a disponibilidade de dados de irradiação solar 

desempenha papel fundamental para estimar com maior precisão o potencial energético de 

uma região, subsidiando a tomada de decisão em termos de dimensionamento de sistemas 

fotovoltaicos e previsão de geração ao longo do tempo. Atualmente, há uma ampla variedade 

de dados de satélite que fornecem estimativas de irradiação solar, além de outros parâmetros, 

como temperatura e velocidade do vento, para praticamente qualquer localidade do planeta, 

com séries históricas que ultrapassam duas décadas. Essas informações são disponibilizadas 

tanto de forma gratuita quanto paga, dependendo do fornecedor e do nível de detalhamento 

requerido. 

 

Apesar da vantagem de oferecer longas séries temporais, os dados satelitais 

podem apresentar vieses e incertezas decorrentes de limitações de resolução, modelagem e 

condições atmosféricas não capturadas adequadamente. Por outro lado, a legislação brasileira, 

por meio do Ministério de Minas e Energia (MME), exige que, para a obtenção da Outorga 

em projetos de energia, sejam realizadas campanhas de medição in situ: no mínimo 36 meses 

para projetos eólicos e 12 meses para projetos solares. Esse procedimento é fundamental para 

comprovar a disponibilidade do recurso renovável (vento ou sol) na região de interesse. 

Assim, as medições locais tornam-se indispensáveis e, ao mesmo tempo, oferecem a 

oportunidade de ajuste (calibração) dos dados de satélite, corrigindo eventuais discrepâncias e 

melhorando a confiabilidade das estimativas. 

 

Essa abordagem é particularmente relevante em projetos de energia solar, pois, 

diferentemente de outras fontes intermitentes, como a eólica, a campanha de medição 

obrigatória para caracterização local costuma ser mais curta, porém ainda insuficiente para 

abarcar toda a variabilidade interanual da irradiação. Ao combinar os dados de satélite, que 

oferecem séries de longo prazo, com medições de qualidade realizadas in situ, obtém-se um 

conjunto de informações mais robustas, assegurando maior precisão na previsão de geração de 

energia e na avaliação de riscos. O presente trabalho, intitulado <Calibração de Dados 

Satelitais de Irradiação Solar com Base em Medições In Situ: Uma Abordagem de 

Regressão Linear e Clusterização de GHI e DIF=, propõe uma metodologia de calibração 
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por meio de modelos de regressão, com destaque para o papel da clusterização e das 

especificidades das componentes de irradiação global (GHI) e difusa (DIF). Enquanto a 

relação entre dados de GHI in situ e satelitais se mostra mais linear, a componente difusa 

tende a apresentar comportamento menos previsível, demandando técnicas de análise mais 

elaboradas para a remoção de vieses e consequente aprimoramento da qualidade dos dados. 

 

1.1. Justificativa 

 

A importância de uma base de dados confiável de irradiação solar abrange 

diversas áreas, como engenharia, meteorologia e climatologia. No setor de energia, essas 

informações são essenciais para estimativas mais precisas no planejamento de centrais 

fotovoltaicas. A redução das incertezas nos dados de irradiação reduz o risco financeiro e 

aumenta a eficiência nos investimentos, especialmente no dimensionamento de módulos 

solares e na projeção de geração ao longo do ciclo de vida do empreendimento. 

 

Além disso, a ampla disponibilidade de dados de satélite, frequentemente 

superiores a 20 anos, contrasta com a exigência legal de campanhas de medição in situ, 

geralmente limitadas a 12 meses para projetos solares. Sem um processo de calibração 

adequado, essa diferença temporal pode gerar incertezas significativas na avaliação do 

potencial solar de uma área. Nesse contexto, o uso de modelos de regressão e estratégias de 

clusterização permite corrigir os vieses dos dados de satélite, fornecendo informações mais 

alinhadas à realidade local e melhorando a tomada de decisão em projetos de energia solar. 

 

1.2. Objetivos 

 

O presente estudo tem como objetivo principal desenvolver e avaliar diferentes 

estratégias de calibração de dados de satélite de irradiação solar, considerando tanto as 

componentes global (GHI) quanto a difusa (DIF). Para cumprir esse propósito, definem-se os 

seguintes objetivos específicos: 

 

- Coletar e processar os dados de irradiação solar provenientes de medições in 

situ e de satélite, assegurando a qualidade da base de dados por meio da 

remoção de valores inconsistentes e da correção de casos incoerentes. 
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- Investigar padrões e vieses nos dados por meio de análise exploratória (EDA), 

identificando aspectos como heteroscedasticidade e variações específicas em 

determinados intervalos do ângulo zenital (ZEN), para fundamentar a escolha 

dos modelos de calibração. 

 

- Desenvolver e aplicar modelos de regressão com diferentes abordagens, 

incluindo: 

 

- Regressão linear sem clusterização: utilizando todo o conjunto de 

dados de treinamento; 

- Regressão linear com clusterização: segmentando os dados em 

intervalos de ângulo zenital (clusters) para capturar variações 

específicas; 

- Regressão polinomial com clusterização: ajustando um modelo 

polinomial de grau superior (por exemplo, 4º grau) para cada intervalo 

de ângulo zenital, atendendo a cenários de maior complexidade, 

sobretudo em faixas de ZEN elevadas. 

 

- Comparar o desempenho das diferentes estratégias de calibração (original, 

linear global, linear segmentada e polinomial segmentada) por meio de 

métricas estatísticas de avaliação, tanto em dados de treino quanto em dados de 

teste, a fim de verificar melhorias na precisão e robustez na estimativa de GHI 

e DIF. 

 

- Validar o método final selecionado, destacando sua capacidade de manter boa 

acurácia e generalizar em condições reais de aplicação, evidenciando as 

melhorias em intervalos críticos de ângulo zenital e a importância da redução 

de vieses para o setor de energia solar. 

 

1.3. Organização do Trabalho 

 

Este trabalho está dividido em cinco capítulos, conforme descrito a seguir: 

 

- Capítulo 1 - Introdução: Apresenta a contextualização do problema, a 
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justificativa do estudo, seus objetivos (geral e específicos) e a organização do 

Trabalho; 

- Capítulo 2 - Fundamentação Teórica: Fornece uma revisão de literatura sobre 

os principais conceitos envolvidos no estudo, como conceitos de irradiação 

solar, dados e sensores de irradiação e modelos de regressão; 

- Capítulo 3 - Metodologia: Detalha os procedimentos adotados para a coleta e 

preparação dos dados, as ferramentas e tecnologias utilizadas, a arquitetura dos 

modelos propostos, assim como o processo de treinamento e métricas de 

avaliação dos modelos; 

- Capítulo 4 - Resultados: Apresenta os resultados obtidos durante os 

experimentos, com uma análise quantitativa das métricas de desempenho do 

modelo, além de gráficos para comparação dos resultados; 

- Capítulo 5 - Conclusão e Trabalhos Futuros: Finaliza o trabalho discutindo as 

principais conclusões, as limitações encontradas e as possíveis melhorias e 

desdobramentos futuros do projeto. 
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2. FUNDAMENTAÇÃO TEÓRICA 

 

A fundamentação teórica que se segue apresenta os principais aspectos 

relacionados à irradiação solar, começando pela definição de conceitos radiométricos e pela 

compreensão da geometria solar, passando pela caracterização da constante solar e dos 

modelos de céu claro (clear-sky). Em seguida, discute-se a importância dos dados e sensores 

de irradiação, com foco no funcionamento, calibração e manutenção dos equipamentos de 

medição em superfície e na análise das incertezas envolvidas. Por fim, abordam-se os dados 

de satélite, seus processos de geração e as limitações inerentes, destacando-se o papel 

fundamental que essas informações desempenham na estimativa e no monitoramento da 

radiação solar para diversas aplicações científicas e tecnológicas. 

 

2.1. Conceitos de Irradiação Solar 

 

A radiação solar é a principal fonte de energia que impulsiona os processos 

climáticos e a vida na Terra, sendo essencial para aplicações que vão desde a geração de 

energia fotovoltaica até estudos de balanço térmico e meteorologia. Seu entendimento 

envolve conceitos físicos, geométricos e atmosféricos que descrevem como a energia emitida 

pelo Sol percorre o espaço e interage com a atmosfera antes de alcançar a superfície terrestre. 

Na prática, essa análise exige o conhecimento de terminologia radiométricas, do 

comportamento do Sol como um corpo negro, da geometria que determina a posição solar ao 

longo do ano e das componentes da irradiação medidas em solo. 

 

Este tópico apresenta os principais fundamentos relacionados à irradiação solar, 

abordando desde as definições de energia e fluxo radiante (terminologia radiométrica), 

passando pela conceituação de constante solar e suas variações, até a influência da geometria 

e da inclinação do eixo terrestre nas estações do ano. Discutem-se também as diferentes 

formas de irradiância solar 4 global, direta, difusa e refletida 4, fundamentais para 

aplicações em análise de sistemas fotovoltaicos e climatologia. Por fim, introduzem-se os 

modelos de céu claro, que oferecem estimativas teóricas para comparação com condições 

reais, sendo ferramentas valiosas na calibração de dados e na compreensão dos fatores que 

afetam a disponibilidade de radiação solar em diferentes regiões e condições atmosféricas. 
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2.1.1. Terminologia Radiométrica 

 

Antes de explorar o tema da radiação solar, é fundamental esclarecer algumas 

definições básicas relacionadas à energia, ao fluxo, à potência e a outros conceitos associados 

à radiância. Essas definições estão apresentadas na figura abaixo: 

 
Tabela 1 - Terminologia Radiométrica e Unidades 

 

Fonte: [2] 

 

2.1.2. Irradiância Extraterrestre 

 

Na física, é amplamente conhecido que qualquer objeto com temperatura absoluta 

acima de zero Kelvin emite radiação eletromagnética, fenômeno que ocorre devido ao 

movimento térmico das partículas em sua estrutura. O Sol, com sua temperatura de superfície 

estimada em aproximadamente 5800 K, comporta-se de maneira muito semelhante a um 

corpo negro ideal. 

 

O conceito de corpo negro na física refere-se a um objeto ideal que absorve toda a 

radiação eletromagnética incidente, sem refletir ou transmitir nenhuma parte. Em 

contrapartida, ele emite radiação de maneira perfeitamente previsível, dependendo apenas de 

sua temperatura. A intensidade e a distribuição da radiação emitida por um corpo negro são 

descritas pela lei de Planck, que estabelece como a energia emitida varia com o comprimento 

de onda e a temperatura. Embora nenhum objeto no universo seja um corpo negro perfeito, o 

Sol se aproxima desse comportamento devido à sua emissão em um amplo espectro de 

comprimentos de onda. 
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A radiação solar abrange comprimentos de onda entre 290 nm e 4000 nm, faixa 

conhecida como espectro extraterrestre (ETS). Esse intervalo inclui três regiões principais do 

espectro eletromagnético: ultravioleta (UV), luz visível e o início do infravermelho próximo 

(NIR, do inglês near-infrared). A distribuição desse espectro, frequentemente utilizada em 

estudos sobre energia solar, pode ser visualizada na Figura 2. Estudos recentes, como o de 

Gueymard (2018a), indicam que aproximadamente 98,5% da irradiação solar extraterrestre 

está concentrada nessa faixa de 290-4000 nm. O restante da radiação está presente nas regiões 

mais distantes do espectro infravermelho, conhecidas como infravermelho distante (FIR, do 

inglês far-infrared). 

 
Figura 1 - Espectro da radiação solar na Terra 

 

Fonte: Wikimedia Commons 

Compreender o comportamento do Sol como um corpo negro e a distribuição do 

seu espectro é essencial para o desenvolvimento de tecnologias de captação de energia solar. 

Esse conhecimento permite determinar não apenas a quantidade de energia disponível para 

conversão em eletricidade ou calor, mas também quais partes do espectro podem ser melhor 

aproveitadas em diferentes aplicações. 
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2.1.3. Constante Solar 

 

A potência radiante total emitida pelo Sol, denominada como irradiação solar total 

(ou Total Solar Irradiance - TSI), representa a quantidade de energia emitida por unidade de 

tempo em todas as direções do espaço. Embora a TSI seja, em grande parte, constante ao 

longo do tempo, medições precisas realizadas por satélites detectaram variações temporais 

sutis. 

 

A TSI é calculada pela integração do espectro extraterrestre (ETS) quando a 

distância entre o Sol e a Terra é igual a 1 Unidade Astronômica (UA), aproximadamente 

149,6 milhões de quilômetros. Inicialmente, acreditava-se que a emissão do Sol era 

perfeitamente constante, motivo pela qual o termo "constante solar" foi amplamente utilizado 

para descrever o valor médio dessa radiação recebida no topo da atmosfera terrestre. No 

entanto, com avanços tecnológicos e observações mais precisas, descobriu-se que a TSI 

apresenta pequenas flutuações temporais, relacionadas a ciclos solares, atividades de manchas 

solares e outras variações na dinâmica do Sol. 

 

Atualmente, a constante solar é definida como a média de longo prazo da TSI e 

representa a energia solar incidente perpendicularmente a uma unidade de área no topo da 

atmosfera terrestre, a uma distância média de 1 UA. Embora pequenas, essas flutuações são 

relevantes para o estudo do clima e das interações entre o Sol e a Terra, pois até mesmo 

variações mínimas podem afetar a atmosfera terrestre e, a longo prazo, o balanço energético 

do planeta. 

 

Historicamente, diferentes valores foram atribuídos à constante solar à medida 

que medições e métodos de cálculo evoluíram. Um dos valores mais recentes foi proposto por 

Gueymard (2018b), que, após uma reavaliação abrangente e a correção de décadas de dados 

obtidos por satélites, estabeleceu a constante solar em 1361,1 W/m². Este valor é amplamente 

utilizado em estudos climáticos, meteorológicos e em projetos de aproveitamento da energia 

solar. 

 

 

 

 



 
22 

Figura 2 - Variações Temporais do TSI

 
Fonte: Solar Influences Data Analysis Center - Total Solar Irradiance 

 

A constância relativa da TSI, combinada com o conhecimento das pequenas 

variações cíclicas, é um elemento crucial para compreender não apenas o fluxo de energia 

recebido pela Terra, mas também sua influência no sistema climático global. Estudos 

contínuos sobre a TSI e suas variações contribuem significativamente para o entendimento de 

fenômenos como aquecimento global, mudanças climáticas e a evolução dos ciclos solares. 

 

2.1.4. Geometria Solar 

 

Ao longo do ano, a Terra percorre uma órbita elíptica ao redor do Sol, resultando 

em mudanças contínuas na posição relativa entre o nosso planeta e a estrela central. Esse 

movimento orbital, aliado à inclinação do eixo terrestre, provoca variações sazonais nas 

condições climáticas e nos padrões de radiação solar que atingem diferentes regiões da 

superfície terrestre. Essas variações influenciam diretamente fenômenos como a duração dos 

dias e noites, as estações do ano e a intensidade da radiação solar incidente. 
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A órbita da Terra ao redor do Sol é ligeiramente elíptica, com o Sol localizado em 

um dos focos da elipse. Como resultado, a distância entre a Terra e o Sol varia ao longo do 

ano, influenciando levemente a quantidade de energia solar recebida. Entretanto, a inclinação 

do eixo terrestre (aproximadamente 23,5° em relação à perpendicular do plano orbital) tem o 

papel mais significativo na definição das estações do ano, pois altera a incidência dos raios 

solares nos diferentes hemisférios. 

 
Figura 3 - Órbita da Terra 

 
Fonte: Wikipedia 

 

Para compreender o comportamento do Sol em relação à Terra ao longo das 

estações, utilizam-se definições angulares específicas que permitem descrever e calcular sua 

posição no céu. Esses ângulos são essenciais para determinar a irradiação solar em diferentes 

momentos e locais, viabilizando análises detalhadas sobre a distribuição da radiação e seu 

impacto no clima, na agricultura e nas tecnologias solares. Os principais ângulos utilizados 

são: 

 

- Declinação Solar (·): É o ângulo formado entre o plano do equador terrestre e 

a linha imaginária que conecta o centro do Sol ao centro da Terra. A declinação 

solar varia ao longo do ano, atingindo aproximadamente +23,5° no solstício de 

verão do hemisfério norte e -23,5° no solstício de inverno. 
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- Ângulo Zenital Solar (ZEN): É o ângulo formado entre a direção do Sol e a 

vertical local (uma linha imaginária perpendicular ao solo em um ponto 

específico). Esse ângulo indica o quão alto ou baixo o Sol está no céu em 

relação ao observador. 

 

- Ângulo de Elevação Solar (ELV): É o ângulo formado entre a direção do Sol e 

o plano do horizonte. Ele indica a altura do Sol no céu em relação ao horizonte 

e está relacionado ao ângulo zenital pela equação: 

 

 ýýý +  ýԺՄ =  90°  (1)
 

- Ângulo Azimutal Solar (AZ): Também conhecido como azimute solar, é o 

ângulo formado entre a projeção da direção do Sol no plano horizontal e a 

direção do norte. Ele descreve a posição do Sol em relação aos pontos cardeais. 

 
Figura 4 - Ângulos do Sol em relação à Terra 

 
Fonte: Wikipédia 

 

Esses ângulos não apenas ajudam a descrever a trajetória do Sol no céu ao longo 

do dia, mas também são cruciais para o cálculo da irradiação solar em superfícies inclinadas 

ou horizontais. Por exemplo, a declinação solar é necessária para determinar o ângulo de 

incidência da radiação em diferentes latitudes, enquanto os ângulos zenital e de elevação 

ajudam a modelar a intensidade e a duração da radiação recebida em um local específico. 
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2.1.5. Irradiância Solar 

 

A irradiância solar corresponde à quantidade de energia radiante do Sol incidente 

sobre uma determinada superfície, por unidade de área e tempo, geralmente expressa em 

W/m². Ao atravessar a atmosfera até alcançar a superfície terrestre, a radiação solar sofre 

diversos processos, como absorção por gases (ozônio, vapor d'água etc.), espalhamento por 

moléculas e partículas em suspensão, e reflexão em superfícies. Esses processos afetam 

diretamente a quantidade e o tipo de radiação que alcança o solo. 

 

A irradiância solar é classificada em diferentes componentes, dependendo do 

ponto de análise: 

 

- No topo da atmosfera (TOA): 

 

- Constante Solar: Representa a irradiância máxima recebida pela Terra 

antes de interações atmosféricas. É considerada a radiação incidente 

perpendicularmente ao plano da atmosfera a uma distância média de 1 

Unidade Astronômica (UA). 

 

- Na superfície terrestre: 

 

- Irradiação Global Horizontal (GHI): Corresponde à irradiação solar 

total incidente sobre uma superfície horizontal no solo, englobando 

tanto a componente direta quanto a difusa. 

- Irradiação Direta Normal (DNI): Corresponde à irradiação solar direta 

incidente sobre uma superfície perpendicular à direção do Sol, sem 

considerar a contribuição da irradiação difusa ou refletida. 

- Irradiação Difusa Horizontal (DIF): Corresponde à fração da 

irradiação solar que atinge o solo de forma indireta, após sofrer 

espalhamento na atmosfera. 

- Irradiação Refletida Horizontal (RHI): É a irradiação refletida a partir 

do solo ou outras superfícies, influenciada pelo albedo do solo, sendo a 
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fração de irradiação refletida em relação à irradiação incidente. 

 

Essas componentes solares estão interligadas e podem ser descritas por relações 

matemáticas envolvendo o ângulo zenital solar (ZEN), entre outras variáveis. As principais 

relações são: 

 

- Para radiação global horizontal: 

 

 ԵԶԷ =  ԲýԷ ×  Ջ՗՛(ýýý) +  ԲԷԴ  (2)
 

- Para radiação global inclinada no plano de um painel solar: 

 

 ԾԽԯ =  ԲýԷ ×  Ջ՗՛(ԯԷ) +  ԲԷԴ × ՁՄԴ + ՀԶԷ × ԵՄԴ  (3)
 

Onde: 

 

- POA (Plane of Array Irradiance): Irradiância no plano inclinado do 

painel solar. 

- AI (Angle of Incidence): Ângulo de incidência da radiação solar sobre 

a superfície inclinada. 

- SVF (Sky View Factor): Fator que representa a fração do céu visível a 

partir de uma superfície. 

- GVF (Ground View Factor): Fator que representa a fração de radiação 

visível do solo em relação a uma superfície. 

 

Além das relações mencionadas, dois coeficientes são amplamente utilizados em 

modelos e algoritmos para descrever a distribuição e proporção da radiação solar: 

 

- Coeficiente de Atenuação Difusa (KD): 

Esse coeficiente mede a fração de radiação difusa em relação à radiação global na 

superfície terrestre. Um valor alto de KA indica maior proporção de radiação difusa em 

relação à radiação total recebida. É calculado pela relação: 
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 ԹԲ =  ԲԷԴ ÷ ԵԶԷ  (4)
 

- Coeficiente de Proporção Global (KT): 

O coeficiente Kt avalia a quantidade de radiação solar efetivamente recebida na 

superfície terrestre em relação à radiação disponível no topo da atmosfera. Ele considera os 

efeitos de geometria solar e atenuação atmosférica. Sua fórmula é dada por: 

 

 ԹՂ =  ԵԶԷ ÷ (ՂԽԯ × Ջ՗՛(ýýý))  (5)
 

Esses coeficientes são particularmente úteis para estudar o impacto da atmosfera 

na distribuição da radiação solar, bem como para o dimensionamento e a análise de 

desempenho de sistemas solares. 

 

O entendimento dessas componentes e relações é essencial para a modelagem da 

radiação solar em diferentes condições climáticas, latitudes e configurações de sistemas 

solares, permitindo otimizar o aproveitamento da energia solar em aplicações práticas. 

 

2.1.6. Modelos de Céu Claro (Clear-Sky) 

 

Os modelos de céu claro (clear-sky models) são ferramentas essenciais no estudo 

da energia solar, fornecendo estimativas teóricas da radiação solar em condições ideais, ou 

seja, na ausência de nuvens e com atmosfera limpa. Esses modelos são amplamente utilizados 

para comparar dados reais de irradiância com valores ideais, calcular o índice de clareza 

(clearness index, Kt) e validar medições de irradiância solar. Entre os vários modelos 

disponíveis, o modelo de Ineichen é particularmente popular devido à sua precisão e 

simplicidade, sendo o modelo adotado nesta pesquisa. 

 

O modelo de Ineichen é um modelo empírico de céu claro amplamente utilizado 

para estimar as componentes da irradiância solar: irradiância global horizontal (GHI), 

irradiância direta normal (DNI) e irradiância difusa horizontal (DIF). Ele considera fatores 

como a posição solar, massa de ar, turbidez atmosférica e altitude para gerar estimativas 

confiáveis da radiação solar sob condições de céu claro. 

 

- Principais Parâmetros do Modelo 
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- Ângulo zenital aparente: Reflete a posição do Sol no céu e é crucial 

para o cálculo das componentes de irradiância. 

- Massa de ar relativa e absoluta: Representa o caminho percorrido pela 

radiação solar através da atmosfera. A massa de ar relativa é 

dependente do ângulo zenital, enquanto a absoluta é ajustada pela 

pressão atmosférica. 

- Turbidez de Linke: Um parâmetro que caracteriza a transparência da 

atmosfera, influenciada por partículas, vapor d'água e aerossóis. 

- Altitude do local: Afeta a pressão atmosférica e, consequentemente, a 

atenuação da radiação solar. 

- Irradiação extraterrestre: A radiação solar incidente no topo da 

atmosfera, considerada como referência em condições ideais. 

 

O modelo de Ineichen utiliza uma combinação de relações empíricas para calcular 

GHI, DNI e DHI. Essas relações são ajustadas para incluir os efeitos da turbidez atmosférica 

(parâmetro de Linke) e da altitude, garantindo estimativas robustas em diferentes condições 

geográficas. 

 

2.2. Dados e Sensores de Irradiação Solar 

 

2.2.1. Sensores de Superfície 

 

Os sensores de superfície são instrumentos fundamentais para medir e monitorar 

as componentes da radiação solar que atingem a superfície terrestre. Entre os mais utilizados 

estão os piranômetros, os pireliômetros e os albedômetros, que permitem medir a radiação 

solar global, direta e refletida, respectivamente. A seguir, detalha-se o funcionamento dos 

piranômetros e pireliômetros, além de questões importantes como calibração, manutenção e 

fatores que afetam as medições. 

 

2.2.1.1. Funcionamento dos Sensores 

 

A medição dos diferentes componentes da radiação solar, sejam eles diretos, 

difusos ou refletidos, é fundamental para uma série de aplicações, incluindo estudos 

climáticos, projetos de energia solar e pesquisas em balanço de energia na superfície terrestre. 
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Nesse contexto, surgem diferentes tipos de sensores, cada um projetado para mensurar um 

aspecto específico do espectro solar. Na sequência, apresenta-se o funcionamento dos 

principais dispositivos utilizados para esses fins: piranômetro, pireliômetro e albedômetro. 

 

O piranômetro é destinado à medição da irradiância global incidente em uma 

superfície plana. Essa medição abrange tanto a radiação direta proveniente do Sol quanto a 

radiação difusa resultante do espalhamento atmosférico. O componente central do 

piranômetro é um sensor térmico (usualmente baseado em termopilha ou termopar), 

responsável por converter a radiação incidente em um sinal elétrico diretamente proporcional 

à intensidade luminosa recebida. Esse sensor é recoberto por uma cúpula de vidro ou quartzo, 

cuja função é permitir a passagem de radiação em uma ampla faixa espectral, incluindo tanto 

a região do visível quanto a do infravermelho próximo. Dessa forma, o piranômetro fornece 

uma leitura confiável e abrangente do fluxo de energia solar na superfície analisada. 

 

Em contraste com o piranômetro, cujo princípio consiste em captar a radiação 

global, o pireliômetro foi concebido especificamente para medir a radiação direta normal 

(DNI). Para tal, o equipamento permanece apontado diretamente para o Sol, geralmente por 

meio de um rastreador solar que ajusta seu alinhamento ao longo do dia. Este arranjo garante 

que a medição seja livre de componentes difusos, possibilitando uma avaliação precisa da 

fração direta da irradiância. Dessa forma, o pireliômetro é fundamental em estudos que 

demandam uma análise mais detalhada da contribuição direta do Sol, a exemplo de aplicações 

em concentradores solares. 

 

O albedômetro, por sua vez, está voltado à determinação do albedo de uma 

superfície, definindo-se este como a razão entre a radiação refletida e a radiação solar 

incidente. Na prática, o albedômetro consiste em dois piranômetros acoplados: um voltado 

para cima, medindo a irradiância global incidente, e outro orientado para baixo, capturando a 

radiação refletida pela superfície subjacente. A partir dessas duas leituras, é possível calcular 

o albedo, quantificando o grau de refletividade de diferentes materiais ou formações naturais 

(por exemplo, gelo, vegetação, solo exposto, etc.). Em estudos climáticos, essa grandeza é 

essencial para estimar o balanço de energia e avaliar o impacto de mudanças na cobertura 

terrestre. 
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2.2.1.2. Padrões Internacionais de Medição 

 

A precisão e confiabilidade das medições com piranômetros e pireliômetros 

dependem de seguir padrões internacionais amplamente aceitos, como os definidos pela IEC 

61274-1, que referencia os seguintes normativos importantes: 

 

- ISO 9060:2018 

Define e classifica piranômetros e pireliômetros com base em suas características 

de desempenho. Os instrumentos são divididos em categorias como classe secundária, 

primeira classe e padrão secundário (secondary standard), de acordo com critérios como 

resposta espectral, resposta direcional e linearidade. 

 
Tabela 2 - Tabela de classificação dos piranômetros pela ISO 9060 e WMO

 
Fonte: [11] 
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- ISO 9847:1992 

Especifica os procedimentos para calibração de piranômetros em campo por 

comparação com um piranômetro de referência. Este padrão cobre a calibração em condições 

controladas internas. 

 

- ISO 9846:1993 

Detalha a calibração de piranômetros utilizando pireliômetros como referência em 

medições externas. Este método é frequentemente usado para garantir a rastreabilidade das 

medições a padrões internacionais. 

 

2.2.1.3. Calibração e Manutenção 

 

A confiabilidade e a precisão dos dados obtidos na medição de radiação solar 

dependem, em grande medida, de um programa rigoroso de calibração. Em conformidade 

com normas internacionais, recomenda-se que a calibração seja realizada periodicamente, 

incluindo tanto procedimentos em laboratório (calibração interna) quanto avaliações de 

campo (calibração externa). Na calibração interna, utilizam-se fontes-padrão em condições 

controladas, permitindo verificar a sensibilidade do sensor e identificar possíveis desvios 

sistemáticos. Já a calibração externa consiste na comparação do instrumento (piranômetro ou 

pireliômetro) com um dispositivo de referência sob luz solar natural, possibilitando a aferição 

do desempenho em condições reais de operação. 

 

Além da calibração, a manutenção dos sensores é fundamental para garantir 

medições precisas ao longo do tempo. A limpeza periódica das cúpulas (de vidro ou quartzo) 

é uma das etapas mais críticas, pois a presença de poeira ou outras partículas sobre a 

superfície de medição pode atenuar a transmissão de radiação, comprometendo a exatidão dos 

valores registrados. No caso dos pireliômetros, a verificação constante do alinhamento com o 

Sol é igualmente relevante, uma vez que qualquer desvio angular pode introduzir erros 

significativos nas medições da irradiação direta normal (DNI). Por fim, recomenda-se a 

realização de recalibrações sistemáticas, geralmente em intervalos anuais ou bienais, uma vez 

que o envelhecimento natural dos componentes 3 especialmente aqueles sensíveis à radiação, 

como termopilhas e termopares 3 pode alterar gradualmente a resposta do instrumento ao 

longo do tempo. 
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2.2.1.4. Fatores que Afetam as Medições 

 

A precisão e a confiabilidade das medições de radiação solar estão sujeitas a 

diversos fatores que podem, direta ou indiretamente, influenciar o desempenho dos sensores. 

Um destes fatores é o acúmulo de poeira ou sujeira na superfície de medição, comum em 

ambientes com alta concentração de partículas em suspensão, o que pode reduzir 

sensivelmente a transmissão da radiação incidente. Além disso, o envelhecimento natural dos 

materiais que compõem o sensor provoca degradações em sua sensibilidade ao longo do 

tempo, fazendo com que a resposta inicial se modifique gradualmente. Outro aspecto 

relevante é a formação de condensação ou gelo sobre a cúpula de proteção, o que dificulta a 

passagem da radiação e pode gerar leituras subestimadas.  

 

Por fim, condições climáticas extremas, tais como ventos intensos, chuvas 

torrenciais ou variações bruscas de temperatura, podem comprometer a estabilidade física do 

equipamento, resultando em possíveis erros de alinhamento ou danos em componentes 

sensíveis. 

 

2.2.1.5. Incerteza nas Medições 

 

Mesmo com procedimentos de calibração e manutenção em dia, as medições 

efetuadas por piranômetros e pireliômetros estão intrinsecamente associadas a determinados 

graus de incerteza. Um dos fatores determinantes é a classe do instrumento: dispositivos 

classificados como padrão secundário tendem a apresentar margens de erro menores em 

comparação aos de primeira classe ou classe secundária, devido às especificações mais 

rigorosas de fabricação e calibração.  

 

A resposta direcional do sensor também afeta as medições, uma vez que variações 

no ângulo de incidência da radiação podem introduzir discrepâncias entre o valor real e o 

valor medido. Além disso, as condições ambientais locais, incluindo flutuações de 

temperatura, pressão atmosférica e umidade, exercem influência tanto sobre o próprio sensor 

quanto sobre a propagação da radiação, resultando em pequenos desvios nos dados 

registrados. 

 

 



 
33 

2.2.2. Dados de Satélite 

 

O uso de dados de satélite é essencial para estimar a irradiância solar em locais 

onde não há medições terrestres diretas disponíveis. Essa abordagem combina observações de 

satélites geoestacionários ou orbitais com modelos atmosféricos para calcular componentes 

como irradiância global horizontal (GHI), irradiância difusa (DIF) e irradiância direta normal 

(DNI). A seguir, são descritos os principais passos do processo de geração desses dados, bem 

como os desafios e limitações associados. 

 

2.2.2.1. Processo de Geração de Dados de Satélite 

 

A obtenção de estimativas de irradiância a partir de sensores em órbita envolve 

um conjunto estruturado de etapas que integram observações atmosféricas, modelos de 

transferência radiativa e parâmetros meteorológicos globais. Inicialmente, realiza-se a 

modelagem de céu claro, na qual se calculam as irradiâncias de GHI, DNI e DIF, assumindo a 

ausência de nuvens. Esse processo depende de parâmetros como a massa de ar 4 definida 

conforme o ângulo zenital solar 4 e de propriedades atmosféricas, incluindo teor de vapor 

d9água, presença de aerossóis e a concentração de ozônio. Modelos empíricos e físicos, tais 

como Ineichen ou Bird, são frequentemente empregados nessa etapa para fornecer uma 

estimativa inicial das condições ideais de irradiância. 

 

Em seguida, passa-se à detecção e análise de nuvens, por meio do processamento 

de imagens de satélite provenientes, por exemplo, de sensores MODIS (NASA) ou 

EUMETSAT. Esse procedimento visa identificar cobertura, altura e espessura das nuvens, 

utilizando algoritmos de limiar (<thresholding=) ou classificadores baseados em aprendizado 

de máquina para segmentar as diferentes regiões cobertas. As informações sobre nuvens 

obtidas nesse estágio são, então, incorporadas aos modelos de transferência radiativa, 

ajustando as estimativas de irradiância para condições reais de nebulosidade. 

 

A correção de aerossóis e vapor d9água é outro fator crucial, pois ambos afetam 

de forma significativa a atenuação da radiação solar. Dados relacionados à concentração de 

aerossóis são usualmente extraídos de re-análises atmosféricas globais, como as fornecidas 

pelo Copernicus Atmosphere Monitoring Service (CAMS), enquanto o conteúdo de vapor 

d9água é estimado a partir de informações registradas por sensores infravermelhos instalados 
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em satélites. Assim, ajusta-se a transmissão da radiação conforme a presença dessas partículas 

em suspensão e a quantidade de umidade no ar. 

 

Após essas correções, procede-se ao cálculo das componentes de irradiância: 

- A GHI é obtida pela soma das contribuições direta e difusa, corrigidas pelos 

efeitos atmosféricos. 

- A DNI representa a parte do fluxo solar que não foi dispersa pela atmosfera.  

- A DIF é estimada como a diferença entre GHI e DNI, ajustada pelo ângulo 

zenital. 

 

Por fim, realiza-se a validação e ajuste dos modelos com base em comparações 

entre as estimativas de satélite e medições de superfície captadas por piranômetros e 

pireliômetros. A partir dessas comparações, realiza-se a calibração final dos modelos, 

adequando-os às condições atmosféricas específicas de cada região e garantindo maior 

confiabilidade nos valores de irradiância estimados. 

 

 

2.2.2.2. Problemas e Limitações dos Dados de Satélite 

 

Embora os produtos de satélite proporcionem ampla cobertura espacial e 

temporal, tornando-se ferramentas valiosas para o estudo da radiação solar em escala global, 

sua utilização está sujeita a algumas restrições. O chamado efeito nugget ilustra bem esse 

cenário: em escalas espaciais muito pequenas, podem surgir discrepâncias significativas entre 

medições terrestres pontuais e estimativas derivadas de satélite. Isso ocorre em razão da 

resolução espacial dos sensores orbitais (em geral de 1 a 3 km) não captarem a variabilidade 

local de terreno, nuvens ou aerossóis, especialmente em regiões de topografia complexa ou 

dinâmica atmosférica intensa. 

 

A resolução espacial e temporal constitui, portanto, outro desafio. Embora 

intervalos de 15 minutos a 1 hora sejam adequados para muitas aplicações, determinadas 

análises 4 como a avaliação de eventos de curta duração, a exemplo de passagens rápidas de 

nuvens 4 exigem uma frequência de coleta mais elevada. Além disso, a dimensão dos pixels 

de satélite pode ser insuficiente para mapear detalhadamente pequenas áreas urbanizadas ou 

regiões com variação acentuada no uso e cobertura do solo. 
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As incertezas de modelagem também não devem ser subestimadas. O êxito da 

estimativa depende tanto da precisão dos modelos de transferência radiativa quanto da 

qualidade dos bancos de dados atmosféricos sobre aerossóis, vapor d9água e outros 

constituintes. Modelos empíricos podem falhar em regiões com condições muito particulares, 

como áreas industriais com alta densidade de partículas. Por fim, a influência de nuvens 

constitui outro elemento crítico: determinar a espessura óptica de forma precisa a partir de 

imagens de satélite é complexo, especialmente em cenários com nebulosidade densa ou em 

zonas costeiras, onde há frequente formação de nuvens baixas. Essas limitações salientam a 

importância de procedimentos de validação contínuos e de ajustes regionais para reduzir 

incertezas e garantir que os dados de satélite sejam efetivamente representativos das 

condições locais. 

 

2.3. Modelos de Regressão 

 

2.3.1. Regressão Linear 

 

A Regressão Linear é uma técnica estatística fundamental que visa modelar a 

relação entre uma variável dependente (geralmente denotada por ) e uma ou mais variáveis ա
independentes (geralmente denotadas por ). No caso mais simples, em que há ՠ1,  ՠ2,  ...,  ՠՖ
apenas uma variável preditora (também chamada variável explicativa), chamamos de 

Regressão Linear Simples. 

 

2.3.1.1. Modelagem Matemática 

 

Na regressão linear simples, assumimos que existe uma relação aproximadamente 

linear entre  e . Dessa forma, podemos escrever o modelo como: ՠ ա
 

 ա =  ³0 + ³1 · ՠ + ·  (6)
onde: 

ï  é o coeficiente linear ou intercepto (o valor de  quando ), ³0 ա ՠ = 0
ï   é o coeficiente angular (indica a inclinação da reta e, portanto, a relação de variação ³1



 
36 

de  em função de ), ա ՠ
ï  é o termo de erro ou ruído, que representa a discrepância entre o valor observado e o ·

valor previsto pelo modelo. 

Já na Regressão Linear Múltipla, quando se tem  variáveis preditoras Ֆ
 , o modelo é escrito como: ՠ1,  ՠ2,  ...,  ՠՖ

 

 ա =  ³0 + ³1 · ՠ + ³2 · ՠ2 +... + ³Ֆ · ՠՖ + ·  (7)
 

 

2.3.1.2. Ajuste do Modelo (Método dos Mínimos Quadrados) 

 

O método mais comum para ajustar (estimar os coeficientes ) é o Método ³0,  ³1,  ...
dos Mínimos Quadrados Ordinários (OLS). Ele busca minimizar a soma dos quadrados dos 

resíduos (diferença entre valores observados e valores preditos): 

 

 ՕՑՖ³0, ³1, .., ³Ֆ Ց=1
ý3 (աՑ2 աՑ)2  (8)

onde: 

ï  é o número de observações, ý
ï  é o valor real da variável dependente para a -ésima observação, աՑ Ց
ï  é o valor previsto pelo modelo para a -ésima observação. աՑ Ց

Em termos matriciais, podemos representar todas as observações por: 

 ա =  Ն · ³ + ·  (9)
em que: 

ï  é o vetor  com os valores observados, ա (ý × 1)
ï  é a matriz  que contém uma coluna de 1s (para o intercepto) e as Ն (ý × (Ֆ + 1))

demais colunas correspondentes às variáveis preditoras, 
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ï  é o vetor  de coeficientes (incluindo  ), ³ (Ֆ + 1 × 1) ³0
ï  é o vetor  de erros. · (ý × 1)

A solução ótima em OLS é dada por: 

 ³ = (ՆՂՆ)21ՆՂա  (10)
desde que  seja invertível (ou pseudo-inversa em casos mais complexos). ՆՂՆ

 

2.3.2. Regressão Polinomial 

 

A Regressão Polinomial é uma extensão natural da regressão linear quando a 

relação entre a(s) variável(is) independente(s) e a variável dependente  não é adequadamente ա
capturada por uma reta (função linear simples). Em vez de ajustarmos uma reta, ajustamos 

uma função polinomial para representar melhor a curvatura dos dados. 

 

2.3.2.1. Modelagem Matemática 

 

Para um único preditor , o modelo de regressão polinomial de grau  pode ser ՠ Ռ
escrito como: 

 

 ա =  ³0 + ³1· ՠ1 + ³2 · ՠ2 + ³3 · ՠ3 +... + ³Ռ · ՠՌ + ·  (11)
 

Note que, apesar de ser chamado <polinomial=, ainda trata-se de um modelo linear 

do ponto de vista dos coeficientes . A não linearidade está na transformação das ³0,  ³1,  ...,  ³Ռ
variáveis . (ՠ,  ՠ2,  ՠ3,  ...)

 

2.3.2.2. Forma Matricial 

 

Assim como na regressão linear simples ou múltipla, podemos escrever o modelo 

polinomial de forma matricial. Suponha que tenhamos  observações para a variável . ý ՠ
Definimos uma matriz de projeto   da seguinte forma: Ն՘՗Քա
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 (12)
 

e o vetor de parâmetros: 

 

 

 (13)
 

O modelo é: 

 

 ա = Ն՘՗Քա · ³ + ·  (14)
 

O processo de ajuste (estimação de ) por Mínimos Quadrados Ordinários ³
continua o mesmo, resultando na solução: 

 

 ³ = (ՆՂ՘՗Քա· Ն՘՗Քա)21· ՆՂ՘՗Քա · ա  (15)
 

 

2.3.2.3. Escolha do Grau do Polinômio 

 

A escolha do grau  do polinômio é crítica: Ռ
 

- Um polinômio de grau muito baixo pode sub-ajustar (underfitting), não 

capturando a curvatura real dos dados. 

- Um polinômio de grau muito alto pode sobre-ajustar (overfitting), resultando 

em um modelo extremamente sensível a ruídos e que não generaliza bem. 
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Na prática, métodos de validação cruzada (cross-validation) são usados para 

auxiliar na escolha do grau mais adequado, equilibrando complexidade e capacidade de 

generalização 
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3. METODOLOGIA 

 

A metodologia adotada neste trabalho foi planejada de modo a assegurar 

resultados robustos e comparáveis a pesquisas recentes na área de modelagem de irradiância 

solar. Todo o processo metodológico foi estruturado em etapas bem definidas, abrangendo 

desde a coleta e pré-processamento dos dados de cinco diferentes locais até a engenharia de 

atributos, análise exploratória e posterior treinamento e avaliação de modelos para estimar a 

irradiância global (GHI) e difusa (DIF). 

 

3.1. Aquisição e Organização dos Dados 

 

Esta seção detalha a aquisição e organização dos dados meteorológicos e de 

irradiância solar utilizados no TCC. Aborda a origem dos dados (Solargis e torres de medição 

da Casa dos Ventos), descreve a estrutura dos dados brutos, e explica os procedimentos de 

leitura e armazenamento dos dados usando a biblioteca Pandas. 

 

3.1.1. Fonte dos Dados 

 

Os dados utilizados neste TCC foram fornecidos pela Casa dos Ventos, sendo 

proveniente de torres de medições. Por uma questão de sigilo, as coordenadas dos sites serão 

ocultadas, e os nomes serão trocados pelos nomes das cidades mais próximas. Dessa forma, 

teremos os dados de Tianguá-CE, Lajes-RN, Barra-BA, Nova Alvorada do Sul-MS e 

Goianésia-GO. Os dados consistem em: 

 

- Dados de satélite da empresa Solargis, calculados a partir de dados de satélite 

GOESR e GOES e de dados atmosféricos (ECMWF, NOAA e NASA). 

- Dados medidos em site, através dos sensores SPN1 (piranômetro com padrão 

de qualidade <first-class=, que mede GHI e DIF) e SR20-D2 (piranômetro com 

padrão de qualidade <secondary standard=, que mede GHI). 

 

Os dados de satélite do Solargis possuem tempo de amostragem de 15 minutos e 

período de medição que varia entre 01 de janeiro de 1999 e a data em que foram solicitados os 

dados (2023-2024, dependendo do site).  
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Já os dados dos sensores possuem uma variação conforme o período em que está 

cada campanha de medição de dados, ressaltando que o exigido em uma campanha de 

medição solar é de 12 meses, porém os dados em questão possuem entre 12-36 meses de 

medições, com um período de amostragem de 1 minuto. 

 

3.1.2. Estrutura dos Dados Brutos 

 

Os dados do Solargis são disponibilizados no formato .csv, e possuem um 

<header= com informações referentes a procedência dos dados, período de dados, informações 

do cliente, entre outros. Dentro da parte dos dados, temos os seguintes campos: 

 

- Date: Data da medição, 

- Time: Tempo da medição, 

- GHI: Irradiância Global Horizontal, 

- DNI: Irradiância Direta Normal, 

- DIF: Irradiância Difusa Horizontal, 

- flagR:  Flag de identificação de qualidade de nuvem, 

- SE: Ângulo de altitude solar, 

- SA: Ângulo de aspecto solar, 

- TEMP: Temperatura do ar, 

- AP: Pressão atmosférica, 

- RH: Humidade relativa, 

- WS: Velocidade do vento a 10 m, 

- WG: Rajada de vento a 10 m, 

- WD: Direção do vento a 10 m, 

- PREC: Taxa de precipitação, 

- PWAT: Água precipitável 

 

Já os dados do site da Casa dos Ventos, são exportados no formato .txt, e 

utilizaremos os campos de GHI de cada piranômetro SR20-D2 (duas unidades) e o GHI e DIF 

do SPN1. 
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3.1.3. Leitura e Armazenamento 

 

Para fazer a leitura dos dados, foi feita a remoção do cabeçalho dos arquivos 

originais, sobrando assim apenas o conteúdo no formato .csv (padrão utilizado para 

<timeseries= solares). Dessa forma, utiliza-se a função 8read_csv9 da biblioteca Pandas para 

fazer a leitura do arquivo. 

 

Após a leitura, salvamos os dados como um <DataFrame= da biblioteca Pandas, 

que nos permite trabalhar utilizando os dados com uma grande facilidade. Ressaltando que os 

dados foram amostrados (usando a média) para um intervalo de 30 minutos. Dessa forma, 

ambos os <DataFrames= possuem os mesmos intervalos de tempo de medição. 

 

3.2. Pré-Processamento dos Dados 

 

Esta seção detalha o pré-processamento dos dados utilizados no TCC. Aborda 

cada procedimento aplicado aos dados brutos. Ressaltando que esses procedimentos foram 

aplicados em sua maioria nos dados da Casa dos Ventos, pois os fornecidos pelo Solargis já 

haviam sido pré-processados pela própria empresa. Abaixo tem-se um diagrama com o fluxo 

dos procedimentos aplicados. 

 
Figura 5 - Fluxograma de procedimentos do pré-processamento. 

 
Fonte: Autoria própria 
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3.2.1. Remoção de Valores Ausentes (NaN) 

 

A remoção de valores ausentes (<NaN= ou <Not a Number=) constitui uma etapa 

fundamental no pré-processamento, especialmente em modelagens de regressão, pois a 

presença de dados faltantes pode comprometer tanto o desempenho dos algoritmos quanto a 

interpretabilidade dos resultados. Em geral, esses valores podem surgir por diversas razões, 

como períodos de manutenção dos equipamentos de medição, troca de sensores ou mesmo 

falhas temporárias no registro dos dados. Em alguns casos, fatores externos, como problemas 

de comunicação ou falta de energia também podem ocasionar lacunas na aquisição das 

medições. 

 

Para assegurar a consistência do conjunto de dados, optou-se por descartar linhas 

ou intervalos de tempo em que as variáveis de interesse apresentassem NaN de forma extensa 

ou para variáveis críticas na modelagem. Essa decisão se justifica pelo baixo volume relativo 

de dados faltantes, o que torna a remoção mais viável e menos propensa a introduzir viés, 

além de evitar os desafios e incertezas inerentes à imputação de valores, sobretudo quando 

não há uma informação sólida sobre a distribuição original das medidas. Desse modo, 

busca-se preservar a integridade estatística do conjunto de dados, minimizando impactos 

adversos no processo de treinamento dos modelos de regressão. 

 

3.2.2. Remoção de Valores Negativos 

 

A presença de valores negativos no conjunto de dados de irradiância solar 

representa um contrassenso físico, pois a irradiância não pode assumir valores abaixo de zero 

em condições normais de medição. Muitas vezes, essas leituras negativas surgem durante 

períodos noturnos, momento em que a irradiância efetivamente não está sendo captada pelo 

sensor, mas ainda assim podem ocorrer pequenos desvios nos instrumentos de medição. Além 

disso, vieses dos sensores ou problemas técnicos, como falhas de calibração e ruídos elétricos, 

podem levar a registros espúrios negativos mesmo durante o dia.  

 

Para garantir a coerência dos dados e evitar que esses registros prejudiquem o 

processo de modelagem, optou-se pela remoção de todos os valores negativos do conjunto de 

dados. Essa etapa de limpeza contribui para a integridade dos modelos de regressão 

subsequentes, eliminando pontos que não refletem a realidade física da irradiância solar. 
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3.2.3. Correção de Casos <DIF > GHI= 

 

A condição em que a irradiância difusa (DIF) supera a irradiância global (GHI) 

contraria os princípios físicos que fundamentam a medição solar, pois, em condições normais, 

a GHI consiste na soma da componente direta e da componente difusa. No presente estudo, a 

medição de DIF foi realizada exclusivamente por meio do sensor SPN1, o que possibilitou a 

identificação de inconsistências em períodos específicos, sobretudo no início e no final do dia. 

Esses valores anômalos podem ocorrer devido a falhas pontuais do equipamento, problemas 

de calibração ou ruídos na aquisição dos dados de irradiância difusa em horários de baixa 

irradiância.  

 

Diante dessa situação, optou-se por corrigir os registros em que, , ԲԷԴ > ԵԶԷ
fazendo , de modo a manter a coerência física dos dados. Essa medida visa ԲԷԴ = ԵԶԷ
preservar a qualidade do conjunto de dados para as etapas posteriores de análise e 

modelagem, evitando que resultados distorcidos afetem as estimativas de desempenho dos 

modelos de regressão. 

 

3.2.4. Remoção de Valores GHI = 0 

 

Após a etapa de remoção de valores negativos, correspondente principalmente aos 

registros noturnos, observou-se que parte dos dados de irradiância global (GHI) ainda 

apresentava valores exatamente iguais a zero. No caso dos dados provenientes do Solargis, é 

comum que os períodos noturnos sejam representados de forma padronizada com GHI = 0, 

refletindo fielmente a ausência de irradiância. Em contraste, nos sensores em campo, é raro 

encontrar medições de GHI exatamente nulas, pois mesmo em condições de céu noturno, 

podem surgir leituras muito próximas de zero, mas não exatamente zero, devido ao ruído de 

fundo e a pequenos desvios instrumentais.  

 

Nesse contexto, optou-se por remover todos os registros em que GHI = 0, uma 

vez que eles correspondem essencialmente às condições noturnas ou a dados potencialmente 

não representativos para a análise de períodos diurnos. Tal procedimento simplifica o 

conjunto de dados e evita que linhas noturnas, sem significado para os modelos de irradiância, 

tenham influência de maneira indevida nas etapas de modelagem e avaliação. 
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3.2.5. Remoção de Viés do Sensor de Brilho Solar (SPN1) 

 

O sensor de brilho solar SPN1 utiliza um conjunto de lentes simultaneamente para 

medir tanto a irradiância global (GHI) quanto a irradiância difusa (DIF). Em seu princípio de 

funcionamento, uma das lentes permanece totalmente exposta à incidência direta do sol, 

enquanto a outra permanece na sombra, permitindo a separação das componentes global e 

difusa. Apesar de ser classificado como um sensor de primeira classe, na mesma torre de 

medição são empregados sensores do tipo SR20-D2 (secondary standard), que apresentam 

menores margens de incerteza. 

 
Figura 6 - Exemplo de viés no GHI do SPN1. 

 
Fonte: Autoria própria 

 

Para ajustar o viés do SPN1 em relação ao SR20-D2 na medição de GHI, foi 

estabelecida uma regressão linear simples, tendo como entrada os valores de GHI medidos 

pelo SPN1 e, como saída, os valores de GHI registrados pelo SR20-D2. Em seguida, a mesma 

relação de calibração foi aplicada aos valores de DIF obtidos pelo SPN1. Essa abordagem é 

justificada pelo fabricante, que assegura que as lentes responsáveis pela medição de GHI são 

as mesmas utilizadas na medição de DIF, de modo que a correção de viés para a componente 

global pode ser estendida de forma confiável para a componente difusa. Dessa maneira, 

garante-se maior consistência nos valores medidos pelo SPN1 antes de prosseguir para as 

etapas de análise e modelagem. 

 

3.2.6. Filtragem do Índice Comum 

 

A fim de assegurar a consistência temporal entre os dados de satélite e os valores 
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coletados pelos sensores em campo, procedeu-se à filtragem dos índices (<timestamps=) 

comuns a ambos os conjuntos. Essa etapa foi necessária para garantir que, ao comparar ou 

combinar as duas fontes de informação, cada medição de irradiância refere-se exatamente ao 

mesmo momento no tempo. Dessa forma, evitam-se discrepâncias ocasionadas por diferenças 

nos intervalos de coleta, harmonizando o conjunto de dados e viabilizando análises e 

modelagens mais precisas. 

 

3.3. Engenharia de Atributos 

 

Nesta etapa, foram gerados atributos adicionais para enriquecer o conjunto de 

dados e refinar a modelagem da irradiância. Entre eles destaca-se o índice de claridade (KT) e 

a fração difusa (KD), cujas expressões foram apresentadas na fundamentação teórica e 

baseiam-se em relações consagradas na literatura especializada. Além disso, também foram 

calculados ângulos solares (zenital e azimutal) e derivados (cosseno do ângulo zenital por 

exemplo), a fim de captar variações geométricas que influenciam a distribuição de irradiância 

ao longo do dia e do ano. Tais variáveis fornecem uma visão mais completa do 

comportamento da radiação solar e contribuem para o desenvolvimento de modelos mais 

robustos nas etapas seguintes. 

 

3.4. Análise Exploratória dos Dados 

 

Nesta etapa, foram descritos os gráficos utilizados para analisar os dados. A 

maioria dessas representações é amplamente empregada na literatura especializada sobre 

irradiação solar. 

 

3.4.1. Perfil Diário 

 

Nesta fase, gera-se um gráfico do comportamento médio horário de GHI, o que 

permite avaliar se os dados de diferentes fontes (sensores e satélite) estão alinhados na mesma 

referência de tempo. Além disso, esse perfil diário possibilita verificar possíveis padrões 

recorrentes de irradiância ao longo do dia, como picos em horários específicos ou 

discrepâncias que possam indicar falhas nos sensores ou desalinhamento temporal. 
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Figura 7 - Exemplo de Perfil Diário. 

 
Fonte: Autoria própria 

 

3.4.2. Análise de Viés: GHI e DIF 

 

Em seguida, realiza-se uma análise de viés entre as medições de GHI e DIF 

fornecidas pelo satélite (por exemplo, Solargis) e as medições de campo. Esse passo busca 

identificar se há uma tendência sistemática do satélite subestimar ou superestimar a 

irradiância, tanto global quanto difusa. Neste caso, utilizou-se um histograma do resíduo 

(erro) entre o GHI do sensor e o GHI do satélite.  

 
Figura 8 - Exemplo de Histograma do resíduo. 

 
Fonte: Autoria própria 
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3.4.3. Comparação Satélite x Sensor 

 

Por fim, traçam-se gráficos de dispersão colocando GHI do satélite versus GHI do 

sensor de campo, bem como DIF. Tais gráficos permitem examinar se a relação entre ambas 

as fontes de dados é fundamentalmente linear ou se apresenta desvios em determinados 

intervalos de irradiância. Essa comparação fornece informações valiosas sobre o grau de 

ajuste entre as medições satelitais e em site, contribuindo para identificar lacunas ou 

inconsistências antes de prosseguir para as fases de modelagem. 

 
Figura 9 - Exemplo de comparação de GHI e DIF de satélite e sensor. 

 
Fonte: Autoria própria 

 

 

3.4.4. Análise de Heteroscedasticidade 

 

Por fim, analisou-se a heteroscedasticidade do GHI e da DIF. A 

heteroscedasticidade é um fenômeno estatístico em que a variabilidade dos erros de um 

modelo de regressão não é constante ao longo dos valores preditores. Isso significa que a 

dispersão dos resíduos muda em diferentes níveis da variável independente, violando uma das 

principais suposições da regressão linear clássica: a homoscedasticidade (ou seja, erros com 

variância constante). Desta forma, para identificar esse comportamento, pode-se utilizar de 

gráficos do resíduo e do quadrado do resíduo, que torna a variação do erro mais notória. 
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3.5. Modelagem das Regressões 

 

Nesta etapa, são descritos os procedimentos utilizados para definir os parâmetros 

que serão utilizadas nas regressões de GHI e DIF, assim como a explicação da abordagem 

utilizada nos modelos de regressão definidos para cada irradiância. 

 

3.5.1. Definição das features 

 

Analisou-se a correlação entre as variáveis disponíveis na série temporal do 

Solargis, que são as possíveis entradas do modelo de Regressão. Desta forma, definiu-se 

como entrada apenas a irradiação em questão (GHI ou DIF) e o cosseno do ângulo zenital 

(valores entre 0 e 1 são melhor interpretados pelas regressões), as outras variáveis não 

apresentaram correlação alta, com exceção de elementos redundantes, como, por exemplo, 

GHI e GHI clearsky, ou ângulo zenital e ângulo de elevação, que são variáveis que já 

possuem alta correlação entre si, então é redundante sua utilização. 

 

3.5.2. Separação em Conjuntos de Treino e Teste 

 

Nesta etapa, optou-se por um método de particionamento que assegura a presença 

equilibrada de exemplos em cada faixa de ângulo zenital (ZEN) tanto no conjunto de treino 

quanto no de teste. Para isso, o conjunto de dados foi segmentado em bins de ZEN (agrupados 

de 10º em 10º, por exemplo, 0 a 10°, 10 a 20°, etc.), e em seguida foi aplicada a função  

`train_test_split` do sklearn, separadamente para cada bin, com uma proporção de 80% dos 

dados destinada ao treinamento e 20% ao teste. Dessa forma, evita-se que determinada faixa 

de ângulo zenital fique sub- ou super-representada em uma das divisões, o que poderia 

enviesar o treinamento e a avaliação do modelo. 

 

A cada iteração, os dados do bin correspondente são divididos em `X_train`, 

`y_train` e `X_test`, `y_test`, com o embaralhamento (`shuffle=True`) controlado por uma 

semente fixa (`random_state=69`), para garantir reprodutibilidade do cenário. Em seguida, 

todos os subconjuntos de treino são armazenados em listas e, ao final do processo, 

concatenados para formar o conjunto final de treino. Então, o mesmo procedimento é 

realizado para compor o conjunto de teste. Essa estratégia permite manter a coerência das 

proporções de treino e teste ao longo de toda a gama de ângulos zenitais, garantindo que o 
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modelo seja treinado e validado de forma equilibrada em relação à variação angular. 

 
Figura 10 - Diagrama com o procedimento de separação dos dados para treinamento de modelos. 

 
Fonte: Autoria própria 

 

3.5.3. Definição dos Modelos de Regressão 

 

Para a construção e avaliação dos modelos de regressão voltados à estimação da 

irradiância medida (GHI, do SR20-D2 ou DIF, do SPN1), considerando as variáveis de 

entrada disponíveis (especialmente a irradiância estimada pelo modelo 3 GHI ou DIF 3 e o 

cosseno do ângulo zenital), foram definidas três abordagens metodológicas principais. A 

primeira consiste em utilizar todos os dados de treinamento para ajustar um único modelo de 

Regressão Linear, enquanto a segunda se baseia em segmentar o domínio do ângulo zenital 

(ZEN) em diferentes faixas e, então, calibrar um modelo de Regressão Linear específico para 

cada uma dessas faixas. Por fim, a terceira abordagem também segmenta o domínio de ZEN, 

mas emprega uma expansão polinomial nas variáveis de entrada, gerando termos adicionais 

(como GHI², GHI×cos(ZEN), cos²(ZEN), dentre outros) para permitir uma maior flexibilidade 

no ajuste. 

 

Na primeira abordagem, denominada <Regressão Linear Única=, todo o conjunto 

de treinamento previamente definido (com a separação em treino e teste) é utilizado para 

ajustar um único modelo linear. As variáveis GHI (ou DIF) e cos(ZEN) são organizadas em 

um vetor X, enquanto o valor medido pelos sensores compõe o vetor alvo y. Em seguida, 

aplica-se a classe LinearRegression do scikit-learn para estimar os coeficientes . ³0,  ³1 Ս ³2
O objetivo dessa etapa é oferecer um modelo-base (baseline) simples, de modo que suas 
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previsões possam ser comparadas às de técnicas mais sofisticadas. 

 

A segunda abordagem, chamada <Regressão Linear Segmentada por Faixa de 

Ângulo Zenital (Piecewise Linear)=, busca lidar com eventuais mudanças no comportamento 

da irradiância ao longo da variação de ZEN. Para isso, definem-se <bins= ou intervalos de 

ZEN (por exemplo, de 0° a 10°, de 10° a 20°, e assim por diante) e, para cada bin, filtra-se o 

conjunto de dados de treino, retendo apenas amostras cujo ângulo zenital pertença àquele 

intervalo. Em seguida, ajusta-se um modelo de Regressão Linear restrito aos dados desse bin, 

armazenando-se, para cada intervalo, os coeficientes estimados, intercepto e número de 

amostras utilizadas. Para prever o valor de ghi e dif em um novo instante, é necessário 

identificar em qual bin o respectivo ZEN cai e, então, aplicar o modelo daquele bin para gerar 

a estimativa. Essa abordagem permite que cada submodelo reflita a relação entre as variáveis 

naquele intervalo angular específico, mas também reduz a quantidade de pontos disponíveis 

para cada ajuste, podendo aumentar a variabilidade. 

 

Na terceira abordagem, <Regressão Polinomial Segmentada por Faixa de Ângulo 

Zenital (Piecewise Polynomial)=, mantém-se a segmentação do ZEN em bins, porém, em vez 

de ajustar diretamente uma regressão linear simples, realiza-se uma expansão polinomial das 

variáveis GHI (ou DIF) e cos(ZEN). Essa expansão inclui termos como GHI², cos²(ZEN) e 

interações como GHI×cos(ZEN). Para tanto, utiliza-se a classe PolynomialFeatures, 

definindo um grau d (por exemplo, grau 4), e então realiza-se um ajuste linear nos termos 

polinomiais resultantes. Cada bin, portanto, possui um transformador polinomial próprio e um 

modelo de regressão correspondente, que são armazenados para posterior uso em previsão. 

Dessa forma, ao receber um novo valor de ZEN, identifica-se o bin e aplica-se o 

transformador polinomial, antes de usar o regressor linear treinado para aquela faixa 

específica de ZEN. Essa variação permite capturar de forma mais robusta relações não 

lineares, mas exige cuidado para não incorrer em sobreajuste (overfitting), especialmente 

quando a quantidade de dados em cada bin é limitada ou quando o grau polinomial é elevado. 

 

3.6. Métricas de avaliação dos modelos 

 

A avaliação dos modelos foi conduzida a partir de diferentes métricas de erro, 

todas normalizadas pela média dos valores observados, além da verificação do coeficiente de 

determinação (R²). Em particular, empregou-se o Root Mean Square Error normalizado 
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(nRMSE), o Mean Bias Error normalizado (nMBE) e o Mean Absolute Error normalizado 

(nMAE), definidos para um conjunto de N amostras onde  representa o valor predito e  o աՑ աՑ
valor observado, e  é a média dos valores observados dada por ա

 

 ա = (1 ÷ ý) × Ց=1
ý3 աՑ  (16)

 

enquanto o nRMSE é dada por 

 

 ՖՀԻՁý = (1 ÷ ý) × Ց=1
ý3 (աՑ 2 աՑ)2»¿ ¿£ ÷ ա   (17)

 

e o nMBE,  por sua vez, segue a forma 

 

 ՖԻ԰ý =  (1 ÷ ý) × Ց=1
ý3 (աՑ 2 աՑ)( ) ÷ ա  (18)

 

por fim, o nMAe, é dado por 

 

 ՖԻԯý = (1 ÷ ý) × Ց=1
ý3 աՑ 2 աՑ||| |||( ) ÷ ա  (19)

 

Tais medidas, por serem <normalizadas= pela média , permitem uma comparação ա
relativa dos erros em diferentes intervalos de magnitude da variável alvo. Além disso, 

utilizou-se o coeficiente de determinação (R²), calculado a partir de: 

 

 Հ2 = 1 2 Ց=1
ý3 (աՑ 2 աՑ)2( ) ÷ Ց=1

ý3 (աՑ 2 ա)2( )££££ §§§§  (20)
 

que fornece uma indicação de quanto da variabilidade dos dados o modelo é capaz de 

explicar. Para facilitar a análise gráfica, foi implementada a função 

`plot_performance_comparison`, que gera, em um único painel, tanto o diagrama de 
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dispersão entre valores previstos e observados (com coloração baseada na densidade de 

pontos e uma linha de referência 1:1) quanto um histograma das diferenças ( ). Essa ա 2 ա
função também imprime no console os valores das métricas de desempenho (R², nRMSE e 

nMBE), possibilitando uma avaliação visual e quantitativa dos resultados, bem como a 

identificação de eventuais tendências de superestimativa ou subestimativa ao longo da faixa 

de valores preditos.  
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4. RESULTADOS 

 

Os resultados obtidos neste trabalho foram avaliados com base nos desempenhos 

dos diferentes modelos de regressão (Linear Único, Linear por Faixas de Ângulo Zenital e 

Polinomial por Faixas) aplicados a cinco bases de dados (Tianguá - CE, Lajes - RN, Barra - 

BA, Goianésia - GO e Nova Alvorada do Sul - MS). Para cada localidade, analisaram-se as 

métricas de desempenho, como R² (coeficiente de determinação), nRMSE (erro quadrático 

médio normalizado), nMBE (erro médio tendencioso normalizado) e nMAE (erro absoluto 

médio normalizado). Além disso, foram realizadas comparações entre os valores estimados e 

os valores medidos de GHI (Global Horizontal Irradiance) e DIF (Difusa). 

 

Na Tabela 3, apresenta-se um panorama do viés (nMBE) das componentes GHI e 

DIF do Solargis em cada site, evidenciando a existência de tendência de subestimativa ou 

superestimativa antes da aplicação dos modelos de correção via regressão. Esses resultados 

servem de base para verificar o impacto das metodologias propostas na redução desse viés. 

 
Tabela 3 - Viés das componentes GHI e DIF do Solargis para cada site. 

 nMBE GHI (%) nMBE DIF (%) 
Tiangua - CE 0.6665 17.9160 
Lajes - RN -2.5530 11.8077 
Barra - BA 1.9473 14.8468 

Goianésia - GO 0.1178 3.5103 
Nova Alvorada do Sul - MS -0.0795 14.1650 

Fonte: Autoria própria. 
 

4.1. Avaliação e comparação de métricas em função do ZEN 

 

Na sequência, cada modelo foi avaliado em função do ângulo zenital (ZEN), de 

modo a verificar possíveis variações no desempenho para faixas de ZEN distintas. Para 

ilustrar essas análises, as Figuras 11 a 20 mostram a evolução dos principais indicadores 3 tais 

como R², nRMSE, nMBE e nMAE 3 ao longo de diferentes intervalos de ZEN, para cada um 

dos cinco sítios estudados. Essas figuras permitem observar como a qualidade do ajuste, o 

viés e o erro médio variam conforme o ângulo zenital, possibilitando identificar regiões em 

que o modelo apresenta comportamento mais consistente ou em que possa ocorrer um 

aumento do erro. 
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4.1.1. Análise da componente global (GHI) 

 

Em linhas gerais, observam-se melhorias significativas nas estimativas de GHI ao 

se aplicar modelos segmentados ou polinomiais, sobretudo em ângulos zenitais mais 

elevados, em que a irradiância tende a apresentar maior dispersão. Já em faixas de ZEN 

menores, a melhoria é por vezes menos pronunciada, uma vez que o Solargis, em alguns 

casos, já apresenta menor erro nessa condição. Ainda assim, a comparação detalhada dos 

resultados em cada sítio revela que a escolha do modelo mais apropriado pode variar em 

função de fatores climáticos e geográficos, tais como latitude e regime de nuvens. 

 
Figura 11 - Evolução do R² e do nRMSE do GHI em função do ZEN, site de Tianguá. 

 
Fonte: Autoria própria. 

 

Na Figura 11, pode-se observar que os modelos que foram treinados por bins de 

ângulo zênite, se demonstraram mais eficientes conforme os valores do ângulo zenital se 

aproximam de 90°. Vale ressaltar também, que para valores entre 80° à 90° de ângulo zenital 

o coeficiente R2 apontou valores negativos, mostrando que não existe correlação entre o 

calibrado e o original, fato que é explicado pelo aumento brusco do nRMSE nessa faixa de 

ângulo zenital. Para valores inferiores a 50° de ângulo zenital, observa-se pouca diferença 

entre os modelos, com os modelos treinados por bins levemente melhores. 
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Figura 12 - Evolução do nMBE e do NMAE do GHI em função do ZEN, site de Tianguá. 

 
Fonte: Autoria própria. 

 

Na Figura 12, observa-se que os dados de Tianguá possuem um viés positivo 

considerável para valores com ângulo zenital superior a 50°, e também observa-se que a 

calibração por regressão linear (8DIF_LR9) falha nesse mesmo intervalo, porém a 

metodologia proposta de calibração em bins, mantém o viés próximo a 0 em todo o intervalo 

de ângulo zenital, se demonstrando mais robusta. Esse melhor desempenho da metodologia 

apresentada também é observado na redução do erro absoluto para ângulos superiores a 80°. 
 

Figura 13 - Evolução do R² e do nRMSE do GHI em função do ZEN, site de Lajes. 

 
Fonte: Autoria própria. 

 

Na Figura 13, devido a oscilação dos valores ser mais próxima, temos uma 

intervalo menor de plotagem no eixo y, o que torna mais claro o desempenho superior dos 

modelos em bins, apesar de não ser uma diferença grande. 
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Figura 14 - Evolução do nMBE e do NMAE do GHI em função do ZEN, site de Lajes. 

 
Fonte: Autoria própria. 

 

Na Figura 14, observa-se um viés nos dados de Lajes, que se reflete em todos os 

dados de medição, com tendência negativa, também pode-se observar que os modelos de 

calibração em bins mostram-se mais constantes, com erros mais próximos de 0 para todos os 

intervalos. 
 

Figura 15 - Evolução do R² e do nRMSE do GHI em função do ZEN, site de Barra. 

 
Fonte: Autoria própria. 

 

Na Figura 15, observa-se resultados similares aos da Figura 13. 

 

 

 

 

 



 
58 

 

Figura 16 - Evolução do nMBE e do NMAE do GHI em função do ZEN, site de Barra. 

 
Fonte: Autoria própria. 

 

Na Figura 16, observa-se que para valores superiores a 50° de ângulo zenital, 

todos os modelos apresentaram erros consideráveis, apesar de superiores aos dados originais, 

considerando que para os outros sites os modelos com calibração em bins haviam atingido 

valores próximos de 0. 
 

Figura 17 - Evolução do R² e do nRMSE do GHI em função do ZEN, site de Goianésia. 

 
Fonte: Autoria própria. 

 

Na Figura 17, observa-se valores bem próximos de R2 e nRMSE, destoando 

apenas para intervalos superiores a 70°de ângulo zenital, semelhante aos outros sites. 
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Figura 18 - Evolução do nMBE e do NMAE do GHI em função do ZEN, site de Goianésia. 

 
Fonte: Autoria própria. 

 

Na Figura 18, observa-se na evolução do nMBE o mesmo comportamento 

encontrado na Figura 17, em que para valores superiores a 90° de ângulo zenital, a calibração 

por regressão linear (8DIF_LR9) apresenta um pico negativo superior ao erro dos dados sem 

calibração. Esse comportamento não é observado para os modelos de calibração em bins. 
 

Figura 19 - Evolução do R² e do nRMSE do GHI em função do ZEN, site de Nova Alvorada do Sul. 

 
Fonte: Autoria própria. 

 

Na Figura 19, observa-se valores bem próximos de R2 e nRMSE, destoando 

apenas para intervalos superiores a 70°de ângulo zenital, semelhante aos outros sites. 
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Figura 20 - Evolução do nMBE e do NMAE do GHI em função do ZEN, site de Nova Alvorada do Sul. 

 
Fonte: Autoria própria. 

 

Na Figura 20, observa-se novamente o mesmo comportamento que ocorre na 

Figura 18 e 17, citado anteriormente. 
 

Nas Figuras apresentadas, nota-se que os valores de R² tendem a se manter em 

patamares mais elevados nos intervalos de ângulo zenital (ZEN) baixos a intermediários, 

indicando que, nessas condições, tanto o dado original do Solargis (GHI) quanto os modelos 

de regressão (GHI_LR, GHI_LR_BINS e GHI_POLY) conseguem explicar uma fração 

considerável da variabilidade observada. Já quando o ZEN ultrapassa 60°370°, há uma queda 

acentuada de R² em vários sítios, evidenciando maior dificuldade em prever a irradiância 

global à medida que o Sol se aproxima do horizonte. 

 

As métricas de erro, especialmente o nRMSE e o nMAE, confirmam essa 

tendência de aumento progressivo conforme o ângulo zenital cresce, refletindo o acréscimo de 

incertezas e a maior dispersão dos dados de irradiância em condições de sol baixo. Mesmo 

nessa situação, as abordagens segmentadas (GHI_LR_BINS) e polinomiais (GHI_POLY) 

costumam oferecer reduções de erro um pouco mais acentuadas em comparação à regressão 

linear simples (GHI_LR). Em contrapartida, para ZEN baixos (até cerca de 40°350°), os 

ganhos podem ser menores, pois a qualidade do dado original (GHI) já é suficientemente boa 

em muitos casos. 

 

Quanto ao viés (nMBE), alguns sítios exibem valores ligeiramente positivos 

(superestimativa) para o dado original do Solargis nos ângulos zenitais médios ou altos, 

enquanto outros apresentam leve subestimativa em faixas específicas de ZEN. Os métodos de 
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correção, em geral, reduzem essa tendência de forma razoável na maior parte dos intervalos, 

mas pode haver comportamentos atípicos em ângulos muito extremos, o que reforça a 

necessidade de análise específica para cada local e faixa angular. 

 

De modo geral, os resultados mostram que o desempenho dos modelos varia ao 

longo do ângulo zenital, sendo recomendável uma abordagem que considere essa variação 

caso se deseje obter correções consistentes em toda a gama de posições solares. Além disso, a 

comparação entre GHI_LR_BINS e GHI_POLY sugere que ambas as estratégias de 

segmentação (por regressões lineares ou por regressões polinomiais em intervalos de zênite) 

são capazes de atenuar os erros e o viés do dado original, ainda que existam diferenças 

pontuais em cada sítio. 

 

4.1.2. Análise da componente difusa (DIF) 

 

Para a componente difusa (DIF), foi conduzida avaliação semelhante, 

observando-se novamente as métricas R², nRMSE, nMBE e nMAE em diferentes faixas de 

ZEN. De modo geral, o dado original do Solargis (DIF) apresenta viés e erro um pouco mais 

elevados em ângulos zenitais intermediários a altos, em razão do aumento do espalhamento 

atmosférico. Ainda assim, a aplicação das correções via regressão tende a reduzir esses 

valores, sobretudo com o uso de modelos segmentados ou polinomiais. 

 
Figura 21 - Evolução do R² e do nRMSE da DIF em função do ZEN, site de Tianguá. 

 
Fonte: Autoria própria. 

 

Na Figura 21, observa-se que existe uma melhora considerável na métrica R2, 

para todo o intervalo de ângulo zenital, independente do método de calibração, porém os 
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métodos de calibração em bins, mostram-se mais efetivos. 
 

Figura 22 - Evolução do nMBE e do NMAE da DIF em função do ZEN, site de Tianguá. 

 
Fonte: Autoria própria. 

 

Na Figura 22, observa-se o alto viés nos dados de irradiação difusa do site de 

Tianguá, com valores superiores a 10% para praticamente todos os intervalos de ângulo 

zenital. Também observa-se que as regressões foram efetivas na remoção de viés dos dados. 

Vale ressaltar que observa-se o mesmo problema que ocorria na irradiação global, com a 

calibração por regressão linear (8DIF_LR9), para ângulos superiores a 80°. 
 

Figura 23 - Evolução do R² e do nRMSE da DIF em função do ZEN, site de Lajes. 

 
Fonte: Autoria própria. 

 

Na Figura 23, observa-se que existe uma melhora considerável nas métricas R2 e 

nRMSE, para todo o intervalo de ângulo zenital, independente do método de calibração, 

porém os métodos de calibração em bins, mostram-se mais efetivos, com destaque para o 

método polinomial, que consegue se distanciar consideravelmente em R2. 
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Figura 24 - Evolução do nMBE e do NMAE da DIF em função do ZEN, site de Lajes. 

 
Fonte: Autoria própria. 

 

Na Figura 24, observa-se o mesmo comportamento visto na Figura 22. 
 

Figura 25 - Evolução do R² e do nRMSE da DIF em função do ZEN, site de Barra. 

 
Fonte: Autoria própria. 

 

Na Figura 25, observa-se de forma geral o mesmo notado nas Figuras 23 e 21, 

mas vale ressaltar que para valores de ângulo zenital superiores a 80°, a calibração por 

regressão linear (8DIF_LR9) mostrou-se inferior ao dados sem calibração, o que havia sido 

notado apenas no nMBE, como citado anteriormente. Também observa-se que a regressão 

polinomial, para certos intervalos de ângulos zenital, mostra-se consideravelmente superior 

em relação às regressões lineares. 
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Figura 26 - Evolução do nMBE e do NMAE da DIF em função do ZEN, site de Barra. 

 
Fonte: Autoria própria. 

 

Na Figura 26, observa-se o mesmo comportamento visto na Figura 22 e 24, 

destacando uma maior redução de nMAE, como pode-se observar para a redução de 

aproximadamente 10% entre os dados 8DIF9 e 8DIF_POLY9 (calibração por bins com 

regressão polinomial). Ressaltando, que para este site de Barra, a regressão polinomial 

desempenhou uma redução em valores de erro absoluto considerável em relação a regressão 

linear.  
 

Figura 27 - Evolução do R² e do nRMSE da DIF em função do ZEN, site de Goianésia. 

 
Fonte: Autoria própria. 

 

Na Figura 27, observa-se métricas bem próximas e com mesma tendência, 

comportamento que não havia sido visto nos sites do Nordeste (Tianguá, Lajes e Barra). 

Ressaltando que o site de Goianésia se encontra em um local de geografia mais plana, o que 

influencia na irradiação difusa. 
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Figura 28 - Evolução do nMBE e do NMAE da DIF em função do ZEN, site de Goianésia. 

 
Fonte: Autoria própria. 

 

Na Figura 28, observa-se que o viés (nMBE) é inferior a 10%, muito menor que 

os vieses observados anteriormente. Além disso, observa-se novamente o mesmo 

comportamento da calibração por regressão linear (8DIF_LR9) para valores superiores a 80° 

de ângulo zenital. 
 

Figura 29 - Evolução do R² e do nRMSE da DIF em função do ZEN, site de Nova Alvorada do Sul. 

 
Fonte: Autoria própria. 

 

Na Figura 29, observa-se um comportamento similar ao encontrado nos sites do 

Nordeste, mas nesse caso para valores de ângulo zenital inferiores a 50°, temos métricas mais 

próximas. 
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Figura 30 - Evolução do nMBE e do NMAE da DIF em função do ZEN, site de Nova Alvorada do Sul. 

 
Fonte: Autoria própria. 

 

Na Figura 30, observa-se um viés superior a 10% para praticamente todos os 

intervalos de ângulo zenital, assim como o mesmo comportamento citado anteriormente para 

a calibração por regressão linear (8DIF_LR9). 

 

Nas Figuras apresentadas, nota-se que todas as métricas de erros destoam com 

maior amplitude que observado com a componente de irradiação global (GHI), com exceção 

de Goianésia, que foi o único site em que as métricas estão mais próximas, devido a questões 

geográficas, como citado anteriormente. Vale destacar, com exceção de Goianésia, que todos 

os sites demonstraram viés (nMBE) superiores a 10% para todo o intervalo de ZEN.  

 

Quanto aos sites do Nordeste, observa-se diversos pontos onde o nRMSE e o 

nMBA mostram diferenças superiores a 5%, 10% em comparação entre os dados de satélite e 

os dados calibrados, o que mostra que além do viés, também é possível reduzir 

consideravelmente o erro absoluto, independente do intervalo de ângulo zenital. 

 

De modo geral, os resultados reforçam que o desempenho dos modelos varia ao 

longo do ângulo zenital e que a qualidade dos dados de irradiação difusa da fonte de satélite é 

bem inferior à dos dados de irradiação global, devido às dificuldades na modelagem, 

geografia etc. Diante disso, a calibração de difusa mostra-se indispensável, além de que 

observou-se ganhos na utilização de metodologia de calibração em clusters, com destaque 

para a regressão polinomial, que conseguiu se destacar em relação a regressão linear, 

principalmente por conta da irradiação difusa possuir mais não-linearidades.  
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5. CONCLUSÃO 

 

Este trabalho apresentou o desenvolvimento e a avaliação de diferentes 

metodologias de regressão (Linear Único, Linear por Faixas de Ângulo Zenital e Polinomial 

por Faixas) aplicadas à estimação da irradiância global (GHI) e difusa (DIF) em cinco 

localidades distintas (Tianguá - CE, Lajes - RN, Barra - BA, Goianésia - GO e Nova Alvorada 

do Sul - MS). Foram analisadas métricas como R², nRMSE, nMBE e nMAE, além de gráficos 

que relacionam o desempenho dos modelos às variações do ângulo zenital (ZEN). Os 

resultados mostram que os métodos segmentados ou polinomiais, de modo geral, suplantam o 

modelo linear único em cenários de maior dispersão dos dados ou de ângulos zenitais mais 

elevados, proporcionando reduções no viés e nos erros médios. 

 

A partir das análises realizadas, constatou-se que: 

 

- A segmentação em faixas de ZEN contribui para ajustar melhor os modelos às 

variações de irradiância, tanto global quanto difusa, principalmente em 

situações extremas (sol muito baixo ou muito alto no horizonte). 

- A abordagem polinomial tende a capturar relações mais complexas entre a 

irradiância e o ângulo zenital, resultando em erros ligeiramente menores que a 

regressão linear segmentada em diversos intervalos. 

- A irradiância difusa (DIF) apresenta naturalmente maior variabilidade em 

ângulos zenitais extremos, mas ainda assim pode ser beneficiada pelos 

modelos propostos. 

 

Dessa forma, o trabalho contribuiu ao demonstrar que a consideração explícita do 

ângulo zenital e a introdução de termos polinomiais podem aperfeiçoar a acurácia de 

estimativas de irradiância, ampliando a confiabilidade em aplicativos que dependam de dados 

solares mais ajustados, como planejamento energético e dimensionamento de sistemas 

fotovoltaicos. 

 

5.1. Limitações 

 

Apesar das melhorias observadas, algumas limitações devem ser destacadas: 
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- Restrição de Faixas de ZEN: Em algumas localidades, o volume de dados em 

ângulos zenitais muito elevados (próximos de 90°) ou muito baixos (próximos 

de 0°) mostrou-se limitado, o que pode dificultar o refinamento dos modelos 

nessas condições. 

- Generalização para Outros Locais: Os resultados podem não se estender de 

forma imediata a regiões com condições climáticas ou padrões de nebulosidade 

significativamente diferentes, exigindo uma etapa de revalidação ou 

recalibração dos modelos. 

- Complexidade Computacional: A abordagem polinomial e a segmentação por 

bins de ZEN demandam um volume maior de ajustes e armazenamento de 

parâmetros, o que pode ser um entrave em aplicações com recursos 

computacionais mais restritos. 

 

5.2. Trabalhos Futuros 

 

Para dar continuidade aos resultados obtidos neste trabalho, sugere-se: 

 

Incorporação de Variáveis Meteorológicas 

- Ventos, Umidade e Temperatura: Integrar variáveis adicionais pode 

revelar correlações importantes e aprimorar a qualidade das estimativas 

de GHI e DIF. 

 

Otimização de Bins ou Modelos de Clustering 

- Abordagens Dinâmicas: Em vez de segmentar o ângulo zenital em 

intervalos fixos, explorar técnicas de clustering que agrupe faixas de 

ZEN de maneira adaptativa, considerando também o erro de previsão. 

 

Aplicação de Métodos de Machine Learning Avançados 

- Redes Neurais ou Modelos Ensembling: Investigar modelos como 

Random Forest, Gradient Boosted Trees ou redes neurais profundas 

para avaliar se conseguem capturar variações não lineares de maneira 

mais eficiente. 

 

Extensão para Outras Regiões e Base de Dados 
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- Validação Abrangente: Expandir a análise para outros locais com perfis 

climáticos distintos, a fim de avaliar a robustez dos modelos em 

contextos mais amplos. 

 

Avaliação Econômica e Prática 

- Aplicação em Projetos Solares: Examinar o impacto da redução de erro 

nas estimativas de produção fotovoltaica, incluindo estudos de 

custo-benefício para diferentes configurações de sistema. 

 

5.3. Considerações Finais 

 

Com as análises e resultados obtidos, conclui-se que a inclusão do ângulo zenital 

de forma segmentada ou via regressão polinomial é uma estratégia promissora para 

aperfeiçoar as estimativas de GHI e DIF em cenários reais. Embora ainda haja espaço para 

aprimoramentos e validações adicionais, o conjunto de metodologias apresentadas constitui 

uma base sólida para aplicações que demandem maior exatidão em dados de irradiância, 

contribuindo para o avanço de soluções no âmbito de energias renováveis e planejamento 

energético em distintas regiões do país. 
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APÊNDICE - JUPYTER NOTEBOOK DO CÓDIGO DO TRABALHO 

 
# %% [markdown] 
# ## Timeseries from XX - XX 
# _Data provided by Casa dos Ventos Desenvolvimento._ 
 
# %% [markdown] 
# ## 1. Problem Definition 
# 
# Satellite solarimetric data are very general and have several years 
of measurements (more than 20), but when compared with sensor data, 
they have considerable inaccuracy. That said, the proposal is to use 
data from measurement campaigns (3 years of sensor measurements) to 
calibrate the entire satellite time series, to improve data quality. 
 
# %% [markdown] 
# ## 2. Data Mining 
# 
# Satellite data from Solargis or other Satellite source. 
 
# %% [markdown] 
# ### 2.1. Imports 
# 
# Imports and functions declarations. 
 
# %% 
# Imports 
# Libraries 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import scipy.stats as stats 
import statsmodels.api as sm 
import matplotlib.pyplot as plt 
 
# Classes 
from typing import Union 
from pvlib import ( 
    atmosphere, 
    clearsky, 
    irradiance, 
    solarposition, 
) 
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from datetime import timedelta 
from scipy.stats import gaussian_kde 
from sklearn.linear_model import LinearRegression 
from sklearn.preprocessing import PolynomialFeatures 
 
# Functions 
from scipy.stats import mode 
from tabulate import tabulate 
from pvlib.tools import sind, cosd 
from sklearn.metrics import r2_score 
from statsmodels.stats.diagnostic import het_breuschpagan, het_white 
 
# %% 
def add_ghi_column(data: pd.DataFrame) -> pd.DataFrame: 
 
    data_copy = data.copy() 
    data_copy['GHI'] = (data_copy['PR1'] + data_copy['PR2']) / 2 
 
    return data_copy 
 
def add_kd_column(sat_data: pd.DataFrame, 
                  ghi_column_name: str, 
                  dif_column_name: str) -> pd.DataFrame: 
    # Create a copy of the input DataFrame to avoid modifying the 
original data 
    sat_data_copy = sat_data.copy() 
 
    # Calculate the Diffuse-to-Global Horizontal Irradiance Ratio (KD) 
    sat_data_copy['KD'] = sat_data_copy[dif_column_name] / 
sat_data_copy[ghi_column_name] 
 
    # Replace NaN values in 'KD' column with 1 to handle division by 
zero 
    sat_data_copy.loc[pd.isna(sat_data_copy['KD']), 'KD'] = 1 
    sat_data_copy.loc[np.isinf(sat_data_copy['KD']), 'KD'] = 1 
 
    return sat_data_copy 
 
def add_kt_column(data: pd.DataFrame, 
                  ghi_column_name: str, 
                  toa_column_name: str, 
                  elv_column_name: str, 
) -> pd.DataFrame: 
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    # Create a copy of the input DataFrame to avoid modifying the 
original data 
    data_copy = data.copy() 
 
    # Calculate the Transmittance Ratio (KT) 
    data_copy['KT'] = data_copy[ghi_column_name] / 
(data_copy[toa_column_name] * sind(data_copy[elv_column_name])) 
 
    # Replace NaN values in 'KT' column with 0 
    data_copy.loc[pd.isna(data_copy['KT']), 'KT'] = 0 
 
    # Replace infinite KT values with 0 to avoid incorrect Direct 
Normal Irradiance (DNI) values 
    data_copy.loc[(data_copy['KT'] == np.inf) | (data_copy['KT'] == 
np.NINF), 'KT'] = 0 
 
    return data_copy 
 
def add_solar_position_columns(data: pd.DataFrame, 
                               dt_minutes: int, 
                               latitude: float, 
                               longitude: float, 
                               correct_sun_elevation: bool =True) -> 
pd.DataFrame: 
 
    # Create a copy of the input DataFrame to avoid modifying the 
original data 
    data_copy = data.copy() 
 
    timestamp = data_copy.index + timedelta(minutes=dt_minutes / 2) 
    # Get solar position by NREL SPA algorithm from timestamp 
    sun_position_pvlib = solarposition.get_solarposition(timestamp, 
latitude, longitude) 
    # Get the extraterrestrial radiation from timestamp 
    irr_toa = irradiance.get_extra_radiation(timestamp) 
 
    sun_position_pvlib.index = sun_position_pvlib.index - 
timedelta(minutes=dt_minutes / 2) 
 
    irr_toa.index = irr_toa.index - timedelta(minutes=dt_minutes / 2) 
 
    sun_elevation_pvlib = sun_position_pvlib['apparent_elevation'] 
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    if correct_sun_elevation: 
        sun_elevation_pvlib_corrected = 
apply_elevation_correction(sun_elevation_pvlib) 
        sun_position_pvlib['apparent_elevation'] = 
sun_elevation_pvlib_corrected 
        sun_position_pvlib['apparent_zenith'] = 90 - 
sun_elevation_pvlib_corrected 
    # Create new columns in the dataframe 
    data_copy['ZEN'] = sun_position_pvlib['apparent_zenith'] 
    data_copy['ELV'] = sun_position_pvlib['apparent_elevation'] 
    data_copy['AZ'] = sun_position_pvlib['azimuth'] 
    data_copy['TOA'] = irr_toa 
 
    return data_copy 
 
def apply_elevation_correction(elevation_angle: Union[float, 
np.array]): 
 
    # Convert scalar input to numpy array 
    elevation_angle = np.asarray(elevation_angle) 
 
    # Apply elevation correction 
    result = np.where( 
        elevation_angle >= 7.0, 
        elevation_angle, 
        np.where( 
            (-7.0 < elevation_angle) & (elevation_angle < 7.0), 
            0.5 * elevation_angle + 3.5, 
            0.0 
        ) 
    ) 
 
    # If input was scalar, return scalar; otherwise, return numpy array 
    return np.squeeze(result) 
 
def get_windographer_avg_columns(data: pd.DataFrame) -> pd.DataFrame: 
    # List all column names from the input DataFrame 
    columns_list = list(data.columns) 
    
    # Extract the columns that contain 'AVG' 
    columns_avg = [col for col in columns_list if 'AVG' in col] 
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    # Select the 'AVG' columns from the DataFrame 
    data_avg = data.loc[:, columns_avg] 
    
    # List all column names of the filtered DataFrame 
    columns_list_avg = list(data_avg.columns) 
    
    # Shorten each column name to its first three characters 
    column_shortnames_avg = [x[:3] for x in columns_list_avg] 
    
    # Rename the columns in the filtered DataFrame 
    data_avg.columns = column_shortnames_avg 
 
    return data_avg 
 
def get_common_index(dataframes): 
    # Ensure there are at least two DataFrames in the array 
    if len(dataframes) < 2: 
        raise ValueError("At least two DataFrames are required.") 
 
    # Extract indices from the first DataFrame 
    common_idx = set(dataframes[0].index) 
 
    # Intersect indices with each subsequent DataFrame 
    for df in dataframes[1:]: 
        common_idx.intersection_update(df.index) 
 
    return common_idx 
 
def get_clear_sky_values(timestamp: pd.Timestamp, 
                         latitude: float, 
                         longitude: float, 
                         altitude: float) -> pd.DataFrame: 
    # Get solar position using pvlib 
    sun_position_pvlib = solarposition.get_solarposition(timestamp, 
latitude, longitude) 
 
    # Get apparent elevation and apply correction 
    sun_elevation_pvlib = apply_elevation_correction( 
        elevation_angle=sun_position_pvlib['apparent_elevation'] 
    ) 
 
    sun_position_pvlib['apparent_elevation'] = sun_elevation_pvlib 
    sun_position_pvlib['apparent_zenith'] = 90 - sun_elevation_pvlib 
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    # Get relative and absolute airmass 
    rel_airmass = atmosphere.get_relative_airmass( 
        zenith=sun_position_pvlib['apparent_zenith'] 
    ) 
    abs_airmass = atmosphere.get_absolute_airmass( 
        airmass_relative=rel_airmass, 
        pressure=atmosphere.alt2pres(altitude) 
    ) 
 
    # Linke turbidity 
    linke_turb = 2#clearsky.lookup_linke_turbidity(timestamp, latitude, 
longitude) 
 
    # Calculate clear-sky values 
    clear_sky_day = clearsky.ineichen( 
        apparent_zenith=sun_position_pvlib['apparent_zenith'], 
        airmass_absolute=abs_airmass, 
        linke_turbidity=linke_turb, 
        altitude=altitude 
    ) 
 
    clear_sky_day.rename(columns={ 
        'ghi': 'GHI', 
        'dhi': 'DIF', 
        'dni': 'DNI' 
    }, inplace=True) 
 
    # Update 'ZEN' in clear_sky_day with apparent zenith angle 
    clear_sky_day['ZEN'] = sun_position_pvlib['apparent_zenith'] 
 
    # Get extraterrestrial radiation at the top of the atmosphere 
    clear_sky_day['TOA'] = irradiance.get_extra_radiation(timestamp) 
 
    # Get apparent elevation 
    clear_sky_day['ELV'] = sun_position_pvlib['apparent_elevation'] 
 
    # Calculate clear-sky index (kt) based on GHI, extraterrestrial 
radiation, and apparent elevation 
    clear_sky_day = add_kt_column(clear_sky_day, "GHI", "TOA", "ELV") 
 
    # Return the calculated clear-sky values 
    return clear_sky_day 
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def get_minutes_resolution_from_time(time_list: list, format: str=None) 
-> int: 
 
    if isinstance(time_list, pd.DatetimeIndex): 
        time_series = time_list 
    else: 
        # Convert the time series string to datetime 
        time_series = pd.to_datetime(time_list, format=format) 
 
    # If time have't at least 2 elements, we can descover the 
resolution 
    # So it raises an ValueError 
    if len(time_series)<2: 
        raise ValueError("Not enough elements in list.") 
 
    # Calculate the time difference between consecutive timestamps 
    time_diff = time_series.diff()[1:] 
 
    # Converting Timedelta to seconds 
    time_diff = [diff.total_seconds() for diff in time_diff] 
 
    # Calculate the mode of time differences in seconds 
    mode_time_diff_sec = mode(time_diff)[0] 
 
    # Convert mode time difference to minutes 
    resolution_minutes = mode_time_diff_sec // 60 
    
    return resolution_minutes 
 
def predict_piecewise_ghi( 
    zen_value: list, 
    ghi_value: list, 
    bin_models: list 
) -> list: 
    
    cos_zen = cosd(zen_value)  # Convert to cosine 
    
    for model in bin_models: 
        (low, high) = model["zen_range"] 
        if low <= zen_value < high: 
            # Use the corresponding bin's regression model 
            ghi_slope = model["slope_GHI"] 
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            czen_slope = model["slope_cZEN"] 
            intercept = model["intercept"] 
            
            return intercept + ghi_slope * ghi_value + czen_slope * 
cos_zen 
 
    return np.nan 
 
def predict_piecewise_dif( 
    zen_value: list, 
    dif_value: list, 
    bin_models: list 
) -> list: 
 
    cos_zen = cosd(zen_value)  # Convert to cosine 
    
    for model in bin_models: 
        (low, high) = model["zen_range"] 
        if low <= zen_value < high: 
            # Use the corresponding bin's regression model 
            dif_slope = model["slope_DIF"] 
            czen_slope = model["slope_cZEN"] 
            intercept = model["intercept"] 
            
            return intercept + dif_slope * dif_value + czen_slope * 
cos_zen 
 
    return np.nan 
 
def fit_piecewise_polynomial( 
    df: pd.DataFrame, 
    zen_bins: list, 
    degree: int, 
    feature_cols: list = ["GHI", "cZEN"], 
    target_col: str = "GHI_PYR" 
): 
 
    poly_models = [] 
    
    for (low, high) in zen_bins: 
        # Filter the data for this ZEN bin 
        mask = (df["ZEN"] >= low) & (df["ZEN"] < high) 
        df_bin = df[mask] 
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        # Prepare X and y 
        X = df_bin[feature_cols].values  # e.g., [DIF, cZEN] 
        y = df_bin[target_col].values 
 
        # Polynomial expansion for this bin 
        poly_transformer = PolynomialFeatures(degree=degree, 
include_bias=True) 
        X_poly = poly_transformer.fit_transform(X) 
 
        # Fit a simple linear regression on the polynomial-expanded 
features 
        reg = LinearRegression().fit(X_poly, y) 
 
        # Compute MSE (just for reference) 
        y_pred = reg.predict(X_poly) 
        nrmse = normalized_rmse(y_pred, y) 
 
        poly_models.append({ 
            "zen_range": (low, high), 
            "model": reg, 
            "poly_transformer": poly_transformer, 
            "nrmse": nrmse, 
            "n_samples": len(X) 
        }) 
 
        print(f"[Degree={degree}] ZEN [{low}, {high}): 
nRMSE={nrmse:.3f}, n={len(X)}") 
    
    return poly_models 
 
def predict_piecewise_polynomial( 
    zen_value: float, 
    param_value: float, 
    bin_models: list 
) -> float: 
 
    # Compute cos(zen) in degrees 
    cos_zen = cosd(zen_value) 
    
    # Check each bin; use whichever bin the current zen_value fits into 
    for model_info in bin_models: 
        (low, high) = model_info["zen_range"] 
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        if low <= zen_value < high: 
            # Grab the polynomial transformer and the regression model 
            poly_transformer = model_info["poly_transformer"] 
            reg = model_info["model"] 
            
            # Construct our 2D feature row: [ [DIF, cZEN] ] 
            X = np.array([[param_value, cos_zen]]) 
            
            # Transform using the stored polynomial transformer for 
that bin 
            X_poly = poly_transformer.transform(X) 
            
            # Predict 
            y_pred = reg.predict(X_poly) 
            return y_pred[0] 
 
    # If ZEN does not fall into any bin, return NaN 
    return np.nan 
 
def normalized_rmse(predicted, observed): 
    rmse = np.sqrt(np.mean((predicted - observed) ** 2)) 
    return rmse / np.mean(observed) 
 
def normalized_mbe(predicted, observed): 
    mbe = np.mean(predicted - observed) 
    return mbe / np.mean(observed) 
 
def normalized_mae(predicted, observed): 
    mba = np.mean(np.abs(predicted - observed)) 
    return mba / np.mean(observed) 
 
def plot_performance_comparison( 
    x: np.ndarray, 
    y: np.ndarray, 
    filter_array: np.ndarray = None, 
    filter_threshold: float = None, 
    x_label: str = 'Predicted', 
    y_label: str = 'Actual', 
    diff_label: str = 'Difference', 
    diff_count_label: str = 'Count', 
    diff_title: str = 'Histogram of Differences' 
) -> None: 
    # Determine which points to include based on optional filtering 
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    if filter_array is not None and filter_threshold is not None: 
        valid_filter = filter_array > filter_threshold 
    else: 
        valid_filter = np.ones_like(x, dtype=bool) 
    
    # Setup the figure and axes 
    plt.rcParams["figure.figsize"] = (12, 6) 
    plt.rc('font', size=12) 
 
    fig, axes = plt.subplots(1, 2) 
    axes = axes.flatten() 
 
    # Calculate point density for scatter plot 
    xy = np.vstack([x[valid_filter], y[valid_filter]]) 
    z = gaussian_kde(xy)(xy) 
    size_marker_factor = 100 / z.max() 
 
    # Scatter plot with density-based coloring 
    axes[0].scatter(x[valid_filter], y[valid_filter], c=z, s=z * 
size_marker_factor) 
    axes[0].plot(y[valid_filter], y[valid_filter], color='red')  # 1:1 
reference line 
    axes[0].set_xlabel(x_label) 
    axes[0].set_ylabel(y_label) 
 
    # Compute and annotate metrics 
    r2_value = r2_score(y[valid_filter], x[valid_filter]) 
    nrmse_value = normalized_rmse(x[valid_filter], y[valid_filter]) 
    nmbe_value = normalized_mbe(x[valid_filter], y[valid_filter]) 
 
    axes[0].annotate('R²: ' + format(r2_value, '.3f'), xy=(0.65, 0.15), 
xycoords='axes fraction') 
    axes[0].annotate('nRMSE: ' + format(nrmse_value, '.3f'), xy=(0.65, 
0.10), xycoords='axes fraction') 
    axes[0].annotate('nMBE: ' + format(nmbe_value, '.3f'), xy=(0.65, 
0.05), xycoords='axes fraction') 
    axes[0].grid(True) 
 
    # Differences plot (x - y) 
    diff = x - y 
 
    # Histogram of differences 
    axes[1].hist(diff[valid_filter], range=(diff[valid_filter].min(), 
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diff[valid_filter].max()), bins=50) 
    axes[1].set_xlabel(diff_label) 
    axes[1].set_ylabel(diff_count_label) 
    axes[1].set_title(diff_title) 
    axes[1].grid(True) 
 
    plt.tight_layout() 
    plt.show() 
 
    # Print metrics 
    print('R²: ' + str(r2_value)) 
    print('nRMSE [%]: ' + str(round(nrmse_value, 2))) 
    print('nMBE [%]: ' + str(round(nmbe_value, 2))) 
 
# %% [markdown] 
# ### 2.2. Reading Data 
# 
# Reading CSVs with Satellite and Sensor data. 
 
# %% 
# Path to each file 
sensor_data_path   = '../data/xxxx.csv' 
solargis_data_path  = '../data/xxxx.csv' 
 
# %% 
# This data can be get from Solargis header 
# Getting Latitude, Longitude, Elevation and Calm Treshold 
latitude, longitude, altitude, calm_treshold =  'xxxx', 'xxxx', 'xxxx', 
'xxxx' 
 
# %% 
# Reading sensor time series 
sensor_ts = pd.read_csv(sensor_data_path) 
 
# Getting average columns 
sensor_ts_avg = get_windographer_avg_columns(sensor_ts) 
 
# Get only the desired columns 
# DF1 and GH1 = Diffuse and Global from SPN1 
# PR1 and PR2 = Global from SR20-D2 (two sensors) 
sensor_ts_avg = sensor_ts_avg[['DF1', 'GH1', 'PR1', 'PR2', 'TP1']] 
 
# %% 
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# The sensor data is in 1 min frequency and the satellite data is in 15 
min frequancy. 
# So we will resample the sensor data to 30min 
sensor_ts_avg = sensor_ts_avg.resample('30min').mean() 
 
# %% 
# Read satellite and sensor data 
solargis_ts = pd.read_csv(solargis_data_path) 
solargis_ts = solargis_ts.resample('30min').mean() 
 
# %% [markdown] 
# ## 3. Preparing Data 
 
# %% [markdown] 
# ### 3.1. Removing NaN 
 
# %% 
# I have sensor data of 2 identicals sensors, to avoid bias. 
# So I'll make the mean of them and create the GHI column. 
sensor_ts_avg = add_ghi_column(sensor_ts_avg) 
 
# %% 
# Then drop the pyranometer 1 and 2 columns 
sensor_ts_avg.drop(columns=['PR1', 'PR2'], inplace=True) 
 
# Drop NaN from sensor data 
sensor_ts_avg.dropna(inplace=True) 
 
# Drop NaN from satallite data 
solargis_ts.dropna(inplace=True) 
 
# Drop time column 
solargis_ts.drop(['time'], inplace=True, axis=1) 
 
# %% [markdown] 
# ### 3.2. Removing Negative Values 
 
# %% 
# DF1, GH1 and GHI can not be negative values. 
# So w'll get those index to fix it. 
df1_negative_idx = sensor_ts_avg[ 
    sensor_ts_avg["DF1"] < 0 
].index 
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gh1_negative_idx = sensor_ts_avg[ 
    sensor_ts_avg["GH1"] < 0 
].index 
 
ghi_negative_idx = sensor_ts_avg[ 
    sensor_ts_avg["GHI"] < 0 
].index 
 
# %% 
# Replacing those values for 0. 
# DF1 
sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(df1_negative_idx), "DF1" 
] = sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(df1_negative_idx), "DF1" 
].clip(lower=0) 
 
# GH1 
sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(gh1_negative_idx), "GH1" 
] = sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(gh1_negative_idx), "GH1" 
].clip(lower=0) 
 
# GHI 
sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(ghi_negative_idx), "GHI" 
] = sensor_ts_avg.loc[ 
    sensor_ts_avg.index.isin(ghi_negative_idx), "GHI" 
].clip(lower=0) 
 
# %% [markdown] 
# ### 3.3. Fixing cases when DF1 > GH1 
 
# %% 
# Replacing DF1 for GH1 when DF1 > GH1 
sensor_ts_avg.loc[ 
    sensor_ts_avg["DF1"] > sensor_ts_avg["GH1"], "DF1" 
] = sensor_ts_avg["GH1"] 
 
 
# %% [markdown] 
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# ### 3.4. Removing GHI = 0 values 
 
# %% 
# Using the secondary standard pyranometer as reference 
# to filter the night values (GHI = 0) 
sensor_ts_avg = sensor_ts_avg[sensor_ts_avg["GHI"] != 0] 
 
# %% [markdown] 
# ### 3.4. Removing Bias from Sunshine (SPN1) 
# 
# Linear regression is an effective method for reducing bias, as we 
will see shortly. In this case, I applied it primarily because the SPN1 
is a first-class pyranometer, whereas the SR20-D2 is a secondary 
standard. Additionally, since the GHI is composed of two SR20-D2 
sensors, as previously mentioned, we can use them to calibrate the SPN1 
sensor9s GHI. Once calibrated, we can apply the same linear regression 
to the diffuse component. This approach is valid because the SPN1 uses 
the same set of sensors to capture both GHI and DIF. 
 
# %% 
# Analyzing residue histogram 
residue = sensor_ts_avg["GH1"] - sensor_ts_avg["GHI"] 
 
# Calculate the mean and standard deviation of the residue 
mu = residue.mean() 
sigma = residue.std() 
 
# Set up the plot with density scaling so that the PDF can be overlaid 
directly. 
plt.figure(figsize=(10, 6)) 
sns.histplot(residue, kde=True, bins=300, stat="density") 
plt.xlim(-50, 50) 
 
# Create an array of x values for the normal distribution curve 
x = np.linspace(-50, 50, 1000) 
# Compute the normal distribution PDF using the calculated mu and sigma 
pdf = stats.norm.pdf(x, mu, sigma) 
 
# Plot the normal distribution as a red line 
plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution') 
 
# Add a dashed vertical line at x=0 
plt.axvline(x=0, color='black', linestyle='--', linewidth=1) 
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plt.title("Histogram of the Residue Before Calibration (GH1 - GHI)") 
plt.xlabel("Residue") 
plt.ylabel("Density") 
plt.legend() 
plt.show() 
 
 
# %% 
# We can fix bias with linear regression 
sunshine_lr = LinearRegression() 
 
sunshine_lr.fit( 
    sensor_ts_avg["GH1"].values.reshape(-1, 1), 
    sensor_ts_avg["GHI"].values.reshape(-1, 1) 
) 
 
sensor_ts_avg["GH1"] = sunshine_lr.predict( 
    sensor_ts_avg["GH1"].values.reshape(-1, 1) 
) 
 
# %% 
# Analyzing residue histogram 
residue = sensor_ts_avg["GH1"] - sensor_ts_avg["GHI"] 
 
# Calculate the mean and standard deviation of the residue 
mu = residue.mean() 
sigma = residue.std() 
 
# Set up the plot with density scaling so that the PDF can be overlaid 
directly. 
plt.figure(figsize=(10, 6)) 
sns.histplot(residue, kde=True, bins=300, stat="density") 
plt.xlim(-50, 50) 
 
# Create an array of x values for the normal distribution curve 
x = np.linspace(-50, 50, 1000) 
# Compute the normal distribution PDF using the calculated mu and sigma 
pdf = stats.norm.pdf(x, mu, sigma) 
 
# Plot the normal distribution as a red line 
plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution') 
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# Add a dashed vertical line at x=0 
plt.axvline(x=0, color='black', linestyle='--', linewidth=1) 
 
plt.title("Histogram of the Residue After Calibration (GH1 - GHI)") 
plt.xlabel("Residue") 
plt.ylabel("Density") 
plt.legend() 
plt.show() 
 
# %% 
# We can use the same calibration for SPN1 diffuse. 
sensor_ts_avg["DF1"] = sunshine_lr.predict( 
    sensor_ts_avg["DF1"].values.reshape(-1, 1) 
) 
 
# %% 
# After Calibration, we can have some negative values, so 
# w'll repeat this: 
sensor_ts_avg = sensor_ts_avg[ 
    (sensor_ts_avg["DF1"] >= 0) & 
    (sensor_ts_avg["GH1"] >= 0) 
] 
 
# %% [markdown] 
# ### 3.5. Filtering common index 
 
# %% 
# Get common index 
common_index = get_common_index([solargis_ts, sensor_ts_avg]) 
 
# %% 
# Filter both dataframes to common index 
solargis_filtered = solargis_ts[solargis_ts.index.isin(common_index)] 
sensor_filtered = sensor_ts_avg[sensor_ts_avg.index.isin(common_index)] 
 
# %% [markdown] 
# ## 4. Feature Engineering 
 
# %% [markdown] 
# ### 4.1. Adding new features 
 
# %% 
# Add some parameters for station 
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# Get resolution 
dt_minutes = get_minutes_resolution_from_time(sensor_filtered.index) 
 
# %% 
# Add solar position 
sensor_filtered = add_solar_position_columns( 
    data=sensor_filtered, 
    dt_minutes=dt_minutes, 
    latitude=latitude, 
    longitude=longitude, 
    correct_sun_elevation=True 
) 
 
# Add KD Column 
sensor_filtered = add_kd_column(sensor_filtered, 'GH1', 'DF1') 
 
# Add KT Column 
sensor_filtered = add_kt_column(sensor_filtered, 'GHI', 'TOA', 'ELV') 
 
# Calculating DNI using SPN1 data 
sensor_filtered['DNI'] = (sensor_filtered['GH1'] - 
sensor_filtered['DF1']) / cosd(sensor_filtered['ZEN']) 
 
# %% 
# Add some parameters for Solargis 
solargis_filtered = add_solar_position_columns( 
    data=solargis_filtered, 
    dt_minutes=dt_minutes, 
    latitude=latitude, 
    longitude=longitude, 
    correct_sun_elevation=True 
) 
 
# Add KD column 
solargis_filtered = add_kd_column(solargis_filtered, 'GHI', 'DIF') 
 
# Add KT column 
solargis_filtered = add_kt_column(solargis_filtered, 'GHI', 'TOA', 
'ELV') 
 
# %% 
# Get ClearSky values 
cs_df = get_clear_sky_values( 
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    solargis_filtered.index, 
    latitude, 
    longitude, 
    altitude 
) 
 
# Add ClearSky Columns 
solargis_filtered['GHI_CS'] = cs_df['GHI'] 
solargis_filtered['DNI_CS'] = cs_df['DNI'] 
solargis_filtered['DIF_CS'] = cs_df['DIF'] 
solargis_filtered['KT_CS'] = cs_df['KT'] 
 
# %% 
# SE and SA is Sun Elevation and Sun Azimuth from solargis, but we'll 
use the ZEN and AZ calculated. 
df = solargis_filtered[ 
    [ 
        'GHI', 'DNI', 'DIF', 'flagR', 'TEMP', 
        'AP', 'RH', 'WS', 'WG', 'WD', 'PREC', 
        'PWAT', 'ZEN', 'ELV', 'AZ', 'TOA', 'KD', 
        'KT', 'GHI_CS', 'DNI_CS', 'DIF_CS', 'KT_CS' 
    ] 
].copy() 
 
# %% 
# Adding sensor data 
df.loc[:, 'GHI_SPN1'] = sensor_filtered['GH1'].copy() 
df.loc[:, 'DIF_SPN1'] = sensor_filtered['DF1'].copy() 
df.loc[:, 'KD_SPN1'] = sensor_filtered['KD'].copy() 
df.loc[:, 'GHI_PYR'] = sensor_filtered['GHI'].copy() 
df.loc[:, 'KT_PYR'] = sensor_filtered['KT'].copy() 
 
# %% 
# W'll use cos(ZEN) instead of ZEN in Regressions 
df["cZEN"] = cosd(df["ZEN"]) 
 
# %% [markdown] 
# ### 4.2. Removing KD and KT out of range 
 
# %% 
# Remove any absurd value of KT 
df = df[ 
    ((df["KT_PYR"] < 0) | (df["KT_PYR"] > 1)) == False 
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] 
 
# %% 
# Remove any absurd value of KD 
df = df[ 
    ((df["KD_SPN1"] < 0) | (df["KD_SPN1"] > 1)) == False 
] 
 
# %% [markdown] 
# ## 5. Exploratory Data Analysis 
 
# %% [markdown] 
# ### 5.1. Daily Profile and Sun Path 
# 
# Analyze the data based in Zenithal and Azimuthal angles. 
 
# %% 
# Daily Profile Graph 
# Here we'll visualize the mean GHI distribution by hour. 
# It's useful to visualize if all sources are in the same hour 
reference. 
 
# Get hour from index 
df['hour'] = df.index.hour 
 
# Mean GHI by hour 
hourly_ghi = df.groupby('hour')['GHI'].mean() 
hourly_ghi_pyr = df.groupby('hour')['GHI_PYR'].mean() 
hourly_ghi_spn1 = df.groupby('hour')['GHI_SPN1'].mean() 
 
 
plt.figure(figsize=(10, 7)) 
hourly_ghi.plot(marker='o') 
hourly_ghi_pyr.plot(marker='o') 
hourly_ghi_spn1.plot(marker='o') 
plt.title('Daily Profile') 
plt.xlabel('Hour') 
plt.ylabel('GHI (mean)') 
plt.grid() 
plt.legend() 
plt.show() 
 
# %% 
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# SunPath Graph 
# Converting Azimuthal angles to radians 
theta = np.radians(df['AZ'].values) 
 
# Use elevation as radius 
r = df['ELV'].values 
 
fig = plt.figure(figsize=(10, 8)) 
ax = fig.add_subplot(polar=True) 
 
# Using GHI as color 
sc = ax.scatter(theta, r, c=df['GHI_PYR'], cmap='viridis', s=5) 
plt.colorbar(sc, label='GHI') 
ax.set_title('SunPath (Azimuthal vs Elevation)') 
 
# 0° in North 
ax.set_theta_zero_location("N")     
 
# Clockwise   
ax.set_theta_direction(-1) 
 
# Max Elevation = 90°         
ax.set_rmax(90)         
              
plt.show() 
 
 
# %% [markdown] 
# ### 5.2. Solargis GHI and DIF Bias 
# 
# Analyze the data bias for GHI and DIF. 
 
# %% 
# Analyzing residue histogram 
residue = df["GHI"] - df["GHI_PYR"] 
 
# Calculate the mean and standard deviation of the residue 
mu = residue.mean() 
sigma = residue.std() 
 
# Set up the plot with density scaling so that the PDF can be overlaid 
directly. 
plt.figure(figsize=(10, 6)) 
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sns.histplot(residue, kde=True, bins=100, stat="density") 
plt.xlim(-300, 300) 
 
# Create an array of x values for the normal distribution curve 
x = np.linspace(-300, 300, 1000) 
# Compute the normal distribution PDF using the calculated mu and sigma 
pdf = stats.norm.pdf(x, mu, sigma) 
 
# Plot the normal distribution as a red line 
plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution') 
 
# Add a dashed vertical line at x=0 
plt.axvline(x=0, color='black', linestyle='--', linewidth=1) 
 
plt.title("Histogram of the Residue Before Calibration") 
plt.xlabel("Residue") 
plt.ylabel("Density") 
plt.legend() 
plt.show() 
 
# %% 
# Analyzing residue histogram 
residue = df["DIF"] - df["DIF_SPN1"] 
 
# Calculate the mean and standard deviation of the residue 
mu = residue.mean() 
sigma = residue.std() 
 
# Set up the plot with density scaling so that the PDF can be overlaid 
directly. 
plt.figure(figsize=(10, 6)) 
sns.histplot(residue, kde=True, bins=100, stat="density") 
plt.xlim(-200, 200) 
 
# Create an array of x values for the normal distribution curve 
x = np.linspace(-200, 200, 1000) 
# Compute the normal distribution PDF using the calculated mu and sigma 
pdf = stats.norm.pdf(x, mu, sigma) 
 
# Plot the normal distribution as a red line 
plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution') 
 
# Add a dashed vertical line at x=0 
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plt.axvline(x=0, color='black', linestyle='--', linewidth=1) 
 
plt.title("Histogram of the Residue Before Calibration") 
plt.xlabel("Residue") 
plt.ylabel("Density") 
plt.legend() 
plt.show() 
 
# %% [markdown] 
# ### 5.3. Satellite x Sensor 
# 
# Analyzing GHI, DIF, KT, KD from satellite versus sensor. Also getting 
R², NRMSE and NMBE. 
 
# %% 
# Plot GHI x GHI Pyranometer 
x = df["GHI"].values 
y = df["GHI_PYR"].values 
 
plot_performance_comparison( 
    x=x, 
    y=y, 
    x_label='GHI', 
    y_label='GHI_PYR', 
    diff_label='GHI - GHI_PYR', 
    diff_title='Histograma: GHI - GHI_PYR' 
) 
 
plt.show() 
 
# %% 
# Plot DIF x DIF Pyranometer 
x = df["DIF"].values 
y = df["DIF_SPN1"].values 
 
plot_performance_comparison( 
    x=x, 
    y=y, 
    x_label='DIF', 
    y_label='DIF_SPN1', 
    diff_label='DIF - DIF_SPN1', 
    diff_title='Histograma: DIF - DIF_SPN1' 
) 
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# %% 
# Plot KT x KT Pyranometer 
x = df["KT"].values 
y = df["KT_PYR"].values 
 
plot_performance_comparison( 
    x=x, 
    y=y, 
    x_label='KT', 
    y_label='KT_PYR', 
    diff_label='KT - KT_PYR', 
    diff_title='Histograma: KT - KT_PYR' 
) 
 
plt.show() 
 
# %% 
# Plot KD x KD Pyranometer 
x = df["KD"].values 
y = df["KD_SPN1"].values 
 
plot_performance_comparison( 
    x=x, 
    y=y, 
    x_label='KD', 
    y_label='KD_SPN1', 
    diff_label='KD - KD_SPN1', 
    diff_title='Histograma: KD - KD_SPN1' 
) 
 
plt.show() 
 
# %% [markdown] 
# ### 5.4. Heteroscedasticity Analyze 
# 
# Heteroscedasticity refers to the presence of non-constant variance in 
the errors of a regression model, which can undermine the reliability 
of standard statistical inferences. To detect heteroscedasticity, we 
can use statistical tests such as Breusch-Pagan and White. 
# 
# ##### **Breusch-Pagan Test** 
# The Breusch-Pagan test assesses whether the variance of residuals 
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depends on the independent variables. It provides: 
# - **LM statistic (Lagrange Multiplier)** and its **p-value**   
# - **F statistic** and its **p-value**   
# 
# To interpret the results: 
# - If the p-value (especially for the LM or F statistic) is **less 
than 0.05** (or the defined significance level **³**), reject the null 
hypothesis (**H **) of homoscedasticity ³ **evidence of 
heteroscedasticity** is present.   
# - If the p-value is **greater than 0.05**, do not reject **H ** ³ **no 
evidence of heteroscedasticity** is found. 
# 
# ##### **White Test** 
# The White test operates similarly but does not assume a specific 
functional form of heteroscedasticity. It also provides: 
# - **LM statistic** and **p-value**   
# - **F statistic** and **p-value**   
# 
# The interpretation follows the same principle:   
# - If the p-value is below the significance threshold, reject **H **, 
suggesting **heteroscedasticity** in the model.   
# - If the p-value is above the threshold, do not reject **H **, 
indicating **homoscedasticity** (constant variance of residuals).   
# 
# Both tests help determine whether the variance of errors changes 
across observations, which, if present, may require corrective measures 
such as weighted least squares (WLS) or robust standard errors to 
ensure reliable inference. 
 
# %% [markdown] 
# #### 4.4.1. GHI 
 
# %% 
# Create subplots 
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 5)) 
 
# Calculating Residue 
residue = df["GHI"] - df["GHI_PYR"] 
 
# Scatter plot with marker size and color based on density 
xy = np.vstack([df["GHI_PYR"], residue]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 100 / z.max() 
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# Scatter plot 
sc = axs[0].scatter( 
    df["GHI_PYR"], 
    residue, 
    s=z * size_marker_factor, 
    c=z, 
    cmap='viridis' 
) 
 
# Adding labels and title to the subplot 
axs[0].set_xlabel('GHI SR20-D2') 
axs[0].set_ylabel('MBE') 
axs[0].set_title("Bias Error of Solargis GHI") 
axs[0].set_ylim(-750, 750) 
 
# Add trendline 
x = np.array(df["GHI_PYR"]) 
y = np.array(residue) 
z = np.polyfit(x, y, 1) 
p = np.poly1d(z) 
axs[0].plot(x, p(x), "r--", label='Trend Line') 
 
# Scatter plot with marker size and color based on density 
xy = np.vstack([df["GHI_PYR"], residue**2]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 100 / z.max() 
 
# Scatter plot 
sc = axs[1].scatter( 
    df["GHI_PYR"], 
    residue**2, 
    s=z * size_marker_factor, 
    c=z, 
    cmap='viridis' 
) 
 
# Adding labels and title to the subplot 
axs[1].set_xlabel('GHI SR20-D2') 
axs[1].set_ylabel('Squared MBE') 
axs[1].set_title("Squared Bias Error of Solargis GHI") 
axs[1].set_ylim(0,100000) 
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# Add trendline 
x = np.array(df["GHI_PYR"]) 
y = np.array(residue**2) 
z = np.polyfit(x, y, 1) 
p = np.poly1d(z) 
axs[1].plot(x, p(x), "r--", label='Trend Line') 
 
# Adjust layout to prevent clipping of titles 
plt.tight_layout() 
 
# Show the plot 
plt.show() 
 
# %% 
# Independent variable 
X = df["GHI"] 
 
# Dependent variable 
y = df["GHI_PYR"] 
 
# Add a constant (intercept) to the model 
X_const = sm.add_constant(X) 
 
# Fit the OLS (Linear Regression) model 
modelo = sm.OLS(y, X_const).fit() 
 
# Extract the model residuals and the matrix of explanatory variables 
residuos = modelo.resid 
exog = modelo.model.exog  # include the constant and GHI_PYR 
 
# Breusch-Pagan test 
bp_test = het_breuschpagan(residuos, exog) 
lm_stat, lm_p_value, f_stat, f_p_value = bp_test 
 
print("Breusch-Pagan test:") 
print(f"LM estatístico = {lm_stat}") 
print(f"LM p-valor     = {lm_p_value}") 
print(f"F estatístico  = {f_stat}") 
print(f"F p-valor      = {f_p_value}") 
 
# White Test 
white_test = het_white(residuos, exog) 
lm_stat_w, lm_p_value_w, f_stat_w, f_p_value_w = white_test 
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print("\nWhite Test:") 
print(f"LM estatístico = {lm_stat_w}") 
print(f"LM p-valor     = {lm_p_value_w}") 
print(f"F estatístico  = {f_stat_w}") 
print(f"F p-valor      = {f_p_value_w}") 
 
 
# %% [markdown] 
# #### 4.4.2. DIF 
 
# %% 
# Create subplots 
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 5)) 
 
# Calculating Residue 
residue = df["DIF"] - df["DIF_SPN1"] 
 
# Scatter plot with marker size and color based on density 
xy = np.vstack([df["DIF_SPN1"], residue]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 100 / z.max() 
 
# Scatter plot 
sc = axs[0].scatter( 
    df["DIF_SPN1"], 
    residue, 
    s=z * size_marker_factor, 
    c=z, 
    cmap='viridis' 
) 
 
# Adding labels and title to the subplot 
axs[0].set_xlabel('DIF SPN1') 
axs[0].set_ylabel('MBE') 
axs[0].set_title("Bias Error of Solargis DIF") 
axs[0].set_ylim(-400, 400) 
 
# Add trendline 
x = np.array(df["DIF_SPN1"]) 
y = np.array(residue) 
z = np.polyfit(x, y, 1) 
p = np.poly1d(z) 
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axs[0].plot(x, p(x), "r--", label='Trend Line') 
 
# Scatter plot with marker size and color based on density 
xy = np.vstack([df["DIF_SPN1"], residue**2]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 100 / z.max() 
 
# Scatter plot 
sc = axs[1].scatter( 
    df["DIF_SPN1"], 
    residue**2, 
    s=z * size_marker_factor, 
    c=z, 
    cmap='viridis' 
) 
 
# Adding labels and title to the subplot 
axs[1].set_xlabel('DIF SPN1') 
axs[1].set_ylabel('Squared MBE') 
axs[1].set_title("Squared Bias Error of Solargis DIF") 
axs[1].set_ylim(0,60000) 
 
# Add trendline 
x = np.array(df["DIF_SPN1"]) 
y = np.array(residue**2) 
z = np.polyfit(x, y, 1) 
p = np.poly1d(z) 
axs[1].plot(x, p(x), "r--", label='Trend Line') 
 
# Adjust layout to prevent clipping of titles 
plt.tight_layout() 
 
# Show the plot 
plt.show() 
 
# %% 
# Independent variable 
X = df["DIF"] 
 
# Dependent variable 
y = df["DIF_SPN1"] 
 
# Add a constant (intercept) to the model 
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X_const = sm.add_constant(X) 
 
# Fit the OLS (Linear Regression) model 
modelo = sm.OLS(y, X_const).fit() 
 
# Extract the model residuals and the matrix of explanatory variables 
residuos = modelo.resid 
exog = modelo.model.exog  # include the constant and DIF_SPN1 
 
# Breusch-Pagan test 
bp_test = het_breuschpagan(residuos, exog) 
lm_stat, lm_p_value, f_stat, f_p_value = bp_test 
 
print("Breusch-Pagan test:") 
print(f"LM estatístico = {lm_stat}") 
print(f"LM p-valor     = {lm_p_value}") 
print(f"F estatístico  = {f_stat}") 
print(f"F p-valor      = {f_p_value}") 
 
# White Test 
white_test = het_white(residuos, exog) 
lm_stat_w, lm_p_value_w, f_stat_w, f_p_value_w = white_test 
 
print("\nWhite Test:") 
print(f"LM estatístico = {lm_stat_w}") 
print(f"LM p-valor     = {lm_p_value_w}") 
print(f"F estatístico  = {f_stat_w}") 
print(f"F p-valor      = {f_p_value_w}") 
 
 
# %% [markdown] 
# ### 5.5. KT, KT Cleasky x ZEN 
 
# %% 
# Group the data by elevation (rounded to the nearest degree) and 
compute the mean KT_CS per group. 
# (If you actually want the maximum value per elevation, replace 'mean' 
with 'max'.) 
grouped = df.groupby(df['ELV'].round(0))['KT_CS'].mean().dropna() 
 
# Optionally, restrict to elevations 1 through 90 (if needed) 
grouped = grouped.loc[1:90] 
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# Extract the elevation (x) and corresponding KT_CS (y) values 
x = grouped.index.values 
y = grouped.values 
 
# Fit an 8th degree polynomial to the grouped data 
coefficients = np.polyfit(x, y, 8) 
poly_fit = np.poly1d(coefficients) 
 
# Generate a smooth set of x-values for plotting the fitted polynomial 
x_smooth = np.linspace(x.min(), x.max(), 300) 
y_smooth = poly_fit(x_smooth) 
 
# Plot the original grouped data and the polynomial fit 
plt.figure(figsize=(10, 6)) 
plt.scatter(x, y, label='Mean KT_CS per Elevation', color='blue') 
plt.plot(x_smooth, y_smooth, label='8th Order Polynomial Fit', 
color='red') 
plt.xlabel('Elevation (degrees)') 
plt.ylabel('KT_CS') 
plt.title('KT_CS vs Elevation with Polynomial Fit') 
plt.legend() 
plt.show() 
 
 
# %% 
# Create subplots 
fig, ax = plt.subplots(1, 2, figsize=(18, 8), sharey=True, sharex=True) 
 
labels = [ 
    'GHI Satellite', 
    'GHI SR20-D2' 
] 
 
# Calculate the point density 
xy = np.vstack([df['ELV'], df['KT']]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 10/(z.max()) 
 
scatter = ax[0].scatter(df['ELV'], df['KT'], c=df['GHI'], 
cmap='plasma', marker='o', s=size_marker_factor, alpha=0.8) 
ax[0].plot(x_smooth, y_smooth, color='red', linewidth=3, label='KT 
Clearsky') 
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# Adding labels and title to the first subplot 
ax[0].set_xlabel('Solar Elevation Angle (degrees)') 
ax[0].set_ylabel('Clearness Index Solargis (KT)') 
ax[0].set_title(labels[0]) 
ax[0].legend() 
 
# Calculate the point density 
xy = np.vstack([df['ELV'], df['KT_PYR']]) 
z = gaussian_kde(xy)(xy) 
size_marker_factor = 10/(z.max()) 
 
scatter = ax[1].scatter(df['ELV'], df['KT_PYR'], c=df['GHI_PYR'], 
cmap='plasma', marker='o', s=size_marker_factor, alpha=0.8) 
ax[1].plot(x_smooth, y_smooth, color='red', linewidth=3, label='KT 
Clearsky') 
 
# Adding labels and title to the first subplot 
ax[1].set_xlabel('Solar Elevation Angle (degrees)') 
ax[1].set_ylabel('Clearness Index Solargis (KT)') 
ax[1].set_title(labels[1]) 
ax[1].legend() 
 
# Adjust layout to prevent clipping of titles 
plt.tight_layout() 
 
# Show the plot 
plt.show() 
 
# %% [markdown] 
# ### 5.6. KD x KT 
 
# %% 
# Create a figure with 2 subplots side-by-side 
fig, axes = plt.subplots(1, 2, figsize=(12, 6), sharey=True) 
 
# First chart: KD vs. KT 
sns.scatterplot(data=df, x='KT', y='KD', ax=axes[0], alpha=0.5) 
axes[0].set_title("KD vs. KT") 
axes[0].set_xlabel("KT") 
axes[0].set_ylabel("KD") 
 
# Second chart: KD_SPN1 vs. KT_PYR 
sns.scatterplot(data=df, x='KT_PYR', y='KD_SPN1', ax=axes[1], 
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alpha=0.5) 
axes[1].set_title("KD_SPN1 vs. KT_PYR") 
axes[1].set_xlabel("KT_PYR") 
axes[1].set_ylabel("KD_SPN1") 
 
plt.tight_layout() 
plt.show() 
 
# %% [markdown] 
# ### 5.7. GHI x ZEN, AZ 
 
# %% 
# Create a figure with 2 subplots side-by-side 
fig, axes = plt.subplots(1, 2, figsize=(12, 6), sharey=True) 
 
# First chart: GHI vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='ZEN', 
    y='GHI', 
    hue='AZ',                # Use the AZ column to color the points 
    palette='viridis',       # Choose a colormap palette 
    ax=axes[0], 
    alpha=0.5 
) 
axes[0].set_title("GHI vs. ZEN") 
axes[0].set_xlabel("ZEN") 
axes[0].set_ylabel("GHI") 
axes[0].legend(title="AZ")   # Optional: rename legend title 
 
# Second chart: GHI_PYR vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='ZEN', 
    y='GHI_PYR', 
    hue='AZ',                # Use the AZ column to color the points 
    palette='viridis',       # Same colormap for consistency 
    ax=axes[1], 
    alpha=0.5 
) 
axes[1].set_title("GHI_PYR vs. ZEN") 
axes[1].set_xlabel("ZEN") 
axes[1].set_ylabel("GHI_PYR") 
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axes[1].legend(title="AZ")   # Optional: rename legend title 
 
plt.tight_layout() 
plt.show() 
 
# %% 
# Create a figure with 2 subplots side-by-side 
fig, axes = plt.subplots(1, 2, figsize=(12, 6), sharey=True) 
 
# First chart: GHI vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='AZ', 
    y='GHI', 
    hue='ZEN',                # Use the AZ column to color the points 
    palette='viridis',       # Choose a colormap palette 
    ax=axes[0], 
    alpha=0.5 
) 
axes[0].set_title("GHI vs. AZ") 
axes[0].set_xlabel("AZ") 
axes[0].set_ylabel("GHI") 
axes[0].legend(title="ZEN")   # Optional: rename legend title 
 
# Second chart: GHI_PYR vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='AZ', 
    y='GHI_PYR', 
    hue='ZEN',                # Use the AZ column to color the points 
    palette='viridis',       # Same colormap for consistency 
    ax=axes[1], 
    alpha=0.5 
) 
axes[1].set_title("GHI_PYR vs. AZ") 
axes[1].set_xlabel("AZ") 
axes[1].set_ylabel("GHI_PYR") 
axes[1].legend(title="ZEN")   # Optional: rename legend title 
 
plt.tight_layout() 
plt.show() 
 
# %% [markdown] 
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# ### 5.8. DIF x ZEN, AZ 
 
# %% 
# Create a figure with 2 subplots side-by-side 
fig, axes = plt.subplots(1, 2, figsize=(12, 6), sharey=True) 
 
# First chart: GHI vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='ZEN', 
    y='DIF', 
    hue='AZ',                # Use the AZ column to color the points 
    palette='viridis',       # Choose a colormap palette 
    ax=axes[0], 
    alpha=0.5 
) 
axes[0].set_title("DIF vs. ZEN") 
axes[0].set_xlabel("ZEN") 
axes[0].set_ylabel("DIF") 
axes[0].legend(title="AZ")   # Optional: rename legend title 
 
# Second chart: DIF_SPN1 vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='ZEN', 
    y='DIF_SPN1', 
    hue='AZ',                # Use the AZ column to color the points 
    palette='viridis',       # Same colormap for consistency 
    ax=axes[1], 
    alpha=0.5 
) 
axes[1].set_title("DIF_SPN1 vs. ZEN") 
axes[1].set_xlabel("ZEN") 
axes[1].set_ylabel("DIF_SPN1") 
axes[1].legend(title="AZ")   # Optional: rename legend title 
 
plt.tight_layout() 
plt.show() 
 
# %% 
# Create a figure with 2 subplots side-by-side 
fig, axes = plt.subplots(1, 2, figsize=(12, 6), sharey=True) 
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# First chart: DIF vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='AZ', 
    y='DIF', 
    hue='ZEN',                # Use the AZ column to color the points 
    palette='viridis',       # Choose a colormap palette 
    ax=axes[0], 
    alpha=0.5 
) 
axes[0].set_title("DIF vs. AZ") 
axes[0].set_xlabel("AZ") 
axes[0].set_ylabel("DIF") 
axes[0].legend(title="ZEN")   # Optional: rename legend title 
 
# Second chart: DIF_SPN1 vs. ZEN 
sns.scatterplot( 
    data=df, 
    x='AZ', 
    y='DIF_SPN1', 
    hue='ZEN',                # Use the AZ column to color the points 
    palette='viridis',       # Same colormap for consistency 
    ax=axes[1], 
    alpha=0.5 
) 
axes[1].set_title("DIF_SPN1 vs. AZ") 
axes[1].set_xlabel("AZ") 
axes[1].set_ylabel("DIF_SPN1") 
axes[1].legend(title="ZEN")   # Optional: rename legend title 
 
plt.tight_layout() 
plt.show() 
 
# %% [markdown] 
# ### 5.8. Analyze GHI and DIF for ZEN bins 
 
# %% [markdown] 
# #### 5.8.1. GHI 
 
# %% 
# Visualization based in ZEN interval 
# ZEN bins: (start, end) 
zen_bins = [ 
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    (0, 5), (5, 10), 
    (10, 15), (15, 20), 
    (20, 25), (25, 30), 
    (30, 35), (35, 40), 
    (40, 45), (45, 50), 
    (50, 55), (55, 60), 
    (60, 65), (65, 70), 
    (70, 75), (75, 80), 
    (80, 85), (85, 90) 
] 
 
# Prepare a 3x3 grid of subplots 
fig, axs = plt.subplots(nrows=6, ncols=3, figsize=(18, 24)) 
axs = axs.ravel()  # Flatten the 2D array of axes for easy indexing 
 
for i, (low, high) in enumerate(zen_bins): 
   # Filter DataFrame for the given ZEN bin 
    df_temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)] 
    
    # If df_temp is empty, just skip plotting 
    if df_temp.empty: 
        axs[i].set_title(f"ZEN in [{low}, {high}) [No data]") 
        axs[i].axis("off") 
        continue 
    
    x = df_temp["GHI"] 
    y = df_temp["GHI_PYR"] 
    
    # Density estimation 
    xy = np.vstack([x, y]) 
    z = gaussian_kde(xy)(xy) 
    
    # Adjust marker size based on the maximum density value 
    size_marker_factor = 100 / z.max() 
    
    # Scatter plot 
    sc = axs[i].scatter( 
        x, 
        y, 
        s=z * size_marker_factor, 
        c=z, 
        cmap='viridis' 
    ) 
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    # Plot identity line (y = x) 
    axs[i].plot(x, x, color='red', ls='--') 
    
    # Title, labels 
    axs[i].set_title(f"ZEN in [{low}, {high})") 
    axs[i].set_xlabel("GHI") 
    axs[i].set_ylabel("GHI_PYR") 
 
# Adjust layout 
plt.tight_layout() 
plt.show() 
 
# %% [markdown] 
# #### 5.8.2 DIF 
 
# %% 
# Visualization based in ZEN interval 
# ZEN bins: (start, end) 
zen_bins = [ 
    (0, 5), (5, 10), 
    (10, 15), (15, 20), 
    (20, 25), (25, 30), 
    (30, 35), (35, 40), 
    (40, 45), (45, 50), 
    (50, 55), (55, 60), 
    (60, 65), (65, 70), 
    (70, 75), (75, 80), 
    (80, 85), (85, 90) 
] 
 
# Prepare a 3x3 grid of subplots 
fig, axs = plt.subplots(nrows=6, ncols=3, figsize=(18, 24)) 
axs = axs.ravel()  # Flatten the 2D array of axes for easy indexing 
 
for i, (low, high) in enumerate(zen_bins): 
   # Filter DataFrame for the given ZEN bin 
    df_temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)] 
    
    # If df_temp is empty, just skip plotting 
    if df_temp.empty: 
        axs[i].set_title(f"ZEN in [{low}, {high}) [No data]") 
        axs[i].axis("off") 
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        continue 
    
    x = df_temp["DIF"] 
    y = df_temp["DIF_SPN1"] 
    
    # Density estimation 
    xy = np.vstack([x, y]) 
    z = gaussian_kde(xy)(xy) 
    
    # Adjust marker size based on the maximum density value 
    size_marker_factor = 100 / z.max() 
    
    # Scatter plot 
    sc = axs[i].scatter( 
        x, 
        y, 
        s=z * size_marker_factor, 
        c=z, 
        cmap='viridis' 
    ) 
    
    # Plot identity line (y = x) 
    axs[i].plot(x, x, color='red', ls='--') 
    
    # Title, labels 
    axs[i].set_title(f"ZEN in [{low}, {high})") 
    axs[i].set_xlabel("DIF") 
    axs[i].set_ylabel("DIF_SPN1") 
 
# Adjust layout 
plt.tight_layout() 
plt.show() 
 
# %% [markdown] 
# ## 6. Model Training 
 
# %% [markdown] 
# ### 6.1. Get correlation 
 
# %% 
# Getting correlation matrix 
corr_matrix = df.corr() 
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# Filtering only the columns that we want to predict 
corr_matrix = corr_matrix.loc[ 
    ['GHI_SPN1', 'DIF_SPN1', 'KD_SPN1', 'GHI_PYR'], 
    : 
] 
 
# Set the size of the plot 
plt.figure(figsize=(28, 4)) 
 
# Generate a heatmap 
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap='coolwarm', 
linewidths=0.5) 
 
# Add title 
plt.title('Correlation Matrix Heatmap') 
 
# Show the plot 
plt.show() 
 
# %% [markdown] 
# ### 6.2. Separating Training and Testing data 
 
# %% 
# Define bins 
zen_bins = [ 
    (0, 10), (10, 20), (20, 30), (30, 40), 
    (40, 50), (50, 60), (60, 70), (70, 80), 
    (80, 91) 
] 
 
x_features = ["GHI", "DIF", "cZEN", "ZEN"] 
y_target = ["GHI_PYR", "DIF_SPN1"] 
 
# %% 
from sklearn.model_selection import train_test_split 
 
X_train = [] 
y_train = [] 
X_test = [] 
y_test = [] 
 
for (low, high) in zen_bins: 
    # Filter the data for the current bin 
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    mask = (df["ZEN"] >= low) & (df["ZEN"] < high) 
    df_bin = df[mask] 
    
    X_train_bin, X_test_bin, y_train_bin, y_test_bin = 
train_test_split( 
        df_bin[x_features], 
        df_bin[y_target], 
        test_size=0.2, 
        random_state=69, 
        shuffle=True 
    ) 
    
    X_train.append(X_train_bin) 
    y_train.append(y_train_bin) 
    X_test.append(X_test_bin) 
    y_test.append(y_test_bin) 
    
X_train = pd.concat(X_train) 
y_train = pd.concat(y_train) 
X_test = pd.concat(X_test) 
y_test = pd.concat(y_test) 
 
# %% [markdown] 
# ### 6.3. Model for GHI 
# 
# Fit models to predict GHI Pyranometer using Solargis data 
(Satellite). 
 
# %% 
# Store regression models and coefficients 
ghi_bin_models = [] 
 
for (low, high) in zen_bins: 
    # Filter the data for the current bin 
    mask = (X_train["ZEN"] >= low) & (X_train["ZEN"] < high) 
    ghi_X_train_bin = X_train[mask] 
    ghi_y_train_bin = y_train[mask] 
    
    # Prepare feature matrix (GHI and cos(ZEN)) and target variable 
    X = ghi_X_train_bin[["GHI", "cZEN"]].values 
    y = ghi_y_train_bin["GHI_PYR"].values 
    
    # Fit linear regression: GHI_PYR = a + b*GHI + c*cos(ZEN) 
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    reg = LinearRegression().fit(X, y) 
    
    # Extract coefficients 
    slope_GHI, slope_cZEN = reg.coef_ 
    intercept = reg.intercept_ 
    
    # Store model information 
    ghi_bin_models.append({ 
        "zen_range": (low, high), 
        "slope_GHI": slope_GHI, 
        "slope_cZEN": slope_cZEN, 
        "intercept": intercept, 
        "model": reg 
    }) 
    
    print(f"ZEN [{low}, {high}): GHI_slope={slope_GHI:.3f}, 
cZEN_slope={slope_cZEN:.3f}, intercept={intercept:.3f}, n={len(X)}") 
 
# %% 
# Prediction 
ghi_train_pred_lr_bins = X_train.apply( 
    lambda row: predict_piecewise_ghi(row["ZEN"], row["GHI"], 
ghi_bin_models), axis=1 
) 
 
ghi_test_pred_lr_bins = X_test.apply( 
    lambda row: predict_piecewise_ghi(row["ZEN"], row["GHI"], 
ghi_bin_models), axis=1 
) 
 
ghi_pred_lr_bins = df.apply( 
    lambda row: predict_piecewise_ghi(row["ZEN"], row["GHI"], 
ghi_bin_models), axis=1 
) 
 
# %% 
# Applying Linear Regression for all training together, to comparate 
with piecewise method. 
lr = LinearRegression() 
 
# Separate data 
X = X_train[["GHI", "cZEN"]].values.reshape(-1, 2) 
X2 = X_test[["GHI", "cZEN"]].values.reshape(-1, 2) 
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X3 = df[["GHI", "cZEN"]].values.reshape(-1, 2) 
y = y_train[["GHI_PYR"]].values.reshape(-1, 1) 
 
# Fitting 
lr.fit(X, y) 
 
# Prediction 
ghi_train_pred_lr = lr.predict(X).reshape(1, -1)[0] 
ghi_test_pred_lr = lr.predict(X2).reshape(1, -1)[0] 
ghi_pred_lr = lr.predict(X3).reshape(1, -1)[0] 
 
# %% 
# Fit 
poly_models = fit_piecewise_polynomial( 
    df,                             # your DataFrame 
    zen_bins,                       # ZEN bins 
    4, 
    feature_cols=["GHI", "cZEN"],   # polynomial will be generated from 
these 
    target_col="GHI_PYR"            # what we're predicting 
) 
 
# Predictions 
ghi_train_pred_poly = X_train.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["GHI"], 
poly_models), axis=1 
) 
 
ghi_test_pred_poly = X_test.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["GHI"], 
poly_models), axis=1 
) 
 
ghi_pred_poly = df.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["GHI"], 
poly_models), axis=1 
) 
 
# %% [markdown] 
# ### 6.4. Model for DIF 
# 
# Fit models to predict DIF Pyranometer using Solargis data 
(Satellite). 



 
115 

 
# %% 
dif_bin_models = []  # Store regression models and coefficients 
 
for (low, high) in zen_bins: 
    # Filter the data for the current bin 
    mask = (df["ZEN"] >= low) & (df["ZEN"] < high) 
    df_bin = df[mask] 
    
    if df_bin.empty: 
        continue  # Skip bins without data 
    
    # Prepare feature matrix (DIF and cos(ZEN)) and target variable 
    X = df_bin[["DIF", "cZEN"]].values  # Already in 2D shape 
    y = df_bin["DIF_SPN1"].values 
    
    # Fit linear regression: DIF_SPN1 = a + b*DIF + c*cos(ZEN) 
    reg = LinearRegression().fit(X, y) 
    
    # Extract coefficients 
    slope_DIF, slope_cZEN = reg.coef_ 
    intercept = reg.intercept_ 
    
    # Store model information 
    dif_bin_models.append({ 
        "zen_range": (low, high), 
        "slope_DIF": slope_DIF, 
        "slope_cZEN": slope_cZEN, 
        "intercept": intercept, 
        "model": reg 
    }) 
    
    print(f"ZEN [{low}, {high}): DIF_slope={slope_DIF:.3f}, 
cZEN_slope={slope_cZEN:.3f}, intercept={intercept:.3f}, n={len(X)}") 
 
# %% 
# Prediction 
dif_train_pred_lr_bins = X_train.apply( 
    lambda row: predict_piecewise_dif(row["ZEN"], row["DIF"], 
dif_bin_models), axis=1 
) 
 
dif_test_pred_lr_bins = X_test.apply( 
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    lambda row: predict_piecewise_dif(row["ZEN"], row["DIF"], 
dif_bin_models), axis=1 
) 
 
dif_pred_lr_bins = df.apply( 
    lambda row: predict_piecewise_dif(row["ZEN"], row["DIF"], 
dif_bin_models), axis=1 
) 
 
# %% 
# Applying Linear Regression for all training together, to comparate 
with piecewise method. 
lr = LinearRegression() 
 
# Separate data 
X = X_train[["DIF", "cZEN"]].values.reshape(-1, 2) 
X2 = X_test[["DIF", "cZEN"]].values.reshape(-1, 2) 
X3 = df[["DIF", "cZEN"]].values.reshape(-1, 2) 
y = y_train[["DIF_SPN1"]].values.reshape(-1, 1) 
 
# Fitting 
lr.fit(X, y) 
 
# Prediction 
dif_train_pred_lr = lr.predict(X).reshape(1, -1)[0] 
dif_test_pred_lr = lr.predict(X2).reshape(1, -1)[0] 
dif_pred_lr = lr.predict(X3).reshape(1, -1)[0] 
 
# %% 
# Fit 
poly_models = fit_piecewise_polynomial( 
    df,                             # your DataFrame 
    zen_bins,                       # ZEN bins 
    4, 
    feature_cols=["DIF", "cZEN"],   # polynomial will be generated from 
these 
    target_col="DIF_SPN1"           # what we're predicting 
) 
 
# Predictions 
dif_train_pred_poly = X_train.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["DIF"], 
poly_models), axis=1 
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) 
 
dif_test_pred_poly = X_test.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["DIF"], 
poly_models), axis=1 
) 
 
dif_pred_poly = df.apply( 
    lambda row: predict_piecewise_polynomial(row["ZEN"], row["DIF"], 
poly_models), axis=1 
) 
 
 
# %% [markdown] 
# ## 7. Model Evaluation 
 
# %% [markdown] 
# ### 7.1. GHI 
 
# %% 
 
def compute_metrics(pred, actual): 
    return [ 
        100 * normalized_rmse(pred, actual), 
        100 * normalized_mbe(pred, actual), 
        r2_score(actual, pred) 
    ] 
 
data = [ 
    ["Solargis Train", *compute_metrics(X_train["GHI"], 
y_train["GHI_PYR"])], 
    ["(LR) Train", *compute_metrics(ghi_train_pred_lr, 
y_train["GHI_PYR"].values)], 
    ["(LR / Bins) Train", *compute_metrics(ghi_train_pred_lr_bins, 
y_train["GHI_PYR"])], 
    ["(Poly + LR) Train", *compute_metrics(ghi_train_pred_poly, 
y_train["GHI_PYR"])], 
    
    ["Solargis Test", *compute_metrics(X_test["GHI"], 
y_test["GHI_PYR"])], 
    ["(LR) Test", *compute_metrics(ghi_test_pred_lr, 
y_test["GHI_PYR"].values)], 
    ["(LR / Bins) Test", *compute_metrics(ghi_test_pred_lr_bins, 
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y_test["GHI_PYR"])], 
    ["(Poly + LR) Test", *compute_metrics(ghi_test_pred_poly, 
y_test["GHI_PYR"])], 
    
    ["Solargis Train + Test", *compute_metrics(df["GHI"], 
df["GHI_PYR"])], 
    ["(LR) Train + Test", *compute_metrics(ghi_pred_lr, 
df["GHI_PYR"])], 
    ["(LR / Bins) Train + Test", *compute_metrics(ghi_pred_lr_bins, 
df["GHI_PYR"])], 
    ["(Poly + LR) Train + Test", *compute_metrics(ghi_pred_poly, 
df["GHI_PYR"])], 
] 
 
headers = ["Dataset", "nRSME [%]", "nMBE [%]", "R²"] 
print(tabulate(data, headers=headers, tablefmt="grid")) 
 
# %% 
# Applying the piecewise Linear Regression 
df["GHI_lr"] = ghi_pred_lr 
df["GHI_lr_bins"] = ghi_pred_lr_bins 
df["GHI_poly"] = ghi_pred_poly 
 
# %% 
X_test["GHI_LR"] = ghi_test_pred_lr 
X_test["GHI_LR_BINS"] = ghi_test_pred_lr_bins 
X_test["GHI_POLY"] = ghi_test_pred_poly 
 
# Lista para armazenar os resultados 
results = [] 
 
# Lista com os nomes dos modelos 
modelos = ["GHI", "GHI_LR", "GHI_LR_BINS", "GHI_POLY"] 
 
# Itera sobre os bins de ZEN 
for low, high in zen_bins: 
    # Filtra o DataFrame para o intervalo de ZEN 
    df_temp = X_test[(X_test["ZEN"] >= low) & (X_test["ZEN"] < high)] 
    
    # Valor médio do ZEN para esse bin (usado no eixo x) 
    zen_mid = (low + high) / 2.0 
    
    # Variável alvo 
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    y = y_test[y_test.index.isin(df_temp.index)]["GHI_PYR"] 
    
    # Para cada modelo, calcula as métricas e armazena os resultados 
    for modelo in modelos: 
        x = df_temp[modelo] 
        
        r2_value    = r2_score(y, x) 
        nrmse_value = 100 * normalized_rmse(x, y) 
        nmbe_value  = 100 * normalized_mbe(x, y) 
        nmae_value  = 100 * normalized_mae(x, y) 
        
        results.append({ 
            "ZEN": zen_mid, 
            "Modelo": modelo, 
            "R2": r2_value, 
            "nRSME": nrmse_value, 
            "nMBE": nmbe_value, 
            "nMAE": nmae_value 
        }) 
 
# Converte a lista de resultados para um DataFrame 
df_metrics = pd.DataFrame(results) 
 
# Lista das métricas para plotagem 
metricas = ["R2", "nRSME", "nMBE", "nMAE"] 
 
# Cria uma figura com 2 linhas e 2 colunas de subplots 
fig, axes = plt.subplots(2, 2, figsize=(16, 12)) 
 
# Itera sobre as métricas e plota cada uma em seu respectivo subplot 
for i, metrica in enumerate(metricas): 
    row = i // 2 
    col = i % 2 
    sns.lineplot(ax=axes[row, col], data=df_metrics, x="ZEN", 
y=metrica, hue="Modelo", marker="o") 
    axes[row, col].set_title(f"Evolução do {metrica} em função do ZEN") 
    axes[row, col].set_xlabel("ZEN (valor médio do bin)") 
    axes[row, col].set_ylabel(metrica) 
    axes[row, col].grid(True) 
    axes[row, col].legend(title="Modelo", loc='best') 
 
plt.tight_layout() 
plt.show() 
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# %% 
# Prepare a subplot grid with 4 columns 
fig, axs = plt.subplots(nrows=len(zen_bins), ncols=4, figsize=(30, 50)) 
 
for i, (low, high) in enumerate(zen_bins): 
    # Filter the DataFrame for the ZEN range 
    df_temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)] 
 
    # Common variable for y-axis 
    y = df_temp["GHI_PYR"] 
    
    for j, x_col in enumerate(["GHI", "GHI_lr", "GHI_lr_bins", 
"GHI_poly"]): 
        x = df_temp[x_col] 
        
        # Density estimation 
        xy = np.vstack([x, y]) 
        z = gaussian_kde(xy)(xy) 
        size_marker_factor = 100 / z.max() if z.max() != 0 else 1 
 
        # Scatter plot 
        axs[i, j].scatter( 
            x, 
            y, 
            s=z * size_marker_factor, 
            c=z, 
            cmap='viridis' 
        ) 
 
        # Tendency Line: 
        # Tendency Line: 
        if x_col == "GHI_poly": 
            # Fit a 4th-degree polynomial to the data 
            p_coeffs = np.polyfit(x, y, 4)  # Degree 4 poly 
            p = np.poly1d(p_coeffs) 
            x_fit = np.linspace(x.min(), x.max(), 100) 
            
            axs[i, j].plot(x_fit, p(x_fit), color='red', ls='--', 
label='4th Degree Poly Fit') 
            
        else: 
            # Linear trend for other plots 
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            m, b = np.polyfit(x, y, 1)  # Linear regression (degree 1) 
            x_fit = np.linspace(x.min(), x.max(), 100) 
            
            axs[i, j].plot(x_fit, m*x_fit + b, color='red', ls='--', 
label='Linear Fit') 
            
        axs[i, j].set_title(f"ZEN in [{low}, {high})\n{x_col} vs 
GHI_PYR") 
        axs[i, j].set_xlabel(x_col) 
        axs[i, j].set_ylabel("GHI_PYR") 
 
        # Compute and annotate metrics 
        r2_value = r2_score(y, x) 
        nrmse_value = 100 * normalized_rmse(x, y) 
        nmbe_value = 100 * normalized_mbe(x, y) 
 
        axs[i, j].annotate(f'R²: {r2_value:.3f}', xy=(0.65, 0.15), 
xycoords='axes fraction') 
        axs[i, j].annotate(f'nRMSE [%]: {nrmse_value:.3f}', xy=(0.65, 
0.10), xycoords='axes fraction') 
        axs[i, j].annotate(f'nMBE [%]: {nmbe_value:.3f}', xy=(0.65, 
0.05), xycoords='axes fraction') 
        axs[i, j].legend() 
        axs[i, j].grid(True) 
 
# Adjust the layout and display the chart 
plt.tight_layout() 
plt.show() 
 
 
# %% [markdown] 
# ### 7.2. DIF 
 
# %% 
data = [ 
    ["Solargis Train", *compute_metrics(X_train["DIF"], 
y_train["DIF_SPN1"])], 
    ["(LR) Train", *compute_metrics(dif_train_pred_lr, 
y_train["DIF_SPN1"])], 
    ["(LR / Bins) Train", *compute_metrics(dif_train_pred_lr_bins, 
y_train["DIF_SPN1"])], 
    ["(Poly + LR) Train", *compute_metrics(dif_train_pred_poly, 
y_train["DIF_SPN1"])], 
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    ["Solargis Test", *compute_metrics(X_test["DIF"], 
y_test["DIF_SPN1"])], 
    ["(LR) Test", *compute_metrics(dif_test_pred_lr, 
y_test["DIF_SPN1"])], 
    ["(LR / Bins) Test", *compute_metrics(dif_test_pred_lr_bins, 
y_test["DIF_SPN1"])], 
    ["(Poly + LR) Test", *compute_metrics(dif_test_pred_poly, 
y_test["DIF_SPN1"])], 
    
    ["Solargis Train + Test", *compute_metrics(df["DIF"], 
df["DIF_SPN1"])], 
    ["(LR) Train + Test", *compute_metrics(dif_pred_lr, 
df["DIF_SPN1"])], 
    ["(LR / Bins) Train + Test", *compute_metrics(dif_pred_lr_bins, 
df["DIF_SPN1"])], 
    ["(Poly + LR) Train + Test", *compute_metrics(dif_pred_poly, 
df["DIF_SPN1"])], 
] 
 
headers = ["Dataset", "nRSME [%]", "nMBE [%]", "R²"] 
print(tabulate(data, headers=headers, tablefmt="grid")) 
 
# %% 
df["DIF_lr"] = dif_pred_lr 
df["DIF_lr_bin"] = dif_pred_lr_bins 
df["DIF_poly"] = dif_pred_poly 
 
# %% 
X_test["DIF_LR"] = dif_test_pred_lr 
X_test["DIF_LR_BIN"] = dif_test_pred_lr_bins 
X_test["DIF_POLY"] = dif_test_pred_poly 
 
# Lista para armazenar os resultados 
results = [] 
 
# Lista com os nomes dos modelos 
modelos = ["DIF", "DIF_LR", "DIF_LR_BIN", "DIF_POLY"] 
 
# Itera sobre os bins de ZEN 
for low, high in zen_bins: 
    # Filtra o DataFrame para o intervalo de ZEN 
    df_temp = X_test[(X_test["ZEN"] >= low) & (X_test["ZEN"] < high)] 
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    # Valor médio do ZEN para esse bin (usado no eixo x) 
    zen_mid = (low + high) / 2.0 
    
    # Variável alvo 
    y = y_test[y_test.index.isin(df_temp.index)]["DIF_SPN1"] 
    
    # Para cada modelo, calcula as métricas e armazena os resultados 
    for modelo in modelos: 
        x = df_temp[modelo] 
        
        r2_value    = r2_score(y, x) 
        nrmse_value = 100 * normalized_rmse(x, y) 
        nmbe_value  = 100 * normalized_mbe(x, y) 
        nmae_value  = 100 * normalized_mae(x, y) 
        
        results.append({ 
            "ZEN": zen_mid, 
            "Modelo": modelo, 
            "R2": r2_value, 
            "nRSME": nrmse_value, 
            "nMBE": nmbe_value, 
            "nMAE": nmae_value 
        }) 
 
# Converte a lista de resultados para um DataFrame 
df_metrics = pd.DataFrame(results) 
 
# Lista das métricas para plotagem 
metricas = ["R2", "nRSME", "nMBE", "nMAE"] 
 
# Cria uma figura com 2 linhas e 2 colunas de subplots 
fig, axes = plt.subplots(2, 2, figsize=(16, 12)) 
 
# Itera sobre as métricas e plota cada uma em seu respectivo subplot 
for i, metrica in enumerate(metricas): 
    row = i // 2 
    col = i % 2 
    sns.lineplot(ax=axes[row, col], data=df_metrics, x="ZEN", 
y=metrica, hue="Modelo", marker="o") 
    axes[row, col].set_title(f"Evolução do {metrica} em função do ZEN") 
    axes[row, col].set_xlabel("ZEN (valor médio do bin)") 
    axes[row, col].set_ylabel(metrica) 
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    axes[row, col].grid(True) 
    axes[row, col].legend(title="Modelo", loc='best') 
 
plt.tight_layout() 
plt.show() 
 
# %% 
# Prepare a subplot grid with 4 columns 
fig, axs = plt.subplots(nrows=len(zen_bins), ncols=4, figsize=(30, 50)) 
 
for i, (low, high) in enumerate(zen_bins): 
    # Filter the DataFrame for the ZEN range 
    df_temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)] 
 
    # Common variable for y-axis 
    y = df_temp["DIF_SPN1"] 
    
    for j, x_col in enumerate(["DIF", "DIF_lr", "DIF_lr_bin", 
"DIF_poly"]): 
        x = df_temp[x_col] 
        
        # Density estimation 
        xy = np.vstack([x, y]) 
        z = gaussian_kde(xy)(xy) 
        size_marker_factor = 100 / z.max() if z.max() != 0 else 1 
 
        # Scatter plot 
        axs[i, j].scatter( 
            x, 
            y, 
            s=z * size_marker_factor, 
            c=z, 
            cmap='viridis' 
        ) 
 
        # Tendency Line: 
        if x_col == "DIF_poly": 
            # Fit a 4th-degree polynomial to the data 
            p_coeffs = np.polyfit(x, y, 4)  # Degree 4 poly 
            p = np.poly1d(p_coeffs) 
            x_fit = np.linspace(x.min(), x.max(), 100) 
            
            axs[i, j].plot(x_fit, p(x_fit), color='red', ls='--', 
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label='4th Degree Poly Fit') 
            
        else: 
            # Linear trend for other plots 
            m, b = np.polyfit(x, y, 1)  # Linear regression (degree 1) 
            x_fit = np.linspace(x.min(), x.max(), 100) 
            
            axs[i, j].plot(x_fit, m*x_fit + b, color='red', ls='--', 
label='Linear Fit') 
 
        axs[i, j].set_title(f"ZEN in [{low}, {high})\n{x_col} vs 
DIF_SPN1") 
        axs[i, j].set_xlabel(x_col) 
        axs[i, j].set_ylabel("DIF_SPN1") 
 
        # Compute and annotate metrics 
        r2_value = r2_score(y, x) 
        nrmse_value = 100 * normalized_rmse(x, y) 
        nmbe_value = 100 * normalized_mbe(x, y) 
 
        axs[i, j].annotate(f'R²: {r2_value:.3f}', xy=(0.65, 0.15), 
xycoords='axes fraction') 
        axs[i, j].annotate(f'nRMSE [%]: {nrmse_value:.3f}', xy=(0.65, 
0.10), xycoords='axes fraction') 
        axs[i, j].annotate(f'nMBE [%]: {nmbe_value:.3f}', xy=(0.65, 
0.05), xycoords='axes fraction') 
        axs[i, j].legend() 
        axs[i, j].grid(True) 
 
# Adjust the layout and display the chart 
plt.tight_layout() 
plt.show() 

 


