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RESUMO

Os Surveys são telescópios automatizados posicionados estrategicamente na superfície terrestre

ou no espaço, projetados para realizar varreduras do céu para que se construa um catálogo

detalhado dos corpos celestes observados em seu campo de visão. Combinados, esses instru-

mentos geram dezenas de terabytes de dados astronômicos, o que torna desafiador o registro

e a identificação destes objetos devido ao enorme volume de informações produzidas. Por

essa razão, são necessários profissionais capacitados e técnicas computacionais avançadas de

aprendizado profundo, como Redes Neurais Convolucionais (CNNs), para gerenciar e processar

essa quantidade massiva de dados. O presente trabalho investiga a aplicabilidade de diversas

CNNs na classificação de galáxias utilizando imagens provenientes da base de dados Galaxy10

SDSS Dataset, composta por 21.785 imagens, cada uma com dimensão de 69x69 pixels. As

arquiteturas testadas, pautadas em estudos prévios, foram Gharat & Dandawate, EfficientNetV2-

M, DenseNet121, ResNet50, AlexNet, VGG16 e VGG19. Técnicas de pré-processamento como

aumento de dados, redimensionamento e ajuste de contraste foram aplicadas de maneira sele-

tiva em diferentes experimentos, buscando identificar a combinação mais eficiente de forma a

melhorar os resultados. Os modelos foram avaliados usando métricas como Acurácia, Perda,

ROC-AUC e PR-AUC. A arquitetura VGG19 com aplicação da técnica CutMix apresentou o

melhor desempenho, alcançando uma acurácia de 0,90 e PR-AUC de 0,94. Os resultados obtidos

não apenas confirmaram a robustez das CNNs na classificação de dados astronômicos, mas tam-

bém ressaltaram a importância da escolha criteriosa do modelo e das técnicas complementares

para otimização do processo de classificação.

Palavras-chave: Astronomia. Redes Neurais Convolucionais. Galáxias.



ABSTRACT

Surveys are automated telescopes strategically positioned on the Earth’s surface or in space,

designed to scan the sky to build a detailed catalog of the celestial bodies observed in their field

of view. Combined, these instruments generate terabytes of astronomical data, which makes

it necessary to record and identify these objects due to the enormous volume of information

produced. For this reason, qualified professionals and advanced deep learning computational

techniques, such as Convolutional Neural Networks (CNNs), are needed to manage and process

this enormous amount of data. This work investigates the applicability of several CNNs in

classifying galaxies using images from the Galaxy10 SDSS Dataset, composed of 21,785 images,

each with dimensions of 69x69 pixels. The tested frameworks, based on previous studies,

were Gharat & Dandawate, EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGG16 and

VGG19. Preprocessing techniques such as data augmentation, resizing and contrast adjustment

were applied in an active selected manner in different experiments, seeking to identify the most

efficient combination in order to improve the results. The models were evaluated using analyses

such as Accuracy, Loss, ROC-AUC and PR-AUC. The VGG19 architecture with application

of the CutMix technique presented the best performance, achieving an accuracy of 0.90 and

PR-AUC of 0.94. The results obtained not only confirmed the robustness of CNNs in the

classification of astronomical data, but also highlighted the importance of choosing the model

criteria and complementary techniques to optimize the classification process.

Keywords: Astronomy. Convolutional Neural Networks. Galaxies.
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1 INTRODUÇÃO

Na vasta extensão do nosso universo, os astrônomos utilizam técnicas de inteligência

artificial para explorar e compreender corpos celestes distantes como asteróides, luas, planetas

em outros sistemas solares e até mesmo as primeiras galáxias, situadas a cerca de treze bilhões de

anos-luz1 de distância. Telescópios localizados na superfície da Terra e no espaço produzem dia-

riamente grandes volumes de dados, tornando particularmente difícil o registro e a categorização

destes astros sem o uso de métodos computacionais avançados (SANTOS, 2024).

Um exemplo significativo foi a primeira imagem direta de um buraco negro, em

2019, capturada pelo projeto Event Horizon Telescope (EHT). Devido à impossibilidade técnica

de obtenção dessa imagem por meio de um único telescópio, dados provenientes de diversos

radiotelescópios foram integrados utilizando algoritmos avançados e aprendizado de máquina

para reconstruir a imagem final. Esse método possibilitou a criação da famosa imagem da sombra

do buraco negro supermassivo da galáxia Messier 87, localizada a aproximadamente 55 milhões

de anos-luz (EHT COLLABORATION et al., 2019).

O surgimento das Redes Neurais Convolucionais (CNNs) revolucionou o campo do

processamento de imagens (VARGAS et al., 2016). Inspiradas no sistema visual humano, as

CNNs se destacam pelo reconhecimento eficiente de padrões, nos permitindo analisar imensos

conjuntos de dados com uma precisão única, extraindo características cruciais para discernir

assinaturas sutis de objetos celestes a partir de uma imagem de campo profundo, obtidas por

meio de longa exposição. A aplicação de CNNs neste contexto não só agiliza a análise de vastos

pacotes de dados, mas também aumenta a precisão da classificação, facilitando a descoberta e

caracterização destes objetos (LECUN et al., 2015).

Neste trabalho aplicamos as CNNs na classificação morfológica de Galáxias da

base de dados Galaxy10 SDSS Dataset (GALAXY10 SDSS DATASET, 2024), comparando

a eficácia dos modelos: Gharat & Dandawate (2022), EfficientNetV2-M (TAN; LE, 2021),

DenseNet121 (HUANG et al., 2017), ResNet50 (HE et al., 2016), AlexNet (KRIZHEVSKY et

al., 2012), VGG16 e VGG19 (SIMONYAN; ZISSERMAN, 2015).

1 O ano-luz é uma unidade de comprimento usada para expressar distâncias astronômicas e equivale a cerca de
9,46 trilhões de quilômetros.



18

1.1 Objetivos

1.1.1 Objetivo Geral

Investigar a aplicação de modelos de aprendizagem profunda na classificação de

galáxias em imagens da base de dados Galaxy10 SDSS Dataset

1.1.2 Objetivos Específicos

• Pesquisar bibliografia relevante sobre aplicação de redes convolucionais na classificação

de objetos astronômicos;

• Analisar classificação de imagens para diferentes grupos de galáxias da base de dados

Galaxy10 SDSS Dataset;

• Comparar a eficácia dos modelos: Gharat & Dandawate, EfficientNetV2-M, DenseNet121,

ResNet50, AlexNet, VGG16, e VGG19;

• Avaliar como as estretégias de aumento de dados Datagen, MixUp e CutMix e aumento

de contraste CLAHE (Contrast Limited Adaptive Histogram Equalization) impactam no

desempenho dos modelos do item anterior.

1.2 Organização do Trabalho

Os demais capítulos seguem a seguinte estrutura:

• No Capítulo 2, trazemos o embasamento teórico e a revisão das principais obras, autores e

conceitos relacionados ao tema do trabalho;

• No Capítulo 3, descrevemos os métodos de pesquisa utilizados, como coleta e análise de

dados, técnicas, amostragem, entre outras informações relevantes;

• No Capítulo 4, apresentamos os resultados obtidos durante o desenvolvimento da pesquisa;

• Finalmente no Capítulo 5, discutimos as principais conclusões sobre os resultados obtidos

na presente pesquisa e propomos algumas perspectivas para a continuidade deste trabalho.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, abordaremos os fundamentos para a compreensão deste estudo. Na

Seção 2.1, exploraremos o conceito de galáxias, suas subdivisões e classificações de acordo

com a Sequência de Hubble. Na Seção 2.2, falaremos de Deep Learning com foco em CNNs,

bem como suas características, vantagens, subdivisões para treinamento, Transfer Learning,

principais métricas de desempenho e estratégias de balanceamento de dados utilizadas neste

trabalho. Na Seção 2.4, exploraremos as ferramentas empregadas para a coleta, distribuição e

disponibilização de nossos dados observacionais. Finalmente, na Seção 2.5 revisaremos alguns

trabalhos relacionados que complementam e contextualizam nossa pesquisa.

2.1 Galáxias

As galáxias são vastas ilhas cósmicas na estrutura do universo, contendo desde

bilhões a trilhões de estrelas, juntamente com gás e poeira interestelar (NASA, 2024a). Elas

existem em vários formatos, tamanhos e composições, preenchendo todo o nosso cosmos.

A maioria destes astros possuem entre 10 e 13,6 bilhões de anos. Algumas são quase

tão antigas como o próprio Universo, que se formou há cerca de 13,8 bilhões de anos. Acredita-se

que a galáxia mais jovem conhecida se formou há apenas 500 milhões de anos (NASA, 2024a).

Elas costumam organizar-se em grupos e aglomerados de cerca de 100 membros, unidos por sua

gravidade mútua. Estes, também pertencem a estruturas maiores, chamadas superaglomerados,

podendo conter milhares de galáxias e formando as maiores estruturas do universo, como

podemos observar na Figura 1.

As galáxias não são entidades estáticas, eles evoluem ao longo do tempo através

de processos como formação de estrelas, explosões de supernovas e interações com outras

galáxias. Seu estudo nos fornece informações cruciais sobre a história e a dinâmica do universo,

ajudando-nos a compreender sua estrutura e evolução em maiores escalas (FILHO; SARAIVA,

2014). Dentro das galáxias, também existem fenômenos que influenciam em sua evolução, como

buracos negros supermassivos em seus núcleos, com massas milhões de vezes maiores que a do

Sol.
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e poeira, afetando a formação de estrelas e a evolução do núcleo galáctico (FILHO; SARAIVA,

2014).

As galáxias espirais são também classificadas em diferentes subtipos com base no

grau de abertura de seus braços espirais e no tamanho do bojo central (SANTOS, 2024). Essa

subdivisão segue a sequência Sa, Sb, e Sc (Figura 5).

Figura 5 – Morfologia das galáxias espirais, nos seus três subtipos, com
base no grau de abertura dos braços espirais e no tamanho do
bojo central.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

As galáxias espirais barradas são classificadas de acordo com a proeminência de sua

barra central e a abertura de seus braços espirais, seguindo a sequência SBa, SBb e SBc, como

apresentado na Figura 6 (SANTOS, 2024). Evidências observacionais indicam que a Via Láctea

é uma galáxia espiral barrada, pertencente ao tipo SBc.

Figura 6 – Morfologia das galáxias espirais barradas, em seus três subti-
pos, com base na proeminência da barra central e na abertura
dos braços espirais.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html
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As galáxias lenticulares apresentam uma estrutura semelhante às galáxias espirais -

possuindo um núcleo, um disco e um halo - porém não possuem braços espirais. Na classificação

de Hubble, são representadas pela designação S0, onde o número 0 faz referência à sua forma,

que lembra uma lente (SANTOS, 2024).

Essas galáxias são consideradas uma forma de transição entre galáxias elípticas e

espirais, pois compartilham características de ambas (Figura 7). Assim como as galáxias elípticas,

elas contêm pouca quantidade de gás e poeira, apresentando uma predominância de estrelas

antigas. No entanto, sua estrutura em disco as aproxima das galáxias espirais. As lenticulares

podem ser classificadas como barradas SB0 ou não barradas S0, dependendo da presença ou

ausência de uma barra central (FILHO; SARAIVA, 2014).

Figura 7 – Representação da morfologia de uma galáxia lenticular (S0) à esquerda e a galáxia
M104, um exemplo real desse tipo de galáxia, à direita.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

As galáxias irregulares não têm uma forma definida (NASA, 2024b). Eles podem

ter uma aparência caótica, sem nenhuma simetria particular (Figura 8). Galáxias irregulares

geralmente resultam de interações gravitacionais ou fusões entre galáxias. Eles podem conter

bolsões de intensa formação estelar, juntamente com nuvens de poeira e gás.

Além da diferenciação visual, cada classe também diz repeito a características de

propriedades únicas de cada tipo de galáxia. Enquanto as espirais possuem gás e estrelas jovens,

as elípticas são dominadas por estrelas antigas e pouca poeira. As irregulares exibem característi-

cas variadas, com formação estelar ativa. A Tabela 1 resume as principais características das

galáxias elípticas, espirais e irregulares (FILHO; SARAIVA, 2014).
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Figura 8 – Galáxias irregulares. Da esquerda para direita: NGC4038, NGC1427 e IC4710,
caracterizadas pela ausência de uma estrutura definida e pela intensa formação estelar.

Fonte: https://www.galeriadometeorito.com/p/galaxias.html

Tabela 1 – Comparação das propriedades das galáxias espirais, elípticas e irregulares com relação
a massa, tamanho, luminosidade, composição estelar, presença de gás e poeira, cor e
idade das estrelas.

Propriedade Espirais Elípticas Irregulares
Massa (M) 109 a 1012 105 a 1013 108 a 1011

Diâmetro (103 pc) 5 - 30 1 - 1000 1 - 10
Luminosidade (L) 108 a 1011 106 a 1012 107 a 2x109

População Estelar Velha e jovem Velha Velha e jovem
Tipo Espectral A a K G a K A a F
Gás Bastante Muito pouco Bastante
Poeira Bastante Muito pouca Varia
Cor Azulada no disco e Amarelada Azulada

amarelada no bojo
Estrelas mais velhas 1010 anos 1010 anos 1010 anos
Estrelas mais jovens Recentes 1010 anos Recentes

Fonte: Adaptado de Santos (2024)
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2.2 Deep Learning

Deep Learning, ou aprendizado profundo, é uma técnica de aprendizado de máquina

capaz de identificar padrões complexos em grandes volumes de dados utilizando redes neurais

artificiais que processam dados em múltiplas camadas. Esta abordagem avançada aprende carac-

terísticas automaticamente, sem necessidade de engenharia manual de atributos, beneficiando-se

com o aumento dos dados disponíveis (LECUN et al., 2015).

Ao contrário de outras técnicas de Machine Learning, que podem não escalar bem,

o Deep Learning é eficaz em resolver desafios complexos, como interpretação de imagens e

compreensão da fala, otimizando processos em áreas diversas como saúde, finanças, segurança,

automação e astronomia (HAYKIN, 2000).

2.2.1 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNA) são modelos computacionais inspirados no

funcionamento do cérebro humano (LECUN et al., 2015). Seu princípio fundamental está na

plasticidade cerebral, a capacidade de adaptação e reorganização diante de mudanças ambien-

tais. Essa propriedade permite a formação de novas conexões entre neurônios, facilitando o

aprendizado (HAYKIN, 2000).

O neurônio artificial é a unidade básica das redes neurais (Figura 9). Ele recebe

múltiplas entradas ponderadas, aplica uma função de ativação e gera uma saída (HAYKIN, 2000).

Seu funcionamento pode ser descrito pela equação:

z = ∑wixi +b (2.2)

onde xi representa as entradas, wi os pesos associados a cada entrada, b um viés e z a soma

ponderada dos valores. Uma função de ativação, como ReLU (Rectified Linear Unit) ou sigmoide,

adiciona não-linearidade, permitindo que a rede aprenda padrões complexos. Assim como os

neurônios biológicos transmitem sinais através das sinapses, os neurônios artificiais ajustam seus

pesos para otimizar o desempenho do modelo (HAYKIN, 2000).

Para que essas redes aprendam de maneira eficiente, utiliza-se o algoritmo de back-

propagation, responsável por ajustar os pesos das RNAs e minimizar o erro entre a saída prevista

e a real (LECUN et al., 2015). O aprendizado ocorre em duas etapas, como apresentado na
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Fazendo uma relação com os valores presentes na matriz de confusão temos:

Acurácia =
VP+VN

VP+FP+VN+FN
(2.3)

A acurácia geral é útil quando as classes estão balanceadas, ou seja, quando há

aproximadamente o mesmo número de exemplos em cada classe. Para modelos desbalanceados,

podemos avaliar a acurácia por classe (SANTOS, 2024).

A precisão, por outro lado, foca apenas nas previsões positivas. Ela mede a proporção

de exemplos corretamente classificados como positivos em relação a todos os exemplos que o

modelo classificou como positivos. Ela é especialmente útil quando se quer minimizar o número

de falsos positivos, ou seja, quando o custo de classificar algo incorretamente como positivo é

alto (JUNIOR, 2023). Fazendo uma relação com os valores presentes na matriz de confusão

temos:

Precisão =
VP

VP+FP
(2.4)

A revocação é calculada como a proporção de verdadeiros positivos em relação

ao total de casos que realmente são positivos, ou seja, a soma dos verdadeiros positivos e

dos falsos negativos (JUNIOR, 2023). Ele responde à pergunta "Entre todos os exemplos que

realmente pertencem à classe positiva, quantos o modelo conseguiu identificar corretamente?".

Relacionando com os valores presentes na matriz de confusão temos:

Revocação =
VP

VP+FN
(2.5)

A F1-Score consiste na métrica de desempenho que combina os valores das métricas

precisão e revocação em um único valor. Ele é especialmente útil quando há um desequilíbrio

entre as classes, e você deseja um equilíbrio entre a precisão e o revocação (JUNIOR, 2023).

Podemos calcula-la pela fórmula a seguir:

F1-score = 2×
Precisão×Revocação
Precisão+Revocação

(2.6)
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2.4 Exploração Digital do Espaço: O Sloan Digital Sky Survey e a Plataforma Galaxy

Zoo

Surveys são telescópios instalados no espaço ou em regiões remotas da Terra que

realizam observações sistemáticas do céu para catalogar objetos celestes, estudar suas proprieda-

des e mapear o universo em várias escalas. Estes equipamentos cobrem diferentes comprimentos

de onda, desde ondas de rádio até raios gama, fornecendo vastos volumes de dados para análise

e apuração (ALMEIDA et al., 2023).

Muitas pesquisas astronômicas adotam políticas de dados abertos, disponibilizando

seus conjuntos de dados gratuitamente à comunidade científica e ao público. Isto incentiva a

colaboração, permite a verificação independente dos resultados e promove a inovação nas técnicas

de investigação. Dessas bases de dados, foram realizadas inumeras descobertas no campo da

astronomia nos últimos anos, incluindo a detecção de exoplanetas6, o mapeamento da radiação

cósmica de fundo em micro-ondas7 e a identificação de galáxias e quasares8 distantes (SLOAN,

2024). Atualmente, os Surveys são essenciais para a abordagem de questões fundamentais sobre

a origem, evolução e estrutura do universo, abrindo caminho para novos avanços na astronomia e

na cosmologia.

2.4.1 Sloan Digital Sky Survey

O Sloan Digital Sky Survey (SDSS) é o mais ambicioso levantamento astronômico

em andamento na atualidade. É um esforço colaborativo que envolve centenas de astrônomos

de todo o mundo, com o objetivo de mapear bilhões de objetos celestes e sondar a estrutura em

grande escala do universo. Este projeto teve inicio no ano 2000 e já está em sua quinta versão, o

SDSS-V (SLOAN, 2024). Sua versão original consistia da observação de imagens e espectros

usando um telescópio dedicado de 2,5 metros localizado em Apache Observatory Point no Novo

México - EUA (Figura 25) (SDSS, 2022).

Suas imagens são essenciais para a identificação de alvos para a observação de

espectros, nos permitindo construir um mapa tridimensional de milhões de galáxias e quasares.

6 Um exoplaneta é um planeta que se encontra fora do nosso Sistema Solar.
7 A Radiação Cósmica de Fundo em microondas (RCFM) é um sinal eletromagnético, de origem cosmológica,

que pode ser observado em todo o céu. Ela está associada a uma época em que o Universo ainda era muito
jovem, quando a matéria era predominantemente constituída por prótons e elétrons que formavam uma espécie
de "gás primordial".

8 Um quasar, é um núcleo galáctico ativo, de tamanho maior que o de uma estrela, porém menor do que o tamanho
mínimo para ser considerado uma galáxia.
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Figura 25 – Telescópio da missão Sloan Digital Sky Survey.

Fonte: https://sloan.org/programs/research/sloan-digital-sky-survey

A medida que o levantamento progride, os dados são disponibilizados à comunidade científica (e

para o público em geral) em incrementos anuais através do site SkyServer9 (ALMEIDA et al.,

2023).

Dentre as conquistas do SDSS, destacam-se: criação de um mapa 3D detalhado

do universo; descoberta de milhões de objetos celestes, incluindo estrelas, galáxias e quasa-

res; medição da estrutura em grande escala do universo e impressão das oscilações acústicas

bariônicas10; estudo da estrutura, dinâmica e composição química da Via Láctea; numerosas

contribuições para vários campos da astronomia, incluindo cosmologia, evolução de galáxias,

astrofísica estelar e muito mais (SLOAN, 2024).

O SDSS exerce um impacto profundo em nossa compreensão do universo, impul-

sionando uma vasta gama de pesquisas e definindo a trajetória da astronomia contemporâ-

nea (SLOAN, 2024).

9 https://www.sdss4.org/
10 Ondas de pressão geradas nos primordios do universo causadas pela interação dos átomos com a radiação. Este

fenômeno está correlacionado com a abundancia de Aglomerados Galácticos em determinadas regiões.
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2.4.2 Galaxy Zoo

O Galaxy Zoo é um projeto de ciência cidadã lançado em 2007, que utiliza classifica-

ções visuais de mais de um milhão de galáxias extraídas do SDSS, para criar um amplo catálogo

morfológico desses corpos celestes. Com dados publicamente acessíveis, esse projeto facilita

que pesquisadores e o público em geral explorem e empreguem esses recursos (LINTOTT et al.,

2008).

Com uma abordagem de crowdsourcing, no qual mais de 150 mil voluntários ao

redor do mundo classificam galáxias em uma escala muito maior do que seria possível apenas por

astrônomos profissionais. Este método não apenas democratiza a participação na ciência, mas

também melhora a qualidade dos dados coletados (MASTERS, 2019). Os voluntários recebem

treinamento e passam por um teste de categorização para garantir a precisão das classificações,

que são rigorosamente verificadas e comparadas com avaliações profissionais para assegurar

conformidade com padrões científicos (LINTOTT et al., 2008).

A árvore de decisão do Galaxy Zoo é um recurso interativo que orienta os voluntários

na categorização destes corpos celestes com base em suas características visuais, conforme a

Figura 26. O processo inicia-se com uma pergunta geral sobre a forma básica do objeto, questio-

nando se é liso e arredondado, possui características distintas ou é difícil de classificar devido à

visibilidade ou distorção, exemplo na Figura 27. Dependendo da resposta, os participantes são

direcionados para perguntas mais detalhadas, como a presença de um bojo central em objetos

lisos. À medida que avançam, as perguntas tornam-se mais específicas, abordando aspectos como

barras, número e orientação dos braços espirais. O processo é finalizado com a classificação

precisa da categoria morfológica da galáxia, baseada nas respostas dadas (WILLETT et al.,

2013).

A equipe do Galaxy Zoo já contribuiu para mais de 60 publicações científicas, com

cerca de 100 citações cada, desvendando fenômenos pouco comuns como as Green Peas (CAR-

DAMONE et al., 2009) e Hanny’s Voorwerp (LINTOTT et al., 2009; KEEL et al., 2018). Além

disso, o projeto abordou o impacto de barras nas dinâmicas galácticas e na formação estelar,

investigando também como os braços espirais afetam sua estrutura e evolução (SKIBBA et al.,

2012; SCHAWINSKI et al., 2014; SMETHURST et al., 2015). Uma de suas revelações mais

importantes foi esclarecer a complexa relação entre a cor e a morfologia das galáxias (SKIBBA

et al., 2009; MASTERS, 2019). Contrariando a suposição anterior de que esses atributos estavam

diretamente relacionados, as observações demonstraram que a cor não é um indicador consis-
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Figura 26 – Árvore de decisão do Galaxy Zoo. Ferramenta interativa que orienta voluntários na
classificação de galáxias com base em suas características visuais.

Fonte: https://data.galaxyzoo.org/gz_trees/gz_trees.html

tente da morfologia. Essas descobertas têm implicações profundas para a teoria da formação e

evolução das galáxias.

O sucesso do Galaxy Zoo também inspirou a criação da plataforma Zooniverse11, que

11 https://www.zooniverse.org/
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2.5.2 Aplicação de deep learning para Classificação Morfológica de Galáxias

Santos (2024), avaliou em seu trabalho, seis arquiteturas de redes neurais convo-

lucionais - EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGG19 e VGG16 - além da

arquitetura proposta por Gharat & Dandawate (2022). Ademais, técnicas como classificação

hierárquica e Ensemble Learning (GANAIE et al., 2022) foram aplicadas para melhorar os

resultados.

A base de dados empregada foi a mesma reportada no trabalho de Gharat & Dan-

dawate (2022). No estudo, foram conduzidos experimentos considerando o desbalanceamento

dos dados aplicando técnicas de aumento de dados, tanto para equilibrar todas as classes quanto

para reforçar exclusivamente a classe minoritária.

Com a aplicação de transferência de aprendizagem, a arquitetura EfficientNetV2-M

obteve uma acurácia de 82,90%. Quando realizado balanceamento das classes através de aumento

de dados, a ResNet50 se destacou, alcançando 88,20% de acurácia. No entanto, a estratégia

de Ensemble Learning superou esses resultados, atingindo 85,53% com dados desbalanceados

e 91,75% com dados balanceados. Esses achados destacam o Ensemble Learning como uma

abordagem promissora para aprimorar a classificação morfológica de galáxias, tornando o modelo

mais robusto e eficaz.
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3 METODOLOGIA

Neste capítulo, descrevemos detalhadamente a metodologia adotada para a condução

dos experimentos que sustentam o desenvolvimento deste trabalho. A estrutura deste estudo

é inspirada nas pesquisas de Gharat & Dandawate (2022), nas quais se utiliza a arquitetura

de uma CNN construída pelos próprios autores. Além da CNN de Gharat & Dandawate,

também trabalhamos com outros modelos de redes neurais pré-treinadas, conforme apresentado

anteriormente. Na Seção 3.1, apresentamos a base de dados utilizada. A Seção 3.2 aborda as

técnicas de pré-processamento aplicadas às imagens. Em seguida, na Seção 3.3, explicamos

o procedimento de validação cruzada adotado. Por fim, na Seção 3.4, detalhamos a etapa

experimental.

3.1 Base de Dados

A base de dados utilizada neste trabalho deriva de pré-processamentos aplicados às

imagens oriundas da Galaxy10 SDSS Dataset (GALAXY10 SDSS DATASET, 2024). Essa é

composta por 21785 imagens coloridas de galáxias, observadas pelo SDSS e pré-classificadas por

voluntários. Originalmente com resolução de 424x424 pixels, as imagens foram centralizadas e

redimensionadas para 207x207 pixels, e posteriormente para 69x69 pixels através de interpolação

bilinear, para torná-las gerenciáveis na maioria dos computadores e memórias de placas de

vídeo (GHARAT; DANDAWATE, 2022). As imagens foram então organizadas em 10 classes

distintas, conforme ilustrado na Figura 29.

Para garantir a confiabilidade das classificações no Galaxy10 SDSS Dataset, foi

estabelecido como limiar de aceitação das imagens que mais de 55% dos votos dos voluntários

concordem em classifica-las em uma única classe dentre as 10 possíveis. Este limiar foi sele-

cionado com o objetivo futuro de posicionar o Galaxy10 SDSS Dataset (GALAXY10 SDSS

DATASET, 2024) como uma alternativa viável aos conjuntos de dados tradicionais usados em

aprendizado profundo, como MNIST (Modified National Institute of Standards and Techno-

logy) (DENG, 2012) e Cifar_10 (Canadian Institute For Advanced Research) (DOON et al.,

2018), com foco para astronomos.

Tomando o modelo astroNN.models.Cifar10_CNN como referência, Gharat & Dan-

dawate (2022) observaram que um limite de 50% resultava em baixa precisão de classificação

devido ao grande número de imagens potencialmente mal classificadas, dificultando o aprendi-
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3.2 Pré-processamento

Antes do treinamento do modelo, realizamos o pré-processamento dos dados, com

técnicas de aumento de dados (data augmentation) e de redução de dados (undersampling), a

depender do experimento. Este passo nos permitiu ampliar a diversidade das amostras disponíveis

e reduzir possíveis vieses, tornando o modelo mais robusto e capaz de generalizar melhor.

Avaliamos três tipos de estratégias de aumento de dados: Datagen (LU et al., 2024),

MixUp (ZHANG et al., 2018) e CutMix (YUN et al., 2019) (Figura 30).

• Datagen: Estratégia classica, com transformações como espelhamento horizontal e vertical

aleatórios (Random Horizontal Flip e Random Vertical Flip), corte aleatório e rotação

aleatória de até 30 graus (Random Rotation);

• MixUp: Técnica que cria novos exemplos sintéticos ao interpolar linearmente tanto os

dados de entrada quanto seus respectivos rótulos;

• CutMix: Substitui aleatoriamente uma região de uma imagem por um recorte de outra,

ajustando os rótulos proporcionalmente.

Para subamostragem e sobreamostragem, aplicamos técnicas de redução das clas-

ses majoritárias para evitar que o modelo desenvolvesse viés excessivo em relação às classes

com mais amostras. Utilizamos o Random Undersampling (RUS) (HASANIN; KHOSHGOF-

TAAR, 2018), que seleciona aleatoriamente um subconjunto das amostras da classe majoritária,

equilibrando a distribuição dos dados.

Além disso, em alguns experimentos, optamos pelo descarte de determinadas classes

e ajustamos a proporção das imagens para 244x244 para favorecer o treinamento do modelo.

Também exploramos o uso da técnica CLAHE para aumentar o contraste das imagens escurecidas.

A Figura 31 representa as imagens com a aplicação de CLAHE no pre-processamento.

As imagens de entrada foram previamente convertidas para o formato exigido por

cada modelo antes do treinamento. Por exemplo, a ResNet50 requer imagens no formato RGB (0-

255), enquanto a EfficientNetV2-M aceita imagens em RGB (0-1), normalizadas para o intervalo

[0,1]. Além disso, foi aplicada a normalização baseada na média e desvio-padrão do conjunto

ImageNet, conforme recomendado para modelos pré-treinados.
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3.3 Validação Cruzada

Esta etapa consistiu na divisão de nossa base de dados em três grupos: treino,

validação e teste.

• Treino: Este lote foi empregado para treinar a CNN, ajustando os pesos e parâmetros

do modelo conforme as imagens e categorias foram apresentadas. Normalmente, uma

proporção significativa do conjunto de dados é reservada para treinamento, uma vez que, é

nesta fase que o modelo efetivamente aprende.

• Validação: O conjunto de validação permite avaliar o desempenho da CNN ao longo do

treinamento e refinar os hiperparâmetros do modelo, visando sua otimização. O conjunto

de dados de validação é usado para avaliar a precisão e o desempenho geral do modelo

com exemplos não vistos durante o treinamento.

• Teste: Após a CNN ser aprimorada com os dados de treinamento e validação, é crucial

avaliar sua eficácia final em um conjunto de dados completamente separado, conhecido

como conjunto de testes.

A divisão dos dados para treino, validação e teste seguiu, respectivamente, uma

proporção de 70%, 15% e 15% do conjunto total de imagens, conforme sugerem Gharat &

Dandawate (2022).

Na fase de treinamento da rede neural é configurado o número de épocas, que

representa uma iteração completa em que todos os dados do conjunto de treinamento são

apresentados à rede (SANTOS, 2024). O tamanho do lote (batch size) é determinado para definir

o número de amostras utilizadas para atualizar os pesos da rede a cada iteração. Neste trabalho,

o número máximo de épocas foi definido para 20 interações e quanto ao tamanho dos lotes para

processamento, optou-se por valores de 8, 16 e 32, conforme em Santos (2024).

Aplicamos dropout de 50% e utilizamos callbacks durante o treinamento para mitigar

a ocorrência de overfitting, garantindo uma melhor generalização dos modelos. Além disso,

adotamos a técnica de fine-tuning para os modelos pré-treinados, inicialmente congelando as

primeiras camadas da rede, responsáveis por aprender características mais gerais das imagens, e

refinando apenas as camadas superiores. À medida que o treinamento evolui, descongelam-se as

demais camadas, permitindo que o modelo ajuste seus pesos de forma progressiva e adapte-se

melhor aos padrões do novo conjunto de dados.

Por fim, de forma a avaliar o desempenho dos modelos, aplicamos as métricas matriz

de confusão, acurácia, revocação, precisão, F1-Score, ROC AUC e PR-AUC, Macro avg e
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Weighted avg. O Macro Average (Macro avg) é uma métrica que calcula a média simples das

métricas da figura acima, atribuindo o mesmo peso a todas as classes, enquanto o Weighted

Average (Weighted avg) pondera essas métricas de acordo com o número de amostras em cada

classe, dando mais influência às classes mais frequentes.

3.4 Etapa Experimental

Realizamos oito experimentos a saber: Experimento I consistiu na reprodução do

modelo de Gharat & Dandawate (2022). As etapas II, III e IV, empregaram a técnica de Transfer

Learning com base no trabalho de Santos (2024). Por fim, V a VIII, também adotaram TL, mas

para 20000 imagens, redimensionamento 244x244 pixels e aplicação de CLAHE.

A escolha dos modelos pré-treinados e as técnicas de aumento de dados nos experi-

mentos V a VIII tomou como base os dois melhores desempenhos em II, III e IV. A Tabela 4

apresenta a descrição dos testes conduzidos.

3.5 Ferramentas e técnicas utilizadas

Todo o desenvolvimento foi realizado utilizando os recursos oferecidos pelo Google

Colab, os detalhes são apresentado abaixo:

Para os experimentos I, II, III e IV:

• Disco: 235,7,25 GB de armazenamento;

• GPU: NVIDIA Tesla T4 (15 GB de memória de vídeo);

• RAM: 51 GB de memória RAM.

Para os experimentos V, VI, VII e VIII:

• Disco: 235,7,25 GB de armazenamento;

• GPU: NVIDIA Ampere A100 (40 GB de memória de vídeo);

• RAM: 83,5 GB de memória RAM.
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Tabela 4 – Descrição dos oito testes conduzidos, detalhando as arquiteturas dos modelos utiliza-
dos e os métodos de pré-processamento aplicados em cada etapa.

Exp. Arquitetura Pré-processamento

I Gharat & Dandawate -

II EfficientNetV2-M, DenseNet121, -
ResNet50, AlexNet,
VGG16 e VGG19

III EfficientNetV2-M, DenseNet121, 710 imagens por classe e
ResNet50, AlexNet, Datagen, MixUp ou CutMix

VGG16 e VGG19

IV EfficientNetV2-M, DenseNet121, 4898 imagens por classe e
ResNet50, AlexNet, Datagen, MixUp ou CutMix

VGG16 e VGG19

V VGG16, VGG19 20000 imagens por classe e
e EfficientNetV2-M MixUp ou CutMix

VI VGG16, VGG19 4898 imagens por classe,
e EfficientNetV2-M MixUp ou CutMix e 244x244 pixels

VII VGG16, VGG19 20000 imagens por classe,
e EfficientNetV2-M MixUp ou CutMix e CLAHE

VIII VGG16, VGG19 4898 imagens por classe, MixUp ou CutMix,
e EfficientNetV2-M 244x244 pixels e e CLAHE
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O modelo mostrou boa performance em classificar as galáxias das Classes 1 e 2, mas

fraco desempenho para as demais classes. Especificamente, o modelo não obteve acertos para a

Classe 5.

Avaliando o treinamento com base na acurácia por Classe (Tabela 5) e no relatório

de desempenho (Tabela 6), observa-se que a acurácia geral não representa a qualidade do

modelo em um conjunto de dados desbalanceado. Isso porque essa métrica é influenciada pela

predominância de classes majoritárias, mascarando o real impacto do desbalanceamento na

classificação. Outra justificativa seria a complexidade do modelo, contando apenas com cinco

camadas convolucionais, e a escassez de imagens em algumas classes.

Tabela 5. Acurácia por classe para a arquitetura de Gharat & Dandawate.
Classe Descrição Acurácia
0 Disco, Vista Frontal, Sem Espiral 0,52
1 Suave, Completamente Redonda 0,79
2 Suave, Parcialmente Redonda 0,82
3 Suave, Formato de Charuto 0,54
4 Disco, Vista Lateral, Bojo Arredondado 0,70
5 Disco, Vista Lateral, Bojo Quadrado 0,00
6 Disco, Vista Lateral, Sem Bojo 0,83
7 Disco, Vista Frontal, Espiral Apertada 0,58
8 Disco, Vista Frontal, Espiral Média 0,28
9 Disco, Vista Frontal, Espiral Solta 0,26

Tabela 6. Precisão, Revocação e F1-score por classe para a Arquitetura de Gharat & Dandawate.
Classe Descrição Precisão Revocação F1-Score

Classe 0 Disco, Vista Frontal, Sem Espiral 0,50 0,52 0,51
Classe 1 Suave, Completamente Redonda 0,92 0,79 0,85
Classe 2 Suave, Parcialmente Redonda 0,80 0,82 0,81
Classe 3 Suave, Formato de Charuto 0,30 0,54 0,39
Classe 4 Disco, Vista Lateral, Bojo Arredondado 0,91 0,70 0,79
Classe 5 Disco, Vista Lateral, Bojo Quadrado 0,00 0,00 0,00
Classe 6 Disco, Vista Lateral, Sem Bojo 0,71 0,83 0,77
Classe 7 Disco, Vista Frontal, Espiral Apertada 0,45 0,58 0,51
Classe 8 Disco, Vista Frontal, Espiral Média 0,11 0,28 0,15
Classe 9 Disco, Vista Frontal, Espiral Solta 0,12 0,26 0,17
Média Macro 0,48 0,53 0,50
Média Ponderada 0,77 0,73 0,75

No conjunto de dados analisado, o Macro avg é significativamente menor que o

Weighted avg, indicando que o modelo tem um desempenho desigual entre as classes, classifi-

cando melhor aquelas mais representadas e pior as menos frequentes.
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4.2 Experimento II

O desbalanceamento da base de dados desse experimento impacta a interpretação

dos resultados, no que diz respeito as métricas globais acurácia e F1-Score. Portanto, avaliações

do desempenho do modelo por classe são mais informativas do que análises generalizadas. A

avaliação das curvas ROC-AUC e PR-AUC possibilita entender mais precisamente o desempenho

dos modelos em diferentes classes e sua capacidade de generalização. A Tabela 7 apresenta os

resultados deste experimento.

Tabela 7. Comparação do desempenho dos modelos para o Experimento II.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 0,8252 0,5391 0,9729 0,7143
VGG19 0,8323 0,4911 0,9719 0,7330
ResNet50 0,7922 0,5913 0,9697 0,6979
DenseNet121 0,8185 0,5667 0,9754 0,7335
EfficientNetV2-M 0,7998 0,5731 0,9671 0,6750
AlexNet 0,7821 0,6225 0,9443 0,6395

Observamos que os modelos VGG16 e VGG19 apresentaram o melhor desempenho

geral, destacando-se pelos valores das métricas acurácia, perda, ROC-AUC e PR-AUC. O

VGG19 obteve a maior acurácia 0,8323, a menor perda 0,4911 e a maior PR-AUC 0,7330,

demonstrando sua superioridade na classificação. Embora o desempenho do VGG16 seja

ligeiramente inferior, este apresentou o maior ROC-AUC 0,9729, evidenciando sua capacidade

de discriminar corretamente entre as classes. Além disso, o modelo DenseNet121 se destacou

como a terceira melhor opção, com uma boa acurácia 0,8185 e um ROC-AUC competitivo

0,9754, demonstrando um equilíbrio entre precisão e generalização.

A análise do desempenho por classe dos modelos, apresentados nas Tabelas 8, 9

e 10, confirmam o VGG19 como o melhor modelo, apresentando maior acurácia global 0,83,

menor perda e valores mais equilibrados entre classes, com destaque para a Classe 2 0,96 e a

Classe 4 0,92. Embora o VGG16 apresente desempenho muito próximo do VGG19, o primeiro

mostrou maior variação da acurácia entre classes, com fraco desempenho para a Classe 8 0,48

e a Classe 9 0,56. Apesar do modelo DenseNet121 alcançar uma acurácia global de 0,82, este

obteve um F1-score médio inferior aos resultados dos dois melhores modelos, com uma variação

ainda mais acentuada na acurácia por classe.

Importante salientar que todos os modelos tiveram dificuldades em classificar nas

classes menos representadas, como a Classe 5, que obteve precisão, revocação e F1-score zerados
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Tabela 8. Desempenho II do modelo VGG16 por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,68 0,62 0,68 0,65
Classe 1 0,93 0,91 0,93 0,92
Classe 2 0,90 0,89 0,90 0,90
Classe 3 0,62 0,68 0,62 0,65
Classe 4 0,89 0,86 0,89 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,77 0,82 0,77 0,80
Classe 7 0,59 0,71 0,59 0,64
Classe 8 0,48 0,65 0,48 0,55
Classe 9 0,56 0,80 0,56 0,66
Média Macro - 0,69 0,64 0,66
Média Ponderada 0,83 0,82 0,83 0,82

Tabela 9. Desempenho II do modelo VGG19 por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,55 0,73 0,55 0,63
Classe 1 0,92 0,92 0,92 0,92
Classe 2 0,96 0,84 0,96 0,89
Classe 3 0,56 0,81 0,56 0,66
Classe 4 0,92 0,86 0,92 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,85 0,80 0,85 0,82
Classe 7 0,76 0,62 0,76 0,68
Classe 8 0,56 0,67 0,56 0,61
Classe 9 0,59 0,81 0,59 0,68
Média Macro - 0,71 0,67 0,68
Média Ponderada 0,83 0,83 0,83 0,83

Tabela 10. Desempenho II do modelo DenseNet121 por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,61 0,68 0,61 0,64
Classe 1 0,93 0,88 0,93 0,91
Classe 2 0,90 0,86 0,90 0,88
Classe 3 0,62 0,73 0,62 0,67
Classe 4 0,92 0,83 0,92 0,87
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,76 0,84 0,80
Classe 7 0,64 0,71 0,64 0,67
Classe 8 0,40 0,62 0,40 0,49
Classe 9 0,63 0,73 0,63 0,68
Média Macro - 0,68 0,65 0,66
Média Ponderada 0,82 0,81 0,82 0,81

devido à baixa quantidade de amostras. No entanto, o VGG19 mostrou maior robustez ao lidar

com classes problemáticas, o que justifica sua melhor performance nas métricas globais.
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As Figuras 33 e 34 mostram os resultados de treinamento e as curvas ROC-AUC e

PR-AUC para os modelos VGG16, VGG19 e DenseNet121. Durante o treinamento, observa-se

uma melhoria na acurácia para todos os modelos, mas com sinais de leve overfitting nos modelos

VGG. A perda diminui consistentemente, indicando boa convergência dos modelos. Nas análises

de ROC-AUC e PR-AUC, o modelo DenseNet121 destacou-se por apresentar curvas superiores,

indicando uma melhor taxa de verdadeiros positivos e maior precisão na classificação positiva,

sugerindo que é o mais eficaz em termos de generalização e precisão entre os modelos avaliados.

4.3 Experimento III

Nesta análise, a base de dados utilizada foi balanceada para 710 imagens por classe

e utilizamos também três técnicas de aumento de dados para cada modelo: MixUp, Datagen e

CutMix. As métricas ROC-AUC e PR-AUC foram consideradas para caracterizar o desempenho

dos modelos em diferentes classes e sua capacidade de generalização. A Tabela 11 apresenta os

resultados obtidos.

Tabela 11. Comparação do desempenho dos modelos para o Experimento III.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,7717 0,6310 0,9601 0,6996
VGG16 Datagen 0,7604 0,9217 0,9385 0,6029
VGG16 CutMix 0,7616 0,6739 0,9665 0,6878
VGG19 MixUp 0,7775 0,6488 0,9274 0,6899
VGG19 Datagen 0,7239 0,8949 0,9205 0,5881
VGG19 CutMix 0,7836 0,6458 0,9630 0,7052
ResNet50 MixUp 0,6364 0,9993 0,9336 0,6080
ResNet50 Datagen 0,6493 1,1590 0,9126 0,5219
ResNet50 CutMix 0,6900 0,8584 0,9498 0,6534
DenseNet121 MixUp 0,7279 0,8212 0,9517 0,6588
DenseNet121 Datagen 0,6735 1,0769 0,9301 0,5425
DenseNet121 CutMix 0,7322 0,8171 0,9204 0,6455
EfficientNetV2-M MixUp 0,7083 0,8235 0,9436 0,6089
EfficientNetV2-M Datagen 0,6958 0,9173 0,9155 0,5837
EfficientNetV2-M CutMix 0,6407 0,9806 0,9119 0,5260
AlexNet MixUp 0,6967 0,7894 0,9490 0,6137
AlexNet Datagen 0,7093 0,9010 0,9313 0,5491
AlexNet CutMix 0,7325 0,7405 0,9590 0,6158

Os modelos VGG19 CutMix, VGG16 MixUp e VGG19 MixUp obtiveram os melhores

desempenhos. VGG19 CutMix apresentou a maior acurácia e PR-AUC, tornando-se o mais

eficaz. O VGG16 MixUp, se destaca pela menor perda 0,6310, o que indica um treinamento
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A análise do desempenho por classe dos modelos, apresentados nas Tabelas 12, 13

e 14, confirmam o VGG19 CutMix como o melhor modelo, apresentando maior acurácia global

0,78, baixa perda e valores mais equilibrados entre classes, com destaque para a Classe 1 0,91, a

Classe 4 0,87 e a Classe 6 0,88. Embora o VGG19 MixUp apresente desempenho muito próximo

do VGG19 CutMix, o primeiro mostrou maior variação da acurácia entre classes dentre dos

dois, com fraco desempenho para Classe 0 0,42, Classe 3 0,56 e a Classe 8 0,54. Os modelos

VGG16 MixUp e VGG19 MixUp também obteviveram um F1-score médio superior aos demais

resultados, figurando entre os três melhores modelos.

Tabela 12. Desempenho III do modelo VGG16 MixUp por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,37 0,62 0,37 0,47
Classe 1 0,94 0,82 0,94 0,88
Classe 2 0,80 0,87 0,80 0,83
Classe 3 0,67 0,51 0,67 0,58
Classe 4 0,89 0,89 0,89 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,89 0,78 0,89 0,83
Classe 7 0,71 0,56 0,71 0,63
Classe 8 0,69 0,52 0,69 0,59
Classe 9 0,67 0,63 0,67 0,65
Média Macro - 0,62 0,66 0,63
Média Ponderada 0,77 0,77 0,77 0,76

Tabela 13. Desempenho III do modelo VGG19 MixUp por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,42 0,68 0,42 0,58
Classe 1 0,93 0,85 0,93 0,88
Classe 2 0,84 0,84 0,84 0,84
Classe 3 0,56 0,56 0,56 0,56
Classe 4 0,87 0,82 0,87 0,84
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,73 0,84 0,78
Classe 7 0,71 0,57 0,71 0,63
Classe 8 0,54 0,54 0,54 0,54
Classe 9 0,82 0,60 0,82 0,70
Média Macro - 0,62 0,65 0,63
Média Ponderada 0,77 0,77 0,78 0,77

Os gráficos de treinamento (Figura 35) indicam que os modelos VGG16 MixUp,

VGG19 MixUP e VGG19 CutMix aprendem eficazmente, com perda decrescente e acurácia

crescente durante as épocas de treino. As curvas ROC-AUC e precisão-revocação (Figura 36)
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Tabela 14. Desempenho III do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,55 0,55 0,55 0,55
Classe 1 0,91 0,89 0,91 0,90
Classe 2 0,79 0,89 0,79 0,84
Classe 3 0,56 0,63 0,56 0,59
Classe 4 0,87 0,89 0,87 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,88 0,75 0,88 0,81
Classe 7 0,70 0,61 0,70 0,66
Classe 8 0,65 0,51 0,65 0,57
Classe 9 0,74 0,67 0,74 0,70
Média Macro - 0,64 0,67 0,65
Média Ponderada 0,78 0,79 0,78 0,79

mostram bom desempenho em discriminar e classificar as classes, especialmente notável nas

classes com maior representatividade. Esses resultados sugerem que os modelos são robustos e

eficientes para classificação multi-classe.

4.4 Experimento IV

Neste experimento, a base de dados foi balanceada para 4898 imagens por classe

e utilizamos também três técnicas de aumento de dados para cada modelo: MixUp, Datagen e

CutMix. Dessa forma, a avaliação das curvas ROC-AUC e PR-AUC continua sendo essencial

para compreender melhor o desempenho dos modelos em diferentes classes e sua capacidade de

generalização. A Tabela 15 apresenta os resultados deste experimento:

Observamos que os modelos que utilizaram a técnica de aumento de dados CutMix

apresentaram os melhores desempenhos em todas as métricas avaliadas. Os modelos VGG16

CutMix com acurácia 0,8298, ROC-AUC 0,9722 e PR-AUC 0,7465 e VGG19 CutMix com

acurácia 0,8261, ROC-AUC 0,9750 e PR-AUC 0,7411 destacaram-se como os mais eficazes,

seguidos pelo VGG16 MixUp com acurácia 0,8191, ROC-AUC 0,9667 e PR-AUC 0,7172.

Os modelos que utilizaram e Datagen apresentaram desempenhos inferiores, especi-

almente em acurácia e PR-AUC, sugerindo que essa técnica pode não ter sido tão eficaz para

esta base de dados quanto o CutMix e MixUp. Modelos como ResNet50 Datagen com acurácia

0,5559, ROC-AUC 0,9102, PR-AUC 0,6138, obtiveram dificuldades em obter um bom equilíbrio

entre acurácia e capacidade de discriminação entre classes.

A análise do desempenho por classe dos modelos, apresentados nas Tabelas 16, 17

e 18, confirmam o VGG16 CutMix como o melhor modelo, apresentando maior acurácia global
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Tabela 15. Comparação do desempenho dos modelos para o Experimento IV.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8191 0,6290 0,9667 0,7172
VGG16 Datagen 0,6542 1,4778 0,9302 0,6868
VGG16 CutMix 0,8298 0,5649 0,9722 0,7465
VGG19 MixUp 0,8182 0,6559 0,9592 0,7214
VGG19 Datagen 0,6490 1,2433 0,9510 0,6910
VGG19 CutMix 0,8261 0,5912 0,9750 0,7411
ResNet50 MixUp 0,8000 0,6728 0,9634 0,6978
ResNet50 Datagen 0,5559 2,9864 0,9102 0,6138
ResNet50 CutMix 0,8044 0,6561 0,9667 0,7099
DenseNet121 MixUp 0,8011 0,6978 0,9303 0,7189
DenseNet121 Datagen 0,5055 1,9635 0,9039 0,5366
DenseNet121 CutMix 0,7879 0,7115 0,9584 0,7115
EfficientNetV2-M MixUp 0,7714 0,6782 0,9441 0,6487
EfficientNetV2-M Datagen 0,6835 1,0741 0,9584 0,7062
EfficientNetV2-M CutMix 0,8026 0,6408 0,9380 0,6386
AlexNet MixUp 0,7548 0,7004 0,9356 0,6328
AlexNet Datagen 0,5578 0,5578 0,9395 0,5971
AlexNet CutMix 0,7834 0,6253 0,6958 0,6490

Tabela 16. Desempenho IV do modelo VGG16 MixUp por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,51 0,70 0,51 0,59
Classe 1 0,94 0,89 0,94 0,91
Classe 2 0,92 0,86 0,92 0,88
Classe 3 0,67 0,62 0,67 0,65
Classe 4 0,86 0,90 0,86 0,88
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,88 0,79 0,88 0,83
Classe 7 0,73 0,62 0,73 0,67
Classe 8 0,56 0,62 0,56 0,59
Classe 9 0,69 0,72 0,69 0,71
Média Macro - 0,67 0,67 0,67
Média Ponderada 0,82 0,81 0,82 0,81

superior em comparação com o VGG16 MixUp, conforme observado durante o treinamento

(Figura 37) e nas análises das curvas ROC-AUC e PR-AUC (Figura 38). O VGG16 CutMix mostra

uma evolução consistente e sustentável na acurácia de validação, indicando um aproveitamento

efetivo do treinamento prolongado. O VGG19 CutMix também melhora ao longo do tempo, mas

com um leve indicativo de superajuste no final.
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Tabela 17. Desempenho IV do modelo VGG16 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,60 0,69 0,60 0,65
Classe 1 0,96 0,89 0,96 0,92
Classe 2 0,86 0,91 0,86 0,89
Classe 3 0,67 0,71 0,67 0,69
Classe 4 0,91 0,90 0,91 0,90
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,78 0,84 0,78 0,81
Classe 7 0,75 0,68 0,72 0,70
Classe 8 0,71 0,55 0,71 0,62
Classe 9 0,67 0,72 0,67 0,69
Média Macro - 0,69 0,69 0,69
Média Ponderada 0,83 0,83 0,83 0,83

Tabela 18. Desempenho IV do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,56 0,71 0,56 0,63
Classe 1 0,96 0,88 0,96 0,91
Classe 2 0,88 0,88 0,88 0,88
Classe 3 0,62 0,58 0,62 0,60
Classe 4 0,82 0,92 0,82 0,87
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,94 0,72 0,94 0,82
Classe 7 0,73 0,70 0,73 0,72
Classe 8 0,60 0,67 0,60 0,63
Classe 9 0,83 0,68 0,83 0,75
Média Macro - 0,67 0,69 0,68
Média Ponderada 0,83 0,82 0,83 0,82

4.5 Experimento V

Nesta seção, são apresentados os resultados do Experimento V para os dois modelos

pré-treinados com melhor desempenho nos experimentos anteriores VGG16 e VGG19. Também

optamos por avaliar o desempenho do modelo EfficientNetV2-M, que apresentou resultado

mediano, com o objetivo de analisar sua adequação a um cenário com mais imagens para treino.

A análise considera as métricas de desempenho acurácia, perda, ROC-AUC e PR-AUC.

A base de dados utilizada foi balanceada para 20000 imagens por classe, e adotamos

os dois tipos de aumento de dados que melhor se adequaram nos experimentos anteriores MixUp

e CutMix. A Tabela 19 apresenta os resultados deste experimento:

A análise de desempenho revela o VGG16 CutMix como a melhor opção entre os

avaliados, alcançando a maior accuracia 0,8307 e os melhores valores para ROC-AUC 0,9743 e
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Tabela 19. Comparação do desempenho dos modelos para o Experimento V.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8059 0,7699 0,9570 0,7062
VGG16 CutMix 0,8307 0,6030 0,9743 0,7467
VGG19 MixUp 0,8102 0,6957 0,9401 0,7025
VGG19 CutMix 0,8255 0,5781 0,9719 0,7422
EfficientNetV2-M MixUp 0,7637 0,7950 0,9420 0,6266
EfficientNetV2-M CutMix 0,7836 0,6273 0,9512 0,6573

O EfficientNetV2-M CutMix destacou-se pelo seu equilíbrio entre métricas, atingindo

um ROC-AUC de 0,9512 e um PR-AUC de 0,6573, embora com acurácia menor 0,7836. Isso

sugere esse modelo como uma escolha interessante em cenários com um número maior de

amostras e que necessitam de maior eficiência computacional. Em geral, os modelos que

utilizaram a técnica CutMix obtiveram os melhores resultados, reforçando a evidência de que

essa técnica de aumento de dados é adequada na melhoria da capacidade de generalização dos

modelos de classificação de galáxias.

Os modelos VGG16 e VGG19 CutMix mostram desempenhos diferentes em acurácia

por classe (Tabelas 20 e 21), com o VGG16 CutMix superando o VGG19 em várias classes,

apesar de ambos falharem na Classe 5 com acurácia zero.

Tabela 20. Desempenho V do modelo VGG16 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,70 0,64 0,70 0,67
Classe 1 0,88 0,94 0,88 0,91
Classe 2 0,91 0,86 0,91 0,88
Classe 3 0,73 0,73 0,73 0,73
Classe 4 0,91 0,91 0,91 0,91
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,83 0,84 0,84
Classe 7 0,58 0,82 0,58 0,68
Classe 8 0,69 0,60 0,69 0,64
Classe 9 0,69 0,74 0,69 0,72
Média Macro - 0,71 0,69 0,70
Média Ponderada 0,83 0,84 0,83 0,83

Os gráficos de treinamento dos modelos VGG16 e VGG19 CutMix revelam uma

redução consistente na perda de treinamento (Figura 39), com estabilização na perda de validação,

sugerindo sinais de overfitting, especialmente no VGG19. A acurácia de treinamento aumenta

para ambos, mas o VGG16 demonstra uma generalização ligeiramente melhor. Nas curvas

ROC-AUC e precisão-revocão (Figura 40), o VGG16 geralmente supera o VGG19, destacando-se
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Tabela 21. Desempenho V do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,59 0,67 0,59 0,63
Classe 1 0,95 0,89 0,95 0,92
Classe 2 0,87 0,90 0,87 0,88
Classe 3 0,67 0,73 0,67 0,70
Classe 4 0,91 0,92 0,91 0,91
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,85 0,80 0,85 0,82
Classe 7 0,66 0,72 0,66 0,69
Classe 8 0,67 0,52 0,67 0,59
Classe 9 0,76 0,65 0,76 0,70
Média Macro - 0,68 0,69 0,68
Média Ponderada 0,83 0,83 0,83 0,82

nas curvas ROC. Contudo, ambas as curvas de precisão-revocão indicam dificuldades em prever

os valores corretos para a Classe 5, em ambos os modelos.

4.6 Experimento VI

Nesta seção, são apresentados os resultados do Experimento VI para os dois modelos

pré-treinados que obtiveram melhor desempenho nos experimentos II, III e IV: VGG16 e VGG19.

Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo que

apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cenário com

imagens de dimensionalidade 244x244 pixels. A análise inclui as principais métricas para a

avaliação de desempenho, entre as quais se destacam: Acurácia, Perda, ROC-AUC e PR-AUC.

A base de dados utilizada esta balanceada para 4898 imagens por classe, mas agora

com imagens redimensionadas para 244x244 pixels. Utilizamos novamente as duas técnicas de

aumento de dados que melhor se adequaram aos experimentos anteriores MixUp e CutMix. A

Tabela 22 apresenta os resultados deste experimento:

Tabela 22. Comparação do desempenho dos modelos para o Experimento VI.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,8835 0,3246 0,9813 0,9356
VGG16 CutMix 0,8886 0,2979 0,9821 0,9415
VGG19 MixUp 0,8811 0,3308 0,9791 0,9344
VGG19 CutMix 0,9010 0,3048 0,9824 0,9467
EfficientNetV2-M MixUp 0,8880 0,4388 0,9779 0,9345
EfficientNetV2-M CutMix 0,8629 0,3647 0,9762 0,9217

A análise dos treinados com as técnicas de aumento de dados MixUp e CutMix
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Tabela 24. Desempenho VI do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,75 0,82 0,75 0,79
Classe 1 0,95 0,92 0,95 0,94
Classe 2 0,91 0,91 0,91 0,91
Classe 4 0,99 0,96 0,99 0,97
Classe 7 0,87 0,88 0,87 0,88
Média Macro - 0,90 0,90 0,90
Média Ponderada 0,90 0,90 0,90 0,90

Analisando a Figura 41 Os modelos VGG16 e VGG19 CutMix exibem um treina-

mento eficaz com a perda diminuindo e a acurácia aumentando ao longo das épocas, indicando

boa generalização sem sobreajuste. As análises das curvas ROC-AUC e precisão-revocação

(Figura 42) revelam altos desempenhos para ambos os modelos, com o VGG19 apresentando

ligeiramente melhores resultados. Isso mostra que os modelos são eficientes na classificação,

com o VGG19 possivelmente oferecendo uma melhor precisão e revocação geral.

4.7 Experimento VII

Nesta seção, são apresentados os resultados do Experimento VII para os dois modelos

pré-treinados que obtiveram melhor desempenho nos experimentos II, III e IV: VGG16 e VGG19.

Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo que

apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cenário com

mais imagens para treino. A análise inclui as principais métricas para a avaliação de desempenho,

entre as quais se destacam: Acurácia, Perda, ROC-AUC e PR-AUC.

Neste caso, a base de dados utilizada estava balanceada para 20000 imagens por

classe, optamos por adotar os dois tipos de aumento de dados que se adequaram melhor nos

experimentos anteriores MixUp e CutMix. O diferencial deste experimento para o experimento

V foi a aplicação de CLAHE para aumento do contraste das imagens durante a etapa de pré-

processamento. A Tabela 25 apresenta os resultados deste experimento:

Tabela 25. Comparação do desempenho dos modelos para o Experimento VII.
Modelo Acurácia Perda ROC-AUC PR-AUC
VGG16 MixUp 0,7775 0,7749 0,9331 0,6880
VGG16 CutMix 0,8167 0,5465 0,9695 0,7373
VGG19 MixUp 0,7962 0,6672 0,9642 0,6945
VGG19 CutMix 0,7952 0,5995 0,9607 0,7205
EfficientNetV2-M MixUp 0,7567 0,6878 0,9344 0,6307
EfficientNetV2-M CutMix 0,7858 0,6649 0,9323 0,6765
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Tabela 26. Desempenho VII do modelo VGG16 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,51 0,72 0,51 0,59
Classe 1 0,92 0,89 0,92 0,91
Classe 2 0,92 0,82 0,92 0,87
Classe 3 0,79 0,59 0,79 0,67
Classe 4 0,90 0,88 0,90 0,89
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,81 0,85 0,81 0,83
Classe 7 0,62 0,68 0,62 0,65
Classe 8 0,67 0,65 0,67 0,66
Classe 9 0,71 0,65 0,71 0,69
Média Macro - 0,67 0,68 0,67
Média Ponderada 0,81 0,82 0,81 0,83

Tabela 27. Desempenho VII do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,53 0,63 0,53 0,58
Classe 1 0,87 0,92 0,87 0,90
Classe 2 0,88 0,84 0,88 0,86
Classe 3 0,63 0,51 0,63 0,59
Classe 4 0,88 0,85 0,88 0,86
Classe 5 0,00 0,00 0,00 0,00
Classe 6 0,84 0,67 0,84 0,75
Classe 7 0,73 0,57 0,73 0,64
Classe 8 0,61 0,65 0,61 0,63
Classe 9 0,73 0,70 0,73 0,71
Média Macro - 0,63 0,67 0,65
Média Ponderada 0,80 0,80 0,79 0,81

no desempenho dos modelos. Embora o modelo VGG16 CutMix tenha mantido um bom

desempenho, com queda da acurácia de 0,8307 no Exp. V e 0,8167 para no Exp. VII. Houve

pequenas quedas nas métricas PR-AUC de 0,7467 para 0,7373 e ROC-AUC de 0,9743 para

0,9695. O mesmo padrão foi observado nos demais modelos, com ligeira redução na acurácia

e PR-AUC, sugerindo que o uso do CLAHE não impactou positivamente o treinamento e, em

alguns casos, pode até ter prejudicado levemente o desempenho dos modelos.

4.8 Experimento VIII

Nesta seção, são apresentados os resultados do Experimento VIII para os dois

modelos pré-treinados que obtiveram melhor desempenho nos experimentos II, III e IV: VGG16

e VGG19. Também optamos por avaliar o desempenho do modelo EfficientNetV2-M, um modelo

que apresentou resultado mediano, com o objetivo de analisar como ele se adequa a um cenário
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combinada com a técnica de aumento de dados CutMix, redimensionamento 244x244 pixels e

aplicação de CLAHE, enquanto o VGG16 CutMix se mostrou a melhor opção dentro da família

VGG.

As Tabelas 29 e 30 mostram o desempenho de VGG16 CutMix e VGG19 CutMix, em

várias classes. Observando os dados, o modelo VGG19 geralmente supera o VGG16 em quase

todas as métricas por classe. Por exemplo, na Classe 0, o VGG19 tem maior precisão, revocação

e F1-Score. Similarmente, em métricas agregadas como média ponderada, o VGG19 também

mostra desempenho superior, com uma média ponderada de 0,89 contra 0,87 do VGG16. Este

padrão é consistente através das outras classes, indicando que o modelo VGG19 pode ser mais

eficaz para esse conjunto específico de dados e tarefas de classificação.

Tabela 29. Desempenho VIII do modelo VGG16 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,69 0,76 0,69 0,72
Classe 1 0,90 0,93 0,90 0,91
Classe 2 0,94 0,84 0,94 0,89
Classe 4 0,99 0,94 0,99 0,96
Classe 7 0,73 0,92 0,73 0,81
Média Macro - 0,88 0,85 0,86
Média Ponderada 0,87 0,87 0,87 0,89

Tabela 30. Desempenho VIII do modelo VGG19 CutMix por classe.
Classe Acurácia Precisão Revocação F1-Score

Classe 0 0,68 0,82 0,68 0,75
Classe 1 0,97 0,90 0,97 0,93
Classe 2 0,90 0,89 0,90 0,89
Classe 4 0,98 0,98 0,98 0,98
Classe 7 0,83 0,86 0,83 0,85
Média Macro - 0,89 0,87 0,88
Média Ponderada 0,89 0,89 0,89 0,90

Com base nas Tebelas 45 e 46, o modelo VGG16 CutMix apresentou treinamento

mais estável e consistente, com melhores resultados nas curvas ROC-AUC e PR-AUC, indi-

cando maior capacidade de generalização e melhor desempenho na distinção entre classes em

comparação ao EfficientNetV2-M CutMix.

Comparando os Experimentos VI (Seção 4.6) e VIII (Seção 4.8), observa-se que

a aplicação do CLAHE no Experimento VIII não melhorou o desempenho dos modelos VGG,

que apresentaram quedas em todas as métricas, especialmente no PR-AUC e na acurácia. Por
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técnica CutMix.

Portanto, a combinação VGG19 com CutMix se destacou como a mais eficaz entre

todos os experimentos avaliados.
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5 CONCLUSÕES

Diante dos objetivos propostos, este trabalho explorou a aplicação de Redes Neu-

rais Convolucionais na classificação de objetos astronômicos, com foco na identificação e

categorização de galáxias da base de dados Galaxy10 SDSS Dataset. Analisamos as principais

abordagens utilizadas na literatura, bem como o desempenho de diferentes modelos pré-treinados,

incluindo EfficientNetV2-M, DenseNet121, ResNet50, AlexNet, VGG16 e VGG19. Além disso,

investigamos a eficácia de estratégias de aumento de dados, como Datagen, MixUp, CutMix e

aprimoramento de contraste por meio de CLAHE, visando melhorar a robustez e a generalização

dos modelos testados.

A reprodução da arquitetura de Gharat & Dandawate (2022) evidenciou que uma

acurácia geral elevada pode ser enganosa, uma vez que o modelo apresentou dificuldades signifi-

cativas em classes menos representadas, reforçando a necessidade de métricas complementares,

como ROC-AUC e PR-AUC.

As técnicas de Transfer Learning aprimoraram significativamente a robustez dos

modelos VGG16 e VGG19. Tanto aplicados isoladamente, quanto em combinação com o método

de aumento de dados CutMix e o redimensionamento para 244x244 pixels, esses modelos

demonstraram uma excelente capacidade de generalização. Embora o ajuste de contraste CLAHE

não tenha tido um impacto significativo na eficácia dos modelos, sua aplicação juntamente com

o redimensionamento para 244x244 pixels e a técnica CutMix, revelou um potencial competitivo

para o modelo EfficientNetV2-M, demonstrando os melhores resultados no experimento final.

Os modelos VGG16 e VGG19 superaram redes mais modernas, como a ResNet50,

possivelmente por sua arquitetura simples e profunda, que favorece a extração de padrões em

imagens astronômicas, além do uso eficaz de pesos pré-treinados no ImageNet. Já as demais

arquiteturas podem ter exigido mais ajustes ou sido mais sensíveis ao overfitting nesse contexto.

Vale destacar, ainda, que aspectos como o consumo de memória e o tempo de inferência, que

diferenciam significativamente modelos como VGG e EfficientNetV2-M, também podem ter

contribuido nos resultados.

Durante o desenvolvimento deste estudo, dois desafios principais foram identificados:

overfitting e custo computacional. O problema de overfitting foi observado especialmente no

Experimento II, que utilizou classes desbalanceadas, e no desempenho do modelo AlexNet, que

apresentou os piores resultados em todos os experimentos — possivelmente por não ter sido

pré-treinado com o ImageNet, ao contrário das demais arquiteturas. Já o custo computacional
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impôs limitações relevantes, especialmente em experimentos que exigiram redimensionamento

das imagens, o que tornou necessário reduzir o número de classes de 10 para 5 para viabilizar os

treinamentos. Apesar desses desafios, destaca-se como ponto positivo o bom desempenho dos

modelos pré-treinados com imagens astronômicas coloridas, sugerindo que essas arquiteturas

têm potencial para generalização em outras bases de dados com características semelhantes.

Este estudo abre diversas possibilidades de pesquisas futuras, por exemplo, a aplica-

ção das técnicas de aumento de dados e balanceamento testadas nos experimentos aos demais

modelos pré-treinados, permitindo uma avaliação mais ampla do impacto dessas abordagens em

diferentes arquiteturas. Além disso, estratégias mais avançadas, como a classificação hierárquica,

podem ser incorporadas ao pipeline de classificação. Outra abordagem relevante seria a imple-

mentação de métodos de Ensemble Learning, combinando múltiplos modelos para potencializar

o desempenho da classificação e reduzir a variabilidade dos resultados.

Adicionalmente, a classificação de galáxias com CNNs baseada em seu espectro

surge como uma ferramenta complementar essencial, possibilitando a extração de informações

detalhadas, como composição química, idade estelar, taxa de formação estelar e a identificação

de fenômenos ativos, incluindo buracos negros supermassivos e núcleos galácticos ativos (AGN).

Os resultados obtidos não apenas confirmam a robustez das CNNs na classificação de

dados astronômicos, mas também ressaltam a importância da escolha criteriosa do modelo e das

técnicas complementares para otimizar o processo de classificação. Assim, este trabalho contribui

para o avanço da aplicação de Deep Learning na astronomia, proporcionando insights valiosos

para futuras pesquisas e fortalecendo a base para novas abordagens na análise e categorização de

objetos astronômicos.
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