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RESUMO

Este TCC apresenta uma metodologia para a calibragdo de dados de irradiacdo solar
provenientes de satélite, utilizando medicdes in situ como referéncia. O estudo propde uma
abordagem inovadora que combina modelos de regressao linear com técnicas de clusterizagao
para ajustar as componentes de Irradiancia Global Horizontal (GHI) e Irradiancia Difusa
(DIF). Inicialmente, os dados sdo submetidos a um rigoroso pré-processamento, que inclui a
remog¢do de valores ausentes e negativos, além da corre¢do de inconsisténcias, garantindo a
qualidade da base utilizada para a modelagem. Em seguida, sdo desenvolvidos modelos
estatisticos que correlacionam as medigdes de campo com as estimativas de satélite,
segmentando os dados em fung¢dao do angulo zenital solar para capturar comportamentos
especificos em diferentes condigdes. Os resultados evidenciam ganhos significativos na
precisdo das estimativas, demonstrando que a integracdo de medigdes in situ com dados
satelitais pode reduzir os vieses inerentes as estimativas e aumentar a confiabilidade para
aplicagdes em dimensionamento de sistemas fotovoltaicos e estudos climaticos. Conclui-se
que a abordagem proposta € robusta, vidvel em diferentes cenarios geograficos e
atmosféricos, e contribui de forma relevante para o aprimoramento das estimativas de

irradiagao solar.

Palavras-chave: irradiacdo solar; calibracdo de dados; regressao linear; clusterizacao.



ABSTRACT

This paper presents a methodology for the calibration of solar irradiance data from satellites,
using in situ measurements as a reference. The study proposes an innovative approach that
combines linear regression models with clustering techniques to adjust the Global Horizontal
Irradiance (GHI) and Diffuse Irradiance (DIF) components. Initially, the data are subjected to
rigorous pre-processing, which includes the removal of missing and negative values, in
addition to the correction of inconsistencies, ensuring the quality of the basis used for
modeling. Then, statistical models are developed that correlate the field measurements with
the satellite estimates, segmenting the data according to the solar zenith angle to capture
specific behaviors in different conditions. The results show significant gains in the accuracy
of the estimates, demonstrating that the integration of in situ measurements with satellite data
can reduce the biases inherent in the estimates and increase the reliability for applications in
photovoltaic system sizing and climate studies. It is concluded that the proposed approach is
robust, viable in different geographic and atmospheric scenarios, and contributes significantly

to the improvement of solar irradiation estimates.

Keywords: solar irradiation; data calibration; linear regression; clustering.
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1. INTRODUCAO

A crescente demanda por fontes de energia renovaveis tem intensificado o
interesse em métodos e ferramentas que auxiliem no planejamento e na analise de viabilidade
de projetos solares. Nesse contexto, a disponibilidade de dados de irradiagdo solar
desempenha papel fundamental para estimar com maior precisdo o potencial energético de
uma regido, subsidiando a tomada de decisdo em termos de dimensionamento de sistemas
fotovoltaicos e previsdo de geracdo ao longo do tempo. Atualmente, hd uma ampla variedade
de dados de satélite que fornecem estimativas de irradiag¢do solar, além de outros parametros,
como temperatura e velocidade do vento, para praticamente qualquer localidade do planeta,
com séries historicas que ultrapassam duas décadas. Essas informagdes sdo disponibilizadas
tanto de forma gratuita quanto paga, dependendo do fornecedor e do nivel de detalhamento

requerido.

Apesar da vantagem de oferecer longas séries temporais, os dados satelitais
podem apresentar vieses e incertezas decorrentes de limitacdes de resolucdo, modelagem e
condi¢des atmosféricas ndo capturadas adequadamente. Por outro lado, a legislacdo brasileira,
por meio do Ministério de Minas e Energia (MME), exige que, para a obtencdo da Outorga
em projetos de energia, sejam realizadas campanhas de medig¢do in situ: no minimo 36 meses
para projetos eolicos € 12 meses para projetos solares. Esse procedimento ¢ fundamental para
comprovar a disponibilidade do recurso renovavel (vento ou sol) na regido de interesse.
Assim, as medi¢des locais tornam-se indispensaveis e, ao mesmo tempo, oferecem a
oportunidade de ajuste (calibragcao) dos dados de satélite, corrigindo eventuais discrepancias e

melhorando a confiabilidade das estimativas.

Essa abordagem ¢ particularmente relevante em projetos de energia solar, pois,
diferentemente de outras fontes intermitentes, como a eélica, a campanha de medicao
obrigatoria para caracterizagdo local costuma ser mais curta, porém ainda insuficiente para
abarcar toda a variabilidade interanual da irradiacdo. Ao combinar os dados de satélite, que
oferecem séries de longo prazo, com medi¢des de qualidade realizadas in situ, obtém-se um
conjunto de informacdes mais robustas, assegurando maior precisdo na previsao de geracao de
energia ¢ na avaliacdo de riscos. O presente trabalho, intitulado “Calibracdo de Dados
Satelitais de Irradiacido Solar com Base em Medicoes In Situ: Uma Abordagem de

Regressio Linear e Clusterizacdo de GHI e DIF”, propde uma metodologia de calibragdo
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por meio de modelos de regressdo, com destaque para o papel da clusterizacdo e das
especificidades das componentes de irradiacdo global (GHI) e difusa (DIF). Enquanto a
relagdo entre dados de GHI in situ e satelitais se mostra mais linear, a componente difusa
tende a apresentar comportamento menos previsivel, demandando técnicas de analise mais

elaboradas para a remocao de vieses e consequente aprimoramento da qualidade dos dados.

1.1.  Justificativa

A importancia de uma base de dados confidvel de irradiagdo solar abrange
diversas areas, como engenharia, meteorologia e climatologia. No setor de energia, essas
informacdes sdo essenciais para estimativas mais precisas no planejamento de centrais
fotovoltaicas. A reducdo das incertezas nos dados de irradiacdo reduz o risco financeiro ¢
aumenta a eficiéncia nos investimentos, especialmente no dimensionamento de moédulos

solares e na proje¢do de geracdo ao longo do ciclo de vida do empreendimento.

Além disso, a ampla disponibilidade de dados de satélite, frequentemente
superiores a 20 anos, contrasta com a exigéncia legal de campanhas de medicdo in situ,
geralmente limitadas a 12 meses para projetos solares. Sem um processo de calibragdo
adequado, essa diferenca temporal pode gerar incertezas significativas na avaliacdo do
potencial solar de uma area. Nesse contexto, o uso de modelos de regressao e estratégias de
clusterizacdo permite corrigir os vieses dos dados de satélite, fornecendo informagdes mais

alinhadas a realidade local e melhorando a tomada de decisdo em projetos de energia solar.

1.2.  Objetivos

O presente estudo tem como objetivo principal desenvolver e avaliar diferentes
estratégias de calibracdo de dados de satélite de irradiagdo solar, considerando tanto as
componentes global (GHI) quanto a difusa (DIF). Para cumprir esse propoésito, definem-se os

seguintes objetivos especificos:

- Coletar e processar os dados de irradiagdao solar provenientes de medigdes in
situ e de satélite, assegurando a qualidade da base de dados por meio da

remogao de valores inconsistentes e da corre¢do de casos incoerentes.
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Investigar padrdes e vieses nos dados por meio de andlise exploratéria (EDA),
identificando aspectos como heteroscedasticidade e variagdes especificas em
determinados intervalos do angulo zenital (ZEN), para fundamentar a escolha

dos modelos de calibragao.

Desenvolver e aplicar modelos de regressio com diferentes abordagens,

incluindo:

- Regressdo linear sem clusteriza¢do: utilizando todo o conjunto de
dados de treinamento;

- Regressao linear com clusterizacdo: segmentando os dados em
intervalos de angulo zenital (clusters) para capturar variagdes
especificas;

- Regressdo polinomial com clusterizagdo: ajustando um modelo
polinomial de grau superior (por exemplo, 4° grau) para cada intervalo
de angulo zenital, atendendo a cenarios de maior complexidade,

sobretudo em faixas de ZEN elevadas.

Comparar o desempenho das diferentes estratégias de calibragdo (original,
linear global, linear segmentada e polinomial segmentada) por meio de
métricas estatisticas de avaliagdo, tanto em dados de treino quanto em dados de
teste, a fim de verificar melhorias na precisdo e robustez na estimativa de GHI

e DIF.

Validar o método final selecionado, destacando sua capacidade de manter boa
acuracia e generalizar em condigdes reais de aplicacdo, evidenciando as
melhorias em intervalos criticos de angulo zenital e a importancia da redugdo

de vieses para o setor de energia solar.

Organizac¢ao do Trabalho

Este trabalho esta dividido em cinco capitulos, conforme descrito a seguir:

Capitulo 1 - Introdugdo: Apresenta a contextualizacio do problema, a
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justificativa do estudo, seus objetivos (geral e especificos) e a organizagdo do
Trabalho;

Capitulo 2 - Fundamentagdo Teorica: Fornece uma revisao de literatura sobre
os principais conceitos envolvidos no estudo, como conceitos de irradiagdo
solar, dados e sensores de irradiacao e modelos de regressao;

Capitulo 3 - Metodologia: Detalha os procedimentos adotados para a coleta e
preparagdo dos dados, as ferramentas e tecnologias utilizadas, a arquitetura dos
modelos propostos, assim como o processo de treinamento e métricas de
avalia¢dao dos modelos;

Capitulo 4 - Resultados: Apresenta os resultados obtidos durante os
experimentos, com uma analise quantitativa das métricas de desempenho do
modelo, além de graficos para comparagdo dos resultados;

Capitulo 5 - Conclusdo e Trabalhos Futuros: Finaliza o trabalho discutindo as
principais conclusdes, as limitacdes encontradas e as possiveis melhorias e

desdobramentos futuros do projeto.
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2. FUNDAMENTACAO TEORICA

A fundamentagdo tedrica que se segue apresenta 0s principais aspectos
relacionados a irradiacdo solar, comegando pela definicdo de conceitos radiométricos e pela
compreensdo da geometria solar, passando pela caracterizacdo da constante solar e dos
modelos de céu claro (clear-sky). Em seguida, discute-se a importancia dos dados e sensores
de irradiagdo, com foco no funcionamento, calibracdo e manutencdo dos equipamentos de
medi¢do em superficie e na andlise das incertezas envolvidas. Por fim, abordam-se os dados
de satélite, seus processos de geracdo e as limitacdes inerentes, destacando-se o papel
fundamental que essas informagdes desempenham na estimativa € no monitoramento da

radiacao solar para diversas aplicagdes cientificas e tecnologicas.

2.1. Conceitos de Irradiacao Solar

A radiacdo solar ¢ a principal fonte de energia que impulsiona os processos
climaticos e a vida na Terra, sendo essencial para aplicagdes que vao desde a geragdo de
energia fotovoltaica até estudos de balango térmico e meteorologia. Seu entendimento
envolve conceitos fisicos, geométricos e atmosféricos que descrevem como a energia emitida
pelo Sol percorre o espaco e interage com a atmosfera antes de alcancar a superficie terrestre.
Na pratica, essa andlise exige o conhecimento de terminologia radiométricas, do
comportamento do Sol como um corpo negro, da geometria que determina a posi¢do solar ao

longo do ano e das componentes da irradiacdo medidas em solo.

Este topico apresenta os principais fundamentos relacionados a irradiag¢ao solar,
abordando desde as definicdes de energia e fluxo radiante (terminologia radiométrica),
passando pela conceituagdo de constante solar e suas variagdes, até a influéncia da geometria
e da inclinacdo do eixo terrestre nas estagdes do ano. Discutem-se também as diferentes
formas de irradiancia solar — global, direta, difusa e refletida —, fundamentais para
aplicacdes em andlise de sistemas fotovoltaicos e climatologia. Por fim, introduzem-se os
modelos de céu claro, que oferecem estimativas teoricas para comparacdo com condigdes
reais, sendo ferramentas valiosas na calibragdo de dados e na compreensdo dos fatores que

afetam a disponibilidade de radiagdo solar em diferentes regides e condigdes atmosféricas.
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2.1.1. Terminologia Radiométrica

Antes de explorar o tema da radiacdao solar, ¢ fundamental esclarecer algumas
defini¢des basicas relacionadas a energia, ao fluxo, a poténcia e a outros conceitos associados

a radiancia. Essas defini¢des estdo apresentadas na figura abaixo:

Tabela 1 - Terminologia Radiométrica e Unidades

Radiant energy Q Joule J Energy

Radiant flux @ Watt W Radiant energy per unit of time (radiant power)
Radiant intensity I Watt per steradian Wisr Power per unit solid angle

Radiant emittance (M Watt per square meter |W/m? Power emitted from a surface

Watt per steradian per
square meter

Power per unit solid angle per unit of projected

Radiance L source area

W/(sr-m?)

Irradiance = Watt per square meter |W/m? Power incident on a unit area surface

Watt per square meter Power incident on a unit area surface per unit

N "
Spectral irradiance |Ex per nanometer W/(m?-nm) wavelength

Jim? Energy accumulated on a unit area surface
Irradiation H Joule per square meter during a period; a more practical energy unit is

kilowatt-hours per square meter (1 kWh / m? =

Fonte: [2]

2.1.2. Irradiincia Extraterrestre

Na fisica, ¢ amplamente conhecido que qualquer objeto com temperatura absoluta
acima de zero Kelvin emite radia¢do eletromagnética, fenomeno que ocorre devido ao
movimento térmico das particulas em sua estrutura. O Sol, com sua temperatura de superficie
estimada em aproximadamente 5800 K, comporta-se de maneira muito semelhante a um

corpo negro ideal.

O conceito de corpo negro na fisica refere-se a um objeto ideal que absorve toda a
radiagdo eletromagnética incidente, sem refletir ou transmitir nenhuma parte. Em
contrapartida, ele emite radiagdo de maneira perfeitamente previsivel, dependendo apenas de
sua temperatura. A intensidade e a distribuicdo da radiagdo emitida por um corpo negro sao
descritas pela lei de Planck, que estabelece como a energia emitida varia com o comprimento
de onda e a temperatura. Embora nenhum objeto no universo seja um corpo negro perfeito, o
Sol se aproxima desse comportamento devido a sua emissdo em um amplo espectro de

comprimentos de onda.
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A radiagdo solar abrange comprimentos de onda entre 290 nm e 4000 nm, faixa
conhecida como espectro extraterrestre (ETS). Esse intervalo inclui trés regides principais do
espectro eletromagnético: ultravioleta (UV), luz visivel e o inicio do infravermelho préximo
(NIR, do inglés near-infrared). A distribuicdo desse espectro, frequentemente utilizada em
estudos sobre energia solar, pode ser visualizada na Figura 2. Estudos recentes, como o de
Gueymard (2018a), indicam que aproximadamente 98,5% da irradiacdo solar extraterrestre
estd concentrada nessa faixa de 290-4000 nm. O restante da radiagdo estd presente nas regioes

mais distantes do espectro infravermelho, conhecidas como infravermelho distante (FIR, do

inglés far-infrared).

Figura 1 - Espectro da radiag@o solar na Terra
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Fonte: Wikimedia Commons
Compreender o comportamento do Sol como um corpo negro e a distribuicdo do
seu espectro ¢ essencial para o desenvolvimento de tecnologias de captagdo de energia solar.
Esse conhecimento permite determinar ndo apenas a quantidade de energia disponivel para
conversdao em eletricidade ou calor, mas também quais partes do espectro podem ser melhor

aproveitadas em diferentes aplicagoes.
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2.1.3. Constante Solar

A poténcia radiante total emitida pelo Sol, denominada como irradiagdo solar total
(ou Total Solar Irradiance - TSI), representa a quantidade de energia emitida por unidade de
tempo em todas as direcdes do espago. Embora a TSI seja, em grande parte, constante ao
longo do tempo, medi¢des precisas realizadas por satélites detectaram variagdes temporais

sutis.

A TSI ¢ calculada pela integragdo do espectro extraterrestre (ETS) quando a
distancia entre o Sol e a Terra ¢ igual a 1 Unidade Astronomica (UA), aproximadamente
149,6 milhdes de quilometros. Inicialmente, acreditava-se que a emissdo do Sol era
perfeitamente constante, motivo pela qual o termo "constante solar" foi amplamente utilizado
para descrever o valor médio dessa radiacdo recebida no topo da atmosfera terrestre. No
entanto, com avangos tecnologicos e observagdes mais precisas, descobriu-se que a TSI
apresenta pequenas flutuagdes temporais, relacionadas a ciclos solares, atividades de manchas

solares ¢ outras variagcdes na dinamica do Sol.

Atualmente, a constante solar ¢ definida como a média de longo prazo da TSI e
representa a energia solar incidente perpendicularmente a uma unidade de area no topo da
atmosfera terrestre, a uma distancia média de 1 UA. Embora pequenas, essas flutuacdes sao
relevantes para o estudo do clima e das interagdes entre o Sol e a Terra, pois até mesmo
variagdes minimas podem afetar a atmosfera terrestre e, a longo prazo, o balanco energético

do planeta.

Historicamente, diferentes valores foram atribuidos a constante solar a medida
que medic¢des e métodos de calculo evoluiram. Um dos valores mais recentes foi proposto por
Gueymard (2018b), que, ap6s uma reavaliagdo abrangente ¢ a corre¢dao de décadas de dados
obtidos por satélites, estabeleceu a constante solar em 1361,1 W/m?. Este valor ¢ amplamente
utilizado em estudos climaticos, meteoroldgicos e em projetos de aproveitamento da energia

solar.
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Figura 2 - Variagdes Temporais do TSI
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Fonte: Solar Influences Data Analysis Center - Total Solar Irradiance

A constancia relativa da TSI, combinada com o conhecimento das pequenas
variagdes ciclicas, ¢ um elemento crucial para compreender ndo apenas o fluxo de energia
recebido pela Terra, mas também sua influéncia no sistema climatico global. Estudos
continuos sobre a TSI e suas variagdes contribuem significativamente para o entendimento de

fendmenos como aquecimento global, mudangas climaticas e a evolugdo dos ciclos solares.

2.1.4. Geometria Solar

Ao longo do ano, a Terra percorre uma Orbita eliptica ao redor do Sol, resultando
em mudangas continuas na posi¢do relativa entre o nosso planeta e a estrela central. Esse
movimento orbital, aliado a inclinagdo do eixo terrestre, provoca variagdes sazonais nas
condigdes climaticas e nos padrdes de radiagdo solar que atingem diferentes regides da
superficie terrestre. Essas variagdes influenciam diretamente fendmenos como a duracio dos

dias e noites, as esta¢des do ano ¢ a intensidade da radiagdo solar incidente.
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A orbita da Terra ao redor do Sol ¢ ligeiramente eliptica, com o Sol localizado em
um dos focos da elipse. Como resultado, a distancia entre a Terra e o Sol varia ao longo do
ano, influenciando levemente a quantidade de energia solar recebida. Entretanto, a inclinagdo
do eixo terrestre (aproximadamente 23,5° em relacdo a perpendicular do plano orbital) tem o
papel mais significativo na definicdo das estacdes do ano, pois altera a incidéncia dos raios

solares nos diferentes hemisférios.

Figura 3 - Orbita da Terra
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Fonte: Wikipedia

Para compreender o comportamento do Sol em relacio a Terra ao longo das
estacdes, utilizam-se definicdes angulares especificas que permitem descrever e calcular sua
posi¢do no céu. Esses angulos sdo essenciais para determinar a irradiagdo solar em diferentes
momentos ¢ locais, viabilizando analises detalhadas sobre a distribuigdo da radia¢do e seu
impacto no clima, na agricultura e nas tecnologias solares. Os principais angulos utilizados

sao:

- Declinacio Solar (3): E o dngulo formado entre o plano do equador terrestre e
a linha imaginaria que conecta o centro do Sol ao centro da Terra. A declinagdo
solar varia ao longo do ano, atingindo aproximadamente +23,5° no solsticio de

verdo do hemisfério norte e -23,5° no solsticio de inverno.
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- Angulo Zenital Solar (ZEN): E o angulo formado entre a diregdo do Sol ¢ a
vertical local (uma linha imaginaria perpendicular ao solo em um ponto

especifico). Esse adngulo indica o qudo alto ou baixo o Sol estd no céu em

relacdo ao observador.

- Angulo de Elevacio Solar (ELV): E o dngulo formado entre a diregdo do Sol e
o plano do horizonte. Ele indica a altura do Sol no céu em relagio ao horizonte

e esta relacionado ao angulo zenital pela equagdo:

ZEN + ELV = 90° (1)

- /fngulo Azimutal Solar (AZ): Também conhecido como azimute solar, ¢ o
angulo formado entre a projecdo da dire¢do do Sol no plano horizontal e a

dire¢c@o do norte. Ele descreve a posi¢do do Sol em relacdo aos pontos cardeais.

Figura 4 - Angulos do Sol em relagio a Terra
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Fonte: Wikipédia

Esses angulos ndo apenas ajudam a descrever a trajetoria do Sol no céu ao longo
do dia, mas também sdo cruciais para o calculo da irradiagdo solar em superficies inclinadas
ou horizontais. Por exemplo, a declinagdo solar ¢ necessaria para determinar o angulo de
incidéncia da radiacdo em diferentes latitudes, enquanto os angulos zenital e de elevagdo

ajudam a modelar a intensidade e a durac¢do da radiagdo recebida em um local especifico.
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Irradiiancia Solar

A irradidncia solar corresponde a quantidade de energia radiante do Sol incidente

sobre uma determinada superficie, por unidade de area e tempo, geralmente expressa em

W/m?. Ao atravessar a atmosfera até alcancar a superficie terrestre, a radiacdo solar sofre

diversos processos, como absor¢do por gases (0zonio, vapor d'dgua etc.), espalhamento por

moléculas e particulas em suspensdo, e reflexdo em superficies. Esses processos afetam

diretamente a quantidade e o tipo de radiacdo que alcanga o solo.

A irradiancia solar ¢ classificada em diferentes componentes, dependendo do

ponto de analise:

- No topo da atmosfera (TOA):

Constante Solar: Representa a irradidncia maxima recebida pela Terra
antes de interagdes atmosféricas. E considerada a radiagdo incidente
perpendicularmente ao plano da atmosfera a uma distancia média de 1

Unidade Astrondmica (UA).

- Na superficie terrestre:

Irradiagcdo Global Horizontal (GHI): Corresponde a irradiagdo solar
total incidente sobre uma superficie horizontal no solo, englobando
tanto a componente direta quanto a difusa.

Irradiagdo Direta Normal (DNI): Corresponde a irradiagdo solar direta
incidente sobre uma superficie perpendicular a dire¢ao do Sol, sem
considerar a contribuicao da irradiagao difusa ou refletida.

Irradiacdo Difusa Horizontal (DIF): Corresponde a fracdo da
irradiacdo solar que atinge o solo de forma indireta, apds sofrer
espalhamento na atmosfera.

Irradiagdo Refletida Horizontal (RHI): E a irradiacio refletida a partir

do solo ou outras superficies, influenciada pelo albedo do solo, sendo a
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fracdo de irradiagdo refletida em relacao a irradiacao incidente.

Essas componentes solares estdo interligadas e podem ser descritas por relagdes
matematicas envolvendo o angulo zenital solar (ZEN), entre outras varidveis. As principais

relagoes sdo:

- Para radiacdo global horizontal:

GHI = DNI X cos(ZEN) + DIF (2)

- Para radiagao global inclinada no plano de um painel solar:

POA = DNI X cos(Al) + DIF x SVF + RHI X GVF (3)

Onde:

- POA (Plane of Array Irradiance): Irradiancia no plano inclinado do
painel solar.

- AI (Angle of Incidence): Angulo de incidéncia da radiagdo solar sobre
a superficie inclinada.

- SVF (Sky View Factor): Fator que representa a fracao do céu visivel a
partir de uma superficie.

- GVF (Ground View Factor): Fator que representa a fracao de radiacao

visivel do solo em relacao a uma superficie.

Além das relagdes mencionadas, dois coeficientes sdo amplamente utilizados em

modelos e algoritmos para descrever a distribuicao e propor¢do da radiagdo solar:

- Coeficiente de Atenuacao Difusa (KD):
Esse coeficiente mede a fragdo de radiacdo difusa em relacdo a radiagdo global na
superficie terrestre. Um valor alto de KA indica maior proporcao de radiacdo difusa em

relagdo a radiagdo total recebida. E calculado pela relagio:
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KD = DIF + GHI 4)

- Coeficiente de Propor¢dio Global (KT):
O coeficiente Kt avalia a quantidade de radiacdo solar efetivamente recebida na
superficie terrestre em relacdo a radiacdo disponivel no topo da atmosfera. Ele considera os

efeitos de geometria solar e atenuagdo atmosférica. Sua féormula é dada por:

KT = GHI + (TOA X cos(ZEN)) (5)

Esses coeficientes sdo particularmente uteis para estudar o impacto da atmosfera
na distribuicdo da radiacdo solar, bem como para o dimensionamento e a andlise de

desempenho de sistemas solares.

O entendimento dessas componentes e relagdes € essencial para a modelagem da
radiacdo solar em diferentes condicdes climaticas, latitudes e configuragdoes de sistemas

solares, permitindo otimizar o aproveitamento da energia solar em aplicagdes praticas.

2.1.6. Modelos de Céu Claro (Clear-Sky)

Os modelos de céu claro (clear-sky models) sao ferramentas essenciais no estudo
da energia solar, fornecendo estimativas tedricas da radiacdo solar em condi¢des ideais, ou
seja, na auséncia de nuvens e com atmosfera limpa. Esses modelos sdo amplamente utilizados
para comparar dados reais de irradidncia com valores ideais, calcular o indice de clareza
(clearness index, Kt) e validar medi¢des de irradiancia solar. Entre os varios modelos
disponiveis, o modelo de Ineichen ¢ particularmente popular devido a sua precisdo e

simplicidade, sendo o modelo adotado nesta pesquisa.

O modelo de Ineichen ¢ um modelo empirico de céu claro amplamente utilizado
para estimar as componentes da irradidncia solar: irradidncia global horizontal (GHI),
irradiancia direta normal (DNI) e irradiancia difusa horizontal (DIF). Ele considera fatores
como a posi¢do solar, massa de ar, turbidez atmosférica e altitude para gerar estimativas

confiaveis da radiagao solar sob condicoes de céu claro.

- Principais Pardmetros do Modelo
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- Angulo zenital aparente: Reflete a posi¢io do Sol no céu e é crucial
para o céalculo das componentes de irradiancia.

- Massa de ar relativa e absoluta: Representa o caminho percorrido pela
radiagdo solar através da atmosfera. A massa de ar relativa ¢
dependente do angulo zenital, enquanto a absoluta ¢ ajustada pela
pressdo atmosférica.

- Turbidez de Linke: Um parametro que caracteriza a transparéncia da
atmosfera, influenciada por particulas, vapor d'dgua e aerossois.

- Altitude do local: Afeta a pressdo atmosférica e, consequentemente, a
atenuac¢do da radiagao solar.

- Irradiacdo extraterrestre: A radiacdo solar incidente no topo da

atmosfera, considerada como referéncia em condig¢des ideais.

O modelo de Ineichen utiliza uma combinagao de relagdes empiricas para calcular
GHI, DNI e DHI. Essas relagdes sdo ajustadas para incluir os efeitos da turbidez atmosférica
(parametro de Linke) e da altitude, garantindo estimativas robustas em diferentes condi¢des

geograficas.

2.2. Dados e Sensores de Irradiacao Solar

2.2.1.  Sensores de Superficie

Os sensores de superficie sdo instrumentos fundamentais para medir e monitorar
as componentes da radiagcdo solar que atingem a superficie terrestre. Entre os mais utilizados
estdo os pirandmetros, os pirelidmetros e os albedometros, que permitem medir a radiagao
solar global, direta e refletida, respectivamente. A seguir, detalha-se o funcionamento dos
pirandmetros e pirelidmetros, além de questdes importantes como calibragdo, manutengdo e

fatores que afetam as medigdes.
2.2.1.1. Funcionamento dos Sensores
A medicao dos diferentes componentes da radiagdo solar, sejam eles diretos,

difusos ou refletidos, ¢ fundamental para uma série de aplicacdes, incluindo estudos

climaticos, projetos de energia solar e pesquisas em balanco de energia na superficie terrestre.
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Nesse contexto, surgem diferentes tipos de sensores, cada um projetado para mensurar um
aspecto especifico do espectro solar. Na sequéncia, apresenta-se o funcionamento dos

principais dispositivos utilizados para esses fins: piranometro, pireliometro e albedometro.

O pirandmetro ¢ destinado a medi¢cdo da irradiancia global incidente em uma
superficie plana. Essa medi¢do abrange tanto a radiagdo direta proveniente do Sol quanto a
radiacdo difusa resultante do espalhamento atmosférico. O componente central do
pirandmetro ¢ um sensor térmico (usualmente baseado em termopilha ou termopar),
responsavel por converter a radiacdo incidente em um sinal elétrico diretamente proporcional
a intensidade luminosa recebida. Esse sensor é recoberto por uma cupula de vidro ou quartzo,
cuja fungdo € permitir a passagem de radiagdo em uma ampla faixa espectral, incluindo tanto
a regido do visivel quanto a do infravermelho préximo. Dessa forma, o pirandmetro fornece

uma leitura confiavel e abrangente do fluxo de energia solar na superficie analisada.

Em contraste com o pirandmetro, cujo principio consiste em captar a radiagao
global, o pirelidmetro foi concebido especificamente para medir a radiacdo direta normal
(DNI). Para tal, o equipamento permanece apontado diretamente para o Sol, geralmente por
meio de um rastreador solar que ajusta seu alinhamento ao longo do dia. Este arranjo garante
que a medicao seja livre de componentes difusos, possibilitando uma avaliacdo precisa da
fracdo direta da irradiancia. Dessa forma, o pireliometro ¢ fundamental em estudos que
demandam uma anélise mais detalhada da contribuicao direta do Sol, a exemplo de aplicagdes

em concentradores solares.

O albedometro, por sua vez, estd voltado a determinagdo do albedo de uma
superficie, definindo-se este como a razdo entre a radiacdo refletida e a radiacdo solar
incidente. Na pratica, o albedometro consiste em dois pirandmetros acoplados: um voltado
para cima, medindo a irradidncia global incidente, e outro orientado para baixo, capturando a
radiacao refletida pela superficie subjacente. A partir dessas duas leituras, ¢ possivel calcular
o albedo, quantificando o grau de refletividade de diferentes materiais ou formagdes naturais
(por exemplo, gelo, vegetacdo, solo exposto, etc.). Em estudos climaticos, essa grandeza ¢
essencial para estimar o balango de energia e avaliar o impacto de mudancas na cobertura

terrestre.
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2.2.1.2. Padroes Internacionais de Medicao
A precisao e confiabilidade das medigdes com pirandOmetros e pireliometros
dependem de seguir padrdes internacionais amplamente aceitos, como os definidos pela IEC

61274-1, que referencia os seguintes normativos importantes:

- 150 9060:2018

Define e classifica pirandmetros e pirelidmetros com base em suas caracteristicas
de desempenho. Os instrumentos sdo divididos em categorias como classe secundaria,
primeira classe e padrdo secundario (secondary standard), de acordo com critérios como

resposta espectral, resposta direcional e linearidade.

Tabela 2 - Tabela de classificagdo dos piranémetros pela ISO 9060 e WMO

ISO CLASSIFICATION** TABLE

ISO CLASS SECONDARY FIRST CLASS SECOND
STANDARD CLASS

Specification limit

Response time (95 %) 158 30s 60 s

Zero offset a (response to 200 W/m? net + 7 W/m2 + 15 W/m?2 + 30 W/mz2

thermal radiation)

Zero offset b (response to 5 K/h in ambient + 2 W/m? + 4 W/m? + 8 W/m?

temperature)

Non-stability (change per year) + 0.8 % +1.5% + 3 %

Non-linearity (100 to 1000 W/m?) + 0.5 % +1 9% + 3%

Directional response + 10 W/m? + 20 W/m? + 30 w/m?

Spectral selectivity (350 to 1 500 x 107% m) + 3 % + 5 % + 10 %

(WMO 300 to 3 000 x 102 m)

Temperature response (interval of 50 K)** 2% 4 % 8 %

Tilt response + 0.5 % + 2 % + 5%

(0 to 90 © at 1000 W/m?)

ADDITIONAL WMO SPECIFICATIONS

WMO CLASS HIGH QUALITY GOOD QUALITY MODERATE

QUALITY

WMO: achievable accuracy for daily sums#* 2% 5 % 10 %

WMO: achievable accuracy for hourly sums* 3% 8% 20 %

WMO: achievable accuracy for minute sums*  not specified not specified not specified

WMO: resolution 1 w/m? 5 W/m? 10 wW/m?

(smallest detectable change)

CONFORMITY TESTING***

IS0 9060 individual group group
instrument only: compliance compliance

all specs must
comply

Fonte: [11]
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- IS0 9847:1992
Especifica os procedimentos para calibracio de pirandmetros em campo por
comparagdo com um pirandmetro de referéncia. Este padrao cobre a calibragdo em condigdes

controladas internas.

- IS0 9846:1993
Detalha a calibragdo de pirandmetros utilizando pirelidmetros como referéncia em
medi¢des externas. Este método ¢ frequentemente usado para garantir a rastreabilidade das

medic¢des a padrdes internacionais.

2.2.1.3. Calibracao e Manutencao

A confiabilidade e a precisdo dos dados obtidos na medi¢do de radiacdo solar
dependem, em grande medida, de um programa rigoroso de calibracdo. Em conformidade
com normas internacionais, recomenda-se que a calibragdo seja realizada periodicamente,
incluindo tanto procedimentos em laboratorio (calibragdo interna) quanto avaliagdes de
campo (calibragdo externa). Na calibracdo interna, utilizam-se fontes-padrdo em condigdes
controladas, permitindo verificar a sensibilidade do sensor e identificar possiveis desvios
sistematicos. Ja a calibracdo externa consiste na comparagdo do instrumento (piranometro ou
pireliometro) com um dispositivo de referéncia sob luz solar natural, possibilitando a aferigao

do desempenho em condigdes reais de operagao.

Além da calibracdo, a manuten¢do dos sensores ¢ fundamental para garantir
medicoes precisas ao longo do tempo. A limpeza periddica das cupulas (de vidro ou quartzo)
¢ uma das etapas mais criticas, pois a presenca de poeira ou outras particulas sobre a
superficie de medi¢do pode atenuar a transmissao de radiacdo, comprometendo a exatidao dos
valores registrados. No caso dos pirelidmetros, a verificagao constante do alinhamento com o
Sol ¢ igualmente relevante, uma vez que qualquer desvio angular pode introduzir erros
significativos nas medi¢des da irradiagdo direta normal (DNI). Por fim, recomenda-se a
realizacdo de recalibragdes sistemadticas, geralmente em intervalos anuais ou bienais, uma vez
que o envelhecimento natural dos componentes — especialmente aqueles sensiveis a radiacao,
como termopilhas e termopares — pode alterar gradualmente a resposta do instrumento ao

longo do tempo.
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2.2.14. Fatores que Afetam as Medicoes

A precisdo e a confiabilidade das medi¢cdes de radiagdao solar estdo sujeitas a
diversos fatores que podem, direta ou indiretamente, influenciar o desempenho dos sensores.
Um destes fatores ¢ o acimulo de poeira ou sujeira na superficie de medi¢do, comum em
ambientes com alta concentracdo de particulas em suspensdo, o que pode reduzir
sensivelmente a transmissao da radiagao incidente. Além disso, o envelhecimento natural dos
materiais que compdem o sensor provoca degradacdes em sua sensibilidade ao longo do
tempo, fazendo com que a resposta inicial se modifique gradualmente. Outro aspecto
relevante ¢ a formacdo de condensacdo ou gelo sobre a ctipula de protecao, o que dificulta a

passagem da radiagdo e pode gerar leituras subestimadas.

Por fim, condi¢des climaticas extremas, tais como ventos intensos, chuvas
torrenciais ou variagdes bruscas de temperatura, podem comprometer a estabilidade fisica do
equipamento, resultando em possiveis erros de alinhamento ou danos em componentes

sensiveis.

2.2.1.5. Incerteza nas Medic¢oes

Mesmo com procedimentos de calibragdo e manutengdo em dia, as medigdes
efetuadas por piranometros e pirelidmetros estdo intrinsecamente associadas a determinados
graus de incerteza. Um dos fatores determinantes ¢ a classe do instrumento: dispositivos
classificados como padrdo secundario tendem a apresentar margens de erro menores em
comparagdo aos de primeira classe ou classe secunddria, devido as especificagdes mais

rigorosas de fabricacdo e calibragdo.

A resposta direcional do sensor também afeta as medi¢des, uma vez que variagdes
no angulo de incidéncia da radiacdo podem introduzir discrepancias entre o valor real e o
valor medido. Além disso, as condi¢gdes ambientais locais, incluindo flutuacdes de
temperatura, pressao atmosférica e umidade, exercem influéncia tanto sobre o proprio sensor
quanto sobre a propagacdo da radiacdo, resultando em pequenos desvios nos dados

registrados.
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2.2.2. Dados de Satélite

O uso de dados de satélite € essencial para estimar a irradiancia solar em locais
onde ndo hd medigdes terrestres diretas disponiveis. Essa abordagem combina observagdes de
satélites geoestacionarios ou orbitais com modelos atmosféricos para calcular componentes
como irradidncia global horizontal (GHI), irradiancia difusa (DIF) e irradiancia direta normal
(DNI). A seguir, sao descritos os principais passos do processo de geracao desses dados, bem

como os desafios e limitagdes associados.

2.2.2.1.  Processo de Gerac¢ao de Dados de Satélite

A obtencdo de estimativas de irradiancia a partir de sensores em Orbita envolve
um conjunto estruturado de etapas que integram observagdes atmosféricas, modelos de
transferéncia radiativa e parametros meteoroldgicos globais. Inicialmente, realiza-se a
modelagem de céu claro, na qual se calculam as irradiancias de GHI, DNI e DIF, assumindo a
auséncia de nuvens. Esse processo depende de parametros como a massa de ar — definida
conforme o angulo zenital solar — e de propriedades atmosféricas, incluindo teor de vapor
d’4gua, presencga de aerossodis e a concentragdo de ozonio. Modelos empiricos e fisicos, tais
como Ineichen ou Bird, sdo frequentemente empregados nessa etapa para fornecer uma

estimativa inicial das condig¢oes ideais de irradiancia.

Em seguida, passa-se a detec¢do e analise de nuvens, por meio do processamento
de imagens de satélite provenientes, por exemplo, de sensores MODIS (NASA) ou
EUMETSAT. Esse procedimento visa identificar cobertura, altura e espessura das nuvens,
utilizando algoritmos de limiar (“thresholding”) ou classificadores baseados em aprendizado
de maquina para segmentar as diferentes regides cobertas. As informagdes sobre nuvens
obtidas nesse estadgio sdo, entdo, incorporadas aos modelos de transferéncia radiativa,

ajustando as estimativas de irradiancia para condig¢des reais de nebulosidade.

A corregdo de aerossois e vapor d’agua € outro fator crucial, pois ambos afetam
de forma significativa a atenuagao da radiacdo solar. Dados relacionados a concentracao de
aerossois sao usualmente extraidos de re-analises atmosféricas globais, como as fornecidas
pelo Copernicus Atmosphere Monitoring Service (CAMS), enquanto o conteido de vapor

d’agua ¢ estimado a partir de informacgdes registradas por sensores infravermelhos instalados



34

em satélites. Assim, ajusta-se a transmissao da radiagdo conforme a presenca dessas particulas

em suspensao e a quantidade de umidade no ar.

Ap0s essas corregdes, procede-se ao calculo das componentes de irradiancia:

- A GHI ¢ obtida pela soma das contribui¢cdes direta e difusa, corrigidas pelos
efeitos atmosféricos.

- A DNI representa a parte do fluxo solar que ndo foi dispersa pela atmosfera.

- A DIF ¢ estimada como a diferenca entre GHI e DNI, ajustada pelo angulo

zenital.

Por fim, realiza-se a validagdo e ajuste dos modelos com base em comparagdes
entre as estimativas de satélite e medigdes de superficie captadas por pirandmetros e
pireliometros. A partir dessas comparagdes, realiza-se a calibracdo final dos modelos,
adequando-os as condigdes atmosféricas especificas de cada regido e garantindo maior

confiabilidade nos valores de irradiancia estimados.

2.2.2.2. Problemas e Limitacoes dos Dados de Satélite

Embora os produtos de satélite proporcionem ampla cobertura espacial e
temporal, tornando-se ferramentas valiosas para o estudo da radiacdo solar em escala global,
sua utilizagdo estd sujeita a algumas restricdes. O chamado efeito nugget ilustra bem esse
cenario: em escalas espaciais muito pequenas, podem surgir discrepancias significativas entre
medicoes terrestres pontuais e estimativas derivadas de satélite. Isso ocorre em razao da
resolucdo espacial dos sensores orbitais (em geral de 1 a 3 km) ndo captarem a variabilidade
local de terreno, nuvens ou aerossdis, especialmente em regides de topografia complexa ou

dinamica atmosférica intensa.

A resolugdo espacial e temporal constitui, portanto, outro desafio. Embora
intervalos de 15 minutos a 1 hora sejam adequados para muitas aplicagdes, determinadas
analises — como a avalia¢do de eventos de curta duragdo, a exemplo de passagens rapidas de
nuvens — exigem uma frequéncia de coleta mais elevada. Além disso, a dimensao dos pixels
de satélite pode ser insuficiente para mapear detalhadamente pequenas areas urbanizadas ou

regides com varia¢do acentuada no uso e cobertura do solo.
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As incertezas de modelagem também nao devem ser subestimadas. O éxito da
estimativa depende tanto da precisdo dos modelos de transferéncia radiativa quanto da
qualidade dos bancos de dados atmosféricos sobre aerossois, vapor d’agua e outros
constituintes. Modelos empiricos podem falhar em regides com condi¢des muito particulares,
como 4areas industriais com alta densidade de particulas. Por fim, a influéncia de nuvens
constitui outro elemento critico: determinar a espessura oOptica de forma precisa a partir de
imagens de satélite ¢ complexo, especialmente em cenarios com nebulosidade densa ou em
zonas costeiras, onde ha frequente formagao de nuvens baixas. Essas limita¢des salientam a
importancia de procedimentos de validacdo continuos e de ajustes regionais para reduzir
incertezas e garantir que os dados de satélite sejam efetivamente representativos das

condicodes locais.
2.3.  Modelos de Regressao
2.3.1. Regressao Linear

A Regressdo Linear ¢ uma técnica estatistica fundamental que visa modelar a
relacdo entre uma varidvel dependente (geralmente denotada por y) e uma ou mais variaveis

independentes (geralmente denotadas por x I xn). No caso mais simples, em que ha

21
apenas uma variavel preditora (também chamada varidvel explicativa), chamamos de

Regressdo Linear Simples.
2.3.1.1. Modelagem Matematica

Na regressao linear simples, assumimos que existe uma relagao aproximadamente

linear entre x e y. Dessa forma, podemos escrever o modelo como:

y = B+ B ¥+ ©)
onde:

o f3 0 ¢ o coeficiente linear ou intercepto (o valor de y quando x = 0),

e L ¢ o coeficiente angular (indica a inclinagdo da reta e, portanto, a relagdo de variagao
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de y em fungdo de x),
e ¢ ¢ o termo de erro ou ruido, que representa a discrepancia entre o valor observado e o

valor previsto pelo modelo.

J& na Regressio Linear Multipla, quando se tem n variaveis preditoras

X Xy oy X, 0 modelo ¢ escrito como:

y:[30+[31~x+[32-x2+...+[3n-xn+8 (7)

2.3.1.2.  Ajuste do Modelo (Método dos Minimos Quadrados)

O método mais comum para ajustar (estimar os coeficientes BO, Bl, ...) € 0 Método

dos Minimos Quadrados Ordinarios (OLS). Ele busca minimizar a soma dos quadrados dos

residuos (diferenca entre valores observados e valores preditos):

N
. .2
mine 6.6 El(yl.— y) ®)

onde:

e N ¢ o numero de observagoes,
°* ¢ o valor real da variavel dependente para a i-ésima observagao,

-~

°* ¢ o valor previsto pelo modelo para a i-€sima observagao.

Em termos matriciais, podemos representar todas as observagdes por:

y =X -B+e %)

em que:

e yé¢ovetor (N X 1) com os valores observados,
e X ¢éamatriz(N X (n + 1)) que contém uma coluna de 1s (para o intercepto) e as

demais colunas correspondentes as variaveis preditoras,
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e [Béovetor(n + 1 X 1) de coeficientes (incluindo BO),
e ¢eéovetor (N X 1) de erros.

A solugao 6tima em OLS ¢ dada por:
B=xX)"x"y (10)

T, . . , . .
desde que X X seja invertivel (ou pseudo-inversa em casos mais complexos).
2.3.2. Regressao Polinomial

A Regressao Polinomial ¢ uma extensdao natural da regressdo linear quando a
relacdo entre a(s) varidvel(is) independente(s) e a variavel dependente y ndo ¢ adequadamente
capturada por uma reta (fungdo linear simples). Em vez de ajustarmos uma reta, ajustamos

uma fungdo polinomial para representar melhor a curvatura dos dados.
2.3.2.1. Modelagem Matematica

Para um unico preditor x, o modelo de regressdo polinomial de grau d pode ser

escrito como:
1 2 3 d
y =B, tB x +B,-x +B,-x +.+ P cx + g (11)

Note que, apesar de ser chamado “polinomial”, ainda trata-se de um modelo linear

do ponto de vista dos coeficientes 3 . B P B v A nao linearidade esta na transformacao das

variaveis (x, xz, x3, ).
2.3.2.2. Forma Matricial

Assim como na regressao linear simples ou multipla, podemos escrever o modelo
polinomial de forma matricial. Suponha que tenhamos N observagdes para a variavel x.

Definimos uma matriz de projeto X poly da seguinte forma:



- i .
L w5y ]
1 z x2 xd
-Xpoly — ‘
2 d
1 zy =y Ty

e o vetor de parametros:

-B[]-
Bi
B = | B2

| Ba
O modelo é:

y=X B+ ¢

poly '
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(12)

(13)

(14)

O processo de ajuste (estimacdo de () por Minimos Quadrados Ordindrios

continua o mesmo, resultando na solugao:

T -1 T
- X ) .
poly poly

B=

2.3.2.3. Escolha do Grau do Polinomio

A escolha do grau d do polindmio ¢ critica:

(15)

- Um polindmio de grau muito baixo pode sub-ajustar (underfitting), nao

capturando a curvatura real dos dados.

- Um polindmio de grau muito alto pode sobre-ajustar (overfitting), resultando

em um modelo extremamente sensivel a ruidos e que nao generaliza bem.
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Na pratica, métodos de validacdo cruzada (cross-validation) sdo usados para
auxiliar na escolha do grau mais adequado, equilibrando complexidade e capacidade de

generalizacao



40

3. METODOLOGIA

A metodologia adotada neste trabalho foi planejada de modo a assegurar
resultados robustos e comparaveis a pesquisas recentes na area de modelagem de irradiancia
solar. Todo o processo metodoldgico foi estruturado em etapas bem definidas, abrangendo
desde a coleta e pré-processamento dos dados de cinco diferentes locais até a engenharia de
atributos, analise exploratdria e posterior treinamento e avaliagdo de modelos para estimar a

irradiancia global (GHI) e difusa (DIF).

3.1. Aquisicao e Organizaciao dos Dados

Esta secdo detalha a aquisicdo e organizacdo dos dados meteorologicos e de
irradiancia solar utilizados no TCC. Aborda a origem dos dados (Solargis e torres de medigao
da Casa dos Ventos), descreve a estrutura dos dados brutos, e explica os procedimentos de

leitura e armazenamento dos dados usando a biblioteca Pandas.

3.1.1. Fonte dos Dados

Os dados utilizados neste TCC foram fornecidos pela Casa dos Ventos, sendo
proveniente de torres de medi¢des. Por uma questao de sigilo, as coordenadas dos sites serao
ocultadas, e os nomes serdo trocados pelos nomes das cidades mais proximas. Dessa forma,
teremos os dados de Tiangua-CE, Lajes-RN, Barra-BA, Nova Alvorada do Sul-MS e

Goianésia-GO. Os dados consistem em:

- Dados de satélite da empresa Solargis, calculados a partir de dados de satélite
GOESR e GOES e de dados atmosféricos (ECMWEF, NOAA e NASA).

- Dados medidos em site, através dos sensores SPN1 (pirandmetro com padrao
de qualidade “first-class”, que mede GHI e DIF) e SR20-D2 (pirandmetro com
padrdo de qualidade “secondary standard”, que mede GHI).

Os dados de satélite do Solargis possuem tempo de amostragem de 15 minutos e

periodo de medicao que varia entre 01 de janeiro de 1999 e a data em que foram solicitados os

dados (2023-2024, dependendo do site).
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J& os dados dos sensores possuem uma variacdo conforme o periodo em que esta
cada campanha de medigdo de dados, ressaltando que o exigido em uma campanha de
medicao solar ¢ de 12 meses, porém os dados em questdo possuem entre 12-36 meses de

medic¢des, com um periodo de amostragem de 1 minuto.

3.1.2. Estrutura dos Dados Brutos

Os dados do Solargis sdo disponibilizados no formato .csv, e possuem um
“header” com informagdes referentes a procedéncia dos dados, periodo de dados, informagdes

do cliente, entre outros. Dentro da parte dos dados, temos os seguintes campos:

- Date: Data da medicao,

- Time: Tempo da medigao,

- GHI: Irradiancia Global Horizontal,
- DNI: Irradiancia Direta Normal,

- DIF: Irradiancia Difusa Horizontal,
- flagR: Flag de identificagdo de qualidade de nuvem,
- SE: Angulo de altitude solar,

- SA: Angulo de aspecto solar,

- TEMP: Temperatura do ar,

- AP: Pressdo atmosférica,

- RH: Humidade relativa,

- WS: Velocidade do vento a 10 m,

- WG: Rajada de vento a 10 m,

- WD: Direc¢ao do vento a 10 m,

- PREC: Taxa de precipitagao,

- PWAT: Agua precipitavel

J& os dados do site da Casa dos Ventos, sdo exportados no formato .txt, e
utilizaremos os campos de GHI de cada pirandmetro SR20-D2 (duas unidades) e o GHI e DIF
do SPNI.
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3.1.3. Leitura e Armazenamento

Para fazer a leitura dos dados, foi feita a remogao do cabecalho dos arquivos
originais, sobrando assim apenas o conteddo no formato .csv (padrdo utilizado para
“timeseries” solares). Dessa forma, utiliza-se a fun¢ao ‘read csv’ da biblioteca Pandas para

fazer a leitura do arquivo.

Apos a leitura, salvamos os dados como um “DataFrame” da biblioteca Pandas,
que nos permite trabalhar utilizando os dados com uma grande facilidade. Ressaltando que os
dados foram amostrados (usando a média) para um intervalo de 30 minutos. Dessa forma,

ambos os “DataFrames” possuem os mesmos intervalos de tempo de medigao.

3.2. Pré-Processamento dos Dados

Esta secdo detalha o pré-processamento dos dados utilizados no TCC. Aborda
cada procedimento aplicado aos dados brutos. Ressaltando que esses procedimentos foram
aplicados em sua maioria nos dados da Casa dos Ventos, pois os fornecidos pelo Solargis ja
haviam sido pré-processados pela propria empresa. Abaixo tem-se um diagrama com o fluxo

dos procedimentos aplicados.

Figura 5 - Fluxograma de procedimentos do pré-processamento.

Removendo valores
Removendo valores

—> »| negativos de GHI e
e DIF

DataFrames

Y

Removendo valores
onde GHI =0 (valores
noturnos)

Corrigindo casos
onde DF1 > GH1

A

4

Filtrando index
comum entre Satélite —— > Feature
e Sensor Engineering

Removendo viés do
SPN1

Y

Fonte: Autoria propria
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3.2.1. Remocao de Valores Ausentes (NaN)

A remocao de valores ausentes (“NaN” ou “Not a Number”) constitui uma etapa
fundamental no pré-processamento, especialmente em modelagens de regressdo, pois a
presenca de dados faltantes pode comprometer tanto o desempenho dos algoritmos quanto a
interpretabilidade dos resultados. Em geral, esses valores podem surgir por diversas razoes,
como periodos de manutengdo dos equipamentos de medicao, troca de sensores ou mesmo
falhas temporarias no registro dos dados. Em alguns casos, fatores externos, como problemas
de comunicacdo ou falta de energia também podem ocasionar lacunas na aquisi¢do das

medicoes.

Para assegurar a consisténcia do conjunto de dados, optou-se por descartar linhas
ou intervalos de tempo em que as varidveis de interesse apresentassem NaN de forma extensa
ou para variaveis criticas na modelagem. Essa decisdo se justifica pelo baixo volume relativo
de dados faltantes, o que torna a remocao mais viavel e menos propensa a introduzir viés,
além de evitar os desafios e incertezas inerentes a imputagao de valores, sobretudo quando
ndo hd uma informacdo sélida sobre a distribuicdo original das medidas. Desse modo,
busca-se preservar a integridade estatistica do conjunto de dados, minimizando impactos

adversos no processo de treinamento dos modelos de regressao.

3.2.2. Remocao de Valores Negativos

A presengca de valores negativos no conjunto de dados de irradidncia solar
representa um contrassenso fisico, pois a irradiancia nao pode assumir valores abaixo de zero
em condi¢des normais de medicdo. Muitas vezes, essas leituras negativas surgem durante
periodos noturnos, momento em que a irradiancia efetivamente ndo esta sendo captada pelo
sensor, mas ainda assim podem ocorrer pequenos desvios nos instrumentos de medi¢ao. Além
disso, vieses dos sensores ou problemas técnicos, como falhas de calibragao e ruidos elétricos,

podem levar a registros espurios negativos mesmo durante o dia.

Para garantir a coeréncia dos dados e evitar que esses registros prejudiquem o
processo de modelagem, optou-se pela remogado de todos os valores negativos do conjunto de
dados. Essa etapa de limpeza contribui para a integridade dos modelos de regressao

subsequentes, eliminando pontos que nao refletem a realidade fisica da irradiancia solar.
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3.2.3. Correcao de Casos “DIF > GHI”

A condicao em que a irradiancia difusa (DIF) supera a irradiancia global (GHI)
contraria os principios fisicos que fundamentam a medigao solar, pois, em condi¢des normais,
a GHI consiste na soma da componente direta e da componente difusa. No presente estudo, a
medi¢do de DIF foi realizada exclusivamente por meio do sensor SPN1, o que possibilitou a
identificacao de inconsisténcias em periodos especificos, sobretudo no inicio e no final do dia.
Esses valores andmalos podem ocorrer devido a falhas pontuais do equipamento, problemas
de calibragdo ou ruidos na aquisi¢cdo dos dados de irradiancia difusa em horérios de baixa

irradiancia.

Diante dessa situagdo, optou-se por corrigir os registros em que, DIF > GHI,
fazendo DIF = GHI, de modo a manter a coeréncia fisica dos dados. Essa medida visa
preservar a qualidade do conjunto de dados para as etapas posteriores de analise e
modelagem, evitando que resultados distorcidos afetem as estimativas de desempenho dos

modelos de regressao.

3.2.4. Remocao de Valores GHI =0

Apos a etapa de remocao de valores negativos, correspondente principalmente aos
registros noturnos, observou-se que parte dos dados de irradiancia global (GHI) ainda
apresentava valores exatamente iguais a zero. No caso dos dados provenientes do Solargis, é
comum que os periodos noturnos sejam representados de forma padronizada com GHI = 0,
refletindo fielmente a auséncia de irradiancia. Em contraste, nos sensores em campo, ¢ raro
encontrar medicdes de GHI exatamente nulas, pois mesmo em condi¢des de céu noturno,
podem surgir leituras muito proximas de zero, mas ndo exatamente zero, devido ao ruido de

fundo e a pequenos desvios instrumentais.

Nesse contexto, optou-se por remover todos os registros em que GHI = 0, uma
vez que eles correspondem essencialmente as condi¢des noturnas ou a dados potencialmente
ndo representativos para a analise de periodos diurnos. Tal procedimento simplifica o
conjunto de dados e evita que linhas noturnas, sem significado para os modelos de irradiancia,

tenham influéncia de maneira indevida nas etapas de modelagem e avaliagao.
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3.2.5. Remocao de Viés do Sensor de Brilho Solar (SPN1)

O sensor de brilho solar SPN1 utiliza um conjunto de lentes simultaneamente para
medir tanto a irradiancia global (GHI) quanto a irradiancia difusa (DIF). Em seu principio de
funcionamento, uma das lentes permanece totalmente exposta a incidéncia direta do sol,
enquanto a outra permanece na sombra, permitindo a separagdo das componentes global e
difusa. Apesar de ser classificado como um sensor de primeira classe, na mesma torre de
medicdo sdo empregados sensores do tipo SR20-D2 (secondary standard), que apresentam

menores margens de incerteza.

Figura 6 - Exemplo de viés no GHI do SPN1.
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Fonte: Autoria propria

Para ajustar o viés do SPN1 em relagdo ao SR20-D2 na medi¢ao de GHI, foi
estabelecida uma regressao linear simples, tendo como entrada os valores de GHI medidos
pelo SPN1 e, como saida, os valores de GHI registrados pelo SR20-D2. Em seguida, a mesma
relacdo de calibragdo foi aplicada aos valores de DIF obtidos pelo SPN1. Essa abordagem ¢
justificada pelo fabricante, que assegura que as lentes responsaveis pela medicao de GHI sao
as mesmas utilizadas na medicao de DIF, de modo que a correcdo de viés para a componente
global pode ser estendida de forma confidvel para a componente difusa. Dessa maneira,
garante-se maior consisténcia nos valores medidos pelo SPN1 antes de prosseguir para as

etapas de analise e modelagem.

3.2.6.  Filtragem do Indice Comum

A fim de assegurar a consisténcia temporal entre os dados de satélite e os valores
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coletados pelos sensores em campo, procedeu-se a filtragem dos indices (“timestamps’)
comuns a ambos os conjuntos. Essa etapa foi necessaria para garantir que, a0 comparar ou
combinar as duas fontes de informagao, cada medi¢ao de irradiancia refere-se exatamente ao
mesmo momento no tempo. Dessa forma, evitam-se discrepancias ocasionadas por diferencas
nos intervalos de coleta, harmonizando o conjunto de dados e viabilizando andlises e

modelagens mais precisas.

3.3. Engenharia de Atributos

Nesta etapa, foram gerados atributos adicionais para enriquecer o conjunto de
dados e refinar a modelagem da irradiancia. Entre eles destaca-se o indice de claridade (KT) e
a fracdo difusa (KD), cujas expressdes foram apresentadas na fundamentagdo teodrica e
baseiam-se em relagdes consagradas na literatura especializada. Além disso, também foram
calculados angulos solares (zenital e azimutal) e derivados (cosseno do angulo zenital por
exemplo), a fim de captar variagdes geométricas que influenciam a distribui¢cdo de irradiancia
ao longo do dia e do ano. Tais varidveis fornecem uma visdo mais completa do
comportamento da radiagdo solar e contribuem para o desenvolvimento de modelos mais

robustos nas etapas seguintes.

3.4. Analise Exploratéria dos Dados

Nesta etapa, foram descritos os graficos utilizados para analisar os dados. A
maioria dessas representagdes ¢ amplamente empregada na literatura especializada sobre

irradiagao solar.

3.4.1. Perfil Diario

Nesta fase, gera-se um grafico do comportamento médio horario de GHI, o que
permite avaliar se os dados de diferentes fontes (sensores e satélite) estdo alinhados na mesma
referéncia de tempo. Além disso, esse perfil diario possibilita verificar possiveis padroes
recorrentes de irradiancia ao longo do dia, como picos em horarios especificos ou

discrepancias que possam indicar falhas nos sensores ou desalinhamento temporal.
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Figura 7 - Exemplo de Perfil Diario.
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Fonte: Autoria propria
3.4.2. Analise de Viés: GHI e DIF

Em seguida, realiza-se uma andlise de viés entre as medi¢cdes de GHI e DIF
fornecidas pelo satélite (por exemplo, Solargis) e as medigdes de campo. Esse passo busca
identificar se hd uma tendéncia sistematica do satélite subestimar ou superestimar a
irradiancia, tanto global quanto difusa. Neste caso, utilizou-se um histograma do residuo

(erro) entre o GHI do sensor ¢ o GHI do satélite.

Figura 8§ - Exemplo de Histograma do residuo.
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Por fim, tragam-se graficos de dispersao colocando GHI do satélite versus GHI do

sensor de campo, bem como DIF. Tais graficos permitem examinar se a relagdo entre ambas

as fontes de dados ¢ fundamentalmente linear ou se apresenta desvios em determinados

intervalos de irradidncia. Essa comparagdo fornece informagdes valiosas sobre o grau de

ajuste entre as medigdes satelitais e em site, contribuindo para identificar lacunas ou

inconsisténcias antes de prosseguir para as fases de modelagem.
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Figura 9 - Exemplo de comparagdo de GHI ¢ DIF de satélite e sensor.
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3.4.4. Analise de Heteroscedasticidade
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heteroscedasticidade ¢ um fendmeno estatistico em que a variabilidade dos erros de um

modelo de regressdo ndo ¢ constante ao longo dos valores preditores. Isso significa que a

dispersdo dos residuos muda em diferentes niveis da varidvel independente, violando uma das

principais suposi¢des da regressao linear classica: a homoscedasticidade (ou seja, erros com

variancia constante). Desta forma, para identificar esse comportamento, pode-se utilizar de

graficos do residuo e do quadrado do residuo, que torna a variagao do erro mais notoria.
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3.5. Modelagem das Regressoes

Nesta etapa, sao descritos os procedimentos utilizados para definir os parametros
que serdo utilizadas nas regressoes de GHI e DIF, assim como a explicagdo da abordagem

utilizada nos modelos de regressao definidos para cada irradiancia.

3.5.1. Definicao das features

Analisou-se a correlacdo entre as varidveis disponiveis na série temporal do
Solargis, que sdo as possiveis entradas do modelo de Regressdo. Desta forma, definiu-se
como entrada apenas a irradiacdo em questdo (GHI ou DIF) e o cosseno do angulo zenital
(valores entre 0 e 1 sdo melhor interpretados pelas regressdes), as outras varidveis nao
apresentaram correlacdo alta, com exce¢do de elementos redundantes, como, por exemplo,
GHI e GHI clearsky, ou angulo zenital e angulo de elevagdo, que sdo varidveis que ja

possuem alta correlagao entre si, entdo ¢ redundante sua utilizagao.

3.5.2.  Separac¢io em Conjuntos de Treino e Teste

Nesta etapa, optou-se por um método de particionamento que assegura a presenga
equilibrada de exemplos em cada faixa de angulo zenital (ZEN) tanto no conjunto de treino
quanto no de teste. Para isso, o conjunto de dados foi segmentado em bins de ZEN (agrupados
de 10° em 10° por exemplo, 0 a 10°, 10 a 20°, etc.), e em seguida foi aplicada a fungdo
“train_test split® do sklearn, separadamente para cada bin, com uma propor¢ao de 80% dos
dados destinada ao treinamento e 20% ao teste. Dessa forma, evita-se que determinada faixa
de angulo zenital fique sub- ou super-representada em uma das divisdes, o que poderia

enviesar o treinamento ¢ a avaliacdo do modelo.

A cada iteragdao, os dados do bin correspondente sdo divididos em "X train’,
'y train’ e "X test’, 'y test’, com o embaralhamento (‘shuffle=True") controlado por uma
semente fixa (‘random_state=69"), para garantir reprodutibilidade do cenario. Em seguida,
todos os subconjuntos de treino sdo armazenados em listas e, ao final do processo,
concatenados para formar o conjunto final de treino. Entdo, o mesmo procedimento ¢
realizado para compor o conjunto de teste. Essa estratégia permite manter a coeréncia das

proporgdes de treino e teste ao longo de toda a gama de angulos zenitais, garantindo que o
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modelo seja treinado e validado de forma equilibrada em relagdo a varia¢ao angular.

Figura 10 - Diagrama com o procedimento de separacdo dos dados para treinamento de modelos.
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Fonte: Autoria propria
3.5.3. Defini¢ao dos Modelos de Regressao

Para a construcdo e avaliacdo dos modelos de regressdo voltados a estimacdo da
irradiancia medida (GHI, do SR20-D2 ou DIF, do SPNI1), considerando as variaveis de
entrada disponiveis (especialmente a irradidncia estimada pelo modelo — GHI ou DIF — ¢ o
cosseno do angulo zenital), foram definidas trés abordagens metodoldgicas principais. A
primeira consiste em utilizar todos os dados de treinamento para ajustar um tunico modelo de
Regressdao Linear, enquanto a segunda se baseia em segmentar o dominio do dngulo zenital
(ZEN) em diferentes faixas e, entdo, calibrar um modelo de Regressao Linear especifico para
cada uma dessas faixas. Por fim, a terceira abordagem também segmenta o dominio de ZEN,
mas emprega uma expansao polinomial nas variaveis de entrada, gerando termos adicionais
(como GHI?, GHIxcos(ZEN), cos*(ZEN), dentre outros) para permitir uma maior flexibilidade

no ajuste.

Na primeira abordagem, denominada “Regressdo Linear Unica”, todo o conjunto
de treinamento previamente definido (com a separacdo em treino e teste) ¢ utilizado para
ajustar um unico modelo linear. As variaveis GHI (ou DIF) e cos(ZEN) sdo organizadas em
um vetor X, enquanto o valor medido pelos sensores compde o vetor alvo y. Em seguida,

aplica-se a classe LinearRegression do scikit-learn para estimar os coeficientes BO, B X Bz.

O objetivo dessa etapa ¢ oferecer um modelo-base (baseline) simples, de modo que suas
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previsdes possam ser comparadas as de técnicas mais sofisticadas.

A segunda abordagem, chamada “Regressdao Linear Segmentada por Faixa de
Angulo Zenital (Piecewise Linear)”, busca lidar com eventuais mudangas no comportamento
da irradiancia ao longo da variacdo de ZEN. Para isso, definem-se “bins” ou intervalos de
ZEN (por exemplo, de 0° a 10°, de 10° a 20°, e assim por diante) e, para cada bin, filtra-se o
conjunto de dados de treino, retendo apenas amostras cujo angulo zenital pertenga aquele
intervalo. Em seguida, ajusta-se um modelo de Regressao Linear restrito aos dados desse bin,
armazenando-se, para cada intervalo, os coeficientes estimados, intercepto e numero de
amostras utilizadas. Para prever o valor de ghi e dif em um novo instante, ¢ necessario
identificar em qual bin o respectivo ZEN cai e, entdo, aplicar o modelo daquele bin para gerar
a estimativa. Essa abordagem permite que cada submodelo reflita a relagdo entre as variaveis
naquele intervalo angular especifico, mas também reduz a quantidade de pontos disponiveis

para cada ajuste, podendo aumentar a variabilidade.

Na terceira abordagem, “Regressdo Polinomial Segmentada por Faixa de Angulo
Zenital (Piecewise Polynomial)”, mantém-se a segmentagdo do ZEN em bins, porém, em vez
de ajustar diretamente uma regressao linear simples, realiza-se uma expansao polinomial das
variaveis GHI (ou DIF) e cos(ZEN). Essa expansao inclui termos como GHI?, cos*(ZEN) e
interacoes como GHIXcos(ZEN). Para tanto, utiliza-se a classe PolynomialFeatures,
definindo um grau d (por exemplo, grau 4), e entdo realiza-se um ajuste linear nos termos
polinomiais resultantes. Cada bin, portanto, possui um transformador polinomial proprio e um
modelo de regressdo correspondente, que sdo armazenados para posterior uso em previsao.
Dessa forma, ao receber um novo valor de ZEN, identifica-se o bin e aplica-se o
transformador polinomial, antes de usar o regressor linear treinado para aquela faixa
especifica de ZEN. Essa variacdo permite capturar de forma mais robusta relagdes nao
lineares, mas exige cuidado para ndo incorrer em sobreajuste (overfitting), especialmente

quando a quantidade de dados em cada bin ¢ limitada ou quando o grau polinomial ¢ elevado.
3.6. Métricas de avaliacao dos modelos
A avaliagao dos modelos foi conduzida a partir de diferentes métricas de erro,

todas normalizadas pela média dos valores observados, além da verificagdo do coeficiente de

determinag¢do (R?*). Em particular, empregou-se o Root Mean Square Error normalizado
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(nRMSE), o Mean Bias Error normalizado (nMBE) e o Mean Absolute Error normalizado

(nMAE), definidos para um conjunto de N amostras onde Y, representa o valor predito e Y. 0

valor observado, e y ¢ a média dos valores observados dada por

N

y=(1+N)x ;1 y, (16)

enquanto o nRMSE ¢ dada por

N -~
nRMSE = \/(1 = N) X T, - v |+ (17)

i=1

e o nMBE, por sua vez, segue a forma

N ~
nMBE = ((1 + N) X lgl(yi - 3’9) Ty (18)

por fim, o nMAe, ¢ dado por

N -~
nMAE = ((1 + N) X _§1|yi - yi|) +y (19)

Tais medidas, por serem “normalizadas” pela média y, permitem uma comparagao
relativa dos erros em diferentes intervalos de magnitude da variavel alvo. Além disso,

utilizou-se o coeficiente de determinacao (R?), calculado a partir de:

2 N~ 2 N -2
RP=1- [(;1(yi - ) )+ (;1@1. ) )] 20)

que fornece uma indicagdo de quanto da variabilidade dos dados o modelo ¢ capaz de
explicar. Para facilitar a analise grafica, foi implementada a fungdo

‘plot_performance_comparison’, que gera, em um Unico painel, tanto o diagrama de
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dispersdo entre valores previstos e observados (com coloragdo baseada na densidade de

pontos e uma linha de referéncia 1:1) quanto um histograma das diferencas (; — ). Essa
funcdo também imprime no console os valores das métricas de desempenho (R?, nRMSE e
nMBE), possibilitando uma avaliagdo visual e quantitativa dos resultados, bem como a
identificacao de eventuais tendéncias de superestimativa ou subestimativa ao longo da faixa

de valores preditos.
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4. RESULTADOS

Os resultados obtidos neste trabalho foram avaliados com base nos desempenhos
dos diferentes modelos de regressdo (Linear Unico, Linear por Faixas de Angulo Zenital e
Polinomial por Faixas) aplicados a cinco bases de dados (Tiangué - CE, Lajes - RN, Barra -
BA, Goianésia - GO e Nova Alvorada do Sul - MS). Para cada localidade, analisaram-se as
métricas de desempenho, como R? (coeficiente de determinacdao), nRMSE (erro quadratico
médio normalizado), nMBE (erro médio tendencioso normalizado) ¢ nMAE (erro absoluto
médio normalizado). Além disso, foram realizadas comparagdes entre os valores estimados e

os valores medidos de GHI (Global Horizontal Irradiance) e DIF (Difusa).

Na Tabela 3, apresenta-se um panorama do viés (nMBE) das componentes GHI e
DIF do Solargis em cada site, evidenciando a existéncia de tendéncia de subestimativa ou
superestimativa antes da aplicacdo dos modelos de corre¢do via regressdo. Esses resultados

servem de base para verificar o impacto das metodologias propostas na reducao desse viés.

Tabela 3 - Viés das componentes GHI e DIF do Solargis para cada site.

nMBE GHI (%) | nMBE DIF (%)
Tiangua - CE 0.6665 17.9160
Lajes - RN -2.5530 11.8077
Barra - BA 1.9473 14.8468
Goianésia - GO 0.1178 3.5103
Nova Alvorada do Sul - MS -0.0795 14.1650

Fonte: Autoria propria.

4.1. Avaliacio e comparaciao de métricas em funcio do ZEN

Na sequéncia, cada modelo foi avaliado em fun¢do do angulo zenital (ZEN), de
modo a verificar possiveis variagdes no desempenho para faixas de ZEN distintas. Para
ilustrar essas analises, as Figuras 11 a 20 mostram a evolugao dos principais indicadores — tais
como R?, nRMSE, nMBE e nMAE — ao longo de diferentes intervalos de ZEN, para cada um
dos cinco sitios estudados. Essas figuras permitem observar como a qualidade do ajuste, o
viés e o erro médio variam conforme o angulo zenital, possibilitando identificar regides em
que o modelo apresenta comportamento mais consistente ou em que possa ocorrer um

aumento do erro.
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4.1.1.  Analise da componente global (GHI)
Em linhas gerais, observam-se melhorias significativas nas estimativas de GHI ao
se aplicar modelos segmentados ou polinomiais, sobretudo em angulos zenitais mais

elevados, em que a irradidncia tende a apresentar maior dispersdo. J4 em faixas de ZEN

R2

menores, a melhoria é por vezes menos pronunciada, uma vez que o Solargis, em alguns

casos, ja apresenta menor erro nessa condicdo. Ainda assim, a comparagdo detalhada dos

resultados em cada sitio revela que a escolha do modelo mais apropriado pode variar em

funcdo de fatores climaticos e geograficos, tais como latitude e regime de nuvens.

Figura 11 - Evolucdo do R? e do nRMSE do GHI em fungdo do ZEN, site de Tiangua.
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80

Na Figura 11, pode-se observar que os modelos que foram treinados por bins de

angulo zénite, se demonstraram mais eficientes conforme os valores do angulo zenital se

aproximam de 90°. Vale ressaltar também, que para valores entre 80° a 90° de angulo zenital

o coeficiente R2 apontou valores negativos, mostrando que ndo existe correlagdo entre o

calibrado e o original, fato que ¢ explicado pelo aumento brusco do nRMSE nessa faixa de

angulo zenital. Para valores inferiores a 50° de angulo zenital, observa-se pouca diferenca

entre os modelos, com os modelos treinados por bins levemente melhores.
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Figura 12 - Evolugdo do nMBE e do NMAE do GHI em fungdo do ZEN, site de Tiangua.

Evolugao do nMBE em fungao do ZEN Evolugao do nMAE em fungao do ZEN

Modelo . Modelo

—e— GHI 701 —— GHI
GHI_LR GHI_LR
209 GHI_LR_BINS GHI_LR_BINS

60

—e— GHI_POLY / 1 —— cHi_PoLY

/. .
1 ) 50
0] s o
" "
S < 40 .
= z
3
-20 304 /
£

/

¥
—401 ./

s
10+ ...-—...—-—m—--—-#'f
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
ZEN (valor médio do bin) ZEN (valor médio do bin)

Fonte: Autoria propria.

Na Figura 12, observa-se que os dados de Tiangud possuem um viés positivo
consideravel para valores com angulo zenital superior a 50°, e também observa-se que a
calibracdo por regressdo linear (‘DIF LR’) falha nesse mesmo intervalo, porém a
metodologia proposta de calibracdo em bins, mantém o viés proéximo a 0 em todo o intervalo
de angulo zenital, se demonstrando mais robusta. Esse melhor desempenho da metodologia

apresentada também ¢ observado na reducao do erro absoluto para angulos superiores a 80°.

Figura 13 - Evolugdo do R? e do nRMSE do GHI em funcao do ZEN, site de Lajes.

Evolugdo do R2 em fungdo do ZEN Evolugdo do nRSME em funcéo do ZEN

554
Modelo [ Modelo 3
—e— GHI —e— GHI
0.775 4 1
Y GHI_LR

GHI_LR
—e— GHI_LR_BINS —e— GHI_LR_BINS

/:
0.750 1 —e— GHI_POLY £ 8 451 —s— GHI_POLY
A = A ,
o
0.725 1 40 1 2
p .
. 3

o 0.700 4 :\
IS

0.675 T

5 25 Y
0.650
N
20 1 ¢
0.625 /. /

\ 151 = ¥

0.600 -

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
ZEN (valor médio do bin) ZEN (valor médio do bin)
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Na Figura 13, devido a oscilagdo dos valores ser mais proxima, temos uma
intervalo menor de plotagem no eixo y, o que torna mais claro o desempenho superior dos

modelos em bins, apesar de ndo ser uma diferenga grande.
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Figura 14 - Evolugdo do nMBE e do NMAE do GHI em fungdo do ZEN, site de Lajes.
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Fonte: Autoria propria.

Na Figura 14, observa-se um viés nos dados de Lajes, que se reflete em todos os

dados de medicdao, com tendéncia negativa, também pode-se observar que os modelos de

calibracao em bins mostram-se mais constantes, com erros mais proximos de 0 para todos os

intervalos.
Figura 15 - Evolug@o do R? e do nRMSE do GHI em fung¢&o do ZEN, site de Barra.
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Na Figura 15, observa-se resultados similares aos da Figura 13.
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Figura 16 - Evolugdo do nMBE e do NMAE do GHI em fungdo do ZEN, site de Barra.
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Na Figura 16, observa-se que para valores superiores a 50° de angulo zenital,

todos os modelos apresentaram erros considerdveis, apesar de superiores aos dados originais,

considerando que para os outros sites os modelos com calibracdo em bins haviam atingido

valores proximos de 0.

Figura 17 - Evolugdo do R? e do nRMSE do GHI em fungdo do ZEN, site de Goianésia.
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Fonte: Autoria propria.

Na Figura 17, observa-se valores bem proximos de R2 e nRMSE, destoando

apenas para intervalos superiores a 70°de angulo zenital, semelhante aos outros sites.
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Figura 18 - Evolugdo do nMBE e do NMAE do GHI em fung¢do do ZEN, site de Goianésia.
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Na Figura 18, observa-se na evolugdo do nMBE o mesmo comportamento

encontrado na Figura 17, em que para valores superiores a 90° de angulo zenital, a calibracao

por regressao linear (‘DIF _LR’) apresenta um pico negativo superior ao erro dos dados sem

calibracao. Esse comportamento nao ¢ observado para os modelos de calibragao em bins.
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Figura 19 - Evolugao do R? e do nRMSE do GHI em fung@o do ZEN, site de Nova Alvorada do Sul.
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Na Figura 19, observa-se valores bem proximos de R2 e nRMSE, destoando

apenas para intervalos superiores a 70°de angulo zenital, semelhante aos outros sites.
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Figura 20 - Evolug¢ao do nMBE e do NMAE do GHI em fun¢éo do ZEN, site de Nova Alvorada do Sul.
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Fonte: Autoria propria.

Na Figura 20, observa-se novamente o mesmo comportamento que ocorre na

Figura 18 e 17, citado anteriormente.

Nas Figuras apresentadas, nota-se que os valores de R? tendem a se manter em
patamares mais elevados nos intervalos de angulo zenital (ZEN) baixos a intermedidrios,
indicando que, nessas condi¢des, tanto o dado original do Solargis (GHI) quanto os modelos
de regressdo (GHI LR, GHI LR BINS e GHI POLY) conseguem explicar uma fragao
consideravel da variabilidade observada. J4 quando o ZEN ultrapassa 60°-70°, ha uma queda
acentuada de R? em vdrios sitios, evidenciando maior dificuldade em prever a irradiancia

global a medida que o Sol se aproxima do horizonte.

As métricas de erro, especialmente o nRMSE e o nMAE, confirmam essa
tendéncia de aumento progressivo conforme o dngulo zenital cresce, refletindo o acréscimo de
incertezas e a maior dispersao dos dados de irradiancia em condigdes de sol baixo. Mesmo
nessa situacdo, as abordagens segmentadas (GHI LR BINS) e polinomiais (GHI POLY)
costumam oferecer redugdes de erro um pouco mais acentuadas em comparacgao a regressao
linear simples (GHI LR). Em contrapartida, para ZEN baixos (até cerca de 40°-50°), os
ganhos podem ser menores, pois a qualidade do dado original (GHI) ja ¢ suficientemente boa

em muitos casos.

Quanto ao viés (nMBE), alguns sitios exibem valores ligeiramente positivos
(superestimativa) para o dado original do Solargis nos angulos zenitais médios ou altos,

enquanto outros apresentam leve subestimativa em faixas especificas de ZEN. Os métodos de
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correcdo, em geral, reduzem essa tendéncia de forma razoavel na maior parte dos intervalos,
mas pode haver comportamentos atipicos em angulos muito extremos, o que reforgca a

necessidade de analise especifica para cada local e faixa angular.

De modo geral, os resultados mostram que o desempenho dos modelos varia ao
longo do angulo zenital, sendo recomendavel uma abordagem que considere essa variagao
caso se deseje obter corregdes consistentes em toda a gama de posigdes solares. Além disso, a
comparagao entre GHI LR BINS e GHI POLY sugere que ambas as estratégias de
segmentacdo (por regressoes lineares ou por regressdes polinomiais em intervalos de zénite)
sdo capazes de atenuar os erros e o viés do dado original, ainda que existam diferengas

pontuais em cada sitio.

4.1.2. Analise da componente difusa (DIF)

Para a componente difusa (DIF), foi conduzida avaliagdo semelhante,
observando-se novamente as métricas R?2, nRMSE, nMBE e nMAE em diferentes faixas de
ZEN. De modo geral, o dado original do Solargis (DIF) apresenta viés e erro um pouco mais
elevados em angulos zenitais intermediarios a altos, em razdo do aumento do espalhamento
atmosférico. Ainda assim, a aplicagdo das correcdes via regressdo tende a reduzir esses

valores, sobretudo com o uso de modelos segmentados ou polinomiais.

Figura 21 - Evolugdo do R? ¢ do nRMSE da DIF em fungdo do ZEN, site de Tiangua.
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Fonte: Autoria propria.

Na Figura 21, observa-se que existe uma melhora consideravel na métrica R2,

para todo o intervalo de angulo zenital, independente do método de calibragdo, porém os
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métodos de calibracdo em bins, mostram-se mais efetivos.

Figura 22 - Evolugdo do nMBE e do NMAE da DIF em fun¢@o do ZEN, site de Tiangua.
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Fonte: Autoria propria.

Na Figura 22, observa-se o alto viés nos dados de irradia¢do difusa do site de
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Tiangud, com valores superiores a 10% para praticamente todos os intervalos de angulo

zenital. Também observa-se que as regressoes foram efetivas na remogao de viés dos dados.

Vale ressaltar que observa-se o mesmo problema que ocorria na irradiacdo global, com a

calibragdo por regressao linear (‘DIF _LR’), para angulos superiores a 80°.

Figura 23 - Evolugdo do R? ¢ do nRMSE da DIF em fungo do ZEN, site de Lajes.
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Na Figura 23, observa-se que existe uma melhora consideravel nas métricas R2 e

nRMSE, para todo o intervalo de angulo zenital, independente do método de calibracdo,

porém os métodos de calibragdo em bins, mostram-se mais efetivos, com destaque para o

método polinomial, que consegue se distanciar consideravelmente em R2.



Figura 24 - Evolugdo do nMBE e do NMAE da DIF em fun¢@o do ZEN, site de Lajes.
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Na Figura 24, observa-se o0 mesmo comportamento visto na Figura 22.

Figura 25 - Evolug@o do R? e do nRMSE da DIF em funcéo do ZEN, site de Barra.
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Na Figura 25, observa-se de forma geral o mesmo notado nas Figuras 23 e 21,

mas vale ressaltar que para valores de angulo zenital superiores a 80°, a calibragdo por

regressao linear (‘DIF LR’) mostrou-se inferior ao dados sem calibra¢dao, o que havia sido

notado apenas no nMBE, como citado anteriormente. Também observa-se que a regressao

polinomial, para certos intervalos de angulos zenital, mostra-se consideravelmente superior

em relacdo as regressdes lineares.
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Figura 26 - Evolugao do nMBE e do NMAE da DIF em fungdo do ZEN, site de Barra.
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Na Figura 26, observa-se o mesmo comportamento visto na Figura 22 e 24,

destacando uma maior redu¢do de nMAE, como pode-se observar para a reducdao de

aproximadamente 10% entre os dados ‘DIF’ e ‘DIF POLY’ (calibragdo por bins com

regressdo polinomial). Ressaltando, que para este site de Barra, a regressdo polinomial

desempenhou uma redugdo em valores de erro absoluto considerdvel em relacao a regressao

linear.
Figura 27 - Evolug@o do R? e do nRMSE da DIF em fungdo do ZEN, site de Goianésia.
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Fonte: Autoria propria.

Na Figura 27, observa-se métricas bem proximas e com mesma tendéncia,

comportamento que ndo havia sido visto nos sites do Nordeste (Tianguda, Lajes ¢ Barra).

Ressaltando que o site de Goianésia se encontra em um local de geografia mais plana, o que

influencia na irradiagdo difusa.
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Figura 28 - Evolugao do nMBE e do NMAE da DIF em func¢do do ZEN, site de Goianésia.

Evolugdo do nMBE em fungao do ZEN

Evolugao do nMAE em fungao do ZEN

34
—" Modelo
—e— DI
. 321 DIF_LR
1. PR — —s— DIF_ LR BIN
\ / —e— DIF_POLY
. — —l 304 =
01 b S — i .\—. " / -
281 "
S
. H v
*] / ./°
\
:
-101 24 /3 /:
Modelo
—e— DIF < \ /:/
DIF_LR ’ — "
- 224 —
_151 —e— DIF_LR BIN :___./'/
—e— DIF_POLY | S———
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

ZEN (valor médio do bin)

ZEN (valor médio do bin)

Fonte: Autoria propria.

Na Figura 28, observa-se que o viés (nMBE) ¢ inferior a 10%, muito menor que
os vieses observados anteriormente. Além disso, observa-se novamente 0 mesmo
comportamento da calibracdo por regressao linear (‘DIF LR’) para valores superiores a 80°

de angulo zenital.

Figura 29 - Evolugdo do R? e do nRMSE da DIF em fun¢@o do ZEN, site de Nova Alvorada do Sul.
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Na Figura 29, observa-se um comportamento similar ao encontrado nos sites do
Nordeste, mas nesse caso para valores de angulo zenital inferiores a 50°, temos métricas mais

proximas.
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Figura 30 - Evolugdo do nMBE e do NMAE da DIF em fung¢éo do ZEN, site de Nova Alvorada do Sul.
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Na Figura 30, observa-se um viés superior a 10% para praticamente todos os
intervalos de angulo zenital, assim como o mesmo comportamento citado anteriormente para

a calibracao por regressao linear (‘DIF_LR’).

Nas Figuras apresentadas, nota-se que todas as métricas de erros destoam com
maior amplitude que observado com a componente de irradiagcdo global (GHI), com excegao
de Goianésia, que foi o Unico site em que as métricas estao mais proximas, devido a questdes
geograficas, como citado anteriormente. Vale destacar, com excecdo de Goianésia, que todos

os sites demonstraram viés (nMBE) superiores a 10% para todo o intervalo de ZEN.

Quanto aos sites do Nordeste, observa-se diversos pontos onde o nRMSE e o
nMBA mostram diferengas superiores a 5%, 10% em comparacao entre os dados de satélite e
os dados calibrados, o que mostra que além do viés, também ¢é possivel reduzir

consideravelmente o erro absoluto, independente do intervalo de angulo zenital.

De modo geral, os resultados reforcam que o desempenho dos modelos varia ao
longo do angulo zenital e que a qualidade dos dados de irradiagdo difusa da fonte de satélite ¢
bem inferior a dos dados de irradiacdo global, devido as dificuldades na modelagem,
geografia etc. Diante disso, a calibracdo de difusa mostra-se indispensavel, além de que
observou-se ganhos na utilizacdo de metodologia de calibragdo em clusters, com destaque
para a regressdo polinomial, que conseguiu se destacar em relacdo a regressdo linear,

principalmente por conta da irradia¢do difusa possuir mais nao-linearidades.
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5. CONCLUSAO

Este trabalho apresentou o desenvolvimento e a avaliagcdo de diferentes
metodologias de regressdo (Linear Unico, Linear por Faixas de Angulo Zenital e Polinomial
por Faixas) aplicadas a estimacdo da irradiancia global (GHI) e difusa (DIF) em cinco
localidades distintas (Tiangua - CE, Lajes - RN, Barra - BA, Goianésia - GO ¢ Nova Alvorada
do Sul - MS). Foram analisadas métricas como R?, nRMSE, nMBE e nMAE, além de graficos
que relacionam o desempenho dos modelos as variagdes do angulo zenital (ZEN). Os
resultados mostram que os métodos segmentados ou polinomiais, de modo geral, suplantam o
modelo linear unico em cendrios de maior dispersdo dos dados ou de angulos zenitais mais

elevados, proporcionando reducdes no viés e nos erros médios.

A partir das analises realizadas, constatou-se que:

- A segmentagao em faixas de ZEN contribui para ajustar melhor os modelos as
variagdes de irradiancia, tanto global quanto difusa, principalmente em
situagdes extremas (sol muito baixo ou muito alto no horizonte).

- A abordagem polinomial tende a capturar relagdes mais complexas entre a
irradiancia e o angulo zenital, resultando em erros ligeiramente menores que a
regressao linear segmentada em diversos intervalos.

- A irradiancia difusa (DIF) apresenta naturalmente maior variabilidade em
angulos zenitais extremos, mas ainda assim pode ser beneficiada pelos

modelos propostos.

Dessa forma, o trabalho contribuiu a0 demonstrar que a consideragdo explicita do
angulo zenital e a introdu¢do de termos polinomiais podem aperfeicoar a acuracia de
estimativas de irradiancia, ampliando a confiabilidade em aplicativos que dependam de dados
solares mais ajustados, como planejamento energético e dimensionamento de sistemas

fotovoltaicos.

5.1. Limitac¢oes

Apesar das melhorias observadas, algumas limitagdes devem ser destacadas:
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- Restricdo de Faixas de ZEN: Em algumas localidades, o volume de dados em

angulos zenitais muito elevados (proximos de 90°) ou muito baixos (proximos
de 0°) mostrou-se limitado, o que pode dificultar o refinamento dos modelos

nessas condig¢oes.

- Generalizacdo para Outros Locais: Os resultados podem ndo se estender de

forma imediata a regides com condi¢des climaticas ou padrdes de nebulosidade
significativamente diferentes, exigindo uma etapa de revalidacdo ou

recalibracao dos modelos.

- Complexidade Computacional: A abordagem polinomial e a segmentagao por

bins de ZEN demandam um volume maior de ajustes e armazenamento de
parametros, o que pode ser um entrave em aplicagdes com recursos

computacionais mais restritos.

Trabalhos Futuros

Para dar continuidade aos resultados obtidos neste trabalho, sugere-se:

Incorporagdo de Varidveis Meteoroldgicas
- Ventos, Umidade e Temperatura: Integrar variaveis adicionais pode
revelar correlagdes importantes e aprimorar a qualidade das estimativas

de GHI e DIF.

Otimizacdo de Bins ou Modelos de Clustering
- Abordagens Dinamicas: Em vez de segmentar o angulo zenital em
intervalos fixos, explorar técnicas de clustering que agrupe faixas de

ZEN de maneira adaptativa, considerando também o erro de previsao.

Aplicagao de Métodos de Machine Learning Avangados
- Redes Neurais ou Modelos Ensembling: Investigar modelos como
Random Forest, Gradient Boosted Trees ou redes neurais profundas
para avaliar se conseguem capturar variagdes ndo lineares de maneira

mais eficiente.

Extensdo para Outras Regides e Base de Dados
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- Validagdo Abrangente: Expandir a analise para outros locais com perfis
climaticos distintos, a fim de avaliar a robustez dos modelos em

contextos mais amplos.

Avaliacao Econdmica e Pratica
- Aplicag@o em Projetos Solares: Examinar o impacto da reducgdo de erro
nas estimativas de producdo fotovoltaica, incluindo estudos de

custo-beneficio para diferentes configuragdes de sistema.

5.3. Consideracoes Finais

Com as andlises e resultados obtidos, conclui-se que a inclusdo do angulo zenital
de forma segmentada ou via regressdo polinomial ¢ uma estratégia promissora para
aperfeicoar as estimativas de GHI e DIF em cendrios reais. Embora ainda haja espaco para
aprimoramentos ¢ validagdes adicionais, o conjunto de metodologias apresentadas constitui
uma base solida para aplicagdes que demandem maior exatiddo em dados de irradiancia,
contribuindo para o avanco de solugdes no ambito de energias renovaveis e planejamento

energético em distintas regides do pais.
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APENDICE - JUPYTER NOTEBOOK DO CODIGO DO TRABALHO

%% [markdown]

## Timeseries from XX - XX

# Data provided by Casa dos Ventos Desenvolvimento.
# %% [markdown]

# ## 1. Problem Definition

#

# Satellite solarimetric data are very general and have several years
of measurements (more than 20), but when compared with sensor data,
they have considerable inaccuracy. That said, the proposal is to use
data from measurement campaigns (3 years of sensor measurements) to
calibrate the entire satellite time series, to improve data quality.

$% [markdown]

[
## 2. Data Mining

H o= 3

Satellite data from Solargis or other Satellite source.

%% [markdown]

##4# 2.1. Imports

HH o % =

Imports and functions declarations.

#
# Imports

o°
oo

# Libraries

import numpy as np

import pandas as pd

import seaborn as sns

import scipy.stats as stats
import statsmodels.api as sm

import matplotlib.pyplot as plt

# Classes

from typing import Union

from pvlib import (
atmosphere,
clearsky,
irradiance,

solarposition,
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from datetime import timedelta
from scipy.stats import gaussian kde
from sklearn.linear model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

# Functions

from scipy.stats import mode

from tabulate import tabulate

from pvlib.tools import sind, cosd
from sklearn.metrics import r2 score

from statsmodels.stats.diagnostic import het breuschpagan, het white

o©°

%

#
def add ghi column (data: pd.DataFrame) -> pd.DataFrame:

data copy = data.copy ()
data copy['GHI'] = (data copy['PR1'] + data copy['PR2']) / 2

return data copy

def add kd column(sat data: pd.DataFrame,
ghi column name: str,
dif column name: str) -> pd.DataFrame:
# Create a copy of the input DataFrame to avoid modifying the
original data

sat data copy = sat data.copy()

# Calculate the Diffuse-to-Global Horizontal Irradiance Ratio (KD)
sat data copy['KD'] = sat data copyl[dif column name] /

sat data copylghi column name]

# Replace NaN values in 'KD' column with 1 to handle division by
Zero
sat_data copy.loc[pd.isna(sat data copy['KD']), 'KD'] =1
sat data copy.loc[np.isinf (sat data copy['KD']), 'KD'] =1

return sat data copy

def add kt column(data: pd.DataFrame,
ghi column name: str,
toa column name: str,
elv _column name: str,

) —> pd.DataFrame:
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# Create a copy of the input DataFrame to avoid modifying the
original data

data copy = data.copy()

# Calculate the Transmittance Ratio (KT)
data copy['KT'] = data copyl[ghi column name] /

(data copyl[toa column name] * sind(data copyl[elv column name]))

# Replace NaN values in 'KT' column with 0

data copy.loc[pd.isna(data copy['KT']), 'KT'] = O

# Replace infinite KT wvalues with 0 to avoid incorrect Direct
Normal Irradiance (DNI) wvalues

data copy.loc[(data copy['KT'] == np.inf) | (data copy['KT'] ==
np.NINF), 'KT'] =0

return data copy

def add solar position columns(data: pd.DataFrame,
dt minutes: int,
latitude: float,
longitude: float,
correct sun elevation: bool =True) ->

pd.DataFrame:

# Create a copy of the input DataFrame to avoid modifying the

original data

data_ copy data.copy ()

timestamp data copy.index + timedelta (minutes=dt minutes / 2)
# Get solar position by NREL SPA algorithm from timestamp
sun_position pvlib = solarposition.get solarposition(timestamp,
latitude, longitude)
# Get the extraterrestrial radiation from timestamp

irr toa = irradiance.get extra radiation(timestamp)

sun position pvlib.index = sun position pvlib.index -

timedelta (minutes=dt minutes / 2)

irr toa.index = irr toa.index - timedelta(minutes=dt minutes / 2)

sun_elevation pvlib = sun position pvlib['apparent elevation']
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if correct sun elevation:

sun_elevation pvlib corrected
apply elevation correction(sun_elevation pvlib)
sun_position pvlib['apparent elevation'] =
sun_elevation pvlib corrected
sun position pvlib['apparent zenith'] = 90 -
sun_elevation pvlib corrected

# Create new columns in the dataframe

data copy['ZEN'] = sun position pvlib['apparent zenith']
data copy['ELV'] = sun position pvlib['apparent elevation']
data copy['AZ'] = sun position pvlib['azimuth']

data copy['TOA'] = irr toa

return data copy

def apply elevation correction(elevation angle: Union[float,

np.arrayl) :

# Convert scalar input to numpy array

elevation angle = np.asarray(elevation angle)

# Apply elevation correction
result = np.where (
elevation angle >= 7.0,
elevation angle,
np.where (
(-=7.0 < elevation angle) & (elevation angle < 7.0),
0.5 * elevation angle + 3.5,
0.0

# If input was scalar, return scalar; otherwise, return numpy array

return np.squeeze (result)

def get windographer avg columns(data: pd.DataFrame) -> pd.DataFrame:
# List all column names from the input DataFrame

columns list = list (data.columns)

# Extract the columns that contain 'AVG'

columns avg = [col for col in columns list if 'AVG' in col]
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# Select the 'AVG' columns from the DataFrame

data avg = data.loc[:, columns_ avg]

# List all column names of the filtered DataFrame

columns list avg = list (data_avg.columns)

# Shorten each column name to its first three characters

column_shortnames avg = [x[:3] for x in columns list avg]

# Rename the columns in the filtered DataFrame

data avg.columns = column shortnames avg

return data avg

def get common index(dataframes):
# Ensure there are at least two DataFrames in the array
if len(dataframes) < 2:

raise ValueError ("At least two DataFrames are required.")

# Extract indices from the first DataFrame

common_ idx = set (dataframes[0].index)

# Intersect indices with each subsequent DataFrame
for df in dataframes[1l:]:

common idx.intersection update (df.index)

return common idx

def get clear sky values (timestamp: pd.Timestamp,
latitude: float,
longitude: float,
altitude: float) -> pd.DataFrame:
# Get solar position using pvlib
sun position pvlib = solarposition.get solarposition(timestamp,

latitude, longitude)

# Get apparent elevation and apply correction
sun_elevation pvlib = apply elevation correction (

elevation angle=sun position pvlib['apparent elevation']

sun _position pvlib|['apparent elevation'] = sun elevation pvlib

sun _position pvlib|['apparent zenith'] = 90 - sun elevation pvlib
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# Get relative and absolute airmass

rel airmass = atmosphere.get relative airmass (
zenith=sun position pvlib['apparent zenith']

)

abs airmass = atmosphere.get absolute airmass (
airmass relative=rel airmass,

pressure=atmosphere.alt2pres (altitude)

# Linke turbidity
linke turb = 2#clearsky.lookup linke turbidity(timestamp, latitude,
longitude)

# Calculate clear-sky values
clear sky day = clearsky.ineichen (
apparent zenith=sun position pvlib['apparent zenith'],
airmass absolute=abs airmass,
linke turbidity=linke turb,
altitude=altitude

clear sky day.rename (columns={

'ghi': 'GHI',
'dhi': 'DIF',
'dni': 'DNI'

}, inplace=True)

# Update 'ZEN' in clear sky day with apparent zenith angle
clear sky day['ZEN'] = sun position pvlib['apparent zenith']

# Get extraterrestrial radiation at the top of the atmosphere

clear sky day['TOA'] = irradiance.get extra radiation (timestamp)

# Get apparent elevation

clear sky day['ELV'] = sun position pvlib['apparent elevation']

# Calculate clear-sky index (kt) based on GHI, extraterrestrial
radiation, and apparent elevation

clear sky day = add kt column(clear sky day, "GHI", "TOA"™, "ELV")

# Return the calculated clear-sky values

return clear sky day
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def get minutes resolution from time(time list: list, format: str=None)

-> int:

if isinstance(time list, pd.DatetimelIndex) :
time series = time list
else:
# Convert the time series string to datetime

time series = pd.to datetime(time list, format=format)

# If time have't at least 2 elements, we can descover
resolution
# So it raises an ValueError
if len(time series)<2:

raise ValueError ("Not enough elements in list.™")

# Calculate the time difference between consecutive timestamps

time diff = time series.diff () [1:]

# Converting Timedelta to seconds

time diff = [diff.total seconds() for diff in time diff]

# Calculate the mode of time differences in seconds

mode time diff sec = mode(time diff) [O]

# Convert mode time difference to minutes

resolution minutes = mode time diff sec // 60

return resolution minutes

def predict piecewise ghi (
zen value: list,
ghi value: list,
bin models: list

)y —> list:

cos_zen = cosd(zen value) # Convert to cosine

for model in bin models:
(low, high) = model["zen range"]
if low <= zen value < high:
# Use the corresponding bin's regression model

ghi slope = model["slope GHI"]

the
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czen slope = model["slope CcZEN"]

intercept = model["intercept"]

return intercept + ghi slope * ghi value + czen slope *

cos_zen

return np.nan

def predict piecewise dif (
zen value: list,
dif value: list,
bin models: list

) —> list:

cos_zen = cosd(zen value) # Convert to cosine

for model in bin models:
(low, high) = model["zen range"]
if low <= zen value < high:
# Use the corresponding bin's regression model
dif slope = model["slope DIF"]
czen slope = model["slope CZEN"]

intercept = model["intercept"]

return intercept + dif slope * dif value + czen slope *

cos_zen

return np.nan

def fit piecewise polynomial (
df: pd.DataFrame,
zen bins: list,
degree: int,
feature cols: list = ["GHI", "cZEN"],
target col: str = "GHI PYR"

poly models = []

for (low, high) in zen bins:
# Filter the data for this ZEN bin
mask = (df["ZEN"] >= low) & (df["ZEN"] < high)
df bin = df[mask]
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X = df bin[feature cols].values # e.g., [DIF, cZEN]
y = df bin[target col].values
# Polynomial expansion for this bin
poly transformer = PolynomialFeatures (degree=degree,

include bias=True)

X poly = poly transformer.fit transform(X)

# Fit a simple linear regression on the polynomial-expanded

features

reg = LinearRegression().fit (X poly, vy)

# Compute MSE (just for reference)
y pred = reg.predict (X poly)

nrmse = normalized rmse(y pred, y)

poly models.append ({
"zen range": (low, high),
"model": reqg,

"poly transformer": poly transformer,

"nrmse": nrmse,
"n samples": len (X)
1)
print (f" [Degree={degree}] ZEN

nRMSE={nrmse: .3f}, n={len(X)}")

return poly models

def predict piecewise polynomial (
zen value: float,
param value: float,
bin models: list

) —> float:

# Compute cos(zen) in degrees

cos_zen = cosd(zen value)

[{low}, {high}) :

# Check each bin; use whichever bin the current zen value fits into

for model info in bin models:

(low, high) = model info["zen range"]
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if low <= zen value < high:
# Grab the polynomial transformer and the regression model
poly transformer = model info["poly transformer"]

reg = model info["model"]

# Construct our 2D feature row: [ [DIF, cZEN] ]

X = np.array([[param value, cos zen]])

# Transform using the stored polynomial transformer for
that bin

X poly = poly transformer.transform (X)

# Predict
y pred = reg.predict (X poly)
return y pred[0]

# If ZEN does not fall into any bin, return NaN

return np.nan

def normalized rmse (predicted, observed):
rmse = np.sqrt(np.mean((predicted - observed) ** 2))

return rmse / np.mean (observed)

def normalized mbe (predicted, observed):
mbe = np.mean (predicted - observed)

return mbe / np.mean (observed)

def normalized mae (predicted, observed):
mba = np.mean (np.abs (predicted - observed))

return mba / np.mean (observed)

def plot performance comparison (
X: np.ndarray,
y: np.ndarray,
filter array: np.ndarray = None,
filter threshold: float = None,

x label: str = 'Predicted',

y label: str = 'Actual',

diff label: str = 'Difference’,

diff count label: str = 'Count',

diff title: str = 'Histogram of Differences'
) —> None:

# Determine which points to include based on optional filtering
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if filter array 1is not None and filter threshold is not None:
valid filter = filter array > filter threshold
else:

valid filter = np.ones like(x, dtype=bool)

# Setup the figure and axes
plt.rcParams|["figure.figsize"] = (12, 6)
plt.rc('font', size=12)

fig, axes = plt.subplots(l, 2)

axes = axes.flatten ()

# Calculate point density for scatter plot
xy = np.vstack([x[valid filter], y[valid filter]])
z = gaussian kde (xy) (xy)

size marker factor = 100 / z.max()

# Scatter plot with density-based coloring
axes[0] .scatter (x[valid filter], vyl[valid filter], c¢=z, s=z *
size marker factor)
axes[0] .plot (y[valid filter], yl[valid filter], color='red') # 1:1
reference line
axes[0] .set xlabel (x label)
axes[0] .set ylabel (y label)

# Compute and annotate metrics
r2 value = r2 score(yl[valid filter], x[valid filter])

nrmse value = normalized rmse(x[valid filter], yl[valid filter])

nmbe value = normalized mbe(x[valid filter], y[valid filter])

axes[0] .annotate ('R*: ' + format(r2 value, '.3f'), xy=(0.65, 0.15),
xycoords="axes fraction')
axes[0] .annotate ('nRMSE: ' + format(nrmse value, '.3f'), xy=(0.65,
0.10), xycoords='axes fraction')
axes[0] .annotate('nMBE: ' + format (nmbe value, '.3f'"'), xy=(0.65,
0.05), xycoords='axes fraction')

axes[0] .grid(True)

# Differences plot (x - y)
diff = x -y

# Histogram of differences

axes[1l].hist (diff[valid filter], range=(diff([valid filter].min(),
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diff[valid filter].max()), bins=50)
axes[1l].set xlabel (diff label)
axes[l].set ylabel (diff count label)
axes[1l].set title(diff title)

axes[1l].grid(True)

plt.tight layout()

plt.show ()

# Print metrics

print ('R?: ' + str(r2 value))
print ("nRMSE [%]: ' + str(round(nrmse value, 2)))
print ("'nMBE [%]: ' + str(round(nmbe value, 2)))

# %% [markdown]

# ### 2.2. Reading Data

#

# Reading CSVs with Satellite and Sensor data.
# %%

# Path to each file

sensor data path = '../data/xxxx.csv'
solargis data path = '../data/xxxx.csv'

%%

# This data can be get from Solargis header
# Getting Latitude, Longitude, Elevation and Calm Treshold
latitude, longitude, altitude, calm treshold = 'xxxx', '"xxxx', 'xxxx',

'xxxx'

o
o\

#
# Reading sensor time series

sensor ts = pd.read csv(sensor data path)

# Getting average columns

sensor_ ts avg = get windographer avg columns (sensor ts)

# Get only the desired columns

# DF1 and GH1 = Diffuse and Global from SPNI1

# PR1 and PR2 = Global from SR20-D2 (two sensors)

sensor ts avg = sensor ts avg[['DFl1l', 'GH1', 'PR1', 'PR2', 'TP1']]

.
o
o\°
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# The sensor data is in 1 min frequency and the satellite data is in 15
min frequancy.
# So we will resample the sensor data to 30min

sensor ts avg = sensor ts avg.resample ('30min') .mean ()

#

# Read satellite and sensor data

o°
o°

solargis ts pd.read csv(solargis data path)

solargis ts = solargis ts.resample ('30min') .mean ()
%% [markdown]

[
## 3. Preparing Data

# I have sensor data of 2 identicals sensors, to avoid bias.
# So I'll make the mean of them and create the GHI column.

sensor ts avg = add ghi column(sensor ts avg)

#

# Then drop the pyranometer 1 and 2 columns

o°
oo

sensor_ ts avg.drop (columns=['PR1', 'PR2'], inplace=True)

# Drop NaN from sensor data

sensor_ ts avg.dropna (inplace=True)

# Drop NaN from satallite data

solargis ts.dropna(inplace=True)

# Drop time column

solargis ts.drop(['time'], inplace=True, axis=1)

# %%

# DF1l, GH1 and GHI can not be negative values.

# So w'll get those index to fix it.

dfl negative idx = sensor ts avg]l
sensor ts avg["DF1"] < 0

] .index



ghl negative idx = sensor ts avg]|
sensor_ts avg["GH1I"] < 0

] .index

ghi negative idx = sensor ts avg]|
sensor_ts avg["GHI"] < 0

] .index

# 3

o

# Replacing those values for 0.

# DF1

sensor_ts avg.loc]|

sensor ts avg.index.

] = sensor ts avg.loc]|

sensor ts_avg.index.

].clip(lower=0)

# GH1

sensor_ts avg.loc]|

sensor_ ts avg.index.

] = sensor ts avg.loc]|

sensor ts avg.index.

].clip(lower=0)

# GHI

sensor_ts avg.loc]|

sensor_ts avg.index.

] = sensor_ ts avg.loc]|

sensor_ ts avg.index.

].clip(lower=0)

¥ %%

# Replacing DF1 for GHI1

sensor_ ts avg.loc]|
sensor_ts avg["DF1"]

] = sensor ts avg["GH1"]

# %% [markdown]

isin(dfl negative idx),

isin(dfl negative idx),

isin(ghl negative idx),

isin(ghl negative idx),

isin(ghi negative idx),

isin(ghi negative idx),

when DF1 > GHI1

when DF1 > GH1

> sensor_ts avg["GH1"],

Al DFl Al

n DFl n

"GHl "

n GHl n

n GHI n

Al GHI Al

HDF:L "
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# ### 3.4. Removing GHI = 0 values

# %
# Using the secondary standard pyranometer as reference

# to filter the night values (GHI = 0)

oo

sensor_ ts avg = sensor ts avg[sensor ts avg["GHI"] != 0]

$% [markdown]

¥
# ##4# 3.4. Removing Bias from Sunshine (SPN1)
#

# Linear regression is an effective method for reducing bias, as we
will see shortly. In this case, I applied it primarily because the SPN1
is a first-class pyranometer, whereas the SR20-D2 1s a secondary
standard. Additionally, since the GHI 1is composed of two SR20-D2
sensors, as previously mentioned, we can use them to calibrate the SPN1
sensor’s GHI. Once calibrated, we can apply the same linear regression
to the diffuse component. This approach is valid because the SPN1 uses

the same set of sensors to capture both GHI and DIF.

#

# Analyzing residue histogram

o
o

residue = sensor ts avg["GH1"] - sensor ts avg["GHI"]

# Calculate the mean and standard deviation of the residue
mu = residue.mean ()

sigma = residue.std()

# Set up the plot with density scaling so that the PDF can be overlaid
directly.

plt.figure (figsize=(10, 6))

sns.histplot (residue, kde=True, bins=300, stat="density")

plt.x1lim (=50, 50)

# Create an array of x values for the normal distribution curve
x = np.linspace (=50, 50, 1000)
# Compute the normal distribution PDF using the calculated mu and sigma

pdf = stats.norm.pdf (x, mu, sigma)

# Plot the normal distribution as a red line

plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution')

# Add a dashed vertical line at x=0

plt.axvline (x=0, color='black', linestyle='--', linewidth=1)
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plt.title("Histogram of the Residue Before Calibration (GH1 - GHI)")
plt.xlabel ("Residue")

plt.ylabel ("Density")

plt.legend()

plt.show ()

#

# We can fix bias with linear regression

o©°
o

sunshine 1lr = LinearRegression()

sunshine lr.fit(

sensor_ ts avg["GH1"].values.reshape (-1, 1),
sensor ts avg["GHI"].values.reshape (-1, 1)
)
sensor ts avg["GH1"] = sunshine lr.predict(
sensor ts avg["GH1"].values.reshape (-1, 1)

~

#

# Analyzing residue histogram

o°
oo

residue = sensor_ ts avg["GH1"] - sensor_ ts avg["GHI"]

# Calculate the mean and standard deviation of the residue
mu = residue.mean ()

sigma = residue.std()

# Set up the plot with density scaling so that the PDF can be overlaid
directly.

plt.figure(figsize=(10, 6))

sns.histplot (residue, kde=True, bins=300, stat="density")

plt.xlim(-50, 50)

# Create an array of x values for the normal distribution curve
x = np.linspace (=50, 50, 1000)
# Compute the normal distribution PDF using the calculated mu and sigma

pdf = stats.norm.pdf (x, mu, sigma)

# Plot the normal distribution as a red line

plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution')
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# Add a dashed vertical line at x=0

plt.axvline (x=0, color='black', linestyle='--', linewidth=1)

plt.title("Histogram of the Residue After Calibration (GH1 - GHI)")
plt.xlabel ("Residue")
plt.ylabel ("Density")

plt.legend ()

plt.show ()

# %%

# We can use the same calibration for SPN1 diffuse.

sensor ts avg["DF1"] = sunshine lr.predict(
sensor_ts avg["DF1"].values.reshape (-1, 1)

)

# %%

# After Calibration, we can have some negative values, so
# w'll repeat this:
sensor ts avg = sensor ts avg]|

(sensor ts avg["DF1"] >= 0) &

(sensor ts avg["GHL"] >= 0)

# %%

# Get common index

common_index = get common index([solargis ts, sensor ts avg])
# %%

# Filter both dataframes to common index

solargis filtered = solargis ts[solargis ts.index.isin (common index) ]

sensor filtered = sensor ts avglsensor ts avg.index.isin(common index) ]
%% [markdown]

[
## 4. Feature Engineering

# Add some parameters for station



89

# Get resolution

dt minutes = get minutes resolution from time (sensor filtered.index)

#
# Add solar position

o\
o\

sensor filtered = add solar position columns (
data=sensor filtered,
dt minutes=dt minutes,
latitude=latitude,
longitude=longitude,

correct sun elevation=True

# Add KD Column

sensor filtered

add kd column(sensor filtered, 'GH1', 'DF1'")

# Add KT Column

sensor filtered

add kt column(sensor filtered, 'GHI', 'TOA', 'ELV')

# Calculating DNI using SPN1 data

sensor filtered['DNI'] = (sensor filtered['GHL'] -
sensor filtered['DF1']) / cosd(sensor filtered['ZEN'])
# %%

# Add some parameters for Solargis
solargis filtered = add solar position columns (
data=solargis filtered,
dt minutes=dt minutes,
latitude=latitude,
longitude=longitude,

correct sun elevation=True

# Add KD column
solargis filtered = add kd column(solargis filtered, 'GHI', 'DIF')

# Add KT column
solargis filtered
'ELV")

add kt column(solargis filtered, 'GHI', 'TOA',

#
# Get ClearSky values

o°
oo

cs_df = get clear sky values(



solargis filtered.index,
latitude,

longitude,

altitude

# Add ClearSky Columns

solargis filtered['GHI CS'] = cs df['GHI']
solargis filtered['DNI CS'] = cs df['DNI']
solargis filtered['DIF CS'] = cs df['DIF']
solargis filtered['KT CS'] = cs df['KT']

#

o©°
o©

# SE and SA is Sun Elevation and Sun Azimuth from solargis,

use the ZEN and AZ calculated.
df = solargis filtered]
[
'"GHI', 'DNI', 'DIF', 'flagR', 'TEMP',
'AP', 'RH', 'WS', 'WG', 'wD', 'PREC',
"PWAT', 'ZEN', 'ELV', 'AZ', 'TOA', 'KD',
'"KT', 'GHI CS', 'DNI CS', 'DIF CS', 'KT CS'

1.copy ()
#

# Adding sensor data
df.loc[:, "GHI SPN1']

oe
o

sensor filtered['GH1'].copy ()

df.loc[:, 'DIF SPN1'] = sensor filtered['DF1l'].copy ()
df.loc[:, 'KD SPN1'] = sensor filtered['KD'].copy ()
df.loc[:, 'GHI PYR'] = sensor filtered['GHI'].copy/()
df.loc[:, '"KT PYR'] = sensor filtered['KT'].copy()

# %%

# W'll use cos (ZEN) instead of ZEN in Regressions

df ["cZEN"] = cosd(df["ZEN"])

# Remove any absurd value of KT
df = df|
((dE["KT_PYR"] < 0) | (df["KT_PYR"] > 1)) == False
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# %%
# Remove any absurd value of KD
df = df]
((dE["KD_SPN1"] < 0) | (df["KD_SPN1"] > 1)) == False

]

%% [markdown]
# ## 5. Exploratory Data Analysis
# %% [markdown]
# ### 5.1. Daily Profile and Sun Path
#
# Analyze the data based in Zenithal and Azimuthal angles.

oo
o

#

# Daily Profile Graph

# Here we'll visualize the mean GHI distribution by hour.
#

It's wuseful to wvisualize if all sources are 1in the same

reference.

# Get hour from index
df ['"hour'] = df.index.hour

# Mean GHI by hour

hourly ghi = df.groupby('hour') ['GHI'] .mean ()
hourly ghi pyr = df.groupby ('hour') ['GHI PYR'].mean ()
hourly ghi spnl = df.groupby('hour') ['GHI SPN1'].mean ()

plt.figure(figsize=(10, 7))
hourly ghi.plot (marker='o")
hourly ghi pyr.plot (marker='o")
hourly ghi spnl.plot (marker='o")
plt.title('Daily Profile')
plt.xlabel ('Hour')

plt.ylabel ('"GHI (mean)')
plt.grid()

plt.legend()

plt.show ()

.
o
o\°
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# SunPath Graph
# Converting Azimuthal angles to radians

theta = np.radians(df['AZ'].values)

# Use elevation as radius

r = df["ELV'] .values

fig = plt.figure(figsize=(10, 8))
ax = fig.add subplot (polar=True)

# Using GHI as color

sc = ax.scatter(theta, r, c=df['GHI PYR'], cmap='viridis', s=5)
plt.colorbar(sc, label='GHI')

ax.set title('SunPath (Azimuthal vs Elevation)')

# 0° in North

ax.set theta zero location ("N")

# Clockwise

ax.set theta direction(-1)

# Max Elevation = 90°

ax.set rmax(90)

plt.show ()

# %% [markdown]

# ### 5.2. Solargis GHI and DIF Bias

#

# Analyze the data bias for GHI and DIF.

.
o°
o°

# Analyzing residue histogram
residue = df["GHI"] - df["GHI PYR"]

# Calculate the mean and standard deviation of the residue
mu = residue.mean ()

sigma = residue.std()

# Set up the plot with density scaling so that the PDF can be
directly.
plt.figure(figsize=(10, 6))

92

overlaid
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sns.histplot (residue, kde=True, bins=100, stat="density")
plt.x1im (=300, 300)

# Create an array of x values for the normal distribution curve
X = np.linspace (=300, 300, 1000)
# Compute the normal distribution PDF using the calculated mu and sigma

pdf = stats.norm.pdf (x, mu, sigma)

# Plot the normal distribution as a red line

plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution')

# Add a dashed vertical line at x=0

plt.axvline (x=0, color='black', linestyle='--', linewidth=1)

plt.title("Histogram of the Residue Before Calibration")
plt.xlabel ("Residue")

plt.ylabel ("Density")

plt.legend()

plt.show ()

%%
# Analyzing residue histogram
residue = df["DIF"] - df["DIF SPN1"]

# Calculate the mean and standard deviation of the residue
mu = residue.mean ()

sigma = residue.std()

# Set up the plot with density scaling so that the PDF can be overlaid
directly.

plt.figure(figsize=(10, 6))

sns.histplot (residue, kde=True, bins=100, stat="density")

plt.x1im(-200, 200)

# Create an array of x values for the normal distribution curve
X = np.linspace (-200, 200, 1000)
# Compute the normal distribution PDF using the calculated mu and sigma

pdf = stats.norm.pdf (x, mu, sigma)

# Plot the normal distribution as a red line

plt.plot(x, pdf, color='red', lw=2, label='Normal Distribution')

# Add a dashed vertical line at x=0



plt.axvline (x=0, color='black', linestyle='--', linewidth=1)

plt.title("Histogram of the Residue Before Calibration")

plt.xlabel ("Residue")
plt.ylabel ("Density")

plt.legend()

plt.show ()

# %% [markdown]

# ### 5.3. Satellite x Sensor

#

# Analyzing GHI, DIF, KT, KD from satellite versus
R?, NRMSE and NMBE.

o
o°

Plot GHI x GHI Pyranometer
df ["GHI"] .values
df ["GHI PYR"].values

X e o=

plot performance comparison (
X=X,
Y=Yr
x label='GHI',
y label='GHI PYR',
diff label='GHI - GHI PYR',
diff title='Histograma: GHI - GHI PYR'

plt.show ()

# %%

# Plot DIF x DIF Pyranometer
x = df["DIF"].values

y = df["DIF SPN1"].values

plot performance comparison (
X=X,
Y=Yy
x label='DIF',
y label='DIF SPN1',
diff label='DIF - DIF SPN1',
diff title='Histograma: DIF - DIF SPN1'

Sensor.
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oe
o

Plot KT x KT Pyranometer
= df["KT"].values
df ["KT PYR"].values

KX S

plot performance comparison (
X=x,
Y=Yy
x label="KT',
y label='KT PYR',
diff label='KT - KT PYR',
diff title='Histograma: KT - KT PYR'

plt.show ()

# %%

# Plot KD x KD Pyranometer
x = df ["KD"].values

y = df["KD SPN1"].values

plot performance comparison (
X=x,
Y=Y
x label="KD',
y label='KD SPN1',
diff label='KD - KD SPN1',
diff title='Histograma: KD - KD SPN1'

$% [markdown]

#
# ### 5.4. Heteroscedasticity Analyze
#

# Heteroscedasticity refers to the presence of non-constant variance in
the errors of a regression model, which can undermine the reliability
of standard statistical inferences. To detect heteroscedasticity, we
can use statistical tests such as Breusch-Pagan and White.

#

# ##### **Breusch-Pagan Test**

# The Breusch-Pagan test assesses whether the variance of residuals
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depends on the independent variables. It provides:
# - **LM statistic (Lagrange Multiplier)** and its **p-value**

# - **F statistic** and its **p-value**

#

# To interpret the results:

# - If the p-value (especially for the LM or F statistic) 1is **less
than 0.05** (or the defined significance level **o**), reject the null
hypothesis (**Ho**) of homoscedasticity - **evidence of
heteroscedasticity** is present.

# - If the p-value is **greater than 0.05**, do not reject **Ho** - **no
evidence of heteroscedasticity** is found.

#

# ####H# **White Test**

# The White test operates similarly but does not assume a specific
functional form of heteroscedasticity. It also provides:

# — **LM statistic** and **p-value**

# - **F statistic** and **p-value**

#

# The interpretation follows the same principle:

# - If the p-value is below the significance threshold, reject **Ho**,
suggesting **heteroscedasticity** in the model.

# - If the p-value 1is above the threshold, do not reject **Ho*%*,
indicating **homoscedasticity** (constant variance of residuals).

#

# Both tests help determine whether the variance of errors changes
across observations, which, if present, may require corrective measures
such as weighted least squares (WLS) or robust standard errors to

ensure reliable inference.

##4#4# 4.4.1. GHI

# %%
# Create subplots
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))

# Calculating Residue
residue = df["GHI"] - df["GHI PYR"]

# Scatter plot with marker size and color based on density
xy = np.vstack ([df["GHI PYR"], residue])
z = gaussian kde (xy) (xy)

size marker factor = 100 / z.max()



# Scatter plot
sc = axs[0].scatter (
df["GHI PYR"],
residue,
s=z * size marker factor,
c=z,

cmap='viridis'

# Adding labels and title to the subplot
axs[0].set xlabel ('GHI SR20-D2")

axs[0] .set ylabel ('MBE')

axs[0].set title("Bias Error of Solargis GHI")
axs[0] .set ylim(-750, 750)

Add trendline
np.array (df ["GHI PYR"])

= np.array(residue)

N KX
Il

= np.polyfit(x, vy, 1)
p = np.polyld(z)
axs[0].plot(x, p(x), "r--", label="'Trend Line')

# Scatter plot with marker size and color based on density
xy = np.vstack ([df["GHI PYR"], residue**2])
z = gaussian kde (xy) (xy)

size marker factor = 100 / z.max()

# Scatter plot

sc = axs[l].scatter(
df["GHI PYR"],
residue**2,
s=z * size marker factor,
c=z,

cmap='viridis'

# Adding labels and title to the subplot

axs[1l].set xlabel ('GHI SR20-D2")
axs[1l].set ylabel ('Squared MBE')

axs[1l].set title("Squared Bias Error of Solargis GHI")
axs[1l].set ylim(0,100000)
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Add trendline
= np.array (df["GHI_ PYR"])

= np.array(residue**2)

N KX ==

= np.polyfit(x, vy, 1)
p = np.polyld(z)
axs[l].plot(x, p(x), "r--", label='Trend Line')

# Adjust layout to prevent clipping of titles
plt.tight layout ()

# Show the plot
plt.show ()

o°
o°

Independent variable
X = df["GHI"]

# Dependent variable
y = df["GHI_PYR"]

# Add a constant (intercept) to the model

X const = sm.add constant (X)

# Fit the OLS (Linear Regression) model
modelo = sm.OLS(y, X const).fit()

# Extract the model residuals and the matrix of explanatory variables
residuos = modelo.resid

exog = modelo.model.exog # include the constant and GHI PYR
# Breusch-Pagan test
bp test = het breuschpagan (residuos, exog)

Im stat, 1lm p value, f stat, f p value = bp test

print ("Breusch-Pagan test:")

print (f"LM estatistico = {lm stat}")
print (£f"1LM p-valor = {lm p value}")
print (f"F estatistico = {f stat}")
print (f"F p-valor = {f p value}")

# White Test
white test = het white(residuos, exog)

Im stat w, Im p value w, £ stat w, £ p value w = white test
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print ("\nWhite Test:")
print (f"LM estatistico = {lm stat w}")

print (f"LM p-valor = {Im p value w}")
print (f"F estatistico = {f stat w}")
print (f"F p-valor = {f p value w}")

# #### 4.4.2. DIF

# %%
# Create subplots
fig, axs = plt.subplots(nrows=1l, ncols=2, figsize=(12, 5))

# Calculating Residue
residue = df["DIF"] - df["DIF SPN1"]

# Scatter plot with marker size and color based on density
xy = np.vstack ([df["DIF SPN1"], residue])
z = gaussian kde (xy) (xy)

size marker factor = 100 / z.max()

# Scatter plot
sc = axs[0].scatter (
df["DIF SPN1"],
residue,
s=z * size marker factor,
c=z,

cmap="'viridis'

# Adding labels and title to the subplot
axs[0].set xlabel ('DIF SPN1')

axs[0].set ylabel ('MBE')

axs[0].set title("Bias Error of Solargis DIF")
axs[0].set ylim(-400, 400)

# Add trendline

x = np.array (df["DIF SPN1"])
y = np.array(residue)

z = np.polyfit(x, vy, 1)

p = np.polyld(z)



axs[0].plot(x, p(x), "r--", label="'Trend Line')

# Scatter plot with marker size and color based on density

xy = np.vstack([df["DIF SPN1"], residue**2])
z = gaussian_ kde (xy) (xy)

size marker factor = 100 / z.max()

# Scatter plot

sc = axs[l].scatter(
df ["DIF SPN1"],
residue**2,
s=z * size marker factor,
c=z,

cmap="'viridis'

# Adding labels and title to the subplot
axs[1l].set xlabel ('DIF SPN1')
axs[1l].set ylabel ('Squared MBE')

axs[1l].set title("Squared Bias Error of Solargis DIF")

axs[1l].set ylim(0,60000)

Add trendline
= np.array (df["DIF SPN1"])

= np.array(residue**2)

N T

= np.polyfit(x, y, 1)
p = np.polyld(z)
axs[1l].plot(x, p(x),

# Adjust layout to prevent clipping of titles
plt.tight layout ()

# Show the plot
plt.show ()

o©°
o

Independent variable
df ["DIF"]

>
Il

Dependent variable
y = df ["DIF SPN1"]

# Add a constant (intercept) to the model

r--", label="'Trend Line')
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X const = sm.add constant (X)

# Fit the OLS (Linear Regression) model
modelo = sm.OLS(y, X const).fit()

# Extract the model residuals and the matrix of explanatory variables
residuos = modelo.resid

exog = modelo.model.exog # include the constant and DIF SPNI1

# Breusch-Pagan test
bp test = het breuschpagan (residuos, exog)

Im stat, Im p value, f stat, f p value = bp test

print ("Breusch-Pagan test:")

print (f"LM estatistico = {lm stat}")
print (£"LM p-valor = {lm p value}")
{f _stat}™")

{f p value}")

print (f"F estatistico

print (£"F p-valor

# White Test
white test = het white(residuos, exog)

Im stat w, Im p value w, f stat w, £ p value w = white test

print ("\nWhite Test:")

print (f"LM estatistico = {1lm stat w}")
print (f"1LM p-valor = {lm p value w}")
{f stat w}")

print (f"F estatistico

print (f"F p-valor {f p value w}")

# %% [markdown]
# ### 5.5. KT, KT Cleasky x ZEN

#

# Group the data by elevation (rounded to the nearest degree)

o°
o°

compute the mean KT CS per group.
# (If you actually want the maximum value per elevation, replace 'me
with 'max'.)

grouped = df.groupby (df['ELV'].round(0)) ['KT_CS'].mean () .dropna ()

# Optionally, restrict to elevations 1 through 90 (if needed)
grouped = grouped.loc[1:90]
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and

an'
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# Extract the elevation (x) and corresponding KT CS (y) values
x = grouped.index.values

y = grouped.values

# Fit an 8th degree polynomial to the grouped data
coefficients = np.polyfit(x, vy, 8)
poly fit = np.polyld(coefficients)

# Generate a smooth set of x-values for plotting the fitted polynomial
x_smooth = np.linspace(x.min(), x.max(), 300)

y smooth = poly fit(x smooth)

# Plot the original grouped data and the polynomial fit

plt.figure (figsize=(10, 6))

plt.scatter (x, y, label='Mean KT CS per Elevation', color='blue')
plt.plot(x_smooth, y_smooth, label="8th Order Polynomial Fit',
color="red")

plt.xlabel ('Elevation (degrees)')

plt.ylabel ('"KT _CS")

plt.title ('KT_CS vs Elevation with Polynomial Fit')

plt.legend()

plt.show ()

#
# Create subplots

oe
o

fig, ax = plt.subplots(l, 2, figsize=(18, 8), sharey=True, sharex=True)

labels = [
'"GHI Satellite',
'"GHI SR20-D2'

# Calculate the point density
xy = np.vstack ([df['ELV'], df['KT']])

z = gaussian kde (xy) (xy)
size marker factor = 10/ (z.max ())
scatter = ax[0] .scatter (df['ELV'], df['KT'], c=df['GHI'],

cmap='plasma', marker='o', s=size marker factor, alpha=0.8)
ax[0] .plot (x_smooth, y_smooth, color="red', linewidth=3, label="KT
Clearsky'")



# Adding labels and title to the first subplot
ax[0] .set xlabel('Solar Elevation Angle (degrees)"')
ax[0].set ylabel('Clearness Index Solargis (KT)')
ax[0] .set title(labels[0])

ax[0].legend()

# Calculate the point density
Xy = np.vstack([df['ELV'], df['KT PYR']])
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z = gaussian_ kde (xy) (xy)

size marker factor = 10/ (z.max())

scatter = ax[1l].scatter(df['ELV'], df ['KT PYR'], c=df ['GHI PYR'],
cmap='plasma', marker='o', s=size marker factor, alpha=0.8)

ax[1l].plot (x_smooth, y_smooth, color='red', linewidth=3, label="KT
Clearsky')

# Adding labels and title to the first subplot
ax[1l].set xlabel('Solar Elevation Angle (degrees)"')
ax[1l].set ylabel ('Clearness Index Solargis (KT)"')
ax[1l].set title(labels[1])

ax[1l].legend()

# Adjust layout to prevent clipping of titles
plt.tight layout ()

# Show the plot
plt.show ()

%% [markdown]

### 5.6. KD x KT

# %%
# Create a figure with 2 subplots side-by-side
fig, axes = plt.subplots(l, 2, figsize=(12, 6), sharey=True)

# First chart: KD vs. KT

sns.scatterplot (data=df, x='KT', y='KD', ax=axes[0], alpha=0.5)
axes[0] .set title("KD vs. KT")

axes[0] .set xlabel ("KT")

axes[0] .set _ylabel ("KD")

# Second chart: KD SPN1 vs. KT PYR

sns.scatterplot (data=df, x="KT PYR', y='KD SPN1', ax=axes|[1],
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alpha=0.5)

axes[1l].set title("KD SPN1 vs. KT PYR")
axes[l].set xlabel ("KT PYR")
axes[1l].set ylabel ("KD SPN1")

plt.tight layout ()
plt.show ()

%% [markdown]

### 5.7. GHI x ZEN, AZ

# %%
# Create a figure with 2 subplots side-by-side
fig, axes = plt.subplots(l, 2, figsize=(12, 6), sharey=True)

# First chart: GHI vs. ZEN

sns.scatterplot (

data=df,

x="ZEN',

y="GHI',

hue='AZ", # Use the AZ column to color the points
palette='viridis', # Choose a colormap palette

ax=axes[0],
alpha=0.5
)
axes[0].set title("GHI vs. ZEN")
axes[0] .set xlabel ("ZEN")
axes[0] .set ylabel ("GHI")
axes[0].legend(title="AZ") # Optional: rename legend title
# Second chart: GHI PYR vs. ZEN

sns.scatterplot (

data=df,

x="ZEN',

y="GHI_ PYR',

hue="'AZ", # Use the AZ column to color the points
palette='viridis', # Same colormap for consistency

ax=axes|[1l],

alpha=0.5
)
axes[1l].set title("GHI PYR vs. ZEN")
axes[1l].set xlabel ("ZEN")
axes[1l].set ylabel ("GHI PYR")
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axes[1l].legend(title="AZ") # Optional: rename legend title

plt.tight layout()
plt.show ()

#
# Create a figure with 2 subplots side-by-side

o°
o°

fig, axes = plt.subplots(l, 2, figsize=(12, 6), sharey=True)

# First chart: GHI vs. ZEN

sns.scatterplot (

data=df,

x="AZ",

y="'GHI',

hue="'ZEN', # Use the AZ column to color the points
palette='viridis', # Choose a colormap palette

ax=axes[0],

alpha=0.5
)
axes[0] .set title("GHI vs. AZ")
axes[0] .set xlabel ("AZ")
axes[0] .set ylabel ("GHI")
axes[0].legend(title="ZEN") # Optional: rename legend title
# Second chart: GHI PYR vs. ZEN

sns.scatterplot (

data=df,

x="AZ",

y='GHI PYR',

hue="'ZEN', # Use the AZ column to color the points
palette='viridis"', # Same colormap for consistency

ax=axes|[1l],
alpha=0.5
)
axes[1l].set title("GHI PYR vs. AZ")
axes[1l].set xlabel ("AZ")
axes[l].set ylabel ("GHI PYR")
axes[1l].legend(title="ZEN") # Optional: rename legend title
plt.tight layout ()
plt.show ()

# %% [markdown]
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# ### 5.8. DIF x ZEN, AZ

#
# Create a figure with 2 subplots side-by-side

o°
oo

fig, axes = plt.subplots(l, 2, figsize=(12, 6), sharey=True)

# First chart: GHI vs. ZEN

sns.scatterplot (

data=df,

x="ZEN',

y="'DIF',

hue="'AZ", # Use the AZ column to color the points
palette='viridis', # Choose a colormap palette

ax=axes[0],

alpha=0.5
)
axes[0] .set title("DIF vs. ZEN")
axes[0] .set xlabel ("ZEN")
axes[0] .set ylabel ("DIF")
axes[0].legend(title="AZ") # Optional: rename legend title
# Second chart: DIF SPN1 vs. ZEN

sns.scatterplot (

data=df,

x="ZEN',

y='DIF SPN1',

hue='AZ", # Use the AZ column to color the points
palette='viridis', # Same colormap for consistency

ax=axes([1l],

alpha=0.5
)
axes[1l].set title("DIF SPN1 vs. ZEN")
axes[l].set xlabel ("ZEN")
axes[1l].set ylabel ("DIF SPN1")
axes[l].legend(title="AZ") # Optional: rename legend title

plt.tight layout()
plt.show ()

#
# Create a figure with 2 subplots side-by-side

o
o

fig, axes = plt.subplots(l, 2, figsize=(12, 6), sharey=True)



# First chart: DIF vs. ZEN
sns.scatterplot (

data=df,

x="AZ",

y='DIF',

hue='ZEN',

palette='viridis',

ax=axes[0],

alpha=0.5
)
axes|[0]
axes[0] .set xlabel ("AZ")
axes[0] .set ylabel ("DIF")

0]

axes|[ .legend(title="ZEN")

# Second chart: DIF SPN1 vs.

sns.scatterplot (
data=df,
x="AZ",
y="DIF SPN1',
hue='ZEN',
palette='viridis',
ax=axes|[1l],
alpha=0.5
)
axes|[1
axes[1l].set xlabel ("AZ")

axes[l].legend(title="ZEN")

plt.tight layout ()
plt.show ()

# %% [markdown]

]

]
axes[l].set ylabel ("DIF SPN1")

]
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# Use the AZ column to color the points

# Choose a colormap palette

.set title("DIF vs. AZ")

# Optional: rename legend title

ZEN

# Use the AZ column to color the points

# Same colormap for consistency

.set _title("DIF SPN1 vs. AZ")

# Optional: rename legend title

### 5.8. Analyze GHI and DIF for ZEN bins

#### 5.8.1. GHI

# Visualization based in ZEN interval

# ZEN bins: (start, end)

zen bins = [



(0, 5), (5, 10),

(10, 15), (15, 20),
(20, 25), (25, 30),
(30, 35), (35, 40),
(40, 45), (45, 50),
(50, 55), (55, 60),
(60, 65), (65, 70),
(70, 75), (75, 80),
(80, 85), (85, 90)

# Prepare a 3x3 grid of subplots
fig, axs = plt.subplots(nrows=6, ncols=3, figsize=(18, 24))

axs = axs.ravel () # Flatten the 2D array of axes for easy indexing

for i, (low, high) in enumerate(zen bins):
# Filter DataFrame for the given ZEN bin
df temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)]

# If df temp is empty, just skip plotting

if df temp.empty:
axs[i].set title(f"ZEN in [{low}, {high}) [No datal")
axs[i].axis("off")

continue

X
Il

df temp["GHI"]
df temp["GHI PYR"]

# Density estimation
xy = np.vstack([x, yI])

z = gaussian kde (xy) (xy)

# Adjust marker size based on the maximum density value

size marker factor = 100 / z.max ()

# Scatter plot
sc = axs[i].scatter(
%,
Yr
s=z * size marker factor,
c=z,

cmap='viridis'
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# Plot identity line (y = x)

axs[i].plot(x, x, color='red',6 ls='--")

# Title, labels

axs[i].set title(f"ZEN in [{low}, {high})")
axs[i].set xlabel ("GHI")
axs[i].set ylabel ("GHI PYR")

# Adjust layout
plt.tight layout()
plt.show ()

# %% [markdown]

# #### 5.8.2 DIF

=+
oo
o

# Visualization based in ZEN interval

# ZEN bins: (start, end)

zen bins = [

(0, 5), (5, 10),
(10, 15), (15, 20),
(20, 25), (25, 30),
(30, 35), (35, 40),
(40, 45), (45, 50),
(50, 55), (55, 60),
(60, 65), (65, 70),
(70, 75), (75, 80),
(80, 85), (85, 90)

# Prepare a 3x3 grid of subplots
fig, axs = plt.subplots(nrows=6, ncols=3, figsize=(18, 24))

axs = axs.ravel () # Flatten the 2D array of axes for easy indexing

for i, (low, high) in enumerate(zen bins):
# Filter DataFrame for the given ZEN bin
df temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)]

# If df temp is empty, just skip plotting
if df temp.empty:
axs[i].set title(f"ZEN in [{low}, {high}) [No datal]")

axs[i].axis ("off")
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continue

b
Il

df temp["DIF"]
y = df temp["DIF SPN1"]

# Density estimation
xy = np.vstack ([x, vI])

z = gaussian kde (xy) (Xy)

# Adjust marker size based on the maximum density value

size marker factor = 100 / z.max ()

# Scatter plot
sc = axs[i].scatter(
%,

Y

s=z * size marker factor,

c=z,

cmap='viridis'

# Plot identity line (y =

axs[i].plot(x, x, color='red',

# Title, labels
axs[i].set title(f"ZEN in
axs[i].set xlabel ("DIF")

axs[i].set ylabel ("DIF SPN1")

# Adjust layout
plt.tight layout ()
plt.show ()

%% [markdown]

[
## 6. Model Training

# Getting correlation matrix

corr matrix = df.corr()

1s

[{low},

— 1

{high})™)

__V)
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# Filtering only the columns that we want to predict
corr matrix = corr matrix.loc]|

['GHI SPN1', 'DIF SPN1', 'KD SPN1', 'GHI PYR'],

# Set the size of the plot
plt.figure(figsize=(28, 4))

# Generate a heatmap
sns.heatmap (corr matrix, annot=True, fmt=".2f",
linewidths=0.5)

# Add title
plt.title('Correlation Matrix Heatmap')

# Show the plot
plt.show ()

# Define bins

zen bins = [

(0, 10), (10, 20), (20, 30), (30, 40),
(40, 50), (50, 60), (60, 70), (70, 80),
(80, 91)

]

x features = ["GHI", "DIF", "cZEN", "ZEN"]

y target = ["GHI PYR", "DIF SPN1"]

#

from sklearn.model selection import train test split

o°
o°

X train =
y train
X_test

Il
Il
—
— = =
—

—

y test

for (low, high) in zen bins:

# Filter the data for the current bin
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cmap="coolwarm',



mask = (df["ZEN"] >= low) & (df["ZEN"] < high)
df bin = df[mask]

X train bin, X test bin, y train bin, y test bin
train test split(
df bin[x features],
df bin[y target],
test size=0.2,
random_ state=69,
shuffle=True

X train.append(X train bin)
y train.append(y train bin)
X test.append (X test bin)
y test.append(y test bin)

X train = pd.concat (X train)

y train
X test = pd.concat (X test)

pd.concat (y train)

y _test = pd.concat (y test)

$% [markdown]

### 6.3. Model for GHI

4= = =

Fit models to predict GHI Pyranometer using Solargis
(Satellite).

#

# Store regression models and coefficients

o°
o

ghi bin models = []

for (low, high) in zen bins:
# Filter the data for the current bin
mask = (X train["ZEN"] >= low) & (X train["ZEN"] < high)

ghi X train bin X train[mask]

ghi y train bin = y train[mask]

# Prepare feature matrix (GHI and cos (ZEN)) and target variable
ghi X train bin[["GHI", "cZEN"]].values
ghi y train bin["GHI PYR"].values

b
I

# Fit linear regression: GHI PYR = a + b*GHI + c*cos (ZEN)

112

data
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reg = LinearRegression () .fit (X, vy)

# Extract coefficients
slope GHI, slope cZEN = reg.coef

intercept = reg.intercept

# Store model information
ghi bin models.append ({
"zen range": (low, high),
"slope GHI": slope GHI,
"slope cZEN": slope cZEN,

"intercept": intercept,
"model": reg
})
print (f"ZEN [{low}, {high}) : GHI slope={slope GHI:.3f},

CZEN slope={slope cZEN:.3f}, intercept={intercept:.3f}, n={len(X)}")

#

# Prediction

o\
o\

ghi train pred 1lr bins = X train.apply(
lambda row: predict piecewise ghi(row["ZEN"], row["GHI"],
ghi bin models), axis=1

)

ghi test pred 1lr bins = X test.apply(
lambda rOow: predict piecewise ghi (row["ZEN"], row["GHI"],
ghi bin models), axis=1

)

ghi pred 1r bins = df.apply(
lambda row: predict piecewise ghi (row["ZEN"], row["GHI"],
ghi bin models), axis=1

)

#

# Applying Linear Regression for all training together, to comparate

o©°
o

with piecewise method.

lr = LinearRegression ()

# Separate data
X = X train[["GHI", "cZEN"]].values.reshape (-1, 2)
X2 = X test[["GHI", "cZEN"]].values.reshape (-1, 2)
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X3 = df[["GHI", "cZEN"]].values.reshape (-1, 2)
y = y train[["GHI PYR"]].values.reshape (-1, 1)

# Fitting
lr.fit (X, vy)

# Prediction

ghi train pred 1lr = lr.predict (X).reshape(l, -1)[0]
ghi test pred 1lr = lr.predict(X2).reshape(l, -1)[0]
lr.predict (X3) .reshape (1, -1)[0]

ghi pred 1r

# %%
# Fit
poly models = fit piecewise polynomial (
df, # your DataFrame
zen bins, # ZEN bins
4,
feature cols=["GHI", "cCZEN"], # polynomial will be generated from
these
target col="GHI PYR" # what we're predicting

# Predictions
ghi train pred poly = X train.apply(

lambda row: predict piecewise polynomial (row["ZEN"], row["GHI"],
poly models), axis=1

)

ghi test pred poly = X test.apply(
lambda row: predict piecewise polynomial (row["ZEN"], row["GHI"],
poly models), axis=1

)

ghi pred poly = df.apply(

lambda row: predict piecewise polynomial (row["ZEN"], row["GHI"],

poly models), axis=1

)

# %% [markdown]

# ##4 6.4. Model for DIF

#

# Fit models to predict DIF Pyranometer using Solargis data

(Satellite).



#

oe

o)
°

dif bin models = [] # Store regression models and coefficients

for

(low, high) in zen bins:

# Filter the data for the current bin

mask = (df["ZEN"] >= low) & (df["ZEN"] < high)
df bin = df[mask]

if df bin.empty:

continue # Skip bins without data

# Prepare feature matrix (DIF and cos (ZEN)) and target variable
X = df bin[["DIF", "cZEN"]].values # Already in 2D shape
y = df bin["DIF SPN1"].values

# Fit linear regression: DIF SPN1 = a + Db*DIF + c*cos (ZEN)

reg = LinearRegression().fit (X, vy)

# Extract coefficients
slope DIF, slope cZEN = reg.coef

intercept = reg.intercept

# Store model information
dif bin models.append ({
"zen range": (low, high),
"slope DIF": slope DIF,
"slope cZEN": slope cZEN,

115

"intercept": intercept,
"model": reg
1)
print (£f"ZEN [{low}, {high}) : DIF slope={slope DIF:.3f},

CZEN slope={slope cZEN:.3f}, intercept={intercept:.3f}, n={len(X)}")

#

o©°
o

# Prediction

dif train pred lr bins = X train.apply(

lambda row: predict piecewise dif (row["ZEN"], row ["DIF"],

dif bin models), axis=1

)

dif test pred 1lr bins = X test.apply(
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lambda row: predict piecewise dif (row["ZEN"], row ["DIF"],
dif bin models), axis=1

)

dif pred 1lr bins = df.apply(
lambda TOW: predict piecewise dif (row["ZEN"], row ["DIF"],
dif bin models), axis=1

)

#

# Applying Linear Regression for all training together, to comparate

o°
o°

with piecewise method.

lr = LinearRegression ()

# Separate data

X = X train[["DIF", "cZEN"]].values.reshape (-1, 2)
X2 = X test[["DIF", "cZEN"]].values.reshape (-1, 2)
X3 = df[["DIF", "cZEN"]].values.reshape (-1, 2)

y = y train[["DIF SPN1"]].values.reshape (-1, 1)

# Fitting

lr.fit (X, y)

# Prediction

dif train pred 1lr = lr.predict (X).reshape(l, -1)[0]
dif test pred lr = lr.predict(X2).reshape(l, -1)[0]
dif pred 1lr = lr.predict (X3).reshape(l, -1)[0]

# %%
# Fit
poly models = fit piecewise polynomial (
df, # your DataFrame
zen bins, # ZEN bins
4,
feature cols=["DIF", "cZEN"], # polynomial will be generated from
these
target col="DIF SPN1" # what we're predicting

# Predictions
dif train pred poly = X train.apply(
lambda row: predict piecewise polynomial (row["ZEN"], row["DIF"],

poly models), axis=1



117

dif test pred poly = X test.apply(

lambda row: predict piecewise polynomial (row["ZEN"], row["DIF"],

poly models), axis=1

)

dif pred poly = df.apply(

lambda row: predict piecewise polynomial (row["ZEN"], row["DIF"],

poly models), axis=1

)

o9
e

markdown]

[
## 7. Model Evaluation

%% [markdown]
### 7.1. GHI

o\°
o\

def compute metrics(pred, actual):

return [
100 * normalized rmse (pred, actual),
100 * normalized mbe (pred, actual),

r2 score (actual, pred)

data = [

["Solargis Train", *compute metrics (X train["GHI"],
y_train["GHI_PYR"])],

["(LR) Train", *compute metrics(ghi train pred lr,

y train["GHI PYR"].values)],

["(LR / Bins) Train", *compute metrics(ghi train pred 1lr bins,

y train["GHI PYR"])],
["(Poly + LR) Train", “*compute metrics(ghi train pred poly,

y _train["GHI PYR"])],
["Solargis Test", *compute metrics (X test["GHI"],

y test["GHI PYR"])],

["(LR) Test", *compute metrics(ghi test pred lr,

y test["GHI PYR"].values)],

["(LR / Bins) Test", *compute metrics(ghi test pred 1lr bins,
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y test["GHI PYR"])],
["(Poly + LR) Test", *compute metrics(ghi test pred poly,
y test["GHI PYR"])],

["Solargis Train + Test", *compute metrics (df ["GHI"],

df["GHI PYR"])],
[" (LR) Train + Test", *compute metrics(ghi pred lr,

df ["GHI PYR"])],
["(LR / Bins) Train + Test", *compute metrics(ghi pred lr bins,

df["GHI PYR"])],
["(Poly + LR) Train + Test", *compute metrics(ghi pred poly,

df ["GHI_PYR"]) ],

]

headers = ["Dataset", "nRSME [%]", "nMBE [%]", "R2"]
print (tabulate (data, headers=headers, tablefmt="grid"))

# %%

# Applying the piecewise Linear Regression

df ["GHI 1r"] = ghi pred Ir

df ["GHI 1lr bins"] = ghi pred 1lr bins

df ["GHI poly"] = ghi pred poly

# %%

X test["GHI LR"] = ghi test pred 1r

X test["GHI LR BINS"] = ghi test pred 1lr bins
X test["GHI POLY"] = ghi test pred poly

# Lista para armazenar os resultados

results = []

# Lista com os nomes dos modelos

modelos = ["GHI", "GHI LR", "GHI LR BINS", "GHI POLY"]

# Itera sobre os bins de ZEN
for low, high in zen bins:
# Filtra o DataFrame para o intervalo de ZEN
df temp = X test[ (X test["ZEN"] >= low) & (X test["ZEN"] < high)]

# Valor médio do ZEN para esse bin (usado no eixo x)
zen mid = (low + high) / 2.0

# Varigvel alvo



y = y test[y test.index.isin(df temp.i

# Para cada modelo,

for modelo in modelos:

df temp[modelo]

X

r2 value r2 score(y, X)

nrmse value 100 * normalized rms

nmbe value 100 * normalized mbe

nmae value 100 * normalized mae

results.append ({

"ZEN": zen mid,
"Modelo": modelo,
"R2": r2 value,
"nRSME": nrmse value,
"nMBE": nmbe value,
"nMAE": nmae value

)

# Converte a lista de resultados para um D

df metrics

pd.DataFrame (results)

# Lista das métricas para plotagem

metricas = ["R2", "nRSME", "nMBE", "nMAE"]

# Cria uma figura com 2 linhas e 2 colunas

plt.subplots (2, 2,

fig, axes =

figsize=(16

# Itera sobre as métricas e plota cada uma

for i1, metrica in enumerate (metricas):
row = 1 // 2
col =1 % 2

sns.lineplot (ax=axes[row, col]

y=metrica, hue="Modelo", marker="o"

)

axes[row, col].set title(f"Evolucdo do
axes[row, col].set xlabel ("ZEN
axes[row, col].set ylabel (metrica)
axes[row, col].grid(True)

axes[row, col].legend(title="Modelo",
plt.tight layout()

plt.show ()
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ndex) ] ["GHI PYR"]

calcula as métricas e armazena os resultados

e(x, vy)
y)

y)

(x,

(%,

ataFrame

de subplots
12))

4

em seu respectivo subplot

x="ZEN",

, data=df metrics,

{metrica} em funcdo do ZEN")

(valor médio do bin)")

loc="best"')



#

# Prepare a subplot grid with 4 columns

oe
o

fig, axs = plt.subplots(nrows=len(zen bins), ncols=4,

for i, (low, high) in enumerate(zen bins):

# Filter the DataFrame for the ZEN range

df temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)]

# Common variable for y-axis

y = df temp["GHI PYR"]

for 3j, x col in enumerate(["GHI", "GHI 1r",

"GHI poly"]):
x = df temp[x col]

# Density estimation
xy = np.vstack([x, y])

z = gaussian kde (xy) (xy)

figsize=(30,

size marker factor = 100 / z.max() if z.max() != 0 else 1

# Scatter plot
axs[i, jl.scatter(
X,
Yr
s=z * size marker factor,
c=z,

cmap="viridis'

# Tendency Line:
# Tendency Line:

if x col == "GHI poly":

# Fit a 4th-degree polynomial to the data

p_coeffs = np.polyfit(x, y, 4) # Degree 4 poly

p = np.polyld(p coeffs)

x fit = np.linspace(x.min(), x.max(),

axs[i, Jl.plot(x fit, p(x _fit),
label="4th Degree Poly Fit'")

else:

# Linear trend for other plots

100)

color="'red',

120

50))

"GHI 1r bins",
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m, b = np.polyfit(x, y, 1) # Linear regression (degree 1)
x fit = np.linspace(x.min(), x.max(), 100)
axs[i, j].plot(x fit, m*x fit + b, color='red', 1ls='--",

label="Linear Fit')

axs[i, Jjl.set title(f"ZEN in [{low}, {high})\n{x col} wvs

GHI PYR")
axs[i, J].set xlabel(x col)
axs[i, Jj].set ylabel ("GHI PYR")

# Compute and annotate metrics

r2 value = r2 score(y, Xx)
nrmse value = 100 * normalized rmse(x, y)
nmbe value = 100 * normalized mbe(x, vy)

axs[i, Jjl.annotate(f'R?: {r2 value:.3f}',
xycoords="'axes fraction')
axs[i, J].annotate(f'nRMSE [%]: {nrmse value

0.10), xycoords='axes fraction')

axs[i, J].annotate(f'nMBE [%]: {nmbe value:

0.05), xycoords='axes fraction')
axs[i, jl.legend()

axsl[i, jl.grid(True)
# Adjust the layout and display the chart

plt.tight layout ()
plt.show ()

### 7.2. DIF

xy=(0.65, 0.15),

:.3f1', xy=(0.65,

L3fr', xy=(0.65,

["Solargis Train", *compute metrics (X train["DIF"],

y train["DIF SPN1"])],

["(LR) Train", *compute metrics(dif train pred lr,

y train["DIF SPN1"])1,

["(LR / Bins) Train", *compute metrics(dif train pred lr bins,

y train["DIF SPN1"])],

["(Poly + LR) Train", “*compute metrics(dif train pred poly,

y train["DIF SPN1"])],
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["Solargis Test", *compute metrics (X test["DIF"],

y_test["DIF SPN1"1)1,
["(LR) Test", *compute metrics(dif test pred lr,

y test["DIF SPN1"])1],
["(LR / Bins) Test", “*compute metrics(dif test pred lr bins,

y_test["DIF_SPN1"])],

["(Poly + LR) Test", *compute metrics(dif test pred poly,
y _test["DIF SPN1"])],

["Solargis Train + Test", *compute metrics (df["DIF"],
df ["DIF SPN1"])1,

[" (LR) Train + Test", *compute metrics(dif pred lr,
df ["DIF SPN1"1)1,

["(LR / Bins) Train + Test", *compute metrics(dif pred 1lr bins,
df ["DIF SPN1"]1)1,
["(Poly + LR) Train + Test", *compute metrics(dif pred poly,
df ["DIF SPN1"1)1,
]

headers = ["Dataset", "nRSME [%]", "nMBE [%]", "R?"]
print (tabulate (data, headers=headers, tablefmt="grid"))

# %%

df ["DIF 1r"] = dif pred 1r

df ["DIF 1r bin"] = dif pred 1lr bins

df ["DIF poly"] = dif pred poly

%%

X test["DIF LR"] = dif test pred 1r

X test["DIF LR BIN"] = dif test pred lr bins
X test["DIF POLY"] = dif test pred poly

# Lista para armazenar os resultados

results = []

# Lista com os nomes dos modelos
modelos = ["DIF", "DIF LR", "DIF LR BIN", "DIF POLY"]

# Itera sobre os bins de ZEN
for low, high in zen bins:
# Filtra o DataFrame para o intervalo de ZEN

df temp = X test[(X test["ZEN"] >= low) & (X test["ZEN"] < high)]
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# Valor médio do ZEN para esse bin (usado no eixo x)
zen mid = (low + high) / 2.0

# Varidvel alvo

y = y test[y test.index.isin(df temp.index)]["DIF SPN1"]

# Para cada modelo, calcula as métricas e armazena os resultados
for modelo in modelos:

x = df temp[modelo]

r2 value = r2 score(y, X)
nrmse value = 100 * normalized rmse(x, y)
nmbe value = 100 * normalized mbe(x, y)

nmae value 100 * normalized mae(x, V)
results.append ({

"ZEN": zen mid,

"Modelo": modelo,

"R2": r2 value,

"nRSME": nrmse value,

"nMBE": nmbe value,

"nMAE": nmae value

)

# Converte a lista de resultados para um DataFrame

df metrics = pd.DataFrame (results)

# Lista das métricas para plotagem
metricas = ["R2", "nRSME", "nMBE", "nMAE"]

# Cria uma figura com 2 linhas e 2 colunas de subplots

fig, axes = plt.subplots (2, 2, figsize=(1l6, 12))

# Itera sobre as métricas e plota cada uma em seu respectivo subplot
for 1, metrica in enumerate (metricas):

row = 1 // 2

col =1 % 2

sns.lineplot (ax=axes[row, col], data=df metrics, x="ZEN",

y=metrica, hue="Modelo", marker="o")

axes[row, col].set title(f"Evolucdo do {metrica} em funcdo do ZEN")

axes[row, col].set xlabel ("ZEN (valor médio do bin)")

axes[row, col].set ylabel (metrica)
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axes[row, col].grid(True)

axes[row, col].legend(title="Modelo", loc='best')

plt.tight layout()
plt.show ()

#

# Prepare a subplot grid with 4 columns

o°
o°

fig, axs = plt.subplots(nrows=len(zen bins), ncols=4, figsize=(30, 50))

for i, (low, high) in enumerate (zen bins):
# Filter the DataFrame for the ZEN range
df temp = df[(df["ZEN"] >= low) & (df["ZEN"] < high)]

# Common variable for y-axis

y = df temp["DIF SPN1"]

for Jj, x col in enumerate(["DIF", "DIF 1", "DIF 1r bin",
"DIF poly"]):
x = df temp[x col]

# Density estimation
xy = np.vstack([x, vy])
z = gaussian_ kde (xy) (xy)

size marker factor = 100 / z.max() if z.max() != 0 else 1

# Scatter plot
axs[i, jl.scatter(
XI
'
s=z * size marker factor,
c=z,

cmap="viridis'

# Tendency Line:

if x col == "DIF poly":
# Fit a 4th-degree polynomial to the data
p_coeffs = np.polyfit(x, y, 4) # Degree 4 poly
p = np.polyld(p coeffs)

x fit = np.linspace(x.min(), x.max(), 100)

axs[i, J].plot(x fit, p(x fit), color='red', 1ls='--",
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label="4th Degree Poly Fit'")

else:

# Linear trend for other plots

m, b = np.polyfit(x, y, 1) # Linear regression (degree 1)
x fit = np.linspace(x.min(), x.max(), 100)
axs[i, j].plot(x fit, m*x fit + b, color='red', ls='--",

label="Linear Fit"')

axs[i, Jjl.set title(f"ZEN in [{low}, {high})\n{x col} wvs
DIF SPN1")
axs[i, J].set xlabel(x col)
axs[i, Jj].set ylabel ("DIF SPN1")

# Compute and annotate metrics

r2 value = r2 score(y, X)
nrmse value = 100 * normalized rmse(x, y)
nmbe value = 100 * normalized mbe (x, y)

axs[i, Jjl.annotate(f'R?: {r2 value:.3f}', xy=(0.65, 0.15),
xycoords="axes fraction')
axs[i, J].annotate(f'nRMSE [%]: {nrmse value:.3f}', xy=(0.65,
0.10), xycoords='axes fraction')
axs[i, J].annotate(f'nMBE [%]: {nmbe value:.3f}', xy=(0.65,
0.05), xycoords='axes fraction')
axs[i, jl.legend()

axsl[i, jl.grid(True)

# Adjust the layout and display the chart
plt.tight layout ()
plt.show ()



