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Abstract: The economic development of human activities contributes to the discharge of 
many anthropogenic pollutants. To assess the environmental risks in the Jaguaribe River, 
the most important river in the hydrographic region of the Eastern Northeast Atlantic, 
a bibliographic review of scientific articles and a series of ecotoxicological bioassays 
were conducted. The bioassays were conducted using sediment samples at six collection 
sites along the river, while the bibliographic review was used to identify the presence 
of anthropogenic contaminants in sediment and tissue samples of aquatic organisms 
within two km of each of the sediment collection sites. The bibliographic review 
showed the presence of thirty-eight anthropogenic pollutants in sediment samples 
and seven in tissue samples of aquatic organisms. The ecotoxicological bioassays 
showed that the sediment samples produced lethal and sublethal effects in the four 
tested representatives of the different trophic levels: Daphnia magna, Artemia salina, 
Allium cepa and Cucumis sativus. The presence of multiple anthropogenic pollutants 
in the Jaguaribe River and the observed lethal and sublethal effects in ecotoxicological 
bioassays suggest potential risks not only to the aquatic ecosystem but also to human 
health. Humans may be exposed to these contaminants through the consumption of 
water and aquatic organisms, leading to potential health issues such as increased 
cancer risk. The findings underscore the urgent need for regular monitoring and effective 
pollution control measures to mitigate these health risks and protect the well-being of 
local communities.
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INTRODUCTION
Aquatic ecosystems make up most of planet Earth 
and have been largely degraded by anthropic 
actions for economic development, especially 
in coastal regions. These regions are critical 
for flood control, soil carbon sequestration, 
filtering out persistent pollutants, and water 
supply. However, pollution of these ecosystems 
by anthropogenic pollutants is one of the most 
serious problems today due to its acute and 

chronic effects on human, animal, and plant 
health (López-Pacheco et al. 2019). 

Pollutants can come from different pollution 
sources, such as aquaculture, agriculture, 
industry, livestock, shipping, tourism, and urban 
runoff. However, their effects are harmful to the 
environment and can be felt by all the economic 
sectors involved (Soares et al. 2020). Normally, 
aquatic organisms absorb pollutants during 
their life and transfer them through the trophic 
position. For this reason, many studies link the 
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improper use of chemicals with adverse health 
effects and cancer (Arisekar et al. 2020, Cui et al. 
2015).

The chronic and acute effects of these 
chemical byproducts on ecosystems can be 
evaluated through ecotoxicological studies with 
bacteria, microcrustaceans, fish, and vegetables 
(Wang 2018). These studies evaluate the 
interactions between contaminants and lethality 
they cause in the organisms tested after different 
exposure times and concentrations (Hoffman 
et al. 2003). However, these methods are 
increasingly problematic as the effects of these 
contaminants are exacerbated by increasing 
environmental degradation and accelerating 
climate change (Tlili & Mouneyrac 2021). 

In the natural environment, anthropogenic 
pollutants are deposited in sediments as a 
function of water flow regulation and tend to 
have combined adverse effects on terrestrial 
and aquatic organisms (Santos et al. 2022). For 
this reason, sediment toxicity analysis is one way 
to understand the adverse effects that chemical 
residues that are not commonly measured or 
are unknown may have on the environment and 
humans (Heise et al. 2020).

In semi-arid regions, which tend to be more 
vulnerable to climate change, the effects of 
various pollutants may be even more harmful 
(Fernandes et al. 2020). Many scientific studies 
focus on the presence of anthropogenic 
pollutants in the Brazilian semi-arid region, and 
the area that most of these studies focus on is 
the Jaguaribe River watershed, located in the 
hydrographic region of the eastern Northeast 
Atlantic. Pollutants already studied in the 
region include: antibiotics (Rebouças et al. 2011), 
pesticides (Oliveira et al. 2016, Soares et al. 
2020), herbicides (Gama et al. 2017), polycyclic 
aromatic hydrocarbons (Andrade et al. 2019), 
inorganic phosphorus compounds (Barcellos 
et al. 2019, Marins et al. 2011, 2020), natural and 

synthetic hormones (Lima et al. 2019), crude oil 
(Magris & Giarrizzo 2020), microplastics (Garcia 
et al. 2020), and toxic metals (Costa et al. 2013, 
Costa & Lacerda 2014, Lacerda et al. 2013, 2009, 
Moura & Lacerda 2018, Rios et al. 2016). In this 
way, the aim of present study is evaluating 
the toxicological risks in the Jaguaribe River 
watershed (Ceará, Brazil) using anthropogenic 
contamination reports and ecotoxicological 
analyses. To do it, has been done a bibliographic 
review of the pollutants already studied in the 
watershed of the Jaguaribe River and bioassays 
to determine the ecotoxicological effects of the 
river sediment on survive of saltwater (Artemia 
salina) and freshwater (Daphnia magna) 
microcrustaceans, and on seed germination of 
cucumber (Cucumis sativus) and onion (Allium 
cepa).

MATERIALS AND METHODS
Study area
The Jaguaribe River is 633 km long and is 
used for various economic activities in the 
Brazilian semi-arid region, including livestock, 
agriculture, aquaculture, fishing, tourism, trade, 
and navigation. It is used for various economic 
activities, especially in areas closer to the sea, 
and has many dams along its course to combat 
droughts in the state of Ceará (IBGE 1999). 
Along the Jaguaribe River, six sampling sites 
with different compositions of areas with urban 
infrastructure, native vegetation, agriculture, 
pasture, aquaculture, and dams were selected 
for sediment toxicity analysis (MAPBIOMAS 
2022), as shown in Figure 1. 

Collection site P1 is closer to the sea, its 
surroundings are mainly forest and mangrove 
areas, and is used for agriculture and livestock. 
P2 consists of agricultural land, pasture land, 
and other areas that are not forest (including 
salt flat and rocky outcrop). P3 is the area that 
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receives the greatest amount of nutrients from 
wastewater, as it is located within the city of 
Aracati. P4 is mostly composed of aquaculture 
farms, one of the activities that contribute the 
most to the destruction of mangrove ecosystems. 
Point P5 was divided into two points: P5a and 
P5b. They have a similar proportion of land with 
urban infrastructure, vegetation, aquaculture, 
agriculture, and livestock, but are separated 
by a dam that carries saltwater on one side 
of the river (P5a) and freshwater on the other 
(P5b). Table I summarizes key environmental 
information for each sediment collection site.

Bibliographic review
The bibliographic review was conducted in 
English based on scientific articles from Scopus 
to identify scientific reports of anthropogenic 
pollution in environmental matrices (water, 
sediment and aquatic organisms) along 
the Jaguaribe River (Ceará, Brazil). Thus, the 
search configuration used was as follows: 
(ALL(jaguaribe AND river) AND ALL(contaminant) 
OR ALL(pollutant) OR ALL(microplastic) 
OR ALL(pesticide) OR ALL(herbicide) OR 
ALL(hydrocarbons) OR ALL(antibiotic)) AND 
(LIMIT-TO (AFFILCOUNTRY,”Brazil”)) AND (LIMIT-TO 
(DOCTYPE,”ar”)) on October 16, 2022.

The selection criteria for inclusion in 
the study were scientific articles that used 

Figure 1. Geographic location 
of the study area with 
indication of sampling sites 
Geographic data from the 
Instituto de Pesquisa e 
Estratégia Econômica do 
Ceará (IPECE 2023) and 
Collection 7 of annual land 
cover and land use maps of 
Brazil (MAPBIOMAS 2022).
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standardized methods to detect anthropogenic 
contaminants in sediment or tissue of aquatic 
organisms within 2 km of collection sites. 
These articles were a source of information 
on: the presence of detected contaminants, 
concentrations (ng/g), and geographic location.

Ecotoxicological bioassays

Sampling and experimental design

At each of the sampling sites, surface sediment 
samples were collected from the banks of the 
Jaguaribe River at depths up to 10 cm. Collections 
took place in November 2021, the collected 
material was stored in sterile plastic bags, and 
analyzes were conducted within 24 hours of 
material collection. Prior to analyzes, sediment 
samples were sieved to remove shells, stones, 
and other components larger than 100 mm.

Sediment samples were tested using 
ecotoxicological tests with microcrustaceans 
from freshwater (Daphnia magna), saltwater 
(Artemia salina), onion (Allium cepa), and 
cucumber (Cucumis sativus). The experimental 
design was randomized with three replicates. 
The advantage of bioassays with organisms from 
different trophic levels is that they provide high 
accuracy in ecotoxicity testing and a holistic 

view of how toxic and non-toxic components 
of an environmental matrix affect the trophic 
position (Urbaniak et al. 2020).

In each test, three sediment concentrations 
were tested for each test organism, following 
the guidelines of technical standards NBR 12713 
(ABNT 2022), NBR 16530 (ABNT 2021), ASTM E1706 
(ASTM 2020) for aquatic ecotoxicity tests with 
invertebrate organisms, and technical standard 
EPA 712-C-012 (EPA 2012) for tests with plant seeds. 
In this way, five different treatments were tested: 
Positive Control (PC), Negative Control (NC) and 
three treatments (125 g/L, 250 g/L and 500 g/L), 
where 250 g/L is the standard concentration 
of grams of sediment per liter recommended 
by the ASTM E1706 technical standard for 
ecotoxicological analysis of sediments (ASTM 
2020).

Toxicity tests with aquatic organisms 
Toxicity tests with aquatic organisms were 
performed with freshwater (Daphnia magna) 
and saltwater (Artemia salina) microcrustaceans. 
These organisms were selected for this 
study because they are commonly used in 
ecotoxicological bioassays with sediment 
samples and because they are ecologically 
relevant, sensitive, and easy to handle in 

Table I. Environmental information of the sampling site.;

Point Salinity 
(ppm)a

Water Temperature 
(°C)b

Air Temperature 
(°C)b

Annual Precipitation 
(mm)c

Aridity 
Index c

Environmental 
Factor

P1 42 31 30 903.2 49.55 Mangrove

P2 45 30 29 859.8 47.03 Agriculture/Pasture

P3 52 30 35 859.8 47.03 Urban Area

P4 48 31 33 859.8 47.03 Aquaculture

P5a 48 30 35 675.3 36.89 Dam

P5b 1 31 34 675.3 36.89 Dam
(a) observed in the field with a portable salinity meter; (b) observed in the field with a thermometer; (c) information obtained 
from the Fundação Cearense de Meteorologia e Recursos Hídricos.
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the laboratory (Gambardella et al. 2022). 
Furthermore, the microcrustaceans used in this 
study are also part of the aquatic biota of the 
Jaguaribe River watershed (Camara 2020, Diniz 
et al. 2020).

Freshwater microcrustaceans (Daphnia 
magna) were acquired as neonates from a 
commercial aquaculture facility. These neonates 
were cultured in a system with constant aeration, 
light and dark regime (16:8) and feeding with 
green algae and Saccharomyces cerevisiae. The 
Daphnia magna neonates used in the tests 
were individuals between 2 and 26 hours of 
age and were obtained from females between 
10 and 15 days of age. Meanwhile, saltwater 
microcrustaceans (Artemia salina) in the form of 
cysts were acquired from a commercial aquarium 
facility. These cysts were incubated for 24 hours 
under aeration and constant lighting in filtered 
and sterilized seawater (15 ppt). Artemia salina 
neonates used in the tests were individuals that 
were at nauplius stage I and II and were between 
2 and 26 hours old.

During the experiment, the microcrustaceans 
were kept in a static system with a 12-hour 
photoperiod in diffuse light, an ambient 
temperature of 27 ± 2°C, and no feeding or 
aeration for 48 hours. The sediments to be 
tested were diluted with the same water in 
which the microcrustaceans were cultured, 
and each experimental unit received ten live 
organisms after 2 hours of decantation. Prior 
to the toxicity tests, all microcrustaceans were 
visually inspected to select organisms with the 
same size and swimming behavior. In this case, 
PC was only distilled water without sediment 
adding and NC was only the water used during 
cultivation without sediment adding.

Toxicity tests with terrestrial organisms
Toxicity tests with terrestrial organisms were 
performed with onions (Allium cepa) and 

cucumbers (Cucumis sativus). These organisms 
were selected based on their wide use in 
ecotoxicological studies with sediment samples, 
commercial availability, short growth time, low 
acquisition cost, and sensitivity to sediment 
cytotoxic and genotoxic effects (Wijeyaratne & 
Wadasinghe 2019).

Onion (Allium cepa) and cucumber (Cucumis 
sativus) seeds were purchased from a commercial 
nursery and sterilized in sodium hypochlorite 
solution (1%) for 10 min, then washed several 
times with distilled water, and then air dried. 
After the sterilization process, 10 seeds were 
aseptically placed in sterilized Petri dishes (13 
× 13 cm) lined with filter paper (Whatman nº4). 
The filter papers were moistened with 15 mL of a 
solution prepared from dilutions of the sediment 
in drinking water. The Petri dishes were kept in 
a closed environment at temperatures of 27/25 
°C (day/night) for germination. In this case, PC 
was distilled water with 0.5% NaCl and NC was 
drinking water. 

Seeds were considered germinated only 
when the seed coat was broken, the radicle was 
visible, and measured more than 2 mm. Seed 
manufacturers indicated on the package label 
that the average germination time for onion 
seeds was 7 days and for cucumber seeds was 5 
days. So, this was the period used for counting 
the germinated seeds and the size of their roots.

Statistical analysis and multivariate approach
At the end of the period during which the 
organisms were exposed to the different 
sediment concentrations (PC, 125 g/L, 250 g/L, 500 
g/L and NC), the percentage of microcrustacean 
mortality (MR = number of dead organisms/10 
× 100), the percentage of seed germination (GR 
= number of germinated seeds/10 × 100), and 
the average root size of germinated seeds were 
determined. The values obtained were subjected 
to the Shapiro-Wilk normality test and analysis 
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of variance, according to the normality of the 
samples, to determine a significant difference 
between the 3 treatments (N = 30 seeds/
treatment; N = 30 microcrustaceans/treatment), 
between the 3 treatments and the 2 controls 
(positive and negative with the same N as the 
treatments) and between the 6 collection sites 
(P1, P2, P3, P4, P5a and P5b).

Sediment toxicity was evaluated using 
the toxicity index calculated according to the 
formula ST = [(CT) / C] x 100, where: C is the 
analyzed parameter (microcrustacean mortality, 
seed germination, or root/shoot length) in the 
control and T is the analyzed parameter in the 
treatment (Nikolaeva et al. 2019). Regression 
analysis was used to estimate the median 
effective concentration (EC 50) or median 
lethal concentration (LC 50) that can cause 50% 
mortality of microcrustaceans and the median 
inhibitory concentration (IC 50) that can inhibit 
50% germination of plant seeds (lethal effect) or 
affect root size of germinated seeds (sublethal 
effect).

The sensitivity of the organisms to the 
toxicity of the sediment was compared using 
toxic units (TU = 100/ EC 50), where the sensitivity 
of the organism and the toxicity of the sediment 
are proportional to the number of toxic units. 
The toxic units approach (TU) is based on a 
model that estimates the cumulative effect of 
toxicity for the test organisms and can be used 
for analyzes of sediment, chemicals, and metals 
(Castro-Català et al. 2016).

RESULTS
Bibliographic review
As a result of the bibliographic review, 139 
scientific articles published between 2009 and 
2022 were reviewed and analyzed. Seventeen of 
them were eligible for this study because they 
reported anthropogenic contamination within 2 

km of each of the sampling sites. According to 
these articles, the main sources of anthropogenic 
contamination in sediments and biological 
matrices were agriculture, aquaculture, livestock, 
and untreated urban wastewater. Site P1 had 
more data on anthropogenic contaminants, 
while P4 had the lowest number of reports of 
contaminants.

Table II summarizes the anthropogenic 
pollutants found in the tissues of aquatic 
organisms (ng/g), of two types: pesticide 
metabolites (Santana et al. 2020) and toxic metals 
(Costa & Lacerda 2014, Lacerda et al. 2009, Moura 
& Lacerda 2018, 2022, Rios et al. 2016). Other 
authors detected the presence of resistance 
genes to ampicillin (10 mg), aztreonam (30 mg) 
and oxytetracycline (30 mg) in bacteria of the 
genus Vibrio isolated from shrimp samples 
in the study region (Rebouças et al. 2011) and 
the presence of 0.31 pieces/m3 of microplastic 
particles in plankton samples collected with a 
120 μm trawl (Garcia et al. 2020).

Table III summarizes all contaminants 
(ng/g) detected in the sediment, of which there 
are five types: herbicides (Gama et al. 2017), 
organochlorine pesticides (Oliveira et al. 2016), 
polycyclic aromatic hydrocarbons (Andrade et 
al. 2019), toxic metals (Costa et al. 2013, Dias 
et al. 2013, Lacerda et al. 2013), and inorganic 
phosphorus components (Barcellos et al. 
2019, Marins et al. 2011, 2020). These chemicals 
can be classified in the following order of 
total concentration in sediment samples: 
Polycyclic aromatic hydrocarbons > Herbicides 
> Organochlorine pesticides > Inorganic 
phosphorus components > Toxic metals.

Two of the articles studied did not indicate 
the exact geographic location of their sediment 
collection sites. These authors detected the 
presence of mercury (7.8 - 93 ng/g) (Lacerda 
et al. 2013), copper (1.7 - 21 µg/g), zinc (0.4 - 8.9 
mg/g), iron (4.6 - 51.4 mg/g), and aluminum 
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(6.7 - 47.3 mg/g) (Dias et al. 2013) in the area 
corresponding to sites P1, P2, and P3 when they 
took sediment samples.

Ecotoxicological bioassays
Ecotoxicological bioassays showed that 
sediment from site P5a had the highest toxicity 
(< EC50) to aquatic organisms (Artemia salina 
-A and Daphnia magna -B), while P5b had the 
lowest toxicity (Figure 2). The EC50 for freshwater 
microcrustaceans (Daphnia magna) ranged 
from 125 to 181.7 g of sediment per liter, while 
saltwater (Artemia salina) values ranged from 
211.25 to 286.48 g /L.

In the ecotoxicological analyzes using seeds, 
the sediment showed lethal and sublethal 
effects for onion (Allium cepa), as shown in 
Figure 3. Sediment from collection site P5a had 
the highest toxicity to seed germination (IC 50 = 
39.33 g/L), while P3 had the lowest toxicity (IC 50 
= 200.28 g/L). For sublethal effects, sediment on 
P3 showed the highest inhibition of root size (IC 
50 = 59.38 g/L), while P2 was the lowest (IC 50 = 
323.11 g/L).

In the case of cucumber (Cucumis sativus), 
some concentrations of sediment resulted in 
higher seed germination than the control, as 
shown in Figure 4. Although sediment has no 

Table II. Anthropogenic pollutants (ng/g) detected in tissues of aquatic organisms within 2 km of collection sites.

Type Contaminant Organism P1 P2 P3 P4 P5a-b

Pe
st

ic
id

e 
m

et
ab

ol
ite

 a CarbPhenol Omnivorous Fish 3.06 - - - -

Malaox Omnivorous Fish 6.04 - - - -

3-PBA Omnivorous Fish 20.67 - - - -

To
xi

c 
m

et
al

s

Copper b Shrimp - 2460 - 6360 -

Mercury c Oyster 75.05 - - - -

Mercury d Detritivorous Fish - - 4 4 -

Omnivorous Fish 49.2 49.2 12.03 12.03 -

Carnivorous Fish 25.09 25.09 32.85 32.85 -

Mercury e Detritivorous Fish 18.00 18.00 - 19.83 19.83

Omnivorous Fish 45.97 45.97 - 44.00 44.00

Carnivorous Fish 39.00 39.00 - 88.00 88.00

Crab 32.33 32.33 - 110.36 110.36

Shrimp 11.00 11.00 - 16.00 16.00

Shellfish - - - 51.45 51.45

Mercury f Omnivorous Fish 51 57 33 30

Carnivorous Fish 101.3 49.2

Shrimp 13.3 10.7

References: (a) Santana et al. 2020; (b) Lacerda et al. 2009; (c) Rios et al. 2016; (d) Costa & Lacerda, 2014; (e) Moura & Lacerda, 
2018; (f) Moura & Lacerda 2022.
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Table III. Anthropogenic contaminants (ng/g) detected in sediment within 2 km of sampling sites.

Type Contaminant P1 P2 P3 P4 P5a-b

He
rb

ic
id

e 
a

Alachlor 17.42 - - 8.27 3.65
Bromacil 33.84 - - 31.49 38.54

Ethalfluralin 407.55 - - 302.96 371.97
Fluridone 0.80 - - 0.14 0.21

Norflurazon 0.15 - - 0.04 0.05
Tebuthiuron 7.76 - - 2.53 5.32

∑ Total 467.52 345.45 419.73

O
rg

an
oc

hl
or

in
e 

Pe
st

ic
id

e 
b HCB 1.31 1.82 4.25 - 2.35

Heptachlor 16.69 51.89 51.40 - 24.29
Methoxychlor - 2.95 8.51 - -

p,p-DDD 2.42 1.61 3.68 - 1.35
p,p-DDE 3.11 2.83 5.15 - 1.96
p,p-DDT 3.45 2.98 6.68 - 2.45

α-Endosulfan 69.30 87.20 136.70 - 45.67
γ-HCH 0.58 3.15 2.79 - 1.38
∑ Total 96.86 154.43 219.16 79.45

Po
ly

cy
cl

ic
 A

ro
m

at
ic

 H
yd

ro
ca

rb
on

s 
c

Acenaphthene 1.90 3.30 6.30 - 3.90
Acenaphthylene 0.20 1.60 0.80 - 0.60

Anthracene 9.60 11.20 14.65 - 12.50
Benz[a]anthracene 0.20 6.20 7.50 - 0.10

Benzo[a]pyrene 4.50 12.20 11.00 - 3.40
Benzo[b]fluoranthene 14.60 4.10 21.70 - 0.02

Benzo[e]pyrene 4.70 12.20 15.40 - 1.20
Benzo[ghi]perylene 67.20 0.80 2.60 - 6.00

Benzo[k]fluoranthene 1.50 0.20 6.80 - 1.30
Chrysene 19.70 52.30 61.10 - 21.50

Dibenz[ah]anthracene 0.06 3.50 5.21 - 0.30
Fluoranthene 1614.80 1801.20 2254.00 - 25.30

Fluorene 0.03 13.70 16.50 - 9.00
Indeno[1,2,3-cd]pyrene 20.00 6.50 4.50 - 3.30

Naphtalene 0.04 0.04 0.13 - 0.10
Perylene 1.40 1.70 10.40 - 0.30

Phenanthrene 549.60 733.10 1160.50 - 425.20
Pyrene 246.90 649.00 1075.00 - 536.20
∑ Total 2556.93 3312.84 4674.09 1050.22

O
th

er

Mercury d 13.1d - - - -
6.91e 7.65e 8.72e - 7.45e

Inorganic Phosphorus 213.6f - - - -
6.9E+07g 1.01E+08g - - -

References: (a) Gama et al. 2017; (b) Oliveira et al. 2016; (c) Andrade et al. 2019; (d) Costa et al. 2013; (e) Moura & Lacerda 2022; (f) 
Barcellos et al. 2019; (g) Marins et al. 2011.
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lethal effects, there are sublethal effects in terms 
of root growth. Sediment from collection site 
P5a showed the highest toxicity to root growth 
(IC 50 = 36.91 g/L), while P3 showed the lowest 
(IC 50 = 258.88 g/L).

Analysis of the relative sensitivity of 
organisms tested in toxic units showed that 
onion seeds and saltwater crustaceans were 
more sensitive to the toxicity of Jaguaribe River 
sediment than cucumber seeds and freshwater 
microcrustaceans (Table IV).

Analysis of variance showed no significant 
difference between sites, but there was a 
significant difference between concentrations 
and the negative control and between organisms 
(Figure 5). Among aquatic organisms, the 
mortality rate of freshwater microcrustaceans 
was significantly higher than that of saltwater 
organisms. For terrestrial organisms, there was a 
significant difference between seed germination 

rates, but no difference between root size 
inhibition rates. Detailed results of the statistical 
tests can be found in Table SI (Supplementary 
Material – Table SI).

DISCUSSIONS
In this study, we assessed toxicological risks in 
the Jaguaribe River watershed (Ceará, Brazil) 
using reports of anthropogenic contamination 
and ecotoxicological bioassays. In this way, 
we performed a bibliographic review of 
anthropogenic contaminants detected in 
the Jaguaribe River and evaluated the acute 
toxicity of the river sediment to aquatic and 
terrestrial organisms, including Daphnia magna 
(freshwater microcrustacean), Artemia salina 
(saltwater microcrustacean), Allium cepa (onion 
seed) and Cucumis sativus (cucumber seed).

Figure 2. Mortality rate of aquatic organisms per sampling site at different sediment concentrations
* Indicates that the EC50 regression is significant (p value < 0.05).
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Polycyclic aromatic hydrocarbons were 
the most detected anthropogenic pollutants 
in the Jaguaribe River sediment samples, with 
emphasis on fluoranthene, phenanthrene, and 
pyrene, which had the highest concentrations 
compared to other pollutants (Andrade et 
al. 2019). These pollutants are present in the 
atmosphere, aquatic and terrestrial systems and 
have been described as genotoxic, mutagenic, 
carcinogenic and/or teratogenic (Adeniji et al. 
2019).

Meanwhile, pesticide residues and toxic 
metals were the most common contaminants 
found in the tissues of aquatic organisms, 
especially mercury, which was the most abundant 
(Costa & Lacerda 2014, Moura & Lacerda 2018, 
Rios et al. 2016, Santana et al. 2020). Like other 
toxic metals, mercury is toxic, has carcinogenic 
potential, and can accumulate (Kadim & Risjani 

2022). The combined effect of these pollutants 
has already been observed in aquatic organisms 
and on the life cycle of Daphnia magna they 
have several negative effects, including the time 
to production of first brood, brood size and total 
number of live offspring per female (Caixeta 
et al. 2022). In this way, the present study also 
indicates that the combined effect of these 
pollutants is also lethal to Daphnia magna and 
Artemia salina.

According to the studies that have 
evaluated the pollution of the Jaguaribe River 
by polycyclic aromatic hydrocarbons, pesticides 
and herbicides, the pollutants found come from 
aquaculture, agriculture, livestock, navigation 
and urban runoff, making it impossible to 
identify a single source responsible for each 
type of pollution (Andrade et al. 2019, Barcellos 
et al. 2019, Costa et al. 2013, Gama et al. 2017, 

Figure 3. Germination rate of onion (Allium cepa) seeds and average root size of germinated seeds per sampling 
site at different sediment concentrations.
* Indicates that the EC50 regression is significant (p value < 0.05).
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Oliveira et al. 2016). According to studies that 
estimated the contribution of human activities 
to the disposal of toxic metals in the Jaguaribe 
River, aquaculture, wastewater, and solid waste 
contribute the most to mercury emissions, 

emitting 200, 400, and 175 mg of mercury per 
hectare/year, respectively (Lacerda et al. 2011).

Compared to other river watershed in the 
state of Ceará, the Jaguaribe River watershed is 
the one with the most dams and is the most 

Figure 4. Germination rate of cucumber (Cucumis sativus) seeds and average root size of germinated seeds per 
sampling site at different sediment concentrations.
* Indicates that the EC50 regression is significant (p value < 0.05).

Table IV. Relative sensitivity of organisms tested in toxic units (TU).

Mortality Germination Root size

Sample Point Artemia Daphnia Cucumis Allium Cucumis Allium

P1 0.488 0.264 -0.691 0.728 0.485 0.566

P2 0.625 0.302 -0.703 0.874 0.653 0.309

P3 0.548 0.305 -0.797 0.499 1.092 1.684

P4 0.476 0.296 -0.632 0.970 0.386 0.486

P5a 0.552 0.332 -0.590 2.543 2.709 0.589

P5b 0.370 0.254 -0.819 0.720 0.495 0.549

Average 0.510 0.292 -0.705 1.056 0.970 0.697

Std. Deviation 0.09 0.03 0.09 0.75 0.89 0.49
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affected by drought due to its lower rainfall 
(Freire et al. 2021). In this way, anthropogenic 
pollutants tend to deposit more easily in the 
sediment because inorganic substances are 
more retained (Cavalcante et al. 2021) and the 
transport of substances to the ocean decreases 
significantly during periods of drought (Dias et 
al. 2016). As a result, pollutants are detected 
more frequently and in higher concentrations in 
the tissues of aquatic organisms over the years 
(Santos et al. 2022), as shown by the extensive 
list of pollutants detected near the collection 
sites.

The water flow of rivers provides the 
ecosystem services of control, transport, 
and biotransformation of chemical residues. 
Therefore, it is only natural that the concentration 
and toxicity of anthropogenic pollutants are 
higher in the river delta than upstream (Sun 
et al. 2023). In the case of the Jaguaribe River, 
disturbance of the natural river flow contributes 
to the opposite. The results of ecotoxicological 

tests have shown that sediments are more 
toxic upstream than in the delta of the 
Jaguaribe River. This effect is even more evident 
when comparing sites P5a and P5b, because 
although they are close to each other, the dam 
constructed between them can alter the toxicity 
of the sediment.

In a study using sediment toxicity bioassays 
with flax seeds (Linum usitatissimum) in the 
Rovinj watershed (Croatia), inhibition of seed 
germination and root growth was 5.36 and 1.9 
greater, respectively, in the delta than at the 
upstream sampling site (Pelikan et al. 2022). 
Similar results were found in the Llobregat 
watershed (Spain) with Daphnia magna 
bioassays, where sediment toxicity was up to 1.6 
times greater in the river delta than upstream 
(Castro-Català et al. 2016). Therefore, the results 
found in our study differ from what would 
be expected naturally, as microcrustacean 
mortality, inhibition of germination, and seed 
root size were greater at sites P2, P3, P4, and P5a 

Figure 5. Analysis of variance of ecotoxicological bioassay results.
NC: Negative Control; PC: Positive Control.
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(upstream of the Jaguaribe) than at site P1 (in 
the delta).

The lethal and sublethal effects observed 
in this study indicate the risks of synergistic 
effects of contaminants. Studies suggest that 
the combined effects of pesticides, toxic metals, 
and polycyclic aromatic hydrocarbons, even 
at low concentrations, can poison people and 
make them more resistant to the effects of 
antibiotics (Cui et al. 2015), promote genetic 
changes in plants (Gallego & Olivero-Verbel 
2021) and humans (Costa et al. 2021), and alter 
the physiological behavior of aquatic organisms 
(Tenorio et al. 2017).

The environmental composition surrounding 
the sampling sites also plays a critical role in the 
results of sediment toxicity bioassays. Bacteria 
present in mangrove roots are widely known 
as phytoremediators of polycyclic aromatic 
hydrocarbons (Verâne et al. 2020), toxic metals 
(Meng et al. 2021), and pesticides (Ivorra et al. 
2021). Thus, the lower toxicity of sediments in the 
delta than upstream is also related to the fact 
that all other sites are surrounded by various 
economic activities that have degraded native 
vegetation, while the delta is the only collection 
site that has riparian forests and much of its 
surrounding area is occupied by mangroves.

The quality of natural resources is critical 
to sustaining aquatic life. Therefore, the 
degradation of water bodies is directly related to 
agricultural production and the quality of life of 
the surrounding population (Chimwamurombe 
& Mataranyika 2021). Studies show that there 
is a direct relationship between the quality of 
ecosystem services supported by freshwater and 
the water and food security of the population in 
large river basins in arid and semi-arid regions 
of the world (Sun et al. 2023). In the case of 
the Jaguaribe River watershed, there is already 
evidence that anthropogenic pollution is 

affecting the water’s potability and bath (Freire 
et al. 2021).

Finally, we conclude that agricultural 
expansion is partly responsible for the presence 
of many chemical contaminants in the Jaguaribe 
River watershed, and that deforestation of native 
forests and construction of dams along the river 
are affecting important ecosystem services for 
the control, transport, and biotransformation 
of chemical wastes. Given the interaction 
of the results found with other economic, 
environmental, and social variables, it is 
critical that the ecotoxicological assessment of 
sediments in the Jaguaribe River watershed be 
continuous and aimed at equitable management 
of water resources without compromising 
ecosystems and the quality of life of local 
populations. 
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