i o
& g

UNIVERSIDADE FEDERAL DO CEARA

CENTRO DE TECNOLOGIA
DEPARTAMENTO DE ENGENHARIA DE TELEINFORMATICA
CURSO DE GRADUACAO EM ENGENHARIA DE COMPUTACAO

ARTHUR PINTO BEZERRA

IMPLEMENTANDO UMA ATUALIZACAO REMOTA DE FIRMWARE PARA
SISTEMA EMBARCADO ATRAVES DO PROTOCOLO MQTT

FORTALEZA
2024

ARTHUR PINTO BEZERRA

IMPLEMENTANDO UMA ATUALIZACAO REMOTA DE FIRMWARE PARA SISTEMA
EMBARCADO ATRAVES DO PROTOCOLO MQTT

Trabalho de Conclusdo de Curso apresentado
ao Curso de Graduacdo em Engenharia de
Computacdo do Centro de Tecnologia da
Universidade Federal do Ceard, como requisito
parcial a obtencdo do grau de bacharel em
Engenharia de Computacao.

Orientador: Prof. Dr. Alexandre Augusto da
Penha Coelho.

FORTALEZA
2024

Dados Internacionais de Catalogac@o na Publicacéo
Universidade Federal do Ceara
Sistema de Bibliotecas
Gerada automaticamente pelo modulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

B469i Bezerra, Arthur Pinto.
Implementando uma atualizag@o remota de firmware para sistema embarcado através do protocolo
MQTTS / Arthur Pinto Bezerra. — 2024.
49 f. :il. color.

Trabalho de Conclusao de Curso (graduacdo) — Universidade Federal do Ceara, Centro de Tecnologia,
Curso de Engenharia de Computacao, Fortaleza, 2024.
Orientac@o: Prof. Dr. Alexandre Augusto da Penha Coelho.

1. Atualizac@o remota. 2. Modem. 3. Microcontrolador. 4. MQTT. 5. IoT. L. Titulo.
CDD 621.39

ARTHUR PINTO BEZERRA

IMPLEMENTANDO UMA ATUALIZACAO REMOTA DE FIRMWARE PARA SISTEMA
EMBARCADO ATRAVES DO PROTOCOLO MQTT

Trabalho de Conclusdo de Curso apresentado
ao Curso de Graduacdo em Engenharia de
Computacdo do Centro de Tecnologia da
Universidade Federal do Ceard, como requisito
parcial a obtencdo do grau de bacharel em
Engenharia de Computacao.

Aprovada em: 30 de Setembro de 2024

BANCA EXAMINADORA

Prof. Dr. Alexandre Augusto da Penha
Coelho (Orientador)
Universidade Federal do Ceara (UFC)

Eng. Dr. David Freitas Moura Mota
Universidade Federal do Ceara (UFC)

Eng. Me. Alexandre Almeida da Silva
Universidade Federal do Ceara (UFC)

Dedico este trabalho a minha familia, especial-
mente 2 minha mae Mariangela, meu pai Ro-
mulo e meu irmdo Aramir, que sempre me apoia-
ram e incentivaram a seguir meus sonhos. Agra-
deco também aos amigos que estiveram ao meu
lado, torcendo por cada conquista ao longo dessa

jornada.

AGRADECIMENTOS

Agradeco, primeiramente, a minha familia, mas principalmente a minha mae, Mari-
angela, e a meu pai, Romulo, por nunca terem desistido de incentivar meus estudos e por sempre
me darem amor e ensinamentos responsaveis pela formacio da pessoa que sou hoje. A todos os
meus amigos que conheci no colégio Antares. Em especial, ao Lucca Lemos Costa Guerra e
ao Raniere Paulino de Medeiros Filho, que me acompanharam durante o fim do ensino médio e
graduacdo, por sempre acreditarem no meu potencial e me motivarem a ser melhor, ndo medindo
esforcos para estar ao meu lado.

Ao Prof. Dr.Alexandre Augusto da Penha Coelho, pela confianca e orientagdo que
tornou este trabalho possivel.

Ao meu amigo Lucas Silva Nogueira, com quem compartilhei inimeras discipli-
nas, projetos no LESC e discussdes sobre o TCC, agradeco pelo companheirismo e apoio
incondicional ao longo da jornada.

Aos colegas do LESC, que colaboraram durante os projetos e foram fundamentais

para meu aprendizado e desenvolvimento académico.

"Se vocé ndo arriscar, nao podera criar um

futuro." (Eiichiro Oda)

RESUMO

Atualmente, os dispositivos inteligentes desempenham um papel fundamental em ambientes de
Internet das Coisas (IoT), estando presentes em diversos contextos, como residéncias, escritorios,
lojas, e cidades inteligentes. Além desses espacos urbanos, sua aplicacao se estende também a
ambientes naturais, como florestas e oceanos, onde sensores e dispositivos conectados monitoram
e coletam dados em tempo real. Esses dispositivos inteligentes dependem de protocolos de
comunicacdo para interagir entre si, permitindo a troca de informag¢des e o controle remoto.
Esses protocolos viabilizam a manipulagdo e transmissao de dados coletados por sensores ou em
resposta a eventos, facilitando a operacao de aplicativos conectados. Entre as funcionalidades
possibilitadas estd o FOTA (Firmware Over the Air), que permite a atualizacdo remota do
firmware dos dispositivos, garantindo a manutencao, correcdo de falhas e inclusdao de novos
recursos, sem a necessidade de acesso fisico aos dispositivos, otimizando sua performance
e seguranga. Neste contexto, o presente trabalho apresenta a implementac¢do de um sistema
de atualizacdo remota de firmware (FOTA) para o microcontrolador CC1312, utilizando o
protocolo de comunicacdo MQTT via comandos AT, os quais sdo instru¢gdes enviadas a0 modem
para controlar diversas operacdes de comunicacdo, para o modem Cinterion® EXS82. Este
trabalho contempla o desenvolvimento do firmware do microcontrolador feito na linguagem de
programacdo C, uma aplicagcdo desenvolvida em Python para distribuir a imagem, a conexao
entre eles e o fluxo de transferéncia da imagem. A solu¢do demonstrou eficiéncia para blocos
de até 256 bytes, porém apresentou falhas no célculo de CRC para blocos superiores a 512
bytes, comprometendo a integridade da imagem. Solucdes como a fragmentacdo mais robusta de
pacotes, retransmissao de pacotes corrompidos e verificacdo incremental de CRC sdo sugeridas

para melhorar o processo.

Palavras-chave: MQTT; OTA; [oT; Atualizacdo remota; Modem; Microcontrolador.

ABSTRACT

Currently, smart devices play a fundamental role in Internet of Things (IoT) environments,
being present in various contexts such as homes, offices, stores, and smart cities. In addition to
these urban spaces, their application also extends to natural environments, such as forests and
oceans, where connected sensors and devices monitor and collect data in real-time. These smart
devices rely on communication protocols to interact with each other, allowing for the exchange
of information and remote control. These protocols facilitate the manipulation and transmission
of data collected by sensors or in response to events, enhancing the operation of connected
applications. Among the functionalities enabled is FOTA (Firmware Over the Air), which allows
for the remote update of device firmware, ensuring maintenance, bug fixes, and the addition of
new features without the need for physical access to the devices, optimizing their performance
and security. In this context, this work presents the implementation of a remote firmware update
system (FOTA) for the CC1312 microcontroller, using the MQTT communication protocol via
AT commands, which are instructions sent to the Cinterion® EXS82 modem to control various
communication operations. This work encompasses the development of the microcontroller
firmware in the C programming language, an application developed in Python for distributing
the image, the connection between them, and the image transfer flow. The solution demonstrated
efficiency for blocks of up to 256 bytes; however, it showed failures in CRC calculation for
blocks larger than 512 bytes, compromising the integrity of the image. Solutions such as more
robust packet fragmentation, retransmission of corrupted packets, and incremental CRC checks

are suggested to improve the process. Keywords: MQTT; OTA; IoT; Remote update; Modem;

Microcontroller.

LISTA DE FIGURAS

Figural — O modelo de Publicacdo/Assinatura do Mosquitto MQTT. 19
Figura2 — Diagramade Blocosdo CC1312R 25
Figura3 — Imagem do Modem Cinterion® EXS82-W 26
Figura4 — Imagem da NIC Utilizada no Projeto MNIC 27
Figura5 — LayoutFlashExterna 33
Figura6 — Conex@ocomo Script o e 41
Figura7 — PrimeiroBloco 41
Figura8 — BlocosRestantes L 42
Figura9 — ValidagdodaImagem 42
Figura 10 — Tempo de atualizagdo em fun¢do do tamanho do firmware. 44

Figura 11 — Cendriode Teste i it 46

LISTA DE TABELAS

Tabelal — Comandos AT

Tabela2 — Descri¢do do cabecalho principal

Tabela 3 — Taxas de sucesso na validagcdo do firmware.

LISTA DE ABREVIATURAS E SIGLAS

AT Attention

BIM Boot Image Manager

CAT-M Category M

CRC Cyclic Redundancy Check

FOTA Firmware Over-The-Air

IMEI Identidade Internacional de Equipamento Mével
IoT Internet das Coisas

LESC Laboratério de Engenharia de Sistemas de Computagdo
M2M Midquina para Mdquina

MCU Microcontroller Unit

MQTT Message Queuing Telemetry Transport

NIC Network Interface Card

OAD Over The Air Download

RAM Memoria de Acesso Aleatorio

ROM Memoéria Somente de Leitura

SIM Subscriber Identity Module

UART Universal Asynchronous Receiver/Transmitter

UFC Universidade Federal do Ceara

1.1
1.2
1.2.1
1.2.2

2.1
2.1.1
2.1.2
2.2
23
24
24.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.4
2.5.5
2.6

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2

SUMARIO

INTRODUCAO . . . ottt et e e e et e e e et 15
Justificativa e Motivacdoo oL 15
Objetivos 15
Objetivo Geral 15
Objetivos Especificos 16
FUNDAMENTACAOTEORICAttt i i i e 17
Sistemas Embarcados e Microcontroladores 17
Componentes Principais 17
Funcionamento 18
Modem 18
MQTT . . e 18
Sistemas Operacionais 19
Definigdo e Funcdo 19
Componentes Principais 20
Funcionamento 20
OAD . . . e 21
Topologia 21
Passos 21
OAD IMAGE HEADER 21
CRC . . . e 21
BIM e 22
Memoria 22
Base64 23
MATERTAISEMETODOSttt ittt e et eieee e 24
Hardware Utilizado 24
MCU SimpleLink™ CCI312R 24
Modem Cinterion® EXS82, 24
SIM Card NLT i 26
Hardwarede Teste 26
Contiki-NG 27

3.3
34
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.8
3.8.0.1
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5
3.9.6
3.9.7
3.9.8
3.10
3.10.1
3.10.2
3.10.3
3.10.4

4.1

Comunicacaovia UART 27
Comandos AT 28
ConfiguraciodoModem oL 28
Configurar Parametros Gerais 29
Modo Subscribe 29
Modo Publish 30
Distribuidor OAD 30
Funcionalidades da Aplicagdo 30
Robustez e Manutengdo de Conexdo 31
Alvodo OAD 31
OAD Core Image Header 31
Layout Flash Externa 32
Inicializacdo do Sistema 32
Configuracaodo MQTT 33
Preparodo Firmware 33
OAD Image Tool i 34
Download 34
Payload 34
Parser 35
Publicacdo Inicial e Subscricdo 36
Envio de pardmetros 36
Lacode Download 36
Decode Base64 37
Armazenamento de Blocos 38
Finalizagdodo OAD 39
Fluxodo OAD 40
Conexdo com o Script e Numero de Blocos 40
Primeiro Bloco 41
Blocos Restantes 41
Validacdo da Imagem 42
RESULTADOS o i ittt e et ettt e ettt e e e 43

Tempo de Atualizacao, 43

4.2
4.3
4.4
4.5

Integridade do Firmware 44
Confiabilidade das Mensagens 45
Cenariode Teste 46
Comparacao com Trabalhos Relacionados 47
CONCLUSOES E TRABALHOSFUTUROS 48

REFERENCIAS . . . ittt e e e e e e e e e e e e e e e e e e i 49

15
1 INTRODUCAO
1.1 Justificativa e Motivacao

Na era da Internet das Coisas (IoT), a conectividade de dispositivos em tempo real é
essencial para a automagdo, monitoramento e controle de sistemas remotos. A IoT possui uma
ampla gama de dispositivos heterogéneos com requisitos em constante mudanca e atualizagdes
de funcionalidades, o que aumenta a necessidade de atualizagdes de firmware por meio de
atualizacdo remota (DODDAPANENI et al., 2017). Nesse contexto, a capacidade de atualizar
o firmware de dispositivos em campo, sem a necessidade de intervencao fisica, torna-se uma
funcionalidade critica. A técnica conhecida como Over The Air Download (OAD) permite essa
atualizacdo remota, proporcionando flexibilidade, segurancga e reduc@o de custos operacionais.

Este trabalho apresenta o desenvolvimento de um sistema de atualizagdo remota
de firmware (FOTA) para uma Network Interface Card (NIC) utilizando o protocolo Message
Queuing Telemetry Transport (MQTT), um protocolo de comunicacgio leve e eficiente, ampla-
mente utilizado em aplicagdes [oT.

A motivacdo para este trabalho surgiu da necessidade de uma solucdo de atualizagcao
de firmware para NICs utilizadas em um projeto entre o Laboratdrio de Engenharia de Sistemas
de Computagdo (LESC) e a empresa OneRF, no qual, de forma simplificada, o firmware na NIC
conversa periodicamente com um medidor de energia e modem. Essas NICs sdo responsédveis por
coletar dados dos medidores e transmiti-los via MQTT utilizando a rede Category M (CAT-M). A
implementag¢do do OAD garante que as NICs possam ser atualizadas remotamente, mantendo-se
seguras e operacionais sem a necessidade de deslocamento fisico até o local dos medidores,

otimizando recursos € melhorando a eficiéncia do sistema.

1.2 Objetivos
1.2.1 Objetivo Geral

O objetivo desse trabalho é implementar um sistema de atualizacdo remota de
firmware para um sistema embarcado que utiliza o microcontrolador CC1312, via protocolo de

comunicacdao MQTT.

16

1.2.2 Objetivos Especificos

Os objetivos especificos deste trabalho sdo:

Estabelecer a conexdo do modem Cinterion® EXS82 com o broker MQTT a partir de

comandos Attention (AT);

Desenvolver um script para conversao de uma imagem bindaria em blocos no formato base

64 e envia-los via MQTT;

Desenvolver um firmware para o microcontrolador que seja capaz de receber os blocos, e
montar uma imagem bindria vélida;
— Analisar o funcionamento em campo e a eficiéncia do processo variando a quantidade de

bytes por bloco.

17
2 FUNDAMENTACAO TEORICA

Este capitulo tem por objetivo expor uma fundamentagdo que possibilite a compre-
ensdo dos elementos tedricos que embasam este trabalho. Sdo abordados conceitos referentes
aos componentes fisicos utilizados nas Sec¢des 2.1 e 2.2, que tratam, respectivamente, do micro-
controlador e do modem. Na Secao 2.3 € explicado a teoria do funcionamento do protocolo de
comunicacdo MQTT. Em seguida, na Secao 2.4 é explanado o sistema operacional utilizado,

Contiki-ng. Por fim, a Secdo 2.5 contém a teoria por trds da estrutura do OAD.

2.1 Sistemas Embarcados e Microcontroladores

Os sistemas embarcados sao combinagdes de hardware e software projetadas para
realizar uma func¢do especifica ou um conjunto de fun¢des dentro de um sistema maior. Eles
sdo chamados de "embarcados"porque estdo integrados em outros dispositivos e muitas vezes
nao sdo visiveis para o usudrio final. A principal caracteristica de um sistema embarcado € sua
capacidade de operar em tempo real, fornecendo respostas rapidas e confidveis, essenciais para
aplicacdes criticas como automoveis, aeronaves, eletrodomésticos, dispositivos médicos e até
brinquedos.

No nucleo de muitos sistemas embarcados estd o microcontrolador. Um microcon-
trolador € um pequeno computador em um Unico circuito integrado que contém um processador,
memoria e periféricos de entrada/saida (I/0). Diferente dos microprocessadores, que sdao usados
em computadores pessoais e servidores, os microcontroladores sao otimizados para controle de

tarefas especificas, tornando-os extremamente eficientes para aplicagdes dedicadas (PEREIRA,).
2.1.1 Componentes Principais

— Processador (CPU): A unidade central de processamento (CPU) € responsavel pela
execucao das instru¢des do programa. Ela realiza operacdes aritméticas, 16gicas e de
controle com base nas instru¢des codificadas no software.

— Meméria: Existem dois tipos principais de memdria em um microcontrolador:

— Memoria Somente de Leitura (ROM): Usada para armazenar o firmware, ou seja,
o software que o microcontrolador executa. Esse tipo de memoria ndo € volétil, ou
seja, mantém os dados mesmo quando a energia € desligada.

— Memoria de Acesso Aleatorio (RAM): Usada para armazenar dados temporéarios

18

durante a execucio dos programas. E voltil, ou seja, perde os dados quando a
energia é desligada.

— Periféricos de I/0: Esses componentes permitem a interagdo do microcontrolador com

o mundo exterior. Eles incluem portas digitais e analdgicas, interfaces de comunicagdo

(como UART, SPI, 12C), temporizadores, contadores e conversores A/D (analdgico para

digital) e D/A (digital para anal6gico) (PEREIRA,).
2.1.2 Funcionamento

O microcontrolador executa um programa pré-definido armazenado em sua ROM.
Esse programa é composto de uma série de instrugdes que sdo processadas pela CPU. A CPU
l1€ as instrucdes da ROM, executa cdlculos, armazena resultados tempordrios na RAM e se

comunica com os periféricos para controlar dispositivos externos.

2.2 Modem

Nesse contexto, 0 modem (abrevia¢do de modulador-demodulador) é um dispositivo
que converte sinais digitais em sinais analdgicos e vice-versa, permitindo a comunicacao entre
o sistema embarcado e outras redes, como a internet ou redes de telecomunicacdes. Sao
frequentemente usados para permitir que o dispositivo se conecte a redes externas para transmitir
ou receber dados, como em aplicacdes de IoT, nas quais dispositivos precisam comunicar dados
coletados para um servidor remoto. Esses moddulos geralmente possuem uma interface de
comandos AT e sao féaceis de usar a partir de um Microcontroller Unit (MCU) via Universal
Asynchronous Receiver/Transmitter (UART). Com os comandos AT suportados, o MCU pode se
conectar a uma rede Wi-Fi local ou a um servidor na Internet via um protocolo de comunicagao,

como MQTT ou TCP, e trocar algumas mensagens (ZHANG et al., 2017).

23 MQTT

O MQTT (Message Queuing Telemetry Transport) € um protocolo de comunicacao
que € leve, aberto, simples e projetado para ser facil de implementar. Essas caracteristicas o
tornam ideal para uso em muitas situacdes, incluindo ambientes restritos, como na comunicagao
em contextos de Maquina para Mdquina (M2M) e 10T, no qual um cédigo pequeno € necessario

e/ou a largura de banda da rede € limitada. (OASIS Committee, 2014)

19

Seu funcionamento € baseado em uma arquitetura cliente-servidor, no qual os dispo-
sitivos atuam como clientes que publicam ou assinam mensagens, enquanto um servidor central,
conhecido como broker, gerencia a troca de dados entre eles. O MQTT adota o modelo de
publicacdo/assinatura (publish/subscribe) que difere dos tradicionais sistemas ponto a ponto.
Nesse modelo, os clientes podem publicar mensagens em tépicos especificos, que funcionam
como canais organizados hierarquicamente para categorizar as mensagens. Outros clientes, ao
assinarem esses topicos, recebem automaticamente as mensagens publicadas neles, facilitando a

comunicacdo entre dispositivos sem a necessidade de conexdo direta entre os mesmos.

Figura 1 — O modelo de Publicacdo/Assinatura do Mosquitto MQTT.

Subscribe

blish | g CLIENT

Publish
"." BIIIIEI' *

GLIENT

CLIENT CLIENT

Fonte: Innovations (2024).

2.4 Sistemas Operacionais

Um sistema operacional (SO) é um software essencial que gerencia o hardware
do computador e fornece servicos comuns para programas de aplicacdo. Ele atua como um
intermedidrio entre o usudrio e o hardware do computador, garantindo que os recursos do sistema

sejam utilizados de maneira eficiente e segura.

2.4.1 Definicdo e Funcdo

De acordo com Tanenbaum e Bos (2015), um sistema operacional pode ser definido

como "um programa que age como uma interface entre o hardware do computador e o usudrio".

20

Ele controla e coordena o uso do hardware entre os vérios programas de aplicacdo para diferentes
usudrios. Isso inclui a gestdo da memoria, dos processos, dos dispositivos de entrada/saida e dos

sistemas de arquivos (TANENBAUM; BOS, 2015).

2.4.2 Componentes Principais

Os componentes principais de um sistema operacional incluem:

1. Gerenciamento de Processos: Responsdvel pela criacdo, escalonamento e
término dos processos. O SO deve gerenciar os estados dos processos e a comunicacao entre
eles.

2. Gerenciamento de Meméria: Controla a alocacdo e desalocagdo da memoria
para os processos. Isso inclui a gestdo da memoria fisica e da memoria virtual.

3. Gerenciamento de Arquivos: Cuida da criacdo, exclusdo e manipulacao de
arquivos e diretérios. O SO também deve garantir a integridade dos dados armazenados.

4. Gerenciamento de Dispositivos de Entrada/Saida: Coordena a comunicagao
entre o sistema e os dispositivos de hardware, como discos rigidos, impressoras e interfaces de
rede.

5. Seguranca e Protecdo: Assegura que os recursos do sistema sejam utilizados de
forma segura e protegida. O SO implementa mecanismos de autenticacdo e autorizagdo para

controlar o acesso aos recursos do sistema.

2.4.3 Funcionamento

O funcionamento de um sistema operacional envolve a execucdo de varias fungdes
criticas. O SO deve fornecer uma interface de usudrio que permita a interagdo com o sistema
de forma intuitiva e eficiente. Ele deve garantir que os processos sejam executados de maneira
ordenada e sem interferéncias indevidas, utilizando técnicas de escalonamento e controle de
concorréncia (SILBERSCHATZ PETER B. GALVIN, 2018).

Além disso, o SO deve gerenciar os recursos do sistema de forma eficiente, garan-
tindo que a CPU, a memoria e os dispositivos de entrada/saida sejam alocados de acordo com
as necessidades dos processos. Isso inclui a implementagdo de algoritmos de gerenciamento
de memoria, como paginagdo e segmentacao, e de estratégias de escalonamento, como FIFO

(First-In, First-Out) e RR (Round Robin) (TANENBAUM; BOS, 2015)

21

2.5 OAD

OAD € um método de atualizacdo de firmware que permite que a imagem do firmware
em execu¢do em um dispositivo seja atualizada através do ar, ao mesmo tempo que oferece

protecdo contra perda de energia (Texas Instruments, s.d.).
2.5.1 Topologia

Dois dispositivos sem fio sdo necessdrios para realizar um OAD. Um é o OAD Target
(Alvo do OAD), que € o dispositivo que recebe a imagem. O alvo do OAD ¢ responsavel por
implementar a camada de transporte especifica do protocolo da pilha que € usada para enviar e
receber dados da imagem OAD. Ja o OAD Distributor (Distribuidor do OAD) € responsavel por

fragmentar a nova imagem de firmware em pacotes especificos da pilha de protocolo e envié-los.
2.5.2 Passos

O processo de atualizagio pode ser resumido em quatro passos:
1. Criar uma imagem bindria OAD para o alvo.
2. Carregar a imagem alvo no dispositivo distribuidor.
3. Transferir a imagem do distribuidor para o dispositivo alvo.

4. Substituir a imagem de firmware existente.
2.5.3 OAD IMAGE HEADER

Todas as imagens de firmware entregues via OAD contém um cabecalho de imagem.
As informagdes no cabecalho da imagem sao usadas pela aplicagc@o para determinar a adequacgao

de uma imagem para download ou carregamento.
2.5.3.1 CRC

O Cyclic Redundancy Check (CRC) é um meio de verificar a integridade de dados.
Para o caso de uma imagem, isso deve ser feito em duas etapas. Primeiro, o CRC deve ser
calculado quando ela € gerada pela cadeia de ferramentas (pela Ferramenta de Imagem OAD), e
serd armazenado no campo CRC dentro do cabegalho da imagem. Posteriormente, uma vez que

o alvo tenha recebido a imagem OAD, o CRC serd recalculado para determinar se a imagem foi

22

corrompida durante a transferéncia. Se o CRC for equivalente antes e depois do OAD, o alvo

pode assumir que a imagem nao foi corrompida durante o envio.

254 BIM

O Boot Image Manager (BIM) reside no alvo do OAD e € responsdvel por carregar
novas imagens apds o término do download. O BIM ¢€ executado apds um reset do dispositivo e
determina se uma atualizacdo de firmware precisa ser aplicada. Se nenhuma atualizacdo estiver
sendo aplicada, entdo o BIM transferird a execu¢do do programa para a imagem principal da
aplicacdo. Ele é uma aplicacdo totalmente executdvel que € independente de qualquer pilha de
protocolo de alto nivel ou aplicagcdo do usudrio e € garantido para ser executado na inicializacao.
Ademais, permite tolerancia a falhas de perda de energia durante o OAD. Se a
energia do dispositivo for perdida durante o OAD, o BIM ainda serd capaz de executar a partir
do reset e reverter para uma imagem funcional se uma estiver disponivel. O BIM ¢é projetado
para residir permanentemente no dispositivo embarcado e ndo pode ser atualizado através do
processo OAD. Ele produzird uma imagem totalmente executdvel que deve ser mesclada com a
imagem da aplica¢do do usudrio para criar um sistema de firmware funcional habilitado para
OAD. Em geral, o BIM € responsével por encontrar e analisar o cabecalho da imagem OAD. Em
um nivel alto, o BIM faz o seguinte:
1. Verificar se ha novas imagens transferidas de um OAD recente. Se disponivel, copia-las
para seu local alvo na memoria flash interna.

2. Localizar dinamicamente o ponto de entrada da imagem valida e pular para ele.

2.5.5 Memoria

A memoria de um sistema embarcado pode ser dividida em dois tipos principais:
memoria interna € memoria externa. A memdria interna, geralmente composta de flash e RAM,
estd diretamente integrada ao microcontrolador e € usada para armazenar o firmware e executar
tarefas do sistema. A RAM ¢€ volatil, perdendo seu conteido quando o dispositivo € desligado,
enquanto a memoria flash interna armazena o firmware atual e dados essenciais.

Por outro lado, a memoria externa € tipicamente uma memoria ndo volatil adicional
conectada ao microcontrolador. No contexto do OAD, a memoria externa desempenha um papel
crucial ao atuar como um repositdrio tempordrio para armazenar os blocos de firmware recebidos

durante o processo de atualizagdo. Ela permite que grandes volumes de dados sejam gerenciados

23

sem sobrecarregar a memoria interna do sistema.

Durante o processo de OAD, os blocos de firmware sdo transferidos para a memoria
externa em blocos, onde permanecem até que todos os blocos sejam validados e o processo
seja concluido. Somente apds essa verificagdo, o firmware armazenado na memoria externa é
transferido para a memdria interna do microcontrolador, garantindo uma atualizag¢do segura e

livre de falhas.

2.6 Base64

Base64 ¢ um método de codificagdo que transforma dados bindrios em uma repre-
sentacdo de texto ASCII, utilizando um conjunto de 64 caracteres imprimiveis (A-Z, a-z, 0-9,
+, e /) e o caractere "="como preenchimento, se necessério. permitindo que esses dados sejam
facilmente transmitidos por sistemas que lidam com dados de texto. E amplamente utilizado para
codificar dados bindrios em formatos que podem ser manipulados ou transmitidos por sistemas
que nao suportam diretamente dados bindrios, como em e-mails ou URLs (Mozilla Developer

Network, n.d.).

24

3 MATERIAIS E METODOS

Esta se¢do detalha os componentes e os procedimentos utilizados para implementar
o sistema de atualizag@o remota de firmware via protocolo MQTT. Inicialmente, sdo descritos
o hardware empregado no projeto na Se¢do 3.1, que inclui o microcontrolador € o modem
utilizados. Em seguida, a Secdo 3.2 aborda a utiliza¢do do sistema operacional Contiki-NG,
fundamental para a implementagdo do projeto. A Secdo 3.3 trata do método de comunicagdo entre
o microcontrolador e 0 modem, realizado através da interface UART. Os principais comandos AT
utilizados para a comunicagdo com o modem, que permitem a configuracao dos parametros de
rede e a execucdo das operacdes de publicacio e subscri¢do no broker MQTT, sdo apresentados
na Se¢do 3.4. Adicionalmente, na Secdo 3.5, sdo discutidas as configuragdes necessarias do
modem. O papel do distribuidor do OAD ¢é descrito na Secdo 3.6, enquanto o alvo do OAD ¢é
abordado na Secao 3.7. A Sec¢do 3.8 discute o processo de preparo do firmware, seguido pela
Secdo 3.9, que detalha o fluxo de download e tratamento dos dados. Por fim, fluxo do OAD e a

l6gica de download dos blocos sdo detalhados na Sec¢ado 3.10.

3.1 Hardware Utilizado

3.1.1 MCU SimpleLink™ CCI1312R

O dispositivo SimpleLink™ CC1312R, utilizado neste trabalho, ¢ um microcontrola-
dor Sub-1 GHz que suporta, por exemplo, objetos inteligentes habilitados para IPv6 e sistemas
proprietdrios, incluindo o TI 15.4-Stack. O dispositivo € otimizado para comunicagdo sem
fio de baixo consumo de energia e sensoriamento avangado em sistemas de seguranca predial,
medidores inteligentes, dispositivos médicos, redes com fio, eletronicos portateis, sistemas de
home theater e entretenimento, e mercados de periféricos conectados (Texas Instruments, 2020).

Na figura 2 consta o diagrama de blocos deste microcontrolador.

3.1.2 Modem Cinterion® EXS82

O modem utilizado neste projeto foi o Cinterion® EXS82, que € um médulo de co-
municac¢do IoT avangcado que oferece conectividade de baixa poténcia (LPWA) para dispositivos
industriais. Suportando LTE-M, NB-IoT, e fallback opcional para 2G, ele € ideal para dispositivos

de baixa poténcia em locais remotos, como medidores inteligentes e rastreadores de ativos. Ele

Figura 2 — Diagrama de Blocos do CC1312R

256KEB
ROM

CCi3izR

Arm™
Cortex -MaF
Processor

Up o

ankK e

SRAM
with Parity

32 ch. pD¥MLA Watchdog Timer
0 GPIOs

AES-256, SHAZ-512

Fonte: (Texas Instruments, 2020, p. 3).

25

Sub-1 GHz

(<

Digital PLL

DS Modam

Arm™
Cortex™-M0O
Processor

ULP Sensor Controller

8-bit DAC

2w Low-Power Comparator
SPI-IFC Digital Sensor IF
Capacitive Towch IF
Time-to-Digital Conwverter

AKEB SRamM

conta com recursos como PSM e eDRX para eficiéncia energética, além de uma arquitetura de

seguranga robusta, incluindo um eSIM integrado que gerencia a autentica¢do € a conexao segura

com redes celulares. O modem suporta atualizacdes de firmware incremental via Firmware

Over-The-Air (FOTA), que se refere ao conceito geral de atualizacao de firmware sem fio, o que

€ essencial para manter as solugdes IoT atualizadas sem necessidade de substitui¢ao total do

firmware, economizando energia e largura de banda. O EXS82 também possui suporte a diversas

interfaces como USB, SPI, 12C, e GPIO, facilitando sua integragdo com outros componentes em

um sistema embarcado.(Telit, 2024)

Para garantir o funcionamento do modem, foi-se necessario conectar uma antena e

um Subscriber Identity Module (SIM) card com dados de Internet para que seja possivel acessar

arede CAT-M.

26

Figura 3 — Imagem do Modem Cinterion® EXS82-W

LITTTITITL CINTERION

SRCRERERE Model: EXS8Z
| co09e0- 51T AT

s

- |
.
]

il

|||

|

.__,_.
T
|

Fonte: Telit (2024).

3.1.3 SIM Card NLT

O SIM utilizado neste trabalho foi uma unidade da operadora mével virtual NLT
Telecom, autorizada pela ANATEL , que utiliza topologia de conectividade com a infraestrutura
de redes de acesso da Vivo. O chip da NLT Telecom € uma solu¢do especializada voltada para
a conectividade em dispositivos IoT. Ele € projetado para operar em redes de comunicagao
celular, como LTE-M e NB-IoT , que oferecem cobertura estendida e baixo consumo de energia,
caracteristicas essenciais para aplicacdes em [oT. A NLT Telecom fornece uma infraestrutura
robusta e confidvel, que inclui suporte para redes de alta disponibilidade e seguranga, garantindo
que dispositivos conectados possam operar de forma eficiente e continua em ambientes diversos,

desde areas urbanas até locais remotos (NLT Telecom, s.d.).

3.1.4 Hardware de Teste

Neste trabalho foi utilizado a NIC desenvolvida no Projeto MNIC realizado entre o
LESC da Universidade Federal do Ceara (UFC) e a OneRF. A alimentacdo dessa unidade foi

feita a partir de uma fonte chaveada que possui tensao de saida de 5V DC e corrente de saida

27

de 3A. Por fim, a antena adquirida para testes foi a Taoglas MFX3, a qual é designada para

aplicacdes NB-IoT e CAT M1.

Figura 4 — Imagem da NIC Utilizada no Projeto MNIC

Model:EXS82-W |
: et e
W
o FOC D aipexss2-W
G TB30A-EXSE2W

ANATEL02604-20-05016 /%52
85156111 039572 6, M8 i

Fonte: Autor.

3.2 Contiki-NG

O Contiki-NG é um sistema operacional de cédigo aberto voltado para sistemas
embarcados de baixa poténcia, amplamente utilizado em dispositivos de Internet das Coisas (IoT).
Ele € ideal para o desenvolvimento de aplicacdes com recursos limitados, como os sistemas de
atualizacdo de firmware abordados neste trabalho (OIKONOMOU et al., 2022).

Neste projeto, o Contiki-NG foi empregado para gerenciar a comunicagdo entre o
microcontrolador e 0 modem, permitindo a integracao eficiente do protocolo MQTT no processo

de Over-the-Air Download (OAD).

3.3 Comunicacao via UART

A comunicag¢do entre 0 modem e o microcontrolador CC1312 foi realizada via
UART1, com um baudrate de 115200, que representa a taxa de transmissao de dados, indicando
quantos bits sdo transmitidos por segundo. A leitura dos dados pela interface serial, utilizada para
registrar logs de eventos, foi feita através da UARTO, com um baudrate de 2400. A transmissao
dos comandos, formatados como cadeias de caracteres, foi implementada a partir da chamada de

funcdo de escrita baseada na biblioteca do Contiki-NG.

28

3.4 Comandos AT

A Tabela 1 condensa todos os comandos AT utilizados neste trabalho, junto de uma

descricdo sucinta do que cada um realiza.

Tabela 1 — Comandos AT

Comando Descrigao

CGDCONT Define parametros de contexto PDP para conexéo de dados

SICA Ativa ou desativa uma conexao de servigo de Internet usando um contexto PDP

SISS Especifica perfis de servigo de Internet para controlar conexdes de dados.

SISO Inicia um servigo de Internet configurado previamente com SISS, apds ativar o portador com
SICA

SISW Inicia uma operacio de escrita (upload)

SISR Realiza uma operacdo de leitura (download)

SXRAT Especifica as Tecnologias de Acesso por Radio (RAT) para selecdo e registro de rede

SISC Encerra a conexdo TCP/IP com o peer remoto estabelecida pelo comando AT"SISO

CGSN Retorna o niimero de série do dispositivo

SGAUTH Utilizado para definir o tipo de autenticag@o para conexdes PDP—IP

Fonte: Autor, adaptado de (GS M2M, 2020).

3.5 Configuracao do Modem

Neste trabalho o microcontrolador alterna entre determinados estados para efetiva-

mente concluir o FOTA. A partir deles € possivel determinar trés atividades principais em relacao

ao modem:

— Configurar parametros do modem;

— Ativar modo Subscribe do modem:;

— Ativar modo Publish do modem.

Em primeiro momento, para que seja possivel realizar o download de dados da nova

imagem de firmware via MQTT, foi necessario desenvolver uma sequéncia de comandos AT

para que o modem consiga estabelecer a conexdo com o broker e seja capaz tanto de publicar

mensagens, como também escutar e salvar mensagens enviadas por outros dispositivos.

Os detalhes sobre o broker utilizado no sistema de atualizacdo de firmware sao

informacdes sensiveis e confidenciais da empresa, e por essa razdo, nao serdao divulgados nesta

secdo. Contudo, vale ressaltar que, para fins de testes e desenvolvimento, seria possivel utilizar

brokers MQTT gratuitos disponiveis no mercado. No entanto, para a transmissao de dados

sensiveis, como imagens de firmware, a utilizacdo de um broker seguro e privado é fortemente

recomendada, a fim de garantir a seguranca e integridade dos dados durante o processo de

29

atualizacdo, especialmente em ambientes de producao.

3.5.1 Configurar Parametros Gerais

Nesta sec@o o microcontrolador realiza uma sequéncia de comandos AT para confi-

gurar os parametros do modem necessarios. Apds concluir este passo, 0 modem estd apto tanto

para ser configurado para se subscrever em um tépico, quanto para publicar.

1.

AT"SXRAT= 12,7,0: Seleciona a tecnologia de acesso radioelétrico (RAT), preferindo
CAT-M com fallback para NB-IoT e 2G.

. AT+CGDCONT= 1,"IP","nlt.com.br": Define o Ponto de Acesso a Rede (APN) para a

conexao da nlt.

. AT"SGAUTH= 1,1,"nlt","nlt": Define o tipo de autenticacdo para conexdes PDP-IP, espe-

cificando usuario e senha da APN.

AT"SICA=0,1: Garante que a conexao esteja desativada inicialmente.

. AT"SISS=1,srvType,"Mqtt": Define o tipo de servigo como MQTT para o perfil de servigo

1.

. AT"SISS=1,conld,"1": Define o ID de conexdo como "1".
. AT"SISS=1,address,"mqtt: / /user:passwd @host:port": Define o enderego do broker MQTT,

com usuario, senha e porta de acesso.

3.5.2 Modo Subscribe

Esta sequencia compreende o processo de configurar o modem para o modo de

subscribe, aguardar o envio de uma mensagem e, posteriormente, a sua leitura. Os dados salvos

serdo em seguidas tratados para armazenar os blocos de imagem.

1.
2.

N ok

AT"SISS=1,cmd,"subscribe": Define o comando para subscrever a um tépico MQTT.
AT"SISS=1,clientld,351561110395726: Define o ID do cliente MQTT.
AT"SISS=1,topicFilter,"351561110395726/0oad": Define o filtro de tépico MQTT para
receber mensagens.

AT"SICA=1,1: Ativa a conexdo.

AT"SISO=1,2: Abre a conex@ao TCP/IP para o servico.

AT"SISR=1,422: L€ o buffer com um tamanho especifico para receber mensagens.

AT"SISC=1,1: Fecha a conexdo ap0s a leitura das mensagens.

30

3.5.3 Modo Publish

Esta sequencia compreende o processo de configurar o modem para o modo de

publish, e, em seguida, o envio de uma mensagem. Os dados a serem enviados consistem na

requisicdo de um bloco para o servidor Distribuidor do OAD.

1.
2.

O© 0 9 N n B~ W

3.6

AT"SISS=1,cmd,"publish": Define o comando para publicar uma mensagem.
AT"SISS=1,hcContLen, x: Define o tamanho do contetido da mensagem para x, onde x é

um nimero qualquer.

. AT"SISS=1,clientld,351561110395726: Define o ID do cliente MQTT.

. AT"SISS=1,Topic,"oad": Define o topico MQTT onde a mensagem serd publicada.

. AT"SICA=1,1: Ativa a conexao.

. AT"SISO=1,2: Abre a conexdao TCP/IP para o servico.

. AT"SISW=1,x: Envia o conteido da mensagem de tamanho definido pelo hcContLen.
. AT"SISC=1,1: Fecha a conexdo apds o envio da mensagem.

. AT"SICA=0,1: Desativa a conexdo para garantir que ndo fique aberta desnecessariamente.

Distribuidor OAD

O distribuidor OAD € um componente essencial no processo de atualizacao remota

de firmware (OAD) desenvolvido na linguagem de programacao Python, utilizando o protocolo

MQTT. Ele foi projetado para gerenciar a distribuicdo de novos firmwares para dispositivos IoT,

garantindo que as atualizag¢des sejam realizadas de maneira segura e eficiente.

3.6.1 Funcionalidades da Aplicacdo

1.

3.

Conexao ao Broker MQTT: O aplicagdo comeca estabelecendo uma conexao com o
broker MQTT, utilizando credenciais especificas. Ele se inscreve em um topico designado
para receber pedidos de atualizac@o dos dispositivos. A conexdo € mantida ativa durante
todo o processo de atualizagdo.

Preparo do Firmware: O firmware a ser distribuido € lido a partir de um arquivo
bindrio (mqtt-fota_oad.bin). Esse arquivo é dividido em blocos de 256 bytes, que sdo
armazenados em um diciondrio para facilitar o acesso e envio subsequente. Cada bloco €
preparado com um indice que facilita a solicitacdo e o envio corretos dos dados.

Recebimento e Resposta a Solicitacoes: A aplicacio fica atento as mensagens publicadas

31

no tépico inscrito. Quando uma solicitagdo de bloco de firmware é recebida, a aplicagdo
identifica o nimero do bloco solicitado, acessa o bloco correspondente no dicionério e o
codifica em base64. Essa codificacdo € essencial para garantir que os dados bindrios sejam
transmitidos corretamente via MQTT, que € um protocolo orientado a texto.

4. Envio dos Blocos de Firmware: O bloco codificado em base64 € entdo enviado de volta
ao dispositivo através de um topico especifico relacionado ao Identidade Internacional
de Equipamento Mdvel (IMEI) do dispositivo. A aplicacao também gerencia a resposta
para garantir que todos os blocos sejam enviados na ordem correta e sem falhas, utilizando
mecanismos de repeticao em caso de falhas na transmissao.

5. Finalizacdo e Verificacdo: Apds o envio de todos os blocos, a aplicacdo monitora mensa-
gens de confirmacdo para garantir que o dispositivo tenha recebido e aplicado a atualizacio
corretamente. Caso todas as etapas sejam concluidas com sucesso, o processo € finalizado,

e a conexao com o broker MQTT ¢é encerrada.

3.6.2 Robustez e Manutencdo de Conexdo

A aplicagao foi projetado para lidar com interrup¢des temporarias na conexao e
outros erros que possam ocorrer durante a transmissdo de dados. Em caso de falha, ele tenta
reconectar ao broker MQTT e recomecar o envio de onde parou, garantindo que a atualizacdo
seja concluida com sucesso. Além disso, a aplicacdo inclui verificagdes periddicas do status da

conexao, garantindo que a comunicacao seja mantida até o final do processo.

3.7 Alvodo OAD

3.7.1 OAD Core Image Header

O cabecalho principal contém as informacdes essenciais necessdrias para o0 OAD.
Sua presenca € imprescindivel, pois o BIM depende dele para inicializar e realizar o OAD
da imagem. Além disso, o cdlculo do CRC toma como base o valor contido nesse cabecalho.
As posicdes de cada informagao do cabegalho para o caso do microcontrolador CC1312 estao

contidas na tabela 2

32

Tabela 2 — Descricao do cabecalho principal

Campo Tamanho Descricao

(em bytes)
Valor de Identificagdo da Imagem 8§ Numero tnico para identificar o inicio de uma imagem
OAD OAD
CRC 4 Verifica¢do de Redundancia Ciclica
Versao do BIM 1 Versao necessdria para suportar o formato da imagem
Versao do Cabegalho da Imagem 1 Versdo do cabecalho da imagem contida na imagem
Tecnologia Sem Fio 2 Tipo de conectividade usada na imagem
Informagdes da Imagem 4 Bytes de informacdo da imagem
Validag¢ao da Imagem 4 Verifica se a imagem € vdlida para execugdo
Comprimento da Imagem 4 Comprimento total da imagem, incluindo o cabecalho
Endereco de Entrada do Programa 4 Endereco de entrada de inicializag@o da aplicacdo
Versdo do Software da Imagem 4 Versdo de software da imagem
Endereco Final da Imagem 4 Endereco final da imagem

[\

Comprimento do Cabecalho Comprimento total do cabegalho da imagem

Fonte: Autor, adaptado de (Texas Instruments, s.d.)

3.7.2 Layout Flash Externa

Baseando-se no layout descrito na Figura 5, o tamanho total de armazenamento
da memoria flash externa é de 1MB no microcontrolador CC1312R1. Este espago permite
armazenar imagens de firmware com um tamanho méximo considerado de 151.552 bytes, sendo
que para todos os casos analisados, as imagens nao ultrapassaram 120.000 bytes. Isso garante que
multiplas versdes de firmware possam coexistir na memdria, evitando a sobrecarga do sistema.

Além disso, os metadados — informagdes sobre as versdes e enderecos do firmware
— sd0 alocados em espacos dedicados, facilitando a gestdo e prevenindo a sobreposicao de
dados. Essa organizagdo permite que areas especificas sejam reservadas para dados do usudrio
e firmware, garantindo um uso seguro da memoria. Assim, respeitando o espaco dedicado as
aplicagdes do usudrio, foi definido que o inicio da imagem de transferéncia comecaria na posi¢do
de memoria "0x20000". Outra posicao critica para este trabalho € a varidvel que armazena o
nimero do bloco que foi transferido por ultimo. Essa informacao € vital em caso de falhas ou

interrupg¢des durante o processo de transferéncia, permitindo que a NIC retome de onde parou.

3.7.3 Inicializacdo do Sistema

A inicializac¢ao do sistema é responsavel por configurar os componentes essenciais
para o funcionamento do processo, incluindo a inicializacdo do modem e a configuracdo de
timers, que controlam intervalos de operacdo. Antes de qualquer operacao, o sistema reinicia o

watchdog, um mecanismo que monitora o funcionamento e evita travamentos inesperados. Se o

33

Figura 5 — Layout Flash Externa

External Flash

4 EFL SIZE

*Fact image is variable sized

‘Vﬁ v

! & EFL SIZE — FACT_IMG SIZE

*App images are variable sized
*Location based on header info
*Apps grow down from fact img

*

N x EFL_PAGE SIZE

i’ EFL Image Header N
*Img headers are page aligned
*Image headers grow upwards

4 3 x EFL_PAGE _SIZE
EFL Image Header 2 - -

4 2 x EFL_PAGE SIZE
EFL Image Header 1 - -

4- EFL_PAGE SIZE
EFL Image Header 0 - -

4 0Ox00000000

Fonte: (Texas Instruments, s.d.).

sistema falhar em responder dentro de um intervalo especifico, o watchdog reinicia o dispositivo.
Ap6s configurar o watchdog, o modem € inicializado para estabelecer a conexdao MQTT. Em
seguida, o IMEI do dispositivo € coletado e exibido para assegurar que o dispositivo esteja
identificado corretamente na rede.

Além disso, diversos timers sao configurados para controlar os intervalos de tempo
entre as operacoes criticas, como o tempo de duragdo da subscri¢do e o tempo de duracdo das

operagdes durante o FOTA.

3.7.4 Configuragdo do MQTT

Nesta etapa, o broker MQTT € configurado no modem, utilizando os comandos AT
descritos na Secdo 3.5.1, estabelecendo a conexdo necessdria para a troca de mensagens durante

o processo FOTA.

3.8 Preparo do Firmware

Antes do processo de OAD, € necessdrio preparar uma imagem vélida para que o

Distribuidor OAD possa enviar os dados corretamente.

34

3.8.0.1 OAD Image Tool

O OAD Image Tool da Texas Instruments é uma ferramenta crucial para a criagdo de
imagens de firmware compativeis com o processo de OAD em dispositivos da familia CC13x2.
Esta ferramenta € utilizado como parte do fluxo de trabalho de compilagdo para garantir que
as imagens geradas sejam validas para o OAD. Especificamente, a ferramenta € responsavel
por converter o arquivo de saida da compilacdo, como um .out ou .hex, em um arquivo bindrio
.bin. Além disso, o OAD Image Tool alinha os dados de imagem para garantir que estejam
corretamente formatados, calcula o CRC da imagem, e insere informagdes necessarias no

cabecalho da imagem, como o tipo de imagem e a versdo (Texas Instruments, s.d.).

3.9 Download

Ap6s as configuracdes iniciais, o processo FOTA € executado, envolvendo a inscri¢do
em topicos MQTT, a recepcao do novo firmware, e a atualiza¢ido do dispositivo. Esta sec@o
descreve o fluxo de atualizacdo remota do firmware via MQTT. O processo inicia com a publi-
cacdo da solicitagdo de download e a subscri¢do ao topico, seguida pelo envio dos pardmetros
necessarios. Em cada etapa, o parser processa as mensagens para extrair os dados relevantes,
enquanto o laco de download garante a sequéncia correta dos blocos. O payload, codificado
em Base64, € decodificado e armazenado no sistema. Ao final, o processo € concluido com a

verificacdo da integridade do firmware atualizado.

3.9.1 Payload

O payload refere-se aos dados do bloco de firmware que estdo sendo transferidos
para a NIC durante o processo de atualizacio. Esses dados estio codificados em base64 e sao
parte do conteudo do novo firmware que estd sendo baixado e aplicado ao dispositivo. Cada
bloco de dados € identificado por um nimero de bloco, denominado como bl_num, e, junto com
o payload, compde a sequéncia necessdria para reconstituir o firmware completo no dispositivo.
Um exemplo de payload antes e apds o parsing, respectivamente, pode ser identificado abaixo,
sendo "dados"um termo para representar a sequéncia de caracteres em base64 e 385 o nlimero

do bloco:

! "payload": dados "bl_num": 385

35

I|token 1: "payload":
>|token 2: "dados"
3/token 3: "bl_num":
4/token 4: 385

3.9.2 Parser

Ele é responsavel por analisar e processar uma mensagem recebida para extrair
informacdes especificas. O processo pode ser descrito nas seguintes etapas principais:
1. Preparacdo da Mensagem: A funcdo inicia limpando um buffer e copiando a mensagem
recebida para esse buffer para garantir que o processamento ndo altere o contetido original.
2. Processamento da mensagem: A funcdo verifica se a mensagem contém um delimitador
especifico que indica que a linha deve ser processada. Para o caso da primeira mensagem
o delimitador é uma palavra que indica o total de blocos, enquanto que para o restante
dos blocos € apenas a palavra "payload". Se a linha contém o delimitador esperado, ela é
dividida em partes menores (fokens) usando um delimitador de espaco.
3. Extracdo de Informacdes: Os fokens extraidos sdo analisados para encontrar os dados
relevantes, que nesse caso incluem:
— Um payload (informacao principal da mensagem), que consiste no que precisa ser
extraido;
— O numero total de bloco, para o caso da primeira mensagem;
— O bloco atual, o qual é comparado com o bloco esperado pela NIC, de forma que
caso sejam divergentes a operagdo € cancelada e o bloco € requisitado novamente.
4. Validacdo dos Dados:
— A funcdo valida se o payload foi corretamente extraido e se o nimero do bloco
corresponde ao esperado;
— Se qualquer uma das validacOes falhar, a fungdo retorna uma mensagem de erro;

— Se todas as validac¢des forem bem-sucedidas, a funcao retorna o payload extraido.

36

3.9.3 Publicagdo Inicial e Subscrigdo

Uma mensagem MQTT € publicada no topico do IMEI, utilizando as instrucdes da
Secdo 3.5.3, para sinalizar que o dispositivo estd pronto para ouvir comandos via MQTT. Essa
mensagem inclui detalhes como o status "Ready". Em seguida, o dispositivo entra em modo de
subscri¢ao, respeitando os comandos expostos na Secdo 3.5.2, para aguardar comandos, como

"DOWN" para iniciar o download do firmware ou "RESET" para reiniciar o sistema.

3.9.4 Envio de pardmetros

Quando a NIC recebe uma mensagem solicitando o download de uma imagem,
ela primeiro verifica qual bloco estd armazenado usando a funcéo get(), que realiza a leitura
da memdria flash externa. Em seguida, a NIC define o tépico "oad" como destino para suas
publicacdes e envia uma mensagem que inclui seu IMEI, solicitando informagdes sobre a
imagem. Por fim, se inscreve no tdpico associado ao seu IMEI. Dessa maneira, a aplicacdo
que estd inscrito no tépico "oad" armazena o IMEI da NIC e responde a solicitagdo publicando
os dados no tépico correspondente. Esta abordagem, que utiliza tépicos distintos para cada
unidade NIC, € importante para permitir que multiplas unidades realizem o processo de OAD

simultaneamente para um mesmo distribuidor.

3.9.5 Laco de Download

— Controle de Tentativas de Publicacao:
— O lago comega com o nimero do bloco inicializado a partir do valor armazenado na
flash externa e continua por enquanto que o bloco seja menor que o total de blocos;
— Se contagem de tentativas de publicacdo atingir 10, significa que a aplicacdo ndo
estd respondendo as requisi¢des, entdo a funcdo imprime uma mensagem de erro e
retorna -1, indicando falha na tentativa de download.
— Publicacdo e Assinatura:
— Configura uma mensagem de publicacdo e a envia via MQTT para o tépico "oad";
— Em seguida, a fungdo se inscreve no tépico relativo ao seu IMEI e reinicia um
temporizador para aguardar a resposta.
— Recebimento e Processamento da Resposta:

— Dentro de um loop, a funcao I¢€ a resposta do tépico MQTT.

37

— A resposta é analisada para extrair o payload usando a fun¢do de "parsing";
— Se ocorrer um erro na andlise, payload contera "ERROR", a fun¢c@o aumenta a
contagem de tentativas e reinicia a tentativa de publicacao do bloco.
— Validacdo e Processamento de Dados:
— Se a resposta for vdlida e o payload ndo estiver vazio, a fungdo:
x Decodifica o payload do formato Base64;
* Se o bloco atual for o bloco 0, realiza operagdes adicionais para processar o
cabecalho da imagem e atualizar a versdo disponivel do firmware;
% Processa o bloco de dados, atualiza o nimero do bloco, e aguarda a escrita em
memoria.
— Atualizagdo e Preparacdo para o Proximo Bloco:
— Ap6s processar o bloco, o nimero do bloco € incrementado;
— A funcdo entdo prepara para o proximo bloco, garantindo que o buffer de dados esteja

limpo para o préximo ciclo de processamento.

3.9.6 Decode Base64

Ap6s o processamento da mensagem, o payload bruto precisa ser convertido para o
formato bindrio antes de ser armazenado. O processo € descrito abaixo:
1. Validacdo: Primeiro € verificado se o comprimento do conjunto de caracteres base64 (b64)
€ um multiplo de 4. Se ndo for, a funcdo retorna 0, indicando um erro na entrada.
2. Decodificagdo:

a) A string base64 € processada em blocos de 4 caracteres por vez;

b) Cada bloco de 4 caracteres € convertido em até 3 bytes bindrios, utilizando a func¢ao
auxiliar get _number_b64_from_symbol_0_64 para mapear os caracteres base64
para seus valores numéricos correspondentes;

¢) Os bytes decodificados sdo armazenados no array imageBytes.

3. Interrup¢do: Se a funcdo get_number_b64_from_symbol_0_64 retornar Oxff, a decodi-
ficacdo € interrompida.
A conversdo de um caractere base64 em seu valor numérico correspondente consiste em retornar
um valor entre 0 e 63 (0x00 a 0x3F), que € o intervalo usado para representar os 64 caracteres
vélidos do alfabeto base64. Esta fungdo opera da seguinte forma:

1. Se o caractere estd entre 0x41 (A) e 0x5a (Z), o valor retornado é b - 0x41, mapeando

38

letras maiudsculas para valores de 0 a 25;
2. Se o caractere estd entre 0x61 (a) e Ox7a (z), o valor retornado é b - 0x47, mapeando
letras minusculas para valores de 26 a 51;
3. Se o caractere estd entre 0x30 (0) e 0x39 (9), o valor retornado é b + 0x4, mapeando
digitos para valores de 52 a 61;
O caractere + (0x2b) é mapeado para 62;
O caractere / (0x2f) é mapeado para 63;

O caractere de padding = (0x3d) ¢ mapeado para Oxff, indicando o padding;

N s

Qualquer outro caractere retorna Oxff, indicando um caractere invélido ou inesperado.
3.9.7 Armazenamento de Blocos

O processo de armazenamento de blocos, apds a conversdao em bindrio, durante a
atualizacdo de firmware considera os seguintes pontos:

1. Identificacdo do Tipo de Bloco: Primeiro, verifica-se se o bloco convertido contém
informacdes de cabecalho (o primeiro bloco da sequéncia) ou se € um bloco de dados
regular.

— Se for um bloco de cabecalho, ele contém metadados importantes como a versao do
firmware e o tamanho total da imagem.

2. Armazenamento Temporario do Cabecalho: Se o bloco pertence ao cabecgalho da
imagem (definido pelo nimero do bloco), ele € armazenado temporariamente em um buffer
na memoria RAM até que todo o cabecalho seja recebido.

3. Validacao do Cabecalho Completo: Quando o ultimo bloco do cabecalho € recebido,
o cabecalho completo é validado. Se a validagdo falhar, o processo de atualizagdo é
cancelado.

4. Calculo de Paginas e Pré-apagamento da Memoria Flash: Apds a validacdo do cabeca-
lho, o sistema calcula o nimero de paginas de memdria flash externa que serdao necessérias
para armazenar a nova imagem. Este cédlculo considera dois pontos principais:

— Tamanho da imagem: Este € incluso no cabecalho da imagem e varia dependendo
do contetddo da nova imagem:;

— Nimero de bytes por bloco: E o nimero fixo definido tanto na NIC, quanto na
aplicacdo que enviard os blocos. Neste trabalho foi definido o total de 256 bytes para

cada bloco.

39

Em seguida, é realizado um pré-apagamento dessas padginas na memoria flash externa para
garantir que ndo havera sobreposicdo de dados durante a escrita.

5. Escrita do Cabecalho na Memoria Flash: Caso a validag@o seja bem-sucedida, o
cabecalho da imagem € entdo escrito na memoria flash externa. Se o bloco de dados
recebido contiver bytes adicionais que ndo pertencem ao cabecalho, esses bytes sdo
imediatamente gravados na memdria flash externa apds o cabecalho.

6. Calculo de Endereco para Blocos Subsequentes: Para os blocos subsequentes, que
contém os dados reais da imagem, o sistema calcula o endereco na memdria flash externa
onde os dados devem ser escritos, com base na posi¢ao do bloco dentro da sequéncia total
de blocos e no tamanho da memdria.

7. Gerenciamento de Erros durante a Escrita: Se qualquer erro ocorrer durante a escrita
na memoria flash externa, o processo de atualizag@o € interrompido e um erro € retornado.
Caso contrdrio, o sistema retorna um status de sucesso e solicita o proximo bloco de dados.

8. Atualizacio do Progresso: Apds armazenar o bloco, a NIC atualiza os registros de pro-
gresso, indicando que aquele bloco foi gravado com sucesso. Isso € essencial para permitir
a retomada da atualizacdo a partir do ponto correto caso o processo seja interrompido.

9. Repeticio do Processo para Blocos Subsequentes: Esse ciclo de recepcio, conversao,
célculo do endereco e escrita € repetido para cada bloco subsequente até que todos os
blocos que compdem a imagem de firmware tenham sido armazenados na memoria flash

externa.

3.9.8 Finalizagcdo do OAD

A finalizacdo do OAD consiste na validag¢ao final da imagem de firmware e o
armazenamento de metadados. O processo € descrito em detalhes a seguir:
1. Verificacao de CRC:

— Primeiro € feito a verificacdo do CRC da nova imagem utilizando uma funcdo criada
pela prépria desenvolvedora do MCU. Esta funcao primeiro valida os parametros
fornecidos, depois calcula o nimero total de paginas necessarias para armazenar
a imagem e determina o nimero de bytes na ultima pagina. O célculo do CRC ¢é
iniciado com um valor inicial de OxXFFFFFFFFE. A func¢ao entdo itera sobre todas as
paginas e buffers da imagem e para cada um desses buffers, 1€ os dados e atualiza o

valor do CRC byte a byte. Se um buffer ndo estiver completo, o tamanho da leitura é

40

ajustado de acordo.

— Ap0s processar todos os bytes de todas as paginas e buffers, a fungdo 1€ buffers
adicionais, se necessario, especialmente quando se utiliza memoria flash externa.
Finalmente, a fun¢do complementa o valor do CRC (fazendo XOR com OxFFFFFFFF)
e retorna o valor CRC32 calculado.

— Se 0 CRC retornar um erro (ou seja, a verificagdo falhar), sinalizando que os dados
da imagem estdo corrompidos, o processo de validacao € interrompido.

2. Populacao da Estrutura de Metadados Externos: Se o CRC for bem-sucedido, a
estrutura de metadados da imagem externa é entdo preenchida com informagdes extraidas
do cabecgalho da imagem. Além disso, O ID da imagem externa € adicionado e o endereco
da imagem e o contador sdo configurados. Por fim, novos campos sao definidos nesse
cabecalho para indicar que a imagem precisa ser copiada e que o CRC € vélido. Essas
duas novas informagdes indicam que a imagem € valida para o BIM, de forma que caso os
metadados contenham essas informacdes, quando o sistema for reiniciado o BIM copiard
a imagem para a memoria interna e inicializard o firmware a partir dessa nova imagem.

3. Gravacao e Substituicao de Metadados: Os metadados antigos da memoria flash sao
apagados para garantir que os novos metadados sejam armazenados corretamente. Os
novos metadados, definidos no item anterior sdo entdo gravados na memoria flash externa.

4. Finalizacao:

— Se todas as operagdes forem bem-sucedidas, é correto afirmar a validacdo da imagem
e a atualizacdo dos metadados foram concluidas com sucesso.

— Considerando que o processo de transferéncia e armazenamento foi concluido, é
enviado uma nova publicacdo para a aplicacdo, o qual estava enviando os blocos,

indicando que seja interrompido o envio de blocos para esta NIC.

3.10 Fluxo do OAD

3.10.1 Conexdo com o Script e Niimero de Blocos

Esta figura mostra o processo de conexao inicial com a aplicagdo distribuidora e a

quantidade de blocos que serdo transferidos durante o processo de OAD (Figura 6).

41

Figura 6 — Conexao com o Script
Inicio
v

NIC entra em
~— subscribe no

topico {imei}
Sim
NIC recebe
solicitagdo de
download
NIC publica
Timer IMEl e Distribuidor NIC pede o
expirou? solljllcnagao de _ » responde o nimero) primeiro bloco
l Nio tépi?:gor\jgsl)'T de blocos? ~—Sim— ag Distribuidor
‘oad’

Fonte: Autor.

3.10.2 Primeiro Bloco

Esta figura ilustra a transferéncia do primeiro bloco de dados no processo de OAD

(Figura 7).

Figura 7 — Primeiro Bloco

l Nao
nome | g | [T
topico {imei} Siml expirou? bytesdobloco > completo na
il (header) flash
Nao T
y .
NIC pede o NIC recebeu o

primeiro bloco %rimeiro blocoLSim_> Nlcﬂllmr?a a
ao Distribuidor =

Fonte: Autor.

3.10.3 Blocos Restantes

Esta figura mostra a transferéncia dos blocos subsequentes apds o primeiro bloco

(Figura 8).

Figura 8 — Blocos Restantes

42

NIC entra em
subscribe no
topico {imei}
Sim
I
N Timer N3
Distribuidor ao expirou? a0 ™ NIC pede o
respondeu? bloco
NIC
incrementa o
Sim numero do
l bloco
Sim
Arr’rgzena 0 Existem mais—
oco blocos? ~ Recebe todos
—_— —>
completo na e os blocos
flash

Fonte: Autor.

3.10.4 Validacdo da Imagem

Esta figura descreve o processo de validacao da imagem de firmware apds a transfe-

réncia de todos os blocos (Figura 9).
Figura 9 — Validacdo da Imagem

Metadados

alterados para

imagem vélida — indicar parao —» Fim

BIM copiar
imagem

Sim

Recebe todos RASEIIE CRC Processo

verificagdo —» . falh
os blocos bem-sucedido? = alhou,
CRC ——N&ao—» imagem

corrompida

Fonte: Autor.

43

4 RESULTADOS

Nesta secdo, sdo apresentados os resultados obtidos com a implementacdo do sistema
de atualizac@o remota de firmware utilizando o protocolo MQTT. A anélise dos resultados é
realizada com base em critérios estabelecidos nas secdes anteriores. A Secdo 4.1 discute o tempo
de atualizacdo, enquanto a Secdo 4.2 aborda a integridade do firmware. A confiabilidade das
mensagens trocadas durante o processo de atualizacdo € explorada na Secdo 4.3. O cenario de
teste € descrito na Secdo 4.4, e a comparacio com trabalhos relacionados € apresentada na Sec¢ao

4.5.

4.1 Tempo de Atualizacio

O tempo de atualizacdo do firmware € um fator crucial para avaliar a eficiéncia do
sistema de OAD. Esse tempo pode ser dividido em trés componentes principais: o tempo para
requisitar um bloco via rotina de publica¢do, o tempo para entrar em modo de escuta via rotina
de subscri¢do e o tempo para receber a mensagem correspondente ao bloco solicitado.

Cada um desses componentes pode ser influenciado por diversas varidveis, como a
qualidade do sinal de comunicacio e a eficiéncia do processamento da NIC. Em condi¢des ideais,
nas quais a comunicacdo ocorre sem interrup¢des ou perda de pacotes, o tempo para requisitar e
receber cada bloco € de aproximadamente 60 segundos. Esse valor inclui o tempo necessario
para processar os comandos AT na func¢do de publicar, o tempo gasto processando as respostas,
incluindo o tempo de exibicao de mensagens de depuragdo e o tempo para a recep¢ao do bloco.

Entretanto, em situagdes nas quais a qualidade do sinal é comprometida, o sistema
pode enfrentar dificuldades na comunicagdo, resultando em reenvios de blocos que ndo foram
recebidos corretamente. Nessas condi¢des adversas, foi considerado que o tempo de atualizacio
dobrou, pois alguns blocos poderao ser requisitados mais de duas vezes, porém havera blocos
que serdo enviados na primeira tentativa.

Para ilustrar o impacto dessas varidveis no tempo total de atualizacdo, foram conside-
rados cendrios para quatro tamanhos de blocos diferentes. Em cada cendrio, variou-se a condi¢ao
da comunicagao.

O tempo total para cada cendrio foi calculado multiplicando-se o niimero de blocos
necessarios para transferir um arquivo de 98.948 bytes, que foi utilizado para testes, pelo tempo

gasto para requisitar e receber cada bloco. Em condi¢des perfeitas, o tempo é de aproxima-

44

damente 1 minuto por bloco, enquanto em condi¢des ruins o tempo € de aproximadamente 2

minutos por bloco. O gréifico gerado a seguir ilustra esses tempos, permitindo uma comparagao

visual clara dos diferentes cenarios analisados.

Tempo Total de Atualizagao por Tamanho de Bloco e Condigdes de Comunicagao

Il Condigdes Perfeitas

16 I Condigdes Ruins

Tempo Total de Atualizagdo (horas)

198 256 512 1024
Tamanho do Bloco (bytes)

Figura 10 — Tempo de atualizacdo em funcdo do tamanho do firmware.

4.2 Integridade do Firmware

A integridade do firmware apés a atualizagdo foi verificada utilizando a fungdo de

validagdo CRC. Os testes mostraram que o sistema consegue verificar com precisao se o firmware

foi atualizado corretamente. Para os casos de blocos de 256 e 512 bytes foram coletados registros

de atividade e estdo expostos, respectivamente, na Listagem 1 e na Listagem 2. A Tabela 3

condensa os resultados obtidos na validag@o do firmware para diferentes cendrios de teste.

Cddigo-fonte 1 —Log de validacao para blocos de 256 bytes

I |crcFromHdr = 0x8d1c28de (2367432926)

NS}

crcCalculated = 0x8d1c28de (2367432926)

3|0ADStorage_imgFinalise: Writing Meta Data in the ext flash

411 am inside readFlashPg
5 addr = 0x20000, len = 0x2c
6|flashStat = 0

45

7|0AD_IMAGE: sv:0004 bv:03 imgCpStat:fe crcStat:fe extFlAddr
:00020000, counter : 00000000

s| Erasing the old meta data...

9|I am inside eraseFlashPg

10 addr = 0x2000 (8192), EFL_PAGE_SIZE = 4096 (0x1000)
11|Storing the new meta data...

2|I am in writeFlashPg in page = 2 and offset = 0

13 addr = 0x2000 (8192)

15| 0ADStorage_imgFinalise() with success...

Cddigo-fonte 2 —Log de validacao para blocos de 512 bytes

I |crcFromHdr = 0x8d1c28de (2367432926)
>lcrcCalculated = 0xd21c245c (3525059676)

4| END END END...

Tabela 3 —Taxas de sucesso na validacao do firmware.

tamanho dos blocos (bytes) | Sucesso
198 Sim
256 Sim
512 Nao
1024 Nao

4.3 Confiabilidade das Mensagens

A confiabilidade das mensagens enviadas via MQTT foi avaliada com base na taxa
de entrega e na integridade das mensagens. Os testes confirmaram que o protocolo MQTT
mantém uma alta taxa de entrega e integridade das mensagens, com uma taxa de falhas minima.
Estes resultados foram possiveis porque cada mensagem trocada continha um padrio especifico,
com a palavra "payload"no inicio e o nimero do bloco no final. Esse formato permitiu garantir a

integridade das mensagens, assegurando que, ao serem entregues, reproduzissem com exatidao o

46

conteddo esperado.

4.4 Cenario de Teste

Esta secdo apresenta o cendrio de teste utilizado para avaliar a atualizagdo remota de

firmware por meio do processo de OAD, conforme ilustrado na Figura 11.

Figura 11 — Cendrio de Teste

Comparagao de Tempos de Atualizagao OTA

——- Tempo Ideal (6540s) .
—== Pior Tempo Possivel (13080s) v
12000 1 —@— Tempo Real (8754s) P i

10000 +

8000 1

6000 A

Tempo (segundos)

4000 A

2000 4

T T T T T
280 300 320 340 360 380
Bloco

Fonte: Autor.

Para a avaliac@o do processo de OAD, foram utilizados blocos de 256 bytes. Ini-
cialmente, a NIC foi reiniciada e o uptime foi reiniciado. Ao retomar o processo de OAD, a
NIC encontrava-se no bloco 277 e o uptime, o qual se refere ao tempo total durante o qual
um dispositivo permanece operacional desde a ultima reinicializacdo, indicava 35 segundos. O
monitoramento do processo continuou até a conclusao do bloco 386, momento em que o uptime
registrava 8789 segundos.
Analise do Tempo: Durante o experimento, foram transferidos 109 blocos ao longo
de 8754 segundos. O tempo de transferéncia observado mostrou-se compativel com as previsoes:
— No cendrio ideal, a transferéncia de 109 blocos esperava-se ocorrer em 6540 segundos.
— No cendrio limite, a transferéncia dos 109 blocos poderia se estender até 13080 segundos.
A andlise dos tempos de transferéncia indica que o processo de OAD operou dentro

dos parametros esperados, validando, assim, a eficiéncia do sistema implementado para a

47

atualizacdo remota de firmware.

4.5 Comparacao com Trabalhos Relacionados

Nao foram encontrados trabalhos académicos com proposta semelhante ao exposto
neste trabalho, devido a natureza comercial do projeto. Contudo, a empresa OneRF também
possui outra solug@o para o0 FOTA, a qual consiste em utilizar outro protocolo de comunicagdo
para uma NIC similar, com o mesmo microcontrolador e mesmo sistema operacional. O protocolo
adotado no projeto é o UDP, de forma que ha vantagens e desvantagens em comparacao.

A abordagem utilizando o protocolo UDP apresenta uma implementacdo simples,
com uma vantagem significativa em termos de velocidade no processo de transferéncia dos
blocos. No cendrio de testes, o UDP foi capaz de completar a transferéncia em aproximadamente
30 minutos, enquanto o método proposto utilizando MQTT levou cerca de 6 horas. Essa diferenca
se deve, em parte, ao fato de que o UDP minimiza o tempo gasto com a exibi¢do de mensagens
de depuragao e estabelece uma conexao direta entre cliente e servidor. No UDP, o cliente solicita
diretamente um bloco via pacote e o servidor o envia sem intermedidrios. J4 no método proposto
com MQTT, o processo € mais complexo, exigindo o envio de comandos AT para publicar a
solicitagdo no tépico, seguido por comandos adicionais para subscrever e escutar a resposta do
servidor, o que aumenta o tempo total de execugdo.

Uma desvantagem significativa do UDP, no entanto, é a maior probabilidade de perda
de pacotes, o que pode comprometer a integridade dos dados. Além disso, o tamanho dos blocos
¢ limitado a 196 bytes por pacote, enquanto o MQTT demonstrou ser capaz de enviar blocos de
até 256 bytes, com potencial para atingir tamanhos ainda maiores. Isso evidencia que, embora o
MQTT tenha uma sobrecarga maior em termos de tempo de processamento e comunicagao, ele
oferece maior flexibilidade no tamanho dos blocos e maior confiabilidade na entrega dos pacotes,

sendo uma alternativa promissora para casos em que a integridade dos dados € fundamental.

48

5 CONCLUSOES E TRABALHOS FUTUROS

Neste trabalho, foi desenvolvido e testado um sistema de atualizagdo remota de
firmware para sistemas embarcados utilizando o protocolo MQTT. Os resultados obtidos de-
monstraram que o método proposto € eficiente, especialmente em cendrios onde os blocos de
dados possuem um tamanho menor ou igual a 256 bytes. Nesses casos, o processo de FOTA foi
concluido com sucesso, evidenciando a confiabilidade do sistema em transmitir € armazenar o
firmware.

Nos testes com blocos de 512 e 1024 bytes, no entanto, foram observadas falhas
durante a atualizacdo. Considerando que os payloads eram entregues corretamente, conforme
evidenciado pelo padrdo das mensagens trocadas—onde cada mensagem continha a palavra
"payload"no inicio e o nimero do bloco no final—¢ provavel que o problema esteja relacionado
ao armazenamento dos blocos de dados maiores. Isso sugere que o sistema atual pode ter dificul-
dades em manipular e armazenar pacotes de dados maiores que 256 bytes, 0 que compromete a
integridade do firmware atualizado.

Essa limitagdo abre caminho para pesquisas e desenvolvimentos futuros. Primeira-
mente, seria interessante explorar tamanhos de blocos intermedidrios entre 256 e 512 bytes, para
identificar um possivel ponto de equilibrio que maximize o desempenho sem comprometer a
confiabilidade. Além disso, futuras investigacdes poderiam focar em melhorias no mecanismo
de armazenamento dos blocos de dados. Duas abordagens podem ser consideradas: uma possi-
vel reparticdo das mensagens apds a recepgao via MQTT ou o desenvolvimento de uma nova
metodologia de armazenamento que permita a manipulacdo de pacotes de dados maiores.

Essas melhorias podem aumentar a eficiéncia e a robustez do sistema, permitindo
uma atualizacio remota de firmware mais confidvel e adaptdvel a diferentes condicdes de rede e

requisitos de sistema.

49

REFERENCIAS

DODDAPANENI, K.; LAKKUNDI, R.; RAO, S.; KULKARNI, S. G.; BHAT, B. Secure fota
object for iot. In: 2017 IEEE 42nd Conference on Local Computer Networks Workshops
(LCN Workshops). [S. L.: s. n.], 2017. p. 154-159.

GS M2M. AT Commands Manual for Cinterion® EXS82-W. 01.100a. ed. [S. L], 2020.
Acesso em: 01 ago. 2024. Disponivel em: https://www.gs-m2m.de/fileadmin/Bilder/GSM_
Module/Module/EXS62_82/exs82-w_atc_v01100a.pdf.

INNOVATIONS eG. What is Mosquitto MQTT? 2024. Accessed: 2024-08-13. Disponivel em:
https://www.eginnovations.com/documentation/Mosquitto-MQTT/What-is-Mosquitto-MQTT.
htm.

Mozilla Developer Network. Base64. n.d. Accessed on August 10, 2024. Disponivel em:
https://developer.mozilla.org/en-US/docs/Glossary/Base64. Acesso em: 2024-08-10.

NLT Telecom. IoT Celular. s.d. Accessed on August 19, 2024. Disponivel em:
https://www.nlt.com.br/iot-celular. Acesso em: 2024-08-19.

OASIS Committee. MQTT Version 3.1.1. 2014. Ultimo acesso em 23 de julho de 2024.
Disponivel em: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-o0s.html.

OIKONOMOU, G.; DUQUENNOY, S.; ELSTS, A.; ERIKSSON, J.; TANAKA, Y.; TSIFTES,
N. The Contiki-NG open source operating system for next generation [oT devices. SoftwareX,
v. 18, p. 101089, 2022. ISSN 2352-7110.

PEREIRA, M. C. Microcontroladores e Microprocessadores: Um Enfoque Pratico.

SILBERSCHATZ PETER B. GALVIN, G. G. A. Operating System Concepts. 10th. ed. [S. L]:
Wiley, 2018.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4th. ed. [S. L.]: Pearson, 2015.

Telit. EXS82 IoT Modules. 2024. Acesso em: 23 jul. 2024. Disponivel em: https:
/Iwww.telit.com/devices/exs82/.

Texas Instruments. CC1312R SimpleLink™ Sub-1 GHz Wireless Microcontroller Datasheet.
Dallas, TX, 2020. Accessed: 2024-07-23. Disponivel em: https://www.ti.com/lit/ds/symlink/
cc1312r.pdf?ts=1711049336354&ref_url=https %253 A%252F%252Fwww.google.com%
252F.

Texas Instruments. Over-the-Air Download (OAD). s.d. Accessed: 20-Aug-2024. Disponivel
em: https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/4.20.00.35/
exports/docs/proprietary-rf/proprietary-rf-users-guide/oad/tools.html.

ZHANG, Z.; OCHIAI, H.; ESAKI, H. An iot application-layer protocol modem: A case
study on interfacing ieee 1888 with at commands. In: 2017 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). [S. L: s. n.],
2017. p. 346-349.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introdução
	Justificativa e Motivação
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Fundamentação Teórica
	Sistemas Embarcados e Microcontroladores
	Componentes Principais
	Funcionamento

	Modem
	MQTT
	Sistemas Operacionais
	Definição e Função
	Componentes Principais
	Funcionamento

	OAD
	Topologia
	Passos
	OAD IMAGE HEADER
	CRC

	BIM
	Memória

	Base64

	Materiais e Métodos
	Hardware Utilizado
	MCU SimpleLink™ CC1312R
	Modem Cinterion® EXS82
	SIM Card NLT
	Hardware de Teste

	Contiki-NG
	Comunicação via UART
	Comandos AT
	Configuração do Modem
	Configurar Parametros Gerais
	Modo Subscribe
	Modo Publish

	Distribuidor OAD
	Funcionalidades da Aplicação
	Robustez e Manutenção de Conexão

	Alvo do OAD
	OAD Core Image Header
	Layout Flash Externa
	Inicialização do Sistema
	Configuração do MQTT

	Preparo do Firmware
	OAD Image Tool

	Download
	Payload
	Parser
	Publicação Inicial e Subscrição
	Envio de parâmetros
	Laço de Download
	Decode Base64
	Armazenamento de Blocos
	Finalização do OAD

	Fluxo do OAD
	Conexão com o Script e Número de Blocos
	Primeiro Bloco
	Blocos Restantes
	Validação da Imagem

	Resultados
	Tempo de Atualização
	Integridade do Firmware
	Confiabilidade das Mensagens
	Cenário de Teste
	Comparação com Trabalhos Relacionados

	Conclusões e Trabalhos Futuros
	REFERÊNCIAS

