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ABSTRACT

Rupture dynamics and pinch-off phenomena are essential to understanding instabilities in both

fluid dynamics and biological systems. In this thesis, I study the rupture behavior of two-

dimensional, channel-like structures formed in a binary mixture of particles with differential

diffusivities. Using computational simulations, I explore the evolution of these instabilities

under a variety of conditions, focusing on the roles of key parameters such as aspect ratio,

particle density, and external drift. Although the observed behavior bears similarities to the

Plateau-Rayleigh instability (PRI), the underlying mechanism is fundamentally different, as

PRI is inherently three-dimensional. Instead, the instability investigated here emerges from

non-equilibrium interactions unique to two-dimensional systems. Notably, comparable behaviors

have been reported in chiral fluids, supporting the idea that this is a genuinely new type of

instability. The results presented in this work indicate that the instability is not a finite-size effect

but an intrinsic feature of systems driven by differential diffusivity. In the latter part of the thesis,

I extend the analysis to study the surface dynamics of the active interface. By applying tools

from capillary wave theory, I show that the interface roughening follows equilibrium-like scaling

laws, even though the system is inherently out of equilibrium. This surprising result allows for

the definition of an effective surface tension, whose evolution reveals a gradual weakening of

interfacial cohesion leading up to rupture. These findings provide a deeper understanding of

how non-equilibrium forces shape interface behavior and suggest new avenues for investigating

instability and pattern formation in active matter.

Keywords: active matter; rupture dynamics.



RESUMO

A dinâmica de ruptura e os fenômenos de estrangulamento (pinch-off) são essenciais para a

compreensão de instabilidades tanto em sistemas de dinâmica de fluidos quanto em sistemas bio-

lógicos. Nesta tese, estudo o comportamento de ruptura de estruturas bidimensionais semelhantes

a canais, formadas em uma mistura binária de partículas com difusividades diferenciais. Utili-

zando simulações computacionais, exploro a evolução dessas instabilidades sob uma variedade

de condições, com foco no papel de parâmetros-chave como a razão de aspecto, a densidade de

partículas e o arrasto externo. Embora o comportamento observado apresente semelhanças com a

instabilidade de Plateau-Rayleigh (PRI), o mecanismo subjacente é fundamentalmente diferente,

uma vez que a PRI é intrinsecamente tridimensional. A instabilidade investigada aqui, por

outro lado, emerge de interações fora do equilíbrio, características de sistemas bidimensionais.

Comportamentos semelhantes têm sido relatados em fluidos quirais, o que reforça a ideia de que

estamos diante de uma nova tipo de instabilidade. Os resultados apresentados neste trabalho

indicam que essa instabilidade não é um efeito de tamanho finito, mas sim uma característica

intrínseca de sistemas impulsionados por difusividades diferenciais. Na parte final da tese, amplio

a análise para estudar a dinâmica da superfície da interface ativa. Aplicando ferramentas da

teoria das ondas capilares, demonstro que o enrugamento da interface segue leis de escala típicas

do equilíbrio, mesmo que o sistema esteja intrinsecamente fora do equilíbrio. Este resultado

permite definir uma tensão superficial efetiva, cuja evolução revela um enfraquecimento gradual

da coesão interfacial até a ruptura. Essas descobertas fornecem uma compreensão mais profunda

de como forças fora do equilíbrio moldam o comportamento das interfaces e sugerem novos

caminhos para investigar instabilidades e formação de padrões em sistemas de matéria ativa.

Palavras-chave: matéria ativa; dinâmicas de ruptura.
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1 INTRODUCTION: EMERGENT BEHAVIOR IN ACTIVE MATTER

The laws of physics provide universal principles for describing natural phenomena,

from the interactions of microscopic particles to the behavior of living systems. Statistical

mechanics exemplifies this approach by using probabilistic laws to relate the behavior of large

assemblies of entities, often on the order of Avogadro’s number, to a small set of macroscopic

state variables, under the assumption of thermodynamic equilibrium [5]. However, many systems,

particularly in biology, operate far from equilibrium, where features such as energy dissipation,

intrinsic fluctuations, and irreversible dynamics are essential for sustaining life. These non-

equilibrium systems challenge traditional frameworks and demand new approaches to understand

how complexity can emerge from seemingly disordered interactions [6].

Active matter exemplifies far-from-equilibrium systems, describing individual agents

that dissipate energy locally to self-propel or exert forces [7]. These systems span a wide

range of scales, from bacterial colonies to macroscopic animals [8, 9], and exhibit collective

phenomena absent in passive matter, such as spontaneous flocking (emergence of alignment

without external forces) [10, 11], motility-induced phase separation (density clustering driven

by self-propulsion) [12, 13], and demixing in mixtures with differential diffusivity [4]. Such

behaviors emerge from the interplay of local energy dissipation, particle interactions, and broken

time-reversal symmetry, raising fundamental questions: How do microscopic rules dictate

macroscopic order? Can equilibrium concepts like surface tension or stiffness be extended to

active matter, or do they require redefinition?

This thesis investigates how non-equilibrium energy injection transform collective

phenomena and interfacial stability in active matter, focusing on a novel two-dimensional instabi-

lity in a binary mixture of particles with differential diffusivity. Inspired by the Plateau-Rayleigh

instability (PRI), where surface tension ruptures a fluid column into droplets to minimize

energy [14], this work explores a visually analogous but intrinsically distinct process in active

systems. Unlike passive fluids, active matter present energy dissipation at the microscale, which

alters the forces governing pattern formation. Recent studies reveal that activity can destabilize

interfaces in ways reminiscent of classical instabilities, yet the mechanisms are not well unders-

tood [15, 16, 17]. Through computational simulations, we examine how non-equilibrium driving

redefines interfacial rupture dynamics in active mixtures. By linking microscale activity to

macroscale stability, this work advances our understanding of segregation processes in biological

and synthetic systems.



14

The significance of this study extends beyond theoretical advances non-equilibrium

systems, offering potential applications in emergent technologies. By characterizing how activity

governs interfacial stability, we identify key parameters, such as system aspect ratio, particle

flux and density, that control pattern formation in binary active mixtures. Such control, which

dictates the system’s response to surface perturbations, is critical for applications like targeted

drug delivery, adaptive materials, and synthetic active particles [18, 19, 20]. Furthermore,

our computational framework provides strategies to suppress or harness instabilities in active

microfluidics, enabling precise manipulation of colloidal flows [21]. By bridging hydrodynamics

concepts with active matter physics, this work not only advances our understanding of non-

equilibrium phenomena but also offers practical strategies to regulate instability thresholds.

The following chapters expand on these themes, beginning with a review of active systems

classification to contextualize our work into instability mechanisms framework.

1.1 Active Matter: Non-Equilibrium Physics at the Mesoscale

Active matter represents systems where individual components transduce energy, of-

ten from chemical, optical, or thermal sources into mechanical work, displaying non-equilibrium

dynamics [7, 22]. This localized energy input drives pattern formation that are absent in passive

systems, such as spontaneous flows and density oscillations. As illustrated in Fig. 1, active

systems span diverse scales: biomolecular motors uses ATP to generate force, bacterial colonies

exploit chemical gradients for propulsion [23, 24, 25], and synthetic agents like Janus particles

exhibit programmable motion via self-phoresis [12]. At macroscopic scales, alignment interacti-

ons in bird flocks or fish schools yield emergent directional order [26, 27]. Despite their diversity,

these systems share a unifying feature: their constituents are self-propelled agents, whose motion

arises from internal energy-consuming mechanisms (e.g., metabolism, catalytic reactions).

The behavior of active matter is governed by the competition between stochastic

forces and the energy driving self-propulsion. Randomness in these systems arise from thermal

fluctuations, self-propulsion energy, or their interplay, depending on the system’s scale. These

factors set the energy scale of stochastic forces, and consequently dictate macroscopic properties

like collective motion and phase separation [28]. For instance, the diffusion coefficient quantifies

particle spreading due to random motion, while the persistence time measures how long a

particle maintains direction before stochastic forces randomize its trajectory [29]. Quantifying

these properties is critical not only to identify deviations from equilibrium but also to construct
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Figura 1 – Active Matter Across Length Scales. Examples of active agents span a wide range
of sizes, from nanometers to meters. Shown here (left to right) are: biomolecular
motors, bacteria, sperm cells, synthetic Janus particles, zebrafish embryos, robotic
swarms, and animals that exhibit collective behaviors such as flocking and herding.

Source: Autor.

predictive active matter models. Such deviations challenge equilibrium statistical mechanics:

fundamental principles like the fluctuation-dissipation theorem, often fail in active matter. For

example, in living cells, this breakdown can be used to quantify forces generated by active

processes such as intracellular transport [30, 31]. These violations highlight the need for new

theoretical frameworks to describe these non-equilibrium systems.

Various theoretical frameworks have emerged to model active matter [32]. One

strategy extends equilibrium thermodynamics by defining effective steady states under specific

conditions, such as weak activity, where systems approximate equilibrium-like behavior [33, 34].

Another approach generalizes familiar concepts from passive systems: for example, “active

pressure” incorporates self-propulsion forces [35, 36], while “negative surface tension” captures

interface perturbations driven by energy injection [37, 38]. However, these efforts face significant

challenges in extending such concepts to broader classes of active matter. Addressing these

limitations requires novel theoretical frameworks that go beyond traditional statistical mechanics,

offering insights into universal principles governing far-from-equilibrium systems.

Overcoming these challenges requires a deeper understanding of how energy dissi-

pation and local interactions govern emergent behaviors in active matter. Stochastic thermodyna-
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mics provides a powerful framework for this purpose, extending classical thermodynamics to

account for microscale fluctuations and irreversibility [39]. By quantifying entropy production

rates, a measure of broken time-reversal symmetry, this approach reveals how active systems sus-

tain non-equilibrium states and how these states influence collective dynamics [40, 32]. However,

despite progress, a unified framework for active matter remains elusive due to the diversity of

stochastic interactions.

To bridge this gap, organizing active systems by their symmetry properties offers a

promising perspective. For instance, distinguishing polar (directional) from nematic (headless/-

tailless) order in individual agents provides a categorization that aligns with distinct universality

classes [41]. This classification organizes active matter into categories with shared theoretical

foundations, enabling experimental insights and facilitating computational modeling. In the next

section, we outline key models within this framework, setting the stage for our investigation of

active mixtures.

1.2 Classification of active systems: Symmetries

Theoretical frameworks for active matter are fundamentally defined by the symme-

tries of both the constituent particles and their interactions [42]. For elongated, rod-like agents,

orientational order arises from alignment forces parallel to the particle’s long axis. These systems

exhibit two distinct symmetry classes: (i) polar (vectorial) order, where particles develop a

collective preferred direction of motion [10]. This symmetry is captured by hydrodynamic theo-

ries like the Toner-Tu equations [43, 44], and (ii) nematic (apolar) order, where particles align

head-to-tail but lack net directional motion [45]. This symmetry-based classification organizes

active systems into universality classes while dictating their emergent dynamics.

For particles symmetric under rotation, isotropic spheres, the absence of alignment

interactions results in isotropic activity, where motion lacks a defined directionality. These

systems, called scalar active particles, exhibit emergent phenomena driven solely by density-

dependent motility, a scalar field [46]. Beyond systems with intrinsic self-propulsion, activity

can emerge in passive mixtures through high contrast in components diffusivity. Activity, often

quantified as an effective temperature imbalance, drives non-equilibrium phase segregation [33,

47, 4]. With this framework, we now examine each category in more detail:



17

Polar active matter

Polar active particles are self-propelled, elongated agents with head-tail asymmetry,

giving them a preferred direction of motion, as shown in Fig. 2b). This intrinsic polarity drives

collective alignment, producing ferromagnetic-like states with macroscopic directed flow [41].

A paradigmatic example is the Vicsek model [10], where particles align their velocities to

the average direction of neighbors within a fixed radius, subject to noise. Reducing noise or

increasing density triggers a phase transition from disordered motion to long-range polar order,

forming coherent flocks or swarms.

Figura 2 – Polar Symmetry in Active Matter. a) Polar vibrated granular rods (from [1]) b) A
polar active particle with self-propulsion speed v0. c) Representation of the vectorial
order parameter P (arrows).

Source: Autor.

Polar order spans biological and synthetic systems: for example, in biological

systems, migrating bird flocks [26] and bacterial swarms [48] align via social interactions, while

in synthetic systems, vibrated granular rods achieve polar order through inelastic collisions and

substrate energy injection as in Fig. 2a). Polar systems are described by the Toner-Tu equations,

which extend Navier-Stokes theory to include active stresses and density-dependent motility.

These equations predict propagating density waves and giant number fluctuations.

Active nematics

Active nematics describe elongated, rod-like particles with head-tail symmetry,

resulting in orientational order without net directional motion. Like their equilibrium counterparts

(nematic liquid crystals [49]), these systems exhibit long-range alignment of particle axes, but
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energy transduction at the microscale drives chaotic dynamics absent in passive systems. This

interplay between nematic order and activity produces self-sustained spatiotemporal patterns [41].

Figura 3 – Nematic Symmetry in Active Matter. a) Nematic ordering in microtubule-kinesin
mixtures at a water-oil interface, driven by motor-protein activity [2]. b) Apolar active
particles exerting force dipoles along their orientation. c) Representation of the tensor
order parameter Q.

Source: Autor.

A theoretical framework for active nematics arises from active nematohydrodyna-

mics, which extends liquid crystal theory to include active stresses [50]. These systems presents

intriguing phenomena, such as the emergence of topological defects [51] and turbulent-like

flows, known as active turbulence [52]. Examples include biological systems like microtubule-

kinesin mixtures [53] as showed in Fig. 3a), and synthetic systems like vertical vibrated granular

rods [54].

Scalar active matter

Scalar active matter represents spherical particles lacking alignment interactions,

resulting in isotropic motion with no preferred direction. Despite this simplicity, these particles

exhibit a variety of non-equilibrium dynamics driven by self-propulsion and density fluctuati-

ons [46]. Their behavior is governed by a single scalar field, the particle density, making them a

minimal framework to study activity-driven behavior [55, 42].

One of the most well-known models for describing scalar active matter is the Active

Brownian Particles (ABP) framework. Here, particles present translational diffusion (as in

traditional Brownian motion) and rotational diffusion, which randomizes their self-propulsion

direction over a characteristic persistent time. This minimal model neglects hydrodynamic and
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phoretic interactions, focusing instead on the interplay between particle motility and repulsive

interactions [56]. Remarkably, even without attractive forces, ABPs undergoes motility-induced

phase separation (MIPS), as shown in Fig. 4a), where dense liquid-like phases coexist with dilute

gas-like regions [3, 13].

Figura 4 – Scalar Symmetry in Active Matter. a) Motility-induced phase separation (MIPS) in
a simulation of self-propelled disks [3]. b) Schematic of scalar active particles with
isotropic motion (no alignment). c) Scalar order parameter defined as the density
difference between the liquid phase (ρL) and the gaseous phase (ρG).

Source: Autor.

Active diffusive mixtures

There are examples of systems where activity does not stem from self-propulsion but

instead arises from differential diffusivity between passive components. These systems are the

central focus of this thesis, and for simplicity, we will refer to them as active diffusive mixtures.

In these systems, activity is a scalar quantity and emerges from the non-equilibrium coupling of

species with large diffusivity imbalances. This model was independently proposed by two groups:

one approached it analytically, considering particles coupled to different thermostats [33], while

the other explored it computationally, simulating phase separation in mixtures with significant

diffusivity contrast [4]. In such systems, one species remains out of equilibrium with the thermal

bath, creating a pronounced diffusivity gap. Although the individual components are passive,

their interaction under this gradient mimics active matter by driving sustained energy dissipation

and emergent order.

This diffusivity imbalance gives rise to phenomena that are absent in equilibrium

systems. A notable example is phase separation via nucleation: low-diffusivity (“cold”) particles
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coalesce into dense droplets, while high-diffusivity (“hot”) particles form a surrounding gas-like

phase, Fig. 5. As the droplets of cold particles grow in size, the high diffusion of hot particles

induces depletion-like forces, ultimately leading to the formation of a single dominant cluster of

cold particles in low-density systems. This mechanism destabilizes the homogeneous mixed state,

driving the system toward phase-segregated configurations. Unlike equilibrium phase separation,

which typically requires attractive interactions, this liquid-gas transition occurs without any

explicit attraction between particles. Such instabilities exemplify how activity, even without

alignment or propulsion, can reconfigure matter far from equilibrium.

Figura 5 – Active Mixtures. a) Demixing in a binary mixtures of particles with differential

diffusivity [4]. b) Schematic representation of the binary components, the shadow

around the particles represents the magnitude of the diffusion coefficients, being the

red (“hot”) particle the more diffusive. c) Representation of the interaction between

the two species at the interface of separation.

Source: Autor.

Although early models of activity driven by differential diffusivity focused primarily

on systems of spherical particles, the idea of representing activity-induced fluctuations as

interactions at an “effective” temperature first emerged in the context of chromosome segregation

within the cell nucleus [47]. In that model, the nucleus is treated as a confining spherical

shell densely packed with linear polymer chains consisting of active and inactive monomers.

This approach inspired further computational studies on binary mixtures of polymers with

differing diffusivities. These studies showed that the diffusivity contrast required to induce phase

segregation is substantially lower for polymers than for spherical particles [57]. Moreover, the

required gradient decreases even further as the polymer chains become longer.

Most theoretical advances within this framework remain limited to dilute systems,
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where analytical solutions for emergent effective quantities, such as interfacial pressure and

surface tension at the interface, are tractable [15, 58]. These results are derived by integrating

the multiparticle Fokker-Planck equation under the assumption of weak interactions. However,

the omission of higher-order corrections, such as three-body interactions and correlation effects,

restricts the model’s predictive power in describing behaviors at intermediate and high densities.

For instance, the theory fails to capture density-dependent suppression of demixing, a phenome-

non observed in crowded environments and highly relevant for describing biological processes

such as cell sorting [59].

Experimental evidence for non-persistent active behavior has been observed in a

variety of systems. For instance, enzymes exhibit activity-driven diffusion enhancement in the

presence of their reactants [60]. Similar behavior has been reported in other systems involving

local chemical transformations, such as chromatin methylation or acetylation [33]. Additionally,

chemically reactive mixtures have been shown to sustain non-equilibrium phase separation [61].

These examples highlight the broad applicability of active mixtures, characterized by isotropic

but energy-consuming processes, to both biological systems and synthetic materials.

Despite being one of the simplest systems of active matter physics, where activity

emerges as a result of the high diffusivity contrast between passive components, it exhibits rich

dynamical behaviors and intriguing collective phenomena. This system provides a versatile

framework for studying a wide range of physical properties and processes, including surface

dynamics and surface tension [62], transport properties [58], correlated motions in motorized

genomes [63], liquid-crystalline phases [64], long-time diffusion enhancement [65], and entropy

production [66], among others.

As the central focus of this thesis, we investigate how the interplay between differen-

tial diffusivity and particle interactions determines the nature of non-equilibrium fluctuations at

the interface formed during phase separation. To analyze the time evolution of these fluctuations

and their characteristic length scales, we adapt the geometry of the Plateau-Rayleigh instability

in passive fluids [14] to a two-dimensional configuration within the context of active diffusive

mixtures. Subsequent chapters explore how this interplay gives rise to complex pattern formation,

including:

1. Unstable configurations with no equilibrium analog, such as 2D channel instabilities under

varying conditions.

2. The rupture dynamics governing these instabilities, including their scaling properties.
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3. Emergent effective surface tension, a non-equilibrium analog of interfacial energy that

influences pattern stability.

By understanding these dynamics, this work advances our understanding of non-

equilibrium self-organization, with implications for rupture processes and potential applications

in biological systems.

1.3 Emergent collective behavior

A characteristic feature of active matter is its ability to undergo self-organized

phase separation, a process in which systems spontaneously segregate into dense and dilute

phases without the need for external fields or attractive interactions. This phenomenon arises

through distinct mechanisms, depending on the interplay among activity, particle interactions

and symmetry. One of the most paradigmatic examples is MIPS, commonly observed in scalar

active systems. As introduced in Sec.1.2, MIPS occurs when particle motility decreases as a

result of local density fluctuations. Despite all particles having identical intrinsic properties,

the system separate into a dense (liquid-like) phase and a dilute (gas-like) phase as shown in

Fig. 4a) [13, 67].

These non-equilibrium phases display unique dynamical features that distinguish

them from their equilibrium counterparts. Examples include propagating interfaces driven

by particle flux imbalances [68], self-similar cluster growth [69], and surface phenomena

characterized by novel properties such as surface growth [70], kinetic roughening [71] and

interface height fluctuations [72].

Beyond characterizing MIPS, this phenomenon has motivated extensive research

aimed at redefining classical thermodynamic concepts—such as pressure and surface tension—for

non-equilibrium systems [73]. Recent studies have incorporated the activity-driven interfacial

stresses into these definitions [37], yet there remains no consensus on how to measure or interpret

these emergent quantities. For example, pressure-tensor methods predict negative interfacial

tensions in ABPs at steady-state [38], challenging the traditional equilibrium notion of surface

tension. Such discrepancies highlight the need for universal definitions of emergent quantities in

active matter.

The insights gained from studying surface dynamics in ABPs have inspired metho-

dological advances applicable to broader non-equilibrium systems, such as phase separation in

active diffusive mixtures. By adapting techniques originally developed for ABPs, such as pres-
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sure tensor analysis and interface fluctuations studies [38], researches have extended concepts

like effective surface tension and scaling laws to systems with differential diffusivity [33, 74, 75]

including the case of polymer segregation [62]. These frameworks now enable quantitative

descriptions of interfacial properties in active diffusive mixtures; however, their analytical

applicability remains limited to dilute regimes.

The self-organized dynamics of phase separation in active diffusive mixtures depend

strongly on the system’s density (packing fraction) [59]. As described in Sec. 1.2, at low densities,

the system reaches a steady state characterized by a single cluster of cold particles surrounded

by hot particles, as shown in Fig. 5. This configuration resembles equilibrium phase separation,

where surface tension minimizes interfacial contact between phases. At intermediate densities

in square domains, however, the system exhibits counterintuitive behavior: cold particles form

a channel structure enveloped by hot particles, suggesting that the circular geometry does

not represent a dominant configuration under these conditions. This finding becomes even

more intriguing in rectangular domains, where the channel often aligns with the longer axis,

as illustrated in Fig. 6. These results highlight how geometry and non-equilibrium dynamics

interact to dictate emergent order.

Figura 6 – Demixing in active mixtures at intermediate densities. Time evolution of the

demixing process in a binary mixture of particles with differential diffusivity at

intermediate densities (packing fraction φ = 0.72) in a rectangular domain. The

initial uniformly distributed configuration is unstable and evolves into a steady-state

configuration characterized by a channel of cold particles surrounded by hot particles.

The yellow lines in the final stage highlight the phase separation between the two

components of the mixture.

Source: Autor.
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In the final state depicted in Fig. 6, the two yellow lines represent stable interfaces.

Despite perturbations induced by the hot particles, these interfaces remain stationary, suggesting

the presence of an effective surface tension that balances the non-equilibrium stresses arising

from interactions with the hot particles. This behavior cannot be explained by existing analytical

frameworks [15], which are restricted to dilute regimes. Another key finding beyond current

theoretical predictions is the suppression of phase separation at high packing fractions, where

insufficient free space prevents diffusivity contrasts from driving segregation. These results are

supported by computations of entropy production [59].

As mentioned above, there are several methods to determine the effective surface

tension at stationary interfaces. One approach is the pressure tensor method, which identifies

anisotropies in the vertical and horizontal components of the interface. Another is capillary

wave theory, which relates the energy required to deform a flat interface to its fluctuations

[76, 72]. By analyzing the work needed to deform an interface through height fluctuations, this

method leads to a quadratic effective Hamiltonian in Fourier space, where ï|h(k)|2ð, is related

to the effective surface tension. In equilibrium, interfacial fluctuations follow the scaling law

ï|h(k)|2ð ∼ 1/k2. Deviations from this behavior indicate violations of the fluctuation-dissipation

theorem, a characteristic of non-equilibrium dynamics [77]. These results and their implications

for active diffusive mixtures will be explored in depth in Chapter 2.

Studying emergent phenomena such as phase separation and the corresponding

interfacial dynamics is essential for advancing both theoretical frameworks and computational

models of non-equilibrium physics [78, 71]. Theoretically, these phenomena challenge the

foundations of equilibrium statistical mechanics, revealing how collective behaviors emerge

from individual particle interactions that violate detailed balance. The redefinition of classical

concepts, in active systems opens new avenues for understanding biological processes [62, 79].

By linking microscale activity to macroscopic stability in two-dimensional configurations, this

work contributes to the characterization of effective interactions in active matter.

1.4 Instabilities and pattern formation

Instabilities are fundamental to understanding a wide range of phenomena in soft

matter physics, from equilibrium phase transitions to active self-organization [55]. In passive

systems, steady-state configurations result from a balance of competing forces, such as elastic,

viscous, and interfacial forces that collectively minimize the system’s free energy. When external
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perturbations are introduced, this balance can be disrupted, potentially driving the system toward

a new equilibrium state. Such transitions occur when a control parameter—which determines

the system’s response to external perturbations—exceeds a critical threshold. Beyond this point,

the system becomes unstable: perturbations with wavelengths λ > λc (the critical wavelength)

grow exponentially, while shorter-wavelength modes λ < λc decay over time. This wavelength

selectivity, characteristic of instabilities like the Plateau-Rayleigh breakup of liquid jets [80],

leads to pattern formation governed by the interplay of geometry and fluctuations. In active

systems, similar instabilities emerge from energy input at the microscale, often leading to

qualitatively new behaviors [81]. While the underlying mechanisms differ from those in passive

systems, both cases display wavelength-selective growth of perturbations, suggesting that certain

mathematical features remain robust across equilibrium and non-equilibrium regimes.

The exponential growth of perturbation amplitudes often leads to abrupt transitions,

driving the system toward distinct spatial or temporal patterns, such as stripes [82], vortices [83],

or oscillatory waves [84]. These emergent patterns reflect the nature of the underlying instability,

which may arise from external driving, competing interactions, or gradients in activity. As the

instability develops, the system evolves toward a new configuration characterized by a dynamic

balance of forces. Analyzing these transitions provides key insights into the mechanical and

dynamical principles governing soft matter systems. Given the ubiquity of instabilities in natural

processes [85, 86] and their relevance to material science applications [87, 88], developing

methods to predict and control them has become a central challenge [89]. Beyond practical

applications, such studies also improve our understanding of pattern formation and emergent

behavior in complex systems.

Classical Examples of Instabilities in Passive Systems

Two well-known examples of instabilities in classical fluids are Rayleigh-Bénard

convection, Fig. 7, and the Plateau-Rayleigh instability (PRI), Fig. 8. These phenomena exem-

plify how competing forces can destabilize a system and drive to the emergence of spatial

patterns in passive fluids. Although both originate from perturbations to equilibrium states, their

underlying mechanisms differ fundamentally. Rayleigh-Bénard convection is driven by external

thermal gradients resulting in the formation of convection rolls. In contrast, the Plateau-Rayleigh

instability arises from interfacial tension, which drives the breakup of cylindrical fluid jets

to minimize surface area and reduce interfacial energy. These classical cases illustrate how
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instabilities can emerge from either external driving forces (as in Rayleigh-Bénard) or intrinsic

thermodynamic reasons (as in PRI).

Rayleigh-Bénard convection arises in a horizontal fluid layer confined between

two thermally conducting, parallel plates. When the temperature difference ∆T between the

plates exceeds a critical threshold ∆Tc, buoyancy forces overcome viscous damping and thermal

diffusion, causing the fluid to become unstable. This instability leads to the formation of

convection cells, Fig. 7, with a characteristic wavelength determined by the balance between

thermal gradients, viscosity, and gravity. Rayleigh-Bénard convection stands as a canonical

example of how external energy input, such as heat, can drive the spontaneous emergence of

complex, self-organized structures [90].

Figura 7 – Rayleigh-Bénard convection Schematic illustrating the formation of convective cells

in a fluid layer subjected to a temperature gradient, driven by buoyancy forces. As

the lower surface is heated and the upper surface is cooled, the system undergoes

instability, leading to the spontaneous emergence of regular, periodic flow structures.

Source: Autor.

Plateau-Rayleigh instability, in contrast, governs the breakup of liquid columns

into droplets, due to the amplification of perturbations caused by surface tension. Specifically,

perturbations with wavelengths λ > 2πr (where r is the column radius) grow exponentially as

surface tension minimizes interfacial energy by reducing surface area (Fig. 8). This instability

provides a foundational understanding of how fluids respond to perturbations [91] and helps

identify the key variables governing rupture dynamics of free-surface flows [92, 93]. Precise

control over these parameters enables the manipulation of factors like breakup time and dro-

plet size, which are critical in technologies and applications that depend on micro-scale fluid

behavior [94, 95].

These two phenomena demonstrate how pattern formation emerges from force im-

balances, where the wavelengths of perturbation dictates the resulting structures. Although
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Figura 8 – Plateau-Rayleigh instability Schematic illustrating the formation of perturbations

with wavelength λ along the surface of a cylinder of radius R, driven by surface

tension. As the perturbations grow, the cylinder becomes unstable and may eventually

break up into droplets.

Source: Autor.

these and other instabilities, such as Rayleigh–Taylor [96], Saffman–Taylor [97], and Kel-

vin–Helmholtz [98], are well studied within fluid dynamics, they are not exclusive to fluids.

Similar behaviors are observed in granular matter and passive colloids [99, 100], drawing a

connection to discrete models of active matter and motivating the exploration of such instabilities

within active diffusive mixtures. In active matter, however, the treatment of instabilities becomes

more complex. Unlike passive systems, effective non-equilibrium quantities, such as active-

pressure and surface tension, are not well-defined thermodynamic variables. Moreover, active

systems operate far from equilibrium, where transitions between states cannot be explained by

free energy minimization. Instead, stability depends on a dynamic balance between activity and

dissipation, requiring new theoretical approaches to quantify perturbations and predict pattern

formation.

Instabilities in Active Matter

Many instabilities observed in passive systems have been extended into the non-

equilibrium domain of active matter, often exhibiting analogous behaviors governed by similar

mathematical frameworks [101]. These extensions reveal how the presence of self-propelled

micro-swimmers can fundamentally alter fluid properties and drive new forms of collective

dynamics, introducing additional degrees of freedom such as self-propulsion, non-equilibrium

interactions, and in some cases, effective surface tension-like behaviors even in the absence of

attractive forces [15]. Moreover, activity gives rise to entirely novel classes of instabilities with

no passive counterpart. Examples include the two-dimensional channel instability observed in
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chiral active fluids [102] and the system explored in this thesis.

Beyond the practical interest in controlling instabilities, a central motivation of

this thesis is to characterize and understand a new two-dimensional instability unique to non-

equilibrium systems: the rupture of channel-like configurations in segregated systems with

differential diffusivity. In contrast to passive fluids, where such two-dimensional geometries are

generally stable, active channels destabilize under non-equilibrium driving forces, as demons-

trated experimentally in chiral active fluids and computationally in driven liquids and active

mixtures [102, 72].

This instability is fundamentally distinct from classical analogs like the Plateau-

Rayleigh instability, despite visual similarities in the emergent patterns. While PRI minimizes

interfacial energy in three-dimensional systems, it cannot manifest in two-dimensional geometries

due to dimensionality constraints [103]. In contrast, the active channel rupture observed here

arises from the interplay between activity-driven forces and repulsive interactions, generating

emergent effective surface forces that mimic equilibrium-like droplet formation through purely

non-equilibrium mechanisms.

To explain this instability and quantify its rupture dynamics, we develop both an

analytical and computational framework. The next chapter introduces essential concepts from

stochastic dynamics, including the Langevin and Fokker-Planck equations, which form the

foundation for modeling active matter systems. By connecting theoretical predictions with

simulation results, we extract the parameters governing rupture dynamics and identify universal

features of active interfaces.
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2 STOCHASTIC PHENOMENA IN ACTIVE MIXTURES

Active matter systems are inherently stochastic, driven by thermal noise, self-

propulsion fluctuations, and energy transduction at the microscale. Their dynamics are governed

by particle symmetries, interaction forces, and activity types. These properties determine how

stochasticity manifests in collective phenomena like instabilities or phase separation. Building

on insights from Chapter 1, this chapter explores analytical and computational frameworks to

model the dynamics of active mixtures, with a focus on instabilities driven by emergent surface

tension-like forces (non-equilibrium interfacial stresses).

The first part of the chapter introduces theoretical concepts for modeling stochastic

processes, emphasizing spherical active particles. We begin with Brownian motion, the pro-

totypical stochastic process in passive systems, and then extend to the Langevin equation, a

stochastic differential equation that incorporates deterministic forces and random noise. This

framework establishes the foundation for constructing coupled systems of stochastic differential

equations used in simulations. We then derive the Fokker-Planck equation, which describes the

time evolution of the probability density for particle positions and velocities. While the Langevin

equation tracks individual trajectories, the Fokker-Planck equation provides insights into the

system’s behavior at the ensemble level, making it particularly useful for describing low-density

active mixtures [33].

The latter part of the chapter applies these theoretical tools to computationally

simulate stochastic systems. First, we construct an ensemble of particles with differential

diffusivity, modeling their interactions via short-range repulsive potentials. We then introduce

percolation techniques to analyze rupture dynamics. The Newman-Ziff algorithm [104] is

employed to identify the wrapping condition of the “cold” particles cluster, quantifying the

breakup time, tb, when the channel fractures. Finally, we adapt capillary wave theory (CWT)

to study active interfaces, using Fourier analysis to decompose height fluctuations h(x, t) into

spectral modes. By analyzing the fluctuation spectrum, we extract the scaling exponent and

quantify emergent effective surface tension.

Different types of random noise, such as thermal, active, or chiral, define distinct

classes of active matter systems, ranging from Brownian particles to self-propelled or spinning

agents. Each type of noise generates unique emergent forces and behaviors, including MIPS,

flocking, and demixing driven by differential diffusivity. In these systems, activity acts as a

local stochastic property that, when combined with deterministic interactions, drives collective
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dynamics beyond the scope of equilibrium thermodynamics. To study these phenomena, we

model the system using stochastic processes, which describe how random variables evolve

over time. We begin with the classical Brownian particle and systematically build toward more

complex active matter systems, incorporating particle interactions and diffusivity contrasts to

reveal how microscopic noise gives rise to macroscopic patterns.

2.1 Brownian dynamics and the Langevin Equation

When considering stochastic processes in physics, one of the first examples that

comes to mind is the trajectory of a Brownian particle—a microscopic particle suspended in a

fluid, subjected to coarse-grained interactions with surrounding molecules. These interactions

manifest as two complementary forces: (i) a drag force proportional to the particle’s velocity,

opposing its motion, and (ii) random impulses arising from molecular collisions due to thermal

fluctuations. The interplay between these forces produces the particle’s characteristic random

trajectory, known as Brownian motion. Mathematically, this behavior is described by [55]:

m
dv

dt
= Fdrag +Fcollisions, (2.1)

where m is the particle’s mass and v its velocity.

The forces governing Brownian dynamics are determined by the fluid’s properties.

For example, in the low Reynolds number regime (where viscous forces dominate inertia),

Stokes’ law dictates the drag force on a spherical particle as linearly proportional to its velocity.

In this regime, the fluid’s damping force takes the form Fdrag =−γv, where γ is the damping

coefficient. For spherical particles, γ = 6πηa, whit η the dynamic viscosity of the fluid and a is

the particle’s radius [55].

Defining the collision force Fcollisions explicitly is challenging, as a deterministic

approach would require precise knowledge of the fluid’s molecular configuration and solving

the equations of motion for every collision, a task computationally intractable and physically

impractical due to the immense number of interactions. Instead, we adopt a statistical ensemble

approach: by considering many non-interacting particles in the fluid (dilute limit), we model

molecular collisions as a stochastic process averaged over the ensemble. This allows us to

represent the collision force as a random variable ξ (t), leading to the Langevin equation:

m
dv

dt
=−γv+ξ (t). (2.2)
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The Langevin equation is a type of stochastic differential equation, where one or more terms—typically

forces—are modeled as random functions of time with well-defined statistical properties [105].

The stochastic force ξ (t) must satisfy two essential conditions:

1. Zero Mean

The ensemble average of the noise vanishes at all times:

ïξ (t)ð= 0, (2.3)

reflecting the absence of a preferred direction for molecular collisions. This ensures no net drift

in the particle’s motion over time.

2. Delta Correlation

Collisions at different times are statistically independent, enforcing:

ïξ (t)ξ (t ′)ð= 2γkBT δ (t − t ′), (2.4)

where γ is the Stokes coefficient, kB is the Boltzmann’s constant, and T the fluid temperature.

The Dirac delta δ (t − t ′) ensures that the noise has no memory, while the factor 2γkBT enforces

the fluctuation-dissipation theorem, balancing energy injection (noise) and dissipation (drag).

Together with the linear damping (−γv), these conditions define a Langevin force.

This formulation provides a simplified yet powerful framework for studying Brow-

nian dynamics [106]. The Langevin equation governs the time evolution of the particle’s velocity

v(t), given the initial condition v0 = v(t = 0). By integrating Eq. 2.2 and applying the noise

properties (Eq. 2.3 and Eq. 2.4), we derive key statistical properties of the particle’s motion, such

as velocity fluctuations and mean squared displacement (MSD), arising from thermal interactions

with the fluid (at equilibrium temperature T ).

In the long-time limit (t >> γ−1), the system reaches equilibrium, and the mean

square fluctuations exhibit two key behaviors:

ï∆v2(t)ð= kBT

m
, (2.5)

ï∆x2(t)ð= 2kBT

γ
t. (2.6)
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The velocity fluctuations given by Eq. 2.5 reflects the equipartition theorem, where

thermal energy kBT partitions equally into each degree of freedom. Meanwhile, the mean square

displacement given by Eq. 2.6 grows linearly with time, expressing the essence of diffusive

motion. The proportionality constant is the Einstein relation:

D =
kBT

γ
=

kBT

6πηa
, (2.7)

which links the diffusion coefficient D to the fluid’s viscosity η , particle radius a and temperature

T . This relation directly connects microscopic stochastic forces to macroscopic transport,

exemplifying the fluctuation-dissipation theorem’s role in equilibrium systems [55].

2.2 The Fokker-Planck Equation

The Fokker-Planck equation provides a complementary framework to the Lange-

vin formalism for analyzing stochastic processes. Instead of tracking individual trajectories

through stochastic differential equations, it describes the time evolution of the probability density

P(x,v, t) in phase space, where each point (x,v) corresponds to a possible state of the system.

This approach change the perspective from single-particle dynamics to the statistical behavior of

ensembles, making it particularly powerful for systems where emergent phenomena depend on

collective averages rather than specific realizations.

Mathematically, the Fokker-Planck equation is a partial differential equation gover-

ning the evolution of the probability density P(x,v, t) under deterministic drift and stochastic

diffusion. For systems described by the Langevin dynamics, it arises naturally when averaging

over noise realizations, bridging microscopic stochastic trajectories to macroscopic observables

such as probability currents and stationary distributions [106]. In active matter, a key advantage

of this framework lies in its ability to identify non-equilibrium steady states: by analyzing non-

zero probability fluxes in phase space, one can quantify the degree of detailed balance violation,

distinguishing equilibrium-like behavior from intrinsically non-equilibrium dynamics [107, 108].

These insights are critical for understanding how energy dissipation and activity sustain order in

systems like active diffusive mixtures.

Connecting Langevin and Fokker-Planck Formalisms

The Langevin equation specifies the first two statistical moments of the stochastic

process ξ (t), the mean and variance. For Gaussian white noise, all higher-order cumulants
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vanish, meaning these moments fully characterize the noise. This reduces its description to a

single parameter: the noise strength in Eq. 2.4. The general Langevin equation for a stochastic

variable X(t) is:

dX

dt
= f (X)+g(X)ξ (t), (2.8)

where f (X) is the deterministic drift, g(X) scales the noise amplitude, and ξ (t) is Gaussian

white noise [105]. Under the Itô interpretation [105], the corresponding Fokker-Planck equation

governing the probability density P(X, t) is derived as:

∂P

∂ t
=− ∂

∂X
[ f (X)P]+

1

2

∂ 2

∂X2

[

g2(X)P
]

. (2.9)

The coefficients f (X) and g(X) are general real-valued differentiable functions Eq. 2.9 can be

rewritten in the form of a continuity equation for the probability density:

∂P(X,t)

∂ t
=−∂J(X,t)

∂X
, (2.10)

where J(X,t), the probability flux, is defined as

J(X,t) = f (X)P − 1

2

∂

∂X

[

g2(X)P
]

. (2.11)

The first term corresponds to the drift contribution—deterministic transport of probability—while

the second term accounts for diffusive spreading caused by stochastic fluctuations. In a steady

state, the probability density becomes time-independent, i.e., ∂P(X,t)/∂ t = 0. This condition

implies that the probability current J(X,t) must be spatially constant, and we denote it as Jss.

Two distinct scenarios may arise:

1. Equilibrium: If Jss(X, t) = 0 (with Jss the probability flux at steady-state), detailed balance

holds, and the system is in thermodynamic equilibrium.

2. Non-equilibrium: If Jss(X, t) ̸= 0, the probability flux forms a rotational curl in phase

space, signaling broken detailed balance and sustained dissipation.

This distinction has enabled experimental detection of detailed balance violations

and how such non-equilibrium dynamics are manifest at the mesosopic scale [109].

For one-dimensional Brownian motion in velocity space (X = v), the drift term

reduces to f (X) = −γv (damping), while the noise is additive g(X) = 1, recovering the stan-

dard Langevin equation (Eq. 2.2). The corresponding Fokker-Planck equation for the velocity

distribution P(v, t) is:

∂P

∂ t
= γ

∂

∂v
(vP)+ γ

kBT

m

∂ 2

∂v2
P. (2.12)
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The first term on the right-hand side corresponds to damping (velocity-dependent friction),

while the second term captures diffusion driven by stochastic thermal collisions. Solving the

time-dependent Fokker-Planck equation reproduces dynamical predictions identical to those

of the Langevin formalism, confirming the equivalence between stochastic trajectory-based

and probabilistic density-based descriptions [105]. The stationary solution (∂tP = 0, Jss = 0)

recovers the Maxwell-Boltzmann equilibrium distribution:

Peq(v) ∝ exp

(

− mv2

2kBT

)

, (2.13)

reflecting the equipartition of kinetic energy in thermal equilibrium. This result inherently

satisfies the fluctuation-dissipation theorem, Eq. 2.7, which relates the damping coefficient γ to

the diffusion constant D and temperature T .

In the overdamped regime (high friction limit, γ → ∞), inertial effects become negli-

gible, reducing the Fokker-Planck equation to a diffusion equation for the position probability

density P(x, t):
∂P(x, t)

∂ t
= D

∂ 2P(x, t)

∂x2
, (2.14)

where D = kBT/γ is the diffusion coefficient. This equation describes the classic diffusive

spreading of probability density, a characteristic of Brownian motion.

Beyond equilibrium systems, the Fokker-Planck formalism has been used for studying

active diffusive mixtures in dilute regimes [33]. It serves as a theoretical foundation for un-

derstanding non-equilibrium steady states maintained by continuous energy input, emergent

phase separation in active diffusive mixtures, and effective surface forces generated by particle

activity [15].

2.3 Interacting particles

Thus far, our discussion has been centered on non-interacting particles, realistic

systems require incorporating both interparticle interactions and external fields. For a systems of

N interacting particles, the total potential energy V takes the general form:

V = ∑
i

v1(ri)+∑
i

∑
j>i

v2(ri,r j)+∑
i

∑
j>i

∑
k> j

v3(ri,r j,rk)+ ..., (2.15)

where v1(ri) describes interactions with external fields (e.g., gravitational potentials, optical

traps). The pairwise interaction term v2(ri,r j) depends solely on interparticle separation ri j =
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|ri − r j|, and is thus commonly written as v2(ri j) = v2(r). Three-body interactions v3 become

relevant at liquid densities, they are rarely included in computational simulations due to time-

consuming [110].

Pairwise interaction (v2) dominate in most systems due to their computational sim-

plicity and effectiveness in scenarios with weak correlations. However, many-body contributions

(v3, ...) become essential in high densities systems or under non-equilibrium conditions (e.g., col-

loidal glasses, active turbulence), where strong correlations emerge. In active diffusive mixtures,

neglecting these higher-order terms limits the ability to capture biologically relevant collective

phenomena [59].

The general Langevin equation for a system of N interacting Brownian particles (in

the absence of external fields) is:

mi
dvi

dt
=−γvi −

∂

∂ ri

[

N

∑
j ̸=i

v2(ri j)

]

+ξ i(t), (2.16)

this equation incorporates pairwise interactions through the potential v2(ri j), which depends

on the interparticle distance ri j. The corresponding Fokker-Planck equation for the probability

density P(ri,vi, t) is:

∂P

∂ t
= ∑

i

[

− ∂

∂ ri

vi +
∂

∂vi

(

γvi +
1

mi

∂

∂ ri

N

∑
j>i

v2(ri j)

)

+
γkBT

mi

∂ 2

∂v2
i

]

P. (2.17)

This formulation describes the time evolution of the probability density for particle positions and

velocities, accounting for both deterministic forces and stochastic noise.

In this dissertation, we focus solely on the pairwise dynamics of particles in active

diffusive mixtures, excluding external fields. We consider short-range, soft repulsive interactions,

with the repulsive potential VR taking the following form:

VR(ri j) =











2k(ri j −σ)2, ri j f σ ,

0, ri j > σ ,

(2.18)

where k governs the repulsion strength, and σ is the interaction cutoff distance beyond which

particles do not interact. This quadratic form ensures smooth, singularity-free repulsion for

ri j fσ , avoiding singularities that can arise from hard-core potentials. The potential is minimized

(F = 0) at ri j = σ , ensuring particles repel only when overlapping, making it ideal for simulating

soft active particles.
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To investigate the role of attraction in active systems, we also consider the Lennard-

Jones potential:

VA = 4ε

[

(

σ

ri j

)12

−
(

σ

ri j

)6
]

, (2.19)

where ε sets the depth of the potential well, and σ is the distance at which the potential crosses

zero (with the minimum energy occurring at rmin = 21/6σ ). By incorporating this potential, we

aim to probe how attraction modifies collective behavior in active systems, in particular the

stability in two-dimensional configurations. The interplay between repulsion and attraction plays

a crucial role in determining the emergent properties of active diffusive mixtures. For instance,

purely repulsive interactions often lead to phase separation driven by density gradients, whereas

attractive forces can stabilize clusters or induce dynamic arrest.

2.4 Numerical approach

Recent advances in computational methods have enabled highly controlled experi-

ments on large groups of interacting particles using computer simulations. These simulations

provide precise measurements of key properties, such as order parameters and correlation lengths,

and offer flexibility in modeling a variety of interactions. [110]. The behavior of each particle is

governed by the Langevin equation (Eq. 2.8). To numerically solve this equation, we use the

Euler-Maruyama method, a finite-difference scheme that extends the classical Euler method to

stochastic differential equations [111].

In the overdamped limit (m → 0), the Langevin equation for an interacting system

(Eq. 2.16) reduces to:

dri

dt
= µξ i +µ

N

∑
j>i

Fi j, (2.20)

where µ = 1/γ is the mobility (inverse of the Stokes coefficient), and Fi j = −∇iv2(ri j) is the

pairwise interaction force derived from the potential v2(ri j).

To numerically solve this equation, we discretize time into intervals ∆t and update

particle positions using the Euler-Maruyama scheme:

ri,n+1 = ri,n +µ
N

∑
j>i

Fi j∆t +
√

2Di∆tWn, (2.21)

where Di is the diffusion coefficient of particle i, which depends on its species (Di ∈ [Dcold,Dhot]).

The last term arises from the time discretization of the stochastic process, where ξ n =Wn/
√

∆t,
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and Wn are Gaussian random variables generated using the Box-Muller method [112]. This

ensures that the stochastic noise satisfies the desired statistical properties, such as zero mean and

unit variance.

This numerical framework enables the study of active diffusive mixtures under dif-

ferent channel-like geometries, identifying critical length thresholds for instabilities driven by

differential diffusivity. Using Eq. 2.21, we investigate how collective behaviors emerge under

variations in density, drift strength, and pairwise interactions. The nature of these interactions

significantly influences stability: repulsive interactions amplify non-equilibrium effects, trig-

gering instabilities, while attractive forces suppress activity-induced disorder, stabilizing the

system. These findings help us understand how geometry and interparticle interactions jointly

govern phase transitions in active matter systems.

2.5 Capillary wave theory

Previous sections focused on methods for describing individual particle dynamics

and pairwise interactions through stochastic models, forming the foundation for computational

simulations of active diffusive mixtures. While these approaches provide valuable insights

into microscopic behaviors, they lack the macroscopic perspective needed to capture emergent

phenomena such as phase separation, interface stability, and collective fluctuations. To address

this gap, we introduce capillary wave theory, a continuum framework that quantifies the statistical

mechanics of interfacial fluctuations. Originally developed for equilibrium systems like liquid-

gas boundaries [113, 114] and thin films [115], CWT models interfaces as thermally excited

capillary waves, linking microscopic fluctuations to macroscopic properties such as surface

tension.

In non-equilibrium systems, like phase segregation in active matter [116] or activity-

induced instabilities [102], can be adapted to account for fluctuations driven by continuous energy

dissipation rather than thermal noise. By analyzing the spectrum of interfacial fluctuations,

CWT provides a framework to infer effective surface tensions, identify stability thresholds,

and, in some cases, distinguish equilibrium-like behavior from genuinely non-equilibrium

dynamics [116, 117]. This makes it a valuable tool for understanding the interfacial dynamics

and scaling properties associated with phase separation in active diffusive mixtures.

This theoretical model describes the roughening transition experienced by a flat

interface at equilibrium at very low temperatures, where thermal fluctuations increase both the
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total energy and the surface area [118]. In the simplest one-dimensional case, the energy of the

interface is described by a quadratic Hamiltonian that depends on the vertical displacement h(x):

H =
ρ

2

∫

L
dx

∣

∣

∣

∣

dh(x)

dx

∣

∣

∣

∣

2

, (2.22)

where ρ is the free energy cost per unit length in the absence of fluctuations, commonly referred

to as the stiffness or surface tension, and L is the total length of the interface. Assuming small-

amplitude distortions, where

∣

∣

∣

dh(x)
dx

∣

∣

∣
j 1, this Hamiltonian captures the energetic cost associated

with deforming the interface.

To analyze the statistical properties of these fluctuations, we transform the problem

into Fourier space using Parseval’s identity. This approach allows us to decompose the height

profile h(x) into its spectral components h(k), where k denotes the wavenumber, an schematic

representation of this can be seen in Fig. 9. By applying the equipartition theorem to thermal

fluctuations, the spectral density of height fluctuations is found to be:

ï|h(k)|2ð= kBT

Lρk2
. (2.23)

This result reveals the characteristic 1/k2 scaling associated with equilibrium interfaces. In non-

equilibrium systems that exhibit similar power-law behavior, one can define an effective surface

tension ρeff by fitting the fluctuation spectrum to the 1/k2 form. However, deviations from this

scaling carry important information about how far the system is from equilibrium. For instance,

changes in the power-law exponent may indicate a breakdown of the fluctuation-dissipation

theorem, with the altered scaling behavior reflecting the nature of the underlying non-equilibrium

dynamics.
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Figura 9 – Fourier Decomposition of Capillary Waves at the Interface. Schematic representa-

tion of the interface roughness and its Fourier decomposition, showing how capillary

waves can be analyzed in frequency space. This approach highlights the role of wave

modes in characterizing interfacial fluctuations.

Source: Autor.
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3 CHANNEL INSTABILITY IN BINARY MIXTURES WITH DIFFERENTIAL

DIFFUSIVITY

This chapter investigates how differential diffusivity drives interfacial instabilities

in two-dimensional active matter, inspired by the classical Plateau-Rayleigh instability (PRI).

In passive fluids, the PRI describes how surface tension amplifies perturbations to rupture

liquid columns into droplets (see Chapter 1) [91]. Here, we adapt this concept to a binary

colloidal mixture where particles differ only in diffusivity. By constructing a channel of “cold”

(low-diffusivity) particles surrounded by a “hot” (high-diffusivity) gas-like phase, we study the

dynamics and stability of this out-of-equilibrium interface.

We chose to model our system around the PRI concept for two main reasons. First,

it provides insight into how disturbances grow in free-surface flows [92, 93], analogous to how

noise-driven fluctuations affect active systems. Second, it highlights the interplay between

interfacial forces and stresses, enabling us to investigate effective surface tension in active

mixtures, where stability is governed by non-equilibrium effects rather than cohesive forces.

This analogy allows precise control over parameters such as channel length scales and drift,

which determine breakup timescales and droplet sizes in the PRI and are crucial for applications

reliant on microscale fluid behavior [94, 95].

Although the PRI is not limited to conventional fluids, it also arises in other soft

matter systems, such as granular media [119], viscoelastic materials [120], and solids [121],

particularly in regimes where surface tension dominates over other stabilizing forces. The critical

behavior of the instability, however, depends on the system’s dimensionality. The threshold

wavelength, which defines the length scale of exponentially growing perturbations, is given by:

λc =
2πR√
D−2

(3.1)

where R is the radius of the cylinder and D is the system’s dimension. In three

dimensions (D = 3), perturbations with wavelengths larger than the cylinder’s perimeter trigger

the instability. In contrast, for two-dimensional systems (D= 2), λc becomes not finite, indicating

that the PRI does not occur in strictly bidimensional configurations, rendering all such systems

stable [103].

While two-dimensional fluid-like systems are theoretically stable according to the

Plateau-Rayleigh criterion, recent studies have found instabilities in two-dimensional, channel-
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like geometries that visually resemble the PRI, despite lacking its classical surface tension

mechanism. For instance, chiral fluids display strip breakup into disc-shaped droplets due to

stresses caused by “odd viscosity” [102], while driven liquids [116, 72] and active systems [122,

123, 59] present analogous ruptures during segregation processes mediated by activity gradients.

These phenomena suggest a distinct instability mechanism that mimics PRI’s morphology

but originates from non-equilibrium forces such as chiral fluxes, active stress, or motility

contrasts. Critically, the role of differential diffusivity in driving interfacial destabilization

remains unexplored. This gap in knowledge motivates our study of binary colloidal mixtures,

where different diffusivities control how patterns form in non-equilibrium conditions.

In this chapter, we present a numerical analysis of the rupture dynamics of a channel-

like structure in a two-dimensional system composed of particles with differing diffusivities.

Observations of two-dimensional instabilities in such systems reveal that their collective beha-

vior cannot be fully explained by surface tension effects alone, as assumed in the classical

Plateau–Rayleigh instability (PRI) framework. Instead, the instability arises from the inter-

play between differential diffusivity and repulsive interactions—a dynamic that predominates

in two-dimensional environments such as biological systems and active matter. The primary

objective is to identify the key variables that govern this instability, using the breakup time

(tb)—defined as the time at which the first rupture occurs—as a quantitative measure of the

channel’s stability [124].

To study this instability, we perform simulations based on Langevin dynamics,

combined with percolation techniques, to measure the breakup time tb. Our results show that this

channel structure is inherently unstable under high diffusivity contrast and repulsive interactions.

By systematically varying parameters such as channel width, and particle density, we found

that these factors can either delay or accelerate the rupture process. However, the instability is

unavoidable due to persistent energy injection at the constituent level.

To better understand the breakup process, we analyze the temporal evolution of the

channel’s minimum width wmin(t) as it approaches the pinching time (t → tb). By extracting

the power-law scaling wmin ∼ |t − tb|β , we compare the exponent β with universal similarity

solutions derived for pinch-off phenomena in passive fluids [125]. This comparison reveals

whether non-equilibrium activity imposes distinct scaling regimes or if it follows the same

patterns seen in classical fluid dynamics.



42

Active Diffusive Mixture

Segregation phenomena have been widely studied in both equilibrium and non-

equilibrium systems. In equilibrium, phase separation typically arises from differences in particle

size or interaction strength, for instance, entropic demixing of non-adhesive particles driven

by depletion forces. In contrast, non-equilibrium systems can exhibit segregation even among

identical particles. Examples include MIPS in active Brownian particles and vibrated granular

media, where segregation emerges due to activity or external forcing rather than intrinsic particle

differences.

In systems of interacting particles with differential diffusivity, thermal equilibrium

is maintained only when the diffusivity contrast is low. Beyond a critical threshold, the more

diffusive species effectively decouples from the thermal bath, leading to a non-equilibrium steady

state characterized by phase separation [15]. Although this mechanism differs fundamentally

from the phase separation observed in mixtures of ABPs, where self-propulsion drives MIPS, a

striking duality emerges under specific conditions. In particular, ABP mixtures with persistence

lengths shorter than the particle radius exhibit dynamics that closely resemble those of diffusive

mixtures [4]. This duality highlights how distinct microscopic mechanisms—persistent motion

versus differential diffusion—can give rise to similar macroscopic phase behavior.

Systems of active diffusive mixtures arise naturally across biological and synthetic

contexts. Examples include chromosome spatial segregation in the nucleus [47], phase separation

in cell nucleus [63], enhanced diffusion in enzymes [60], and dynamic rearrangements in crowded

cellular environments relevant to biological processes [59]. These phenomena are often governed

by differential diffusivity, which also drives non-equilibrium phase separation in polymers and

biomolecular condensates: even small differences in mobility can trigger demixing in polymer

solutions [57] or influence genome organization through folding kinetics [126]. Notably, unlike

equilibrium phase separation, these processes do not require large diffusivity contrasts, as minor

asymmetries amplify under non-equilibrium conditions.

This broad applicability, spanning intracellular organization, synthetic active colloids,

and polymer physics, highlights the unifying role of differential diffusivity in understanding

instabilities across scales. By bridging biological and engineered systems, such models offer

insights into how microscopic mobility gradients govern macroscopic self-organization.
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3.1 Model

We study a system composed of N particles of radius a, divided into two types that

differ solely in their diffusion coefficients: Di ∈ {Dc,Dh}, where Dc and Dh correspond to “cold”

(less diffusive) and “hot” (more diffusive) particles, respectively, with Dc f Dh. The particles

interact through the short-range, soft repulsive interactions given by the potential described by

Eq. 2.18:

Fi j =











k(2a− ri j)r̂i j, ri j f 2a,

0, otherwise,

(3.2)

where k is the repulsion strength, ri j = |ri − r j| is the distance between the particle

centers, and r̂i j = (ri − r j)/ri j is the unit vector along the line of centers. The dynamics of the

system are governed by a set of overdamped Langevin equations [127, 128, 129]:

ṙi = µ
N

∑
j>i

Fi j +ξ i(t), (3.3)

where µ is the inverse of the Stokes coefficient, and ξ i(t) represents Gaussian

white noise with zero mean and unit variance, described in Sec. 2.1. Specifically, the noise

satisfies ïξ i(t)ξ j(t)ð= 2Diδi jδ (t− t ′), where the noise magnitude is determined by the diffusion

coefficient Di. We define the simulation units based on characteristic parameters of the system:

length is measured in units of particle radius a, time is measured in units of (µk)−1, and other

quantities are derived from these. For example, the diffusion coefficient is expressed in units of

a2µk. In our simulations, the particle radius a, the repulsion strength k, and the inverse of Stokes

coefficient µ are all set to unity.

The system is initialized with cold particles arranged in a triangular lattice (lattice

constant 2a), forming a channel structure aligned along the x-axis. The lattice spacing ensures

particles are separated by twice their radius, preventing overlap in the initial configuration. The

channel’s width is determined by the number of cold particle layers ny, and its length by the

number of particles nx, such that the total number of cold particles composing the channel is

Nc = nx ×ny. This channel is flanked by gas-like phase consisting of Nh hot particles, which are

randomly distributed in the surrounding region, as shown in Fig. 10(a).
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All simulations are performed in a rectangular box with periodic boundary conditions

along both the Lx and Ly directions. The overdamped Langevin dynamics (Equation 3.3)

are integrated numerically via the Euler-Maruyama method [130] with a discrete time step

of dt = 0.01(µk)−1. To ensure the robustness of our results, we verified that the outcomes

remain consistent even when dt is varied by a factor of 10, either larger or smaller (i.e., dt ∈
[0.001,0.1](µk)−1).

Figura 10 – Channel configuration. Snapshots of particle configurations consisting of 960

hot particles (red) and 960 cold particles (blue), with diffusion coefficients Dh =
5× 10−3a2µk and Dc = 0, respectively. The simulation was performed in a rec-

tangular box of size Lx = 240a and Ly = 125a, with a total packing fraction

φ = Nπa2/(LxLy) = 0.2. a) Initial configuration of the channel, composed of ny = 8

layers of cold particles, with labels indicating the system size. b) Configuration

at the moment when the first channel breakup occurring at t = 1.5× 106(µk)−1.

c) Configuration at latter times when the cold particles begin to form droplets at

t = 9.3×106(µk)−1.

Source: Autor.
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The Brownian dynamics simulations reveal that the non-equilibrium energy flux,

generated by the hight diffusivity particles, propagates through the system via interparticle

interactions. This flux destabilizes the channel structure, inducing fluctuations that culminate in

pinch-off, at a characteristic breakup time tb Fig. 10(b). In this case, the breakup is governed

by the non-equilibrium interplay between the differing diffusion coefficients and repulsive

forces, resulting in self-organized patterns reminiscent of classical fluid instabilities, such as the

Plateau-Rayleigh-like droplet formation in Fig. 10(c). Interestingly, this same channel geometry

can stabilize under intermediate density conditions (Fig. 6), where it is particularly relevant

to cell-sorting phenomena [59], highlighting the importance of investigating its stability under

different conditions. To this end, we systematically examine how the breakup timescale and

resulting patterns depend on four key factors: the channel’s aspect ratio, the diffusivity of the hot

particles, the relative densities of hot and cold particles, and the inclusion of a drift term acting

on the cold particles.

3.2 Attractive Interactions

To assess the stability of the two-dimensional channel geometry under attractive

interactions, we explore two scenarios. First, we construct a channel identical in geometry to

that used in the repulsive interaction case, but here all particles interact via the Lennard-Jones

potential (Eq. 2.19) and share the same diffusion constant D. In this setup, we exclude the binary

mixture—i.e., no hot particles are introduced—as our aim is not to study differential diffusivity,

but rather to examine the role of cohesive forces. Specifically, we test the two-dimensional

counterpart of the Plateau-Rayleigh instability, which predicts that channels are stable under

small perturbations in 2D due to the absence of destabilizing surface tension effects present in

3D. To probe this, the channel is initialized with sinusoidal perturbations along its boundaries.

We systematically vary the wavelength of these perturbations while keeping the initial amplitude

ε fixed, as in Fig. 11. In contrast to previous simulations involving differential diffusivity, this

system lacks species or mobility contrasts—its stability is determined solely by the interplay

between attractive forces and fluctuations.

To examine the evolution and stability of the channel, we track the amplitude of the

boundary perturbations, ε(t), over time. As shown in Fig. 12, the amplitude decays exponentially,

indicating the intrinsic stability of the channel. Shorter-wavelength distortions relax significantly

faster than longer-wavelength modes. For perturbations with wavelengths similar to or larger
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Figura 11 – Channel perturbation. Snapshot of a channel composed of particles interacting

via the attractive Lennard-Jones potential. The channel boundaries are initialized

with sinusoidal perturbations of varying wavelengths to investigate the stability of

the configuration.

Source: Autor.

than the system size (λ ∼ L), the shape of the channel changes more slowly. In these cases, the

structure does not break, but the perturbations take a long time to disappear. As a result, full

stabilization is not reached during the simulation time because the large-scale undulations relax

very slowly.

In the second scenario, we analyze a binary mixture of particles with differential

diffusivity, similar to the repulsive case. Since the channel does not destabilize in this setup,

even under high diffusivity contrast, we introduce perturbations at the boundary of the cold

particle cluster to test its stability under disturbed conditions (see inset I in Fig.12). When the

interactions are governed by the attractive Lennard-Jones potential (Eq. 2.19) instead of the

short-range repulsive potential (Eq. 2.18), the channel exhibits significantly enhanced stability

under identical diffusivity contrasts. Remarkably, the channel remains stable even when the

cold particles have a non-zero diffusion coefficient (Dc > 0). This shows that attractive forces

between particles are strong enough to prevent the channel from breaking apart, even when there

are differences in diffusivity.

The stabilization observed here is due to the cohesive forces provided by the Lennard-

Jones potential, which effectively suppress the destabilizing influence of differential diffusivity.

These attractive interactions counteract activity-driven fluctuations—such as those caused by

diffusivity differences between hot and cold particles—preventing the exponential growth of

interfacial perturbations that would otherwise lead to rupture in systems with purely repulsive

interactions. This behavior is consistent with the dimensional limitations of the Plateau-Rayleigh
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instability, where attractive forces play a stabilizing role similar to surface tension in conventional

soft matter systems. As shown in Eq. 3.1, the critical wavelength λc diverges (
√

D−2 → 0) in

two dimensions (D = 2), indicating that the PRI cannot occur in strictly 2D systems[103].

Figura 12 – Stability in channels with attractive interactions. Time evolution of the perturba-

tion amplitude ε(t) for three different wavelengths, characterized by the number of

anti-nodes n along the channel interface. The plot corresponds to the single-species

system with attractive interactions. Insets show snapshots of the channel evolution

in the binary mixture case for n = 7.

Source: Autor.

Thus, while differential diffusivity alone is sufficient to destabilize systems with

purely repulsive interactions, attractive forces create a balance between non-equilibrium activity

and particle cohesion. This interplay stabilizes the system, suppressing pinch-off events and

producing behavior that resembles equilibrium. Remarkably, this stability persists despite the

continuous injection of energy into the system. Nevertheless, since our focus is on understanding

the instability of two-dimensional configurations in non-equilibrium conditions, the remainder

of this chapter will focus on the case of repulsive interactions.
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3.3 Channel Instability

Having established the intrinsic instability of systems with short-range repulsive

interactions, we now characterize the instability by identifying the key parameters that govern its

emergence and progression. A critical step in this analysis is defining an objective criterion to

determine when and where rupture occurs.

To numerically determine the breakup time, tb, we employ the wrapping condition

from the Newman-Ziff algorithm [104], which is particularly well-suited for systems with

periodic boundary conditions. This algorithm tracks the connectivity of the “cold” particle

cluster: two particles are considered part of the same cluster if their center-to-center distance is

less than three particle radii, 3a. Initially, the cluster is in a percolated state across the system,

forming a continuous network. The breakup time, tb, is defined as the moment when the wrapping

condition [104] is no longer satisfied. This means that a gap of at least one particle radius has

formed within the channel, at which point the simulation is terminated.

We verify that increasing the gap threshold beyond a does not significantly alter tb,

as the initial gap formation marks an irreversible transition to instability. This robustness ensures

our results are insensitive to the choice of termination criterion.

3.3.1 Geometry of the channel

Given that the primary factor determining the PRI is the system’s geometry, since

the critical wavelength λc is set by the cylinder’s perimeter, we begin our characterization of the

instability in active diffusive mixtures by systematically analyzing the breakup time as a function

of the system’s geometric parameters. Specifically, we focus on the channel length Lx and the

channel width ny, which is measured by the number of particle layers across the width. This

analysis allows us to probe how the aspect ratio governs the dynamics of instability.

In Fig. 13, we show the average breakup time, tb, as a function of the channel length,

Lx, for different values of the initial channel width ny. Since the channel width introduces a

characteristic scale, we assume that the breakup time follows the scaling relation of the form:

tb = nα
y f (Lx/ny), (3.4)

where α quantifies the sensitivity of tb to channel width, and f is a dimensionless
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scaling function. To determine the value of α , we perform a least-squares minimization of the

logarithmic deviations of the data across all Lx/ny ratios.

Considering only the data for ny g 6 (as the narrower channel ny = 5 deviates

significantly from the trend), we find α = 4.91±0.21. Since the integer α = 5 lies within the

error margin, we adopt this value and present the scaled breakup time tb/n5
y , which collapses the

data onto a curve in Fig. 13. This scaling relation not only captures the interplay between Lx

and ny but also enables us to extrapolate our results to larger system sizes, which is crucial for

studying macroscopic active matter systems.

Figura 13 – Geometric dependence of the instability. Average breakup time of the channel, tb,

as a function of the aspect ratio, Lx/ny, for different channel widths ny. The diffusion

coefficient of the hot particles is set to Dh = 5×10−3a2µk, and the total packing

fraction is φ = 0.2. The bars represent one standard deviation over 50 independent

simulations. Channels with larger widths (ny > 5) exhibit a strong power-law

dependence, tb ∼ n5
y , highlighting the significant influence of channel width on

breakup time in this regime. Furthermore, the results suggest the existence of a

specific aspect ratio where the system reaches maximum instability, characterized

by a sharp decrease in tb. This implies that at this aspect ratio, external perturbations

are most effective in destabilizing the channel.
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Source: Autor.

We observe that the breakup time tb increases as the aspect ratio Lx/ny decreases.

Specifically, the scaled breakup time tb/n5
y exhibits a sharp rise for systems with Lx/ny < 30,

indicating that channels with smaller aspect ratios (i.e., shorter and wider geometries) are more
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robust against perturbations induced by “hot” particles. This behavior is analogous to the

PRI [14], where only perturbations with wavelengths exceeding a critical threshold undergo

exponential growth. Our results suggest the existence of a similar threshold length in our system,

beyond which perturbations grow rapidly, destabilizing the channel.

Interestingly, the observed power-law scaling tb ∼ n5
y in our system mirrors that

reported for the rupture of free liquid films, a phenomenon extensively studied in the context of

foams and emulsions. In such systems, the breakup time scales as tb ∼ h5
0, where h0 represents

the uniform thickness of the film [131]. While this similarity hints at universal scaling across

disparate systems, the underlying mechanisms differ: in our case, instability arises from non-

equilibrium activity (differential diffusivity), whereas in liquid films, it is driven by interfacial

tension and drainage dynamics.

A detailed analysis of the temporal evolution of the channel’s minimum width

(presented later) reveals further parallels to classical pinch-off phenomena, including power-law

scaling of the necking dynamics. These findings bridge active matter physics with established

frameworks in fluid mechanics, offering a unified perspective on instability across equilibrium

and non-equilibrium systems.

3.3.2 Drift Strength

To investigate how external forcing impacts channel stability, we introduce a constant

drift velocity v to the “cold” particles, transforming the stationary channel into a propelled jet.

This drift models scenarios in which external fields selectively act on the “cold” particles. Our

analysis focuses on how the magnitude of the drift velocity v influences the breakup time tb. As

illustrated in Fig. 14, the breakup time tb grows exponentially with drift strength:

tb ∼ eδv (3.5)

where δ is a coefficient that depends on the channel length Lx. This exponential

relationship indicates that even small drift velocities significantly suppress instability. The drift

continuously displaces regions where perturbations would otherwise deform the interface and

lead to defect formation, thereby effectively delaying rupture.

The interaction between “hot” particles and the moving “cold” channel generates

shear at the interface, inducing a velocity gradient between the boundary particles and the bulk.



51

Figura 14 – Drift dependence. Average breakup time, tb, as a function of the drift strength,

v, for different channel lengths, Lx. The data is presented on a semi-logarithmic

scale. The diffusion coefficient of the hot particles is fixed at Dh = 5×10−3a2µk,

the total packing fraction at φ = 0.2, and the channel width at ny = 6. The bars

represent one standard deviation over 25 independent simulations, and dashed lines

show exponential fits. The results indicate that tb increases exponentially with drift

strength for all Lx, with a more pronounced stabilization effect in shorter channels.

This suggests that the drift term counteracts perturbations induced by hot particles,

enhancing stability, particularly in shorter channels.
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This shear introduces a stabilizing effect analogous to the PRI suppression observed in liquid

columns [132]. In fluid jets, relative motion between a column’s core and its surface suppresses

instability for sufficiently thin boundary layers. In our system, the stabilizing effect of drift

depends on the channel length Lx, revealing an interplay between geometric constraints and

dynamic effects.

Shorter channels exhibit a faster exponential increase in breakup time tb with increa-

sing drift velocity v, while longer channels show a weaker dependence. This length-dependent

behavior arises from a competition between two key timescales: the intrinsic perturbation growth

time (τg), which governs the amplification of interfacial fluctuations, and the advection time

(τa = Lx/v), which determines how rapidly particles traverse the channel.

For short channels (τa j τg), rapid advection limits the time available for perturba-
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tions to grow, effectively suppressing instability. This behavior mirrors shear stabilization in

fluid jets, where fast relative motion prevents the development of large deformations [132]. In

contrast, for long channels, perturbations have sufficient time to amplify, leading to dynamics

that resemble those observed in stationary systems.

These findings show that drift velocity v can be used as a control parameter for

stabilizing channels. Shorter geometries achieve robust stabilization even with moderate drift,

which makes this a useful strategy for dealing with instability in active matter. By combining the

effects of geometry and dynamics, these findings open new avenues for designing systems with

customized stability properties, applicable to both synthetic materials and biological processes.

3.3.3 Density of hot particles

A critical factor that significantly influences rupture dynamics is the number of

hot particles, Nh, which serves as a surrogate for the density of the gas-like phase. The exact

density of the system is difficult to quantify due to the undefined excluded area of the cold

particles, whose interactions lack a well-defined boundary. To address this, we use Nh as a

control parameter, allowing systematic exploration of how the gas-like phase density modulates

instability.

By fixing the dimensions of the simulation box and the number of cold particles (Nc)

while varying Nh, we isolate the role of hot particle density in rupture dynamics. Modifying

Nh increases or decreases the density of the surrounding medium, altering the balance between

diffusive behaviors (driven by thermal fluctuations) and interfacial stresses (arising from particle

collisions). This balance critically influences the timescales of channel breakup, providing deeper

insights into the interplay between density and pattern formation in active systems.

As shown in Fig. 15, Nh plays a critical role in modulating rupture dynamics, with

distinct behaviors emerging across three regimes: low, intermediate, and high densities.

At low concentrations of hot particles (region I), interactions between hot particles

and the channel interface become less frequent, drastically reducing stochastic collisions. This

diminished interaction suppresses surface perturbations, fluctuations that typically initiate instabi-

lity, slowing their growth along the channel boundaries and significantly prolonging the breakup

time tb. Remarkably, even at minimal hot particle densities, the channel eventually ruptures,

demonstrating that the system’s inherent instability persists due to differential diffusivity alone.

Thus, while Nh modulates the timescales of instability, the fundamental mechanism driving
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instability originates from the diffusivity contrast.

Figura 15 – Density dependence. Average breakup time of the channel, tb, as a function of the

number of hot particles, Nh, for different channel lengths, Lx. The simulations were

performed in a rectangular box of width Ly = 94.25a and channel width of ny = 6.

The system exhibits a region of maximum instability at intermediate densities,

flanked by two more stable regions, represented by the shaded areas I and II.
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As Nh increases, the breakup time decreases, reaching a minimum at intermediate

densities (central region). This indicates a regime of maximum instability, where the interactions

between hot particles and the channel are most effective at amplifying perturbations. In this

regime, the frequent collisions and enhanced mobility of hot particles accelerate the growth of

interfacial fluctuations, leading to rapid rupture.

At high densities (region II), the system displays a re-entrant behavior: the breakup

time increases again, indicating a return to a more stable regime. This stabilization arises from

jamming of the hot particles, where crowding near the channel restricts their diffusion and

suppresses collisions. The resulting caging effect reduces momentum transfer to the channel

interface, damping perturbations and delaying rupture. As shown in Fig. 16, at high densities the

channel does not rupture through smooth interfacial undulations; instead, it breaks in a more

abrupt, fracture-like manner, resembling the failure of a solid. Thus, while intermediate densities

maximize instability through stochastic forcing, high densities stabilize via collective crowding,
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a non-monotonic interplay unique to active mixtures.

Figura 16 – Hight hot density breakup. Snapshots of the systems at high densities, consisting

of N = 2160 particles with 360 cold particles composing the channel and 1800

hot particles, with diffusion coefficient Dh = 5× 10−3a2µk. The simulation was

performed in a rectangular box of size Lx = 120a and Ly = 94a, with total packing

fraction of φ = 0.60. a) Intermediate configuration at t = 1.2× 106(µk)−1 of the

channel composed of ny = 6 layers of cold particles. b) Configuration at the moment

of the first breakup occurring at t = 2.1×106(µk)−1.

Source: Autor.

The rupture dynamics of the channel reveal that the key parameters influencing

its stability—aspect ratio, drift, and particle density—affect the breakup time in distinct ways.

Among these, particle density is the only parameter with a non-monotonic impact on instability.

As the number of hot particles increases, the system transitions from a stable regime to one of

maximum instability before returning to stability due to a caging effect at high densities. This

re-entrant behavior underscores the complex interplay between crowding and mobility in active

matter systems [59].

In contrast, the aspect ratio defines two distinct instability regions, separated by a

threshold value that delineates stable and unstable configurations. This threshold highlights the

importance of geometry in determining the stability of the channel, offering insights into how

spatial constraints can be used to control rupture dynamics. Meanwhile, the drift term consistently

enhances stability, causing an exponential increase in breakup time without introducing new

instability thresholds. This shear stabilizing effect demonstrates the potential of directed motion

as a robust mechanism for suppressing perturbations.

These findings demonstrate that geometry, drift, and particle density each play a

critical role in shaping rupture dynamics. By systematically analyzing these factors, we gain

insight into how to control and tune the stability of non-equilibrium systems. This understanding
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could inform the design of self-organizing materials and adaptive technologies capable of

responding to dynamic environmental conditions.

3.4 Pinch-off Dynamics: minimum width

Having identified the parameters that can suppress or enhance instability, we now

focus on the pinch-off dynamics of the channel. In studies of rupture phenomena, a common

technique to understand the forces governing the final stage of breakup involves analyzing the

scaling law of the minimum radius (for three-dimensional systems like the Plateau-Rayleigh

instability) or the minimum width (for two-dimensional systems) as a function of the time

remaining until breakup [80]. This approach provides insights into the dominant physical

mechanisms driving the pinch-off process.

The value of the exponent in the scaling law reveals the nature of the forces governing

the pinch-off process. For example, in the classical PRI, studies have identified distinct exponents

corresponding to different physical regimes, such as inertia-dominated, viscosity-dominated, or

diffusion-dominated dynamics [125, 133]. By characterizing this scaling law in our system, we

aim to identify the dominant forces that govern the final stages of channel rupture. This analysis

enhances our understanding of the pinch-off process and highlights potential similarities between

active matter systems and passive ones, bridging classical fluid mechanics with active matter

physics.

To analyze the rupture dynamics, we track the temporal evolution of the channel’s

minimum width, wmin, as a function of the time remaining until breakup (∆t = tb− t). To achieve

this, we construct spatial histograms of cold particle positions at each timestep, binarizing

the data to identify the channel boundaries using the contour function in MATPLOTLIB [134].

For every point along one boundary, we compute the perpendicular distance to the opposing

boundary, identifying the smallest such distance as wmin.

As shown in Fig. 17, wmin follows a power-law decay during the final stages of

rupture:

wmin ∼ (tb − t)β , (3.6)

with the exponent determined to be β = 0.20± 0.01. This scaling lies outside the classical

regimes of the PRI [125], suggesting a novel pinch-off mechanism unique to active diffusive

mixtures, where factors such as differential diffusivity may play a dominant role. This finding
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highlights the distinct nature of active matter systems, where non-equilibrium forces introduce

new modes of instability that differ fundamentally from those in passive systems.

Figura 17 – Rupture Dynamics. a) Minimum channel width, wmin, as a function of the time

until breakup, (tb − t). The data is presented on a log-log scale. Simulations were

performed in a rectangular box with dimensions Lx = 300a and Ly = 157a, using

Nh = Nc = 1500 particles and a total packing fraction of φ = 0.2. The initial channel

width was ny = 10, and the diffusion coefficient of the hot particles was fixed at

Dh = 5× 10−3a2µk. The results show that wmin decreases over time following a

power-law scaling, wmin ∼ (tb− t)β , with an exponent β = 0.20±0.20 (dashed line).

This scaling exponent suggests a novel similarity regime with no counterpart in

passive systems. The bars represent the standard deviation over 40 independent

samples. b) Schematic of wmin for one sample approaching the breakup time.

b)a)

Source: Autor.

The unique geometry and non-equilibrium nature of our system prevent direct

comparisons with classical scaling laws, as no universal similarity solutions exist for 2D active

diffusive mixtures or analogous non-equilibrium systems. Unlike the PRI, where analytical

frameworks provide well-defined parameters such as surface tension and viscosity, our system

lacks such thermodynamic quantities. This absence makes it challenging to predict force-driven

behaviors in advance and complicates mechanistic interpretations of rupture dynamics. The

observed scaling exponent β = 0.20, is notably smaller than all exponents reported for the PRI,

including the diffusion-dominated regime with β = 0.33. This suggests a greater resistance to

thinning and a slower dynamics, which can be attributed to non-equilibrium effects.

In the context of rupture dynamics, the exponent β = 0.20 has been previously
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observed in the power-law thinning of thin liquid films, where Van der Waals forces dominate

the process [135]. However, our system represents a fundamentally different scenario, both in

terms of dimensionality and the underlying driving mechanisms. Unlike thin liquid films, which

are governed by well-defined forces such as surface tension or Van der Waals interactions, the

instability in our active system arises from collective effects driven by pronounced differences in

diffusivity between particle species.

The emergence of β = 0.20 in our system suggests the presence of a novel scaling

regime unique to active matter. This regime reflects the interplay between stochastic motion,

activity-induced stresses, and the geometry of the channel. Such behavior underscores the distinct

nature of active systems, where non-equilibrium forces introduce new modes of instability that

cannot be explained by traditional frameworks. Understanding this scaling regime not only

deepens our insights into the pinch-off process but also provides a foundation for uncovering

universal principles governing rupture dynamics in active matter.

In this thesis, we investigated a novel instability mechanism in a two-dimensional

active binary mixture of particles with differential diffusivity. This mechanism is fundamentally

distinct from rupture phenomena observed in passive systems. While the observed channel

breakup and the formation of droplet-like structures resemble the PRI, the underlying mechanism

is significantly different: PRI is inherently three-dimensional and governed by surface tension,

whereas our system operates in strictly two-dimensional, non-equilibrium conditions. Despite

the absence of cohesive forces like surface tension, the interplay between differential diffusivity

and repulsive interactions generates an effective destabilizing mechanism that drives rupture.

Through numerical simulations, we identified key parameters—such as aspect ratio,

drift strength, and particle density—that govern the breakup dynamics of the channel. We

demonstrated that introducing a unidirectional drift to the channel particles enhances stability

by counteracting the growth of surface perturbations, a concept of great interest in active

microfluidics [136, 137]. A central finding is the re-entrant behavior of instability regimes as

the number of "hot"particles increases, driven by the interplay between differential diffusivity

and kinetic confinement effects, such as jamming at high densities. This behavior is particularly

relevant to biological processes like cell sorting, where similar mechanisms influence structure

formation and segregation [59, 138, 139]. Furthermore, our results reveal a power-law scaling

behavior for the minimum channel width, wmin ∼ (tb − t)β , with an exponent β = 0.20. This

scaling, along with the identification of a threshold aspect ratio, provides a new framework for
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analyzing interface dynamics in two-dimensional active matter. These findings provide insights

into pattern formation and instability mechanisms that are unique to non-equilibrium systems.

The methodology developed in this study, combining Brownian dynamics simula-

tions with percolation-based techniques, not only quantifies the stability of active surfaces but

also establishes a robust and reproducible framework for investigating interface dynamics under

diverse geometries and conditions [140, 141]. This approach enables the systematic exploration

of key emergent properties in active systems, such as effective surface tension (arising from dif-

fusivity contrasts), interface roughness (driven by stochastic collisions), and adaptive responses

to external perturbations (e.g., shear, confinement) [72, 142].

Furthermore, the framework can be extended to higher-dimensional systems, pro-

viding a pathway to deepen our understanding of active matter instabilities and their role in

non-equilibrium phase transitions. By bridging microscopic dynamics with macroscopic beha-

vior, this methodology lays the groundwork for uncovering universal principles that govern the

collective behavior of active systems.

3.5 Surface Dynamics

In the previous sections, we introduced a novel two-dimensional instability and

identified the key parameters that govern its behavior. We also derived scaling laws for the

pinch-off dynamics, providing insight into the non-equilibrium nature of the system. However,

while these results help characterize the instability, they do not fully explain the forces driving

it or the nature of the perturbations that trigger breakup. To address these questions, we now

extend the framework using capillary wave theory, as outlined in Sec. 2.5. By analyzing the

statistical properties of interface fluctuations, we aim to uncover the physical mechanisms behind

the instability and estimate an effective surface tension.

Capillary wave theory has been widely used to describe the roughening of interfaces

in equilibrium systems, where thermal fluctuations lead to height variations along the inter-

face [143]. In such systems, CWT predicts well-defined scaling laws that govern interfacial

roughness [144], offering insights into the balance between surface tension and thermal agita-

tion [113]. However, extending CWT to active matter requires careful consideration. Interfaces

in active systems are shaped by non-equilibrium forces such as self-propulsion and differential

diffusivity. These forces break time-reversal symmetry and violate the fluctuation-dissipation

theorem, often resulting in behavior that deviates from the scaling laws observed in equilibrium
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systems [117].

In some cases, modified scaling laws emerge, reflecting the unique contributions of

activity-induced stresses [117]. In others, despite the inherently non-equilibrium nature of the

system, interfaces surprisingly follow the same scaling behavior as in equilibrium [38, 62]. This

apparent duality remains an open question in the study of surface dynamics, underscoring the

need for further investigation into how non-equilibrium forces shape interfacial roughening.

By extending capillary wave theory to active diffusive mixtures, we aim to derive

scaling laws that describe non-equilibrium effects—particularly the roughening transition ob-

served at the channel interface. Initially, the cold particle channel is in a low-energy state,

corresponding to a flat, well-defined surface. As the hot particles begin to interact with the

channel, they disturb its boundary, triggering interfacial roughening. This process reflects the

interplay between fluctuations and activity-induced stresses driven by differential diffusivity,

which together govern the evolution of the interface.

To analyze the interface at each timestep, we use a procedure similar to the one

employed for measuring the minimum width wmin. We first construct spatial histograms of

particle positions, binarize the data, and use contour detection to extract the channel boundaries.

These contours define the active interfaces that serve as the basis for our analysis. Since the

detected contours can exhibit overhangs, we apply a smoothing algorithm to convert them into

single-valued, continuous height functions. We then compute the spectral density of interface

height fluctuations using the Fast Fourier Transform (FFT). This spectral analysis allows us to

apply Eq. 2.23 to extract scaling laws that reveal the underlying mechanisms of the system’s

non-equilibrium behavior and provide a quantitative estimate of the effective surface tension.

The results shown in Fig. 18 were obtained by averaging over an ensemble of 30

independent channel simulations. Since each channel breaks at a different time, we define a

scaled time ts as a percentage of the total breakup time to allow for meaningful comparison.

The observed power-law behavior in the spectral density agrees with the findings of Smrek el.

al [62] who reported similar scaling in a binary polymer mixture with differential diffusivity.

Remarkably, even though these systems are out of equilibrium, the interfaces follow the same

scaling laws as in thermal equilibrium—a behavior also observed in active Brownian particle

systems [46, 38]. This remains an open question in the field.

To the best of our knowledge, the result shown in Fig. 18(b) is novel in the con-

text of rupture dynamics in active systems. It reveals a continuous decrease in the effective
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Figura 18 – Surface evolution. Ensemble-averaged kinetic roughening of the interface. Simula-

tions were conducted in a rectangular box of dimensions Lx = 400a and Ly = 94a,

with N = 2800 particles, a total packing fraction φ = 0.25, and a channel width of

ny = 7. Results were averaged over 30 independent samples. a) Spectral density,

multiplied by the interface length, plotted as a function of wavenumber k. The active

interface follows the same scaling law Eq. 2.23 as thermal equilibrium interfaces,

with ï|h(k)|2ð ∼ k−α and an exponent α = 1.98±0.05 (dashed line). b) Evolution

of the effective surface tension βρe f f , obtained via linear fitting, plotted against the

scaled time ts, showing a continuous decrease. c) Time evolution of the exponent α

demonstrating that the scaling relation holds throughout the roughening process.

Source: Autor.

surface tension βρe f f as the interface roughness increases, eventually reaching a pseudo-stable

plateau before the final breakup. Throughout this process, the perturbations induced by hot

particles behave similarly to thermal fluctuations in equilibrium, further reinforcing the surprising

consistency with capillary wave theory.

The results presented here mark an initial step toward understanding the mechanics

of surface dynamics in active interfaces. This approach allows us to identify the normal modes

responsible for breakup and to quantify their growth rates—similar to the analysis of unstable

modes in chiral fluids [102]. These spectral quantities provide insight into the force balance

that governs each stage of the instability, offering a pathway to disentangle the contributions of

activity, fluctuations, and cohesion throughout the rupture process.
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4 CONCLUSIONS

Active matter systems, driven by non-equilibrium dynamics, exhibit a wide range of

intriguing behaviors—many of which remain poorly understood. Among these, the model of

active diffusive mixtures stands out as one of the simplest representations of activity: the particles

themselves are not intrinsically active, but activity emerges through interactions between species

with contrasting diffusivities. Despite its simplicity, this model displays rich dynamics, including

self-organization and emergent behaviors that challenge existing theoretical frameworks and

have no counterpart in passive systems.

The analysis of channel instability across various geometrical domains revealed

key structural features, including the existence of threshold lengths that govern the onset of

rupture—reminiscent of the Plateau–Rayleigh instability. Extending the study to dynamic

conditions, where the cold particles experience a constant drift, uncovered a shear-induced

stabilization mechanism. This effect depends on the magnitude of the drift and introduces a

length-dependent criterion for stability, offering a deeper understanding of how geometry and

motion collectively influence the behavior of non-equilibrium systems.

One particularly surprising result emerged when studying the system under varying

density conditions, represented in this work by changes in the packing fraction of the cold

particles. This parameter introduced non-monotonic stabilization and re-entrant behaviors that

were not captured by existing theoretical models. In high-density regimes, the combination of

activity and crowding leads to dynamics that deviate significantly from equilibrium behavior,

opening the door to new phenomena with no known passive counterpart.

Finally, I identified two key scaling laws related to the time evolution of the instability.

The first describes the pinch-off dynamics through the minimum width of the channel, which

follows the relation wmin ∼ (tb − t)0.20. This result provides a foundation for studying rupture

dynamics in non-equilibrium configurations. The second scaling law governs the spectral density

of interface fluctuations, ï|h(k)|2ð ∼ k−2, indicating that fluctuations induced by high diffusivity

contrast behave similarly to thermal fluctuations in equilibrium. This finding allowed for the

definition of an effective surface tension and enabled tracking its time evolution throughout the

instability process.

Overall, I found this work in active matter to be an effective way to explore non-

equilibrium phenomena, which play a central role in many biological processes. It demonstrates

how even small differences in diffusivity within a mixture can lead to surprising self-organizing
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behaviors, some of which resemble pattern formation typically seen in passive soft matter

systems. The combination of Langevin simulations and percolation techniques developed here

lays a foundation for future studies of non-equilibrium instabilities in active systems, offering

tools to investigate the key parameters that govern rupture dynamics and interfacial behavior.

This work opens several avenues for future research. A natural next step is to extend

the analysis to three-dimensional geometries, such as cylindrical configurations resembling

Plateau–Rayleigh instabilities or thin films, where curvature and confinement play a key role.

These settings may reveal new classes of instabilities relevant to both biological systems and

synthetic materials. From a theoretical perspective, investigating the emergent channel structures

at high densities could deepen our understanding of the effective surface tension and its role

in non-equilibrium systems. In particular, such regimes may exhibit features of a dynamic

percolation transition, suggesting the possibility of a non-equilibrium phase transition. Ultimately,

these directions may contribute to the design of programmable, self-organizing systems in soft

matter physics, active materials, and bioengineering.
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• The results concerning the characterization of the channel instability, including the scaling

law of the rupture dynamics [145], were published in Soft Matter. The findings related to

the attractive case, including the analysis of surface dynamics and the effective surface

tension, are currently being prepared for submission in a separate article.
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Channel instability in binary mixtures with
differential diffusivity

Michael T. Ramirez, * Marciel C. Gomes, José S. Andrade Jr and André A. Moreira

Rupture dynamics and pinch-off phenomena are fundamental for under-

standing instabilities in fluid dynamics and biological systems. In this study,

we investigate the rupture of two-dimensional, channel-like configura-

tions in a binary mixture of particles with differential diffusivities. Through

computational simulations, we analyze the evolution of this instability

under various conditions, identifying key parameters such as aspect ratio,

particle density, and drift strength that influence the system’s stability.

While its behavior resembles the Plateau–Rayleigh instability (PRI), the

underlying mechanism differs fundamentally, as PRI is restricted to three-

dimensional systems. Interestingly, similar instabilities have been observed

in chiral fluids, further supporting the existence of a novel instability

mechanism unique to two-dimensional non-equilibrium systems. Our

results suggest that this phenomenon is not a finite-size effect, but rather

an intrinsic property of systems with differential diffusivities, offering new

insights into pattern formation and instability dynamics in active matter.

Instabilities are fundamental in fluid dynamics, revealing the

mechanisms by which competing forces interact, ultimately

allowing one to dominate and drive the system toward a new

stable configuration. These dynamic transitions arise when

small perturbations within the system grow, disrupting equili-

brium and leading the fluid to a different stable state. Given the

ubiquity of these processes in nature1,2 and material science,3,4

understanding and developing methods to control them has

attracted significant interest.5

A classic example is the Plateau–Rayleigh instability, which

describes the breakup of liquid columns into droplets due to surface

tension. This phenomenon provides a foundational understanding

of how fluids respond to perturbations6 and helps identify the key

variables governing rupture dynamics of free-surface flows.7,8 Precise

control over these parameters enables the manipulation of factors

like breakup time and droplet size, which are critical in technologies

and applications that depend on micro-scale fluid behavior.9,10

While the PRI is not exclusive to conventional fluids, it also

appears in other forms of matter, such as granular media,11

viscoelasticmaterials,12 and solids,13 in regimes where surface tension

dominates over other stabilizing forces. However, the dimensionality

(D) of the system imposes a critical constraint on the properties of the

instability. Specifically, the threshold wavelength, lc ¼ 2pR
� ffiffiffiffiffiffiffiffiffiffiffiffi

D� 2
p

,

which determines the length scale of perturbations that grow expo-

nentially and drive the instability, becomes not finite for purely two-

dimensional systems (D = 2). Consequently, the PRI does not occur in

strictly bidimensional configurations.14

Nevertheless, instabilities have been observed in two-

dimensional channel-like configurations that visually resemble

the PRI, most notably in chiral fluids, where fluid strips break

up into disc-shaped structures.15 Similar configurations also

emerge during segregation processes in non-equilibrium sys-

tems, such as driven liquids16,17 and certain active matter

systems,18–20 although the rupture dynamics of these instabil-

ities remain largely unexplored. These observations suggest the

emergence of a distinct instability mechanism that mimics the

PRIs visual characteristics but arises under fundamentally

different, non-equilibrium conditions.

Active matter systems provide a natural framework to

explore these distinct instabilities. As a unique class of non-

equilibrium systems, active matter is characterized by compo-

nents that locally and independently convert energy into

motion,21 generating continuous energy fluxes and emergent

collective behaviors.22 These behaviors often exhibit pattern

formation driven by dynamic forces absent in equilibrium

systems.23,24 A notable example is spontaneous phase segrega-

tion in mixtures of particles with differential diffusivities,25,26

which can be used for investigating how activity-induced instabil-

ities develop within constrained, channel-like geometries.

Systems composed of particles with different diffusivities occur

naturally across a wide range of phenomena, including the spatial

segregation of chromosomes,27 phase separation in polymers,28

enhanced diffusion in enzymes,29 and dynamic behavior in densely

crowded environments relevant to biological processes.20

Although theoretical analyses using Fokker–Planck methods

can predict properties such as internal stress and surface
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tension in the dilute limit,30 these models often fail to capture

the complexities of dense environments and the dynamic

behavior of surfaces in unstable configurations—especially

the critical role of emergent surface tension. This broad applic-

ability highlights the relevance of differential diffusivity models

in understanding instabilities across both biological and syn-

thetic systems.

In this paper, we present a numerical analysis of the rupture

dynamics of a channel-like structure in a two-dimensional

system composed of particles with different diffusivities. Obser-

vations of two-dimensional instabilities in these systems reveal

that collective behavior cannot be fully explained by surface

tension effects alone, as in the classical PRI framework.

Instead, the instability arises from the interplay between differ-

ential diffusivity and repulsive interactions, a dynamic that

predominates in 2D environments, such as biological processes

and active matter systems. The main objective is to identify the

key variables governing this instability, using the breakup

time—the time at which the system experiences its first rup-

ture—as a quantitative measure of the channel’s stability. To

achieve this, we perform simulations under various system

parameters and analyze their influence on the breakup time.

Additionally, we investigate the rupture dynamics by examining

the power-law scaling of the channel’s minimum width as it

approaches the pinching time. This allows us to compare the

scaling exponent with previously studied similarity solutions

from analyses of rupture phenomena.31

We consider a system composed of N particles of radius a,

divided into two types that differ solely in their diffusion

coefficients, Di A {Dc, Dh}, where Dc and Dh correspond to the

diffusion coefficients of the ‘‘cold’’ and ‘‘hot’’ particles, respec-

tively, with Dcr Dh. The particles interact through short-range,

soft repulsive forces described by Fij = k(2a � rij)r̂ij if the

particles overlap (rij o 2a), and Fij = 0 otherwise. Here, k is

the repulsion strength, rij = |ri � rj| is the distance between the

particle centers, and r̂ij = (ri � rj)/rij is the unit vector along the

line of centers. The dynamics of the system are governed by a

set of overdamped Langevin equations:32–34

_r ¼ m
X

N

j

Fij þ ZiðtÞ; (1)

where m is the inverse of the Stokes coefficient, and Zi(t) represents

Gaussian white noise with zero mean and unit variance. Specifi-

cally, the noise satisfies hZi(t)Zj(t)i = 2Didijd(t � t0), where the noise

magnitude is determined by the diffusion coefficient Di. We define

the simulation units based on characteristic parameters of the

system: length is measured in units of particle radius a, time is

measured in units of (mk)�1, and other quantities are derived from

these. For example, the diffusion coefficient is expressed in units of

a2mk. In our simulations, the particle radius a, the repulsion

strength k, and the inverse of Stokes coefficient m are all set to unity.

Initially, the cold particles are arranged in a triangular

lattice with lattice constant 2a, forming a channel structure.

The channel width is determined by the number of cold particle

layers ny, and its length by the number of particles nx, such that

the total number of cold particles composing the channel is

Nc = nx � ny. This channel is surrounded by a gas-like phase

consisting of Nh hot particles, which are randomly distributed,

as shown in Fig. 1(a). All simulations are performed in a

rectangular box with periodic boundary conditions along the

Lx and Ly directions. eqn (1) is integrated using the Euler

method with a discrete time step of dt = 0.01(mk)�1. To ensure

the robustness of our results, we verified that the outcomes

remain consistent even when dt is varied by a factor of 10,

either larger or smaller (i.e., dt A [0.001,0.1](mk)�1).

The results of the Brownian dynamics simulations reveal

that the continuous flux of energy due to the non-persistent

activity is transmitted to the channel through particles interac-

tions. This disturbance gradually propagates through the chan-

nel, eventually triggering its pinch-off, as shown in Fig. 1. In

this case, the breakup is governed by the non-equilibrium

interplay between the differing diffusion coefficients and par-

ticle interactions, resulting in a self-organized structure that

mimics classical fluid instabilities. Interestingly, the same

channel geometry has been reported as a stable state under

high-density configurations, where it is particularly relevant to

cell-sorting phenomena,20 highlighting the importance of

investigating its stability under different conditions. To further

explore this, we analyze how the breakup dynamics are influ-

enced by key parameters, including the aspect ratio of the

Fig. 1 Snapshots of particle configurations consisting of 960 hot
particles (red) and 960 cold particles (blue), with diffusion coefficients
Dh = 5 � 10�3a2mk and Dc = 0, respectively. The simulation was performed
in a rectangular box of size Lx = 240a and Ly = 125a, with a total packing
fraction f = Npa2/(LxLy) = 0.2. The solid vertical lines and dot-dashed
horizontal lines represent the periodic boundary conditions in Ly and Lx

respectively. (a) Initial configuration of the channel, composed of ny = 6
layers of cold particles, with labels indicating the system size. (b)
Configuration at the moment when the first channel breakup occurring
at t = 6.4 � 105(mk)�1. (c) Configuration at latter times when the cold
particles begin to form droplets at t = 1.1 � 106(mk)�1.
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channel, the diffusivity of the hot particles, the relative density

of hot and cold particles, and the addition of a drift term to the

cold particles.

Numerically, to determine the breakup time, tb, we employ

the wrapping condition from the Newman–Ziff algorithm,35

which is particularly well-suited for systems with periodic

boundary conditions. This method tracks the percolation state

of the cold particle cluster. Two particles are considered part of

the same cluster if their center-to-center distance is less than

three particle radii, 3a. Initially, the cluster is in a percolated

state across the system. The breakup time is defined as the

moment when the wrapping condition35 is no longer satisfied.

This means that a gap of at least one particle radius has formed

in the channel, at which point the simulation is terminated. We

have verified that using larger gap values does not significantly

affect the results for the breakup time.

In Fig. 2, we present the average breakup time, tb, as a

function of the channel length, Lx, for different values of the

initial channel width, measured by the number of layers, ny.

Given that the channel width ny introduces a characteristic

scale, we assume that the breakup time follows the scaling

relation tb = nayf (Lx/ny). To determine the value of a, we mini-

mize the sum of the quadratic dispersion of the logarithm of

the data for each value of the ratio Lx/ny. Considering only the

data for ny Z 6 (as the narrower channel ny = 5 deviates from

the rest), we obtain that a = 4.91 � 0.21. Since a = 5 falls within

the error margin, we present the scaled breakup time tb/ny
5 in

Fig. 2. This scaling relation not only captures the dependence of

tb on both Lx and ny but also enables us to extrapolate our

results to larger system sizes.

We observe, that the average breakup time, tb, increases as

the aspect ratio Lx/ny decreases. Specifically, a sharp increase in

the scaled breakup time tb/ny
5 occurs for systems with Lx/ny o

30, indicating that channels with lower aspect ratios are more

robust against perturbations induced by hot particles. This

behavior is analogous to the PRI,36 where only perturbations

with wavelengths exceeding a critical threshold undergo expo-

nential growth. Our results suggest the existence of a similar

threshold length in our system, above which perturbations

grow more rapidly.

Interestingly, the system displays a power-law dependence

similar to that reported for the rupture of free liquid films,

which has been extensively studied in the context of foams and

emulsions. In such systems, the breakup time scales as

tb B h0
5, where h0 represents the uniform thickness of the

film.37 A more detailed exploration of this power-law behavior

is presented later, focusing on the scaling properties of the

minimum channel width and the pinch-off dynamics.

We now examine the case of a jet of cold particles moving

with constant drift, rather than a stationary channel. Our goal

is to understand how the channel instability is influenced by

the addition of a drift term of magnitude v to the cold particles.

Fig. 3 illustrates that the drift term significantly enhances the

stability, as the breakup time increases exponentially with v.

Interestingly, the stabilization effect depends on the length of

the channel, with shorter channels showing a faster exponen-

tial increase in breakup time compared to longer channels.

This suggests that the drift term not only stabilizes the channel

but also introduces a length-dependent mechanism that mod-

ulates the instability dynamics.

Fig. 2 Average breakup time of the channel, tb, as a function of the aspect
ratio, Lx/ny, for different channel widths ny. The diffusion coefficient of the
hot particles is set to Dh = 5 � 10�3a2mk, and the total packing fraction is
f = 0.2. The bars represent one standard deviation over 50 independent
simulations. Channels with larger widths (ny 4 5) exhibit a strong power-
law dependence, tbB ny

5, highlighting the significant influence of channel
width on breakup time in this regime. Furthermore, the results suggest the
existence of a specific aspect ratio where the system reaches maximum
instability, characterized by a sharp decrease in tb. This implies that at this
aspect ratio, external perturbations are most effective in destabilizing the
channel.

Fig. 3 Average breakup time, tb, as a function of the drift strength, v,
for different channel lengths, Lx. The data is presented on a semi-
logarithmic scale. The diffusion coefficient of the hot particles is fixed at
Dh = 5 � 10�3a2mk, the total packing fraction at f = 0.2, and the channel
width at ny = 6. The bars represent one standard deviation over
25 independent simulations, and dashed lines show exponential fits. The
results indicate that tb increases exponentially with drift strength for all Lx,
with a more pronounced stabilization effect in shorter channels. This
suggests that the drift term counteracts perturbations induced by hot
particles, enhancing stability, particularly in shorter channels.
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Another crucial factor that significantly influences the rup-

ture dynamics is the number of hot particles, Nh, which serves

as a surrogate for the density of the gas-like phase. Since the

exact density of the system is difficult to determine due to the

undefined excluded area of the cold particles, we use Nh as a

control parameter. To explore this, we fix the dimensions of the

simulation box and the number of cold particles, Nc, while

varying Nh. As shown in Fig. 4, at low concentrations of hot

particles (region I), interactions between hot particles and the

channel become less frequent, leading to a drastic reduction in

surface perturbations. This diminished interaction slows the

growth of instabilities at the channel’s boundaries, resulting in

longer breakup times. Remarkably, the channel still ruptures

even at very low number of hot particles, demonstrating the

inherent instability of the system.

As Nh increases, the breakup time decreases, reaching its

minimum at intermediate densities (central region). This

indicates a regime of maximum instability, where the interac-

tions between hot particles and the channel are most effective

at driving perturbations. Notably, at high densities (region II),

the system displays a re-entrant behavior: the breakup time

increases again, signaling a return to a more stable regime.

This stabilization arises from the high density of hot particles,

which leads to a jamming state that restricts their ability to

diffuse freely and interact with the channel. The reduced

mobility of the hot particles creates a caging effect, suppressing

perturbations and slowing the rupture dynamics.

The rupture dynamics of the channel reveal that the key

parameters influencing its stability—aspect ratio, drift, and

particle density—affect the breakup time in distinct ways.

Among these, particle density is the only parameter with a

non-monotonic impact on instability: as the number of hot

particles increases, the system transitions from stability to

maximum instability before returning to a more stable regime

due to a caging effect. In contrast, the aspect ratio defines two

distinct instability regions, introducing a critical value that

separates stable and unstable configurations. Meanwhile, the

drift term consistently enhances the system’s stability, causing

an exponential increase in breakup time without introducing

instability thresholds.

Finally, we analyze the rupture dynamics of the channel by

tracking the evolution of its minimum width, wmin, as a

function of the remaining time until breakup, tb–t. To achieve

this, we construct histograms of the cold particle positions at

each time step and binarize the data to determine the channel

boundaries using the contour function in MATPLOTLIB.38 For

each point along one of the channel boundaries, we compute

the perpendicular distance to the opposite boundary. The

smallest of these distances is recorded as the minimum width,

wmin. The time evolution of wmin, shown in Fig. 5, reveals that

the progressive narrowing of the channel follows a power-law

relationship of the form wminB (tb�t)b, where the exponent is

determined to be b = 0.20.

Given the geometry and the non-equilibrium nature of the

system, there is currently no available information regarding

the similarity properties of this instability. The lack of analy-

tical results about system properties, such as the determination

of surface tension, further complicates direct comparisons with

other known results. This contrasts with the well-studied

phenomena like the PRI, where the exponent b provides valu-

able insights into the dominant forces driving the pinch-off

process. For instance, in the PRI, different regimes—such as

stochastic, diffusive or viscous—result in distinct values of b,

reflecting the underlying force balance.31

In the context of rupture dynamics, the exponent b = 0.20

has been previously reported in the temporal power-law beha-

vior of the thickness during the rupture of thin liquid films,

where van der Waals forces dominate the thinning process.39

However, our system represents a fundamentally different case,

both in terms of dimensionality and the underlying driving

Fig. 4 Average breakup time of the channel, tb, as a function of the
number of hot particles, Nh, for different channel lengths, Lx. The simula-
tions were performed in a rectangular box of width Ly = 94.25a and
channel width of ny = 6. The system exhibits a region of maximum
instability at intermediate densities, flanked by two more stable regions,
represented by the shaded areas I and II.

Fig. 5 (a) Minimum channel width, wmin, as a function of the time until
breakup, (tb�t). The data is presented on a log–log scale. Simulations were
performed in a rectangular box with dimensions Lx = 300a and Ly = 157a,
using Nh = Nc = 1500 particles and a total packing fraction of f = 0.2. The
initial channel width was ny = 10, and the diffusion coefficient of the hot
particles was fixed at Dh = 5 � 10�3a2mk. The results show that wmin

decreases over time following a power-law scaling, wminB (tb–t)
b, with an

exponent b = 0.20 � 0.20 (dashed line). This scaling exponent suggests a
novel similarity regime with no counterpart in passive systems. The bars
represent the standard deviation over 40 independent samples. (b) Sche-
matic of wmin for one sample approaching the breakup time.
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mechanisms. In contrast, the observed b = 0.20 in our system

suggests the emergence of a novel scaling regime. Unlike

passive systems, where well-defined forces like surface tension

or van der Waals interactions govern the dynamics, the instabil-

ity in this active system appears to emerge from collective

effects driven by pronounced differences in diffusivity between

the particle species.

In this paper, we investigated a novel instability mechanism in a

two-dimensional active binary mixture of particles with differential

diffusivity. This mechanism is fundamentally distinct from rupture

phenomena observed in passive systems. While the observed

channel breakup and the formation of droplet-like structures

resemble the PRI, the underlying mechanism is significantly

different: PRI is inherently three-dimensional and governed by

surface tension, whereas our system operates in strictly two-

dimensional, non-equilibrium conditions. Remarkably, despite

the absence of cohesive forces like surface tension, the interplay

between differential diffusivity and repulsive interactions generates

an effective destabilizing mechanism that drives rupture.

Through numerical simulations, we identified key parame-

ters—such as aspect ratio, drift strength, and particle densi-

ty—that govern the breakup dynamics of the channel. We

demonstrated that introducing a unidirectional drift to the

channel particles enhances stability by counteracting the

growth of surface perturbations, a concept of great interest in

active microfluidics.40,41 A central finding is the re-entrant

behavior of instability regimes as the number of ‘‘hot’’ particles

increases, driven by the interplay between differential diffusiv-

ity and kinetic confinement effects, such as jamming at high

densities. This behavior is particularly relevant to biological

processes like cell sorting, where similar mechanisms influence

structure formation and segregation.20,42,43 Furthermore, our

results reveal a power-law scaling behavior for the minimum

channel width, wminB (tb�t)b, with an exponent b = 0.20. This

scaling, along with the identification of a threshold aspect

ratio, provides a new framework for analyzing interface

dynamics in two-dimensional active matter. These findings

provide insights into pattern formation and instability mechan-

isms that are unique to non-equilibrium systems.

The methodology developed in this study, combining Brownian

dynamics simulations with percolation-based techniques, not only

quantifies the stability of active surfaces but also establishes a

reproducible framework for investigating interface dynamics under

diverse geometries and conditions.44,45 This approach opens new

avenues for exploring effective properties of active systems, such as

emergent surface tension, interface roughness, and responses to

external perturbations.17,46 Furthermore, the framework can be

generalized to higher-dimensional systems, offering a pathway to

deepen our understanding of active matter instabilities and their

role in non-equilibrium phase transitions.
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APPENDIX B - OTHER WORKS

• The first work is an article [146] published in EPL (Europhysics Letters). It presents the

initial result of the PhD and offers a theoretical framework to derive the screening term

used to model diatomic molecules from first principles. The study is carried out within a

deformed space formalism and provides analytical insight into the central force problem

under modified spatial geometries.

• The second work is currently in preparation and focuses on the application of the gene-

ralized extended momentum operator in quantum mechanics. In this work, we connect

classical quantum potentials to their analogs in (anti-)de Sitter spacetimes, and we de-

rive a general expression that unifies hyperbolic potentials such as the Pöschl–Teller and

Rosen–Morse types.
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Abstract – The action of long-range potentials can be hindered by the collective effect of free
charges in a medium, a process dubbed screening. This effect is usually modeled by adding an
exponential crossover to a power-law potential. We show here how these exponential cutoffs can
be obtained from first principles in the central force problem through the addition of a radial
deformation of space, 'η = (1+γr)'r. When considering a potential in the form V = 2(K1/r+
K2/r

2), we find that the radial part of the Schrödinger equation displays an effective potential that
takes the form of two well-known screening potentials, namely, the Eckart and the Manning-Rosen
potentials.

Copyright c© 2022 EPLA

Quite often, elements interacting via long-range potentials
have the resulting force being dampened by the screening
action of free charges in the background. Such screen-
ing effects are relevant in the physics of plasmas [1,2],
in the description of molecular interactions [3,4], and in
determining the nuclear energy of different isotopes [5],
among other cases. A complete description of the screen-
ing process should depend on the treatment of the N -body
problem [6]. To circumvent this complication, it has been
proposed that the collective effect of the background can
be modeled by effective exponential-type potentials [7–9]
such as

Vn(r;»,A,B) = A
e2r/»

e2r/» 2 1
+B

(e2r/»)n

(e2r/» 2 1)2
. (1)

Figure 1 shows that the terms in (1) follow power-laws
near the origin and then crossover to exponential cut-
offs. The case n = 2 of eq. (1) corresponds to the
Manning-Rosen potential that was initially proposed to
describe the interaction of diatomic molecules [10]. This
potential has been used to describe optical properties in
spherical quantum dots [11] and pseudo-spin symmetry in
nuclear physics [12]. It has also motivated approximation
techniques for the solution of the Schrödinger equation
for central potentials with angular momentum L2 > 0.

(a)E-mail: michael@fisica.ufc.br (corresponding author)
(b)E-mail: soares@fisica.ufc.br
(c)E-mail: auto@fisica.ufc.br

The bound state and scattering properties of this po-
tential have been investigated using different techniques
as, for example, the differential equation approach [13],
asymptotic iteration method (AIM) [14], the Pekeris-
type approximation [15], and the Nikiforov-Uvarov (NU)
method [16].
The case n = 1 of eq. (1) corresponds to the Eckart po-

tential [17], widely applied in physics [18,19] and chemical
physics [20,21]. The s-wave solutions of the Schrödinger
and Dirac equations with Eckart potential have been stud-
ied to obtain the bound states [22,23], while the 3-wave
case has been studied using approximation methods for
the centrifugal term [24]. Both the Eckart and Manning-
Rosen potentials reduce to the Hulthén potential [25] for
B = 0.

Behaving like the Coulomb potential near the origin and
asymptotically decreasing like an exponential, the Hulthén
potential has been developed to describe screening phe-
nomena for short-range interactions in nuclear and parti-
cle physics [26], atomic physics [27], solid state physics [28]
and chemical physics [29]. In addition, the bound states
and scattering solutions of the Schrödinger equation with
the Hulthén potential have been investigated through a
variety of techniques [30–32].
Since both Eckart and Manning-Rosen are radial po-

tentials, probably the forms of these potential for r/» < 0
has not been of much concern. Here, however, we will
make use of the fact that, considering a negative screen-
ing length » < 0, and neglecting a shift in the potential,
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Fig. 1: The terms of the screened potentials defined in
eq. (1). The term exp(2x)/(exp(2x) 2 1) is a deformation
of the attractive Coulomb potential, diverging at the origin as
21/x, then crossing over to an exponential cutoff. The term
exp(2nx))/(exp(2x)2 1)2 diverges as 1/x2 at the origin, and
also presents exponential cutoffs at different scales. On the
inset, the potentials defined in eq. (1). The straight line repre-
sents the Eckart potential (n = 1), with A = 1 and B = 1/4,
while the dashed line represents the Manning-Rosen potential
(n = 2), with A = 25/4 and B = 1/4. Note that, as indicated
in eq. (2), disregarding a shift the negative region of one case
mirrors the positive region of the other.

the Manning-Rosen potential (n = 2) can be identified
with the Eckart potential (n = 1), and vice versa. That
is, as illustrated in the inset of fig. 1, the cases n = 1 and
2 in eq. (1) can be mapped one onto the other,

V1(r;»,A,B) = V2(r;2»,2(A+B), B) +A. (2)

In a previous work [33], it was shown that when a har-
monic potential is defined around a contracted region of
a deformed space, the resulting effective interaction takes
the form of the Morse potential [34]; in this way revealing
a hidden correspondence between these two physical prob-
lems. In the same vein, here we show how two different
screening potential models can also be related, through
a similar space distortion, to a fundamental problem in
physics, namely, the central force problem.

The central force problem is a leading problem in the de-
velopment of physics. In the twentieth century, quantum
solutions of central force models have been employed to de-
scribe the hydrogen atom [35], transition metals [36], and
utilized to perform perturbation calculations in atomic
and nuclear physics [37,38].

The Eckart and Manning-Rosen potentials are model
descriptions of the effective radial interaction within a
screening medium. In these models, both the Coulomb-
like 1/r interaction, as well as the 1/r2 effective term
due to angular momentum conservation, are deformed by
an exponential cutoff. This cutoff is tailored to account
for exchange of linear and angular momentum with the
medium. This leads us to question whether a similar

cutoff effect could be obtained by employing a spatial
deformation. To test this hypothesis we investigate the
three-dimensional generalization of the deformed space in
spherical coordinates, and how the central force problem
is changed by the introduction of a radial space defor-
mation [39] into the translation operator Ç̂³ , resulting in
non-additive displacements, and leading to a deformed
generator of spatial translations,

p̂³ = 2ih̄D³ , (3)

where D³ c (1 + ³r)d/dr is a deformed derivative in
space. The deformation parameter ³ has the dimension
of inverse of length and relates to the metric tensor of
the dilated/contracted space [40]. This kind of deformed
momentum operator has been used to describe systems
with effective mass dependent on position in the quantum
formalism [41–46]. In addition, it leads to a modified un-
certainty relation, which has serious implications in the
fields of generalized uncertainty principle [40,43,47] and
curved spaces [48].
A natural generalization of the deformed momentum in

three-dimensional spherical coordinates can be written as

P̂³ = 2ih̄f³(r, », Ç)' = 2ih̄'³ , (4)

where f³(r, », Ç) is the deformation. In this work, we con-
strain the problem to a radial deformation f³(r), so that
the Schrödinger equation can be written as

ih̄
"

"t
Ë(r) = 2

h̄2

2m
f³(r)'f³(r)'Ë(r) + V (r)Ë(r), (5)

where, to preserve the spherical symmetry, we are restrict-
ing our approach to the case of radial potentials V c V (r).
Since the deformation also acts only in the radial direc-
tion, eq. (5) is separable, and the wave function can be
written as

Ë(r) = Ë(r, », ×) = R(r)Y3m(», ×), (6)

where Y3m(», ×) are the spherical harmonics.
Using the fact that Ë(r, », ×) is an eigenfunction of L̂2

with eigenvalue L2 = 3(3 + 1)h̄2, we obtain the radial
differential equation

ER(r) = 2
h̄2

2m

(

f2
³ (r)

(

d

dr
+

2

r

)

+ f³(r)f
2
³(r)

)

d

dr
R(r)

+

(

f2
³ (r)L

2

2mr2
+ V (r)

)

R(r). (7)

A common way to tackle the radial part of the
Schrödinger equation is to define Q(r) = rR(r), which
leads to

EQ(r) =

[

Veff(r)2
h̄2

2m

(

f2
³ (r)

d2

dr2

+ f³(r)f
2
³(r)

d

dr

)]

Q(r), (8)
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where

Veff(r) =
L2

2m

(

f³(r)

r

)2

+
h̄2

2m

(

f³(r)f
2
³(r)

r

)

+ V (r).

(9)

We see that two terms are added to the effective potential.
The first term, proportional to (f³/r)

2, is due to angular
momentum conservation, and vanishes when L2 = 0. The
second term, proportional to f³f

2
³/r, vanishes when f³ is a

constant, which corresponds to an undeformed space. Fi-
nally, defining η, where (d/dη) = f³(r)(d/dr), we obtain a
more familiar version of the time-independent Schrödinger
equation in one dimension,

EQ(η) = 2
h̄2

2m

d2Q(η)

dη2
+ Veff(η)Q(η), (10)

with Q(η) c Q(r(η)) and Veff(η) c Veff(r(η)).
Now we focus on a particular form of distortion, η =

ln(1 + ³r)/³, or r = (e³· 2 1)/³. In this case, we have
f³(r) = (1 + ³r) = e³·, and our effective potential takes
the form

Veff(η) = ³2

(

h̄2

2m

e³·

e³· 2 1
+

L2

2m

e2³·

(e³· 2 1)2

)

+ V (η),

(11)
with V (η) c V (r(η)).

Surprisingly, even considering that the external poten-
tial vanishes, V (η) = 0, we have an interesting form for
the effective potential, Veff(η). In fact, considering ³ < 0,
we notice that Veff 2 V takes the form of the Manning

potential, n = 2 in eq. (1), with » = 21/³, A = h̄2³2

2m , and

B = L2³2

2m . It should be noted that this effective potential
has the same mathematical form of one of the Pekeris ap-
proximations proposed in [49] to deal with the centrifugal
term for exponential-type potentials.
Considering the case ³ > 0, one should also note that,

when η ³ >, Veff(η)2V does not tend to zero but rather

to V> = (L2+h̄2)³2

2m . However, making use of eq. (2) and
eq. (11), we identify Veff 2V 2V> as the Eckart potential,

n = 1 in eq. (1), with » = 1/³, A = 2 (L2+h̄2)³2

2m , and

B = ³2L2

2m .
Next, we investigate cases where V (r(η)) �= 0. In par-

ticular, we will deal with the case of a potential in the
form

V (r) = 2
K1

r
2

K2

r2
, (12)

that can be written in terms of η as

V (η) = K1³
e2³·

e2³· 2 1
2K2³

2 e22³·

(e2³· 2 1)2
. (13)

When ³ > 0, eq. (13) is associated with the Manning-
Rosen potential, n = 2 in eq. (1), with » = 1/³. On the
other hand, when ³ < 0, we again use eq. (2) to show that,
in this case, V (η) 2 K1³ + K2³

2 can be associated with

the Eckart potential, n = 1 in eq. (1), with » = 21/³ A =
2K1³ + K2³

2, and B = 2K2³
2. As a consequence, the

effective potential Veff and the external potential V will
always take the form of the Eckart and Manning-Rosen
potentials. Summarizing, for ³ > 0 we have

Veff(η) =
(L2 + h̄2)³2

2m
+ V1

(

η; 1/³,2
(L2 + h̄2)³2

2m
,
L2³2

2m

)

+ V2

(

η; 1/³,K1³,2K2³
2
)

, (14)

while for ³ < 0 we have

Veff(η) = 2K1|³| 2K2³
2 + V2

(

η; 1/|³|,
h̄2³2

2m
,
L2³2

2m

)

+ V1

(

η; 1/|³|,K1|³|+K2³
2,2K2³

2
)

. (15)

Considering that K2 = 0, we have, for ³ > 0,

Veff(η) =
(L2 + h̄2)³2

2m

+ V1

(

η; 1/³,2
(L2 + h̄2)³2

2m
+K1³,

L2³2

2m

)

,

(16)

and for ³ < 0 we have

Veff(η) = 2K1|³|+ V2

(

η; 1/|³|,
h̄2³2

2m
+K1|³|,

L2³2

2m

)

.

(17)
Note that the first term in both V1 and V2, from eq. (1),
will be attractive as long as A > 0, while the second
term of both potentials models will be repulsive as long as
B > 0. The occurence of bounded states demand that the
two terms act in opposition, with both A and B positive.
Looking at eqs. (16) and (17), we see that, when ³ > 0, a

bounded state implies the condition K1 > (L2+h̄2)³
2m . On

the other hand, when ³ < 0, bound states depend on

K1 > 2 h̄2|³|
2m . In this last case, due to the space defor-

mation, bound states may be observed even considering a
repulsive potential in the deformed space, K1 < 0.

In conclusion, we have shown a solution of the
Schrödinger equation in a radially symmetrical deformed
space. Even considering no external potentials, V = 0, the
radial part of the Schrödinger equation reveals two terms
of effective potential. One of these terms is due to the con-
servation of angular momentum, while the other is due to
the form of the distorted space, and will not be present
in an undeformed frame. Considering a deformation of
the translation operator described as '· = (1 + ³r)'r,
we were able to relate these two terms of the effective po-
tential to the Eckart and Manning-Rosen potentials, for
³ > 0 and ³ < 0, respectively. Curiously, in the radially
deformed space, when considering a central potential as
a sum of two inverse power laws, V = 2(K1/r +K2/r

2),
we observe that, in the case of the undeformed space, the
central potential also takes the form of the Eckart and
Manning-Rosen potentials, two well-known potentials that
have been frequently used to describe screening effects.
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Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil

Using the formalism of the non-additive translation operator, we establish a direct connection
between hyperbolic potentials and fundamental potentials commonly encountered in physics, such
as the harmonic and Coulomb potentials. Starting from the one-dimensional case, we demonstrate
that the quantum harmonic oscillator in the deformed space induced by the non-additive transla-
tion operator becomes equivalent to the symmetric Pöschl–Teller potential when the equilibrium
position is at the origin. When the oscillator is displaced from the origin, its potential transforms
into the Rosen–Morse potential. Extending the analysis to three dimensions, we show that the
full Pöschl–Teller potential emerges naturally as the effective potential in the central force prob-
lem—even in the absence of an external potential.

Keywords: Pöschl-Teller potential, Rosen-Morse potential.

Hyperbolic-type potentials have been widely applied
across various areas of physics, including molecular
physics [1, 2], quantum dots [3], spatial solitons [4], and
information entropy analysis [5]. Their bound-state spec-
tra and scattering properties have been extensively stud-
ied using a range of analytical and numerical techniques
[6–8]. In this work, we introduce a generalized class of
hyperbolic potentials defined as:

Vpqs(x) = Asechp(³x) +Bcschq(³x) +Ctanhs(³x), (1)

where A, B and C are tunable potential parameters,
³ characterizes the potential range, and p, q, s take in-
teger values that determine the specific form of the po-
tential. By appropriately choosing these exponents, vari-
ous well-known potentials can be recovered as particular
cases. For instance, the choice p = q = 2, s = 0 cor-
responds to the modified Pöschl–Teller (PT) potential,
originally introduced to model vibrational excitations in
molecular systems [9]. This potential has since found di-
verse applications, including the analysis of quasinormal
modes of black holes [10], optical properties of quantum
wells [11], solitonic dynamics in Bose–Einstein conden-
sates [12], and waveguiding in two-dimensional Dirac ma-
terials [13]. A particularly notable case is the symmetric
PT potential with q = 0 and A = −¼(¼+1), which yields
a class of reflectionless potentials for integer ¿0¿0, where
wave packets are perfectly transmitted regardless of their
energy [14, 15].
Another notable case of the generalized potential in

Eq. (1) arises for p = 2, q = 0, s = 1, which cor-
responds to the Rosen–Morse potential. This potential
has been extensively used to model diatomic molecular
interactions [16], investigate features of supersymmetric
quantum mechanics [17], and explore nonlinear quantum

∗ E-mail: michael@fisica.ufc.br
† E-mail: soares@fisica.ufc.br
‡ E-mail: auto@fisica.ufc.br

effects [18]. In our work, we demonstrate that both the
symmetric Pöschl–Teller and the Rosen–Morse potentials
emerge naturally as effective interactions when a parti-
cle is subjected to a harmonic potential in a deformed,
or ”contracted”, space. This deformation arises from the
application of a non-additive translation operator, de-
fined by:

ïx|Tµ(ϵ) |ϕð = ϕ (x+ ϵ (1 + g(µx))) , (2)

where g(µx) is the deformation function, and µ is a
parameter with dimensions of inverse length. When the
deformation function is linear in x, the properties of
this operator have been thoroughly investigated [19–23],
leading to applications in modeling electronic transport
in semiconductor heterostructures [24, 25]. Moreover,
this formalism connects with Tsallis thermostatistics [26]
through its relation to the qq-exponential function. In
this work, we extend the analysis to the quadratic case,
choosing a deformation function of the form g(µx) =
−(µx)2, which leads to the following form of the transla-
tion operator:

ïx|Tµ(ϵ) |ϕð = ϕ
(

x+ ϵ
(

1− µ2x2
))

. (3)

This deformation implies a modified generator of spa-
tial translations, yielding a deformed momentum opera-
tor given by:

p̂µ = −iℏfµ(x)
d

dx
= −iℏDµ , (4)

with Dµ denotes the deformed derivative, and fµ(x) =
1−µ2x2 is the position-dependent deformation function.
In the limit µ = 0, we recover the standard momentum
operator in Euclidean space. Importantly, p̂µ is Hermi-
tian with respect to the modified scalar product:

ïφ|ϕð =

∫

dx

1− µ2x2
φ∗(x)ϕ(x). (5)
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This inner product defines the appropriate Hilbert
space structure in the deformed geometry, ensuring the
consistency of the quantum mechanical framework.
Writing down the Schrödinger equation for this de-

formed space, with the deformed kinetic operator

iℏ
∂

∂t
ϕ(x, t) =−

ℏ
2

2m

[

(1− µ2x2)2
∂2

∂x2
(6)

−2µ2x(1− µ2x2)
∂

∂x

]

ϕ(x, t) + V (x)ϕ(x, t),

the above equation can be obtained alternatively,
studying the dynamics of a particle with effective mass,
me(x) = m/(1 − µ2x2), moving in Euclidean space. In
terms of this effective mass, equation (6) can be written

iℏ
∂

∂t
ϕ(x, t) =−

ℏ
2

2

[

1

me

∂2

∂x2
+

d

dx

(

1

2me

)

∂

∂x

]

ϕ(x, t)

(7)

+ V (x)ϕ(x, t),

revealing the duality between a particle with constant
mass moving in a deformed space and a particle with
position dependent mass in flat space, which is a widely
studied problem due to their applications in condensed-
matter physics [27, 28]. Equations (6) and (7) repre-
sent two unconventional type of Schrödinger equations,
which are related through specific relations between the
deformation function of the mass and the metric ten-
sor [29]. In [21] was shown the explicit relation between
the translation operator (2) and the metric tensor of the
space, proving that the measure of the space used in (5),
dx/1− µ2x2, define a natural change of variables

¸ =
Arctanh(µx)

µ
. (8)

With this new variable the Schrödinger equation takes
the usual form

iℏ
∂

∂t
Q(¸, t) = −

ℏ

2m

∂2

∂x2
Q(¸, t) + Veff(¸)Q(¸, t), (9)

with Q(¸, t) = ϕ(x(¸), t) and Veff(¸) = V (x(¸)).

Square well

Let us consider now a particle described by equa-
tion (6) confined in a infinite square well potential of
length L, or equivalent in the deformed space L¸ =
Arctanh(µL)/µ. The solution of the Schrödinger can be
written as

ϕn(x) =

{

An sin
[

kn

µ
Arctanh(µx)

]

, if 0 < x < L,

0, otherwise,

(10)

Figure 1. The energy spectrum for a particle confined in a
deformed square well. As we can see in (12) the energies are
discrete; the solid lines are just guides for the eye. The inset
shows the energy against γL for the first three energy levels.
In this figure E0 = π2

ℏ
2/2mL2 represents the ground state

for the undeformed problem, γ → 0.

where the wave vectors are quantized to satisfy the
boundary conditions,

kn =
nÃµ

Arctanh(µL)
, n = 1, 2, 3, ..., (11)

and the corresponding energy eigenvalues

En =
ℏ
2n2Ã2µ2

2mArctanh2(µL)
, n = 1, 2, 3.... (12)

In Figure 1, we show how the energy levels of a particle
confined in a deformed square well increase with n for
different values of µ, also we can see that the energy is
maximum in the undeformed case (µ = 0) and it tends
to the minimum value as µ approach to ±1. In Figure 2
we show the behavior of the average position as function
of µL, as expected when µ = 0 the average value is 0.5,
whereas µ approach to ±1 the particle is confined in the
farthest location from the origin, in contrast with the
linear case g(µx) = µx where the particle is confined
close the origin as µ increase.

The coefficients An in (10) are determined imposing
the normalization condition to the wave functions, lead-
ing to A2

n = 2/L¸ = 2µ/Arctanh(µL). Since the po-
sition operator in different space directions still com-
mutes, the problem can be straightforward generalized
to higher dimensions. For example, in the two dimen-
sional square well problem the corresponding wave func-
tion can be written as a product of one-dimensional (10)
wave functions as Φ(x, y) = ϕ(x)ϕ(y). The contour plots
for the probability density, Ä(x, y) = |Φ(x, y)|2, of the
two-dimensional infinite well for different values of the
quantum numbers are shown in Fig 3. In the presence of
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Figure 2. The average position for a particle confined in a
deformed square well. The solid line gives the average value
of x for a particle described by equation (6), whereas the
dashed-dotted correspond to the linear case studied in [19].
Both cases recover the ïxð /L = 0.5 when γ → 0.

Figure 3. The contour plot of the probability density for a par-
ticle in a two-dimensional box for γ = 0.8, where the quantum
numbers are (a) nx = ny = 1, (b) nx = 1, ny = 2, (c) nx = 2,
ny = 1, and (d) nx = ny = 2. The probability increases from
blue to red.

the non-additive translations operator (3) is more likely
to find the particle away from the origin, this contrast
with the behavior reported in [30] for the linear case
g(µx) = µx, where the particle stay closer to the origin
as µ increases.

Harmonic oscillator

Let us consider a particle confined in the archetypal
case of a harmonic oscillator, V (x) = 1

2
mÉ2x2, for this

case the transformed potential becomes,

Veff(¸) = −
mÉ2

2µ2
sech2(µ¸), (13)

where we have used the identity tanh2x = 1 − sech2x
and the fact that an additive constant do not affect the
equations of motions. We can see that the effective po-
tential (13) takes the form of the symmetric Pöschl-Teller

potential by identifying A = −mÉ2

µ2 , it also corresponds

to the case p = 2, q = s = 0 in (1). In order to find the so-
lution of the equation (9) with the potential (13) usually
is performed a transformation u = tanh(µ¸), obtaining
the wave function solution of the form [31]

Q (tanh(µ¸)) = Nq
nP

q−n (tanh(µ¸)) , n = 1, 2, 3, ...,
(14)

where P q−n(u) are the Legendre polynomials, q is
related to the deep of the potential, is determined by
q(q + 1) = m2É2/ℏ2µ2 and Nq

n is a normalization con-
stant. On the other hand the eigenvalues are determined
by

En = −
µ2ℏ2

2m
(q − n)2. (15)

Now considering the case of the harmonic oscillator
with the equilibrium position x0 ̸= 0, we have V (x) =
1

2
mÉ2(x−x0)

2, therefore the corresponding effective po-
tential is

Veff(¸) = −
mÉ2

2µ2
sech2(µ¸)−mÉ2x0tanh(µ¸), (16)

by identifying A = −mÉ2

µ2 and C = −mÉ2x0 we con-

clude that (16) corresponds to the Rosen-Morse potential
(case when p = 2, q = 0, s = 1 in (1)).

Three dimensionla case

In [23], was proposed a three dimensional generaliza-
tion of the deformed momentum p̂µ described in equation
(4), in order to obtain a formalism to describe screening
potentials from the central force problem in a deformed
space. Using the same approach for the space character-
ized by the deformation function fµ(r) = 1 − µ2r2, we
obtain the generalization of the momentum operator in
spherical coordinates as

P̂µ = −iℏ(1− µ2r2)∇ = −iℏ∇µ , (17)

then, the kinetic operator determined by equation (17)
gives the following Schrodinger equation
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iℏ
∂

∂t
È(r) =−

ℏ
2

2m
(1− µ2r2)∇(1− µ2r2)∇È(r) (18)

V (r)È(r).

Both, the deformation function and the potential act
only in the radial direction, then equation (18) is sepa-
rable, and the wave function can be written as È(r) =
R(r)Yℓm(¹, φ), where Yℓm(¹, φ) are the spherical harmon-

ics. Using the fact that È(r) is an eingenfunction of L̂2

with eigenvalues L2 = ℓ(ℓ + 1)ℏ2, we obtain the radial
differential equation

ER(r) =−
ℏ
2

2m

(

f2µ (r)

(

d

dr
+

2

r

)

+ fµ(r)f
′
µ(r)

)

d

dr
R(r)

+

(

f2µ (r)L
2

2mr2
+ V (r)

)

R(r). (19)

A common way to tackle the radial part of the
Schrodinger equation is to define Q(r) = rR(r), which
leads to

EQ(r) =

[

Veff(r)−
ℏ
2

2m

(

(1− µ2r2)2
d2

dr2
(20)

−2µ2r(1− µ2r2)
d

dr

)]

Q(r),

with the effective potential given by

Veff(r) = −
µ2

2m
(L2+ℏ

2)sech2(µ¸)+
L2µ2

2m
csch2(µ¸)+V (¸),

(21)
Surprisingly, even considering that the external poten-

tial vanishes, V (¸) = 0, we have an interesting form of
the potential, indeed it has the same form of the Pöschl-
Teller potential (the p = q = 2, s = 0 case in equation
(1)).
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These two works were developed during the PhD but were not included as part of this thesis,

as they address topics that differ significantly from the main focus of the research. While the

core of this thesis lies in the study of non-equilibrium dynamics in active matter systems, the

additional works explore problems in quantum mechanics and field theory, particularly involving

deformed spaces and extended operator formalisms. Despite their thematic divergence, these

studies reflect the broader scope of theoretical interests pursued throughout the doctoral period.
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