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RESUMO

Os Surveys sao telescopios automatizados posicionados estrategicamente na superficie terrestre
ou no espago, projetados para realizar varreduras do céu para que se construa um catdlogo
detalhado dos corpos celestes observados em seu campo de visdo. Combinados, esses instru-
mentos geram dezenas de ferabytes de dados astrondmicos, o que torna desafiador o registro
e a identificac@o destes objetos devido ao enorme volume de informagdes produzidas. Por
essa razao, sao necessdrios profissionais capacitados e técnicas computacionais avancadas de
aprendizado profundo, como Redes Neurais Convolucionais (CNNs), para gerenciar e processar
essa quantidade massiva de dados. O presente trabalho investiga a aplicabilidade de diversas
CNNs s na classificacao de galédxias utilizando imagens provenientes da base de dados Galaxy10
SDSS Dataset, composta por 21.785 imagens, cada uma com dimensdo de 69x69 pixels. As
arquiteturas testadas, pautadas em estudos prévios, foram Gharat & Dandawate, EfficientNetV2-
M, DenseNet121, ResNet50, AlexNet, VGG16 e VGG19. Técnicas de pré-processamento como
aumento de dados, redimensionamento e ajuste de contraste foram aplicadas de maneira sele-
tiva em diferentes experimentos, buscando identificar a combina¢do mais eficiente de forma a
melhorar os resultados. Os modelos foram avaliados usando métricas como Acurdcia, Perda,
ROC-AUC e PR-AUC. A arquitetura VGG19 com aplicacao da técnica CutMix apresentou o
melhor desempenho, alcangando uma acuricia de 0,90 e PR-AUC de 0,94. Os resultados obtidos
ndo apenas confirmaram a robustez das CNNs na classificacdo de dados astrondmicos, mas tam-
bém ressaltaram a importancia da escolha criteriosa do modelo e das técnicas complementares

para otimizag¢do do processo de classificacao.

Palavras-chave: Astronomia. Redes Neurais Convolucionais. Galaxias.



ABSTRACT

Surveys are automated telescopes strategically positioned on the Earth’s surface or in space,
designed to scan the sky to build a detailed catalog of the celestial bodies observed in their field
of view. Combined, these instruments generate terabytes of astronomical data, which makes
it necessary to record and identify these objects due to the enormous volume of information
produced. For this reason, qualified professionals and advanced deep learning computational
techniques, such as Convolutional Neural Networks (CNNs), are needed to manage and process
this enormous amount of data. This work investigates the applicability of several CNNs in
classifying galaxies using images from the Galaxy10 SDSS Dataset, composed of 21,785 images,
each with dimensions of 69x69 pixels. The tested frameworks, based on previous studies,
were Gharat & Dandawate, EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGG16 and
VGG19. Preprocessing techniques such as data augmentation, resizing and contrast adjustment
were applied in an active selected manner in different experiments, seeking to identify the most
efficient combination in order to improve the results. The models were evaluated using analyses
such as Accuracy, Loss, ROC-AUC and PR-AUC. The VGG19 architecture with application
of the CutMix technique presented the best performance, achieving an accuracy of 0.90 and
PR-AUC of 0.94. The results obtained not only confirmed the robustness of CNNs in the
classification of astronomical data, but also highlighted the importance of choosing the model

criteria and complementary techniques to optimize the classification process.

Keywords: Astronomy. Convolutional Neural Networks. Galaxies.
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1 INTRODUCAO

Na vasta extensdao do nosso universo, os astronomos utilizam técnicas de inteligéncia
artificial para explorar e compreender corpos celestes distantes como asterodides, luas, planetas
em outros sistemas solares e até mesmo as primeiras galdxias, situadas a cerca de treze bilhdes de
anos-luz! de distancia. Telescopios localizados na superficie da Terra e no espago produzem dia-
riamente grandes volumes de dados, tornando particularmente dificil o registro e a categorizacao
destes astros sem o uso de métodos computacionais avangados (SANTOS, 2024).

Um exemplo significativo foi a primeira imagem direta de um buraco negro, em
2019, capturada pelo projeto Event Horizon Telescope (EHT). Devido a impossibilidade técnica
de obtencao dessa imagem por meio de um unico telescopio, dados provenientes de diversos
radiotelescopios foram integrados utilizando algoritmos avangados e aprendizado de méquina
para reconstruir a imagem final. Esse método possibilitou a criacdo da famosa imagem da sombra
do buraco negro supermassivo da galdxia Messier 87, localizada a aproximadamente 55 milhdes
de anos-luz (EHT COLLABORATION et al., 2019).

O surgimento das Redes Neurais Convolucionais (CNNs) revolucionou o campo do
processamento de imagens (VARGAS et al., 2016). Inspiradas no sistema visual humano, as
CNNss se destacam pelo reconhecimento eficiente de padrdes, nos permitindo analisar imensos
conjuntos de dados com uma precisao Unica, extraindo caracteristicas cruciais para discernir
assinaturas sutis de objetos celestes a partir de uma imagem de campo profundo, obtidas por
meio de longa exposicdo. A aplicacdo de CNNs neste contexto ndo s6 agiliza a analise de vastos
pacotes de dados, mas também aumenta a precisdo da classificacdo, facilitando a descoberta e
caracterizacao destes objetos (LECUN et al., 2015).

Neste trabalho aplicamos as CNNs na classificacdo morfolégica de Galédxias da
base de dados Galaxyl0 SDSS Dataset (GALAXY 10 SDSS DATASET, 2024), comparando
a eficdcia dos modelos: Gharat & Dandawate (2022), EfficientNetV2-M (TAN; LE, 2021),
DenseNet12] (HUANG et al., 2017), ResNet50 (HE et al., 2016), AlexNet (KRIZHEVSKY et
al., 2012), VGG16 e VGGI19 (SIMONYAN; ZISSERMAN, 2015).

1

O ano-luz é uma unidade de comprimento usada para expressar distdncias astrondmicas e equivale a cerca de
9,46 trilhdes de quildmetros.
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1.1 Objetivos

1.1.1 Objetivo Geral

Investigar a aplicacdo de modelos de aprendizagem profunda na classificacdo de

galdxias em imagens da base de dados Galaxyl0 SDSS Dataset

1.1.2 Objetivos Especificos

* Pesquisar bibliografia relevante sobre aplicacao de redes convolucionais na classificacao

de objetos astrondmicos;

Analisar classificacdo de imagens para diferentes grupos de galdxias da base de dados

Galaxyl0 SDSS Dataset;

* Comparar a eficicia dos modelos: Gharat & Dandawate, EfficientNetV2-M, DenseNet121,
ResNet50, AlexNet, VGG16,e VGG19;

* Avaliar como as estretégias de aumento de dados Datagen, MixUp e CutMix e aumento

de contraste CLAHE (Contrast Limited Adaptive Histogram Equalization) impactam no

desempenho dos modelos do item anterior.

1.2 Organizacao do Trabalho

Os demais capitulos seguem a seguinte estrutura:
* No Capitulo 2, trazemos o embasamento tedrico e a revisao das principais obras, autores e
conceitos relacionados ao tema do trabalho;
* No Capitulo 3, descrevemos os métodos de pesquisa utilizados, como coleta e andlise de
dados, técnicas, amostragem, entre outras informagdes relevantes;
* No Capitulo 4, apresentamos os resultados obtidos durante o desenvolvimento da pesquisa;
* Finalmente no Capitulo 5, discutimos as principais conclusdes sobre os resultados obtidos

na presente pesquisa e propomos algumas perspectivas para a continuidade deste trabalho.
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2 FUNDAMENTACAO TEORICA

Neste capitulo, abordaremos os fundamentos para a compreensao deste estudo. Na
Secdo 2.1, exploraremos o conceito de galadxias, suas subdivisoes e classificacdes de acordo
com a Sequéncia de Hubble. Na Secdo 2.2, falaremos de Deep Learning com foco em CNNSs,
bem como suas caracteristicas, vantagens, subdivisdes para treinamento, Transfer Learning,
principais métricas de desempenho e estratégias de balanceamento de dados utilizadas neste
trabalho. Na Secao 2.4, exploraremos as ferramentas empregadas para a coleta, distribui¢cdo e
disponibilizacdo de nossos dados observacionais. Finalmente, na Se¢do 2.5 revisaremos alguns

trabalhos relacionados que complementam e contextualizam nossa pesquisa.

2.1 Galaxias

As galédxias sdo vastas ilhas cosmicas na estrutura do universo, contendo desde
bilhdes a trilhdes de estrelas, juntamente com gas e poeira interestelar (NASA, 2024a). Elas
existem em vdrios formatos, tamanhos e composi¢oes, preenchendo todo 0 nosso cosmos.

A maioria destes astros possuem entre 10 e 13,6 bilhdes de anos. Algumas sdo quase
tdo antigas como o proprio Universo, que se formou hd cerca de 13,8 bilhdes de anos. Acredita-se
que a galdxia mais jovem conhecida se formou ha apenas 500 milhdes de anos (NASA, 2024a).
Elas costumam organizar-se em grupos e aglomerados de cerca de 100 membros, unidos por sua
gravidade mutua. Estes, também pertencem a estruturas maiores, chamadas superaglomerados,
podendo conter milhares de galdxias e formando as maiores estruturas do universo, como
podemos observar na Figura 1.

As galdxias ndo sdo entidades estéticas, eles evoluem ao longo do tempo através
de processos como formacao de estrelas, explosdes de supernovas e interagcdes com outras
galdxias. Seu estudo nos fornece informagdes cruciais sobre a historia e a dindmica do universo,
ajudando-nos a compreender sua estrutura e evolucdo em maiores escalas (FILHO; SARAIVA,
2014). Dentro das galdxias, também existem fendmenos que influenciam em sua evolu¢do, como
buracos negros supermassivos em seus nicleos, com massas milhdes de vezes maiores que a do

Sol.
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Figura 1 — Primeira imagem de campo profundo processada pelo Telescépio Espa-
cial James Webb, revelando a vasta quantidade de galdxias distantes.

Fonte: https://www.nationalgeographicbrasil.com/

2.1.1 Classificacdo Morfologica das Galdaxias

As galdxias podem ser classificadas com base em sua morfologia em cinco principais
categorias: Elipticas, Lenticulares, Espirais, Espirais Barradas e Irregulares. Com base nessas
subdivisdes, constrdi-se o esquema evolutivo, representado nas Figuras 2, conhecido como
Sequéncia de Hubble (FILHO; SARAIVA, 2014).

Essa classificacdo foi proposta pelo astronomo Edwin Hubble, que dedicou sua vida
ao estudo das galéxias e responsavel por provar a existéncia de objetos localizados além da Via
Lactea, demonstrando que o universo € formado por diversas galdxias e aglomerados galacticos.
Antes dessa descoberta, acreditava-se que tudo o que era observado pertencia exclusivamente
a nossa galdxia, e muitos desses objetos eram erroneamente identificados como aglomerados
globulares? (FILHO; SARAIVA, 2014).

Para estabelecer essa distingao, Hubble utilizou a correlacao direta entre a luminosi-
dade e o periodo de pulsacio de uma cefeida varidvel cldssica® (descoberta de Henrietta Swan
Leavitt em 1908) para dimensionar distancias galacticas e extragalacticas (NASA, 2023).

As galdxias elipticas apresentam uma forma eliptica mais arredondada, sem bragos

espirais distintos (NASA, 2023). Eles variam amplamente em tamanho, desde pequenas elipticas

2 Aglomerado globular é a denominagdo dada a um tipo de aglomerado estelar cujo formato aparente é esférico e
cujo interior € muito denso e rico em estrelas antigas, mantidas juntas pela acdo da gravidade. Estrutura milhares
de vezes menor que uma galaxia.

Cefeidas sdo estrelas instaveis muito maiores e mais brilhantes do que o Sol, que apresentam uma variagdo de
brilho regular, uma vez medida esta variacdo, podemos utiliza-la para determinar distancias astrondmicas.
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Figura 2 — Sequéncia de Hubble para classificagdo das galdxias com base em sua
morfologia: elipticas, espirais, espirais barradas e irregulares.

Fonte: https://spacetoday.com.br/dando-sentido-para-a-sequencia-de-hubble/

ands - em maior nimero - até enormes elipticas supergigantes encontradas nos centros de
aglomerados de galdxias - mais raras. As galdxias elipticas tendem a ter populagdes de estrelas
mais antigas e menos material interestelar para a formag¢do de novas estrelas em comparacdo
com as galdxias espirais (FILHO; SARAIVA, 2014).

Hubble subdividiu as galdxias elipticas em classes de EQ a E7, conforme seu grau
de achatamento (Figura 3), definido pela equagao:

nlex(a_b) @2.1)

a

onde a representa o eixo maior da elipse e b o eixo menor. Uma galdxia classificada como
EQ tem uma aparéncia quase redonda, podendo ser de fato esférica ou apenas parecer assim
dependendo do angulo de observagdo. J4 uma E7 € visivelmente mais alongada e achatada, tendo
uma forma mais ovalada. Essa classificacdo € baseada na aparéncia da galdxia do ponto de vista
da Terra, ndo em sua forma tridimensional real (FILHO; SARAIVA, 2014).

As galaxias espirais tem bracgos espirais distintos, que se estendem a partir de uma
protuberancia central. Esses bracos sdo regides ricas em gas, poeira e estrelas jovens, onde
ocorrem intensos processos de formagao estelar (NASA, 2023).

Estas podem ser subdividida em trés componentes principais: o bojo central, o disco

e o halo (Figura 4). Estas componentes sdo definidas:
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Figura 3 — Morfologia das galdxias elipticas com diferentes graus de
achatamento.

=0 E3 =

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

* Bojo central: Regido esférica ou ovalada no centro da galdxia, composta majoritariamente
por estrelas mais antigas e, possivelmente, um buraco negro supermassivo.

* Disco: Contém os bragos espirais e abriga estrelas jovens, gés e poeira. Regido da galdxia
onde predominam os processos de formacao estelar.

* Halo: Camada externa extensa e menos densa, cujas estruturas centrais sao compostas por

4

aglomerados globulares e matéria escura”, crucial para a massa e gravidade da galdxia.

Figura 4 — Representacdo esquemadtica das subdivisdes da Via Léctea, destacando a
localizac¢ao do nosso Sistema Solar no disco galactico.

Bojo central

Halo estelar

www.esa.int Agéncia Espacial Europeia

Fonte: https://astropontos.org/2019/09/17/a-formacao-da-via-lactea/

As galéxias espirais podem ainda ser subdivididas em dois tipos principais: espirais

sem barra e espirais barradas. Nas espirais sem barra, os bracos emergem diretamente do nucleo

da galdxia, enquanto nas espirais barradas, hd uma barra central de estrelas que atravessa o bojo

galéctico, e os bracgos espirais se originam das extremidades dessa estrutura. A presenca ou

auséncia dessa barra pode influenciar processos internos da galdxia, como a redistribui¢do de gés

Matéria escura é um tipo de matéria que ndo emite, absorve ou reflete luz, tornando-a invisivel e detectdvel
apenas através dos efeitos gravitacionais que exerce sobre a matéria visivel e a radiacdo cosmica.
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e poeira, afetando a formacao de estrelas e a evolucdo do nicleo galactico (FILHO; SARAIVA,
2014).

As galaxias espirais sdo também classificadas em diferentes subtipos com base no
grau de abertura de seus bracos espirais e no tamanho do bojo central (SANTOS, 2024). Essa

subdivisdo segue a sequéncia Sa, Sb, e Sc (Figura 5).

Figura 5 — Morfologia das galdxias espirais, nos seus trés subtipos, com
base no grau de abertura dos bracos espirais e no tamanho do
bojo central.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

As galdxias espirais barradas sdo classificadas de acordo com a proeminéncia de sua
barra central e a abertura de seus bragos espirais, seguindo a sequéncia SBa, SBb e SBc, como
apresentado na Figura 6 (SANTOS, 2024). Evidéncias observacionais indicam que a Via Lactea

€ uma galdxia espiral barrada, pertencente ao tipo SBc.

Figura 6 — Morfologia das galdxias espirais barradas, em seus trés subti-
pos, com base na proeminéncia da barra central e na abertura
dos bracos espirais.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html
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As galéxias lenticulares apresentam uma estrutura semelhante as galdxias espirais -
possuindo um nicleo, um disco e um halo - porém nao possuem bragos espirais. Na classificaciao
de Hubble, sdo representadas pela designacao S0, onde o nimero 0 faz referéncia a sua forma,
que lembra uma lente (SANTOS, 2024).

Essas galdxias sao consideradas uma forma de transi¢ao entre galdxias elipticas e
espirais, pois compartilham caracteristicas de ambas (Figura 7). Assim como as galdxias elipticas,
elas contém pouca quantidade de géds e poeira, apresentando uma predominéncia de estrelas
antigas. No entanto, sua estrutura em disco as aproxima das galdxias espirais. As lenticulares
podem ser classificadas como barradas SB0O ou nao barradas SO, dependendo da presencga ou
auséncia de uma barra central (FILHO; SARAIVA, 2014).

Figura 7 — Representacao da morfologia de uma galaxia lenticular (S0) a esquerda e a galdxia
M 104, um exemplo real desse tipo de galéxia, a direita.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

As galaxias irregulares nao t€m uma forma definida (NASA, 2024b). Eles podem
ter uma aparéncia cadtica, sem nenhuma simetria particular (Figura 8). Galéxias irregulares
geralmente resultam de interagGes gravitacionais ou fusdes entre galdxias. Eles podem conter
bolsdes de intensa formacao estelar, juntamente com nuvens de poeira e gas.

Além da diferenciacdo visual, cada classe também diz repeito a caracteristicas de
propriedades tnicas de cada tipo de galdxia. Enquanto as espirais possuem gas e estrelas jovens,
as elipticas sdo dominadas por estrelas antigas e pouca poeira. As irregulares exibem caracteristi-
cas variadas, com formacgao estelar ativa. A Tabela 1 resume as principais caracteristicas das

galdxias elipticas, espirais e irregulares (FILHO; SARAIVA, 2014).
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Figura 8 — Galaxias irregulares. Da esquerda para direita: NGC4038, NGC1427 e IC4710,
caracterizadas pela auséncia de uma estrutura definida e pela intensa formacao estelar.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

Tabela 1 — Comparagdo das propriedades das galdxias espirais, elipticas e irregulares com relagdo
a massa, tamanho, luminosidade, composicao estelar, presenca de gas e poeira, cor e
idade das estrelas.

Propriedade Espirais Elipticas Irregulares
Massa (M) 10%a 102 10° a 10" 108 a 101
Diametro (103 pc) 5-30 1 - 1000 1-10
Luminosidade (L) 108 a 101 10°a 102 107 a2x10’
Populacdo Estelar Velha e jovem Velha Velha e jovem
Tipo Espectral AakK Gak AaF
Gas Bastante Muito pouco Bastante
Poeira Bastante Muito pouca Varia
Cor Azulada no discoe  Amarelada Azulada
amarelada no bojo
Estrelas mais velhas 10'° anos 10'° anos 109 anos
Estrelas mais jovens Recentes 10'% anos Recentes

Fonte: Adaptado de Santos (2024)
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2.2 Deep Learning

Deep Learning, ou aprendizado profundo, € uma técnica de aprendizado de maquina
capaz de identificar padrdes complexos em grandes volumes de dados utilizando redes neurais
artificiais que processam dados em multiplas camadas. Esta abordagem avancada aprende carac-
teristicas automaticamente, sem necessidade de engenharia manual de atributos, beneficiando-se
com o aumento dos dados disponiveis (LECUN et al., 2015).

Ao contrério de outras técnicas de Machine Learning, que podem ndo escalar bem,
0 Deep Learning é eficaz em resolver desafios complexos, como interpretacdo de imagens e
compreensao da fala, otimizando processos em areas diversas como saude, financas, seguranca,

automacdo e astronomia (HAYKIN, 2000).
2.2.1 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNA) sdo modelos computacionais inspirados no
funcionamento do cérebro humano (LECUN et al., 2015). Seu principio fundamental estd na
plasticidade cerebral, a capacidade de adaptacao e reorganizacdo diante de mudancas ambien-
tais. Essa propriedade permite a formacao de novas conexdes entre neurdnios, facilitando o
aprendizado (HAYKIN, 2000).

O neur6nio artificial € a unidade basica das redes neurais (Figura 9). Ele recebe
multiplas entradas ponderadas, aplica uma func¢do de ativacdo e gera uma saida (HAYKIN, 2000).

Seu funcionamento pode ser descrito pela equagao:
z=) wixi+b (2.2)

onde x; representa as entradas, w; os pesos associados a cada entrada, b um viés e z a soma
ponderada dos valores. Uma funcao de ativa¢ao, como ReLU (Rectified Linear Unit) ou sigmoide,
adiciona ndo-linearidade, permitindo que a rede aprenda padrées complexos. Assim como os
neurdnios bioldgicos transmitem sinais através das sinapses, os neur6nios artificiais ajustam seus
pesos para otimizar o desempenho do modelo (HAYKIN, 2000).

Para que essas redes aprendam de maneira eficiente, utiliza-se o algoritmo de back-
propagation, responsdvel por ajustar os pesos das RNAs e minimizar o erro entre a saida prevista

e areal (LECUN et al., 2015). O aprendizado ocorre em duas etapas, como apresentado na
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Figura 9 — O neurdnio artificial, onde as entradas s@o ponderadas por
pesos sindpticos e somadas. A fungdo de ativacdo, que de-
termina a saida da equacgao, adicionando nao linearidade ao
neurdnio.

Entradas

X
2 @ Saida
Pesos (p > Vaa

x @ Fungcdo de Ativacdo
“n

Fonte: Haykin (2000)

Figura 10. Na fase forward (propagacao direta), os dados percorrem a rede camada por camada
até gerar uma previsdo. Enquanto na fase backward (retropropagacdo do erro), o erro da previsao
€ calculado e propagado de trds para frente, ajustando os pesos dos neurdnios conforme o

gradiente da fun¢do de perda (HAYKIN, 2000).

Figura 10 — Funcionamento do algoritmo backpropagation em uma rede
neural, destacando a propagacdo direta (forward) dos dados
até a saida e a retropropagacdo (backward) do erro, que
ajusta os pesos sindpticos para otimizar o aprendizado da
rede.

Camada neural

de saida
Camada de

entrada
—> Fase forward

e Fase backward

12 Camada neural 22 Camada neural
escondida escondida

Fonte: Haykin (2000)

Para otimizar esse ajuste, o backpropagation utiliza a Regra da Cadeia do célculo

diferencial, garantindo que cada camada aprenda representagdes relevantes dos padrdes nos
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dados. O treinamento das redes € realizado com grandes volumes de dados, € a minimizag¢ao do
erro ocorre por meio de algoritmos de otimizagdo baseados em gradiente descendente (FILHO,
2022). Dessa forma, o modelo ajusta seus pesos e vieses de maneira eficiente, melhorando a

precisdo das previsoes.

2.2.2 Redes Neurais Convolucionais

As CNNs sdo uma classe de modelos de aprendizagem profunda para processar
e analisar dados visuais, como imagens e videos. Elas sdo inspirados na organizacio do cor-
tex visual humano e s@o excepcionalmente poderosas para tarefas como detec¢do de objetos,
reconhecimento e segmentacao de imagens (LECUN et al., 2015).

Uma das principais vantagens das CNNs € a sua habilidade de aprender automatica-
mente representacdes hierdrquicas de recursos a partir de dados brutos, eliminando a necessidade
de engenharia manual de recursos. Isso as torna extremamente eficazes em tarefas que envolvem
dados visuais complexos, levando a avangos em dreas como visdao computacional, andlise de
imagens médicas, dire¢do autdnoma e muito mais (LECUN et al., 2015).

Para Filho (2024) uma CNN pode ser subdividida da seguinte forma, como apre-
sentado na Figura 11. O processo envolve camadas de convolugdo e pooling, para a extracao
de caracteristicas das imagens, seguidas por camadas totalmente conectadas, responsdveis pela

classificacdo dos dados.

Figura 11 — Estrutura de uma rede neural convolucional e suas camadas. O fluxo de processa-
mento ocorre da entrada até a classificacao final.
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Fonte: LeCun et al. (2015)

A camada convolutiva € responsavel em aplicar um conjunto de filtros (kernels)

sob os dados de entrada (SANTOS, 2024). Cada filtro executa uma operacdo de convolugao
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deslizando pelas imagens de entrada e calculando um produto escalar entre seus pesos € 0s
valores dos pixels que eles sobrepdem. Esta operagdo captura efetivamente padrdes espaciais,
como bordas, texturas e outros recursos em diferentes locais das figuras (FILHO, 2024). Por fim,
produz-se um valor que representa uma caracteristica local da imagem, como apresentado na

Figura 12.

Figura 12 — Camadas convolutivas em uma rede neural no processamento de uma imagem
de 32x32 pixels. Sucessivas camadas de convolucdo e subamostragem reduzem a
dimensionalidade e extraem caracteristicas.
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Fonte: Santos (2024)

As camadas de pooling sdo frequentemente inseridas apds as camadas convolucio-
nais para reduzir as dimensdes espaciais dos mapas de recursos, a0 mesmo tempo que retém
informacdes importantes (SANTOS, 2024). O pooling maximo (max pooling), por exemplo,
seleciona o valor maximo de cada regido local do mapa de recursos, reduzindo efetivamente a
resolugdo (Figura 13).

Optamos pelo uso de pooling em vez da andlise de componentes principais (Principal
Component Analysis - PCA) em nossa CNN devido a capacidade desta técnica de preservar a
localidade das caracteristicas espaciais, que s@o essenciais para tarefas de visdo computacional.
Em contraste, o PCA, embora eficaz na reducdo da dimensionalidade, ndo mantém essas caracte-
risticas locais e requer mais recursos computacionais. Além disso, técnicas como o max pooling
reduzem eficientemente a resolu¢ao enquanto preservam informagdes cruciais, facilitando o
aprendizado de invariancias e melhorando a eficiéncia computacional do modelo (SANTOS,
2024).

Ap0s varias camadas convolucionais e de pooling, os recursos de alto nivel sdo
representados na forma de um vetor unidimensional e alimentados em uma ou mais camadas

totalmente conectadas (dense layers), como apresentado na Figura 14. Essas camadas realizam
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Figura 13 — Funcionamento da camada de pooling em redes neurais
convolucionais. O exemplo demonstra a aplicagdo do Max
Pooling com um filtro de tamanho 2x2, onde o valor mdximo
de cada regido filtrada € selecionado para compor a nova
matriz reduzida.

Pooling maximo
—
Filtro - (2x 2)
Passo - (2, 2)

Fonte: https://www. geeksforgeeks.org/cnn—introductioh-to—pooling-layer/

tarefas de classificacio ou regressdo aprendendo a mapear os recursos extraidos para os rétulos

de saida desejados (SANTOS, 2024).

Figura 14 — Operacao de flattening em redes neurais convolucionais.
Esse processo transforma a saida multidimensional da ca-
mada de pooling em um vetor unidimensional para os dados
serem processados por camadas densas totalmente conecta-
das.
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CAMADA DE ACHATAMENTO

N
——
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Fonte: Santos (2024)

2.2.3 Transfer Learning

Para Hosna et al. (2022), Transfer Learning (TL) € uma abordagem de aprendizado
de maquina que permite que um modelo treinado em um determinado conjunto de dados sejam
reutilizados para resolver um problema relacionado. Diferente dos métodos tradicionais, que
assumem que o treinamento e os testes ocorrem sob a mesma distribuicado de dados, essa

técnica possibilita a adapta¢do de conhecimento previamente adquirido, tornando o processo de
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aprendizado mais eficiente.

A TL reduz a necessidade de grandes volumes de dados rotulados e acelera o
treinamento dos modelos. Essa abordagem se destaca especialmente em cendrios onde hd pouca
disponibilidade de dados, aproveitando informagdes de dominios similares para obter melhores
resultados e melhorar o desempenho dos algoritmos. A Figura 15, ilustra o funcionamento deste

modelo de aprendizagem.

Figura 15 — Comparacao entre Aprendizado de Maquina Tradicional
e Aprendizado por Transferéncia. No método tradicional
(a), diferentes tarefas utilizam sistemas de aprendizado in-
dependentes. Ja no Aprendizado por Transferéncia (b), o
conhecimento adquirido em uma tarefa fonte € reutilizado
para aprimorar o desempenho em uma tarefa alvo, tornando
o treinamento mais eficiente.

Tarefas diferentes (amostras) Tarefa de origem (amostras) Tarefa alvo
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(a) Método de Aprendizagem de Maquina Classico/Tradicional (b) Método de aprendizagem por transferéncia (moderno)

Fonte: Hosna et al. (2022)
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2.2.4 Modelos de CNN Pré-Treinados

Neste capitulo apresentaremos as seis arquiteturas de modelos pré-treinados que
serdo adotadas na etapa experimental deste trabalho, sao elas: VGGI16, VGG19, ResNet50,
DenseNetl21, EfficientNetV2-M e AlexNet.

A VGGI6 (SIMONYAN; ZISSERMAN, 2015) € uma arquitetura desenvolvida
para aumentar a profundidade das redes convolucionais e melhorar o desempenho em tarefas
de reconhecimento de imagens. Essa rede possui 16 camadas treindveis, incluindo 13 cama-
das convolucionais com filtros pequenos de 3x3 e trés camadas totalmente conectadas, como
apresentado na Figura 16. A rede utiliza camadas de max pooling (2x2) apds conjuntos de
camadas convolucionais para reduzir a dimensionalidade dos mapas de caracteristicas. Todas as
camadas escondidas usam a func¢do de ativacdo ReLU, e a camada final emprega Softmax para

classificagdo.
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Figura 16 — Ilustragdo da arquitetura VGG16.
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Fonte: https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f

A VGGI9 (SIMONYAN; ZISSERMAN, 2015) é uma variacdo mais profunda da
VGG16, composta por 19 camadas treindveis (16 convolucionais e trés totalmente conectadas),
foi projetada para melhorar a precisio na classificacdo de imagens em larga escala.

A estrutura da VGG19 € ilustrada na Figura 17. Essa é composta por pequenos filtros
convolucionais 3x3 em todas as camadas, mantendo um stride de um e preservando a resolugdo
espacial com preenchimento de um pixel. A rede inclui cinco camadas de max pooling (2x2,
stride 2) para reduzir a dimensionalidade dos mapas de caracteristicas. Ap0s a extracdo de
caracteristicas convolucionais, ha trés camadas totalmente conectadas, onde as duas primeiras
possuem 4096 neurdnios e a tltima realiza a classifica¢do final com Softmax. Todas as camadas
ocultas utilizam a fungdo de ativacdo ReLU, garantindo melhor aprendizado de caracteristicas

profundas (SIMONYAN; ZISSERMAN, 2015).

Figura 17 — Ilustracdo da arquitetura VGG19.
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Fonte: https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f
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A ResNet50 (HE et al., 2016), faz parte de uma familia de redes convolucionais
denominada ResNet (Residual Network). Essas foram projetadas para superar desafios no
treinamento de redes muito profundas, introduzindo o conceito de aprendizado residual.

A arquitetura da ResNet50, ilustrada na Figura 18, possui 50 camadas treindveis,
organizadas em blocos residuais. Esses blocos incluem atalhos (skip connections) que permitem
a propagacao direta das informagdes entre camadas, evitando problemas de perda de gradiente. A
arquitetura é composta por uma camada convolucional inicial de 7x7, seguida por uma sequéncia
de blocos residuais compostos por convolugdes 1x1, 3x3 e 1x1, maximizando a eficiéncia da
rede. O uso desses blocos permite que a rede aprenda transformacdes residuais em vez de tentar

modelar diretamente a saida desejada, facilitando a otimizacao (HE et al., 2016).

Figura 18 — Ilustracdo da arquitetura ResNet50.
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Fonte: https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-
and-code-implementation-d8d8fa67e46f

A DenseNet121 (HUANG et al., 2017) introduziu uma nova abordagem de conexdo
entre camadas, onde cada camada recebe como entrada os mapas de caracteristicas de todas as
camadas anteriores, formando conexdes densas que melhoram a propaga¢do da informacao e o
fluxo de gradientes.

Sua arquitetura possui 121 camadas treindveis, organizadas em blocos densos, in-
tercalados com camadas de transi¢do que realizam convolucdo 1x1 e pooling 2x2 para reduzir
a dimensionalidade, como apresentado na Figura 19. A principal inovacao da DenseNet em
relagdo a outras arquiteturas, como ResNet, € o uso de concatenacdo dos mapas de caracteristicas
em vez de soma residual, permitindo um melhor reaproveitamento das informacdes extraidas ao
longo da rede. Isso resulta em um modelo mais eficiente em termos de parametros, melhorando
o desempenho com um nimero menor de filtros (HUANG et al., 2017).

A EfficientNetV2-M (TAN; LE, 2021), apresentada na Figura 20, foi projetada para

melhorar a eficiéncia de treinamento e reduzir o nimero de parametros em comparagdao com
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Figura 19 — Ilustragdo da arquitetura DenseNet-121.
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Fonte: https://link.springer.com/article/10.1007/s11277-024-11467-8/figures/2
modelos anteriores, mantendo um alto desempenho em classificacdo de imagens.
Figura 20 — Ilustracdo da arquitetura EfficientNetV2-M.
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Fonte: https://www.researchgate.net/figure/Architecture-of-efficientNetv2_fig2_369050073

Este modelo utiliza uma combinacao de Neural Architecture Search (NAS) e es-
calonamento composto para otimizar a relacio entre velocidade de treinamento e eficiéncia
de parametros. Diferente da versdo anterior (EfficientNetVI), esta nova arquitetura introduz
os blocos Fused-MBConv, que substituem convolucdes nos estigios iniciais para acelerar o
processamento. Além disso, incorpora um método de aprendizado progressivo, onde o tamanho
da imagem e a regulariza¢do sio ajustados dinamicamente ao longo do treinamento, melhorando
a generalizacdo do modelo (TAN; LE, 2021).

A AlexNet (KRIZHEVSKY et al., 2012), ilustrada na Figura 21, possui oito camadas
treindveis, sendo cinco camadas convolucionais seguidas por trés camadas totalmente conec-
tadas. Suas principais inovagdes incluem o uso da fun¢do de ativacdo ReLU para acelerar o
treinamento, camadas convolucionais sobrepostas, normalizacdo local para melhorar a gene-

ralizagdo e a técnica de dropout para reduzir o overfitting. Além disso, foi uma das primeiras
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arquiteturas a explorar treinamento em multiplas GPUs, permitindo lidar com redes profundas
mais complexas. Essa arquitetura foi a primeira a demonstrar o potencial do deep learning para
classificacdo de imagens em larga escala, influenciando o desenvolvimento de redes neurais
modernas (KRIZHEVSKY et al., 2012).

Diferente de outras arquiteturas populares, a AlexNet ndo estd disponivel na biblioteca
Keras, o que exigiu sua implementacao, sem o uso de TL. Isso porque treinar essa rede com
Imagenet seria invidvel, pois demandaria dias ou até semanas, devido as limitacdes de hardware

disponiveis.

Figura 21 — Ilustracdo da arquitetura AlexNet.
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2.3 Meétricas de Desempenho

A eficdcia de uma algoritmo apds treinado € verificada examinando sua eficiéncia
nos dados do conjunto de teste. Para isso, esse desempenho do algoritmo € avaliado através de
métricas como matrix de confusdo, acurdcia, precisdo, revocacao, entre outras (FILHO, 2024).

A matriz de confusdo permite visualizar o desempenho de um modelo de classifi-
cacdo, ajudando a entender melhor os erros e a qualidade das previsdes do modelo (JUNIOR,
2023).

Em uma matriz de confusao, as linhas representam as classes previstas, enquanto
as colunas correspondem as classes reais. Cada célula contém os valores das frequéncias de
ocorréncia para as combinagdes possiveis entre previsdes e valores reais. Existem quatro tipos
de valores que podem ser encontrados nas células da matriz: Verdadeiro Positivo (VP), Falso
Positivo (FP), Verdadeiro Negativo (VN) e Falso Negativo (FN). Esses valores sdo ilustrados na

Figura 22:
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Figura 22 — Matriz de confusdo para um problema de clas-
sificacdo bindria.
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Fonte: Junior (2023)

* Verdadeiro positivo (VP): Classificacdo correta na classe positiva, ou seja, pertence a
classe positiva e foi classificado como pertencente a classe positiva;
* Falso positivo (FP): Classificacdo incorreta na classe positiva, ou seja, pertence a classe
negativa e foi classificado como pertencente a classe positiva;
* Verdadeiro negativo (VN): Classificacdo correta na classe negativa, ou seja, pertence a
classe negativa e foi classificado como pertencente a classe negativa;
* Falso negativo (FN): Classificacdo incorreta na classe negativa, ou seja, pertence a classe
positiva e foi classificado como pertencente a classe negativa.
A quantidade de linhas e colunas em uma matriz de confusdo varia de acordo com
o nimero de classes de saida identificadas apds o treinamento. Para uma avaliacdo abrangente
em vdrios cendrios, € possivel recorrer a outras métricas derivadas dos resultados dessa matriz,
como apresentado na Tabela 2. Cada uma dessas métricas oferece uma perspectiva tinica sobre o

desempenho do modelo, facilitando uma andlise mais completa.

Tabela 2. Resumo das Métricas de Avaliacdo de Modelos de Classificacdo.

Classe Descricao

Acuricia Proporcao de previsdes corretas sobre o total de casos.

Precisao Proporcao de previsdes positivas corretas sobre o total de previsdes positivas.
Revocacgao Propor¢ao de positivos reais corretamente identificados pelo modelo.
F1-Score Média harmonica entre precisio e revocagao.

ROC-AUC Avalia a capacidade do modelo de distinguir entre classes.
PR-AUC Avalia a eficdcia do modelo em contextos de classes desbalanceadas.

A acurdcia € a proporcao de previsdes corretas (tanto positivas quanto negativas) em
relacdo ao total de previsdes feitas (JUNIOR, 2023). Em outras palavras, € a fracdo de todas as

classificacdes que o modelo acertou, considerando tanto as classes positivas quanto as negativas.
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Fazendo uma relagdo com os valores presentes na matriz de confusdo temos:

VP -+ VN
Acuracia = + 2.3)
VP +FP+ VN +FN

A acurécia geral € util quando as classes estdo balanceadas, ou seja, quando hi
aproximadamente o mesmo nimero de exemplos em cada classe. Para modelos desbalanceados,
podemos avaliar a acuricia por classe (SANTOS, 2024).

A precisdo, por outro lado, foca apenas nas previsdes positivas. Ela mede a propor¢do
de exemplos corretamente classificados como positivos em relagdo a todos os exemplos que o
modelo classificou como positivos. Ela € especialmente ttil quando se quer minimizar o nimero
de falsos positivos, ou seja, quando o custo de classificar algo incorretamente como positivo €
alto (JUNIOR, 2023). Fazendo uma relacdo com os valores presentes na matriz de confusao
temos:

_— VP
Precisdo = VPLTP (2.4)

A revocagdo € calculada como a propor¢ao de verdadeiros positivos em relagao
ao total de casos que realmente sdo positivos, ou seja, a soma dos verdadeiros positivos e
dos falsos negativos (JUNIOR, 2023). Ele responde a pergunta "Entre todos os exemplos que
realmente pertencem a classe positiva, quantos o modelo conseguiu identificar corretamente?".
Relacionando com os valores presentes na matriz de confusdo temos:

VP
Revocagdo = VPN (2.5

A FI-Score consiste na métrica de desempenho que combina os valores das métricas
precisdo e revocacdo em um unico valor. Ele é especialmente ttil quando ha um desequilibrio
entre as classes, e voc€ deseja um equilibrio entre a precisao e o revocagao (JUNIOR, 2023).

Podemos calcula-la pela férmula a seguir:

Precisdo x Revocagao

F1l-score =2 (2.6)

X = =
Precisdo 4 Revocacgao
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A curva Receiver Operating Characteristic (ROC) relaciona a Taxa de Falso Positivo
(TPR) ou revocagao, com a Taxa de Verdadeiro Positivo (FPR) (JUNIOR, 2023). Estes valores
podem ser obtidos a partir de:
FPR = 1— Revocacdo = FPfj—% 2.7)
O modelo ideal seria aquele em que TPR = 1, ou seja, todas as classes realmente
positivas fossem classificadas corretamente. Da mesma forma, a condi¢do ideal para FPR seria 0,
indicando que nenhuma classe realmente negativa foi erroneamente classificada como positiva.
Isso resultaria no ponto (0,1) no grafico da curva ROC. Assim, quanto mais préxima a curva ROC
estiver desse ponto, melhor serd o desempenho do classificador (JUNIOR, 2023). A Figura 23
apresenta um gréfico ilustrativo desta métrica.
A drea sob a curva (AUC), derivada da curva ROC, equivale a métrica que mede
a capacidade discriminativa do modelo. Um valor de AUC mais alto indica uma maior proba-
bilidade do modelo distinguir corretamente entre classes positivas e negativas. Esta métrica é
especialmente valiosa para avaliar a efici€ncia do classificador em contextos com desequilibrio
de classes ou onde as consequéncias de erros de classificacdo sdo considerdveis (JUNIOR, 2023).
Figura 23 — Curva para avaliagdo de modelos de classificacdo. A linha tracejada

representa um classificador aleatério, enquanto a curva cinza indica um
classificador perfeito.
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Por fim, a curva precisdo-revocagdo € uma métrica que relaciona o revocagao com a
precisdo (JUNIOR, 2023). Na Figura 24 a seguir, podemos observar um exemplo.

A drea sob a curva precisdo-revocacio (PR-AUC) indica a qualidade do modelo em

distinguir classes, refletindo sua habilidade em manter alta precisdo e revocagao em diversos
limiares (JUNIOR, 2023). Um valor alto de AUC mostra que o modelo efetivamente identifica

instancias positivas com uma taxa minima de falsos positivos, sendo crucial em contextos com
classes desequilibradas.

Figura 24 — Curva PR-AUC para avaliacdo do desempenho de classificadores.
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2.4 Exploracao Digital do Espaco: O Sloan Digital Sky Survey e a Plataforma Galaxy

Zoo

Surveys sdo telescopios instalados no espaco ou em regides remotas da Terra que
realizam observagdes sistemdticas do céu para catalogar objetos celestes, estudar suas proprieda-
des e mapear o universo em vdrias escalas. Estes equipamentos cobrem diferentes comprimentos
de onda, desde ondas de rddio até raios gama, fornecendo vastos volumes de dados para andlise
e apuracdo (ALMEIDA et al., 2023).

Muitas pesquisas astrondmicas adotam politicas de dados abertos, disponibilizando
seus conjuntos de dados gratuitamente a comunidade cientifica e ao publico. Isto incentiva a
colaboracdo, permite a verificacdo independente dos resultados e promove a inovacao nas técnicas
de investigacdo. Dessas bases de dados, foram realizadas inumeras descobertas no campo da
astronomia nos tltimos anos, incluindo a detec¢do de exoplanetas®, o mapeamento da radiacio
césmica de fundo em micro-ondas’ e a identificacio de galdxias e quasares® distantes (SLOAN,
2024). Atualmente, os Surveys sdo essenciais para a abordagem de questdes fundamentais sobre
a origem, evolucao e estrutura do universo, abrindo caminho para novos avanc¢os na astronomia e

na cosmologia.
2.4.1 Sloan Digital Sky Survey

O Sloan Digital Sky Survey (SDSS) é o mais ambicioso levantamento astrondmico
em andamento na atualidade. E um esforgo colaborativo que envolve centenas de astronomos
de todo o mundo, com o objetivo de mapear bilhdes de objetos celestes e sondar a estrutura em
grande escala do universo. Este projeto teve inicio no ano 2000 e j4 estd em sua quinta versao, o
SDSS-V (SLOAN, 2024). Sua versao original consistia da observagdo de imagens e espectros
usando um telescépio dedicado de 2,5 metros localizado em Apache Observatory Point no Novo
México - EUA (Figura 25) (SDSS, 2022).

Suas imagens sao essenciais para a identificacdo de alvos para a observagao de

espectros, nos permitindo construir um mapa tridimensional de milhdes de galdxias e quasares.

6
7

Um exoplaneta é um planeta que se encontra fora do nosso Sistema Solar.

A Radia¢do Césmica de Fundo em microondas (RCFM) € um sinal eletromagnético, de origem cosmolégica,
que pode ser observado em todo o céu. Ela esta associada a uma época em que o Universo ainda era muito
jovem, quando a matéria era predominantemente constituida por prétons e elétrons que formavam uma espécie
de "gés primordial".

Um quasar, é um nucleo galdctico ativo, de tamanho maior que o de uma estrela, porém menor do que o tamanho
minimo para ser considerado uma galaxia.
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Figura 25 — Telescopio da missdo Sloan Digital Sky Survey.

Fonte: https://sloan.org/programs/research/sloan-digital-sky-sufvey

A medida que o levantamento progride, os dados sdo disponibilizados a comunidade cientifica (e
para o piblico em geral) em incrementos anuais através do site SkyServer’ (ALMEIDA et al.,
2023).

Dentre as conquistas do SDSS, destacam-se: criagdo de um mapa 3D detalhado
do universo; descoberta de milhdes de objetos celestes, incluindo estrelas, galdxias e quasa-
res; medi¢do da estrutura em grande escala do universo e impressao das oscilagdes actsticas
barionicas!?; estudo da estrutura, dinAmica e composicdo quimica da Via Lictea; numerosas
contribui¢des para varios campos da astronomia, incluindo cosmologia, evolug¢ao de galédxias,
astrofisica estelar e muito mais (SLOAN, 2024).

O SDSS exerce um impacto profundo em nossa compreensdo do universo, impul-
sionando uma vasta gama de pesquisas e definindo a trajetéria da astronomia contempora-

nea (SLOAN, 2024).

9

https://www.sdss4.org/
10" Ondas de pressdo geradas nos primordios do universo causadas pela intera¢io dos dtomos com a radiacio. Este
fendmeno esta correlacionado com a abundancia de Aglomerados Galacticos em determinadas regides.
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2.4.2 Galaxy Zoo

O Galaxy Zoo € um projeto de ciéncia cidada lancado em 2007, que utiliza classifica-
coes visuais de mais de um milhdo de galédxias extraidas do SDSS, para criar um amplo catdlogo
morfolégico desses corpos celestes. Com dados publicamente acessiveis, esse projeto facilita
que pesquisadores e o publico em geral explorem e empreguem esses recursos (LINTOTT et al.,
2008).

Com uma abordagem de crowdsourcing, no qual mais de 150 mil voluntarios ao
redor do mundo classificam galdxias em uma escala muito maior do que seria possivel apenas por
astronomos profissionais. Este método nao apenas democratiza a participacdo na ciéncia, mas
também melhora a qualidade dos dados coletados (MASTERS, 2019). Os voluntarios recebem
treinamento e passam por um teste de categorizacao para garantir a precisdo das classificacdes,
que sdo rigorosamente verificadas e comparadas com avaliacdes profissionais para assegurar
conformidade com padrdes cientificos (LINTOTT et al., 2008).

A arvore de decisdo do Galaxy Zoo é um recurso interativo que orienta os voluntarios
na categorizacao destes corpos celestes com base em suas caracteristicas visuais, conforme a
Figura 26. O processo inicia-se com uma pergunta geral sobre a forma basica do objeto, questio-
nando se € liso e arredondado, possui caracteristicas distintas ou € dificil de classificar devido a
visibilidade ou distorcao, exemplo na Figura 27. Dependendo da resposta, os participantes sao
direcionados para perguntas mais detalhadas, como a presenga de um bojo central em objetos
lisos. A medida que avancam, as perguntas tornam-se mais especificas, abordando aspectos como
barras, nimero e orientagdao dos bragos espirais. O processo € finalizado com a classificagdo
precisa da categoria morfologica da galdxia, baseada nas respostas dadas (WILLETT et al.,
2013).

A equipe do Galaxy Zoo ja contribuiu para mais de 60 publicacdes cientificas, com
cerca de 100 cita¢des cada, desvendando fendmenos pouco comuns como as Green Peas (CAR-
DAMONE et al., 2009) e Hanny’s Voorwerp (LINTOTT et al., 2009; KEEL et al., 2018). Além
disso, o projeto abordou o impacto de barras nas dindmicas galdcticas e na formacao estelar,
investigando também como os bragos espirais afetam sua estrutura e evolu¢ido (SKIBBA et al.,
2012; SCHAWINSKI et al., 2014; SMETHURST et al., 2015). Uma de suas revelagdes mais
importantes foi esclarecer a complexa relacio entre a cor e a morfologia das galaxias (SKIBBA
etal.,2009; MASTERS, 2019). Contrariando a suposi¢@o anterior de que esses atributos estavam

diretamente relacionados, as observagdes demonstraram que a cor nao € um indicador consis-
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Figura 26 — Arvore de decisdo do Galaxy Zoo. Ferramenta interativa que orienta voluntarios na
classificacdo de galdxias com base em suas caracteristicas visuais.

( T0O0: Is the galaxy simply smooth and rounded, with no sign of a disk?
A0: Smooth Al: A2: Star or
Features or artifact
disk
( T07: How rounded is it? ) ( T01: Could this be a disk viewed edge-on?
AO: Al:In A2: Cigar AO: Yes A1:No
Completely between shaped
round
TO08: Does the galaxy have a bulge TO2: Is there a sign of a bar feature through the
at its centre? If so, what shape? centre of the galaxy?
A0: AO0: Bar A1: No bar
Rounded
( TO3: Is there any sign of a spiral arm pattern? ]
AO: Spiral A1: No
spiral
ITO9: How tightly wound do the spiral
arms appear?
AQ: Tight || A1: Medium || A2: Loose
( T10: How many spiral arms are there? )
AO: 1 AT:2 AZ:3 A3 4 A5: Cant tell
1
TO04: How prominent is the central bulge, compared with the rest of the
galaxy?
A1: Just ‘A2: Obvious A3:
noticeable Dominant
( T05: Is there anything odd? )
AO: Yes
( 1st Tier Question )
[ 2nd Tier Question ] \ )
( 3rd Tier Question ) 5 = = =
TO6: Is the odd feature a ring, or is the galaxy disturbed or irregular? ]
( 4th Tier Question ) AO:Ring | [ Af:Lens or A2 A3: Iegular | | A4: Other || Ab: Merger || AG: Dust
arc Disturbed lane

Fonte: https://data.galaxyzoo.org/gz_trees/gz_trees.html

tente da morfologia. Essas descobertas tém implica¢des profundas para a teoria da formagao e

evolugdo das galaxias.

O sucesso do Galaxy Zoo também inspirou a criacio da plataforma Zooniverse'!, que

' https://www.zooniverse.org/
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Figura 27 — Exemplo de pergunta de multipla escolha no Galaxy Zoo para classificacio de
galdxias. A interface interativa apresenta imagens de galdxias e opcdes de resposta,
permitindo que voluntdrios as classifiquem com base em suas caracteristicas visuais,
como formato e estrutura.

Languags

Galaxy Zoo © ABOUT  CLASSIFY TALK COLLECT

FIELD GUIDE

P > m—> Q@00 OO voushuldsignint

NEED SOME HELP WITH THIS TASK?

Fonte: Galaxy Zoo (2024)

abriga uma variedade de programas de ciéncia cidada em multiplas disciplinas como: quimica,
biologia, histdria, entre outras (ZOOUNIVERSE, 2025). Isso ndo apenas evidencia a eficicia do
modelo de crowdsourcing na condugdo de pesquisas, mas também demonstra como a participa¢ao
publica pode ser integrada de maneira produtiva na investigacao cientifica, permitindo explorar
as complexidades da morfologia galactica e da evolu¢c@o do universo de forma inovadora e

inclusiva (MASTERS, 2019).

2.5 Trabalhos Relacionados

Nesta secdo, apresentamos dois estudos que exploram técnicas de aprendizado
profundo aplicadas a classificacdo de imagens de galdxias. Ambos utilizam o0 mesmo conjunto
de dados empregado neste trabalho e oferecem abordagens complementares, contribuindo para a

compreensdo e aprimoramento dos modelos utilizados.

2.5.1 Galaxy Classification: a deep learning approach for classifying Sloan Digital Sky

Survey images

Gharat & Dandawate (2022) propuseram, neste trabalho, o uso de deep learning
para classificar galaxias a partir de imagens do SDSS. No estudo utilizaram 21.785 amostras,
distribuidas em 10 classes, com base no modelo estendido da classificacdo de Hubble.

A base de dados utilizada, Galaxyl0 Dataset (GALAXY 10 SDSS DATASET, 2024),
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passou por um pré-processamento para minimizar erros de classificacdo no projeto Galaxy Zoo.
Para garantir maior confiabilidade, foram selecionadas apenas imagens em que mais de 55% dos
avaliadores concordaram com a mesma classe. No entanto, o conjunto de dados apresenta um
desbalanceamento, que ndo foi tratado no estudo.

A arquitetura proposta por Gharat & Dandawate (2022) inicia com uma camada
densa de 64 neurdnios, seguida por outra com 32 neurdnios, conforme ilustrado na Figura 28.

Como o modelo classifica dez categorias, a camada de saida possui igual numero de neur6nios.

Figura 28 — Ilustracao da arquitetura de Gharat & Dandawate.

| PP
Fonte: Gharat & Dandawate (2022)

A funcao de ativacdo ReLU ¢ utilizada tanto nas camadas iniciais quanto nas cinco
camadas convolutivas do modelo. Essa escolha se deve a sua capacidade de mitigar o desa-
parecimento do gradiente e de gerar ativagdes esparsas, ativando apenas um subconjunto de
neurdnios por vez, o que otimiza o treinamento e melhora o desempenho do modelo. Apds a
extragdo de caracteristicas pelas camadas convolutivas, as saidas sdo convertidas em uma matriz
unidimensional e processadas por duas camadas densas, também com ativacdo ReLU (GHARAT,;
DANDAWATE, 2022).

A classificagdo final € realizada pela camada que utiliza a funcao Softmax. Este
arranjo permitiu que o treinamento ocorresse sem transferéncia de aprendizado, ou seja, sem

recorrer a pesos pré-ajustados, alcancando uma acuricia de 84,78% nos testes (GHARAT;

DANDAWATE, 2022).
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2.5.2 Aplicagdo de deep learning para Classificagdo Morfologica de Galdxias

Santos (2024), avaliou em seu trabalho, seis arquiteturas de redes neurais convo-
lucionais - EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGGI19 e VGGI16 - além da
arquitetura proposta por Gharat & Dandawate (2022). Ademais, técnicas como classificagdao
hierarquica e Ensemble Learning (GANAIE et al., 2022) foram aplicadas para melhorar os
resultados.

A base de dados empregada foi a mesma reportada no trabalho de Gharat & Dan-
dawate (2022). No estudo, foram conduzidos experimentos considerando o desbalanceamento
dos dados aplicando técnicas de aumento de dados, tanto para equilibrar todas as classes quanto
para reforcar exclusivamente a classe minoritéria.

Com a aplicagdo de transferéncia de aprendizagem, a arquitetura EfficientNetV2-M
obteve uma acuracia de 82,90%. Quando realizado balanceamento das classes através de aumento
de dados, a ResNet50 se destacou, alcancando 88,20% de acurédcia. No entanto, a estratégia
de Ensemble Learning superou esses resultados, atingindo 85,53% com dados desbalanceados
e 91,75% com dados balanceados. Esses achados destacam o Ensemble Learning como uma
abordagem promissora para aprimorar a classificagdo morfologica de galéxias, tornando o modelo

mais robusto e eficaz.
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3 METODOLOGIA

Neste capitulo, descrevemos detalhadamente a metodologia adotada para a condugdo
dos experimentos que sustentam o desenvolvimento deste trabalho. A estrutura deste estudo
¢ inspirada nas pesquisas de Gharat & Dandawate (2022), nas quais se utiliza a arquitetura
de uma CNN construida pelos proprios autores. Além da CNN de Gharat & Dandawate,
também trabalhamos com outros modelos de redes neurais pré-treinadas, conforme apresentado
anteriormente. Na Secdo 3.1, apresentamos a base de dados utilizada. A Secdo 3.2 aborda as
técnicas de pré-processamento aplicadas as imagens. Em seguida, na Secdo 3.3, explicamos
o procedimento de validagdo cruzada adotado. Por fim, na Se¢do 3.4, detalhamos a etapa

experimental.

3.1 Base de Dados

A base de dados utilizada neste trabalho deriva de pré-processamentos aplicados as
imagens oriundas da Galaxyl10 SDSS Dataset (GALAXY 10 SDSS DATASET, 2024). Essa é
composta por 21785 imagens coloridas de galdxias, observadas pelo SDSS e pré-classificadas por
voluntarios. Originalmente com resolucdo de 424x424 pixels, as imagens foram centralizadas e
redimensionadas para 207x207 pixels, e posteriormente para 69x69 pixels através de interpolacao
bilinear, para torné-las gerencidveis na maioria dos computadores € memdrias de placas de
video (GHARAT; DANDAWATE, 2022). As imagens foram entdo organizadas em 10 classes
distintas, conforme ilustrado na Figura 29.

Para garantir a confiabilidade das classificagdes no Galaxyl0 SDSS Dataset, foi
estabelecido como limiar de aceitagdo das imagens que mais de 55% dos votos dos voluntérios
concordem em classifica-las em uma tnica classe dentre as 10 possiveis. Este limiar foi sele-
cionado com o objetivo futuro de posicionar o Galaxyl0 SDSS Dataset (GALAXY 10 SDSS
DATASET, 2024) como uma alternativa vidvel aos conjuntos de dados tradicionais usados em
aprendizado profundo, como MNIST (Modified National Institute of Standards and Techno-
logy) (DENG, 2012) e Cifar_10 (Canadian Institute For Advanced Research) (DOON et al.,
2018), com foco para astronomos.

Tomando o modelo astroNN.models.Cifarl0_CNN como referéncia, Gharat & Dan-
dawate (2022) observaram que um limite de 50% resultava em baixa precisdo de classificacdao

devido ao grande nimero de imagens potencialmente mal classificadas, dificultando o aprendi-
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Figura 29 — Exemplos de imagens das diferentes classes do conjunto de dados Galaxyl0 SDSS
Dataset. Podemos observar diversas morfologias galécticas, classificadas por for-
mato, estrutura espiral e orientagdo do disco.

Disco, de frente, sem espiral Suave, completamente redondo Suave, redondo no meio Suave, em forma de charuto Disco, Borda, Bojo arredondado

Jisco, de ponta, protubes Disco, de ponta, Disco, Face-on, Espiral Apertada Disco, Face-on, Espiral média Disco, Face-on, Espiral Solta

Fonte: Gharat & Dandawate (2022)

zado da rede. Todavia, a defini¢do de um limite de 60% produziu resultados semelhantes aos
obtidos com 55%, mas optou-se pelo limite de 55% por permitir a inclusdo de mais imagens no
conjunto de dados.

A Figura 3 exibe a distribui¢ao das imagens do dataset produzido por classe, real-
cando a diversidade e amplitude do conjunto de dados. Observa-se claramente que as classes
ndo encontram-se balanceadas, o que demandou a implementacao de estratégias para assegurar
um desempenho satisfatério dos modelos adotados.

Tabela 3 — Distribuicao da quantidade de imagens por classe de galdxias no conjunto de dados

Galaxyl0 SDSS Dataset, apresentando as categorias morfologicas, sua nomenclatura
e o nimero de imagens em cada classe, totalizando 21.785 registros.

Classe Descricao Acuracia
Classe 0 Disco, Vista Frontal, Sem Espiral 3461
Classe 1 Suave, Completamente Redonda 6997
Classe 2 Suave, Parcialmente Redonda 6992
Classe 3 Suave, Formato de Charuto 394
Classe 4 Disco, Vista Lateral, Bojo Arredondado 1534
Classe 5 Disco, Vista Lateral, Bojo Quadrado 17
Classe 6 Disco, Vista Lateral, Sem Bojo 589
Classe 7 Disco, Vista Frontal, Espiral Apertada 1121
Classe 8 Disco, Vista Frontal, Espiral Média 906
Classe 9 Disco, Vista Frontal, Espiral Solta 519
Total 21785

Fonte: Adaptado de Gharat & Dandawate (2022)
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3.2 Pré-processamento

Antes do treinamento do modelo, realizamos o pré-processamento dos dados, com
técnicas de aumento de dados (data augmentation) e de reducao de dados (undersampling), a
depender do experimento. Este passo nos permitiu ampliar a diversidade das amostras disponiveis
e reduzir possiveis vieses, tornando o modelo mais robusto e capaz de generalizar melhor.

Avaliamos trés tipos de estratégias de aumento de dados: Datagen (LU et al., 2024),
MixUp (ZHANG et al., 2018) e CutMix (YUN et al., 2019) (Figura 30).

* Datagen: Estratégia classica, com transformagdes como espelhamento horizontal e vertical
aleatorios (Random Horizontal Flip e Random Vertical Flip), corte aleatério e rotagao
aleatoria de até 30 graus (Random Rotation);

* MixUp: Técnica que cria novos exemplos sintéticos ao interpolar linearmente tanto os
dados de entrada quanto seus respectivos rotulos;

* CutMix: Substitui aleatoriamente uma regido de uma imagem por um recorte de outra,
ajustando os rétulos proporcionalmente.

Para subamostragem e sobreamostragem, aplicamos técnicas de redugdo das clas-
ses majoritarias para evitar que o modelo desenvolvesse viés excessivo em relacdo as classes
com mais amostras. Utilizamos o Random Undersampling (RUS) (HASANIN; KHOSHGOF-
TAAR, 2018), que seleciona aleatoriamente um subconjunto das amostras da classe majoritéria,
equilibrando a distribui¢ao dos dados.

Além disso, em alguns experimentos, optamos pelo descarte de determinadas classes
e ajustamos a propor¢do das imagens para 244x244 para favorecer o treinamento do modelo.
Também exploramos o uso da técnica CLAHE para aumentar o contraste das imagens escurecidas.
A Figura 31 representa as imagens com a aplicagdo de CLAHE no pre-processamento.

As imagens de entrada foram previamente convertidas para o formato exigido por
cada modelo antes do treinamento. Por exemplo, a ResNet50 requer imagens no formato RGB (0-
255), enquanto a EfficientNetV2-M aceita imagens em RGB (0-1), normalizadas para o intervalo
[0,1]. Além disso, foi aplicada a normalizacdo baseada na média e desvio-padrao do conjunto

ImageNet, conforme recomendado para modelos pré-treinados.
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Figura 30 — Técnicas de Aumento de Dados: MixUp e CutMix. (a) e
(b) representam as imagens originais utilizadas como base,
(c) apresenta a aplicacdo da técnica MixUp, combinando
elementos das imagens (a) e (b), e por dltimo, (d) represen-
tando a aplicacdo da técnica CutMix, inserindo segmentos
da imagem (b) na imagem (a).

Mixup Cutmix
() (d)
Fonte: Gharat & Dandawate (2022)

Figura 31 — Imagens real¢adas com a aplicacdo do CLAHE.
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3.3 Validacao Cruzada

Esta etapa consistiu na divisdo de nossa base de dados em tré€s grupos: treino,
validagdo e teste.

* Treino: Este lote foi empregado para treinar a CNN, ajustando os pesos e parametros
do modelo conforme as imagens e categorias foram apresentadas. Normalmente, uma
proporc¢ao significativa do conjunto de dados € reservada para treinamento, uma vez que, €
nesta fase que o modelo efetivamente aprende.

* Validacao: O conjunto de validagdo permite avaliar o desempenho da CNN ao longo do
treinamento e refinar os hiperparametros do modelo, visando sua otimizacdo. O conjunto
de dados de validagdo € usado para avaliar a precisdo e o desempenho geral do modelo
com exemplos ndo vistos durante o treinamento.

* Teste: Ap6s a CNN ser aprimorada com os dados de treinamento e validacao, é crucial
avaliar sua eficicia final em um conjunto de dados completamente separado, conhecido
como conjunto de testes.

A divisao dos dados para treino, validacado e teste seguiu, respectivamente, uma
proporcdo de 70%, 15% e 15% do conjunto total de imagens, conforme sugerem Gharat &
Dandawate (2022).

Na fase de treinamento da rede neural é configurado o nimero de épocas, que
representa uma iteracdo completa em que todos os dados do conjunto de treinamento sao
apresentados a rede (SANTOS, 2024). O tamanho do lote (batch size) é determinado para definir
o numero de amostras utilizadas para atualizar os pesos da rede a cada iteragdo. Neste trabalho,
o nimero méaximo de épocas foi definido para 20 interacdes e quanto ao tamanho dos lotes para
processamento, optou-se por valores de 8, 16 e 32, conforme em Santos (2024).

Aplicamos dropout de 50% e utilizamos callbacks durante o treinamento para mitigar
a ocorréncia de overfitting, garantindo uma melhor generalizacdo dos modelos. Além disso,
adotamos a técnica de fine-tuning para os modelos pré-treinados, inicialmente congelando as
primeiras camadas da rede, responsdveis por aprender caracteristicas mais gerais das imagens, €
refinando apenas as camadas superiores. A medida que o treinamento evolui, descongelam-se as
demais camadas, permitindo que o modelo ajuste seus pesos de forma progressiva e adapte-se
melhor aos padrdes do novo conjunto de dados.

Por fim, de forma a avaliar o desempenho dos modelos, aplicamos as métricas matriz

de confusdo, acurécia, revocacdo, precisao, F/-Score, ROC AUC e PR-AUC, Macro avg e
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Weighted avg. O Macro Average (Macro avg) € uma métrica que calcula a média simples das
métricas da figura acima, atribuindo o mesmo peso a todas as classes, enquanto o Weighted
Average (Weighted avg) pondera essas métricas de acordo com o numero de amostras em cada

classe, dando mais influéncia as classes mais frequentes.

3.4 Etapa Experimental

Realizamos oito experimentos a saber: Experimento I consistiu na reprodu¢ao do
modelo de Gharat & Dandawate (2022). As etapas II, III e IV, empregaram a técnica de Transfer
Learning com base no trabalho de Santos (2024). Por fim, V a VIII, também adotaram TL, mas
para 20000 imagens, redimensionamento 244x244 pixels e aplicacdo de CLAHE.

A escolha dos modelos pré-treinados e as técnicas de aumento de dados nos experi-
mentos V a VIII tomou como base os dois melhores desempenhos em II, 11l e IV. A Tabela 4

apresenta a descricdo dos testes conduzidos.

3.5 Ferramentas e técnicas utilizadas

Todo o desenvolvimento foi realizado utilizando os recursos oferecidos pelo Google
Colab, os detalhes sdo apresentado abaixo:

Para os experimentos I, II, Il e I'V:

Disco: 235,7,25 GB de armazenamento;
GPU: NVIDIA Tesla T4 (15 GB de memodria de video);
RAM: 51 GB de memoéria RAM.

Para os experimentos V, VI, VII e VIII:

Disco: 235,7,25 GB de armazenamento;
GPU: NVIDIA Ampere A100 (40 GB de memoria de video);
RAM: 83,5 GB de memoéria RAM.
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Tabela 4 — Descricao dos oito testes conduzidos, detalhando as arquiteturas dos modelos utiliza-
dos e os métodos de pré-processamento aplicados em cada etapa.

Exp. Arquitetura Pré-processamento
I Gharat & Dandawate -
II EfficientNetV2-M, DenseNet121, -
ResNet50, AlexNet,
VGG16 e VGGI9
I EfficientNetV2-M, DenseNet121, 710 imagens por classe e
ResNet50, AlexNet, Datagen, MixUp ou CutMix
VGG16 e VGG19
v EfficientNetV2-M, DenseNet121, 4898 imagens por classe e
ResNet50, AlexNet, Datagen, MixUp ou CutMix
VGG16 e VGGI9
A% VGGlI6, VGGI9 20000 imagens por classe e
e EfficientNetV2-M MixUp ou CutMix
VI VGGI16, VGGI9 4898 imagens por classe,
e EfficientNetV2-M MixUp ou CutMix e 244x244 pixels
VII VGGl6, VGGI9 20000 imagens por classe,
e EfficientNetV2-M MixUp ou CutMix e CLAHE
VIII VGGI6, VGGI9 4898 imagens por classe, MixUp ou CutMix,

e EfficientNetV2-M

244x244 pixels e e CLAHE
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4 RESULTADOS E DISCUSSOES

Neste capitulo, sdo apresentados os resultados obtidos ao longo deste estudo. A
Secdo 4.1 aplica a CNN adotada por Gharat & Dandawate (2022). Posteriormente, nas se¢oes
seguintes, sao descritos os resultados alcancados utilizando a técnica de Transfer Learning com
base nas CNNs utilizadas por Sousa (2024). Por fim, a Secdo 4.9 compara os melhores resultados

atingidos.

4.1 Experimento I

A Arquitetura de Gharat & Dandawate (2022) sem balanceamento de dados, apresen-
tou acurdcia de 0,83. Ao analisarmos a matriz de confusio deste modelo (Figura 32), observamos
uma incoeréncia entre o desempenho do modelo para as classes individuais e o resultado geral
de acuricia.

Figura 32 — Quantidade de imagens por classe de Galédxias para a Ar-

quitetura de Gharat & Dandawate.
Confusion Matrix for Galaxy10
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O modelo mostrou boa performance em classificar as galdxias das Classes 1 e 2, mas
fraco desempenho para as demais classes. Especificamente, o0 modelo nio obteve acertos para a
Classe 5.

Avaliando o treinamento com base na acurdcia por Classe (Tabela 5) e no relatério
de desempenho (Tabela 6), observa-se que a acuricia geral ndo representa a qualidade do
modelo em um conjunto de dados desbalanceado. Isso porque essa métrica € influenciada pela
predominéncia de classes majoritarias, mascarando o real impacto do desbalanceamento na
classificac@o. Outra justificativa seria a complexidade do modelo, contando apenas com cinco

camadas convolucionais, e a escassez de imagens em algumas classes.

Tabela 5. Acurdcia por classe para a arquitetura de Gharat & Dandawate.

Classe Descricao Acuracia
0 Disco, Vista Frontal, Sem Espiral 0,52
1 Suave, Completamente Redonda 0,79
2 Suave, Parcialmente Redonda 0,82
3 Suave, Formato de Charuto 0,54
4 Disco, Vista Lateral, Bojo Arredondado 0,70
5 Disco, Vista Lateral, Bojo Quadrado 0,00
6 Disco, Vista Lateral, Sem Bojo 0,83
7 Disco, Vista Frontal, Espiral Apertada 0,58
8 Disco, Vista Frontal, Espiral Média 0,28
9 Disco, Vista Frontal, Espiral Solta 0,26

Tabela 6. Precisdo, Revocagdo e Fl-score por classe para a Arquitetura de Gharat & Dandawate.

Classe Descricao Precisao Revocacdo FI-Score
Classe 0 Disco, Vista Frontal, Sem Espiral 0,50 0,52 0,51
Classe 1 Suave, Completamente Redonda 0,92 0,79 0,85
Classe 2 Suave, Parcialmente Redonda 0,80 0,82 0,81
Classe 3 Suave, Formato de Charuto 0,30 0,54 0,39
Classe 4 Disco, Vista Lateral, Bojo Arredondado 0,91 0,70 0,79
Classe 5 Disco, Vista Lateral, Bojo Quadrado 0,00 0,00 0,00
Classe 6 Disco, Vista Lateral, Sem Bojo 0,71 0,83 0,77
Classe 7  Disco, Vista Frontal, Espiral Apertada 0,45 0,58 0,51
Classe 8 Disco, Vista Frontal, Espiral Média 0,11 0,28 0,15
Classe 9 Disco, Vista Frontal, Espiral Solta 0,12 0,26 0,17
Média Macro 0,48 0,53 0,50
Média Ponderada 0,77 0,73 0,75

No conjunto de dados analisado, o Macro avg € significativamente menor que o
Weighted avg, indicando que o modelo tem um desempenho desigual entre as classes, classifi-

cando melhor aquelas mais representadas e pior as menos frequentes.
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4.2 Experimento I1

O desbalanceamento da base de dados desse experimento impacta a interpretacao
dos resultados, no que diz respeito as métricas globais acurdcia e F/-Score. Portanto, avaliagdes
do desempenho do modelo por classe sdo mais informativas do que andlises generalizadas. A
avaliacdo das curvas ROC-AUC e PR-AUC possibilita entender mais precisamente o desempenho
dos modelos em diferentes classes e sua capacidade de generalizacdo. A Tabela 7 apresenta os

resultados deste experimento.

Tabela 7. Compara¢do do desempenho dos modelos para o Experimento II.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGGI6 0,8252 0,5391 0,9729 0,7143
VGG19 0,8323 0,4911 0,9719 0,7330
ResNet50 0,7922  0,5913 0,9697 0,6979
DenseNet121 0,8185 0,5667 0,9754 0,7335
EfficientNetV2-M  0,7998  0,5731 0,9671 0,6750
AlexNet 0,7821  0,6225 0,9443 0,6395

Observamos que os modelos VGG16 e VGG19 apresentaram o melhor desempenho
geral, destacando-se pelos valores das métricas acurdcia, perda, ROC-AUC e PR-AUC. O
VGGI19 obteve a maior acurécia 0,8323, a menor perda 0,4911 e a maior PR-AUC 0,7330,
demonstrando sua superioridade na classificacdo. Embora o desempenho do VGGI6 seja
ligeiramente inferior, este apresentou o maior ROC-AUC 0,9729, evidenciando sua capacidade
de discriminar corretamente entre as classes. Além disso, o modelo DenseNetl21 se destacou
como a terceira melhor op¢do, com uma boa acurécia 0,8185 e um ROC-AUC competitivo
0,9754, demonstrando um equilibrio entre precisio e generalizagao.

A anadlise do desempenho por classe dos modelos, apresentados nas Tabelas 8, 9
e 10, confirmam o VGG19 como o melhor modelo, apresentando maior acurécia global 0,83,
menor perda e valores mais equilibrados entre classes, com destaque para a Classe 2 0,96 e a
Classe 4 0,92. Embora o VGG16 apresente desempenho muito préximo do VGG19, o primeiro
mostrou maior variacdo da acurdcia entre classes, com fraco desempenho para a Classe 8 0,48
e a Classe 9 0,56. Apesar do modelo DenseNet121 alcangar uma acurécia global de 0,82, este
obteve um F/-score médio inferior aos resultados dos dois melhores modelos, com uma varia¢ao
ainda mais acentuada na acurdcia por classe.

Importante salientar que todos os modelos tiveram dificuldades em classificar nas

classes menos representadas, como a Classe 5, que obteve precisdo, revocacgdo e FI-score zerados
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Tabela 8. Desempenho II do modelo VGG16 por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,68 0,62 0,68 0,65
Classe 1 0,93 0,91 0,93 0,92
Classe 2 0,90 0,89 0,90 0,90
Classe 3 0,62 0,68 0,62 0,65
Classe 4 0,89 0,86 0,89 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,77 0,82 0,77 0,80
Classe 7 0,59 0,71 0,59 0,64
Classe 8 0,48 0,65 0,48 0,55
Classe 9 0,56 0,80 0,56 0,66
Média Macro - 0,69 0,64 0,66
Média Ponderada 0,83 0,82 0,83 0,82
Tabela 9. Desempenho II do modelo VGG19 por classe.
Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,55 0,73 0,55 0,63
Classe 1 0,92 0,92 0,92 0,92
Classe 2 0,96 0,84 0,96 0,89
Classe 3 0,56 0,81 0,56 0,66
Classe 4 0,92 0,86 0,92 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,85 0,80 0,85 0,82
Classe 7 0,76 0,62 0,76 0,68
Classe 8 0,56 0,67 0,56 0,61
Classe 9 0,59 0,81 0,59 0,68
Média Macro - 0,71 0,67 0,68
Média Ponderada 0,83 0,83 0,83 0,83
Tabela 10. Desempenho II do modelo DenseNet121 por classe.
Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,61 0,68 0,61 0,64
Classe 1 0,93 0,88 0,93 0,91
Classe 2 0,90 0,86 0,90 0,88
Classe 3 0,62 0,73 0,62 0,67
Classe 4 0,92 0,83 0,92 0,87
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,76 0,84 0,80
Classe 7 0,64 0,71 0,64 0,67
Classe 8 0,40 0,62 0,40 0,49
Classe 9 0,63 0,73 0,63 0,68
Média Macro - 0,68 0,65 0,66
Média Ponderada 0,82 0,81 0,82 0,81

devido a baixa quantidade de amostras. No entanto, o VGG19 mostrou maior robustez ao lidar

com classes problematicas, o que justifica sua melhor performance nas métricas globais.
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As Figuras 33 e 34 mostram os resultados de treinamento e as curvas ROC-AUC e
PR-AUC para os modelos VGG16, VGGI19 e DenseNetl21. Durante o treinamento, observa-se
uma melhoria na acuricia para todos os modelos, mas com sinais de leve overfitting nos modelos
VGG. A perda diminui consistentemente, indicando boa convergéncia dos modelos. Nas anélises
de ROC-AUC e PR-AUC, o modelo DenseNet121 destacou-se por apresentar curvas superiores,
indicando uma melhor taxa de verdadeiros positivos e maior precisao na classificagio positiva,

sugerindo que € o mais eficaz em termos de generalizacdo e precisdo entre os modelos avaliados.

4.3 Experimento III

Nesta andlise, a base de dados utilizada foi balanceada para 710 imagens por classe
e utilizamos também trés técnicas de aumento de dados para cada modelo: MixUp, Datagen e
CutMix. As métricas ROC-AUC e PR-AUC foram consideradas para caracterizar o desempenho
dos modelos em diferentes classes e sua capacidade de generalizacdo. A Tabela 11 apresenta os

resultados obtidos.

Tabela 11. Comparacido do desempenho dos modelos para o Experimento III.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,7717  0,6310 0,9601 0,6996
VGG16 Datagen 0,7604  0,9217 0,9385 0,6029
VGG16 CutMix 0,7616  0,6739 0,9665 0,6878
VGGI19 MixUp 0,7775  0,6488 0,9274 0,6899
VGG19 Datagen 0,7239  0,8949 0,9205 0,5881
VGG19 CutMix 0,7836  0,6458 0,9630 0,7052
ResNet50 MixUp 0,6364  0,9993 0,9336 0,6080
ResNet50 Datagen 0,6493 1,1590 0,9126 0,5219
ResNet50 CutMix 0,6900 0,8584 0,9498 0,6534
DenseNet121 MixUp 0,7279  0,8212 0,9517 0,6588
DenseNetl121 Datagen 0,6735 1,0769 0,9301 0,5425
DenseNet12]1 CutMix 0,7322  0,8171 0,9204 0,6455

EfficientNetV2-M MixUp 0,7083  0,8235 0,9436 0,6089
EfficientNetV2-M Datagen  0,6958  0,9173 0,9155 0,5837
EfficientNetV2-M CutMix 0,6407  0,9806 0,9119 0,5260

AlexNet MixUp 0,6967  0,7894 0,9490 0,6137
AlexNet Datagen 0,7093  0,9010 0,9313 0,5491
AlexNet CutMix 0,7325  0,7405 0,9590 0,6158

Os modelos VGG19 CutMix, VGG 16 MixUp e VGG 19 MixUp obtiveram os melhores
desempenhos. VGGI19 CutMix apresentou a maior acurdcia e PR-AUC, tornando-se o mais

eficaz. O VGGI16 MixUp, se destaca pela menor perda 0,6310, o que indica um treinamento
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Figura 33 — Treinamento II para os modelos VGG16, VGG19 e DenseNetl21, organizadas
respectivamente de cima para baixo.
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Figura 34 — ROC-AUC e PR-AUC II para os modelos VGG16, VGG19 e DenseNetl21, organi-
zadas respectivamente de cima para baixo.
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mais estdvel e melhor otimizado. Apesar de o VGG19 CutMix apresentar uma acuricia superior

ao VGGI16 MixUp, a métrica ROC-AUC apresentou menor valor 0,9274, o que impacta sua

capacidade de distin¢do entre classes. Entretanto, os modelos da familia VGG foram os mais

robustos, enquanto CutMix e MixUp demonstraram ser técnicas eficazes de aumento de dados.
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A andlise do desempenho por classe dos modelos, apresentados nas Tabelas 12, 13
e 14, confirmam o VGG19 CutMix como o melhor modelo, apresentando maior acuricia global
0,78, baixa perda e valores mais equilibrados entre classes, com destaque para a Classe 1 0,91, a
Classe 4 0,87 e a Classe 6 0,88. Embora o VGG19 MixUp apresente desempenho muito préximo
do VGG19 CutMix, o primeiro mostrou maior variacdo da acuricia entre classes dentre dos
dois, com fraco desempenho para Classe 0 0,42, Classe 3 0,56 e a Classe 8 0,54. Os modelos
VGG16 MixUp e VGG19 MixUp também obteviveram um F/-score médio superior aos demais

resultados, figurando entre os trés melhores modelos.

Tabela 12. Desempenho III do modelo VGG16 MixUp por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,37 0,62 0,37 0,47
Classe 1 0,94 0,82 0,94 0,88
Classe 2 0,80 0,87 0,80 0,83
Classe 3 0,67 0,51 0,67 0,58
Classe 4 0,89 0,89 0,89 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,89 0,78 0,89 0,83
Classe 7 0,71 0,56 0,71 0,63
Classe 8 0,69 0,52 0,69 0,59
Classe 9 0,67 0,63 0,67 0,65
Média Macro - 0,62 0,66 0,63
Média Ponderada 0,77 0,77 0,77 0,76

Tabela 13. Desempenho III do modelo VGG19 MixUp por classe.

Classe Acuracia Precisio Revocacdo FI-Score
Classe 0 0,42 0,68 0,42 0,58
Classe 1 0,93 0,85 0,93 0,88
Classe 2 0,84 0,84 0,84 0,84
Classe 3 0,56 0,56 0,56 0,56
Classe 4 0,87 0,82 0,87 0,84
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,73 0,84 0,78
Classe 7 0,71 0,57 0,71 0,63
Classe 8 0,54 0,54 0,54 0,54
Classe 9 0,82 0,60 0,82 0,70
Média Macro - 0,62 0,65 0,63
Média Ponderada 0,77 0,77 0,78 0,77

Os graficos de treinamento (Figura 35) indicam que os modelos VGG16 MixUp,
VGGI9 MixUP e VGGI19 CutMix aprendem eficazmente, com perda decrescente e acuricia

crescente durante as épocas de treino. As curvas ROC-AUC e precisdo-revocacao (Figura 36)
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Tabela 14. Desempenho III do modelo VGG19 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,55 0,55 0,55 0,55
Classe 1 0,91 0,89 0,91 0,90
Classe 2 0,79 0,89 0,79 0,84
Classe 3 0,56 0,63 0,56 0,59
Classe 4 0,87 0,89 0,87 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,88 0,75 0,88 0,81
Classe 7 0,70 0,61 0,70 0,66
Classe 8 0,65 0,51 0,65 0,57
Classe 9 0,74 0,67 0,74 0,70
Média Macro - 0,64 0,67 0,65
Média Ponderada 0,78 0,79 0,78 0,79

mostram bom desempenho em discriminar e classificar as classes, especialmente notavel nas
classes com maior representatividade. Esses resultados sugerem que os modelos sdo robustos e

eficientes para classificagdo multi-classe.

4.4 Experimento IV

Neste experimento, a base de dados foi balanceada para 4898 imagens por classe
e utilizamos também trés técnicas de aumento de dados para cada modelo: MixUp, Datagen e
CutMix. Dessa forma, a avaliagdo das curvas ROC-AUC e PR-AUC continua sendo essencial
para compreender melhor o desempenho dos modelos em diferentes classes e sua capacidade de
generalizacdo. A Tabela 15 apresenta os resultados deste experimento:

Observamos que os modelos que utilizaram a técnica de aumento de dados CutMix
apresentaram os melhores desempenhos em todas as métricas avaliadas. Os modelos VGG16
CutMix com acuracia 0,8298, ROC-AUC 0,9722 e PR-AUC 0,7465 e VGG19 CutMix com
acuracia 0,8261, ROC-AUC 0,9750 e PR-AUC 0,7411 destacaram-se como os mais eficazes,
seguidos pelo VGGI16 MixUp com acurécia 0,8191, ROC-AUC 0,9667 e PR-AUC 0,7172.

Os modelos que utilizaram e Datagen apresentaram desempenhos inferiores, especi-
almente em acurécia e PR-AUC, sugerindo que essa técnica pode ndo ter sido tdo eficaz para
esta base de dados quanto o CutMix e MixUp. Modelos como ResNet50 Datagen com acuricia
0,5559, ROC-AUC 0,9102, PR-AUC 0,6138, obtiveram dificuldades em obter um bom equilibrio
entre acurdcia e capacidade de discriminagao entre classes.

A andlise do desempenho por classe dos modelos, apresentados nas Tabelas 16, 17

e 18, confirmam o VGG16 CutMix como o melhor modelo, apresentando maior acuracia global



Figura 35 — Treinamento III para os modelos VGG16 MixUp, VGGI19 MixUP e VGGI19 CutMix,
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Figura 36 — ROC-AUC e PR-AUC III para os modelos VGG16 MixUp, VGGI19 MixUP e VGG19
CutMix, organizadas respectivamente de cima para baixo.

Curva ROC Multiclasse

Curva Precision-Recall Multiclasse

1.0 4 ” 1.0 4
0.8 1 ot 0.8 1
B
& 06 - ¥ 0.6
[ i <
2 P — Classe0 | @ —— Classe 0
8 ot —— Classe 1 E — Classe 1
@ 0.4 - d —— Classe 2 0.4 { — Classe 2
= a Wl —— Classe 3 — Classe 3
a —— Classe 4 —— Classe 4
’/’ —— Classe 5 —— Classe 5
0.21 4 —— Classe 6 029 ___ Classe6
e —— Classe 7 —— Classe 7
L —— Classe 8 ~——— Classe 8
0.0 § —— Classe 9 0.0{ — Classe9
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
Curva ROC Multiclasse Curva Precision-Recall Multiclasse
1.0 - 1.0 -
0.8 0.8
—— Classe 0
—— Classe 1
% —— Classe 2
< 0.6 1 . 061 — Classe 3
2 Classe 0 | @ —— Classe 4
E Classe 1 g —— Classe 5
L 0.4+ Classe 2 044 — Classe6
= Classe 3 —— Classe 7
Classe 4 —— Classe 8
Classe 5 ——— Classe 9
0.2 Classe 6 021
Classe 7
Classe 8
0.0 Classe 9 0.0 1
0.0 02 0.4 0.6 0. 10 0.0 02 0.4 06 08 10
False Positive Rate Recall
Curva ROC Multiclasse Curva Precision-Recall Multiclasse
1.0 4 - 1.0 4
0.8 1 0.8 '
—— Classe 0
—— Classe 1
.z —— Classe 2
a 0.6+ o 067 — classe3
.g —— Classe 0 g —— Classe 4
g —— Classe 1 E — Classe 5
v 04 —— Classe 2 0.4 — Classe6
g —— Classe 3 —— Classe 7
—— Classe 4 ——— Classe 8
—— Classe 5 ~——— Classe 9
0.2 —— Classe 6 021
—— Classe 7
—— Classe 8
0.0 —— Classe 9 004
0:0 0j2 0.‘4 0.’6 0.'8 1"0 0.0 0.’2 0.’4 0.’6 Of8 1?0

False Positive Rate

Recall

0,8298. VGG16 CutMix e VGGI19 CutMix apresentaram baixa perda e valores mais equilibrados

entre classes, com destaque para a Classe 1 0,96. Os modelos VGG16 MixUp e VGG16 CutMix

também obteviveram F/-score médio superior aos demais resultados, figurando entre os trés

melhores modelos.

Os modelos VGG16 e VGG19 usando a técnica CutMix apresentam desempenho
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Tabela 15. Comparacao do desempenho dos modelos para o Experimento IV.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8191  0,6290 0,9667 0,7172
VGG16 Datagen 0,6542  1,4778 0,9302 0,6868
VGG16 CutMix 0,8298 0,5649 0,9722 0,7465
VGGI19 MixUp 0,8182  0,6559 0,9592 0,7214
VGG19 Datagen 0,6490  1,2433 0,9510 0,6910
VGG19 CutMix 0,8261 0,5912 0,9750 0,7411
ResNet50 MixUp 0,8000  0,6728 0,9634 0,6978
ResNet50 Datagen 0,5559  2,9864 0,9102 0,6138
ResNet50 CutMix 0,8044  0,6561 0,9667 0,7099
DenseNetl121 MixUp 0,8011 0,6978 0,9303 0,7189
DenseNetl21 Datagen 0,5055 1,9635 0,9039 0,5366
DenseNet121 CutMix 0,7879  0,7115 0,9584 0,7115

EfficientNetV2-M MixUp 0,7714  0,6782 0,9441 0,6487
EfficientNetV2-M Datagen 0,6835 1,0741 0,9584 0,7062
EfficientNetV2-M CutMix 0,8026  0,6408 0,9380 0,6386

AlexNet MixUp 0,7548  0,7004 0,9356 0,6328

AlexNet Datagen 0,5578  0,5578 0,9395 0,5971

AlexNet CutMix 0,7834  0,6253 0,6958 0,6490

Tabela 16. Desempenho IV do modelo VGG16 MixUp por classe.

Classe Acuracia Precisdo Revocacio FI-Score
Classe 0 0,51 0,70 0,51 0,59
Classe 1 0,94 0,89 0,94 0,91
Classe 2 0,92 0,86 0,92 0,88
Classe 3 0,67 0,62 0,67 0,65
Classe 4 0,86 0,90 0,86 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,88 0,79 0,88 0,83
Classe 7 0,73 0,62 0,73 0,67
Classe 8 0,56 0,62 0,56 0,59
Classe 9 0,69 0,72 0,69 0,71
Média Macro - 0,67 0,67 0,67
Média Ponderada 0,82 0,81 0,82 0,81

superior em comparagdo com o VGGI16 MixUp, conforme observado durante o treinamento
(Figura 37) e nas andlises das curvas ROC-AUC e PR-AUC (Figura 38). O VGG16 CutMix mostra
uma evolucao consistente e sustentdvel na acurécia de validacao, indicando um aproveitamento
efetivo do treinamento prolongado. O VGG19 CutMix também melhora ao longo do tempo, mas

com um leve indicativo de superajuste no final.
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Tabela 17. Desempenho IV do modelo VGG16 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,60 0,69 0,60 0,65
Classe 1 0,96 0,89 0,96 0,92
Classe 2 0,86 0,91 0,86 0,89
Classe 3 0,67 0,71 0,67 0,69
Classe 4 0,91 0,90 0,91 0,90
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,78 0,84 0,78 0,81
Classe 7 0,75 0,68 0,72 0,70
Classe 8 0,71 0,55 0,71 0,62
Classe 9 0,67 0,72 0,67 0,69
Média Macro - 0,69 0,69 0,69
Média Ponderada 0,83 0,83 0,83 0,83
Tabela 18. Desempenho IV do modelo VGG19 CutMix por classe.
Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,56 0,71 0,56 0,63
Classe 1 0,96 0,88 0,96 0,91
Classe 2 0,88 0,88 0,88 0,88
Classe 3 0,62 0,58 0,62 0,60
Classe 4 0,82 0,92 0,82 0,87
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,94 0,72 0,94 0,82
Classe 7 0,73 0,70 0,73 0,72
Classe 8 0,60 0,67 0,60 0,63
Classe 9 0,83 0,68 0,83 0,75
Média Macro - 0,67 0,69 0,68
Média Ponderada 0,83 0,82 0,83 0,82

4.5 Experimento V

Nesta se¢do, sdo apresentados os resultados do Experimento V para os dois modelos
pré-treinados com melhor desempenho nos experimentos anteriores VGG16 e VGGI19. Também
optamos por avaliar o desempenho do modelo EfficientNetV2-M, que apresentou resultado
mediano, com o objetivo de analisar sua adequacdo a um cendrio com mais imagens para treino.
A anélise considera as métricas de desempenho acurécia, perda, ROC-AUC e PR-AUC.

A base de dados utilizada foi balanceada para 20000 imagens por classe, e adotamos
os dois tipos de aumento de dados que melhor se adequaram nos experimentos anteriores MixUp
e CutMix. A Tabela 19 apresenta os resultados deste experimento:

A anélise de desempenho revela o VGG16 CutMix como a melhor opgdo entre os

avaliados, alcancando a maior accuracia 0,8307 e os melhores valores para ROC-AUC 0,9743 e
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Figura 37 — Treinamento IV para os modelos VGG16 MixUp, VGG16 CutMix e VGGI19 CutMix,
organizadas respectivamente de cima para baixo.
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Figura 38 — ROC-AUC e PR-AUC IV para os modelos VGG16 MixUp, VGG16 CutMix e VGGI19
CutMix, organizadas respectivamente de cima para baixo.
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PR-AUC 0,7467. Esses resultados indicam que o modelo possui uma excelente capacidade de

generalizacdo e discriminacao entre classes, tornando-se a escolha mais robusta para a tarefa

considerada. O VGG19 CutMix também apresentou um desempenho competitivo, com accuracia

de 0,8255 e o menor valor de perda 0,5781, além de valores competitivos de ROC-AUC 0,9719

e PR-AUC 0,7422, sendo assim uma alternativa ao modelo anterior.
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Tabela 19. Comparagdo do desempenho dos modelos para o Experimento V.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8059  0,7699 0,9570 0,7062
VGG16 CutMix 0,8307 0,6030 0,9743 0,7467
VGG19 MixUp 0,8102  0,6957 0,9401 0,7025
VGG19 CutMix 0,8255 0,5781 0,9719 0,7422

EfficientNetV2-M MixUp  0,7637  0,7950 0,9420 0,6266
EfficientNetV2-M CutMix  0,7836  0,6273 0,9512 0,6573

O EfficientNetV2-M CutMix destacou-se pelo seu equilibrio entre métricas, atingindo
um ROC-AUC de 0,9512 e um PR-AUC de 0,6573, embora com acuracia menor 0,7836. Isso
sugere esse modelo como uma escolha interessante em cendrios com um ndmero maior de
amostras e que necessitam de maior eficiéncia computacional. Em geral, os modelos que
utilizaram a técnica CutMix obtiveram os melhores resultados, reforcando a evidéncia de que
essa técnica de aumento de dados é adequada na melhoria da capacidade de generalizacdo dos
modelos de classificacdo de galaxias.

Os modelos VGG16 e VGG 19 CutMix mostram desempenhos diferentes em acuracia
por classe (Tabelas 20 e 21), com o VGGI16 CutMix superando o VGGI19 em vdrias classes,

apesar de ambos falharem na Classe 5 com acurdcia zero.

Tabela 20. Desempenho V do modelo VGG16 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,70 0,64 0,70 0,67
Classe 1 0,88 0,94 0,88 0,91
Classe 2 0,91 0,86 0,91 0,88
Classe 3 0,73 0,73 0,73 0,73
Classe 4 0,91 0,91 0,91 0,91
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,83 0,84 0,84
Classe 7 0,58 0,82 0,58 0,68
Classe 8 0,69 0,60 0,69 0,64
Classe 9 0,69 0,74 0,69 0,72
Média Macro - 0,71 0,69 0,70
Média Ponderada 0,83 0,84 0,83 0,83

Os graficos de treinamento dos modelos VGG16 e VGGI19 CutMix revelam uma
reducdo consistente na perda de treinamento (Figura 39), com estabiliza¢do na perda de validagao,
sugerindo sinais de overfitting, especialmente no VGG19. A acuricia de treinamento aumenta
para ambos, mas o VGGI6 demonstra uma generalizacdo ligeiramente melhor. Nas curvas

ROC-AUC e precisdo-revocao (Figura 40), o VGG 16 geralmente supera o VGG19, destacando-se
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Tabela 21. Desempenho V do modelo VGG19 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,59 0,67 0,59 0,63
Classe 1 0,95 0,89 0,95 0,92
Classe 2 0,87 0,90 0,87 0,88
Classe 3 0,67 0,73 0,67 0,70
Classe 4 0,91 0,92 0,91 0,91
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,85 0,80 0,85 0,82
Classe 7 0,66 0,72 0,66 0,69
Classe 8 0,67 0,52 0,67 0,59
Classe 9 0,76 0,65 0,76 0,70
Média Macro - 0,68 0,69 0,68
Média Ponderada 0,83 0,83 0,83 0,82

nas curvas ROC. Contudo, ambas as curvas de precisdo-revocio indicam dificuldades em prever

os valores corretos para a Classe 5, em ambos os modelos.

4.6 Experimento VI

Nesta secao, sdo apresentados os resultados do Experimento VI para os dois modelos
pré-treinados que obtiveram melhor desempenho nos experimentos I, IIl e IV: VGG16 e VGGI9.
Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo que
apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cenério com
imagens de dimensionalidade 244x244 pixels. A analise inclui as principais métricas para a
avaliacdo de desempenho, entre as quais se destacam: Acuricia, Perda, ROC-AUC e PR-AUC.

A base de dados utilizada esta balanceada para 4898 imagens por classe, mas agora
com imagens redimensionadas para 244x244 pixels. Utilizamos novamente as duas técnicas de
aumento de dados que melhor se adequaram aos experimentos anteriores MixUp e CutMix. A

Tabela 22 apresenta os resultados deste experimento:

Tabela 22. Comparacao do desempenho dos modelos para o Experimento VI.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8835  0,3246 0,9813 0,9356
VGG16 CutMix 0,8886 0,2979 0,9821 0,9415
VGG19 MixUp 0,8811  0,3308 0,9791 0,9344
VGG19 CutMix 0,9010 0,3048 0,9824 0,9467

EfficientNetV2-M MixUp  0,8880  0,4388 0,9779 0,9345
EfficientNetV2-M CutMix  0,8629  0,3647 0,9762 0,9217

A anélise dos treinados com as técnicas de aumento de dados MixUp e CutMix
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Figura 39 — Treinamento V para os modelos VGG16 CutMix e VGG19 CutMix, organizadas
respectivamente de cima para baixo.
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revelou que os modelos VGG16 e VGG19 apresentaram os melhores desempenhos. O VGG19
CutMix se destacou com a maior acuracia 0,9010, maior ROC-AUC 0,9824 e maior PR-AUC

0,9467, indicando uma excelente capacidade de generalizac@o. Jd o VGG16 CutMix obteve a

menor perda 0,2979 e um dos maiores ROC-AUC 0,9821, sugerindo um bom ajuste aos dados

de treinamento e uma excelente distin¢cdo entre classes. Dentre os modelos avaliados, os que

utilizaram CutMix tiveram melhor desempenho geral do que aqueles treinados com MixUp,

especialmente para VGG19 e VGGI6.

Embora os modelos baseados no EfficientNetV2-M tenham obtido resultados compe-

titivos no experimento anterior, na configuracdo atual seu desempenho foi inferior em todas as

métricas quando comparado ao VGG com CutMix. Isso sugere que o EfficientNetV2-M possa ter

um desempenho mais eficaz em treinamentos com um maior volume de dados.
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Figura 40 — ROC-AUC e PR-AUC V para os modelos VGG16 CutMix e VGG19 CutMix, organi-

zadas respectivamente de cima para baixo.
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Os modelos VGG16 CutMix e VGG19 CutMix apresentam variagdes na acurdcia por

classe (Tabelas 23 e 24). No modelo VGGI16 CutMix, a acuracia varia de 0,67 a 0,98, com médias

macro e ponderada de 0,89. No VGG19 CutMix, as acuricias sdo geralmente mais altas, variando

de 0,75 a 0,99, com uma média macro de 0,87 e média ponderada de 0,90. Isso indica que o

VGG19 CutMix, apesar de uma média macro ligeiramente inferior, oferece um desempenho geral

melhor, especialmente com uma melhora significativa na Classe 0.

Tabela 23. Desempenho VI do modelo VGG16 CutMix por classe.

Classe Acuracia Precisao Revocacao FI1-Score
Classe 0 0,67 0,84 0,67 0,75
Classe 1 0,98 0,88 0,98 0,93
Classe 2 0,90 0,91 0,90 0,91
Classe 4 0,98 0,96 0,98 0,97
Classe 7 0,82 0,81 0,82 0,81
Média Macro - 0,88 0,87 0,87
Média Ponderada 0,89 0,89 0,89 0,89
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Tabela 24. Desempenho VI do modelo VGG19 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,75 0,82 0,75 0,79
Classe 1 0,95 0,92 0,95 0,94
Classe 2 0,91 0,91 0,91 0,91
Classe 4 0,99 0,96 0,99 0,97
Classe 7 0,87 0,88 0,87 0,88
Média Macro - 0,90 0,90 0,90
Média Ponderada 0,90 0,90 0,90 0,90

Analisando a Figura 41 Os modelos VGG16 e VGG19 CutMix exibem um treina-
mento eficaz com a perda diminuindo e a acurdcia aumentando ao longo das épocas, indicando
boa generalizagdo sem sobreajuste. As andlises das curvas ROC-AUC e precisdo-revocagao
(Figura 42) revelam altos desempenhos para ambos os modelos, com o VGG19 apresentando
ligeiramente melhores resultados. Isso mostra que os modelos sdo eficientes na classificacao,

com o0 VGG19 possivelmente oferecendo uma melhor precisao e revocacdo geral.

4.7 Experimento VII

Nesta secdo, sdo apresentados os resultados do Experimento VII para os dois modelos
pré-treinados que obtiveram melhor desempenho nos experimentos I, IIl e IV: VGG16 e VGGI9.
Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo que
apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cendrio com
mais imagens para treino. A andlise inclui as principais métricas para a avaliacdo de desempenho,
entre as quais se destacam: Acurdcia, Perda, ROC-AUC e PR-AUC.

Neste caso, a base de dados utilizada estava balanceada para 20000 imagens por
classe, optamos por adotar os dois tipos de aumento de dados que se adequaram melhor nos
experimentos anteriores MixUp e CutMix. O diferencial deste experimento para o experimento
V foi a aplicacdo de CLAHE para aumento do contraste das imagens durante a etapa de pré-

processamento. A Tabela 25 apresenta os resultados deste experimento:

Tabela 25. Comparacio do desempenho dos modelos para o Experimento VII.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,7775  0,7749 0,9331 0,6880
VGG16 CutMix 0,8167 0,5465 0,9695 0,7373
VGG19 MixUp 0,7962  0,6672 0,9642 0,6945
VGG19 CutMix 0,7952  0,5995 0,9607 0,7205

EfficientNetV2-M MixUp  0,7567  0,6878 0,9344 0,6307
EfficientNetV2-M CutMix  0,7858  0,6649 0,9323 0,6765
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Figura 41 — Treinamento VI para os modelos VGG16 CutMix e VGGI19 CutMix, organizadas
respectivamente de cima para baixo.
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Para o experimento VII, o modelo VGG16 CutMix apresentou o melhor desempenho

geral, obtendo a maior acuricia 0,8167, a menor perda 0,5465 e os melhores valores de ROC-AUC

0,9695 e PR-AUC 0,7373. Esses resultados indicam que a técnica de aumento de dados CutMix

foi particularmente eficaz quando aplicada a arquitetura VGG16, melhorando a capacidade do

modelo de distinguir entre classes e reduzindo o erro durante a classificacio.

O modelo VGG19 CutMix também apresentou um bom desempenho, com um ROC-

AUC de 0,9607 e PR-AUC de 0,7205, mas ainda inferior ao VGGI16 CutMix. Entre os modelos

EfficientNetV2-M, a versdo com CutMix superou a variante com MixUp, porém ambas tiveram

resultados inferiores as arquiteturas VGG16 e VGG19. Assim, os resultados sugerem que a

combinacao da arquitetura VGG16 com a técnica CutMix € a mais adequada para este conjunto

de dados balanceado com aplica¢do de CLAHE.
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Figura 42 — ROC-AUC e PR-AUC VI para os modelos VGGI16 CutMix e VGGI9 CutMix,
organizadas respectivamente de cima para baixo.
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As Tabelas 26 e 27 destacam VGGI16 CutMix e VGGI19 CutMix, em termos de acura-
cia, precisao, revocagdo e FI-Score para diferentes classes. O modelo VGG 16 CutMix alcanca
uma acurdcia média ponderada de 0,81, enquanto o VGG19 CutMix tem uma acurdcia média
ponderada ligeiramente menor, de 0,80. Ambos os modelos exibem varia¢des no desempenho
entre as classes, sugerindo que alguns tipos de dados ou caracteristicas sdo mais desafiadores de
prever do que outros.

As Figuras 43 e 44 analisam o treinamento e a performance dos modelos VGGI6
e VGGI19 CutMix. Os graficos de treinamento mostram uma reducdo na perda e um aumento
na acurécia ao longo das épocas, indicando melhora no aprendizado, mas com sinais de leve
overfitting, visto que a perda de validacdo estagna ou aumenta. As curvas ROC-AUC e PR-AUC
revelam um bom desempenho na distin¢ao entre as classes, com algumas variacdes entre elas.

Comparando os resultados dos Experimentos V (Secdo 4.5) e VII (Se¢do 4.7),

observa-se que a aplicacdo do CLAHE no Experimento VII nao trouxe melhorias consistentes
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Tabela 26. Desempenho VII do modelo VGG16 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,51 0,72 0,51 0,59
Classe 1 0,92 0,89 0,92 0,91
Classe 2 0,92 0,82 0,92 0,87
Classe 3 0,79 0,59 0,79 0,67
Classe 4 0,90 0,88 0,90 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,81 0,85 0,81 0,83
Classe 7 0,62 0,68 0,62 0,65
Classe 8 0,67 0,65 0,67 0,66
Classe 9 0,71 0,65 0,71 0,69
Média Macro - 0,67 0,68 0,67
Média Ponderada 0,81 0,82 0,81 0,83
Tabela 27. Desempenho VII do modelo VGG19 CutMix por classe.
Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,53 0,63 0,53 0,58
Classe 1 0,87 0,92 0,87 0,90
Classe 2 0,88 0,84 0,88 0,86
Classe 3 0,63 0,51 0,63 0,59
Classe 4 0,88 0,85 0,88 0,86
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,67 0,84 0,75
Classe 7 0,73 0,57 0,73 0,64
Classe 8 0,61 0,65 0,61 0,63
Classe 9 0,73 0,70 0,73 0,71
Média Macro - 0,63 0,67 0,65
Média Ponderada 0,80 0,80 0,79 0,81

no desempenho dos modelos. Embora o modelo VGG16 CutMix tenha mantido um bom
desempenho, com queda da acurécia de 0,8307 no Exp. V e 0,8167 para no Exp. VII. Houve
pequenas quedas nas métricas PR-AUC de 0,7467 para 0,7373 e ROC-AUC de 0,9743 para
0,9695. O mesmo padrao foi observado nos demais modelos, com ligeira redu¢io na acuricia
e PR-AUC, sugerindo que o uso do CLAHE nao impactou positivamente o treinamento e, em

alguns casos, pode até ter prejudicado levemente o desempenho dos modelos.

4.8 Experimento VIII

Nesta secdo, sdo apresentados os resultados do Experimento VIII para os dois
modelos pré-treinados que obtiveram melhor desempenho nos experimentos II, Il e IV: VGG16
e VGG19. Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo

que apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cendrio
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Figura 43 — Treinamento VII para os modelos VGG16 CutMix e VGGI19 CutMix, organizadas
respectivamente de cima para baixo.
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com imagens de dimensionalidade 244x244 pixels. A andlise inclui as principais métricas para a
avaliacdo de desempenho, entre as quais se destacam: Acurdcia, Perda, ROC-AUC e PR-AUC.

Neste experimento, a base de dados utilizada estava balanceada para 4898 imagens
por classe, agora com imagens redimensionadas para 244x244 pixels. Optamos também por
utilizar os dois tipos de aumento de dados que se adequaram melhor nos experimentos anteriores
MixUp e CutMix. O diferencial deste experimento para o experimento VI foi a aplicacao de
CLAHE para aumento do contraste das imagens durante a etapa de pré-processamento. A
Tabela 28 apresenta os resultados deste experimento:

Os resultados da mostram que o modelo EfficientNetV2-M CutMix foi o melhor
desempenho geral, apresentando a maior acuracia 0,8883, a menor perda 0,3295 e os melhores

valores de ROC-AUC 0,9769 e PR-AUC 0,9315. Isso indica que esse modelo teve a melhor
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Figura 44 — ROC-AUC e PR-AUC VII para os modelos VGG16 CutMix e VGGI19 CutMix,
organizadas respectivamente de cima para baixo.
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Tabela 28. Comparagdo do desempenho dos modelos para o Experimento VIII.

Modelo Acuracia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8612  0,4240 0,9690 0,9061
VGG16 CutMix 0,8711  0,3876 0,9720 0,9172
VGG19 MixUp 0,8643  0,4033 0,9702 0,9115
VGGI19 CutMix 0,8601  0,4000 0,9691 0,9079

EfficientNetV2-M MixUp 08498  0,4222 0,9695 0,9163
EfficientNetV2-M CutMix  0,8883  0,3295 0,9769 0,9315

capacidade de classificar corretamente as imagens, com menor erro e alta separabilidade entre
classes. O segundo melhor modelo foi 0 VGG16 CutMix, que obteve uma acurécia de 0,8711,
uma perda de 0,3876 e boas pontuagdes de ROC-AUC 0,9720 e PR-AUC 0,9172, destacando-se
como a melhor opcao entre os modelos VGG.

Os modelosVGG16 MixUp, VGGI19 MixUp e VGGI19 CutMix também tiveram
desempenhos competitivos, com acurécias de 0,8612, 0,8643 e 0,8601, respectivamente, e
boas métricas de ROC-AUC e PR-AUC, embora inferiores ao VGGI16 CutMix. De forma

geral, os resultados reforcam o destaque da arquitetura EfficientNetV2-M, especialmente quando
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combinada com a técnica de aumento de dados CutMix, redimensionamento 244x244 pixels e
aplicacdo de CLAHE, enquanto o VGG16 CutMix se mostrou a melhor op¢ao dentro da familia
VGG.

As Tabelas 29 e 30 mostram o desempenho de VGG16 CutMix e VGG19 CutMix, em
varias classes. Observando os dados, o modelo VGG19 geralmente supera o VGGI6 em quase
todas as métricas por classe. Por exemplo, na Classe 0, o VGG19 tem maior precisdo, revocagao
e F1-Score. Similarmente, em métricas agregadas como média ponderada, o VGGI9 também
mostra desempenho superior, com uma média ponderada de 0,89 contra 0,87 do VGG16. Este
padrdo € consistente através das outras classes, indicando que o modelo VGG19 pode ser mais

eficaz para esse conjunto especifico de dados e tarefas de classificagdo.

Tabela 29. Desempenho VIII do modelo VGG16 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,69 0,76 0,69 0,72
Classe 1 0,90 0,93 0,90 0,91
Classe 2 0,94 0,84 0,94 0,89
Classe 4 0,99 0,94 0,99 0,96
Classe 7 0,73 0,92 0,73 0,81
Média Macro - 0,88 0,85 0,86
Média Ponderada 0,87 0,87 0,87 0,89

Tabela 30. Desempenho VIII do modelo VGG19 CutMix por classe.

Classe Acuracia Precisio Revocacao FI-Score
Classe 0 0,68 0,82 0,68 0,75
Classe 1 0,97 0,90 0,97 0,93
Classe 2 0,90 0,89 0,90 0,89
Classe 4 0,98 0,98 0,98 0,98
Classe 7 0,83 0,86 0,83 0,85
Média Macro - 0,89 0,87 0,88
Média Ponderada 0,89 0,89 0,89 0,90

Com base nas Tebelas 45 e 46, o modelo VGG16 CutMix apresentou treinamento
mais estavel e consistente, com melhores resultados nas curvas ROC-AUC e PR-AUC, indi-
cando maior capacidade de generalizacdao e melhor desempenho na distin¢@o entre classes em
comparacao ao EfficientNetV2-M CutMix.

Comparando os Experimentos VI (Secdo 4.6) e VIII (Secao 4.8), observa-se que
a aplicacdo do CLAHE no Experimento VIII ndo melhorou o desempenho dos modelos VGG,

que apresentaram quedas em todas as métricas, especialmente no PR-AUC e na acurécia. Por
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Figura 45 — Treinamento VIII para os modelos VGGI16 CutMix e EfficientNetV2-M CutMix,
organizadas respectivamente de cima para baixo.
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exemplo, 0 VGG19 CutMix caiu de 0,9010 para 0,8601 em acuricia e de 0,9467 para 0,9079 em
PR-AUC. Por outro lado, os modelos EfficientNetV2-M, principalmente com CutMix, mostraram
melhora com a aplicacdo do CLAHE: a acuricia subiu de 0,8629 para 0,8883, e o PR-AUC
de 0,9217 para 0,9315. Esses resultados indicam que o CLAHE pode ser mais benéfico para
arquiteturas como a EfficientNetV2-M, enquanto pode prejudicar ligeiramente o desempenho das

arquiteturas VGG.

4.9 Comparacao dos melhores desempenhos

A Tabela 31 apresenta o desempenho geral de diferentes experimentos com modelos
de redes neurais. O melhor desempenho global foi obtido no Exp VI por VGG19 CutMix, que

alcangou a maior acurdcia 0,9010, a menor perda 0,3048 e os maiores valores de ROC-AUC



81

Figura 46 — ROC-AUC e PR-AUC VIII para os modelos VGG16 CutMix e EfficientNetV2-M

CutMix, organizadas respectivamente de cima para baixo.
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0,9824 e PR-AUC 0,9467, indicando excelente poder de classificacdo e generalizacdo.

Tabela 31. Comparacao dos melhores resultados dentre os oito modelos analisados

Modelo Acuracia Perda ROC-AUC PR-AUC
Exp I - Gharat & Dandawate 0,8300 - - -
Exp II - VGG19 0,8323  0,4911 0,9719 0,7330
Exp I - VGG19 CutMix 0,7836  0,6458 0,9630 0,7052
Exp IV - VGG16 CutMix 0,8298  0,5649 0,9722 0,7465
Exp V - VGG16 CutMix 0,8307  0,6030 0,9743 0,7467
Exp VI -VGG19 CutMix 0,9010 0,3048 0,9824 0,9467
Exp VII - VGG16 CutMix 0,8167  0,5465 0,9695 0,7373

Exp VIII - EfficientNetV2-M CutMix  0,8883  0,3295 0,9769 0,9315

Em contraste, o EfficientNetV2-M CutMix (Exp VIII), embora tenha apresentado boa
acuracia 0,8883 e métricas AUC elevadas, ROC-AUC 0,9769 e PR-AUC 0,9315, ainda ficou
levemente abaixo do desempenho do VGG19 CutMix. Modelos sem CutMix, como o VGG19

(Exp II), também obtiveram resultados satisfatérios, porém inferiores ao uso combinado com a
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técnica CutMix.
Portanto, a combinac¢do VGGI9 com CutMix se destacou como a mais eficaz entre

todos os experimentos avaliados.
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5 CONCLUSOES

Diante dos objetivos propostos, este trabalho explorou a aplicacao de Redes Neu-
rais Convolucionais na classificagdo de objetos astrondmicos, com foco na identificagdo e
categorizacdo de galdxias da base de dados Galaxyl0 SDSS Dataset. Analisamos as principais
abordagens utilizadas na literatura, bem como o desempenho de diferentes modelos pré-treinados,
incluindo EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGG16 e VGGI19. Além disso,
investigamos a eficicia de estratégias de aumento de dados, como Datagen, MixUp, CutMix e
aprimoramento de contraste por meio de CLAHE, visando melhorar a robustez e a generalizacio
dos modelos testados.

A reprodugdo da arquitetura de Gharat & Dandawate (2022) evidenciou que uma
acurdcia geral elevada pode ser enganosa, uma vez que o modelo apresentou dificuldades signifi-
cativas em classes menos representadas, reforcando a necessidade de métricas complementares,
como ROC-AUC e PR-AUC.

As técnicas de Transfer Learning aprimoraram significativamente a robustez dos
modelos VGG16 e VGG19. Tanto aplicados isoladamente, quanto em combinacdo com o método
de aumento de dados CutMix e o redimensionamento para 244x244 pixels, esses modelos
demonstraram uma excelente capacidade de generalizagdo. Embora o ajuste de contraste CLAHE
ndo tenha tido um impacto significativo na eficicia dos modelos, sua aplicacdo juntamente com
o redimensionamento para 244x244 pixels e a técnica CutMix, revelou um potencial competitivo
para o modelo EfficientNetV2-M, demonstrando os melhores resultados no experimento final.

Os modelos VGG16 e VGG19 superaram redes mais modernas, como a ResNet50,
possivelmente por sua arquitetura simples e profunda, que favorece a extracao de padrdes em
imagens astrondmicas, além do uso eficaz de pesos pré-treinados no ImageNet. J4 as demais
arquiteturas podem ter exigido mais ajustes ou sido mais sensiveis ao overfitting nesse contexto.
Vale destacar, ainda, que aspectos como o consumo de memdria e o tempo de inferéncia, que
diferenciam significativamente modelos como VGG e EfficientNetV2-M, também podem ter
contribuido nos resultados.

Durante o desenvolvimento deste estudo, dois desafios principais foram identificados:
overfitting e custo computacional. O problema de overfitting foi observado especialmente no
Experimento II, que utilizou classes desbalanceadas, e no desempenho do modelo AlexNet, que
apresentou os piores resultados em todos os experimentos — possivelmente por ndo ter sido

pré-treinado com o ImageNet, ao contrario das demais arquiteturas. J4 o custo computacional



84

imp0s limitacOes relevantes, especialmente em experimentos que exigiram redimensionamento
das imagens, o que tornou necessario reduzir o nimero de classes de 10 para 5 para viabilizar os
treinamentos. Apesar desses desafios, destaca-se como ponto positivo o bom desempenho dos
modelos pré-treinados com imagens astrondmicas coloridas, sugerindo que essas arquiteturas
tém potencial para generalizacdo em outras bases de dados com caracteristicas semelhantes.

Este estudo abre diversas possibilidades de pesquisas futuras, por exemplo, a aplica-
¢ao das técnicas de aumento de dados e balanceamento testadas nos experimentos aos demais
modelos pré-treinados, permitindo uma avaliacdo mais ampla do impacto dessas abordagens em
diferentes arquiteturas. Além disso, estratégias mais avangadas, como a classificacdo hierarquica,
podem ser incorporadas ao pipeline de classificacdo. Outra abordagem relevante seria a imple-
mentacdo de métodos de Ensemble Learning, combinando multiplos modelos para potencializar
o desempenho da classificacdo e reduzir a variabilidade dos resultados.

Adicionalmente, a classificagdo de galaxias com CNNs baseada em seu espectro
surge como uma ferramenta complementar essencial, possibilitando a extracdo de informagdes
detalhadas, como composi¢do quimica, idade estelar, taxa de formacao estelar e a identificagdao
de fendmenos ativos, incluindo buracos negros supermassivos e nicleos galécticos ativos (AGN).

Os resultados obtidos ndo apenas confirmam a robustez das CNNs na classificacdo de
dados astrondmicos, mas também ressaltam a importancia da escolha criteriosa do modelo e das
técnicas complementares para otimizar o processo de classificagdo. Assim, este trabalho contribui
para o avanco da aplicagdo de Deep Learning na astronomia, proporcionando insights valiosos
para futuras pesquisas e fortalecendo a base para novas abordagens na andlise e categorizacdo de

objetos astronOmicos.



85

REFERENCIAS

ALMEIDA, A.; ANDERSON, S. F.; FERN4aNDEZ, M. A.; BADENES, C. et al. The Eighteenth
Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V.
2023. Disponivel em: <https://skyserver.sdss.org/dr15/en/skyserver/paper/paper.aspx>. Acesso
em: 26 mar. 2024.

CARDAMONE, C.; SCHAWINSKI, K.; SARZI, M.; BAMFORD, S. P.; BENNERT,
N.; URRY, C. M.; LINTOTT, C.; KEEL, W. C.; PAREJKO, J.; NICHOL, R. C;
THOMAS, D.; ANDREESCU, D.; MURRAY, P.; RADDICK, M. J.; SLOSAR, A.;
SZALAY, A.; VANDENBERG, J. Galaxy zoo green peas: discovery of a class of
compact extremely star-forming galaxies*. Monthly Notices of the Royal Astronomical
Society, v. 399, n. 3, p. 1191-1205, 10 2009. ISSN 0035-8711. Disponivel em:
<https://doi.org/10.1111/j.1365-2966.2009.15383.x>.

DENG, L. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Processing Magazine, v. 29, n. 6, p. 141-142, 2012.

DOON, R.; RAWAT, T. K.; GAUTAM, S. et al. Cifar-10 classification using deep convolutional
neural network. In: 2018 IEEE Punecon. [S.1.: s.n.], 2018. p. 1-5.

EHT COLLABORATION et al. First m87 event horizon telescope results. 1. the
shadow of the supermassive black hole. ApJL, v. 875, p. 1, 2019. Disponivel em:
<https://iopscience.iop.org/article/10.3847/2041-8213/ab0ec7>.

FILHO, K. S. O.; SARAIVA, M. F. Astronomia e Astrofisica. 4. ed. Porto Alegre, RS:
Departamento de Astronomia - Instituto de Fisica, Universidade Federal do Rio Grande do Sul,
2014. Disponivel em: <http://astro.if.ufrgs.br/#gsc.tab=0>.

FILHO, P. C. F. da S. Um estudo sobre a deteccao de Exoplanetas com Inteligéncia Artificial.
84 f. Monografia (Trabalho de Conclusao de Curso) — Universidade Federal do Ceard, Fortaleza,
2022.

FILHO, P. C. F. da S. Light Curve Imaging fot Exoplanet detection with Deep Learning: A
Conceptual Trial. 126 f. Monografia (Dissertacdo de Mestrado) — Universidade Federal do
Ceara, Fortaleza, 2024.

GALAXY ZOO. Galaxy Zoo: People’s Science. 2024. <https://www.zooniverse.org/projects/
zookeeper/galaxy-zoo/>. Acesso em: 20 janeiro 2025.

GALAXY 10 SDSS DATASET. Galaxy10 SDSS Dataset. 2024. <https://astronn.readthedocs.io/
en/latest/galaxy10sdss.html>. Acesso em: 20 agosto 2024.

GANAIE, M.; HU, M.; MALIK, A.; TANVEER, M.; SUGANTHAN, P. Ensemble
deep learning: A review. Engineering Applications of Artificial Intelligence,
Elsevier BV, v. 115, p. 105151, out. 2022. ISSN 0952-1976. Disponivel em: <http:
//dx.doi.org/10.1016/j.engappai.2022.105151>.

GHARAT, S.; DANDAWATE, Y. Galaxy classification: a deep learning approach for classifying
sloan digital sky survey images. Monthly Notices of the Royal Astronomical Society, Oxford
University Press (OUP), v. 511, n. 4, p. 5120-5124, fev. 2022. ISSN 1365-2966. Disponivel em:
<http://dx.doi.org/10.1093/mnras/stac457>.



86

HASANIN, T.; KHOSHGOFTAAR, T. The effects of random undersampling with simulated
class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse
and Integration (IRI). [S.I.: s.n.], 2018. p. 70-79.

HAYKIN, S. Redes Neurais - 2ed. Bookman, 2000. ISBN 9788573077186. Disponivel em:
<https://books.google.com.br/books?1d=1Bp0X5qfyjUC>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. et al. Deep residual learning for image recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [s.n.], 2016. p. 770-778. Disponivel em: <https://arxiv.org/abs/1512.03385>.

HOSNA, A.; MERRY, E.; GYALMO, J.; ALOM, Z.; AUNG, Z.; AZIM, M. A. et al. Transfer
learning: a friendly introduction. Journal of Big Data, Springer, v. 9, n. 1, p. 102, 2022.

HUANG, G.; LIU, Z.; MAATEN, L. van der; WEINBERGER, K. Q. et al. Densely
connected convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). [s.n.], 2017. p. 4700-4708. Disponivel em:
<https://arxiv.org/abs/1608.06993>.

JUNIOR, E. Principais Métricas de Classificacio de Modelos em Machine Learning.
2023. Acesso em: 24 fev. 2025. Disponivel em: <https://medium.com/data-hackers/
principais-modelos-em-machine-learning>.

KEEL, W. C.; BENNERT, V. N.; PANCOAST, A.; HARRIS, C. E.; NIERENBERG, A _;
CHOJNOWSKI, S. D.; MOISEEV, A. V.; OPARIN, D. V.; LINTOTT, C. J.; SCHAWINSKI,
K.; MITCHELL, G.; CORNEN, C. Agn photoionization of gas in companion galaxies

as a probe of agn radiation in time and direction. Monthly Notices of the Royal
Astronomical Society, v. 483, n. 4, p. 4847-4865, 12 2018. ISSN 0035-8711. Disponivel em:
<https://doi.org/10.1093/mnras/sty3332>.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. et al. Imagenet classification
with deep convolutional neural networks. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems (NIPS). [s.n.], 2012.

p. 1097-1105. Disponivel em: <https://proceedings.neurips.cc/paper/2012/hash/
¢399862d3b9d6b76c8436€924a68c45b- Abstract.html>.

LECUN, Y.; Bengio, Y.; Hinton, G. et al. Deep learning. Nature, 2015.

LINTOTT, C. J.; SCHAWINSKI, K.; KEEL, W.; ARKEL, H. V.; BENNERT, N.;
EDMONDSON, E.; THOMAS, D.; SMITH, D. J. B.; HERBERT, P. D.; JARVIS,

M. J.; VIRANI, S.; ANDREESCU, D.; BAMFORD, S. P.; LAND, K.; MURRAY, P;
NICHOL, R. C.; RADDICK, M. J.; SLOSAR, A.; SZALAY, A.; VANDENBERG, J.
Galaxy zoo: ‘hanny’s voorwerp’, a quasar light echo?*. Monthly Notices of the Royal
Astronomical Society, v. 399, n. 1, p. 129-140, 10 2009. ISSN 0035-8711. Disponivel em:
<https://doi.org/10.1111/j.1365-2966.2009.15299.x>.

LINTOTT, C. J.; SCHAWINSKI, K.; SLOSAR, A.; LAND, K.; BAMFORD, S.; THOMAS,
D.; RADDICK, M. J.; NICHOL, R. C.; SZALAY, A.; ANDREESCU, D.; MURRAY, P;
VANDENBERG, J. et al. Galaxy zoo: morphologies derived from visual inspection of galaxies
from the sloan digital sky survey. Monthly Notices of the Royal Astronomical Society, Oxford
University Press (OUP), v. 389, n. 3, p. 1179-1189, set. 2008. ISSN 1365-2966. Disponivel em:
<http://dx.doi.org/10.1111/.1365-2966.2008.13689.x>.



87

LU, Y.; SHEN, M.; WANG, H.; WANG, X.; RECHEM, C. van; FU, T.; WEI, W.
Machine Learning for Synthetic Data Generation: A Review. 2024. Disponivel em:
<https://arxiv.org/abs/2302.04062>.

MASTERS, K. L. Twelve years of galaxy zoo. Proceedings of the International Astronomical
Union, Cambridge University Press (CUP), v. 14, n. S353, p. 205-212, jun. 2019. ISSN
1743-9221. Disponivel em: <http://dx.doi.org/10.1017/S1743921319008615>.

NASA. Edwin Hubble. 2023. Disponivel em: <https://science.nasa.gov/people/edwin-hubble/>.
NASA. Galaxy Basics. 2024. Disponivel em: <https://science.nasa.gov/universe/galaxies/>.

NASA. Galaxy Types. 2024. Disponivel em: <https://science.nasa.gov/universe/galaxies/types/
>.

SANTOS, E. L. G. dos. Aplicacao de Deep Learning para classificacao morfologica de
Galaxias. 84 £.80. Monografia (Trabalho de Conclusao de Curso) — Universidade Federal de
Ouro Preto, Minas Gerais, 2024.

SCHAWINSKI, K.; URRY, C. M.; SIMMONS, B. D.; FORTSON, L.; KAVIRAJ, S.; KEEL,
W. C.; LINTOTT, C. J.; MASTERS, K. L.; NICHOL, R. C.; SARZI, M.; SKIBBA, R;
TREISTER, E.; WILLETT, K. W.; WONG, O. L; YI, S. K. The green valley is a red herring:
Galaxy zoo reveals two evolutionary pathways towards quenching of star formation in
early- and late-type galaxies. Monthly Notices of the Royal Astronomical Society, Oxford
University Press (OUP), v. 440, n. 1, p. 889-907, mar. 2014. ISSN 0035-8711. Disponivel em:
<http://dx.doi.org/10.1093/mnras/stu327>.

SDSS. SDSS Instruments. 2022. Disponivel em: <https://www.sdss.org/instruments/>.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (ICLR). [s.n.], 2015.
Disponivel em: <https://arxiv.org/abs/1409.1556>.

SKIBBA, R. A.; BAMFORD, S. P;; NICHOL, R. C.; LINTOTT, C. J.; ANDREESCU, D.;
EDMONDSON, E. M.; MURRAY, P.; RADDICK, M. J.; SCHAWINSKI, K.; SLOSAR,
A.; SZALAY, A. S.; THOMAS, D.; VANDENBERG, J. Galaxy zoo: disentangling the
environmental dependence of morphology and colour*. Monthly Notices of the Royal
Astronomical Society, v. 399, n. 2, p. 966-982, 10 2009. ISSN 0035-8711. Disponivel em:
<https://doi.org/10.1111/j.1365-2966.2009.15334.x>.

SKIBBA, R. A.; MASTERS, K. L.; NICHOL, R. C.; ZEHAVI, 1.; HOYLE, B.; EDMONDSON,
E. M.; BAMFORD, S. P.; CARDAMONE, C. N.; KEEL, W. C.; LINTOTT, C.; SCHAWINSKI,
K. Galaxy zoo: the environmental dependence of bars and bulges in disc galaxies. Monthly
Notices of the Royal Astronomical Society, v. 423, n. 2, p. 1485-1502, 06 2012. ISSN
0035-8711. Disponivel em: <https://doi.org/10.1111/j.1365-2966.2012.20972.x>.

SLOAN, A. P. Sloan Digital Sky Survey. 2024. Disponivel em: <https://sloan.org/programs/
research/sloan-digital-sky-survey#about>.

SMETHURST, R. J.; LINTOTT, C. J.; SIMMONS, B. D.; SCHAWINSKI, K.; MARSHALL,
P. J.; BAMFORD, S.; FORTSON, L.; KAVIRAIJ, S.; MASTERS, K. L.; MELVIN,
T.; NICHOL, R. C.; SKIBBA, R. A.; WILLETT, K. W. Galaxy zoo: evidence for



88

diverse star formation histories through the green valley. Monthly Notices of the Royal
Astronomical Society, v. 450, n. 1, p. 435-453, 04 2015. ISSN 0035-8711. Disponivel em:
<https://doi.org/10.1093/mnras/stv161>.

TAN, M.; LE, Q. V. Efficientnetv2: Smaller models and faster training. In: Proceedings of the
38th International Conference on Machine Learning ICML). [s.n.], 2021. Disponivel em:
<https://arxiv.org/abs/2104.00298>.

VARGAS, A. C. G.; Paes, A.; Vasconcelos, C. N. et al. Um estudo sobre redes neurais
convolucionais e sua aplicagdo em deteccdo de pedestres. XXXV Conference on Graphics,
Patterns and Images, 2016.

WILLETT, K. W.; LINTOTT, C. J.; BAMFORD, S. P.; MASTERS, K. L.; SIMMONS, B. D ;
CASTEELS, K. R. V.; EDMONDSON, E. M.; FORTSON, L. F.; KAVIRAJ, S.; KEEL, W. C.;
MELVIN, T.; NICHOL, R. C.; RADDICK, M. J.; SCHAWINSKI, K.; SIMPSON, R. I.;
SKIBBA, R. A.; SMITH, A. M.; THOMAS, D. et al. Galaxy zoo 2: detailed morphological
classifications for 304122 galaxies from the sloan digital sky survey. Monthly Notices of the
Royal Astronomical Society, v. 435, n. 4, p. 2835-2860, 09 2013. ISSN 0035-8711. Disponivel
em: <https://doi.org/10.1093/mnras/stt1458>.

YUN, S.; HAN, D.; OH, S. J.; CHUN, S.; CHOE, J.; YOO, Y. CutMix: Regularization
Strategy to Train Strong Classifiers with Localizable Features. 2019. Disponivel em:
<https://arxiv.org/abs/1905.04899>.

ZHANG, H.; CISSE, M.; DAUPHIN, Y. N.; LOPEZ-PAZ, D. mixup: Beyond Empirical Risk
Minimization. 2018. Disponivel em: <https://arxiv.org/abs/1710.09412>.

ZOOUNIVERSE. Zooniverse Projects. 2025. <https://www.zooniverse.org/projects>. Acesso
em: 9 de fevereiro de 2025.



	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Organização do Trabalho

	Fundamentação Teórica
	Galáxias
	Classificação Morfológica das Galáxias

	Deep Learning
	Redes Neurais Artificiais
	Redes Neurais Convolucionais
	Transfer Learning
	Modelos de CNN Pré-Treinados

	Métricas de Desempenho
	Exploração Digital do Espaço: O Sloan Digital Sky Survey e a Plataforma Galaxy Zoo
	Sloan Digital Sky Survey
	Galaxy Zoo

	Trabalhos Relacionados
	Galaxy Classification: a deep learning approach for classifying Sloan Digital Sky Survey images
	Aplicação de deep learning para Classificação Morfológica de Galáxias


	Metodologia
	Base de Dados
	Pré-processamento
	Validação Cruzada
	Etapa Experimental
	Ferramentas e técnicas utilizadas

	Resultados e Discussões
	Experimento I
	Experimento II
	Experimento III
	Experimento IV
	Experimento V
	Experimento VI
	Experimento VII
	Experimento VIII
	Comparação dos melhores desempenhos

	Conclusões
	REFERÊNCIAS
	APÊNDICES

