
UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS RUSSAS

CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FRANCISCO DAVI GOMES DE OLIVEIRA

EXPERIMENTAÇÃO DE PARÂMETROS DE UM ALGORITMO GENÉTICO PARA O

PROBLEMA DO CORTE MÁXIMO

RUSSAS

2025

FRANCISCO DAVI GOMES DE OLIVEIRA

EXPERIMENTAÇÃO DE PARÂMETROS DE UM ALGORITMO GENÉTICO PARA O

PROBLEMA DO CORTE MÁXIMO

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Ciência da Computação
do Campus Russas da Universidade Federal do
Ceará, como requisito parcial à obtenção do
grau de bacharel em Ciência da Computação.

Orientador: Prof. Dr. Pablo Luiz Braga
Soares.

RUSSAS

2025

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

O47e Oliveira, Francisco Davi Gomes de.
 Experimentação de parâmetros de um Algoritmo Genético para o Problema do Corte Máximo /
Francisco Davi Gomes de Oliveira. – 2025.
 51 f. : il. color.

 Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Russas,
Curso de Ciência da Computação, Russas, 2025.
 Orientação: Prof. Dr. Pablo Luiz Braga Soares.

 1. Problema do Corte Máximo. 2. Algoritmo Genético . 3. Configuração de Parâmetros . I. Título.
 CDD 005

FRANCISCO DAVI GOMES DE OLIVEIRA

EXPERIMENTAÇÃO DE PARÂMETROS DE UM ALGORITMO GENÉTICO PARA O

PROBLEMA DO CORTE MÁXIMO

Trabalho de Conclusão de Curso apresentado ao
Curso de Graduação em Ciência da Computação
do Campus Russas da Universidade Federal do
Ceará, como requisito parcial à obtenção do
grau de bacharel em Ciência da Computação.

Aprovada em: 06/03/2025

BANCA EXAMINADORA

Prof. Dr. Pablo Luiz Braga Soares (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Eurinardo Rodrigues Costa
Universidade Federal do Ceará (UFC)

Prof. Dr. Cenez Araújo De Rezende
Universidade Federal do Ceará (UFC)

Dedico este trabalho aos meus pais, Maria José

Silvia Gomes e Francisco Damião de Oliveira, a

meus irmãos, e principalmente a Deus.

AGRADECIMENTOS

À minha mãe, Silvia Gomes que sempre me apoiou, aconselhou e fez de tudo o que

pôde para um dia ver um de seus filhos formado; ao meu pai, Francisco Damião, que me ajuda no

que for necessário sem medir esforços, e não me deixa desistir nunca; aos meus irmãos, Caique

e Attilo, por serem meus exemplos mais próximos dentro da família e por partilharmos alguns

conselhos. Obrigado à todos da minha familia por fazerem isso acontecer.

Aos meus amigos, que fizeram parte da minha jornada acadêmica, em especial a Le-

ticia Kevillan, Arthur Levi, Vinicius de Assis, Isaac Chaves, entre tantos outros que estiveram ao

meu lado em diversos momentos decisivos, por partilhar de ideias e conselhos, e da maravilhosa

amizade, seja com um abraço ou com uma simples conversa fiada. Muito obrigado a todos!

À minha amada namorada, Vivian Hellen, por estar ao meu lado e me apoiando em

minhas decisões, por me ajudar a querer ser uma pessoa melhor a cada dia e não desistir dos

meus/nossos planos. Muito obrigado!

Ao Prof. Dr. Pablo Soares, por além de me orientar neste trabalho de conclusão de

curso, pelo convite à fazer parte da iniciação científica que culminou neste trabalho, e ser um

ser humando impar, cara extremamente gente boa, acessível e inspirador, por ter contribuído

bastante durante minha trajetória acadêmica e tenho-o como uma referência em minha vida.

Muito obrigado pela oportunidade!

Aos professores participantes da banca examinadora, Prof. Dr. Cenez Araújo de

Rezende e Prof. Dr. Eurinardo Rodrigues Costa, meus mais sinceros agradecimentos pelo

tempo dedicado, pelas críticas construtivas e pelas sugestões de enriquecimento e aprimoramento

significativo para este trabalho.

“A melhor forma de prever o futuro é criá-lo."

(Abraham Lincoln)

RESUMO

Este trabalho tem como finalidade a busca por boas soluções para o problema do corte máximo

(Max-Cut) em um grafo, através da utilização de uma metaheurística baseada em algoritmo

genético que, por sua vez, é inspirada no princípio teórico da evolução natural proposto por

Charles Darwin. A ideia principal consiste na busca por uma configuração de parâmetros de

refinamento do algoritmo genético que venha a apresentar bons resultados nas instâncias da

literatura. O algoritmo genético foi implementado em linguagem Python, sendo centralizado

em fornecer a otimização ao problema do corte máximo para grafos. Após a implementação

do algoritmo, foram testadas 54 configurações diferentes de parâmetros de ajuste do algoritmo.

Foram obtidos bons resultados, com o prevalecimento da seguinte configuração: “Sem ilha,

Mutação em 1 gene, Crossover que prevalece a igualdade entre os genes e busca local a partir de

20 gerações sem convergências do melhor resultado(SIM1PIBL20)”.

Palavras-chave: problema do corte máximo; algoritmo genético; configuração de parâmetros.

ABSTRACT

This work aims to search for good solutions to the problem of maximum cut (Max-Cut) in a

graph, through the use of a metaheuristic based on a genetic algorithm which, in turn, is inspired

by the theoretical principle of natural evolution proposed by Charles Darwin. The main idea

consists of searching for a configuration of parameters for refining the genetic algorithm that

will present good results in the literature. The genetic algorithm was implemented in Python

language, focusing on providing optimization to the maximum cut problem for graphs. After

implementing the algorithm, 54 different configurations of algorithm tuning parameters were

tested. Good results were obtained, with the following configuration prevailing: “No island,

Mutation in 1 gene, Crossover that prevails equality between genes and local search from 20

generations without convergence of the best result (SIM1PIBL20)”.

Keywords: maximum cut problem; genetic algorithm; parameter configuration.

LISTA DE FIGURAS

Figura 1 – Exemplo de um grafo não direcionado e ponderado (a) e o corte máximo

aplicado a este mesmo grafo (b). 18

Figura 2 – Exemplo de uma partição dos vértices do grafo (a) e uma nova partição obtida

após a busca local aplicando mudança do vértice 1 (b). 25

Figura 3 – Fluxograma do algoritmo . 27

Figura 4 – Exemplo da estrutura do arquivo de texto contendo os dados do Grafo . . . 28

LISTA DE TABELAS

Tabela 1 – Testes em instâncias com n = 60 vértices 45

Tabela 2 – Testes em instâncias com n = 80 vértices 46

Tabela 3 – Testes em instâncias com n = 100 vértices 47

Tabela 4 – Percentual de êxito das combinações . 48

Tabela 5 – Influência dos parâmetros . 49

LISTA DE ALGORITMOS

Algoritmo 1 – Pseudo-Algoritmo Genético . 21

Algoritmo 2 – Pseudo-Algoritmo Busca Local . 24

Algoritmo 3 – Cria População . 29

Algoritmo 4 – Crossover troca 2 genes . 32

Algoritmo 5 – Crossover Percentual . 33

Algoritmo 6 – Crossover Prevalece Igualdade . 34

Algoritmo 7 – Mutação em 1 gene . 35

Algoritmo 8 – Mutação em 2 genes . 36

Algoritmo 9 – Mutação em vários genes . 37

Algoritmo 10 – Pseudo-Algoritmo Genético com integração da Busca Local 39

Algoritmo 11 – Pseudo-Algoritmo de Ilha . 40

LISTA DE SÍMBOLOS

V Conjunto de Vértices

E Conjunto de Arestas

|V | Quantidade de Vértices

|E| Quantidade de Arestas

S Subconjunto de Vértices do grafo

Cint Corte interno

Cext Corte externo

P População de soluções

I Conjunto de instâncias testadas

CP Conjunto de combinações de parâmetros

∈ Pertence

/∈ Não pertence

⊆ Contido em

∀ Para todo

> Maior

≤ Menor ou igual

≥ Maior ou igual

∑ Somatório

SUMÁRIO

1 INTRODUÇÃO . 14

2 OBJETIVOS . 16

2.1 Objetivos Gerais . 16

2.2 Objetivos Específicos . 16

3 FUNDAMENTAÇÃO TEÓRICA . 17

3.1 Definição do problema de Corte Máximo 17

3.2 Algoritmo Genético . 19

3.2.1 Mapeamento de conceitos . 21

3.3 Algoritmos Híbridos . 22

3.3.1 Busca Local . 23

4 METODOLOGIA . 27

4.1 Carregamento dos dados do Grafo . 28

4.2 Cálculo do espaço de soluções e criação da população inicial 28

4.2.1 Fitness . 30

4.3 Processos de transformações e Busca Local 30

4.3.1 Crossover . 31

4.3.1.1 Crossover Troca simples de 2 genes . 32

4.3.1.2 Crossover Percentual . 33

4.3.1.3 Crossover Prevalece Igualdade . 34

4.3.2 Mutação . 35

4.3.2.1 Mutação em 1 gene . 35

4.3.2.2 Mutação em 2 genes . 36

4.3.2.3 Mutação em vários gene . 37

4.3.3 Integração da Heurística de Busca Local ao AG 37

4.4 Filtragem de soluções por restrições . 39

4.5 Avaliação final e retorno dos resultados 41

5 EXPERIMENTOS COMPUTACIONAIS 42

6 RESULTADOS . 43

7 CONCLUSÕES . 50

REFERÊNCIAS . 51

ANEXO A –ARTIGO APRESENTADO NA V ECOP 53

14

1 INTRODUÇÃO

Um grafo G consiste em um conjunto de vértices ou nós (V) conectadas por um

conjunto de arestas ou arcos (E), onde cada aresta deste conjunto estará associado a, no máximo,

um par de vértices. Dessa forma, com os vértices u e v (u,v ∈ V), pode-se representar uma

aresta como o par (u,v) ou (v,u), onde (u,v), (v,u) ∈ E, sendo ambos os pares considerados

equivalentes quando se trata de um grafo não direcionado. Além disso, quando o par (u,v) ∈ E

recebe um peso p(u,v), o grafo é classificado como ponderado (Khan Academy, 2022).

Os grafos podem ser usados na representação de alguns problemas, como mape-

amento, caminho mínimo ou máximo, fluxo máximo, dentre outros (Jurkiewicz, 2009). Entre

as diversas aplicações dos grafos, destaca-se o problema do corte máximo, que consiste em

encontrar a melhor configuração/partição dos vértices de V em dois subconjuntos, S e S′, de

forma que a soma dos pesos das arestas que ligam S e S′ seja maximizada (Soares, 2018). Por

ser classificado como um problema NP-difícil (Karp, 1972), a obtenção exata do corte máximo

em instâncias de tamanho moderado a grande se torna inviável, exigindo a utilização de métodos

que forneçam soluções aproximadas em tempo computacional razoável.

Diversos estudos têm abordado o problema do corte máximo a partir de diferentes

perspectivas. Enquanto abordagens exatas, como a apresentada por Lima et al. (2021), onde

demonstram a viabilidade de métodos determinísticos para instâncias menores, métodos de apro-

ximação – conforme discutido em Gosti et al. (1995) e Simone (1992) – oferecem estratégias para

alcançar bons resultados em tempo reduzido para instâncias maiores. Além disso, abordagens

incrementais, como expostas por Kim et al. (2016) evidenciam que o aprimoramento gradual

das soluções pode ser uma alternativa promissora. Por fim, técnicas de busca local avançadas,

tais como a utilizada por Benlic e Hao (2013) e métodos híbridos que combinam algoritmos

evolutivos com intensificadores de busca (Bansal et al., 2012), e em análises de desempenho

como em Zhou et al. (2014), reforçam a importância da integração de estratégias exploratórias e

intensificadoras para enfrentar os desafios do problema do corte máximo.

Nesse contexto, os algoritmos genéticos emergem como uma poderosa meta-heurística,

inspirada nos princípios da seleção natural e evolução biológica propostos por Darwin (Lucas,

2002). Esses algoritmos exploram o espaço de soluções aplicando operadores como mutação e

crossover, permitindo a geração de novas soluções sem a necessidade de avaliar exaustivamente

todas as soluções possíveis (Goldbarg; Luna, 2005).

Além dos métodos clássicos de algoritmos genéticos, a incorporação de estratégias

15

híbridas tem se mostrado crucial para superar limitações como a convergência prematura (Talbi,

2009). Nesse contexto, os algoritmos meméticos – que combinam a exploração global dos

algoritmos genéticos com a intensificação de busca local – evidenciam resultados superiores em

problemas NP-difíceis, como o problema do corte máximo, conforme demonstrado em estudos

que exploram técnicas inspiradas em métodos como o Tabu Search (Glover, 1989). Além disso,

a integração de técnicas de busca local é apontada como um fator determinante para aprimorar a

eficiência computacional e superar ótimos locais, fundamentando-se em princípios discutidos na

obra de Eiben e Smith (2015). Dessa forma, o acoplamento entre mecanismos exploratórios e

intensificadores se consolida como uma estratégia essencial para o desenvolvimento de sistemas

robustos e adaptativos.

O presente trabalho propõe uma abordagem para a configuração de parâmetros em

algoritmos genéticos aplicados ao problema do corte máximo. A ideia central consiste em ajustar

a estratégia de busca e filtragem de soluções de forma a obter, de maneira otimizada, resultados

que se aproximem dos valores ótimos teóricos. A metodologia adotada inclui a definição de uma

população inicial, a aplicação de operadores genéticos, e a integração de mecanismos adicionais,

como a verificação de restrições e o uso de "ilhas" para idenitificar soluções promissoras.

O restante deste trabalho está estruturado da seguinte forma: na Seção 2, comenta-

se sobre os objetivos; na Seção 3, são apresentadas as definições e os conceitos teóricos que

fundamentam o problema do corte máximo, os algoritmos genéticos e algoritmos híbridos; na

Seção 4, descreve-se a metodologia adotada para o desenvolvimento e a otimização do algoritmo;

na Seção 5, os experimentos computacionais aplicados; na Seção 6, apresenta-se os resultados

obtidos; e, por fim, na Seção 7, são apresentadas as conclusões deste trabalho.

16

2 OBJETIVOS

Nesta seção, serão discutidos o principal objetivo deste trabalho, bem como os

objetivos específicos que orientarão o desenvolvimento e a avaliação da proposta.

2.1 Objetivos Gerais

O objetivo geral deste trabalho é parametrizar um algoritmo genético para o pro-

blema do corte máximo em grafos, de forma a obter soluções de alta qualidade com custos

computacionais reduzidos.

2.2 Objetivos Específicos

• Analisar e definir os principais parâmetros que influenciam o desempenho do algoritmo

genético no problema do corte máximo;

• Desenvolver uma metodologia para a criação e avaliação da população, incorporando

operadores genéticos (mutação, crossover, etc.);

• Integrar uma heurística de busca local e um mecanismo de filtragem por restrições para

identificar soluções promissoras;

• Realizar experimentos computacionais com diferentes combinações de parâmetros e

comparar os resultados com valores ótimos teóricos;

• Identificar a configuração de parâmetros que maximize a aproximação aos valores ótimos

e discutir a influência individual de cada parâmetro.

17

3 FUNDAMENTAÇÃO TEÓRICA

Nesta seção, serão apresentados os principais conceitos que fundamentam este

trabalho. Na Seção 3.1, apresenta-se o Problema do Corte Máximo, uma problemática na área de

grafos que este trabalho vai abordar. Em seguida, na Seção 3.2, será apresentado o Algoritmo

Genético, uma meta-heurística utilizada na busca por um espaço de soluções para o problema

abordado. E por último, na Seção 3.3, apresenta-se o Algoritmo Híbrido, assim como a defição

da heurística de Busca Local, uma etapa extra que será empregada ao nosso algoritmo.

3.1 Definição do problema de Corte Máximo

Seja G(V,E) um grafo não direcionado e ponderado, onde V representa o conjunto

de vértices, com |V |= n vértices, e E representa o conjunto das arestas, com |E|= m arestas.

Para cada aresta (u,v) ou (v,u), será atribuído o peso p(u,v) apenas para u,v ∈ E, u ̸= v.

Será atribuído valor 0 ao peso da aresta quando: u,v /∈ E, e p(u,u) para todo 1 ≤ u ≤ n

(Soares, 2018). Devido à ampla gama de aplicações e pesquisas relacionadas ao problema, o

mesmo é encontrado na literatura com diferentes denominações, dentre elas as mais comuns são

Maximum-2-Satisfiability, Weighted Signed Graph Balancing, Unconstrained Quadratic 0 - 1

Programming (Boros; Hammer, 1991).

O problema do Corte Máximo (Max-Cut) ponderado consiste em encontrar o peso

de valor máximo no somatório dos pesos das arestas que estejam ligando os subconjuntos da

bipartição S e S′, com a melhor configuração possível na distribuição das arestas entre esses

subconjuntos. Assim, o subconjunto S contém uma parte dos vértices de V , enquanto S′ contém os

|V |− |S| vértices restantes. Vale ressaltar que S ou S′ podem ser conjuntos vazios (Soares, 2018).

A equação que representa o somatório dos pesos p(u,v) das arestas que ligam os subconjuntos S

e S′, obtendo o valor de corte máximo é definida da seguinte forma:

CM(G) = ∑
∀u∈S
∀v∈S′

p(u,v) (3.1)

Na Figura 1, temos um exemplo do Corte Máximo em um grafo não direcionado e

ponderado. Na Figura 1 (a), utilizamos um grafo com n = 6 vértices e m = 9 arestas com os

pesos associados. Na Figura 1 (b), podemos observar a bipartição desses vértices entre S e S′,

de tal maneira que {1,5,6} ⊆ S e {2,3,4} ⊆ S′. Com esta distribuição dos vértices, ao aplicar a

18

Equação 3.1 nas arestas que cruzam os subconjuntos S e S′, obteremos um valor de corte igual a

13, que será o valor máximo a ser obtido neste grafo.

Figura 1 – Exemplo de um grafo não direcionado e ponderado (a) e o corte máximo aplicado a
este mesmo grafo (b).

1 2 3

4 5 6

2

1 1
1

1

2 2
3

3

(a) Grafo não direcionado e ponderado

S S′

1 2

3

4

5

6

2

1

1

1

1
2

2

3

3

(b) Corte Máximo do grafo de exemplo

Fonte: elaborado pelo autor.

Em aplicações práticas, o problema do corte máximo é utilizado em diversas áreas,

tais como a de Redes de comunicação, onde a separação de redes em clusters pode otimizar

o tráfego de dados (Lima, 2022); Agrupamentos de dados (Clustering), onde os grafos são

utilizados para dividir conjuntos de dados em grupos distintos para análise de padrões (Costa,

2014); Segmentação de imagens, onde o particionamento do grafo que modela a imagem facilita

a identificação dos segmentos (Sousa et al., 2013); dentre outras diversas aplicações da literatura.

O problema do Corte Máximo é uma importante ferramenta para modelagem e solução de

diversos desafios práticos relacionados à teoria dos grafos.

Devido à sua complexidade computacional, o problema do Corte Máximo é tratado

por diferentes abordagens, que podem ser classificadas em Algoritmos Exatos, como programa-

ção linear inteira e métodos branch-and-bound que garantem a obtenção de soluções ótimas,

porém com alto custo computacional, tornando-se inviáveis para grandes instâncias; Heurísticas,

19

como a busca local e simulated annealing, que buscam soluções aproximadas em tempo reduzido,

porém sem garantir otimalidade; e Metaheurísticas, como algoritmos genéticos e busca tabu,

que utilizam técnicas inspiradas na biologia ou em métodos de otimização combinatória para

encontrar boas soluções aproximadas em problemas complexos.

Para Karp (1972), o problema do Corte Máximo (Max-Cut) é classificado como um

problema NP-Difícil, o que leva a ser um desafio computacional para a obtenção do valor de

corte máximo em instâncias de tamanho intermediários, como grafos com aproximadamente

50 vértices. Dessa forma, para instâncias maiores, é necessário a aplicação de abordagens

heurísticas e metaheurísticas que forneçam soluções com ótima qualidade e ainda em tempo

computacional aceitável.

3.2 Algoritmo Genético

O Algoritmo Genético é uma metaheurística de otimização inspirada na teoria evo-

lucionária de Charles Darwin. Segundo essa teoria, os indivíduos mais adaptados ao ambiente

possuem maior chance de reprodução, transmitindo suas características para as próximas gera-

ções. No contexto computacional, essa ideia é traduzida em um processo iterativo de seleção,

reprodução e mutação de soluções, permitindo que as melhores configurações sejam mantidas e

aprimoradas ao longo do tempo (Lucas, 2002).

A evolução das espécies pode ser interpretada como um processo de otimização das

espécies, ao passo que, no decorrer do tempo, os seres vivos vão se adaptando em um ambiente

que evolui constantemente (Lucas, 2002). Portanto, o algoritmo genético tem uma estrutura

em que as informações de cada sistema podem ser modeladas e processadas analogamente aos

cromossomos biológicos (Ikeda, 2009).

Diversos cientistas contribuíram para a consolidação da teoria dos Algoritmos Gené-

ticos, servindo aspectos importantes para a aproximação da teoria de evolução das espécies com

o contexto computacional. Em 1809, Lamarck propôs uma hipótese evolucionária na qual os

organismos adquirem características ao longo do tempo, o que pode ser associado ao mecanismo

de mutação em Algoritmos Genéticos. Em 1866, Mendel estabeleceu as bases da genética

moderna, mostrando que características são transmitidas hereditariamente, refletindo diretamente

no operador de crossover utilizado em Algoritmos Genéticos. Já em 1975, John Holland foi

o pioneiro na modelagem computacional da evolução, ao representar um cromossomo como

uma sequência binária (0,1), permitindo a aplicação de operadores genéticos como mutação,

20

crossover e seleção para encontrar soluções ótimas em problemas de otimização (Goldbarg;

Luna, 2005).

O Algoritmo Genético fundamenta-se em uma concepção generalista do processo

adaptativo, permitindo ao modelador a flexibilidade de definir a estratégia de seleção natural e

evolução de acordo com as particularidades do problema em questão. Essa flexibilidade se reflete

na abstração do modelo, na qual o significado das cadeias cromossômicas é livre e adaptável

a diferentes contextos. Em essência, um algoritmo genético requer a definição de premissas

fundamentais para seu desenvolvimento, a saber:

• A determinação da população inicial de cromossomos, que representa as soluções candida-

tas ao problema;

• A definição de uma função de avaliação (fitness) que quantifique a qualidade das soluções;

• A especificação dos operadores genéticos, tais como crossover e mutação, que viabilizam

a reprodução e a geração de novos indivíduos, incluindo a escolha do ponto de quebra do

cromossomo e o tipo de mutação aplicado;

• A definição de parâmetros críticos para o fluxo do algoritmo, como condições de parada,

tamanho da população e mecanismos para garantir a diversidade.

Essa abordagem generalista, que permite ao modelador concretizar o processo adaptativo con-

forme a situação, é justamente o que confere aos algoritmos genéticos sua natureza de metaheu-

rísticas (Goldbarg; Luna, 2005).

O pseudo-algoritmo que representa o fluxo de um Algoritmo Genético pode ser

definido da seguinte forma no algoritmo 1:

21

Algoritmo 1: Pseudo-Algoritmo Genético
Entrada: Um Grafo não direcionado e ponderado

Saída: Solução

início

Gerar uma população inicial ;

Avaliar o fitness dos indíviduos da população inicial;

enquanto Não atingir o critério de parada fazer

Seleção de pais da população;

Aplicar crossover ou mutação nos pais para estimular a reprodução;

Avaliar o fitness dos filhos gerados;

Ordenar todos os indivíduos da população;

Selecionar os melhores para permanecer para a próxima geração;
fim

fim

Os Algoritmos Genéticos têm sido amplamente aplicados em diversas áreas, evi-

denciando sua versatilidade na resolução de problemas de otimização combinatória. Entre as

aplicações práticas destacadas encontram-se o agendamento de processos em sistemas multipro-

cessadores (Multiprocessor Scheduling) — cujo o objetivo é reduzir os custos de comunicação

em arquiteturas paralelas —, a modelagem de problemas em biologia molecular e físico-química,

a otimização discreta de estruturas na engenharia, a inversão de formas de ondas sísmicas em

geofísica, a integração com redes neurais para aprimoramento de classificadores e a compressão

de dados, especialmente na codificação de imagens. Essas diversas aplicações não apenas ilus-

tram a eficácia dos Algoritmos Genéticos na obtenção de soluções aproximadas para problemas

complexos, mas também motivam a contínua melhoria dos métodos de seleção, mutação e cruza-

mento, bem como a integração dos Algoritmos Genéticos com outras técnicas de otimização,

como Simulated Annealing e Tabu Search (Tsuruta; Narciso, 2000).

3.2.1 Mapeamento de conceitos

A proximidade ao processo biológico reflete nos Algoritmos Genéticos em métodos e

mecanismos de seleção e evolução natural. A seguir, será feito o mapeamento dos conceitos para

gene, cromossomo, fitness, população, seleção, mutação e crossover, utilizados no algoritmo

genético junto ao problema do corte máximo aplicados nesta pesquisa.

• Gene: Unidade mínima da representação de uma solução do algoritmo genético. Em

22

termos computacionais e associado ao problema abordado, é uma posição do vetor que

representa cada vértice do grafo. E nesta, pode estar preenchida com a valoração de 0 ou 1,

onde 0 representa que o vértice está contido no subconjunto S e 1 representa que o vértice

está contido no subconjunto S′;

• Cromossomo: Sequência de genes que representam uma solução candidata ao problema.

Ou seja, é uma sequência binária que representa a configuração de como estão particiona-

dos os vértices entre os subconjuntos S e S′.

• Fitness: Valor associado a aptidão de cada indivíduo/cromossomo;

• População: Conjunto de cromossomos que evoluem ao longo das gerações. Ou ainda,

uma matriz com configurações de possíveis soluções.

• Seleção: Método de escolha dos melhores indivíduos para reprodução. O método utilizado

nesse trabalho é elitista e uniforme, onde garante a sobrevivência dos melhores cromosso-

mos ao ser feito a ordenação e, a garantia para qualquer indivíduo poder ser escolhido sem

a dependência da análise ao seu valor de fitness;

• Crossover (Cruzamento): Método de combinação de cromossomos pais para gerar novas

soluções, ou ainda, obter novos filhos com o cruzamento dos genes pais, podendo ser de

um ponto, múltiplos pontos ou uniforme;

• Mutação: Método em que se aplica uma pequena alteração aleatória nos genes para

diversificar as soluções e evitar convergência prematura.

3.3 Algoritmos Híbridos

Apesar do caráter genérico e versátil dos Algoritmos Genéticos na resolução de

problemas de otimização combinatória, diversos estudos apontam que a forma convencional

desses algoritmos pode não ser a solução mais eficiente para problemas complexos. Isso

ocorre, em parte, devido à representação binária dos cromossomos e aos processos aleatórios

empregados na seleção, cruzamento e mutação, que podem levar à formação prematura de

populações homogêneas e, consequentemente, dificultar a exploração de ótimos locais (Ikeda,

2009). Essa limitação tem motivado a proposição de algoritmos híbridos, que combinam a

capacidade exploratória dos Algoritmos Genéticos com técnicas de intensificação, como a busca

local, para melhorar o desempenho global na obtenção de soluções.

Em nossa abordagem, a estratégia híbrida integra o algoritmo genético a uma busca

local direcionada, aplicada em cromossomos pré-definidos do conjunto de soluções. A busca

23

local, nesse contexto, atua como um operador intensificador, refinando os melhores indivíduos

quando ocorre um período de estagnação na evolução da população. Essa técnica permite

ajustes finos na solução, ajudando a superar os desafios dos ótimos locais e garantindo uma

maior robustez na solução final. Assim, a incorporação da busca local exemplifica o equilíbrio

entre o caráter genérico dos Algoritmos Genéticos convencionais e as vantagens de métodos

especializados, como os propostos em algoritmos meméticos (Moscato et al., 2004), e outras

metaheurísticas.

3.3.1 Busca Local

A Busca Local é uma técnica clássica de otimização combinatória que explora a

vizinhança de uma solução corrente para encontrar melhorias incrementais na função objetivo.

Fundamentanda nos princípios do "Hill Climbing", a abordagem consiste em realizar pequenas

modificações na solução atual e adotar aquela que apresenta melhoria, repetindo esse processo

iterativamente. Em versões mais sofisticadas, como o simulated annealing, o método permite a

aceitação temporária de soluções inferiores para escapar de ótimos locais. Esse método, pela

sua simplicidade e eficácia, é amplamente utilizado para resolver problemas NP-difíceis, onde a

busca exaustiva se torna inviável (Hoos; Stutzle, 2018).

Essa estratégia híbrida, frequentemente denominada algoritmo memético, tem sido

validada na literatura internacional (Moscato et al., 2004) e em estudos nacionais (Benvenga,

2022) como uma forma eficaz de melhorar a qualidade final das soluções em problemas de

otimização combinatória. Em ambientes híbridos, a busca local é frequentemente integrada

a algoritmos globais, como os algoritmos genéticos, para intensificar a exploração em pontos

estratégicos do espaço de soluções.

Segundo Filho (2021), a análise dos potenciais dos vértices – divididos em cálculos

de corte interno e corte externo – torna-se uma estratégia fundamental para orientar a busca

local no problema do corte máximo. Em nossa abordagem, para cada vértice, são calculados os

seguintes valores:

• O corte interno (Cint), que representa a soma dos pesos das arestas que conectam o vértice

aos demais vértices do mesmo subconjunto

• O corte externo (Cext), que representa a soma dos pesos das arestas que ligam o vértice

aos vértices do subconjunto oposto.

A diferença qualitativa entre essas duas medidas fornece uma indicação do benefício

24

potencial em alterar a atribuição do vértice. Se a conectividade interna for consideravelmente

superior à externa, isso sugere que mover o vértice para o conjunto oposto poderá incrementar o

valor total do corte. Assim, ao identificar vértices com forte predominância de conexões internas,

o algoritmo opta por realocá-los, refinando progressivamente a solução global.

Em nosso método, a Busca Local é aplicada em posições previamente determinadas

da solução, refinando os melhores indivíduos e contribuindo para a superação de estagnações

na evolução das soluções. Para melhorar os ótimos locais, o algoritmo de Busca Local percorre

toda a solução fornecida e avalia o potencial de cada gene do cromossomo (Filho, 2021).

Calculando, para cada gene, o valor de corte interno (Cint) e o valor de corte externo (Cext).

Sempre que Cint >Cext , o gene é alterado, promovendo sua migração para o outro subconjunto, e

o cromossomo modificado é reavaliado quanto ao seu fitness. As novas soluções resultantes são,

então, inseridas na população principal, onde o processo de ordenação Insertion Sort garante

que apenas os indivíduos com melhores valores de aptidão sejam encaminhados para a próxima

geração. O fluxo da lógica de Busca Local pode ser visto no algoritmo 2, logo abaixo:

Algoritmo 2: Pseudo-Algoritmo Busca Local
Entrada: Uma solução do espaço de soluções

Saída: Soluções com melhorias

início

Inicialização e avaliação do cromossomo;

para cada gene faça

Calcular os valores Cint e Cext ;

se Cint >Cext então

Altera o valor do gene;

Avaliação do fitness;

Adiciona essa solução com melhoria à população;
fim

fim

Aplica ordenação Insertion Sort;
fim

Exemplo: Considere a partição ilustrada na Figura 2 (a), onde os vértices são

divididos em S = {3,5} e S′ = {1,2,4,6}, e o valor de aptidão é igual a 10. Partindo da

verificação do vértice 1, que tem um potencial total igual a 5, com Cint(1) = 4 (devido às

conexões internas com 2, 4 e 6) e Cext(1) = 1 (relacionado à conexão com o vértice 5), observa-

25

se uma predominância interna que sugere que a mudança da atribuição do vértice 1 pode melhorar

o corte global. Essa mudança é vista na Figura 2 (b), e sua configuração tem um valor de aptidão

igual a 13.

Figura 2 – Exemplo de uma partição dos vértices do grafo (a) e uma nova partição obtida após a
busca local aplicando mudança do vértice 1 (b).

S

S′ 1 2

3

4

5

6
2

1

1

1

1

2

2

33

(a) Partição com S = {3,5} e S′ = {1,2,4,6}
S S′

1 2

3 4

5 6

2

1

1

1
1

2 2

33

(b) Partição com S = {1,3,5} e S′ = {2,4,6}

Fonte: elaborado pelo autor.

26

Portanto, a aplicação da Busca Local dentro do Algoritmo Genético traz diversos

benefícios, como a melhoria da eficiência computacional, pois opera apenas com modificações

na solução atual, reduzindo a necessidade de buscas exaustivas (Goldbarg; Luna, 2005). Além

disso, esse refinamento local contribui para a qualidade das soluções ao escapar de ótimos

locais, permitindo que indivíduos mais aptos sejam preservados (Eiben; Smith, 2015). Outra

vantagem é o equilíbrio entre exploração e explotação, já que enquanto o Algoritmo Genético

busca diversidade globalmente, a Busca Local aprofunda a investigação em regiões promissoras

do espaço de soluções. Por fim, essa abordagem reduz a convergência prematura ao impedir

que a população fique presa em soluções subótimas, favorecendo a obtenção de resultados mais

robustos e globalmente competitivos.

27

4 METODOLOGIA

Esta seção apresenta a metodologia adotada no desenvolvimento deste trabalho, que

consiste na aplicação do Algoritmo Genético para o tratamento do Problema de Corte Máximo.

O desenvolvimento do Algoritmo Genético, com representação da solução em binário,

consiste em um método simples e de fácil implementação. À princípio, a implementação foi

realizada em linguagem de programação C, e utilizando o ambiente de desenvolvimento Code

Blocks. Mas em seguida, este trabalho foi migrado para a linguagem de programação Python,

e programada no ambiente de desenvolvimento Visual Studio Code. O procedimento adotado

para solucionar o problema do Corte Máximo de um grafo ponderado foi dividido nos seguintes

passos que serão apresentados nas Seções durante este capítulo: Carregamento dos dados do

Grafo (4.1); Cálculo do espaço de soluções e criação da população inicial (4.2); Processos de

transformações e Busca Local (4.3); Filtragem de soluções por restrições (4.4); Avaliação final

e retorno dos resultados (4.5). Abaixo está o fluxograma representando o fluxo do algoritmo

abordado neste capítulo:

Figura 3 – Fluxograma do algoritmo

Início

Carregar dados do grafo

Calcular o espaço de soluções e Gerar População Inicial

Processos de transformações e Busca Local

Filtragem de soluções por restrições

Avaliação

Fim

Fonte: elaborado pelo autor.

28

4.1 Carregamento dos dados do Grafo

O processo de carregamento dos dados do Grafo e sua posterior criação, porta-se de

maneira simples e concisa. O algoritmo inicia carregando um conjunto de arestas de um grafo G

ponderado a partir de um arquivo de texto, e em seguida parte para a criação do mesmo.

Na Figura 4, podemos ver como os dados do Grafo vão ser estruturados no arquivo de

texto. Os dados da figura são referentes ao Grafo apresentado na Figura 1 (a). O arquivo possui,

na primeira linha, a quantidade de vértices (n) e a quantidade de arestas (m), respectivamente.

Nas linhas subsequentes, são fornecidas as informações referentes a cada aresta, onde o primeiro

dado indica o vértice u, o segundo dado indica o vértice v e, por último, o tercerio remete ao

peso da aresta (u,v).

Figura 4 – Exemplo da estrutura do arquivo de texto contendo os dados do Grafo

6 9
1 2 2
1 4 1
1 5 1
1 6 1
2 3 1
2 5 2
2 6 2
3 6 3
4 5 3

Fonte: elaborado pelo autor.

4.2 Cálculo do espaço de soluções e criação da população inicial

Após a leitura e processamento inicial dos dados do grafo G, será calculada a

quantidade máxima de soluções possíveis para o determinado grafo, onde esse número é obtido

na seguinte equação:

T S(G) = 2n (4.1)

29

tendo em vista que, n é a quantidade de vértices do grafo, e para cada vértice pode ser atribuído

um dos dois valores para indicar a qual subconjunto o vértice vai pertencer (0 ou 1).

Em seguida, será criada a população inicial com um tamanho limitado t, definido

a partir do método para a criação da população, considerando que o número total de soluções

possa ter um crescimento de forma exponencial, a depender de n. Essa função de criação da

população é definida no algoritmo 3, como veremos a seguir.

Algoritmo 3: Cria População
Entrada: n; T S(G)

Saída: populacao; tamPop

início

totalPop← T S(G); // Define totalPop a partir de T S(G)

tamCromossomo← n;

se tamCromossomo < 3 então

tamPop← totalPop;

senão se tamCromossomo < 10 então

tamPop← ⌊totalPop/2⌋;
senão se tamCromossomo≤ 14 então

tamPop← ⌊totalPop/4⌋;
senão se tamCromossomo < 100 então

tamPop← 5000;

senão

tamPop← 7000;

fim

populacao←matriz de dimensão (tamPop× tamCromossomo);

para i← 0 até tamPop faça

para j ← 0 até tamCromossomo faça

populacao[i][j]← aleatorio(0,1);

fim
fim

retorna populacao, tamPop
fim

30

Logo após a criação da população, um vetor contendo os valores de corte (fitness)

é gerado para cada cromossomo dessa população. Esse vetor vai ser utilizado para auxiliar a

ordenação da população, utilizando o método de Insertion Sort. Paralelamente, a função vai

ordenar o vetor com os valores de corte dos cromossomos e a matriz da população, de forma que

os indivíduos com os maiores valores de corte sejam priorizados em ordem decrescente.

No procedimento do algoritmo, será criado uma nova matriz e um vetor, ambos de

tamanho t + t
2 , que servirão para auxiliar no armazenamento das novas populações resultantes

das transformações que irão sofrer.

4.2.1 Fitness

Na formulação do problema do corte máximo, o objetivo é encontrar uma partição dos

vértices do grafo de modo que a soma dos pesos das arestas que conectam os dois subconjuntos

seja maximizada. Para refletir essa meta, a função de avaliação (fitness) foi construída de forma

direta. Em nossa abordagem, cada cromossomo c ∈ P representa uma possível partição dos

vértices, onde P é o conjunto de todos os indíviduos (ou soluções candidatas) que compõem a

população. Geralmente, a atribuição de 0 indica que um vértice pertence ao subconjunto S e 1

indica que pertence a S′. Assim, a função F é definida como a soma dos pesos p(u,v) tais que

u ∈ S e v ∈ S′:

F(c) = ∑
∀u∈S
∀v∈S′

p(u,v) (4.2)

Dessa forma, maximizar F(c) equivale a maximizar o corte do grafo. Quanto maior o

valor de F(c), melhor a partição obtida, pois ela resulta em uma maior soma dos pesos das arestas

que cruzam os dois subconjuntos. Essa aproximação entre a função fitness e o problema do

corte máximo garante que a metaheurística esteja alinhada com o objetivo central da otimização,

utilizando a população P como conjunto de soluções para explorar o espaço de possibilidades.

4.3 Processos de transformações e Busca Local

Esse processo de transformações pode ser também intitulado por Período de Gera-

ções, que ocorre logo após a adaptação do grafo G na metaheurística utilizada, e seu processo de

criação e avaliação da população inicial.

31

Basicamente, ao entrar nesse Período de Gerações, essa população criada inicial-

mente vai passar por uma quantidade pré-definida de gerações, durante as quais são aplicadas

operações de Crossover (4.3.1) e Mutação (4.3.2). A escolha da operação vai depender da

probabilidade de cada transformação, visando a convergência da população para melhores

soluções.

4.3.1 Crossover

Quando a variável de probabilidade de transformação prevalece para o Crossover,

ocorre a Seleção aleatória de dois cromossomos pais para que seja feita a combinação de genes

dos mesmos, com finalidade de obter novas ótimas soluções. Esse processo de combinação será

repetido até que sejam gerados t
2 filhos.

Após a geração desses novos filhos, os mesmos serão inseridos na matriz auxiliar

para a nova população e submetidos ao cálculo para medir os seus valores de fitness. Em seguida,

serão ordenados pelo método de Insertion Sort.

Neste trabalho, foram elaboradas 3 técnicas diferentes para o Crossover, sendo elas:

Troca simples de 2 genes (4.3.1.1); Percentual (4.3.1.2); Prevalece igualdade (4.3.1.3).

32

4.3.1.1 Crossover Troca simples de 2 genes

Nesta técnica, realiza-se a troca simples de dois genes entre dois cromossomos pais.

Inicialmente, os dois genes são escolhidos de forma aleatória, garantindo que não sejam repetidos.

A combinação é efetuada por meio da troca dos genes correspondentes entre os pais, gerando

dois novos indivíduos que herdam características de ambos. O algoritmo 4 ilustra essa técnica.

Algoritmo 4: Crossover troca 2 genes
Entrada: pai1; pai2; tamCromossomo; probCruzamento; probMutacao

Saída: f ilho1; f ilho2; probCruzamento; probMutacao

início

gene1, gene2← tamCromossomo+1, tamCromossomo+1;

enquanto gene1 ≥ tamCromossomo ou gene2 ≥ tamCromossomo fazer

gene1, gene2← sorted(random.sample(range(tamCromossomo), 2));

se gene1 = gene2 então

gene1, gene2← tamCromossomo+1, tamCromossomo+1;

fim
fim

f ilho1← pai1;

f ilho2← pai2;

f ilho2[gene1]← pai1[gene1];

f ilho2[gene2]← pai1[gene2];

f ilho1[gene1]← pai2[gene1];

f ilho1[gene2]← pai2[gene2];

probCruzamento← probCruzamento− (probCruzamento×0.03);

probMutacao← probMutacao+(probMutacao×0.05);

retorna f ilho1, f ilho2, probCruzamento, probMutacao ;
fim

33

4.3.1.2 Crossover Percentual

Na técnica de crossover percentual, um ponto de divisão é definido aleatoriamente,

escolhendo-se uma quantidade de genes (variando de 1 até o tamanho do cromossomo menos

1) a ser combinada entre os pais. Dessa forma, para cada par de cromossomos selecionados, o

primeiro filho recebe os primeiros genes de um pai e o restante do outro, enquanto o segundo

filho recebe a combinação inversa. Esse procedimento gera uma mescla proporcional dos genes

de ambos os progenitores, preservando características relevantes dos pais e promovendo a

diversidade na população. No algoritmo 5 é demonstrado a lógica desta técnica.

Algoritmo 5: Crossover Percentual
Entrada: pai1; pai2; tamCromossomo; probCruzamento; probMutacao

Saída: f ilho1; f ilho2; probCruzamento; probMutacao

início

qtdGenes← random.randint(1, tamCromossomo−1);

para i← 0 até qtdGenes faça

f ilho1[i]← pai1[i];

f ilho2[i]← pai2[i];
fim

para j← qtdGenes+1 até tamCromossomo faça

f ilho1[j]← pai2[j];

f ilho2[j]← pai1[j];
fim

probCruzamento← probCruzamento− (probCruzamento×0.03);

probMutacao← probMutacao+(probMutacao×0.05);

retorna f ilho1, f ilho2, probCruzamento, probMutacao ;
fim

34

4.3.1.3 Crossover Prevalece Igualdade

No desenvolvimento da proposta, foi implementado um operador de crossover

especializado — denominado “crossover que prevalece os genes iguais” — para combinar

soluções de forma a preservar características comuns entre os pais. Para cada posição do

cromossomo, é verificado se os genes dos dois pais são idênticos. Caso sejam iguais, o gene

é mantido nos descendentes; caso contrário, o valor do gene é sorteado entre as possíveis

alternativas (0 ou 1).

Essa estratégia visa manter os traços genéticos de alta qualidade que se repetem

entre os pais, intensificando a exploração de regiões promissoras do espaço de busca. Após

a recombinação, as probabilidades de crossover e mutação são ajustadas para equilibrar a

exploração e a intensificação da busca. A sua implementação é dada a seguir no algoritmo 6:

Algoritmo 6: Crossover Prevalece Igualdade
Entrada: pai1; pai2; tamCromossomo; probCruzamento; probMutacao

Saída: f ilho1; f ilho2; probCruzamento; probMutacao

início

para i← 0 até tamCromossomo faça

se pai1[i] = pai2[i] então

f ilho1[i]← pai1[i];

f ilho2[i]← pai2[i];

senão

f ilho1[i]← aleatorio(0,1);

f ilho2[i]← aleatorio(0,1);
fim

probCruzamento← probCruzamento− (probCruzamento×0.03);

probMutacao← probMutacao+(probMutacao×0.05);

retorna f ilho1, f ilho2, probCruzamento, probMutacao ;
fim

35

4.3.2 Mutação

O processo para a aplicação da Mutação é análoga ao processo do Crossover (4.3.1).

Porém, na Seleção será escolhido apenas um cromossomo pai por vez, esse processo irá se repetir

até que sejam gerados t
2 novos filhos. Em seguida, esses novos indíviduos gerados, também irão

passar pelo processo de inserção na matriz auxiliar para a nova população, cálculo do valor de

fitness, e ordenados posteriormente com a função de Insertion Sort.

Para esta transformação, foram desenvolvidas 3 técnicas diferentes para a Mutação,

sendo elas: Mutação em 1 gene (4.3.2.1); Mutação em 2 genes (4.3.2.2); Mutação em vários

genes (4.3.2.3).

4.3.2.1 Mutação em 1 gene

Na estratégia de mutação de um gene, para cada cromossomo selecionado da popula-

ção, um único gene é escolhido de forma aleatória e seu valor é invertido (por exemplo, de 0

para 1 ou vice-versa). Além disso, as probabilidades de cruzamento e de mutação são ajustadas,

aumentando ligeiramente a probabilidade de cruzamento e diminuindo a de mutação, de forma a

equilibrar a exploração e a intensificação do algoritmo.

Algoritmo 7: Mutação em 1 gene
Entrada: pai; tamCromossomo

Saída: f ilho

início

gene← random.randint(0, tamCromossomo−1);

f ilho← pai;

se pai[gene] = 0 então

f ilho[gene]← 1;

senão se pai[gene] = 1 então

f ilho[gene]← 0;

fim

probCruzamento← probCruzamento+(probCruzamento×0.05);

probMutacao← probMutacao− (probMutacao×0.03);

retorna f ilho ;
fim

36

4.3.2.2 Mutação em 2 genes

Na estratégia de mutação de dois genes, para cada cromossomo selecionado, o algo-

ritmo escolhe aleatoriamente dois índices distintos e inverte os valores dos genes correspondentes.

Essa abordagem gera uma variação mais significativa na solução, promovendo maior diversidade

e auxiliando na superação de possíveis ótimos locais.

Algoritmo 8: Mutação em 2 genes
Entrada: pai; tamCromossomo

Saída: f ilho

início

gene1, gene2← random.sample(range(tamCromossomo), 2);

f ilho← pai;

se pai[gene1] = 0 então

f ilho[gene1]← 1;

senão se pai[gene1] = 1 então

f ilho[gene1]← 0;

fim

se pai[gene2] = 0 então

f ilho[gene2]← 1;

senão se pai[gene2] = 1 então

f ilho[gene2]← 0;

fim

probCruzamento← probCruzamento+(probCruzamento×0.05);

probMutacao← probMutacao− (probMutacao×0.03);

retorna f ilho ;
fim

37

4.3.2.3 Mutação em vários gene

Na técnica de mutação para vários genes, para cada cromossomo que passa pelo

operador, é selecionado um número aleatório de genes. Em seguida, cada gene escolhido sofre

uma inversão de seu valor – se o gene é 0, ele é alterado para 1, e vice-versa. Essa mutação

pontual permite a introdução de variações no cromossomo, contribuindo para a diversidade

genética da população e possibilitando a exploração de novas regiões do espaço de soluções.

Algoritmo 9: Mutação em vários genes
Entrada: pai; tamCromossomo

Saída: f ilho

início

qtdGenes← random.randint(1, tamCromossomo);

genesAleat← random.sample(range(tamCromossomo), qtdGenes);

para cada gene ∈ genesAleat faça

se pai[gene] = 0 então

f ilho[gene]← 1;

senão

f ilho[gene]← 0;

fim
fim

probCruzamento← probCruzamento+(probCruzamento×0.05);

probMutacao← probMutacao− (probMutacao×0.03);

retorna f ilho ;
fim

4.3.3 Integração da Heurística de Busca Local ao AG

A escolha por integrar uma heurística de Busca local ao Algoritmo genético fundamenta-

se na evidência de que métodos híbridos podem superar a convergência prematura, intensificando

a exploração de regiões promissoras do espaço de soluções. Estudos recentes, como os apresen-

tados por Benlic e Hao (2013) e Bansal et al. (2012) demonstram que a combinação de métodos

evolutivos com técnicas de intensificação, pode melhorar significativamente o desempenho em

problemas NP-difíceis.

Como vimos na subseção 3.3.1, a heurística de Busca Local vai contribuir positiva-

38

mente para o Algoritmo Genético na exploração em pontos estratégicos no espaço de soluções,

intensificando a qualidade das soluções, o que vai contribuir diretamente para escapar de ótimos

locais.

Esses dois métodos unidos geram um equilíbrio essencial, pois o Algoritmo Genético,

com suas operações de Crossover e Mutação, promove a exploração de novas regiões do espaço

de busca, enquanto a Busca Local, vai ajudar a refinar as soluções promissoras.

A Busca Local no Algoritmo Genético vai ser ativada no início de cada geração,

caso as transformações não gerem cromossomos com corte maior em um determinado período,

ou seja, após um período sem convergências. A busca vai ocorrer em posições específicas da

população, sendo elas: na posição inicial, na segunda posição, na posição intermediária e na

posição final. Esse comportamento pode ser visto no pseudo-algoritmo abaixo, que representa

como ocorre a integração da heurística de Busca Local junto a metaheurística do Algoritmo

Genético.

39

Algoritmo 10: Pseudo-Algoritmo Genético com integração da Busca Local
Entrada: Um Grafo não direcionado e ponderado; Período máximo sem convergência

Saída: Solução

início

Gerar uma população inicial ;

Avaliar o fitness dos indíviduos da população inicial;

semConvergencia← 0;

enquanto Não atingir o critério de parada fazer

se semConvergencia≥ periodoMaximo então

para pos ∈ [0, 1, t
2 , t] faça

BuscaLocal(pos)

fim
fim

Seleção de pais da população;

Aplicar crossover ou mutação nos pais para estimular a reprodução;

Avaliar o fitness dos filhos gerados;

Ordenar todos os indivíduos da população;

Selecionar os melhores para permanecer para a próxima geração;

se Corte do melhor cromossomo da geração atual é maior que o melhor

cromossomo da geração anterior então

semConvergencia← 0;

senão

semConvergencia← semConvergencia+1;

fim
fim

fim

4.4 Filtragem de soluções por restrições

Com o objetivo de identificar soluções promissoras, foi implementado o conceito de

ilha, um processo que verifica se os cromossomos gerados atendem às restrições definidas pelo

problema. Cada cromossomo é analisado individualmente, avaliando se a configuração de seus

genes satisfaz as condições estabelecidas para o corte máximo do grafo.

Os cromossomos que atendem aos critérios são armazenados em uma subpopulação

separada, ou ilha, sem interferir diretamente no refinamento ou na evolução da população

principal. Essa separação permite identificar quais soluções foram aceitas pelas restrições,

auxiliando na análise da qualidade dos cromossomos sem impactar a busca local ou outras

40

transformações genéticas. A seguir, será apresentado o pseudo-algoritmo que descreve esse

processo:

Algoritmo 11: Pseudo-Algoritmo de Ilha
Entrada: População; Valores de corte; Estrutura do grafo

Saída: Subpopulação com cromossomos que atendem às restrições

início

para cada cromossomo na população faça

Inicializar contador de restrições atendidas;

para cada gene no cromossomo faça

Calcular o valor de crote do gene;

se atender às restrições então

Incrementar contador;

senão

interromper verificação;

fim
fim

se todos os genes atenderem às restrições então

Verificar se o cromossomo já está na ilha;

se não estiver e houver espaço disponível então

Inserir cromossomo na ilha;
fim

retorna ilha com cromossomos aceitos
fim

As restrições utilizadas na verificação garantem que a separação dos vértices em

subconjuntos preserve a coerência da solução e evite configurações inviáveis. Cada vértice do

grafo possui um valor de corte total (xtotal), determinado pela soma dos pesos das arestas inci-

dentes. Para que um cromossomo seja aceito na ilha, cada vértice classificado como pertencente

ao subconjunto S deve ter um valor de corte na solução atual (xatual) menor ou igual à metade

do seu valor total, enquanto os vértices no subconjunto S′ devem possuir um valor de corte maior

ou igual a metade do valor total, como descritas na Equação 4.3. Essas restrições garantem que a

separação dos vértices maximize o corte sem violar as condições estruturais do problema.

∀u ∈V,

u ∈ S =⇒ xatual
u ≤ xtotal

u ,

u ∈ S′ =⇒ xatual
u ≥ xtotal

u .

(4.3)

41

4.5 Avaliação final e retorno dos resultados

Ao final de todas as gerações, o algoritmo vai calcular a diferença entre o maior

valor de corte que foi obtido na população inicial e o maior valor de corte alcançado após o

processo evolutivo. Essa diferença, juntamente com o cromossomo que apresentou o melhor

valor de corte no final das gerações, será então retornada como resultado do algoritmo.

Além de registrar a diferença final encontrada para os valores de corte, o algoritmo

registra informações como qual operação de transformação que registrou domínio ao longo

das gerações. E também, quais cromossomos passaram pelos critérios de aceitação e foram

adicionados na ilha.

42

5 EXPERIMENTOS COMPUTACIONAIS

Para avaliar o desempenho do algoritmo proposto, foram realizados experimentos

computacionais em 9 instâncias distintas, variando a quantidade de vértices do grafo e explo-

rando diferentes configurações de parâmetros. As instâncias testadas foram organizadas em três

grupos, considerando os grafos com 60, 80 e 100 vértices, de modo a verificar a escalabilidade e

eficiência da abordagem em diferentes cenários.

Os experimentos computacionais foram conduzidos aplicando diferentes combina-

ções de parâmetros do Algoritmo Genético, considerando os seguintes grupos:

1. Uso de ilha:

• SI: Sem ilha;

• CI: Com ilha.

2. Método de Mutação:

• M1: Mutação em 1 gene dos cromossomos escolhidos;

• M2: Mutação em 2 genes dos cromossomos escolhidos;

• MA: Mutação em vários genes escolhidos.

3. Método de Crossover:

• P: Crossover que faz a troca percentual, variando o tamanho escolhido, dos cromos-

somos;

• T2: Crossover que faz a troca de 2 genes entre os cromossomos;

• PI: Crossover que prevalece a igualdade, ou seja, dos dois cromossomos escolhidos

na vez, para o novo cromossomo será mantido o gene quando na mesma posição nos

pais tiverem ambos valores iguais, e quando não, será sorteado entre os dois valores

para o gene.

4. Período sem convergência para ativação da Busca Local:

• BL5: Busca local a partir de um período de 5 gerações sem convergências;

• BL10: Busca local a partir de um período de 10 gerações sem convergências;

• BL20: Busca local a partir de um período de 20 gerações sem convergências.

Essa configuração experimental permite uma análise detalhada do impacto de cada

componente na qualidade das soluções e no tempo de execução do algoritmo. No próximo tópico,

serão apresentados os resultados obtidos para cada combinação de parâmetros, discutindo o

desempenho do modelo em diferentes cenários.

43

6 RESULTADOS

Ao todo, as configurações possibilitaram a obtenção de 54 combinações diferentes

para a execução dos testes. Para cada instância, o fluxo do teste consiste em montar cada

combinação de parâmetros por vez. Ao aplicar todas essas combinações nas 9 instâncias, foram

obtidos os resultados para as instâncias com n = 60, n = 80 e n = 100, apresentados na Tabela 1,

Tabela 2 e Tabela 3, respectivamente.

Com o total de 486 testes realizados, notou-se que os resultados obtidos se aproxi-

mam ou encontram os valores ótimos disponíveis no artigo do BiqMac (Wiegele, 2007). Sendo

a combinação "SIM1PIBL20"como a prevalecente para os melhores resultados obtidos, com

77,78% dos testes para essa combinação de parâmetros retornando o cromossomo com valor

ótimo ou próximo ao valor ótimo, e as combinações "SIMAT 2BL5"e "CIMAT 2BL5"como pre-

valecentes para retornar os resultados mais distantes das melhores soluções com 22,22% dos

testes para ambas as combinações de parâmetros retornando cromossomos com valores mais

distantes do valor ótimo.

Seja CP o conjunto com todas as combinações de parâmetros, teremos para cada

k ∈CP a métrica do percentual de êxito total de cada combinação, dada na seguinte equação:

P(k) =
∑
i∈I

vi(k)

∑
i∈I

bi
×100% (6.1)

onde, I é o conjunto de instâncias testadas; vi(k) representa o valor de corte obtido para a

instância i utilizando a combinação k de parâmetros; e bi é o valor ótimo (teórico) para a

instância i, conforme definido no BiqMac.

Portanto, com base no cálculo do percentual, podemos consolidar "SIM1PIBL20"como

a combinação com melhores resultados obtidos, onde obteve percentual de 99,88%. Já para

as combinações "SIMAT 2BL5"e "CIMAT 2BL5", que obtiveram resultados mais distantes,

sustentou-se com percentuais de 98,65% e 98,57%, respectivamente. Na Tabela 4, podemos ver

os percentuais para cada combinação.

A análise dos resultados evidenciou padrões distintos na influência dos parâmetros

(Tabela 5) sobre a aproximação dos valores de corte obtidos aos teóricos. Para cada instância, foi

calculado o desempenho relativo de cada parâmetro, obtendo-se uma métrica que se aproxima

de 1. Essa métrica foi definida como a razão entre a soma dos valores de cortes obtidos nas

44

combinações em que o parâmetro aparece e o produto do número de aparições do parâmetro pelo

valor ótimo teórico.

Observa-se na Tabela 5 que parâmetros como a Mutação em 1 gene (M1) e o

operador de Crossover que prevalece igualdade (PI) alcançaram valores muito próximos do

máximo que pode ser obtido, demonstrando uma influência positiva e consistente na qualidade

das soluções. Em contrapartida, estratégias mais "agressivas", como a Mutação em vários genes

(MA), apresentaram valores um pouco inferiores, sugerindo que alterações menos intensas podem

ser mais adequadas para a manutenção da qualidade das soluções. A análise das combinações

reforça a ideia que a junção de configurações equilibradas, especialmente aquelas envolvendo

uma busca local ativada após 20 gerações sem convergência (BL20), tende a maximizar a

aproximação ao valor ótimo.

Portanto, com a análise da influência individual desses parâmetros para os resultados

dos testes, pode-se comprovar individualmente os parâmetros SI, M1, PI e BL20 como melhores

influentes para os resultados obtidos. Acerca dessa análise individual dos parâmetros, foi possível

destacar para cada grupo de instâncias as seguintes configurações:

• Para os testes com instâncias de n = 60 (Tabela 1), os resultados retornaram com melhores

valores para soluções quando foram influenciados pelos seguintes parâmetros: SI; M1; PI;

BL20.

• Para os testes com instâncias de n = 80 (Tabela 2), os resultados retornaram com melhores

valores para soluções quando foram influenciados pelos seguintes parâmetros: SI; M1;

PI, P ou T2 ; BL20.

• Para os testes com instâncias de n= 100 (Tabela 3), os resultados retornaram com melhores

valores para soluções quando foram influenciados pelos seguintes parâmetros: SI; M1; P;

BL10.

Em relação ao tempo computacional, foi possível obter uma média de execução de

teste para cada grupo de instâncias, como destacado a seguir:

• Para instâncias de n = 60, a média de tempo de execução foi de 7 minutos e 14 segundos;

• Para instâncias de n = 80, a média de tempo de execução foi de 11 minutos e 2 segundos.

• Para instâncias de n = 100, a média de tempo de execução foi de 27 minutos e 23 segundos.

Esses padrões indicam que tanto o efeito isolado quanto a interação entre os parâ-

metros são determinantes para a eficiência do algoritmo, e que o ajuste fino desses elementos é

crucial para otimizar os resultados do problema do corte máximo.

45

Tabela 1 – Testes em instâncias com n = 60 vértices

Instância g05_60.0 g05_60.1 g05_60.2

Corte Máximo Teórico 536 532 529
Combinação

CIM1PIBL5 534 531 527
CIM1PIBL10 536 531 529
CIM1PIBL20 536 532 528
CIM1PBL5 535 528 523

CIM1PBL10 536 531 529
CIM1PBL20 535 532 528
CIM1T2BL5 536 532 528

CIM1T2BL10 536 532 528
CIM1T2BL20 536 532 529
CIM2PIBL5 535 526 524

CIM2PIBL10 535 532 528
CIM2PIBL20 536 532 528
CIM2PBL5 536 531 523

CIM2PBL10 536 532 528
CIM2PBL20 536 532 529
CIM2T2BL5 529 531 523

CIM2T2BL10 536 532 529
CIM2T2BL20 536 532 529
CIMAPIBL5 536 531 523

CIMAPIBL10 536 531 528
CIMAPIBL20 536 532 527
CIMAPBL5 536 528 524

CIMAPBL10 534 532 529
CIMAPBL20 536 532 529
CIMAT2BL5 525 530 529

CIMAT2BL10 531 526 528
CIMAT2BL20 535 532 528
SIM1PIBL5 535 532 529

SIM1PIBL10 536 532 529
SIM1PIBL20 536 532 529
SIM1PBL5 535 532 526

SIM1PBL10 536 528 528
SIM1PBL20 536 532 528
SIM1T2BL5 536 531 529

SIM1T2BL10 535 532 528
SIM1T2BL20 536 532 528
SIM2PIBL5 536 525 521

SIM2PIBL10 536 532 528
SIM2PIBL20 536 528 529
SIM2PBL5 529 531 523

SIM2PBL10 534 532 529
SIM2PBL20 536 532 528
SIM2T2BL5 536 531 528

SIM2T2BL10 536 530 528
SIM2T2BL20 536 532 529
SIMAPIBL5 536 532 527

SIMAPIBL10 536 532 525
SIMAPIBL20 536 532 527
SIMAPBL5 534 532 526

SIMAPBL10 536 525 529
SIMAPBL20 535 531 527
SIMAT2BL5 533 520 523

SIMAT2BL10 533 531 528
SIMAT2BL20 535 531 527

Fonte: Elaborado pelo autor

46

Tabela 2 – Testes em instâncias com n = 80 vértices

Instância g05_80.0 g05_80.1 g05_80.2

Corte Máximo Teórico 929 941 934
Combinação

CIM1PIBL5 926 935 930
CIM1PIBL10 925 941 931
CIM1PIBL20 921 941 933
CIM1PBL5 915 939 928

CIM1PBL10 929 941 934
CIM1PBL20 926 941 934
CIM1T2BL5 927 941 928

CIM1T2BL10 927 941 927
CIM1T2BL20 918 941 933
CIM2PIBL5 919 930 933

CIM2PIBL10 927 941 925
CIM2PIBL20 929 941 934
CIM2PBL5 915 941 931

CIM2PBL10 922 941 919
CIM2PBL20 927 941 928
CIM2T2BL5 922 914 921

CIM2T2BL10 926 941 921
CIM2T2BL20 925 941 934
CIMAPIBL5 904 939 914

CIMAPIBL10 913 941 919
CIMAPIBL20 917 941 922
CIMAPBL5 902 939 918

CIMAPBL10 919 937 916
CIMAPBL20 922 941 917
CIMAT2BL5 918 938 918

CIMAT2BL10 916 941 926
CIMAT2BL20 926 940 926
SIM1PIBL5 918 941 934

SIM1PIBL10 927 941 934
SIM1PIBL20 922 941 934
SIM1PBL5 918 932 924

SIM1PBL10 929 941 934
SIM1PBL20 920 941 931
SIM1T2BL5 926 933 931

SIM1T2BL10 926 941 923
SIM1T2BL20 921 941 934
SIM2PIBL5 923 917 923

SIM2PIBL10 929 941 934
SIM2PIBL20 929 941 934
SIM2PBL5 926 941 931

SIM2PBL10 925 941 917
SIM2PBL20 929 941 931
SIM2T2BL5 929 932 925

SIM2T2BL10 926 941 926
SIM2T2BL20 929 941 931
SIMAPIBL5 918 932 920

SIMAPIBL10 919 941 925
SIMAPIBL20 920 941 930
SIMAPBL5 906 910 924

SIMAPBL10 926 941 927
SIMAPBL20 914 941 933
SIMAT2BL5 923 926 912

SIMAT2BL10 926 935 928
SIMAT2BL20 920 935 931

Fonte: Elaborado pelo autor

47

Tabela 3 – Testes em instâncias com n = 100 vértices

Instância g05_100.0 g05_100.1 g05_100.2

Corte Máximo Teórico 1430 1425 1432
Combinação

CIM1PIBL5 1416 1401 1405
CIM1PIBL10 1430 1408 1416
CIM1PIBL20 1421 1424 1425
CIM1PBL5 1420 1416 1420

CIM1PBL10 1421 1424 1423
CIM1PBL20 1421 1418 1430
CIM1T2BL5 1426 1418 1409
CIM1T2BL10 1426 1418 1432
CIM1T2BL20 1424 1423 1432
CIM2PIBL5 1411 1415 1407

CIM2PIBL10 1428 1420 1424
CIM2PIBL20 1423 1417 1423
CIM2PBL5 1418 1415 1426

CIM2PBL10 1418 1418 1411
CIM2PBL20 1428 1421 1425
CIM2T2BL5 1410 1421 1413
CIM2T2BL10 1424 1424 1432
CIM2T2BL20 1425 1421 1421
CIMAPIBL5 1412 1423 1404
CIMAPIBL10 1410 1416 1405
CIMAPIBL20 1403 1400 1414
CIMAPBL5 1415 1410 1405

CIMAPBL10 1411 1417 1417
CIMAPBL20 1402 1412 1422
CIMAT2BL5 1411 1398 1397
CIMAT2BL10 1411 1401 1408
CIMAT2BL20 1413 1406 1413
SIM1PIBL5 1427 1416 1421

SIM1PIBL10 1422 1417 1432
SIM1PIBL20 1430 1422 1432
SIM1PBL5 1417 1418 1432

SIM1PBL10 1420 1422 1423
SIM1PBL20 1419 1414 1429
SIM1T2BL5 1425 1412 1418
SIM1T2BL10 1422 1420 1426
SIM1T2BL20 1419 1420 1430
SIM2PIBL5 1425 1412 1430

SIM2PIBL10 1411 1413 1430
SIM2PIBL20 1407 1419 1418
SIM2PBL5 1410 1423 1409

SIM2PBL10 1418 1422 1410
SIM2PBL20 1424 1419 1429
SIM2T2BL5 1410 1405 1430
SIM2T2BL10 1421 1424 1432
SIM2T2BL20 1420 1423 1428
SIMAPIBL5 1411 1416 1395
SIMAPIBL10 1422 1413 1419
SIMAPIBL20 1413 1413 1413
SIMAPBL5 1410 1413 1421

SIMAPBL10 1419 1404 1427
SIMAPBL20 1415 1400 1427
SIMAT2BL5 1410 1414 1410
SIMAT2BL10 1409 1419 1418
SIMAT2BL20 1413 1406 1415

Fonte: Elaborado pelo autor

48

Tabela 4 – Percentual de êxito das combinações

Combinação Percentual

CIM1PIBL5 99,04%
CIM1PIBL10 99,53%
CIM1PIBL20 99,69%
CIM1PBL5 99,26%
CIM1PBL10 99,77%
CIM1PBL20 99,74%
CIM1T2BL5 99,51%

CIM1T2BL10 99,76%
CIM1T2BL20 99,77%
CIM2PIBL5 98,99%

CIM2PIBL10 99,68%
CIM2PIBL20 99,71%
CIM2PBL5 99,40%
CIM2PBL10 99,27%
CIM2PBL20 99,76%
CIM2T2BL5 98,80%

CIM2T2BL10 99,74%
CIM2T2BL20 99,72%
CIMAPIBL5 98,83%

CIMAPIBL10 98,98%
CIMAPIBL20 98,90%
CIMAPBL5 98,72%

CIMAPBL10 99,13%
CIMAPBL20 99,14%
CIMAT2BL5 98,57%

CIMAT2BL10 98,85%
CIMAT2BL20 99,21%
SIM1PIBL5 99,60%

SIM1PIBL10 99,79%
SIM1PIBL20 99,88%
SIM1PBL5 99,38%
SIM1PBL10 99,69%
SIM1PBL20 99,56%
SIM1T2BL5 99,46%

SIM1T2BL10 99,60%
SIM1T2BL20 99,69%
SIM2PIBL5 99,13%

SIM2PIBL10 99,61%
SIM2PIBL20 99,46%
SIM2PBL5 99,25%
SIM2PBL10 99,31%
SIM2PBL20 99,78%
SIM2T2BL5 99,29%

SIM2T2BL10 99,72%
SIM2T2BL20 99,78%
SIMAPIBL5 98,84%

SIMAPIBL10 99,36%
SIMAPIBL20 99,27%
SIMAPBL5 98,71%

SIMAPBL10 99,38%
SIMAPBL20 99,25%
SIMAT2BL5 98,65%

SIMAT2BL10 99,30%
SIMAT2BL20 99,14%

Fonte: Elaborado pelo autor

49

Tabela 5 – Influência dos parâmetros

Ilha

Parâmetro SI CI

g05_60_0 0,99848 0,99779
g05_60_1 0,99708 0,99798
g05_60_2 0,99671 0,99664

g05_80_0 0,99366 0,99123
g05_80_1 0,99539 0,99772
g05_80_2 0,99377 0,99136

g05_100_0 0,99117 0,9914
g05_100_1 0,99335 0,99298
g05_100_2 0,99328 0,98953

Fonte: Elaborado pelo autor

Mutação

Parâmetro M1 M2 MA

g05_60_0 0,99927 0,99813 0,99699
g05_60_1 0,99875 0,9976 0,99624
g05_60_2 0,998 0,99601 0,99601

g05_80_0 0,99396 0,99611 0,98726
g05_80_1 0,99852 0,99581 0,99534
g05_80_2 0,99673 0,99322 0,98775

g05_100_0 0,99479 0,99188 0,98718
g05_100_1 0,99458 0,9954 0,98951
g05_100_2 0,99453 0,99309 0,98658

Fonte: Elaborado pelo autor

Crossover

Parâmetro PI P T2

g05_60_0 0,99948 0,99824 0,99668
g05_60_1 0,99781 0,9976 0,99718
g05_60_2 0,99622 0,99622 0,99758

g05_80_0 0,99187 0,99091 0,99456
g05_80_1 0,99693 0,99717 0,99557
g05_80_2 0,99387 0,99197 0,99185

g05_100_0 0,99153 0,99091 0,99141
g05_100_1 0,99279 0,99361 0,9931
g05_100_2 0,9898 0,99263 0,99178

Fonte: Elaborado pelo autor

Busca Local

Parâmetro BL5 BL10 BL20

g05_60_0 0,99627 0,99855 0,99959
g05_60_1 0,99561 0,9976 0,99937
g05_60_2 0,99307 0,99853 0,99842

g05_80_0 0,98882 0,99492 0,9936
g05_80_1 0,99067 0,99941 0,99959
g05_80_2 0,99007 0,99132 0,99631

g05_100_0 0,99005 0,99235 0,99145
g05_100_1 0,99205 0,99415 0,99329
g05_100_2 0,98743 0,99259 0,99418

Fonte: Elaborado pelo autor

50

7 CONCLUSÕES

Este trabalho apresentou uma abordagem inovadora para a configuração de parâ-

metros em algoritmos genéticos aplicados ao problema do Corte Máximo de um grafo. Os

experimentos realizados demonstraram que diversas combinações de parâmetros geram solu-

ções com valores de corte próximos aos ótimos teóricos e até mesmo o próprio ótimo teórico,

evidenciando a eficácia da estratégia proposta.

Os experimentos demonstraram que a escolha dos parâmetros influencia diretamente

a qualidade das soluções obtidas pelo algoritmo genético. Em particular, Mutação em 1 gene

(M1) e Busca Local com BL20 mostraram um impacto positivo consistente, favorecendo um

equilíbrio entre exploração e intensificação. O operador de crossover que preserva genes

iguais (PI) supera as outras técnicas de recombinação, sugerindo que a manutenção de boas

características estruturais nos cromossomos melhora o desempenho. Em relação ao mecanismo

de ilha, embora não interfira diretamente na seleção ou no refinamento da população principal,

permite identificar e armazenar soluções promissoras. Essa estratégia facilita a análise da

qualidade das soluções isoladas, mas, ao mesmo tempo, acarreta um custo adicional em termos

de tempo computacional, devido à necessidade de verificação e armazenamento dessas soluções.

Dessa forma, a aplicação do conceito de ilha deve ser balanceada, considerando que, embora

contribua para a identificação de bons candidatos, pode impactar a eficiência global do algoritmo.

Em particular, a configuração “SIM1PIBL20” destacou-se como a mais eficiente,

proporcionando resultados que minimizam os custos computacionais e maximizam a qualidade

das soluções encontradas. Esses achados reforçam a importância de um ajuste fino dos parâmetros

no contexto de metaheurísticas, contribuindo para a otimização de problemas complexos.

Como perspectivas para trabalhos futuros, sugere-se a incorporação de novos pa-

râmetros e operadores genéticos que possam ampliar ainda mais a diversidade da população,

bem como a investigação de métodos alternativos para a geração da população inicial, com o

intuito de explorar de forma mais abrangente o espaço de soluções. Além disso, investigações

adicionais podem avaliar se o impacto da filtragem por ilhas pode ser otimizado para preservar

diversidade sem comprometer a qualidade das soluções. Dessa forma, o presente estudo abre

caminhos para aprimoramentos que poderão tornar a abordagem ainda mais robusta e aplicável

em cenários práticos de otimização.

51

REFERÊNCIAS

BANSAL, R.; SRIVASTAVA, K.; SRIVASTAVA, S. A hybrid evolutionary algorithm for
the cutwidth minimization problem. In: IEEE. 2012 IEEE Congress on Evolutionary
Computation. [S. l.], 2012. p. 1–8.

BENLIC, U.; HAO, J.-K. Breakout local search for the max-cutproblem. Engineering
Applications of Artificial Intelligence, Elsevier, v. 26, n. 3, p. 1162–1173, 2013.

BENVENGA, M. A. C. APLICAÇÃO DE ALGORITMO METAHEURÍSTICO HÍBRIDO
COM MECANISMO PARA ACELERAÇÃO DE CONVERGÊNCIA NA OTIMIZAÇÃO
DE PROCESSOS DO AGRONEGÓCIO. Tese (Doutorado) – Universidade Paulista, 2022.

BOROS, E.; HAMMER, P. L. The max-cut problem and quadratic 0–1 optimization; polyhedral
aspects, relaxations and bounds. Annals of Operations Research, Springer, v. 33, n. 3, p.
151–180, 1991.

COSTA, J. M. de S. Algoritmos espectrais de agrupamento em redes sociais. Dissertação
(Mestrado) – Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de
Janeiro, 2014. Dissertação (Mestrado).

EIBEN, A. E.; SMITH, J. E. Introduction to evolutionary computing. [S. l.]: Springer, 2015.

FILHO, J. A. F. d. C. Heurística probabilística guiada pelos potenciais dos vértices para o
problema do corte máximo. Simpósio brasileiro de pesquisa operacional, 2021.

GLOVER, F. Tabu search—part i. ORSA Journal on computing, Informs, v. 1, n. 3, p.
190–206, 1989.

GOLDBARG, M. C.; LUNA, H. P. L. Otimização combinatória e programação linear:
modelos e algoritmos. [S. l.]: Elsevier, 2005.

GOSTI, W.; NGUYEN, G.; WAN, M.; ZHOU, M. Approximation algorithms for the max-cut
problem. URL: http://citeseer. ist. psu. edu/489604. html, Citeseer, 1995.

HOOS, H. H.; STUTZLE, T. Stochastic local search. In: Handbook of Approximation
Algorithms and Metaheuristics. [S. l.]: Chapman and Hall/CRC, 2018. p. 297–307.

IKEDA, P. A. Introdução aos algoritmos genéticos. Rio de Janeiro, 2009.

JURKIEWICZ, S. Grafos–uma introdução. São Paulo: OBMEP, 2009.

KARP, R. M. Reducibility among combinatorial problems. [S. l.]: Springer, 1972.

Khan Academy. Descrevendo Grafos. 2022. https://pt.khanacademy.org/computing/
computer-science/algorithms/graph-representation/a/describing-graphs. Acessado em 06 set.
2022.

KIM, J.; YOON, Y.; MOON, B.-R. Solving maximum cut problem with an incremental
genetic algorithm. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion. [S. l.: s. n.], 2016. p. 49–50.

LIMA, G. L. Algoritmos para resolução do problema do corte máximo: abordagem exata e
meta-heurísticas. 2022.

https://pt.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/describing-graphs
https://pt.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/describing-graphs

52

LIMA, G. L.; MELO, I. E. S. de; LINS, S. L. S. Problema do corte máximo simples:
Implementação de uma nova abordagem exata com árvores de busca e da meta-heurística
grasp-vnd. 2021.

LUCAS, D. C. Algoritmos genéticos: uma introdução. Universidade Federal do Rio Grande
do Sul, v. 24, 2002.

MOSCATO, P.; COTTA, C.; MENDES, A. et al. Memetic algorithms. New optimization
techniques in engineering, Springer Berlin, Heidelberg, v. 141, p. 53–85, 2004.

OLIVEIRA, F. D. G. de; SANTOS, M. C.; SOARES, P. L. B. Parametrização de um algoritmo
genético para o problema do corte máximo. Anais do Encontro de Computação do Oeste
Potiguar ECOP/UFERSA (ISSN 2526-7574), v. 1, n. 6, p. 42–45, 2022.

SIMONE, C. D. The max cut problem. [S. l.]: Rutgers The State University of New Jersey,
School of Graduate Studies, 1992.

SOARES, P. L. B. Problemas quadráticos binários: abordagem teórica e computacional.
Fortaleza, 2018. 124 f. – Tese (Doutorado) – Curso de Ciência da Computação, Departamento
de Computação.

SOUSA, S. de; HAXHIMUSA, Y.; KROPATSCH, W. G. Estimation of distribution algorithm for
the max-cut problem. In: SPRINGER. Graph-Based Representations in Pattern Recognition:
9th IAPR-TC-15 International Workshop, GbRPR 2013, Vienna, Austria, May 15-17, 2013.
Proceedings 9. [S. l.], 2013. p. 244–253.

TALBI, E.-G. Metaheuristics: from design to implementation. [S. l.]: John Wiley & Sons,
2009.

TSURUTA, J. H.; NARCISO, M. G. Um estudo sobre algoritmos genéticos. [S. l.]: Embrapa
Informática Agropecuária, 2000. Cap. 8, p. 13.

WIEGELE, A. Biq mac library—a collection of max-cut and quadratic 0-1 programming
instances of medium size. Preprint, v. 51, p. 112–127, 2007.

ZHOU, Y.; LAI, X.; LI, K. Approximation and parameterized runtime analysis of evolutionary
algorithms for the maximum cut problem. IEEE transactions on cybernetics, IEEE, v. 45, n. 8,
p. 1491–1498, 2014.

53

ANEXO A – ARTIGO APRESENTADO NA V ECOP

Esse trabalho de conclusão de curso é fruto de uma pesquisa de iniciação cientifíca

na área de grafos e otimização de algoritmos, onde o artigo Parametrização de um Algoritmo

Genético para o Problema do Corte Máximo (Oliveira et al., 2022) foi apresentado no V

Encontro de Computação do Oeste Potiguar.

Disponível em: https://periodicos.ufersa.edu.br/ecop/article/view/11834

https://periodicos.ufersa.edu.br/ecop/article/view/11834

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Sumário
	Introdução
	Objetivos
	Objetivos Gerais
	Objetivos Específicos

	Fundamentação Teórica
	Definição do problema de Corte Máximo
	Algoritmo Genético
	Mapeamento de conceitos

	Algoritmos Híbridos
	Busca Local

	Metodologia
	Carregamento dos dados do Grafo
	Cálculo do espaço de soluções e criação da população inicial
	Fitness

	Processos de transformações e Busca Local
	Crossover
	Crossover Troca simples de 2 genes
	Crossover Percentual
	Crossover Prevalece Igualdade

	Mutação
	Mutação em 1 gene
	Mutação em 2 genes
	Mutação em vários gene

	Integração da Heurística de Busca Local ao AG

	Filtragem de soluções por restrições
	Avaliação final e retorno dos resultados

	Experimentos Computacionais
	Resultados
	Conclusões
	REFERÊNCIAS
	Artigo apresentado na V ECOP

