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"... Mas lembre-se de que esse seu medo signi-
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(MAAS, S. J; Trono de Vidro: Reino de Cinzas,
2019, p. 647)



RESUMO

Este estudo € voltado para a criagdo de modelos supervisionados, juntamente com o ajuste de seus
hiperparametros para abordar o Problema do Corte Maximo em Grafos. Devido a complexidade
desse problema ser NP-dificil, mesmo para instancias de tamanho intermedidrio, achar uma
solucdo 6tima é um desafio computacional. Entretanto, existem diversas aplica¢des desse pro-
blema em dreas como andlise de redes sociais, agrupamento de dados, segmentacao de imagens
e design de Chips VLSI, o que continua a motivar pesquisadores. A literatura apresenta métodos
inovadores, incluindo aqueles baseados em redes de ponteiros com aprendizado supervisionado
e por refor¢co, bem como abordagens que utilizam Redes Neurais em Grafos. Esses métodos
representam avangos promissores na resolucdo desse problema, fazendo uso de técnicas de

Aprendizado de Maquina.

Palavras-chave: problema do corte méximo; aprendizado de maquina; aprendizado supervisio-

nado; problema NP-dificil.



ABSTRACT

This study focuses on the creation of supervised models, coupled with the tuning of their hyperpa-
rameters, to address the Max-Cut Problem. Due to the NP-hard complexity of this problem, even
for instances of intermediate size, finding an optimal solution poses a computational challenge.
However, there are several applications of this problem in areas such as social network analysis,
data clustering, image segmentation, and VLSI chip design, which continue to motivate resear-
chers. The literature presents innovative methods, including those based on pointer networks
with supervised and reinforcement learning, as well as approaches utilizing Neural Networks
in Graphs. These methods represent promising advancements in solving this problem, thus

providing potential solutions for its resolution.

Palavras-chave: max-cut problem; machine learning; supervised learning; NP-hard problem.
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1 INTRODUCAO

Na drea da Teoria dos Grafos, encontramos diversos problemas classificados como
NP-completo ou NP-dificil, como o Problema do Isomorfismo de Subgrafos, o Problema do
Caixeiro Viajante e o Problema de Cobertura dos Vértices (Garey; Johnson, 1979).

Entre esses problema, existe o Problema do Corte Mdximo, sendo um problema de
otimizagdo combinatdria, podendo ser definido como segue: em um grafo G = (V, E), tal que V
representa o conjunto de vértices e E o conjunto de arestas, sendo definido um subconjunto §
contido em V, tem-se o conjunto de arestas que tém exatamente um vértice em S, denominado
corte. Quando o grafo é ponderado, ou seja, contém pesos associados as suas arestas, o peso de
um corte é determinado pela soma dos pesos das arestas contidas nesse corte. Assim, o Problema
do Corte Maximo busca encontrar o subconjunto S de vértices que resulta no corte de maior peso
em um grafo ponderado (Boros; Hammer, 1991).

Dada a relevancia pratica dos Problemas de Otimizagdo Combinatéria, surgiram
diversos algoritmos para abordé-los, podendo ser categorizados como exatos ou aproximados.
Além disso, é importante ressaltar que o espaco de solucdes para problemas NP-completo ou
NP-dificil influencia no tempo computacional para resolvé-los com os algoritmos conhecidos,
visto que ele cresce de forma exponencial conforme o tamanho da entrada aumenta. Isso torna
os métodos exatos invidveis, visto que eles tendem a explorar boa parte ou todo o espaco de
solugdes. Por sua vez, os métodos aproximados tem como objetivo encontrar solu¢des que se
aproximem o maximo possivel da solu¢do 6tima, mas para isso, eles sacrificam a garantia de
encontrar solugdes 6timas (Blum; Roli, 2003).

O Aprendizado de Mdquina (AM) € uma das dreas que vem crescendo em um ritmo
notdvel. Nela existem diferentes algoritmos com vérias formas de aplicacOes, além da continua
adaptagd@o dos algoritmos para diversos prop6sitos (Faceli et al., 2011). Entre as aplica¢des para
essas técnicas, encontra-se: suporte na andlise do sequenciamento gendmico (Libbrecht; Noble,
2015), detecgao de doengas cardiovasculares (Oliveira et al., 2023) e predicdo de risco de evasado
de alunos (Teodoro; Kappel, 2020). Além disso, o Aprendizado de Méaquina (AM) também ¢é
utilizado para abordar problemas em grafos, como coloracdo de grafos (Goudet et al., 2022),
Problema do Caixeiro Viajante (Miki et al., 2018) e Problema da Cobertura minima de Vértices
(Gianinazzi et al., 2021).

Este trabalho concentra-se em investigar as capacidades do Aprendizado de Maquina

no contexto do Problema de Otimizacdo Combinatdria do Corte Médximo. Por ser um problema
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NP-dificil (Karp, 1972), é um desafio computacional lidar mesmo com instincias de tamanho
intermedidrio. Entretanto, ele possui uma amplas aplicagdes em dominios como a andlise de
redes sociais (Agrawal et al., 2003), agrupamento de dados (Otterbach et al., 2017), segmentacao
de imagens (Sousa et al., 2013) e em projeto de Chips VLSI (Very Large Scale Integrated) (Liers
etal.,2011). O que incentiva pesquisadores de diversas dreas a investigar mais sobre o problema.

Na literatura, encontramos diferentes abordagens para o Problema do Corte Médximo,
utilizando técnicas variadas de Aprendizado de Mdaquina. Um estudo conduzido por Gu e
Yang (2018) propds um algoritmo baseado em redes de ponteiros. Este modelo € treinado por
meio de aprendizado supervisionado e se destaca pela sua capacidade de lidar com dados de
forma sequencial, incorporando um mecanismo de aten¢do para identificar informacdes mais
importantes.

O trabalho subsequente, proposto por Gu e Yang (2020) dois anos depois, também faz
uso de redes de ponteiros, porém, adota uma abordagem que utiliza aprendizado supervisionado e
por reforco no treinamento do modelo. Este estudo inclui uma comparagdo entre os dois métodos,
demonstrando o desempenho de cada um. Por fim, o Yao et al. (2019) apresenta um método que
utiliza Redes Neurais em Grafos. De maneira geral, essa arquitetura de rede neural € projetada
para lidar com dados estruturados na forma de grafos, o que demonstrou bons resultados.

Com base nisso, esse trabalho se destaca em relac@o aos anteriores ao adotar uma
abordagem central que envolve a utilizac¢do de instancias de pequena escala do Problema do Corte
Miéximo no treinamento dos modelos de AM. Essa estratégia permite a resolu¢do do problema
em um tempo razoavel, viabilizando o treinamento de um modelo supervisionado. O objetivo
final € aplicar esse modelo posteriormente em instancias de grande porte, proporcionando uma
solucdo eficiente e escalavel.

O restante deste trabalho esta estruturado da seguinte forma: No Capitulo 2, sdo
definidos os objetivos gerais e especificos a serem alcancados. No Capitulo 3, sdo abordados
os conceitos e informacdes tedricas essenciais para compreender a pesquisa. O Capitulo 4
apresenta trabalhos relacionados que se assemelham a proposta deste trabalho, que visa aplicar
técnicas de Aprendizado de Maquina no contexto do Problema do Corte Méximo. O Capitulo 5
descreve a metodologia empregada para atingir os objetivos apresentados no Capitulo 2. Por
fim, o Capitulo 6 mostra os resultados obtido, enquanto o Capitulo 7 trds as conclusdes dessa

pesquisa e trabalhos futuros.
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2 OBJETIVOS

Neste capitulo, serd discutido o objetivo principal a ser alcancado com o desenvolvi-
mento deste trabalho, juntamente com as objetivos especificos essenciais para obter os resultados

desejados.

2.1 Objetivos gerais

Criacao de modelos de aprendizado de maquina supervisionado para o Problema
de Otimizagdo Combinatéria de Corte Médximo. A ideia principal € utilizar instancias de
tamanho pequeno do Problema do Corte maximo para ajustar o modelo supervisionado, visando

a aplicacdo em instancias de grande porte.

2.2 Objetivos especificos

« Adquirir e preparar conjuntos de dados pertinentes ao Problema do Corte Méaximo;

« Realizar o pré-processamento nos dados das instincias adquiridos para criar a base de
dados de treinamento, descobrindo os atributos mais relevantes;

« Escolher algoritmos de Aprendizado de Maquina Supervisionado;

« Treinar e validar os modelos supervisionados usando a base de dados dividida em treina-
mento € teste, respectivamente;

« Avaliar o desempenho em termos de precisdo na solucdo para o Problema do Corte
Miximo;

« Aplicar o aprendizado adquirido em instdncias com tamanhos grande;

« Analisar e interpretar os resultados, identificando informacdes relevantes para a aplicagao
de algoritmos de aprendizado de maquina supervisionado para o Problema do Corte

Maximo;
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3 FUNDAMENTACAO TEORICA

Este capitulo aborda os fundamentos para a compreensao do problema deste trabalho.
Na Secdo 3.1, s@o apresentados os conceitos introdutorios da Teoria dos Grafos. A Segdo 3.2
descreve as classes de problemas, incluindo defini¢des de Problemas de Decis@o e Otimizacao,
para proporcionar uma compreensao mais aprofundada. A Secdo 3.3 define o Problema do Corte
Maximo e explora suas aplicagdes na Subse¢do 3.3.1.

Em seguida, a Se¢do 3.4 introduz a teoria do Aprendizado de Maquina, incluindo
a hierarquia de aprendizado e principais diferencas entre o Aprendizado Supervisionado e
Nao-Supervisionado. A Subsecdo 3.4.1 detalha o processo de treinamento no Aprendizado
de Maquina Supervisionado, seguida da apresentacdo de algumas métricas de avaliacdo para
modelos de classificacdo supervisionada na Subsecao 3.4.1.1. As Subsecdes 3.4.1.2, 3.4.1.3,
3.4.2 3.4.1.4 abordam as técnicas de aprendizado de maquina que serdo utilizados.

Por fim, a Subse¢do3.4.3 aborda técnicas de aprendizado nado supervisionado. Mais
especificamente, a Subsecdo 3.4.3.1 aprezenda a técnica de Andlise de Principais Componentes,
utilizado na parte de pre-processamento da base de dados dos modelos e para interpretacao
dos resultados, a Subsecdo 3.4.3.2 apresenta o Algoritmo k-means, que deu suporte na fase de

interpretacdo dos resultado obtidos do modelo.

3.1 Conceitos introdutorios da Teoria dos Grafos

Um grafo simples é denotado como G = (V, E), sendo composto por dois conjuntos
distintos: V' que representa os vértices e £ que representa as arestas. Ambos os conjuntos
possuem um numero finito de elementos. Os elementos de E sdo subconjuntos de dois elementos
de V, representando uma ligacdo entre dois vértices, ou seja, E C {{u,v} | u,v € V}. De modo
geral, dois vértices sdo considerados adjacentes (ou vizinhos) caso exista uma aresta entre eles
(Trudeau, 1994).

Em um grafo, cada aresta (u,v) pode ser dirigida (ou arco), sendo representado por
um par ordenado, ou ndo dirigida, sendo representado por um par nao ordenado denotado por
conjuntos {u,v} (Goodrich; Tamassia, 2009). No primeiro caso, para a aresta dirigida (u,v),
temos que u (cauda) € dirigido para v (cabeca), indicando uma dire¢do especifica representada
pelo par ordenado. No segundo caso, a ordem de representacdo da aresta ndo dirigida, seja {u,v}

ou {v,u}, é irrelevante, pois, em ambas, a ligacdo entre u e v é considerada (Gross jay yellen,
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2013). Além disso, se um grafo possuir apenas arestas dirigidas, é chamado de digrafo. Por outro
lado, se possuir apenas arestas ndo dirigidas, é chamado de grafo ndo direcionado (Goodrich;
Tamassia, 2009).

Quando o grafo € ndo direcionado, o grau de um vértice v, que representa a quanti-
dade de vértices adjacentes a ele, pode ser expressado como d(v). Por sua vez, a expressdo d(G)
refere-se a média dos graus de todos os vértices do grafo (Diestel, 2010). Além disso, existem
outras caracteristicas relacionadas as arestas, como dire¢do e peso, que sdo associadas a grafos
especificos.

A Figura 1 abaixo ilustra exemplos de dois grafos simples, sendo eles, ndo direcio-

nado, ndo direcionado com arestas ponderadas e um digafo, respectivamente.

Figura 1 — Exemplos de grafos simples

P [

(a) Grafo nao direcionado (b) Grafo nao direcionado com (c) Grafo Direcionado

arestas ponderadas

Fonte: elaborada pelo autor.

O termo subgrafo € utilizado para referir-se a grafos contidos em outros. Em outras
palavras, dado um grafo G = (V, E) e um grafo G’ = (V' E’), G’ serd um subgrafode Gse V' CV
e E' C E, podendo ser expressado como G’ C G (Diestel, 2010). A quantidade de vértices e
arestas de um grafo pode ser expressa por |V| e |E|, respectivamente. Desta forma, um grafo
(ou subgrafo) simples é denso se o valor de |E| estiver préximo de |V'|?, pois implica que quase
todas as possiveis arestas jd estdo presentes. Caso contrario, se o grafo possuir poucas arestas, €
classificado como esparso (Gross jay yellen, 2013). Note que a Figura 1 (a) € um exemplo de um
grafo denso, pois ele ja contém todas as possiveis arestas.

Além das caracteristicas mencionadas, um grafo pode conter ciclos, que ocorrem
quando hd um caminho que retorna ao mesmo vértice de origem. Mais especificamente, um
caminho € uma sequéncia de vértices e arestas, € um ciclo ocorre quando ele comeca e termina no

mesmo vértice. Além disso, quando um grafo é conexo, ou seja, hd um caminho entre quaisquer
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dois vértices nesse grafo, e ndo contém ciclos, é chamado de arvore (Goodrich; Tamassia, 2009).

O grau de um vértice pode ser utilizado para determinar sua importancias em relacao
as conecoes dentro do grafo, por meio de medidas de centralidade. A centralidade de grau de
um vértice € determinada pela quantidade de arestas que os tocam diretamente, refletindo sua
relevancia em termos de conexdes dentro do grafo. Ja a centralidade de intermediacao, esta
interessada na quantidade de caminhos minimos que passam pelo vértice, ou seja, em intermediar
conexdes, medindo sua importincia em relacdo ao fluxo de conxdes dentro do grafo (Latora et
al., 2017).

Para avaliar o tamanho do grafo, isto é, o quao préximo estao seus vértices e arestas,
¢ utilizado medidas como didmetro, raio e excentricidade. Conforme Diestel (2017), o didmetro
de um grafo € a maior distancia minima entre quaisquer dois vértices, enquanto a excentricidade
de um vértice € a maior distancia minima entre um vértice qualquer para todos os outros do
grafo. J4 o raio, é a menor excentricidade observada entre todos os vértices.

Por dltimo, a fim de identificar formacdes de grupos locais, isto €, de vértices e
arestas dentro do grafo, € utilizado coeficiente de agrupamento. Para tal, € utilizado a quantidade
de triangulos, que é subgrafos completos de trés vértices, que sdo formados em torno de um
determinado vértice, em relacdo ao numero total de tridngulos que poderiam ser formados

(Barabasi, 2016).

3.2 Classes de Problemas

Um algoritmo € um conjunto de passos computacionais bem estruturados que trans-
forma valores de entrada em valores de saida. Adicionalmente, pode ser visto como uma
ferramenta para solucionar um problema computacional bem definido, onde o enunciado do
problema define a relagdo desejada entre a entrada e saida, e o algoritmo que € a sequéncia de
etapas computacionais, fornece o procedimento para alcanca-la (Cormen et al., 2012).

Os problemas podem ser classificados em vdrios tipos distintos, incluindo os Pro-
blemas de Decisdo, que retornam uma resposta bindria, ou seja, O ou 1, que indica sim ou nao,
e os Problemas de Otimizacao, que retornam a melhor solugao dentro do espago de possiveis
solugdes (Sipser, 2012).

Esses dois problemas possuem uma relagdo conveniente. Um problema de otimizagdo
pode ser abordado como um problema de decisdo ao impor restricdes para o valor a ser otimizado.

Por exemplo, dado um inteiro k, um grafo conexo G com pesos inteiros nas arestas € um problema
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de otimizacdo qualquer, como o problema da arvore de cobertura minima, que busca encontrar
uma arvore contendo todos os vértices do grafo, com a menor soma dos pesos das arestas possivel.
Este grafo tem uma drvore de cobertura minima com pesos menores que k? Como a resposta
esperada é um valor bindrio, esse problema agora demonstra caracteristicas de um problema de
decisdo (Goodrich; Tamassia, 2009).

A complexidade de um algoritmo pode ser classificada com base em duas classes
fundamentais de problemas. A primeira sendo a classe P, que refere-se aos problemas de decisdao
que podem ser resolvidos por algum algoritmo no qual o nimero de passos € limitado por um
polindmio fixo no comprimento da entrada. Ja a segunda € a classe NP, que esta relacionada
com o tempo polinomial ndo deterministico, pois sua defini¢ao foi estabelecida em termos de
méquina ndo deterministica, ou seja, maquinas que tem mais de um movimento possivel para
uma determinada configuracdo (Cook, 2000).

Além disso, essa ultima classe é constituida por problemas de decisdo que podem
ser verificados em tempo polinomial (Arora sanjeev;barak, 2016). Desta forma, ao selecionar
uma solu¢do candidata e conduzir a verificagdo, o algoritmo deve ser capaz de fazé-lo em tempo
polinomial, embora encontrar a solu¢do em si ndo possa ser feita nesse tempo.

Ja para os problemas de otimizacao, temos as classes PO e NPO, que referem-se,
respectivamente, a extensdo das classes P e NP. Desta forma, um problema NPO é um problema
de otimizagao cujas versdes de decisdo estdo em NP, enquanto um problema PO estd em P, o que
significa que € soluciondvel em tempo polinomial (Bazgan et al., 2005).

Com base nisso, podemos definir duas outras classes. Dado um problema de decisado
M, este serd classificado como um problema NP-dificil se cada problema de decisdao L. em NP,
for redutivel a tempo polinomial a M. Em adicao, se esse problema M for NP-dificil e também
estiver dentro da classe NP, denotamos ele como NP-completo, sendo considerado um dos
problemas mais dificeis dentro da classe NP (Goodrich; Tamassia, 2009). Adicionalmente, se
um problema de otimizacdo estd na classe NP-dificil, ndo hd um algoritmo de tempo polinomial
capaz de encontrar a solu¢do 6tima, a menos que P seja igual a NP (Sipser, 2012).

Demonstrar que P C NP € uma tarefa considerada trivial (Cook, 2000). No entanto,
estabelecer a igualdade entre P e NP é uma tarefa mais dificil. Conforme Sipser (2012), esse €
um dos maiores problemas nao resolvidos na ciéncia da computacao tedrica e na matematica
contemporanea. Se essas classes fossem iguais, qualquer problema polinomialmente verificivel

seria também decidivel em tempo polinomial. Ademais, uma das estratégias de realizar esta
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prova é demonstrar que algum problema NP-completo pode ser resolvido em tempo polinomial,
pois implicaria diretamente que todo problema em NP tem uma solucao em tempo polinomial,
provando que P = NP (Arora sanjeev;barak, 2016).

Embora a classe NP-completo seja originalmente associada aos problemas de decisio,
existem muitos desses problemas que s@o versdes de decisdo de problemas de otimizacdo
(Bazgan et al., 2005). Como mencionado anteriormente, um problema de otimizagdo pode ser
transformado em um problema de decisdao. Além disso, em contexto relevante a essa classe, se
comprovar que um problema de decisdo € dificil, entdo o problema de otimiza¢do correspondente

também € dificil (Cormen et al., 2012).
3.2.1 Problemas cldssicos da literatura

Dentre os principais problemas da classe NP-completo, encontram-se o Problema
da Satisfatibilidade (SAT), Cobertura de Vértices (Vertex Cover Problem) e o Problema do
Caixeiro-Viajante (The Traveling Salesman Problem) (Goodrich; Tamassia, 2009). Além desses
problemas, temos o Problema do Corte Méximo (Max-Cut Problem) abordado na Secao 3.3,
classificado como NP-dificil (Karp, 1972).

Para exemplificar o Problema do Caixeiro-Viajante, considere o seguinte cendrio:
um vendedor deseja percorrer um conjunto de cidades uma tnica vez, buscando o caminho de
menor custo e retornando no final a cidade de origem. Esse cendrio caracteriza um problema
de otimizacdo. Em adic¢do, € possivel abordar esse problema utilizando a Teoria dos Grafos.
Nesse contexto, um grafo simples ponderado G = (V,E) é definido, seus vértices representam as
cidades e as arestas indicam a existéncia de rotas entre elas. Por ltimo, o peso associada a cada
aresta corresponde ao custo da rota (Cormen et al., 2012).

O Problema da Cobertura de Vértices busca determinar se um grafo simples G =
(V,E) possui uma cobertura de vértices de tamanho k, onde k € N (Sipser, 2012). Em outras
palavras, o objetivo € verificar se é possivel escolher um conjunto de vértices V’ de tamanho k de
forma que, para toda aresta {u,v} € E, os vértices u ou v pertengam ao conjunto V' C V.

O Problema SAT tem como objetivo determinar se uma férmula booleana € satisfati-
vel, ou seja, se existe uma atribuicdo de valores verdadeiros e falsos as varidveis de uma férmula
booleana, tal que esta férmula seja avaliada como satisfativel. Para ser considerada no contexto
do problema, as férmulas devem estar na forma normal conjuntiva, isto €, a formula deve ser

expressada como uma conjunc¢do de cldusulas, onde cada cldusula é compostas por disjungdes de



21

literais (Cook; Mitchell, 1996). Além disso, segundo Cook e Mitchell (1996), esse problema
€ o primeiro e um dos mais simples dentre os muitos que foram demonstrados ser da classe

NP-completo.

3.3 O problema do Corte Maximo

O Problema do Corte Médximo nao € apenas de otimizacao, ele estd inserido em uma
drea mais especifica, sendo considerado um Problema de Otimizacao Combinatéria. Conforme
Miyazawa e Souza (2015), essa drea engloba uma ampla gama de problemas voltados para a
busca de solucdes que otimizem a utilizagc@o dos recursos disponiveis. Em outras palavras, estd
além de encontrar uma solugao vidvel, envolve a eficiente utiliza¢ao dos recursos disponiveis,
a otimizagdo do tempo para a realizacdo de acdes e operacdes, a maximizacao de lucros e
minimizacao de prejuizos. Ademais, outros problemas dessa natureza podem ser consultados
nos trabalhos de Garey e Johnson (1979) e Gross Jay Yellen (2013).

Dado um grafo ndo direcionado G = (V, E). Definimos como corte o ato de separar
um conjunto de vértices em dois subconjuntos disjuntos, denotados S e S, tal que SUS =V e
SN S = 0. O tamanho do corte é determinado pelo ndmero de arestas que cruzam as particoes,
ou seja, que partem de um subconjunto e chegam no outro. Em outras palavras, as arestas de
corte sao as arestas uv, tal que uv € Feuels enquanto v € S, ou alternativamente, u € Sev eS.
Por outro lado, as arestas que conectam vértices pertencentes a um mesmo subconjunto, seja S
ou S, sdo conhecidas como arestas nio cortadas (Sipser, 2012).

A Figura 2 ilustra um exemplo de corte em um grafo. Note que o conjunto dos
vértices S = {1,3,5} sdo todos os vértices a esquerda do corte (ilustrado por uma reta pontilhada)
no grafo, enquanto o conjunto S = {2,4,6} sio todos os vértices a direta. J4 as arestas cortas
sdo o conjunto {{4,5},{5,6},{1,2},{1,4},{1,6}}, enquanto o conjunto {{3,5},{5,1},{2,6}}
indica quais as arestas ndo cortadas.

O problema do Corte Médximo pode ser formulado usando um grafo nao direcionado
G = (V,E), onde |V | = n representa o nimero de vértices e |E| = m indica o nimero de arestas
ponderadas. A fungido c;; = cj; retorna o peso de cada aresta {i,j} € E, com ¢;; = 0 para
{i,j} ¢ E e ¢;; = 0 para todo 1 <i < n. Qualquer parti¢io (S,S := V\S) dos vértices de V
define um corte em G, onde S ou S podem ser vazios. Assim, o problema consiste em encontrar
uma combinacio de (S,S) de forma que a soma dos pesos das arestas de corte seja maximizada

(Soares, 2018). Em adicdo, esse problema pode ter uma versdo para grafos ndo ponderados,
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Figura 2 — Exemplo de corte
em um grafo

Fonte: Elaborada pelo autor.

conhecida como Simple Max-Cut Problem. Para tal, € necessdrio restringir o peso de cada aresta
do grafo para 1 (Garey; Johnson, 1979).

Um exemplo ilustrativo de uma instancia do Problema do Corte Maximo € apre-
sentado na Figura 3 abaixo. Na Figura 3 (a), é apresentado um grafo G = (V,E), com |V| =5
vértices e |E| = 6 arestas ponderadas. Ja na Figura 3 (b), é apresentado a solugdo Gtima
para essa instincia. Note que os vértices acima do corte sdo da particdo S = {1,3,5} e os
que estdo abaixo sdo da particio S = {4,2}. As arestas de corte correspondem ao conjunto
{{1,4},{3,4},{4,5},{2,3},{2,5}}, totalizando um valor de corte de 30. Por fim, a nica aresta

ndo cortada é {1,3}.

Figura 3 — Exemplo de uma instancia do Problema do Corte Méaximo

(a) Grafo nao direcionado com (b) Solugdo 6tima do Corte Méaximo

arestas ponderadas

Fonte: Elaborada pelo autor.
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3.3.1 Aplicacies do problema de Corte Mdximo

O Data Clustering € um problema importante na area de Aprendizado de Méaquina
nao Supervisionado. Ele consiste na classificagdo ndo supervisionada de padrdes, como ob-
servacdes ou vetores de caracteristicas, em grupos (clusters). Esse desafio tem sido estudado
por pesquisadores de diversas dreas, mostrando sua relevancia na andlise exploratéria de dados.
Além disso, ele possui aplicagdes praticas em segmentacdo de imagens, reconhecimento de
objetos e recuperagdo de informacao (Jain et al., 1999).

De modo geral, esse problema envolve atribuir rétulos aos elementos de um conjunto
de dados para agrupar os mais semelhantes entre si. Para representar a dissimilaridade entre eles,
¢ definido uma medida de distancia que € aplicada a cada par de elementos, de modo que dados
mais distantes irdo possuir rétulos diferente. Matematicamente, esse problema pode ser reduzido
ao Problema do Corte Maximo. Para tal, cada vértice do grafo pode ser considerado um dos
elementos desse conjunto de dados e o peso entre os vértices € a medida de distancia. Assim,
maximizar a soma de todos os pesos de vértices com rétulos diferentes representa um algoritmo
de agrupacao natural (Otterbach et al., 2017).

Uma outra aplicacdo relevante do corte mdximo € observado nas redes sociais, mais
especificamente na andlise do comportamento social das pessoas em relacdo a um determinado
topico em grupos de discussdo. Nesses grupos, € comum que as pessoas tendem a responder com
mais frequéncia a mensagens com as quais nao concordam, especialmente em grupos de noticias.
A partir desse comportamento, € possivel construir um grafo no qual os vértices representam os
autores das mensagens e as arestas indicam relacdes de resposta entre as mensagens. Portanto,
ao determinar o corte maximo desse grafo, teremos dois grupos distintos: aqueles que apoiam e

aqueles que se opdoem a um determinado topico (Agrawal et al., 2003).

3.4 Aprendizado de Maquina

O AM € a édrea de estudo que possibilita que as ferramentas, sejam capazes de operar
de forma a reduzir a necessidade de interven¢ao humana, agindo de maneira mais autdonoma.
Desta forma, os computadores tém a capacidade de aprender sem serem explicitamente pro-
gramados. Em outras palavras, € a ciéncia que ensina computadores a aprender a partir de um
conjuntos de dados (Géron, 2019).

Esse processo de aquisicdo de conhecimento € realizado através do aprendizado
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indutivo, que generaliza padrdes a partir de exemplos externamente adquiridos ao processo,
partindo de conceitos especificos e os generalizando. Nesse método, um conceito € aprendido
através de inferéncia indutiva aplicadas sobre os exemplos. Além disso, o aprendizado indutivo
pode ser dividido em Aprendizado Supervisionado e Nao-Supervisionado, sendo que o algoritmo
de aprendizado também € conhecido como indutor (Monard; Baranauskas, 2003).

Dito isso, 0 AM estd associado diretamente a criagao e ao uso de modelos que sao
ensinados a partir de um conjunto de dados. Mais especificamente, um algoritmo de AM analisa
esses dados buscando identificar padrdes para especificar uma relacdo matemadtica (ou probabilis-
tica) existente entre varidveis distintas, sendo esta relacdo conhecida como modelo. Nos modelos
de aprendizado de maquina supervisionado, os dados de treinamento vém acompanhados de um
rétulo, indicando a resposta correta para a aprendizagem, e nos modelos ndo supervisionados,
nao existem tais respostas (Grus, 2016).

Os algoritmos de AM sao organizados com base em duas tarefas principais. A
primeira sdo as Tarefas Preditivas, onde a meta € encontrar uma fun¢do (também chamado
de modelo) que atribui um rétulo ou classe a um conjunto de dados ndo visto anteriormente
(Classificacao) ou estima um valor numérico (Regressdao), com base em um conjunto de dados
previamente observado, juntamente com as respostas para o aprendizado. Ja as tarefas de descri-
¢do ndo utilizam essas respostas, elas concentram-se na explora¢iao ou na caracteriza¢ao de um
conjunto de dados. Assim, as tarefas Preditivas sdo associadas ao Aprendizado Supervisionado,
enquanto as tarefas descritivas sao associadas ao aprendizado Nao-supervisionado (Faceli et al.,
2011).

A Hierarquia do Aprendizado, abordada nesta Se¢do, € ilustrada na Figura 4, englo-
bando o Aprendizado Indutivo e seus dois ramos principais: Aprendizado Nao-supervisionado e
Aprendizado Supervisionado, o qual se divide em Classificagdo, que estima valores discretos, €

Regressdo, que estima valores continuos.

3.4.1 Aprendizado de Mdquina Supervisionado

Um conjunto de dados inclui objetos que representam diversos conceitos, tangiveis
ou abstratos, como uma cadeira ou a avaliacdo de um atendimento ao cliente. Esses objetos
sao comumente referidos como registros ou exemplos e sao representados por meio de um
vetor de caracteristicas, também conhecido como atributo. Cada atributo esta associado a uma

propriedade do registro. Para o treinamento do modelo supervisionado, cada registro é uma
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Figura 4 — Hierarquia do Aprendizado

[Aprendizado Indutivoj

Supervisionado [Néo—supervisionado]

Classificagdo Regressao

Fonte: Elaborada pelo autor.

instancia do problema contendo atributos de entrada e saida, onde o atributo de saida pode ser
estimados através dos atributos de entrada (Faceli et al., 2011).

Desta forma, para esse treinamento € utilizado um conjunto de dados representados
por registros R = {R,Ry,...,R,}, onde cada registro R; € R, é associado a um rétulo que
representa a resposta esperada. Em termos mais especificos, cada registro € representado como
uma tupla R; = (X;,y;), onde x; € {X;1,Xj2,...,Xin}, que é um vetor de valores que representam as
caracteristicas ou atributos do registro R;, e y; € a resposta esperada para essa instancia. Assim,
o objetivo do modelo é, a partir desses registros, aprender uma fungio f(X) =y que mapeia os
valores de X para os valores de y, permitindo a predi¢do de respostas para exemplos ndo vistos
(Batista, 2003).

A Tabela 1 abaixo, exemplifica o conjunto de dados para realizar o treinamento. Ela
segue o formato atributo-valor, composta por 7 registros e m atributos. A coluna Y representa a
funcdo f(X;) = yi, que tenta realizar a predi¢do com base nos atributos, onde cada valor nessa
coluna pertence ao conjuntos de valores do atributo de saida.

Tabela 1 — Representacao dos
dados de treinamento

Xi X - X |Y
Ry | x11 X120 - Xim | )1
Ry | x21 X2 -+ Xom | V2
Ry | xu1 X2 -+ Xum | Yn
Fonte: Adaptado de Batista (2003,

p. 6)

Além disso, as linhas (R}, Ry, ..., R,) representam diferentes tipos de registros, en-
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quanto as colunas (X1,X>,...,X,,) indicam os atributos de entrada. A linha i corresponde ao
i-ésimo registro (i = 1,2,...,n) e a entrada x;; representa o valor do j-ésimo atributo de X;
(j=1,2,...,m) do registro i. A tabela também ilustra como os registros sdo representados como

tuplaS Ri - (xi17xi27 "'aximayi) = ()_C)hyl')'
3.4.1.1 Meétricas de avaliacdo para Modelos de Classificacdo

Com o intuito de realizar a validacdo e avaliacdo dos modelos de classificacdo, o
conjunto de dados sdo separados em dois conjuntos disjuntos. O primeiro sendo o conjunto de
treinamento, que contém o conjunto de registro juntamente com as respostas esperada para cada
registro, utilizado para ensinar o modelo. O segundo € o conjunto de teste, utilizado para avaliar
o desempenho do modelo (Nelli, 2018). Além disso, é importante ressaltar que esses conjuntos
nao devem compartilhar registros, pois seria similar a um estudante fazendo uma prova apds ter
estudado com as respostas, comprometendo a avaliacao.

Conforme discutido anteriormente, o modelo de classificagdo atribui classes (ou
rétulos) para novos registros. Desta forma, a avaliagdo do modelo treinado € realizada pela
comparacao das respostas previamente obtidas de forma externa, com as respostas fornecidas
pelo modelo treinado.

Uma métrica amplamente utilizada para avaliar modelos de classificacio € a Matriz
de Confusdo. Nela, cada linha representa uma classe real, enquanto cada coluna reflete uma
classe prevista pelo modelo. A diagonal principal destaca os acertos, incluindo quando uma
classe é corretamente identificada (verdadeiros positivos) e quando um registro ndo € atribuido
a uma determinada classe corretamente (verdadeiros negativos). As demais células da matriz
indicam erros, ou seja, quando uma classe € atribuida erroneamente a um registro (falso positivo)
e quando um registro € classificado incorretamente (falso negativo) (Géron, 2019).

Conforme destacado por Raschka (2015), ao ter conhecimento dos Verdadeiros
Positivos (VP), Verdadeiros Negativos (VN), Falsos Positivos (FP) e Falsos Negativos (FN),
diversas métricas de avaliacdo de modelos podem ser empregadas. Essas métricas incluem a

Accuracy, a Precision, o Recall e a F1-Score, que sdo calculadas da seguinte maneira:

Accuracy = VPTVN (3.1)
Y T VPYVN+FP+FN '

A Accuracy avalia o desempenho do modelo através de uma média geral, calculando

a propor¢ao de uma classificacio correta (VP e VN) em comparacdo com o total de classificagc@o
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(VP, VN, FP e FN).
VP

Precision = ——— 3.2)
VP+FP
A Precision avalia o desempenho do modelo em classificar uma determinada classe.
Para isso ele calcula a propor¢do dessa classe, quando foi classificado corretamente (VP), em

relagdo ao total de classificacao positivas (VP e FP).

VP
Recall = — 33
= VPTFN (3-3)

O Recall é conhecido por medir a sensibilidade do modelo, pois ele analisa a propor-
cdo das classes que foram classificadas corretamente (VP), em relac@o ao total de classificacdes
que realmente pertencem a classe (VP e FN).

Precision x Recall
F1-Score =2 x rea.szlon ecd (3.4)
Precision + Recall

O F1-Scores combina ambas as métricas Precision € Recall, sendo 1til para avaliar

classes desbalanceadas.

3.4.1.2 Aprendizagem baseada em instancias: k-Nearest-Neighbours

O k-Nearest-Neighbours (kNN) ¢ um algoritmo de Aprendizado de Maquina Su-
pervisionado utilizado em tarefas Preditivas, tendo aplicacdes em Reconhecimento de Padroes
e Mineracdo de Dados (Xiong; Yao, 2021). Além disso, ele € um algoritmo de aprendizado
preguicoso (lazy learner), pois ao contrario de modelos tradicionais (conhecidos como para-
métricos), ele ndo constréi explicitamente uma fung¢do que mapeia os atributos de entrada em
um atributo de saida. Ele pertence a uma subcategoria de modelos nao-paramétricos denotados
de aprendizagem baseada em instancias, que é conhecido por memorizar o conjunto de dados
fornecido no treinamento do modelo (Raschka, 2015).

O kNN utiliza os registros da base de treinamento para avaliar novos registros, com
o auxilio de uma fung¢do para medir a distincia entre os registros de treinamento e o registro alvo.
De modo geral, ele analisa os k vizinhos mais préximos que compdem a vizinhanga desse registro
a ser avaliado e determina sua classe através de uma votagdo majoritaria entre os individuos
dessa vizinhanga, isto €, assumindo a classe do individuo que mais ocorre na mesma (Aggarwal,
2014).

A Figura 5 ilustra a classificacdo de um novo registro usando o método kNN. Note

que k foi configurado como 5 e os cinco registros mais proximos consistem em trés registros
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classificados como classe A (azuis) e dois como classe B (vermelhos). Apds a votacdo majoritaria,

o registro alvo € categorizado como classe A (azul).

Figura 5 — Exemplo de classificagdo do KNN com k =5

X>

5 vizinhos

@ e ©o

X1

Fonte: Elaborada pelo autor.

Dessa maneira, o desempenho do kNN estd associado ndo apenas ao valor de k
escolhido, mas também as fung¢des utilizadas para calcular as medidas de distancia e determinar
0s k registros mais proximos do registro alvo. De acordo com Williams e Li (2008), as medidas de
distancia, Euclidean, Manhattan e Mahalanobis podem ser utilizadas no kNN, sendo calculadas,
entre um ponto p = (p1,..., py) € outro ponto ¢ = (qy, ..., qn), da seguinte forma:

A distancia euclidiana é calcula seguindo em uma linha reta.

EUD(p, q) = (3.5)

A distancia Manhattan é calculada seguindo um percurso em uma grade, como se

percorre-se o quarteirdo de uma cidade.

MN (p, q)=Y.| pi—qil (3.6)
i=1

A distancia Mahalanobis é calculada com base nas correlagdes entre as varidveis.
Neste caso, V representa uma matriz de covariancia com atributos Ay..Am, sendo A ; o vetor de

atributo j que estd na base de treinamento.

MD(p, q) =/ (pi—a)" V' (pi—a) (3.7)
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3.4.1.3 Aprendizado Bayesiano: Naive Bayes Classifier

O classificador Naive Bayes, baseado no teorema de Bayes, € uma abordagem
probabilistica simples que utiliza probabilidades condicionais para determinar a probabilidade
de um novo registro pertencer a uma determinada classe. Adicionalmente, ele é considerado
ingénuo porque assume que cada atributo da base de dados s@o independente entre si, 0 que
implica que a probabilidade para cada atributo também € independente (Parsian, 2015).

Conforme Rish et al. (2001), o Classificador Naive Bayes atribui a um novo registro
(denotado por um vetor de caracteristicas) a classe que tem a maior probabilidade de ser. O
processo de treinamento se baseia na suposi¢do de que os atributos sao independentes entre si,
contanto que a classe esteja previamente associada ao registro. Dessa forma, ao analisar todos os
vetores de caracteristicas pertencentes a uma classe C, € possivel estimar a probabilidade de um
registro pertencer a essa classe. De maneira mais especifica, essa probabilidade € denotada pelo

produto das probabilidades individuais dos atributos, sendo calculada da seguinte maneira:
p(x|C) = TPxilC) (3.8)
i=1

Observe que X = {X1,..., X, } representa o vetor de caracteristicas e C representa
uma classe. Além disso, a férmula utiliza probabilidades condicionais, que sdo calculadas a
partir de dois eventos. Segundo Sinai e Sinai (1992), a probabilidade condicional define a
probabilidade de ocorrer um evento A dado que um evento B j4 ocorreu, pode ser denotada da

seguinte forma:
P(ANB)

P(AIB) =~

(3.9

Além disso, conforme Faceli ef al. (2011), essa probabilidade condicional pode
ser derivada. Para isso, € utilizado a probabilidade a priori da classe, representada por P(A),
a probabilidade de observar varios elementos pertencentes a classe, denotado por P(BJA), e a
probabilidade de ocorréncia desses elementos, representado por P(B), resultando na seguinte
equacao:

BlA)P(A)

pa) = 2 5] (3.10)

3.4.1.4 Regressdo Logistica

A Regressao Logistica, apesar do nome sugerir que ¢ um modelo de regressao,

trata-se de um modelo linear de classificacdo bindria. Mais especificamente, € um modelo
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probabilistico que estabelece uma relagdo linear entre os atributos de entrada e o atributo de
saida, utilizando a func¢do sigmoide para transformar a combinag¢do linear das caracteristicas em
uma probabilidade de um evento ocorrer ou ndo (Raschka, 2015).

Segundo Aggarwal (2014), a regressao logistica estima diretamente a distribuicao de
probabildiade P(Y|X), onde Y é uma varidvel binaria, como 0 ou 1. Formalmente, o modelo é
definido como sendo a probabilidade de um evento ocorrer, isto é, p(Y = 1|X), sendo expressado

pela funcdo sigmoide, assim como segue:

1
p(Yzl\X)=g(9TX)=m, (3.11)
onde a fungdo sigmoide g(z) é definida como:
1
8(2) = 1= (3.12)

Aggarwal (2014) especifica que 87 X representa o produto escalar entre o vetor de

pesos 6 e o vetor de caracteristicas X de um registro qualquer, sendo expresso como:

d
0"X =6+ ) 6.X; (3.13)

i=1
Em geral, p(Y = 1]X), ao ser combinado com a fungio logit, retorna a probabilidade
em logaritmos das chances, permitindo que a relagcdo seja representada linearmente (Bewick
et al., 2005). Conforme Raschka (2015), a funcao logit expressa essa relacdo linear entre os
atributos e o logaritmo das chances de um evento ocorrer. A equagdo da fungdo logit é definida

€cOmo Ssegue:
logit (p(y = 1]x)) = }_ wix; =w'x (3.14)
i=0

Dessa forma, p(y = 1|x) é a probabilidade condicional de que um registro pertenca a
classe 1, dado o vetor de caracteristicas x, onde X = {x1,x2,...,x,. Os pesos wg, wy,...,w, sdo
ajustados durante o treinamento do modelo para maximizar a verossimilhanc¢a, que determina a

influéncia de cada atributo no resultado final (Bewick et al., 2005; Raschka, 2015).
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3.4.2 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) sao modelos de AM inspirados no funciona-
mento do cérebro humano, o qual contém neur6nios interconectados por meio de sinapses que
realizam a troca de informacdes. O aprendizado ocorre através das alteracdo de forca dessas
conexdes sindpticas em resposta a estimulos, ou seja, pela atualizagdo do peso das conexdes
entre os neurdnios. Adicionalmente, o neurdnio € a unidade bésica de processamento desse
modelo, sendo organizado em diferentes quantidades e conexdes, o que gera diversos tipos de
arquiteturas de redes neurais (Aggarwal, 2014).

A Figura 6 ilustra o modelo simplificado de um neur6nio artificial, baseado no
trabalho de McCulloch e Pitts (1943). Conforme Rauber (2005), esse modelo busca simular
0s processos biolégicos em uma célula nervosa. Para transmitir as informacdes, ele faz uso de
entradas x; (sinapses), onde cada uma possui um peso w;, que representa sua importancia. O
neurOnio processa essas entradas através de uma combinagdo linear, gerando um valor net que,
com o uso de uma funcdo Heaveside (funcdo de escada), € comparado a um limiar . Desta
forma, caso esse valor ultrapasse i, o neurdnio emite um sinal de saida y = 1, caso contrario,
a saida y = 0. Adicionalmente, € possivel utilizar outras funcdes de ativagdo, como a funcao

sigmoidal e linear.

Figura 6 — Modelo de um neur6nio de McCulloch e Pitts
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Fonte: Adaptado de Rauber (2005, p. 6).

Note que, a combinagdo linear responsdvel por gerar o valor net pode ser expressada

por um somatério com D elementos, assim como segue:

D
net = inwi=x1W1+X2W2+---+XDWD (3.15)
i=1

Consequentemente, uma Rede Neural Artificial consiste em neurdnios artificiais

organizados em camadas, seguindo um modelo semelhante ao neurdnio proposto por McCulloch
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e Pitts (1943) mencionado anteriormente. No entanto, € importante ressaltar que a maneira como
essa rede neural aprende, as conexdes utilizadas e o niimero de neurdénios podem variar de acordo
com a arquitetura especifica da rede.

Em adicdo, existem duas arquiteturas principais: rede de camada tnica, que geral-
mente nio é preferida devido as suas limitacdes de capacidade, e a de multiplas camadas, que
inclui camadas ocultas entre as camadas de entrada responsaveis por receber a informacgao e
transmiti-la adiante, e a camada de saida, que retorna o resultado final (Kopiler et al., 2019). A
Figura 7 (a) ilustra uma arquitetura em camada unica e Figura 7 (b) ilustra uma arquitetura em

multiplas camadas.

Figura 7 — Exemplo de arquiteturas

>
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(a) Arquitetura de camada tnica (b) Arquitetura em multiplas camadas

Fonte: Adaptado de Kopiler et al. (2019, p. 3).

Além das diferentes arquiteturas, € importante ressaltar o processo de treinamento
das RNA. Geralmente, o algoritmo de backpropagation assume o papel principal no treinamento
de redes de multiplas camadas (Kopiler et al., 2019).

Esse algoritmo ajusta os pesos das conexdes entre 0s neurdnios, buscando minimizar
o erro na saida da rede. No caso do aprendizado supervisionado, para cada exemplo apresentado
a rede € calculado uma resposta correspondente, podendo determinar o nivel de erro atual ao
comparar com a saida desejada. Esse processo se repete até algum critério seja alcangado, como
o nivel de erro alcancar um valor aceitdvel (Neto, 1995). Desta forma, a ideia principal desse
algoritmo consiste em propagar os erros das camadas de saida para corrigir imprecisdes nas

camadas anteriores, através desse processo de realimentacao.
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3.4.2.1 Rede Neural Feedforward e Recorrente

A informacao em uma rede neural geralmente se propaga da camada de entrada até
a camada de saida. Em uma rede de multiplas camadas, esse processo ocorre de uma camada
para a préoxima. Adicionalmente, uma RNA possui conexdes especificas, conhecidas como
retropapagacao (ou feedback), onde os neurdnios recebem a saida de outro neurdnio em seus
terminais de entrada, seja da mesma camada, de camadas posteriores ou até mesmo a propria
saida y. Redes com esse tipo de retropapagacgdo sdo chamadas de Redes Neurais Recorrentes,
sendo especialmente tteis para problemas que exigem o processamento de informacdes de forma
sequencial. Por outro lado, redes sem esse tipo de conexao, que sdo mais comumente utilizadas,

sdo denominadas de Redes Neurais Artificiais feedforward (Faceli et al., 2011).

Figura 8 — Redes neurais feedforward e recorrente.

(a) Rede feedforward (b) Rede recorrente

Fonte: Faceli et al. (2011, p. 113).

Uma rede neural feedforward é composta por camadas discretas de neurdnios, os
quais estdo conectados as camadas seguintes. A organizacio dessa camada geralmente segue o
seguinte padrdo: uma camada de entrada, que simplesmente transmite as informag¢des adiante;
uma ou mais camadas ocultas, formadas por neurénios que recebem as informagdes de saida dos
neurdnios da camada anterior, efetuando o processamento dos dados; e uma camada de saida,
responsavel por gerar a saida final (Grus, 2016). A Figura 8 (a) ilustra um exemplo de uma rede

feedforward e a Figura 8 (b) ilustra uma rede recorrente.
3.4.3 Aprendizado Ndo Supervisionado

As tarefas realizadas pelos algoritmos de aprendizado ndo supervisionado sdo va-

riadas e podem ser amplamente categorizadas em quatro principais grupos. A primeira dessas
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tarefas é o agrupamento (clustering), onde o objetivo € dividir o conjunto de dados em grupos
ou clusters de exemplos semelhantes. Essa técnica é amplamente utilizada na segmentacao
de mercado, onde consumidores com comportamentos similares sdo agrupados para otimizar
estratégias de marketing, ou em bioinformadtica, para identificar padroes em dados genéticos
(Faceli et al., 2011).

Outra tarefa importante € a reducdo de dimensionalidade, que visa simplificar a
estrutura dos dados ao reduzir o nimero de varidveis ou atributos, preservando a0 maximo as
informacdes relevantes. Essa abordagem ¢é extremamente ttil quando se trabalha com dados de
alta dimensionalidade, como imagens ou grandes conjuntos de dados, onde ha muitas varidveis
redundantes ou irrelevantes (Monard; Baranauskas, 2003). A reducao de dimensionalidade
facilita a andlise e a visualizagcdo dos dados, além de diminuir a complexidade computacional
envolvida.

Além disso, o aprendizado ndo supervisionado é fundamental para a detec¢cao de
anomalias. Essa tarefa tem como foco identificar exemplos que se desviam significativamente do
comportamento tipico observado nos dados. Em dreas como seguranca cibernética e prevengao
de fraudes financeiras, essa técnica € utilizada para identificar transag¢des suspeitas ou atividades
fora do padrdo, sem a necessidade de conhecer previamente o que caracteriza uma anomalia
(Faceli et al., 2011).

Por fim, a descoberta de associacdes € outra tarefa chave do aprendizado nao super-
visionado. Aqui, o algoritmo busca identificar padrdes frequentes entre os atributos dos dados,
como em sistemas de recomendac¢do, onde se descobre que determinados produtos sdo frequente-
mente adquiridos em conjunto. Por exemplo, analisar cestas de compras revela associagdes tteis

para sugerir produtos a clientes de plataformas de comércio eletronico (Grus, 2016).

3.4.3.1 Andlise de Componentes Principais (PCA)

A Andlise de Componentes Principais (PCA) é uma técnica de aprendizado de
maquina nao supervisionado utilizada para a reduc@o de dimensionalidade e extracdo de infor-
macodes relevantes de um conjunto de dados complexos, sendo aplicada em diversos campos,
como neurociéncia e computagao gréafica (Shlens, 2014). Mais especificamente, transforma
os dados originais em um novo espa¢o de menor dimensionalidade, preservando ao maximo a
variabilidade, o que permite reduzir a complexidade dos dados enquanto mantém sua estrutura

essencial (Jolliffe, 2002). Além disso, € um método linear e ndo-paramétrico, o que significa que
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ndo faz suposi¢des sobre a distribuicao dos dados (Bishop; Nasrabadi, 2006).

O PCA projeta os dados em componentes principais, que sao combinagdes lineares
das varidveis originais. Cada componente principal captura a maior quantidade de variancia
possivel, sendo o primeiro o mais informativo, seguido pelos demais, que sdo ortogonais entre
si (Jolliffe; Cadima, 2016). Essa transformacgdo permite eliminar dimensdes menos relevantes,
resultando em um conjunto de dados sintético mais simples, mas que preserva as caracteristicas
mais importantes.

De acordo com Shlens (2014), o cdlculo do PCA comeca com a centralizacdo dos
dados, subtraindo a média de cada varidvel. Em seguida, a matriz de covariancia C é calculada
para capturar as relacdes entre os atributos. A férmula para calcular a matriz de covariancia é
dada por:

[ —
C=-XX (3.16)
n

onde X € uma matriz de n X m, onde cada linha m; representa uma amostra e cada
coluna n; uma varidvel. A matriz X7 é a transposta de X, e a multiplicacdo XX resulta em
uma matriz de covariancia de m x m, representando a covariancia entre as variaveis. Esta matriz
resume a correlacdo entre todas as varidveis no conjunto de dados.

De acordo com Jolliffe (2002), apds calcular a matriz de covaridncia, o proximo
passo no PCA € encontrar um vetor ¢ (autovetor) que maximiza a varidncia de uma combinacao
linear das varidveis, impondo a restri¢do de normalizacao Ole oy = 1. A funcio de maximizagdo
OclT Yoy, onde ¥ é a matriz de covaridncia, leva a equacdo de autovalores Xa; = A, sendo
A1 o autovalor correspondente, que indica a quantidade de variincia explicada pela dire¢do
definida por o;. Esse processo permite que o PCA encontre as dire¢des que capturam a maior
variabilidade nos dados, projetando-os em um novo espaco de menor dimensionalidade que
preserva a maior parte da variabilidade original.

Por fim, apds calcular os autovetores e autovalores, podemos projetar os dados
no novo espaco de menor dimensionalidade, multiplicando a matriz de dados original pelos
autovetores correspondentes aos maiores autovalores (Trendafilov; Gallo, 2021). Assim, a
decomposi¢do em autovetores e autovalores nos permite identificar os componentes principais

que capturam a variabilidade mais significativa nos dados.
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3.4.3.2 Algoritmo K-Means

O algoritmo kmeans € uma técnica de aprendizado de maquina ndo supervisionado
utilizada para realizar a tarefa de agrupamento, isto €, seu objetivo € particionar um conjunto
de dados em k grupos (clusters) de forma que os elementos dentro de cada cluster sejam mais
semelhantes entre si do que em relacao aos de outros clusters. Para isso, a técnica tenta minimizar
o erro quadratico entre a média empirica (centréide) de um cluster e os pontos que pertencem a
ele (Macqueen et al., 1967).

A Figura 9 ilustra a comparacdo entre os dados antes e depois da aplicacdao do
KMeans. Na Figura 9 (a), todos os pontos sdo exibidos na mesma cor, sem nenhum grupo
definidos, representando o estado inicial dos dados. Ja na Figura 9 (b), apds aplicar o KMeans, os
pontos sdo agrupados em grupos distintos, sendo representados com cores e simbolos diferentes,

e os centrdides sao destacados na cor preta.

Figura 9 — Aplicacdo do método k-means para o particionamento dos dados.
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Fonte: Elaborada pelo autor.

Conforme Bishop e Nasrabadi (2006), a funcdo objetivo do algoritmo k-means é

dada por:

N K
T=Y % rudln — el (3.17)
n=1k=1

onde J representa a soma das distancias quadréticas entre cada ponto x,, € o centroide

W do cluster Cy, tal que a varidvel bindria r,; € 1 se o ponto x,, pertence ao cluster k, e 0 caso
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contrario. O objetivo € minimizar J, garantindo que os pontos dentro de um cluster estejam
0 mais préximos possivel de seu centréide. Cada iteracdo do k-means envolve duas etapas:
primeiro, minimiza-se J em relagdo a r,, atribuindo cada ponto ao centréide mais proximo, €
depois, minimiza-se J em relagdo a , recalculando os centréides como a média dos pontos
atribuidos a cada cluster. Esse processo € repetido até a convergéncia, garantindo que cada ponto
esteja otimamente alocado ao cluster mais préximo.

Durante o processo de execucdo do k-means, a escolha do nimero de grupos k é
crucial e pode ser feita usando métodos como o Elbow Method (método do cotovelo) ou a Andlise
de Silhueta. O primeiro método baseia-se no coeficiente de aglomeracao, um valor numérico
que representa a fusdo de varios pontos em um agrupamento. O procedimento envolve tracar o
coeficiente no eixo y e o nimero de grupos no eixo x. Um achatamento acentuado do grafico
indica que os grupos combinados sdo muito diferentes, e o niimero ideal de divisdes é encontrado
no ‘cotovelo’ do gréfico (Ketchen; Shook, 1996). Ja o Silhouette method (método de silhueta)
avalia a qualidade das divisdes com base no qudo préximos os pontos estdo dos seus proprios
grupos em compara¢do com os vizinhos (Rousseeuw, 1987). A Figura 10 ilustra essas duas

abordagens.

Figura 10 — Métodos Elbow e Silhouette para Determinacio do Ntimero Otimo de Grupos.
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Fonte: Elaborada pelo autor.

Note que a Figura 10 (a) mostra que, segundo o método do cotovelo, a partir de 4
grupos, a variagao no coeficiente de aglomeragao se torna minima, indicando poucas mudangas
significativas. Da mesma forma, a Figura 10 (b) confirma essa observacao, ja que o método da

silhueta aponta que 4 grupos obtém a maior pontuagdo de agrupamento, com valor de 0.8.
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Embora o k-means seja amplamente utilizado por sua popularidade e facilidade de
uso, ele possui limitagdes, especialmente na atribuicao de centréides e no nimero de clusters,
funcionando melhor com grupos compactos e esféricos, mas falhando com dados mais complexos
(Ahmed et al., 2020). Para mitigar essas questdes, o k-means++, desenvolvido por Arthur e
Vassilvitskii (2006), aprimora a inicializagdo ao selecionar centrdides de forma ponderada,
priorizando pontos mais distantes, o que aumenta a qualidade dos agrupamentos e reduz a

probabilidade de configuragdes desfavordveis.
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4 TRABALHOS RELACIONADOS

Este capitulo explora trabalhos correlacionados a pesquisa, concentrando-se em
aplicagdes de técnicas de Aprendizado de Méaquina para o Problema do Corte Maximo, mesmo
que alguns deles ndo se baseiem especificamente em aprendizado supervisionado. Em resumo,
os trés trabalhos relacionados empregam técnicas de aprendizado profundo, que, de forma
simplificada, envolvem o uso de redes neurais com vdrias camadas ocultas.

Na Secdo 4.1, € apresentado um algoritmo baseado em redes de ponteiros, sendo este
modelo treinado por meio de aprendizagem supervisionada. Dessa forma, o modelo emprega
técnicas para lidar com dados de forma sequencial e um mecanismo de atencao para destacar
as informagdes mais relevantes. Ja na Se¢do 4.2, também € utilizado o conceito de redes de
ponteiros, porém, o modelo € treinado por meio de aprendizado supervisionado e aprendizado
por reforco. Por fim, na Sec¢ao 4.3, é apresentado um método que faz uso de Redes Neurais em
Grafos, uma arquitetura de rede neural projetada para lidar com dados representados na forma

de grafos.

4.1 Um algoritmo de aprendizado profundo baseado em redes de ponteiros para o pro-

blema do corte maximo

Gu e Yang (2018) apresenta uma abordagem que utiliza um algoritmo de aprendizado
profundo, especificamente uma Rede de Ponteiros (Pointer Network), para resolver o Problema
do Corte Méaximo. Essa técnica emprega o framework de aprendizado sequencial-para-sequencial
(sequence-to-sequence learning) em conjunto com um mecanismo de aten¢do. Assim, o artigo
propde o uso dessa rede para construir um modelo que € treinado por meio de aprendizagem
supervisionada.

A arquitetura da rede neural proposta pelo autor é uma variacdo do modelo Seq2seq,
que faz uso das conexdes ordenadas da Rede Neural Recorrente (RNN) para transmitir e reter
informacgdes durante o processo de predicdo. Nessa estrutura, a RNN desempenha um papel
crucial no treinamento, analisando o atributo de entrada camada por camada, até a camada de
saida, mantendo um estado interno que propaga as informacdes relevantes do passo anterior.

A Rede de Ponteiros incorpora um mecanismo de aten¢do modificado, integrado
com um médulo chamado Seq2seq, para aprender a probabilidade condicional de uma saida,

onde os valores correspondem as posicoes em uma sequéncia de entrada fornecida. Para tal, o
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Seq2seq possui um codificador que transforma uma sequéncia de dados de tamanho varidvel em
um vetor de tamanho fixo. Como discutido na Subsecdo 3.4.1, o processo de aprendizagem do
modelo normalmente € realizado com base em vetores de tamanho fixo. Ademais, o Seq2seq
também inclui um decodificador que realiza o processo inverso.

O mecanismo de atenc¢ao, que conecta o codificador ao decodificador, possibilita a
este ultimo acessar toda a sequéncia de estados do codificador, permitindo a extracao de informa-
coes relevantes de um vetor de comprimento varidvel. Sua funcdo principal € indicar a rede de
decodificacdo quais partes da entrada sdo mais significativas, permitindo que o decodificador se
concentre em identificar informacdes mais relevantes na sequéncia de entrada do codificador,
aprimorando a resposta de saida.

Além disso, a entrada dessa rede de ponteiros corresponde a uma instancia do
Problema do Corte Médximo, onde o peso de cada aresta € um. Portanto, a entrada é representada
por uma matriz de adjacéncia, e a saida consiste na particao de cada vértice. Adicionalmente,
as instancias criadas para o treinamento foram geradas utilizando um programa no MATLAB
(software utilizado para computacdo numérica e andlise de dados), que criou conjuntos de
amostras de forma aleatdria, com uma parte dedicada ao conjunto de teste.

Para avaliar o método proposto, o autor criou instancias do Problema do Corte
Miéximo com 10, 20, 30, 40 e 50 vértices. O modelo foi submetido a cinco configuragdes
distintas de treinamento, variando entre 1000 e 2000 periodos de treinamento, bem como entre
100 e 1000 amostras fornecidas para o treinamento. Os resultados de precisdo para as instancias
com 10, 20, 30, 40 e 50 vértices variaram de 92.0% a 97.5%, de 88.3% a 94.2%, de 85.2% a
86.4% e de 68.7% a 81.4%, respectivamente.

Por 1ltimo, Gu e Yang (2018) cita que os resultados dos experimentos evidenciam
que o método proposto alcanca uma solucdo aproximada satisfatéria, a0 mesmo tempo em
que reduz consideravelmente o tempo necessario para obter essa solucdo, se comparado com
algoritmos convencionais. Isso indica um potencial promissor desse método na drea de problemas

de otimizagdo combinatdria.
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4.2 Algoritmo de aprendizado profundo para o problema do corte maximo baseado na
estrutura de rede de ponteiros, com estratégias de aprendizado supervisionado e

aprendizado por reforco.

Ja nesse trabalho, o método proposto pelo Gu e Yang (2020) utiliza redes de ponteiros
(Pointer Network) e aprendizagem profunda, empregando técnicas de aprendizado supervisionado
e aprendizado por reforco. Em termos gerais, uma rede de ponteiros é uma rede neural com foco
em aprendizado profundo sequencial-para-sequencial (sequence-to-sequence), o que significa
que processa os dados de maneira sequencial, extraindo informagdes com o intuito de revelar
alguma relacdo matemaética ou probabilistica oculta entre os dados de entrada e saida. Com
isso em mente, 0 mecanismo de entrada e saida do modelo de redes de ponteiros foi projetado
para estar em sintonia com as caracteristicas do Problema do Corte Mdximo. Posteriormente, o
modelo ¢ treinado utilizando técnicas de aprendizado supervisionado e aprendizado por reforgo.

Conforme afirmado pelo Gu e Yang (2020), a Rede Neural Recorrente (RNN) € capaz
de classificar eventos subsequentes usando informagdes de eventos anteriores, demonstrando
eficdcia ao lidar com dados sequenciais ou temporais. Para alcancar isso, ela processa as
informagdes dos dados de forma continua e ciclica, assegurando a persisténcia da informacgao.
No entanto, ela ndo lida bem com entradas longas, sendo necessarias algumas melhorias, que
foram apresentadas no artigo, sendo a mais eficaz delas o uso de um mecanismo de limitagao.
Para o algoritmo proposto, foi adotado o Long Short Term Memory (LSTM), uma variante da
RNN, que faz uso de um mecanismo de controle de fluxo de informag¢des chamado gating.

O método proposto também faz uso de um modelo codificador-decodificador, que é
utilizado para que a sequéncia de entrada e a sequéncia de saida ndo precisem ter uma relacao
estrita ou 0 mesmo comprimento. Além desse modelo, existe um mecanismo de aten¢do utilizado
pela rede para indicar quais dados sdo mais relevantes em uma sequéncia de entrada, evitando
que a rede armazene mais informagdes do que o necessdrio. Desta forma, a rede requer menos
neuronios para lidar com a quantidade de informagao do que sem esse mecanismo.

Sobre a entrada e saida da rede, enquanto a entrada € uma sequéncia de comprimento
T, a saida é uma sequéncia de indices relacionados a sequéncia de entrada. Por exemplo, se a
entrada for uma sequéncia de nimeros desordenados, a saida consistird nos indices dos nimeros
na ordem correta de ordenacdo. Para o Problema do Corte Médximo, utilizando aprendizagem
supervisionada, a rede de ponteiros recebe como entrada, de forma explicita, uma matriz de

adjacéncia Q, onde o vetor ¢; € {q1, ..., ¢, } representa as caracteristicas do vértice x; € {xy,...x, },
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ou seja, cada vetor contém os pesos das arestas entre dois vértices. Caso o peso seja igual a
0, isso indica a auséncia de uma aresta. A saida serd uma sequéncia de 0’s e 1’s que indica a
particao de cada vértice.

A aprendizagem por reforco, ao contrdrio da aprendizagem supervisionada, pode
ser descrita como um agente que interage em um ambiente e aprende continuamente conforme
interage com o mesmo em busca de atingir um objetivo especifico. Desta forma, na aprendizagem
por reforgo, ele vai construindo sua propria estratégia, nao requisitando uma estratégia correta
como na abordagem supervisionada. Dito isso, a entrada na rede para o aprendizado por refor¢o
€ semelhante a da aprendizagem supervisionada, diferindo apenas pela adicao de um simbolo
especial. A fun¢do desse simbolo € separar um vértice em uma parti¢ao. Ja a saida, trata-se de
uma sequéncia dos vértices acompanhada de um simbolo para dividir o conjunto de vértices de
saida em dois conjuntos, sendo que este simbolo fica no meio da sequéncia.

Para adquirir as instancias do problema que serdo utilizadas para realizar o treina-
mento do modelo, o autor faz uso do Gerador de Benchmark para gerar instancias aleatorias do
Problema de Programacdo Quadrética {-1, 1}, os quais podem ser resolvidos em tempo polino-
mial. Em seguida, essas instancias sd@o convertidas em instancias solucionadas do Problema do
Corte Maximo. Para tal, eles associam as varidveis desse problema de programac¢do quadrética,
que podem assumir apenas valores -1 e 1, com os vértices particionados da instancia do Problema
do Corte Méximo.

Como a instincia solucionada era originalmente um problema de programa quadré-
tico {-1, 1}, suas caracteristicas possuem propriedades especificas, as quais podem atrapalhar o
treinamento do modelo. Em outros termos, isso pode afetar a capacidade do modelo de aprender
as regras gerais para o corte maximo. Portanto, o gerador Benchmark foi utilizado na Biblioteca
Big Mac, que oferece uma colecio de instancias do corte maximo. Desta forma, o artigo realizou
experimentos com dois conjuntos de dados: o conjunto de dados Zhou e o conjunto de dados Big
Mac Library.

No experimento, foram utilizados diferentes tamanhos de instincias para treinamento,
variando de 10 a 200 vértices para o aprendizado supervisionado e de 10 a 300 para o aprendizado
por reforco. Os resultados, indicam evidenciam uma tendéncia consistente na redu¢do da precisao
a medida que o nimero de vértices aumentava. Essa diminui¢do foi mais acentuada no caso do
aprendizado por refor¢co em comparagdo ao aprendizado supervisionado.

Ja para o segundo experimento, o conjunto de dados Big Mac Library, assumiu o
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papel de base de teste, enquanto o conjunto de dados Zhou foi utilizado para o treinamento.
Desta forma, foram selecionados dez grupos de instancias de 60, 80 e 100 vértices. Foi realizado
apenas o teste para a aprendizagem por refor¢o, e para cada instancia, houve uma média de
88.05%, 84.76% e 73.09%. Esses resultados demonstram que média é menor em relacio ao teste
passado, isso se deve a fato da Big Mac Library conter instancias com diferentes proporcoes
e distribui¢cdes. Os grafos em si sdo mais complexos, representando melhor as caracteristicas
essenciais do Problema do Corte maximo.

No geral, os experimentos revelam que para instancias abaixo de 50 vértices, a
aprendizagem supervisionada e aprendizagem por reforco sdo precisos e consistentes. Entretanto,
para instancias acima de 50 vértices, a aprendizagem por reforco demonstrou-se mais capaz,
visto que no teste para instancias de 200 vértices, a aprendizagem supervisionada obteve 71,95%

de precisdo, enquanto para 300 vértices, a aprendizagem por reforco obteve 87.64% de precisio.

4.3 Desempenho experimental de redes neurais de grafos em instancias aleatérias de corte

maximo

O Yao et al. (2019) conduziu um estudo aplicando técnicas de Aprendizado de
Miéquina Nao-supervisionado para a resolu¢do do Problema do Corte Maximo. Mais especifi-
camente, ele utilizou Redes Neurais em Grafos (GNN), que é uma arquitetura de rede neural
especialmente projetada para lidar com dados que t€m uma estrutura de grafo. A ideia dessa
arquitetura, é propagar informacdes entre vértices e arestas, capturando suas relagdes complexas
nestes dados interconectados.

O foco principal da pesquisa foi voltado para um tipo especifico de grafo, chamado
de grafos regulares aleatérios. Nesse grafo, cada vértice possui a mesma quantidade de grau
e ndo segue uma estrutura predefinida. Segundo Yao et al. (2019), essa escolha se dé pelo
fato de que as assintotas do valor 6timo de corte maximo sd@o bem conhecidas para esse tipo
de distribuicdo, podendo ser utilizadas para medir o desempenho do método proposto. Além
disso, mesmo que ndo houvesse uma solugdo explicita conhecida para comparar com a saida do
algoritmo proposto, ainda € possivel utilizar essas assintotas.

Dito isso, o autor utilizou as assintotas conhecidas para avaliar o desempenho da
GNN em relagd@o a outros dois métodos: otimizagdo extrema, que € uma heuristica de otimizagado
local da literatura de fisica estatistica, e algoritmo de relaxamento semidefinido de Goemans e

Williamson (1995). Os resultados obtidos indicam que o desempenho da GNN € comparavel
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a esse ultimo método. Entretanto, ambas as técnicas demonstraram um desempenho inferior
quando comparadas a estratégia de otimizacao extrema. No geral, as técnicas de aprendizado de
maquina ndo supervisionado conseguem se adaptar com sucesso para problemas de otimizagao

dificeis em entradas aleatorias.
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5 METODOLOGIA

A abordagem central consiste em utilizar instancias de pequena escala do Problema
do Corte Maximo para treinar o modelo supervisionado, com o intuito de aplica-lo posteriormente
em instancias de grande porte. Dito isso, este capitulo apresenta a metodologia adotada para
alcancar o objetivo deste estudo.

A Secdo 5.1 detalha o procedimento de aquisicdo dos dados destinados ao trei-
namento e avaliacdo do modelo supervisionado. Esses dados serdo adquiridos por meio de
instancias da Big Mac Library, juntamente com suas respectivas respostas, utilizando um solver
baseado em método exato. Ja a Secdo 5.2 detalha a etapa de pré-processamento dos dados,
onde € realizada a criac@o da base de dados e o tratamento dos dados para serem utilizados no
treinamento do modelo.

A Secdo 5.3 dd foco em como serd a estrutura do treinamento do modelo, especifi-
cando a abordagem escolhida para o treinamento, enquanto a Se¢do 5.5 discute sobre os ajustes
dos hiperparametros para o refinamento do modelo. Por fim, as Se¢des 5.4 e 5.6 aborda como

serdo gerados os resultados e as ferramentas que serdo utilizadas, respectivamente.

5.1 Coleta dos dados

Para conduzir essa pesquisa, foram selecionadas 330 instancias disponiveis no
trabalho da Wiegele (2007), Big Mac Library, que € uma fonte reconhecida e respeitavel na
area do Problema do Corte Maximo. A biblioteca disponibiliza uma cole¢do diversificada e
representativa de instancias, o que proporciona uma base sélida para o estudo. Ela abrange
instancias de diferentes tamanhos, variando de 20 a 500 vértices, o que trds uma colecao de
grafos com propriedades muito distintas, como nimero de tridngulos, densidade, coeficiente de
aglomeracao, grau de centralidade e grau de intermediacao dos vértices.

Para realizar a aquisicdo dos dados necessdrios para o treinamento do modelo super-
visionado, € essencial ndo apenas as instancias em si, mas também as respostas correspondentes,
ou seja, as particoes dos vértices. Portanto, essas instancias foram submetidas ao solver Big
Mac, um algoritmo exato que se baseia no método Branch & Bound e utiliza Programacao
Semi-Definida (SDP) (Rendl et al., 2010). Entretanto, ele ndo garante encontrar o valor 6timo

para instancias muito grandes.
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5.2 Pré-processamento dos dados

O pré-processamento dos dados coletados € uma etapa crucial para preparar as instan-
cias para o treinamento do modelo. Nesta fase, diferentes passos foram realizados para garantir
que os dados estivessem prontos e adequados para alimentar os algoritmos de aprendizado de
maquina.

Devido a variagdo no nimero de vértices das instancias, que pode oscilar entre 20
e 500, aplicar aprendizado de mdquina diretamente sobre os atributos que indicam as arestas
entre os vértices torna-se inviavel. Isso ocorre porque a estrutura da base de dados escolhida
assemelha-se a uma matriz de adjacéncia, cujo tamanho depende diretamente da quantidade
de vértices de cada grafo. Por exemplo, um grafo com 20 vértices exigiria uma matriz com 20
colunas para representar as conexdes, enquanto um grafo com 500 vértices precisaria de 500
colunas. Essa diferenca na dimensionalidade dos dados dificulta diretamente o treinamento e
predi¢do do modelo, limitando o mesmo a instancias que possuem o mesmo tamanho.

Para superar essa limitacao e garantir uma representacdo compacta e eficiente das
conexdes entre os vértices, foi aplicada a técnica de Andlise de Componentes Principais PCA.
Essa abordagem permitiu a redu¢do da dimensionalidade desses atributos para um nimero fixo
de 20 componentes sintéticos, nimero este escolhido com base no menor grafo da base de dados.
Desta forma, todos os grafos, independentemente do nimero de vértices, sdo representados de
forma consistente em um espaco de 20 dimensdes, possibilitando o treinamento e aplicacdao do
modelo na predi¢do de instincias de diferentes tamanhos.

Além disso, os dados passaram por um processo de normalizacdo, essencial para
que os modelos de aprendizado de maquina tratem todos os atributos em uma escala uniforme.
Isso evita que atributos com magnitudes significativamente diferentes influenciem de forma
desproporcional o desempenho do modelo.

Por dltimo, foram selecionadas outras caracteristicas relevantes, como o grau do
vértice, a média dos pesos das arestas conectadas, o0 menor e maior peso dessas arestas € o
potencial total do vértice (soma dos pesos das arestas conectadas). Essas caracteristicas foram
escolhidas para oferecer uma representacdo robusta e abrangente das propriedades dos vértices e
suas conexodes no grafo. Portanto, além das colunas que representam as conexdes dos vértices,

existe colunas que especificam suas propriedades.
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5.3 Treinamento do modelo supervisionado

ApOs o pré-processamento descrito na Subsecdo 5.2, as instancias foram devidamente
estruturadas para o treinamento dos modelos supervisionados. Cada registro da base de dados é
representado por uma tupla R; = (X;,y;), onde x; contém as caracteristicas extraidas dos vértices,
conforme discutido anteriormente, e y; indica a particao correspondente de cada vértice (resposta
esperada). Cada amostra de treinamento corresponde a uma instancia do Problema do Corte
Maiximo. Em adi¢do, cada amostra é um grafo G = (V. E), com |V | = n vértices e |E| = m arestas,
representada por uma matriz de n registros. Para novas instincias, o modelo supervisionado
recebe a matriz e retorna a particdo dos vértices.

Com a base de dados preparada, diferentes algoritmos de aprendizado de maquina
foram aplicados para a constru¢do dos modelos supervisionados, visando a exploracdo de
abordagens distinta para realizar predi¢des e solucionar o problema do corte maximo. Entre
os algoritmos selecionados, tem-se o Naive Bayes, que explora a suposi¢cdo de independéncia
entre as varidveis, isto €, as caracteristicas do vetor de caracteristicas, permitindo a constru¢ao
de modelos simples e eficazes.

Além disso, o algoritmo k-Nearest Neighbors (kNN) foi utilizado devido a sua
capacidade de classificar instancias ndo resolvidas com base nas instancias ja solucionadas mais
proximas, isto é, considerando a similaridade entre elas. A Regressao Logistica, € amplamente
utilizada em problemas de classifica¢do bindria, possuindo bons resultados na maioria dos casos,
foi outra abordagem empregada, sendo adaptada para predizer se um vértice pertence ao conjunto
S ou ndo, levando em conta o contexto do problema do corte méximo.

Por fim, Redes Neurais Artificiais com arquitetura feedforward foram implemen-
tadas. Esse modelo processa as informacdes de entrada por meio de uma rede de neurdnios
interconectados, ajustando iterativamente os pesos dessas conexdes com o objetivo de minimizar
a taxa de erro na classificacdo de vértices. E importante destacar que todos os algoritmos foram
treinados para mapear as caracteristicas extraidas dos vértices as suas respectivas parti¢coes,
buscando maximizar o valor do corte ao alinhar a predicao das particdes ao objetivo principal
do problema, que € o somatdrio das arestas cortadas, isto €, que pertecem a dois vértices de

parti¢Oes distintas.
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5.4 Geracao de resultados

A geracdo dos resultados deste trabalho baseia-se na avaliacado do desempenho dos
modelos supervisionados desenvolvidos para a resolu¢do do Problema do Corte Maximo. As
métricas de avaliagdo Precision, Accuracy, Recall e F1-Score, descritas na Secdo 3.4.1.1, foram
utilizadas para medir a precisdo do modelo ao predizer as parti¢des dos vértices, comparando
essas predi¢des com as respostas corretas conhecidas. Entretanto, o foco principal estd na
avaliacdo da qualidade do corte obtido, isto €, 0 qudao bem o modelo foi ao resolver uma instincia
nunca vista antes.

O valor de corte encontrado pelo modelo serd comparado com o corte calculado pelo
Solver Big Mac, servindo como referéncia para avaliar a eficicia do modelo, bem como sua
generalizacdo e desempenho prético. O objetivo principal € determinar o quao bem o modelo
consegue realizar a particao dos vértices.

Para uma andlise mais aprofundada dos resultados, serd realizada uma investigacao
exploratéria das instancias que tiveram um melhor valor de corte previsto pelo modelo, em
relacdo as demais. O algoritmo de agrupamento k-means serd aplicado com o objetivo de
identificar padrdes e caracteristicas comuns entre os diferentes grupos de grafos. A determinagdo
do ndmero ideal de clusters serd realizada por meio dos métodos do cotovelo e da silhueta, o que
permitird uma segmentagdo mais precisa dos grafos de acordo com suas propriedades estruturais
e o0 desempenho do modelo.

Essa analise permitiu diferenciar as instancias em que o modelo supervisionado
obteve sucesso daquelas que tiveram um desempenho inferior. Além disso, foram extraidas
caracteristicas gerais dessas instancias, sendo analisada a distribui¢ao dos dados por meio de
métricas estatisticas basicas, como média, desvio padrdo e quartis. Para uma anélise mais
detalhada, utilizou-se o grafico de estimativa de densidade do kernel (KDE), que permite estimar
a funcdo densidade de probabilidade de uma varidvel continua com base em registros observados
em uma base de dados, isto €, proporcionando uma visualizacdo da distribui¢ao dos dados em
uma coluna (Lin ef al., 2020). Essa ferramenta revelou caracteristicas especificas dos grafos que

influenciam diretamente o sucesso do modelo na resolucido do Problema do Corte Médximo.
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5.5 Ajuste dos parametros

Embora a escolha apropriada das varidveis de entrada seja crucial no treinamento do
modelo, o refinamento de seu desempenho € caracterizado pela selecdo adequada dos hiperpara-
metros (refinamento do algoritmo) (Seyedzadeh et al., 2019). Para isso, foi necessario conduzir
uma busca sistematica pelo conjunto ideal de hiperparametros que melhore o desempenho do
modelo.

No ajuste dos hiperparametros no k-Nearest-Neighbors (kNN), a escolha apropriada
do valor de k ¢ crucial, como discutido na Subsecdo 3.4.1.2. Esse parametro determina o nimero
de k vizinhos mais préximos envolvidos na predi¢do por meio de uma votacao majoritaria.
Por exemplo, quando o valor de k é muito baixo, 0 modelo pode ajustar-se excessivamente a
base de dados de treinamento, afetando negativamente a capacidade de generalizar padrdes.
Adicionalmente, a escolha da funcao de distancia também € essencial, pois ela determina os k
vizinhos mais proximos do registro alvo a serem analisados e a ponderacio dos vizinhos mais
proximos devem ser ajustadas, testando se os registros mais préoximos devem ter maior peso na
decisido final do modelo.

Da mesma forma, as Redes Neurais Feedforward possui um conjunto de hiperpara-
metros a serem ajustados, que incluem:

« Numero de camadas e neurdnios: determinar a quantidade de camadas na rede e o nlimero
de neurdnios em cada camada;

« Taxa de Aprendizado: determina a taxa pela qual a rede ird ajustar seus pesos de conexdes
entre os neurdnios, que busca minimizar o erro de saida;

« Funcdo de Ativagdo: determinar qual funcao utilizar nos neurdnios, como visto na Subse-
¢do 3.4.2;

« Algoritmo de Otimizacao: definir o algoritmo responsdvel por ajustar os pesos da rede
com base nos gradientes de erro calculados pelo algoritmo backpropagation. Entre os
algoritmos de otimizagao, tem-se o Stochastic Gradient Descent € o Adam,;

Ja para a Regressdo Logistica, foi analisado dois hiperparametros. O primeiro € o
campo de regualizacdo, que controla a taxa de regularizacdo dos pesos, como discutido na Se¢ao
tal, sendo essencial para evitar o overfitting do modelo. O segundo € o algoritmo de otimizacao,
possuindo dois algoritmos analisados: [bfgs, que € recomendado para grandes bases de dados e
liblinear, que é mais adequada para problemas lineares.

Por dltimo, o Naive Bayes é conhecido por sua abordagem ingénua, destacando-se
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pela simplicidade e eficiacia do modelo. Essa abordagem ingénua, de modo geral, é derivada da
premissa de que as probabilidades condicionais dos atributos sao independentes entre si, como
visto na Subsecdo 3.4.1.3. Embora essa simplicidade seja justamente sua vantagem, ela também
implica em poucos hiperpardmetros se comparado com modelos mais complexos, como kNN e
Redes Neurais.

No caso do Naive Bayes com distribuicdo Gaussiana, o qual serd utilizado, o hy-
perparametro que serd ajusta € a suavizacdo das estimativas de variancia. Ajustar esse valor,

dependendo do valor especificando, o modelo pode generalizar os conceitos aprendidos melhor.

5.6 Ferramentas utilizadas

Para a implementacao deste trabalho, serd utilizado o Python como linguagem de
programacdo, fazendo uso da IDE Visual Studio Code com a extensdo Jupyter. Essa extensao
permite ao programador separar o cddigo em células dentro do ambiente de desenvolvimento,
possibilitando a execucao de um trecho do cédigo de forma individual. Adicionalmente, serdo
utilizadas as seguintes bibliotecas:

« Pandas: para realizar o pré-processamento dos dados, pois permite a criacdo e manipulacio
de bases de dados.

o Scikit-learn (Sklearn): para implementagao dos algoritmos de Aprendizado de Mdaquina,
pré-processamento dos dados, ajustes dos hiperpardmetros e avaliagao dos modelos.

« NumPy: para operacdes numéricas e manipulacio de arrays.

« Networkx: utilizado para trabalhar com grafos no python, possuindo fun¢des que calcula

métricas como centralidade de grau e excentricidade.
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6 RESULTADOS

Este capitulo apresenta os resultados obtidos ao longo deste trabalho. Na Secao
6.1, € discutido o primeiro experimento, que consistiu no treinamento do modelo com base na
selecdo aleatdria das amostras. A Secdo 6.2 apresenta uma busca exploratdria nas instancias que
demonstraram melhor desempenho em comparagdo as demais, conduzindo uma andlise suas
propriedades para identificar as possiveis causas.

Na Secao 6.3, foram selecionadas apenas as instancias com coeficiente de aglome-
racdo positivo e distante de zero para o treinamento e avaliacdo do modelo. Além disso, sdo
apresentados os resultados obtidos e esclarecidas as dividas levantadas no primeiro experimento.
A Subsecdo 6.3.1 explora o comportamento do modelo, mostrando que uma baixa acurdcia nem
sempre resulta em um baixo valor de corte. Por fim, na 6.4, sdo apresentados os valores obtidos
para os hiperparametros de cada modelo treinado e na Se¢do 6.5, € aplicado o modelo treinado

para instancias com mais de até 3000 vértices.

6.1 Treinamento do modelo com varias instancias aleatorias

Ao realizar o treinamento do modelo supervisionado com as instancias da Big Mac
Library, as bases de dados foram divididas em conjuntos de treinamento e teste. A estratégia
adotada foi concatenar as instancias selecionadas para o treinamento e, em seguida, utilizar o
modelo para realizar a particdao de instincias ndo aprendidas.

Devido as diferencas nas propriedades dos grafos, como centralidade de grau e
coeficiente de aglomeragdo, observou-se uma grande variacdo entre os conjuntos de dados. Isso
resultou em correlacdes distintas entre as varidveis das bases de dados de diferentes instancias,
tornando o processo de generalizacdo do modelo um desafio. Essas variagdes dificultaram a
capacidade do modelo de identificar padrdes consistentes e aplicaveis a grafos com caracteristicas
estruturais variadas.

Os resultados obtidos apds o treinamento e teste indicaram que, das 330 instancias
testadas, o modelo ndo apresentou um desempenho satisfatério geral, com apenas 58 instancias
exibindo valores significativamente mais elevados do que as demais, ainda que relativamente
baixos, conforme apresentado nas tabelas contidas no Apéndice A. Nessas tabelas, sdo listados
os nomes das instancias de teste, o valor de corte obtido através do Solver Big Mac, bem como

os valores obtidos pelos modelos de aprendizado de maquina Naive Bayes, kNN, Regressao
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Logistica e Rede Neural Artificial.

E importante destacar que o kNN foi o modelo que apresentou o melhor desempenho
geral, especialmente na Tabela 8. Isso sugere que o aprendizado baseado em instincias, que
armazena as informagdes de cada amostra, foi eficaz em detectar padrdes de instiancias que se
assemelham aos grafos ja aprendidos pelo modelo. No geral, os resultados obtidos se alinha
com a expectativa de que a modelagem seria mais eficiente para um subconjunto de grafos que
compartilham propriedades estruturais especificas, reforcando a importancia de considerar a
similaridade estrutural entre as instancias nesse processo de treinamento.

Assim como em bases de dados tradicionais € importante remover valores extremos
e realizar o pré-processamento dos dados para selecionar aqueles mais semelhantes, a fim de
melhorar a qualidade do treinamento, esse mesmo principio pode ser aplicado as instancias do
Problema do Corte Médximo. Para otimizar o aprendizado do modelo, é necessario selecionar
apenas as instancias que apresentam similaridades estruturais, aumentando, assim, o valor de

corte obtido pelo modelo.

6.2 Analise das instancias que tiveram um maior desempenho em relacio as outras

A andlise das instancias focou nas caracteristicas estruturais das 58 instincias-
alvo, avaliando suas estatisticas basicas e aplicando os métodos do cotovelo e da silhueta
para determinar a quantidade ideal de grupos. O algoritmo k-means foi utilizado para realizar
a separagdo, com o objetivo de identificar a caracteristica chave que contribuiu para o bom
desempenho do modelo nessas instancias. A Tabela 2 apresenta as medidas gerais dessas
caracteristicas, incluindo a dispersdo dos dados e os valores extremos. Para as métricas de
centralidade e coeficiente de aglomeragdo, que sdo atributos dos vértices, foram registrados os
valores minimos, maximos e a média observada em cada instancia, proporcionando uma visao
da variacao dessas caracteristicas dentro de cada grafo.

Conforme evidenciado na Tabela 2, as instancias-alvo estudadas variam em tamanho,
de 20 a 125 vértices, com uma média de 85 vértices e um desvio padrdo de 21. Em relacdo as
arestas, a menor quantidade observada é de 210, enquanto a maior € de 7800, com uma média
de 2500 arestas. No entanto, o desvio padrao de 1500 indica uma grande dispersdo, sugerindo
que alguns grafos sdo mais conectados do que outros. Essa diferenca de conectividade pode ser
confirmada ao analisar a densidade, que vai de 0.5 até 1.1, evidenciando tanto a presenca de

grafos completos quanto a ocorréncia de pelo menos uma instancia com lagos em sua estrutura.
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Tabela 2 — Estatisticas descritivas das propriedades do grafo

Caracteristicas mean std min 25% 50% 75% max
Nitimero de vértices 85x101  21x100 20x10"  80x10" 1.0x107 1.0x10> 1.25x10?
Numero de arestas 25%x10°  1.5x10°  21x102 1.6x10° 25x10° 25x10° 7.8x10°

Peso médio das aresta por vértices 6.6x10> 13x10° 3.0x10" 40x10" 50x10" 49x10> 6.1x10°
Ntmero de componentes conectados ~ 1.0x10°  0.0x10°  1.0x10° 1.0x10° 1.0x10° 1.0x10° 1.0x10°

Diametro 20x10°  0.0x100 20x10° 20x10° 2.0x10° 2.0x10° 2.0x10°
Excentricidade média 1.9%x10° 1.8x107!  1.3x10° 20x10° 20x10° 20x10° 2.0x10°
Raio 1.8x10° 37x107"  1.0x10° 2.0x10° 2.0x10° 2.0x10° 2.0x10°
Densidade 6.5x107" 22x107" 5.0x107" 5.0x107" 5.0x107" 9.0x107!  1.1x10°
Média centralidade do grau 6.5x107" 22x107" 5.0x107" 5.0x107' 5.0x107" 9.0x10°!  1.1x10°
Maixima centralidade do grau 7.6x1071 1.8x107! 6.0x107" 63x107! 65x107" 9.6x107"  1.1x10°
Minima centralidade do grau 54x107" 2.6x107" 29x107! 35x107! 3.8x107! 82x107! 1.1x10°

Média centralidade intermediagio 14%x1072 1.5%x1072 51x1073 64x1073 8.6x1073 15x107%2 82x1072
Mixima centralidade intermediagio  5.2x 1072 8.0x 1072 7.4x 1073 1.1x1072 2.0x1072 53x1072 4.2x 107!
Minima centralidade intermediagio 1.8 x 1073 1.4x 1073  0.0x10° 2.1x107* 22x1073 29x1073 45x1073
Média coeficiente de aglomeracdio  4.4x 107! 9.0x 1072 24x107" 43x107" 50x107" 5.0x107" 51x107!
Miéximo coeficiente de aglomeragio 4.8 x 107! 9.2x 1072 2.7x 107" 48x 107! 52x107! 54x107! 5.8x 107!
Minimo coeficiente de aglomeragio 3.9 x 107! 9.0x 1072 2.1x 107" 3.7x107" 43x107" 4.6x10"" 4.8x 107!
Nimero de tridngulos 43%x10*  57x10*  1L.1x10° 1.0x10* 2.0x10* 53x10* 3.1x10°
Transitividade 6.5x1071 2.1x107" 50x107" 5.0x107" 50x10"! 9.0x10"! 9.9x 107!

Fonte: elaborado pelo autor.

A Figura 11, demonstra a estimativa de densidade kernel (KDE) para a caracteristica
de densidade das instancias-alvo em compara¢do com toda a cole¢do de instancias, sendo que
estas dltimas variam de 0.01 até 1.1, com uma média de 0.49 e desvio padrao de 0.37. Dito isso,
o modelo desenvolvido ndo lida bem com grafos esparsos, o que pode ser pelo uso do PCA nas
colunas que representam as conexdes e seus respectivos pesos. Em outras palavras, como os
grafos s@o muito esparsos, apresentando poucas conexdes entre os vértices, ou seja, contendo
muitos valores 0, a matriz resultante possui baixa variabilidade. Isso dificulta a eficicia do PCA
na reducdo de dimensionalidade, pois ha pouca informac¢do nas arestas com peso em comparacao
as arestas que ndo existem.

O peso médio das arestas por vértice também apresenta uma variagdo significativa,
com valores que oscilam de 30 até 6100, possuindo uma disparidade entre o valor maximo, que
€ 200 vezes maior que o minimo, sugerindo que alguns grafos contém peso de arestas mais
elevado, bem como mais conexdes, indicando importantes diferencas estruturais. Outros aspectos
importantes incluem a quantidade de componentes conexos e o didmetro dos grafos, uma vez que
todas as instancias sdo conexas e compartilham o mesmo diametro, ou seja, sua maior distancia
minima entre dois vértice em todo grafo é 2.

A excentricidade média tem seu valor préximo de 2, com um desvio padrio baixo de
0.16, indicando uma distribui¢do bastante homogénea dos vértices. Como a excentricidade mede

a maior distancia minima entre um vértice e todos os outros, essa proximidade com o didmetro
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Figura 11 — KDE da caracteristica de densidade.
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Fonte: Elaborada pelo autor.

do grafo sugere que a maioria dos vértices estd relativamente perto do centro. Isso evidencia uma
distribui¢ao equilibrada dos vértices, com distancias similares ao centro do grafo, refor¢ando a
ideia de uma estrutura compacta e bem conectada.

No que diz respeito a centralidade do grau, o valor médio é de 0.65, com as caracte-
risticas de centralidade minima e maxima variando ligeiramente entre 0.54 e 0.76. Isso indica
que os grafos sdo equilibrados em termos de importancia dos vértices, ja que a centralidade
do grau reflete o nimero de conexdes diretas de cada vértice, medindo sua importincia no
grafo. Entretanto, as trés caracteristicas que dizem respeito a centralidade de intermediac@o
possuem valores muito proximo de 0, o que confirma a auséncia de "vértices-chave" responsaveis
por intermediar muitas conexdes entre outros vértices, sugerindo que o fluxo de conexdes nao
depende fortemente de vértices especificos.

Como a centralidade de intermediacdo mostrou valores extremos e consistentes em
todas as 58 instancias, com um desvio padrao proximo de 0, ela pode ser um dos principais
fatores que explicam o melhor desempenho do modelo nessas instancias-alvo. Com isso em
mente, foram utilizados os métodos do cotovelo e da silhueta para determinar a quantidade ideal
de grupos, além da aplica¢do do k-means para particionar todas as 330 instancias, levando em
consideragdo apenas a centralidade de intermediacdo. A Figura 12 mostra que o método do
cotovelo indica 2 grupos como ideal, enquanto o método da silhueta sugere 3 grupos.

Ao realizar a parti¢do das instancias com base exclusivamente na centralidade de

intermediacgdo, seja separando em 3 ou 2 grupos, observou-se que as 58 instancias foram sempre
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Figura 12 — Quantidade de grupos ideais com base na caracteristica de centralidade de
intermediacao.
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Fonte: Elaborada pelo autor.

agrupadas no mesmo conjunto, juntamente com outras 10 instancias. Esse fato sugere que
a centralidade de intermediacdo é uma das caracteristicas-chave para o bom desempenho do
modelo. No entanto, a presenca de outras instancias nesse grupo, onde o modelo ndo teve um
desempenho satisfatério, embora em pequena quantidade, indica que essa caracteristica, por si
s0, ndo determina o sucesso do modelo. Isso sugere que outros fatores podem estar influenciando
o desempenho e precisam ser considerados.

A caracteristica que registra a média do coeficiente de aglomeracao para cada vértice
em todas as instancias apresenta uma mediana de 0.5, com um desvio padrao muito baixo de
0.09. O grafo com a menor média possui um valor de 0.24, enquanto o grafo com a maior média
tem 0.51. Adicionalmente, as medianas das caracteristicas que registraram os valores minimos e
maximos do coeficiente de aglomeragao siao 0.46 e 0.54, respectivamente. No geral, esses dados
sugerem uma quantidade moderada de agrupamentos locais.

A Figura 13 apresenta a estimativa de densidade kernel (KDE) para as colunas de
média, maximo e minimo do coeficiente de aglomeragdo, ilustrando a distribuicdo dos valores
dentro do intervalo observado em cada uma dessas colunas. A Figura 13 (a) mostra a distribui¢ao
para todas as instancias, enquanto a Figura 13 (b) foca no conjunto das 58 instancias-alvo.
Na Figura 13 (a), observa-se a presenca de duas populagdes distintas: uma classe majoritaria
com valores muito préximos de zero, incluindo até valores negativos, e uma classe minoritaria
composta exclusivamente por valores positivos. A Figura 13 (b) demonstra precisamente essa

classe minoritaria, que corresponde as instancias-alvo observadas, reforcando a separagdo entre
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essas duas populagdes.

Figura 13 — KDE do coeficiente de aglomeracao
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Fonte: Elaborada pelo autor.

Ja a Figura 14 comprova que o nimero ideal de grupos é 2, sendo indicado tanto pelo
método do cotovelo quanto pelo método da silhueta. Além disso, ao aplicar o algoritmo k-means,
todas as 58 instincias foram corretamente separadas das demais, reforcando a ideia de que o
coeficiente de aglomeracdo € uma caracteristica chave para diferenciar as instancias-alvo. Isso
sugere que para que o modelo consiga ter um bom desempenho ao realizar o particionamento dos
vértices para o Problema do Corte médximo, de novas instancias, € necessario que elas possuem

valores de coeficiente de aglomeracao positivos e que nao estejam muito proximo de zero.

Figura 14 — Quantidade de grupos ideais com base na caracteristica de coeficiente de

aglomeracao.
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Fonte: Elaborada pelo autor.
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6.3 Treinamento focado no coeficiente de aglomeracao

A fim de confirmar a hip6tese levantada na secao 6.1, de que a qualidade do treina-
mento do modelo seria maior ao utilizar instancias de treinamento que compartilham caracteris-
ticas estruturais semelhantes, foi realizado um novo treinamento e teste focado na populacdo
minoritdria apresentada na secao 6.2.

Com o agrupamento de instancias baseadas no coeficiente de aglomeragdo, o modelo
passou a se especializar em grafos que compartilham essa caracteristica estrutural, especifica-
mente as propriedades desse subconjunto de instincias. Para testar essa abordagem, foi realizada
uma validacdo cruzada, onde 57 instancias foram utilizadas como conjunto de treinamento,
enquanto uma servia como teste, até que todas as instancias fossem avaliadas. Esse processo
revelou que, na maioria dos casos, as instancias alcangcaram uma margem de 90% no valor de
corte, se comparadas com o valor fornecido pelo solver. Esses resultados indicam que o modelo
apresenta maior capacidade de generalizacdo quando treinado em um conjunto de grafos com
estruturas mais similares, comprovando a hipétese levantada anteriormente.

Os resultados detalhados deste experimento estdo disponiveis nas Tabelas 3,4 e 5,
onde o valor de corte obtido pelos modelo supervisionados foi comparado com o valor fornecido
pelo solver Big Mac. O desempenho do modelo foi significativamente superior nas instancias
com coeficiente de aglomeracdo mais elevado, reforcando a importancia de considerar essa

propriedade especifica dos grafos ao treinar o modelo.

6.3.1 Relacdo da Acurdcia com valor de corte

Ao analisar métricas como FI-Score, Recall, Acurdcia e Precisdo, foi identificado
uma relacdo importante. Embora o modelo apresente uma acurdcia muito baixa para algumas
instancias do problema, o que também afeta negativamente as demais métricas de avaliacdo, isso
nao compromete o valor do corte, conforme demonstrado na Tabela 6. Nela foi listado alguns
casos extremos, onde, apesar da baixa acurdcia, o valor de corte se aproxima significativamente
daquele fornecido pelo solver, o que faz com que essas métricas nao sejem ideais para avaliar o
modelo treinado.

Esse comportamento sugere que o modelo, em vez de se ajustar aos detalhes espe-
cificos de cada instancia, estd aprendendo uma légica diferente, que € eficaz para resolver o

Problema do Corte Mdaximo. Em outras palavras, embora o modelo nédo esteja selecionando
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Tabela 3 — Resultados para o Treinamento especializado - Parte |

Instincia de Teste Solver Naive Bayes KNN Regressao Logistica RNA

pw05_100.0 8190 7619.0  7018.0 7976.0  6998.0
pw05_100.1 8045 7149.0  6999.0 7834.0  6836.0
pw05_100.2 8039 74940  6934.0 7703.0  6654.0
pw05_100.3 8139 7568.0  6748.0 7730.0  7124.0
pw05_100.4 8125 6803.0  6998.0 7676.0  6658.0
pw05_100.5 8169 6488.0  7033.0 7827.0  7166.0
pw05_100.6 8217 6752.0  7223.0 7751.0  6924.0
pw05_100.7 8249 7590.0  7014.0 77540  6937.0
pw05_100.8 8199 7377.0  6893.0 7989.0  7168.0
pw09_100.0 13585 12331.0 12323.0 13184.0 11597.0
pw09_100.1 13417 12009.0  12588.0 12875.0 11659.0
pw09_100.2 13461 12520.0 12296.0 13274.0 12565.0
pw09_100.3 13656 12169.0 12217.0 13172.0 12428.0
pw09_100.4 13514 11773.0 12134.0 13250.0 12451.0
pw09_100.5 13574 11742.0 11883.0 13347.0 12044.0
pw09_100.6 13640 12440.0 12551.0 13352.0 12512.0
pw09_100.7 13501 12429.0 12172.0 13045.0 12524.0
pw09_100.8 13593 11743.0 12450.0 13021.0 11706.0
pw09_100.9 13658 13027.0  12555.0 13424.0 12351.0

Fonte: elaborada pelo autor.

Tabela 4 — Resultados para o Treinamento especializado - Parte 11

Instincia de Teste  Solver Naive Bayes KNN Regressao Logistica RNA
gkalb 5744 4678.0 4330.0 5353.0 4652.0
gka2b 12451 9514.0 9757.0 12291.0  10320.0
gka3b 22115 16861.0  19459.0 21702.0  18761.0
gkadb 34857 29743.0  29856.0 33809.0  31412.0
gka5b 49942 45134.0  45281.0 47822.0  44976.0
gka6b 68189 58950.0  55934.0 67188.0  60696.0
gka7b 87428 65660.0  77946.0 84902.0  77778.0
gka8b 109969 95436.0  100895.0 108287.0  102557.0
gkadb 135757 97029.0 122643.0 130581.0  124552.0
gkalOb 209946 118596.0 194859.0 206584.0 196701.0

Fonte: elaborada pelo autor.

exatamente os mesmos vértices que o Solver Big Mac para o subconjunto S, algo que € necessario
para melhorar as métricas de avaliagdo, como Acuricia e F/-Score, seu valor de corte indica que

sua abordagem, de maneira geral, estd alinhada com a solucdo esperada pelo solver.

6.4 Ajuste dos hiper-parametros

Para realizar o ajuste dos hiperparametros, foi utilizada a ferramenta GridSearch,

que testa diversas combinacdes de parametros para encontrar a configuracdo que maximiza um



Tabela 5 — Resultados para o Treinamento especializado - Parte 11

Instancia de Teste Solver Naive Bayes KNN Regressao Logistica = RNA
£05_60.1 532 492.0  464.0 504.0  460.0
205_60.2 529 460.0  433.0 514.0 4520
205_60.3 538 474.0  450.0 518.0  440.0
205_60.4 527 489.0 4550 497.0 4610
205_60.5 533 481.0  470.0 526.0 433.0
£05_60.6 531 467.0  455.0 507.0  454.0
205_60.7 535 483.0 4220 515.0 427.0
205_60.8 530 496.0  465.0 4940 4620
205_60.9 533 511.0 421.0 519.0 477.0
205_80.0 929 833.0 812.0 885.0  809.0
205_80.1 941 875.0 764.0 884.0  801.0
£05_80.2 934 851.0  805.0 890.0  832.0
205_80.3 923 854.0 801.0 891.0 810.0
205_80.4 932 840.0  788.0 880.0  793.0
205_80.5 926 856.0  789.0 882.0 751.0
205_80.6 929 855.0  807.0 899.0  820.0
£05_80.7 929 889.0  769.0 894.0  837.0
£05_80.8 925 862.0 814.0 901.0  795.0
205_80.9 923 831.0 813.0 894.0 777.0
£05_100.0 1430 1300.0 1236.0 1351.0 1226.0
205_100.1 1425 1352.0 1289.0 1399.0 1277.0
£05_100.2 1432 1357.0 1245.0 1393.0 1275.0
¢05_100.3 1424 1345.0 1233.0 1368.0 1253.0
¢05_100.4 1440 1309.0 1270.0 1375.0 1286.0
£05_100.5 1436 1319.0 1276.0 1392.0 1288.0
205_100.6 1434 13540 1239.0 1378.0 1282.0
205_100.7 1431 1326.0 1257.0 1390.0 1242.0
205_100.8 1432 1280.0 1281.0 1346.0 1293.0
¢05_100.9 1430 1312.0 1265.0 1351.0 1234.0

Fonte: elaborada pelo autor.
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valor de avaliagdo especifico. Neste caso, o valor escolhido foi o corte médximo obtido pelo

modelo, pois, como visto anteriormente, uma acuracia baixa nao necessariamente resulta em um

bom valor de corte. Dessa forma, os melhores hiperpardmetros obtidos para cada modelo foram:

1. Naive Bayes:

« Taxa de suavizacio da varidncia: foram testada em 10 valores variando entre 1077 e

10°. O melhor valor foi de 0.001.

2. k-Nearest Neighbors (kNN):

« Numero de vizinhos mais préoximos: avalia a quantidade de vizinhos que serdao

analisados para a predi¢ao. Os valores testados foram 5, 10 e 15, sendo 5 o niimero

de vizinhos que obtive melhor resultado;

« Meétrica de distancia: foram testadas as métricas Minkowski, Euclidean e Manhattan.

A métrica com melhor desempenho foi Minkowski;
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Instancias de Teste Solver Naive Bayes kNN Regressao Logistica Rede Neural
Acuracia Corte Acuracia Corte Acuracia Corte Acuracia Corte
205_80.8 925 0.31 862.0 0.38 814.0 0.31 901.0 04 795.0
205_60.7 535 0.22 483.0 0.52 422.0 0.22 515.0 0.45 427.0
£05_60.6 531 0.3 467.0 043 455.0 0.27 507.0 0.45 454.0
205_60.8 530 0.33 496.0 0.52 465.0 0.35 494.0 0.53 462.0
205_100.1 1425 0.37 1352.0 0.35 1289.0 0.36 1399.0 047 1277.0
205_100.7 1431 024 1326.0 045 12570 0.19 1390.0 044 12420
205_100.8 1432 0.3 1280.0 0.36  1281.0 0.29 1346.0 0.36  1293.0
205_100.9 1430 0.23  1312.0 0.34  1265.0 0.18 1351.0 0.38 12340
pw05_100.0 8190 0.29 7619.0 042 7018.0 022  7976.0 0.39  6998.0
pw09_100.2 13461 0.23 12520.0 0.47 12296.0 0.15 13274.0 0.33  12565.0
pw09_100.9 13658 0.22 13027.0 042 12555.0 0.14 13424.0 046 12351.0
pw05_100.8 8199 021 7377.0 0.38  6893.0 0.14  7989.0 029 7168.0
gka2b 12451 023  9514.0 0.5 97570 0.07 12291.0 043 10320.0
gka3b 22115 0.25 16861.0 0.42 19459.0 0.18 21702.0 0.5 18761.0
gkadb 34857 0.32 29743.0 0.48 29856.0 0.28 33809.0 0.48 31412.0
gka5b 49942 0.3 451340 0.33 45281.0 0.27 47822.0 0.52 44976.0

Fonte: elaborada pelo autor.

« Ponderagao dos vizinhos: esse campo define se o peso dos vizinhos serd uniforme ou

baseado na distancia, isto €, onde os vizinhos mais proximos t€m maior impacto. O

melhor desempenho foi para uniforme.

3. Regressdo Logistica:

« Pardmetro de regularizacdo (C): o melhor resultado foi 0.046415888336127774,

sendo que foram testados 10 valores entre 10~% e 10%;

« Algoritmo de otimizacdo: entre lbfgs e liblinear, o que performou melhor foi /bfgs.

4. Rede Neural Artificial (RNA):

« Funcdo de ativacdo: entre tangente hiperbdlica e ReLU, a que performou melhor foi

RelLU;

Quantidade de camadas ocultas e neurdnios: duas camadas ocultas com 100 neurdnios

cada tiveram os melhores resultados. Além dessa, também foram testadas uma

camada com 50 neurdnios, uma camada com 100 neurdnios, além de duas camadas

com 50 neurdnios cada;

» Taxa de aprendizado: o tipo de taxa de aprendizado testado foi constante, onde

0 taxa permaneceria a mesma com o passar das épocas, e adaptativa, que iria se

adaptando conforme o desempenho do modelo, sendo que esta dltima retornou

melhores resultados;

« Algoritmo de otimizagdo: entre Stochastic Gradient Descent € Adam, o Stochastic



61

Gradient Descent retornou melhores resultados.

6.5 Aplicacao do modelo treinado em instancias de grande porte

O conjunto de instancias G, gerado por Helmberg e Rendl (2000), contém grafos de
grande porte, com tamanhos variando de 800 a 3000 vértices. Neste contexto, foram aplicados
os modelos desenvolvidos ao longo deste trabalho para obter o valor de corte nessas instancias,
mas com uma limitacao, isto €, devido a grande quantidade de vértices e arestas, ndo foi possivel
extrair caracteristicas dos grafos, como coeficiente de aglomeracdo e medidas de centralidade.
Esse detalhe importante impediu que o modelo fosse treinado com instancias ideais para cada
tipo de grafo existente no conjunto G.

Outro fator importante a ser informado € que, devido a dificuldade de extrair as carac-
teristicas dos grafos, ndo foi possivel identificar aqueles que possuem uma média de coeficiente
de aglomeracdo com valores positivos e distante de zero, além da média de centralidade de inter-
mediacdo préoxima de zero ou uma minima centralidade de grau superior a 0.53. Como visto na
Secdo 2, essas caracteristicas sdo fundamentais para o desempenho dos modelos desenvolvidos,
tornando o processo de ajuste e validacdo dos mesmos invidvel para as instancias em questao.

Para o treinamento, foram utilizadas todas as instancias da Big Mac Library. O
algoritmo com melhor desempenho foi o kNN, apresentando resultados e comportamentos seme-
lhantes aos gerados na Secdo 6.1, onde o treinamento foi realizado com instancias aleatdrias. No
geral, essa situacdo se repete neste experimento também. Assim como no experimento anterior,
o modelo conseguiu um desempenho melhor em algumas instancias em especifico, sugerindo
que hé grafos na base de treinamento com estruturas semelhantes ou padrdes semelhantes com a

instancia-alvo. Os resultados podem ser conferidos na Tabela 7.



Tabela 7 — Resultados para o Conjunto G

Instincia de Teste Solver Naive Bayes kNN Regressao Logistica RNA
Gl 11609 119 8842 169 561
G2 11612 134 8606 179 619
G3 11614 168 8763 121 477
G4 11638 165 8669 165 353
G5 11624 233 8969 122 407
G6 2176 -22 289 -25 -72
G7 2006 -30 311 -30 -35
GS8 2004 -22 56 -19 19
G9 2047 -41 340 -41 -4
G10 1998 -13 105 -17 -10
Gl1 564 0 64 0 -8
G12 556 -4 -6 0 2
Gl13 582 -6 36 -6 -8
Gl14 3054 0 1866 24 660
Gl15 3044 0 2194 0 715
Gl6 3043 0 2027 0 691
G17 3042 0 1928 0 740
G18 988 -8 -70 -62 19
G19 906 -1 -27 -29 15
G20 940 6 37 -33 -5
G21 929 59 73 -78 -2
G22 13338 83 9596 61 148
G23 13287 113 9696 52 125
G24 13306 56 9654 38 164
G25 13288 79 9680 71 390
G26 13264 71 9674 16 219
G27 3304 -41 -23 -39 21
G28 3253 -8 -449 -8 -6
G29 3352 -8 -164 -12 2
G30 3363 -12 317 -12 -20
G31 3269 -15  -601 -15 -1
G32 1386 2 70 0 6
G33 1368 -4 -100 -4 12
G34 1376 -10 -102 -10 -2
G35 7651 0 5529 0 925
G36 7641 166 5408 0 1379
G37 7660 336 5630 0 1503
G38 7646 0 5352 0 884
G39 2381 -48 17 121 -56
G40 2373 -6 5 -40 2
G41 2386 -25 -89 -52 37
G42 2453 3 65 -74 -48
G43 6654 51 4599 64 122
G44 6649 84 4839 67 129
G45 6642 49 4607 57 142
G46 6643 52 4500 32 218
G47 6641 113 4526 44 178
G438 6000 8 1912 4 28
G49 6000 16 2082 8 38
G50 5880 12 1706 4 36
G51 3838 0 2712 0 739
G52 3841 0 2662 0 906
G53 3838 0 2627 0 730
G54 3837 0 2541 0 847

Fonte: elaborada pelo autor.
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7 CONCLUSOES E TRABALHOS FUTUROS

Neste trabalho, foram exploradas aplicacdes de algoritmos de aprendizado de mé-
quina supervisionado para a criagdo de modelos treinados a partir de instancias de tamanhos
pequenos e intermedidrios, com o objetivo de solucionar o Problema do Corte Maximo. Esse
problema consiste em encontrar um subconjunto S de vértices, de tal forma que a soma das
arestas com exatamente um vértice em S seja a maior possivel. O modelo foi treinado com
instancias previamente solucionadas pelo Solver Big Mac e utilizado para realizar a particdo dos
vértices de instincias ndo observadas.

A andlise revelou uma relacao importante entre as propriedades estruturais dos grafos
e o desempenho dos modelos supervisionados tradicionais na solucao desse problema. Mais
especificamente, as instancias com maior coeficiente de aglomeracao e centralidade de grau,
além da centralidade de intermediacao préxima de zero, da colecao de instancias da Big Mac
Library, demonstraram um desempenho superior em termos de valor de corte obtido pelo modelo.
Isso sugere que essas caracteristicas estruturais sao importantes para um treinamento eficiente
dos modelos.

O uso de uma base de dados de treinamento composta por instancias selecionadas de
forma aleatoria evidenciou que, assim como em bases de dados tradicionais, € necessario que
os dados ndo apresentem grandes disparidades em suas caracteristicas estruturais. Neste caso,
a estrutura dos grafos, como coeficiente de aglomeragao e grau de centralidade desempenha
esse papel. Portanto, utilizar o coeficiente de aglomeragdo como critério para agrupar as
instancias, selecionando apenas aquelas cujos valores sdo positivos e distantes de zero, foi um
fator determinante no treinamento do modelo, gerando bons resultados, estando proximos aos
fornecidos pelo Solver Big Mac.

Um ponto importante foi a baixa acurdcia observada em algumas instancias. Embora
isso impacte negativamente as métricas tradicionais de avaliacdo de modelos preditivos, ndao
comprometeu o valor de corte, sugerindo que o modelo conseguiu aprender uma légica eficiente
para o particionamento dos vértices. Por fim, os resultados obtidos ao treinar o modelo com
instancias menores e aplicd-lo nas instincias do conjunto G indicam que, dependendo das
amostras de treinamento, ha potencial para que o modelo alcance melhores desempenhos no

futuro.
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7.1 Trabalhos futuros

Para trabalhos futuros, espera-se expandir o conjunto de instancias utilizadas para o
treinamento e teste, abrangendo grafos de diferentes tamanhos e complexidades, além daqueles
observados na Big Mac Library. Esse agrupamento de novas instancias visa melhorar a qualidade
do treinamento dos modelos de aprendizado de maquina, trazendo grafos com estruturas mais
variadas. O objetivo € particionar a cole¢do de instncias com base em multiplas caracteristicas
estruturais, como coeficiente de aglomeracdo, centralidade de grau e conectividade, com especial
atencdo para grafos com coeficientes de aglomeracao positivos.

Além disso, pretende-se explorar outras formas de representar os grafos nas bases
de dados. Uma abordagem promissora € o uso de graph embeddings gerados por redes neurais,
que capturam as estruturas dos grafos com base nas caracteristicas tanto dos vértices quanto das
arestas. Além disso, € interessante explorar outros algoritmos de aprendizado de maquina, como
Random Forest e Maquina de Vetores de Suporte (SVM) para avaliar o comportamento desses
modelos em relacdo aqueles observados nesse trabalho.

Por fim, busca-se desenvolver um método para selecionar amostras de treinamento
ideais, visando otimizar o desempenho dos modelos de aprendizado supervisionado na solugdo

do Problema do Corte Maximo.
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APENDICE A - RESULTADOS PARA O TREINAMENTO COM AMOSTRAS
ALEATORIAS

Tabela 8 — Resultados para o treinamento com amostras aleatérias - Parte I

Instancia de Teste  Solver Naive Bayes kNN Regressao Logistica RNA

gkalb 5744 2511 4080 4611 4728
gka2b 12451 5370 9927 8052 11265
gka3b 22115 6855 17099 9023 18824
gkadb 34857 6613 30888 15636 22967
gkaSb 49942 10829 45506 12950 31168
gka6b 68189 15627 61157 18069 43732
gka7b 87428 14477 79095 21019 51731
gka8b 109969 8125 100913 31543 43661
gka9b 135757 14150 125546 39740 53472
gkalOb 209946 23623 193989 44435 63274

Fonte: elaborada pelo autor.

Tabela 9 — Resultados para o treinamento com amostras aleatérias - Parte 11

Instancia de Teste Solver Naive Bayes = KNN Regressdo Logistica RNA

pw05_100.0 8190 2478 5868 1156 799
pw05_100.1 8045 1792 6181 474 1086
pw05_100.2 8039 2303 5967 952 1074
pw05_100.3 8139 1873 6106 558 1044
pw05_100.4 8125 1588 6196 701 766
pw05_100.5 8169 1803 6442 642 1768
pw05_100.6 8217 2063 6322 470 1920
pw05_100.7 8249 1666 5719 806 1370
pw05_100.8 8199 2110 6485 973 1325
pw09_100.0 13585 2669 11330 938 933
pw09_100.1 13417 2985 10658 1296 2376
pw09_100.2 13461 3502 11339 454 1418
pw09_100.3 13656 3977 10973 2271 2430
pw09_100.4 13514 1723 11108 845 876
pw09_100.5 13574 2157 10735 864 3247
pw09_100.6 13640 4244 11505 1402 1991
pw09_100.7 13501 4926 10972 1366 526
pw09_100.8 13593 1365 10562 901 1859
pw09_100.9 13658 3502 9695 1778 2423

Fonte: elaborada pelo autor.



Tabela 10 — Resultados para o treinamento com amostras aleatdrias - Parte 111

Instincia de Teste Solver Naive Bayes kNN Regressao Logistica RNA

£05_100.0 1430 293 1048 96 233
£05_100.1 1425 353 1138 138 97
205_100.2 1432 255 1237 0 268
£05_100.3 1424 308 1164 149 50
g05_100.4 1440 345 898 53 170
£05_100.5 1436 335 1043 0 174
205_100.6 1434 349 1125 134 239
205_100.7 1431 270 1180 52 199
£05_100.8 1432 192 1085 144 271
£05_100.9 1430 260 1135 125 149
205_60.1 532 150 433 64 105
205_60.2 529 94 430 30 209
205_60.3 538 146 432 29 51
205_60.4 527 125 399 27 108
205_60.5 533 214 387 77 104
205_60.6 531 227 420 24 30
205_60.7 535 106 428 0 107
205_60.8 530 248 422 112 52
205_60.9 533 166 388 117 81
£05_80.0 929 210 744 37 73
205_80.1 941 235 702 116 109
205_80.2 934 206 716 105 170
£05_80.3 923 249 772 76 223
205_80.4 932 206 740 67 112
205_80.5 926 172 710 76 86
205_80.6 929 231 766 72 35
205_80.7 929 144 793 79 215
£05_80.8 925 205 676 71 221
205_80.9 923 105 724 34 182

Fonte: elaborada pelo autor.
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