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“A melhor forma de prever o futuro € cria-lo."

(Abraham Lincoln)



RESUMO

Este trabalho tem como finalidade a busca por boas solucdes para o problema do corte maximo
(Max-Cut) em um grafo, através da utilizacdo de uma metaheuristica baseada em algoritmo
genético que, por sua vez, € inspirada no principio tedrico da evolugdo natural proposto por
Charles Darwin. A ideia principal consiste na busca por uma configuracao de parametros de
refinamento do algoritmo genético que venha a apresentar bons resultados nas instancias da
literatura. O algoritmo genético foi implementado em linguagem Python, sendo centralizado
em fornecer a otimizacio ao problema do corte maximo para grafos. Apds a implementacdo
do algoritmo, foram testadas 54 configura¢des diferentes de parametros de ajuste do algoritmo.
Foram obtidos bons resultados, com o prevalecimento da seguinte configuracdo: “Sem ilha,
Mutacdo em 1 gene, Crossover que prevalece a igualdade entre os genes e busca local a partir de

20 geracdes sem convergéncias do melhor resultado(SIM1PIBL20)”.

Palavras-chave: problema do corte mdximo; algoritmo genético; configuracdo de parametros.



ABSTRACT

This work aims to search for good solutions to the problem of maximum cut (Max-Cut) in a
graph, through the use of a metaheuristic based on a genetic algorithm which, in turn, is inspired
by the theoretical principle of natural evolution proposed by Charles Darwin. The main idea
consists of searching for a configuration of parameters for refining the genetic algorithm that
will present good results in the literature. The genetic algorithm was implemented in Python
language, focusing on providing optimization to the maximum cut problem for graphs. After
implementing the algorithm, 54 different configurations of algorithm tuning parameters were
tested. Good results were obtained, with the following configuration prevailing: “No island,
Mutation in 1 gene, Crossover that prevails equality between genes and local search from 20

generations without convergence of the best result (SIM1PIBL20)”.

Keywords: maximum cut problem; genetic algorithm; parameter configuration.
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1 INTRODUCAO

Um grafo G consiste em um conjunto de vértices ou nés (V) conectadas por um
conjunto de arestas ou arcos (E), onde cada aresta deste conjunto estard associado a, no maximo,
um par de vértices. Dessa forma, com os vértices u e v (u,v € V), pode-se representar uma
aresta como o par (u,v) ou (v,u), onde (u,v), (v,u) € E, sendo ambos os pares considerados
equivalentes quando se trata de um grafo ndo direcionado. Além disso, quando o par (u,v) € E
recebe um peso p(u,v), o grafo € classificado como ponderado (Khan Academy, 2022).

Os grafos podem ser usados na representagao de alguns problemas, como mape-
amento, caminho minimo ou mdximo, fluxo mdximo, dentre outros (Jurkiewicz, 2009). Entre
as diversas aplicacdes dos grafos, destaca-se o problema do corte maximo, que consiste em
encontrar a melhor configuragdo/parti¢do dos vértices de V em dois subconjuntos, S e ', de
forma que a soma dos pesos das arestas que ligam S e S’ seja maximizada (Soares, 2018). Por
ser classificado como um problema NP-dificil (Karp, 1972), a obtengdo exata do corte maximo
em instancias de tamanho moderado a grande se torna invidvel, exigindo a utilizacdo de métodos
que fornecam solugdes aproximadas em tempo computacional razodvel.

Diversos estudos tém abordado o problema do corte maximo a partir de diferentes
perspectivas. Enquanto abordagens exatas, como a apresentada por Lima et al. (2021), onde
demonstram a viabilidade de métodos deterministicos para instancias menores, métodos de apro-
ximagdo — conforme discutido em Gosti et al. (1995) e Simone (1992) — oferecem estratégias para
alcancar bons resultados em tempo reduzido para instancias maiores. Além disso, abordagens
incrementais, como expostas por Kim et al. (2016) evidenciam que o aprimoramento gradual
das solugdes pode ser uma alternativa promissora. Por fim, técnicas de busca local avancgadas,
tais como a utilizada por Benlic e Hao (2013) e métodos hibridos que combinam algoritmos
evolutivos com intensificadores de busca (Bansal et al., 2012), e em andlises de desempenho
como em Zhou et al. (2014), reforcam a importancia da integracdo de estratégias exploratdrias e
intensificadoras para enfrentar os desafios do problema do corte méximo.

Nesse contexto, os algoritmos genéticos emergem como uma poderosa meta-heuristica,
inspirada nos principios da sele¢do natural e evolugdo bioldgica propostos por Darwin (Lucas,
2002). Esses algoritmos exploram o espago de solugdes aplicando operadores como mutacao e
crossover, permitindo a geracdo de novas solu¢des sem a necessidade de avaliar exaustivamente
todas as solucdes possiveis (Goldbarg; Luna, 2005).

Além dos métodos cldssicos de algoritmos genéticos, a incorporacao de estratégias
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hibridas tem se mostrado crucial para superar limitagdes como a convergéncia prematura (Talbi,
2009). Nesse contexto, os algoritmos meméticos — que combinam a exploragdo global dos
algoritmos genéticos com a intensificacao de busca local — evidenciam resultados superiores em
problemas NP-dificeis, como o problema do corte mdximo, conforme demonstrado em estudos
que exploram técnicas inspiradas em métodos como o Tabu Search (Glover, 1989). Além disso,
a integracdo de técnicas de busca local é apontada como um fator determinante para aprimorar a
eficiéncia computacional e superar 6timos locais, fundamentando-se em principios discutidos na
obra de Eiben e Smith (2015). Dessa forma, o acoplamento entre mecanismos exploratdrios e
intensificadores se consolida como uma estratégia essencial para o desenvolvimento de sistemas
robustos e adaptativos.

O presente trabalho propde uma abordagem para a configuracdo de parametros em
algoritmos genéticos aplicados ao problema do corte mdximo. A ideia central consiste em ajustar
a estratégia de busca e filtragem de solu¢des de forma a obter, de maneira otimizada, resultados
que se aproximem dos valores 6timos tedricos. A metodologia adotada inclui a defini¢do de uma
populagdo inicial, a aplicac@o de operadores genéticos, e a integracdo de mecanismos adicionais,
como a verificagdo de restri¢cdes e o uso de "ilhas" para idenitificar solu¢cdes promissoras.

O restante deste trabalho estd estruturado da seguinte forma: na Secao 2, comenta-
se sobre os objetivos; na Secdo 3, sdo apresentadas as definicdes e os conceitos tedricos que
fundamentam o problema do corte mdximo, os algoritmos genéticos e algoritmos hibridos; na
Secdo 4, descreve-se a metodologia adotada para o desenvolvimento e a otimizacao do algoritmo;
na Secdo 5, os experimentos computacionais aplicados; na Secdo 6, apresenta-se os resultados

obtidos; e, por fim, na Sec¢do 7, sdo apresentadas as conclusdes deste trabalho.
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2 OBJETIVOS

Nesta secdo, serdo discutidos o principal objetivo deste trabalho, bem como os

objetivos especificos que orientardo o desenvolvimento e a avaliagdo da proposta.

2.1 Objetivos Gerais

O objetivo geral deste trabalho é parametrizar um algoritmo genético para o pro-
blema do corte maximo em grafos, de forma a obter solucdes de alta qualidade com custos

computacionais reduzidos.

2.2 Objetivos Especificos

« Analisar e definir os principais parametros que influenciam o desempenho do algoritmo
genético no problema do corte maximo;

« Desenvolver uma metodologia para a criagdo e avaliacdo da populagdo, incorporando
operadores genéticos (mutacdo, crossover, etc.);

« Integrar uma heuristica de busca local e um mecanismo de filtragem por restri¢des para
identificar solu¢des promissoras;

. Realizar experimentos computacionais com diferentes combinacdes de parametros e
comparar os resultados com valores 6timos teéricos;

« Identificar a configuracao de parametros que maximize a aproximacao aos valores 6timos

e discutir a influéncia individual de cada parametro.
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3 FUNDAMENTACAO TEORICA

Nesta secdo, serdo apresentados os principais conceitos que fundamentam este
trabalho. Na Secdo 3.1, apresenta-se o Problema do Corte Maximo, uma problematica na area de
grafos que este trabalho vai abordar. Em seguida, na Secao 3.2, serd apresentado o Algoritmo
Genético, uma meta-heuristica utilizada na busca por um espaco de solu¢des para o problema
abordado. E por ultimo, na Secdo 3.3, apresenta-se o Algoritmo Hibrido, assim como a defi¢dao

da heuristica de Busca Local, uma etapa extra que serd empregada ao nosso algoritmo.

3.1 Definicao do problema de Corte Maximo

Seja G(V, E) um grafo ndo direcionado e ponderado, onde V representa o conjunto
de vértices, com |V | = n vértices, e E representa o conjunto das arestas, com |E| = m arestas.
Para cada aresta (u,v) ou (v,u), serd atribuido o peso p(u,v) apenas para u,v € E, u # v.
Sera atribuido valor 0 ao peso da aresta quando: u,v ¢ E, e p(u,u) para todo 1 <u <n
(Soares, 2018). Devido a ampla gama de aplicacdes e pesquisas relacionadas ao problema, o
mesmo € encontrado na literatura com diferentes denominagdes, dentre elas as mais comuns sdo
Maximum-2-Satisfiability, Weighted Signed Graph Balancing, Unconstrained Quadratic 0 - 1
Programming (Boros; Hammer, 1991).

O problema do Corte Maximo (Max-Cut) ponderado consiste em encontrar 0 peso
de valor mdximo no somatdério dos pesos das arestas que estejam ligando os subconjuntos da
biparti¢do S e §’, com a melhor configuracio possivel na distribuicio das arestas entre esses
subconjuntos. Assim, o subconjunto S contém uma parte dos vértices de V, enquanto S’ contém os
|V| —|S| vértices restantes. Vale ressaltar que S ou S’ podem ser conjuntos vazios (Soares, 2018).
A equacdo que representa o somatdrio dos pesos p(u,v) das arestas que ligam os subconjuntos S

e S, obtendo o valor de corte maximo € definida da seguinte forma:

CM(G) =Y Py (3.1)
Yues
vyes'

Na Figura 1, temos um exemplo do Corte Maximo em um grafo ndo direcionado e
ponderado. Na Figura 1 (a), utilizamos um grafo com n = 6 vértices e m = 9 arestas com 0s
pesos associados. Na Figura 1 (b), podemos observar a biparticdo desses vértices entre S e S,

de tal maneira que {1,5,6} C Se {2,3,4} C §'. Com esta distribuigdo dos vértices, ao aplicar a
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Equacdo 3.1 nas arestas que cruzam os subconjuntos S e S’, obteremos um valor de corte igual a
13, que serd o valor mdximo a ser obtido neste grafo.

Figura 1 — Exemplo de um grafo ndo direcionado e ponderado (a) e o corte mdximo aplicado a
este mesmo grafo (b).

(b) Corte Méximo do grafo de exemplo

Fonte: elaborado pelo autor.

Em aplicacdes praticas, o problema do corte mdximo € utilizado em diversas éreas,
tais como a de Redes de comunicacdo, onde a separacdo de redes em clusters pode otimizar
o trafego de dados (Lima, 2022); Agrupamentos de dados (Clustering), onde os grafos sdo
utilizados para dividir conjuntos de dados em grupos distintos para andlise de padrdes (Costa,
2014); Segmentagdo de imagens, onde o particionamento do grafo que modela a imagem facilita
a identificacdo dos segmentos (Sousa et al., 2013); dentre outras diversas aplicagdes da literatura.
O problema do Corte Médximo é uma importante ferramenta para modelagem e solucdo de
diversos desafios praticos relacionados a teoria dos grafos.

Devido a sua complexidade computacional, o problema do Corte Maximo € tratado
por diferentes abordagens, que podem ser classificadas em Algoritmos Exatos, como programa-
cdo linear inteira e métodos branch-and-bound que garantem a obtencdo de solucdes 6timas,

porém com alto custo computacional, tornando-se invidveis para grandes instancias; Heuristicas,
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como a busca local e simulated annealing, que buscam solugdes aproximadas em tempo reduzido,
porém sem garantir otimalidade; e Metaheuristicas, como algoritmos genéticos e busca tabu,
que utilizam técnicas inspiradas na biologia ou em métodos de otimizacdo combinatdria para
encontrar boas solu¢des aproximadas em problemas complexos.

Para Karp (1972), o problema do Corte Maximo (Max-Cut) € classificado como um
problema NP-Dificil, o que leva a ser um desafio computacional para a obtengdo do valor de
corte maximo em instancias de tamanho intermedidrios, como grafos com aproximadamente
50 vértices. Dessa forma, para instancias maiores, € necessario a aplicagdo de abordagens
heuristicas e metaheuristicas que fornecam solu¢des com 6tima qualidade e ainda em tempo

computacional aceitdvel.

3.2 Algoritmo Genético

O Algoritmo Genético € uma metaheuristica de otimizagdo inspirada na teoria evo-
lucionaria de Charles Darwin. Segundo essa teoria, os individuos mais adaptados ao ambiente
possuem maior chance de reprodugdo, transmitindo suas caracteristicas para as proximas gera-
¢oes. No contexto computacional, essa ideia € traduzida em um processo iterativo de selecao,
reproducdo e mutacdo de solucdes, permitindo que as melhores configuragdes sejam mantidas e
aprimoradas ao longo do tempo (Lucas, 2002).

A evolugdo das espécies pode ser interpretada como um processo de otimizagao das
espécies, ao passo que, no decorrer do tempo, os seres vivos vao se adaptando em um ambiente
que evolui constantemente (Lucas, 2002). Portanto, o algoritmo genético tem uma estrutura
em que as informagdes de cada sistema podem ser modeladas e processadas analogamente aos
cromossomos biolégicos (Ikeda, 2009).

Diversos cientistas contribuiram para a consolidacdo da teoria dos Algoritmos Gené-
ticos, servindo aspectos importantes para a aproximacao da teoria de evolucao das espécies com
o contexto computacional. Em 1809, Lamarck prop6s uma hipétese evoluciondria na qual os
organismos adquirem caracteristicas ao longo do tempo, o que pode ser associado a0 mecanismo
de mutacdo em Algoritmos Genéticos. Em 1866, Mendel estabeleceu as bases da genética
moderna, mostrando que caracteristicas sdo transmitidas hereditariamente, refletindo diretamente
no operador de crossover utilizado em Algoritmos Genéticos. Ja em 1975, John Holland foi
o pioneiro na modelagem computacional da evolucao, ao representar um cromossomo como

uma sequéncia bindria (0, 1), permitindo a aplicagdo de operadores genéticos como mutacéo,
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crossover e selecdo para encontrar solucdes 6timas em problemas de otimizagdo (Goldbarg;
Luna, 2005).
O Algoritmo Genético fundamenta-se em uma concepg¢ao generalista do processo
adaptativo, permitindo ao modelador a flexibilidade de definir a estratégia de selecdo natural e
evolucdo de acordo com as particularidades do problema em questdo. Essa flexibilidade se reflete
na abstracdo do modelo, na qual o significado das cadeias cromossOmicas € livre e adaptavel
a diferentes contextos. Em esséncia, um algoritmo genético requer a definicdo de premissas
fundamentais para seu desenvolvimento, a saber:
« A determinacdo da populacgdo inicial de cromossomos, que representa as solu¢des candida-
tas ao problema;
« A definicdo de uma funcao de avaliagdo (fitness) que quantifique a qualidade das solugdes;
« A especificacdo dos operadores genéticos, tais como crossover € mutacao, que viabilizam
a reproducdo e a geracdo de novos individuos, incluindo a escolha do ponto de quebra do
cromossomo e o tipo de mutagdo aplicado;
« A defini¢do de parametros criticos para o fluxo do algoritmo, como condi¢des de parada,
tamanho da populacdo e mecanismos para garantir a diversidade.
Essa abordagem generalista, que permite ao modelador concretizar o processo adaptativo con-
forme a situacdo, € justamente o que confere aos algoritmos genéticos sua natureza de metaheu-
risticas (Goldbarg; Luna, 2005).
O pseudo-algoritmo que representa o fluxo de um Algoritmo Genético pode ser

definido da seguinte forma no algoritmo 1:
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Algoritmo 1: Pseudo-Algoritmo Genético
Entrada: Um Grafo ndo direcionado e ponderado

Saida: Solucdo

inicio

Gerar uma populagdo inicial ;

Avaliar o fitness dos individuos da popula¢do inicial;

enquanto Ndo atingir o critério de parada fazer

Selecao de pais da populacao;

Aplicar crossover ou mutacao nos pais para estimular a reprodugao;
Avaliar o fitness dos filhos gerados;

Ordenar todos os individuos da populagao;

Selecionar os melhores para permanecer para a proxima geragao;

fim

Os Algoritmos Genéticos tém sido amplamente aplicados em diversas dreas, evi-
denciando sua versatilidade na resolu¢ao de problemas de otimizacdao combinatéria. Entre as
aplicagdes préticas destacadas encontram-se o agendamento de processos em sistemas multipro-
cessadores (Multiprocessor Scheduling) — cujo o objetivo € reduzir os custos de comunicagdo
em arquiteturas paralelas —, a modelagem de problemas em biologia molecular e fisico-quimica,
a otimizagdo discreta de estruturas na engenharia, a inversao de formas de ondas sismicas em
geoffsica, a integracdo com redes neurais para aprimoramento de classificadores e a compressao
de dados, especialmente na codificacdo de imagens. Essas diversas aplicacdes ndo apenas ilus-
tram a eficdcia dos Algoritmos Genéticos na obten¢ao de solucdes aproximadas para problemas
complexos, mas também motivam a continua melhoria dos métodos de sele¢do, mutagdo e cruza-
mento, bem como a integracdo dos Algoritmos Genéticos com outras técnicas de otimizagao,

como Simulated Annealing e Tabu Search (Tsuruta; Narciso, 2000).

3.2.1 Mapeamento de conceitos

A proximidade ao processo bioldgico reflete nos Algoritmos Genéticos em métodos e
mecanismos de selecio e evolucdo natural. A seguir, seré feito o mapeamento dos conceitos para
gene, cromossomo, fitness, populacio, selecao, mutacao e crossover, utilizados no algoritmo
genético junto ao problema do corte maximo aplicados nesta pesquisa.

« Gene: Unidade minima da representacao de uma solu¢ao do algoritmo genético. Em
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termos computacionais e associado ao problema abordado, € uma posicao do vetor que
representa cada vértice do grafo. E nesta, pode estar preenchida com a valoragao de O ou 1,
onde 0 representa que o vértice estd contido no subconjunto S e 1 representa que o vértice
estd contido no subconjunto S';

« Cromossomo: Sequéncia de genes que representam uma solu¢do candidata ao problema.
Ou seja, € uma sequéncia bindria que representa a configuragdo de como estao particiona-
dos os vértices entre os subconjuntos S e S’

Fitness: Valor associado a aptidao de cada individuo/cromossomo;

« Populagao: Conjunto de cromossomos que evoluem ao longo das geracdes. Ou ainda,

uma matriz com configuracdes de possiveis solucoes.

Selecdo: Método de escolha dos melhores individuos para reprodugdo. O método utilizado
nesse trabalho € elitista e uniforme, onde garante a sobrevivéncia dos melhores cromosso-
mos ao ser feito a ordenacdo e, a garantia para qualquer individuo poder ser escolhido sem
a dependéncia da andlise ao seu valor de fitness;

« Crossover (Cruzamento): Método de combinacdo de cromossomos pais para gerar novas
solucdes, ou ainda, obter novos filhos com o cruzamento dos genes pais, podendo ser de
um ponto, multiplos pontos ou uniforme;

Mutagao: Método em que se aplica uma pequena alteracdo aleatéria nos genes para

diversificar as solugdes e evitar convergéncia prematura.

3.3 Algoritmos Hibridos

Apesar do cardter genérico e versatil dos Algoritmos Genéticos na resolucio de
problemas de otimizag¢do combinatdria, diversos estudos apontam que a forma convencional
desses algoritmos pode ndo ser a solucdo mais eficiente para problemas complexos. Isso
ocorre, em parte, devido a representacdo bindria dos cromossomos € aos processos aleatorios
empregados na selecdo, cruzamento e mutacdo, que podem levar a formacao prematura de
populacdes homogéneas e, consequentemente, dificultar a exploracao de 6timos locais (Ikeda,
2009). Essa limitacdo tem motivado a proposi¢cdo de algoritmos hibridos, que combinam a
capacidade exploratoria dos Algoritmos Genéticos com técnicas de intensificagdo, como a busca
local, para melhorar o desempenho global na obtencdo de solugdes.

Em nossa abordagem, a estratégia hibrida integra o algoritmo genético a uma busca

local direcionada, aplicada em cromossomos pré-definidos do conjunto de solucdes. A busca
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local, nesse contexto, atua como um operador intensificador, refinando os melhores individuos
quando ocorre um periodo de estagnacdo na evolucdo da populacdo. Essa técnica permite
ajustes finos na solucdo, ajudando a superar os desafios dos 6timos locais e garantindo uma
maior robustez na solucdo final. Assim, a incorpora¢do da busca local exemplifica o equilibrio
entre o cardter genérico dos Algoritmos Genéticos convencionais e as vantagens de métodos
especializados, como os propostos em algoritmos meméticos (Moscato et al., 2004), e outras

metaheuristicas.

3.3.1 Busca Local

A Busca Local € uma técnica classica de otimizagdo combinatdria que explora a
vizinhang¢a de uma solugdo corrente para encontrar melhorias incrementais na fun¢ao objetivo.
Fundamentanda nos principios do "Hill Climbing", a abordagem consiste em realizar pequenas
modificacdes na solugdo atual e adotar aquela que apresenta melhoria, repetindo esse processo
iterativamente. Em versdes mais sofisticadas, como o simulated annealing, o método permite a
aceitacao tempordria de solug¢des inferiores para escapar de 6timos locais. Esse método, pela
sua simplicidade e eficdcia, € amplamente utilizado para resolver problemas NP-dificeis, onde a
busca exaustiva se torna inviavel (Hoos; Stutzle, 2018).

Essa estratégia hibrida, frequentemente denominada algoritmo memético, tem sido
validada na literatura internacional (Moscato et al., 2004) e em estudos nacionais (Benvenga,
2022) como uma forma eficaz de melhorar a qualidade final das solu¢des em problemas de
otimizacdo combinatéria. Em ambientes hibridos, a busca local € frequentemente integrada
a algoritmos globais, como os algoritmos genéticos, para intensificar a exploragao em pontos
estratégicos do espaco de solugdes.

Segundo Filho (2021), a analise dos potenciais dos vértices — divididos em calculos
de corte interno e corte externo — torna-se uma estratégia fundamental para orientar a busca
local no problema do corte mdximo. Em nossa abordagem, para cada vértice, sao calculados os
seguintes valores:

« O corte interno (Cj;), que representa a soma dos pesos das arestas que conectam o vértice
aos demais vértices do mesmo subconjunto

« O corte externo (C,;), que representa a soma dos pesos das arestas que ligam o vértice
aos vértices do subconjunto oposto.

A diferenca qualitativa entre essas duas medidas fornece uma indicacdo do beneficio
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potencial em alterar a atribuicdo do vértice. Se a conectividade interna for consideravelmente
superior a externa, iSso sugere que mover o vértice para o conjunto oposto poderd incrementar o
valor total do corte. Assim, ao identificar vértices com forte predominancia de conexdes internas,
o algoritmo opta por realoca-los, refinando progressivamente a solugdo global.

Em nosso método, a Busca Local € aplicada em posi¢des previamente determinadas
da solucao, refinando os melhores individuos e contribuindo para a superagdo de estagnacdes
na evolucdo das solucdes. Para melhorar os 6timos locais, o algoritmo de Busca Local percorre
toda a solucdo fornecida e avalia o potencial de cada gene do cromossomo (Filho, 2021).
Calculando, para cada gene, o valor de corte interno (Cj;) € o valor de corte externo (Cyy).
Sempre que Cj; > Ceys, 0 gene € alterado, promovendo sua migra¢io para o outro subconjunto, €
o cromossomo modificado € reavaliado quanto ao seu fifness. As novas solucdes resultantes sao,
entdo, inseridas na populacao principal, onde o processo de ordenagdo Insertion Sort garante
que apenas os individuos com melhores valores de aptidao sejam encaminhados para a préxima

geracdo. O fluxo da l6gica de Busca Local pode ser visto no algoritmo 2, logo abaixo:

Algoritmo 2: Pseudo-Algoritmo Busca Local
Entrada: Uma solugdo do espaco de solugdes

Saida: Solucdes com melhorias

inicio

Inicializacdo e avaliagcdo do cromossomo;

para cada gene faca

Calcular os valores Cj;;; € Coy;

se Ci,;; > C,y; entao
Altera o valor do gene;
Avaliacao do fitness;

Adiciona essa solu¢do com melhoria a populacao;
fim

fim

Aplica ordenacdo Insertion Sort;

fim

Exemplo: Considere a parti¢do ilustrada na Figura 2 (a), onde os vértices sio
divididos em S = {3,5} e §' = {1,2,4,6}, e o valor de aptiddo € igual a 10. Partindo da
verificagdo do vértice 1, que tem um potencial total igual a 5, com Cj, (1) = 4 (devido as

conexdes internas com 2,4 e 6) e Co (1) = 1 (relacionado a conexdo com o vértice 5), observa-
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se uma predominancia interna que sugere que a mudancga da atribuicio do vértice 1 pode melhorar
o corte global. Essa mudanca € vista na Figura 2 (b), e sua configuracdo tem um valor de aptidao
igual a 13.

Figura 2 — Exemplo de uma parti¢do dos vértices do grafo (a) e uma nova parti¢io obtida apds a
busca local aplicando mudanga do vértice 1 (b).

(b) Parti¢do com S = {1,3,5} e §' = {2,4,6}

Fonte: elaborado pelo autor.
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Portanto, a aplicacdo da Busca Local dentro do Algoritmo Genético traz diversos
beneficios, como a melhoria da eficiéncia computacional, pois opera apenas com modificagcdes
na solucdo atual, reduzindo a necessidade de buscas exaustivas (Goldbarg; Luna, 2005). Além
disso, esse refinamento local contribui para a qualidade das solugdes ao escapar de 6timos
locais, permitindo que individuos mais aptos sejam preservados (Eiben; Smith, 2015). Outra
vantagem € o equilibrio entre exploragdo e explotacao, ja que enquanto o Algoritmo Genético
busca diversidade globalmente, a Busca Local aprofunda a investigacdo em regides promissoras
do espaco de solugdes. Por fim, essa abordagem reduz a convergéncia prematura ao impedir
que a populagdo fique presa em solugdes subdtimas, favorecendo a obtencao de resultados mais

robustos e globalmente competitivos.
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4 METODOLOGIA

Esta sec¢do apresenta a metodologia adotada no desenvolvimento deste trabalho, que
consiste na aplicagdo do Algoritmo Genético para o tratamento do Problema de Corte Méximo.

O desenvolvimento do Algoritmo Genético, com representacao da solu¢do em bindrio,
consiste em um método simples e de ficil implementacdo. A principio, a implementacio foi
realizada em linguagem de programacao C, e utilizando o ambiente de desenvolvimento Code
Blocks. Mas em seguida, este trabalho foi migrado para a linguagem de programacgdo Python,
e programada no ambiente de desenvolvimento Visual Studio Code. O procedimento adotado
para solucionar o problema do Corte Méximo de um grafo ponderado foi dividido nos seguintes
passos que serdo apresentados nas Secdes durante este capitulo: Carregamento dos dados do
Grafo (4.1); Célculo do espaco de solucdes e criagdo da populacao inicial (4.2); Processos de
transformacoes e Busca Local (4.3); Filtragem de solucdes por restri¢cdes (4.4); Avaliagao final
e retorno dos resultados (4.5). Abaixo esta o fluxograma representando o fluxo do algoritmo

abordado neste capitulo:

Figura 3 — Fluxograma do algoritmo

Inicio

Carregar dados do grafo

!

Calcular o espago de solugdes e Gerar Populacao Inicial

!

Processos de transformacdes e Busca Local

Y

Filtragem de solucdes por restricoes

!

Avaliagdo

Fim

Fonte: elaborado pelo autor.
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4.1 Carregamento dos dados do Grafo

O processo de carregamento dos dados do Grafo e sua posterior criacao, porta-se de
maneira simples e concisa. O algoritmo inicia carregando um conjunto de arestas de um grafo G
ponderado a partir de um arquivo de texto, e em seguida parte para a criacdo do mesmo.

Na Figura 4, podemos ver como os dados do Grafo vao ser estruturados no arquivo de
texto. Os dados da figura sdo referentes ao Grafo apresentado na Figura 1 (a). O arquivo possui,
na primeira linha, a quantidade de vértices (n) e a quantidade de arestas (m), respectivamente.
Nas linhas subsequentes, sao fornecidas as informagdes referentes a cada aresta, onde o primeiro
dado indica o vértice u, o segundo dado indica o vértice v e, por ultimo, o tercerio remete ao

peso da aresta (u,v).

Figura 4 — Exemplo da estrutura do arquivo de texto contendo os dados do Grafo

6 9
122
141
151
161
231
252
262
363
453

Fonte: elaborado pelo autor.

4.2 Calculo do espaco de solucdes e criacao da populacao inicial

ApOs a leitura e processamento inicial dos dados do grafo G, serd calculada a
quantidade maxima de solucdes possiveis para o determinado grafo, onde esse niimero é obtido

na seguinte equagao:

TS(G) =2" (4.1)
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tendo em vista que, n € a quantidade de vértices do grafo, e para cada vértice pode ser atribuido
um dos dois valores para indicar a qual subconjunto o vértice vai pertencer (0 ou 1).

Em seguida, serd criada a populag¢do inicial com um tamanho limitado ¢, definido
a partir do método para a criagdo da populacdo, considerando que o nimero total de solugdes
possa ter um crescimento de forma exponencial, a depender de n. Essa funcio de criacdo da

populacdo € definida no algoritmo 3, como veremos a seguir.

Algoritmo 3: Cria Populagdo
Entrada: n; TS(G)

Saida: populacao; tamPop

inicio

totalPop < TS(G); // Define totalPop a partir de TS(G)
tamCromossomo <— n;

se tamCromossomo < 3 entao

tamPop < total Pop;

senao se ramCromossomo < 10 entao
tamPop < |totalPop/2];

senao se ramCromossomo < 14 entao
tamPop < |totalPop /4],

senao se ramCromossomo < 100 entao
tamPop < 5000;

senao

tamPop < 7000;

fim
populacao < matriz de dimenséo (tamPop x tamCromossomo);
para i < 0 até ramPop faca
para j < 0 até ramCromossomo faca
populacaoli| j] < aleatorio(0,1);

fim
fim

retorna populacao,tamPop
fim
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Logo apds a criagdo da populag@o, um vetor contendo os valores de corte (fitness)
¢é gerado para cada cromossomo dessa populacdo. Esse vetor vai ser utilizado para auxiliar a
ordenacgdo da populacdo, utilizando o método de Insertion Sort. Paralelamente, a funcdo vai
ordenar o vetor com os valores de corte dos cromossomos e a matriz da populacdo, de forma que
os individuos com os maiores valores de corte sejam priorizados em ordem decrescente.

No procedimento do algoritmo, serd criado uma nova matriz € um vetor, ambos de
tamanho ¢ + %, que servirdo para auxiliar no armazenamento das novas populagdes resultantes

das transformacdes que irdo sofrer.
4.2.1 Fitness

Na formulag¢@o do problema do corte maximo, o objetivo € encontrar uma parti¢ao dos
vértices do grafo de modo que a soma dos pesos das arestas que conectam os dois subconjuntos
seja maximizada. Para refletir essa meta, a funcdo de avaliacdo (firness) foi construida de forma
direta. Em nossa abordagem, cada cromossomo ¢ € P representa uma possivel particdo dos
vértices, onde P € o conjunto de todos os individuos (ou solucdes candidatas) que compdem a
populagdo. Geralmente, a atribui¢do de 0 indica que um vértice pertence ao subconjunto S e 1
indica que pertence a §’. Assim, a func@o F é definida como a soma dos pesos p(u,v) tais que

ucSevels:

F(c)=Y Py (4.2)
YueS
vves

Dessa forma, maximizar F(c) equivale a maximizar o corte do grafo. Quanto maior o
valor de F(c), melhor a parti¢do obtida, pois ela resulta em uma maior soma dos pesos das arestas
que cruzam os dois subconjuntos. Essa aproximagao entre a fung¢do fitness e o problema do
corte maximo garante que a metaheuristica esteja alinhada com o objetivo central da otimizagao,

utilizando a populacdo P como conjunto de solugdes para explorar o espaco de possibilidades.

4.3 Processos de transformacoes e Busca Local

Esse processo de transformagdes pode ser também intitulado por Periodo de Gera-
¢oes, que ocorre logo ap0s a adaptag@o do grafo G na metaheuristica utilizada, e seu processo de

criacdo e avaliacdo da populagdo inicial.
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Basicamente, ao entrar nesse Periodo de Geragdes, essa populagdo criada inicial-
mente vai passar por uma quantidade pré-definida de geragdes, durante as quais sdo aplicadas
operagoes de Crossover (4.3.1) e Mutagdo (4.3.2). A escolha da operacdo vai depender da
probabilidade de cada transformacdo, visando a convergéncia da populagdo para melhores

solugdes.
4.3.1 Crossover

Quando a varidvel de probabilidade de transformacao prevalece para o Crossover,
ocorre a Selecdo aleatdria de dois cromossomos pais para que seja feita a combinagdo de genes
dos mesmos, com finalidade de obter novas 6timas solugdes. Esse processo de combinacao serd
repetido até que sejam gerados % filhos.

Ap0s a geragdo desses novos filhos, os mesmos serdo inseridos na matriz auxiliar
para a nova populagdo e submetidos ao calculo para medir os seus valores de fitness. Em seguida,
serdo ordenados pelo método de Insertion Sort.

Neste trabalho, foram elaboradas 3 técnicas diferentes para o Crossover, sendo elas:

Troca simples de 2 genes (4.3.1.1); Percentual (4.3.1.2); Prevalece igualdade (4.3.1.3).
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4.3.1.1 Crossover Troca simples de 2 genes

Nesta técnica, realiza-se a troca simples de dois genes entre dois cromossomos pais.
Inicialmente, os dois genes sdo escolhidos de forma aleatdria, garantindo que nio sejam repetidos.
A combinacdo € efetuada por meio da troca dos genes correspondentes entre os pais, gerando

dois novos individuos que herdam caracteristicas de ambos. O algoritmo 4 ilustra essa técnica.

Algoritmo 4: Crossover troca 2 genes
Entrada: pai;; paiy; tamCromossomo; probCruzamento; probMutacao

Saida: filho; filhoy; probCruzamento; probMutacao

inicio

geney, geney < tamCromossomo + 1, tamCromossomo + 1;

enquanto gene; > tamCromossomo ou gene, > tamCromossomo fazer
geney, gene; <— sorted(random.sample(range(tamCromossomo), 2));
se gene| = gene, entao

geney, geney < tamCromossomo + 1, tamCromossomo + 1;

fim
fim

filhoy < paiy;
filhoy < paiy;
filhoy[geney| < paij|gene;];

[ [gene]
filhoy|gene;| < pai)[genes]
filhoy[genei| < paiy|gene;];
filhoy[gene;| < paiy|genes];

probCruzamento < probCruzamento — (probCruzamento x 0.03);

probMutacao < probMutacao + (probMutacao x 0.05);

retorna filho, filhoy, probCruzamento, probMutacao ;
fim




4.3.1.2

escolhendo-se uma quantidade de genes (variando de 1 até o tamanho do cromossomo menos
1) a ser combinada entre os pais. Dessa forma, para cada par de cromossomos selecionados, o
primeiro filho recebe os primeiros genes de um pai e o restante do outro, enquanto o segundo
filho recebe a combinacao inversa. Esse procedimento gera uma mescla proporcional dos genes
de ambos os progenitores, preservando caracteristicas relevantes dos pais e promovendo a

diversidade na populagdo. No algoritmo 5 é demonstrado a légica desta técnica.

Crossover Percentual

Na técnica de crossover percentual, um ponto de divisdo é definido aleatoriamente,

Algoritmo 5: Crossover Percentual

Entrada: paiy; pai,; tamCromossomo; probCruzamento; probMutacao

Saida: filhoy; filhoy; probCruzamento; probMutacao

inicio

fim

qtdGenes <— random.randint(1, ramCromossomo — 1);
para i < 0 até gtdGenes faca
fitho1[i] < paiy [il;

filhoyi] < pais]i];
fim

para j < qtdGenes+ 1 até tamCromossomo faca
filhoy]j] < paiz[j];

filhoy[j] < paiy[j];
fim

probCruzamento < probCruzamento — (probCruzamento x 0.03);
probMutacao < probMutacao + (probMutacao x 0.05);

retorna filho, filhoy, probCruzamento, probMutacao ;
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4.3.1.3 Crossover Prevalece Igualdade

No desenvolvimento da proposta, foi implementado um operador de crossover
especializado — denominado “crossover que prevalece os genes iguais” — para combinar
solucdes de forma a preservar caracteristicas comuns entre os pais. Para cada posicdo do
cromossomo, € verificado se os genes dos dois pais sdo idénticos. Caso sejam iguais, o gene
¢ mantido nos descendentes; caso contrdrio, o valor do gene é sorteado entre as possiveis
alternativas (0 ou 1).

Essa estratégia visa manter os tracos genéticos de alta qualidade que se repetem
entre os pais, intensificando a exploragdo de regides promissoras do espaco de busca. Apos
a recombinacdo, as probabilidades de crossover e mutagcdo sdo ajustadas para equilibrar a

exploracdo e a intensificacdo da busca. A sua implementacdo é dada a seguir no algoritmo 6:

Algoritmo 6: Crossover Prevalece Igualdade
Entrada: paii; pai>; tamCromossomo; probCruzamento;, probMutacao

Saida: filho; filhoy; probCruzamento; probMutacao
inicio

para i < 0 até ramCromossomo faca

se paii[i| = pai[i] entdo

filho[i] < paii]i];

filhoyi] < pais]i];

senao

filhoi[i] < aleatorio(0,1);

filho|i] < aleatorio(0,1);

fim
probCruzamento < probCruzamento — (probCruzamento x 0.03);

probMutacao < probMutacao + (probMutacao x 0.05);

retorna filhoy, filhoy, probCruzamento, probMutacao ;
fim
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4.3.2 Mutagao

O processo para a aplicagdo da Mutagdo € andloga ao processo do Crossover (4.3.1).
Porém, na Sele¢do seré escolhido apenas um cromossomo pai por vez, esse processo ira se repetir
até que sejam gerados % novos filhos. Em seguida, esses novos individuos gerados, também irdo
passar pelo processo de inser¢do na matriz auxiliar para a nova populacao, calculo do valor de
fitness, e ordenados posteriormente com a fungdo de Insertion Sort.

Para esta transformacao, foram desenvolvidas 3 técnicas diferentes para a Mutacdo,
sendo elas: Mutacdo em I gene (4.3.2.1); Mutacdo em 2 genes (4.3.2.2); Mutacdo em vdrios

genes (4.3.2.3).
4.3.2.1 Mutacdo em 1 gene

Na estratégia de mutacdo de um gene, para cada cromossomo selecionado da popula-
¢do0, um unico gene € escolhido de forma aleatéria e seu valor € invertido (por exemplo, de 0
para 1 ou vice-versa). Além disso, as probabilidades de cruzamento e de mutacdo sdo ajustadas,
aumentando ligeiramente a probabilidade de cruzamento e diminuindo a de mutagao, de forma a

equilibrar a exploragdo e a intensificacao do algoritmo.

Algoritmo 7: Mutacido em 1 gene

Entrada: pai; tamCromossomo
Saida: filho
inicio
gene <— random.randint(0,zamCromossomo — 1);
filho < pai;
se pai|gene| = 0 entio
‘ filho|gene] < 1;
sendo se pai|gene] = 1 entdo
‘ filholgene] + 0;
fim
probCruzamento <— probCruzamento + (probCruzamento x 0.05);

probMutacao < probMutacao — (probMutacao x 0.03);

retorna filho ;
fim
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Mutagdo em 2 genes

Na estratégia de mutagdo de dois genes, para cada cromossomo selecionado, o algo-

ritmo escolhe aleatoriamente dois indices distintos e inverte os valores dos genes correspondentes.

Essa abordagem gera uma variagdo mais significativa na solucio, promovendo maior diversidade

e auxiliando na supera¢ao de possiveis 6timos locais.

Algoritmo 8: Mutacdo em 2 genes

Entrada: pai; tamCromossomo
Saida: filho

inicio

fim

gene, geney <— random.sample(range(tamCromossomo), 2);
filho < pai;
se pai[gene;] = 0 entdo
‘ filho|gene;] < 1;
sendo se pailgene;] = 1 entdo
‘ filho|gene;] < 0;
fim
se pai[gene;] = 0 entio
‘ filho|gene;] < 1,
sendo se pai[gene;] = 1 entio
‘ filholgene;| « 0;
fim
probCruzamento <— probCruzamento + (probCruzamento x 0.05);
probMutacao < probMutacao — (probMutacao x 0.03);

retorna filho ;
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4.3.2.3 Mutacdo em vdrios gene

Na técnica de mutagdo para vdrios genes, para cada cromossomo que passa pelo
operador, € selecionado um nimero aleatério de genes. Em seguida, cada gene escolhido sofre
uma inversao de seu valor — se o gene € 0, ele € alterado para 1, e vice-versa. Essa mutacdo
pontual permite a introdugdo de variagdes no cromossomo, contribuindo para a diversidade

genética da populacio e possibilitando a exploracdo de novas regides do espaco de solugdes.

Algoritmo 9: Mutacio em vdrios genes
Entrada: pai; tamCromossomo

Saida: filho

inicio

qtdGenes < random.randint(1,tamCromossomo);
genesAleat <— random.sample(range(tamCromossomo), qtdGenes);
para cada gene € genesAleat faca
se pai[gene| = 0 entdo
‘ filho|gene] + 1;
senao

‘ filho|gene] < 0;

fim
fim

probCruzamento < probCruzamento + (probCruzamento x 0.05);

probMutacao < probMutacao — (probMutacao x 0.03);

retorna filho ;
fim

4.3.3 Integracdo da Heuristica de Busca Local ao AG

A escolha por integrar uma heuristica de Busca local ao Algoritmo genético fundamenta-
se na evidéncia de que métodos hibridos podem superar a convergéncia prematura, intensificando
a exploracdo de regidoes promissoras do espaco de solugdes. Estudos recentes, como os apresen-
tados por Benlic e Hao (2013) e Bansal et al. (2012) demonstram que a combinac¢do de métodos
evolutivos com técnicas de intensificacdo, pode melhorar significativamente o desempenho em
problemas NP-dificeis.

Como vimos na subsecdo 3.3.1, a heuristica de Busca Local vai contribuir positiva-
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mente para o Algoritmo Genético na exploragdo em pontos estratégicos no espaco de solugdes,
intensificando a qualidade das solugdes, o que vai contribuir diretamente para escapar de 6timos
locais.

Esses dois métodos unidos geram um equilibrio essencial, pois o Algoritmo Genético,
com suas operacdes de Crossover e Mutagdo, promove a exploracdo de novas regides do espagco
de busca, enquanto a Busca Local, vai ajudar a refinar as solu¢des promissoras.

A Busca Local no Algoritmo Genético vai ser ativada no inicio de cada geragdo,
caso as transformagdes ndo gerem cromossomos com corte maior em um determinado periodo,
ou seja, apdés um periodo sem convergéncias. A busca vai ocorrer em posicdes especificas da
populagdo, sendo elas: na posi¢do inicial, na segunda posi¢cdo, na posi¢ao intermedidria e na
posic¢do final. Esse comportamento pode ser visto no pseudo-algoritmo abaixo, que representa
como ocorre a integracdo da heuristica de Busca Local junto a metaheuristica do Algoritmo

Genético.
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Algoritmo 10: Pseudo-Algoritmo Genético com integracdo da Busca Local
Entrada: Um Grafo ndo direcionado e ponderado; Periodo mdximo sem convergéncia

Saida: Solucdo

inicio

Gerar uma populagdo inicial ;

Avaliar o fitness dos individuos da popula¢do inicial;
semConvergencia < 0;

enquanto Ndo atingir o critério de parada fazer

se semConvergencia > periodoMaximo entao

para pos € [0, 1, 5, 7] faca
| BuscaLocal(pos)

fim
fim

Selec¢io de pais da populacio;

Aplicar crossover ou mutag¢ao nos pais para estimular a reprodugao;

Avaliar o fitness dos filhos gerados;

Ordenar todos os individuos da populagao;

Selecionar os melhores para permanecer para a proxima geragao;

se Corte do melhor cromossomo da geragdo atual é maior que o melhor
cromossomo da geracdo anterior entao
‘ semConvergencia < 0;

senao

‘ semConvergencia <— semConvergencia+ 1;

fim

fim
fim

4.4 Filtragem de solucoes por restricoes

Com o objetivo de identificar solu¢des promissoras, foi implementado o conceito de
ilha, um processo que verifica se os cromossomos gerados atendem as restri¢des definidas pelo
problema. Cada cromossomo € analisado individualmente, avaliando se a configuracdo de seus
genes satisfaz as condi¢des estabelecidas para o corte maximo do grafo.

Os cromossomos que atendem aos critérios sdo armazenados em uma subpopulacio
separada, ou ilha, sem interferir diretamente no refinamento ou na evolucdo da populacao
principal. Essa separacdo permite identificar quais solugdes foram aceitas pelas restri¢oes,

auxiliando na andlise da qualidade dos cromossomos sem impactar a busca local ou outras
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transformacodes genéticas. A seguir, serd apresentado o pseudo-algoritmo que descreve esse

Processo:

Algoritmo 11: Pseudo-Algoritmo de Ilha

Entrada: Populacao; Valores de corte; Estrutura do grafo

Saida: Subpopulagdo com cromossomos que atendem as restricdes

inicio

fim

fim

para cada cromossomo na populagdo faca

Inicializar contador de restri¢des atendidas;
para cada gene no cromossomo faca
Calcular o valor de crote do gene;
se atender as restricoes entao

‘ Incrementar contador;
senao

‘ interromper verificacao;

fim
fim

se todos os genes atenderem as restricoes entao
Verificar se o cromossomo jé estd na ilha;
se ndo estiver e houver espago disponivel entao

Inserir cromossomo na ilha;

retorna ilha com cromossomos aceitos

As restricoes utilizadas na verificacdo garantem que a separacdo dos vértices em

subconjuntos preserve a coeréncia da solugdo e evite configuracdes invidveis. Cada vértice do

grafo possui um valor de corte total (x'®?), determinado pela soma dos pesos das arestas inci-

dentes. Para que um cromossomo seja aceito na ilha, cada vértice classificado como pertencente

ao subconjunto S deve ter um valor de corte na soluciio atual (x*™) menor ou igual 2 metade

do seu valor total, enquanto os vértices no subconjunto S’ devem possuir um valor de corte maior
ou igual a metade do valor total, como descritas na Equag@o 4.3. Essas restricOes garantem que a

separacdo dos vértices maximize o corte sem violar as condicdes estruturais do problema.

tual total
uesS = X3 <x,
YueV,

uc S/ — x;tual > xzotal.

4.3)
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4.5 Avaliaciao final e retorno dos resultados

Ao final de todas as geragOes, o algoritmo vai calcular a diferenca entre o maior
valor de corte que foi obtido na populacao inicial e o maior valor de corte alcancado apds o
processo evolutivo. Essa diferenca, juntamente com o cromossomo que apresentou o melhor
valor de corte no final das geracdes, serd entdo retornada como resultado do algoritmo.

Além de registrar a diferenca final encontrada para os valores de corte, o algoritmo
registra informacdes como qual operagdo de transformacgdo que registrou dominio ao longo
das geracdes. E também, quais cromossomos passaram pelos critérios de aceitacdo e foram

adicionados na ilha.
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S EXPERIMENTOS COMPUTACIONAIS

Para avaliar o desempenho do algoritmo proposto, foram realizados experimentos
computacionais em 9 instancias distintas, variando a quantidade de vértices do grafo e explo-
rando diferentes configuracdes de parametros. As instancias testadas foram organizadas em trés
grupos, considerando os grafos com 60, 80 e 100 vértices, de modo a verificar a escalabilidade e
eficiéncia da abordagem em diferentes cenérios.

Os experimentos computacionais foram conduzidos aplicando diferentes combina-
coes de parametros do Algoritmo Genético, considerando os seguintes grupos:

1. Uso de ilha:

« SI: Sem ilha;

« CI: Com ilha.
2. Método de Mutacao:

« M1: Mutacdo em 1 gene dos cromossomos escolhidos;

o M2: Mutacdo em 2 genes dos cromossomos escolhidos;

« MA: Mutacdo em vdrios genes escolhidos.

3. Método de Crossover:

« P: Crossover que faz a troca percentual, variando o tamanho escolhido, dos cromos-
SOmos;

o T2: Crossover que faz a troca de 2 genes entre 0s Cromossomos;

« PI: Crossover que prevalece a igualdade, ou seja, dos dois cromossomos escolhidos
na vez, para 0 novo cromossomo serd mantido o gene quando na mesma posi¢ao nos
pais tiverem ambos valores iguais, e quando ndo, serd sorteado entre os dois valores
para o gene.

4. Periodo sem convergéncia para ativagiao da Busca Local:

« BLS: Busca local a partir de um periodo de 5 geragcdes sem convergéncias;

« BL10: Busca local a partir de um periodo de 10 geragdes sem convergéncias;

« BL20: Busca local a partir de um periodo de 20 geragdes sem convergéncias.

Essa configurac@o experimental permite uma andlise detalhada do impacto de cada
componente na qualidade das solucdes e no tempo de execugao do algoritmo. No préximo topico,
serdo apresentados os resultados obtidos para cada combinacdo de parametros, discutindo o

desempenho do modelo em diferentes cendrios.



43
6 RESULTADOS

Ao todo, as configuracdes possibilitaram a obtengdo de 54 combinacdes diferentes
para a execucdo dos testes. Para cada instincia, o fluxo do teste consiste em montar cada
combinagdo de parametros por vez. Ao aplicar todas essas combinacdes nas 9 instancias, foram
obtidos os resultados para as instancias com n = 60, n = 80 e n = 100, apresentados na Tabela 1,
Tabela 2 e Tabela 3, respectivamente.

Com o total de 486 testes realizados, notou-se que os resultados obtidos se aproxi-
mam ou encontram os valores 6timos disponiveis no artigo do BigMac (Wiegele, 2007). Sendo
a combinacdo "SIM1PIBL20"como a prevalecente para os melhores resultados obtidos, com
77,78% dos testes para essa combinagdo de parametros retornando o cromossomo com valor
6timo ou préximo ao valor 6timo, e as combinagdes "SIMAT2BL5"e "CIMAT2BL5"como pre-
valecentes para retornar os resultados mais distantes das melhores solu¢des com 22,22% dos
testes para ambas as combinagdes de parametros retornando cromossomos com valores mais
distantes do valor 6timo.

Seja CP o conjunto com todas as combinagdes de parametros, teremos para cada
k € CP a métrica do percentual de éxito total de cada combinagdo, dada na seguinte equagao:

igl vilk)
P(k) = W x 100% (6.1
i€l
onde, I é o conjunto de instincias testadas; v;(k) representa o valor de corte obtido para a
instancia i utilizando a combinacdo k de parametros; e b; é o valor 6timo (tedrico) para a
instancia i, conforme definido no BigMac.

Portanto, com base no cdlculo do percentual, podemos consolidar "SIM1PIBL20"como
a combinacdo com melhores resultados obtidos, onde obteve percentual de 99,88%. J4 para
as combinacdes "SIMAT2BLS"e "CIMAT2BLS", que obtiveram resultados mais distantes,
sustentou-se com percentuais de 98,65% e 98,57%, respectivamente. Na Tabela 4, podemos ver
0s percentuais para cada combinagao.

A andlise dos resultados evidenciou padrdes distintos na influéncia dos parametros
(Tabela 5) sobre a aproximagdo dos valores de corte obtidos aos tedricos. Para cada instancia, foi
calculado o desempenho relativo de cada parametro, obtendo-se uma métrica que se aproxima

de 1. Essa métrica foi definida como a razao entre a soma dos valores de cortes obtidos nas
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combinacgdes em que o parametro aparece e o produto do nimero de apari¢des do parametro pelo
valor 6timo tedrico.

Observa-se na Tabela 5 que parametros como a Mutagdo em 1 gene (M1) e o
operador de Crossover que prevalece igualdade (PI) alcancaram valores muito proximos do
maximo que pode ser obtido, demonstrando uma influéncia positiva e consistente na qualidade
das solu¢des. Em contrapartida, estratégias mais "agressivas", como a Mutagdo em varios genes
(MA), apresentaram valores um pouco inferiores, sugerindo que alteracdes menos intensas podem
ser mais adequadas para a manuten¢io da qualidade das solugdes. A andlise das combinag¢des
reforca a ideia que a jun¢do de configuracdes equilibradas, especialmente aquelas envolvendo
uma busca local ativada apds 20 geracdes sem convergéncia (BL20), tende a maximizar a
aproximacao ao valor 6timo.

Portanto, com a andlise da influéncia individual desses parametros para os resultados
dos testes, pode-se comprovar individualmente os pardmetros SI, M1, PI e BL.20 como melhores
influentes para os resultados obtidos. Acerca dessa andlise individual dos parametros, foi possivel
destacar para cada grupo de instincias as seguintes configuracoes:

« Para os testes com instancias de n = 60 (Tabela 1), os resultados retornaram com melhores
valores para solu¢des quando foram influenciados pelos seguintes parametros: SI; M1; PI;
BL20.

« Para os testes com instancias de n = 80 (Tabela 2), os resultados retornaram com melhores
valores para solu¢des quando foram influenciados pelos seguintes parametros: SI; M1;
PI, P ou T2 ; BL20.

« Para os testes com instancias de n = 100 (Tabela 3), os resultados retornaram com melhores
valores para solu¢des quando foram influenciados pelos seguintes parametros: SI; M1; P;
BL10.

Em relacdo ao tempo computacional, foi possivel obter uma média de execugdo de
teste para cada grupo de instancias, como destacado a seguir:

« Para instincias de n = 60, a média de tempo de execuc¢do foi de 7 minutos e 14 segundos;

« Para instancias de n = 80, a média de tempo de execuc¢do foi de 11 minutos e 2 segundos.

« Parainstancias de n = 100, a média de tempo de execucdo foi de 27 minutos e 23 segundos.

Esses padroes indicam que tanto o efeito isolado quanto a interacao entre os para-
metros sdo determinantes para a eficiéncia do algoritmo, e que o ajuste fino desses elementos €

crucial para otimizar os resultados do problema do corte mdximo.



Tabela 1 —Testes em instancias com n = 60 vértices

Instancia g05_60.0 g05_60.1 g05_60.2
Corte Maximo Tedrico 536 532 529
Combinagdo
CIMIPIBL5 534 531 527
CIMI1PIBL10 536 531 529
CIM1PIBL20 536 532 528
CIM1PBLS5 535 528 523
CIM1PBLI10 536 531 529
CIM1PBL20 535 532 528
CIMIT2BLS 536 532 528
CIM1T2BL10 536 532 528
CIM1T2BL20 536 532 529
CIM2PIBLS 535 526 524
CIM2PIBL10 535 532 528
CIM2PIBL20 536 532 528
CIM2PBLS5 536 531 523
CIM2PBLI10 536 532 528
CIM2PBL20 536 532 529
CIM2T2BLS5 529 531 523
CIM2T2BL10 536 532 529
CIM2T2BL20 536 532 529
CIMAPIBLS 536 531 523
CIMAPIBL10 536 531 528
CIMAPIBL20 536 532 527
CIMAPBLS5 536 528 524
CIMAPBLI10 534 532 529
CIMAPBL20 536 532 529
CIMAT2BLS 525 530 529
CIMAT2BL10 531 526 528
CIMAT2BL20 535 532 528
SIM1PIBL5S 535 532 529
SIMIPIBL10 536 532 529
SIMI1PIBL20 536 532 529
SIM1PBL5 535 532 526
SIM1PBL10 536 528 528
SIM1PBL20 536 532 528
SIMIT2BL5 536 531 529
SIMIT2BL10 535 532 528
SIM1T2BL20 536 532 528
SIM2PIBLS5 536 525 521
SIM2PIBL10 536 532 528
SIM2PIBL20 536 528 529
SIM2PBLS5 529 531 523
SIM2PBL10 534 532 529
SIM2PBL20 536 532 528
SIM2T2BL5 536 531 528
SIM2T2BL10 536 530 528
SIM2T2BL20 536 532 529
SIMAPIBLS 536 532 527
SIMAPIBL10 536 532 525
SIMAPIBL20 536 532 527
SIMAPBLS 534 532 526
SIMAPBLI10 536 525 529
SIMAPBL20 535 531 527
SIMAT2BLS5 533 520 523
SIMAT2BL10 533 531 528
SIMAT2BL20 535 531 527

Fonte: Elaborado pelo autor



Tabela 2 — Testes em instancias com n = 80 vértices

Instancia g05_80.0 g05_80.1 g05_80.2
Corte Méaximo Tedrico 929 941 934
Combinagdo
CIM1PIBLS 926 935 930
CIM1PIBL10 925 941 931
CIM1PIBL20 921 941 933
CIM1PBL5 915 939 928
CIM1PBL10 929 941 934
CIM1PBL20 926 941 934
CIMI1T2BL5 927 941 928
CIM1T2BL10 927 941 927
CIM1T2BL20 918 941 933
CIM2PIBLS 919 930 933
CIM2PIBL10 927 941 925
CIM2PIBL20 929 941 934
CIM2PBLS5 915 941 931
CIM2PBL10 922 941 919
CIM2PBL20 927 941 928
CIM2T2BL5 922 914 921
CIM2T2BL10 926 941 921
CIM2T2BL20 925 941 934
CIMAPIBL5 904 939 914
CIMAPIBL10 913 941 919
CIMAPIBL20 917 941 922
CIMAPBLS 902 939 918
CIMAPBLI10 919 937 916
CIMAPBL20 922 941 917
CIMAT2BLS 918 938 918
CIMAT2BL10 916 941 926
CIMAT2BL20 926 940 926
SIMI1PIBL5S 918 941 934
SIM1PIBL10 927 941 934
SIM1PIBL20 922 941 934
SIM1PBLS5 918 932 924
SIM1PBL10 929 941 934
SIM1PBL20 920 941 931
SIM1T2BL5 926 933 931
SIMIT2BL10 926 941 923
SIM1T2BL20 921 941 934
SIM2PIBL5 923 917 923
SIM2PIBL10 929 941 934
SIM2PIBL20 929 941 934
SIM2PBLS5 926 941 931
SIM2PBL10 925 941 917
SIM2PBL20 929 941 931
SIM2T2BL5 929 932 925
SIM2T2BL10 926 941 926
SIM2T2BL.20 929 941 931
SIMAPIBL5 918 932 920
SIMAPIBL10 919 941 925
SIMAPIBL20 920 941 930
SIMAPBLS 906 910 924
SIMAPBL10 926 941 927
SIMAPBL20 914 941 933
SIMAT2BL5 923 926 912
SIMAT2BL10 926 935 928
SIMAT2BL20 920 935 931

Fonte: Elaborado pelo autor



Tabela 3 — Testes em instancias com n = 100 vértices

Instancia g05_100.0 g05_100.1 g05_100.2
Corte Maximo Tedrico 1430 1425 1432
Combinagdo
CIM1PIBL5 1416 1401 1405
CIM1PIBL10 1430 1408 1416
CIM1PIBL20 1421 1424 1425
CIM1PBLS5 1420 1416 1420
CIM1PBLI10 1421 1424 1423
CIM1PBL20 1421 1418 1430
CIM1T2BL5 1426 1418 1409
CIM1T2BL10 1426 1418 1432
CIM1T2BL20 1424 1423 1432
CIM2PIBLS 1411 1415 1407
CIM2PIBL10 1428 1420 1424
CIM2PIBL20 1423 1417 1423
CIM2PBLS5 1418 1415 1426
CIM2PBLI10 1418 1418 1411
CIM2PBL20 1428 1421 1425
CIM2T2BL5 1410 1421 1413
CIM2T2BL10 1424 1424 1432
CIM2T2BL20 1425 1421 1421
CIMAPIBLS 1412 1423 1404
CIMAPIBLI10 1410 1416 1405
CIMAPIBL20 1403 1400 1414
CIMAPBLS5 1415 1410 1405
CIMAPBLI10 1411 1417 1417
CIMAPBL20 1402 1412 1422
CIMAT2BLS 1411 1398 1397
CIMAT2BL10 1411 1401 1408
CIMAT2BL20 1413 1406 1413
SIMI1PIBL5 1427 1416 1421
SIM1PIBL10 1422 1417 1432
SIM1PIBL20 1430 1422 1432
SIM1PBL5 1417 1418 1432
SIM1PBL10 1420 1422 1423
SIM1PBL20 1419 1414 1429
SIMIT2BLS5 1425 1412 1418
SIMIT2BL10 1422 1420 1426
SIM1T2BL20 1419 1420 1430
SIM2PIBLS5 1425 1412 1430
SIM2PIBL10 1411 1413 1430
SIM2PIBL20 1407 1419 1418
SIM2PBL5 1410 1423 1409
SIM2PBL10 1418 1422 1410
SIM2PBL20 1424 1419 1429
SIM2T2BL5 1410 1405 1430
SIM2T2BL10 1421 1424 1432
SIM2T2BL20 1420 1423 1428
SIMAPIBLS 1411 1416 1395
SIMAPIBL10 1422 1413 1419
SIMAPIBL20 1413 1413 1413
SIMAPBLS5 1410 1413 1421
SIMAPBL10 1419 1404 1427
SIMAPBL20 1415 1400 1427
SIMAT2BLS5 1410 1414 1410
SIMAT2BL10 1409 1419 1418
SIMAT2BL20 1413 1406 1415

Fonte: Elaborado pelo autor



Tabela 4 — Percentual de €xito das combinagdes

Combinacdo  Percentual
CIM1PIBLS 99,04%
CIM1PIBL10 99,53%
CIMIPIBL20 99,69%
CIM1PBLS 99,26%
CIM1PBL10 99,77%
CIM1PBL20 99,74%
CIMIT2BL5 99,51%
CIMIT2BL10 99,76%
CIMI1T2BL20 99,77%
CIM2PIBLS 98,99%
CIM2PIBL10 99,68%
CIM2PIBL20 99,71%
CIM2PBL5 99,40%
CIM2PBL10 99,27%
CIM2PBL20 99,76%
CIM2T2BL5 98,80%
CIM2T2BL10 99,74%
CIM2T2BL20 99,72%
CIMAPIBL5 98,83%
CIMAPIBL10 98,98%
CIMAPIBL20 98,90%
CIMAPBLS 98,72%
CIMAPBL10 99,13%
CIMAPBL20 99,14%
CIMAT2BLS 98,57%
CIMAT2BL10  98,85%
CIMAT2BL20  99,21%
SIM1PIBLS 99,60%
SIM1PIBL10 99,79%
SIM1PIBL20 99,88%
SIM1PBL5 99,38%
SIM1PBL10 99,69%
SIM1PBL20 99,56%
SIMIT2BLS5 99,46%
SIMIT2BL10 99,60%
SIM1T2BL20 99,69%
SIM2PIBLS 99,13%
SIM2PIBL10 99,61%
SIM2PIBL20 99,46%
SIM2PBLS 99,25%
SIM2PBL10 99,31%
SIM2PBL20 99,78%
SIM2T2BLS5 99,29%
SIM2T2BL10 99,72%
SIM2T2BL20 99,78%
SIMAPIBLS 98,84%
SIMAPIBL10 99,36%
SIMAPIBL20 99,27%
SIMAPBLS 98,71%
SIMAPBL10 99,38%
SIMAPBL20 99,25%
SIMAT2BLS 98,65%
SIMAT2BL10 99,30%
SIMAT2BL20 99,14%

Fonte: Elaborado pelo autor
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Tabela 5 —Influéncia dos parametros

Ilha

Parametro

g05_60_0 099848 0,99779
g05_60_1 0,99708 0,99798
g05_60_2 099671 0,99664
g05_80_0 0,99366 0,99123
g05_80_1 0,99539 0,99772
g05_80_2 099377 0,99136
g05_100_0 0,99117  0,9914
g05_100_1 0,99335 0,99298
£05_100_2 0,99328 0,98953

Fonte: Elaborado pelo autor

Crossover

Parametro PI P T2
g05_60_0 0,99948 0,99824 0,99668
g05_60_1 0,99781 0,9976 0,99718
g05_60_2 0,99622 0,99622 0,99758
205_80_0 0,99187 0,99091 0,99456
g05_80_1 0,99693 0,99717 0,99557
¢05_80_2 0,99387 0,99197 0,99185
g05_100_0 0,99153 0,99091 0,99141
¢05_100_1 0,99279 0,99361 0,9931
¢05_100_2 0,9898  0,99263 0,99178

Fonte: Elaborado pelo autor
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Mutacao

Parametro Ml M2 MA

205_60_0 0,99927 0,99813 0,99699
205_60_1 0,99875 0,9976  0,99624
205_60_2 0,998  0,99601 0,99601
£05_80_0 0,99396 0,99611 0,98726
¢05.80_1 0,99852 0,99581 0,99534
205_80_2  0,99673 0,99322 0,98775
205_100_0 0,99479 099188 0,98718
205_100_1 0,99458 0,9954 0,98951
g05_100_2 0,99453 0,99309 0,98658

Fonte: Elaborado pelo autor
Busca Local

Parametro BL5 BL10 BL20

205_60_0 0,99627 0,99855 0,99959
205.60_1 0,99561 0,9976  0,99937
205_60_2  0,99307 0,99853 0,99842
205_80_0 0,98882 0,99492 0,9936
g05_80_1 0,99067 0,99941 0,99959
¢05_80_2  0,99007 0,99132 0,99631
205_100_0 0,99005 0,99235 0,99145
205_100_1 0,99205 0,99415 0,99329
205_100_2 0,98743 0,99259 0,99418

Fonte: Elaborado pelo autor
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7 CONCLUSOES

Este trabalho apresentou uma abordagem inovadora para a configuragdo de para-
metros em algoritmos genéticos aplicados ao problema do Corte Maximo de um grafo. Os
experimentos realizados demonstraram que diversas combinagdes de parametros geram solu-
¢Oes com valores de corte proximos aos 6timos tedricos e até mesmo o proprio 6timo tedrico,
evidenciando a eficicia da estratégia proposta.

Os experimentos demonstraram que a escolha dos parametros influencia diretamente
a qualidade das soluc¢des obtidas pelo algoritmo genético. Em particular, Mutacao em 1 gene
(M1) e Busca Local com BL20 mostraram um impacto positivo consistente, favorecendo um
equilibrio entre exploracdo e intensificagdo. O operador de crossover que preserva genes
iguais (PI) supera as outras técnicas de recombinacao, sugerindo que a manutengdo de boas
caracteristicas estruturais nos cromossomos melhora o desempenho. Em relacdo ao mecanismo
de ilha, embora ndo interfira diretamente na selecdo ou no refinamento da populacao principal,
permite identificar e armazenar solu¢des promissoras. Essa estratégia facilita a andlise da
qualidade das solugdes isoladas, mas, a0 mesmo tempo, acarreta um custo adicional em termos
de tempo computacional, devido a necessidade de verificagdo e armazenamento dessas solugdes.
Dessa forma, a aplicacio do conceito de ilha deve ser balanceada, considerando que, embora
contribua para a identificacdo de bons candidatos, pode impactar a eficiéncia global do algoritmo.

Em particular, a configuracao “SIM1PIBL20” destacou-se como a mais eficiente,
proporcionando resultados que minimizam os custos computacionais € maximizam a qualidade
das solugdes encontradas. Esses achados reforcam a importancia de um ajuste fino dos parametros
no contexto de metaheuristicas, contribuindo para a otimizac@o de problemas complexos.

Como perspectivas para trabalhos futuros, sugere-se a incorporacao de novos pa-
rametros e operadores genéticos que possam ampliar ainda mais a diversidade da populacao,
bem como a investigacdo de métodos alternativos para a geragcao da populagao inicial, com o
intuito de explorar de forma mais abrangente o espaco de solucdes. Além disso, investigacdes
adicionais podem avaliar se o impacto da filtragem por ilhas pode ser otimizado para preservar
diversidade sem comprometer a qualidade das solu¢des. Dessa forma, o presente estudo abre
caminhos para aprimoramentos que poderdo tornar a abordagem ainda mais robusta e aplicavel

em cendrios praticos de otimizacao.
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ANEXO A - ARTIGO APRESENTADO NA V ECOP

Esse trabalho de conclusdo de curso € fruto de uma pesquisa de iniciagdo cientifica
na drea de grafos e otimizacao de algoritmos, onde o artigo Parametrizacao de um Algoritmo
Genético para o Problema do Corte Maximo (Oliveira ef al., 2022) foi apresentado no V
Encontro de Computacdo do Oeste Potiguar.

Disponivel em: https://periodicos.ufersa.edu.br/ecop/article/view/11834
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