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RESUMO

O processo de transferência de oxigênio à água tem diversas aplicações em engenharia e é

referido na literatura como uma reação com cinética de ordem 1 derivada da lei de Fick. A

complexidade deste fenômeno, contudo, introduz desafios à sua avaliação, especialmente em

sistemas de aeração artificial, onde a injeção de ar geralmente resulta em escoamentos por

plumas de bolhas que transferem gás por diferentes mecanismos. A partir disso, diversos

estudos têm analisado o problema propondo sofisticações à esta abordagem. Esse estudo explora

uma abordagem por aprendizado de máquina (ML) para a previsão do comportamento da

transferência de oxigênio por injeção de ar em tanques de água através da predição do coeficiente

de reaeração k2 considerando cinéticas de ordem superior, abordagem essa pouco explorada

dentro deste contexto. Foram conduzidas 99 repetições de um experimento ao longo de 300

segundos cada, em tanques de laboratório para diferentes condições de entrada: vazões de

injeção de ar (Qair), temperaturas (T ), concentrações de oxigênio dissolvido iniciais (C0) e de

saturação (Cs), diferentes tipos de difusores de ar (tdi f ), volumes (Volt) e alturas de água nos

tanques (hw). Após ajuste dos coeficientes k2 a partir das séries temporais de concentração de

oxigênio dissolvido (OD) e posterior construção do conjunto de dados final, oito modelos de

ML foram estudados considerando os coeficientes com ordens de 1 à 4 como variáveis de saída.

Os coeficientes ajustados às ordens superiores resultaram nos modelos mais promissores (em

contraste à teórica ordem 1), com destaque à ordem 2, que resultou nos melhores modelos, fatos

que se justificam devido ao mecanismo complexo composto por quatro principais processos

de transferência de gás que ocorrem simultaneamente. Os modelos de árvore obtiveram as

melhores métricas, em especial a árvore de regressão (RT) (r2 = 0.668, RMSE = 7.00, MAE =

4.81, MAPE = 0.200 e RMSLE = 0.268). A partir disso, uma análise da importância das

variáveis foi feita para um melhor entendimento da interação das variáveis na dinâmica do

fenômeno, com estimativas através dos modelos de árvore e lineares. Estes concordaram sobre as

variáveis menos importantes para a previsão de k2 no contexto destes experimentos, que foram a

vazão de injeção de ar (Qair), a velocidade média da pluma na superfície (Vplum) e a presença ou

ausência de pedras porosas, enquanto que, para os modelos mais acurados (modelos de árvores),

as consideradas mais importantes foram o volume (Volt) e a altura da água nos tanques (hw).

Palavras-chave: Aeração artificial. Oxigênio dissolvido. Coeficiente de reaeração. Injeção de

ar. Aprendizado de máquina.



ABSTRACT

The process of oxygen transfer to water has several applications in engineering and is referred

to in the literature as a reaction with kinetics of order 1 derived from Fick’s diffusion law. The

complexity of this phenomenon, however, introduces challenges to its evaluation, especially in

artificial aeration systems, where air injection usually results in flows through bubble plumes

that transfer gas by different mechanisms. From this, several studies have analyzed the problem

proposing sophistications to this approach. This study explores a machine learning (ML)

approach to predict the behavior of oxygen transfer by air injection in water tanks by predicting

the reaeration coefficient k2 considering higher-order kinetics, an approach that has been little

explored in this context. A total of 99 replicates of an experiment were conducted over 300

seconds each in laboratory tanks for different inlet conditions: air injection flow rates (Qair),

temperatures (T ), initial dissolved oxygen concentrations (C0) and saturation (Cs), different

types of air diffusers (tdi f ), volumes (Volt) and water heights in the tanks (hw). After adjusting

the coefficients k2 from the dissolved oxygen (DO) concentration time series and subsequently

constructing the final dataset, eight ML models were studied considering coefficients with orders

from 1 to 4 as output variables. The coefficients adjusted to higher orders resulted in the most

promising models (in contrast to order 1), with emphasis on order 2, which is justified by the

complex mechanism composed of four main gas transfer processes that occur simultaneously.

For this order, the tree-based models obtained the best metrics, especially the regression tree (RT),

with r2 = 0.668, RMSE = 7.00, MAE = 4.81, MAPE = 0.200 and RMSLE = 0.268. From

this, an analysis of feature importance was made for a better understanding of the interaction

of the variables in the dynamics of the phenomenon, with estimates through the tree and linear

models. These models agreed on the least important variables for predicting k2 in the context of

these experiments, which were the air injection flow rate (Qair), the average plume velocity at

the surface (Vplum) and the presence or absence of porous airstones, while for the more accurate

models (tree-based models), the most important variables were the volume (Volt) and the water

height in the tanks (hw).

Keywords: Artificial aeration. Dissolved oxygen. Reaeration coefficient. Air injection. Machine

learning.
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1 INTRODUÇÃO

Plumas de bolhas ocorrem quando gases são injetados em líquidos, tipicamente água.

A sua ocorrência induz a transferência de gás à água, gerando processos de aeração artificial e

mistura turbulenta utilizados em tanques, lagos, reservatórios e estações de tratamento de águas

residuais, refletindo uma variedade de aplicações em engenharia ambiental, química e mecânica

(DeMoyer et al., 2003; Schierholz et al., 2006; Lima Neto et al., 2007; Pacheco; Lima Neto,

2017; Moura et al., 2020).

A ampla gama de implementações deste fenômeno evidencia a possibilidade de

diferentes abordagens, como trabalhos experimentais em escala laboratorial, com experimentos

acoplados à simulações utilizando Dinâmica dos Fluidos Computacional (Computational Fluid

Dynamics) (CFD) (Fayolle et al., 2007), estudos avaliando a influência da geometria dos tanques

(Lima Neto et al., 2008b), de diferentes bocais (Lima Neto et al., 2008a; Lima; Lima Neto,

2018), da vazão de injeção de ar (Behzadipour et al., 2023) e da maneira com que a injeção

ocorre, seja vertical ou horizontalmente (Lima Neto et al., 2008c).

Ainda de natureza experimental, outros trabalhos estudaram a influência da presença

de telas grades (Behzadipour et al., 2022; Behzadipour; Azimi, 2023), a consideração da

não-uniformidade da distribuição de bolhas (Ye et al., 2022), e também focaram em variar as

características dos fluidos, estudando jatos borbulhantes em escoamentos cruzados (Zhang; Zhu,

2013; Zhang; Zhu, 2014; Zhang et al., 2023), em injeções horizontais (Lima Neto et al., 2008c),

e plumas de bolhas percorrendo fluidos de densidades distintas (Lima Neto et al., 2016).

As consequências de suas aplicações em escala real geram resultados práticos em

áreas diversas, com o melhoramento da qualidade da água a partir da aeração de rios cobertos de

gelo (Lima Neto et al., 2007), a redução de concentrações de clorofila-a, cianobactérias (Pacheco;

Lima Neto, 2017) e fósforo (Moura et al., 2020), a utilização da aeração por nanobolhas para

o tratamento de águas residuárias (Lyu et al., 2023) e o aprofundamento do entendimento do

chamado “efeito de fonte” (Aprin et al., 2019; Aprin et al., 2020; Li et al., 2023; Wang et al.,

2024a; Wang et al., 2024b).

1.1 Problemática e justificativa

Diante da sua diversidade de aplicações, quantificar a transferência de gás é objeto

central em processos de aeração. A transferência a partir das plumas de bolhas, contudo, introduz
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complexidades substanciais, desde a formação das bolhas nos orifícios de injeção, o escoamento

de ascensão em forma de pluma até a agitação e o efeito de fonte provocados na superfície

(McWhirter; Hutter, 1989; DeMoyer et al., 2003; Schierholz et al., 2006; Lima Neto et al.,

2008a; Aprin et al., 2019; Aprin et al., 2020; Li et al., 2023; Wang et al., 2024a; Wang et al.,

2024b), o que dificulta a sua avaliação.

Abordagens mais clássicas têm empregado modelos integrais (Lima Neto, 2012a;

Lima Neto, 2012b; Lima Neto; Parente, 2016), e mais recentemente de Aprendizado de Máquina

(Machine Learning) (ML) (Biessey et al., 2021) e de Aprendizado Profundo acoplados à mo-

delos de hidrodinâmica computacional (Dhakane et al., 2024) para predição das dimensões e

parâmetros hidrodinâmicos das plumas.

Outros estudos, a partir da expressão derivada da lei de difusão de Fick, presente na

Equação 1.1 (Mueller et al., 2002):

dC
dt

= KLa(Cs −C) , (1.1)

em que C é a concentração de OD
[
L−3 ·M

]
, Cs a sua concentração de saturação

[
L−3 ·M

]
e KLa o coeficiente de transferência volumétrica de massa de oxigênio

[
T−1], têm expandido

as suas considerações para contabilizar as parcelas referentes aos diferentes mecanismos que

compõem este processo, geralmente considerando não desprezíveis as parcelas de transferência

devidas à ascensão das bolhas e à agitação da superfície, como estudado em McWhirter e Hutter

(1989), DeMoyer et al. (2003) e Schierholz et al. (2006).

A parcela (KLa) se assemelha ao coeficiente de reaeração k2 (Lima Neto et al., 2007;

Souza Inácio Gonçalves et al., 2017; Arora; Keshari, 2018; Arora; Keshari, 2022; Arora; Keshari,

2023). A sua estimativa tem sido abordagem mandatória na boa compreensão e utilização deste

processo (Kalburgi et al., 2015).

O problema da predição de k2 é muito presente em cenários de rios, e vem sendo

tratado com abordagens diversas, como o ajuste de equações empíricas utilizando relações

adimensionais (Souza Inácio Gonçalves et al., 2017), a utilização de regressão linear multivariada

com variáveis hidráulicas e de qualidade da água (Arora; Keshari, 2018), e a utilização de

modelos de inteligência articial, como a utilização de sistemas de inferência neuro-fuzzy (Arora;

Keshari, 2023) e a sua hibridização com acoplamento ao modelo ARIMA (Arora; Keshari, 2022).

A utilização de modelos de ML para estimativa deste coeficiente em tanques de água, contudo,

ainda não foi explorada.
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A utilização de ordens superiores se justifica na intenção de capturar em apenas um

valor de coeficiente o efeito dos diferentes processos que influenciam a transferência de OD (ver

Figura 4) em contraste às abordagens em McWhirter e Hutter (1989), DeMoyer et al. (2003) e

Schierholz et al. (2006), que propuseram coeficientes distintos para contabilizar os efeitos dos

processos de transferência de gás durante a ascensão das plumas de bolhas e na formação dos

escoamentos superficiais quando estas agitam a superfície (processos 2 e 4 da Figura 4), e Aprin

et al. (2019), Aprin et al. (2020), Li et al. (2023), Wang et al. (2024a) e Wang et al. (2024b), que

estudaram a influência dos comportamento de difusão do gás e efeito de fonte (processos 2 e 3

da Figura 4).

1.2 Objetivos

1.2.1 Objetivo geral

Este estudo objetiva estimar o coeficiente de reaeração k2 em processos de transfe-

rência de OD em tanques de água induzidos por plumas de bolhas utilizando a predição por

modelos de ML sob a consideração de cinéticas de ordem superior à teórica.

1.2.2 Objetivos específicos

i. Realizar experimentos de injeção de ar em tanques de água sob diversas condições de

entrada controladas e/ou medidas;

ii. Ajustar o coeficiente k2 considerando equações de reação com cinéticas superiores à

teórica;

iii. Treinar, otimizar e testar modelos de ML considerando os coeficientes k2 ajustados às

diversas ordens como variáveis de saída e as condições de entrada como variáveis de

entrada;

iv. Comparar os modelos entre si, dentro de cada variável de saída (cada k2 com diferente

ordem), e selecionar aqueles com as melhores performances, medidas a partir de diversas

métricas;

v. Comparar os melhores modelos e selecionar a ordem de k2 que resultou nas melhores

performances, medidas a partir das métricas que independem da escala da saída;

vi. Analisar, a partir do(s) modelo(s) selecionado(s), a relação e influência das variáveis no

processo de aeração por plumas de bolhas a partir das estimativas de importância de
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variáveis.

1.3 Estrutura da dissertação

Essa dissertação apresenta uma estrutura tradicional, composta principalmente pelos

capítulos de Introdução (o presente capítulo, 1), Referencial Teórico (2), Materiais e Métodos (3),

Resultados e Discussões (4) e Conclusões (5) como elementos textuais, e Referências, Apêndices

A e B como pós-textuais.

O capítulo 1 (este), Introdução, trata de uma exposição inicial e sucinta aos principais

temas e trabalhos relacionados à este estudo, expondo na seção 1.1 a Problemática e justificativa

que embasam a pesquisa, e na seção 1.2 os Objetivos: objetivo geral na seção 1.2.1 e específicos

na 1.2.2. A presente seção (1.3) apresenta uma visão geral e alguns pormenores da Estrutura da

dissertação.

O capítulo 2, Referencial Teórico, apresenta as principais referências para os princi-

pais tópicos relativos à este trabalho: Transferência de oxigênio à água por plumas de bolhas,

na seção 2.1, com uma síntese de trabalhos e estudos mais clássicos de autores conceituados

e estudos mais recentes, os diferentes Mecanismos de transferência de oxigênio que tornam o

processo como um todo complexo, na seção 2.2 e Aprendizado de máquina (ML), na seção 2.3,

tratando dos modelos utilizados neste trabalho à partir de referências consolidadas.

O capítulo 3, Materiais e Métodos, apresenta as descrições dos procedimentos

experimentais, na seção 3.1, a formação e preparação do conjunto de dados, na seção 3.2, os

modelos de ML utilizados, na seção 3.3 e os seus procedimentos de treinamento e seleção, na

seção 3.4.

O capítulo 4, Resultados e Discussões, apresenta os resultados iniciais das 99

repetições do experimento (séries temporais de OD), na seção 4.1, os resultados dos ajustes dos

modelos de cinética de reação de ordens superiores, na seção 4.2, as métricas finais de cada

modelo para cada uma das variáveis de saída, na seção 4.3, e apresenta também a quantificação

da influência relativa de cada variável na produção dos valores preditos, na seção 4.4.

O capítulo 5, Conclusões, apresenta uma síntese de todo o decorrer do trabalho

destacando os objetivos que foram alcançados e as consequências disso a partir do que se

esperava. Aponta ainda lacunas deixadas por este trabalho e perspectivas de possibilidades para

futuros trabalhos suprirem essas.

Por fim, os elementos pós-textuais contêm as Figuras com os gráficos resultantes
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dos experimentos, no Apêndice A, e as curvas ajustadas para todas as ordens consideradas, no

Apêndice B.



37

2 REFERENCIAL TEÓRICO

As seções à seguir tratam das referências mais relevantes para os dois principais

tópicos relativos à este trabalho: Transferência de oxigênio à água por plumas de bolhas, na

seção 2.1, com uma síntese de trabalhos e estudos mais clássicos de autores conceituados e

estudos mais recentes, os diferentes Mecanismos de transferência de oxigênio que tornam o

processo como um todo complexo, na seção 2.2, e Aprendizado de máquina (ML), na seção 2.3,

tratando dos modelos utilizados neste trabalho à partir de referências consolidadas.

2.1 Plumas de bolhas e aeração artificial

De estudos em escala de laboratório, experimentos em escala real, aplicações de

interesse prático em larga escala e até mesmo à necessidade de estudo em situações ao qual não

se deseja a sua ocorrência, são diversos os cenários em que este complexo escoamento bifásico

pode ocorrer e/ou ser aplicado.

2.1.1 Aplicações práticas

Lima Neto et al. (2007) estudaram formas alternativas de aeração em rios onde a

transferência na superfície se torna impedida pela cobertura de gelo durante o inverno, no qual

a aeração artificial através da injeção de oxigênio diretamente na descarga de efluentes através

de um difusor se mostrou eficaz, com incrementos de 0.16 e 0.21 mg/L de OD decorrentes de

taxas de injeção mássica de aproximadamente 1587 e 2268 kg/dia de oxigênio líquido, o que

corresponde à uma eficiência de absorção de 50%. Estes acréscimos foram semelhantes aos da

aeração natural na superfície ao longo dos 6.07 km de extensão de curso aberto do rio estudado,

que resultou no aumento de 0.26 mg/L dos níveis de concentração de OD.

Pacheco e Lima Neto (2017), a partir da realização de pesquisas de campo em um

lago raso hipereutrofizado, analisaram o efeito da circulação por aeração artificial na melhoria

da qualidade da água em termos de redução das concentrações de clorofila-a e cianobactérias,

obtendo as relações descritas nas Equações 2.1, 2.2 e 2.3:

kchla = 1.61ln(βhid.)+0.33, (2.1)

kchla = 1.13ln(εkin.)+4.37, (2.2)

kchla = 0.89ln
(
kpheo.

)
+0.53, (2.3)
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em que kchla e kpheo. são a taxa de redução e crescimento líquidos das concentrações de clorofila-a

e feofitina-a, respectivamente
(
dia−1), βhid. é um parâmetro adimensional definido por Lima

Neto (2012a) para descrever a hidrodinâmica das plumas de bolhas e εkin. é Taxa de dissipação

da energia cinética turbulenta
(
cm2/s3). Essas são Equações úteis na predição do impacto da

circulação artificial na remoção de algas em lagos e reservatórios, o que possibilita, por exemplo,

a estimativa do período necessário para melhorias nas classificações de possibilidade de uso da

água em reservatórios se adotada determinada medida.

Em Moura et al. (2020) as plumas de bolhas foram utilizadas para diminuir a

concentração do fósforo liberado na coluna de água, anteriormente precipitado e contido em

sedimentos após a ocorrência de condições anóxicas em reservatórios da região semiárida tropical

brasileira, contribuindo para uma melhor compreensão da dinâmica do fósforo nestes ambientes

além de propor novos modelos de simulação das suas taxas de troca em reservatórios sob estas

condições hidroclimáticas.

Lyu et al. (2023) investigaram o acoplamento de aeração por nanobolhas em sistemas

de tratamento de águas residuárias do tipo “wetlands construídos”, alcançando eficiências de

remoção de carbono orgânico total e amônia de 49% e 65%, respectivamente, que representam um

aumento de aproximadamente 36% dos valores atingidos com técnicas de aeração tradicionais.

Wang et al. (2024a) estudaram a dinâmica de dispersão das plumas de bolhas e

o seu efeito de fonte simulando cenários de vazamentos de gás em ambientes subaquáticos,

providenciando um modelo preditivo através de valores adimensionais e regressão multivariada

capaz de fornecer suporte para análise do risco em acidentes deste tipo, também generalizando

para a ocorrência de plumas de bolhas em larga escala, cenário no qual há intenso efeito de fonte.

2.1.2 Estudos experimentais

As possibilidades de estudo em escala laboratorial são de suma importância para

uma melhor compreensão da sua dinâmica, seja tratando-se das plumas de bolhas, transferência

de oxigênio ou dos fenômenos relacionados à estes.

Fayolle et al. (2007) estudaram a aplicação de CFD na transferência de oxigênio

em tanques de aeração utilizando experimentos com difusores de bolhas finas para validá-los,

obtendo um modelo para predição do coeficiente de transferência de oxigênio com resultados

dentro de um intervalo de ±5% dos valores experimentais.

Lima Neto et al. (2008a) e Lima e Lima Neto (2018) investigaram a influência
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de diferentes tipos de bocais (singulares, múltiplos, com pedras porosas) na hidrodinâmica

gerada pelas plumas de bolhas em tanques de água, sob injeção direta de ar (Lima Neto et

al., 2008a) ou misturas gás-líquido na forma de jatos borbulhantes (Lima; Lima Neto, 2018),

constatando significante incremento da eficiência de transferência do gás quando sob uso de

múltiplos orifícios, e que esta configuração se torna comparável ao uso de pedras porosas quando

utilizada com diâmetros pequenos nos orifícios.

Lima Neto et al. (2008b) avaliaram o efeito da geometria de tanques retangulares

e cúbicos nos padrões da circulação induzida por plumas de bolhas circulares e jatos de água,

desenvolvendo relações entre o tamanho dos tanques e os padrões das células de circulação,

como mostrado nas Equações 2.4 e 2.5:

f L
U

= Fr2.9
[

0.268log
(

b
B

)
+0.205

]
, (2.4)

LCV

LCH
= 0.675log

(
b
B

)
+1.419, (2.5)

em que f L/U é a frequência errante, LCV/LCH é a razão entre a distância vertical da superfície

da água ao centro das células de circulação e a distância horizontal da linha central do bocal ao

centro das células de circulação, b/B é a r e Fr é o número de Froude, todos adimensionais.

Segundo Lima Neto et al. (2008b), a Equação 2.4 demonstra como a frequência

adimensional f L/U cresce conforme o tamanho do tanque diminui proporcionalmente ao raio do

jato, até a taxa b/B = 0.76, e a partir daí demonstra não variar mais com mudanças no tamanho

do tanque. A Equação 2.5, por sua vez, pelo crescimento logarítmico da razão LCV/LCH com

b/B, atesta que células de circulações maiores são formadas em tanques maiores.

Em Lima Neto et al. (2008c), em contrapartida à recorrente injeção aos fundos,

foi analisado o efeito do lançamento horizontal de misturas gás-líquido, propondo correlações

adimensionais para descrever a trajetória da pluma e outras características em função do número

de Froude e da fração volumétrica de gás.

Zhang e Zhu (2013) realizaram um estudo experimental das características das bolhas

em escoamentos cruzados gerados pela injeção de jatos borbulhantes, encontrando evidências

de que as distribuições radiais de fração de vazios, frequência de bolhas e sua área específica

da interface ar-água seguem distribuições Gaussianas, além de observarem, no que diz respeito

à relação entre velocidade de deslizamento e o diâmetro das bolhas nestes escoamentos, um

comportamento mais próximo ao de bolhas únicas e isoladas em água estagnada do que de jatos

borbulhantes neste mesmo cenário.
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Zhang e Zhu (2014) estudaram a trajetória das fases líquido e gasosa de jatos

borbulhantes em escoamentos cruzados, desenvolvendo, a partir de análise dimensional, uma

equação preditiva semi-empírica para a altura de separação de jatos com alto momento inicial.

Lima Neto et al. (2016) estudaram o comportamento das plumas percorrendo fluidos

distintos através da condução de experimentos com duas camadas de diferentes densidades,

obtendo expressões relevantes que podem ser aplicadas ao projeto de sistemas de mistura e

aeração em reservatórios de água doce.

Behzadipour et al. (2022) e Behzadipour e Azimi (2023) conduziram experimentos

com telas grades para examinar o efeito de diferentes aberturas, distâncias ao bocal e vazões de

injeção de ar nas características das plumas, no intuito de aperfeiçoar a capacidade de mistura

em plumas de bolhas injetadas verticalmente: Behzadipour et al. (2022) obtiveram decréscimo

médio na velocidade vertical das bolhas, acréscimo aproximado em sua concentração e redução

aproximada em seu tamanho de 38%, 9% e 31%, respectivamente, também propondo equações

empíricas que correlacionam o número de Reynolds das bolhas com o comprimento de mistura

efetivo sob a presença das telas, enquanto Behzadipour e Azimi (2023) obtiveram redução

nas forças de empuxo e de arrasto de 49% e 42%, respectivamente, propondo correlações não

lineares entre estas e outras forças hidrodinâmicas e o número de Reynolds das bolhas, bem

como modelos empíricos para a predição da tensão superficial e da força induzida pelas bolhas

nas telas.

Ye et al. (2022) aprimoraram as considerações utilizadas em modelos integrais de

plumas uniformes e com as mesmas velocidades de deslizamento ao estudar o seu comportamento

sob consideração de não-uniformidade, através de um algoritmo recentemente desenvolvido para

análise das imagens capturadas.

Behzadipour et al. (2023) examinaram a influência da vazão de injeção de ar na

dinâmica das plumas de bolhas em cenários de injeção vertical, observando independência

das características das bolhas à vazão em distâncias de até 35% da profundidade de água nos

tanques e forte dependência dela em diante, além de observarem um acréscimo médio de 32%

no diâmetro médio das bolhas ao se utilizar vazões quatro vezes maiores, relações de acréscimos

não lineares do número de bolhas e suas velocidades com a vazão de ar, e um crescimento não

linear na probabilidade de ocorrência de maiores intervalos de intensidades de turbulência das

bolhas.

Zhang et al. (2023) estudaram jatos borbulhantes em escoamentos cruzados em
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tubos, concluindo que a distância horizontal entre a saída dos jatos até a região onde a linha

central das bolhas toca o topo da tubulação pode ser expressa como função dos números de

Reynolds e Weber do escoamento no tubo, e do número de Reynolds das fases líquida e gasosa

dos jatos.

Li et al. (2023) investigaram o comportamento da difusão do gás e efeito de fonte

utilizando técnicas de fotografias de alta velocidade e processamento de imagens em experimen-

tos sob diferentes pressões e vazões de gás e profundidades de água, propondo relações para a

altura de fonte através da análise de fatores adimensionais correlacionados com ela.

2.2 Mecanismos de transferência de oxigênio em processos de aeração

As seções 2.2.1 e 2.2.2 apresentam os principais trabalhos que embasaram as consi-

derações dos diversos mecanismos de transferência de oxigênio utilizadas neste estudo como

embasamento.

2.2.1 Transferência durante a ascensão da pluma e na superfície

Para rios e cursos d’água os estudos em Streeter e Phelps (1925) particularizaram a

lei de difusão de Fick para modelar a sua dinâmica de desoxigenação e reaeração natural que

sob condições estacionárias estabelece a concentração de OD dependendo principalmente da

velocidade do curso ao longo da sua extensão. De forma semelhante, a taxa de variação na

concentração de oxigênio com relação ao tempo em sistemas de aeração pode ser modelada pela

Equação 1.1, também derivada da lei de difusão de Fick (Mueller et al., 2002):

dC
dt

= KLa(Cs −C) , (2.6)

em que C é a concentração de OD
[
L−3 ·M

]
, Cs a sua concentração de saturação

[
L−3 ·M

]
e

KLa o coeficiente de transferência volumétrica de massa de oxigênio
[
T−1]

A transferência a partir das plumas de bolhas, introduz complexidades substanciais.

Os valores de KLa, presente na Equação 2.6 são controlados pelo tamanho das bolhas e a

transferência de oxigênio se dá por diferentes processos, desde a formação das bolhas nos

orifícios de injeção, o escoamento de ascensão em forma de pluma, a agitação e o efeito de fonte

provocados na superfície (McWhirter; Hutter, 1989; DeMoyer et al., 2003; Schierholz et al.,

2006; Lima Neto et al., 2008a; Aprin et al., 2019; Aprin et al., 2020; Li et al., 2023; Wang et al.,

2024a; Wang et al., 2024b), o que dificulta a sua avaliação.
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McWhirter e Hutter (1989) se tornaram pioneiros em sua pesquisa ao tecer duras

críticas ao método padrão desenvolvido pela American Society of Civil Engineers (ASCE) para

avaliação da transferência mássica de oxigênio à água em sistemas de aeração, cuja expressão

modelo do método é a Equação 2.6, denominando-o “excessivamente simplificado”. Em seu

estudo, desenvolve um modelo que descreve como mais fisicamente realístico ao abordar a

transferência de oxigênio a partir de dois mecanismos distintos: a transferência que ocorre por

dispersão das bolhas de gás durante a ascensão da pluma, e a que ocorre na superfície devido à

sua turbulência, provocada pela chegada das bolhas. Essa divisão é expressa matematicamente

com a contabilização dos diferentes mecanismos em parcelas também distintas de KLa a partir

do sistema de equações diferenciais abaixo (Equação 2.7):
dC
dt

= KLBaB

∫ hd

0

(C∗−C)

hd
dz+KLSaS (Cs −C) ,

dYO

dz
=−KLBaB

(
AT

Qair

)
(C∗−C)K2,

(2.7)

em que as parcelas KLSaS e KLBaB correspondem aos coeficientes de transferência volumétrica

de massa de oxigênio pela superfície e pelas bolhas, respectivamente
[
T−1]; C, Cs e C∗ são as

concentrações de OD, de saturação de OD e de oxigênio em equilíbrio na fase líquida das bolhas,

respectivamente
[
L−3 ·M

]
; hd e z são a profundidade do difusor de bolhas e a distância de um

ponto ao difusor, no eixo das alturas, respectivamente [L]; AT é a área de seção transversal do

tanque
[
L2], Qair a vazão volumétrica de injeção de ar

[
L3 ·T−1], YO a composição de oxigênio

na fase gasosa (adimensional) e K2 um fator de conversão de unidades.

DeMoyer et al. (2003) e Schierholz et al. (2006) basearam seus trabalhos no modelo

com as considerações anteriores, aprimorando-o. Ainda considerando a divisão do processo em

dois mecanismos distintos de transferência, DeMoyer et al. (2003) acrescentou a consideração da

transferência de nitrogênio durante a ascensão da pluma de bolhas. Seus experimentos resultaram

em valores da parcela referente à transferência na superfície (KLSaS) como sendo 59% à 85%

da referente à transferência pelas bolhas (KLBaB), permitindo-lhes corroborar a significante

contribuição da transferência pela superfície. A Equação 2.8 apresenta o sistema de equações

diferenciais que expressam o seu modelo:
dC
dt

= KLBaB

∫ hd

0

(C∗−C)

hd
dz+KLSaS (Cs −C) ,

dYO

dz
=−KLBaB

(
AT

Qair

)(
1

C∗
N
(C∗−C)−

(
DN

DO

)1/2 C∗(
C∗

N
)2 (C

∗
N −CN)

)
,

(2.8)
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no qual a principal mudança em relação à Equação 2.7 é a adição de termos referentes à

concentração de nitrogênio dissolvido: CN e C∗
N , que são as concentração de nitrogênio dissolvido

e de nitrogênio em equilíbrio na fase líquida das bolhas, respectivamente
[
L−3 ·M

]
, e os termos

de difusão de nitrogênio e oxigênio, DN e DO, respectivamente
[
L2 ·T−1].

Schierholz et al. (2006), partindo do modelo anterior, determinaram os coeficientes

de ambos os mecanismos de transferência de oxigênio em 179 testes de aeração, desenvolvendo

equações empíricas para predição de KLBaB e KLSaS em função da vazão de injeção de ar (Qair),

a profundidade do difusor (hd), a área da seção (AT ) e o volume de água (Volt). Sua análise

preditiva através dessas equações o permitiram concluir que a transferência pelas bolhas é

correlacionada positivamente com Qair e hd , e negativamente com Volt , e a transferência na

superfície, semelhantemente, se correlaciona positivamente com Qair e hd . Em seu modelo de

equações diferenciais, avançaram o modelo da Equação 2.8 ao incluir mais considerações sobre

influência do nitrogênio dissolvido, conforme sistema da Equação 2.9:

dC
dt

= KLBaB

∫ hd

0

(C∗−C)

hd
dz+KLSaS (Cs −C) ,

dCN

dt
= KLBaB

(
DN

DO

)1/2 ∫ hd

0

(C∗
N −CN)

hd
dz+KLSaS

(
DN

DO

)1/2

(CNs −CN) ,

dYO

dz
=−KLBaB

(
AT

Qair

)(
1

HNC∗
N
(C∗−C)−

(
DN

DO

)1/2 HOC∗(
HNC∗

N
)2 (C

∗
N −CN)

)
,

(2.9)

em que HO e HN são as constantes da lei de Henry para oxigênio e nitrogênio, respectivamente[
L2 ·M ·T−2 ·N−1], e CNs a concentração de saturação de nitrogênio dissolvido

[
L−3 ·M

]
. Neste

sistema, tanto a equação relacionada à concentração de OD no tempo quanto nitrogênio podem

ser utilizadas para os ajustes de KLBaB e KLSaS.

2.2.2 Outros mecanismos de transferência

Os mecanismos anteriores avançaram a avaliação do comportamento da transferência

de oxigênio à água induzida por plumas de bolhas de modo objetivo ao contabilizar de forma

separada a parcela de transferência devida a cada um destes processos em suas respectivas

equações e com parcelas do coeficiente KLa distintas. Apesar disso, existem também outros

subprocessos que influenciam nesse comportamento, mesmo que não quantificados de forma

direta.

Lima Neto et al. (2008a) estudou, através da condição de experimentos de injeção de

ar em grandes tanques de água, o efeito de diferentes tipos de bocais de injeção nas características
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hidrodinâmicas da pluma de bolhas decorrentes. No embasamento de sua justificativa, argumenta

que diferentes mecanismos distintos influenciam de forma significante o comportamento da

transferência de oxigênio, dentre eles, destaca os já abordados anteriormente (transferência

durante a ascensão das bolhas e na superfície turbulenta) e também adiciona uma parcela desta

que é produto direto do processo de injeção de ar. Segundo o autor, no(s) orifício(s) do bocal,

durante a formação das bolhas, a transferência de oxigênio se inicia, mecanismo esse que o seu

texto sugere distinção dos demais.

Aprin et al. (2019), Aprin et al. (2020), Li et al. (2023), Wang et al. (2024a) e Wang

et al. (2024b) estudaram mecanismos de transferência sob condições de plumas de bolhas em

larga escala que ocorrem tipicamente em cenários subaquáticos devido ao vazamento em dutos de

transporte de gás, o que pode representar riscos, e portanto justifica o entendimento da dinâmica

das plumas de bolhas consequentes destas situações. Além do comportamento de difusão e

dispersão das bolhas durante a ascensão das plumas, o chamado “efeito de fonte” representa um

objeto de interesse comum à todos esses trabalhos.

Em particular, Wang et al. (2024a), que simularam as condições destes cenários

acidentais através de experimentos com foco na modelagem da máxima altura de fonte, de-

nominaram o grau da ocorrência do efeito de fonte como intenso nessas situações. Através

de análise de regressão multivariável e com números adimensionais, obteve correlações entre

a máxima altura de fonte adimensional e estes números. A sua ocorrência em nível intenso

induzida por plumas de bolhas em larga escala sugere que, mesmo diminuída, a sua influência

ainda se mantém significativa diante de menores escalas.

Em Li et al. (2023), experimentos com diferentes vazões de injeção de ar foram

conduzidos no intuito de se observar a resposta das características do efeito de fonte à essa

variável. A altura de fonte foi característica observada, e os resultados demonstraram correlação

positiva com a variação da vazão de injeção de ar e negativa com a profundidade do vazamento,

ou, no cenário experimental, a profundidade de injeção do gás (hd).

Aprin et al. (2019) e Aprin et al. (2020) variaram, dentre outros parâmetros, a

natureza do gás, injetando ar, metano e dióxido de carbono. Os seus experimentos revelaram a

dependência do efeito de fonte à densidade e solubilidade do gás injetado, com a altura máxima

da fonte crescendo conforme decresce a densidade e cresce a solubilidade.
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2.3 Aprendizado de máquina

O problema de aprendizagem supervisionada de aproximar n pontos de dados de m

diferentes preditores consiste em aprender uma função f de tal forma que (Liu et al., 2024):

Dados((xi,1,xi,2, . . . ,xi,m) ,yi) , i = 1,2, . . . ,n

yi ≈ f (xi,1,xi,2, . . . ,xi,m) , ∀ i, (2.10)

no qual xi,1,xi,2, . . . ,xi,m representam os valores da matriz de variáveis de entrada e yi, da matriz

coluna de variáveis de saída.

Neste trabalho, oito abordagens distintas para aproximação de f foram utilizadas:

Regressão Linear Ordinária (Ordinary Linear Regression) (OLR), Regressão Linear Generalizada

(Generalized Linear Model) (GLM), Regressão Linear com Regularização Elastic Net (ELNET),

RT, Floresta Aleatória (Random Forest) (RF), Máquinas de Reforço de Gradiente (Gradient

Boosting Machine) (GBM), MLP e a Regressão por Máquinas de Vetores de Suporte (Support

Vector Regression) (SVR). Os tópicos à seguir abordam estes modelos de ML em termos de sua

teoria matemática e algorítmica.

2.3.1 Regressão linear generalizada

Resolver o problema estabelecido na Equação 2.10 com uma regressão linear implica

utilizar f de tal forma que:

yi = β0 +
m

∑
j=1

β jxi, j + εi. (2.11)

O modelo pode ser descrito então como linear em seus parâmetros, caso consiga ser escrito direta

ou indiretamente neste formato (Kuhn; Johnson, 2014). β0 é chamado intercepto, os coeficientes

β j são referentes à cada preditor, e εi é o erro irredutível que não pode ser explicado pelo modelo.

Em sua forma generalizada, o erro aleatório pode assumir diferentes distribuições

probabilísticas, como Normal, Binomial, Poisson e Gama (Nelder; Wedderburn, 1972). A

assunção de um modelo de regressão linear generalizado com distribuição dos erros εi seguindo

uma distribuição normal é modelo OLR e temos também o GLM considerando distribuição de

erros Gama (GLMgm).

O treinamento do modelo GLM consiste em ajustar os coeficientes β0,β j, e pode ser

feito de modo geral utilizando estimadores de máxima verossimilhança com base na distribuição



46

do erro adotada (Nelder; Wedderburn, 1972). Para um modelo OLR, contudo, é equivalente e

mais comum minimizar a Soma dos Resíduos Quadráticos (Sum of Squared Residuals) (SSR),

que agrupa em uma métrica a diferença entre os valores preditos e observados conforme equação:

min
n

∑
i=1

(yi − ŷi)
2 ⇒ (2.12)

⇒ b =
(
XT X

)−1 XT y, (2.13)

cujos vetores colunas b e y são os dos coeficientes e dos valores de saída, respectivamente, X é a

matriz dos preditores e ŷi é o valor aproximado da saída, estimado pelo modelo. A consideração

de outras distribuições impõe a necessidade de algoritmos numéricos de otimização.

A adição de um termo de regularização ao processo de treinamento pode ajudar à

prevenir a ocorrência de overfitting, aumentando a capacidade de generalização do modelo e

também selecionando automaticamente as variáveis mais influentes. Esta técnica se dá, nos

modelos lineares, com a adição de um termo de penalidade ao processo de minimização. Para o

OLR, as penalidades de segunda e primeira ordem são as mais usuais (L2 e L1) e expandem o

problema descrito na Equação 2.12 em, respectivamente:

min

[
n

∑
i=1

(yi − ŷi)
2 +λ

m

∑
j=1

β
2
j

]
, (2.14)

min

[
n

∑
i=1

(yi − ŷi)
2 +λ

m

∑
j=1

∣∣β j
∣∣] , (2.15)

que também são chamadas regularizações Ridge e Operador de Seleção e Encolhimento Mínimo

Absoluto (Least Absolute Shrinkage and Selection Operator) (LASSO). Nestas equações, λ é o

parâmetro de intensidade da regularização: quanto mais próximo os valores de β j estiverem de

minimizar a parcela SSR, maior magnitude tomará o termo de regularização impulsionado pelo

termo de penalidade, impedindo o modelo de se sobreajustar aos dados de treinamento.

A regularização Elastic Net (ELNET), por sua vez, combina os termos de penalidade

incrementados nas Equações 2.14 e 2.15, de forma a induzir esparsidade e consequentemente

selecionar variáveis, como a regularização L1, ao mesmo tempo que encoraja um efeito de

agrupamento nas que estiverem fortemente correlacionadas, como faz a penalidade L2 (Zou;

Hastie, 2005). A combinação das penalidades resulta em um problema da forma:

min

[
1

2n

n

∑
i=1

(yi − ŷi)
2 +α

(
1
2
(1− l1r)

m

∑
j=1

β
2
j + l1r

m

∑
j=1

∣∣β j
∣∣)] , (2.16)
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no qual o parâmetro l1r controla a taxa de regularização imposta pela penalidade L1, e α é

a magnitude da regularização como um todo. Ambos são hiperparâmetros, necessitando de

otimização externa ao processo de minimização para determinação dos coeficientes.

Para treinamento pela otimização dos estimadores de máxima verossimilhança, o

algoritmo L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) pode ser utilizado. O

algoritmo BFGS é o mais popular da família de métodos Quasi-Newton de otimização numérica

(Najafabadi et al., 2017), que acelera a determinação da direção de busca estimando a inversa

da matriz Hessiana utilizando as derivadas de primeira ordem, não necessitando do seu cálculo

direto (Arora, 2017); a sua versão L-BFGS armazena esta estimativa na forma de vetores e

utilizando menos memória (Najafabadi et al., 2017).

Apesar de simples em suas estimativas finais por considerar apenas relações lineares

entre os preditores e a saída, o seu treinamento é computacionalmente leve. A sua simplicidade

também se reflete em seu nível de interpretabilidade, tendo este como uma de suas grandes

vantagens: é imediato ver como cada coeficiente corresponde à taxa de variação da saída em

relação à sua variável correspondente. Além disso, sua estrutura simplificada contribui para um

alto nível de interpretabilidade, uma vez que cada coeficiente pode ser diretamente associado à

taxa de variação da variável de saída em relação ao respectivo preditor (Nunes Carvalho et al.,

2022).

2.3.2 Modelos baseados em árvores

Árvores de decisão, sejam de regressão ou classificação, são métodos que nascem

de uma ideia intuitiva de associar um conjunto de regras em cadeia para se decidir o valor final

predito. De um ponto de vista matemático, o espaço de variáveis é particionado em um conjunto

de hiper-retângulos, com uma resposta relativamente simples para cada uma destas regiões, como

uma constante. Isso é conceitualmente simples, mas suficientemente poderoso (Hastie et al.,

2017).

No caso dos modelos RT, é comum se proceder inicialmente com o conjunto total de

variáveis X e considerar uma variável de índice j que será responsável pela divisão inicial do

espaço em 2 semiespaços a partir de um ponto s. O objetivo é então encontrar j e s de tal forma

a resolver:

min

[
min ∑

xi, j∈R1

(yi − c1)
2 +min ∑

xi, j∈R2

(yi − c2)
2

]
, (2.17)
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em que R1 e R2 são os conjuntos particionados e c1 e c2 os valores constantes de resposta

do modelo. Na Equação 2.17, as minimizações internas resultam que os valores constantes

ótimos são as médias da variável de saída (ȳ) dentro de seus respectivos subconjuntos, e então

a minimização externa pode ser resolvida rapidamente para se encontrar a melhor subdivisão

definida pelo par ( j,s).

Uma vez encontrada a melhor subdivisão, a Equação 2.17 é resolvida dentro de cada

região e o algoritmo é repetido em todas as regiões resultantes subsequentes, com atenção para

que a árvore i) não cresça muito, ou seja, realize muitas subdivisões, podendo se ajustar muito

aos dados de treinamento e perdendo poder de generalização (overfitting), e nem ii) permaneça

muito rasa e não consiga capturar importantes relações (underfitting) (Hastie et al., 2017).

Uma estratégia utilizada frequentemente é permitir o crescimento de árvores pro-

fundas até que se tenha um número menor ou igual ao mínimo estabelecido de amostras por

nó e posteriormente controlar a sua complexidade com poda pelo Coeficiente de Poda por

Custo-Complexidade (Cost-Complexity Pruning) (ccp) (Hastie et al., 2017).

A Figura 1 apresenta uma representação esquemática que ilustra a sequência de

etapas do algoritmo destes modelos, em que θ1,θ2,θ3 e θ4 são exemplos dos valores resultantes

das minimizações de partição do espaço (Equação 2.17)

Figura 1 – Representação esquemática do algoritmo RT

Fonte: (Bishop, 2006).
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2.3.2.1 Modelos ensemble de árvores

Apesar de conceitualmente simples, facilmente computáveis e com alto potencial de

interpretabilidade, modelos RT tendem a ter uma série de desvantagens, sendo uma das principais

a sua instabilidade, traduzida na forma de alta variância, podendo facilmente se sobreajustar aos

dados de treinamento (Kuhn; Johnson, 2014). Esta desvantagem, contudo, é uma característica

explorada por métodos ensemble para criação de modelos mais robustos, como os modelos RF e

GBM.

Os modelos RF fazem uso da técnica bagging para construir o agregado de árvores,

combinando árvores construídas de maneira independente com apenas alguns dos preditores

originais amostrados de forma aleatória e com a mesma distribuição para divisão de cada nó

interno, o que previne a correlação entre as árvores que formam a floresta e favorece um modelo

robusto a ruídos nos dados e a overfitting (Breiman, 2001).

O tamanho do subconjunto de variáveis amostrado aleatoriamente para divisão de

cada nó nas árvores do modelo RF (mtry) bem como a quantidade de regressores utilizados

e o número mínimo de amostras por nós são hiperparâmetros comumente otimizados no seu

treinamento.

Os modelos GBM constroem as suas árvores do conjunto total de forma diferente dos

modelos RF, utilizando a estratégia chamada boosting, produto da conexão das ideias de expansão

aditiva por etapas e minimização do gradiente mais íngreme, resultando em modelos competitivos,

altamente robustos e com boa interpretabilidade (Friedman, 2001). A sua construção é de forma

dependente, com a primeira árvore se ajustando aos dados originais e a partir daí cada regressor

subsequente treinado no resíduo do seu anterior no objetivo de minimizá-lo.

Para os modelos GBM, o número de estimadores e a quantidade mínima de ob-

servações por nós também são hiperparâmetros influentes em sua configuração. Pela forma

de construção de cada árvore, o estimador ótimo a cada etapa será sempre escolhido e isso

pode expor o modelo à overfitting. Para lidar com isso, o parâmetro de regularização “taxa de

aprendizado” pode ser também adicionado ao modelo, e foi utilizado neste trabalho. Tomando

valores entre 0 e 1, este hiperparâmetro representa a fração da predição da árvore atual que será

adicionada às anteriores.
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2.3.3 Redes neurais artificiais

Redes neurais são funções do tipo y = f (X;Φ), cujo conjunto de parâmetros Φ =

{φ1,φ2, . . .} mapeia as entradas de múltiplas variáveis (X) em múltiplas saídas (y) (Prince, 2023).

A entrada das múltiplas variáveis compõe a camada de entrada, enquanto o processamento final

para a saída compõe a camada de saída; o processamento intermediário definido pela função f

é realizado nas camadas ocultas, podendo acontecer em mais de uma, definindo assim outras

funções a serem compostas com a f .

Redes neurais rasas têm apenas uma camada oculta; com mais de uma, ela já é dita

profunda. Apesar das diferenças, o termo “perceptron multicamadas” (MLP) engloba ambas

as redes, desde que não haja conexões de retorno. O objetivo em seu treinamento é aprender o

conjunto de parâmetros Φ para que a função f aproxime os pontos de saída da melhor forma

(Goodfellow et al., 2016).

O seu treinamento também pode ser feito pelo algoritmo L-BFGS (Najafabadi

et al., 2017) nos casos em que há pequenos conjuntos de dados por sua maior velocidade

de convergência em comparação ao Gradiente Descendente Estocástico. A função de perda

minimizada para problemas de regressão é o erro quadrático, com estimativa dos valores de

seu gradiente feita por algoritmo de retropropagação, e as função de ativação das unidades

da camada oculta e da camada de saída são normalmente as funções Unidade de Retificação

Linear (Rectified Linear Unit) (ReLU) e identidade (Goodfellow et al., 2016; Prince, 2023). Os

hiperparâmetros comumente otimizados são a largura das camadas (o número de neurônios das

camadas ocultas) e a profundidade da rede (número de camadas ocultas).

As Figuras 2 e 3 apresentam representações esquemáticas de redes neurais MLP,

rasa e profunda, respectivamente. Tratam-se de representações genéricas.

2.3.4 Máquinas de vetores de suporte

Máquinas de vetores de suporte denominam uma classe de poderosas e altamente

flexíveis técnicas de modelagem. Desenvolvidas inicialmente no contexto de problemas de

classificação (Kuhn; Johnson, 2014), elas também podem ser utilizadas para regressão (SVR).

Modelos SVR são construídas a partir da perspectiva de robustez ao efeito de

outliers, que podem incluenciar funções de perda comuns como a soma dos resíduos quadráticos

(Equação 2.12) utilizada para treinamento, por exemplo, de regressões lineares. Definido um
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Figura 2 – Representação esquemática de uma rede neural MLP rasa

Fonte: Elaborada pelo autor.

Figura 3 – Representação esquemática de uma rede neural MLP profunda

Fonte: Elaborada pelo autor.
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limite εsvr, pontos com resíduos dentro dele não irão contribuir para o ajuste de regressão (técnica

denominada “regressão ε-insensível”). Para treinamento de seus parâmetros, o problema 2.18

pode ser resolvido:

min

[
Csvr

n

∑
i=1

Lε (yi − ŷi)+
m

∑
j=1

γ
2
j

]
, (2.18)

em que a aproximação ŷi pode ser escrita em sua forma generalizada:

f (x′) = γ0 +
n

∑
i=1

ξiK
(
xi,x′

)
, (2.19)

com os parâmetros desconhecidos ξi sendo os da decomposição de um novo ponto de entrada

x′ em termos dos dados de treinamento, Lε sendo a função ε-insensível, Csvr sendo chamado

parâmetro de custo, que penaliza resíduos grandes e K (·) a função kernel, que mapeia um ponto

de dado para outros espaços, possibilitando ao modelo aprender relações não-lineares (advento

chamado kernel trick) (Kuhn; Johnson, 2014).

Dois exemplos de funções kernel estão representados nas Equações 2.20 e 2.21: de

base radial e polinomial, respectivamente:

Krbf(xi,x′) = exp
(
−σrb f ∥xi −x′∥2) , (2.20)

Kpol(xi,x′) =
(
σpol

(
xix′T

)
+1
)d

, (2.21)

em que σrb f e σpol são hiperparâmetros de escalonamento, d é o grau da transformação polino-

mial a ser utilizada, Csvr o chamado parâmetro de custo e εsvr a margem de insensibilidade, todos

estes sendo hiperparâmetros do modelo.
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3 MATERIAIS E MÉTODOS

As seções à seguir descrevem os procedimentos experimentais (3.1), a formação e

preparação do conjunto de dados (3.2), os modelos de ML utilizados (3.3) e os procedimentos de

treinamento e seleção (3.4).

3.1 Configuração experimental

Os experimentos foram realizados em três tanques cúbicos de acrílico; o menor

possuía arestas de 20 cm, o intermediário, 40 cm, e o maior, 60 cm. Os tanques foram preenchidos

com alturas de água de 10, 15 e 20 cm para o tanque menor, 10, 15, 20, 25, 30, 35 e 40 cm

para o tanque intermediário, e 20, 25 e 30 para o tanque maior, utilizando água potável advinda

diretamente do sistema de abastecimento, sem nenhuma modificação por parte dos operadores

do experimento. As vazões volumétricas de ar utilizadas para aeração dos tanques foram de 1,

2 e 3 cm3/s, ajustadas previamente ao início da série de experimentos através de um rotâmetro

e injetadas ao fundo do tanque de forma centralizada através de diferentes bocais e difusores:

orifício singular livre e duas opções de pedra porosa.

O aparato experimental pode ser observado de forma esquemática na Figura 4,

cujos processos de transferência de oxigênio envolvidos na aeração frequentemente descritos na

literatura também estão representados: 1) transferência na região ligeiramente ao redor do difusor

devido à injeção de gás e formação de bolhas (Lima Neto et al., 2008a), 2) transferência devido ao

contato das bolhas com a água durante a ascensão da pluma (McWhirter; Hutter, 1989; DeMoyer

et al., 2003; Schierholz et al., 2006; Lima Neto et al., 2008a), 3) transferência devido ao escape

de gás no colapso das bolhas na superfície, o chamado “efeito de fonte” (Aprin et al., 2019;

Aprin et al., 2020; Li et al., 2023; Wang et al., 2024a; Wang et al., 2024b), e 4) transferência na

superfície em um processo de troca com o ambiente externo devido ao fluxo giratório resultante

da agitação causada pelas bolhas (McWhirter; Hutter, 1989; DeMoyer et al., 2003; Schierholz

et al., 2006; Lima Neto et al., 2008a). O procedimento em cada repetição envolveu a aferição

da temperatura média da água durante o processo (T ), que acabou por se mostrar constante, e

registros contínuos da concentração de OD durante 300 segundos, ambos realizados com sonda

de qualidade da água multiparamétrica, e da velocidade média do escoamento na superfície

gerado pela pluma (Vplum) com anemômetro molinete. Uma nova repetição do experimento, com

outras condições de entrada, era realizada apenas após um intervalo mínimo de cinco minutos,
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no intuito de se estabilizar a concentração de OD novamente próxima ao valor de início.

Figura 4 – Representação esquemática da configuração experimental e dos processos de transfe-
rência de oxigênio

Fonte: Elaborada pelo autor;
1⃝: transferência durante a formação das bolhas devido à injeção de ar (geralmente não mencionado e/ou discutido);
2⃝: transferência durante a ascensão da pluma de bolhas;
3⃝: transferência pelo “efeito de fonte” devido à chegada da pluma na superfície e o colapso das bolhas;
4⃝: transferência na forma de trocas na superfície devido ao escoamento provocado pela agitação da mesma.

As Figuras de 5 à 11 contêm fotografias da configuração experimental real utilizada

nas repetições dos experimentos: os tanques cúbicos de acrílico estão representados na Figura

5; a sonda de qualidade da água multiparamétrica, na Figura 6; o anemômetro molinete, na

Figura 7; o compressor de ar e os diferentes tipos de bocal e difusores de ar, na Figura 8. A

Figura 9 contém fotografias das plumas de bolhas formadas durante os experimentos, tanto

na configuração de orifício livre como utilizando o difusor do tipo pedra porosa; na Figura

10, as superfícies consequentes da chegada das plumas nos dois cenários de bocal descritos

anteriormente; na Figura 11, por fim, uma fotografia da visão geral da configuração experimental

real, complementando a representação esquemática presente na Figura 4.
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Figura 5 – Fotografia dos tanques cúbicos

Fonte: Elaborada pelo autor;
Nota: Arestas do menor para o maior: 20, 40 e 60 cm.

Figura 6 – Fotografias da sonda de qualidade da água multiparamétrica

Fonte: Elaborada pelo autor;
Nota: Visão geral (à esquerda) e visor (à direita).
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Figura 7 – Fotografias do anemômetro molinete

Fonte: Elaborada pelo autor;
Nota: Visão geral (à esquerda), visor (ao centro) e sonda de velocidade (à direita).

Figura 8 – Fotografias do compressor e dos difusores de ar

Fonte: Elaborada pelo autor;
Nota: Visão geral (à esquerda) e orifícios e pedras porosas (à direita).
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Figura 9 – Fotografias das plumas de bolhas formadas pelos diferentes bocais e difusores de ar

Fonte: Elaborada pelo autor;
Nota: Plumas a partir do orifício livre (à esquerda) e a partir das pedras porosas (à direita).

Figura 10 – Fotografias da superfície da água agitada e com formação da região do efeito de
fonte pela chegada da pluma de bolhas

Fonte: Elaborada pelo autor;
Nota: Exemplo de experimentos com orifício livre (à esquerda) e com pedras porosas (à direita).
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Figura 11 – Fotografia da configuração experimental real durante a realização dos experimentos

Fonte: Elaborada pelo autor.
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3.2 Conjunto de dados

O conjunto de dados inicial foi composto pelas séries temporais de concentração

de OD com medições à cada cinco segundos até o tempo limite de 300 s. O conjunto final foi

construído a partir do ajuste destas séries temporais às Equações 3.4 e 3.5 considerando diversas

ordens de cinética (inicialmente de 1 à 10). Os valores resultantes do coeficiente k2 bem como o

quadrado do coeficiente de correlação entre os pontos da curva ajustada e os dados observados

foram concatenados aos valores medidos das outras variáveis, em um total de 99 repetições do

experimento, cada um com uma combinação diferente das condições de entrada.

3.2.1 Variáveis de entrada

As variáveis temperatura (T ), concentração de OD inicial (C0) e de saturação (Cs)

e velocidade média da pluma de bolhas (Vplum) não eram controláveis diretamente, enquanto a

vazão de ar injetado (Qair), o tipo de difusor (tdi f ), a altura da coluna de água (hw) e o volume

de água no tanque (Volt) eram estabelecidas pelo operador do experimento. A concentração

de saturação (Cs) foi determinada em função de T por interpolação dos valores disponíveis em

Gulliver (2007).

Tabela 1 – Estatísticas e descrição das variáveis de entrada numéricas
Variável 1U.M Média 1D.P 1C.V 1C.A 1Mín. 1Máx. 1Amp.

Qair cm3/s 2.0 0.8 0.41 0.00 1.0 3.0 2.0
hw cm 22.3 9.5 0.43 0.41 10.0 40.0 30.0
Volt L 35.3 26.7 0.76 0.74 4.0 108.0 104.0
T ºC 27.7 1.4 0.05 -0.96 22.9 30.5 7.6
C0 mg/L 4.49 0.25 0.06 0.47 3.89 5.40 1.51
Cs mg/L 7.91 0.21 0.03 0.90 7.56 8.62 1.05
Vplum m/s 0.17 0.06 0.32 0.37 0.07 0.33 0.26

Fonte: Elaborada pelo autor;
1: U.M: unidade de medida; D.P: desvio padrão da amostra; C.V: coeficiente de variação;

C.A: coeficiente de assimetria; Mín.: valor mínimo; Máx.: valor máximo; Amp.: ampli-
tude total.

3.2.2 Variáveis de saída

Neste estudo, alguns tipos de coeficiente de reaeração (k2) foram considerados para

treinamento dos modelos; os coeficientes são relativos aos ajustes em modelos de decaimento do

déficit da concentração de OD considerando as ordens de 1 até no máximo 10.
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A taxa de variação na concentração de oxigênio com relação ao tempo em sistemas

de aeração segue a seguinte equação diferencial, derivada da lei de difusão de Fick (Mueller et

al., 2002):

dC
dt

= KLa(Cs −C) . (3.1)

Se fizermos D(t) =Cs −C(t) teremos:

−dD
dt

=− d
dt

(Cs −C) =
dC
dt

, (3.2)

que substituindo na Equação 3.1 e agrupando KLa = k2 nos dá:

dD
dt

=−k2D, (3.3)

em que D é o déficit de OD, C a sua concentração e Cs a sua concentração de saturação, todos

com dimensão
[
L−3 ·M

]
. Para esta Equação, o coeficiente k2 tem dimensão

[
T−1].

A Equação 3.3 modela uma reação de decaimento de primeira ordem. Um modelo

de decaimento de ordem p qualquer estabelece a taxa de variação proporcional à sua p-ésima

potência; para o déficit da concentração de OD sem a presença significativa de matérica orgânica

(água limpa), esse pode ser representado pelo problema de valor inicial 3.4:
dD
dt

=−k2Dp,

D(0) =Cs −C0,

(3.4)

que se resolve analiticamente na Equação 3.5:

C(t) =


Cs − (Cs −C0)e−k2t , p = 1

Cs −
[
(Cs −C0)

1−p − (1− p)k2t
]( 1

1−p

)
, p ̸= 1

(3.5)

com p ∈ N (adimensional), t o tempo [T] e C0 a concentração de OD no instante inicial[
L−3 ·M

]
. Neste caso mais geral, o coeficiente k2 terá dimensão dependente da ordem p[

L−3+3p ·M1−p ·T−1].
3.2.3 Pré-processamento

Modelos de ML podem se beneficiar da distribuição dos dados ser o mais simétrica

possível e diferentes preditores terem escalas parecidas entre si, além de seus valores estarem em

uma magnitude pequena. Alguns deles, inclusive, só aceitam valores numéricos e só performam

bem sob estas condições anteriores.
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Neste estudo, transformações de potência de Yeo-Johnson foram aplicadas às variá-

veis numéricas para minimização do coeficiente de assimetria, com excessão à Qair, por já ter

a sua distribuição perfeitamente simétrica. No mesmo intuito, posteriores transformações de

normalização foram empregadas: para o modelo de redes neurais a transformação min-max, e

para todos os outros, centralização na média e escalonamento pelo desvio padrão. As variáveis

categóricas foram expandidas em variáveis dummy por codificação ordinal para os modelos

baseados em árvore e One-Hot para os outros.

3.3 Modelos de aprendizado de máquina

Por se tratar também de um problema com saída numérica contínua, foram utilizados

oito algoritmos de aprendizado supervisionado de regressão: OLR, GLM, ELNET, RT, RF,

GBM, MLP e a SVR.

Neste trabalho, foram consideradas, para os modelos lineares, distribuições de

erro Gama (GLMgm) e Normal (OLR); o modelo com regularização ELNET foi aplicado

considerado distribuição Normal. Em sua forma OLR, o treinamento consistiu na resolução

descrita na Equação 2.13, enquanto para o modelo GLMgm a otimização dos estimadores de

máxima verossimilhança foi feita utilizando o algoritmo L-BFGS.

Para o modelo RT, a estratégia utilizada neste trabalho, adotada frequentemente,

foi permitir o crescimento de árvores profundas até que se tenha um número menor ou igual

ao mínimo estabelecido de amostras por nó e posteriormente controlar a sua complexidade

com poda pelo ccp. Ambos os parâmetros foram otimizados com busca aleatória utilizando-se

distribuição discreta uniforme para o número mínimo de amostras por nós, e distribuição contínua

log-uniforme para o coeficiente ccp.

Para os modelos ensemble, no modelo RF, o tamanho do subconjunto de variáveis

amostrado aleatoriamente para divisão de cada nó nas árvores (mtry) bem como a quantidade

de regressores utilizados e o número mínimo de amostras por nós foram os hiperparâmetros

considerados no treinamento. Nos modelos GBM, o número de estimadores, a quantidade

mínima de observações por nós, a profundidade máxima das árvores e a taxa de aprendizado

foram otimizados durante o seu treinamento.

Neste trabalho, modelos MLP rasos e profundos de duas e três camadas foram

utilizados, treinados pelo algoritmo L-BFGS. A função de perda minimizada foi o erro quadrático,

com estimativa dos valores de seu gradiente feita por algoritmo de retropropagação. A função de
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ativação das unidades da camada oculta foi a função ReLU, e para camada de saída, identidade.

Os hiperparâmetros otimizados foram a largura das camadas (o número de neurônios das camadas

ocultas) e a sua profundidade (número de camadas ocultas).

Para os modelos SVR, duas funções kernel foram utilizadas: de base radial (Equação

2.20) e polinomial (Equação 2.21). Os seus hiperparâmetros de escalonamento foram escolhidos

como o inverso do produto do tamanho do conjunto de treinamento pela sua variância. O

parâmetro de custo Csvr e de margem de insensibilidade εsvr foram considerados na otimização

de ambos os modelos, bem como, de forma específica para o SVR com kernel polinomial, o grau

da transformação polinomial d e o termo independente da função, semelhante ao intercepto em

regressões lineares.

3.4 Configuração e seleção dos modelos

O conjunto de dados total foi divido em conjunto de treinamento e de teste, para

avaliação dos modelos e posterior seleção; o conjunto de treinamento, por sua vez, foi divido em

conjuntos de estimativa e validação, para ajuste da configuração dos modelos por otimização dos

hiperparâmetros.

Ambas as divisões foram realizadas com reamostragem do tipo k-fold Validação

Cruzada (Cross-Validation) (CV), que consiste em dividir o conjunto em questão em k partes

disjuntas e de igual tamanho. Uma das partes é então utilizada como teste/ validação, enquanto o

restante, neste mesmo momento, como treinamento/ estimativa, e o processo é repetido k vezes,

uma em cada uma das partes.

Este esquema de CV empregado neste trabalho resultou em um CV externo para sele-

ção dos modelos, aninhado a um CV interno para otimização de hiperparâmetros. Externamente

executou-se um 10-fold CV, e internamente um 5-fold CV. Apesar de mais comumente adotado

para ajuste da configuração dos modelos, neste caso, uma única divisão em treinamento e teste

para um conjunto de um número intermediário de dados poderia introduzir um viés considerável,

sendo necessário o aninhamento deste segundo CV para minimizá-lo, tornando as métricas de

seleção dos modelos mais confiáveis.
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3.4.1 Otimização de hiperparâmetros

Internamente ao esquema geral de CV, em cada etapa do 5-fold CV o processo

de otimização da configuração dos hiperparâmetros foi conduzido por busca aleatória e busca

em grade. A configuração de modelo com melhor performance estimada (maior r2 médio) era

selecionada.

A busca exaustiva em grade consiste em estabelecer valores possíveis para cada

hiperparâmetro e treinar os modelos em cada uma das combinações possíveis com estes valores

pré-determinados. A vantagem desta abordagem é a de ter certeza que todo o domínio estabele-

cido foi considerado; a sua desvantagem se dá no fato de que pode se tornar computacionalmente

caro, principalmente em modelos com diferentes hiperparâmetros a serem otimizados, como os

modelos em árvore.

Diferentemente da busca exaustiva em grade, a busca aleatória pode acontecer em

três abordagens: i) definir uma grade, semelhantemente ao primeiro processo, selecionando,

contudo as configurações desta grade de modo aleatório e uniforme; ii) definir distribuições

de probabilidade para os parâmetros, de tal forma que os seus valores em cada iteração da

busca sejam gerados por essas, ou iii) uma combinação destas abordagens. Para espaços de

busca com alta dimensão ela se mostra muito mais econômica computacionalmente, podendo até

mesmo superar a performance da busca em grade, especialmente se o modelo é afetado pelos

hiperparâmetros em um intervalo pequeno de valores (Liashchynskyi; Liashchynskyi, 2019).

Neste trabalho, a busca em grade foi utilizada apenas nos modelos MLP; para os

outros foram definidas distribuições de probabilidade para a grande maioria dos hiperparâmetros,

abarcando os intervalos desejáveis de busca. As distribuições uniforme contínua e discreta foram

utilizadas, juntamente com a log-uniforme para hiperparâmetros em que o intervalo compreendia

diferentes escalas, e ao invés da equidade da chance de seleção estar no valor absoluto em si, era

mais razoável que ela estivesse em cima das diferentes magnitudes, como exemplo do parâmetro

α da regularização ELNET, que compreendeu valores nas escalas 10−5,10−4, . . . ,102, e era

importante que todos estas pudessem ter a mesma probabilidade de serem experimentadas no

processo. A Tabela 2 reúne todos estes valores.
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Tabela 2 – Espaços de busca dos principais hiperparâmetros otimizados
Modelo Hiperparâmetros 2Valores de busca

1ELNET α log U
[
10−5,102

]
l1r U [0,1]

RT ccp log U
[
10−5,102

]
Mínimo de amostras por nó Ud [5,30]

RF Número de árvores {10,20, . . . ,100,200, . . . ,1000}
mtry (taxa) U [0,1]
Mínimo de amostras por nó Ud [5,30]

GBM Número de árvores {10,20, . . . ,100,200, . . . ,1000}
Taxa de aprendizado log U

[
10−3,10−1

]
Profundidade máxima das árvores Ud [1,10]
Mínimo de amostras por nó Ud [5,30]

MLP Largura da rede {10,20,30}
Profundidade da rede {1,2,3}

SVR Csvr log U
[
10−5,102

]
εsvr log U

[
10−5,100

]
3d Ud [2,5]
3Termo independente na função kernel U [−10,10]

Fonte: Elaborada pelo autor;
1: Os outros modelos de regressão linear generalizada (OLR, GLMgm) não tinham hiperpa-

râmetros;
2: Distribuições contínuas uniforme (U ), log-uniforme (log U ) e discreta uniforme (Ud)

dentro do do intervalo [a,b] dado;
3: Apenas para o kernel polinomial.

3.4.2 Métricas de performance

A avaliação de performance final para seleção dos modelos foi feita a partir das

métricas Raiz do Erro Quadrático Médio (Root Mean Squared Error) (RMSE), Erro Médio

Absoluto (Mean Absolute Error) (MAE), Erro Percentual Médio Absoluto (Mean Absolute

Percentage Error) (MAPE), Raiz do Erro Logarítmico Quadrático Médio (Root Mean Squared

Logarithmic Error) (RMSLE) e o Coeficiente de Determinação (r2), mostrados nas Equações

3.6 à 3.10:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (3.6)

MAE =
1
n

n

∑
i=1

|yi − ŷi| , (3.7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ , (3.8)

RMSLE =

√
1
n

n

∑
i=1

(log(yi +1)− log(ŷi +1))2, (3.9)
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r2 = 1−

n

∑
i=1

(yi − ŷi)
2

n

∑
i=1

(yi − ȳ)2
, (3.10)

em que yi é a i-ésima amostra de um conjunto com n observações, ȳ é a média deste conjunto

e ŷi é o seu valor estimado. O coeficiente r2 foi utilizado como objetivo de maximização na

otimização de hiperparâmetros e juntamente às métricas MAPE e RMSLE foi utilizado para

comparação dos melhores modelos em cada variável de saída, uma vez que seus valores são

independentes da escala e unidade dessas.
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4 RESULTADOS E DISCUSSÕES

Este capítulo apresenta os resultados iniciais e finais das 99 repetições do experi-

mento, nas seções 4.1 e 4.2, as métricas finais de cada modelo de ML para cada uma das saídas

considerada, na seção 4.3, e a quantificação da influência relativa de cada variável na produção

dos valores preditos, na seção 4.4.

4.1 Resultados dos experimentos

Após realização dos experimentos, os primeiros resultados colhidos foram as séries

temporais de OD ao longo dos 300 s, aferidos a cada cinco segundos. Nove destas séries

temporais estão contidas na Figura 12.

Figura 12 – Gráficos de nove séries temporais de OD com valores iniciais padronizados

Fonte: Elaborada pelo autor;
Nota: Experimentos com amplitude correspondentes aos percentis 0 (mínimo), 12.5, 25, 37.5, 50, 62.5, 75, 87.5 e

100 (máximo), da esquerda para a direita e de cima para baixo, respectivamente.
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A numeração dos experimentos segue a ordem em que foram executados. Para

padronização do momento em que a água em todo o reservatório estava sob influência dos

escoamentos induzidos pela pluma de bolhas, na Figura 12, os primeiros valores foram excluídos

a partir do critério dC
dt < 1.0 mg/(L · s).

Os gráficos que compõem a Figura 12 também foram escolhidos para demonstrar as

variações totais mínima e máxima da concentração de OD entre os experimentos, correspondentes

aos experimentos n.° 70 e 11, respectivamente. Os outros gráficos, dos experimentos n.° 8, 66,

32, 58, 76, 77 e 51, correspondem, no intuito de abarcar de modo uniforme toda distribuição de

variações, aos percentis 12.5, 25.0 (quartil 1), 37.5, 50.0 (mediana e quartil 2), 62.5, 75.0 (quartil

3) e 87.5, respectivamente.

A Figura 13 reúne os valores dessa distribuição de variações totais ou amplitudes

nas séries de OD de modo mais específico, com valores mínimo e máximo de 1.49 e 3.28 mg/L,

respectivamente, e variação média e mediana de 2.34 mg/L.

Figura 13 – Gráficos reunindo a distribuição de variações totais das 99 séries temporais de OD

Fonte: Elaborada pelo autor.

Os gráficos da Figura 12 são apenas 10% de todos os experimentos. O Apêndice A

contém as Figuras que apresentam todos os 99 gráficos correspondente os experimentos.

4.2 Ajustes aos modelos de reação

As Figuras 14 e 15 contêm dez gráficos cada, escolhidos de forma a demonstrar,

para cada ordem de 1 à 10, as séries temporais que obtiveram os melhores (Figura 14) e piores

ajustes (Figura 15) às Equações 3.4 e 3.5, quantificados a partir do quadrado do coeficiente de
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correlação de Pearson entre os valores medidos e os seus correspondentes dos modelos ajustados.

Ajuste por mínimos quadrados não-lineares foi executado.

Figura 14 – Gráficos das dez séries temporais de OD ajustadas nos modelos de cinética de ordens
1 à 10 com as maiores métricas de ajuste

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).

A Figura 16 reúne os valores da métrica de ajuste de todos os experimentos e em

cada ordem, possibilitando a sua comparação. Juntamente às Figuras 14 e 15, nota-se como as

equações de ordem superior à teórica obtiveram ajustes mais satisfatórios. A partir da ordem
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4, entretanto, não houve mais incrementos significantes do valor mediano, do valor mínimo, e

houve decréscimo do valor máximo da métrica de ajuste. Para o treinamento dos modelos de

ML, portanto, as ordens consideradas para a variável de saída k2 foram de 1 à 4.

Figura 15 – Gráficos das dez séries temporais de OD ajustadas nos modelos de cinética de ordens
1 à 10 com as menores métricas de ajuste

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).

A Tabela 3 contém uma descrição estatística dos valores de cada possível saída (k2)

nas ordens citadas anteriormente a serem consideradas aos modelos de ML. Nota-se que, da
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Figura 16 – Gráfico de boxplots representando a distribuição das métricas de ajustes para cada
ordem de 1 à 10

Fonte: Elaborada pelo autor;
Nota: A métrica de ajuste é o quadrado do coeficiente de correlação de Pearson.

mesma forma que a unidade de medida é alterada, a magnitude dos valores, para os mesmos

dados medidos, também se altera. Nota-se também como a ordem 2, relativamente falando,

apresentou valores mais uniformes e se dispersaram menos, evidenciado pelos menores valores

de coeficiente de variação e de assimetria.

Tabela 3 – Estatísticas e descrição das variáveis de saída
Variável 1U.M Média 1D.P 1C.V 1C.A 1Mín. 1Máx. 1Amp.

k2 (Ordem 1) h−1 35.58 26.03 0.73 3.12 9.24 185.74 176.49
k2 (Ordem 2) (mg/L)−1 h−1 21.36 13.18 0.62 1.20 3.62 71.99 68.37
k2 (Ordem 3) (mg/L)−2 h−1 13.49 9.71 0.72 1.24 1.40 50.07 48.67
k2 (Ordem 4) (mg/L)−3 h−1 8.87 7.76 0.88 1.65 0.54 40.83 40.29

Fonte: Elaborada pelo autor;
1: U.M: unidade de medida; D.P: desvio padrão da amostra; C.V: coeficiente de variação; C.A:

coeficiente de assimetria; Mín.: valor mínimo; Máx.: valor máximo; Amp.: amplitude total.
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Os gráficos das Figuras 14 e 15 representam apenas 2% de todos os ajustes. O

Apêndice B contém as Figuras que apresentam todos os ajustes a cada uma das 99 séries de OD

(990 gráficos).

4.3 Performance dos modelos de aprendizado de máquina

A Tabela 4 apresenta uma descrição geral do conjunto de dados final, utilizado no

treinamento, otimização e seleção dos modelos de ML. Não há valores faltantes; do total de oito

preditores, apenas o tipo de bocal (tdi f ) é categórico. Quatro possibilidades de variável de saída

(ordens 1 à 4) foram utilizadas.

Tabela 4 – Descrição do conjunto de dados
Parâmetro Descrição

Quantidade de amostras 99
Total de preditores 8
Preditores numéricos 7
Preditores categóricos 1
Número de possíveis saídas 4
Valores faltantes 0

Fonte: Elaborada pelo autor.

As Tabelas 5 à 8 apresentam os resultados das métricas de performance dos modelos,

calculadas como a média dos dez valores obtidos em cada iteração do processo de CV externo.

Os valores em destaque representam as melhores métricas.

Considerando a variável de saída de ordem 1, a Tabela 5 mostra como não houve

modelos com bons ajustes. Com exceção ao SVR, nenhum conseguiu capturar a dinâmica de k2

em função das variáveis de entrada utilizadas, fato evidenciado pelos valores negativos de r2,

que implicam ajustes inferiores à média das saídas em termos de proporção de variância (Chicco

et al., 2021). O modelo SVR, contudo, apresentou r2 > 0 e teve outras métricas com os melhores

valores, sendo utilizado como o modelo representativo para esta ordem de variável de saída.

A partir da ordem 2 não houve modelos com r2 < 0. Tratando-se dessa em específico,

nota-se que os modelos de árvore (RT, RF e GBM) e a rede neural MLP apresentaram as

melhores métricas (Tabela 6). Estes modelos são aptos a capturar relações não-lineares e efeitos

de interações entre as variáveis, o que aparenta ser o caso neste estudo. Como consequência, era

esperado que os modelos lineares não pudessem aprender estas relações satisfatoriamente, fato

que se confirmou a partir das menores métricas. Houve, entretanto, uma melhora sutil a partir da
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Tabela 5 – Métricas de performance dos modelos considerando
como variável de saída k2 de ordem 1

Modelo r2 1RMSE 1MAE MAPE RMSLE

OLR -0.470 21.88 15.70 0.486 —
GLMgm -0.071 20.72 13.90 0.380 0.422
ELNET -0.561 22.73 16.17 0.513 —
RT -0.600 20.90 13.25 0.384 0.403
RF -0.183 21.18 13.18 0.449 0.462
GBM -0.628 22.52 13.74 0.467 0.467
MLP -0.780 21.52 13.27 0.423 —
SVR 0.190 20.34 11.21 0.272 0.389

Fonte: Elaborada pelo autor;
1: Valores com a unidade do k2 de ordem 1: h−1.

adição da regularização ELNET e uma melhora mais significativa a partir da assunção de erro

com distribuição Gama (GLMgm) em comparação ao modelo OLR.

Tabela 6 – Métricas de performance dos modelos considerando
como variável de saída k2 de ordem 2

Modelo r2 1RMSE 1MAE MAPE RMSLE

OLR 0.148 10.62 8.19 0.481 —
GLMgm 0.229 10.44 7.89 0.409 0.423
ELNET 0.152 10.62 8.19 0.481 —
RT 0.668 7.00 4.81 0.200 0.268
RF 0.470 8.49 5.98 0.399 0.378
GBM 0.471 8.53 6.36 0.425 0.390
MLP 0.506 8.07 5.98 0.299 0.305
SVR 0.347 9.56 6.52 0.343 —

Fonte: Elaborada pelo autor;
1: Valores com a unidade do k2 de ordem 2: h−1 (mg/L)−1.

É notável como o modelo RT obteve as melhores métricas, ultrapassando os modelos

ensemble (RF e GBM) e conseguindo explicar cerca de 2/3 da variabilidade dos dados. Como

explicado na seção 2.3.2.1, a construção dos modelos ensemble é feita de modo a superar, no

geral, a performance de uma árvore de decisão singular (Hastie et al., 2017; Nunes Carvalho

et al., 2022), o que era também esperado. Apesar disso, árvores singulares podem ter a sua

performance superior em alguns casos (Ließ et al., 2012; Youssef et al., 2016; Ao et al., 2019).

A consideração da variável de saída k2 com ordem 3 manteve as performances

satisfatórias (Tabela 7). Em termos de variância explicada, com exceção ao MLP todos os

modelos obtiveram métricas ligeiramente superiores aos modelos com ordem 2. Em termos de

erros relativos (MAPE e RMSLE), entretanto, houve degradação considerável, que se acentuou

ao considerar a ordem 4 (Tabela 8); houve piora também no coeficiente de determinação. Nestas

ordens novamente os modelos baseados em árvores e lineares apresentaram as melhores e piores
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métricas, respectivamente.

Tabela 7 – Métricas de performance dos modelos considerando
como variável de saída k2 de ordem 3

Modelo r2 1RMSE 1MAE MAPE RMSLE

OLR 0.155 7.81 6.01 0.667 —
GLMgm 0.233 7.72 5.79 0.517 0.485
ELNET 0.158 7.82 6.01 0.667 —
RT 0.685 4.99 3.54 0.278 0.314
RF 0.476 6.24 4.55 0.595 0.460
GBM 0.485 6.17 4.77 0.604 0.475
MLP 0.178 7.73 5.45 0.542 0.497
SVR 0.360 6.97 4.79 0.452 —

Fonte: Elaborada pelo autor;
1: Valores com a unidade do k2 de ordem 3: h−1 (mg/L)−2.

Tabela 8 – Métricas de performance dos modelos considerando
como variável de saída k2 de ordem 4

Modelo r2 1RMSE 1MAE MAPE RMSLE

OLR 0.077 6.37 4.83 1.035 —
GLMgm 0.177 6.30 4.57 0.684 0.553
ELNET 0.081 6.37 4.82 1.033 —
RT 0.412 5.10 3.53 0.454 0.420
RF 0.326 5.36 3.79 0.989 0.558
GBM 0.241 5.80 4.38 1.161 0.659
MLP 0.171 5.67 3.92 0.612 —
SVR 0.332 5.72 3.73 0.603 —

Fonte: Elaborada pelo autor;
1: Valores com a unidade do k2 de ordem 4: h−1 (mg/L)−3.

Com exceção aos modelos considerando a ordem 1, o modelo RT obteve as melhores

performances. A Tabela 9 compara estes valores trazendo apenas as métricas que independem da

magnitude da saída, que diminui conforme a ordem aumenta. Os valores do MAPE e RMSLE

foram consideravelmente melhores para a ordem 2, que também obteve um valor alto de r2 em

comparação às outras ordens, próximo ao valor obtido para ordem 3, que foi levemente superior.

A consideração de ordens 2 e 3 levou aos modelos mais acurados relativamente,

com destaque para a ordem 2, superior em duas das três métricas e com r2 satisfatório, próximo

ao melhor valor. De fato, como mostrado na Figura 4, a ocorrência simultânea de diferentes

mecanismos de transferência de OD sugere uma ineficiência dos modelos de ordem 1 represen-

tados nas Equações 3.1 e 3.3 na captura da dinâmica do processo como um todo. O estudo de

McWhirter e Hutter (1989) foi pioneiro na crítica a estes modelos, alegando uma simplificação

exagerada do processo. Em Lima Neto et al. (2008a) um mecanismo é destacado como tendo
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Tabela 9 – Comparação entre os modelos com
melhores métricas para cada variável
de saída

Melhor
modelo

Ordem
de k2

r2 MAPE RMSLE

SVR 1 0.190 0.272 0.389
RT 2 0.668 0.200 0.268
RT 3 0.685 0.278 0.314
RT 4 0.412 0.454 0.420

Fonte: Elaborada pelo autor.

influência no processo: a transferência durante a formação de bolhas devido à injeção de gás

(processo 1 na Figura 4). McWhirter e Hutter (1989) propôs a consideração separada dos efeitos

de transferência pelo contato das bolhas com a água durante a ascensão da pluma e pelo fluxo

giratório gerado na superfície devido à agitação causada pela pluma (processos 2 e 4 na Figura

4), com DeMoyer et al. (2003) e Schierholz et al. (2006) reforçando seu estudo implementando

modelos baseados nestas mesmas considerações. Outro mecanismo atualmente bastante estudado

e que contribui para a ideia da necessidade de análises mais sofisticadas é o chamado “efeito de

fonte” (processo 3 na Figura 4), que se forma a partir do colapso das bolhas quando a pluma

atinge a superfície, elevando esta região em um formato curvo, que passa a atuar como uma fonte

deste gás, e é um mecanismo que vem sendo amplamente estudado em situações envolvendo

vazamento de gás em dutos de transporte submarinos (Aprin et al., 2019; Aprin et al., 2020; Li

et al., 2023; Wang et al., 2024a; Wang et al., 2024b), situações no qual, sob cenário de formação

de plumas de bolhas em larga escala, os autores relatam intensa ocorrência do efeito de fonte, o

que sugere a sua relevância também em escalas menores.

Diante da complexidade do processo, com quatro mecanismos atuando concomitan-

temente, é razoável esperar que a sofisticação do modelo das Equações 3.1 e 3.3, que se deu

neste trabalho através da consideração de ordens superiores (Equações 3.4 e 3.5), implicasse

resultados mais satisfatórios. Apoiado nesta discussão, na ocorrência das melhores métricas e

acrescentado também o fato de ser a ordem mais próxima à teórica, as próximas análises serão

realizadas apenas para ordem 2. Os hiperparâmetros ótimos dos modelos de ML finais utilizando

k2 desta ordem estão apresentados na Tabela 10.

A Figura 17 exibe gráficos de dispersão para os modelos treinados e otimizados

na ordem 2, comparando valores observados e preditos. Ressalta-se o uso de todas as predi-

ções em cada iteração do CV externo. Quanto maior a proximidade dos pontos à reta preta,

melhor o ajuste dos modelos, de modo que é possível confirmar visualmente a superioridade
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Tabela 10 – Hiperparâmetros otimizados para os modelos finais considerando
k2 de ordem 2

Modelo Hiperparâmetros Valores finais

ELNET α 4.63×10−4

l1r 0.0956

RT ccp 3.40×10−5

Mínimo de amostras por nó 6

RF Número de árvores 20
mtry (taxa) 0.53

GBM Número de árvores 700
Taxa de aprendizado 7.37×10−2

Profundidade máxima das árvores 1
Mínimo de amostras por nó 16

1MLP Largura da rede 30
Profundidade da rede 3

SVR (kernel polinomial) Csvr 8.16
εsvr 0.838
d 2
Termo independente na função kernel 8.77

Fonte: Elaborada pelo autor;
1: A arquitetura final do melhor MLP foi (8,30,30,30,1), ou seja, uma rede profunda de 3

camadas ocultas, todas com 30 neurônios.

dos modelos de árvores e a maior dispersão dos modelos lineares em torno da reta de ajuste

perfeito, inclusive retornando valores negativos. Nota-se que i) nenhum modelo predisse ade-

quadamente os valores mais altos
(

yobs. > 40 h−1 (mg/L)−1
)

; ii) os modelos RT e MLP obti-

veram ajustes superiores nos valores menores
(

yobs. ≲ 15 h−1 (mg/L)−1
)

quando comparados

aos demais, e iii) os modelos RF e GBM obtiveram maior acurácia na região intermediária(
15 h−1 (mg/L)−1 ≲ yobs. < 40 h−1 (mg/L)−1

)
.

4.4 Importância das variáveis

Para comparar a influência das variáveis na predição de k2 entre os diferentes mode-

los, as medidas foram extraídas em termos percentuais, de modo que a soma das importâncias

tenha resultado unitário.

As Figuras 18 e 19 exibem a importância relativa das variáveis a partir dos diferentes

modelos. Foram excluídos desta análise os modelos SVR (kernel polinomial) e MLP, chamados

modelos black-box (Guidotti et al., 2018; Hassija et al., 2024) por não fornecerem de forma

clara o funcionamento por trás da produção dos seus resultados, necessitando de técnicas

de Inteligência Artificial Explicável (Explainable Artificial Intelligence) (XAI), por exemplo
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Figura 17 – Gráficos de dispersão para os modelos utilizados neste estudo e com variável de
saída k2 de ordem 2.

Fonte: Elaborada pelo autor;
Obs.: Uma maior proximidade à linha preta representa um maior poder de predição do modelo.

(Hassija et al., 2024) para uma melhor compreensão, o que está fora do escopo deste estudo.

Nos modelos de árvores foi medida a importância de impureza, calculada como a

soma das reduções deste critério (soma dos resíduos quadráticos no caso de regressões) em

todos os nós, normalizado pelo número de árvores no caso dos modelos ensemble (Nembrini et

al., 2018). Para os modelos lineares foi contabilizado o valor do coeficiente associado a cada

variável (Nunes Carvalho et al., 2022) relativo à soma dos coeficientes, uma vez que as variáveis

foram escalonadas e centralizadas no pré-processamento.

A Figura 18 apresenta os valores de importância das variáveis para os seis modelos

utilizados na análise de forma individual e em ordem de influência, enquanto a Figura 19 agrupa

estes valores em modelos de desempenhos semelhantes e no total, possibilitando um olhar mais

geral.

A variável Volt é consenso para os modelos de árvores como a mais influente,
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Figura 18 – Gráficos da importância das variáveis em cada modelo, de forma individual

Fonte: Elaborada pelo autor.

Figura 19 – Gráficos da importância das variáveis com valores agrupados

Fonte: Elaborada pelo autor.

enquanto para os modelos lineares essa é a Cs. Em ambos os tipos de modelos ela tem sempre

uma importância próxima à da temperatura (T ), o que pode ser explicado pela relação direta

entre elas; os modelos não-lineares, contudo, demonstram uma preferência ligeiramente maior à

T .

A baixa importância das variáveis Qair, Vplum e das variáveis dummy relacionadas ao

tipo de difusor é consenso entre todos os modelos. A variável tdi f .,d3 (codificação da presença ou

não de pedras porosas), contudo, demonstrou importância mediana, o que pode ser explicado

pelo fato do formato e quantidade das bolhas mudarem bruscamente com a utilização ou não das

pedras, ao passo que a mudança de pedras não parece ter tido efeito significativo.

Para a vazão de injeção de ar (Qair) era esperado uma influência mais alta. Em

Lima Neto e Parente (2016) a vazão de injeção de gás foi variável que afetou significativamente
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a hidrodinâmica das plumas de bolhas, modificando a forma como o gás era incorporado à

água. Em Behzadipour et al. (2023), a vazão de injeção de ar foi estudada como objeto central,

apresentando forte influência nas características das bolhas a distâncias a partir de 35% da altura

da coluna d’água, o que impactaria em parte do processo de transferência durante a ascensão da

pluma de bolhas, na intensidade do efeito de fonte e na transferência pela agitação da superfície

(processos 2, 3 e 4 da Figura 4). Apesar disso, os valores variaram na análise de sensibilidade

em Lima Neto e Parente (2016) na ordem de 10−1 m3/s, enquanto neste estudo, na ordem de

10−6 m3/s (100 000 vezes menor), o que pode significar que o intervalo de variabilidade dos

valores não foi o suficiente para alterar a dinâmica da transferência de oxigênio.

Os modelos também concordaram sobre a significativa importância da variável hw,

comumente utilizada em estudos anteriores (Lima Neto et al., 2007; Lima Neto; Parente, 2016;

Lima; Lima Neto, 2018). Para os modelos de árvore ela foi a segunda mais influente nas

predições com variações na ordem de 10−1 m, o que colabora com a análise de sensibilidade em

Lima Neto e Parente (2016), que a identificou como variável mais influente na hidrodinâmica

das plumas, variando o seu valor na ordem de 101 m (100 vezes maior).

De modo geral, os modelos discordaram sobre as variáveis Volt , T , Cs e C0. Concor-

daram, entretanto, sobre a baixa importância das variáveis dummy do tipo de difusor, Qair, Vplum

e sobre a importância mediana de hw. Para as primeiras citadas é razoável ter uma maior atenção

aos modelos de árvores, cujo potencial de explicação das variáveis foi consideravelmente maior

em comparação aos lineares; esses concordaram que Volt foi a variável mais decisiva, seguida de

hw, C0, T e Cs.
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5 CONCLUSÕES

Neste estudo, o comportamento da transferência OD à água por plumas de bolhas

formadas pela injeção de ar foi estudado a partir da predição do coeficiente de reaeração k2 em

tanques de água utilizando modelos de ML.

Foram realizadas 99 repetições de um experimento em escala laboratorial a partir de

diferentes configurações das variáveis de entrada: temperatura da água (T ), concentração de OD

inicial (C0) e de saturação (Cs), velocidade média do escoamento gerado pelas plumas de bolhas

(Vplum), vazão volumétrica de ar injetado (Qair), tipo de difusor (tdi f ), altura da coluna de água

(hw) e o volume de água no tanque (Volt).

As séries temporais de concentração de OD, medidas à cada cinco segundos em um

intervalo total de 300 segundos, foram utilizadas no ajuste do coeficiente k2 considerando-se

uma expansão às ordens superiores do modelo tradicional de ordem 1, que foi considerada como

outra possibilidade de avanço, embasada na complexidade de um processo que envolve quatro

mecanismos de transferência ocorrendo concomitantemente. Inicialmente, as ordens de 1 à 10

foram consideradas para o ajuste.

O conjunto de dados resultante foi utilizado em oito modelos de ML, que foram

treinados e testados em um esquema de k-fold CV aninhado, tanto para otimização de hiperparâ-

metros (CV interno) quanto para seleção dos modelos (CV externo), no intuito de se minimizar

o viés pela divisão do conjunto de dados em um cenário de quantidade média de dados (99 amos-

tras). Após análise da qualidade do ajuste, os coeficientes k2 de ordens 1 à 4 foram utilizados

como variável de saída, configurando quatro cenários de análise.

Os resultados sugerem um bom potencial da abordagem por ML e também da

consideração de ordens superiores, como se objetivava ao início. A consideração das ordens 2 e

3 resultou nos modelos de ML com métricas mais satisfatórias, com destaque para o modelo RT

com variável de saída de ordem 2, obtendo métricas r2 = 0.668, MAPE = 0.200, RMSLE =

0.268, RMSE = 7.00 h−1 (mg/L)−1 e MAE = 4.81 h−1 (mg/L)−1, em um cenário de desvio

padrão e coeficiente de variação de 13.18 h−1 (mg/L)−1 e 0.62, respectivamente. Nenhum

modelo de ordem 1 obteve resultados expressivos.

Conclui-se que as ordens superiores forneceram aos modelos melhores informações

da dinâmica do processo do que a ordem 1, em especial a 2, que resultou nos melhores modelos,

o que se justifica na ineficiência de uma reação de ordem 1 em explicar a complexidade de

um fenômeno composto por quatro processos distintos de transferência de OD à água, como
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exemplificados na Figura 4: 1) durante a injeção de ar e formação de bolhas, 2) durante a

ascensão das bolhas, 3) devido ao efeito de fonte que se forma na região onde as bolhas chegam,

e 4) devido ao escoamento na superfície da água pela agitação provocada pelas bolhas.

A partir dos modelos de árvore para coeficiente k2 de ordem 2, a análise de influência

das variáveis concluiu baixa importância de Qair e Vplum, também concordado pelos modelos

lineares, o que pode se justifica pelos baixos valores utilizados, em comparação aos experimentos

em outros estudos, insuficientes para influenciar de modo considerável nos valores do coeficiente,

uma vez que são variáveis com importâncias normalmente reportadas como altas. As variáveis

Volt e hw foram concluídas como as mais influentes, seguidas de C0, T e Cs.

5.1 Sugestões para trabalhos futuros

Para aprimorar a utilização da abordagem com ML, sugere-se que estudos futuros

realizem mais repetições dos experimentos, obtendo um conjunto com mais amostras, o que

pode remover a necessidade de um esquema de CV externo. Mais amostras também implicarão

maior diversidade dos valores nas condições das variáveis de entrada, levando a modelos ainda

mais robustos.

Outro ponto de aprimoramento é a variação dos valores de vazão de injeção de ar

(Qair) e da profundidade da coluna de água (hw) em intervalos mais próximos aos das escalas

reais, comuns na literatura, no intuito de capturar a sua influência esperada aos modelos, o que

também pode contribuir para a capacidade preditiva. Maiores valores de Qair irão provocar

maiores velocidades dos escoamentos superficiais decorrentes das plumas (Vplum), o que pode

trazer ao modelo também o potencial de influência que se espera desta variável, além de refletir,

juntamente à nova magnitude de hw, contextos de aplicabilidade direta a processos de interesse

prático.

Recomenda-se também a experimentação de outros tipos de bocais, como os diferen-

tes arranjos possíveis com múltiplos orifícios, colaborando para a análise de quais características

nestes arranjos são mais determinantes.
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APÊNDICE A – GRÁFICOS DE DISPERSÃO DAS SÉRIES TEMPORAIS

RESULTANTES DOS EXPERIMENTOS

Figura 20 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 1 à 6

Fonte: Elaborada pelo autor.
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Figura 21 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 7 à 12

Fonte: Elaborada pelo autor.
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Figura 22 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 13 à 18

Fonte: Elaborada pelo autor.
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Figura 23 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 19 à 24

Fonte: Elaborada pelo autor.
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Figura 24 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 25 à 30

Fonte: Elaborada pelo autor.
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Figura 25 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 31 à 36

Fonte: Elaborada pelo autor.
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Figura 26 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 37 à 42

Fonte: Elaborada pelo autor.
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Figura 27 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 43 à 48

Fonte: Elaborada pelo autor.
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Figura 28 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 49 à 54

Fonte: Elaborada pelo autor.
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Figura 29 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 55 à 60

Fonte: Elaborada pelo autor.
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Figura 30 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 61 à 66

Fonte: Elaborada pelo autor.
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Figura 31 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 67 à 72

Fonte: Elaborada pelo autor.
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Figura 32 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 73 à 78

Fonte: Elaborada pelo autor.
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Figura 33 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 79 à 84

Fonte: Elaborada pelo autor.
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Figura 34 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 85 à 90

Fonte: Elaborada pelo autor.
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Figura 35 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 91 à 96

Fonte: Elaborada pelo autor.
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Figura 36 – Gráficos das séries temporais de OD resultantes dos experimentos n.º 97 à 99

Fonte: Elaborada pelo autor.
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APÊNDICE B – GRÁFICOS DOS AJUSTES DOS COEFICIENTES DE REAERAÇÃO

ÀS SÉRIES TEMPORAIS MEDIDAS

Figura 37 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à
6 e o experimento n.° 1

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente

de determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 38 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 1

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 39 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 2

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 40 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 2

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 41 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 3

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 42 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 3

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 43 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 4

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 44 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 4

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 45 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 5

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 46 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 5

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 47 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 6

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 48 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 6

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 49 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 7

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 50 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 7

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 51 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 8

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 52 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 8

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 53 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 9

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 54 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 9

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 55 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 10

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 56 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 10

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 57 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 11

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 58 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 11

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 59 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 12

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 60 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 12

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 61 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 13

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 62 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 13

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 63 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 14

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 64 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 14

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 65 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 15

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 66 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 15

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 67 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 16

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 68 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 16

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 69 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 17

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 70 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 17

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 71 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 18

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 72 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 18

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 73 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 19

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 74 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 19

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 75 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 20

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 76 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 20

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 77 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 21

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 78 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 21

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 79 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 22

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



146

Figura 80 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 22

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 81 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 23

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 82 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 23

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 83 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 24

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 84 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 24

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 85 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 25

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 86 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 25

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 87 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 26

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 88 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 26

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 89 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 27

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 90 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 27

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 91 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 28

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 92 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 28

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 93 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 29

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 94 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 29

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 95 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 30

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 96 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 30

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



163

Figura 97 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 31

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 98 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 31

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 99 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 32

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 100 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 32

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 101 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 33

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 102 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 33

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 103 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 34

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 104 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 34

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 105 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 35

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 106 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 35

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 107 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 36

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



174

Figura 108 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 36

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 109 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 37

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 110 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 37

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 111 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 38

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 112 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 38

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 113 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 39

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 114 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 39

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 115 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 40

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 116 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 40

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 117 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 41

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



184

Figura 118 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 41

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 119 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 42

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 120 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 42

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 121 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 43

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 122 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 43

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 123 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 44

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 124 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 44

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 125 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 45

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 126 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 45

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 127 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 46

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 128 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 46

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 129 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 47

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 130 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 47

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 131 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 48

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 132 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 48

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 133 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 49

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 134 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 49

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 135 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 50

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 136 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 50

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 137 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 51

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 138 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 51

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 139 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 52

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 140 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 52

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 141 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 53

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 142 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 53

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 143 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 54

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 144 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 54

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 145 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 55

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 146 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 55

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 147 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 56

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 148 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 56

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 149 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 57

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 150 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 57

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 151 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 58

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 152 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 58

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 153 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 59

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 154 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 59

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 155 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 60

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 156 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 60

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 157 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 61

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 158 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 61

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 159 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 62

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 160 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 62

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 161 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 63

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 162 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 63

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



229

Figura 163 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 64

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 164 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 64

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 165 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 65

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 166 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 65

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 167 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 66

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 168 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 66

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 169 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 67

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 170 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 67

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 171 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 68

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 172 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 68

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 173 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 69

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 174 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 69

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 175 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 70

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 176 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 70

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 177 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 71

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 178 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 71

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 179 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 72

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



246

Figura 180 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 72

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 181 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 73

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



248

Figura 182 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 73

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 183 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 74

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 184 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 74

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 185 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 75

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 186 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 75

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 187 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 76

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 188 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 76

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 189 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 77

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 190 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 77

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 191 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 78

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 192 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 78

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 193 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 79

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 194 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 79

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 195 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 80

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 196 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 80

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 197 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 81

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 198 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 81

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 199 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 82

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 200 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 82

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 201 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 83

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



268

Figura 202 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 83

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 203 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 84

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 204 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 84

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 205 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 85

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 206 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 85

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 207 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 86

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 208 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 86

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 209 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 87

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 210 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 87

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 211 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 88

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 212 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 88

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 213 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 89

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 214 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 89

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 215 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 90

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 216 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 90

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).



283

Figura 217 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 91

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 218 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 91

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 219 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 92

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 220 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 92

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 221 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 93

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 222 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 93

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 223 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 94

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 224 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 94

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 225 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 95

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 226 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 95

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 227 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 96

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 228 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 96

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 229 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 97

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 230 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 97

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 231 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 98

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 232 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 98

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 233 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 1 à 6 e o
experimento n.° 99

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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Figura 234 – Gráficos dos ajustes às séries temporais de OD considerando as ordens 7 à 10 e o
experimento n.° 99

Fonte: Elaborada pelo autor;
Obs.: O coeficiente R2 dos ajustes é o quadrado do coeficiente de correlação de Pearson, não o coeficiente de

determinação definido na subseção 3.4.2 (Equação 3.10).
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