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RESUMO

Este estudo é voltado para a criação de modelos supervisionados, juntamente com o ajuste de seus

hiperparâmetros para abordar o Problema do Corte Máximo em Grafos. Devido a complexidade

desse problema ser NP-difícil, mesmo para instâncias de tamanho intermediário, achar uma

solução ótima é um desafio computacional. Entretanto, existem diversas aplicações desse pro-

blema em áreas como análise de redes sociais, agrupamento de dados, segmentação de imagens

e design de Chips VLSI, o que continua a motivar pesquisadores. A literatura apresenta métodos

inovadores, incluindo aqueles baseados em redes de ponteiros com aprendizado supervisionado

e por reforço, bem como abordagens que utilizam Redes Neurais em Grafos. Esses métodos

representam avanços promissores na resolução desse problema, fazendo uso de técnicas de

Aprendizado de Máquina.

Palavras-chave: problema do corte máximo; aprendizado de máquina; aprendizado supervisio-

nado; problema NP-difícil.



ABSTRACT

This study focuses on the creation of supervised models, coupled with the tuning of their hyperpa-

rameters, to address the Max-Cut Problem. Due to the NP-hard complexity of this problem, even

for instances of intermediate size, finding an optimal solution poses a computational challenge.

However, there are several applications of this problem in areas such as social network analysis,

data clustering, image segmentation, and VLSI chip design, which continue to motivate resear-

chers. The literature presents innovative methods, including those based on pointer networks

with supervised and reinforcement learning, as well as approaches utilizing Neural Networks

in Graphs. These methods represent promising advancements in solving this problem, thus

providing potential solutions for its resolution.

Palavras-chave: max-cut problem; machine learning; supervised learning; NP-hard problem.
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1 INTRODUÇÃO

Na área da Teoria dos Grafos, encontramos diversos problemas classificados como

NP-completo ou NP-difícil, como o Problema do Isomorfismo de Subgrafos, o Problema do

Caixeiro Viajante e o Problema de Cobertura dos Vértices (Garey; Johnson, 1979).

Entre esses problema, existe o Problema do Corte Máximo, sendo um problema de

otimização combinatória, podendo ser definido como segue: em um grafo G = (V,E), tal que V

representa o conjunto de vértices e E o conjunto de arestas, sendo definido um subconjunto S

contido em V , tem-se o conjunto de arestas que têm exatamente um vértice em S, denominado

corte. Quando o grafo é ponderado, ou seja, contém pesos associados às suas arestas, o peso de

um corte é determinado pela soma dos pesos das arestas contidas nesse corte. Assim, o Problema

do Corte Máximo busca encontrar o subconjunto S de vértices que resulta no corte de maior peso

em um grafo ponderado (Boros; Hammer, 1991).

Dada a relevância prática dos Problemas de Otimização Combinatória, surgiram

diversos algoritmos para abordá-los, podendo ser categorizados como exatos ou aproximados.

Além disso, é importante ressaltar que o espaço de soluções para problemas NP-completo ou

NP-difícil influencia no tempo computacional para resolvê-los com os algoritmos conhecidos,

visto que ele cresce de forma exponencial conforme o tamanho da entrada aumenta. Isso torna

os métodos exatos inviáveis, visto que eles tendem a explorar boa parte ou todo o espaço de

soluções. Por sua vez, os métodos aproximados tem como objetivo encontrar soluções que se

aproximem o máximo possível da solução ótima, mas para isso, eles sacrificam a garantia de

encontrar soluções ótimas (Blum; Roli, 2003).

O Aprendizado de Máquina (AM) é uma das áreas que vem crescendo em um ritmo

notável. Nela existem diferentes algoritmos com várias formas de aplicações, além da contínua

adaptação dos algoritmos para diversos propósitos (Faceli et al., 2011). Entre as aplicações para

essas técnicas, encontra-se: suporte na análise do sequenciamento genômico (Libbrecht; Noble,

2015), detecção de doenças cardiovasculares (Oliveira et al., 2023) e predição de risco de evasão

de alunos (Teodoro; Kappel, 2020). Além disso, o Aprendizado de Máquina (AM) também é

utilizado para abordar problemas em grafos, como coloração de grafos (Goudet et al., 2022),

Problema do Caixeiro Viajante (Miki et al., 2018) e Problema da Cobertura mínima de Vértices

(Gianinazzi et al., 2021).

Este trabalho concentra-se em investigar as capacidades do Aprendizado de Máquina

no contexto do Problema de Otimização Combinatória do Corte Máximo. Por ser um problema
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NP-difícil (Karp, 1972), é um desafio computacional lidar mesmo com instâncias de tamanho

intermediário. Entretanto, ele possui uma amplas aplicações em domínios como a análise de

redes sociais (Agrawal et al., 2003), agrupamento de dados (Otterbach et al., 2017), segmentação

de imagens (Sousa et al., 2013) e em projeto de Chips VLSI (Very Large Scale Integrated) (Liers

et al., 2011). O que incentiva pesquisadores de diversas áreas a investigar mais sobre o problema.

Na literatura, encontramos diferentes abordagens para o Problema do Corte Máximo,

utilizando técnicas variadas de Aprendizado de Máquina. Um estudo conduzido por Gu e

Yang (2018) propôs um algoritmo baseado em redes de ponteiros. Este modelo é treinado por

meio de aprendizado supervisionado e se destaca pela sua capacidade de lidar com dados de

forma sequencial, incorporando um mecanismo de atenção para identificar informações mais

importantes.

O trabalho subsequente, proposto por Gu e Yang (2020) dois anos depois, também faz

uso de redes de ponteiros, porém, adota uma abordagem que utiliza aprendizado supervisionado e

por reforço no treinamento do modelo. Este estudo inclui uma comparação entre os dois métodos,

demonstrando o desempenho de cada um. Por fim, o Yao et al. (2019) apresenta um método que

utiliza Redes Neurais em Grafos. De maneira geral, essa arquitetura de rede neural é projetada

para lidar com dados estruturados na forma de grafos, o que demonstrou bons resultados.

Com base nisso, esse trabalho se destaca em relação aos anteriores ao adotar uma

abordagem central que envolve a utilização de instâncias de pequena escala do Problema do Corte

Máximo no treinamento dos modelos de AM. Essa estratégia permite a resolução do problema

em um tempo razoável, viabilizando o treinamento de um modelo supervisionado. O objetivo

final é aplicar esse modelo posteriormente em instâncias de grande porte, proporcionando uma

solução eficiente e escalável.

O restante deste trabalho está estruturado da seguinte forma: No Capítulo 2, são

definidos os objetivos gerais e específicos a serem alcançados. No Capítulo 3, são abordados

os conceitos e informações teóricas essenciais para compreender a pesquisa. O Capítulo 4

apresenta trabalhos relacionados que se assemelham à proposta deste trabalho, que visa aplicar

técnicas de Aprendizado de Máquina no contexto do Problema do Corte Máximo. O Capítulo 5

descreve a metodologia empregada para atingir os objetivos apresentados no Capítulo 2. Por

fím, o Capítulo 6 mostra os resultados obtido, enquanto o Capítulo 7 trás as conclusões dessa

pesquisa e trabalhos futuros.
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2 OBJETIVOS

Neste capítulo, será discutido o objetivo principal a ser alcançado com o desenvolvi-

mento deste trabalho, juntamente com as objetivos específicos essenciais para obter os resultados

desejados.

2.1 Objetivos gerais

Criação de modelos de aprendizado de máquina supervisionado para o Problema

de Otimização Combinatória de Corte Máximo. A ideia principal é utilizar instâncias de

tamanho pequeno do Problema do Corte máximo para ajustar o modelo supervisionado, visando

a aplicação em instâncias de grande porte.

2.2 Objetivos específicos

• Adquirir e preparar conjuntos de dados pertinentes ao Problema do Corte Máximo;

• Realizar o pré-processamento nos dados das instâncias adquiridos para criar a base de

dados de treinamento, descobrindo os atributos mais relevantes;

• Escolher algoritmos de Aprendizado de Máquina Supervisionado;

• Treinar e validar os modelos supervisionados usando a base de dados dividida em treina-

mento e teste, respectivamente;

• Avaliar o desempenho em termos de precisão na solução para o Problema do Corte

Máximo;

• Aplicar o aprendizado adquirido em instâncias com tamanhos grande;

• Analisar e interpretar os resultados, identificando informações relevantes para a aplicação

de algoritmos de aprendizado de máquina supervisionado para o Problema do Corte

Máximo;
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3 FUNDAMENTAÇÃO TEÓRICA

Este capítulo aborda os fundamentos para a compreensão do problema deste trabalho.

Na Seção 3.1, são apresentados os conceitos introdutórios da Teoria dos Grafos. A Seção 3.2

descreve as classes de problemas, incluindo definições de Problemas de Decisão e Otimização,

para proporcionar uma compreensão mais aprofundada. A Seção 3.3 define o Problema do Corte

Máximo e explora suas aplicações na Subseção 3.3.1.

Em seguida, a Seção 3.4 introduz a teoria do Aprendizado de Máquina, incluindo

a hierarquia de aprendizado e principais diferenças entre o Aprendizado Supervisionado e

Não-Supervisionado. A Subseção 3.4.1 detalha o processo de treinamento no Aprendizado

de Máquina Supervisionado, seguida da apresentação de algumas métricas de avaliação para

modelos de classificação supervisionada na Subseção 3.4.1.1. As Subseções 3.4.1.2, 3.4.1.3,

3.4.2 3.4.1.4 abordam as técnicas de aprendizado de máquina que serão utilizados.

Por fim, a Subseção3.4.3 aborda técnicas de aprendizado não supervisionado. Mais

especificamente, a Subseção 3.4.3.1 aprezenda a técnica de Análise de Principais Componentes,

utilizado na parte de pre-processamento da base de dados dos modelos e para interpretação

dos resultados, a Subseção 3.4.3.2 apresenta o Algoritmo k-means, que deu suporte na fase de

interpretação dos resultado obtidos do modelo.

3.1 Conceitos introdutórios da Teoria dos Grafos

Um grafo simples é denotado como G = (V,E), sendo composto por dois conjuntos

distintos: V que representa os vértices e E que representa as arestas. Ambos os conjuntos

possuem um número finito de elementos. Os elementos de E são subconjuntos de dois elementos

de V , representando uma ligação entre dois vértices, ou seja, E ⊆ {{u,v} | u,v ∈V}. De modo

geral, dois vértices são considerados adjacentes (ou vizinhos) caso exista uma aresta entre eles

(Trudeau, 1994).

Em um grafo, cada aresta (u,v) pode ser dirigida (ou arco), sendo representado por

um par ordenado, ou não dirigida, sendo representado por um par não ordenado denotado por

conjuntos {u,v} (Goodrich; Tamassia, 2009). No primeiro caso, para a aresta dirigida (u,v),

temos que u (cauda) é dirigido para v (cabeça), indicando uma direção específica representada

pelo par ordenado. No segundo caso, a ordem de representação da aresta não dirigida, seja {u,v}

ou {v,u}, é irrelevante, pois, em ambas, a ligação entre u e v é considerada (Gross jay yellen,
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2013). Além disso, se um grafo possuir apenas arestas dirigidas, é chamado de digrafo. Por outro

lado, se possuir apenas arestas não dirigidas, é chamado de grafo não direcionado (Goodrich;

Tamassia, 2009).

Quando o grafo é não direcionado, o grau de um vértice v, que representa a quanti-

dade de vértices adjacentes a ele, pode ser expressado como d(v). Por sua vez, a expressão d(G)

refere-se à média dos graus de todos os vértices do grafo (Diestel, 2010). Além disso, existem

outras características relacionadas às arestas, como direção e peso, que são associadas a grafos

específicos.

A Figura 1 abaixo ilustra exemplos de dois grafos simples, sendo eles, não direcio-

nado, não direcionado com arestas ponderadas e um digafo, respectivamente.

Figura 1 – Exemplos de grafos simples

(a) Grafo não direcionado

1 2

34

(b) Grafo não direcionado com
arestas ponderadas

1 2

34

5

2
3

4 5
6

7

(c) Grafo Direcionado

1 2

34

5

Fonte: elaborada pelo autor.

O termo subgrafo é utilizado para referir-se a grafos contidos em outros. Em outras

palavras, dado um grafo G= (V,E) e um grafo G′ = (V ′,E ′), G′ será um subgrafo de G se V ′ ⊆V

e E ′ ⊆ E, podendo ser expressado como G′ ⊆ G (Diestel, 2010). A quantidade de vértices e

arestas de um grafo pode ser expressa por |V | e |E|, respectivamente. Desta forma, um grafo

(ou subgrafo) simples é denso se o valor de |E| estiver próximo de |V |2, pois implica que quase

todas as possíveis arestas já estão presentes. Caso contrário, se o grafo possuir poucas arestas, é

classificado como esparso (Gross jay yellen, 2013). Note que a Figura 1 (a) é um exemplo de um

grafo denso, pois ele já contém todas as possíveis arestas.

Além das características mencionadas, um grafo pode conter ciclos, que ocorrem

quando há um caminho que retorna ao mesmo vértice de origem. Mais especificamente, um

caminho é uma sequência de vértices e arestas, e um ciclo ocorre quando ele começa e termina no

mesmo vértice. Além disso, quando um grafo é conexo, ou seja, há um caminho entre quaisquer
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dois vértices nesse grafo, e não contém ciclos, é chamado de árvore (Goodrich; Tamassia, 2009).

O grau de um vértice pode ser utilizado para determinar sua importâncias em relação

as coneções dentro do grafo, por meio de medidas de centralidade. A centralidade de grau de

um vértice é determinada pela quantidade de arestas que os tocam diretamente, refletindo sua

relevância em termos de conexões dentro do grafo. Já a centralidade de intermediação, está

interessada na quantidade de caminhos mínimos que passam pelo vértice, ou seja, em intermediar

conexões, medindo sua importância em relação ao fluxo de conxões dentro do grafo (Latora et

al., 2017).

Para avaliar o tamanho do grafo, isto é, o quão próximo estão seus vértices e arestas,

é utilizado medidas como diâmetro, raio e excentricidade. Conforme Diestel (2017), o diâmetro

de um grafo é a maior distância mínima entre quaisquer dois vértices, enquanto a excentricidade

de um vértice é a maior distância mínima entre um vértice qualquer para todos os outros do

grafo. Já o raio, é a menor excentricidade observada entre todos os vértices.

Por último, a fim de identificar formações de grupos locais, isto é, de vértices e

arestas dentro do grafo, é utilizado coeficiente de agrupamento. Para tal, é utilizado a quantidade

de triângulos, que é subgrafos completos de três vértices, que são formados em torno de um

determinado vértice, em relação ao número total de triângulos que poderiam ser formados

(Barabási, 2016).

3.2 Classes de Problemas

Um algoritmo é um conjunto de passos computacionais bem estruturados que trans-

forma valores de entrada em valores de saída. Adicionalmente, pode ser visto como uma

ferramenta para solucionar um problema computacional bem definido, onde o enunciado do

problema define a relação desejada entre a entrada e saída, e o algoritmo que é a sequência de

etapas computacionais, fornece o procedimento para alcança-la (Cormen et al., 2012).

Os problemas podem ser classificados em vários tipos distintos, incluindo os Pro-

blemas de Decisão, que retornam uma resposta binária, ou seja, 0 ou 1, que indica sim ou não,

e os Problemas de Otimização, que retornam a melhor solução dentro do espaço de possíveis

soluções (Sipser, 2012).

Esses dois problemas possuem uma relação conveniente. Um problema de otimização

pode ser abordado como um problema de decisão ao impor restrições para o valor a ser otimizado.

Por exemplo, dado um inteiro k, um grafo conexo G com pesos inteiros nas arestas e um problema
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de otimização qualquer, como o problema da árvore de cobertura mínima, que busca encontrar

uma árvore contendo todos os vértices do grafo, com a menor soma dos pesos das arestas possível.

Este grafo tem uma árvore de cobertura mínima com pesos menores que k? Como a resposta

esperada é um valor binário, esse problema agora demonstra características de um problema de

decisão (Goodrich; Tamassia, 2009).

A complexidade de um algoritmo pode ser classificada com base em duas classes

fundamentais de problemas. A primeira sendo a classe P, que refere-se aos problemas de decisão

que podem ser resolvidos por algum algoritmo no qual o número de passos é limitado por um

polinômio fixo no comprimento da entrada. Já a segunda é a classe NP, que está relacionada

com o tempo polinomial não determinístico, pois sua definição foi estabelecida em termos de

máquina não determinística, ou seja, máquinas que tem mais de um movimento possível para

uma determinada configuração (Cook, 2000).

Além disso, essa última classe é constituída por problemas de decisão que podem

ser verificados em tempo polinomial (Arora sanjeev;barak, 2016). Desta forma, ao selecionar

uma solução candidata e conduzir a verificação, o algoritmo deve ser capaz de fazê-lo em tempo

polinomial, embora encontrar a solução em si não possa ser feita nesse tempo.

Já para os problemas de otimização, temos as classes PO e NPO, que referem-se,

respectivamente, à extensão das classes P e NP. Desta forma, um problema NPO é um problema

de otimização cujas versões de decisão estão em NP, enquanto um problema PO está em P, o que

significa que é solucionável em tempo polinomial (Bazgan et al., 2005).

Com base nisso, podemos definir duas outras classes. Dado um problema de decisão

M, este será classificado como um problema NP-difícil se cada problema de decisão L em NP,

for redutível a tempo polinomial a M. Em adição, se esse problema M for NP-difícil e também

estiver dentro da classe NP, denotamos ele como NP-completo, sendo considerado um dos

problemas mais difíceis dentro da classe NP (Goodrich; Tamassia, 2009). Adicionalmente, se

um problema de otimização está na classe NP-difícil, não há um algoritmo de tempo polinomial

capaz de encontrar a solução ótima, a menos que P seja igual a NP (Sipser, 2012).

Demonstrar que P ⊆ NP é uma tarefa considerada trivial (Cook, 2000). No entanto,

estabelecer a igualdade entre P e NP é uma tarefa mais difícil. Conforme Sipser (2012), esse é

um dos maiores problemas não resolvidos na ciência da computação teórica e na matemática

contemporânea. Se essas classes fossem iguais, qualquer problema polinomialmente verificável

seria também decidível em tempo polinomial. Ademais, uma das estratégias de realizar esta



20

prova é demonstrar que algum problema NP-completo pode ser resolvido em tempo polinomial,

pois implicaria diretamente que todo problema em NP tem uma solução em tempo polinomial,

provando que P = NP (Arora sanjeev;barak, 2016).

Embora a classe NP-completo seja originalmente associada aos problemas de decisão,

existem muitos desses problemas que são versões de decisão de problemas de otimização

(Bazgan et al., 2005). Como mencionado anteriormente, um problema de otimização pode ser

transformado em um problema de decisão. Além disso, em contexto relevante à essa classe, se

comprovar que um problema de decisão é difícil, então o problema de otimização correspondente

também é difícil (Cormen et al., 2012).

3.2.1 Problemas clássicos da literatura

Dentre os principais problemas da classe NP-completo, encontram-se o Problema

da Satisfatibilidade (SAT), Cobertura de Vértices (Vertex Cover Problem) e o Problema do

Caixeiro-Viajante (The Traveling Salesman Problem) (Goodrich; Tamassia, 2009). Além desses

problemas, temos o Problema do Corte Máximo (Max-Cut Problem) abordado na Seção 3.3,

classificado como NP-difícil (Karp, 1972).

Para exemplificar o Problema do Caixeiro-Viajante, considere o seguinte cenário:

um vendedor deseja percorrer um conjunto de cidades uma única vez, buscando o caminho de

menor custo e retornando no final à cidade de origem. Esse cenário caracteriza um problema

de otimização. Em adição, é possível abordar esse problema utilizando a Teoria dos Grafos.

Nesse contexto, um grafo simples ponderado G = (V,E) é definido, seus vértices representam as

cidades e as arestas indicam a existência de rotas entre elas. Por último, o peso associada a cada

aresta corresponde ao custo da rota (Cormen et al., 2012).

O Problema da Cobertura de Vértices busca determinar se um grafo simples G =

(V,E) possui uma cobertura de vértices de tamanho k, onde k ∈ N (Sipser, 2012). Em outras

palavras, o objetivo é verificar se é possível escolher um conjunto de vértices V ′ de tamanho k de

forma que, para toda aresta {u,v} ∈ E, os vértices u ou v pertençam ao conjunto V ′ ⊆V .

O Problema SAT tem como objetivo determinar se uma fórmula booleana é satisfatí-

vel, ou seja, se existe uma atribuição de valores verdadeiros e falsos às variáveis de uma fórmula

booleana, tal que esta fórmula seja avaliada como satisfatível. Para ser considerada no contexto

do problema, as fórmulas devem estar na forma normal conjuntiva, isto é, a fórmula deve ser

expressada como uma conjunção de cláusulas, onde cada cláusula é compostas por disjunções de
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literais (Cook; Mitchell, 1996). Além disso, segundo Cook e Mitchell (1996), esse problema

é o primeiro e um dos mais simples dentre os muitos que foram demonstrados ser da classe

NP-completo.

3.3 O problema do Corte Máximo

O Problema do Corte Máximo não é apenas de otimização, ele está inserido em uma

área mais específica, sendo considerado um Problema de Otimização Combinatória. Conforme

Miyazawa e Souza (2015), essa área engloba uma ampla gama de problemas voltados para a

busca de soluções que otimizem a utilização dos recursos disponíveis. Em outras palavras, está

além de encontrar uma solução viável, envolve a eficiente utilização dos recursos disponíveis,

a otimização do tempo para a realização de ações e operações, a maximização de lucros e

minimização de prejuízos. Ademais, outros problemas dessa natureza podem ser consultados

nos trabalhos de Garey e Johnson (1979) e Gross Jay Yellen (2013).

Dado um grafo não direcionado G = (V, E). Definimos como corte o ato de separar

um conjunto de vértices em dois subconjuntos disjuntos, denotados S e S, tal que S∪S =V e

S∩S = /0. O tamanho do corte é determinado pelo número de arestas que cruzam as partições,

ou seja, que partem de um subconjunto e chegam no outro. Em outras palavras, as arestas de

corte são as arestas uv, tal que uv ∈ E e u ∈ S enquanto v ∈ S, ou alternativamente, u ∈ S e v ∈ S.

Por outro lado, as arestas que conectam vértices pertencentes a um mesmo subconjunto, seja S

ou S, são conhecidas como arestas não cortadas (Sipser, 2012).

A Figura 2 ilustra um exemplo de corte em um grafo. Note que o conjunto dos

vértices S = {1,3,5} são todos os vértices a esquerda do corte (ilustrado por uma reta pontilhada)

no grafo, enquanto o conjunto S = {2,4,6} são todos os vértices a direta. Já as arestas cortas

são o conjunto {{4,5},{5,6},{1,2},{1,4},{1,6}}, enquanto o conjunto {{3,5},{5,1},{2,6}}

indica quais as arestas não cortadas.

O problema do Corte Máximo pode ser formulado usando um grafo não direcionado

G = (V,E), onde |V |= n representa o número de vértices e |E|= m indica o número de arestas

ponderadas. A função ci j = c ji retorna o peso de cada aresta {i, j} ∈ E, com ci j = 0 para

{i, j} /∈ E e cii = 0 para todo 1 ≤ i ≤ n. Qualquer partição (S,S := V\S) dos vértices de V

define um corte em G, onde S ou S podem ser vazios. Assim, o problema consiste em encontrar

uma combinação de (S,S) de forma que a soma dos pesos das arestas de corte seja maximizada

(Soares, 2018). Em adição, esse problema pode ter uma versão para grafos não ponderados,
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Figura 2 – Exemplo de corte
em um grafo

1 2

3 4

5 6

S S

Fonte: Elaborada pelo autor.

conhecida como Simple Max-Cut Problem. Para tal, é necessário restringir o peso de cada aresta

do grafo para 1 (Garey; Johnson, 1979).

Um exemplo ilustrativo de uma instância do Problema do Corte Máximo é apre-

sentado na Figura 3 abaixo. Na Figura 3 (a), é apresentado um grafo G = (V,E), com |V |= 5

vértices e |E| = 6 arestas ponderadas. Já na Figura 3 (b), é apresentado a solução ótima

para essa instância. Note que os vértices acima do corte são da partição S = {1,3,5} e os

que estão abaixo são da partição S = {4,2}. As arestas de corte correspondem ao conjunto

{{1,4},{3,4},{4,5},{2,3},{2,5}}, totalizando um valor de corte de 30. Por fim, a única aresta

não cortada é {1,3}.

Figura 3 – Exemplo de uma instância do Problema do Corte Máximo

(a) Grafo não direcionado com
arestas ponderadas
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(b) Solução ótima do Corte Máximo
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Fonte: Elaborada pelo autor.
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3.3.1 Aplicações do problema de Corte Máximo

O Data Clustering é um problema importante na área de Aprendizado de Máquina

não Supervisionado. Ele consiste na classificação não supervisionada de padrões, como ob-

servações ou vetores de características, em grupos (clusters). Esse desafio tem sido estudado

por pesquisadores de diversas áreas, mostrando sua relevância na análise exploratória de dados.

Além disso, ele possui aplicações práticas em segmentação de imagens, reconhecimento de

objetos e recuperação de informação (Jain et al., 1999).

De modo geral, esse problema envolve atribuir rótulos aos elementos de um conjunto

de dados para agrupar os mais semelhantes entre si. Para representar a dissimilaridade entre eles,

é definido uma medida de distância que é aplicada a cada par de elementos, de modo que dados

mais distantes irão possuir rótulos diferente. Matematicamente, esse problema pode ser reduzido

ao Problema do Corte Máximo. Para tal, cada vértice do grafo pode ser considerado um dos

elementos desse conjunto de dados e o peso entre os vértices é a medida de distância. Assim,

maximizar a soma de todos os pesos de vértices com rótulos diferentes representa um algoritmo

de agrupação natural (Otterbach et al., 2017).

Uma outra aplicação relevante do corte máximo é observado nas redes sociais, mais

especificamente na análise do comportamento social das pessoas em relação a um determinado

tópico em grupos de discussão. Nesses grupos, é comum que as pessoas tendem a responder com

mais frequência a mensagens com as quais não concordam, especialmente em grupos de notícias.

A partir desse comportamento, é possível construir um grafo no qual os vértices representam os

autores das mensagens e as arestas indicam relações de resposta entre as mensagens. Portanto,

ao determinar o corte máximo desse grafo, teremos dois grupos distintos: aqueles que apoiam e

aqueles que se opõem a um determinado tópico (Agrawal et al., 2003).

3.4 Aprendizado de Máquina

O AM é a área de estudo que possibilita que as ferramentas, sejam capazes de operar

de forma a reduzir a necessidade de intervenção humana, agindo de maneira mais autônoma.

Desta forma, os computadores têm a capacidade de aprender sem serem explicitamente pro-

gramados. Em outras palavras, é a ciência que ensina computadores a aprender a partir de um

conjuntos de dados (Géron, 2019).

Esse processo de aquisição de conhecimento é realizado através do aprendizado
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indutivo, que generaliza padrões a partir de exemplos externamente adquiridos ao processo,

partindo de conceitos específicos e os generalizando. Nesse método, um conceito é aprendido

através de inferência indutiva aplicadas sobre os exemplos. Além disso, o aprendizado indutivo

pode ser dividido em Aprendizado Supervisionado e Não-Supervisionado, sendo que o algoritmo

de aprendizado também é conhecido como indutor (Monard; Baranauskas, 2003).

Dito isso, o AM está associado diretamente a criação e ao uso de modelos que são

ensinados a partir de um conjunto de dados. Mais especificamente, um algoritmo de AM analisa

esses dados buscando identificar padrões para especificar uma relação matemática (ou probabilís-

tica) existente entre variáveis distintas, sendo esta relação conhecida como modelo. Nos modelos

de aprendizado de máquina supervisionado, os dados de treinamento vêm acompanhados de um

rótulo, indicando a resposta correta para a aprendizagem, e nos modelos não supervisionados,

não existem tais respostas (Grus, 2016).

Os algoritmos de AM são organizados com base em duas tarefas principais. A

primeira são as Tarefas Preditivas, onde a meta é encontrar uma função (também chamado

de modelo) que atribui um rótulo ou classe a um conjunto de dados não visto anteriormente

(Classificação) ou estima um valor numérico (Regressão), com base em um conjunto de dados

previamente observado, juntamente com as respostas para o aprendizado. Já as tarefas de descri-

ção não utilizam essas respostas, elas concentram-se na exploração ou na caracterização de um

conjunto de dados. Assim, as tarefas Preditivas são associadas ao Aprendizado Supervisionado,

enquanto as tarefas descritivas são associadas ao aprendizado Não-supervisionado (Faceli et al.,

2011).

A Hierarquia do Aprendizado, abordada nesta Seção, é ilustrada na Figura 4, englo-

bando o Aprendizado Indutivo e seus dois ramos principais: Aprendizado Não-supervisionado e

Aprendizado Supervisionado, o qual se divide em Classificação, que estima valores discretos, e

Regressão, que estima valores contínuos.

3.4.1 Aprendizado de Máquina Supervisionado

Um conjunto de dados inclui objetos que representam diversos conceitos, tangíveis

ou abstratos, como uma cadeira ou a avaliação de um atendimento ao cliente. Esses objetos

são comumente referidos como registros ou exemplos e são representados por meio de um

vetor de características, também conhecido como atributo. Cada atributo está associado a uma

propriedade do registro. Para o treinamento do modelo supervisionado, cada registro é uma
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Figura 4 – Hierarquia do Aprendizado

Aprendizado Indutivo

Supervisionado

Classificação Regressão

Não-supervisionado

Fonte: Elaborada pelo autor.

instância do problema contendo atributos de entrada e saída, onde o atributo de saída pode ser

estimados através dos atributos de entrada (Faceli et al., 2011).

Desta forma, para esse treinamento é utilizado um conjunto de dados representados

por registros R = {R1,R2, . . . ,Rn}, onde cada registro Ri ∈ R, é associado a um rótulo que

representa a resposta esperada. Em termos mais específicos, cada registro é representado como

uma tupla Ri = (⃗xi,yi), onde xi ∈ {⃗xi1, x⃗i2, . . . , x⃗in}, que é um vetor de valores que representam as

características ou atributos do registro Ri, e yi é a resposta esperada para essa instância. Assim,

o objetivo do modelo é, a partir desses registros, aprender uma função f (⃗x) = y que mapeia os

valores de x⃗ para os valores de y, permitindo a predição de respostas para exemplos não vistos

(Batista, 2003).

A Tabela 1 abaixo, exemplifica o conjunto de dados para realizar o treinamento. Ela

segue o formato atributo-valor, composta por n registros e m atributos. A coluna Y representa a

função f (⃗xi) = yi, que tenta realizar a predição com base nos atributos, onde cada valor nessa

coluna pertence ao conjuntos de valores do atributo de saída.

Tabela 1 – Representação dos
dados de treinamento

X1 X2 · · · Xm Y
R1 x11 x12 · · · x1m y1
R2 x21 x22 · · · x2m y2
... · · · · · · . . . · · · ...

Rn xn1 xn2 · · · xnm yn

Fonte: Adaptado de Batista (2003,
p. 6)

Além disso, as linhas (R1,R2, ...,Rn) representam diferentes tipos de registros, en-
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quanto as colunas (X1,X2, ...,Xm) indicam os atributos de entrada. A linha i corresponde ao

i-ésimo registro (i = 1,2, ...,n) e a entrada xi j representa o valor do j-ésimo atributo de X j

( j = 1,2, ...,m) do registro i. A tabela também ilustra como os registros são representados como

tuplas Ri = (xi1,xi2, ...,xim,yi) = (⃗xi,yi).

3.4.1.1 Métricas de avaliação para Modelos de Classificação

Com o intuito de realizar a validação e avaliação dos modelos de classificação, o

conjunto de dados são separados em dois conjuntos disjuntos. O primeiro sendo o conjunto de

treinamento, que contém o conjunto de registro juntamente com as respostas esperada para cada

registro, utilizado para ensinar o modelo. O segundo é o conjunto de teste, utilizado para avaliar

o desempenho do modelo (Nelli, 2018). Além disso, é importante ressaltar que esses conjuntos

não devem compartilhar registros, pois seria similar a um estudante fazendo uma prova após ter

estudado com as respostas, comprometendo a avaliação.

Conforme discutido anteriormente, o modelo de classificação atribui classes (ou

rótulos) para novos registros. Desta forma, a avaliação do modelo treinado é realizada pela

comparação das respostas previamente obtidas de forma externa, com as respostas fornecidas

pelo modelo treinado.

Uma métrica amplamente utilizada para avaliar modelos de classificação é a Matriz

de Confusão. Nela, cada linha representa uma classe real, enquanto cada coluna reflete uma

classe prevista pelo modelo. A diagonal principal destaca os acertos, incluindo quando uma

classe é corretamente identificada (verdadeiros positivos) e quando um registro não é atribuído

a uma determinada classe corretamente (verdadeiros negativos). As demais células da matriz

indicam erros, ou seja, quando uma classe é atribuída erroneamente a um registro (falso positivo)

e quando um registro é classificado incorretamente (falso negativo) (Géron, 2019).

Conforme destacado por Raschka (2015), ao ter conhecimento dos Verdadeiros

Positivos (VP), Verdadeiros Negativos (VN), Falsos Positivos (FP) e Falsos Negativos (FN),

diversas métricas de avaliação de modelos podem ser empregadas. Essas métricas incluem a

Accuracy, a Precision, o Recall e a F1-Score, que são calculadas da seguinte maneira:

Accuracy =
V P+V N

V P+V N +FP+FN
(3.1)

A Accuracy avalia o desempenho do modelo através de uma média geral, calculando

a proporção de uma classificação correta (VP e VN) em comparação com o total de classificação
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(VP, VN, FP e FN).

Precision =
V P

V P+FP
(3.2)

A Precision avalia o desempenho do modelo em classificar uma determinada classe.

Para isso ele calcula a proporção dessa classe, quando foi classificado corretamente (VP), em

relação ao total de classificação positivas (VP e FP).

Recall =
V P

V P+FN
(3.3)

O Recall é conhecido por medir a sensibilidade do modelo, pois ele analisa a propor-

ção das classes que foram classificadas corretamente (VP), em relação ao total de classificações

que realmente pertencem a classe (VP e FN).

F1-Score = 2× Precision×Recall
Precision+Recall

(3.4)

O F1-Scores combina ambas as métricas Precision e Recall, sendo útil para avaliar

classes desbalanceadas.

3.4.1.2 Aprendizagem baseada em instâncias: k-Nearest-Neighbours

O k-Nearest-Neighbours (kNN) é um algoritmo de Aprendizado de Máquina Su-

pervisionado utilizado em tarefas Preditivas, tendo aplicações em Reconhecimento de Padrões

e Mineração de Dados (Xiong; Yao, 2021). Além disso, ele é um algoritmo de aprendizado

preguiçoso (lazy learner), pois ao contrário de modelos tradicionais (conhecidos como para-

métricos), ele não constrói explicitamente uma função que mapeia os atributos de entrada em

um atributo de saída. Ele pertence a uma subcategoria de modelos não-paramétricos denotados

de aprendizagem baseada em instâncias, que é conhecido por memorizar o conjunto de dados

fornecido no treinamento do modelo (Raschka, 2015).

O kNN utiliza os registros da base de treinamento para avaliar novos registros, com

o auxílio de uma função para medir a distância entre os registros de treinamento e o registro alvo.

De modo geral, ele analisa os k vizinhos mais próximos que compõem a vizinhança desse registro

a ser avaliado e determina sua classe através de uma votação majoritária entre os indivíduos

dessa vizinhança, isto é, assumindo a classe do indivíduo que mais ocorre na mesma (Aggarwal,

2014).

A Figura 5 ilustra a classificação de um novo registro usando o método kNN. Note

que k foi configurado como 5 e os cinco registros mais próximos consistem em três registros
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classificados como classe A (azuis) e dois como classe B (vermelhos). Após a votação majoritária,

o registro alvo é categorizado como classe A (azul).

Figura 5 – Exemplo de classificação do KNN com k = 5

X1

X2

registro alvo

Classe BClasse A

5 vizinhos

Fonte: Elaborada pelo autor.

Dessa maneira, o desempenho do kNN está associado não apenas ao valor de k

escolhido, mas também às funções utilizadas para calcular as medidas de distância e determinar

os k registros mais próximos do registro alvo. De acordo com Williams e Li (2008), as medidas de

distância, Euclidean, Manhattan e Mahalanobis podem ser utilizadas no kNN, sendo calculadas,

entre um ponto p = (p1, ..., pn) e outro ponto q = (q1, ...,qn), da seguinte forma:

A distância euclidiana é calcula seguindo em uma linha reta.

EUD(p, q) =

√
n

∑
i=1

(pi −qi)2 (3.5)

A distância Manhattan é calculada seguindo um percurso em uma grade, como se

percorre-se o quarteirão de uma cidade.

M N (p, q) =
n

∑
i=1

| pi −qi | (3.6)

A distância Mahalanobis é calculada com base nas correlações entre as variáveis.

Neste caso, V representa uma matriz de covariância com atributos A1..Am, sendo A j o vetor de

atributo j que está na base de treinamento.

MD(p, q) =
√

(pi −qi)T V−1 (pi −qi) (3.7)
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3.4.1.3 Aprendizado Bayesiano: Naive Bayes Classifier

O classificador Naive Bayes, baseado no teorema de Bayes, é uma abordagem

probabilística simples que utiliza probabilidades condicionais para determinar a probabilidade

de um novo registro pertencer a uma determinada classe. Adicionalmente, ele é considerado

ingênuo porque assume que cada atributo da base de dados são independente entre si, o que

implica que a probabilidade para cada atributo também é independente (Parsian, 2015).

Conforme Rish et al. (2001), o Classificador Naive Bayes atribui a um novo registro

(denotado por um vetor de características) a classe que tem a maior probabilidade de ser. O

processo de treinamento se baseia na suposição de que os atributos são independentes entre si,

contanto que a classe esteja previamente associada ao registro. Dessa forma, ao analisar todos os

vetores de características pertencentes a uma classe C, é possível estimar a probabilidade de um

registro pertencer a essa classe. De maneira mais específica, essa probabilidade é denotada pelo

produto das probabilidades individuais dos atributos, sendo calculada da seguinte maneira:

P(X |C) =
n

∏
i=1

P(Xi|C) (3.8)

Observe que X = {X1, ...,Xn} representa o vetor de características e C representa

uma classe. Além disso, a fórmula utiliza probabilidades condicionais, que são calculadas a

partir de dois eventos. Segundo Sinai e Sinai (1992), a probabilidade condicional define a

probabilidade de ocorrer um evento A dado que um evento B já ocorreu, pode ser denotada da

seguinte forma:

P(A|B) = P(A∩B)
P(B)

(3.9)

Além disso, conforme Faceli et al. (2011), essa probabilidade condicional pode

ser derivada. Para isso, é utilizado a probabilidade a priori da classe, representada por P(A),

a probabilidade de observar vários elementos pertencentes à classe, denotado por P(B|A), e a

probabilidade de ocorrência desses elementos, representado por P(B), resultando na seguinte

equação:

P(A|B) = P(B|A)P(A)
P(B)

(3.10)

3.4.1.4 Regressão Logística

A Regressão Logística, apesar do nome sugerir que é um modelo de regressão,

trata-se de um modelo linear de classificação binária. Mais especificamente, é um modelo
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probabilístico que estabelece uma relação linear entre os atributos de entrada e o atributo de

saída, utilizando a função sigmoide para transformar a combinação linear das características em

uma probabilidade de um evento ocorrer ou não (Raschka, 2015).

Segundo Aggarwal (2014), a regressão logística estima diretamente a distribuição de

probabildiade P(Y |X), onde Y é uma variável binária, como 0 ou 1. Formalmente, o modelo é

definido como sendo a probabilidade de um evento ocorrer, isto é, p(Y = 1|X), sendo expressado

pela função sigmoide, assim como segue:

p(Y = 1|X) = g(θ T X) =
1

1+ e−θ T X
, (3.11)

onde a função sigmoide g(z) é definida como:

g(z) =
1

1+ e−z (3.12)

Aggarwal (2014) especifica que θ T X representa o produto escalar entre o vetor de

pesos θ e o vetor de características X de um registro qualquer, sendo expresso como:

θ
T X = θ0 +

d

∑
i=1

θiXi (3.13)

Em geral, p(Y = 1|X), ao ser combinado com a função logit, retorna a probabilidade

em logaritmos das chances, permitindo que a relação seja representada linearmente (Bewick

et al., 2005). Conforme Raschka (2015), a função logit expressa essa relação linear entre os

atributos e o logaritmo das chances de um evento ocorrer. A equação da função logit é definida

como segue:

logit(p(y = 1|x)) =
n

∑
i=0

wixi = wT x (3.14)

Dessa forma, p(y = 1|x) é a probabilidade condicional de que um registro pertença à

classe 1, dado o vetor de características x, onde X = {x1,x2, . . . ,xn. Os pesos w0,w1, . . . ,wn são

ajustados durante o treinamento do modelo para maximizar a verossimilhança, que determina a

influência de cada atributo no resultado final (Bewick et al., 2005; Raschka, 2015).
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3.4.2 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) são modelos de AM inspirados no funciona-

mento do cérebro humano, o qual contém neurônios interconectados por meio de sinapses que

realizam a troca de informações. O aprendizado ocorre através das alteração de força dessas

conexões sinápticas em resposta a estímulos, ou seja, pela atualização do peso das conexões

entre os neurônios. Adicionalmente, o neurônio é a unidade básica de processamento desse

modelo, sendo organizado em diferentes quantidades e conexões, o que gera diversos tipos de

arquiteturas de redes neurais (Aggarwal, 2014).

A Figura 6 ilustra o modelo simplificado de um neurônio artificial, baseado no

trabalho de McCulloch e Pitts (1943). Conforme Rauber (2005), esse modelo busca simular

os processos biológicos em uma célula nervosa. Para transmitir as informações, ele faz uso de

entradas x j (sinapses), onde cada uma possui um peso w j, que representa sua importância. O

neurônio processa essas entradas através de uma combinação linear, gerando um valor net que,

com o uso de uma função Heaveside (função de escada), é comparado a um limiar µ . Desta

forma, caso esse valor ultrapasse µ , o neurônio emite um sinal de saída y = 1, caso contrário,

a saída y = 0. Adicionalmente, é possível utilizar outras funções de ativação, como a função

sigmoidal e linear.

Figura 6 – Modelo de um neurônio de McCulloch e Pitts

Fonte: Adaptado de Rauber (2005, p. 6).

Note que, a combinação linear responsável por gerar o valor net pode ser expressada

por um somatório com D elementos, assim como segue:

net =
D

∑
i=1

xiwi = x1w1 + x2w2 + ...+ xDwD (3.15)

Consequentemente, uma Rede Neural Artificial consiste em neurônios artificiais

organizados em camadas, seguindo um modelo semelhante ao neurônio proposto por McCulloch
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e Pitts (1943) mencionado anteriormente. No entanto, é importante ressaltar que a maneira como

essa rede neural aprende, as conexões utilizadas e o número de neurônios podem variar de acordo

com a arquitetura específica da rede.

Em adição, existem duas arquiteturas principais: rede de camada única, que geral-

mente não é preferida devido às suas limitações de capacidade, e a de múltiplas camadas, que

inclui camadas ocultas entre as camadas de entrada responsáveis por receber a informação e

transmiti-la adiante, e a camada de saída, que retorna o resultado final (Kopiler et al., 2019). A

Figura 7 (a) ilustra uma arquitetura em camada única e Figura 7 (b) ilustra uma arquitetura em

múltiplas camadas.

Figura 7 – Exemplo de arquiteturas

(a) Arquitetura de camada única

Camada de
Entrada

Camada de
Saída

(b) Arquitetura em múltiplas camadas

Camada de
Entrada

Camada
Oculta

Camada de
Saída

Fonte: Adaptado de Kopiler et al. (2019, p. 3).

Além das diferentes arquiteturas, é importante ressaltar o processo de treinamento

das RNA. Geralmente, o algoritmo de backpropagation assume o papel principal no treinamento

de redes de múltiplas camadas (Kopiler et al., 2019).

Esse algoritmo ajusta os pesos das conexões entre os neurônios, buscando minimizar

o erro na saída da rede. No caso do aprendizado supervisionado, para cada exemplo apresentado

a rede é calculado uma resposta correspondente, podendo determinar o nível de erro atual ao

comparar com a saída desejada. Esse processo se repete até algum critério seja alcançado, como

o nível de erro alcançar um valor aceitável (Neto, 1995). Desta forma, a ideia principal desse

algoritmo consiste em propagar os erros das camadas de saída para corrigir imprecisões nas

camadas anteriores, através desse processo de realimentação.
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3.4.2.1 Rede Neural Feedforward e Recorrente

A informação em uma rede neural geralmente se propaga da camada de entrada até

a camada de saída. Em uma rede de múltiplas camadas, esse processo ocorre de uma camada

para a próxima. Adicionalmente, uma RNA possui conexões específicas, conhecidas como

retropapagação (ou feedback), onde os neurônios recebem a saída de outro neurônio em seus

terminais de entrada, seja da mesma camada, de camadas posteriores ou até mesmo a própria

saída y. Redes com esse tipo de retropapagação são chamadas de Redes Neurais Recorrentes,

sendo especialmente úteis para problemas que exigem o processamento de informações de forma

sequencial. Por outro lado, redes sem esse tipo de conexão, que são mais comumente utilizadas,

são denominadas de Redes Neurais Artificiais feedforward (Faceli et al., 2011).

Figura 8 – Redes neurais feedforward e recorrente.

Fonte: Faceli et al. (2011, p. 113).

Uma rede neural feedforward é composta por camadas discretas de neurônios, os

quais estão conectados às camadas seguintes. A organização dessa camada geralmente segue o

seguinte padrão: uma camada de entrada, que simplesmente transmite as informações adiante;

uma ou mais camadas ocultas, formadas por neurônios que recebem as informações de saída dos

neurônios da camada anterior, efetuando o processamento dos dados; e uma camada de saída,

responsável por gerar a saída final (Grus, 2016). A Figura 8 (a) ilustra um exemplo de uma rede

feedforward e a Figura 8 (b) ilustra uma rede recorrente.

3.4.3 Aprendizado Não Supervisionado

As tarefas realizadas pelos algoritmos de aprendizado não supervisionado são va-

riadas e podem ser amplamente categorizadas em quatro principais grupos. A primeira dessas
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tarefas é o agrupamento (clustering), onde o objetivo é dividir o conjunto de dados em grupos

ou clusters de exemplos semelhantes. Essa técnica é amplamente utilizada na segmentação

de mercado, onde consumidores com comportamentos similares são agrupados para otimizar

estratégias de marketing, ou em bioinformática, para identificar padrões em dados genéticos

(Faceli et al., 2011).

Outra tarefa importante é a redução de dimensionalidade, que visa simplificar a

estrutura dos dados ao reduzir o número de variáveis ou atributos, preservando ao máximo as

informações relevantes. Essa abordagem é extremamente útil quando se trabalha com dados de

alta dimensionalidade, como imagens ou grandes conjuntos de dados, onde há muitas variáveis

redundantes ou irrelevantes (Monard; Baranauskas, 2003). A redução de dimensionalidade

facilita a análise e a visualização dos dados, além de diminuir a complexidade computacional

envolvida.

Além disso, o aprendizado não supervisionado é fundamental para a detecção de

anomalias. Essa tarefa tem como foco identificar exemplos que se desviam significativamente do

comportamento típico observado nos dados. Em áreas como segurança cibernética e prevenção

de fraudes financeiras, essa técnica é utilizada para identificar transações suspeitas ou atividades

fora do padrão, sem a necessidade de conhecer previamente o que caracteriza uma anomalia

(Faceli et al., 2011).

Por fim, a descoberta de associações é outra tarefa chave do aprendizado não super-

visionado. Aqui, o algoritmo busca identificar padrões frequentes entre os atributos dos dados,

como em sistemas de recomendação, onde se descobre que determinados produtos são frequente-

mente adquiridos em conjunto. Por exemplo, analisar cestas de compras revela associações úteis

para sugerir produtos a clientes de plataformas de comércio eletrônico (Grus, 2016).

3.4.3.1 Análise de Componentes Principais (PCA)

A Análise de Componentes Principais (PCA) é uma técnica de aprendizado de

máquina não supervisionado utilizada para a redução de dimensionalidade e extração de infor-

mações relevantes de um conjunto de dados complexos, sendo aplicada em diversos campos,

como neurociência e computação gráfica (Shlens, 2014). Mais especificamente, transforma

os dados originais em um novo espaço de menor dimensionalidade, preservando ao máximo a

variabilidade, o que permite reduzir a complexidade dos dados enquanto mantém sua estrutura

essencial (Jolliffe, 2002). Além disso, é um método linear e não-paramétrico, o que significa que
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não faz suposições sobre a distribuição dos dados (Bishop; Nasrabadi, 2006).

O PCA projeta os dados em componentes principais, que são combinações lineares

das variáveis originais. Cada componente principal captura a maior quantidade de variância

possível, sendo o primeiro o mais informativo, seguido pelos demais, que são ortogonais entre

si (Jolliffe; Cadima, 2016). Essa transformação permite eliminar dimensões menos relevantes,

resultando em um conjunto de dados sintético mais simples, mas que preserva as características

mais importantes.

De acordo com Shlens (2014), o cálculo do PCA começa com a centralização dos

dados, subtraindo a média de cada variável. Em seguida, a matriz de covariância C é calculada

para capturar as relações entre os atributos. A fórmula para calcular a matriz de covariância é

dada por:

C =
1
n

XXT (3.16)

onde X é uma matriz de n×m, onde cada linha mi representa uma amostra e cada

coluna ni uma variável. A matriz XT é a transposta de X , e a multiplicação XXT resulta em

uma matriz de covariância de m×m, representando a covariância entre as variáveis. Esta matriz

resume a correlação entre todas as variáveis no conjunto de dados.

De acordo com Jolliffe (2002), após calcular a matriz de covariância, o próximo

passo no PCA é encontrar um vetor α1 (autovetor) que maximiza a variância de uma combinação

linear das variáveis, impondo a restrição de normalização αT
1 α1 = 1. A função de maximização

αT
1 Σα1, onde Σ é a matriz de covariância, leva à equação de autovalores Σα1 = λ1α1, sendo

λ1 o autovalor correspondente, que indica a quantidade de variância explicada pela direção

definida por α1. Esse processo permite que o PCA encontre as direções que capturam a maior

variabilidade nos dados, projetando-os em um novo espaço de menor dimensionalidade que

preserva a maior parte da variabilidade original.

Por fim, após calcular os autovetores e autovalores, podemos projetar os dados

no novo espaço de menor dimensionalidade, multiplicando a matriz de dados original pelos

autovetores correspondentes aos maiores autovalores (Trendafilov; Gallo, 2021). Assim, a

decomposição em autovetores e autovalores nos permite identificar os componentes principais

que capturam a variabilidade mais significativa nos dados.
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3.4.3.2 Algoritmo K-Means

O algoritmo kmeans é uma técnica de aprendizado de máquina não supervisionado

utilizada para realizar a tarefa de agrupamento, isto é, seu objetivo é particionar um conjunto

de dados em k grupos (clusters) de forma que os elementos dentro de cada cluster sejam mais

semelhantes entre si do que em relação aos de outros clusters. Para isso, a técnica tenta minimizar

o erro quadrático entre a média empírica (centróide) de um cluster e os pontos que pertencem a

ele (Macqueen et al., 1967).

A Figura 9 ilustra a comparação entre os dados antes e depois da aplicação do

KMeans. Na Figura 9 (a), todos os pontos são exibidos na mesma cor, sem nenhum grupo

definidos, representando o estado inicial dos dados. Já na Figura 9 (b), após aplicar o KMeans, os

pontos são agrupados em grupos distintos, sendo representados com cores e símbolos diferentes,

e os centróides são destacados na cor preta.

Figura 9 – Aplicação do método k-means para o particionamento dos dados.

Fonte: Elaborada pelo autor.

Conforme Bishop e Nasrabadi (2006), a função objetivo do algoritmo k-means é

dada por:

J =
N

∑
n=1

K

∑
k=1

rnk||xn −µk||2 (3.17)

onde J representa a soma das distâncias quadráticas entre cada ponto xn e o centróide

µk do cluster Ck, tal que a variável binária rnk é 1 se o ponto xn pertence ao cluster k, e 0 caso



37

contrário. O objetivo é minimizar J, garantindo que os pontos dentro de um cluster estejam

o mais próximos possível de seu centróide. Cada iteração do k-means envolve duas etapas:

primeiro, minimiza-se J em relação a rnk, atribuindo cada ponto ao centróide mais próximo, e

depois, minimiza-se J em relação a µk, recalculando os centróides como a média dos pontos

atribuídos a cada cluster. Esse processo é repetido até a convergência, garantindo que cada ponto

esteja otimamente alocado ao cluster mais próximo.

Durante o processo de execução do k-means, a escolha do número de grupos k é

crucial e pode ser feita usando métodos como o Elbow Method (método do cotovelo) ou a Análise

de Silhueta. O primeiro método baseia-se no coeficiente de aglomeração, um valor numérico

que representa a fusão de vários pontos em um agrupamento. O procedimento envolve traçar o

coeficiente no eixo y e o número de grupos no eixo x. Um achatamento acentuado do gráfico

indica que os grupos combinados são muito diferentes, e o número ideal de divisões é encontrado

no ‘cotovelo’ do gráfico (Ketchen; Shook, 1996). Já o Silhouette method (método de silhueta)

avalia a qualidade das divisões com base no quão próximos os pontos estão dos seus próprios

grupos em comparação com os vizinhos (Rousseeuw, 1987). A Figura 10 ilustra essas duas

abordagens.

Figura 10 – Métodos Elbow e Silhouette para Determinação do Número Ótimo de Grupos.

Fonte: Elaborada pelo autor.

Note que a Figura 10 (a) mostra que, segundo o método do cotovelo, a partir de 4

grupos, a variação no coeficiente de aglomeração se torna mínima, indicando poucas mudanças

significativas. Da mesma forma, a Figura 10 (b) confirma essa observação, já que o método da

silhueta aponta que 4 grupos obtêm a maior pontuação de agrupamento, com valor de 0.8.
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Embora o k-means seja amplamente utilizado por sua popularidade e facilidade de

uso, ele possui limitações, especialmente na atribuição de centróides e no número de clusters,

funcionando melhor com grupos compactos e esféricos, mas falhando com dados mais complexos

(Ahmed et al., 2020). Para mitigar essas questões, o k-means++, desenvolvido por Arthur e

Vassilvitskii (2006), aprimora a inicialização ao selecionar centróides de forma ponderada,

priorizando pontos mais distantes, o que aumenta a qualidade dos agrupamentos e reduz a

probabilidade de configurações desfavoráveis.
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4 TRABALHOS RELACIONADOS

Este capítulo explora trabalhos correlacionados à pesquisa, concentrando-se em

aplicações de técnicas de Aprendizado de Máquina para o Problema do Corte Máximo, mesmo

que alguns deles não se baseiem especificamente em aprendizado supervisionado. Em resumo,

os três trabalhos relacionados empregam técnicas de aprendizado profundo, que, de forma

simplificada, envolvem o uso de redes neurais com várias camadas ocultas.

Na Seção 4.1, é apresentado um algoritmo baseado em redes de ponteiros, sendo este

modelo treinado por meio de aprendizagem supervisionada. Dessa forma, o modelo emprega

técnicas para lidar com dados de forma sequencial e um mecanismo de atenção para destacar

as informações mais relevantes. Já na Seção 4.2, também é utilizado o conceito de redes de

ponteiros, porém, o modelo é treinado por meio de aprendizado supervisionado e aprendizado

por reforço. Por fim, na Seção 4.3, é apresentado um método que faz uso de Redes Neurais em

Grafos, uma arquitetura de rede neural projetada para lidar com dados representados na forma

de grafos.

4.1 Um algoritmo de aprendizado profundo baseado em redes de ponteiros para o pro-

blema do corte máximo

Gu e Yang (2018) apresenta uma abordagem que utiliza um algoritmo de aprendizado

profundo, especificamente uma Rede de Ponteiros (Pointer Network), para resolver o Problema

do Corte Máximo. Essa técnica emprega o framework de aprendizado sequencial-para-sequencial

(sequence-to-sequence learning) em conjunto com um mecanismo de atenção. Assim, o artigo

propõe o uso dessa rede para construir um modelo que é treinado por meio de aprendizagem

supervisionada.

A arquitetura da rede neural proposta pelo autor é uma variação do modelo Seq2seq,

que faz uso das conexões ordenadas da Rede Neural Recorrente (RNN) para transmitir e reter

informações durante o processo de predição. Nessa estrutura, a RNN desempenha um papel

crucial no treinamento, analisando o atributo de entrada camada por camada, até a camada de

saída, mantendo um estado interno que propaga as informações relevantes do passo anterior.

A Rede de Ponteiros incorpora um mecanismo de atenção modificado, integrado

com um módulo chamado Seq2seq, para aprender a probabilidade condicional de uma saída,

onde os valores correspondem às posições em uma sequência de entrada fornecida. Para tal, o
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Seq2seq possui um codificador que transforma uma sequência de dados de tamanho variável em

um vetor de tamanho fixo. Como discutido na Subseção 3.4.1, o processo de aprendizagem do

modelo normalmente é realizado com base em vetores de tamanho fixo. Ademais, o Seq2seq

também inclui um decodificador que realiza o processo inverso.

O mecanismo de atenção, que conecta o codificador ao decodificador, possibilita a

este último acessar toda a sequência de estados do codificador, permitindo a extração de informa-

ções relevantes de um vetor de comprimento variável. Sua função principal é indicar à rede de

decodificação quais partes da entrada são mais significativas, permitindo que o decodificador se

concentre em identificar informações mais relevantes na sequência de entrada do codificador,

aprimorando a resposta de saída.

Além disso, a entrada dessa rede de ponteiros corresponde a uma instância do

Problema do Corte Máximo, onde o peso de cada aresta é um. Portanto, a entrada é representada

por uma matriz de adjacência, e a saída consiste na partição de cada vértice. Adicionalmente,

as instâncias criadas para o treinamento foram geradas utilizando um programa no MATLAB

(software utilizado para computação numérica e análise de dados), que criou conjuntos de

amostras de forma aleatória, com uma parte dedicada ao conjunto de teste.

Para avaliar o método proposto, o autor criou instâncias do Problema do Corte

Máximo com 10, 20, 30, 40 e 50 vértices. O modelo foi submetido a cinco configurações

distintas de treinamento, variando entre 1000 e 2000 períodos de treinamento, bem como entre

100 e 1000 amostras fornecidas para o treinamento. Os resultados de precisão para as instâncias

com 10, 20, 30, 40 e 50 vértices variaram de 92.0% a 97.5%, de 88.3% a 94.2%, de 85.2% a

86.4% e de 68.7% a 81.4%, respectivamente.

Por último, Gu e Yang (2018) cita que os resultados dos experimentos evidenciam

que o método proposto alcança uma solução aproximada satisfatória, ao mesmo tempo em

que reduz consideravelmente o tempo necessário para obter essa solução, se comparado com

algoritmos convencionais. Isso indica um potencial promissor desse método na área de problemas

de otimização combinatória.
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4.2 Algoritmo de aprendizado profundo para o problema do corte máximo baseado na

estrutura de rede de ponteiros, com estratégias de aprendizado supervisionado e

aprendizado por reforço.

Já nesse trabalho, o método proposto pelo Gu e Yang (2020) utiliza redes de ponteiros

(Pointer Network) e aprendizagem profunda, empregando técnicas de aprendizado supervisionado

e aprendizado por reforço. Em termos gerais, uma rede de ponteiros é uma rede neural com foco

em aprendizado profundo sequencial-para-sequencial (sequence-to-sequence), o que significa

que processa os dados de maneira sequencial, extraindo informações com o intuito de revelar

alguma relação matemática ou probabilística oculta entre os dados de entrada e saída. Com

isso em mente, o mecanismo de entrada e saída do modelo de redes de ponteiros foi projetado

para estar em sintonia com as características do Problema do Corte Máximo. Posteriormente, o

modelo é treinado utilizando técnicas de aprendizado supervisionado e aprendizado por reforço.

Conforme afirmado pelo Gu e Yang (2020), a Rede Neural Recorrente (RNN) é capaz

de classificar eventos subsequentes usando informações de eventos anteriores, demonstrando

eficácia ao lidar com dados sequenciais ou temporais. Para alcançar isso, ela processa as

informações dos dados de forma contínua e cíclica, assegurando a persistência da informação.

No entanto, ela não lida bem com entradas longas, sendo necessárias algumas melhorias, que

foram apresentadas no artigo, sendo a mais eficaz delas o uso de um mecanismo de limitação.

Para o algoritmo proposto, foi adotado o Long Short Term Memory (LSTM), uma variante da

RNN, que faz uso de um mecanismo de controle de fluxo de informações chamado gating.

O método proposto também faz uso de um modelo codificador-decodificador, que é

utilizado para que a sequência de entrada e a sequência de saída não precisem ter uma relação

estrita ou o mesmo comprimento. Além desse modelo, existe um mecanismo de atenção utilizado

pela rede para indicar quais dados são mais relevantes em uma sequência de entrada, evitando

que a rede armazene mais informações do que o necessário. Desta forma, a rede requer menos

neurônios para lidar com a quantidade de informação do que sem esse mecanismo.

Sobre a entrada e saída da rede, enquanto a entrada é uma sequência de comprimento

T , a saída é uma sequência de índices relacionados à sequência de entrada. Por exemplo, se a

entrada for uma sequência de números desordenados, a saída consistirá nos índices dos números

na ordem correta de ordenação. Para o Problema do Corte Máximo, utilizando aprendizagem

supervisionada, a rede de ponteiros recebe como entrada, de forma explícita, uma matriz de

adjacência Q, onde o vetor qi ∈ {q1, ...,qn} representa as características do vértice xi ∈ {x1, ...xn},
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ou seja, cada vetor contém os pesos das arestas entre dois vértices. Caso o peso seja igual a

0, isso indica a ausência de uma aresta. A saída será uma sequência de 0’s e 1’s que indica a

partição de cada vértice.

A aprendizagem por reforço, ao contrário da aprendizagem supervisionada, pode

ser descrita como um agente que interage em um ambiente e aprende continuamente conforme

interage com o mesmo em busca de atingir um objetivo específico. Desta forma, na aprendizagem

por reforço, ele vai construindo sua própria estratégia, não requisitando uma estratégia correta

como na abordagem supervisionada. Dito isso, a entrada na rede para o aprendizado por reforço

é semelhante à da aprendizagem supervisionada, diferindo apenas pela adição de um símbolo

especial. A função desse símbolo é separar um vértice em uma partição. Já a saída, trata-se de

uma sequência dos vértices acompanhada de um símbolo para dividir o conjunto de vértices de

saída em dois conjuntos, sendo que este símbolo fica no meio da sequência.

Para adquirir as instâncias do problema que serão utilizadas para realizar o treina-

mento do modelo, o autor faz uso do Gerador de Benchmark para gerar instâncias aleatórias do

Problema de Programação Quadrática {-1, 1}, os quais podem ser resolvidos em tempo polino-

mial. Em seguida, essas instâncias são convertidas em instâncias solucionadas do Problema do

Corte Máximo. Para tal, eles associam as variáveis desse problema de programação quadrática,

que podem assumir apenas valores -1 e 1, com os vértices particionados da instância do Problema

do Corte Máximo.

Como a instância solucionada era originalmente um problema de programa quadrá-

tico {-1, 1}, suas características possuem propriedades específicas, as quais podem atrapalhar o

treinamento do modelo. Em outros termos, isso pode afetar a capacidade do modelo de aprender

as regras gerais para o corte máximo. Portanto, o gerador Benchmark foi utilizado na Biblioteca

Biq Mac, que oferece uma coleção de instâncias do corte máximo. Desta forma, o artigo realizou

experimentos com dois conjuntos de dados: o conjunto de dados Zhou e o conjunto de dados Biq

Mac Library.

No experimento, foram utilizados diferentes tamanhos de instâncias para treinamento,

variando de 10 a 200 vértices para o aprendizado supervisionado e de 10 a 300 para o aprendizado

por reforço. Os resultados, indicam evidenciam uma tendência consistente na redução da precisão

à medida que o número de vértices aumentava. Essa diminuição foi mais acentuada no caso do

aprendizado por reforço em comparação ao aprendizado supervisionado.

Já para o segundo experimento, o conjunto de dados Biq Mac Library, assumiu o
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papel de base de teste, enquanto o conjunto de dados Zhou foi utilizado para o treinamento.

Desta forma, foram selecionados dez grupos de instâncias de 60, 80 e 100 vértices. Foi realizado

apenas o teste para a aprendizagem por reforço, e para cada instância, houve uma média de

88.05%, 84.76% e 73.09%. Esses resultados demonstram que média é menor em relação ao teste

passado, isso se deve a fato da Biq Mac Library conter instâncias com diferentes proporções

e distribuições. Os grafos em si são mais complexos, representando melhor as características

essenciais do Problema do Corte máximo.

No geral, os experimentos revelam que para instâncias abaixo de 50 vértices, a

aprendizagem supervisionada e aprendizagem por reforço são precisos e consistentes. Entretanto,

para instâncias acima de 50 vértices, a aprendizagem por reforço demonstrou-se mais capaz,

visto que no teste para instâncias de 200 vértices, a aprendizagem supervisionada obteve 71,95%

de precisão, enquanto para 300 vértices, a aprendizagem por reforço obteve 87.64% de precisão.

4.3 Desempenho experimental de redes neurais de grafos em instâncias aleatórias de corte

máximo

O Yao et al. (2019) conduziu um estudo aplicando técnicas de Aprendizado de

Máquina Não-supervisionado para a resolução do Problema do Corte Máximo. Mais especifi-

camente, ele utilizou Redes Neurais em Grafos (GNN), que é uma arquitetura de rede neural

especialmente projetada para lidar com dados que têm uma estrutura de grafo. A ideia dessa

arquitetura, é propagar informações entre vértices e arestas, capturando suas relações complexas

nestes dados interconectados.

O foco principal da pesquisa foi voltado para um tipo específico de grafo, chamado

de grafos regulares aleatórios. Nesse grafo, cada vértice possui a mesma quantidade de grau

e não segue uma estrutura predefinida. Segundo Yao et al. (2019), essa escolha se dá pelo

fato de que as assíntotas do valor ótimo de corte máximo são bem conhecidas para esse tipo

de distribuição, podendo ser utilizadas para medir o desempenho do método proposto. Além

disso, mesmo que não houvesse uma solução explícita conhecida para comparar com a saída do

algoritmo proposto, ainda é possível utilizar essas assíntotas.

Dito isso, o autor utilizou as assíntotas conhecidas para avaliar o desempenho da

GNN em relação a outros dois métodos: otimização extrema, que é uma heurística de otimização

local da literatura de física estatística, e algoritmo de relaxamento semidefinido de Goemans e

Williamson (1995). Os resultados obtidos indicam que o desempenho da GNN é comparável
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a esse último método. Entretanto, ambas as técnicas demonstraram um desempenho inferior

quando comparadas à estratégia de otimização extrema. No geral, as técnicas de aprendizado de

máquina não supervisionado conseguem se adaptar com sucesso para problemas de otimização

difíceis em entradas aleatórias.
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5 METODOLOGIA

A abordagem central consiste em utilizar instâncias de pequena escala do Problema

do Corte Máximo para treinar o modelo supervisionado, com o intuito de aplicá-lo posteriormente

em instâncias de grande porte. Dito isso, este capítulo apresenta a metodologia adotada para

alcançar o objetivo deste estudo.

A Seção 5.1 detalha o procedimento de aquisição dos dados destinados ao trei-

namento e avaliação do modelo supervisionado. Esses dados serão adquiridos por meio de

instâncias da Biq Mac Library, juntamente com suas respectivas respostas, utilizando um solver

baseado em método exato. Já a Seção 5.2 detalha a etapa de pré-processamento dos dados,

onde é realizada a criação da base de dados e o tratamento dos dados para serem utilizados no

treinamento do modelo.

A Seção 5.3 dá foco em como será a estrutura do treinamento do modelo, especifi-

cando a abordagem escolhida para o treinamento, enquanto a Seção 5.5 discute sobre os ajustes

dos hiperparâmetros para o refinamento do modelo. Por fim, as Seções 5.4 e 5.6 aborda como

serão gerados os resultados e as ferramentas que serão utilizadas, respectivamente.

5.1 Coleta dos dados

Para conduzir essa pesquisa, foram selecionadas 330 instâncias disponíveis no

trabalho da Wiegele (2007), Biq Mac Library, que é uma fonte reconhecida e respeitável na

área do Problema do Corte Máximo. A biblioteca disponibiliza uma coleção diversificada e

representativa de instâncias, o que proporciona uma base sólida para o estudo. Ela abrange

instâncias de diferentes tamanhos, variando de 20 a 500 vértices, o que trás uma coleção de

grafos com propriedades muito distintas, como número de triângulos, densidade, coeficiente de

aglomeração, grau de centralidade e grau de intermediação dos vértices.

Para realizar a aquisição dos dados necessários para o treinamento do modelo super-

visionado, é essencial não apenas as instâncias em si, mas também as respostas correspondentes,

ou seja, as partições dos vértices. Portanto, essas instâncias foram submetidas ao solver Biq

Mac, um algoritmo exato que se baseia no método Branch & Bound e utiliza Programação

Semi-Definida (SDP) (Rendl et al., 2010). Entretanto, ele não garante encontrar o valor ótimo

para instâncias muito grandes.
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5.2 Pré-processamento dos dados

O pré-processamento dos dados coletados é uma etapa crucial para preparar as instân-

cias para o treinamento do modelo. Nesta fase, diferentes passos foram realizados para garantir

que os dados estivessem prontos e adequados para alimentar os algoritmos de aprendizado de

máquina.

Devido à variação no número de vértices das instâncias, que pode oscilar entre 20

e 500, aplicar aprendizado de máquina diretamente sobre os atributos que indicam as arestas

entre os vértices torna-se inviável. Isso ocorre porque a estrutura da base de dados escolhida

assemelha-se a uma matriz de adjacência, cujo tamanho depende diretamente da quantidade

de vértices de cada grafo. Por exemplo, um grafo com 20 vértices exigiria uma matriz com 20

colunas para representar as conexões, enquanto um grafo com 500 vértices precisaria de 500

colunas. Essa diferença na dimensionalidade dos dados dificulta diretamente o treinamento e

predição do modelo, limitando o mesmo a instâncias que possuem o mesmo tamanho.

Para superar essa limitação e garantir uma representação compacta e eficiente das

conexões entre os vértices, foi aplicada a técnica de Análise de Componentes Principais PCA.

Essa abordagem permitiu a redução da dimensionalidade desses atributos para um número fixo

de 20 componentes sintéticos, número este escolhido com base no menor grafo da base de dados.

Desta forma, todos os grafos, independentemente do número de vértices, são representados de

forma consistente em um espaço de 20 dimensões, possibilitando o treinamento e aplicação do

modelo na predição de instâncias de diferentes tamanhos.

Além disso, os dados passaram por um processo de normalização, essencial para

que os modelos de aprendizado de máquina tratem todos os atributos em uma escala uniforme.

Isso evita que atributos com magnitudes significativamente diferentes influenciem de forma

desproporcional o desempenho do modelo.

Por último, foram selecionadas outras características relevantes, como o grau do

vértice, a média dos pesos das arestas conectadas, o menor e maior peso dessas arestas e o

potencial total do vértice (soma dos pesos das arestas conectadas). Essas características foram

escolhidas para oferecer uma representação robusta e abrangente das propriedades dos vértices e

suas conexões no grafo. Portanto, além das colunas que representam as conexões dos vértices,

existe colunas que especificam suas propriedades.
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5.3 Treinamento do modelo supervisionado

Após o pré-processamento descrito na Subseção 5.2, as instâncias foram devidamente

estruturadas para o treinamento dos modelos supervisionados. Cada registro da base de dados é

representado por uma tupla Ri = (⃗xi,yi), onde xi contém as características extraídas dos vértices,

conforme discutido anteriormente, e yi indica a partição correspondente de cada vértice (resposta

esperada). Cada amostra de treinamento corresponde a uma instância do Problema do Corte

Máximo. Em adição, cada amostra é um grafo G= (V,E), com |V |= n vértices e |E|=m arestas,

representada por uma matriz de n registros. Para novas instâncias, o modelo supervisionado

recebe a matriz e retorna a partição dos vértices.

Com a base de dados preparada, diferentes algoritmos de aprendizado de máquina

foram aplicados para a construção dos modelos supervisionados, visando a exploração de

abordagens distinta para realizar predições e solucionar o problema do corte máximo. Entre

os algoritmos selecionados, tem-se o Naive Bayes, que explora a suposição de independência

entre as variáveis, isto é, as características do vetor de características, permitindo a construção

de modelos simples e eficazes.

Além disso, o algoritmo k-Nearest Neighbors (kNN) foi utilizado devido à sua

capacidade de classificar instâncias não resolvidas com base nas instâncias já solucionadas mais

próximas, isto é, considerando a similaridade entre elas. A Regressão Logística, é amplamente

utilizada em problemas de classificação binária, possuindo bons resultados na maioria dos casos,

foi outra abordagem empregada, sendo adaptada para predizer se um vértice pertence ao conjunto

S ou não, levando em conta o contexto do problema do corte máximo.

Por fim, Redes Neurais Artificiais com arquitetura feedforward foram implemen-

tadas. Esse modelo processa as informações de entrada por meio de uma rede de neurônios

interconectados, ajustando iterativamente os pesos dessas conexões com o objetivo de minimizar

a taxa de erro na classificação de vértices. É importante destacar que todos os algoritmos foram

treinados para mapear as características extraídas dos vértices às suas respectivas partições,

buscando maximizar o valor do corte ao alinhar a predição das partições ao objetivo principal

do problema, que é o somatório das arestas cortadas, isto é, que pertecem a dois vértices de

partições distintas.
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5.4 Geração de resultados

A geração dos resultados deste trabalho baseia-se na avaliação do desempenho dos

modelos supervisionados desenvolvidos para a resolução do Problema do Corte Máximo. As

métricas de avaliação Precision, Accuracy, Recall e F1-Score, descritas na Seção 3.4.1.1, foram

utilizadas para medir a precisão do modelo ao predizer as partições dos vértices, comparando

essas predições com as respostas corretas conhecidas. Entretanto, o foco principal está na

avaliação da qualidade do corte obtido, isto é, o quão bem o modelo foi ao resolver uma instância

nunca vista antes.

O valor de corte encontrado pelo modelo será comparado com o corte calculado pelo

Solver Biq Mac, servindo como referência para avaliar a eficácia do modelo, bem como sua

generalização e desempenho prático. O objetivo principal é determinar o quão bem o modelo

consegue realizar a partição dos vértices.

Para uma análise mais aprofundada dos resultados, será realizada uma investigação

exploratória das instâncias que tiveram um melhor valor de corte previsto pelo modelo, em

relação as demais. O algoritmo de agrupamento k-means será aplicado com o objetivo de

identificar padrões e características comuns entre os diferentes grupos de grafos. A determinação

do número ideal de clusters será realizada por meio dos métodos do cotovelo e da silhueta, o que

permitirá uma segmentação mais precisa dos grafos de acordo com suas propriedades estruturais

e o desempenho do modelo.

Essa análise permitiu diferenciar as instâncias em que o modelo supervisionado

obteve sucesso daquelas que tiveram um desempenho inferior. Além disso, foram extraídas

características gerais dessas instâncias, sendo analisada a distribuição dos dados por meio de

métricas estatísticas básicas, como média, desvio padrão e quartis. Para uma análise mais

detalhada, utilizou-se o gráfico de estimativa de densidade do kernel (KDE), que permite estimar

a função densidade de probabilidade de uma variável contínua com base em registros observados

em uma base de dados, isto é, proporcionando uma visualização da distribuição dos dados em

uma coluna (Lin et al., 2020). Essa ferramenta revelou características específicas dos grafos que

influenciam diretamente o sucesso do modelo na resolução do Problema do Corte Máximo.
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5.5 Ajuste dos parâmetros

Embora a escolha apropriada das variáveis de entrada seja crucial no treinamento do

modelo, o refinamento de seu desempenho é caracterizado pela seleção adequada dos hiperparâ-

metros (refinamento do algoritmo) (Seyedzadeh et al., 2019). Para isso, foi necessário conduzir

uma busca sistemática pelo conjunto ideal de hiperparâmetros que melhore o desempenho do

modelo.

No ajuste dos hiperparâmetros no k-Nearest-Neighbors (kNN), a escolha apropriada

do valor de k é crucial, como discutido na Subseção 3.4.1.2. Esse parâmetro determina o número

de k vizinhos mais próximos envolvidos na predição por meio de uma votação majoritária.

Por exemplo, quando o valor de k é muito baixo, o modelo pode ajustar-se excessivamente à

base de dados de treinamento, afetando negativamente a capacidade de generalizar padrões.

Adicionalmente, a escolha da função de distância também é essencial, pois ela determina os k

vizinhos mais próximos do registro alvo a serem analisados e a ponderação dos vizinhos mais

próximos devem ser ajustadas, testando se os registros mais próximos devem ter maior peso na

decisão final do modelo.

Da mesma forma, as Redes Neurais Feedforward possui um conjunto de hiperparâ-

metros a serem ajustados, que incluem:

• Número de camadas e neurônios: determinar a quantidade de camadas na rede e o número

de neurônios em cada camada;

• Taxa de Aprendizado: determina a taxa pela qual a rede irá ajustar seus pesos de conexões

entre os neurônios, que busca minimizar o erro de saída;

• Função de Ativação: determinar qual função utilizar nos neurônios, como visto na Subse-

ção 3.4.2;

• Algoritmo de Otimização: definir o algoritmo responsável por ajustar os pesos da rede

com base nos gradientes de erro calculados pelo algoritmo backpropagation. Entre os

algoritmos de otimização, tem-se o Stochastic Gradient Descent e o Adam;

Já para a Regressão Logística, foi analisado dois hiperparâmetros. O primeiro é o

campo de regualização, que controla a taxa de regularização dos pesos, como discutido na Seção

tal, sendo essencial para evitar o overfitting do modelo. O segundo é o algoritmo de otimização,

possuindo dois algoritmos analisados: lbfgs, que é recomendado para grandes bases de dados e

liblinear, que é mais adequada para problemas lineares.

Por último, o Naive Bayes é conhecido por sua abordagem ingênua, destacando-se
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pela simplicidade e eficácia do modelo. Essa abordagem ingênua, de modo geral, é derivada da

premissa de que as probabilidades condicionais dos atributos são independentes entre si, como

visto na Subseção 3.4.1.3. Embora essa simplicidade seja justamente sua vantagem, ela também

implica em poucos hiperparâmetros se comparado com modelos mais complexos, como kNN e

Redes Neurais.

No caso do Naive Bayes com distribuição Gaussiana, o qual será utilizado, o hy-

perparâmetro que será ajusta é a suavização das estimativas de variância. Ajustar esse valor,

dependendo do valor especificando, o modelo pode generalizar os conceitos aprendidos melhor.

5.6 Ferramentas utilizadas

Para a implementação deste trabalho, será utilizado o Python como linguagem de

programação, fazendo uso da IDE Visual Studio Code com a extensão Jupyter. Essa extensão

permite ao programador separar o código em células dentro do ambiente de desenvolvimento,

possibilitando a execução de um trecho do código de forma individual. Adicionalmente, serão

utilizadas as seguintes bibliotecas:

• Pandas: para realizar o pré-processamento dos dados, pois permite a criação e manipulação

de bases de dados.

• Scikit-learn (Sklearn): para implementação dos algoritmos de Aprendizado de Máquina,

pré-processamento dos dados, ajustes dos hiperparâmetros e avaliação dos modelos.

• NumPy: para operações numéricas e manipulação de arrays.

• Networkx: utilizado para trabalhar com grafos no python, possuindo funções que calcula

métricas como centralidade de grau e excentricidade.
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6 RESULTADOS

Este capítulo apresenta os resultados obtidos ao longo deste trabalho. Na Seção

6.1, é discutido o primeiro experimento, que consistiu no treinamento do modelo com base na

seleção aleatória das amostras. A Seção 6.2 apresenta uma busca exploratória nas instâncias que

demonstraram melhor desempenho em comparação às demais, conduzindo uma análise suas

propriedades para identificar as possíveis causas.

Na Seção 6.3, foram selecionadas apenas as instâncias com coeficiente de aglome-

ração positivo e distante de zero para o treinamento e avaliação do modelo. Além disso, são

apresentados os resultados obtidos e esclarecidas as dúvidas levantadas no primeiro experimento.

A Subseção 6.3.1 explora o comportamento do modelo, mostrando que uma baixa acurácia nem

sempre resulta em um baixo valor de corte. Por fim, na 6.4, são apresentados os valores obtidos

para os hiperparâmetros de cada modelo treinado e na Seção 6.5, é aplicado o modelo treinado

para instâncias com mais de até 3000 vértices.

6.1 Treinamento do modelo com varias instâncias aleatórias

Ao realizar o treinamento do modelo supervisionado com as instâncias da Biq Mac

Library, as bases de dados foram divididas em conjuntos de treinamento e teste. A estratégia

adotada foi concatenar as instâncias selecionadas para o treinamento e, em seguida, utilizar o

modelo para realizar a partição de instâncias não aprendidas.

Devido às diferenças nas propriedades dos grafos, como centralidade de grau e

coeficiente de aglomeração, observou-se uma grande variação entre os conjuntos de dados. Isso

resultou em correlações distintas entre as variáveis das bases de dados de diferentes instâncias,

tornando o processo de generalização do modelo um desafio. Essas variações dificultaram a

capacidade do modelo de identificar padrões consistentes e aplicáveis a grafos com características

estruturais variadas.

Os resultados obtidos após o treinamento e teste indicaram que, das 330 instâncias

testadas, o modelo não apresentou um desempenho satisfatório geral, com apenas 58 instâncias

exibindo valores significativamente mais elevados do que as demais, ainda que relativamente

baixos, conforme apresentado nas tabelas contidas no Apêndice A. Nessas tabelas, são listados

os nomes das instâncias de teste, o valor de corte obtido através do Solver Biq Mac, bem como

os valores obtidos pelos modelos de aprendizado de máquina Naive Bayes, kNN, Regressão
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Logística e Rede Neural Artificial.

É importante destacar que o kNN foi o modelo que apresentou o melhor desempenho

geral, especialmente na Tabela 8. Isso sugere que o aprendizado baseado em instâncias, que

armazena as informações de cada amostra, foi eficaz em detectar padrões de instâncias que se

assemelham aos grafos já aprendidos pelo modelo. No geral, os resultados obtidos se alinha

com a expectativa de que a modelagem seria mais eficiente para um subconjunto de grafos que

compartilham propriedades estruturais específicas, reforçando a importância de considerar a

similaridade estrutural entre as instâncias nesse processo de treinamento.

Assim como em bases de dados tradicionais é importante remover valores extremos

e realizar o pré-processamento dos dados para selecionar aqueles mais semelhantes, a fim de

melhorar a qualidade do treinamento, esse mesmo princípio pode ser aplicado às instâncias do

Problema do Corte Máximo. Para otimizar o aprendizado do modelo, é necessário selecionar

apenas as instâncias que apresentam similaridades estruturais, aumentando, assim, o valor de

corte obtido pelo modelo.

6.2 Análise das instâncias que tiveram um maior desempenho em relação as outras

A análise das instâncias focou nas características estruturais das 58 instâncias-

alvo, avaliando suas estatísticas básicas e aplicando os métodos do cotovelo e da silhueta

para determinar a quantidade ideal de grupos. O algoritmo k-means foi utilizado para realizar

a separação, com o objetivo de identificar a característica chave que contribuiu para o bom

desempenho do modelo nessas instâncias. A Tabela 2 apresenta as medidas gerais dessas

características, incluindo a dispersão dos dados e os valores extremos. Para as métricas de

centralidade e coeficiente de aglomeração, que são atributos dos vértices, foram registrados os

valores mínimos, máximos e a média observada em cada instância, proporcionando uma visão

da variação dessas características dentro de cada grafo.

Conforme evidenciado na Tabela 2, as instâncias-alvo estudadas variam em tamanho,

de 20 a 125 vértices, com uma média de 85 vértices e um desvio padrão de 21. Em relação às

arestas, a menor quantidade observada é de 210, enquanto a maior é de 7800, com uma média

de 2500 arestas. No entanto, o desvio padrão de 1500 indica uma grande dispersão, sugerindo

que alguns grafos são mais conectados do que outros. Essa diferença de conectividade pode ser

confirmada ao analisar a densidade, que vai de 0.5 até 1.1, evidenciando tanto a presença de

grafos completos quanto a ocorrência de pelo menos uma instância com laços em sua estrutura.
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Tabela 2 – Estatísticas descritivas das propriedades do grafo

Características mean std min 25% 50% 75% max
Número de vértices 8.5×101 2.1×101 2.0×101 8.0×101 1.0×102 1.0×102 1.25×102

Número de arestas 2.5×103 1.5×103 2.1×102 1.6×103 2.5×103 2.5×103 7.8×103

Peso médio das aresta por vértices 6.6×102 1.3×103 3.0×101 4.0×101 5.0×101 4.9×102 6.1×103

Número de componentes conectados 1.0×100 0.0×100 1.0×100 1.0×100 1.0×100 1.0×100 1.0×100

Diâmetro 2.0×100 0.0×100 2.0×100 2.0×100 2.0×100 2.0×100 2.0×100

Excentricidade média 1.9×100 1.8×10−1 1.3×100 2.0×100 2.0×100 2.0×100 2.0×100

Raio 1.8×100 3.7×10−1 1.0×100 2.0×100 2.0×100 2.0×100 2.0×100

Densidade 6.5×10−1 2.2×10−1 5.0×10−1 5.0×10−1 5.0×10−1 9.0×10−1 1.1×100

Média centralidade do grau 6.5×10−1 2.2×10−1 5.0×10−1 5.0×10−1 5.0×10−1 9.0×10−1 1.1×100

Máxima centralidade do grau 7.6×10−1 1.8×10−1 6.0×10−1 6.3×10−1 6.5×10−1 9.6×10−1 1.1×100

Mínima centralidade do grau 5.4×10−1 2.6×10−1 2.9×10−1 3.5×10−1 3.8×10−1 8.2×10−1 1.1×100

Média centralidade intermediação 1.4×10−2 1.5×10−2 5.1×10−3 6.4×10−3 8.6×10−3 1.5×10−2 8.2×10−2

Máxima centralidade intermediação 5.2×10−2 8.0×10−2 7.4×10−3 1.1×10−2 2.0×10−2 5.3×10−2 4.2×10−1

Mínima centralidade intermediação 1.8×10−3 1.4×10−3 0.0×100 2.1×10−4 2.2×10−3 2.9×10−3 4.5×10−3

Média coeficiente de aglomeração 4.4×10−1 9.0×10−2 2.4×10−1 4.3×10−1 5.0×10−1 5.0×10−1 5.1×10−1

Máximo coeficiente de aglomeração 4.8×10−1 9.2×10−2 2.7×10−1 4.8×10−1 5.2×10−1 5.4×10−1 5.8×10−1

Mínimo coeficiente de aglomeração 3.9×10−1 9.0×10−2 2.1×10−1 3.7×10−1 4.3×10−1 4.6×10−1 4.8×10−1

Número de triângulos 4.3×104 5.7×104 1.1×103 1.0×104 2.0×104 5.3×104 3.1×105

Transitividade 6.5×10−1 2.1×10−1 5.0×10−1 5.0×10−1 5.0×10−1 9.0×10−1 9.9×10−1

Fonte: elaborado pelo autor.

A Figura 11, demonstra a estimativa de densidade kernel (KDE) para a característica

de densidade das instâncias-alvo em comparação com toda a coleção de instâncias, sendo que

estas últimas variam de 0.01 até 1.1, com uma média de 0.49 e desvio padrão de 0.37. Dito isso,

o modelo desenvolvido não lida bem com grafos esparsos, o que pode ser pelo uso do PCA nas

colunas que representam as conexões e seus respectivos pesos. Em outras palavras, como os

grafos são muito esparsos, apresentando poucas conexões entre os vértices, ou seja, contendo

muitos valores 0, a matriz resultante possui baixa variabilidade. Isso dificulta a eficácia do PCA

na redução de dimensionalidade, pois há pouca informação nas arestas com peso em comparação

às arestas que não existem.

O peso médio das arestas por vértice também apresenta uma variação significativa,

com valores que oscilam de 30 até 6100, possuindo uma disparidade entre o valor máximo, que

é 200 vezes maior que o mínimo, sugerindo que alguns grafos contêm peso de arestas mais

elevado, bem como mais conexões, indicando importantes diferenças estruturais. Outros aspectos

importantes incluem a quantidade de componentes conexos e o diâmetro dos grafos, uma vez que

todas as instâncias são conexas e compartilham o mesmo diâmetro, ou seja, sua maior distância

mínima entre dois vértice em todo grafo é 2.

A excentricidade média tem seu valor próximo de 2, com um desvio padrão baixo de

0.16, indicando uma distribuição bastante homogênea dos vértices. Como a excentricidade mede

a maior distância mínima entre um vértice e todos os outros, essa proximidade com o diâmetro
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Figura 11 – KDE da característica de densidade.

Fonte: Elaborada pelo autor.

do grafo sugere que a maioria dos vértices está relativamente perto do centro. Isso evidencia uma

distribuição equilibrada dos vértices, com distâncias similares ao centro do grafo, reforçando a

ideia de uma estrutura compacta e bem conectada.

No que diz respeito à centralidade do grau, o valor médio é de 0.65, com as caracte-

rísticas de centralidade mínima e máxima variando ligeiramente entre 0.54 e 0.76. Isso indica

que os grafos são equilibrados em termos de importância dos vértices, já que a centralidade

do grau reflete o número de conexões diretas de cada vértice, medindo sua importância no

grafo. Entretanto, as três características que dizem respeito a centralidade de intermediação

possuem valores muito próximo de 0, o que confirma a ausência de "vértices-chave" responsáveis

por intermediar muitas conexões entre outros vértices, sugerindo que o fluxo de conexões não

depende fortemente de vértices específicos.

Como a centralidade de intermediação mostrou valores extremos e consistentes em

todas as 58 instâncias, com um desvio padrão próximo de 0, ela pode ser um dos principais

fatores que explicam o melhor desempenho do modelo nessas instâncias-alvo. Com isso em

mente, foram utilizados os métodos do cotovelo e da silhueta para determinar a quantidade ideal

de grupos, além da aplicação do k-means para particionar todas as 330 instâncias, levando em

consideração apenas a centralidade de intermediação. A Figura 12 mostra que o método do

cotovelo indica 2 grupos como ideal, enquanto o método da silhueta sugere 3 grupos.

Ao realizar a partição das instâncias com base exclusivamente na centralidade de

intermediação, seja separando em 3 ou 2 grupos, observou-se que as 58 instâncias foram sempre
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Figura 12 – Quantidade de grupos ideais com base na característica de centralidade de
intermediação.

Fonte: Elaborada pelo autor.

agrupadas no mesmo conjunto, juntamente com outras 10 instâncias. Esse fato sugere que

a centralidade de intermediação é uma das características-chave para o bom desempenho do

modelo. No entanto, a presença de outras instâncias nesse grupo, onde o modelo não teve um

desempenho satisfatório, embora em pequena quantidade, indica que essa característica, por si

só, não determina o sucesso do modelo. Isso sugere que outros fatores podem estar influenciando

o desempenho e precisam ser considerados.

A característica que registra a média do coeficiente de aglomeração para cada vértice

em todas as instâncias apresenta uma mediana de 0.5, com um desvio padrão muito baixo de

0.09. O grafo com a menor média possui um valor de 0.24, enquanto o grafo com a maior média

tem 0.51. Adicionalmente, as medianas das características que registraram os valores mínimos e

máximos do coeficiente de aglomeração são 0.46 e 0.54, respectivamente. No geral, esses dados

sugerem uma quantidade moderada de agrupamentos locais.

A Figura 13 apresenta a estimativa de densidade kernel (KDE) para as colunas de

média, máximo e mínimo do coeficiente de aglomeração, ilustrando a distribuição dos valores

dentro do intervalo observado em cada uma dessas colunas. A Figura 13 (a) mostra a distribuição

para todas as instâncias, enquanto a Figura 13 (b) foca no conjunto das 58 instâncias-alvo.

Na Figura 13 (a), observa-se a presença de duas populações distintas: uma classe majoritária

com valores muito próximos de zero, incluindo até valores negativos, e uma classe minoritária

composta exclusivamente por valores positivos. A Figura 13 (b) demonstra precisamente essa

classe minoritária, que corresponde às instâncias-alvo observadas, reforçando a separação entre
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essas duas populações.

Figura 13 – KDE do coeficiente de aglomeração

Fonte: Elaborada pelo autor.

Já a Figura 14 comprova que o número ideal de grupos é 2, sendo indicado tanto pelo

método do cotovelo quanto pelo método da silhueta. Além disso, ao aplicar o algoritmo k-means,

todas as 58 instâncias foram corretamente separadas das demais, reforçando a ideia de que o

coeficiente de aglomeração é uma característica chave para diferenciar as instâncias-alvo. Isso

sugere que para que o modelo consiga ter um bom desempenho ao realizar o particionamento dos

vértices para o Problema do Corte máximo, de novas instâncias, é necessário que elas possuem

valores de coeficiente de aglomeração positivos e que não estejam muito próximo de zero.

Figura 14 – Quantidade de grupos ideais com base na característica de coeficiente de
aglomeração.

Fonte: Elaborada pelo autor.
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6.3 Treinamento focado no coeficiente de aglomeração

A fim de confirmar a hipótese levantada na seção 6.1, de que a qualidade do treina-

mento do modelo seria maior ao utilizar instâncias de treinamento que compartilham caracterís-

ticas estruturais semelhantes, foi realizado um novo treinamento e teste focado na população

minoritária apresentada na seção 6.2.

Com o agrupamento de instâncias baseadas no coeficiente de aglomeração, o modelo

passou a se especializar em grafos que compartilham essa característica estrutural, especifica-

mente as propriedades desse subconjunto de instâncias. Para testar essa abordagem, foi realizada

uma validação cruzada, onde 57 instâncias foram utilizadas como conjunto de treinamento,

enquanto uma servia como teste, até que todas as instâncias fossem avaliadas. Esse processo

revelou que, na maioria dos casos, as instâncias alcançaram uma margem de 90% no valor de

corte, se comparadas com o valor fornecido pelo solver. Esses resultados indicam que o modelo

apresenta maior capacidade de generalização quando treinado em um conjunto de grafos com

estruturas mais similares, comprovando a hipótese levantada anteriormente.

Os resultados detalhados deste experimento estão disponíveis nas Tabelas 3, 4 e 5,

onde o valor de corte obtido pelos modelo supervisionados foi comparado com o valor fornecido

pelo solver Biq Mac. O desempenho do modelo foi significativamente superior nas instâncias

com coeficiente de aglomeração mais elevado, reforçando a importância de considerar essa

propriedade específica dos grafos ao treinar o modelo.

6.3.1 Relação da Acurácia com valor de corte

Ao analisar métricas como F1-Score, Recall, Acurácia e Precisão, foi identificado

uma relação importante. Embora o modelo apresente uma acurácia muito baixa para algumas

instâncias do problema, o que também afeta negativamente as demais métricas de avaliação, isso

não compromete o valor do corte, conforme demonstrado na Tabela 6. Nela foi listado alguns

casos extremos, onde, apesar da baixa acurácia, o valor de corte se aproxima significativamente

daquele fornecido pelo solver, o que faz com que essas métricas não sejem ideais para avaliar o

modelo treinado.

Esse comportamento sugere que o modelo, em vez de se ajustar aos detalhes espe-

cíficos de cada instância, está aprendendo uma lógica diferente, que é eficaz para resolver o

Problema do Corte Máximo. Em outras palavras, embora o modelo não esteja selecionando
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Tabela 3 – Resultados para o Treinamento especializado - Parte I

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

pw05_100.0 8190 7619.0 7018.0 7976.0 6998.0
pw05_100.1 8045 7149.0 6999.0 7834.0 6836.0
pw05_100.2 8039 7494.0 6934.0 7703.0 6654.0
pw05_100.3 8139 7568.0 6748.0 7730.0 7124.0
pw05_100.4 8125 6803.0 6998.0 7676.0 6658.0
pw05_100.5 8169 6488.0 7033.0 7827.0 7166.0
pw05_100.6 8217 6752.0 7223.0 7751.0 6924.0
pw05_100.7 8249 7590.0 7014.0 7754.0 6937.0
pw05_100.8 8199 7377.0 6893.0 7989.0 7168.0
pw09_100.0 13585 12331.0 12323.0 13184.0 11597.0
pw09_100.1 13417 12009.0 12588.0 12875.0 11659.0
pw09_100.2 13461 12520.0 12296.0 13274.0 12565.0
pw09_100.3 13656 12169.0 12217.0 13172.0 12428.0
pw09_100.4 13514 11773.0 12134.0 13250.0 12451.0
pw09_100.5 13574 11742.0 11883.0 13347.0 12044.0
pw09_100.6 13640 12440.0 12551.0 13352.0 12512.0
pw09_100.7 13501 12429.0 12172.0 13045.0 12524.0
pw09_100.8 13593 11743.0 12450.0 13021.0 11706.0
pw09_100.9 13658 13027.0 12555.0 13424.0 12351.0

Fonte: elaborada pelo autor.

Tabela 4 – Resultados para o Treinamento especializado - Parte II

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

gka1b 5744 4678.0 4330.0 5353.0 4652.0
gka2b 12451 9514.0 9757.0 12291.0 10320.0
gka3b 22115 16861.0 19459.0 21702.0 18761.0
gka4b 34857 29743.0 29856.0 33809.0 31412.0
gka5b 49942 45134.0 45281.0 47822.0 44976.0
gka6b 68189 58950.0 55934.0 67188.0 60696.0
gka7b 87428 65660.0 77946.0 84902.0 77778.0
gka8b 109969 95436.0 100895.0 108287.0 102557.0
gka9b 135757 97029.0 122643.0 130581.0 124552.0
gka10b 209946 118596.0 194859.0 206584.0 196701.0

Fonte: elaborada pelo autor.

exatamente os mesmos vértices que o Solver Biq Mac para o subconjunto S, algo que é necessário

para melhorar as métricas de avaliação, como Acurácia e F1-Score, seu valor de corte indica que

sua abordagem, de maneira geral, está alinhada com a solução esperada pelo solver.

6.4 Ajuste dos hiper-parâmetros

Para realizar o ajuste dos hiperparâmetros, foi utilizada a ferramenta GridSearch,

que testa diversas combinações de parâmetros para encontrar a configuração que maximiza um



59

Tabela 5 – Resultados para o Treinamento especializado - Parte II

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

g05_60.1 532 492.0 464.0 504.0 460.0
g05_60.2 529 460.0 433.0 514.0 452.0
g05_60.3 538 474.0 450.0 518.0 440.0
g05_60.4 527 489.0 455.0 497.0 461.0
g05_60.5 533 481.0 470.0 526.0 433.0
g05_60.6 531 467.0 455.0 507.0 454.0
g05_60.7 535 483.0 422.0 515.0 427.0
g05_60.8 530 496.0 465.0 494.0 462.0
g05_60.9 533 511.0 421.0 519.0 477.0
g05_80.0 929 833.0 812.0 885.0 809.0
g05_80.1 941 875.0 764.0 884.0 801.0
g05_80.2 934 851.0 805.0 890.0 832.0
g05_80.3 923 854.0 801.0 891.0 810.0
g05_80.4 932 840.0 788.0 880.0 793.0
g05_80.5 926 856.0 789.0 882.0 751.0
g05_80.6 929 855.0 807.0 899.0 820.0
g05_80.7 929 889.0 769.0 894.0 837.0
g05_80.8 925 862.0 814.0 901.0 795.0
g05_80.9 923 831.0 813.0 894.0 777.0
g05_100.0 1430 1300.0 1236.0 1351.0 1226.0
g05_100.1 1425 1352.0 1289.0 1399.0 1277.0
g05_100.2 1432 1357.0 1245.0 1393.0 1275.0
g05_100.3 1424 1345.0 1233.0 1368.0 1253.0
g05_100.4 1440 1309.0 1270.0 1375.0 1286.0
g05_100.5 1436 1319.0 1276.0 1392.0 1288.0
g05_100.6 1434 1354.0 1239.0 1378.0 1282.0
g05_100.7 1431 1326.0 1257.0 1390.0 1242.0
g05_100.8 1432 1280.0 1281.0 1346.0 1293.0
g05_100.9 1430 1312.0 1265.0 1351.0 1234.0

Fonte: elaborada pelo autor.

valor de avaliação específico. Neste caso, o valor escolhido foi o corte máximo obtido pelo

modelo, pois, como visto anteriormente, uma acurácia baixa não necessariamente resulta em um

bom valor de corte. Dessa forma, os melhores hiperparâmetros obtidos para cada modelo foram:

1. Naive Bayes:

• Taxa de suavização da variância: foram testada em 10 valores variando entre 10−9 e

100. O melhor valor foi de 0.001.

2. k-Nearest Neighbors (kNN):

• Número de vizinhos mais próximos: avalia a quantidade de vizinhos que serão

analisados para a predição. Os valores testados foram 5, 10 e 15, sendo 5 o número

de vizinhos que obtive melhor resultado;

• Métrica de distância: foram testadas as métricas Minkowski, Euclidean e Manhattan.

A métrica com melhor desempenho foi Minkowski;
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Tabela 6 – Relação da acurácia com valor de corte

Instâncias de Teste Solver Naive Bayes kNN Regressão Logística Rede Neural

Acurácia Corte Acurácia Corte Acurácia Corte Acurácia Corte

g05_80.8 925 0.31 862.0 0.38 814.0 0.31 901.0 0.4 795.0
g05_60.7 535 0.22 483.0 0.52 422.0 0.22 515.0 0.45 427.0
g05_60.6 531 0.3 467.0 0.43 455.0 0.27 507.0 0.45 454.0
g05_60.8 530 0.33 496.0 0.52 465.0 0.35 494.0 0.53 462.0
g05_100.1 1425 0.37 1352.0 0.35 1289.0 0.36 1399.0 0.47 1277.0
g05_100.7 1431 0.24 1326.0 0.45 1257.0 0.19 1390.0 0.44 1242.0
g05_100.8 1432 0.3 1280.0 0.36 1281.0 0.29 1346.0 0.36 1293.0
g05_100.9 1430 0.23 1312.0 0.34 1265.0 0.18 1351.0 0.38 1234.0
pw05_100.0 8190 0.29 7619.0 0.42 7018.0 0.22 7976.0 0.39 6998.0
pw09_100.2 13461 0.23 12520.0 0.47 12296.0 0.15 13274.0 0.33 12565.0
pw09_100.9 13658 0.22 13027.0 0.42 12555.0 0.14 13424.0 0.46 12351.0
pw05_100.8 8199 0.21 7377.0 0.38 6893.0 0.14 7989.0 0.29 7168.0
gka2b 12451 0.23 9514.0 0.5 9757.0 0.07 12291.0 0.43 10320.0
gka3b 22115 0.25 16861.0 0.42 19459.0 0.18 21702.0 0.5 18761.0
gka4b 34857 0.32 29743.0 0.48 29856.0 0.28 33809.0 0.48 31412.0
gka5b 49942 0.3 45134.0 0.33 45281.0 0.27 47822.0 0.52 44976.0

Fonte: elaborada pelo autor.

• Ponderação dos vizinhos: esse campo define se o peso dos vizinhos será uniforme ou

baseado na distância, isto é, onde os vizinhos mais próximos têm maior impacto. O

melhor desempenho foi para uniforme.

3. Regressão Logística:

• Parâmetro de regularização (C): o melhor resultado foi 0.046415888336127774,

sendo que foram testados 10 valores entre 10−4 e 104;

• Algoritmo de otimização: entre lbfgs e liblinear, o que performou melhor foi lbfgs.

4. Rede Neural Artificial (RNA):

• Função de ativação: entre tangente hiperbólica e ReLU, a que performou melhor foi

ReLU;

• Quantidade de camadas ocultas e neurônios: duas camadas ocultas com 100 neurônios

cada tiveram os melhores resultados. Além dessa, também foram testadas uma

camada com 50 neurônios, uma camada com 100 neurônios, além de duas camadas

com 50 neurônios cada;

• Taxa de aprendizado: o tipo de taxa de aprendizado testado foi constante, onde

o taxa permaneceria a mesma com o passar das épocas, e adaptativa, que iria se

adaptando conforme o desempenho do modelo, sendo que esta última retornou

melhores resultados;

• Algoritmo de otimização: entre Stochastic Gradient Descent e Adam, o Stochastic



61

Gradient Descent retornou melhores resultados.

6.5 Aplicação do modelo treinado em instâncias de grande porte

O conjunto de instâncias G, gerado por Helmberg e Rendl (2000), contém grafos de

grande porte, com tamanhos variando de 800 a 3000 vértices. Neste contexto, foram aplicados

os modelos desenvolvidos ao longo deste trabalho para obter o valor de corte nessas instâncias,

mas com uma limitação, isto é, devido à grande quantidade de vértices e arestas, não foi possível

extrair características dos grafos, como coeficiente de aglomeração e medidas de centralidade.

Esse detalhe importante impediu que o modelo fosse treinado com instâncias ideais para cada

tipo de grafo existente no conjunto G.

Outro fator importante a ser informado é que, devido à dificuldade de extrair as carac-

terísticas dos grafos, não foi possível identificar aqueles que possuem uma média de coeficiente

de aglomeração com valores positivos e distante de zero, além da média de centralidade de inter-

mediação próxima de zero ou uma mínima centralidade de grau superior a 0.53. Como visto na

Seção 2, essas características são fundamentais para o desempenho dos modelos desenvolvidos,

tornando o processo de ajuste e validação dos mesmos inviável para as instâncias em questão.

Para o treinamento, foram utilizadas todas as instâncias da Biq Mac Library. O

algoritmo com melhor desempenho foi o kNN, apresentando resultados e comportamentos seme-

lhantes aos gerados na Seção 6.1, onde o treinamento foi realizado com instâncias aleatórias. No

geral, essa situação se repete neste experimento também. Assim como no experimento anterior,

o modelo conseguiu um desempenho melhor em algumas instâncias em específico, sugerindo

que há grafos na base de treinamento com estruturas semelhantes ou padrões semelhantes com a

instância-alvo. Os resultados podem ser conferidos na Tabela 7.
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Tabela 7 – Resultados para o Conjunto G

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

G1 11609 119 8842 169 561
G2 11612 134 8606 179 619
G3 11614 168 8763 121 477
G4 11638 165 8669 165 353
G5 11624 233 8969 122 407
G6 2176 -22 289 -25 -72
G7 2006 -30 311 -30 -35
G8 2004 -22 56 -19 19
G9 2047 -41 340 -41 -4
G10 1998 -13 105 -17 -10
G11 564 0 64 0 -8
G12 556 -4 -6 0 2
G13 582 -6 36 -6 -8
G14 3054 0 1866 24 660
G15 3044 0 2194 0 715
G16 3043 0 2027 0 691
G17 3042 0 1928 0 740
G18 988 -8 -70 -62 19
G19 906 -11 -27 -29 15
G20 940 6 37 -33 -5
G21 929 -59 -73 -78 -2
G22 13338 83 9596 61 148
G23 13287 113 9696 52 125
G24 13306 56 9654 38 164
G25 13288 79 9680 71 390
G26 13264 71 9674 16 219
G27 3304 -41 -23 -39 -21
G28 3253 -8 -449 -8 -6
G29 3352 -8 -164 -12 2
G30 3363 -12 317 -12 -20
G31 3269 -15 -601 -15 -11
G32 1386 -2 -70 0 6
G33 1368 -4 -100 -4 12
G34 1376 -10 -102 -10 -2
G35 7651 0 5529 0 925
G36 7641 166 5408 0 1379
G37 7660 336 5630 0 1503
G38 7646 0 5352 0 884
G39 2381 -48 17 -121 -56
G40 2373 -6 5 -40 2
G41 2386 -25 -89 -52 37
G42 2453 3 65 -74 -48
G43 6654 51 4599 64 122
G44 6649 84 4839 67 129
G45 6642 49 4607 57 142
G46 6643 52 4500 32 218
G47 6641 113 4526 44 178
G48 6000 8 1912 4 28
G49 6000 16 2082 8 38
G50 5880 12 1706 4 36
G51 3838 0 2712 0 739
G52 3841 0 2662 0 906
G53 3838 0 2627 0 730
G54 3837 0 2541 0 847

Fonte: elaborada pelo autor.
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7 CONCLUSÕES E TRABALHOS FUTUROS

Neste trabalho, foram exploradas aplicações de algoritmos de aprendizado de má-

quina supervisionado para a criação de modelos treinados a partir de instâncias de tamanhos

pequenos e intermediários, com o objetivo de solucionar o Problema do Corte Máximo. Esse

problema consiste em encontrar um subconjunto S de vértices, de tal forma que a soma das

arestas com exatamente um vértice em S seja a maior possível. O modelo foi treinado com

instâncias previamente solucionadas pelo Solver Biq Mac e utilizado para realizar a partição dos

vértices de instâncias não observadas.

A análise revelou uma relação importante entre as propriedades estruturais dos grafos

e o desempenho dos modelos supervisionados tradicionais na solução desse problema. Mais

especificamente, as instâncias com maior coeficiente de aglomeração e centralidade de grau,

além da centralidade de intermediação próxima de zero, da coleção de instâncias da Biq Mac

Library, demonstraram um desempenho superior em termos de valor de corte obtido pelo modelo.

Isso sugere que essas características estruturais são importantes para um treinamento eficiente

dos modelos.

O uso de uma base de dados de treinamento composta por instâncias selecionadas de

forma aleatória evidenciou que, assim como em bases de dados tradicionais, é necessário que

os dados não apresentem grandes disparidades em suas características estruturais. Neste caso,

a estrutura dos grafos, como coeficiente de aglomeração e grau de centralidade desempenha

esse papel. Portanto, utilizar o coeficiente de aglomeração como critério para agrupar as

instâncias, selecionando apenas aquelas cujos valores são positivos e distantes de zero, foi um

fator determinante no treinamento do modelo, gerando bons resultados, estando próximos aos

fornecidos pelo Solver Biq Mac.

Um ponto importante foi a baixa acurácia observada em algumas instâncias. Embora

isso impacte negativamente as métricas tradicionais de avaliação de modelos preditivos, não

comprometeu o valor de corte, sugerindo que o modelo conseguiu aprender uma lógica eficiente

para o particionamento dos vértices. Por fim, os resultados obtidos ao treinar o modelo com

instâncias menores e aplicá-lo nas instâncias do conjunto G indicam que, dependendo das

amostras de treinamento, há potencial para que o modelo alcance melhores desempenhos no

futuro.
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7.1 Trabalhos futuros

Para trabalhos futuros, espera-se expandir o conjunto de instâncias utilizadas para o

treinamento e teste, abrangendo grafos de diferentes tamanhos e complexidades, além daqueles

observados na Biq Mac Library. Esse agrupamento de novas instâncias visa melhorar a qualidade

do treinamento dos modelos de aprendizado de máquina, trazendo grafos com estruturas mais

variadas. O objetivo é particionar a coleção de instâncias com base em múltiplas características

estruturais, como coeficiente de aglomeração, centralidade de grau e conectividade, com especial

atenção para grafos com coeficientes de aglomeração positivos.

Além disso, pretende-se explorar outras formas de representar os grafos nas bases

de dados. Uma abordagem promissora é o uso de graph embeddings gerados por redes neurais,

que capturam as estruturas dos grafos com base nas características tanto dos vértices quanto das

arestas. Além disso, é interessante explorar outros algoritmos de aprendizado de máquina, como

Random Forest e Máquina de Vetores de Suporte (SVM) para avaliar o comportamento desses

modelos em relação aqueles observados nesse trabalho.

Por fim, busca-se desenvolver um método para selecionar amostras de treinamento

ideais, visando otimizar o desempenho dos modelos de aprendizado supervisionado na solução

do Problema do Corte Máximo.
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APÊNDICE A – RESULTADOS PARA O TREINAMENTO COM AMOSTRAS

ALEATÓRIAS

Tabela 8 – Resultados para o treinamento com amostras aleatórias - Parte I

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

gka1b 5744 2511 4080 4611 4728
gka2b 12451 5370 9927 8052 11265
gka3b 22115 6855 17099 9023 18824
gka4b 34857 6613 30888 15636 22967
gka5b 49942 10829 45506 12950 31168
gka6b 68189 15627 61157 18069 43732
gka7b 87428 14477 79095 21019 51731
gka8b 109969 8125 100913 31543 43661
gka9b 135757 14150 125546 39740 53472
gka10b 209946 23623 193989 44435 63274

Fonte: elaborada pelo autor.

Tabela 9 – Resultados para o treinamento com amostras aleatórias - Parte II

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

pw05_100.0 8190 2478 5868 1156 799
pw05_100.1 8045 1792 6181 474 1086
pw05_100.2 8039 2303 5967 952 1074
pw05_100.3 8139 1873 6106 558 1044
pw05_100.4 8125 1588 6196 701 766
pw05_100.5 8169 1803 6442 642 1768
pw05_100.6 8217 2063 6322 470 1920
pw05_100.7 8249 1666 5719 806 1370
pw05_100.8 8199 2110 6485 973 1325
pw09_100.0 13585 2669 11330 938 933
pw09_100.1 13417 2985 10658 1296 2376
pw09_100.2 13461 3502 11339 454 1418
pw09_100.3 13656 3977 10973 2271 2430
pw09_100.4 13514 1723 11108 845 876
pw09_100.5 13574 2157 10735 864 3247
pw09_100.6 13640 4244 11505 1402 1991
pw09_100.7 13501 4926 10972 1366 526
pw09_100.8 13593 1365 10562 901 1859
pw09_100.9 13658 3502 9695 1778 2423

Fonte: elaborada pelo autor.
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Tabela 10 – Resultados para o treinamento com amostras aleatórias - Parte III

Instância de Teste Solver Naive Bayes kNN Regressão Logística RNA

g05_100.0 1430 293 1048 96 233
g05_100.1 1425 353 1138 138 97
g05_100.2 1432 255 1237 0 268
g05_100.3 1424 308 1164 149 50
g05_100.4 1440 345 898 53 170
g05_100.5 1436 335 1043 0 174
g05_100.6 1434 349 1125 134 239
g05_100.7 1431 270 1180 52 199
g05_100.8 1432 192 1085 144 271
g05_100.9 1430 260 1135 125 149
g05_60.1 532 150 433 64 105
g05_60.2 529 94 430 30 209
g05_60.3 538 146 432 29 51
g05_60.4 527 125 399 27 108
g05_60.5 533 214 387 77 104
g05_60.6 531 227 420 24 30
g05_60.7 535 106 428 0 107
g05_60.8 530 248 422 112 52
g05_60.9 533 166 388 117 81
g05_80.0 929 210 744 37 73
g05_80.1 941 235 702 116 109
g05_80.2 934 206 716 105 170
g05_80.3 923 249 772 76 223
g05_80.4 932 206 740 67 112
g05_80.5 926 172 710 76 86
g05_80.6 929 231 766 72 35
g05_80.7 929 144 793 79 215
g05_80.8 925 205 676 71 221
g05_80.9 923 105 724 34 182

Fonte: elaborada pelo autor.


	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introdução
	Objetivos
	Objetivos gerais
	Objetivos específicos

	Fundamentação Teórica
	Conceitos introdutórios da Teoria dos Grafos
	Classes de Problemas
	Problemas clássicos da literatura

	O problema do Corte Máximo
	Aplicações do problema de Corte Máximo

	Aprendizado de Máquina
	Aprendizado de Máquina Supervisionado
	Métricas de avaliação para Modelos de Classificação
	Aprendizagem baseada em instâncias: k-Nearest-Neighbours
	Aprendizado Bayesiano: Naive Bayes Classifier
	Regressão Logística

	Redes Neurais Artificiais
	Rede Neural Feedforward e Recorrente

	Aprendizado Não Supervisionado
	Análise de Componentes Principais (PCA)
	Algoritmo K-Means



	Trabalhos Relacionados
	Um algoritmo de aprendizado profundo baseado em redes de ponteiros para o problema do corte máximo
	Algoritmo de aprendizado profundo para o problema do corte máximo baseado na estrutura de rede de ponteiros, com estratégias de aprendizado supervisionado e aprendizado por reforço.
	Desempenho experimental de redes neurais de grafos em instâncias aleatórias de corte máximo

	Metodologia
	Coleta dos dados
	Pré-processamento dos dados
	Treinamento do modelo supervisionado
	Geração de resultados
	Ajuste dos parâmetros
	Ferramentas utilizadas

	Resultados
	Treinamento do modelo com varias instâncias aleatórias
	Análise das instâncias que tiveram um maior desempenho em relação as outras
	Treinamento focado no coeficiente de aglomeração
	Relação da Acurácia com valor de corte

	Ajuste dos hiper-parâmetros
	Aplicação do modelo treinado em instâncias de grande porte

	Conclusões e Trabalhos Futuros
	Trabalhos futuros

	REFERÊNCIAS
	 Resultados para o treinamento com amostras aleatórias 

