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“A Geometria existe por toda parte. É pre-

ciso, porém, olhos para vê-la, inteligência para

compreendê-la e alma para admirá-la.”

(Johannes Kepler)



RESUMO

No presente trabalho será estudada uma ferramenta importante na área da Geometria Rieman-

niana, a mudança conforme de uma métrica Riemanniana. Fazendo uso de tal ferramenta no

contexto de variedades completas, serão provados três teoremas principais: um teorema de pin-

ching para hipersuperfícies completas da esfera, uma generalização do teorema de Bonnet-Myers

e uma estimativa de diâmetro para H-hipersuperfícies estáveis e imersas em um ambiente de

curvatura seccional limitada inferiormente.

Palavras-chave: mudança conforme; hipersuperfícies; variedade completa.



ABSTRACT

In the present work, an important tool in the area of Riemannian Geometry will be studied, the

conformal change of a Riemannian metric. Making use of such a tool in the context of complete

manifolds, three main theorems will be proved: a pinching theorem for complete submanifolds

of the sphere, a generalization of the Bonnet-Myers theorem and a diameter estimate for a stable

H-hypersurface immersed in an ambient manifold with sectional curvature bounded from below.

Keywords: conformal change; hypersurfaces; complete manifold.
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1 INTRODUÇÃO

O intuito da presente dissertação é estudar a utilização da mudança conforme de

uma métrica Riemanniana em diferentes contextos da geometria, seja para obter propriedades

topológicas ou estimativas de diâmetro. Antes de mais detalhes serem dados, vejamos do que se

trata tal conceito:

Dadas M uma variedade suave, g e g métricas Riemannianas em M, p ∈ M e vetores não nulos u

e v, tangentes a M em p, os ângulos θ e θ entre u e v, com respeito a g e g, respectivamente, são

definidos por

cos(θ) =
g(u,v)

√

g(u,u) ·g(v,v)
e cos(θ) =

g(u,v)
√

g(u,u) ·g(v,v)
.

Diz-se que as métricas g e g são conformemente relacionadas, ou conforme uma a outra, quando

os ângulos entre quaisquer dois vetores tangentes a M, com respeito a g e g, são sempre iguais.

Nesse caso, a mudança entre as métricas g e g é chamada uma mudança conforme na métrica

Riemanniana.

Para que duas métricas g e g em M sejam conformemente relacionadas é necessário

e suficiente que exista uma função suave e positiva ρ em M satisfazendo g = ρ ·g. Tal relação

entre métricas conformes nos permite obter diversas fórmulas relacionando quantidades geomé-

tricas definidas a partir de cada uma destas métricas (algumas delas desempenharão um papel

importante neste trabalho e, em vista disso, serão abordadas na seção 2.5).

A perspectiva adotada para este trabalho será da mudança conforme como ferramenta

para se obter consequências topológicas e geométricas sob as mais distintas hipóteses. Uma

sugestão para uma abordagem com outro ponto de vista, com teoremas de rigidez envolvendo

mudança conforme, é o trabalho de Yano e Obata [17]. Os primeiros indícios de utilização da

mudança conforme para obtenção de propriedades de compacidade ou rigidez se encontram nos

trabalhos de Schoen e Yau [15], Fischer-Colbrie [9] e Shen e Ye [16].

Para uma organização mais didática, esta dissertação se encontra dividida em duas

partes, a primeira parte sendo destinada a uma revisão de conceitos e resultados que serão

utilizados amplamente no decorrer do texto, enquanto a segunda parte será dedicada a apresen-

tação e demonstração dos três teoremas principais deste trabalho. O primeiro destes teoremas,

devido a Magliaro et al. [12], trata de uma caracterização de subvariedades completas da esfera,

o qual estende um resultado já conhecido, cuja prova se deve a Alencar e do Carmo [1]. O

segundo, obtido por Catino e Roncoroni em [4], corresponde a uma generalização do teorema de
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Bonnet-Myers que apresenta aplicações na área da cosmologia, além de implicar uma extensão

para um resultado devido a Cheng [6] que fornece uma cota superior para o primeiro autovalor

de −∆. O último teorema, provado por Elbert, Nelli e Rosenberg em [8], aborda uma estimativa

de diâmetro para hipersuperfícies estáveis de curvartura média constante em um ambiente de

curvatura seccional limitada inferiormente.
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2 RESULTADOS PRELIMINARES

O objetivo deste capítulo é organizar as definições e os principais resultados que serão

abordados ao longo do texto. Todas as demonstrações aqui omitidas, assim como apresentações

mais detalhadas, podem ser encontradas em [3].

2.1 Tensores

Nesta seção serão apresentadas algumas definições a respeito de tensores assim como

alguns resultados que serão recorrentes no decorrer deste trabalho. Nesta seção M denotará uma

n-variedade Riemanniana com métrica g e conexão Riemanniana ∇.

Definição 2.1.1. Um tensor T de ordem r (também denominado um r-tensor ou um tensor do

tipo (0,r)) em M é uma aplicação C∞(M)-multilinear

T : X(M)×·· ·×X(M)
︸ ︷︷ ︸

r vezes

7→C∞(M).

Em vista da linearidade, tensores são objetos pontuais. Para tornar isto mais claro,

consideremos T um r-tensor em M, Y1, . . . ,Yr ∈ X(M), p ∈ M e (U,x1, . . . ,xn) uma carta em

torno de p. Em U podemos escrever

Yi = ∑
j

Y
j

i · ∂

∂x j
, i ∈ {1, . . . ,r}.

Sejam V ⊂ U uma vizinhança de p tal que V ⊂ U e X1 . . . ,Xn ∈ X(M) campos satisfazendo

Xi =
∂

∂xi
em V . Pela multilinearidade de T vale que

T (Y1, . . . ,Yr) = ∑
j1..., jr

Y
j1

1 . . .Y jr
r ·T (X j1 , . . . ,X jr) = ∑

j1..., jr

Y
j1

1 . . .Y jr
r ·Tj1... jr

em V . A expressão acima mostra que o valor da função T (Y1 . . . ,Yr) em p só depende dos valores

dos campos Y1 . . .Yr e das funções T (X j1 , . . . ,X jr) no ponto p.

Definição 2.1.2. Seja T um r-tensor em M. A diferencial covariante de T é o tensor de ordem

r+1 denotado por ∇T e definido por

(∇T )(Y1, . . . ,Yr,Z) = Z(T (Y1, . . . ,Yr))−∑
i

T (Y1, . . . ,∇ZYi, . . . ,Yr).

Para cada Z ∈ X(M), a derivada covariante de T na direção de Z é o r-tensor ∇ZT dado por

(∇ZT )(Y1, . . . ,Yr) = (∇T )(Y1, . . . ,Yr,Z).
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Em posse da métrica g é possível definir um produto interno no espaço dos tensores.

Definição 2.1.3. Sejam T e S r-tensores em M. Dada uma base coordenada local

{
∂

∂x1 , . . . ,
∂

∂xn

}

com base dual (dx1, . . . ,dxn) podemos escrever, na vizinhança coordenada,

T = ∑
j1,..., jr

Tj1... jr ·dx j1 ⊗·· ·⊗dx jr ,

S = ∑
j1,..., jr

S j1... jr ·dx j1 ⊗·· ·⊗dx jr .

Daí, definimos

⟨T,S⟩= ∑
j1,..., jr,...,i1,...,ir

Tj1... jr ·Si1...ir ·g j1i1 . . .g jrir ,

onde (gi j) é a inversa da matriz da métrica g no referencial

{
∂

∂x1 , . . . ,
∂

∂xn

}

, e

|T |2 = ⟨T,T ⟩.

Em um referencial ortonormal local {e1, . . . ,en} de M, com base dual {e1, . . . ,en},

um r-tensor T em M se escreve como

T = ∑
j1,..., jr

Tj1... jre
j1 ⊗·· ·⊗ e jr

e sua norma ao quadrado assume a expressão

|T |2 = ∑
j1,..., jr

(Tj1... jr)
2.

Definição 2.1.4. Seja T um r-tensor em M e {e1, . . . ,en} um referencial ortonormal local.

Definimos o (traço) Laplaciano de T como o r-tensor

tr(∇2T )(Y1, . . . ,Yr) := ∑
i

(∇2T )(Y1, . . . ,Yr,ei,ei).

Também podemos escrever o Laplaciano de T da seguinte forma

tr(∇2T ) = ∑
i

[

∇ei
(∇ei

T )−∇∇ei
ei

T
]

,

ou, de forma mais geral, vale

(∇2T )(X1, . . . ,Xr,Y2,Y1) = (∇Y1(∇Y2T )−∇∇Y1Y2
T )(X1, . . . ,Xr),
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para quaisquer X1, . . . ,Xr,Y1,Y2 ∈ X(M).

De fato,

(∇2T )(X1, . . . ,Xr,Y2,Y1) = Y1((∇T )(X1, . . . ,Xr,Y2))− (∇T )(X1, . . . ,Xr,∇Y1Y2)

−∑
i

(∇T )(Y2,X1, . . . ,∇Y1Xi, . . . ,Xr)

= Y1((∇Y1T )(X1, . . . ,Xr))− (∇∇Y1Y2
T )(X1, . . . ,Xr)

−∑
i

(∇Y2T )(X1, . . . ,∇Y1Xi, . . . ,Xr)

= (∇Y1(∇Y2T )−∇∇Y1Y2
T )(X1, . . . ,Xr).

Serão apresentadas agora três proposições acerca dos objetos até aqui definidos, as

quais desempenharão papel fundamental na prova do último resultado desta seção. A primeira é

a compatibilidade entre o produto interno de tensores e a derivada covariante. Nessa proposição

e no que segue, usaremos ⟨., .⟩ ao invés de g para tornar a notação mais limpa, embora haja a

possibilidade de confusão com a notação para o produto interno de tensores (note que usaremos

letras minúsculas para campos e maiúsculas para tensores a fim de reduzir o risco desta confusão).

Proposição 2.1.1. Dados dois tensores de ordem s, T e S, em M e X ∈ X(M) vale que

X⟨T,S⟩= ⟨∇X T,S⟩+ ⟨T,∇X S⟩.

Demonstração. Seja {e1, . . . ,en} um referencial ortonormal local de M com base dual {e1, . . . ,en}.

Neste referencial podemos escrever

S = ∑
i1,...,is

Si1,...,ise
i1 ⊗·· ·⊗ eis

T = ∑
i1,...,is

Ti1,...,ise
i1 ⊗·· ·⊗ eis

∇X S = ∑
i1,...,is

(∇X S)i1,...,ise
i1 ⊗·· ·⊗ eis

∇X T = ∑
i1,...,is

(∇X T )i1,...,ise
i1 ⊗·· ·⊗ eis

e, além disso,

⟨T,S⟩= ∑
i1,...,is

Si1,...,isTi1,...,is .
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Por um lado temos

⟨∇X S,T ⟩ = ∑
i1,...,is

(∇X S)i1,...,isTi1,...,is = ∑
i1,...,is

(

X(Si1,...,is)−∑
k

Si1,...,∇X eik
,...,is

)

Ti1,...,is

⟨∇X T,S⟩ = ∑
i1,...,is

(

X(Ti1,...,is)−∑
k

Ti1,...,∇X eik
,...,is

)

Si1,...,is

e, por outro,

X⟨T,S⟩= ∑
i1,...,is

[X(Si1,...,is)Ti1,...,is +Si1,...,isX(Ti1,...,is)] .

Como

⟨∇X S,T ⟩+ ⟨S,∇X T ⟩ = ∑
i1,...,is

[X(Si1,...,is)Ti1,...,is +Si1,...,isX(Ti1,...,is)]

− ∑
i1,...,is

∑
k

[Si1,...,∇X eik
,...,isTi1,...,is +Ti1,...,∇X eik

,...,isSi1,...,is ]}

= X⟨S,T ⟩− ∑
i1,...,is

∑
k

[Si1,...,∇X eik
,...,isTi1,...,is +Ti1,...,∇X eik

,...,isSi1,...,is ]

é suficiente provar que, para cada k

∑
i1,...,is

(

Si1,...,∇X eik
,...,isTi1,...,is +Ti1,...,∇X eik

,...,isSi1,...,is

)

= 0.

Isto segue diretamente da linearidade e da compatibilidade entre a conexão Riemanniana de M e

a métrica g

∑
i1,...,is

Si1,...,∇X eik
,...,isTi1,...,is = ∑

i1,...,is
∑
m

Si1,...,⟨∇X eik
,em⟩em,...,isTi1,...,is

= ∑
i1,...,is

∑
m

−⟨eik ,∇X em⟩Si1,...,ik−1,m,ik+1,...,isTi1,...,ik,...,is

= − ∑
i1,...,ik−1,ik+1,...,is,m

Si1,...,m,...,isTi1,...,∇X em,...,is

m↔ik= −Si1,...,isTi1,...,∇X eik
,...,is ,

o que equivale ao desejado.

A segunda proposição fornece uma relação entre o laplaciano da norma de um tensor

e o (traço) laplaciano desse tensor.

Proposição 2.1.2. Se S é um r-tensor em M então

1
2

∆|S|2 = |∇S|2 + ⟨tr(∇2S),S⟩.
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Demonstração. Seja {e1, . . . ,en} um referencial ortonormal local. Pela proposição anterior

temos

∆

(
1
2
|S|2
)

= ∑
i

[

∇ei

(

∇ei

(
1
2
⟨S,S⟩

))

− (∇ei
ei)

(
1
2
⟨S,S⟩

)]

= ∑
i

[

∇ei
(⟨∇ei

S,S⟩)−⟨∇∇ei
ei

S,S⟩
]

= ∑
i

[

⟨∇ei
(∇ei

S) ,S⟩+ ⟨∇ei
S,∇ei

S⟩−⟨∇∇ei
ei

S,S⟩
]

= ∑
i

[

⟨∇ei
(∇ei

S)−∇∇ei
ei

S,S⟩+ ⟨∇ei
S,∇ei

S⟩
]

= ⟨tr(∇2S),S⟩+∑
i

⟨∇ei
S,∇ei

S⟩.

Por fim, temos que

∑
i

⟨∇ei
S,∇ei

S⟩= |∇S|2,

pois

|∇S|2 = ∑
k,i1,...,is

(∇S)(ei1 , . . . ,eis ,ek)
2 = ∑

k

(

∑
i1,...,is

(∇ek
S)(ei1 , . . . ,eis)

2

)

= ∑
k

|∇ek
S|2

= ⟨∇ek
S,∇ek

S⟩.

A última proposição desta sequência apresenta uma forma de comutar a segunda

derivada covariante de um tensor.

Proposição 2.1.3. Se T é um s-tensor em M então

(∇2T )(X1, . . . ,Xs,U,V )− (∇2T )(X1, . . . ,Xs,V,U) =−
s

∑
i=1

T (X1, . . . ,R(U,V )Xi, . . . ,Xs),

onde R é o tensor de curvatura de M, R(X ,Y )Z = ∇Y ∇X Z −∇X ∇Y Z +∇[X ,Y ]Z.
Demonstração. Por definição temos

(∇2T )(X1, . . . ,Xs,U,V ) = V ((∇T )(X1, . . . ,Xs,U))− (∇T )(X1, . . . ,Xs,∇VU)

−
s

∑
i=1

(∇T )(X1, . . . ,∇V Xi, . . . ,Xs,U)

o que, aplicando novamente a definição e organizando os termos, pode ser escrito como
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V (U(T (X1, . . . ,Xs)))−V

(
s

∑
i=1

T (X1, . . . ,∇U Xi, . . . ,Xs)

)

− (∇VU)(T (X1, . . . ,Xs))

+
s

∑
i=1

T (X1, . . . ,∇∇VU Xi, . . . ,Xs)−U

(
s

∑
i=1

T (X1, . . . ,∇V Xi, . . . ,Xs)

)

+
s

∑
i=1

T (X1, . . . ,∇U ∇V Xi, . . . ,Xs)+∑
i ̸= j

T (X1, . . . ,∇V Xi, . . . ,∇U X j, . . . ,Xs). (2.1)

Notemos agora que o segundo e o quinto termo juntos formam uma expressão simétrica em U e

V , logo quando fizermos a diferença com a segunda derivada covariante de T na ordem trocada

de U e V esses termos serão cancelados. O mesmo vale para o sétimo termo.

Os quatro termos de (∇2T )(X1, . . . ,Xs,U,V )− (∇2T )(X1, . . . ,Xs,V,U) provenientes do primeiro

e o terceiro termo de (2.1) são

V (U(T (X1, . . . ,Xs)))−U(V (T (X1, . . . ,Xs)))−∇VU(T (X1, . . . ,Xs))+∇UV (T (X1, . . . ,Xs)),

ou seja,

[V,U ](T (X1, . . . ,Xs))− (∇VU −∇UV )(T (X1, . . . ,Xs)) = 0,

pela simetria da conexão. Por fim, os termos que sobram são

s

∑
i=1

[T (X1, . . . ,∇U ∇V Xi, . . . ,Xs)−T (X1, . . . ,∇V ∇U Xi, . . . ,Xs)

+T (X1, . . . ,∇∇VU Xi, . . . ,Xs)−T (X1, . . . ,∇∇UV Xi, . . . ,Xs)]

=
s

∑
i=1

T (X1, . . . ,∇U ∇V Xi −∇V ∇U Xi −∇[U,V ]Xi, . . . ,Xs)

= −
s

∑
i=1

T (X1, . . . ,R(U,V )Xi, . . . ,Xs).

Para concluir essa seção será apresentada a demonstração de uma fórmula, obtida

por Cheng e Yau em [5], para o laplaciano da norma ao quadrado de um 2-tensor simétrico que

satisfaz a equação de Codazzi. Antes disso é interessante fixar uma notação com respeito as

funções componentes da diferencial covariante de um tensor: Dados um r-tensor T em M e

{e1, . . . ,en} um referencial local de M adotaremos a seguinte notação

(∇T )(ei1 , . . . ,eir ,ek) := Ti1...ir;k , (∇2T )(ei1 , . . . ,eir ,ek,e j) := Ti1...ir;k j , etc.

Para o caso particular de 0-tensores, isto é funções, convencionaremos

f;i = ei( f ) e f;i j = ei(e j( f ))−
(
∇e j

ei

)
f .
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Definição 2.1.5. Dado um 2-tensor T em M, dizemos que T satisfaz a equação de Codazzi

quando

(∇T )(X ,Y,Z) = (∇T )(X ,Z,Y ), ∀X ,Y,Z ∈ X(M).

Equivalentemente, T satisfaz a equação de Codazzi se, para qualquer referencial local {e1, . . . ,en}
de M, as funções componentes de (∇T ) cumprem

Ti j;k = Tik; j, ∀i, j,k ∈ {1, . . . ,n}.

A última observação antes de provarmos a fórmula citada acima diz respeito a

tensores simétricos: Se T é um 2-tensor simétrico então sua diferencial covariante ∇T é simétrico

nas duas primeiras entradas.

De fato, dados X ,Y,Z ∈ X(M), temos

(∇T )(X ,Y,Z) = Z(T (X ,Y ))−T (∇ZX ,Y )−T (X ,∇ZY )

= Z(T (Y,X))−T (∇ZY,X)−T (Y,∇ZX)

= (∇T )(Y,X ,Z).

De modo geral, se T é um r-tensor simétrico em duas entradas então ∇T (consequentemente

∇kT , para qualquer k ∈ N) herda essa simetria nas entradas correspondentes. A prova dessa

afirmação segue novamente da definição da diferencial covariante de um tensor, assim como foi

feito acima.

Proposição 2.1.4. (Cheng e Yau) Sejam T um 2-tensor simétrico em M que satisfaz a equação

de Codazzi e p ∈ M. Se {e1, . . . ,en} é um referencial ortonormal local de M que diagonaliza T

em p, isto é Ti j(p) = T (ei,e j)(p) = µiδi j, para i, j ∈ {1, . . . ,n}, então, em p, vale

1
2

∆|T |2 = |∇T |2 +∑
i

µi · tr(T );ii +
1
2 ∑

i, j

Ri ji j(µi −µ j)
2,

onde tr(T ) = ∑
k

Tkk e Ri ji j é a curvatura seccional do plano gerado pelos vetores ei(p) e e j(p)

de TpM.

Demonstração. Pela Proposição 2.1.2 vale

1
2

∆|T |2 = |∇T |2 + ⟨tr(∇2T ),T ⟩. (2.2)
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Vamos nos concentrar então no termo ⟨tr(∇2T ),T ⟩. Temos, para cada i, j ∈ {1, . . . ,n}, que

tr(∇2T )i j = ∑
k

Ti j;kk

= ∑
k

(
Ti j;kk −Tik; jk

)
+∑

k

(Tik; jk −Tik;k j)+∑
k

(Tik;k j −Tkk;i j)+∑
k

(Tkk);i j

= ∑
k

(
Ti j;kk −Tik; jk

)
+∑

k

(Tik;k j −Tkk;i j)+∑
k

(Tkk);i j

−∑
k

[T (R(e j,ek)ei,ek)+T (ei,R(e j,ek)ek)]

= ∑
k

(
Ti j;kk −Tik; jk

)
+∑

k

(Tik;k j −Tkk;i j)+∑
k

(Tkk);i j

−∑
k,m

TmkRmik j −∑
k,m

TimRmkk j, (2.3)

onde, na terceira igualdade, usamos a Proposição 2.1.3, na última igualdade escrevemos

R(e j,ek)ei e R(e j,ek)ek no referencial ortonormal {e1, . . . ,en}, isto é

R(e j,ek)ei = ∑
m

R jkim · em e R(e j,ek)ek = ∑
m

R jkkm · em,

e usamos as simetrias

Ri jkl = Rkli j e Ri jkl =−R jikl,

e, na segunda igualdade, foi usado

∑
k

Tkk;i j = ∑
k

(Tkk);i j .

É importante destacar aqui que essa passagem não é apenas uma manipulação na notação, as

parcelas do lado esquerdo da igualdade acima são as funções (∇2T )(ek,ek,ei,e j) enquanto as

parcelas do lado direito são as derivadas covariantes da função Tkk, logo, não é imediato que as

somas coincidam. Mas de fato elas coincidem e a justificativa segue da simetria de ∇T nas duas

primeiras entradas (a qual é consequência da simetria de T ):

∑
k

Tkk;i j = ∑
k

[e j((∇T )(ek,ek,ei))− (∇T )(ek,ek,∇e j
ei)−2 · (∇T )(∇e j

ek,ek,ei)]

= ∑
k

{e j[ei(Tkk)−2 ·T (∇ei
ek,ek)]− (∇e j

ei)(Tkk)−2 ·T (∇∇e j
ei

ek,ek)}

= ∑
k

[e j(ei(Tkk))− (∇e j
ei)(Tkk)] = ∑

k

(Tkk);i j,

onde foram usadas, na segunda e na terceira igualdade, respectivamente, as relações

∑
k

(∇T )(∇e j
ek,ek,ei) = 0 e ∑

k

T (∇X ek,ek) = 0, ∀X ∈ X(M),
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as quais são justificadas abaixo:

∑
k

(∇T )(∇e j
ek,ek,ei) = ∑

k,m

⟨∇e j
ek,em⟩(∇T )(em,ek,ei) =−∑

k,m

⟨ek,∇e j
em⟩(∇T )(em,ek,ei)

= −∑
m

(∇T )(em,∇e j
em,ei)

= −∑
m

(∇T )(∇e j
em,em,ei),

∑
k

T (∇X ek,ek) =−∑
k,m

⟨ek,∇X em⟩T (em,ek) =−∑
m

T (∇X em,em).

Usando a hipótese de que T satisfaz a equação de Codazzi, obtemos que ∇2T possui uma simetria

entre a segunda e a terceira entrada, ou seja, vale

Ti j;kl = Tik; jl.

Juntando isso com a simetria de ∇2T com respeito as duas primeiras entradas (consequência da

simetria de T ), obtemos

Ti j;kk = Tik; jk e Tik;k j = Tkk;i j.

Substituindo essa informação em (2.3) vem que

tr(∇2T )i j = ∑
k

(Tkk);i j −∑
k,m

TmkRmik j −∑
k

TimRmkk j.

Dessa forma, a igualdade (2.2) se torna

1
2

∆|T |2 = |∇T |2 + ∑
i, j,k

Ti j(Tkk);i j − ∑
i, j,k,m

Ti jTmkRmik j − ∑
i, j,k,m

Ti jTimRmkk j.

Visto que a igualdade acima vale em todos os pontos do domínio dos campos {ei, . . . ,en} então,

no ponto p, onde Ti j = µiδi j, concluímos que

1
2

∆|T |2 = |∇T |2 +∑
i

µi(tr(T ));ii −∑
i,k

µiµkRkiki −∑
i,k

µ2
i Rikki

= |∇T |2 +∑
i

µi(tr(T ));ii +
1
2 ∑

i,k

Rikik(µi −µk)
2,

já que, pelas simetrias de R,

1
2 ∑

i,k

Rikik(µi −µk)
2 =

1
2 ∑

i,k

Rikikµ2
i −∑

i,k

Rikikµiµk +
1
2 ∑

i,k

Rikikµ2
k

=
1
2 ∑

i,k

Rikikµ2
i −∑

i,k

Rkikiµiµk +
1
2 ∑

i,k

Rkikiµ
2
k

= ∑
i,k

Rikikµ2
i −∑

i,k

Rkikiµiµk

= −∑
i,k

Rikkiµ
2
i −∑

i,k

Rkikiµiµk.
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2.2 Segunda Forma Fundamental e Equações Fundamentais

Nesta subseção consideraremos uma imersão i : Mn → (M
n+k

,g) e vamos munir M

com a métrica induzida por i. Além disso, fixaremos as seguintes notações:

– ∇ é a conexão Riemanniana de M, enquanto ∇ denota a conexão Riemanniana de M, a

qual coincide com

(X ,Y ) ∈ X(M)×X(M) 7−→ (∇Y X)T ,

onde X ,Y são extensões locais de i∗(X) e i∗(Y ) e (.)T significa a componente tangente à

M ∼= i(M).

– A segunda forma fundamental de M será denotada por A, ou seja

A(X ,Y ) = (∇Y X)N , X ,Y ∈ X(M),

onde XN denota a componente normal à M de X .

– R e R denotam, respectivamente, as curvaturas de M e M.

Proposição 2.2.1. São válidas as seguintes relações

1. (Equação de Gauss)

g(R(X ,Y )Z,W ) = g(R(X ,Y )Z,W )−g(A(Y,W ),A(X ,Z))+g(A(X ,W ),A(Y,Z)),

para quaisquer X ,Y,Z,W ∈ X(M);

2. (Equação de Codazzi)

(R(X ,Y )Z)N =
(
∇N

Y A
)
(X ,Z)−

(
∇N

X A
)
(Y,Z),

para quaisquer X ,Y,Z ∈ X(M).

Demonstração. Pode ser encontrada em [3] páginas 135 e 137.

Na equação de Codazzi a notação ∇N significa a derivada covariante normal, ou seja

(
∇N

X A
)
(Y,Z) = ((∇X A)(X ,Y ))N = (∇X A(Y,Z))N −A(∇XY,Z)−A(Y,∇X Z).

No caso de codimensão 1 podemos reescrever a equação de Codazzi da seguinte forma:

Seja ν uma escolha de normal unitário e definamos o 2-tensor simétrico Aν(X ,Y )= g(A(X ,Y ),ν).

Em particular, como ∇X ν é tangente a M, para todo X ∈ X(M) (já que |ν | ≡ 1), vale

(∇ZAν)(X ,Y ) = g((∇N
Z A)(X ,Y ),ν), ∀X ,Y,Z ∈ X(M),
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pois

(∇ZAν)(X ,Y ) = Z(Aν(X ,Y ))−Aν(∇ZX ,Y )−Aν(X ,∇ZY )

= Z(g(A(X ,Y ),ν))−g(A(∇ZX ,Y ),ν)−g(A(X ,∇ZY ),ν)

= g(Z(A(X ,Y )),ν)−g(A(X ,Y ),∇Zν)−g(A(∇ZX ,Y )−A(X ,∇ZY ),ν)

= g((∇N
Z A)(X ,Y ),ν).

Dessa forma, a equação de Codazzi se escreve como

g(R(X ,Y ),ν) = (∇Y Aν)(X ,Z)− (∇X Aν)(Y,Z). (2.4)

2.3 Variedades completas

O objetivo desta seção é apresentar os principais conceitos e resultados a respeito

de variedades completas, como o tão conhecido Teorema de Hopf-Rinow. A parte final será

dedicada a demonstrações de alguns resultados que serão primordiais na prova dos três teoremas

principais do presente trabalho. A menos de menção do contrário todas as variedades daqui em

diante serão supostas conexas.

Definição 2.3.1. Dizemos que uma variedade Riemanniana (M,g) é (geodesicamente) completa

se, para todo p ∈ M, o mapa exponencial, expp, está definido em todo TpM, ou seja, toda

geodésica γ(t) começando em p está definida para todo instante t ∈ R.

Quando a métrica em questão for evidente, diremos apenas que M é completa. Da

mesma forma, quando M estiver munida de duas métricas g e g, diremos apenas que g, ou g, é

completa.

O próximo passo é definir uma função distância em uma variedade Riemanniana M,

a qual está intimamente ligada tanto a estrutura diferenciável de M quanto a estrutura topológica

(Ver Proposição 2.3.2).

Definição 2.3.2. Dada uma variedade Riemanniana (M,g) e p,q ∈ M, definimos

d(p,q) = inf{l(c); c é uma curva suave por partes ligando p e q},

onde l(c) é o comprimento da curva c, ou seja, se c está definida em [a,b] e {t0, . . . , tk} é uma
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partição de [a,b] tal que c|[t j,t j+1] é suave, para j = 0, . . . ,k−1, então

l(c) =
k−1

∑
j=0

∫ t j+1

t j

√

g(c′(t),c′(t))dt =
∫ b

a

√

g(c′(t),c′(t))dt.

Diremos que uma curva c, suave por partes, ligando p e q é minimizante se l(c) = d(p,q).

Vale destacar que, sendo M conexa, sempre existem curvas suaves por partes ligando

quaisquer pontos p,q ∈ M.

Proposição 2.3.1. Munida da função distância d, M se torna um espaço métrico, ou seja, para

quaisquer p,q,r ∈ M valem as relações

1. d(p,r)≤ d(p,q)+d(q,r);

2. d(p,q) = d(q, p);

3. d(p,q)≥ 0 e d(p,q) = 0 ⇔ p = q.

Demonstração. Pode ser encontrada em [3] página 146.

Proposição 2.3.2. A topologia induzida por d em M coincide com a topologia original de M.

Demonstração. Pode ser encontrada em [3] página 146.

Uma consequência imediata da proposição acima que relaciona a topologia de M

com a estrutura métrica oriunda de d é o

Corolário 2.3.1. Dado p ∈ M a função f : M → R, f (q) = d(p,q), é contínua.

Na realidade vale algo mais forte do que o corolário acima diz.

Corolário 2.3.2. A função distância d : M×M → R é contínua.

Demonstração. Como a topologia induzida por d em M coincide com a topologia original de

M é suficiente provar que, se xn → x0 e yn → y0 (isto é d(xn,x0)→ 0 e d(yn,y0)→ 0), então

d(xn,yn)→ d(x0,y0).

Com efeito, pela desigualdade triangular vale que

d(xn,yn)−d(x0,y0) ≤ d(xn,x0)+d(x0,yn)−d(x0,y0)

≤ d(xn,x0)+d(x0,y0)+d(y0,yn)−d(x0,y0)

= d(xn,x0)+d(yn,y0)
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e, analogamente,

d(x0,y0)−d(xn,yn)≤ d(xn,x0)+d(yn,y0).

Portanto,

|d(xn,yn)−d(x0,y0)| ≤ d(xn,x0)+d(yn,y0)
n→∞→ 0,

o que prova o desejado.

Teorema 2.3.1. (Hopf-Rinow) Sejam M uma variedade Riemanniana e p ∈ M. São equivalentes

as seguintes afirmações:

1. expp está definida em todo TpM;

2. Os conjuntos fechados e limitados de M são compactos;

3. M é completa como espaço métrico;

4. M é geodesicamente completa;

5. Existe uma sequência de subconjuntos compactos Kn ⊂ M, com Kn ⊂ Kn+1 e M =
⋃

n∈N
Kn,

tal que, se qn /∈ Kn, então d(p,qn)→ ∞.

Além disso, qualquer uma das assertivas acima implica

6. Para qualquer q ∈ M existe uma geodésica γ ligando p e q com l(γ) = d(p,q).

Demonstração. Pode ser encontrada em [3] página 147.

Será dado início agora a uma sequência de quatro resultados auxiliares que, como já

comentado, serão fortemente utilizados no decorrer deste trabalho. O primeiro resultado fornece

uma condição suficiente para que uma mudança conforme na métrica original de uma variedade

completa dê origem a uma métrica também completa.

Proposição 2.3.3. Sejam (M,g) uma variedade Riemanniana completa, k ≥ 0 e u ∈C∞(M) tal

que u > δ > 0, em M. Então M, munida da métrica g = u2k ·g, é também completa.

Demonstração. Denotemos por dg e dg as funções distâncias em M induzidas por g e por g. Pelo

teorema de Hopf-Rinow, para provar o desejado, basta mostrar que (M,dg) é completo como

espaço métrico. Para isto notemos que

dg(x,y)≥ δ k ·dg(x,y), ∀x,y ∈ M,
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visto que, para x,y ∈ M arbitrários e qualquer curva suave por partes c : [a,b]→ M ligando x e y

vale

lg(c) =
∫ b

a
(g(c′(t),c′(t))

1
2 dt =

∫ b

a
uk(c(t)) · (g(c′(t),c′(t)) 1

2 dt ≥ δ k
∫ b

a
(g(c′(t),c′(t))

1
2 dt

= δ klg(c),

donde segue que

dg(x,y) = inf{lg(c); c é uma curva ligando x e y}

≥ δ k · inf{lg(c); c é uma curva ligando x e y}

= δ k ·dg(x,y). (2.5)

Por outro lado, se uma sequência {xn}n∈N ⊂ M converge para um ponto x0 em relação à métrica

dg, então esta sequência também converge para x0 em relação à métrica dg.

De fato, tomemos n0 ∈ N suficientemente grande tal que ln = dg(xn,x0)< 1, para todo n > n0.

Sendo (M,g) completa, existe, para cada n ∈ N, uma g-geodésica minimizante γn : [0, ln]→ M

ligando xn e x0. Em particular, γn([0, ln])⊂ B1(x0) (bola intrínseca de M na métrica g), logo

dg(xn,x0)≤ lg(γn) =
∫ ln

0
(g(γ ′n,γ

′
n))

1
2 dt =

∫ ln

0
(u◦ γn)

k · (g(γ ′n,γ ′n))
1
2 dt ≤

(

max
B1(x0)

uk(x)

)

ln,

para todo n > n0, o que implica dg(xn,x0)
n→∞→ 0, como afirmado.

Portanto, novamente pela completude de (M,g), concluímos que

{xn}n∈N ⊂ M de Cauchy em dg
(2.5)⇒ {xn}n∈N de Cauchy em dg ⇒ {xn}n∈N converge em dg

⇒ {xn}n∈N converge em dg,

como queríamos mostrar.

O segundo resultado trata da completude de um espaço de recobrimento.

Proposição 2.3.4. Sejam (M,g) uma variedade Riemanniana e π : M → M um mapa de recobri-

mento. Então, munindo M com a métrica de recobrimento h, vale que

(M,g) completa ⇒ (M,h) completa.
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Demonstração. Vale recordar que a métrica h é definida por

hp(u,v) = gπ(p)(dπp(u),dπp(v)), u,v ∈ TpM, p ∈ M

e, com essa métrica, π : M → M é uma isometria local. Denotaremos por dh e dg as funções

distância em M e M induzidas por h e g, respectivamente.

Pelo Teorema de Hopf-Rinow é suficiente provar que (M,dh) é completo como espaço métrico.

Para tanto, consideremos {xn}n∈N ⊂ M uma sequência de Cauchy. Como π é uma isometria

local, a sequência {π(xn)}n∈N ⊂ M também é de Cauchy. Logo, sendo (M,dg) completo, vale

que π(xn)
n→∞→ y0 em dg. Afirmamos que xn → x0 em dh, para algum x0 ∈ π−1(y0).

De fato, sendo π : M → M um mapa de recobrimento, existe uma vizinhança V ⊂ M de y0 tal que,

em cada componente conexa U de π−1(V ), π|U : U →V é um difeomorfismo (consequentemente,

uma isometria). Visto que π(xn) ∈V , para todo n suficientemente grande, podemos assumir, sem

perda de generalidade, que {π(xn)}n∈N ⊂V . Em particular {xn}n∈N ⊂ π−1(V ).

Seja δ > 0 tal que BM
δ (y0)⊂V , onde

BM
δ (y0) = {q ∈ M; dg(q,y0)< δ}

é a bola intrínseca de M centrada em y0 e de raio δ . Como a restrição de π a qualquer com-

ponente conexa de π−1(V ) é uma isometria sobre V , vale que BM
δ

(
(π|U)−1(y0)

)
⊂ U , para

toda componente conexa U de π−1(V ), onde BM
δ

(
(π|U)−1(y0)

)
é a bola intrínseca de M. Daí,

tomando n0 ∈ N tal que

dg(π(xn),y0)<
δ

4
e dh(xn,xm)<

δ

4
, ∀n,m ≥ n0

e U0 ⊂ π−1(V ) a componente conexa de π−1(V ) que contém xn0 , segue que, para n ≥ n0

dh

(
xn,(π|U0)

−1(y0)
)
≤ dh(xn,xn0)+dh

(
xn0 ,(π|U0)

−1(y0)
)
= dh(xn,xn0)+dg(π(xn0),y0)<

δ

2
,

o que significa xn ∈ BM
δ ((π|U0)

−1 (y0))⊂U0, para todo n ≥ n0. Por fim, novamente do fato que

π|U0 : U0 →V é uma isometria e de π(xn)→ y0 em dg, concluímos que xn → (π|U0)
−1(y0) =: x0

em dh, o que prova o afirmado e, por conseguinte, a proposição.

Na verdade vale a recíproca da proposição acima, ou seja, se (M,h) é completa então

(M,g) é completa, contudo, como isso não será usado neste trabalho, a demonstração deste fato

será omitida.

A próxima proposição trata de uma caracterização da completude de uma variedade

não compacta em termos de curvas divergentes.
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Definição 2.3.3. Uma curva divergente numa variedade Riemanniana M é um mapa suave

α : [0,∞)→ M tal que, para cada compacto K ⊂ M, existe t0 ∈ [0,∞) satisfazendo α(t) /∈ K,

para todo t > t0. Em outras palavras, α escapa de qualquer compacto de M. Definimos o

comprimento de uma curva divergente α por

l(α) := lim
t→∞

∫ t

0
|α ′(s)|ds.

Proposição 2.3.5. Seja (M,g) uma variedade Riemanniana não compacta. Então (M,g) é

completa se, e somente se, toda curva divergente em M tem comprimento infinito.

Demonstração. Suponhamos inicialmente que (M,g) é completa e tomemos uma curva diver-

gente em M, γ : [0,T )→ M. Como M é completa, segue do teorema de Hopf-Rinow que, para

cada N ∈ N, a bola fechada B(γ(0),N)⊂ M é compacta. Tomemos tN < T tal que

γ(t) /∈ B(γ(0),N), ∀t > tN .

Daí,

∫ t

0
||γ ′(s)||ds ≥ d(γ(0),γ(t))> N, ∀t > tN ⇒ lg(γ) = lim

t→T

∫ t

0
||γ ′(s)||ds = ∞.

Assumindo agora que toda curva divergente em M tem comprimento infinito, suponhamos

por absurdo que M não é completa. Em particular, pelo teorema de Hopf-Rinow, M não é

geodesicamente completa. Consideremos então uma geodésica γ : [0,ε)→ M, parametrizada

por comprimento de arco, com ε < ∞, que não pode ser estendida além de ε . Provemos que γ é

divergente.

Com efeito, caso isso não seja verdade, existem K ⊂ M compacto e uma sequência {tn}n∈N ⊂
[0,ε) tais que

tn → ε e γ(tn) ∈ K, ∀n ∈ N.

Passando a uma subsequência, se necessário, podemos assumir γ(tn)→ q ∈ K. Seja W ⊂ M uma

vizinhança totalmente normal de q (a existência de tal vizinhança é garantida em [3], p.72) e

n0 suficientemente grande tal que γ(tn) ∈ W , para todo n ≥ n0. Tomemos δ > 0 tal que, para

cada p ∈W , expp é um difeomorfismo em Bδ (0)⊂ TpM e expp(Bδ (0))⊃W . Em particular, a

geodésica β : (tn0 −δ , tn0 +δ )→ M, dada por

β (t) = expγ(tn0)
((t − tn0)γ

′(tn0))
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passa, no instante t = tn0 , em γ(tn0) e com velocidade γ ′(tn0) (já que a derivada de expγ(tn0)

na origem é a identidade). Logo, por unicidade, γ é igual a β em [0,ε)∩ (tn0 − δ , tn0 + δ ).

Aumentando n0, se necessário, podemos assumir que tn0 +δ > ε , logo conseguimos estender γ

além de ε , o que é uma contradição. Disto concluímos que γ é divergente.

Dessa forma, temos por hipótese que l(γ) = ∞. Porém, sendo γ parametrizada por comprimento

de arco, vale que l(γ) = ε < ∞, o que é um absurdo.

Do exposto, segue que M é completa.

Por fim, o último resultado desta seção, obtido em [12], também fornece uma

caracterização da completude de uma variedade não compacta, porém, agora em termos do

comprimento da "menor curva divergente".

Proposição 2.3.6. (Magliaro, Mari, Roing e Savas-Halilaj) Seja (M,g) uma variedade Rieman-

niana não compacta. Então, para cada p ∈ M, existe uma curva divergente γ : [0,T )→ M, com

γ(0) = p, que é uma geodésica e minimizante em cada subintervalo compacto de [0,T ). Além

disso, vale que

(M,g) é completa ⇔ T = ∞.

Demonstração. Vamos construir inicialmente uma exaustão de M por abertos pré compactos

{Ω j} j∈N tal que, para cada j ∈ N, Ω j ⊂ Ω j+1.

Com efeito, tomemos uma função exaustão suave e positiva f : M → R de M, ou seja, para todo

b ∈ R, f−1((−∞,b]) é compacto (a existência de tal função é garantida em [11], p. 46). Seja

b1 > 1 um valor regular de f e tal que p ∈ f−1((−∞,b1]) (tal b1 existe pelo teorema de Sard).

Definamos Ω1 = f−1((−∞,b1)). Tomando b2 > max{b1,2} tal que b2 é um valor regular de f

e definindo Ω2 = f−1((−∞,b2)) teremos

Ω1 = f−1((−∞,b1])⊂ Ω2 e f−1((−∞,2))⊂ Ω2.

Prosseguindo indutivamente, obtemos uma exaustão

M ⊂
⋃

j∈N
Ω j

(

pois M ⊂
⋃

j∈N
f−1((−∞, j)) e f−1((−∞, j))⊂ Ω j

)

por abertos pré compactos satisfazendo Ω j ⊂ Ω j+1, para todo j ∈ N.

Em particular, ∂Ω j é compacto para cada j ∈ N, já que é um fechado contido no compacto

Ω j. Logo, a função contínua q ∈ ∂Ω j 7→ d(p,q) assume um mínimo, digamos em p j. (pode
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então

Tj − t = d(γ j(t), p j)≥ δ ′+d(p j,q
′
0), (2.6)

haja vista que, para toda curva σ : [0, l]→ M ligando p j e γ j(t), existe s ∈ [0, l] com σ(s) ∈ S′,

logo

l(σ) = l(σ |[0,s])+ l(σ |[s,l])≥ δ ′+d(p j,S
′) = δ ′+d(p j,q

′
0).

De (2.6) e da desigualdade triangular segue que

d(p,q′0)≥ d(p, p j)−d(q′0, p j)≥ Tj − (Tj − t −δ ′) = t +δ ′. (2.7)

Por outro lado, a curva obtida ao concatenar γ j|[0,t] e a geodésica s ∈ [0,δ ′] 7→ expγ j(t)(s ·w), com

|w|= 1, que liga γ j(t) e q′0, tem comprimento t+δ ′, portanto d(p,q′0) = t+δ ′ e as desigualdades

em (2.7) se tornam igualdades. Em particular, essa curva é uma geodésica (pois é minimizante),

logo, por unicidade,

γ j(t +δ ′) = expγ j(t)(δ
′ ·w) = q′0.

Como a segunda desigualdade de (2.6) é na verdade uma igualdade, concluímos que

d(γ j(t +δ ′), p j) = d(q′0, p j) = Tj − t −δ ′ = Tj − (t +δ ′),

ou seja, t +δ ′ ∈ A.

Disto, e do fato que A é fechado, segue que Tj = supA ∈ A, provando assim o afirmado.

A curva γ j : [0,Tj]→ M assim obtida é minimizante (consequentemente, geodésica) e liga p e

p j. Note ainda que γ j está parametrizada por comprimento de arco, já que |γ ′j(0)|= |v|= 1.

A construção da curva γ : [0,T )→ M desejada seguirá dos seguintes fatos:

a) γ j([0,Tj))⊂ Ω j.

De fato, se existisse t < Tj com γ j(t) /∈ Ω j obteríamos t0 < t < Tj tal que γ j(t0) ∈ ∂Ω j.

Daí

d(p,γ j(t0)) = t0 < Tj = d(p,γ j(Tj)) = d(p, p j),

o que contradiz a definição de p j.
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b) {Tj} j∈N é uma sequência crescente.

Como Ω j ⊂Ω j+1, temos que Ω j∩∂Ω j+1 =∅. Logo, como γ j+1(0)= p∈Ω j e γ j+1(Tj+1)=

p j+1 ∈ ∂Ω j+1, existe t < Tj+1 satisfazendo γ j+1(t) ∈ ∂Ω j, donde

Tj = l(γ j) = d(p, p j)≤ d(p,γ j+1(t))< d(p,γ j+1(Tj+1)) = Tj+1.

c) Existe uma subsequência {γ jk} que converge uniformemente em compactos para uma curva

γ : [0,T )→ M, onde T = sup{Tj}.

Como a sequência {γ ′j(0)} ⊂ TpM está contida no compacto S1(0) ⊂ TpM, existe uma

subsequência {γ ′jk(0)} convergente, digamos γ ′jk(0)→ w ∈ S1(0). Tomemos γ : [0,s)→ M

a geodésica, parametrizada por comprimento de arco e definida no intervalo maximal,

tal que γ(0) = p e γ ′(0) = w. Pela suavidade com respeito às condições iniciais de uma

EDO, vale que γ jk → γ uniformemente em compactos de [0,min{s,T}). É suficiente então

mostrar que T ≤ s.

Suponhamos que isso não ocorra. Sendo assim, existe j0 ∈ N tal que s < Tj0 < ∞, donde

segue que γ é divergente (pelo argumento que usamos na prova da Proposição 2.3.5) e

l(γ) = s < Tj0 = d(p,∂Ω j0)⇒ γ([0,s))⊂ Ω j0 ,

o que é uma contradição já que Ω j0 é compacto.

No que segue iremos denotar apenas por {γ j} a subsequência acima obtida. A seguir será

provado que γ satisfaz as condições desejadas:

d) γ é minimizante em cada subintervalo compacto de [0.T ).

Dados t1 < t2 em [0,T ), temos

d(γ j(t1),γ j(t2))→ d(γ(t1),γ(t2)),

já que d : M ×M → R é contínua. Por outro lado, como cada γ j é minimizante e γ é

parametrizada por comprimento de arco, vale

d(γ j(t1),γ j(t2)) = l(γ j|[t1,t2]) = t2 − t1 = l(γ|[t1,t2]), ∀ j ∈ N.

Portanto, d(γ(t1),γ(t2)) = l(γ|[t1,t2]) e, por conseguinte, γ é minimizante em [t1, t2].

e) γ é divergente.

Vamos aqui considerar dois casos:
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Caso 1: T < ∞: Mostremos inicialmente que existe uma sequência {t j} ⊂ [0,T ) tal que

t j → T e γ(t j) /∈ Ω j, ∀ j ∈ N.

Com efeito, fixado j0 ∈N, temos que, para todo j > j0 +1, existe t j < Tj cumprindo

γ j(t j) /∈ Ω j0 e γ j(t j) ∈ ∂Ω j0+1, pois






γ j(Tj) ∈ ∂Ω j

γ j(0) = p ∈ Ω j0+1

Ω j0+1 ∩∂Ω j =∅

Além disso, tomando ε = d(∂Ω j0+1,∂Ω j0+2) e observando que, para todo j > j0+2,

existe s j < Tj com γ j(s j) ∈ ∂Ω j0+2 e γ j(t) /∈ ∂Ω j0+2, para todo t > s j (basta tomar

s j = sup{t;γ j(t) ∈ ∂Ω j0+2}), vem que t j < s j (do contrário obteríamos t > s j com

γ j(t) ∈ ∂Ω j0+2) e

ε ≤ l(γ j|[t j,s j]) = s j − t j < Tj − t j ≤ T − t j, ∀ j > j0 +2.

Daí, a sequência {t j} j> j0+2 está contida no compacto [0,T − ε]. Passando a uma

subsequência, se necessário, podemos assumir que t j → t j0 ∈ [0,T − ε]. Logo, como

γ j → γ uniformemente em [0,T − ε], temos

d(γ j(t j),γ(t j0))≤ d(γ j(t j),γ(t j))+d(γ(t j),γ(t j0))→ 0,

ou seja, γ j(t j)→ γ(t j0). Por γ j(t j) /∈ Ω j0 , para todo j > j0+1, e Ω j0 ser aberto segue

que γ(t j0) /∈ Ω j0 .

Em particular, sendo s j0 = inf{t; γ(t) ∈ ∂Ω j0}, vale

T > t j0 > s j0 = l(γ|[0,s j0 ]
)≥ d(p, p j0) = Tj0 .

Sendo j0 ∈ N arbitrário segue que a sequência {t j} acima obtida satisfaz t j → T e

γ(t j) /∈ Ω j, para todo j ∈ N.

Obtida essa sequência, suponhamos agora que γ não é divergente. Então existem

K ⊂ M compacto e uma sequência {s j} ⊂ [0,T ) tais que

s j → T e γ(s j) ∈ K, ∀ j ∈ N.

Sendo M =
⋃

j∈NΩ j uma exaustão de M por abertos, existe j0 ∈ N tal que K ⊂ Ω j0 .

Então, para todo j > j0 +1, vale que γ(s j) ∈ K e γ(t j) /∈ Ω j0+1, donde obtemos r j e
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r j entre s j e t j satisfazendo







γ(r j) ∈ ∂Ω j0

γ(r j) ∈ ∂Ω j0+1

Portanto,

0 < d(∂Ω j0 ,∂Ω j0+1)≤ d(γ(r j),γ(r j)) = |r j − r j| ≤ |s j − t j|,

para todo j > j0 +1, o que é absurdo pois s j → T , t j → T e T < ∞.

Do exposto, concluímos que γ é divergente nesse caso.

Caso 2: T = ∞: Para cada j ∈ N definamos L j = max{d(p,q); q ∈ Ω j}. Fixado j0 ∈ N

arbitrariamente, seja j1 suficientemente grande de modo que Tj1 > L j0 (existe pois

Tj → T = ∞). Então

d(p,γ(t)) = t > Tj1 > L j0 , ∀t > Tj1 ⇒ γ(t) /∈ Ω j0 , ∀t > Tj1 .

Ou seja, eventualmente a curva γ escapa de qualquer dos abertos Ω j (e não retorna

novamente). Isto por sua vez nos garante que γ é divergente, pois, dado K ⊂ M

compacto, existe j0 ∈ N tal que K ⊂ Ω j0 .

Concluímos assim que a curva γ cumpre os requisitos desejados. Por fim, provemos a equivalên-

cia:

(M,g) é completa ⇔ T = ∞.

(⇒) : Sendo (M,g) completa e γ divergente, segue imediatamente da Proposição 2.3.5 que

T = ∞.

(⇐) : Seja σ : [0,Tσ ) → M uma curva divergente arbitrária parametrizada por comprimento

de arco. Trocando, se necessário, σ pela curva obtida ao concatenar uma curva ligando p e

σ(0) e σ , podemos assumir que σ(0) = p. Para cada j ∈ N, seja t j < Tσ tal que σ(t j) ∈ ∂Ω j

(existe pois σ começa em p ∈ Ω j e em algum momento escapa do compacto Ω j). Então, como

Tj = d(p,∂Ω j),

Tσ = l(σ)≥ l(σ |[0,t j])≥ Tj.

Sendo j ∈N arbitrário e Tj → T =∞, concluímos que Tσ =∞, por conseguinte (M,g) é completa

(novamente pela Proposição 2.3.5).
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2.4 Variação da Energia

Esta seção é dedicada a apresentação de alguns conceitos como a variação de uma

curva e a função energia, contudo o conteúdo mais importante aqui será a denominada fórmula

da segunda variação da energia, a qual se fará presente nos três teoremas principais.

Definição 2.4.1. Seja c : [0,a]→ M uma curva suave por partes na variedade M. Uma variação

de c é um mapa contínuo f : (−ε,ε)× [0,a]→ M tal que

a) f (0, t) = c(t), para t ∈ [0,a];

b) existe uma partição {t0, . . . , tk} de [0,a] tal que a restrição de f a cada um dos subconjuntos

(−ε,ε)× [ti, ti+1], i = 0, . . . ,k−1, é suave.

A variação f é dita própria quando

f (s,0) = c(0) e f (s,a) = c(a), ∀s ∈ (−ε,ε).

Se a função f é suava diremos que a variação é suave.

Definição 2.4.2. Dada uma curva suave por partes c : [0,a] → M e uma variação de c, f :

(−ε,ε)× [0,a]→ M, definimos o campo variacional de f como o campo de vetores (suave por

partes) ao longo de c dado por

V (t) =
∂ f

∂ s
(0, t), t ∈ [0,a].

Proposição 2.4.1. Dado um campo suave por partes V (t), ao longo de uma curva suave por

partes c : [0,a]→ M, existe uma variação f : (−ε,ε)× [0,a]→ M de c cujo campo variacional

coincide com V (t). Além disso, se V (0) = V (a) = 0, então f pode ser escolhida como uma

variação própria.

Demonstração. Pode ser encontrada em [3] página 193.

O restante desta seção dará ênfase ao conceito de energia associado à variação de

uma curva. Contudo, é relevante apresentar uma noção mais geral de energia, a qual será

retomada na seção 3.2. A menos de menção do contrário, todas as curvas daqui em diante serão

assumidas suaves por partes.

Definição 2.4.3. Dada uma curva c : [0,a]→ M, definimos a sua energia como sendo

E(c) =
∫ a

0
|c′(t)|2dt.
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Para qualquer curva c : [0,a]→ M vale que

l(c)2 ≤ a ·E(c), (2.8)

basta tomar f ≡ 1 e g = |c′| na desigualdade de Schwarz

(∫ a

0
f ·g dt

)2

≤
(∫ a

0
f 2dt

)

·
(∫ a

0
g2dt

)

.

Além disso, vale a igualdade em (2.8) se, e somente se, g = |c′| é constante, ou seja, o parâmetro

t é proporcional ao comprimento de arco de c.

O lema abaixo mostra que uma geodésica que minimiza o comprimento também

minimiza a energia.

Lema 2.4.1. Sejam p,q ∈ M e γ : [0,a]→ M uma geodésica minimizante ligando p e q. Então,

para qualquer curva c : [0,a]→ M ligando p e q, vale que

E(γ)≤ E(c).

Demonstração. Sendo γ parametrizada proporcionalmente ao comprimento de arco (pois é uma

geodésica) e minimizante, segue da discussão acima que

a ·E(γ) = l(γ)2 ≤ l(c)2 ≤ aE(c),

o que prova o desejado.

Definição 2.4.4. Dada uma curva c : [0,a]→ M e f : (−ε,ε)× [0,a]→ M uma variação de c,

definimos a função energia relativa a f como sendo

E f (s) = E( f (s, .)) =
∫ a

0

∣
∣
∣
∣

∂ f

∂ t
(s, t)

∣
∣
∣
∣

2

dt, s ∈ (−ε,ε).

Quando a variação estiver subentendida denotaremos E f apenas por E. Para finalizar

esta seção, apresentaremos as fórmulas para a primeira e a segunda derivada da energia de uma

curva relativa a uma variação da mesma. Adiante, e no restante dessa dissertação, quando não

houver risco de confusão, usaremos a notação ⟨., .⟩ ao invés de g.

Proposição 2.4.2. (Fórmula da primeira variação da energia) Sejam c : [0,a]→ M uma curva,

f : (−ε,ε)× [0,a]→ M uma variação de c e V (t) o campo variacional de f . Se E : (−ε,ε)→R
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é a função energia associada a f e {t0 = 0, t1, . . . , tk = a} é uma partição de [0,a] tal que c é

suave em cada subintervalo [ti, ti+1], i = 0, . . . ,k−1, então

1
2

E ′(0) = −
∫ a

0

〈

V (τ),
D

dt

dc

dt
(τ)

〉

dτ −
k−1

∑
i=1

〈

V (ti),
dc

dt
(t+i )− dc

dt
(t−i )

〉

−
〈

V (0),
dc

dt
(0)

〉

+

〈

V (a),
dc

dt
(a)

〉

,

onde

dc

dt
(t±i ) = lim

τ→t±i

dc

dt
(τ).

Demonstração. Pode ser encontrada em [3] página 195.

Uma consequência dessa fórmula é uma caracterização das geodésicas como pontos

críticos da energia para variações próprias.

Proposição 2.4.3. Uma curva c : [0,a] → M é uma geodésica se, e somente se, para toda

variação própria f de c, vale E ′(0) = 0.

Demonstração. Pode ser encontrada em [3] página 196.

Corolário 2.4.1. Se γ : [0,a]→ M é uma geodésica minimizante, f : (−ε,ε)× [0,a]→ M é uma

variação própria de γ e E f é a função energia associada a f , então E ′′
f (0)≥ 0.

Demonstração. Pela Proposição 2.4.3 vale que E ′
f (0) = 0. Se fosse E ′′

f (0) < 0, então E ′
f se-

ria decrescente numa vizinhança de 0, donde E ′
f (s) < E ′

f (0) = 0, para s > 0 pequeno. Por

conseguinte,

E( f (s, .)) = E f (s)< E f (0) = E(γ),

para s > 0 pequeno, o que contradiz o Lema 2.4.1, visto que a curva t ∈ [0,a] 7→ f (s, t) liga γ(0)

e γ(a) (pois a variação é própria). Portanto, E ′′
f (0)≥ 0.

Proposição 2.4.4. (Fórmula da segunda variação da energia) Sejam γ : [0,a] → M uma

geodésica, f : (−ε,ε)× [0,a]→ M uma variação de c com campo variacional V (t) e E a função

energia associada a f . Então

1
2

E ′′(0) =
∫ a

0
[⟨V ′(t),V ′(t)⟩−⟨R(γ ′,V )γ ′,V ⟩]dt

−
〈

D

ds

∂ f

∂ s
(0,0),γ ′(0)

〉

+

〈
D

ds

∂ f

∂ s
(0,a),γ ′(a)

〉

.
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Em particular, se a variação f é própria, vale

1
2

E ′′(0) =
∫ a

0
[⟨V ′(t),V ′(t)⟩−⟨R(γ ′,V )γ ′,V ⟩]dt.

Demonstração. Pode ser encontrada em [3] página 198 .

2.5 Mudança Conforme

Nessa última seção serão destacadas algumas fórmulas referentes a uma mudança

conforme de uma métrica Riemanniana. Consideraremos no decorrer desta seção (M,g) uma

variedade Riemanniana, u uma função suave e positiva em M e g = u2k ·g a mudança conforme

de g. Além disso, todas as quantidades que estiverem sobre uma barra são relacionadas à métrica

g, por exemplo, ∇ denota a conexão Riemanniana de (M,g).

Proposição 2.5.1. Dados X ,Y ∈ X(M), são válidas as seguintes relações

a) ∇Y X = ∇Y X +X(lnuk) ·Y +Y (lnuk) ·X −g(X ,Y ) ·∇(lnuk);

b)

Ric(X ,Y ) = Ric(X ,Y )− (n−2) ·Hess(lnuk)(X ,Y )+(n−2) ·X(lnuk) ·Y (lnuk)

−g(X ,Y ) ·
(

∆(lnuk)+(n−2) · |∇ lnuk|2
)

.

Demonstração. A fórmula de Koszul nos diz que

g(∇Y X ,Z) =
1
2
· {X(g(Y,Z))+Y (g(X ,Z))−Z(g(X ,Y ))−g([X ,Z],Y )−g([Y,Z],X)

−g([X ,Y ],Z)},

para qualquer Z ∈ X(M), o mesmo valendo para g, trocando ∇ por ∇. Sendo assim, fixando

p ∈ M e tomando um referencial ortonormal (em relação a g) {e1, . . . ,en} numa vizinhança de p,
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temos, em p, que

g(∇Y X −∇Y X ,ei) = u−2kg(∇Y X ,ei)−g(∇Y X ,ei)

= u−2k · 1
2
{X(g(Y,ei))+Y (g(X ,ei))− ei(g(X ,Y ))−g([X ,ei],Y )

−g([Y,ei],X)−g([X ,Y ],ei)}

−1
2
· {X(g(Y,ei))+Y (g(X ,ei))− ei(g(X ,Y ))−g([X ,ei],Y )

−g([Y,ei],X)−g([X ,Y ],ei)}

= u−2k · 1
2
{X(u2k) ·g(Y,ei)+Y (u2k) ·g(X ,ei)− ei(u

2k) ·g(X ,Y )

+u2kX(g(Y,ei))+u2kY (g(X ,ei))−u2kei(g(X ,Y ))}

−1
2
[X(g(Y,ei))+Y (g(X ,ei))− ei(g(X ,Y ))]

= X(lnuk) ·g(Y,ei)+Y (lnuk)g(X ,ei)− ei(lnuk) ·g(X ,Y ).

Daí, em p,

∇Y X −∇Y X = ∑
i

〈

∇Y X −∇Y X ,ei

〉

ei

= X(lnuk)∑
i

⟨Y,ei⟩ei +Y (lnuk)∑
i

⟨X ,ei⟩ei −g(X ,Y )∑
i

ei(lnuk) · ei

= X(lnuk)Y +Y (lnuk)X −g(X ,Y )∇(lnuk).

Sendo p arbitrário, fica provado a).

Quanto a b), por conta da linearidade, é suficiente provar a igualdade em um sistema de

coordenadas {U,x1, . . . ,xn} de M, com campos coordenados Xi =
∂

∂xi
. Além disso, podemos

assumir que, num ponto fixado p ∈U , vale gi j = δi j. Assim, em p,

Ric(Xi,X j) = ∑
r

g(R(Xi,Xr)X j,Xr) = ∑
r

∑
l

Rl
ir j ·glr = ∑

r

Rr
ir j

= ∑
r

[

Xr(Γ
r
i j)−Xi(Γ

r
r j)+∑

l

Γl
i j ·Γr

rl −∑
l

Γl
r j ·Γr

il

]

, (2.9)

onde

Γm
i j =

1
2 ∑

s

(
Xi(g js)+X j(gsi)−Xs(gi j)

)
·gsm

são os símbolos de Christoffel com respeito a g. Como gi j = u−2k ·gi j, vale
Γ

m
i j =

1
2 ∑

s

(
Xi(g js)+X j(gsi)−Xs(gi j)

)
·gsm

=
1
2 ∑

s

{

Xi(u
2k)g js +X j(u

2k)gsi −Xs(u
2k)gi j +u2k[Xi(g js)+X j(gsi)−Xs(gi j)]

}

u−2kgsm

= Xi(lnuk) ·δ jm +X j(lnuk) ·δim −gi j ·∑
s

gsmXs(lnuk)+Γm
i j,
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o que, substituindo em 2.9, fornece a fórmula desejada.

Proposição 2.5.2. (Elbert, Nelli e Rosenberg) Se γ é uma g-geodésica, com s e s denotando o

comprimento de arco de γ com respeito a g e g, respectivamente, então, ao longo de γ , vale a

relação

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

= u−2k ·
[

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

− k(n−2)(lnu)ss − k
∆u

u
+ k

|∇u|2
u2

]

,

onde (lnu)ss =
∂γ

∂ s

(
∂γ

∂ s
(lnu)

)

.

Demonstração. Pelo item b) da proposição anterior temos

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

= Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

− k(n−2) ·Hess(lnu)

(
∂γ

∂ s
,
∂γ

∂ s

)

+k2(n−2)

(
∂γ

∂ s
(lnu)

)2

−
[
k∆(lnu)+ k2(n−2)|∇ lnu|2

]
u−2k.(2.10)

Para simplificar esta expressão vamos calcular ∇ ∂γ
∂ s

∂γ

∂ s
. Pelo item a) da proposição anterior,

obtemos

∇ ∂γ
∂ s

∂γ

∂ s
= ∇ ∂γ

∂ s

∂γ

∂ s
+2k

∂γ

∂ s
(lnu) · ∂γ

∂ s
− k∇(lnu). (2.11)

Por outro lado, sendo γ uma g-geodésica, vale ∇ ∂γ
∂ s

∂γ

∂ s
= 0, logo, por

∂γ

∂ s
= u−k ∂γ

∂ s
, segue que

u−k

[
∂γ

∂ s
(u−k) · ∂γ

∂ s
+u−k ·∇ ∂γ

∂ s

∂γ

∂ s

]

= 0.

Podemos ainda reescrever a relação acima da seguinte forma

∇ ∂γ
∂ s

∂γ

∂ s
=−uk ∂γ

∂ s
(u−k) · ∂γ

∂ s
=−∂γ

∂ s
(lnu−k) · ∂γ

∂ s
= k

∂γ

∂ s
(lnu) · ∂γ

∂ s
.

Substituindo isto em (2.11), vem que

∇ ∂γ
∂ s

∂γ

∂ s
= k

[

∇(lnu)− ∂γ

∂ s
(lnu) · ∂γ

∂ s

]

= k

[

∇(lnu)−g

(

∇(lnu),
∂γ

∂ s

)

· ∂γ

∂ s

]

= k(∇(lnu))⊥, (2.12)

onde (∇(lnu))⊥ significa a componente de ∇(lnu) perpendicular a
∂γ

∂ s
. Além disso,

Hess(lnu)

(
∂γ

∂ s
,
∂γ

∂ s

)

=
∂γ

∂ s

(
∂γ

∂ s
(lnu)

)

−
(

∇ ∂γ
∂ s

∂γ

∂ s

)

(lnu)

= u−k · ∂γ

∂ s

(

u−k · ∂γ

∂ s
(lnu)

)

−u−k

(

∇ ∂γ
∂ s

(

u−k · ∂γ

∂ s

))

(lnu)

= u−2k

[
∂γ

∂ s

(
∂γ

∂ s
(lnu)

)

−
(

∇ ∂γ
∂ s

∂γ

∂ s

)

(lnu)

]

= u−2k

[
∂γ

∂ s

(
∂γ

∂ s
(lnu)

)

− k|(∇(lnu))⊥|2
]

, (2.13)
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onde, na última igualdade, usamos (2.12) para obter

(

∇ ∂γ
∂ s

∂γ

∂ s

)

(lnu) = k · (∇(lnu))⊥(lnu) = kg(∇(lnu),(∇(lnu))⊥) = k|(∇(lnu))⊥|2.

Por fim, ao substituir (2.13) em (2.10) e usar Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

= u−2kRic

(
∂γ

∂ s
,
∂γ

∂ s

)

, concluímos

que

Ric

(
∂γ

∂ s

∂γ

∂ s

)

= u−2k

[

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

− k(n−2)
∂γ

∂ s

(
∂γ

∂ s
(lnu)

)

+ k2(n−2)|(∇(lnu))⊥|2

+k2(n−2)

(
∂γ

∂ s
(lnu)

)2

− k∆(lnu)− k2(n−2)|∇(lnu)|2
]

= u−2k

[

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

− k(n−2)(lnu)ss − k∆(lnu)

]

= u−2k

[

Ric

(
∂γ

∂ s
,
∂γ

∂ s

)

− k(n−2)(lnu)ss − k
∆u

u
+ k

|∇u|2
u2

]

.
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3 RESULTADOS

3.1 Pinching Theorem para uma subvariedade completa da esfera

O primeiro dos três teoremas principais deste trabalho é uma extensão de um re-

sultado obtido por Alencar e do Carmo em [1], o qual caracteriza subvariedades compactas da

esfera com curvatura média constante e que satisfazem uma certa estimativa envolvendo um

tensor associado à segunda forma fundamental. Antes de apresentar tal resultado e sua extensão

é necessário fixar algumas notações e apresentar algumas definições.

Seja f : Mn → S
n+1, n ≥ 2, uma hipersuperfície imersa e orientável. No que segue

identificaremos M com a subvariedade f (M). Denotaremos por A a segunda forma fundamental

de M em S
n+1, ou seja

A(X ,Y ) = (∇Y X)N =−⟨X ,∇Y η⟩η , ∀X ,Y ∈ X(M)

onde ∇ representa a conexão Riemanniana em S
n+1 e η uma escolha de normal unitário. Como

A é um tensor simétrico, para cada p ∈ M o operador forma B : TpM → TpM definido por

⟨B(X),Y ⟩= ⟨A(X ,Y ),η⟩,∀X ,Y ∈ TpM,

é simétrico, logo existe uma base ortonormal {e1, . . . ,en} de TpM tal que B(ei) = kiei, i= 1, . . . ,n.

Denotaremos por H =
1
n

n

∑
i=1

ki a curvatura média de M e |A|2 =
n

∑
i=1

k2
i a norma ao quadrado da

segunda forma fundamental. Definamos o operador φ : TpM → TpM, chamado operador forma de

traço nulo, por ⟨φ(X),Y ⟩= ⟨B(X),Y ⟩−H⟨X ,Y ⟩ e o 2-tensor simétrico Φ, denominado segunda

forma fundamental de traço nulo, por Φ(X ,Y ) = ⟨φ(X),Y ⟩, X ,Y ∈ X(M).

Notemos que tr(φ) = 0 e |Φ|2 = 1
2n

n

∑
i, j=1

(ki − k j)
2. De fato, fixado p ∈ M tomemos novamente

{e1, . . . ,en} uma base ortonormal de TpM que diagonaliza B. Temos assim que

tr(φ) =
n

∑
i=1

⟨φ(ei),ei⟩=
n

∑
i=1

(⟨B(ei),ei⟩−H⟨ei,ei⟩) =
n

∑
i=1

ki −nH = 0.

Além disso, escrevendo Φ = ∑
n
i, j=1 Φ(ei,e j)e

i ⊗ e j, onde {e1, . . . ,en} é a base dual associada a

{e1, . . . ,en}, temos

|Φ|2 =
n

∑
i, j=1

(
⟨B(ei),e j⟩−H⟨ei,e j⟩

)2
=

n

∑
i, j=1

(
kiδi j −Hδi j

)2
=

n

∑
i=1

(ki −H)2 =
n

∑
i=1

k2
i −nH2

=
n

∑
i=1

k2
i −

1
n

(
n

∑
i=1

ki

)2

=
1
n

(

(n−1)
n

∑
i=1

k2
i −

n

∑
i̸= j

kik j

)

=
1

2n

n

∑
i, j=1

(k1 − k j)
2.
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Em particular, |Φ|2 = 0 se, e somente se, M é totalmente umbílica.

Duas subvariedades específicas da esfera irão desempenhar um papel importante

nessa seção, a saber, o Toro de Clifford T n,k e o H(r)-toro, os quais são definidos, respectiva-

mente, por

T n,k = S
k

(√

k

n

)

×S
n−k

(√

n− k

n

)

, k ∈ {1, . . . ,n−1},

H(r) = S
n−1(r)×S

1
(√

1− r2
)

, r ∈ (0,1).

Feitas as devidas apresentações, passemos ao enunciado do resultado de Alencar e

do Carmo citado acima:

Teorema 3.1.1. (Alencar e do Carmo) Ainda na notação acima, assuma que M é compacta,

possui curvatura média constante H ≥ 0 e satisfaz |Φ|2 ≤ b(n,H)2 em M, onde b(n,H) é a raiz

positiva do polinômio

P(n,H)(x) = x2 +
n(n−2)
√

n(n−1)
Hx−n(H2 +1).

Nessas condições vale

(i) Ou |Φ| ≡ 0 e M é totalmente umbílica ou |Φ| ≡ b(n,H);

(ii) |Φ| ≡ b(n,H) se, e somente se

a) H = 0 e M é localmente um Toro de Clifford;

b) H ̸= 0, n ≥ 3 e M é localmente um H(r)-toro com r2 <
n−1

n
;

c) H ̸= 0, n = 2 e M é localmente um H(r)-toro com r2 ̸= n−1
n

.

Antes de passarmos para o teorema princial dessa seção vamos estudar a caracteriza-

ção presente em (ii) no Teorema 3.1.1. Mais especificamente, será provado que tanto o Toro de

Clifford quanto o H(r)-toro (com r como no teorema acima) satisfazem |Φ| ≡ b(n,H).

Proposição 3.1.1. Para cada 0< r < 1, o H(r)-toro é uma subvariedade de Sn+1 com curvaturas

principais

k1 = · · ·= kn−1 =

√
1− r2

r
e kn =− r√

1− r2
,

para uma escolha de orientação. Para a outra escolha de orientação as curvaturas principais

são as simétricas das apresentadas acima.
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Demonstração. Para um ponto (x1, . . . ,xn+2) ∈ R
n+2, convencionaremos a seguinte notação

x = (x1, . . . ,xn) e y = (xn+1,xn+2). Note que, dado (x,y) ∈ H(r), o espaço tangente T(x,y)H(r) é

identificado com o subespaço de R
n+2

V = {(v,w) ∈ R
n+2; ⟨v,x⟩= ⟨w,y⟩= 0},

Isto segue do fato que H(r) é dado como pré imagem do valor regular (r2,1− r2) ∈ R
2 da

aplicação F : Rn+2 → R
2, F(x,y) = ( f1(x,y), f2(x,y)) = (|x|2, |y|2), logo

T(x,y)H(r) = Ker(DF(x,y)) = (∇ f1(x,y))
⊥∩ (∇ f2(x,y))

⊥ =V.

Em H(r) := H(r)∩{(x,y) ∈ R
n+2; xn,xn+2 > 0} definamos a carta ϕ : H(r)→ R

n, dada por

ϕ(x,y) = (x1, . . . ,xn−1,xn+1). Os campos coordenados {X1, . . . ,Xn} relativos a ϕ são dados por

Xi(x,y) = ei −
xi

xn
en, i = 1, . . . ,n−1, e Xn = en+1 −

xn+1

xn+2
en+2.

Além disso, o campo N : H(r)→ R
n+2 dado por

N(x,y) =

(√
1− r2

r
x,− r√

1− r2
y

)

,

é unitário e cumpre






⟨N(x,y),(x,y)⟩= 0, ∀(x,y) ∈ H(r)

⟨N(x,y),(v,w)⟩= 0, ∀(v,w) ∈ T(x,y)H(r)
,

pois, para quaisquer (x,y) ∈ H(r) e (v,w) ∈ T(x,y)H(r), vale

|N(x,y)|2 = 1− r2

r2 |x|2 + r2

1− r2 |y|
2 = 1,

⟨N(x,y),(x,y)⟩=
√

1− r2

r
|x|2 − r√

1− r2
|y|2 = r

√

1− r2 − r
√

1− r2 = 0,

e

⟨N(x,y),(v,w)⟩=
√

1− r2

r
⟨x,v⟩− r√

1− r2
⟨y,w⟩= 0.

Portanto, N é um campo unitário, tangente a S
n+1 e normal à H(r). Em H(r), temos

∇R
n+2

Xi
N(x,y) =

d

dt

∣
∣
∣
∣
t=0

N(ϕ−1(x1, . . . ,xi + t, . . . ,xn−1,xn+1)) =

√
1− r2

r

(

ei −
xi

xn
en

)

=

√
1− r2

r
Xi(x,y),
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para i = 1, . . . ,n−1, e

∇R
n+2

Xn
N(x,y) =

d

dt

∣
∣
∣
∣
t=0

N(ϕ−1(x1, . . . ,xn−1,xn+1 + t)) = − r√
1− r2

(

en+1 −
xn+1

xn+2
en+2

)

= − r√
1− r2

Xn(x,y).

Isto nos diz que

√
1− r2

r
é autovalor do operador forma de H(r) com multiplicidade n− 1 e

− r√
1− r2

é autovalor com multiplicidade 1, donde conclui-se que

k1 = · · ·= kn−1 =

√
1− r2

r
e kn =− r√

1− r2

em H(r). Nos demais pontos de H(r) procedemos de modo análogo, considerando as cartas de

gráfico e verificando que os campos coordenados associados a essas cartas são autovetores do

operador forma.

Em particular, a curvatura média do H(r)-toro é

H =
1
n

(

(n−1)

√
1− r2

r
− r√

1− r2

)

=
n−1−nr2

nr
√

1− r2
,

ou o simétrico disso, a depender da orientação.

Proposição 3.1.2. Seja r como na caracterização do Teorema 3.1.1 e Φ a segunda forma

fundamental de traço nulo do H(r)-toro. Então |Φ| ≡ b(n,H).

Demonstração. Consideremos inicialmente que r2 <
n−1

n
. Nesse caso, a escolha da orientação

de H(r) deve ser tal que H =
n−1−nr2

nr
√

1− r2
, para que se tenha H > 0. Daí, como

|Φ|2 = 1
2n

∑
i̸= j

(ki − k j)
2 =

n−1
n

(√
1− r2

r
+

r√
1− r2

)2

=
n−1

nr2(1− r2)
,

segue que

P(n,H)(|Φ|) = |Φ|2 + n(n−2)
√

n(n−1)
H|Φ|−n(H2 +1)

=
n−1

nr2(1− r2)
+

n(n−2)
√

n(n−1)

(
n−1−nr2

nr
√

1− r2

) √
n−1

r
√

n(1− r2)

−n

(
(n−1)2 −2(n−1)nr2 +n2r4

n2r2(1− r2)
+1

)

=
n−1

nr2(1− r2)
+

(n−2)(n−1−nr2)

nr2(1− r2)

−(n−1)2 −2(n−1)nr2 +n2r4 +n2r2(1− r2)

nr2(1− r2)

= 0,
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ou seja, |Φ| ≡ b(n,H).

Consideremos agora r2 >
n−1

n
. Nesse caso temos a restrição n = 2 como na caracterização do

Teorema 3.1.2. Portanto,

P(2,H)(|Φ|) = 1
2r2(1− r2)

−2

(
1−4r2 +4r4

4r2(1− r2)
+1

)

=
1

2r2(1− r2)
− 1

2r2(1− r2)
= 0,

donde |Φ| ≡ b(n,H).

Vale salientar que, para r2 >
n−1

n
e n ≥ 3, tem-se |Φ|> b(n,H), pois nesse caso

deve-se escolher a orientacação de modo que

H =
nr2 − (n−1)

nr
√

1− r2
,

para que se tenha H > 0. Daí, seguindo um cálculo análogo ao que foi apresentado na prova

acima obtém-se

P(n,H)(|Φ|) = 2
nr2(n−2)− (n−1)(n−2)

nr2(1− r2)
> 0,

já que

nr2(n−2)− (n−1)(n−2) = (n−2)(nr2 − (n−1))> 0.

Como P(n,H) é crescente em R
+, conclui-se que |Φ|> b(n,H), como afirmado. Essa diferença

de comportamento entre n = 2 e n ≥ 3 se dá por conta do termo de grau 1 de P(n,H), o qual se

anula quando n = 2.

Seguindo passos análogos obtém-se que as curvaturas principais do Toro de Clifford

T n,l = S
l

(√

l

n

)

×S
n−l

(√

n− l

n

)

são

k1 = · · ·= kl =

√

n− l

n
e kl+1 = · · ·= kn =−

√

l

n− l
,

ou os simétricos destes, a depender da orientação. Em particular, a curvatura média de T n,l é

H = l · k1 +(n− l) · kn =
√

l · (n− l)−
√

(n− l) · l = 0.

Portanto,

|Φ|2 = 1
2n

∑
i̸= j

(ki − k j)
2 =

1
n

l · (n− l) ·
(√

n− l

l
+

√

l

n− l

)2

= n = b(n,0)2.

Tendo discutido esse detalhe a respeito do resultado de Alencar e do Carmo, passe-

mos ao teorema principal dessa seção, o qual enfraquece a hipótese de compacidade, requerindo

agora apenas a completude de M.
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Teorema 3.1.2. (Magliaro, Mari, Roing e Savas-Halilaj) Seja f : Mn → S
n+1 uma hipersuperfí-

cie imersa e completa com curvatura média constante H ≥ 0. Suponha que

|Φ|2 ≤ b(n,H)2,

onde b(n,H) é a raiz positiva do polinômio

P(n,H)(x) = x2 +
n(n−2)
√

n(n−1)
Hx−n(H2 +1). (3.1)

Então, ou |Φ| ≡ 0 (e M é uma esfera totalmente umbílica) ou |Φ| ≡ b(n,H). Além

disso, |Φ| ≡ b(n,H) se, e somente se:

a) H = 0 e M é um recobrimento de um Toro de Clifford T n,k, onde k ∈ {1, . . . ,n−1};

b) H > 0, n ≥ 3 e M é um recobrimento de um H(r)-toro, com r2 <
n−1

n
;

c) H > 0, n = 2 e M é um recobrimento de um H(r)-toro, com r2 ̸= n−1
n

.

Antes de iniciar a prova do Teorema 3.1.2, será provada uma estimativa para o

laplaciano da função |Φ|2 juntamente com alguns lemas essenciais para a demonstração do

teorema supracitado.

3.1.1 Estimativa para ∆|Φ|2 e alguns lemas

Na prova do Teorema 3.1.2 faremos uso da estimativa obtida por Alencar e do Carmo

em [1] (a qual será provada aqui de modo a tornar o presente trabalho autocontido, embora seu

conteúdo fuja do conceito principal que aqui se deseja tratar):

Proposição 3.1.3. Ainda na notação do Teorema 3.1.2, o laplaciano da função |Φ|2 satisfaz

∆|Φ|2 ≥−2|Φ|2P(n,H)(|Φ|)+2|∇Φ|2.

Para provar tal estimativa serão necessários dois lemas de conteúdo algébrico. O

primeiro destes lemas foi obtido por Alencar e do Carmo em [1] enquanto o segundo foi provado

por Nomizu e Smyth em [13].

Lema 3.1.1. (Alencar e do Carmo) Sejam µi, i = 1, . . . ,n, números reais tais que ∑
n
i=1 µi = 0 e

∑
n
i=1 µ2

i = β 2, com β ≥ 0. Então

− n−2
√

n(n−1)
β 3 ≤

n

∑
i=1

µ3
i ≤ n−2

√

n(n−1)
β 3.
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Demonstração. Caso β = 0 a conclusão é imediata pois

n

∑
i=1

µ2
i = β 2 = 0 ⇒ µi = 0, i = 1, . . . ,n.

Consideremos então β > 0. É suficiente mostrar que o máximo e o mínimo da função f :Rn →R,

dada por f (x1, . . . ,xn) = ∑
n
i=1 x3

i , restrita ao conjunto X := g−1(0)∩h−1(0), onde g,h : Rn → R

são dadas por

g(x1, . . . ,xn) =
n

∑
i=1

xi e h(x1, . . . ,xn) =
n

∑
i=1

x2
i −β 2,

são, respectivamente,
n−2

√

n(n−1)
β 3 e − n−2

√

n(n−1)
β 3.

Para tanto, vamos usar o método dos multiplicadores de Lagrange, ou seja, vamos analisar o

sistema 





∑
n
i=1 xi = 0

∑
n
i=1 x2

i −β 2 = 0

∇ f (x1, . . . ,xn) = λ∇g(x1, . . . ,xn)+α∇h(x1, . . . ,xn)

,

o qual equivale a 





∑
n
i=1 xi = 0

∑
n
i=1 x2

i −β 2 = 0

3x2
i −2αxi −λ = 0, i = 1, . . . ,n

.

Vale ressaltar que tal sistema possui solução, já que X é compacto. Se a ≥ −b são as raízes

do polinômio 3x2 −2αx−λ , então um ponto crítico (x1, . . . ,xn) ∈ X de f restrita a X possui p

coordenadas iguais a a e n− p coordenadas iguais a −b. com p ∈ {0, . . . ,n} (evidentemente os

números a e −b dependem dos valores de α e λ , porém, visando tornar a notação mais limpa,

iremos omitir tal depêndencia).

Como

0 =
n

∑
i=1

xi = pa− (n− p)b e 0 < β 2 =
n

∑
i=1

x2
i = pa2 +(n− p)b2,

devemos ter a ̸= 0 ou b ̸= 0. Se, por exemplo, a ̸= 0 e b = 0, então

0 =
n

∑
i=1

xi = pa− (n− p)b = pa ⇒ p = 0 ⇒ β 2 =
n

∑
i=1

x2
i = pa2 +(n− p)b2 = 0,
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o que é uma contradição. Da mesma forma, não pode ocorrer b ̸= 0 e a = 0. Logo, a,b ̸= 0.

Além disso, a = b implicaria que a soma das coordenadas xi seria igual a na ̸= 0, portanto a ̸= b.

Mais ainda, p ̸= 0,n, pois, do contrário, a soma das coordenadas xi seria nb ̸= 0 ou na ̸= 0. Por

fim, caso ocorresse −b > 0 ou 0 > a obteríamos, por pa− (n− p)b = 0, que −b > a, o que é

uma contradição, logo a > 0 >−b. Temos assim que






β 2 = pa2 +(n− p)b2

0 = pa− (n− p)b

f (x1, . . . ,xn) = pa3 − (n− p)b3

⇒







β 2 = p
(

n−p
p

b
)2

+(n− p)b2

a = n−p
p

b

f (x1, . . . ,xn) = pa3 − (n− p)b3

⇒







b2 = p
n(n−p)β

2

a2 = n−p
pn

β 2

f (x1, . . . ,xn) = pa2a− (n− p)b2b

⇒ f (x1, . . . ,xn) =

(
n− p

n
a− p

n
b

)

β 2.

Segue então dessa expressão que o valor de f , num ponto crítico (x1, . . . ,xn) de f restrita a X ,

decresce à médida que p aumenta. Portanto, os valores de máximo e mínimo de f em X são,

respectivamente,

a3 − (n−1)b3 ∑xi=0
= ((n−1)b)3 − (n−1)b3

= b3(n−1)n(n−2)

(1)
=

1
n(n−1)

β 2 1
√

n(n−1)
β (n−1)n(n−2)

=
n−2

√

n(n−1)
β 3

e

(n−1)a3 −b3 = (n−1)a3 − ((n−1)a)3 = −a3(n−1)n(n−2)

(1)
= − 1

n(n−1)
β 2 1
√

n(n−1)
β (n−1)n(n−2)

= − n−2
√

n(n−1)
β 3,

o que prova o desejado.

Lema 3.1.2. (Nomizu e Smyth) Seja A uma matriz real simétrica n × n com autovalores

λ1, . . . ,λn. Então, para qualquer constante c, vale que

n · c · tr(A2)− (tr(A2))2 − c(tr(A))2 +(tr(A))(tr(A3)) = ∑
i< j

(λi −λ j)
2(c+λiλ j). (3.2)

1Lembre que b2 =
p

n(n− p)
β 2 e a2 =

n− p

pn
β 2.
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Demonstração. Faremos por indução em n. No caso n = 1 entendemos o lado direito de (3.2)

como sendo 0. Daí,

1 · c ·λ 2
1 − (λ 2

1 )
2 − c(λ1)

2 +(λ1)(λ
3
1 ) = 0,

ou seja, o lema é verdadeiro para n = 1. Suponhamos agora que o lema vale para n−1. Então

n · c ·
(

n−1

∑
i=1

λ 2
i +λ 2

n

)

−
(

n−1

∑
i=1

λ 2
i +λ 2

n

)2

− c

(
n−1

∑
i=1

λi +λn

)2

+

(
n−1

∑
i=1

λi +λn

)(
n−1

∑
i=1

λ 3
i +λ 3

n

)

=

=



(n−1)c

(
n−1

∑
i=1

λ 2
i

)

−
(

n−1

∑
i=1

λ 2
i

)2

− c

(
n−1

∑
i=1

λi

)2

+

(
n−1

∑
i=1

λi

)(
n−1

∑
i=1

λ 3
i

)



+

[

c

(
n−1

∑
i=1

λ 2
i

)

−2c

(
n−1

∑
i=1

λi

)

λn +(n−1)cλ 2
n

]

+
n−1

∑
i=1

(λ 3
i λn −2λ 2

i λ 2
n +λiλ

3
n ).

Pela hipótese de indução, a primeira linha da expressão acima é igual a

∑
1≤i< j≤n−1

(λi −λ j)
2(c+λiλ j).

A segunda linha, por sua vez, é igual a

c
n−1

∑
i=1

(
λ 2

i −2λiλn +λ 2
n

)
= c

n−1

∑
i=1

(λi −λn)
2,

enquanto a terceira linha é
n−1

∑
i=1

λiλn(λi −λn)
2.

Portanto, a soma fica

∑
1≤i< j≤n−1

(λi −λ j)
2(c+λiλ j)+ c

n−1

∑
i=1

(λi −λn)
2 +

n−1

∑
i=1

λiλn(λi −λn)
2 = ∑

i< j

(λi −λ j)
2(c+λiλ j),

onde, no último somatório, os índices variam entre 1 e n. Isto garante que o lema também vale

para n, o que conclui prova indutiva.

Prova da Proposição 3.1.3. Fixemos inicialmente um ponto p ∈ M. Começemos calculando

o laplaciano da função |Φ|2 em p. Num referencial ortonormal local {e1, . . . ,en} de M numa

vizinhança de p, com base dual {e1, . . . ,en}, podemos escrever






Φ = ∑
n
i, j=1 Φi je

i ⊗ e j

|Φ|2 = ∑
n
i, j=1 Φ2

i j
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Sendo Φ um tensor simétrico, podemos escolher o referencial {e1, . . . ,en} de modo que, em

p ∈ M, vale

Φ(ei,e j) = µiδi j ⇒







⟨B(ei),e j⟩= (µi +H)δi j

⟨φ(ei),e j⟩= µiδi j

⇒







ki = µi +H

0 = tr(φ) = ∑i µi

Afirmamos que Φ satisfaz a equação de Codazzi, isto é, sendo

∇Φ = ∑
i, j,k

(∇Φ)i jkei ⊗ e j ⊗ ek = ∑
i, j,k

Φi j;kei ⊗ e j ⊗ ek,

vale

Φi j;k = Φik; j, para quaisquer i, j,k ∈ {1, . . . ,n}. (3.3)

De fato, sendo η uma escolha local de campo normal unitário de M, Aη o 2-tensor simétrico

Aη(X ,Y ) = ⟨B(X),Y ⟩= ⟨A(X ,Y ),η⟩ e ∇Aη = ∑
i, j,k

Aηi j;kei ⊗ e j ⊗ ek, temos que

Φi j;k = ek(Φi j)−Φ(∇ek
ei,e j)−Φ(ei,∇ek

e j)

= ek(⟨B(ei),e j⟩−H⟨ei,e j⟩)−⟨B(∇ek
ei),e j⟩+H⟨∇ek

ei,e j⟩

−⟨B(ei),∇ek
e j⟩+H⟨ei,∇ek

e j⟩

= −H⟨∇ek
ei,e j⟩−H⟨ei,∇ek

e j⟩+H⟨∇ek
ei,e j⟩+H⟨ei,∇ek

e j⟩

+ek(Aη(ei,e j))−Aη(∇ek
ei,e j)−Aη(ei,∇ek

e j)

= Aηi j;k .

Portanto, basta mostrar que Aη satisfaz a equação de Codazzi. Para provar isto usaremos a

equação de Codazzi no caso de codimensão 1, que nos diz que

⟨RS
n+1

(ei,e j)ek,η⟩= (∇e j
Aη)(ei,ek)− (∇ei

Aη)(e j,ek), i, j,k ∈ {1, . . . ,n},

onde RS
n+1

é a curvatura da esfera (ver discussão após a Proposição 2.2.1). Além disso, a equação

de Gauss aplicada à esfera nos dá

⟨RS
n+1

(ei,e j)ek,η⟩ = ⟨RR
n+2

(ei,e j)ek,η⟩−⟨AS
n+1

(e j,η),AS
n+1

(ei,ek)⟩

+⟨AS
n+1

(ei,η),AS
n+1

(e j,ek)⟩,

onde AS
n+1

é a segunda forma fundamental da esfera.

Portanto, como RR
n+2 ≡ 0 e AS

n+1
(X ,Y ) =−⟨X ,Y ⟩IdSn+1 , segue que

(∇e j
Aη)(ei,ek)− (∇ei

Aη)(e j,ek) = ⟨RS
n+1

(ei,e j)ek,η⟩= 0,



51

provando assim que Aη satisfaz a equação de Codazzi e, consequentemente, o afirmado.

Dessa maneira, pela Proposição 2.1.4, obtemos, em p,

1
2

∆|Φ|2 = |∇Φ|2 +∑
i

µi(tr(Φ));ii +
1
2 ∑

i, j

Ri ji j(µi −µ j)
2, (3.4)

onde R é o tensor de curvatura de M e Ri jkl = R(ei,e j,ek,el). Vamos agora calcular a última

parcela do lado direito de (3.4):

Por µi = ki −H e da equação de Gauss

⟨R(X ,Y )Z,W ⟩= ⟨RS
n+1

(X ,Y )Z,W ⟩−⟨A(X ,W ),A(Y,Z)⟩+ ⟨A(X ,Z),A(Y,W )⟩

segue que, para i ̸= j,

Ri ji j = RS
n+1

i ji j −⟨B(ei),e j⟩ · ⟨B(e j),ei⟩+ ⟨B(ei),ei⟩ · ⟨B(e j),e j⟩

= RS
n+1

i ji j +(µi +H)(µ j +H)

= 1+H2 +µiµ j +H(µi +µ j). (3.5)

Usando o Lema 3.1.2, com c = 1, para o operador φ : TpM → TpM, ⟨φ(X),Y ⟩= Φ(X ,Y ), o qual

satisfaz ∑i µi = tr(φ) = 0, obtemos

1
2 ∑

i, j

(1+µiµ j)(µi −µ j)
2 = n∑

i

µ2
i −
(

∑
i

µ2
i

)2

= n|Φ|2 −|Φ|4.

Dessa forma, por ∑
i, j

(µi −µ j)
2 = ∑

i, j

(ki − k j)
2 = 2n|Φ|2 e (3.5), vem que

1
2 ∑

i, j

Ri ji j(µi −µ j)
2 =

1
2 ∑

i, j

(1+H2 +µiµ j +H(µi +µ j))(µi −µ j)
2

=
1
2 ∑

i, j

(1+µiµ j)(µi −µ j)
2 +

H2

2 ∑
i, j

(µi −µ j)
2

+
H

2 ∑
i, j

(µi +µ j)(µi −µ j)
2

= n|Φ|2 −|Φ|4 +nH2|Φ|2 + H

2 ∑
i, j

(µi +µ j)(µi −µ j)
2.

Por outro lado,

∑
i, j

(µi +µ j)(µi −µ j)
2 = ∑

i, j

(µ3
i −µ2

i µ j −µiµ
2
j +µ3

j )

= n∑
i

µ3
i −
(

∑
i

µ2
i

)(

∑
i

µ j

)

−
(

∑
i

µi

)(

∑
i

µ2
j

)

+n∑
j

µ3
j

= 2n∑
i

µ3
i .
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Juntando essas duas informações e substituindo em (3.4) encontramos

1
2

∆|Φ|2 = |∇Φ|2 −|Φ|4 +n|Φ|2 +nH2|Φ|2 +nH ∑
i

µ3
i .

Por fim, aplicando o Lema 3.1.1 com β = |Φ|, concluímos que

1
2

∆|Φ|2 ≥ |∇Φ|2 −|Φ|4 +n(H2 +1)|Φ|2 − n(n−2)
√

n(n−1)
H|Φ|3

= |∇Φ|2 + |Φ|2
(

−|Φ|2 − n(n−2)
√

n(n−1)
H|Φ|+n(H2 +1)

)

= |∇Φ|2 −|Φ|2P(n,H)(|Φ|).

O último lema antes da prova do Teorema 3.1.2 é de caráter puramente algébrico e

será útil para tratar da norma do 2-tensor Φ.

Lema 3.1.3. Seja Φ : Rn×R
n →R

p, n ≥ 2, uma forma bilinear simétrica com componentes Φα
i j,

i, j ∈ {1, . . . ,n} e α ∈ {1, . . . , p}. Suponha que, para cada α , ∑
n
k=1 Φα

kk = 0. Então, a norma de

Φ,

|Φ|2 = ∑
α,i, j

(Φα
i j)

2,

satisfaz

|Φ|2 ≥ n

n−1 ∑
α

n

∑
j=1

(Φα
1 j)

2 ≥ n

n−1 ∑
α

(Φα
11)

2.

Demonstração. A desigualdade de Cauchy-Schwarz e a hipótese ∑
n
k=1 Φα

kk = 0 nos garante que,

para cada α , vale

(Φα
11)

2 =

(

−
n

∑
j=2

Φα
j j

)2

≤ (n−1)
n

∑
j=2

(Φα
j j)

2.

Logo, como Φ é simétrica, obtemos

|Φ|2 ≥ ∑
α

(
n

∑
i=1

(Φα
ii )

2 +
n

∑
j=2

(Φα
1 j)

2 +
n

∑
j=2

(Φα
j1)

2

)

= ∑
α

(
n

∑
i=1

(Φα
ii )

2 +2
n

∑
j=2

(Φα
1 j)

2

)

≥ ∑
α

(

(Φα
11)

2 +
1

n−1
(Φα

11)
2 +2

n

∑
j=2

(Φα
1 j)

2

)

=
n

n−1 ∑
α

(Φα
11)

2 +2∑
α

n

∑
j=2

(Φα
j1)

2

≥ n

n−1

(

∑
α

(Φα
11)

2 +∑
α

n

∑
j=2

(Φα
1 j)

2

)

=
n

n−1 ∑
α

n

∑
j=1

(Φα
1 j)

2.
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3.1.2 Demonstração do Teorema 3.1.2

Vamos denotar por b− < 0 < b+ = b(n,H) as raízes do polinômio P(n,H)(x), ou seja

b± =− n(n−2)H

2
√

n(n−1)
±
√

n2(n−2)2

4n(n−1)
H2 +n(H2 +1).

Como |b−| ≥ b+

(

note que |b−|= b++ n(n−2)√
n(n−1)

H

)

, temos, para x ∈ [0,b+], que

P(n,H)(x) = (x−b+)(x−b−)≤ (x−b+)(x+b+) = x2 −b2
+,

donde podemos reescrever a desigualdade da Proposição 3.1.3 como

∆|Φ|2 ≥ −2|Φ|2P(n,H)(|Φ|)+2|∇Φ|2 ≥−2|Φ|2(|Φ|2 −b2
+)

= 2|Φ|2(b2
+−|Φ|2)≥ 0. (3.6)

No que segue escreveremos b+ = b. Como consequência da desigualdade acima temos que a

função u = b2 −|Φ|2 satisfaz

u ≥ 0 e ∆u =−∆|Φ|2 ≤−2|Φ|2u em M.

Consideremos agora dois casos:

Caso 1: u(x0) = 0, para algum x0 ∈ M.

Nesse caso, como u ≥ 0 e ∆u ≤ 0, segue do princípio do máximo que u ≡ 0, logo |Φ|2 ≡ b e

|∇Φ| ≡ 0. O restante da argumentação é essencialmente uma consequência do que é feito em [1],

mais especificamente prova-se que M possui duas curvaturas principais distintas e constantes e

que cada ponto de M possui uma vizinhança U tal que f (U) é um pedaço de um toro de Clifford

ou um H(r)-toro, a depender do valor de H. Juntando isso com a hipótese de completude sobre

M é possível mostrar que f (M) é exatamente um desses toros, digamos Σ, e f : M → Σ é um

mapa de recobrimento. Como isto foge do cerne deste trabalho, não serão dados mais detalhes a

respeito desse caso (para mais detalhes ver [12]).

Caso 2: u > 0 em M.

Vamos provar que, nesse caso, |Φ| ≡ 0 e, por conseguinte, M é uma esfera totalmente umbílica.

Para tanto consideremos a mundança conforme da métrica de M dada por

g = u2β g,

onde g é a métrica de M e

β =







qualquer número em (0,1) , se n = 2,3
1

n−2
, se n ≥ 4
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Seja γ : [0,a]→ M uma curva parametrizada por comprimento de arco s, em relação a g, e s o

comprimento de arco com relação a g, ou seja

s(s) =
∫ s

0

√

g(γ ′(t),γ ′(t))dt =
∫ s

0
uβ (γ(t))dt.

Em particular, ds = uβ ds.

A prova seguirá das três afirmações a seguir:

Afirmação 1: Suponha que γ é uma g-geodésica com segunda variação da energia não negativa,

com respeito ao comprimento de arco em g, para qualquer variação própria de γ . Então existem

constantes c0 > 0 e t0 > 1, dependendo de n e β , tais que

c0

∫ a

0
uβ (γ(s))ψ2(s)ds ≤−2t0

∫ a

0
uβ (γ(s))ψ(s)ψss(s)ds, ∀ψ ∈C2

0([0,a])

onde

C2
0([0,a]) = {ψ ∈C2([0,a]); ψ(0) = ψ(a) = 0}.

Afirmação 2: M é compacta.

Afirmação 3: M é uma esfera totalmente umbílica.

Demonstração da Afirmação 1. Consideremos campos paralelos, com respeito à métrica g,

{e1(s), . . . ,en−1(s)} ao longo de γ tais que {e1(s), . . . ,en−1(s),γs(s))} é uma base ortonormal

de Tγ(s)M, para todo s ∈ [0,s(a)] (basta tomar o transporte paralelo de uma base ortonormal de

Tγ(0)M, que contenha γs(0), ao longo de γ , visto que γ é uma g-geodésica). Dada ϕ ∈C2
0([0,a]),

definamos os campos Vj, j = 1, . . . ,n−1, ao longo de γ por

Vj(s) = ϕ(s)e j(s), ∀ s ∈ [0,s(a)].

Como Vj(0) =Vj(s(a)) = 0, existe uma variação própria de γ , f j : (−ε0,ε0)× [0,s(a)]→ M, tal

que Vj é o campo variacional de f j, ou seja, Vj(s) =
∂ f j

∂ t
(0,s) (Proposição 2.4.1). Se E j denota

a energia relativa à variação f j, então a fórmula da segunda variação da energia e a hipótese nos

garantem

0 ≤ 1
2

E ′′
j (0) =

∫ s(a)

0

[〈
DVj

∂ s
(τ),

DVj

∂ s
(τ)

〉

−
〈
R
(
γs(τ),Vj(τ)

)
γs(τ),Vj(τ)

〉
]

dτ

(2)
=

∫ s(a)

0

[
(ϕs(τ))

2 − (ϕ(τ))2 〈R
(
γs,e j(τ)

)
γs(τ),e j(τ)

〉]
dτ,

onde R é o tensor curvatura de M com respeito a métrica g, ϕs =
d
ds
(ϕ ◦ s−1) e ⟨., .⟩ = g.

2Note que
DVj

∂ s
= ϕse j +ϕ

∂e j

∂ s
= ϕse j, já que e j é um campo paralelo.
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Somando em j, obtemos que

∫ s(a)

0

[
(n−1)(ϕs(τ))

2 − (ϕ(τ))2Ric(γs,γs)
]

dτ ≥ 0

Uma forma equivalente de escrever a desigualdade acima é

∫ a

0

[
(n−1)(ϕs(s))

2 − (ϕ(s))2Ric(γs(s),γs(s))
]

u−β (γ(s))ds ≥ 0. (3.7)

Para ver isso basta notar que, para todo τ ∈ [0,s(a)]






ϕs(τ) = ϕs(s
−1(τ))ds−1

ds
(τ) = ϕs(s(τ))u

−β (γ(s−1(τ)))

γs(τ) = γs(s
−1(τ))ds−1

ds
(τ) = γs(s

−1(τ))u−β (γ(s−1(τ)))

donde

∫ s(a)

0

[
(ϕs(τ))

2 − (ϕ(τ))2 〈R
(
γs,e j(τ)

)
γs(τ),e j(τ)

〉]
dτ

=
∫ s(a)

0

[

(ϕs ◦ s−1)2u−2β (γ ◦ s−1)− (ϕ ◦ s−1)2u−2β (γ ◦ s−1)
〈
R
(
γs ◦ s−1,e j

)
γs ◦ s−1,e j

〉]

dτ

=
∫ a

0

[
(ϕs(s))

2 − (ϕ(s))2 〈R
(
γs(s),e j(s(s))

)
γs(s),e j(s(s))

〉]
u−β (γs(s))ds,

logo basta somar em j para obter (3.7).

Como já mostrado na Proposição (2.5.2), ao longo de γ vale a relação

Ric(γs,γs) = Ric(γs,γs)−β (n−2)(ln(u◦ γ))ss −β∆ ln(u). (3.8)

Note que

∆ ln(u) =
∆u

u
− |∇u|2

u2 =
∆u

u
−|∇ lnu|2,

pois dado p ∈ M e {X1, . . . ,Xn} um referencial ortonormal numa vizinhança de p, tem-se

(∆ ln(u))p =
n

∑
i=1

[

Xip
(Xi(ln(u)))− (∇Xi

Xi)p (ln(u))
]

=
n

∑
i=1

[

Xip

(
Xi(u)

u

)

−
(∇Xi

Xi)p (u)

u(p)

]

=
n

∑
i=1

[

(Xip(Xi(u)))u− (Xip(u)
2

u(p))2 −
(∇Xi

Xi)p (u)

u(p)

]

=
∑

n
i=1

[

Xip(Xi(u))− (∇Xi
Xi)p (u)

]

u(p)
− ∑

n
i=1(Xip

(u))2

u(p)2

=
(∆u)p

u(p)
− |(∇u)(p)|2

u(p)2 ,
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e

|(∇ ln(u))(p)|2 =
n

∑
i=1

(Xip
(ln(u)))2 =

n

∑
i=1

(
Xip(u)

u(p)

)2

=
|(∇u)(p)|2

u(p)2 .

Disto e de ∆u ≤−2|Φ|2u, temos que

∆ ln(u)≤−2|Φ|2 −|∇ ln(u)|2
(3)
≤ −2|Φ|2 − [(ln(u◦ γ))s]

2.

Substituindo em (3.8), obtemos

Ric(γs,γs)≥ Ric(γs,γs)+2β |Φ|2 −β (n−2)(ln(u◦ γ))ss +β [(ln(u◦ γ))s]
2. (3.9)

Consideremos agora {v1(s) = γs(s),v2(s), . . . ,vn(s)} um referencial ortonormal de M, com

respeito a g, ao longo de γ (basta tomar vi(s) = uβ (γ(s)) ·ei(s)). Pela equação de Gauss, obtemos

que as componentes do tensor curvatura R (em relação a g) de M são

Ri ji j = RS
n+1

i ji j + ⟨A(ei,ei),A(e j,e j)⟩−⟨A(ei,e j),A(e j,ei)⟩= 1−δi j +hiih j j −h2
i j,

para i, j ∈ {1, . . . ,n}, onde hi j são as componentes da segunda forma fundamental de M. Como

Φ = A−Hg, podemos reescrever a igualdade acima como

Ri ji j = 1−δi j +(Φii +H)(Φ j j +H)− (Φi j +Hδi j)
2, i, j ∈ {1, . . . ,n}.

Disto e de tr(φ) = 0, segue que

Ric(γs,γs) =
n

∑
j=2

R1 j1 j

=
n

∑
j=2

[
1−δ1 j +Φ11Φ j j +Φ11H +HΦ j j +H2 − (Φ1 j +Hδ1 j)

2]

= n−1−Φ2
11 +(n−1)Φ11H −HΦ11 +(n−1)H2 −

n

∑
j=2

Φ2
1 j

= n−1−Φ2
11 +(n−2)Φ11H +(n−1)H2 −

n

∑
j=2

Φ2
1 j. (3.10)

Pelo Lema 3.1.3 temos

|Φ|2 ≥ n

n−1

n

∑
j=1

Φ2
1 j ≥

n

n−1
Φ11. (3.11)

3Dado s∈ [0,a] tome um referencial ortonormal {X1, . . . ,Xn} de M numa vizinhança de γ(s) tal que X1γ(s)
= γs(s).

Daí

|(∇ ln(u))(γ(s))|2 =
n

∑
i=1

(Xiγ(s)
(ln(u)))2 ≤ (X1γ(s)

(ln(u)))2 = (γs(s)(ln(u)))
2 = [ln(u◦ γ)s(s)]

2.
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Fixemos τ ∈ (0,1] e ε > 0. Pela desigualdade de Young e (3.11), vem que

H ·Φ11 = H(1− τ)Φ11 +HτΦ11

(4)
≥ −H(1− τ)

√

n−1
n

|Φ|− τH2

2ε
− τεΦ2

11

2
,

logo, por (3.10),

Ric(γs,γs) ≥ n−1−Φ2
11 +(n−2)

[

−H(1− τ)

√

n−1
n

|Φ|− τH2

2ε
− τεΦ2

11

2

]

+(n−1)H2 −
n

∑
j=2

Φ2
1 j.

Como P(n,H)(b) = 0 e 0 ≤ |Φ| ≤ b, temos

P(n,H)(|Φ|)≤ 0 ⇔ |Φ|2 + n(n−2)
√

n(n−1)
H|Φ|−n(H2 +1)≤ 0

⇔ (n−2)

√

n−1
n

H|Φ| ≤ (n−1)(H2 +1)− n−1
n

|Φ|2,

o que, ao substituir na relação anterior, implica

Ric(γs,γs) ≥ (n−1)τ + τ

(

n−1− n−2
2ε

)

H2 +
n−1

n
(1− τ)|Φ|2

−
(

1+
(n−2)τε

2

)

Φ2
11 −

n

∑
j=2

Φ2
1 j

≥ (n−1)τ + τ

(

n−1− n−2
2ε

)

H2 +
n−1

n
(1− τ)|Φ|2

−
(

1+
(n−2)τε

2

)
n

∑
j=1

Φ2
1 j.

Usando isso em (3.9) obtemos

Ric(γs,γs) ≥ (n−1)τ + τ

(

n−1− n−2
2ε

)

H2 +
n−1

n
(1− τ)|Φ|2

−
(

1+
(n−2)τε

2

)
n

∑
j=1

Φ2
1 j +2β |Φ|2 −β (n−2)(ln(u◦ γ))ss

+β [(ln(u◦ γ))s]
2

= (n−1)τ + τ

(

n−1− n−2
2ε

)

H2 +

(

2β +
n−1

n
(1− τ)

)

|Φ|2

−
(

1+
(n−2)τε

2

)
n

∑
j=1

Φ2
1 j −β (n−2)(ln(u◦ γ))ss +β [(ln(u◦ γ))s]

2

≥ (n−1)τ + τ

(

n−1− n−2
2ε

)

H2 +

(
2βn

n−1
− τ − (n−2)τε

2

)
n

∑
j=1

Φ2
1 j

−β (n−2)(ln(u◦ γ))ss +β [(ln(u◦ γ))s]
2, (3.12)

4|HτΦ11|= Hτ|Φ11|= τ

(
H√

ε

)
(√

ε|Φ11|
)
≤ τH2

2ε
+

τεΦ2
11

2
.
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onde, na última desigualdade, foi usado |Φ|2 ≥ n

n−1

n

∑
j=1

Φ2
1 j. Escolhamos agora τ e ε de modo

que 





n−1− n−2
2ε ≥ 0

2nβ
n−1 − τ − (n−2)τε

2 ≥ 0

Para isso basta tomar

ε =







1 , se n = 2

n−2
2(n−1) , se n ≥ 3

e τ suficientemente pequeno. Feita essa escolha, definamos c0 = τ(n−1). Daí, segue de (3.12)

que

Ric(γs,γs)≥ c0 −β (n−2)(ln(u◦ γ))ss +β [(ln(u◦ γ))s]
2.

Substituindo em (3.7) (na relação abaixo abusaremos da notação ao escrever apenas u para

indicar u◦ γ)

(n−1)
∫ a

0
ϕ2

s u−β ds ≥
∫ a

0
ϕ2u−β

(
c0 −β (n−2)(ln(u))ss +β [(ln(u))s]

2)ds. (3.13)

Integrando por partes e usando que ϕ(0) = ϕ(a) = 0, vem que

−β

∫ a

0
ϕ2(ln(u◦ γ))ss(u◦ γ)−β ds = 2β

∫ a

0
ϕϕs(ln(u◦ γ))s(u◦ γ)−β ds

−β 2
∫ a

0
ϕ2[(ln(u◦ γ))s]

2(u◦ γ)−β ds.

Substituindo isso em (3.13), obtemos

(n−1)
∫ a

0
ϕ2

s (u◦ γ)−β ds ≥ c0

∫ a

0
ϕ2(u◦ γ)−β ds+2β (n−2)

∫ a

0
ϕϕs(ln(u◦ γ))s(u◦ γ)−β ds

+β (1−β (n−2))
∫ a

0
ϕ2[(ln(u◦ γ))s]

2(u◦ γ)−β ds

= c0

∫ a

0
ϕ2(u◦ γ)−β ds+2β (n−2)

∫ a

0
ϕϕs(u◦ γ)s(u◦ γ)−β−1ds

+β (1−β (n−2))
∫ a

0
ϕ2(u◦ γ)2

s (u◦ γ)−β−2ds. (3.14)

Como estamos supondo u > 0, para toda ϕ ∈C2
0([0,a]), podemos escrever

ϕ = (u◦ γ)β ·ψ,

com ψ ∈C2
0([0,a]). Em particular,
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





ϕ2
s (u◦ γ)−β = ψ2

s (u◦ γ)β +2βψψs(u◦ γ)s(u◦ γ)β−1 +β 2ψ2(u◦ γ)2
s (u◦ γ)β−2

ϕ2(u◦ γ)−β = ψ2(u◦ γ)β

ϕϕs(u◦ γ)s(u◦ γ)−β−1 = βψ2(u◦ γ)2
s (u◦ γ)β−2 +ψψs(u◦ γ)s(u◦ γ)β−1

ϕ2(u◦ γ)2
s (u◦ γ)−β−2 = ψ2(u◦ γ)2

s (u◦ γ)β−2

Substituindo essas informações em (3.14) e simplificando, obtemos

(n−1)
∫ a

0
ψ2

s (u◦ γ)β ds ≥ c0

∫ a

0
ψ2(u◦ γ)β ds+β (1−β )

∫ a

0
ψ2(u◦ γ)2

s (u◦ γ)β−2ds

−2β

∫ a

0
ψψs(u◦ γ)s(u◦ γ)β−1ds. (3.15)

Definamos

I = β

∫ a

0
ψψs(u◦ γ)s(u◦ γ)β−1ds =

1
2

∫ a

0
(ψ2)s((u◦ γ)β )sds.

Integrando por partes e usando ψ(0) = ψ(a) = 0, segue que

I =−1
2

∫ a

0
(ψ2)ss(u◦ γ)β ds =−

∫ a

0
(ψs)

2(u◦ γ)β ds−
∫ a

0
ψψss(u◦ γ)β ds.

Para quaisquer t > 1 e δ > 0, vale que

2I = 2tI +2(1− t)I

= −2t

∫ a

0
(ψs)

2(u◦ γ)β ds−2t

∫ a

0
ψψss(u◦ γ)β ds

+2β (1− t)
∫ a

0
ψψs(u◦ γ)s(u◦ γ)β−1ds

≤ −2t

∫ a

0
(ψs)

2(u◦ γ)β ds−2t

∫ a

0
ψψss(u◦ γ)β ds

β (t −1)δ
∫ a

0
ψ2(u◦ γ)2

s (u◦ γ)β−2ds+
β (t −1)

δ

∫ a

0
ψ2

s (u◦ γ)β ds,

sendo que, na última desigualdade, usamos a desigualdade de Young para obter

|β (1− t)ψψs(u◦ γ)s(u◦ γ)β−1| = β (t −1)
(

(u◦ γ)
β
2 −1|(u◦ γ)sψ|

√
δ
)

·
(

(u◦ γ)
β
2 |ψs|√
δ

)

≤ β (t −1)

[

(u◦ γ)β−2(u◦ γ)2
s ψ2δ

2
+

(u◦ γ)β (ψs)
2

2δ

]

.

Visto que β < 1 e t > 1, podemos tomar δ =
1−β

t −1
. Com essa escolha, obtemos

2I ≤ −2t

∫ a

0
ψψss(u◦ γ)β ds+

(
β (t −1)

δ
−2t

)∫ a

0
(ψs)

2(u◦ γ)β ds

+β (t −1)δ
∫ a

0
ψ2(u◦ γ)2

s (u◦ γ)β−2ds

= −2t

∫ a

0
ψψss(u◦ γ)β ds+

(
β (t −1)2

1−β
−2t

)∫ a

0
(ψs)

2(u◦ γ)β ds

+β (1−β )
∫ a

0
ψ2(u◦ γ)2

s (u◦ γ)β−2ds,
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o que, ao substituir em (3.15), implica

(n−1)
∫ a

0
ψ2

s (u◦ γ)β ds ≥ c0

∫ a

0
ψ2(u◦ γ)β ds+β (1−β )

∫ a

0
ψ2(u◦ γ)2

s (u◦ γ)β−2ds−2I

≥ c0

∫ a

0
ψ2(u◦ γ)β ds−

(
β (t −1)2

1−β
−2t

)∫ a

0
(ψs)

2(u◦ γ)β ds

+2t

∫ a

0
ψψss(u◦ γ)β ds,

ou seja,

∫ a

0








c0ψ2 −

=:p(n,t,β )
︷ ︸︸ ︷
(

β (t −1)2

1−β
−2t +n−1

)

(ψs)
2 +2tψψss







(u◦ γ)β ds ≤ 0. (3.16)

Pela escolha de β , temos que

p(n, t0,β )≤ 0, para t0 =







1+ 2(1−β )
β

, se n ∈ {2,3}
n−2 , se n ≥ 4

.

De fato, isso pode ser verificado por uma computação direta em cada um dos casos:

• n = 2:

p(2, t0,β ) =
4(1−β )

β
−2− 4(1−β )

β
+1 =−1.

• n = 3:

p(3, t0,β ) = 1+ p(2, t0,β ) = 0.

• n ≥ 4: Lembre que β =
1

n−2
nesse caso, logo

p(n, t0,β ) =
1

n−2

1− 1
n−2

(n−3)2 −2(n−2)+n−1 = 0.

Juntando isso e (3.16), vem que (vale notar que t0 > 1)

c0

∫ a

0
ψ2(u◦ γ)β ds ≤−2t0

∫ a

0
ψψss(u◦ γ)β ds.

Como ϕ = (u◦ γ)β ·ψ é arbitrária, concluímos o desejado.

Demonstração da Afirmação 2. Suponhamos que M não é compacta e tomemos a menor curva

divergente γ : [0,T ) → M construída na Proposição 2.3.6 com respeito a g, ou seja, γ é uma

g-geodésica, minimizante em cada intervalo compacto de [0,T ) e divergente.
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Parametrizando γ por comprimento de arco s em relação a g temos, por (M,g) ser completa, que,

nessa parametrização, γ está definida em [0,∞) (Proposição 2.3.5). Segue do Corolário 2.4.1

que γ possui segunda variação da energia não negativa, com respeito ao comprimento de arco

em g, para qualquer variação própria, logo, pela afirmação 1, existem constantes c0 > 0 e t0 > 1

satisfazendo

c0

∫ a

0
ψ2(u◦ γ)β ds ≤−2t0

∫ a

0
ψψss(u◦ γ)β ds,

para quaisquer a > 0 e ψ ∈C2
0([0,a]) (por γ ser g-minimizante em cada intervalo compacto de

[0,T ) e por ela estar definida em [0,∞) quando parametrizada em relação ao comprimento de

arco de g podemos aplicar a afirmação 1 para todo a > 0.)

Tomando ψ(s) = sen
(πs

a

)

, obtemos

c0

∫ a

0
uβ (γ(s)) sen2

(πs

a

)

ds ≤ 2t0

∫ a

0
uβ (γ(s))

π2

a2 sen2
(πs

a

)

ds, ∀a > 0,

o que equivale a

(

c0 −2t0
π2

a2

)∫ a

0
uβ (γ(s)) sen2

(πs

a

)

ds ≤ 0, ∀a > 0.

Por outro lado, tomando a > π

√
2t0

c0
vemos que

c0 −2t0
π2

a2 > 0 e
∫ a

0
uβ (γ(s)) sen2

(πs

a

)

ds > 0,

ou seja, uma contradição. Portanto, M é compacta.

Demonstração da Afirmação 3. Como ∆|Φ|2 ≥ 0 e M é compacta, segue do princípio do má-

ximo forte que |Φ|2 é constante. Por estarmos assumindo u > 0, devemos ter |Φ|2 < b2. Portanto,

da desigualdade 3.6, encontramos

0 = ∆|Φ|2 ≥ 2(b2 −|Φ|2)|Φ|2 +2|∇Φ|2 ≥ (b2 −|Φ|2)|Φ|2,

o que nos permite concluir que |Φ| ≡ 0 em M, donde segue que M é uma esfera totalmente

umbílica. Isto conclui a prova da afirmação 3 e, por conseguinte, do teorema.
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3.2 Generalização do Teorema de Bonnet-Myers

Um resultado amplamente estudado e aplicado na área da geometria Riemanniana

é o teorema de Bonnet-Myers, que garante propriedades topológicas (compacidade e grupo

fundamental finito) a partir de completude e uma estimativa inferior para o tensor de Ricci. O

foco desta seção será apresentar e provar uma generalização deste teorema obtida em [4], a qual

apresenta aplicações no ramo da cosmologia (para mais detalhes, ver Seção 1.2 de [4]). Antes

disso, apresentaremos o teorema de Bonnet-Myers junto com sua prova e discutiremos alguns

detalhes a respeito do mesmo. Um olhar atento a essa demonstração revela uma inspiração para

os argumentos utilizados nas demonstrações dos três teoremas principais deste trabalho (mais

especificamente na aplicação da fórmula da segunda variação da energia).

Teorema 3.2.1. (Bonnet-Myers) Seja (Mn,g), n ≥ 2, uma variedade Riemanniana completa

satsifazendo

Ric ≥ (n−1)λ ·g,

para algum λ > 0. Então M é compacta e satisfaz

diam(M,g)≤ π√
λ
.

Demonstração. Dados p,q ∈ M, segue da hipótese de completude que existe uma geodésica

minimizante γ : [0, l]→ M ligando p e q, onde l = l(γ) = d(p,q). Se mostrarmos que l ≤ π√
λ

,

teremos, simultâneamente, que M satisfaz a estimativa com respeito ao seu diamêtro e é compacta

(pois é completa).

Para provar isso suponhamos por absurdo que l >
π√
λ

e tomemos {e2, . . . ,en} campos paralelos

ao longo de γ e tais que {γ ′(t),e2(t), . . . ,en(t)} é uma base ortonormal de Tγ(t)M, para todo

t ∈ [0, l]. Com isso, definamos os campos Vj(t) = sen
(π

l
· t
)

· e j(t), t ∈ [0, l], ao longo de

γ , j = 2, . . . ,n. Como Vj(0) = Vj(l) = 0, a Proposição 2.4.1 garante a existência de uma

variação própria f j : (−ε,ε)× [0, l]→ M de γ cujo campo variacional coincide com Vj, ou seja

Vj(t) =
∂ f j

∂ s
(0, t). Daí, denotando por E j a energia relativa à variação f j, segue da fórmula da

segunda variação da energia que, para cada j ∈ {2, . . . ,n},

1
2

E ′′
j (0) =

∫ l

0

[〈
DVj

∂ t
(t),

DVj

∂ t
(t)

〉

−⟨R(γ ′(t),Vj(t))γ
′(t),Vj(t)⟩

]

dt

=
∫ l

0

[
π2

l2 · cos2
(π

l
· t
)

− sen2
(π

l
· t
)

⟨R(γ ′(t),e j(t))γ
′(t),e j(t)⟩

]

dt,
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onde, na última igualdade, foi usado que os campos e j são paralelos para obter

V ′
j(t) =

π

l
cos
(π

l
· t
)

e j + sen
(π

l
· t
)

· De j

dt
=

π

l
cos
(π

l
· t
)

e j.

Somando em j e usando l >
π√
λ

junto com a hipótese sobre o tensor de Ricci obtemos

n

∑
j=2

1
2

E ′′
j (0) =

∫ l

0

[

(n−1)
π2

l2 cos2
(π

l
· t
)

− sen2
(π

l
· t
)

Ric(γ ′(t),γ ′(t))

]

dt

<
∫ l

0
(n−1) ·λ · cos

(
2π

l
· t
)

dt = 0.

Portanto, E ′′
j (0) < 0, para algum j ∈ {2, . . . ,n}, o que contradiz o Corolário 2.4.1, já que γ

é uma geodésica minimizante. Desta contradição concluímos que l ≤ π√
λ

, como queríamos

provar.

O teorema de Bonnet-Myers permanece válido se trocarmos o tensor de Ricci pelo

chamado tensor m-Bakry-Émery Ricci, denotado por Ricm
f e definido como

Ricm
f := Ric+∇2 f − 1

m
d f ⊗d f ,

onde m > 0 e f : M → R é uma função suave denominada potêncial. Mais especificamente, vale

o teorema abaixo, cuja demonstração se encontra em [14].

Teorema 3.2.2. (Qian) Seja (Mn,g), n ≥ 2, uma variedade Riemanniana completa. Suponha

que existam m > 0 e f ∈C∞(M) tais que

Ricm
f ≥ (n+m−1)λ ·g, (3.17)

para algum λ > 0. Então M é compacta e

diam(M,g)≤ π√
λ
.

Tomando f =− lnu, com u ∈C∞(M) positiva, a desigualdade (3.17) torna-se

Ric ≥ ∇2u

u
+

(
1
m
−1

)
du⊗du

u2 +(n+m−1)λg. (3.18)

Sabe-se que a hipótese de limitação uniformemente positiva do tensor de Ricci (ou do m-Bakry-

Émery Ricci) não pode ser enfraquecida para Ric > 0 (ou Ricm
f > 0). De fato, o paraboloide

M = {(x,y,z)∈R
3; z = x2+y2} é completo e tem curvatura Gaussiana (que no caso de dimensão

2 coincide com o Ricci) igual a

K(x,y,z) =
4

(1+4x2 +4y2)2 > 0, ∀(x,y,z) ∈ M.
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Apesar disso, M não é compacto.

Todavia, como mostra o segundo teorema principal desta dissertação, isso não ocorre quando a

função u na desigualdade (3.18) é uma supersolução de uma EDP elíptica adequada:

Teorema 3.2.3. (Catino e Roncoroni) Seja (Mn,g) uma variedade Riemanniana completa, n≥ 2,

tal que

Ric ≥ α
∇2u

u
+β

du⊗du

u2 +Q, em M, (3.19)

onde α,β ∈ R, Q é um 2-tensor simétrico e u ∈C∞(M) satisfaz

u > 0 e −∆u ≥Vu+ γ
|∇u|2

u
, em M, (3.20)

com γ ∈ R e V ∈C∞(M). Suponha ainda que existe k ≥ 0 tal que

Q+ kV g ≥ (n−1)λg, (3.21)

para algum λ > 0,

k(γ +1−α)≥ 0, (3.22)

e

α +β + k(γ +1)− (n−1)
k2

4
> 0. (3.23)

Então M é compacta, tem grupo fundamental finito e

diam(Mn,g)≤ π

√
√
√
√ 1

λ

(

1+
[2α − k(n−3)]2

4(n−1)[α +β + k(γ +1)− (n−1) k2

4 ]

)

.

Em particular, se V ≥ 0 e γ ≥ 0 então V ≡ 0 em M.

Se tomarmos u ≡ const., V ≡ 0, Q = (n−1)λg, α = γ = k = 0 e β = 1 no teorema

acima recuperamos o teorema de Bonnet-Myers. Além disso, se a função V é positiva, então a

condição (3.21) permite uma estimativa inferior negativa para o tensor Q.

Demonstração. Consideremos a mudança conforme

g = u2k ·g.

Dado p ∈ M seja r > 0 tal que ∂Br(p) ̸= /0, onde Br(p) é a bola intrínseca de M segundo a

métrica g. Vamos construir uma g-geodésica minimizante γ ligando p e ∂Br(p).
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Com efeito, definamos ur := u+ηr, onde ηr ∈C∞(M) satisfaz ηr ≡ 1 em Br+1(p)c e ηr ≡ 0 em

Br(p). A função ur é uniformemente limitada por baixo por uma constate positiva, pois






ur > 1, em Br+1(p)c

ur > 0, em Br+1(p)
⇒ ur > min

{

1, min
Br+1(p)

ur(x)

}

=: δr > 0.

Disto segue que a métrica conforme gr = u2k
r ·g é completa (Proposição 2.3.3). Sendo assim,

existe uma gr-geodésica minimizante γ : [0,a]→ M ligando p e qr, onde

dgr
(p,qr) = min{dgr

(p,q); q ∈ ∂Br(p)}.

Em particular, γ([0,a]) ⊂ Br(p), pois do contrário teríamos γ(t) ∈ ∂Br(p), para t < a, o que

contradiz a definição de qr já que

dgr
(p,qr) = lgr

(γ)> lgr
(γ|[0,t]) = dgr

(p,γ(t)).

Afirmamos que a curva γ assim obtida é g-minimizante.

De fato, por ur ≡ u em Br(p), temos que dg(p,qr) ≥ dgr
(p,qr), visto que, dada uma curva c

ligando p e qr, se tc = inf{t; c(t) ∈ ∂Br(p)}, então c([0, tc])⊂ Br(p), logo

lg(c)≥ lg(c|[0,tc]) = lgr
(c|[0,tc])≥ dgr

(p,∂Br(p)) = dgr
(p,qr).

Por outro lado, como γ([0,a])⊂ Br(p), vale

lg(γ) = lgr
(γ) = dgr

(p,qr),

portanto lg(γ) = dg(p,qr), o que prova o afirmado e, por conseguinte, conclui a construção da

curva γ desejada.

Denotemos por l o comprimento de γ com respeito a g. Como γ liga p a qr ∈ ∂Br(p), vale l ≥ r.

Se provarmos que existe uma constante C =C(n,α,β ,γ,λ ,k)> 0 satisfazendo

l ≤C

obteremos, simultâneamente, que M é compacto e diam(M,g) ≤C, pois teremos r ≤C, para

todo r > 0 tal que ∂Br(p) ̸= /0, donde dg(p,q) ≤ C, para todo q ∈ M, ou seja, M é limitado,

consequentemente compacto. Além disso, sendo p arbitrário, também seguirá que dg(p,q)≤C,

para quaisquer p,q ∈ M, isto é, diam(M,g)≤C.

Para determinar tal constante C, serão fixadas as seguintes notações

a) s e s os comprimentos de arco de γ com respeito às métricas g e g, respectivamente;
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b) {e1 =
∂γ
∂ s
,e2, . . . ,en} campos paralelos e ortonormais ao longo de γ com respeito à métrica

g. Em particular, os campos {e1 =
∂γ
∂ s
,e2 = (u◦ γ)ke2, . . . ,en = (u◦ γ)ken} ao longo de γ

são ortonormais na métrica g;

c) R e R os tensores de curvatura de M, Ric e Ric os tensores de Ricci de M, com respeito às

métricas g e g, respectivamente, Ric(e1,e1) = R11 e Ric(e1,e1) = R11.

Sendo γ uma g-geodésica minimizante segue da fórmula da segunda variação da energia que

∫ l

0
(u◦ γ)−k ·

[
(n−1)(ϕs)

2 −R11 ·ϕ2]ds ≥ 0, (3.24)

para toda função ϕ ∈C∞
0 ([0, l]) (tal desigualdade é obtida da mesma maneira que obtemos (3.7)).

Também temos, pela Proposição 2.5.2, que ao longo de γ vale

R11 = R11 − k(n−2)(lnu)ss − k
∆u

u
+ k

|∇u|2
u2 . (3.25)

Por (3.19),

R11 ≥ α · ∇2
11u

u
+β · u2

s

u2 +Q11 = α · ∇2
11u

u
+β · (lnu)2

s +Q11, (3.26)

onde ∇2
11u = (∇2u)(e1,e1) e Q11 = Q(e1,e1).

Visto que

∇2
11(lnu) = e1(e1(lnu))− (∇e1e1)(lnu) =

e1(e1(u))

u
− e1(u)

2

u2 − (∇e1e1)(u)

u
=

∇2
11u

u
− (lnu)2

s ,

a desigualdade (3.26) pode ser reescrita como

R11 ≥ α ·∇2
11(lnu)+(α +β )(lnu)2

s +Q11. (3.27)

Pela relação obtida em (2.12), segue que

∇2
11(lnu) = (lnu)ss −

(

∇ ∂γ
∂ s

∂γ

∂ s

)

(lnu) = (lnu)ss − k(∇ lnu)⊥(lnu) = (lnu)ss − k|(∇ lnu)⊥|2,

onde (∇ lnu)⊥ é a componente do gradiente ∇ lnu perpendicular a
∂γ

∂ s
(segundo g) e, na última

igualdade acima, foi usado

(∇ lnu)⊥(lnu)=

(

∇ lnu−g

(

∇ ln,
∂γ

∂ s

)

· ∂γ

∂ s

)

(lnu)= |∇ lnu|2−g

(

∇ ln,
∂γ

∂ s

)2

= |(∇ lnu)⊥|2.

Dessa forma, (3.27) se torna

R11 ≥ α(lnu)ss − kα|(∇ lnu)⊥|2 +(α +β )(lnu)2
s +Q11.
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Substituindo isso em (3.25) obtemos

R11 ≥ [α − k(n−2)] · (lnu)ss −αk · |(∇ lnu)⊥|2 +(α +β ) · (lnu)2
s +Q11 − k

∆u

u
+ k

|∇u|2
u2 .

Usando (3.20), (3.21) e (3.22) vem que

R11

(3.20)
≥ [α − k(n−2)] · (lnu)ss −αk · |(∇ lnu)⊥|2 +(α +β ) · (lnu)2

s +Q11 + kV

+k(γ +1)
|∇u|2

u2

(3.21)
≥ [α − k(n−2)] · (lnu)ss −αk · |(∇ lnu)⊥|2 +(α +β ) · (lnu)2

s +(n−1)λ

+k(γ +1)
[

(lnu)2
s + |(∇ lnu)⊥|2

]

(3.22)
≥ [α − k(n−2)] · (lnu)ss +[α +β + k(γ +1)](lnu)2

s +(n−1)λ .

Substituindo em (3.24), segue que (abaixo, e no restante dessa demonstração, abusaremos da

notação escrevendo apenas u ao invés de u◦ γ)

(n−1)
∫ l

0
(ϕs)

2 ·u−kds ≥ [α − k(n−2)]
∫ l

0
ϕ2 ·u−k · (lnu)ssds

+[α +β + k(γ +1)]
∫ l

0
ϕ2 ·u−k · (lnu)2

s ds

+(n−1)λ
∫ l

0
ϕ2 ·u−kds.

Integrando por partes a primeira parcela do lado direito da desigualdade acima e usando que

ϕ(0) = ϕ(l) = 0, obtemos

∫ l

0
ϕ2 ·u−k · (lnu)ssds = −2

∫ l

0
ϕ ·ϕs ·u−k · (lnu)sds+ k

∫ l

0
ϕ2 ·u−k−1 ·us · (lnu)sds

= −2
∫ l

0
ϕ ·ϕs ·u−k−1usds+ k

∫ l

0
ϕ2 ·u−k−2 ·u2

s ds,

donde

(n−1)
∫ l

0
(ϕs)

2 ·u−kds ≥ −2[α − k(n−2)]
∫ l

0
ϕ ·ϕs ·u−k−1usds

+[α +β + k(γ +1+α)− (n−2)k2]
∫ l

0
ϕ2 ·u−k−2u2

s ds

+(n−1)λ
∫ l

0
ϕ2 ·u−kds, (3.28)

para toda ϕ ∈C∞
0 ([0, l]).

Para dar fim ao fator u−k na desigualdade acima, escreveremos ϕ = u
k
2 ψ , com ψ ∈C∞

0 ([0, l]).

Com essa alteração, as integrais presentes na desigualdade (3.28) se tornam
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(i)

∫ l

0
(ϕs)

2 ·u−kds =
∫ l

0

(
k

2
u

k
2−1 ·us ·ψ +u

k
2 ·ψs

)2

·u−kds

=
k2

4

∫ l

0
ψ2 ·u−2 ·u2

s ds+ k

∫ l

0
ψ ·ψs ·u−1 ·usds+

∫ l

0
(ψs)

2ds,

(ii)

∫ l

0
ϕ ·ϕs ·u−k−1 ·usds =

∫ l

0
u

k
2 ·ψ ·

(
k

2
u

k
2−1 ·us ·ψ +u

k
2 ·ψs

)

·u−k−1 ·usds

=
k

2

∫ l

0
ψ2 ·u−2 ·u2

s ds+
∫ l

0
ψ ·ψs ·u−1 ·usds,

(iii)

∫ l

0
ϕ2 ·u−k−2 ·u2

s ds =
∫ l

0
ψ2 ·u−2 ·u2

s ds,

(iv)

∫ l

0
ϕ2 ·u−kds =

∫ l

0
ψ2ds,

o que, substituindo em (3.28), nos fornece

(n−1)
∫ l

0
(ψs)

2ds ≥ [k(n−3)−2α]
∫ l

0
ψ ·ψs ·u−1usds

+

[

α +β + k(γ +1)− (n−1)
k2

4

]∫ l

0
ψ2 ·u−2u2

s ds

+(n−1)λ ·
∫ l

0
ψ2ds. (3.29)

Pela hipótese (3.23), estão bem definidas as funções f ,h : [0, l]→ R dadas por

f =

(

α +β + k(γ +1)− (n−1)
k2

4

) 1
2

·ψ · us

u

e

h =
−2[α − k(n−2)]− k(n−1)

2
(

α +βk(γ +1)− (n−1) k2

4

) 1
2

·ψs.

Além disso, a relação f 2 +h2 ≥−2 f ·h nos diz que

[

α +β + k(γ +1)− (n−1)
k2

4

]

ψ2 ·u−2 ·u2
s +

[k(n−3)−2α]2

4
(

α +β + k(γ +1)− (n−1) k2

4

) ·ψ2
s

≥−[k(n−3)−2α] ·ψ ·ψs ·u−1 ·us.
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Usando essa informação em (3.29) encontramos

A ·
∫ l

0
(ψs)

2ds ≥ B ·
∫ l

0
ψ2ds ⇒

∫ l

0
(Aψ ·ψss +Bψ2)ds ≤ 0, (3.30)

para toda ψ ∈C∞
0 ([0, l]), onde

A = n−1+
[k(n−3)−2α]2

4
(

α +β + k(γ +1)− (n−1) k2

4

) , B = (n−1)λ

e a implicação acima é simplesmente obtida ao integrar por partes a integral da esquerda e usar

ψ(0) = ψ(l) = 0.

Por fim, escolhendo ψ(s) = sen
(π · s

l

)

, conclui-se que

(

B−A · π2

l2

)

·
∫ l

0
sen
(π · s

l

)

ds ≤ 0,

donde

B−A
π2

l2 ≤ 0 ⇒ l ≤ π

√

A

B
=

π√
λ



1+
[k(n−3)−2α]2

4(n−1)
(

α +β + k(γ +1)− (n−1) k2

4

)





1
2

.

Portanto,

C =
π√
λ



1+
[k(n−3)−2α]2

4(n−1)
(

α +β + k(γ +1)− (n−1) k2

4

)





1
2

é a constante buscada. Como já comentado, isto implica que M é compacta e diam(M,g)≤C.

Quanto à afirmação do Teorema 3.2.3 sobre o grupo fundamental de M, consideremos π : M →M

o recobrimento universal de M. Munindo M com a métrica h induzida por π (segundo a qual π é

uma isometria local), temos que (M,h) é completa (Proposição 2.3.4).

Com essa métrica, M se encaixa nas hipóteses do Teorema 3.2.3, com V ◦π ao invés de V , u◦π

no lugar de u, as mesmas constantes α,β ,γ,k e o 2-tensor Q definido da seguinte forma :

Dados X ,Y ∈X(M), a função Q(X ,Y ) num ponto p ∈ M vale Q(X ,Y )(π(p)), onde X ,Y ∈X(M)

são tais que Xπ(p) = dπp(X p) e Yπ(p) = dπp(Y p). (o fato que Q é um objeto pontual garante que

a função Q(X ,Y ) está bem definida. Além disso, como π é um difeomorfismo local, a função

Q(X ,Y ) é suave.)

Dessa forma, pelo que já foi provado, M é também compacto, logo as folhas do recobrimento

π : M → M são finitas, donde π1(M) é finito ([10], p. 247).
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Por fim, caso V ≥ 0 e γ > 0, temos por (3.20) que ∆u ≤ 0, logo, sendo M compacto, u deve ser

constante pelo princípio do máximo. Novamente por (3.20) e por u > 0 segue que

0 =−∆u ≥Vu+ γ
|∇u|2

u
=Vu ⇒V ≤ 0 ⇒V ≡ 0 em M,

o que conclui a prova do teorema.

Uma consequência do Teorema 3.2.3 é uma estimativa superior para o primeiro

autovalor de −∆, a qual estende um resultado clássico obtido por Cheng em [6]:

Corolário 3.2.1. Seja (Mn,g), n ≥ 2, uma variedade Riemanniana completa com Ric ≥−(n−
1)g. Se existe uma solução positiva u ∈C∞(M) de

−∆u ≥ µu,

para algum µ > 0, então

µ ≤ (n−1)2

4
.

Demonstração. Suponhamos que

µ >
(n−1)2

4
.

Na notação do Teorema 3.2.3, se tomarmos α = β = γ = 0, V ≡ µ e Q =−(n−1)g, teremos

que M satisfaz (3.19) e (3.20), com u sendo a solução positiva de

−∆u ≥ µu.

Com essas escolhas, (3.21), (3.22) e (3.22) tornam-se






−(n−1)+ kµ ≥ (n−1)λ

k ≥ 0

k
(
1− n−1

4 k
)
> 0

.

Assim, tomando k =
4

n−1
− ε , onde ε > 0 satisfaz

4
n−1

− ε > 0 e

(
4

n−1 − ε
)

µ

n−1
−1

(5)
> 0,

e λ > 0 tal que
(

4
n−1 − ε

)
µ

n−1
−1 ≥ λ ,

5note que essa desigualdade é satisfeita quando ε = 0 pela suposição feita sobre µ .
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segue que 





−(n−1)+ kµ =
(

4
n−1 − ε

)
µ − (n−1)≥ (n−1)λ

k ≥ 0

k
(
1− n−1

4 · k
)
= k · ε · n−1

4 > 0

,

logo M se encaixa nas hipóteses do Teorema 3.2.3, em particular M é compacto. Se p ∈ M é um

ponto de mínimo de u então

0 ≤ ∆u(p)≤−µ ·u(p)< 0,

o que é uma contradição decorrente da suposição µ >
(n−1)2

4
. Portanto, µ ≤ (n−1)2

4
, como

queríamos demonstrar.
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3.3 Estimativa de diâmetro para uma H-hipersuperfície estável

O último teorema deste trabalho, obtido por Elbert, Nelli e Rosenberg em [8], trata

de uma estimativa de diâmetro sob hipóteses de estabilidade, controle de curvatura seccionais

e curvatura média constante. Antes de apresentà-lo, é conveniente fazer uma breve revisão

sobre o conceito de estabilidade, assim como enunciar dois resultados sobre esse tema que serão

ferramentas importantes no decorrer desta seção. Para uma exposição mais detalhada desse tema

sugerimos a leitura de [2] e [7].

O conceito de estabilidade está intimamente ligado a um problema variacional. Para

motivar a definição de estabilidade faremos algumas considerações a respeito desse problema.

Seja i : (Mn,g)→ Σ uma imersão isométrica com curvatura média H e N um campo

normal unitário ao longo de i(M). Dada uma variação normal it : M → Σ, t ∈ (−ε,ε), de i(M),

associada ao campo normal f N

(

ou seja,
dit

dt

∣
∣
∣
∣
t=0

= f N

)

e que fixa o bordo ∂M, sabemos que

a variação do funcional área A(t) = A(it) é dada por

A′(0) =−
∫

M
f HdM.

Em particular, imersões mínimas podem ser caracterizadas como pontos críticos do funcional

área para variações como acima. Imersões com curvatura média constante, por sua vez, podem

ser visualizadas como pontos críticos do funcional área quando nos restringimos a variações

que preservam o volume, ou seja, para variações cuja componente normal do campo variacional

f ∈C∞
0 (M) satisfaz

∫

M
f dM = 0.

Para estes pontos críticos, a segunda variação do funcional área é dada por

A′′(0) =−
∫

M
f L f dM,

onde L f = ∆M f + |B|2 f +RicΣ(N,N) f é o chamado operador de estabilidade de M (ou operador

de Jacobi), B é o operador forma de M e RicΣ e o tensor de Ricci do ambiente Σ.

Definição 3.3.1. Sejam Σn+1 uma variedade Riemanniana, Mn ⊂ Σ uma hipersuperfície com

bordo e two-sided (i.e, fibrado normal trivial) e L o operador de estabilidade de M. Diremos

que M é estável quando

−
∫

S
f ·L f dM ≥ 0, ∀ f ∈C∞

0 (M). (3.31)

No caso em que M é completa (possivelmente não compacta) e sem bordo, dizemos que M é

estável se todo subdomínio compacto de M é estável.



73

Vale salientar que a definição de estabilidade aqui apresentada é conhecida como

estabilidade forte. Existe também o conceito de estabilidade fraca, onde restringimos a condição

(3.31) apenas a funções f ∈C∞
0 (M) que satisfazem

∫

M
f dM = 0.

Seja Ω ⊂ M um domínio compacto. O espectro de L com respeito a Ω é dado por

uma sequência crescente λ1 ≤ λ2 ≤ . . . que converge para ∞, sendo associada, respectivamente,

a autofunções ui, ou seja

Lui +λiui = 0,

com ui ∈C∞
0 (Ω), não identicamente nula. A estabilidade em Ω equivale a λ1(Ω,L)≥ 0 (ver [7],

página 43), onde

λ1(Ω,L) = inf

{

−
∫

Ω
η ·LηdM; η ∈C∞

0 (Ω) e
∫

Ω
η2 = 1

}

.

O lema a seguir fornece uma informação relevante sobre as autofunções associadas

ao primeiro autovalor de L. Este lema vale na verdade para qualquer operador do tipo L = ∆+q,

onde q é uma função.

Lema 3.3.1. Ainda na notação acima, se u é uma função suave em Ω, contínua em Ω, se anula

em ∂Ω e satisfaz Lu =−λ1u, onde λ1 = λ1(Ω,L), então u não muda de sinal em Ω.

Demonstração. Pode ser encontrada em [7], página 46.

O teorema que fecha essa breve exposição fornece uma condição equivalente à

estabilidade de uma hipersuperfície completa não compacta.

Teorema 3.3.1. (Fischer-Colbrie e Schoen) Se Mn ⊂ Σn+1 é uma hipersuperfície completa, não

compacta e com fibrado normal trivial, então as seguintes afirmações são equivalentes:

a) λ1(Ω,L)≥ 0, para qualquer domínio compacto Ω ⊂ M;

b) λ1(Ω,L)> 0, para qualquer domínio compacto Ω ⊂ M;

c) Existe uma função suave e positiva u tal que Lu = 0 em M.

Demonstração. Pode ser encontrada em [7], página 49.

Feito este resumo, resta apenas fixar algumas notações para adentrarmos no teorema

desta seção:

Seja Σn+1 uma variedade Riemanniana com curvaturas seccionais uniformemente

limitadas por baixo e denotemos por sec(Σ) o ínfimo das curvaturas seccionais de Σ. Dizemos
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que M ⊂ Σ é uma H-hipersuperfície de Σ quando M é uma n-subvariedade imersa de Σ com

curvatura média constante H. No que segue M será assumida two-sided.

Teorema 3.3.2. (Elbert, Nelli e Rosenberg) Seja Mn ⊂ Σ uma H-hipersuperfície estável e com-

pleta, com n= 3,4. Se |H|> 2
√

|min{0,sec(Σ)}| então existe uma constante c= c(n,H,sec(Σ))

tal que, para todo p ∈ M, dM(p,∂M)≤ c.

No enunciado acima o termo "completa" significa que (int(M),dg) é completo como

espaço métrico, onde g é a métrica induzida pela imersão M ⊂ Σ, dg a função distância induzida

por g e int(M) = M−∂M. Como consequência do Teorema 3.3.2 temos o

Corolário 3.3.1. (Elbert, Nelli e Rosenberg) Seja Mn ⊂ Σ uma H-hipersuperfície estável e

completa, com n = 3,4. Se |H|> 2
√

|min{0,sec(Σ)}| então ∂M ̸= /0.

O corolário 3.3.1 nos diz, em particular, que em R
n+1, n= 3,4, uma H-hipersuperfície

estável, completa e sem bordo deve ser mínima, visto que sec(Rn+1) = 0.

Demonstração do Teorema 3.3.2. Sejam L : C∞(M)→C∞(M) o operador de Jacobi

Lu = ∆u+(|B|2 +RicΣ(N,N))u,

onde N um campo unitário e normal a M em Σ, B o operador forma de M, RicΣ o tensor de Ricci

de Σ e φ o operador forma de traço nulo φ(X) = B(X)−HX . Podemos escrever o operador de

Jacobi em termos de φ

Lu = ∆+(|φ |2 +nH2 +RicΣ(N,N))u,

já que, se v1, . . . ,vn são autovetores de B com autovalores k1, . . . ,kn, então v1, . . . ,vn são autove-

tores de φ com autovalores k1 −H, . . . ,kn −H, logo

|φ |2 = ∑
i

(ki −H)2 = ∑
i

(k2
i −2kiH +H2) = |B|2 −nH2,

onde na última igualdade foi usado que H =
1
n
∑

i

ki.

Sendo M estável, existe uma função u suave em M e positiva no interior de M tal que Lu ≤ 0.

(Caso M seja não compacta basta aplicar o Teorema 3.3.1. Do contrário, tomamos u como uma

autofunção associada ao primeiro autovalor λ1 de L. Pelo Lema 3.3.1, podemos assumir que u é

positiva no interior de M, logo, pela hipótese de estabilidade Lu =−λ1u ≤ 0.) Definamos então,

no interior de M, a métrica g = u2kg, onde k satisfaz

5(n−1)
4n

≤ k <
4

n−1
.
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A escolha de tal k ficará mais clara adiante.Vale porém notar que, para n > 4, temos

4
n−1

≤ 1 ≤ 5(n−1)
4n

,

logo a escolha de k feita acima não é possível se n > 4.

Fixado p no interior de M, seja r > 0 tal que a bola intrínseca Br(p) de M não toca ∂M.

Consideremos γ uma g-geodésica minimizante ligando p a ∂Br(p) (a construção de tal curva é a

mesma que foi apresentada na demonstração do Teorema 3.2.3)(6) e seja a= lg(γ) o comprimento

de γ na métrica g. Como γ liga p a um ponto de ∂Br(p), vale que a ≥ r. É suficiente então

provar que existe uma constante c = c(n,H,sec(Σ)) satisfazendo a ≤ c.

De fato, feito isto, teremos r ≤ c, para todo r > 0 tal que Br(p)∩ ∂ (M) = /0. Daí, caso d :=

dM(p,∂M) > c, então, tomando c0 ∈ (c,d), obtemos Bc0(p)∩ ∂M = /0 e c0 > c, o que é uma

contradição. Logo, dM(p,∂M)≤ c, como desejado.

Passemos à prova da existência de tal constante c. Como de costume, consideraremos:

(i) s e s os comprimentos de arco de γ com respeito às métricas g e g, respectivamente;

(ii) {e1 =
∂γ
∂ s
,e2, . . . ,en} campos paralelos e ortonormais ao longo de γ com respeito à métrica

g e en+1 = N ◦ γ . Em particular, os campos {e1 =
∂γ
∂ s
,e2 = (u◦ γ)ke2, . . . ,en = (u◦ γ)ken}

ao longo de γ são ortonormais na métrica g;

(iii) R e R os tensores de curvatura de M, Ric e Ric os tensores de Ricci de M, com respeito às

métricas g e g, respectivamente.

Visto que γ é g-minimizante, segue dos argumentos apresentados na demonstração do Teorema

3.1.2 (ver equação (3.7)) que

∫ a

0
u−k[(n−1)ϕ2

s −Ric(e1,e1)ϕ
2]ds ≥ 0, (3.32)

para toda ϕ ∈ C∞
0 ([0,a]). (na desigualdade acima e no que segue abusaremos da notação e

escreveremos apenas u ao invés de u◦ γ)

Pela Proposição (2.5.2), vale, ao longo de γ , que

Ric(e1,e1) = u−2k

[

Ric(e1,e1)− k(n−2)(ln(u))ss − k
∆u

u
+ k

|∇u|2
u2

]

,

ou ainda

Ric(e1,e1) = Ric(e1,e1)− k(n−2)(ln(u))ss − k
∆u

u
+ k

|∇u|2
u2 ,

6Vale salientar que nessa passagem foi utilizada que o interior de M é completo como espaço métrico, em
particular, as bolas intrínsecas de M que não tocam o bordo são compactas.
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Como Lu = ∆u+(|φ |2 +nH2 +RicΣ(N,N))u ≤ 0, obtemos

Ric(e1,e1)≥ Ric(e1,e1)− k(n−2)(ln(u))ss + k(|φ |2 +nH2 +RicΣ(N,N))+ k
|∇u|2

u2 . (3.33)

Pela equação de Gauss vem que

Ri ji j = RΣ
i ji j +gΣ(A(ei,ei),A(e j,e j))−gΣ(A(ei,e j),A(ei,e j))

= RΣ
i ji j +hiih j j −h2

i j, i, j ∈ {1, . . . ,n} (3.34)

onde gΣ é a métrica de Σ, A é a segunda forma fundamental de M e hi j = g(A(ei,e j),N). Sendo

hi j = gΣ(A(ei,e j),N) = gΣ(∇ei
e j,N) =−gΣ(e j,∇ei

N) =−g(e j,B(ei)) =−g(ei,φ(e j))−Hδi j

e Φ o 2-tensor simétrico em M, Φ(X ,Y ) = g(ei,φ(e j)), temos, por (3.34), que

Ri ji j = RΣ
i ji j +(Φii +H)(Φ j j +H)− (Φi j +Hδi j)

2,

onde Φi j = Φ(ei,e j). Fazendo i = 1 na expressão acima e somando em j de 2 até n obtemos

Ric(e1,e1) =
n

∑
j=2

R1 j1 j =
n

∑
j=2

RΣ
1 j1 j +Φ11

n

∑
j=2

Φ j j +(n−1)Φ11H

+H
n

∑
j=2

Φ j j +(n−1)H2 −
n

∑
j=2

Φ2
1 j.

Usando
n

∑
j=1

Φ j j = tr(φ) = 0, podemos simplificar a expressão acima para

Ric(e1,e1) =
n

∑
j=2

RΣ
1 j1 j −Φ2

11 +(n−2)Φ11H +(n−1)H2 −
n

∑
j=2

Φ2
1 j.

Substituindo isso em (3.33) encontramos

Ric(e1,e1) ≥
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn+n−1)H2 +(n−2)Φ11H

+k|Φ|2 −Φ2
11 −

n

∑
j=2

Φ2
1 j − k(n−2)(ln(u))ss + k

|∇u|2
u2 .

Juntando isso com a desigualdade (3.32) vem que

(n−1)
∫ a

0
u−kϕ2

s ds ≥
∫ a

0
ϕ2u−k

(
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)

)

ds

+
∫ a

0
ϕ2u−k

[

(kn+n−1)H2 +(n−2)HΦ11 + k|Φ|2 −Φ2
11 −

n

∑
j=2

Φ2
1 j

]

ds

−
∫ a

0
ϕ2u−k

[

k(n−2)(ln(u))ss − k
|∇u|2

u2

]

ds.
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Para dar fim ao termo u−k na desigualdade acima escreveremos ϕ = u
k
2 ψ , com ψ ∈C∞

0 ([0,a]).

Fazendo essa mudança a relação acima se torna

(n−1)
∫ a

0
ψ2

s ds ≥
∫ a

0
ψ2

(
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)

)

ds

+
∫ a

0
ψ2

[

(kn+n−1)H2 +(n−2)HΦ11 + k|Φ|2 −Φ2
11 −

n

∑
j=2

Φ2
1 j

]

ds

−
∫ a

0
ψ2
[

k(n−2)(ln(u))ss − k
|∇u|2

u2

]

ds

−k(n−1)
∫ a

0
ψψs(ln(u))sds− k2(n−1)

4

∫ a

0
ψ2(ln(u))2

s ds (3.35)

Integrando por partes e usando ψ(0) = ψ(a) = 0 obtemos

−k(n−2)
∫ a

0
ψ2(ln(u))ssds = 2k(n−2)

∫ a

0
ψψs(ln(u))sds.

Além disso,
k2(n−1)

4

∫ a

0
ψ2(ln(u))2

s ds =
n−1

4

∫ a

0
ψ2(ln(uk))2

s ds

e

k

∫ a

0
ψ2 |∇u|2

u2 ds = k

∫ a

0
ψ2|∇ ln(u)|2ds ≥ k

∫ a

0
ψ2(ln(u))2

s ds =
1
k

∫ a

0
ψ2(ln(uk))2

s ds.

Substituindo essas informações em (3.35) e simplificando encontramos

(n−1)
∫ a

0
ψ2

s ds ≥ k(n−3)
∫ a

0
ψψs(ln(u))sds+

(
1
k
− n−1

4

)∫ a

0
ψ2(ln(uk))2

s ds

+
∫ a

0
ψ2

(
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)

)

ds

+
∫ a

0
ψ2

[

(kn+n−1)H2 +(n−2)HΦ11 + k|Φ|2 −Φ2
11 −

n

∑
j=2

Φ2
1 j

]

ds

≥ (n−3)
∫ a

0
ψψs(ln(u

k))sds+

(
1
k
− n−1

4

)∫ a

0
ψ2(ln(uk))2

s ds

+
∫ a

0
ψ2

[
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2

]

ds

+
∫ a

0
ψ2

(

k|Φ|2 − 5
4

Φ2
11 −

n

∑
j=2

Φ2
1 j

)

, (3.36)

onde na última desigualdade foi usado x2 + y2 ≥−2xy, para x = (n−2)H e y =
Φ11

2
, ou seja

(n−2)2H2 +
Φ2

11

4
≥−(n−2)HΦ11.
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Note que a última parcela de (3.36) é não negativa, pois as relações






|φ |2 ≥ ∑
n
j=1 Φ2

j j +∑
n
j=2 Φ2

1 j +∑
n
j=2 Φ2

j1 = ∑
n
j=1 Φ j j +2∑

n
j=2 Φ1 j

∑
n
j=1 Φ j j = 0

1
n−1 ∑

n
j=2 Φ2

j j

(7)
≥
(

1
n−1 ∑

n
j=2 Φ j j

)2

implicam

|φ |2 ≥ Φ2
11 +

1
n−1

(
n

∑
j=2

Φ j j

)2

+2 ∑
j=2

Φ2
1 j =

n

n−1
Φ2

11 +2
n

∑
j=2

Φ2
1 j.

Logo, por k ≥ 5(n−1)
4n

,

k|Φ|2 − 5
4

Φ2
11 −

n

∑
j=2

Φ2
1 j ≥

5(n−1)
2n

n

∑
j=2

Φ2
1 j −

n

∑
j=2

Φ2
1 j =

3n−5
2n

n

∑
j=2

Φ2
1 j ≥ 0,

ao longo de γ , donde segue que

∫ a

0
ψ2

(

k|Φ|2 − 5
4

Φ2
11 −

n

∑
j=2

Φ2
1 j

)

ds ≥ 0.

Sendo assim, a desigualdade (3.36) se reduz a

(n−1)
∫ a

0
ψ2

s ds ≥ (n−3)
∫ a

0
ψψs(ln(u

k))sds+

(
1
k
− n−1

4

)∫ a

0
ψ2(ln(uk))2

s ds

+
∫ a

0
ψ2

[
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2

]

ds (3.37)

Novamente usaremos x2 + y2 ≥−2xy, para

x =

(
1
k
− n−1

4

) 1
2

ψ(ln(uk))s e y =
n−3

2

(
1
k
− n−1

4

)− 1
2

ψs,

ou seja

(
1
k
− n−1

4

)

ψ2(ln(uk))2
s +

(n−3)2

4

(
1
k
− n−1

4

)−1

ψ2
s ≥−(n−3)ψψs(ln(u

k))s

Vale relembrar que, pela escolha de k,
1
k
− n−1

4
> 0. Substituindo em (3.37) segue que

(n−1)
∫ a

0
ψ2

s ds ≥ −(n−3)2

4

(
1
k
− n−1

4

)−1 ∫ a

0
ψ2

s ds

+
∫ a

)
ψ2

[
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2

]

ds,

7Desigualdade de Cauchy-Schwarz.
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ou ainda, pondo A0 = n−1+
(n−3)2

4

(
1
k
− n−1

4

)−1

> 0,

A0

∫ a

0
ψ2

s ds ≥
∫ a

)
ψ2

[
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2

]

ds. (3.38)

Neste ponto, queremos encontrar uma constante B0 = B0(n,H,sec(Σ)) tal que

0 < B0 ≤
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2,

ao longo de γ . Para tanto, note que

n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N) =

n

∑
j=2

RΣ
1 j1 j + k

n

∑
j=1

RΣ(N,e j,N,e j)≥ (kn+n−1)sec(Σ),

ao longo de γ , logo, pondo

B0 = (kn−n2 +5n−5)H2 +(kn+n−1)min{0,sec(Σ)}

temos imediatamente

B0 ≤
n

∑
j=2

RΣ
1 j1 j + kRicΣ(N,N)+(kn−n2 +5n−5)H2.

Na desigualdade acima foi usado que kn+n−1 e kn−n2 +5n−5 são positivos, o que pode ser

verificado diretamente nos dois casos, n = 3 e n = 4,

• n = 3:

kn+n−1 = 3k+2 > 0 e 3k−n2 +5n−5 = 3k+1 > 0;

• n = 4:

kn+n−1 = 4k+3 > 0 e kn−n2 +5n−5 = 4k−1 > 0,

haja vista que k ≥ 5(n−1)
4n

=
15
16

>
1
4

.

Já quanto à condição B0 > 0, temos

kn+n−1
kn−n2 +5n−5

< 4.

Novamente isso pode ser checado através de uma verificação direta

• n = 3:
kn+n−1

kn−n2 +5n−5
=

3k+2
3k+1

< 4 ⇔ k >−2
9

e a última desigualdade é satisfeita já que k > 0;
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• n = 4:
kn+n−1

kn−n2 +5n−5
=

4k+3
4k−1

< 4 ⇔ k >
7

12

e a última desigualdade é satisfeita já que k ≥ 5(n−1)
4n

=
15
16

>
7
12

.

A hipótese sobre H nos diz que H2 > 4|min{0,sec(Σ)}|, donde segue que

H2 >
kn+n−1

kn−n2 +5n−5
|min{0,sec(Σ)}|.

Portanto,

B0 > (kn+n−1)(|min{0,sec(Σ)}|+min{0,sec(Σ)})≥ 0.

Dessa forma, por (3.38),

A0

∫ a

0
ψ2

s ≥ B0

∫ a

0
ψ2ds

(8)⇔
∫ a

0
(B0ψ2 +A0ψψss)ds ≤ 0, ∀ψ ∈C∞

0 ([0,a]).

Por fim, tomando ψ(s) = sen
(πs

a

)

na desigualdade acima concluímos que

(

B0 −A
π2

a2

)∫ a

0
sen2

(πs

a

)

ds ≤ 0 ⇒ a ≤
√

A0

B9
π,

ou seja

c(n,H,sec(Σ)) =

√
A0

B0
π

=
2π
√

k(2−n)+n−1

{[4− k(n−1)] [(kn−n2 +5n−5)H2 +(kn+n−1)|min{0,sec(Σ)}|]} 1
2

é a constante desejada. Pelo que já foi comentado, isto conclui a prova do teorema.

Para concluir essa seção apresentaremos a prova do Corolário 3.3.1.

Demonstração do Corolário 3.3.1. Suponhamos por absurdo que exista uma H-hipersuperfície

Mn ⊂ Σ estável, completa, com |H| > 2
√

|min{0,sec(Σ)}| e ∂M = /0. Como foi visto na

demonstração do Teorema 3.3.2, toda bola intrínseca de M que não toca ∂M tem raio limitado

por uma constante c. Sendo ∂M = /0, temos que diamg(M) ≤ c. Por M ser completa, segue

que M é compacta. Seja f : M → R uma autofunção associada ao primeiro autovalor λ1 de L.

Trocando f por − f podemos assumir que f é positiva (Lema 3.3.1). Pela hipótese de estabilidade

temos λ1 ≥ 0, logo L f =−λ1 f ≤ 0. Daí, se p é um ponto de mínimo de f , vale que

0 ≤ ∆ f (p)≤−(|φ |2(p)+nH2 +RicΣ
p(N.N)) f (p). (3.39)

8Integração por partes.
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Por outro lado, como H2 > 4|min{0,sec(Σ)}|, obtemos

|φ |2p +nH2 +RicΣ
p(N,N)> 4n|min{0,sec(Σ)}|+nmin{0,sec(Σ)} ≥ 0,

o que implica

−(|φ |2(p)+nH2 +RicΣ
p(N.N)) f (p)< 0.

Isto por sua vez contradiz a desigualdade (3.39) provando assim o desejado.
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4 CONCLUSÃO

É importante destacar que os resultados aqui tratados, fruto da colaboração de

excelentes matemáticos, não podem ser reduzidos a simples aplicações da mudança conforme.

Estes foram escolhidos para esse trabalho visando ilustrar a aplicabilidade da técnica aqui

abordada visto que eles compartilham de um ponto em comum que é a utilização da mudança

conforme, mesmo que para fins distintos.

Dito isto, a exposição dos resultados no capítulo anterior tornou evidente a força

que possui a técnica da mudança conforme de uma métrica Riemanniana, principalmente por

conta de que esta pode ser utilizada em contextos diversos na geometria. Como foi visto nas

demonstrações anteriores, o ponto principal a se levar em conta ao fazer uso dessa técnica é a

existência de uma função que goza de propriedades relevantes para o contexto que se deseja

trabalhar. Neste trabalho em específico a propriedade buscada era ser uma supersolução de uma

EDP conveniente. Por exemplo, no teorema de pinching, a partir da hipótese sobre a norma da

segunda forma fundamental sem traço, obtivemos uma função u satisfazendo ∆u ≤ −2|Φ|2u.

Já na generalização do teorema de Bonnet-Myers a hipótese garantia a existência de uma

função cumprindo −∆u ≥Vu+ γ
|∇u|2

u
. Por fim, no último resultado foi utilizada a hipótese de

estabilidade para se obter uma solução de ∆u+(|Φ|2 +nH2 +RicΣ(N,N)) ·u ≤ 0.
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