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“A Geometria existe por toda parte. E pre-
ciso, porém, olhos para vé-la, inteligéncia para
compreendé-la e alma para admiré-la.”

(Johannes Kepler)



RESUMO

No presente trabalho serd estudada uma ferramenta importante na drea da Geometria Rieman-
niana, a mudanca conforme de uma métrica Riemanniana. Fazendo uso de tal ferramenta no
contexto de variedades completas, serdo provados trés teoremas principais: um teorema de pin-
ching para hipersuperficies completas da esfera, uma generalizacido do teorema de Bonnet-Myers
e uma estimativa de didametro para H-hipersuperficies estaveis e imersas em um ambiente de

curvatura seccional limitada inferiormente.

Palavras-chave: mudanca conforme; hipersuperficies; variedade completa.



ABSTRACT

In the present work, an important tool in the area of Riemannian Geometry will be studied, the
conformal change of a Riemannian metric. Making use of such a tool in the context of complete
manifolds, three main theorems will be proved: a pinching theorem for complete submanifolds
of the sphere, a generalization of the Bonnet-Myers theorem and a diameter estimate for a stable

H-hypersurface immersed in an ambient manifold with sectional curvature bounded from below.

Keywords: conformal change; hypersurfaces; complete manifold.
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1 INTRODUCAO

O intuito da presente dissertacdo € estudar a utilizagcdo da mudanga conforme de
uma métrica Riemanniana em diferentes contextos da geometria, seja para obter propriedades
topoldgicas ou estimativas de diametro. Antes de mais detalhes serem dados, vejamos do que se
trata tal conceito:

Dadas M uma variedade suave, g e g métricas Riemannianas em M, p € M e vetores niao nulos u
e v, tangentes a M em p, os angulos 0 e 0 entre u e v, com respeito a g e g, respectivamente, sao

definidos por

g(u,v) e COS(§> — g(”"))

g(u’ u) 'g(va V) V g(”? u) 'g(vv V) .

Diz-se que as métricas g e g sdo conformemente relacionadas, ou conforme uma a outra, quando

cos(0) =

os angulos entre quaisquer dois vetores tangentes a M, com respeito a g € g, sdo sempre iguais.
Nesse caso, a mudanca entre as métricas g e g € chamada uma mudanca conforme na métrica
Riemanniana.

Para que duas métricas g e g em M sejam conformemente relacionadas € necessério
e suficiente que exista uma funcdo suave e positiva p em M satisfazendo g = p - g. Tal relacdo
entre métricas conformes nos permite obter diversas férmulas relacionando quantidades geomé-
tricas definidas a partir de cada uma destas métricas (algumas delas desempenhardao um papel
importante neste trabalho e, em vista disso, serdo abordadas na se¢do 2.5).

A perspectiva adotada para este trabalho serd da mudanga conforme como ferramenta
para se obter consequéncias topoldgicas e geométricas sob as mais distintas hip6teses. Uma
sugestdo para uma abordagem com outro ponto de vista, com teoremas de rigidez envolvendo
mudancga conforme, € o trabalho de Yano e Obata [17]. Os primeiros indicios de utiliza¢do da
mudanga conforme para obten¢do de propriedades de compacidade ou rigidez se encontram nos
trabalhos de Schoen e Yau [15], Fischer-Colbrie [9] e Shen e Ye [16].

Para uma organizagdo mais didatica, esta dissertacdo se encontra dividida em duas
partes, a primeira parte sendo destinada a uma revisao de conceitos e resultados que serdao
utilizados amplamente no decorrer do texto, enquanto a segunda parte serd dedicada a apresen-
tacdo e demonstracdo dos trés teoremas principais deste trabalho. O primeiro destes teoremas,
devido a Magliaro et al. [12], trata de uma caracterizacdo de subvariedades completas da esfera,
o qual estende um resultado ja conhecido, cuja prova se deve a Alencar e do Carmo [1]. O

segundo, obtido por Catino e Roncoroni em [4], corresponde a uma generalizacdo do teorema de
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Bonnet-Myers que apresenta aplicagdes na drea da cosmologia, além de implicar uma extensao
para um resultado devido a Cheng [6] que fornece uma cota superior para o primeiro autovalor
de —A. O ultimo teorema, provado por Elbert, Nelli e Rosenberg em [8], aborda uma estimativa
de diametro para hipersuperficies estaveis de curvartura média constante em um ambiente de

curvatura seccional limitada inferiormente.
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2 RESULTADOS PRELIMINARES

O objetivo deste capitulo € organizar as defini¢des e os principais resultados que serdo
abordados ao longo do texto. Todas as demonstracdes aqui omitidas, assim como apresentacdes

mais detalhadas, podem ser encontradas em [3].

2.1 Tensores

Nesta secao serdo apresentadas algumas definicdes a respeito de tensores assim como
alguns resultados que serdo recorrentes no decorrer deste trabalho. Nesta se¢do M denotard uma

n-variedade Riemanniana com métrica g e conexao Riemanniana V.

Definicao 2.1.1. Um tensor T de ordem r (também denominado um r-tensor ou um tensor do

tipo (0,r)) em M é uma aplicagdo C*(M)-multilinear

T:X(M)x--xX(M)+— C”(M).

[

r vezes
Em vista da linearidade, tensores sdo objetos pontuais. Para tornar isto mais claro,
consideremos 7 um r-tensor em M, Yq,....Y, € X(M), p€ M e (U,x',...,x") uma carta em

l - 1 9 Jj b ) * *

Sejam V C U uma vizinhanga de p tal que V C U e X)...,X, € X(M) campos satisfazendo

X; = — em V. Pela multilinearidade de T vale que

ox!

T(Yl,.. y Z Y]l er' (le7 Z le Yr]r_ JeJr
]1 7]'”

em V. A expressdo acima mostra que o valor da fungéo 7'(Y; ...,Y,) em p s6 depende dos valores

dos campos Y; ...Y, e das funcgoes T'(Xj,,...,X;,) no ponto p.

Definicao 2.1.2. Seja T um r-tensor em M. A diferencial covariante de T ¢é o tensor de ordem

r+ 1 denotado por VT e definido por

(VT)(Y1,.... Y 2) =Z(T(Y1,....Y,)) = Y T("1,...,VzY,....Y,).

i

Para cada Z € X(M), a derivada covariante de T na direcdo de Z é o r-tensor VzT dado por

(VZT)(Y1,....Y,) = (VT)(Y,.... Y, Z).
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Em posse da métrica g € possivel definir um produto interno no espaco dos tensores.

d d
Definicao 2.1.3. Sejam T e S r-tensores em M. Dada uma base coordenada local { 2 }
x X
com base dual (dx', ... ,dx") podemos escrever, na vizinhanga coordenada,
T = Y Tjjdv @ odd,
jlv"wj)’
S = Z Sjl...j,‘dle®“'®dxjr-
jlv"wjl‘

Dai, definimos

(T,S) = Y Tj...jo - Siy.ip- &M ... 87",
jla"'7jr7"'7il7"'air
onde (g") é a inversa da matriz da métrica g no referencia Sl 3 [
T|>=(T.T)
,T).
Em um referencial ortonormal local {ei,...,e,} de M, com base dual {e',...,e"},

um r-tensor 7 em M se escreve como
T = Z Tj,. el @ - @e

jl 1~~-7jr

e sua norma ao quadrado assume a expressao
2 2
TP =), (Tj.;)"
j17'~'7.jr
Definicao 2.1.4. Seja T um r-tensor em M e {ey,... ey} um referencial ortonormal local.
Definimos o (trago) Laplaciano de T como o r-tensor
2 . 2
tr(V2T)(Y1,....Y,) ==Y (V?T)(Y1,.... Y, ei6).

1

Também podemos escrever o Laplaciano de 7' da seguinte forma

tr(va) == Z |:Ve,'<V€[T) - VveieiT ’

i

ou, de forma mais geral, vale

(VZT)(Xl oo 7XV7Y27Y1) = (VYl (VYZT) - VVlezT)(Xla' .. 7Xr),
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para quaisquer X1, ..., X, Y1,Y» € X(M).
De fato,

(V2 T)(X1,.... X, Y0, Y1) = Yi((VT)(Xi,.... X 12)) — (VT)(Xi,.... X, Vi, 1a)

=Y (VI (%2, X,...,Vy Xi,.... X))

1

= V(Y0 T) (X1, X)) = (Vo T) (X, X,)

=Y (Vu,T)(X1,..., Vy Xi,... . X;)
-
= (Vy,(Vy,T)— VVlezT)(Xl yees Xr).
Serdo apresentadas agora trés proposi¢oes acerca dos objetos até aqui definidos, as
quais desempenhardo papel fundamental na prova do ultimo resultado desta secdo. A primeira é
a compatibilidade entre o produto interno de tensores e a derivada covariante. Nessa proposi¢ao
e no que segue, usaremos (.,.) ao invés de g para tornar a notagdo mais limpa, embora haja a
possibilidade de confusdo com a notacdo para o produto interno de tensores (note que usaremos

letras mindsculas para campos e maiusculas para tensores a fim de reduzir o risco desta confusao).

Proposicao 2.1.1. Dados dois tensores de ordem s, T e S, em M e X € X(M) vale que
X(T,S) = (VxT,S)+ (T,VxS).

Demonstragdo. Seja{ey,...,e,} um referencial ortonormal local de M com base dual {e!, ..., e"}.

Neste referencial podemos escrever

i is

S = ¥ Si.pdl®ed
i yes

i i

T = Y e @
i17"'7i.§'

VxS = Z (VXS>i|,...7iseil ®"'®€i5

VxT = Z (VxT)i.. i@ ®e

1] y.-00ls

e, além disso,

(T,S) = Z SiyoisTiy i

U] yeuusls
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Por um lado temos

(VxS, Ty = Y (VxSi.iTiiy= Y, X(Si17...7ix)_ZSil,...,Vxe,-k,...,is T,
il7 7i5 ily' iS k

<VXT7 S> = Z X(]}17...7is) - ZE],..,,VXeik,...,l's Si],...7l's
U] 5eenyls k

e, por outro,

X<T’ S> = . Z I:X(Slla -l )7-;17 -l +Sil7"'7ié‘X(7}l7-~-7i$>] :

oy
Como
(VxS,T)+ (S, VxT) = ¥ [X(Siii) T+ Sitcic X (T i)
oy
. Z ;[sil,...,Vxeik,...,isTil,...,is + T;.l7~~~>VXeik7~»~7isSi1,~~-7i5]}
oy
= X(S,T)~ Y YIS Vxeiois Tirreds + Tiy o Ve iy Sit o]

il?"'7iS k

¢ suficiente provar que, para cada k

Z (Sil7---7VX€ik7-~-7isTi17~--7is + 7}17--~7VXeik7-~~-,i.vSi17-~~7is> =0.

Isto segue diretamente da linearidade e da compatibilidade entre a conexao Riemanniana de M e

a métrica g

Z Sil-,“-yVXei 7~-'~,iS]—;'17"'7i3‘ = Z ZS”?: VXei »€m em7“'>i57}17'“7i5
k k
U] yeenyls 11,
= Z Z elkuvxem Szl,.‘.,ik_],m,ik+1,‘..,isTil,...,ik,...,is
= - Z Sil7~"7m7“'7i3’1}17---7VXem7---7iS
U yeesle— 1ol 1500 50s,1M
ms—iy
- _Sil,--wisT;'l7~--~,VX€ik7~-~>is’

0 que equivale ao desejado. [

A segunda proposicao fornece uma relagdo entre o laplaciano da norma de um tensor

e o (traco) laplaciano desse tensor.

Proposicao 2.1.2. Se S é um r-tensor em M entdo

—A\S|2 IVS|2 + (tr(V3S),S).
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Demonstracdo. Seja {ey,...,e,} um referencial ortonormal local. Pela proposi¢do anterior

A <%|5|2> — :Vei <V€i (%(S,S>)) — (Veei) (%<5,5>>}

:Vei(<V€iS7 S))— <VV€,'6"S7 S>]

temos

(Ve, (Vei$),8) + (VerS, VerS) = (V,.0,) |

<V€i (VeiS) - VveieiS’ S> + <V€iS’ VeiS>]

- -1 -1 -1

= (tr(V25),8) + Z<Vei57 Ve,S).

i
Por fim, temos que

Z(Veis7veis> = |VS|2,

i
pois

VSP= Y (VS)(ei,....eie0)* = Z( Y (VekS)(eil,...,e,-S)2>

k,il,...,is k [1yeesls
= Z |V€kS’2
k
= (VS Ve,S).

]

A ultima proposicao desta sequéncia apresenta uma forma de comutar a segunda

derivada covariante de um tensor.

Proposicao 2.1.3. Se T é um s-tensor em M entdo
(V2T)(X1,...,X,U, V)= (V?T)(Xi,...,X,,V,U) iT (X1,..,RUV)X;, ..., Xy),
i=1
onde R é o tensor de curvatura de M, R(X,Y)Z =VyVxZ —VxVyZ+ Vix yZ-
Demonstragdo. Por defini¢dao temos
(V2T)(X1,...,. X, U, V) = V((VT)(X1,....X,U)) = (VT)(X1,...,Xs,VyU)

S
=Y (VI)(X1,...,VvXi,..., X, U)
i=1

o que, aplicando novamente a defini¢do e organizando os termos, pode ser escrito como
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S
V<U(T(X17 . 7XS))) -V <ZT(X17"'7VUXi,' "7XS)) - (VVU)(T(X177XS))
i=1
) S
+Y T(X1,...,.Vy,uXi,...,Xs) U T(X1,...,VvXi,...,X;)
i=1 i=1
S
+Y T(X1,...,VuVvXi,... . X))+ Y. T(X1,...,VvXi,...,VuXj,....X,). 2.1)
i=1 i#]

Notemos agora que o segundo e o quinto termo juntos formam uma expressao simétrica em U e
V, logo quando fizermos a diferenca com a segunda derivada covariante de T na ordem trocada

de U e V esses termos serdo cancelados. O mesmo vale para o sétimo termo.
Os quatro termos de (V2T)(X1,...,Xs,U,V) — (V?T)(X1,...,X;,V,U) provenientes do primeiro

e o terceiro termo de (2.1) sdo

VU(T(Xy,.... X)) —UV(T(X1,.... X)) = VyU (T (X1,....Xs)) + VoV(T(X1,....Xs)),

ou seja,

V,U(T (Xy,...,Xs5)) — (VyU = VyV)(T(Xy,...,X;)) =0,

pela simetria da conexdo. Por fim, os termos que sobram sdao

-

~
—

[T(Xl,. W VuVvXi, .o X)) —T(Xy,..., Vv VuXi, ..., Xy)
+T(X1, ... ,VVVUX,', ... ,Xs) - T(Xl,. .. ,VVUVX,', ... ,XS)]

S
= Y T(X1,...,VuVvXi = Vv VuXi = Vig niXi, ... X;)
i=1

S
= =Y T(Xi,....,R(U,V)X;,....X;).
i=1

]

Para concluir essa secdo serd apresentada a demonstragdo de uma férmula, obtida
por Cheng e Yau em [5], para o laplaciano da norma ao quadrado de um 2-tensor simétrico que
satisfaz a equagdo de Codazzi. Antes disso € interessante fixar uma notacdo com respeito as
fun¢des componentes da diferencial covariante de um tensor: Dados um r-tensor 7 em M e

{e1,...,e,} um referencial local de M adotaremos a seguinte notagao
. 2 o
(VT)(eilv"'aeimek) = T;'l...ir;k ) (V T)(eilv"'7eir7ek7ej) = T;'l...ir;kj ) etc.
Para o caso particular de O-tensores, isto € fun¢des, convencionaremos

fi=ei(f) e fij=ei(ej(f)) — (Vesei) f.
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Definicao 2.1.5. Dado um 2-tensor T em M, dizemos que T satisfaz a equagdo de Codazzi
quando

(VT)(X,Y,Z) = (VT)(X,Z,Y), VX.,Y,Z € X(M).

Equivalentemente, T satisfaz a equacdo de Codazzi se, para qualquer referencial local {ey, ... ey}

de M, as fungcdes componentes de (VT) cumprem
Tij;k = T,'k;j, Vi,j,k € {1, ces ,n}.

A ultima observacdo antes de provarmos a férmula citada acima diz respeito a
tensores simétricos: Se T € um 2-tensor simétrico entdo sua diferencial covariante VT € simétrico
nas duas primeiras entradas.

De fato, dados X,Y,Z € X (M), temos

(VT)(X,Y,Z) = Z(T(X,Y))—T(VzX,Y)=T(X,VzY)
= Z(T(Y,X))=T(VzY,X)—T(Y,VzX)

— (VT)(Y.X,Z).

De modo geral, se T é um r-tensor simétrico em duas entradas entdo VT (consequentemente
VKT, para qualquer k € N) herda essa simetria nas entradas correspondentes. A prova dessa
afirmacgdo segue novamente da definicdo da diferencial covariante de um tensor, assim como foi

feito acima.

Proposicao 2.1.4. (Cheng e Yau) Sejam T um 2-tensor simétrico em M que satisfaz a equacdo
de Codazzie p € M. Se {ey,...,e,} € um referencial ortonormal local de M que diagonaliza T

em p, isto é T;j(p) =T (ei,e;)(p) = Widij, para i, j € {1,...,n}, entdo, em p, vale

1 1
5A\T|2 = |VT?+ Y pi-tr(T)i+ EZRijij(Hi — )%,
i i

onde tr(T) = ZTkk e Rijij é a curvatura seccional do plano gerado pelos vetores e;(p) e ej(p)

k
de T,M.

Demonstragdo. Pela Proposicao 2.1.2 vale

1
EA|T\2 = |VT >+ (tr(V?T),T). (2.2)
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Vamos nos concentrar entio no termo (tr(V2T),T). Temos, para cada i, j € {1,...,n}, que

tr(V2T)i; = Y T

Fjkk — Tk jk +Z ik: jk — Tk j +Z(Tik;kj_Tkk;ij)+Z(Tkk);ij
3 k k

%

(T;

X

(T jak — Tacji) + Y (Tirekj — Thksi) + 3 (Tik )i

% X %

—Y [T(R(ej,ex)ei,ex) + T (ei,R(ej,ex)ex)]
%

= Z (Tijsek — T ji) + Z(Tik;kj — Thk:ij) + Z(Tkk);ij

X 3 %

k

Z kaRmikj - Z TimRmkkjy (23)

m k,m
onde, na terceira igualdade, usamos a Proposi¢do 2.1.3, na ultima igualdade escrevemos

R(ej,er)e; e R(ej, ex)ex no referencial ortonormal {ey,...,e,}, isto é

R(ejaek e = ZRszm €m © R(e];ek ek—ZR]kkm €m;

€ usamos as simetrias

Rijit = Ruij € Riju = —Rjiu,

e, na segunda igualdade, foi usado
Y Tiij =Y (Ta)sij -
k k

E importante destacar aqui que essa passagem ndo é apenas uma manipulaco na notacdo, as
parcelas do lado esquerdo da igualdade acima sdo as fungdes (V2T) (e, e, e, ;) enquanto as
parcelas do lado direito s@o as derivadas covariantes da funcao 7y, logo, ndo € imediato que as
somas coincidam. Mas de fato elas coincidem e a justificativa segue da simetria de VT nas duas

primeiras entradas (a qual é consequéncia da simetria de 7):

;Tkk;ij = ;[ej((VT) (ek,ek,e,-)) — (VT) (ek,ek,nge,-) — 2 . (VT)(Vejek,ek,ei)]
= Z{ej [e,-(Tkk) —2- T(Ve,-eka ek)] - (Vejei)(Tkk) —2- T(Vvejeiek, ek)}
k

= Ylej(ei(Tw)) — (Ve,e) (T)] = Y. (T

k k

onde foram usadas, na segunda e na terceira igualdade, respectivamente, as relagoes

Z(VT)<V€jekuekuei) =0 e ZT(VX€k,€k) =0, VX € :{(M)u
k k



20

as quais sdo justificadas abaixo:

;(VT)(Vejek,ek,ei) = kZ(Vejek,emﬂVT)(em,ek,ei):—;<ek,Vejem>(VT)(em,ek,e,-)

= =Y (VT)(em; Vesem ei)

- _Z(VT)(VEjemaem7ei>7
m

ZT(VXek,ek) =— Z(ek,VXem)T(em,ek) = —ZT(VXem,em).

k k,m m
Usando a hipétese de que T satisfaz a equacio de Codazzi, obtemos que V2T possui uma simetria

entre a segunda e a terceira entrada, ou seja, vale

Tijki = T ji-
Juntando isso com a simetria de V2T com respeito as duas primeiras entradas (consequéncia da
simetria de T'), obtemos

Tijik = Tijk € Tikkj = Tksij-

Substituindo essa informag¢do em (2.3) vem que

tr(V2T)ij = Y (Ta)sij — Y, TokRmik; — Y, TimRonk -
k km P

Dessa forma, a igualdade (2.2) se torna

1
SAITE = VTP + Y (T~ Y TiTokRuiej— Y, TijTinRmis
i7j7k i7j7k7m i’j7k’m

Visto que a igualdade acima vale em todos os pontos do dominio dos campos {e;, ..., e, } entdo,

no ponto p, onde 7;; = u;0;;, concluimos que

1
§A|T]2 = [VTPP+ Y wtr(T))ui — Y pitteRiaei — Y 17 Riri
i ik ik

1
= VTP + Y wi(er(T))i+ 3 Y Riie (i — ),
i ik
jé que, pelas simetrias de R,

1 1 1
2 Y Riir(pi — m)* = 5 Y Ruieit? — Y Riiwttitix + 3 Y R}
ik ik ik ik

1 1
= 3 ZRikik.uiz - ZRkiki.ui.uk + 5 ZRkikiulg
ik

ik ik
2
= Y Riktti — Y Ruiki it
ik ik
2
= =) Rt} — Y Reikiblibl.
ik ik
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2.2 Segunda Forma Fundamental e Equacoes Fundamentais

n+k

Nesta subseg¢do consideraremos uma imersdo i : M" — (M~ ', g) e vamos munir M

com a métrica induzida por i. Além disso, fixaremos as seguintes notacgdes:
— V é a conexdo Riemanniana de M, enquanto V denota a conexdo Riemanniana de M, a

qual coincide com

(X,Y) € X(M) x X(M) — (V¢X)",

onde X,Y sio extensdes locais de i, (X) e i,(Y) e (.)7 significa a componente tangente 4
M= i(M).

— A segunda forma fundamental de M serd denotada por A, ou seja
AX,Y)=(VyX)V, XY € X(M),

onde X" denota a componente normal & M de X.

— ReR denotam, respectivamente, as curvaturas de M e M.

Proposicao 2.2.1. Sdo vdlidas as seguintes relagoes

1. (Equacgdo de Gauss)

g(R(X,Y)Z,W) =2(R(X,Y)Z,W) —g(A(Y,W),A(X,Z)) + g(A(X,W),A(Y,2)),

para quaisquer X Y, Z,W € X(M);
2. (Equagdo de Codazzi)

(R(X.Y)2)" = (V)A) (X.2) — (V}A) (¥.2),
para quaisquer X,Y,Z € X(M).
Demonstragdo. Pode ser encontrada em [3] paginas 135 e 137. 0
Na equacdo de Codazzi a notacdo V" significa a derivada covariante normal, ou seja
(VXA) (Y,Z) = ((VxA)(X,Y))N = (VxA(Y,Z))Y —A(VxY,Z) — A(Y,VxZ).

No caso de codimensdo 1 podemos reescrever a equagdo de Codazzi da seguinte forma:
Seja v uma escolha de normal unitdrio e definamos o 2-tensor simétrico A (X,Y) =g(A(X,Y), V).

Em particular, como VxV é tangente a M, para todo X € X(M) (ja que |v| = 1), vale

(VZAV)(Xﬂy) :g((ng)(X,Y),V), VXY, Z e %(M)a
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pois

(VAN (X,Y) = Z(Ay(X,Y)) —Ay(VZX,Y) —Ay(X,VY)
= Z(g(AX,Y),v)) —2(A(VZX.Y),v) —8(A(X,VzY),V)

(A(X,Y)),v) —8(A(X,Y),Vzv) —8(A(VZX,Y) —A(X,VzY),V)

|
0Q|

(Z )
g((VZAX,Y),v).

Dessa forma, a equagdo de Codazzi se escreve como

2(R(X,Y),v) = (VyAy)(X,Z) — (VxA,)(Y,Z). (2.4)
2.3 Variedades completas

O objetivo desta secdo é apresentar os principais conceitos e resultados a respeito
de variedades completas, como o tdo conhecido Teorema de Hopf-Rinow. A parte final serd
dedicada a demonstra¢des de alguns resultados que serdo primordiais na prova dos trés teoremas
principais do presente trabalho. A menos de mencao do contrario todas as variedades daqui em

diante serdo supostas conexas.

Definicdo 2.3.1. Dizemos que uma variedade Riemanniana (M, g) é (geodesicamente) completa
se, para todo p € M, o mapa exponencial, exp,, estd definido em todo T,M, ou seja, toda

geodésica y(t) comecando em p estd definida para todo instante t € R.

Quando a métrica em questdo for evidente, diremos apenas que M € completa. Da
mesma forma, quando M estiver munida de duas métricas g e g, diremos apenas que g, ou g, €

completa.

O préximo passo € definir uma funcdo distancia em uma variedade Riemanniana M,
a qual estd intimamente ligada tanto a estrutura diferencidvel de M quanto a estrutura topoldgica

(Ver Proposi¢ao 2.3.2).

Definicao 2.3.2. Dada uma variedade Riemanniana (M, g) e p,q € M, definimos
d(p,q) =inf{l(c); ¢ € uma curva suave por partes ligando p e q},

onde l(c) é o comprimento da curva c, ou seja, se c estd definida em [a,b] e {ty,...,tx} é uma
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parti¢do de [a,b] tal que c|| é suave, para j =0,...,k— 1, entdo

titjv]
k=1 i
)= X, [ VO = [V

Diremos que uma curva c, suave por partes, ligando p e q é minimizante se [(c) = d(p,q).

Vale destacar que, sendo M conexa, sempre existem curvas suaves por partes ligando

quaisquer pontos p,q € M.

Proposicao 2.3.1. Munida da funcdo distincia d, M se torna um espaco métrico, ou seja, para
quaisquer p,q,r € M valem as relacoes

1. d(p,r) <d(p,q)+d(q,r);

2. d(p,q) =d(q,p);

3. d(p,q) >20ed(p,q) =0 p=gq.

Demonstragdo. Pode ser encontrada em [3] pagina 146. [
Proposicao 2.3.2. A topologia induzida por d em M coincide com a topologia original de M.
Demonstragdo. Pode ser encontrada em [3] pagina 146. U

Uma consequéncia imediata da proposicao acima que relaciona a topologia de M

com a estrutura métrica oriunda de d é o

Coroléario 2.3.1. Dado p € M a fungdo f : M — R, f(q) =d(p,q), é continua.
Na realidade vale algo mais forte do que o coroldrio acima diz.

Corolario 2.3.2. A funcdo distanciad : M x M — R ¢é continua.

Demonstracdo. Como a topologia induzida por d em M coincide com a topologia original de
M é suficiente provar que, se x, — Xo € y, — Yo (isto é d(x,,xp) — 0 e d(y»,y0) — 0), entdo

d(xmyn) — d(x07y0)'

Com efeito, pela desigualdade triangular vale que

d(xu,yn) —d(x0,y0) < d(x4,%0)+d(x0,yn) — d(x0,Y0)

< d(xp,x0) +d(x0,¥0) +d(yo,yn) — d(x0,¥0)

d(xn7-x0) +d()’n7y0)
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e, analogamente,

d(’%;)’o) _d(xl’hyn) < d(xn,X()) +d(yn7y0)

Portanto,

1 (X, ) — d(x0,50)| < d(xn,%0) +d (¥, y0) "0,

0 que prova o desejado. 0

Teorema 2.3.1. (Hopf-Rinow) Sejam M uma variedade Riemanniana e p € M. Sdo equivalentes
as seguintes afirmagoes:

1. exp, estd definida em todo T,M;

2. Os conjuntos fechados e limitados de M sdo compactos;

3. M é completa como espaco métrico;
4. M é geodesicamente completa;
5

. Existe uma sequéncia de subconjuntos compactos K, C M, com K, C K, 11 e M = U K,,

neN
tal que, se q, ¢ Ky, entdo d(p,qn) — <.

Além disso, qualquer uma das assertivas acima implica

6. Para qualquer q € M existe uma geodésica y ligando p e g com L(y) = d(p,q).
Demonstragcdo. Pode ser encontrada em [3] pagina 147. [

Sera dado inicio agora a uma sequéncia de quatro resultados auxiliares que, como j4
comentado, serdo fortemente utilizados no decorrer deste trabalho. O primeiro resultado fornece
uma condicdo suficiente para que uma mudanca conforme na métrica original de uma variedade

completa dé origem a uma métrica também completa.

Proposicéo 2.3.3. Sejam (M,g) uma variedade Riemanniana completa, k > 0 e u € C*(M) tal

que u> 8 >0, em M. Entdo M, munida da métrica g = u** - g, é também completa.

Demonstrag¢do. Denotemos por d, € dg as fungdes distancias em M induzidas por g e por g. Pelo
teorema de Hopf-Rinow, para provar o desejado, basta mostrar que (M, dg) é completo como

espaco métrico. Para isto notemos que

dg(xa)’> > 3k'dg(x7y)a vxay €M,
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visto que, para x,y € M arbitrdrios e qualquer curva suave por partes ¢ : [a,b] — M ligandox e y

vale

1

Bo) = [ E@.Ca)tar= [ e)- (0.0 = 8 [ (o). ) ar
= 6klg(c>7

donde segue que

dg(x,y) = inf{lg(c); ¢ éuma curvaligando x e y}
> §F.inf{l,(c); ¢ éuma curvaligando x e y}

= 8% dy(x,y). (2.5)

Por outro lado, se uma sequéncia {x, },cy C M converge para um ponto xy em relagdo a métrica
dg, entdo esta sequéncia também converge para xo em relagdo a métrica dg.

De fato, tomemos ny € N suficientemente grande tal que [, = d, (xn,x0) < 1, para todo n > ny.
Sendo (M, g) completa, existe, para cada n € N, uma g-geodésica minimizante ¥, : [0,1,] — M

ligando x,, e xo. Em particular, ¥,(]0,1,]) C By (xo) (bola intrinseca de M na métrica g), logo

dg(xn,xo) <lz(m) = /Oln(g(%w%,z))édt :/ ”Oyn %177/ 2‘” < (max u ( )) In,

ln
0 B (xo)

para todo n > ng, o que implica dg(x,,X0) "3 0, como afirmado.

Portanto, novamente pela completude de (M, g), concluimos que

{*n}neny C M de Cauchy em dg 2 {%n}nen de Cauchy emd, = {x,},en converge em d,

= {Xn}nen converge em dyg,
como querfamos mostrar. O

O segundo resultado trata da completude de um espago de recobrimento.

Proposicio 2.3.4. Sejam (M, g) uma variedade Riemanniana e © : M — M um mapa de recobri-

mento. Entdo, munindo M com a métrica de recobrimento h, vale que

(M,g) completa = (M,h) completa.
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Demonstragdo. Vale recordar que a métrica h € definida por
hp(uav) = gn(p) (dnp(u)adnp(v))a u,v e TPM7 pec M

e, com essa métrica, T : M — M é uma isometria local. Denotaremos por dj, e d, as fungdes
distAncia em M e M induzidas por & e g, respectivamente.

Pelo Teorema de Hopf-Rinow € suficiente provar que (M, d),) é completo como espago métrico.
Para tanto, consideremos {x, },ecy C M uma sequéncia de Cauchy. Como 7 é uma isometria
local, a sequéncia {7(x,) },eny C M também é de Cauchy. Logo, sendo (M,d,) completo, vale
que m(x,) "=~ yo em d,. Afirmamos que x, — xo em dj, para algum xo € 7! (o).

De fato, sendo 7 : M — M um mapa de recobrimento, existe uma vizinhanga V C M de yy tal que,
em cada componente conexa U de 7~ (V), 7|y : U — V é um difeomorfismo (consequentemente,
uma isometria). Visto que 7(x,) € V, para todo n suficientemente grande, podemos assumir, sem
perda de generalidade, que {7 (x,)}nen C V. Em particular {x,},eny € 7 1(V).

Seja & > 0 tal que B%/[(yo) C V, onde

BY (yo) = {q € M; dy(q,y0) < 8}

¢ a bola intrinseca de M centrada em y( e de raio 6. Como a restri¢ao de 7 a qualquer com-
ponente conexa de 7~ !(V) é uma isometria sobre V, vale que B‘(‘? ()" (y0)) C U, para
toda componente conexa U de 7~ !(V'), onde 3%7 ()~ (y0)) € a bola intrinseca de M. Daf,

tomando ng € N tal que

0
dg(7(x,),y0) < 7 ¢ dp(xn,xm) < —, Vn,m > ny

IV

e Up C 7~ (V) a componente conexa de 7~ (V) que contém x,,,, segue que, para n > ng

dp (x}’la (77:|U0)_1(y0)) < dh(xnuxno) +dp (xnoa (77:|U0)_1()’0)) = dh(xnvx’lo) +d8(7r(xn0)7y0) < gv

o que significa x, € B? (( 7r|UO)_1 (vo)) C Uy, para todo n > ng. Por fim, novamente do fato que
|y, : Up — V é uma isometria e de 7(x,) — yo em dg, concluimos que x, — (|y,) "' (vo) =: x0

em dj, o que prova o afirmado e, por conseguinte, a proposicao. 0

Na verdade vale a reciproca da proposigdo acima, ou seja, se (M, h) é completa entdo
(M, g) é completa, contudo, como isso ndo serd usado neste trabalho, a demonstragio deste fato
serd omitida.

A préxima proposicao trata de uma caracteriza¢do da completude de uma variedade

ndo compacta em termos de curvas divergentes.
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Definicao 2.3.3. Uma curva divergente numa variedade Riemanniana M é um mapa suave
a : [0,00) — M tal que, para cada compacto K C M, existe ty € [0,00) satisfazendo o.(t) ¢ K,
para todo t > ty. Em outras palavras, o escapa de qualquer compacto de M. Definimos o

comprimento de uma curva divergente Q. por

Proposicao 2.3.5. Seja (M,g) uma variedade Riemanniana ndo compacta. Entdo (M,g) é

completa se, e somente se, toda curva divergente em M tem comprimento infinito.

Demonstrag¢do. Suponhamos inicialmente que (M, g) é completa e tomemos uma curva diver-
genteem M, y:[0,7) — M. Como M é completa, segue do teorema de Hopf-Rinow que, para

cada N € N, a bola fechada B(y(0),N) C M é compacta. Tomemos ty < T tal que

¥(t) & B(¥(0),N), Vit > 1.

Dai,

L7 6)lds = dr0).70) > N, i > 1 = 1) = T [ 117/(5) s = o

Assumindo agora que toda curva divergente em M tem comprimento infinito, suponhamos
por absurdo que M nao é completa. Em particular, pelo teorema de Hopf-Rinow, M ndo é
geodesicamente completa. Consideremos entdo uma geodésica v : [0,€) — M, parametrizada
por comprimento de arco, com € < oo, que ndo pode ser estendida além de €. Provemos que y é
divergente.

Com efeito, caso isso ndo seja verdade, existem K C M compacto e uma sequéncia {t, },en C
[0, €) tais que

th —€ey(ty) €K, VneN.

Passando a uma subsequéncia, se necessario, podemos assumir ¥(t,) — g € K. Seja W C M uma
vizinhanca totalmente normal de ¢ (a existéncia de tal vizinhanga € garantida em [3], p.72) e
ny suficientemente grande tal que y(z,) € W, para todo n > ng. Tomemos 6 > 0 tal que, para
cada p € W, exp,, € um difeomorfismo em Bs(0) C 7,M e exp,(Bs(0)) D W. Em particular, a
geodésica B : (ty, — 8,1y, +0) — M, dada por

B(r) = expy(tno)((t - tno)}/(tno))
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passa, no instante ¢ = t,,, em ¥(,,) ¢ com velocidade ¥/ (,,) (ja que a derivada de XDy (s, )
na origem ¢ a identidade). Logo, por unicidade, y € igual a B em [0,€) N (¢, — 6,1, + 5).
Aumentando ny, se necessario, podemos assumir que #,, + 6 > €, logo conseguimos estender y
além de €, o que € uma contradi¢@o. Disto concluimos que Y € divergente.

Dessa forma, temos por hipétese que /(7y) = co. Porém, sendo y parametrizada por comprimento

de arco, vale que /() = € < o0, 0 que é um absurdo.

Do exposto, segue que M é completa. 0

Por fim, o dltimo resultado desta secdo, obtido em [12], também fornece uma
caracterizacdo da completude de uma variedade nao compacta, porém, agora em termos do

comprimento da "menor curva divergente".

Proposicao 2.3.6. (Magliaro, Mari, Roing e Savas-Halilaj) Seja (M, g) uma variedade Rieman-
niana ndo compacta. Entdo, para cada p € M, existe uma curva divergente y: [0,T) — M, com
Y(0) = p, que é uma geodésica e minimizante em cada subintervalo compacto de [0,T). Além
disso, vale que

(M,g) é completa < T = co.

Demonstragdo. Vamos construir inicialmente uma exaustdo de M por abertos pré compactos
{Q;}jen tal que, paracada j €N, Q; C Q.

Com efeito, tomemos uma funcao exaustdo suave e positiva f : M — R de M, ou seja, para todo
b € R, f~1((—o,b]) é compacto (a existéncia de tal funcio é garantida em [11], p. 46). Seja
by > 1 um valor regular de f e tal que p € f~!((—oo,b1]) (tal by existe pelo teorema de Sard).
Definamos Q1 = f~!((—o0,b;)). Tomando by > max{by,2} tal que b é um valor regular de f
e definindo Q) = f~!((—o0,b,)) teremos

Q=1 ((~o,b1]) C Qe [ ((—,2)) C Q.

Prosseguindo indutivamente, obtemos uma exaustao
Mc|JQ; (poisM cUr (=) ef (=) C QJ)
JEN jEN
por abertos pré compactos satisfazendo Q_j C Qjy1, paratodo j € N.

Em particular, dQ; é compacto para cada j € N, ji que é um fechado contido no compacto

Q_j. Logo, a funcdo continua g € dQ; — d(p,q) assume um minimo, digamos em p;. (pode
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haver mais de um ponto onde tal fun¢cdo assume um minimo, estamos apenas fixando um desses
possiveis pontos)

Afirmamos que existe uma geodésica minimizante y; : [0,7;] — M ligando p a p;.
Consideremos T := d(p,p;), § > 0 tal que a bola normal fechada Bs(p) (ou seja Bs(p) é a
imagem difeomorfa, por exp,, de B5(0) C T,M) estd contida em Q, S = S5(p) o bordo de Bs e
qo € S tal que

d(pj,q0) = min{d(p;,q); q € S} =:d(p;.S).

Entdo go = exp,(6v), onde v € T,M e |[v| = 1. Tomemos ¥; : [0,r) — M a geodésica partindo de
p com velocidade v e definida no intervalo maximal. Se r < T; < oo, entdo ¥; seria divergente
(por um argumento andlogo ao que foi usado na Proposicdo 2.3.5), em particular 7; sairia de Q ;

em algum momento, donde obterfamos # € [0,r) satisfazendo ¥;(ty) € dQ;, logo

r=1(y;) > (Yjljos) > d(p.pj) =Tj,

0 que € uma contradi¢do. Portanto, 7; < r. Para provar o afirmado € suficiente mostrar que
Yj(T;) = p; (Ver Figura 1).

Para tanto, definamos A = {r € [0,7}];d(y;(t),p;) = Tj—t}. Temos que A é fechado e ndo vazio,
visto que 0 € A e as fungdes ¢ € [0, 7] — d(7;(t),p;) et € [0,T}] — Tj—t sdo continuas. Dado

t € A, comt < Tj, vamos mostrar que ¢ + &’ € A, para 6’ > 0 suficientemente pequeno.

Figura 1 — Curva y;

Fonte: Elaborada pelo autor.

Com efeito, tomemos ¢’ > 0 tal que a bola normal fechada Bg (y;()) estd contida

emQjer+ 6" <Tj. Sejam S’ o bordo dessa bola e g, € §' tal que d(p;,q;,) =d(p;,S'). Tem-se
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entao
Tj—t=d(yj(t),p;) > 8" +d(pj,qp), (2.6)

haja vista que, para toda curva o : [0,/] — M ligando pj e ¥;(¢), existe s € [0,] com o (s) € §',
logo
(o) =1(clj) +1(0|s) =8 +d(p;,S') =8 +d(pj,q)-

De (2.6) e da desigualdade triangular segue que
d(p.qp) > d(p.pj) —d(qo,pj) 2 Tj— (Tj—1t - &) =1 +8'. 2.7)

Por outro lado, a curva obtida ao concatenar ;o € a geodésica s € [0,8'] — eXpy,(;)(s-w), com
lw| =1, que liga ¥;(t) e ¢(,, tem comprimento ¢ + &', portanto d(p, q;) =t + &' e as desigualdades
em (2.7) se tornam igualdades. Em particular, essa curva € uma geodésica (pois € minimizante),
logo, por unicidade,

Vit +8') = expy (8" w) = gp.

Como a segunda desigualdade de (2.6) é na verdade uma igualdade, concluimos que
d(yj(t+8"),pj) =d(qo,pj) =Tj—1 =8 =T;— (t+8"),

ou seja, t + &' € A.

Disto, e do fato que A € fechado, segue que 7; = supA € A, provando assim o afirmado.

A curva y; : [0,7;] — M assim obtida é minimizante (consequentemente, geodésica) e liga p e
p;j. Note ainda que ¥; estd parametrizada por comprimento de arco, ja que ]}/j(O)] = =1

A construgdo da curva y: [0,7) — M desejada seguird dos seguintes fatos:

a) 1((0,7))) C Q.
De fato, se existisse t < 7, com ¥;(t) ¢ Q; obterfamos #to < t < T; tal que ¥;(tp) € dQ;.

Dai
d(p,vj(to)) =to < T; =d(p,v;(T;)) = d(p,pj),

0 que contradiz a defini¢do de p;.
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b) {7} jen € uma sequéncia crescente.
Como Q; C Qj41, temos que Q;NIQ ;41 = . Logo, como ¥j41(0) =p € Qje¥jr1(Tjx1) =

Pj+1 € 9Qjy, existe t < Tjy satisfazendo yj.(t) € dQ;, donde

Tj=1(y;)) =d(p,p;) <d(p,vj+1(t)) <d(p,¥j+1(Tj+1)) = Tjs1.

¢) Existe uma subsequéncia {7;, } que converge uniformemente em compactos para uma curva
y:10,T) — M, onde T = sup{7}}.
Como a sequéncia {}(0)} C T,M estd contida no compacto S1(0) C T,M, existe uma
subsequéncia {¥; (0)} convergente, digamos ¥; (0) — w € §1(0). Tomemos y: [0,s) — M
a geodésica, parametrizada por comprimento de arco e definida no intervalo maximal,
tal que ¥(0) = p e ¥(0) = w. Pela suavidade com respeito as condi¢des iniciais de uma
EDO, vale que ¥;, — 7 uniformemente em compactos de [0,min{s, T}). E suficiente entio
mostrar que T <'s.

Suponhamos que isso ndo ocorra. Sendo assim, existe jo € N tal que s < T}, < o, donde

segue que Y € divergente (pelo argumento que usamos na prova da Proposi¢do 2.3.5) e
I(y) =5 <Tj, =d(p,0Qj) = ¥([0,5)) C Qjy,

0 que € uma contradi¢do ja que Q, € compacto.
No que segue iremos denotar apenas por {¥;} a subsequéncia acima obtida. A seguir serd

provado que ¥ satisfaz as condi¢des desejadas:

d) 7y ¢é minimizante em cada subintervalo compacto de [0.7).

Dados t; < t; em [0,T), temos

d(vi(t),v(t2)) = d(y(t1),v(2)),

jaqued: M xM — R € continua. Por outro lado, como cada y; € minimizante e y €

parametrizada por comprimento de arco, vale

d(vi(t1),Yi(2)) = 1(¥jlin ) =2 —t1 = UV, 1)> Vi EN.

Portanto, d(y(t1),Y(t2)) = (VI 1,)) € por conseguinte, y € minimizante em [t,1].

e) 7 ¢ divergente.

Vamos aqui considerar dois casos:
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Caso 1: T < oo: Mostremos inicialmente que existe uma sequéncia {¢;} C [0,T) tal que
tj—>Te}/(tj) §§Qj, VjeN.

Com efeito, fixado jo € N, temos que, para todo j > jo + 1, existe f; < T; cumprindo
Vi) & Qjy e V(7)) € 9Qjy11, pois

Yi(T)) € 0Q;

i(0) =p € Qjj41

Q;+1NdQ; =2
Além disso, tomando € = d(dQj,+1,9Q,+2) e observando que, para todo j > jo+2,
existe s; < Tj com ¥j(s;) € dQj 42 e ¥j(t) ¢ dQj, 2, para todo ¢ > s; (basta tomar
sj =sup{t;7;(t) € dQ,42}), vem que 7; < s; (do contrdrio obterfamos ¢ > s; com

')/](l) € ano+2) €
€< l(’yj|[ﬁ,s1}) =5 = <Tj—1; <T —1;, Vj > jo+2.

Dai, a sequéncia {7;} - j,+2 estd contida no compacto [0,7 — &]. Passando a uma
subsequéncia, se necessario, podemos assumir que 7; — ¢, € [0,7 — €]. Logo, como

y; — Y uniformemente em [0,7 — €], temos

d(yj(7), Y(tjy)) < d(v;(7), v(7)) +d(¥(7)), V(tj,)) = 0,

ou seja, ¥;(z;) — ¥(tj,)- Por ¥;(t;) ¢ Qj,, paratodo j > jo+ 1, e Qj, ser aberto segue

que ¥(7j,) & Qj.
Em particular, sendo s, = inf{z; y(t) € dQ,,}, vale

T >1j,>sjo =1Yl0s,,]) = d(p,pjo) = Tjo-

Sendo jy € N arbitrario segue que a sequéncia {¢;} acima obtida satisfazt; — T e
y(tj) ¢ Qj, paratodo j € N.
Obtida essa sequéncia, suponhamos agora que Y ndo € divergente. Entdo existem

K C M compacto e uma sequéncia {s;} C [0,T) tais que
sj—>Te}/(sj)€K, VjeN.

Sendo M = Jcn 2 uma exaustdo de M por abertos, existe jo € N tal que K C Q.

Entdo, para todo j > jo+ 1, vale que (s;) € K e ¥(t;) ¢ Qj,+1, donde obtemos r; e
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7 entre s; e t; satisfazendo

Y(rj) € 09,
}/(ﬁ) € an0+1

Portanto,
0 <d(dQjy, Q1) < d(Y(r)), ¥(7})) = |rj =75 < [s; =],

para todo j > jo+ 1,0 que € absurdopoiss; = T,t; =T e T < oo,
Do exposto, concluimos que 7y é divergente nesse caso.

Caso 2: T = oo: Para cada j € N definamos L; = max{d(p,q); ¢ € Q,}. Fixado jo € N
arbitrariamente, seja j; suficientemente grande de modo que 7}, > Lj, (existe pois

T; — T = ). Entdo
d(p,}/(t)) =1> Tj1 >Lj07 Vi > le = y(t) ¢ Q'jov vt > le'

Ou seja, eventualmente a curva Y escapa de qualquer dos abertos € ; (e ndo retorna
novamente). Isto por sua vez nos garante que y € divergente, pois, dado K C M
compacto, existe jo € N tal que K C Q.
Concluimos assim que a curva y cumpre os requisitos desejados. Por fim, provemos a equivalén-
cia:

(M,g) é completa < T = co.

=) : Sendo (M, g) completa e y divergente, segue imediatamente da Proposicdo 2.3.5 que

T

oo,

(

(«<):Seja o :[0,T5) — M uma curva divergente arbitraria parametrizada por comprimento
de arco. Trocando, se necessario, ¢ pela curva obtida ao concatenar uma curva ligando p e
0(0) e o, podemos assumir que 6(0) = p. Para cada j € N, sejat; < T tal que o (1)) € dQ;
(existe pois 0 comeca em p € £; e em algum momento escapa do compacto Q_j). Entdo, como
Tj=d(p,9Q;),

Ts =1(o)>1(o

[Ovtjp 2 TJ

Sendo j € N arbitrdrio e 7; — T = oo, concluimos que 7 = oo, por conseguinte (M, g) é completa

(novamente pela Proposi¢ao 2.3.5). [
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2.4 Variacao da Energia

Esta secdo € dedicada a apresentacdo de alguns conceitos como a variagdo de uma
curva e a fun¢do energia, contudo o conteido mais importante aqui serd a denominada férmula

da segunda variacdo da energia, a qual se fard presente nos trés teoremas principais.

Definicdo 2.4.1. Seja c : [0,a] — M uma curva suave por partes na variedade M. Uma variagdo

de ¢ é um mapa continuo f : (—€,€) x [0,a] — M tal que

a) f(0,t) =c(t), parat € [0,dl;

b) existe uma parti¢do {ty, ...t} de [0,a] tal que a restri¢do de f a cada um dos subconjuntos
(—e,€) X [ti,tiy1], i=0,...,k—1, é suave.

A variagdo f é dita propria quando
f(5,0)=¢(0) e f(s,a) =c(a), Vs (-¢¢8).
Se a fungdo f é suava diremos que a variagdo é suave.

Definicio 2.4.2. Dada uma curva suave por partes c : [0,a]| — M e uma variagdo de c, f :
(—¢€,€) x[0,a] = M, definimos o campo variacional de f como o campo de vetores (suave por

partes) ao longo de ¢ dado por

V(t)= %(O,t), t €[0,a].

Proposicao 2.4.1. Dado um campo suave por partes V (t), ao longo de uma curva suave por
partes c : [0,a] — M, existe uma variagdo f : (—¢€,€) x [0,a] — M de ¢ cujo campo variacional
coincide com V (t). Além disso, se V(0) =V (a) =0, entdo f pode ser escolhida como uma

variagdo propria.
Demonstragdo. Pode ser encontrada em [3] pagina 193. [

O restante desta secdo dara €nfase ao conceito de energia associado a variagao de
uma curva. Contudo, € relevante apresentar uma no¢ao mais geral de energia, a qual seréd
retomada na se¢do 3.2. A menos de menc¢do do contrdrio, todas as curvas daqui em diante serdo

assumidas suaves por partes.

Definicio 2.4.3. Dada uma curva c : [0,a] — M, definimos a sua energia como sendo

E(c) = /0 ¢! (1) Pt
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Para qualquer curva c : [0,a] — M vale que

I(c)><a-E(c), (2.8)

basta tomar f = 1 e g = || na desigualdade de Schwarz

(/Oaﬂgdt)zg (/()afzdt>'(/()ag2dt),

Além disso, vale a igualdade em (2.8) se, e somente se, g = |c’ |  constante, ou seja, 0 parimetro

t € proporcional ao comprimento de arco de c.

O lema abaixo mostra que uma geodésica que minimiza o comprimento também

minimiza a energia.

Lema 2.4.1. Sejam p,q € M e y: [0,a] — M uma geodésica minimizante ligando p e q. Entdo,

para qualquer curva c : [0,a] — M ligando p e g, vale que

E(y) <E(c).

Demonstragdo. Sendo 7y parametrizada proporcionalmente ao comprimento de arco (pois € uma

geodésica) e minimizante, segue da discussdo acima que
a-E(y) =1(7)* <1(c)* < aE(c),
0 que prova o desejado. [

Definicio 2.4.4. Dada uma curva c:[0,a] — M e f: (—€,¢€) x [0,a] — M uma variagdo de c,
definimos a funcdo energia relativa a f como sendo

2

of dt, se(—¢,€).

Ef(s) = E(f(s,)) = [ |5 (0

Quando a variagdo estiver subentendida denotaremos Ey apenas por E. Para finalizar
esta secdo, apresentaremos as féormulas para a primeira e a segunda derivada da energia de uma
curva relativa a uma variagdo da mesma. Adiante, e no restante dessa dissertagdo, quando nao

houver risco de confusdo, usaremos a notag@o (.,.) ao invés de g.

Proposicio 2.4.2. (Formula da primeira variagdo da energia) Sejam c : [0,a] — M uma curva,

f:(—€,€) x[0,a] = M uma variacdo de c e V (t) o campo variacional de f. Se E : (—€,€) —» R
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é a fungdo energia associada a f e {ty = 0,t1,...,tx = a} é uma partigcdo de [0,a) tal que c é

suave em cada subintervalo [t;,t;+1], i =0,...,k— 1, entdo

%E’(O) = —/()G<V(r),%%(r)>df—k§<V(ti),fl—j(f,*)—%(fi_)>

i=1

- <v(o),fl—f(0)> + <V(a>,fl—:(a>>a

onde
de, 4 . dc
— (") = lim —(7).
Demonstragcdo. Pode ser encontrada em [3] pagina 195. [

Uma consequéncia dessa formula é uma caracterizagao das geodésicas como pontos

criticos da energia para variacdes proprias.

Proposicao 2.4.3. Uma curva c : [0,a] — M é uma geodésica se, e somente se, para toda

variagdo propria f de c, vale E'(0) = 0.
Demonstragdo. Pode ser encontrada em [3] pagina 196. [l

Corolario 2.4.1. Se y: [0,a] — M é uma geodésica minimizante, f : (—€,€) x [0,a] — M é uma

variagdo propria de Y e E¢ é a fungdo energia associada a f, entdo E ]’c’ (0) >0.

Demonstragdo. Pela Proposigdo 2.4.3 vale que E}(0) = 0. Se fosse E}(0) < 0, entdo E} se-
ria decrescente numa vizinhanca de 0, donde E}(s) < E}(O) =0, para s > 0 pequeno. Por

conseguinte,

E(f(s,.)) = Ef(s) <E(0) = E(),
para s > 0 pequeno, o que contradiz o Lema 2.4.1, visto que a curva t € [0,a] — f(s,7) liga y(0)
e y(a) (pois a variagdo é prépria). Portanto, E ]’!(O) > 0. O

Proposiciao 2.4.4. (Formula da segunda variacdo da energia) Sejam vy : [0,a] — M uma
geodésica, [ : (—¢€,€) x [0,a] — M uma variagdo de ¢ com campo variacional V (t) e E a fungdo

energia associada a f. Entdo

SE0) = /O“[<v'<r>,v'<z>>—<R<V,v>¢,v>1dr
Dof DJf
(2% 0070)+ (2L 0a.1@).
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Em particular, se a variacdo f é propria, vale

1

SE"0) = [ "LV (0.V(0) ~ RV )Y V)l

Demonstracdo. Pode ser encontrada em [3] pagina 198 . [

2.5 Mudanca Conforme

Nessa ultima se¢do serdo destacadas algumas férmulas referentes a uma mudanga
conforme de uma métrica Riemanniana. Consideraremos no decorrer desta se¢do (M, g) uma
variedade Riemanniana, « uma funcio suave e positivaem M e g = u”* - g a mudancga conforme
de g. Além disso, todas as quantidades que estiverem sobre uma barra sdo relacionadas a métrica

g, por exemplo, V denota a conexdo Riemanniana de (M, g).

Proposicao 2.5.1. Dados X,Y € X(M), sdo vdlidas as seguintes relagcoes
a) VyX = VyX +X(Inuk)- Y +Y(Inuk) - X —g(X,Y) - V(Inub);
b)

Ric(X,Y) = Ric(X,Y)—(n—2)-Hess(Inu")(X,Y)+ (n—2)-X(Inu*) - Y (Inu¥)

—g(X,Y) (A(lnuk) Y (n—2) |Vlnuk|2> .
Demonstragdo. A férmula de Koszul nos diz que

8(VyX,Z2) = %'{X(g(Y,Z))JrY(g(X,Z))—Z(g(X,Y))—g([Xyz]aY)—g([sz],X)

—8([X,Y],2)},

para qualquer Z € X(M), o mesmo valendo para g, trocando V por V. Sendo assim, fixando

p € M e tomando um referencial ortonormal (em relagdo a g) {ey,...,e,} numa vizinhanga de p,
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temos, em p, que

g(VyX —VyX.e) = u g(VyX.e;) —g(VrX,e))
= (X (R0Y,e) + Y (X))~ ei(B(X,Y)) ~&(1X, el Y)
(1Y, %)~ 2(X. 7] ¢0)
3 DX (a0,e) +Y (80X, e0)) — ei(g(X.Y)) ~ (X, ¥)
(1Y X) ~ (X ]e0)}
= WX gV,e) Y () g (X, ) — i) g (X,Y)
X (g(Y, i) +uY (g(X er) —uei(g(X,Y))}

_%[X(g(Y, e) +Y (g(X,e))) —ei(g(X,Y))]

= X(Inub)-g(Y,e;) +Y(Inub)g(X,e;) —ei(InuX) - g(X,Y).
Dai, em p,
?yX — VyX = Z <§yX — VyX,€i> €;

i

= X(Inu") Z(Y, ei)ei +Y (Inu) Z(X,e,'>e,- —-g(X,Y) Zei(lnuk) e

1 1

= X(InuF)Y +Y(Inub)X — g(X,Y)V(Inu*).

Sendo p arbitrdrio, fica provado a).
Quanto a b), por conta da linearidade, € suficiente provar a igualdade em um sistema de

coordenadas {U xl ,x"} de M, com campos coordenados X; = Além disso, podemos

0
oxi’

assumir que, num ponto fixado p € U, vale g;; = §;;. Assim, em p,

Ric(X;,X;) = Y g(R(Xi, X)X, X;) ZZRW gl = ZRW
r

=) X (L) — ZF ;l_zrlrj' i (2.9)
]

r

onde

I = 5 ¥ (Xi(ej0) +X;(z0) — Xi(g3) ™"

N

sdo os snilbolos de Christoffel com respeito a g. Como g/ = u=2¢- g'/, vale
F’" — —Z g]s —|—X gSl) X (gl]>) gsm
- _Z{ ) gjs + X (1) gsi — Xs (™) gij + 1 [Xi(g5) + X (gi) _Xs(gij)]}u—zkgsm

= Xi(lnu )-5jm+Xj(lnuk)-Sim—gij-ngme(lnu )-1-1";’},
s
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0 que, substituindo em 2.9, fornece a formula desejada. O]

Proposicao 2.5.2. (Elbert, Nelli e Rosenberg) Se y é uma g-geodésica, com s e s denotando o
comprimento de arco de Yy com respeito a g e g, respectivamente, entdo, ao longo de v, vale a

relagcdo

9y Or\ _ . Iy 9y Vul?
Rlc(as 8s) Ric 55 35 —k(n—2)(Inu)s;s —k—+ 2|

onde (Inu)s, ‘;z (‘;Z( nu)>.

Demonstragdo. Pelo item b) da proposi¢ao anterior temos

dy dy\ _ . (9y 9y dy 9y
(8s 8s> = Rlc(as T —k(n—2)-Hess(Inu) 55 35

2
+k*(n—2) (%(lnu)) — [kA(Inu) +k*(n —2)|VInu|*] u=2*(2.10)

Para simplificar esta expressdo vamos calcular Vay—y . Pelo item a) da proposi¢do anterior,

as ds
obtemos
v 97 Y |, 9Y Iy
V===V, 2k—==(Inu) - =— —kV(1 2.11
Fas " gas T gy 5, —kV(lnw) 1D
d d d
Por outro lado, sendo ¥y uma g-geodésica, vale Vay ay 0, logo, por a—z/ =u* a—y , segue que
s s s

K[ 97, iy 9 uk dy
" L?s( )3s+ V‘”as =0

Podemos ainda reescrever a relagdo acima da seguinte forma

Vo, 2 = kO (hy . 0V O gy OV OV g 9T

Las ds ds ds s ds ds
Substituindo isto em (2.11), vem que
dy _ dy vl _ ay\ 9y
ng% =k [V(l u) — P (Inu) asl = k {V(lnu) - (V(lnu), 5 ) D5

= k(V(nu))*, (2.12)

d
onde (V(Inu))" significa a componente de V(Inu) perpendicular a 7 Além disso,

ds

Hess(lnu)(gz 3’;) - g:(gZ(l u)) (vay‘;Z) (Inx)

= u_k-%/ (u—k-g—’s’(lnu)> —u* (ng <u_k-%)) (Inu)
_ oy [3? ( 33(111”)) (Vay 33) (lnu)}

— % [3: (3:(lnu)) —k](V(lnu))Hz] , (2.13)
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onde, na dltima igualdade, usamos (2.12) para obter
(Vay ‘;Z) (Inu) = k- (V(Inu))*(Inu) = kg(V(Inu), (V(Inu))*) = k| (V(Inu))* >

Por fim, ao substituir (2.13) em (2.10) e usar Ric (9}/ 8}/ = u"**Ric ﬁ/ , ﬁ/ , concluimos
J5’ s ds’ ds

que
Ric(G9T) = ¥ ie (5. 57) —kn-2) 5] (5L ) 00~ 2) |9 mu

2
2 (1 —2) (‘;Z(lnu)) — kA(Inw) — K (n— 2)|V(1nu)

= y Kk {Ric (‘91 ‘9—7) —k(n—2)(Inu)s — kA(lnu)]

ds’ ds
_ . (dy dy \Vu]z
_ 2k _ _ — k—
= u {Rlc(&?’&s) k(n—2)(Inu)gy k Yk 2|
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3 RESULTADOS
3.1 Pinching Theorem para uma subvariedade completa da esfera

O primeiro dos trés teoremas principais deste trabalho € uma extensao de um re-
sultado obtido por Alencar e do Carmo em [1], o qual caracteriza subvariedades compactas da
esfera com curvatura média constante e que satisfazem uma certa estimativa envolvendo um
tensor associado a segunda forma fundamental. Antes de apresentar tal resultado e sua extensao
€ necessdrio fixar algumas notacdes e apresentar algumas definicoes.

Seja f: M" — S"t!, n > 2, uma hipersuperficie imersa e orientivel. No que segue
identificaremos M com a subvariedade f(M). Denotaremos por A a segunda forma fundamental

de M em S"*!, ou seja
A(va) = (§YX)N = _<X7vYn>n’ VX7Y € %(M)

onde V representa a conexdo Riemanniana em S"*! e 7 uma escolha de normal unitdrio. Como

A € um tensor simétrico, para cada p € M o operador forma B : T,M — T,M definido por
(B(X),Y)=(A(X,Y),n),vX,Y € T,M,

¢ simétrico, logo existe uma base ortonormal {ey,...,e,} de T,M tal que B(e;) = kie;,i=1,...,n
n n

Denotaremos por H = — Z k; a curvatura média de M e |A\2 = Z kiz a norma ao quadrado da
iz i=1
segunda forma fundamental. Definamos o operador ¢ : T,M — T,,M, chamado operador forma de

traco nulo, por (¢(X),Y) = (B(X),Y) — H(X,Y) e o 2-tensor simétrico ®, denominado segunda
forma fundamental de trago nulo, por dD(X Y)= (q)(X ),Y), X, Y € X(M).

Notemos que tr(¢p) =0e |®|> = — Z (ki — k;)*. De fato, fixado p € M tomemos novamente
i,j=1
{e1,...,e,} uma base ortonormal de 7,M que diagonaliza B. Temos assim que

r(0) = ¥ (0(ei)vei) = Y- (Bler),ei) — Heirer)) = ¥ ki —nH =0,

i=1 i=1 i=1

Além disso, escrevendo @ = Y/,  ®(eirej)e @e/, onde {e!,...,e"} é abase dual associada a

{e1,...,en}, temos

o = Z(<B<el->,e,->—H<el-,e.,~>)2=Z(k HE) =Y (ki - Zilk?—nHz

ij=1 ij=1 i=1

%(n—l Zkz Zkk) - L Z (ki —k;j)*.

i,j=1

S
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Em particular, \@\2 = 0 se, e somente se, M ¢é totalmente umbilica.
Duas subvariedades especificas da esfera irdo desempenhar um papel importante

nessa se¢ao, a saber, o Toro de Clifford T e o H (r)-toro, os quais sdo definidos, respectiva-

T”’k:Sk< ’_‘>><S"—’<< ”_k), ke{l,....n—1},
n n

H(r) =S"1(r) x S! (\/1 —r2> , re(0,1).

mente, por

Feitas as devidas apresentacdes, passemos ao enunciado do resultado de Alencar e

do Carmo citado acima:

Teorema 3.1.1. (Alencar e do Carmo) Ainda na notagdo acima, assuma que M é compacta,
possui curvatura média constante H > 0 e satisfaz |®|> < b(n,H)? em M, onde b(n,H) é a raiz

positiva do polinomio
2
1)Hx— n(H*+1).

Nessas condigoes vale
(i) Ou |®| =0 e M é totalmente umbilica ou || = b(n,H);
(ii) |®| =b(n,H) se, e somente se

a) H=0e M ¢ localmente um Toro de Clifford;

—1
b) H #0, n >3 e M é localmente um H(r)-toro com r* < — ;
n

—1
¢) H#0, n=2eM élocalmente um H(r)-toro com r* # 2

Antes de passarmos para o teorema princial dessa se¢do vamos estudar a caracteriza-
cao presente em (ii) no Teorema 3.1.1. Mais especificamente, serd provado que tanto o Toro de

Clifford quanto o H(r)-toro (com r como no teorema acima) satisfazem |®| = b(n,H).

Proposicdo 3.1.1. Para cada 0 < r < 1, 0 H(r)-toro é uma subvariedade de S"*' com curvaturas
principais
V1—r2 r
==k = e k= —
r V1=
para uma escolha de orienta¢do. Para a outra escolha de orienta¢do as curvaturas principais

sdo as simétricas das apresentadas acima.
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Demonstracdo. Para um ponto (xq,...,X,42) € R"™2, convencionaremos a seguinte notagcio
X = (X1,...,Xn) €Y = (Xnt1,%:+2). Note que, dado (x,y) € H(r), o espago tangente Tj, ,,H (r) é

identificado com o subespaco de R"*?
V={(nw) €R"™ (vx) = (wy) =0},

Isto segue do fato que H(r) é dado como pré imagem do valor regular (2,1 —r?) € R? da

aplicagﬁo F: Rn—l—Z — Rz’ F(xry) = (f] (xay)afZ(xay)) = (‘x|27 b’|2), IOgO

T(x,y)H(r) = Ker(DF(x,y)) = (Vfl(xay))J_ N (VfZ(xay))J_ =V.

Em H(r) := H(r)N{(x,y) € R""2; x,,x,,2 > 0} definamos a carta ¢ : H(r) — R", dada por

©(x,y) = (x1,...,Xp—1,%n+1)- Os campos coordenados {Xj,...,X,} relativos a ¢ sdo dados por
Xi . Xn+1
Xi(xay)zei__en7 l:17""n_17 e Xn:€n+l_ €n+2-
Xn Xn+2

Além disso, o campo N : H(r) — R"*2 dado por

N(x,y) = ( Lo T )

r Vi

€ unitdrio e cumpre

0, V(x,y)€H(r)

_
=
FounY
=
NS
N—
—~
=
NS
~—
~
I

(N(x,y),(v,w)) =0, Y(v,w) € T(x,y)H(r)
pois, para quaisquer (x,y) € H(r) e (v,w) € T(, ,\H(r), vale
172 r
2 2 2 _
IN(x,y)| = T|x| + m|y| =1,

W), () = P Ly = /TP /TR =0,

N
), ) = P ) = L) =0

Portanto, N é um campo unitdrio, tangente a S"*! e normal 2 H(r). Em H(r), temos

n+2 d _
V;% N(x,y) = % N xp,. . xi+t, o X1, Xng1)) = .
t=0
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parai=1 n—1,e
n d r Xn41
VEON@xy) = —|  N(@ ' (x1,... %0 1) = — ot
Xn (X,y) dr —0 ((p (XI, s Xn—1,Xn+1+ )) m €n+1 Xni2 €n42
r

Isto nos diz que ¢ autovalor do operador forma de H(r) com multiplicidade n — 1 e

¢ autovalor com multiplicidade 1, donde conclui-se que

\/1—r2 r
C kn:_

r vV1—r2

em H (r). Nos demais pontos de H () procedemos de modo analogo, considerando as cartas de

’
V1—1r2

ki = =kn1=

grafico e verificando que os campos coordenados associados a essas cartas sdo autovetores do

operador forma. [

Em particular, a curvatura média do H (r)-toro é

H:l (n—1) I-r :n—l—nr27
n r 1—r2 nrv'1—r?

ou o simétrico disso, a depender da orientacao.

Proposicao 3.1.2. Seja r como na caracterizagdo do Teorema 3.1.1 e ® a segunda forma

fundamental de trago nulo do H(r)-toro. Entdo |®| = b(n,H).

- : o n—1 . ~
Demonstragcdo. Consideremos inicialmente que r? < ——. Nesse caso, a escolha da orientacao
n

n—1—nr?

nrv' 1 —r?

2
-1 1—r? r n—1
o’ = —E:k —k;j) + =
[l nZ ( r m> nr2(1—r?)

segue que

de H(r) deve ser tal que H = , para que se tenha H > 0. Dai, como

=2
nn—1)
n—1 n(n=2) (n-1l-n?\ n—1
nrz(l—r2)+ n(”_l)(”r 1—r> n(1-

_n((n—l)z—Z(n—l)nrz—l—n +1)

Pum(|®) = |@f+ H|®|—n(H*+1)

n?r2(1—r?)
n—1 (n—2)(n—1—nr?)
- nr2(1—r?) nr2(1—r?)
(n—1)2=2(n—Dnr? +n2r* 4 n*r?(1 - r?)
B nr2(1—r?)

= 0,
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ou seja, |P| = b(n,H).

—1
Consideremos agora r > ——. Nesse caso temos a restricdo n = 2 como na caracteriza¢io do
n

Teorema 3.1.2. Portanto,

1 —4r> +4r4 B 1 1 0
2 -

1
Fam(®)) = 2r2(1—r?) _2( 4r2(1—r?) 1 2(1—r2)  2,2(1—12)
donde |®| = b(n,H). O

. n .
Vale salientar que, para r* > en >3, tem-se |®| > b(n,H), pois nesse caso
deve-se escolher a orientacagdo de modo que
nr? —(n—1)

para que se tenha H > 0. Dai, seguindo um calculo andlogo ao que foi apresentado na prova

H =

acima obtém-se
2nr2(n —2)—(n—1)(n-2)

r2(1—r?)

oy (|1®]) = >0,

ja que

Pn—=2)—(n—1)(n-2)=(n-2)(nr*—(n—1)) > 0.

Como Py, ;1) é crescente em R*, conclui-se que |®| > b(n,H), como afirmado. Essa diferenca
de comportamento entre n =2 e n > 3 se dé por conta do termo de grau 1 de P, z), 0 qual se
anula quando n = 2.

Seguindo passos andlogos obtém-se que as curvaturas principais do Toro de Clifford

ml —gf (\/z> XS”_I< n_—l) s30
n n

n—I !
kh=-=k = T ekH_]:"':kn:_ —

ou os simétricos destes, a depender da orientacdo. Em particular, a curvatura média de 77 é

H=1ki+n—-1)ky=+/1-(n—1)—+/(n—=1)-1=0.

Portanto,

2
n—1I l
D)2 = — Y (ki —k)) (n—l)-< + >=n=b(n,0)2.
l; \/ [ \/n—l

Tendo discutido esse detalhe a respeito do resultado de Alencar e do Carmo, passe-

mos ao teorema principal dessa secdo, o qual enfraquece a hipdtese de compacidade, requerindo

agora apenas a completude de M.
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Teorema 3.1.2. (Magliaro, Mari, Roing e Savas-Halilaj) Seja f : M" — S uma hipersuperfi-

cie imersa e completa com curvatura média constante H > 0. Suponha que
[P <b(n,H),

onde b(n,H) é a raiz positiva do polindmio
2
Py (%) 2 M2 g i, 3.1)
nn—1)

Entdo, ou |®| =0 (e M é uma esfera totalmente umbilica) ou || = b(n,H). Além

disso, |®| = b(n,H) se, e somente se:

a) H=0e M é um recobrimento de um Toro de Clifford Tk onde k € {1,...,n—1};
n—1

b) H >0, n >3 e M é um recobrimento de um H(r)-toro, com < ;
n

n—1

¢) H>0,n=2eM éum recobrimento de um H(r)-toro, com r* #
n

Antes de iniciar a prova do Teorema 3.1.2, serd provada uma estimativa para o
laplaciano da fungio |®|? juntamente com alguns lemas essenciais para a demonstracio do

teorema supracitado.
3.1.1 Estimativa para A|®|? e alguns lemas

Na prova do Teorema 3.1.2 faremos uso da estimativa obtida por Alencar e do Carmo
em [1] (a qual serd provada aqui de modo a tornar o presente trabalho autocontido, embora seu

conteddo fuja do conceito principal que aqui se deseja tratar):
Proposicdo 3.1.3. Ainda na notacdo do Teorema 3.1.2, o laplaciano da funcdo |®|? satisfaz
AlD* > —2|®P, ) (|P]) +2| V|,

Para provar tal estimativa serdo necessarios dois lemas de contetdo algébrico. O
primeiro destes lemas foi obtido por Alencar e do Carmo em [1] enquanto o segundo foi provado

por Nomizu e Smyth em [13].

Lema 3.1.1. (Alencar e do Carmo) Sejam [;, i = 1,...,n, nimeros reais tais que i [ =0 e
", u? = B2 com B > 0. Entdo
n—2 4
BV eyt e
i=1

nn—1

n—2

F— 3.
n(n—l)[3
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Demonstracdo. Caso B = 0 a conclusdo € imediata pois
) 2
Y w=p"=0=u=0,i=1,...,n
i=1

Consideremos entio B > 0. E suficiente mostrar que o maximo e o minimo da fungdo f: R" — R,
dada por f(x1,...,%,) = Y7, x}, restrita ao conjunto X := g~ '(0)NA~1(0), onde g, : R" — R
sdo dadas por

n
g.X], le € h-x17 © n):inz_ﬁ27
i=1

. . ) n—72 B3 n—2 [33
sdo, respectivamente, ————f" ¢ ————=f3".

nn—1) vn(n—1)
Para tanto, vamos usar o método dos multiplicadores de Lagrange, ou seja, vamos analisar o

sistema
n R
i1xi=0

Y —B*=0 :
Vi(xt,...,xn) = AVg(xy,...,xn) + aVh(xy,...,x,)

o qual equivale a
Z?:lxi:()
Y -pr=
3x? —20x;—A=0,i=1,...,n

Vale ressaltar que tal sistema possui solugdo, ja que X € compacto. Se a > —b sdo as raizes
do polindmio 3x*> —20x — A, entdo um ponto critico (x1,...,%,) € X de f restrita a X possui p
coordenadas iguais a a e n — p coordenadas iguais a —b. com p € {0,...,n} (evidentemente os
ndmeros a ¢ —b dependem dos valores de o € A, porém, visando tornar a notacdo mais limpa,
iremos omitir tal depéndencia).

Como
n
0= le—pa— n—pb e 0<p>= Zx,-z:paz—l—(n—p)bz,
i=1

devemos ter a # 0 ou b # 0. Se, por exemplo, a # 0 e b = 0, entdo

0= Zx,—pa—n p)b=pa=p= O:>ﬁ2 Zx,-zzpa2+(n—p)b2:0,
i=1
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o que € uma contradi¢do. Da mesma forma, nao pode ocorrer b # 0 e a = 0. Logo, a,b # 0.
Além disso, @ = b implicaria que a soma das coordenadas x; seria igual a na # 0, portanto a # b.
Mais ainda, p # 0,n, pois, do contrario, a soma das coordenadas x; seria nb # 0 ou na # 0. Por
fim, caso ocorresse —b > 0 ou 0 > a obteriamos, por pa — (n— p)b =0, que —b > a, o que é

uma contradi¢do, logo a > 0 > —b. Temos assim que

B? = pa® +(n—p)b* (p2=p %b>2+(n—p)b2
0=pa—(n—p)b = a:%b
fxt,...,x,) = pa® — (n—p)b> | f(x1,.. 0, 2) = pa® — (n— p)b?
(1= B
= a2="rp
fx1,.. ) = pa*a— (n—p)b*b

Segue entdo dessa expressdo que o valor de f, num ponto critico (xi,...,x,) de f restrita a X,
decresce a médida que p aumenta. Portanto, os valores de maximo e minimo de f em X sao,

respectivamente,
S—n—1)b = (n—1)b)>3— (n—1)b

b*(n—1)n(n—2)
1 1

—
N

= 2 —n(n—
= n(n—l)ﬁ n(n_l)ﬁ(n Dn(n—2)
__n=2 53

n(n—l)ﬁ

(n—1)a*—b*=m—-1)a* - ((n—1)a)’

—a*(n—1)n(n—2)
1 1

—
N

= — 2 n—1)n(n—
= n(n_1>l3 n(n_l)ﬁ( Dn(n—2)
_ . "72 g3
n(n—l)ﬁ ’
0 que prova o desejado. [

Lema 3.1.2. (Nomizu e Smyth) Seja A uma matriz real simétrica n X n com autovalores

AL, ..., A Entdo, para qualquer constante c, vale que

n-c-tr(A?) — (tr(A?)? — c(tr(A))* + (tr(A)) (tr(A) = Y (i — 4)*(c+ Aid;).  (3.2)

i<j

"Lembre que b* =
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Demonstragcdo. Faremos por inducdo em n. No caso n = 1 entendemos o lado direito de (3.2)

como sendo 0. Dai,

L-e-Af = (AD)? —c(M)* + (M) (A]) =0

ou seja, o lema é verdadeiro para n = 1. Suponhamos agora que o lema vale para n — 1. Entao

c- (gﬂf—#&%) — (tiki2+lf>2c (tle?LmL/ln)er C;lkﬂrﬂtn) (j;lki%lj) =
o) g (59 24)
C(}:i{ll'?) 2C<ZA>A +( nl)c)Lz-:

+ mn 2AZAZ + AD).
1

i=

Pela hipétese de indugdo, a primeira linha da expressao acima € igual a
()ui — 7Lj)2(c+/l,-7tj).
1<i<j<n—1
A segunda linha, por sua vez, € igual a

n—1 n—1

¢ Y (AW —2Ady+ A7) =c Y (i — M),

i=1 i=1

enquanto a terceira linha é

n—1
Y Aidn(Ai— 2.
i=1

Portanto, a soma fica

()Li—lj) (C—l—)tl —I—CZ A l —|—ZA)L l 7L) Z(li—)tj)z(c—f—lilj),

1<i<j<n—1 i<j

onde, no ultimo somatdrio, os indices variam entre 1 e n. Isto garante que o lema também vale

para n, o que conclui prova indutiva. 0

Prova da Proposicdo 3.1.3. Fixemos inicialmente um ponto p € M. Comecemos calculando
o laplaciano da funcio |®|?> em p. Num referencial ortonormal local {ej,...,e,} de M numa
vizinhanga de p, com base dual {e',...,¢"}, podemos escrever
P = ZZj:l <I>,-je"®ej
2 _ 2
| P = X5 =1 Pj;
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Sendo @ um tensor simétrico, podemos escolher o referencial {ey,...,e,} de modo que, em
p €M, vale
B(ei),ej) = (Ui +H)O;j ki=u;+H
D(esye)) = Wid; = (B(ei),ej) = (Mi )6ij N i = Hi
(9(ei),ej) = Hibij 0=1r(¢) =X M

Afirmamos que P satisfaz a equacado de Codazzi, isto €, sendo
Vo = Z (V@),-jkeiébej ek = Z <I>,-j;kei Qe @ e,
i,Jk i,Jk

vale
®;jx = Pjr.j, para quaisquer i, j,k € {1,...,n}. (3.3)

De fato, sendo 1) uma escolha local de campo normal unitério de M, Ay o 2-tensor simétrico

An(X,Y)=(B(X),Y)=(A(X,Y),n) e VAy = } Ay, ¢ ®e/ @, temos que
ik

Diix = ex(Dij) —DP(Veeie;) —Plei,Vee))
= ex((Blei),ej) —H(eiej)) — (B(Veei),ej) + H(Veeise))
—(B(ei),Vee)) +Hiei,Vee))
= —H(Veiej)—H{e;,Veej)+H(Veiej)+H(ej,Vee))
+ew(Ay(eiej)) —An(Vyeirej) — Anlei, Vee))
= Ay
Portanto, basta mostrar que A, satisfaz a equag¢do de Codazzi. Para provar isto usaremos a

equacdo de Codazzi no caso de codimensao 1, que nos diz que

n+1 ..
<RS ' (ei7ej)€k7n> = (VejAn)(eiaek) - (VeiAT])(ejaek)a la.]?k € {17 7”}7

+1 . ~ . .~ 2 . ~
onde RS"" é a curvatura da esfera (ver discussdo apés a Proposicdo 2.2.1). Além disso, a equagio
de Gauss aplicada a esfera nos da

n+1 n+1

(ej7n)7AS (ei7ek)>

(ej’ek»?

n+1 n+2
(RS (eire)ewn) = (R (eiej)er,n) — (A°

+<ASn+1 (ei, n),ASn+l

n+l
onde A" éa segunda forma fundamental da esfera.

Portanto, como RE"~ = 0 e AS"" (X,Y) = —(X,Y)ldgu11, segue que

n+1

(Ve,An)(eirer) — (Ve An)(ej.er) = (R (ejej)er,m) =0,
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provando assim que Ay satisfaz a equagdo de Codazzi e, consequentemente, o afirmado.
Dessa maneira, pela Proposicao 2.1.4, obtemos, em p,
1 1
SAIPP = [V + ) ui(tr(®))i+ 5 Y Riji (i — 47)%, 34
i 0]
onde R € o tensor de curvatura de M e R;ji = R(ej,e;j, e, e;). Vamos agora calcular a dltima
parcela do lado direito de (3.4):
Por u; = kj — H e da equacdo de Gauss

(RX,Y)Z,W) = (RS (X,Y)Z,W) — (A(X,W),A(Y,Z)) + (A(X,Z),A(Y,W))
segue que, para i # J,

Rijij = Ri; —(B(e),e))-(Ble)),ei) + (Blei),er) - (Ble)), e;)
SnJrl

= Rijij +(Wi+H)(uj+H)

= 1 +H>+wmp+H(w + ;). (3.5)

Usando o Lema 3.1.2, com ¢ = 1, para o operador ¢ : T,M — T,M, (¢(X),Y) =P(X,Y), o qual
satisfaz }; ; = tr(¢) = 0, obtemos

2
1
S X0+ ) (i~ )P = n P <2u3> — [ D]

i,j

Dessa forma, por Z(,u,- —u)? = Z(ki —k;)* = 2n|®[* e (3.5), vem que

i,j ]

1 1
EZRU,']'(,U,'—,UJ')Z = EZ(I+H2‘|—,Ui,uj+H([ii+llj)>(Hi—.uj)z
i,] LJ

1 H?
= 52(1 + i) (ki — ) + TZ(M - )
i,] LJ

H
o 3 i+ ) (i — )
LJ
H
= n|®F = | O +nH @ + Y (i + ) (1 — )
l7]

Por outro lado,

Yo (it ) (= p)? = Y — i — s+ )

i,j ij

- op- (£0) (£m) - (£n) (£4) 05

= ZnZ,uf.
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Juntando essas duas informacdes e substituindo em (3.4) encontramos
—A|c1>|2 IV®|? — |®|* 4 n|®|> + nH?|D|? +nHZu, :

Por fim, aplicando o Lema 3.1.1 com 3 = |®|, concluimos que
n(n—2)
vn(n—1)
n(n—2)

n(n—1)

1
§A|<1>|2 > VO — @ +-n(H* + 1)|@f ~ H|®[’

= |VO|*+ || <—|c1>|2 — H|®|+n(H*+ 1))
= VO] —|®*P p) (D))
O
O 1ultimo lema antes da prova do Teorema 3.1.2 é de cardter puramente algébrico e

serd util para tratar da norma do 2-tensor .

Lema 3.1.3. Seja ® : R" x R" — RP, n > 2, uma forma bilinear simétrica com componentes CD,‘?‘J-,
i,je{l,...,n} eac{l,...,p}. Suponha que, para cada o, Y, ¢ = 0. Entdo, a norma de
D,

2=} (@)%

a7i7j

satisfaz

@P> Y Y (@) > oy @)

j=1 n o

Demonstragdo. A desigualdade de Cauchy-Schwarz e a hipétese Y} _; ¢ = 0 nos garante que,

para cada o, vale

2
n n
~(-£a5) co-vfer
j=2 2
Logo, como ® € simétrica, obtemos

@ > Y (i(¢3>2+ Y (@f) + f(cb%)z) =) (f@“ 2+2f<¢?‘j>2>

a \i=1 j=2 j=2 i=1 j=2
1 n n
> Y (<¢?1>2+ (@)’ +2), <<1>‘f;->2> = Y (@f)? 21 Y (@)
o j=2 a aQ j=2
n )2 - n a2
> LR LR | = L0
n—1\g =2 n— 1&g 3
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3.1.2 Demonstracdo do Teorema 3.1.2

Vamos denotar por b < 0 < by = b(n,H) as raizes do polinémio P, z7)(x), ou seja

__n(n—-2)H n?(n—2)2 .
he = 2 n(n—l)1L 4”(”—1)H2+ (HE+1).

n(n—2)

Py (¥) = (= by )(x—b-) < (x— by )(x+by) =22~ 12,

Como |b_| > by (note que |b_|=bs + H> , temos, para x € [0,b4], que

donde podemos reescrever a desigualdade da Proposi¢do 3.1.3 como
AP > —2|@f Py, ) (|P) +2VD]* > —2|@P (|0 —b7)
= 2|®*(H2 —|®|?) > 0. (3.6)

No que segue escreveremos by = b. Como consequéncia da desigualdade acima temos que a

funcio u = b> — |®|? satisfaz
u>0 e Au=—A|®? < —-2|®*u em M.

Consideremos agora dois casos:

Caso 1: u(xg) =0, para algum xp € M.

Nesse caso, como u > 0 e Au < 0, segue do principio do maximo que u = 0, logo \CI)\Z =be
|V®| = 0. O restante da argumentac@o é essencialmente uma consequéncia do que € feito em [1],
mais especificamente prova-se que M possui duas curvaturas principais distintas e constantes e
que cada ponto de M possui uma vizinhanga U tal que f(U) é um pedago de um toro de Clifford
ou um H (r)-toro, a depender do valor de H. Juntando isso com a hipStese de completude sobre
M é possivel mostrar que f(M) é exatamente um desses toros, digamos X, e f: M — X é um
mapa de recobrimento. Como isto foge do cerne deste trabalho, ndo serdo dados mais detalhes a
respeito desse caso (para mais detalhes ver [12]).

Caso2: u>0emM.

Vamos provar que, nesse caso, |®| = 0 e, por conseguinte, M é uma esfera totalmente umbilica.

Para tanto consideremos a mundanca conforme da métrica de M dada por

5 — 2B

g 8

onde g € amétricade M e

qualquer ndmero em (0,1) , sen=2,3
B= 1
n—72

,sen>4
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Seja 7: [0,a] — M uma curva parametrizada por comprimento de arco s, em relacdo a g, e 5 0

comprimento de arco com relacdo a g, ou seja

56) = [ VRO 7O = [P (rie)ar.
0 0

Em particular, ds = uPds.

A prova seguird das trés afirmagdes a seguir:

Afirmacao 1: Suponha que y € uma g-geodésica com segunda variacdo da energia ndo negativa,
com respeito ao comprimento de arco em g, para qualquer variagio prépria de y. Entdo existem

constantes c¢g > 0 e tp > 1, dependendo de n e 3, tais que

o [ ()W 5)ds < <200 [ (1) W) ps(5)ds, Yy € G([0.a))

onde

C5([0.a)) = {y € C*([0.d]); y(0) = y(a) =0}.

Afirmacao 2: M é compacta.

Afirmacao 3: M é uma esfera totalmente umbilica.

Demonstragdo da Afirmagdo 1. Consideremos campos paralelos, com respeito a métrica g,
{e1(5),...,en—1(5)} ao longo de ¥ tais que {e;(5),...,e,—1(5),%(5))} é uma base ortonormal
de Ty5)M, para todo s € [0,5(a)] (basta tomar o transporte paralelo de uma base ortonormal de
Ty0)M., que contenha ¥(0), ao longo de 7, visto que ¥ € uma g-geodésica). Dada ¢ € C3([0,a)),

definamos os campos V;, j =1,...,n— 1, ao longo de 7y por

Vi(5) = 0(s)e;(5). V5 € [0,5(a)].

Como V;(0) = V;(5(a)) = 0, existe uma variagdo prépria de v, f; : (—&,&) x [0,5(a)] — M, tal

df;
que V; é o campo variacional de f;, ou seja, V;(5) = l(Oj} (Proposigdo 2.4.1). Se E; denota

ot

a energia relativa a variac@o f;, entdo a férmula da segunda varia¢do da energia e a hipétese nos

garantem

s(a) . . _
o<iEo) = | K%(f),%(r)>—<R(}§(T),Vj(f))%(T)avj(7)> &

s(a) —
2 [ (00 = (0(0) (R (1.64(0) 1(2). ()] d.

—
~—

onde R é o tensor curvatura de M com respeito a métrica g, @5 = d%((p os e(,)=%

2 DV; de; . )
Note que —= = @se; + (pg = (¢}, jd que e; € um campo paralelo.

Js
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Somando em j, obtemos que

5(a) _
| T = 1@s(0)? = (p()*Ric(s, )] e 2 0

Uma forma equivalente de escrever a desigualdade acima é

[ [0 = 10902 = (019 R (5). 1(5))] P (7(9))ds = . @)

Para ver isso basta notar que, para todo 7 € [0,5(a)]

{ 0s(t) = @y(5 ' (z >>dz,s (%) = @u(5(0))u P (v~ (2))
¥(1) = 5E 1 (0) L (1) = %5 ()P (v(5 (1))

donde

5(a)

| 100 = (0(0)* (R (35,¢(0)) %(0). ()] v

/ (@505 ")2u 2P Yofl)—(wo@”)zu*m(yoﬁ’l)<F(%°3717ej)%Of’laeﬁ]dT
— [ 1(005) = (@051 (R (1(5):€5(5(5))) 1 (5)se5(5)))] P (),

logo basta somar em j para obter (3.7).

Como ja mostrado na Proposi¢do (2.5.2), ao longo de y vale a relagdo

Ric(%, %) = Ric(%, %) — B(n—2)(In(uoy))ss — BAIn(u). (3.8)
Note que
Au  |Vu> A
Aln(u) = 2 | Z' =2\ Vinup,
u u u
pois dado p € M e {Xy,...,X,} um referencial ortonormal numa vizinhancga de p, tem-se
(Aln(u), =} |Xi,(Xi(In())) - (VxXi), (ln(u))]

N.
I
—_

I
1=
1T ~;>< 1 T - 1
/N
<

i=1
_ § [ate— 2 (7%,
= i u(p))? u(p)
X [ (0) (V%X 0]z (x, ()
N (p  u(pp?
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Disto e de Au < —2|®|?u, temos que
2 » 3 2 2
Aln(u) < =2|@}" = [VIn(u)|” < =2|P|" = [(In(uo 7)™
Substituindo em (3.8), obtemos

Ric(%,%) = Ric(%, %) +2B|®|* — B(n—2)(In(uoy))ss + B(In(uc ), (3.9)

Consideremos agora {vi(s) = ¥s(s),v2(s),...,vu(s)} um referencial ortonormal de M, com
respeito a g, ao longo de ¥ (basta tomar v;(s) = uP (y(s)) - ;(5)). Pela equagdo de Gauss, obtemos

que as componentes do tensor curvatura R (em relagdo a g) de M sao
Sn+l

Rijij =R + (Alei ei),Alej,e;)) — (Aleise)), Alej, ei)) = 1 — &+ hithjj — hi,

parai,j € {1,...,n}, onde h;; sdo as componentes da segunda forma fundamental de M. Como

® = A — Hg, podemos reescrever a igualdade acima como
Rijij=1—8;j+ (®y+H)(®j; +H)— (i +HE;j)%, i,j € {1,...,n}.
Disto e de tr(¢) = 0, segue que

R

(NgE

Ric(¥%,Ys) = 1)1

.
Il
I\

[1-81;+®11Pj; + P11 H+HP;;+H* — (P +HS )]

|
™=

Jj=2
= n—1-®% +(n— 1P H-—HP |+ (n—1)H Zcp
= n—1-®} +(n—-2)® H+(n—1)H ZCD (3.10)
Pelo Lema 3.1.3 temos
E - fqﬂ > " ¢ (3.11)
B =R A e ‘
3Dado s € [0, a] tome um referencial ortonormal {Xi, ..., X, } de M numa vizinhanga de (s) tal que X, =%(s)-
Dai
|(VIn() (v(5))* = ) (X, (In(u)))* < (X, (In(u)))* = (%(s) (In(u)))* = [In(wop)s(s)]*.

i=1
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Fixemos 7 € (0,1] e € > 0. Pela desigualdade de Young e (3.11), vem que

H? reCD%l
H- (I)ll—H(l—T)(Dll—FH’L'CI)H > H I—T ’CI)| s

logo, por (3.10),

2 2

rscIJ

Ric(%,%) > n—1—®} +(n— 2[ 1—r,/ ycpy 1
+(n—1)H Z‘I’

Como P, i) (b) =0e 0 < [P| < b, temos

n(n—2)
nn—1)

& (n—z),/”;1H|q>|g(n—1)(H2+1)—

0 que, ao substituir na relag@o anterior, implica

Pum(|®) <0 & |@F+ H|®|—n(H*+1) <0

Ricy ) > <n—1>r+r(n—1—ﬂ)ﬂz "L o)
2¢ n
(n—2)te
(1+ 5 Zcb
> (n—1)1+71 —1——2 24 _1(1—17)|CI>|2
= n 2¢ n

_ (1+¢) jzznllcb%j.

Usando isso em (3.9) obtemos

2

Ric(¥%,%) > (”—1)T+T<n—1_n2_8) , n—1

(1-7)®

- (1 " %) iq’%j+2ﬁ|¢|2 —B(n=2)(In(uoy))s
p=

+B[(In(uoy)),]?
= (n-1)t+7 <n— 1- %) H® + (2B+"—;1(1 —f)) @/

—(1 “)ilcb ~ Bln—2)(in(uo 7))+ Bl(In(uo ),
J
n—2 2Bn (n—2)1e\ &
> (n—1)r+r<n—1—7)H2+(n_l T—T);cp%j
—B(n—2)(In(uo))ss+ Bl(In(uoy))s)?, (3.12)
4HTCI>”|_Hr|d>“|—T<f> (Ve|®@i1|) < Zz+%(’%1.
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n
onde, na ultima desigualdade, foi usado |CI>|2 > Ll Z CID% ;- Escolhamos agora 7 e € de modo
n—14
j=1

que

Para isso basta tomar
1 ,sen=2
E = 5
e
m ,S€n Z 3

e T suficientemente pequeno. Feita essa escolha, definamos co = 7(n— 1). Dai, segue de (3.12)

que

Ric (15, %) 2 co— B(n—2)(In(uoy))ss + Bl(In(u o)),

Substituindo em (3.7) (na relagdo abaixo abusaremos da nota¢do ao escrever apenas u para

indicar uoy)

(n—1) /0 * o2uPds > /0 02 P (co— B(n—2)(In(u))ys + Bl(n(w)),P) ds.  (3.13)
Integrando por partes e usando que ¢(0) = ¢(a) =0, vem que
— aznuo uoy) PBds = ’ n(uo uoy) Pds
B[ oXnwor)uuor)Pds = 28 [ ppulinwoy)(uen) Pd
82 [ 92(n(uo )P (wor) Ps.
Substituindo isso em (3.13), obtemos
=1 [(Q}wenPds > o [ 9Pwor)Pds+2B(a-2) [ gglintuo)suor) Pds
+B(1-B(r-2)) [ 9P l(nwo ) Pluor) Pds
- CO/()acvz(uoy)ﬁds+2/3("—2>/OafP%(uov)s(uw)Blds
+B(1—B(n—2)>/oa<p2(uoy>§(uoy)‘ﬁ‘2ds- (3.14)

Como estamos supondo u > 0, para toda ¢ € C3([0,a]), podemos escrever

¢=on)’-v,

com ¥ € C3([0,a]). Em particular,
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Q2 (uoy) P = yi(uoy)P +2Byy(uoy)s(uo )P~ + By (uoy)i(uoy)P2
@*(uoy) P =y (uoy)?

Q@s(uoy)s(uoy) Pt = By (uoy)i(uo )P 2+ yyy(uoy)s(uoy)f~!
@*(uoy)i(uoy) P2 =y (uoy)i(uoy)P=2

Substituindo essas informagdes em (3.14) e simplificando, obtemos
a a a

(n-1) [ WiwonPds = <o [ vPwor)ls+ B -B) [ y(uoniuon)2ds
0 0 0

—2B /Oa Wy (uoy)s(uoy)Pds. (3.15)

\

Definamos

1=B [ wwteonworfas= [ W) (wor))ds

Integrando por partes e usando y(0) = y(a) = 0, segue que
1 a a a
1=—3 [ WstwonPs = = [ (wworfs— [ yy(uor)Pas
Para quaisquert > 1 e 6 > 0, vale que
2 = 2ul+2(1—1)I
— 2 [wPuen)las—2t [ yyluonPds
0 0
+28(1=1) [ yysuo sluor)®ds
—2t / (Ws)*(uoy)Pds—2t / Yss(uoy)Pds
0 0
_ “ 9 2 B2 Bi—1) r* , B
Blu—=1)8 |y (uoy)i(uoy)™ “ds+=—s— | yi(uoy)"ds,

sendo que, na ultima desigualdade, usamos a desigualdade de Young para obter

IN

B
BU=ywluor)wonf 1| = ﬁ(t—U((uoy)gll(uoy)swlx/g).<(”°f/>g|%|>

< B(t-1) [<”°7)ﬁ_2(u07)?w25 N (MOY)“(%)ZI |

2 20

Visto que B < 1 e > 1, podemos tomar § = % Com essa escolha, obtemos
2 < _Zt/ ‘VWS&(”OY)ﬁdS+ <¥_2t)/ (ll/s)z(uo')/)ﬁds
0 0
+B( =15 [ P uor o) 2ds
0
a — 2 a
= —Zt/ Yyis(uoy)Pds+ (ﬁ(f ;) —Zt) / (y:)*(uoy)Pds
0 - 0

+B(1=) [ vA o2 (uor) -2,
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(n— U/; yi(uoy)Pds > co/()a v (uoy)Pds+B(1 —B)/Oa v (o) (uoy)P2ds—2I

> co/oa vl (uoy)Pds— (M—Zt) /Oa(llls)2(uoy)ﬁds

1-p
—|—2t/ Yy (uo }/)ﬁds,
0

ou seja,

Pela escolha de 3, temos que

1+@,se ne{2,3}

n—2,se n>4

p(n7t07ﬁ) < 07 para iy =

De fato, isso pode ser verificado por uma computacao direta em cada um dos casos:

o n=2
40-B) , 41-p)

r(2,10,B) = 5 2 p +1=-1.

p(37t07B) = 1+p(27t07ﬁ) =0.

1
e n>4: Lembre que f = 5 nesse caso, logo
n p—

1
p(n,i0,B) = —"""2—-(n—32-2(n—2)+n—1=0.

1
1_n72

Juntando isso e (3.16), vem que (vale notar que 7o > 1)

C()/O l//z(uoy)ﬁdsg —2t0/0 l//l//ss(uoy)ﬁds.

Como @ = (uoy)P . y é arbitréria, concluimos o desejado.

(3.16)

]

Demonstragdo da Afirmagdo 2. Suponhamos que M ndo é compacta e tomemos a menor curva

divergente y: [0,7) — M construida na Proposi¢do 2.3.6 com respeito a g, ou seja, ¥ é uma

g-geodésica, minimizante em cada intervalo compacto de [0, 7)) e divergente.



61

Parametrizando y por comprimento de arco s em relacdo a g temos, por (M, g) ser completa, que,
nessa parametrizacdo, y estd definida em [0, ) (Proposi¢do 2.3.5). Segue do Coroldrio 2.4.1
que Y possui segunda variacdo da energia ndo negativa, com respeito ao comprimento de arco
em g, para qualquer variacio prépria, logo, pela afirmagao 1, existem constantes co > 0e 79 > 1

satisfazendo

Co/0 WZ(MOY)BdSS —2f0/0 y/yfss(uoy)ﬁds,

para quaisquer a > 0 e ¥ € C3([0,a]) (por 7 ser g-minimizante em cada intervalo compacto de
[0,T) e por ela estar definida em [0, 0) quando parametrizada em relagdo ao comprimento de
arco de g podemos aplicar a afirmagao 1 para todo a > 0.)

T
Tomando y(s) = sen (—S> , obtemos
a

‘B 2 (78 / B T en2 (S
co/o P (7(s)) sen® () ds < 20 P (r(5) 2 sen (2)ds, va>o,

a

0 que equivale a

a

2 a
(co - 2to%) /0 uP (y(s)) sen’ (E) ds <0, Ya > 0.

/2t
Por outro lado, tomando a > @ =0 vemos que
co

2 a
T s
co—2to— >0e / uP (y(s)) sen® (—) ds >0,
a 0 a
ou seja, uma contradi¢do. Portanto, M é compacta. [

Demonstragdo da Afirmagdo 3. Como A|®|> > 0 e M é compacta, segue do principio do ma-
ximo forte que |®|? é constante. Por estarmos assumindo u > 0, devemos ter |®|> < b*. Portanto,

da desigualdade 3.6, encontramos
0=Al@]” >2(0° — |[@])|@]” +2|Ve|* > (b° — |@*)| P,

0 que nos permite concluir que |®| =0 em M, donde segue que M é uma esfera totalmente

umbilica. Isto conclui a prova da afirmacdo 3 e, por conseguinte, do teorema. [
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3.2 Generalizacao do Teorema de Bonnet-Myers

Um resultado amplamente estudado e aplicado na drea da geometria Riemanniana
€ o teorema de Bonnet-Myers, que garante propriedades topoldgicas (compacidade e grupo
fundamental finito) a partir de completude e uma estimativa inferior para o tensor de Ricci. O
foco desta secdo serd apresentar e provar uma generalizagao deste teorema obtida em [4], a qual
apresenta aplicacdes no ramo da cosmologia (para mais detalhes, ver Secdo 1.2 de [4]). Antes
disso, apresentaremos o teorema de Bonnet-Myers junto com sua prova e discutiremos alguns
detalhes a respeito do mesmo. Um olhar atento a essa demonstrag@o revela uma inspiracdo para
os argumentos utilizados nas demonstragdes dos trés teoremas principais deste trabalho (mais

especificamente na aplicagdo da formula da segunda variagdo da energia).

Teorema 3.2.1. (Bonnet-Myers) Seja (M",g), n > 2, uma variedade Riemanniana completa
satsifazendo

Ric> (n—1)A-g,

para algum A > 0. Entdo M é compacta e satisfaz

.
iR

Demonstragdo. Dados p,q € M, segue da hipotese de completude que existe uma geodésica

diam(M,g) <

minimizante ¥ : [0,/] — M ligando p e ¢, onde [ = [(y) = d(p,q). Se mostrarmos que [ < %,
teremos, simultaneamente, que M satisfaz a estimativa com respeito ao seu diamétro e é compacta
(pois é completa).

Para provar isso suponhamos por absurdo que / > % e tomemos {ey,...,e,} campos paralelos
ao longo de v e tais que {¥'(t),e2(),...,en(t)} é uma base ortonormal de Ty M, para todo
t € [0,1]. Com isso, definamos os campos V;(f) = sen <§ -t) -ej(t), t € ]0,1], ao longo de
Y, j=2,...,n. Como V;(0) =V;(l) =0, a Proposicdo 2.4.1 garante a existéncia de uma
variagao apr(’)pria fj:(—¢,€)x[0,1] = M de y cujo campo variacional coincide com V;, ou seja

Ji

Vi(t) e (0,1). Dai, denotando por E; a energia relativa a variagdo f;, segue da férmula da

segunda variagdo da energia que, para cada j € {2,...,n},
50 = [ [(520.520) - Ry Q.0 050 @
= [ B0t (Fa) = sen (B o) ROV 0,07 0t
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onde, na ultima igualdade, foi usado que os campos e; sdo paralelos para obter

Vi) = %cos (%t) ej+ sen (%t) -I% = gcos (%t) ej.

Somando em j e usando /[ > — junto com a hipdtese sobre o tensor de Ricci obtemos

VA
O DL

l
< /(n—l)-?t-cos (?-t)dtzo.
0

Portanto, E7(0) < 0, para algum j € {2,...,n}, o que contradiz o Coroldrio 2.4.1, jé que y
¢ uma geodésica minimizante. Desta contradi¢do concluimos que / < —, como queriamos

VA

provar. [

O teorema de Bonnet-Myers permanece valido se trocarmos o tensor de Ricci pelo

chamado tensor m-Bakry-Emery Ricci, denotado por Ric’J’} e definido como

1
Ric} :=Ric+V*f — —df ®df,
m

onde m > 0e f: M — R é uma funcio suave denominada poténcial. Mais especificamente, vale

o teorema abaixo, cuja demonstracdo se encontra em [14].

Teorema 3.2.2. (Qian) Seja (M",g), n > 2, uma variedade Riemanniana completa. Suponha

que existam m > 0 e f € C*(M) tais que
Ricf > (n+m—1)A g, (3.17)
para algum A > 0. Entdo M é compacta e
diam(M,g) < .

v

Tomando f = —Inu, com u € C*(M) positiva, a desigualdade (3.17) torna-se

& 1 du®d
Ricz—”+(——1) UE L (+m—1)Ag. (3.18)
u m u

Sabe-se que a hipdtese de limitacao uniformemente positiva do tensor de Ricci (ou do m-Bakry-
Emery Ricci) ndo pode ser enfraquecida para Ric > 0 (ou Ric’}? > (). De fato, o paraboloide
M = {(x,y,z) € R3; z=x?>+y*} é completo e tem curvatura Gaussiana (que no caso de dimenséo

2 coincide com o Ricci) igual a

K(x,y,z) = 5 >0,V(x,y,2) €M,

(144x2 +4y?)
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Apesar disso, M ndo é compacto.
Todavia, como mostra o segundo teorema principal desta dissertacao, isso nao ocorre quando a

funcdo u na desigualdade (3.18) € uma supersolucdo de uma EDP eliptica adequada:

Teorema 3.2.3. (Catino e Roncoroni) Seja (M",g) uma variedade Riemanniana completa, n > 2,

tal que

A2 du®d
Ric > a~—2 4 g
u u

+0, em M, (3.19)

onde o, B € R, Q é um 2-tensor simétrico e u € C*(M) satisfaz

[Vul®

u>0 e —Au>Vu+vy ,em M, (3.20)

u

comy€eReV € C?(M). Suponha ainda que existe k > 0 tal que

Q+kVg> (n—1)Ag, (3.21)
para algum A > 0,
k(y+1—a)>0, (3.22)
e
kZ
o+ B+k(y+1) = (n=1)7 >0, (3.23)

Entdo M é compacta, tem grupo fundamental finito e

20— k(n—3))2 )
)

. 1
diam(M",g) <m 2 (1+4(n_1)[a+ﬁ—|—k(7+l)—(ﬂ—1)k?2

Em particular, se V> 0ey>0entdoV =0em M.

Se tomarmos u = const.,, V=0,0=(n—1)Ag,a =y=k=0¢ B =1 no teorema
acima recuperamos o teorema de Bonnet-Myers. Além disso, se a fun¢do V' € positiva, entdo a

condi¢do (3.21) permite uma estimativa inferior negativa para o tensor Q.

Demonstragdo. Consideremos a mudanga conforme

g=urg

Dado p € M seja r > 0 tal que dB,(p) # 0, onde B,(p) é a bola intrinseca de M segundo a

métrica g. Vamos construir uma g-geodésica minimizante ¥ ligando p e dB,(p).
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Com efeito, definamos u, := u+ 1, onde n, € C*(M) satisfaz n, = 1l em B, ;(p)° e n, =0 em

B,(p). A fung¢do u, é uniformemente limitada por baixo por uma constate positiva, pois

u->1, em B,1(p)°

= u, > mins 1, min u,(x) p =: 8§, > 0.
Br+1(p)

uy >0, em Bryi(p)
Disto segue que a métrica conforme g, = u%k - g € completa (Proposi¢ao 2.3.3). Sendo assim,

existe uma g,-geodésica minimizante ¥ : [0,a] — M ligando p e g,, onde

dg.(p,qr) = min{dg (p,q); q € dB.(p)}.

Em particular, 7([0,a]) C B,(p), pois do contrério teriamos ¥(¢) € dB,(p), parat < a, o que

contradiz a defini¢do de g, ja que

dg,(P,qr) = l5,(V) > g, (V|j0.) = dg,(p, ¥(1)).

Afirmamos que a curva Y assim obtida é g-minimizante.
De fato, por u, = u em B,(p), temos que dg(p,q,) > dg (p,q,), Visto que, dada uma curva ¢

ligando p e g,, se t. = inf{z; c(¢t) € dB,(p)}, entdo ¢([0,.]) C B,(p), logo

lz(c) > lz(clo.)) = g, (clios)) = dg, (P, dBr(p)) = dg, (P, qr)-

Por outro lado, como ¥([0,a]) C B,(p), vale

lz(y) =I5, (V) = dg, (P, qr),

portanto lz(7) = dg(p,qr), 0 que prova o afirmado e, por conseguinte, conclui a construcdo da
curva ¥ desejada.
Denotemos por / o comprimento de ¥ com respeito a g. Como 7 liga p a ¢, € dB,(p), vale [ > r.

Se provarmos que existe uma constante C = C(n, &, 3,7, A,k) > 0 satisfazendo
[<C

obteremos, simultdneamente, que M é compacto e diam(M,g) < C, pois teremos r < C, para
todo r > 0 tal que dB,(p) # 0, donde d,(p,q) < C, para todo ¢ € M, ou seja, M ¢ limitado,
consequentemente compacto. Além disso, sendo p arbitrario, também seguird que d,(p,q) < C,
para quaisquer p,q € M, isto é, diam(M,g) < C.

Para determinar tal constante C, serdo fixadas as seguintes notagdes

a) s e s os comprimentos de arco de ¥ com respeito as métricas g e g, respectivamente;
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b) {e; = ‘3—?,?2, ...,en} campos paralelos e ortonormais ao longo de ¥ com respeito a métrica
g. Em particular, os campos {e| = g—z,ez = (uo¥y)*e,,...,e, = (uo7y)*e,} ao longo de ¥
sdo ortonormais na métrica g;

c) Re R os tensores de curvatura de M, Ric e Ric os tensores de Ricci de M, com respeito as
métricas g e g, respectivamente, Ric(ey,e1) = Ry € Ric(ey,e1) = Ry;.

Sendo Y uma g-geodésica minimizante segue da formula da segunda variacao da energia que

/()l(uo7)k~ [(n—1)(@s)* =Ry - 9*]ds >0, (3.24)

para toda fungdo ¢ € C7([0,/]) (tal desigualdade ¢ obtida da mesma maneira que obtemos (3.7)).

Também temos, pela Proposi¢do 2.5.2, que ao longo de y vale

_ Vul?
Rii = Ri1 —k(n—2)(Inu)ss —k— ‘u”‘ (3.25)
Por (3.19),
VZ 2 VZ
Rllza-%u%—ﬁ-%—i—Qn:a-%u%—ﬁ-(lnu)f—an, (3.26)

onde V%lu = (Vzu)(el,el) € Q11 = Q(el,el).

Visto que

V2, (Inu) = e1 (e (Inu)) — (Vo e1)(Inu) = <110 et  (Vee)w) _ Vi (Inu)?

S
u u? u u ’

a desigualdade (3.26) pode ser reescrita como
Rip > a- Vi (Inu) + (a+B)(Inu)? + Q1. (3.27)
Pela relagdo obtida em (2.12), segue que

V3, (Inu) = (Inu)y, (Vay 3;) (Inu) = (Inu)g —k(VInu)*(Inu) = (Inu)g — k| (Vinu)* |,

d
onde (VInu)* é a componente do gradiente VInu perpendicular a oy (segundo g) e, na Ultima

ds

igualdade acima, foi usado

_ —\ 2
(VInu):(Inu) = (Vlnu—g(Vl ,?) %’)( W) = [Vinu — g (vm, g") — |(VInu)*[2.
Dessa forma, (3.27) se torna

Ry > a(lnu)g —kat|(VInu) > + (a+ B)(Inu)? + 011
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Substituindo isso em (3.25) obtemos

2
Ry > [0t —k(n—2)]- (Inu)s — ak- |(V1nu)ﬂ2—i— (a+pB)- (lnu)f—l—Q 11— k— +k|Vu\
Usando (3.20), (3.21) e (3.22) vem que
_(3.20) " )
R > [o—k(n—2)] (nw)s— ok-|(VInu) "2+ (a+ B) - (Inu)2 + Q1 +kV
\V/ 2
(7 + 1)%
(3.21)

> [a—k(n—2)] (nu)g —ak-|(VInu) >+ (o +B) - (Inu)> + (n—1)A

+k(y+1) (lnu)?—}—|(Vlnu)L|2
2 k= 2)]- () + [+ B+ k(y+ D] (nu) 4 (n— DA,

Substituindo em (3.24), segue que (abaixo, e no restante dessa demonstracdo, abusaremos da

notacdo escrevendo apenas u ao invés de uo7y)
! !
(n—1) / (@) -utds > [a—k(n—2)] / 0% u ™ - (Inu)syds
0 0
!
ot B+ky+1)] [ o (nulds

l
(n— 1)1/ 0% - u*ds
0

Integrando por partes a primeira parcela do lado direito da desigualdade acima e usando que

©(0) = ¢(I) =0, obtemos

!
/(pz-u_k-(lnu)ssds = —2/ Q- -@s-u " (Inu) ds—i—k/ 0> u” _1~us-(lnu)sds
0
= —2/ (p~(ps~u_k_lusds+k/ (pz-u_k_z-ufds,
0 0
donde
1 l
(n—l)/((ps)z-u_kds > —2[a—k(n—2)]/ @ @5-u " lugds
0 0
1
ot B k(y+1+a) — (n—2)k / 0% 1t 2u2ds
0
!
H(n-1)A / 0% -utds, (3.28)
0

para toda ¢ € C;([0,1]).
Para dar fim ao fator »~* na desigualdade acima, escreveremos ¢ = u’ v, com y € C([0,1]).

Com essa alteragdo, as integrais presentes na desigualdade (3.28) se tornam
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(i)
! L [k & 2
/((Ps)z-u"‘ds = / (Eufl Us - Y+ u? v/) ukds
0 0
ol o s ! —1 l 2
= 7 yo-u -usds+k/ Y-Ys-u 'Msds+/(‘lfs) ds,
0 0 0
(ii)
l l k
A (p.(ps.u_k_l.usds = /O u% .‘l’/. (EMIE_I usllj_i_u% IVS) .u_k_l.usds
k ! l
= 3 1;12 w2 ufds—i— [V/ERT/A8 u~ ' ugds,
0 0
(iii)
! 2 k=2 2 ! 2 2 2
/O(p u ugds = | YT -u 7 -ugds,
(iv)

l l
/ 0> ukds = / vlds,
0 0

0 que, substituindo em (3.28), nos fornece
l l
(n— 1)/ (ys)2ds > [k(n—3) —206]/ Vs ou ugds
0 0
K] !
+ [06-1—[3 +k(y+1)—(n— I)Z] / v u2ulds
0
!
+(n—1)A- / vlds. (3.29)
0

Pela hipétese (3.23), estdo bem definidas as fungdes f,4 : [0,/] — R dadas por

2Ny
f:<a+[3+k(}/+1)—(n—1)%) -w-;s

e
2l —k(n—2)]—k(n—1
h— [a —k(n—2)] —k(n )l.%_
2(a+Bk(y+1)—(n—1)%>2
Além disso, a relagdo f2+ h> > —2f-h nos diz que
k> [k(n—3) —2a]? )

k D—(n—1)=—|y* u?u?
o+ B +k(r+1)—( )4}"/ S+4(a+B+k(7+1)—(”_l)%>

> —[k(n—3)—20] - y-ys-u " u.



69

Usando essa informacdo em (3.29) encontramos

[ l 1
A-/ (y/s)zdszB./ 1//2ds:>/ (A - vy + By?)ds < 0, (3.30)
0 0 0

para toda y € C;([0,1]), onde
[k(n—3) —2a)?

A=n—1+
4(a+B+ky+1)—(n-1%)

, B=(n—1)A

e a implicacdo acima € simplesmente obtida ao integrar por partes a integral da esquerda e usar

v(0) =y(l)=0.

ﬂ .
Por fim, escolhendo y(s) = sen <TS>, conclui-se que

2 l
T T-Ss
<B—Al—2> /0 sen (T) dSSO,

donde
1
2 A oz lk(n —3) — 202 i
B—An—2§0:>l§7r\/i:— 1+ .
! B VA 4(n—1)<a+l3+k(y+1)—(n—1)’%>
Portanto,
k(n—13)—2al? :
c= " (14 [k(n—3) —2q]

v 4(n—1)(a+ﬁ+k(y+1)—(n—1)§>

¢ a constante buscada. Como ji comentado, isto implica que M é compacta e diam(M,g) < C.
Quanto 2 afirmacio do Teorema 3.2.3 sobre o grupo fundamental de M, consideremos 7 : M — M
o recobrimento universal de M. Munindo M com a métrica h induzida por 7 (segundo a qual 7 é
uma isometria local), temos que (M,h) é completa (Proposigdo 2.3.4).

Com essa métrica, M se encaixa nas hipéteses do Teorema 3.2.3, com Vorm aoinvésde V,uom
no lugar de u, as mesmas constantes &, 3,7,k e o 2-tensor Q definido da seguinte forma :
Dados X,Y € X(M), a fungdo Q(X,Y) num ponto p € M vale Q(X,Y)(x(p)), onde X,Y € X(M)
sdo tais que Xz(,) = dmp(Xp) € Yy = dmp(Yp). (o fato que Q é um objeto pontual garante que
a funcao @()_( ,7) estd bem definida. Além disso, como 7 € um difeomorfismo local, a funcao
O(X,Y) é suave.)

Dessa forma, pelo que ja foi provado, M é também compacto, logo as folhas do recobrimento

T : M — M sio finitas, donde 71 (M) € finito ([10], p. 247).
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Por fim, caso V > 0 e v > 0, temos por (3.20) que Au < 0, logo, sendo M compacto, u deve ser

constante pelo principio do mdximo. Novamente por (3.20) e por u > 0 segue que

|Vul?
0=—-Au>Vu+y

=Vu=V<0=V=0em M,
u

0 que conclui a prova do teorema. [

Uma consequéncia do Teorema 3.2.3 € uma estimativa superior para o primeiro

autovalor de —A, a qual estende um resultado classico obtido por Cheng em [6]:

Corolario 3.2.1. Seja (M",g), n > 2, uma variedade Riemanniana completa com Ric > —(n—

1)g. Se existe uma solucdo positiva u € C*(M) de

—Au > lu,
para algum u > 0, entdo
H="4
Demonstragdo. Suponhamos que
=1y
IIJ’ 4 *

Na nota¢@o do Teorema 3.2.3, se tomarmos x =3 =y=0,V=pe Q= —(n—1)g, teremos

que M satisfaz (3.19) e (3.20), com u sendo a solucao positiva de
—Au > lu.
Com essas escolhas, (3.21), (3.22) e (3.22) tornam-se

—(n—=1)+ku>(n—1)A
k>0

k(1-"k) >0

Assim, tomando k = — €, onde € > 0 satisfaz

n—

_— —1
1 >0 e 1 0,
e A >0 tal que
4
e
n—1

note que essa desigualdade ¢ satisfeita quando € = 0 pela suposicio feita sobre L.
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segue que

logo M se encaixa nas hipéteses do Teorema 3.2.3, em particular M é compacto. Se p € M € um
ponto de minimo de u entio

0 < Au(p) < —p-u(p) <0,

(n—1)?

o que € uma contradi¢do decorrente da suposi¢cdo y > . Portanto, u < , COmMo

(n—1)
o

queriamos demonstrar. O
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3.3 Estimativa de didmetro para uma H-hipersuperficie estavel

O ultimo teorema deste trabalho, obtido por Elbert, Nelli e Rosenberg em [8], trata
de uma estimativa de diametro sob hip6teses de estabilidade, controle de curvatura seccionais
e curvatura média constante. Antes de apresenta-lo, é conveniente fazer uma breve revisao
sobre o conceito de estabilidade, assim como enunciar dois resultados sobre esse tema que serdo
ferramentas importantes no decorrer desta se¢do. Para uma exposicdo mais detalhada desse tema
sugerimos a leitura de [2] e [7].

O conceito de estabilidade estd intimamente ligado a um problema variacional. Para
motivar a definicao de estabilidade faremos algumas consideragdes a respeito desse problema.

Sejai: (M",g) — X uma imersdo isométrica com curvatura média H e N um campo
normal unitdrio ao longo de i(M). Dada uma variagdo normal i, : M — X, t € (—¢,€), de i(M),
associada ao campo normal fN | ou seja, % =fN ) e que fixa o bordo dM, sabemos que

=

a variacdo do funcional drea A(r) = A(i;) € dada por

A'(0)=— /M fHdM.

Em particular, imersdes minimas podem ser caracterizadas como pontos criticos do funcional
area para variacdoes como acima. Imersdes com curvatura média constante, por sua vez, podem
ser visualizadas como pontos criticos do funcional drea quando nos restringimos a variagoes
que preservam o volume, ou seja, para variagdes cuja componente normal do campo variacional
f € CJ (M) satisfaz /MfdM =0.

Para estes pontos criticos, a segunda variacao do funcional area é dada por

A'(0) =~ [ fLyam.

onde Lf = Ay f + |B]>f +Ric*(N,N) f é o chamado operador de estabilidade de M (ou operador

de Jacobi), B é o operador forma de M e Ric* e o tensor de Ricci do ambiente X.

Definicdo 3.3.1. Sejam X"! uma variedade Riemanniana, M" C ¥. uma hipersuperficie com
bordo e two-sided (i.e, fibrado normal trivial) e L o operador de estabilidade de M. Diremos

que M é estdvel quando

—/Sf~LfdM20, Ve Co(M). (3.31)

No caso em que M é completa (possivelmente ndo compacta) e sem bordo, dizemos que M é

estdvel se todo subdominio compacto de M é estdvel.
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Vale salientar que a definicao de estabilidade aqui apresentada é conhecida como
estabilidade forte. Existe também o conceito de estabilidade fraca, onde restringimos a condi¢ao
(3.31) apenas a fungdes f € Ci’ (M) que satisfazem /MfdM =0.

Seja Q C M um dominio compacto. O espectro de L com respeito a Q € dado por
uma sequéncia crescente A} < A, < ... que converge para oo, sendo associada, respectivamente,
a autofuncoes u;, ou seja

Lu; + Aju; =0,

com u; € Ci(£), ndo identicamente nula. A estabilidade em Q equivale a A;(Q,L) > 0 (ver [7],

pégina 43), onde

ll(Q,L):inf{—/n-LndM; n €Cy(Q) e/n2:1}_
Q Q

O lema a seguir fornece uma informacao relevante sobre as autofungdes associadas
ao primeiro autovalor de L. Este lema vale na verdade para qualquer operador do tipo L = A+gq,

onde ¢g é uma funcio.

Lema 3.3.1. Ainda na notagcdo acima, se u é uma fungdo suave em ., continua em S, se anula

em dQ e satisfaz Lu = —Au, onde Ay = A1 (Q, L), entdo u ndo muda de sinal em Q.
Demonstracdo. Pode ser encontrada em [7], pagina 46. [

O teorema que fecha essa breve exposicdo fornece uma condicdo equivalente a

estabilidade de uma hipersuperficie completa ndo compacta.

Teorema 3.3.1. (Fischer-Colbrie e Schoen) Se M" C ¥ é uma hipersuperficie completa, néo
compacta e com fibrado normal trivial, entdo as seguintes afirmagoes sdo equivalentes:

a) A1(Q,L) >0, para qualquer dominio compacto Q C M;

b) A1(Q,L) > 0, para qualquer dominio compacto Q C M;

¢) Existe uma fungdo suave e positiva u tal que Lu =0 em M.
Demonstragcdo. Pode ser encontrada em [7], pagina 49. 0

Feito este resumo, resta apenas fixar algumas notacdes para adentrarmos no teorema
desta se¢do:
Seja X! uma variedade Riemanniana com curvaturas seccionais uniformemente

limitadas por baixo e denotemos por sec(X) o infimo das curvaturas seccionais de ¥. Dizemos
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que M C X é uma H-hipersuperficie de £ quando M é uma n-subvariedade imersa de ¥ com

curvatura média constante H. No que segue M serd assumida two-sided.

Teorema 3.3.2. (Elbert, Nelli e Rosenberg) Seja M" C X uma H-hipersuperficie estdvel e com-

pleta, comn =3,4. Se |H| >2/|min{0,sec(X)}| entdo existe uma constante c = c(n,H,sec(X))

tal que, para todo p € M, dy(p,dM) < c.

No enunciado acima o termo "completa” significa que (int(M),d,) é completo como
espago métrico, onde g € a métrica induzida pela imersdao M C X, d,, a fungdo distancia induzida

por g e int(M) = M — dM. Como consequéncia do Teorema 3.3.2 temos o

Corolario 3.3.1. (Elbert, Nelli e Rosenberg) Seja M" C ¥ uma H-hipersuperficie estdvel e
completa, com n = 3,4. Se |H| > 2,/|min{0,sec(X)}| entdo oM +# 0.

O coroldrio 3.3.1 nos diz, em particular, que em R"*!, n =3, 4, uma H-hipersuperficie

estdvel, completa e sem bordo deve ser minima, visto que sec(]R”“) =0.
Demonstragcdo do Teorema 3.3.2. Sejam L : C*(M) — C*(M) o operador de Jacobi
Lu = Au+ (|B]> +-Ric*(N,N))u,

onde N um campo unitério e normal a M em X, B o operador forma de M, Ric* o tensor de Ricci
de X e ¢ o operador forma de trago nulo ¢(X) = B(X) — HX. Podemos escrever o operador de
Jacobi em termos de ¢

Lu= A+ (|¢|* +nH?+Ric*(N,N))u,

ja que, se vq,...,v, sdo autovetores de B com autovalores ki, ...,k,, entdo vi,...,v, sdo autove-

tores de ¢ com autovalores k1 —H, ... k, —H, logo

(01 =Y (ki —H)* =} (kf —2kiH +H?) = |B]* — nH?,

1 1

onde na ultima igualdade foi usado que H = % Zki'

Sendo M estével, existe uma funcdo u suave erril M e positiva no interior de M tal que Lu < 0.
(Caso M seja nao compacta basta aplicar o Teorema 3.3.1. Do contrario, tomamos # como uma
autofungdo associada ao primeiro autovalor A; de L. Pelo Lema 3.3.1, podemos assumir que u é
positiva no interior de M, logo, pela hipétese de estabilidade Lu = —Aju < 0.) Definamos entéo,

no interior de M, a métrica g = qug, onde k satisfaz

5(n—1) 4
— = <k< —.
4n  — <n—l
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A escolha de tal k ficard mais clara adiante.Vale porém notar que, para n > 4, temos

4 <1<5(n—1)’
n—1—" = 4n

logo a escolha de k feita acima ndo € possivel se n > 4.

Fixado p no interior de M, seja r > 0 tal que a bola intrinseca B,(p) de M ndo toca dM.

Consideremos ¥ uma g-geodésica minimizante ligando p a dB,(p) (a construcéo de tal curva é a

mesma que foi apresentada na demonstracao do Teorema 32.3)0 ¢ seja a = lg(y) o comprimento

de 7 na métrica g. Como 7 liga p a um ponto de dB,(p), vale que a > r. E suficiente entdo

provar que existe uma constante ¢ = ¢(n, H, sec(X)) satisfazendo a < c.

De fato, feito isto, teremos r < ¢, para todo r > 0 tal que B,(p) Nd(M) = 0. Dai, caso d :=

du(p,dM) > c, entdo, tomando ¢y € (c,d), obtemos B¢, (p) NdM =0 e ¢y > ¢, o que € uma

contradi¢do. Logo, dy(p,dM) < ¢, como desejado.

Passemos a prova da existéncia de tal constante c. Como de costume, consideraremos:

(i) s es os comprimentos de arco de Yy com respeito as métricas g e g, respectivamente;

(ii) {e; = %’ ,€2,...,e,} campos paralelos e ortonormais ao longo de y com respeito a métrica
gee,r1 = Noy. Em particular, os campos {e| = %,ez = (uoy)ke,,...,e, = (uoy)ke,}
ao longo de 7y sdo ortonormais na métrica g;

(iii) R e R os tensores de curvatura de M, Ric e Ric os tensores de Ricci de M, com respeito as
métricas g e g, respectivamente.

Visto que Y é g-minimizante, segue dos argumentos apresentados na demonstracdo do Teorema

3.1.2 (ver equagao (3.7)) que

/Oau K(n—1)p? —Ric(ey,e1)@*ds > 0, (3.32)

para toda ¢ € C5([0,qa]). (na desigualdade acima e no que segue abusaremos da notagdo e
escreveremos apenas u ao invés de u o y)

Pela Proposicao (2.5.2), vale, ao longo de ¥, que

- \V/ 2
Ric(ei,e)) =u * {Ric(el,el) —k(n—2)(In(u))ss —k— +k| u] )
ou ainda
Ric(ey,e1) = Ric(ey,e1) —k(n—2)(In(u))ss —k— +k——>5—,
u

Vale salientar que nessa passagem foi utilizada que o interior de M é completo como espago métrico, em
particular, as bolas intrinsecas de M que ndo tocam o bordo sdo compactas.
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Como Lu = Au+ (|¢|> +nH? + Ric*(N,N))u < 0, obtemos

— Vul?
Ric(ey,eq) ZRic(el,el)—k(n—2)(ln(u))ss—|—k(|¢|2+nH2+RicE(N,N))+k‘ uz‘ . (3.33)
Pela equacdo de Gauss vem que
Rijij = z]1]+gZ(A(el> )A(ej7ej))_gZ(A(ei>ej)7A(ei?ej))
= Ryj+hihjj—hy, ij€{l,...,n} (3.34)

onde gy € a métrica de X, A ¢ a segunda forma fundamental de M e h;; = g(A(e;,e;),N). Sendo
hij = gz(A(eire)),N) = gz(Vee,N) = —gz(e), Ve, N) = —glej, Blei)) = —g(ei, 9 (¢))) — H;j
e ® o 2-tensor simétrico em M, ®(X,Y) = g(e;, 9 (e;)), temos, por (3.34), que

Rijij = RE

Gij (i + H) (P + H) — (i + HE)?,

onde ®;; = ®(e;,¢;). Fazendo i = 1 na expressdo acima e somando em j de 2 até n obtemos

n n
RlC 6’1,61 ZRI]I] = ZR%J-U—}-CDHZCD“'—F(H—UCDHH
= =2

n n
2 2
+HY @i+ (n—1)H> =) ;.
j=2 =2

Usando Z ®;; =1tr(¢) =0, podemos simplificar a expressdo acima para
j=1

n
Ric(ey,e) ZRUU &3+ (n—2)® H+ (n—1)H ZCD
Substituindo isso em (3.33) encontramos
Ric(ey,e) > ZR1j1j+leC (N,N)+ (kn+n—1)H?>+ (n—2)® | H

2 B2 |VM|2
+k|P|” — Py — Zq) 2)(In(ut) )ss + k—5—

Juntando isso com a desigualdade (3.32) vem que

(n—l)/o *p2ds > A o*u” <2R1]1]+kch (N, N)) ds

+/<pu

- [ o [kn=20nu—Z a

n
(kn+n—1)H*+ (n—2)H®y +k|®|> — D7, — ) &7,
j=2

ds
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. . k
Para dar fim ao termo u* na desigualdade acima escreveremos ¢ = u2 y, com y € C5([0,a)).

Fazendo essa mudanca a relagdo acima se torna
a n
(n—1) / vids > / >| Y. RYji,+kRic™(N,N) | ds
j=2

+/1//2
0

_/0" v [k(n—Z)(ln(u)) 'V”|2] ds

n
(kn-+n—D)H?+ (n—2)H®y; +k|@f2 — &%, — Zf%- ds
]:

MZ
Ck(n—1) /0 * W (In(u))sds — k”T_l) /O “Vnw)ds  (3.35)

Integrando por partes e usando Y (0) = y(a) = 0 obtemos

—k(n—2) /O "W (In(u))seds = 2k(n—2) /0 " (In(u))sds.

Além disso,

2 — a _ a

SO "y n2as =" [y nl)2as
0 0

k/ y? d _k/ V2| Vin(u) st>k/ v (In( )zds—k/ v (In(u*))2ds.

Substituindo essas informagdes em (3.35) e mmphﬁcarido encolntramaos
) [(vias = k=) [Mywintonass (3" ) [C vz
0

k 4

/ (Z lelj—i-kch )) ds
+/Oavf2

=3) [ wtinG))ds + (% - 1) [ v nGyzas

a n
—I—/ v? [Z 1j1j+leC (N,N)+(kn—n2+5n—5)H2] ds
0 =

n
(kn+n—1D)H?+ (n—2)H®y; +k|@f2 — &%, — sz% ds

v

a 2__
+[w (k]CI>| 7, Zcp ) (336)

P
onde na tltima desigualdade foi usado x*> +y? > —2xy, parax= (n—2)H e y = % ou seja

2¢52 CI)%I
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Note que a ultima parcela de (3.36) é nao negativa, pois as relacdes

O > Y1 @+ Y, D+ Y, 5 =Y @+ 22X, Py
Y1 ®j;=0
™) 2
nlZ ]]—<n IZ Zq)jj)
implicam

2
1 n n n
9|* > @, +— <Z cb,-,-) +2Y) @f; = n__lqa%l +2) @,

J=2 J=2 J=2

Logo, por k >

5(n—1)
4n

3n5

1 n n
k|CI>|2——CI> Zq)l]— )Zcp%j—Zcp Zcb
j=2 j=2

ao longo de 7y, donde segue que

/Oa <k|c1>|2——c1> Zcp )dszo.

Sendo assim, a desigualdade (3.36) se reduz a

(n—1) / ylds > (n—3)/0allll/ls(ln( )s ds+(

)/wln ))2ds

a n

+/ WZ[Z Tj1) +kRic (N,N)+(kn—n2+5n—5)H2] ds (3.37)
0 -
]_

Novamente usaremos x2 + y2 > —2xy, para

1 1
(1 n—-1\? k ~n—3 l_n—l 2
x= (% 1 ) y(In(u®))s e y= 5 (k 1 ) Ys,

ou seja

n— n—23)2 n—1\""
(%— 41)w2<1n<uk>>§+%(%—71) Y2 > —(n—3)yys(in(ib)),

1 _
- nT > 0. Substituindo em (3.37) segue que

—13)2 _
+/) v | Y

"Desigualdade de Cauchy-Schwarz.

Vale relembrar que, pela escolha de k,

1]1] +kRic*(N,N) + (kn —n* +5n—5)H? | ds,

Jj= 2
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—3)2 /1 —1\ !
ouainda,pondvo=n—1+<n4) (E_n4 ) >0,

Ao/ l,l/zds>/ [2R1]11+lec N) + (kn —n® +5n—5)H?| ds. (3.38)

Neste ponto, queremos encontrar uma constante By = By(n,H,sec(X)) tal que

n
0<By< ZZR{-]-U + kRic*(N,N) + (kn — n* 4+ 5n — 5)H?
J:
ao longo de 7. Para tanto, note que

2R1]1]+leC ZR1]1]+/<ZRZ (N,ej,N,e;) > (kn+n—1)sec(X),
Jj=

ao longo de 7, logo, pondo
By = (kn—n*+5n—5)H* + (kn-+n—1)min{0,sec(X)}
temos imediatamente

n
By < ZZR%JU + kRic*(N,N) + (kn —n* +5n—5)H>.
J:
Na desigualdade acima foi usado que kn+n — 1 e kn —n? +5n — 5 sdo positivos, o que pode ser
verificado diretamente nos dois casos, n =3 e n =4,
o n=23:

kn+n—1=3k+2>0 e 3k—n*+5n—5=3k+1>0;

kn+n—1=4k+3>0 e kn—n>+5n—5=4k—1>0,

5n—1) 15 - 1
4n 167 4
J4 quanto a condi¢@o By > 0, temos

haja vista que k >

kn+n—1

< 4.
kn—n2+5n—5

Novamente isso pode ser checado através de uma verificacao direta

o n—23:
kn+n—1 _3k—l—2
kn—n2+5n—5 3k+1

2
<4<=>k>—§

e a ultima desigualdade € satisfeita ja que k > 0;
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kn+n—1 _4k+3<4©k> 7
kn—n2+5n—5 4k—1 12

Sn—1) _ 15 _ 7
4n 167 12
A hipétese sobre H nos diz que H> > 4| min{0, sec(X)}|, donde segue que

e a ultima desigualdade € satisfeita ja que k >

2 kn+n—1

P — | min{0, sec(X)}|.

Portanto,

By > (kn+n—1)(|min{0,sec(X) }| +min{0,sec(X)}) > 0.

Dessa forma, por (3.38),
Ao/o W2 230/0 Wst@/O (Bow? + Aoy )ds < 0, Yy € C([0,d]).

v/
Por fim, tomando y(s) = sen (_s> na desigualdade acima concluimos que
a

2 a
T T A
(BO —A—2) / sen’ (2 )ds <0=a< /20w,
a 0 a By

ou seja
c(n,H,sec(¥Y)) = 2—2%

B 27\/k(2—n)+n—1

- {[4—k(n—1)][(kn —n%®+5n—5)H?*+ (kn+n—1)| min{O,sec(Z)}H}%
€ a constante desejada. Pelo que j4 foi comentado, isto conclui a prova do teorema. 0

Para concluir essa se¢do apresentaremos a prova do Corolario 3.3.1.

Demonstragdo do Coroldrio 3.3.1. Suponhamos por absurdo que exista uma H-hipersuperficie

M™ C ¥ estdvel, completa, com |H| > 2,/|min{0,sec(X)}| e dM = 0. Como foi visto na
demonstragio do Teorema 3.3.2, toda bola intrinseca de M que nio toca dM tem raio limitado
por uma constante ¢. Sendo dM = 0, temos que diamy(M) < c. Por M ser completa, segue
que M é compacta. Seja f : M — R uma autofungio associada ao primeiro autovalor A; de L.
Trocando f por —f podemos assumir que f € positiva (Lema 3.3.1). Pela hip6tese de estabilidade

temos A; > 0, logo Lf = —A; f < 0. Dai, se p é um ponto de minimo de f, vale que

0 <Af(p) < —(1¢[*(p) +nH> + Ricy(N.N)) f(p). (3.39)

8Integragﬁo por partes.



Por outro lado, como H? > 4| min{0,sec(X)}|, obtemos
|o ]i +nH? —I—Ric%(N,N) > 4n|min{0, sec(X) }| +nmin{0,sec(X)} >0,

o que implica

~(19*(p) +nH*+Ric5(N.N)) f(p) < 0.

Isto por sua vez contradiz a desigualdade (3.39) provando assim o desejado.
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4 CONCLUSAO

E importante destacar que os resultados aqui tratados, fruto da colaboracio de
excelentes matemdticos, ndo podem ser reduzidos a simples aplicacdes da mudanga conforme.
Estes foram escolhidos para esse trabalho visando ilustrar a aplicabilidade da técnica aqui
abordada visto que eles compartilham de um ponto em comum que € a utilizagao da mudanga
conforme, mesmo que para fins distintos.

Dito isto, a exposicdo dos resultados no capitulo anterior tornou evidente a forca
que possui a técnica da mudanca conforme de uma métrica Riemanniana, principalmente por
conta de que esta pode ser utilizada em contextos diversos na geometria. Como foi visto nas
demonstragdes anteriores, o ponto principal a se levar em conta ao fazer uso dessa técnica € a
existéncia de uma funcido que goza de propriedades relevantes para o contexto que se deseja
trabalhar. Neste trabalho em especifico a propriedade buscada era ser uma supersolucdo de uma
EDP conveniente. Por exemplo, no teorema de pinching, a partir da hipétese sobre a norma da
segunda forma fundamental sem traco, obtivemos uma fungio u satisfazendo Au < —2|®|%u.

Ja na generalizacdo do teorema de Bonnet-Myers a hipdtese garantia a existéncia de uma
|Vu?
u
estabilidade para se obter uma solugio de Au + (|®|? + nH? + Ric*(N,N)) -u < 0.

funcdo cumprindo —Au > Vu +y . Por fim, no tultimo resultado foi utilizada a hipétese de
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