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RESUMO

O contexto deste trabalho está relacionado ao agendamento de eletrodomésticos, levando em

consideração as variações nos custos de energia durante o dia, devido às tarifas domésticas

brasileiras oficiais: constante e branca. A tarifa branca pode atingir um preço médio cerca

de 17% mais baixo do que a constante, mas cobra o dobro de seu valor durante as horas de

pico. Propomos uma metodologia para, além de diminuir o custo, reduzir o desconforto do

usuário devido ao deslocamento temporal de dispositivos controláveis, apresentando uma solução

equilibrada por meio da análise analítica de um novo método aqui denominado Espaço Tarifário,

derivado dos postos tarifários de tarifa branca. Para alcançar esse objetivo, exploramos as

propriedades geométricas do movimento dos dispositivos através do Espaço Tarifário (locus

geométrico da carga), sobre o qual podemos definir uma região limitada na qual o custo de

uma carga sob a tarifa branca será igual ou menor do que o custo sob a tarifa constante. Como

teste para a eficiência desta nova metodologia, coletamos alguns benchmarks (como tempo de

execução e uso de memória) em relação a um algoritmo multi-objetivo clássico (Hierarchical)

disponível no portfólio de linguagens no qual o projeto foi executado (linguagem Julia). Como

resultado, ambas as metodologias alcançam resultados similares, mas aquela apresentada nesta

tese mostra uma redução significativa no tempo de processamento e no uso de memória, o que

poderia levar à implementação futura da solução em um sistema embarcado simples e de baixo

custo, como um ARM Cortex M. Além de agendar eletrodomésticos com base em variações

nos custos de energia, esta pesquisa aborda a adaptação em tempo real às mudanças nos preços

de energia, preferências do usuário e condições ambientais em residências. A metodologia

proposta alcança eficiência computacional e responsividade em tempo real significativas em

comparação com algoritmos multiobjetivo tradicionais. Sem restrições de resposta à demanda, a

solução principal é aproximadamente 10000 vezes mais rápida que o algoritmo multiobjetivo

clássico. Com restrições de resposta à demanda, foi proposta uma metodologia híbrida que

reduz o tempo de processamento geral em 50% em comparação com o algoritmo clássico sob as

mesmas restrições. Esse destaque para a adaptação em tempo real aprimora a aplicabilidade e a

eficácia de nossa abordagem de agendamento em ambientes residenciais dinâmicos.

Palavras-chave: Controladores Para Casas Inteligentes; Gerenciamento Pelo Lado Da Demanda;

Smart Grids; Wspaço Tarifário; Optimização De Um Escalonador De Cargas.



ABSTRACT

The background of this work is related to the scheduling of household appliances, taking into

account variations in energy costs during the day, due to official Brazilian domestic tariffs:

constant and white. The white tariff can reach an average price which is around 17% lower than

the constant price, but charges twice its value at peak hours. In addition to cost reduction, we

propose a methodology to reduce user discomfort due to time shifting of controllable devices,

presenting a balanced solution through the analytical analysis of a new method here called Tariff

Space, derived from white tariff posts. To achieve this goal, we explore the geometric properties

of the movement of devices through the Tariff Space (geometric locus of the load), over which

we can define a limited region in which the cost of a load under the white tariff will be equal to

or less than the constant tariff. As a trial for the efficiency of this new methodology, we collected

some benchmarks (such as execution time and memory usage) against a classic multi-objective

algorithm (Hierarchical) available in the language portfolio in which the project has been executed

(Julia language). As a result, both methodologies achieve similar results, but the one presented

in this thesis shows a significant reduction in processing time and memory usage, which could

lead to the future implementation of the solution in a simple, low-cost embedded system like an

ARM cortex M. In addition to scheduling household appliances based on energy cost variations,

this research addresses real-time adaptation to changing energy prices, user preferences, and

environmental conditions in residential settings. The proposed methodology achieves significant

computational efficiency and real-time responsiveness compared to traditional multi-objective

algorithms. Without demand response constraints, the main solution is approximately 10000

times faster than the classic multi-objective algorithm. With demand response constraints,

an hybrid methodology that reduces overall processing time by 50% compared to the classic

algorithm under the same constraints has been proposed. This emphasis on real-time adaptation

enhances the practical applicability and effectiveness of our scheduling approach in dynamic

residential environments.

Keywords: Smart Home Controllers ; Load-side Management; Smart Grids; Tariff Space; Load

Scheduler Optimization.
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1 INTRODUCTION

In 1989, Sanghvi (1989) already pointed to the increasing trend in electric loads

quantity and so in the power demand. Their work discussed many solutions, like the use of

dynamic pricing and time-of-use (ToU) tariff, which became a reality in the years to follow.

About 20 years later, (Ipakchi e Albuyeh, 2009) listed the same power demand concerns,

adding to it a new player: the electric vehicle (EV). The impact of EV on the energy grid

was also the main problem for Clement-Nyns et al. (2009), Sortomme e El-Sharkawi (2010).

Their research includes scenarios with the coordination of smart chargers. In the same paper,

(Ipakchi e Albuyeh, 2009) points to a lack of reliability of the traditional energy grid due to the

prospection of renewable energy sources and increased costs to maintain the transmission and

distribution networks. Electric energy should be generated closer to its final consumer, and a

better communication framework needed to be built, as claimed in (UNITED STATES. Congress.,

2007) when the term smart grid (SG) was used for the first time. Nowadays, the transport sector

is a major source of gas emissions. There are many challenges related to modernizing and

increasing the use of public transportation and transitioning from internal combustion to electric

vehicles, which cannot be considered gas emission-free if the electric matrix behind it is still

based on natural gas or coal (Bleviss, 2021).

In the context of SG, its evolution is fairly elucidated through the concepts of demand

response (DR) and demand-side management (DSM) Gellings e Samotyj (2013). The latter

reaches out to the end-users through tariff signals offered by the local energy market, often

referred to as critical peak pricing (CPP), real-time price (RTP), and ToU (Byrne, 2015). During

identified demand peaks, the corresponding hours incur higher charges, thus encouraging users

to reschedule their appliance usage to reduce their bills. Legal deals with energy suppliers and

smart home controller (SHC) have been important instruments through which customers can

optimize their energy consumption behaviors and achieve efficient management of the entire

electrical network (Albuquerque, 2018). A system grid view of the DR problem and their issues

related to industrial scenarios can be seen in the reviews by Perera e Kamalaruban (2011), Santos

J M Soares e Prata (2023) respectively.

The Brazilian National Electric Power Agency (ANEEL) classifies electric energy

users into two groups: A, which is connected to the grid with voltages higher than 2.3 kV; and B,

for voltages below 2.3 kV. Included here are the residential consumers, classified as B1 (ANEEL:

Brazil, 2021). For the B1 group, two options of energy tariff are available: conventional tariff



17

(Tc), which is constant over time, and white tariff, which is subdivided into three hourly constant

posts: peak post tariff (Tp), intermediate post tariff (Ti) and off-peak post tariff (Tf ). Because

Brazil spans a continental size, its energy market is divided into several regional segments,

each of which could define their tariff values and post hours in accordance with the previous

definitions. (ANEEL: Brazil, 2023). Table 1 summarizes the costs of both tariffs in the official

Brazilian currency for the local energy market closest to the author of this thesis (ENEL (Ceará),

2023). Figure 1 illustrate the values of white tariff and the constant one. Note that there is no

billing related to demand response or demand peaks covered by Brazilian official resolution

(ANEEL: Brazil, 2021) for the B1 group, but this work will consider it due to its relevance for

the global scenario.

Table 1 – Comparison between conventional tariff and white tariff over time.
Period Tariff Post Tc (R$/kWh) White Tariff (R$/kWh)

00:00 to 16:30 Off-peak 0.74373 0.62124
16:30 to 17:30 Intermediate 0.74373 1.03901
17:30 to 20:30 Peak 0.74373 1.63527
20:30 to 21:30 Intermediate 0.74373 1.03901
21:30 to 00:00 Off-peak 0.74373 0.62124

Source: Prepared by the author.

Figure 1 – Comparison between conventional tariff and white tariff over time

Source: Prepared by the author.

This study presents an innovative approach to scheduling household appliances. Its

goal is to reduce energy costs and enhance user comfort by optimizing the timing of appliance

operation according to users’ typical preferences.We examined aspects of the energy pricing

structure in Brazil and broke down time into a geometric framework, allowing us to track when
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appliances are in use. Through detailed analysis, we identified a point in this framework that

minimizes cost and the need for shifting loads. Our benchmark tests demonstrate that our method

is significantly faster and more memory-efficient compared to traditional algorithms for similar

optimization tasks. This efficiency could pave the way for its integration into small, embedded

systems in the future.

To address a specific constraint related to managing demand response peaks that the

geometric framework alone could not handle, a hybrid methodology was developed. This hybrid

approach enhances the robustness and versatility of the overall methodology, ensuring that it can

effectively manage the limitations encountered during the scheduling process.

As specific objectives we can list:

1. Develop a New Methodology: Create a novel approach for scheduling household appli-

ances using a geometric time framework.

2. Optimize Timing for Cost and Comfort: Optimize the timing of household appliance

operations to reduce energy costs and enhance user comfort.

3. Benchmark Performance: Conduct benchmark tests to compare the new geometric

time framework methodology with traditional algorithms in terms of speed and memory

efficiency.

4. Compare with Linear Programming: Evaluate the proposed geometric time frame-

work methodology against a linear programming algorithm to highlight differences in

performance and effectiveness.

5. Develop Hybrid Methodology: Propose and implement a hybrid methodology to address

specific constraints that the geometric framework alone cannot handle.

6. Detailed Code Implementation: Provide the details and implementation of the methodol-

ogy in the Julia programming language, including all relevant algorithms and procedures.

The remainder of this thesis is divided as follows: Chapter 2 presents the literature

review. Chapter 3 discusses load modeling and defines study case scenarios. Chapter 4 states

the SHC mathematical model equations and constraints. Chapter 5 introduces the concept of

tariff spaces and sets its properties regarding geometric locus and also explains how the proposed

methodology works. In Chapter 6, the simulation results are shown and discussed. Chapter 7

condenses the contributions of this work and points out some future assignments to improve it.
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2 LITERATURE REVIEW

Currently, many studies have proposed solutions for energy efficiency in the domestic

environment due to the constant increase in both energy consumption and electricity tariffs. In a

smart home (SH) scenario, home energy management system (HEMS) controllers are installed

to schedule loads at times when the tariff is lower off-peak post (Albuquerque, 2018). This

scheduling typically takes into account the user’s preferences and habits, which can lead to a

confrontation with the maximization of the savings.

Considering the scenario with (un)interruptible loads under dynamic pricing, Kim

e Poor (2011) studied the scheduling problem using Markov decision process as a possible

solver. To provide a strategy for efficient management of electric energy and peak control in

a domestic environment, (Giorgio e Pimpinella, 2012) proposes the design of a SHC using

binary linear programming. To deal with uncertainties in appliance use habits and renewable

energy generation, Chen et al. (2013) propose a home appliance scheduler combining linear and

stochastic programming. Concerned about peak load demand, Venkatesh (2015) modeled the ap-

pliances considering the worst-case scenario and photovoltaic (PV) as negative load into CPLEX

solver, modeling the scheduling problem as mixed integer programming (MIP). Considering

the Day-ahead load scenario, a model of a household with PV system and including thermally

controlled loads was proposed by Wang et al. (2015), which used quadratic programming to

minimize the user cost.

Most renewable systems use batteries as energy storage unity, which usage should

be modeled and constrained (Huang et al., 2016). The same author used two point estimation

and gradient-based particle swarm optimization (PSO) to minimize cost and improve demand

response in a HEMS. Diesel generators are also a common power source, as considered in

Rahmani-Andebili (2017) which used genetic algorithm (GAs) and linear programming (LP)

to model the trade between SHC and local distribution company. Both authors used stochastic

models to model dynamic parameters.

The behavior of home appliances is a recurrent concern in this topic due to its unique

and intricate characteristics. Subdividing a multiple-stage load into a combination of virtual

loads estimated by their peak energy consumption seems to be a reasonable way to handle this

problem (Farrokhifar et al., 2018). Additionally, defining policies based on weather (Lu et al.,

2020) or user life habits (Luo et al., 2020) are also valid methods to optimize a HEMS.

However, load reallocation can cause discomfort in the user’s habits and trigger
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physical and psychological issues (Costa et al., 2023). Over time, many authors have proposed

methodologies to balance the cost versus comfort problem using different techniques like fuzzy

logic (Mohsenzadeh et al., 2013; Chekired et al., 2017; Costa et al., 2023) integer programming

(Bezerra Filho et al., 2015; Albuquerque et al., 2018), convex optimization (Ma et al., 2016),

GAs (Ogunjuyigbe et al., 2017; Albuquerque, 2018; Manzoor et al., 2017; Chen et al., 2022),

PSO (Lin e Hu, 2018; Santos, 2019) and stochastic programming (Gazafroudi et al., 2019;

Akbari-Dibavar et al., 2020; Zeynali et al., 2020), to name a few relevant works.

The authors in Ali (2022) propose an optimization-based DSM scheduler and energy

controller for a smart home considering renewable energy generation and battery storage systems

to achieve a reduction in energy cost and peak-to-average ratio in demand, and to improve user

comfort in terms of thermal, illumination, and appliance usage preference. Their Mathematical

models are executed in many optimization algorithms.

The scheduling of appliances, considering user habits, can also improve the comfort

issue. A Context-Aware Framework, stated on a wireless sensor network to identify behavioral

patterns and habits, can generate recommendations that allow energy savings at homes (García

et al., 2017). By monitoring rooms occupancy, a Multi-Agent System can analyze the household

data and improve the energy consumption of heating, ventilation, and air conditioning (HVAC)

systems (González-Briones et al., 2018). By analyzing patterns from user habits and PV

generation a HEMS can avoid power peak consumption penalties (Luo et al., 2020). Noninvasive

load monitoring approaches and a taxonomy of methodologies to optimize energy consumption

have been reviewed by Schirmer e Mporas (2023).

The studies can be extended to smart builds or even to smart districts by using a

two-level approach. The first level is described as the base unit of energy consumption, such as a

SH with PV for example. The second level is composed of an array of base units, in addition

to shared co-generation and energy storage. For example, in one residential building, each

apartment has a solar panel on some windows and share also energy from a PV and/or wind

turbine systems on the roof (Rajasekhar et al., 2019; Çimen et al., 2022; Chen et al., 2022;

Mansouri et al., 2022).

In preparation for this work, some relevant review articles related to the topic were

also found.

The authors in O’Grady et al. (2021) conducted a systematic literature review (SLR)

and meta-analysis, adhering to PRISMA guidelines. Their study focuses on building automation
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systems (BAS), which are increasingly being integrated into modern buildings to enhance energy

efficiency and occupant comfort. The review included studies from databases such as Scopus,

Web of Science, and IEEE Xplore, and selected them based on specific criteria focusing on the

implementation, performance, and outcomes of BAS.

The review identified several key themes in BAS research:

– Energy Efficiency: Many studies highlighted the role of BAS in reducing energy consump-

tion through optimized control of HVAC systems (ASHRAE, 2017), lighting, and other

building services.

– Occupant Comfort: BAS implementations were found to improve indoor environmental

quality, including air quality, temperature, and lighting, thereby enhancing occupant

comfort and productivity.

– Technology Trends: Recent advancements include the integration of internet of things

(IoT), artificial intelligence (AI), and machine learning to enhance BAS functionality.

These technologies enable predictive maintenance, real-time monitoring, and adaptive

control strategies.

– Challenges and Barriers: Common challenges in BAS adoption include high upfront costs,

technical complexity, and the need for skilled personnel to manage and maintain these

systems.

The meta-analysis indicates that while BAS offer substantial benefits, their effectiveness is highly

dependent on proper design, implementation, and ongoing management. The findings suggest a

need for standardized protocols and best practices to ensure optimal performance. Furthermore,

future research should focus on developing cost-effective solutions and addressing the skill gaps

in the industry.

In conclusion, building automation systems hold significant potential for improving

building efficiency and comfort. The study’s findings underscore the importance of continued

research and development in this field, particularly in leveraging advanced technologies to

overcome current limitations and maximize the benefits of BAS.

The papper written by Aliabadi et al. (2021) delves into the concept of coordinating

HEMS to mitigate the adverse effects caused by selfish systems in distribution grid regions. It

discusses how coordination can alleviate issues like rebound peaks, instabilities, and contingen-

cies, emphasizing its significance in achieving grid objectives such as load profile flattening,

cost reduction, and energy trading facilitation. The review explores recent investigations into
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coordinated HEMS, detailing the necessary steps for implementation, including coordination

topologies and techniques.

A key focus of the paper is the classification of coordination approaches based on

their utilization of decomposition algorithms. It examines the major features, advantages, and

disadvantages of these methods while analyzing coordination process characteristics, mathemati-

cal issues, and player concerns. Specific applications of coordination designs are discussed and

categorized, aiming to provide insights into critical gaps in existing studies and propose practical

solutions.

Unlike other reviews, this survey concentrates on effective frameworks to make

coordinated HEMS feasible, aiming to identify research gaps, future opportunities, and imple-

mentation challenges. The paper concludes by highlighting the potential benefits of coordinated

HEMS, including significant reductions in electricity bills, and presents a roadmap for future

research in this area.

The authors in Merabet et al. (2021) conducts a comprehensive review of AI tech-

niques utilized in building control systems to enhance energy efficiency while maintaining

thermal comfort. It addresses the conflicting objectives of reducing energy consumption in

HVAC systems while ensuring comfortable indoor conditions. The review encompasses method-

ologies deployed over the past decade, evaluating their outputs, implementations, and abilities to

improve energy efficiency and comfort levels.

Among the twenty AI tools analyzed, functions such as pattern identification, opti-

mization, and predictive control are highlighted for their contributions to energy consumption

and comfort control. The review underscores the ongoing nature of AI-based control system

performance improvement, attributed in part to the requirement for large amounts of high-quality

real-world data.

The paper presents findings indicating significant energy savings and comfort im-

provements achieved through the application of AI techniques and personalized comfort models.

It discusses challenges faced in utilizing AI for energy productivity and comfort improvement,

highlighting future research directions in AI-based building control systems for enhanced human

comfort and energy efficiency management.

The paper written by Balakrishnan e Geetha (2021) conducts a comprehensive

review of HEMS, addressing the increasing energy demand and distribution issues. HEMS are

designed to optimize energy usage in homes, identifying areas of energy wastage and facilitating



23

better energy utilization. They also enable two-way communication between consumers and

distribution centers, considering both energy generation and consumption.

The review focuses on various aspects of HEMS, including different climate condi-

tions, appliances, controllers with algorithms, and the lifestyles of home occupants. It discusses

research papers related to HEMS implementation in diverse scenarios, aiming to improve en-

ergy efficiency without compromising consumer quality of experience (QoE). Different pricing

techniques employed by utility centers, such as ToU, RTP, and fixed plan (FP), are also examined.

The development of HEMS aims to enhance QoE by managing energy generation and

conservation, integrating renewable energy sources, and utilizing battery storage. By optimizing

energy usage, HEMS not only saves money but also conserves natural resources and reduces

the need for additional power generation. The review provides insights into the components and

functionalities of HEMS, offering a holistic understanding of its applications in various home

environments.

A smart home enhances residents’ quality of life by incorporating technologies for

monitoring, promoting independence, and automating home environment operations to suit

inhabitants’ needs is the goal of authors in Mekuria et al. (2021). The Smart Home Reasoning

System (SHRS) plays a crucial role in determining automatic control and adaptation processes

within the home. Despite extensive research on various aspects of SHRS, there’s a notable lack

of systematic investigation into these systems.

To address this gap, their paper conducts a SLR through automatic and manual

searches across six electronic databases, analyzing 135 literature sources. The SLR reveals

that approximately 43% of smart homes aim to offer general home automation services. It also

identifies twelve major requirements of an SHRS.

Furthermore, the study highlights that 55.5% of research contributions in the SHRS

domain are conceptual, with 51.5% relying on symbolic artificial intelligence techniques. It exam-

ines the usage and application trends of different reasoning techniques in the smart home domain,

assessing the assumptions, strengths, and limitations of proposed systems in the literature.

Additionally, their study discusses the challenges of reasoning in ambient assisted

living environments and emphasizes the importance of utilizing hybrid reasoning approaches. It

underscores the necessity of addressing overlapping, simultaneous, and conflicting activities and

goals of multiple inhabitants.

The authors in Mischos et al. (2023) thoroughly examine the pressing issue of energy
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waste and its contribution to climate change, particularly focusing on residential, commercial,

and educational buildings. It underscores the significance of implementing intelligent energy

management systems (IEMS) to monitor and regulate energy consumption effectively. Notably,

it introduces a classification system that categorizes IEMS into two main types: direct control

systems, which offer automation to control various functionalities, and indirect control systems,

which target behavioral modification among occupants.

In residential and commercial contexts, where energy usage is substantial, direct

control systems are emphasized due to their capacity to provide automation, offering convenience

and efficiency. These systems enable real-time monitoring and adjustments, optimizing energy

consumption without significant user intervention. Conversely, in educational buildings, where

fostering awareness and instigating long-term behavioral changes are paramount, indirect control

systems may be more fitting. By influencing occupants’ behavior and habits, these systems aim

to cultivate sustainable energy practices that extend beyond immediate efficiency gains.

Despite the advantages presented by both approaches, the text also highlights vul-

nerabilities inherent in these systems. For instance, direct control systems are susceptible to

cyberattacks, posing risks such as false data injection that could lead to increased energy con-

sumption or system malfunctions. On the other hand, indirect control systems may encounter

challenges like the cold start problem, which arises when new users or actions are introduced,

affecting the system’s effectiveness until sufficient data accumulates.

The review concludes by suggesting avenues for further research and development

in the field of IEMS. It proposes exploring reinforcement learning techniques to enhance the

capabilities of direct control systems, addressing issues such as slow training rates to improve

their efficiency and adaptability. Additionally, there’s a call for creating engaging applications

or serious games to bolster user engagement in indirect control systems, facilitating behavioral

changes and promoting energy awareness. Ultimately, the text advocates for ongoing advance-

ments in IEMS, particularly emphasizing the need for more accessible and affordable indirect

control applications in residential settings to democratize energy management and sustainability

efforts.
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3 LOAD MODEL

During the bibliographic research, we detected that there is no standard for load

modeling or classification. However many authors use similar terms like (non)controllable

(Albuquerque, 2018; Santos, 2019; Costa et al., 2023), (un)interruptible (Venkatesh, 2015; Wang

et al., 2015), single/multi-period (Mohsenzadeh et al., 2013; Farrokhifar et al., 2018) etc. In this

thesis, loads are classified into two categories, following the stated in Albuquerque et al. (2018):

1. Controllable load (CL): encompasses a wide array of devices allowing for manual or

remote manipulation. They utilize switches, dials, or digital interfaces to adjust operations.

Integrated into SH ecosystems, users can oversee appliances using smartphones or voice

assistants, enhancing convenience and energy efficiency. Examples of CL are air condi-

tioners, pool filter pumps, non-programmable washing machines, dishwashers, irons, or

even outdoor lighting.

2. Detectable load (DL): refers to an electrical device or equipment that can be identified and

monitored within a SH ecosystem. Unlike CL, detectable ones are not typically designed

for remote manipulation or control. However, we can estimate their energy consumption

by comparing the energy measurements of the smart meter (SM) and all other devices

connected to a HEMS. Examples of DL are audiovisual equipment; personal computer

systems; indoor lighting; toasters, refrigerators, and freezers.

The parameters of the ith CL in a set, which were used to structure the programmer

model and simulations, are presented in Table 2 and are closely related to scheduling problem

modeling (Coutinho, 2013).

Figure 2 provides an overview of the load parameters listed in Table 2, illustrating

their positioning over time for a generic or randomly drawn load with multiple discreet power

stages (gray object).

On the left side of Figure 2, the release Li.r and expected activation time Li.e instants

are shown. On its right side, the deadline Li.d and the range of power over time Li.P(t) are

depicted. Above the gray area, the load length Li.W is shown. Below it, one possible start Li.s

and its respective finishing time Li. f instants are marked. Finding the correct index of the start

instant array that balances cost under white tariff scenario and user comfort due to this scheduling

point is the goal of this work. Details of the code that realizes this structure in Julia language can

be found in the link provided in Appendix A.

In this study, we considered that a complex load can be represented by its highest
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Table 2 – List of symbols that define parameters of a BasicLoad structure in Julia language for
each load Li.

Id Description

Li.r release time of the ith load
Li.e expected on time of the ith load by user
Li.d deadline instant of the ith load
Li.W width of the ith load, usually measured in minutes
Li.W∆ discrete load width
Li.s array with all possible start times of the ith load, Li.s≥ Li.r
Li. f finishing time of the ith load, Li. f = Li.s+L.W ≤ Li.d
∆t discrete step in which a load could move through time, common to all loads in set
Li.P(t) behavior of the ith load through time
Li.P̄ average power of the ith load
Li.P̂ peak power of the ith load
Li.µ relevance of the ith load, ∈ [0,1]
k proportion of discrete time related to 1 hour, k =

( 60
∆t

)
Source: Prepared by the author.

Figure 2 – Load model and timing parameters

Source: Prepared by the author.

power consumption (Li.P̂), as suggested in Coutinho (2013), which serves as an asymptotic

reference scenario for modeling purposes. For instance, an inverter air-conditioner with a peak

power of 3.5 kW can be modeled as a rectangle with a constant height of 3.5 kW. However, in

practice, this power is often lower and varies depending on climatic conditions. That way, the

energy cost evaluated by this work methodology will be greater than or equal to the real scenario.

We also consider that a multistage load could be simplified as a combination of single

small loads (Farrokhifar et al., 2018), also estimated by their peak value. This consideration

is needed to model loads that could be interrupted or have large stages with different power
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peaks and off gaps between them. A practical example of this kind of load is a washing machine.

Figure 3 demonstrates this process for a two-stage load Li.

Figure 3 – Modeling multiple stage load to multiple simple loads

Source: Prepared by the author.

In this example, we split its duration into stages, each with its own start and finish

times. We then adjusted the parameters for the release (Lb.r) and expected time (Lb.e) of the

second stage to align with the deadline (La.d) of the first stage and into the off gap. Moreover,

the first stage inherits the release (La.r = Li.r) and expected time (La.e = Li.e) from the original

load Li, while the second stage inherits its deadline (Lb.d = Li.d).

The simulation step or sampling rate is also an important variable and should be

considered as minimum as possible to achieve flexibility in scheduling (Lu et al., 2020). All

simulations and benchmark results were obtained using ∆t = 5 min. However, for some later

illustrations, it will be stated as ∆t = 30 min for better graphical comprehension.

3.1 Simulation Scenarios

Nine simulation scenarios are proposed in this work. The first one is related to a real

house described in Albuquerque et al. (2018) and also studied in Albuquerque (2018), Santos

(2019), Costa et al. (2023). The details of appliances are described in Table 3. This set of loads

has been considered due to the known results by the author of this thesis from previous works,

serving as a compass to ensure the methodology presented in this present work.

The last eight sets of loads were randomly generated and utilized to collect bench-

marks for execution time and memory usage, corresponding to load quantities of 10, 25, 50,
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75, 100, 250, 500, and 750. These specific load quantities were chosen to assess the impact of

increasing load set sizes on performance parameters. All benchmark output details are described

in Appendix D.

Table 3 – Reference loads in an actual residence.
ID Load Cycles ∆t(min) P̄∗ P̂∗ Expected Release Deadline µi

Time Time Time

1 Water tank pump 1 20 2 3 8h 7h 17h 0.1
2 Pool filter pump 1 120 0.75 1.5 8h 7h 17h 0.1
3 Iron 1 120 1 1.2 16h 14h 17h 0.3

4 Washing machine 8 10 10 4
6 2 2 2 7

0.13
0.51
0.30,
0.26
0.15 · · ·
0.22

0.70
0.50
0.30
0.26
0.15 · · ·
0.30

8h 7h 17h 0.5

5 External lamps 1 270 0.3 0.3 18h 17h 24h 0.3
6 Indoor lamps 1 270 0.15 0.3 18h 17h 23h 0.7

7 Air Conditioning 1 14 [10 5 5
· · · 5]

[1.3 · · ·
1.3]

[1.7 1.3
. . . 1.3] 16h 15h 24h 1.0

8 Air Conditioning 2 7 [30 20 5
· · · 5] [2 · · · 2] [2.1 · · ·

2.1] 20h 17h 24h 1.0

9 Air Conditioning 3 1 240 1.1 1.2 20h 17h 24h 1.0

10 Air Conditioning 4 7 [10 10
5· · · 5]

[0,9 · · ·
0.9]

[1,1 · · ·
1.1] 20h 17h 24h 1.0

11 Dishwasher 5 5, 10,
15, 5, 10

0.03,
1.76,
0.03,
1.76,
0.03

0.03,
1.76,
0.03,
1.76,
0.03

21h 18h 22h 0.3

Source: Prepared by the author, adapted from Albuquerque (2018)
Note: ∗ Average and Peak Power are measured in kW.

The common attributes across all simulation scenarios are as follows: a) The sam-

pling interval, denoted as ∆t, is fixed at 5 minutes; b) Each ensemble of ten loads adheres to a

daily demand threshold of 4.0 kW . This threshold is depicted by an inverted Gaussian distribution

centered at 18:30h, with a negative amplitude of 25%, serving to simulate a reduction in the

demand threshold to accommodate the DL; c) the Brazilian ToU tariffs: constant and white.

For each load in any random scenario, the restrictions from Equations (3.1) and (3.2)

were applied. Additionally, the relevance factor µ previously defined in Table 2 has been set to

one to avoid any attenuation on the evaluation process of the comfort goal.

Li.W ≤ 6h (3.1)

Li.r ≤ Li.e≤ Li.d−Li.W (3.2)
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For each controllable load Li in a SH context, the threshold in Equation (3.1) has been established

based on the authors’ common understanding that a controllable appliance would rarely operate

for more than 6 hours. This time length is represented by the variable Li.W . Nevertheless, this

value could have been set to any appropriate value. The constraints outlined in Equation (3.2)

specify that the expected activation time (Li.e) for a load must fall within the release time (Li.r)

and its deadline (Li.d), adjusted by the duration of the load (Li.W ). All these variables have been

previously defined in Table 2.

All scheduling simulation results for all procedures listed in Chapter 6 and the

simulated user expected activation time are graphically illustrated at Appendix C.
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4 CLASSIC SHC

In this thesis, we assume that a SHC is connected to all controllable loads and is

capable of performing their scheduling. For this control to be possible, the SHC must receive

information about energy billing, white tariff (Cw[t] ∈ {Tf , Ti, Tp}) and constant tariff (Tc),

controllable residential loads set (Lm), residential load activation preferences (Lm.e, Lm.r, Lm.d),

and comfort level (Lm.µ). To achieve this goal, we model the data related to residential loads,

including the consumption profile ( f1) and the residential comfort profile ( f2). This modeling

process enables us to understand consumption patterns, identify potential savings, and optimize

comfort levels through a day-ahead load schedule.

4.1 Cost model - f1

The mathematical definitions related to residential load at the grid level employed in

this thesis are akin to those presented in prior works (Giorgio e Pimpinella, 2012; Albuquerque

et al., 2018; Rajasekhar et al., 2019). The mathematical model for cost of residential loads

corresponds to Equation (4.1), which incorporates the following premises: M schedulable loads,

N daily samples, a sampling interval ∆t. N index in sum is restricted to start (Li.s) and finishing

(L.i f ) instants. All these variables follows the notation described in the Load Model Chapter.

fFcost =
M

∑
i=1

Li.s+Li.W

∑
j=Li.s

(Li.P̄[ j]
∆t
60

Cw[ j]) (4.1)

subject to the following constraints:

Li.r ≤ Li.s≤ Li.d−Li.W,∀ i ∈M (4.2)

M

∑
i=1

Li.P̂[ j]≤ P̂j,∀ j ∈ N (4.3)

where Li.P̄[ j] and Li.P̂[ j] are respectively average power and the peak power of the ith load L at

instant j, and P̂j is the total maximum demand restriction for the same moment.

The bounds outlined in Equation (4.2) specify that the timing of activation for the ith

load must fall within the user-defined release and deadline time instants, in the same terms as

Equation (3.2) was defined. Additionally, the loads must not surpass the threshold demand (P̂j)

at the jth activation time, as indicated by the constraints presented in Equation (4.3).
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The cost function ( f1) defines the economic savings due to SHC normalized by the

cost in constant tariff. The first and second terms in Equation (4.4) correspond to the costs

resulting from the user preference profile and the SHC scheduling, respectively.

The normalized economic savings, denoted by the cost function ( f1), articulate the

financial benefits of dynamic tariff attributed to the SHC, normalized against the costs in a

constant tariff setting. The initial and subsequent elements in the numerator of Equation (4.4)

represent the costs associated with the user preference profile and the scheduling facilitated by

the SHC, respectively, considering ToU white tariff.

f1 =

∑
M
i=1

(
∑

Li.e+Li.W
j=Li.e (Li.P̄[ j]∆t

60Cw[ j])−∑
Li.s+Li.W
j=Li.s (Li.P̄[ j]∆t

60Cw[ j])
)

∑
M
i=1 ∑

Li.s+Li.W
j=Li.s (Li.P̄[ j]∆t

60Tc)
(4.4)

In this context, f1 ≥ 0 ensures that the schedule proposed by the SHC is deemed

acceptable by the algorithm as a valid solution for the user. Also note that f1 is subjected to the

same restrictions of Equation (4.1).

4.2 Comfort model - f2

The comfort model, adapted from Albuquerque et al. (2018), Rajasekhar et al. (2019),

takes into account the comfort relevance level of a load i as a measure of how much it deviates

from the expected activation time by the user. To facilitate this, users are required to register

residential loads eligible for scheduling in the SHC, along with specifying comfort relevance

values (0 ≤ Li.µ ≤ 1) and the load activation parameters in terms of release (Li.r), deadline

(Li.d), and expected (Li.e) time instants.

Equation (4.5) delineates the comfort function. The initial term signifies the activa-

tion window of a load i concerning the user’s preferences, serving as a benchmark for computing

normalized comfort. The subsequent term quantifies the discrepancy between the time instant

(Li.s) chosen by the SHC and the user’s preferred time (Li.e). This difference is adjusted by

the comfort relevance (Li.µ) associated with the ith load. Note that if Li.µ equals zero, the

scheduling of this load becomes irrelevant since the comfort associated with it is maximized and

set to a value of one.
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f2 =
1
M

M

∑
i=1

([
max(|Li.r−Li.e| , |(Li.d−Li.W )−Li.e|)

]
−Li.µ |Li.s−Li.e|[

max(|Li.r−Li.e| , |(Li.d−Li.W )−Li.e|)
] )

(4.5)

For a specific load i with a comfort relevance of Li.µ = 1, this parameter attains its

highest value when the scheduled time by the SHC aligns closely with the user’s preferred time

(Li.s ≈ Li.e). However, if Li.s ≈ Li.r or Li.s ≈ (Li.d−Li.W ) (at the opposite end of the load

activation window), the comfort level will be minimal. This occurs because the operation cycle

commences at a time furthest from the one designated by the user as the preferred time.

4.3 JuMP and Hierarchical Algorithm

Julia Modeling Language for mathematical optimization (JuMP) is a modeling

language (Lubin et al., 2023) that condenses a collection of supporting libraries and packages

running in Julia language (Bezanson et al., 2017) that makes it prone to formulate and solve

different problem classes related to optimization. The Multi-Objective Algorithms package

(DOWNSON, O et al., 2023) provides many classic implementations ready to use. The best

benchmark results were achieved with the hierarchical algorithm.

The hierarchical multi-objective algorithm organizes its approach to return a single

point via an iterative scheme. First, it partitions the objectives into sets according to the objective

priority. Then, in descending order of priority, it formulates a single-objective problem by

scalarizing all objectives with equal weights. Next, it constrains these objectives to be at most

relative tolerance worse than optimal in future solves.

In other words, it solves the model up to a given MIP gap to obtain an optimal

value for the first objective function. Then, given the model restrictions, it optimizes the second

objective using the first set of values of optimization variable to constraint the feasible set of the

next optimization, such that the evaluated solution cannot get worse than first taking into account

some predefined tolerance.

Finally, it proceeds to the next set of prioritized objectives. The solution represents a

single point that trades off the various objectives. To save memory space, the implementation

of this algorithm in JuMP development framework does not record the partial solutions found

along the way (Lubin e Dunning, 2015; Dunning et al., 2017; Lubin et al., 2023).
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All code related to the implementation of SHC Classic Model can be found in the

link provided in Appendix A.
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5 PROPOSED DEFINITIONS AND METHODOLOGY

The reader is now invited to look at Figure 4. The squared chart represents a zoom-

around peak post of white tariff over time. The white outer regions are related to off-peak post,

while the two thin yellow regions are related to the intermediate post and the central red area

represents the peak post. Each square along the chart represents a sample period, which, for

didactic purposes, has been set to 30 minutes. The long blue rectangles represent a generic

four-hour-long load started in three different instants. For the purposes of this analysis, the

vertical axis dimension of the time chart is considered irrelevant.

Figure 4 – Three different startup times for a 4 hours load around intermediate and peak post
tariffs.

Source: Prepared by the author.

Note that while the four-hour-long load crosses the tariff posts, it is possible to

evaluate how many discrete samples fit in each time post. For instance, the first load has four

time units in off-peak post, two in intermediate post and two in peak post. These quantities are

shown on the right side of each load representation in Figure 4.

From now, we assume that each time (or region) post in white tariff could be modeled

as an independent dimension so that we could create a three-dimensional vector with components

( f̂ , î, p̂) respectively to white tariff off-peak post, intermediate post, and peak post, whose lengths
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are the load length portion that fits inside of each post region. This vector space is named here as

Tariff Space.

The process for a load L, which quantifies how many discrete samples will fit in each

time post according to load length (L.W - continuous, L.W∆ - discreet) and its start time (L.s), is

defined as time decomposition into tariff space. Its output is a vector in Tariff Space, as shown

on the right side of Figure 4.

The code related to time decomposition into tariff space and its reverse operation can

be found in the link provided in Appendix A. As the vector resulting from time decomposition

has been stated, we now can evaluate the cost of a load, according to it start time, into a white

tariff scenario using dot product:

Cw = k ·L.P̂ · [( f̂ , î, p̂) � (Tf ,Ti,Tp)] (5.1)

where:

| f̂ |+ |î|+ |p̂|= L.W∆; (5.2)

k =
(

60
∆t

)
; (5.3)

L.P̂ is the peak power of a load and k is the discrete amount of time related to one

hour due to sample rate ∆t. All these symbols were defined in Table 2. The values in vector

(Tf ,Ti,Tp) represent the white tariff post costs, as previously stated in Table 1.

The minimum, maximum, and normalized costs of a load can also be written as:

Cmin = k ·L.P̂ ·L.W∆ ·Tf (5.4)

Cmax = k ·L.P̂ ·L.W∆ ·Tc (5.5)

Cnorm =

(
Cw

Cmax

)
(5.6)
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where Cw is the cost of a load under white tariff, as defined in Equation (5.1), and L.W∆ is the

discrete value of load length due to sample rate ∆t.

Note that the maximum is a relative value and is evaluated using constant tariff value

because our goal is to reduce the bill relative to this reference value.

Cmin ≤Cw ≤Cmax←→ L.W∆ ·Tf ≤ [ f̂ ·Tf + î ·Ti + p̂ ·Tp]≤ L.W∆ ·Tc (5.7)

As cost margins have been defined, we can analyze the extreme points of Equation

(5.7). Solving the equality at the lower bound yields the expression seen in (5.8). This indicates

that to achieve this threshold, the total load length should fall within the off-peak post or, in other

words, the point (L.W∆,0,0). Solving the equality at the upper bound, together with Equation

(5.2), yield the two points expressed in (5.9). These three points delimit a region into tariff space

in which the cost of a load in the white tariff scenario is less than or equal to the constant tariff,

as points in Equation (5.9) delimit a line of this equality.

î =−p̂
Tp−Tf

Ti−Tf
< 0 (5.8)

 i f î = 0 p̂ = L.W∆
Tc−Tf
Tp−Tf

f̂ = L.W∆− p̂ = L.W∆
Tp−Tc
Tp−Tf

(point Q1)

i f p̂ = 0 î = L.W∆
Tc−Tf
Ti−Tf

f̂ = L.W∆− î = L.W∆
Ti−Tc
Ti−Tf

(point Q2)
(5.9)

Furthermore, it is important to consider that Equation (5.2) represents an equilateral

triangle encompassing all possible combinations for ( f̂ , î, p̂) within the constraints of L.W∆.

However, it is possible for this representation to yield infeasible combinations, either due to one

of the dimensions potentially being shorter than the length of a load itself or because of adjacent

displacements in time imposed by the white tariff definition. For simpler examples, readers can

refer to Appendix E, which contains applications demonstrating various binomial tariff patterns.

All these regions, along the points related to a one-hour-long load crossing the tariff

regions, can be seen in Figure 5. The points related to the load movement have been colored

according to their normalized cost, so the reader can see how their price change over the gray

triangle plane surface. The region delimited by a red triangle represents the region of lower cost,

which is composed by the two points in Equation (5.9) and the point that represents a load fully

into f̂ space.
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Observe that the one-hour-load "walks" through the side of the triangle only. This

occurs because time decomposition for this load would never have three components as its length

fits entirely into all three tariff regions or between its adjacent transitions in pairs. For loads with

length less than or equal to L.∆t only the vertices of the triangle should be considered.

The next relevant load movement graphic is shown in Figure 6 and represents a

six-hour-long load. Note that the behavior in tariff space is quite different from the one observed

in Figure 5. This behavior can easily be modeled accordingly only to the load length. Those

patterns, called here geometric locus of a load, are condensed in the six equations that follow for

all sizes of L.W between L.∆t and a full day (24h). More examples of load decomposition into

time space can be found in Appendix B.

(L.W∆,0,0);(0,L.W∆,0);(0,0,L.W∆) (5.10)

î = L.W∆− p̂≤ k; f̂ = 0 (5.11)

î = L.W∆− f̂ ≤ k; p̂ = 0 (5.12)

î = k, f̂ = L.W∆− p̂− k; (5.13)

î = (L.W∆−3 · k)− f̂ ; p̂ = 3k (5.14)

î = 2k; p̂ = 3k; f̂ = L.W∆−5 · k (5.15)

Before analyzing each of these six equations, it’s important to note that they are all

confined to the region inside the triangle defined in Equation (5.2). We will frequently refer to

the edges or vertices of this triangle to better understand the position of each locus.

The points shown in Equation (5.10) are related to a load whose length is less or

equal to ∆t, as mentioned before. Equation (5.11) represents a triangle side that connects axis p̂
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Figure 5 – All startup times for a 1 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 6 – Example of startup times for a 6 hours load crossing intermediate and peak post
tariffs.

Source: Prepared by the author.
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to î and signifies a linear trade-off for a load whose length is lower than or equal to an hour. A

similar case occurs in Equation (5.12) that represents the triangle side that connects axis f̂ to î.

Equation (5.13) is applied when the load length is greater than an hour but less than

or equal to four hours. It represents a parallel line to the triangle side that connects the axis f̂ to p̂.

Note that, while a load longer than an hour crosses the intermediate post, that component remains

constant and equal to an hour in size (represented by variable k, defined in Table 2). Additionally,

it is important to recognize that this triangle side could never be reached as we could not split a

single load into two parts. As stated in the Load Model Chapter, multiple-stage loads should be

modeled as an array of single, indivisible loads with a shared deadline and release time.

The last two Equations (5.14),(5.15), are related to loads whose lengths are greater

than 4 hours. It’s important to note that for loads with a length of 4 hours or longer, as they cross

the intermediate and peak posts their respective components should remain constant and equal

to the regions occupied. Equation (5.14) models a line parallel to a side that connects axis f̂ to

î. Finally, Equation (5.15) is a single point into tariff space that exists while the load is placed

through the three-time posts and is also larger than both intermediate and peak posts.

Once we have defined all possible geometric loci for an appliance, it is pretty visible

that only the lines defined by Equations (5.12) and (5.13) could reach the lower cost region.

The analysis of upper bounds in Equation (5.7) gives us two points that could be combined to

generate a parametric line Equation (5.16). The intersection between this line and load geometric

locus will give us the solution to our schedule problem,


f̂ = L.W · Tp−Tc

Tp−Tf
+λ ·

(
L.W · (Tp−Ti)·(Tc−Tf )

(Tp−Tf )·(Ti−Tf )

)
î = λ ·L.W · Tc−Tf

Ti−Tf

p̂ = L.W · Tc−Tf
Tp−Tf

· (1−λ )

(5.16)

where λ is the parametric variable for Equation (5.16)

Equations (5.12) and (5.13) can also be rewritten in parametric form,


f̂ = L.W · (1−α)

î = α ·L.W

p̂ = 0

(5.17)
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
f̂ = ρ · (L.W − k)

î = k

p̂ = (L.W − k) · (1−ρ)

(5.18)

where α and ρ are parametric variables for Equations 5.17 and 5.18 respectively.

Evaluating the interception point between Equations (5.16) and (5.17), we find a

point described in Equation (5.19), which is one of the points that belong to ones listed in

Equation (5.9). Graphically, it is indeed the point at lower cost region border where the cost of a

load in white tariff is equal to the cost in constant one. As we need a relatively lower cost, we

could use the rounding floor function to reach the next point inside the triangle. Note that by

choosing this first inner point, a load whose expected time is in intermediate or peak post has

minimum movement through time space, that way both objectives, cost, and comfort (as defined

in section 4.2 and Equation (4.5)), are achieved.

Pbest1 =

(
î = ⌊L.W · Ti−Tc

Ti−Tf
⌋, f̂ = L.W − î, p̂ = 0

)
(5.19)

Calculating the interception point between Equations (5.16) and (5.18), we find the

point described in (5.20).

Pbest2 =

(
p̂ = ⌊L.W ·

k · (Tf −Ti)−L.W · (Tf −Tc)

Tp−Tf
⌋, î = k, f̂ = L.W − k− p̂

)
(5.20)

The criteria to choose between Pbest1 or Pbest2 depend on the load length relative to k

and the sign of f̂ component. The flowchart in Figure 7 shows the decision process between the

two values. Appendix A has a link to all code for the geometric search process (GeoFind for

short).

5.1 Analysis of a load fully into off-peak post

As stated before, the methodology previously discussed is applicable only if the load

has its expected start time inside the interval composed of the intermediate and peak posts. If a

load is scheduled by a user fully into the off-peak post, no movement should be made with it, as

it is already with maximum comfort (see section 4.2 for details) and lower possible cost.
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Figure 7 – Geometric Search Flowchart

Start: GeoFind

Inputs: L::BasicLoad, C::BrazilianTariff

( f1, i1, p1) =
Eval pBest1(L,C)

( f2, i2, p2) =
Eval pBest2(L,C)

k = Evalk(L)

L.W ≤ k f2 ≥ 0

return: ( f1, i1, p1)

return: ( f2, i2, p2)

End

yes

no yes

no

Source: Prepared by the author.

5.2 Analysis over defective geometric locus

Due to restrictions caused by the release or deadline instants, some loads may have

not the full capability of moving through their geometric locus. As a result, such loads may

be considered defective. To illustrate, consider an example of a load whose data could be read

in Table 4 and its geometric locus seen in Figure 8. Note there is no intersection between the

geometric locus and the lower cost region. In that specific case, we should look at the edges of the

possible start times to find the schedule position with higher component f̂ , and to the expected

schedule time, then evaluate the ratio between cost, Equation (5.1), and comfort, Equation (4.5),

for this three instants, as shown in Equation (5.21) or in the flowchart illustrated at Figure 9.
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Table 4 – Example of a load with defective geometric locus.
L.r L.e L.d L.∆t L.W

16h 18h 23h 5min 3h

Source: Prepared by the author.

Figure 8 – Example of a defective load into tariff space time

Source: Prepared by the author.


R1 =Com f ort(L,L.s[1])/Cost(L,L.s[1])

R f =Com f ort(L,L.s[end])/Cost(L,L.s[end])

Re =Com f ort(L,L.e)/Cost(L,L.e)

⇒ R1≥ R f ? (R1≥ Re ? L.s[1] : L.e) : (R f ≥ Re ? L.s[end] : L.e) (5.21)

In this case, the solution returned should be the best ratio result between comfort and

cost. A concise implementation, reflecting the statements from this subsection and subsection

5.1, is demonstrated in Algorithm 1.
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Figure 9 – Defective Geometric Locus Analysis Flowchart

Start

Inputs: L::BasicLoad, C::BrazilianTariff

R1 =
Com f ort(L,L.s[1])/
Cost(C,L,L.s[1])

R f =
Com f ort(L,L.s[end])/
Cost(C,L,L.s[end])

Re =
Com f ort(L,L.e)/

Cost(C,L,L.e)

R1≥ R f R1≥ Re

R f ≥ Re

return: L.s[1]

return: L.e

return: L.s[end] End

yes

no

yes

no

no

yes

Source: Prepared by the author.

5.3 Analysis of power demand response

So far, all analyses that have been made have focused on only one load. As loads

could be considered independent, a feasible solution for an array of loads would be to iterate

the geometric search through a loop and return all schedule instants by recomposing time after
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finding the points in tariff space. One side effect of this solution is that we cannot yet add any

constraint about demand peaks or maximum power over time.

To cover this issue, a few hypotheses have been formulated, and two of them were

tested through simulation. Both hypotheses use the hierarchical algorithm in combination with

the output results of geometric search to try to speed up their execution and reduce memory

usage. Specifically, the first trial consists of initializing the hierarchical algorithm with instant

values evaluated using the geometric search.

The second approach iterates through the scheduled loads and locates the ones whose

summed power exceeds the demand restriction. After identifying the loads that are causing the

surge peak, they are cut from the original problem set and passed as parameters to the hierarchical

algorithm, which will attempt to reschedule them within 95% or 90% of the original constraint.

This reduction is needed to avoid another demand peak by reinserting the loads into the full set.

Then, we check if all loads fit into the demand constraint. In the negative case, another cut is

made.

Once all loads fit within the demand constraint, the iterations end. This last method-

ology has been named the hybrid algorithm. A short version of this method can be seen in

Algorithm 2, and its full codification in Julia language can be found in the link in Appendix A.

Functions that iterate through a set of loads receive the suffix Vector.
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Algorithm 1 – Best Geofind

1 function Best_GeoFind(L:: BasicLoad)

2 Pe = Decompose_Time(L, L.e)

3 if Pe[1] == L.C$\Delta$

4 return L.e

5 end

6 A = GeoFind(L)

7 t = Recompose_Time(L, A)

8 if (L.s[1] <= t) && (t <= L.s[end])

9 return t

10 end

11 C1 = Eval_BasicLoad_Comfort(L, L.s[1])/

Eval_BasicLoad_Cost(L, L.s[1])

12 Ce = Eval_BasicLoad_Comfort(L, L.e)/Eval_BasicLoad_Cost

(L, L.e)

13 Cend = Eval_BasicLoad_Comfort(L, L.s[1])/

Eval_BasicLoad_Cost(L, L.s[end])

14 val ,tempo = C1 >= Cend ? (C1 ,L.s[1]) : (Cend ,L.s[end])

15 return Ce >= val ? L.e : tempo

16 end
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Algorithm 2 – Hybrid Algorithm

1 function Hybrid(H:: Vector{BasicLoad }; demand_scale :: Float64

= 1.0, max_iterations ::Int64 = 5)

2 t = Best_GeoFindVector(H)

3 count::Int64 = 0

4 while(true)

5 Hcut , B = find_demand_peaks(H, t)

6 L = length(B)

7 println("Hybrid found $L loads causing excessive power

demand in iteration $count\n")

8 if isempty(B) || (count >= max_iterations)

9 return t, count

10 end

11 tcut = JuMP_MOAVector(Hcut; demand=true , load_size=

length(H), demand_scale=demand_scale)

12 for i in eachindex(B)

13 t[B[i]] = tcut[i]

14 end

15 count +=1

16 end

17 end
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6 SIMULATIONS AND RESULTS

In Brazil, ANEEL resolution defines that residential consumers are not charged for

demand, and only those in the A group have this type of billing (ANEEL: Brazil, 2021). That way,

the methodology presented in this topic would be enough for our local situation. Nevertheless,

as vastly discussed before, DR is a global concern and should be taken into account.

As mentioned before, the first simulation scenario is related to a reference house

with 11 controllable loads whose appliance set is familiar to this thesis’s author as it has been

studied in previous related works (Albuquerque et al., 2018; Costa et al., 2023; Santos, 2019;

Albuquerque, 2018). Figure 10 illustrates the scheduling results in a cumulative or stacked load

power. Figure 10(a) represents the house inhabitants’ preferences. Figures 10(b) and (c) show

the geometric search and hierarchical results, both without demand constraints. At last, Figure

10(d) represents the schedule with demand constraint. The three least methodologies returned

the same quantitative result, videlicet: hierarchical with DR, hierarchical with DR constraint

and initialized with geometric search results, and the hybrid strategy. However, only the two

purely based on the hierarchical algorithm were expected to return the same qualitative results.

This result has occurred due to the small number of loads in this simulation set and because a

significant amount of them were selected to run into hierarchical. In quantitative analysis, only

the hybrid strategy has achieved better benchmarks, as hypothetically expected. Also note that

no appliance has been turned off or had its usage time shortened in any of the strategies. Only

the start time has been changed.

In Table 5, the values of comfort and normalized cost for reference house scenario

can be read. Note that the best comfort values are realized by the methodology presented in this

thesis.

Table 5 – Mean comfort and cost for reference house appliances.
Algorithm Comfort Cost

Expected user time 1.000 1.311
Geofind 0.873 1.021
Hierarchical without DR 0.845 0.965
Hierarchical with DR 0.813 0.974
Hierarchical with DRa 0.813 0.974
Hybrid algorithm 0.813 0.974

Source: Prepared by the author.
Note: a Initialized with geometric search results.

The results of the geometric search could be equal to hierarchical by adjusting the
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Figure 10 – Reference House loads user schedule and output results

a. Expected user defined schedule, maximum comfort b. Geofind Algorithm output

c. Hierarchical without demand restriction d. Hierarchical with demand restriction
and Hybrid Strategy

Source: Prepared by the author.

code to return the next inner point in the lower cost region, rather than the first one. All results

achieved are compatible with cited previous works.

During experiments with the data from the first scenario, it was noted that the output

results of the geometric search were significantly faster compared to those obtained by linear

programming tools. Furthermore, less memory was also been allocated during the evaluation. To

stand this result and verify its impact with larger sets of data, we proposed to generate eight sets

of data with increasing size in log10 scale, as described in section Simulation Scenarios into Load

Model Chapter. Each set of data has been submitted to five different scheduling procedures:

– Geometric Search;

– Multi-objective Hierarchical without demand constraint;

– Multi-objective Hierarchical with demand constraint;

– Multi-objective Hierarchical with demand constraint and initialized with Geofind solution;

– Hybrid algorithm.

The five scheduling results and the randomly generated expected time schedule can
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be examined in detail for each dataset in Appendix C.

All benchmark results presented and discussed here have been run at least 25 times

to ensure consistent outcomes. Most data has been collected through 100 or more executions

under the same conditions and on the same computer (Intel Core i5-6200U 2.3GHz with 8GB

of DDR4 Memory using Windows 10 Home and Julia 1.8). This iteration number has been

considered sufficient as all results evaluated in each procedure consistently provided the same

solution. Detailed histograms and all benchmark outputs can be found in Appendix D.

The data presented in Table 6 showcases the mean execution time benchmark for

all the studied algorithms. Each row of the table corresponds to a different number of random

loads, spanning from 10 to 750, while each column represents a specific algorithmic approach.

The execution times, measured in microseconds (µs) and seconds (s), offer a comprehensive

overview of how each algorithm performs under varying load conditions.

Geometric search emerges as the standout performer in terms of speed, consistently

delivering results within microseconds, irrespective of the number of loads. This rapid perfor-

mance underscores the efficiency of geometric search in swiftly identifying optimal solutions,

rendering it particularly well-suited for real-time applications or scenarios with stringent time

constraints.

In contrast, the hierarchical algorithm exhibits progressively longer execution times

as the number of loads increases. Without any additional techniques, the hierarchical algo-

rithm’s performance deteriorates significantly, with execution times reaching several seconds for

scenarios involving 500 or more loads.

By incorporating DR constraint, the hybrid methodology demonstrates remarkable

improvement over the purely hierarchical approach. With execution times consistently lower

than those of the hierarchical algorithm, the hybrid methodology showcases an improvement of

about 50

A similar discussion applies to the memory estimate data presented in Table 7.

Furthermore, an intriguing observation arises from the hierarchical algorithm initialized with the

output of geometric search. This approach yields execution times that are marginally better than

the non-initialized version of the hierarchical algorithm. Comparing the three last columns in

Table 7, it becomes apparent that the same quantity of memory is allocated for this methodology

as for the purely hierarchical approach, indicating that no cuts in the search tree have been

effectively made.
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Table 6 – Mean execution time benchmarks for random loads scenario.
Random Geofind Hierarchical Hierarchical Hierarchical Hybrid
Loads without DR without DR with DR with DRa algorithm

10 3.005 µs 0.022 s 1.249 s 1.066 s 1.208 s
25 10.074 µs 0.065 s 1.285 s 1.256 s 0.822 s
50 20.748 µs 0.105 s 2.370 s 2.343 s 0.966 s
75 19.975 µs 0.179 s 3.933 s 3.715 s 1.829 s

100 35.647 µs 0.252 s 6.055 s 5.968 s 1.975 s
250 102.471 µs 0.962 s 16.864 s 16.919 s 4.061 s
500 173.276 µs 3.509 s 37.316 s 37.328 s 16.124 s
750 319.320 µs 6.699 s 92.339 s 84.897 s 38.664 s

Source: Prepared by the author.
Note: a Initialized with geometric search results.

Table 7 – Memory estimate benchmarks for random loads scenario.
Random Geofind Hierarchical Hierarchical Hierarchical Hybrid
Loads without DR without DR with DR with DRa algorithm

10 1.17 KiB 5.84 MiB 37.84 MiB 37.84 MiB 36.53 MiB
25 3.66 KiB 19.09 MiB 92.67 MiB 92.64 MiB 60.82 MiB
50 5.45 KiB 40.51 MiB 180.14 MiB 180.07 MiB 82.99 MiB
75 7.50 KiB 72.37 MiB 273.62 MiB 273.53 MiB 153.42 MiB

100 15.59 KiB 123.39 MiB 421.92 MiB 421.79 MiB 161.99 MiB
250 31.16 KiB 508.57 MiB 1.21 GiB 1.21 GiB 303.17 MiB
500 68.56 KiB 1.72 GiB 3.13 GiB 3.13 GiB 1.22 GiB
750 97.38 KiB 3.67 GiB 5.93 GiB 5.93 GiB 2.67 GiB

Source: Prepared by the author.
Note: a Initialized with geometric search results.
Note: The ’i’ vowel in ’iB’ is short for integer.

Figure 11 illustrates the benchmark results for time, while Figure 12 provides a close-

up view to allow readers to discern the differences between two executions of the hierarchical

algorithm and to appreciate the significant improvement achieved by the hybrid solution.

The next data presented here are the values for comfort (Table 8) and normalized cost

(Table 9) evaluated for each load set applying all five scheduling methodologies. As occurred

in scenario one, the geometric search has a better result in comfort metric than the hierarchical

algorithm without DR restriction while achieving the goal to lower the energy cost due to

constant tariff. The Hybrid algorithm has also achieved better comfort metrics when compared

to hierarchical results while all three algorithms have processed the DR constraint. For a better

view of these results, the reader can refer to the graphics available Appendixes C and D.

To finish our discussion about the results, Table 10 presents the dataset that has been

processed by the hierarchical algorithm inside the hybrid solution and how many iterations it has

executed to comply with the demand constraint.

Excluding the results presented in the first line of Table 10, after the scheduling
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Figure 11 – Benchmarks results for execution time.

Source: Prepared by the author.

Figure 12 – Benchmarks results for execution time, only algorithms with demand
response constraint

Source: Prepared by the author.

has been processed by geometric search, an amount ranging from a third to a half of the loads

in random datasets is agglutinated, causing a demand peak. So, through hybrid methodology,

we have been able to reduce the amount of data processed by the LP tool, which explains the
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Table 8 – Mean normalized comforta for random loads scenario.
Random Geofind Hierarchical Hierarchical Hierarchical Hybrid
Loads without DR without DR with DR with DRb algorithm

10 0.976 0.974 0.887 0.887 0.887
25 0.963 0.948 0.945 0.945 0.957
50 0.942 0.942 0.941 0.941 0.935
75 0.965 0.964 0.962 0.962 0.963

100 0.941 0.935 0.934 0.9341 0.945
250 0.968 0.959 0.958 0.958 0.967
500 0.947 0.934 0.937 0.937 0.944
750 0.954 0.940 0.941 0.941 0.946

Source: Prepared by the author.
Note: a Maximum possible value for comfort metric is one.
Note: b Initialized with geometric search results.

Table 9 – Mean normalized cost for random loads scenario.
Random Geofind Hierarchical Hierarchical Hierarchical Hybrid
Loads without DR without DR with DR with DRa algorithm

10 0.871 0.828 0.843 0.843 0.843
25 0.923 0.893 0.893 0.893 0.914
50 0.859 0.833 0.839 0.839 0.839
75 0.873 0.852 0.852 0.852 0.873

100 0.910 0.863 0.863 0.863 0.907
250 0.881 0.847 0.847 0.847 0.881
500 0.897 0.854 0.858 0.858 0.885
750 0.885 0.846 0.848 0.848 0.862

Source: Prepared by the author.

related improvement. Also note that hybrid methodology has done few search iterations, which

demonstrates the efficiency of this method too. In the first case, the number of loads causing the

demand peak where very close to the total quantity (9 out of 10).

Table 10 – Hybrid algorithm running parameters for random loads scenario.
Random Loads Loads causing demand peak Search iterations

10 9 1
25 14 1
50 22 1
75 19 2

100 41 1
250 75 1
500 123 2
750 217 2

Source: Prepared by the author.

That way, the search processing and running the hierarchical algorithm with rein-

forced constraint due to scale reduction results were similar to the original linear programming

tool with 10 loads, so it is a valid effort.



54

7 CONCLUSIONS

Achieving simultaneous objectives of energy efficiency and comfort is not an easy

task, as it represents an intricate trade-off between the need to reduce energy bill and stand for

user preferences. The proposed solution performs fast optimization in a SH scenario whose ToU

takes into account three tariff posts: off-peak, intermediate, and peak. That stated, the main goal

of this work was to present a new methodology for scheduling home electric loads minimizing

cost but without sacrificing inhabitants’ comfort rate.

To achieve the main goal, the methodology relies on defining tariff space, decompos-

ing the time axis into multiple independent dimensions, and establishing the geometric locus

of a load. This locus models the behavior of an appliance as it progresses through either tariff

space or time. It also emphasizes that a set of appliances can be represented as an independent

set. Through explanation, examples of each definition have been provided and systematically

explored.

A traditional optimization programming tool, like the hierarchical algorithm or any

metaheuristic, begins computation from an initial value and explores the solution space to identify

an optimal outcome. By employing the new concepts discussed in this paper, we determine the

direct evaluation of the optimal solution to the given scheduling problem, eliminating the need

for iterative exploration.

The benchmark results for processing time and memory usage, as presented in

Tables 6 and 7, respectively, illustrate a significant performance improvement compared to the

solution evaluated by the LP multi-objective counterpart. Specifically, the processing time is

approximately ten thousand times faster, and the memory usage is significantly reduced. These

results underscore the efficiency and effectiveness of the proposed methodology in addressing

the load scheduling problem without demand restriction.

The output results for comfort and cost, as presented in Tables 8 and 9, highlight

the reliability of proposed methodologies, as outputs for all methods are quite similar. It is

anticipated that the new scheduler proposed in this work would achieve better results for the

comfort metric. This expectation arises from the concept of the methodology, which aims to

provide the shortest distance of movement in time necessary to reduce the energy bill. To ensure

a fair comparison, the relevance factor µ , previously defined in Table 2, for all loads and in all

simulations has been set to one. This choice prevents the diminishing of the comfort goal, as a

relevance factor equal to zero for a load implies that shifting it beyond the expected time would



55

cause no discomfort.

The presented methodology for scheduling appliances in a SH environment aligns

with legal regulations in the Brazilian energy market. However, this new methodology could be

applied or extended to other tariff patterns. In Appendix E the reader could find some examples

for binomial tariff sets. Moreover, it demonstrates the capability to solve large instances of this

problem in less than a few milliseconds. Also, the reduction in memory usage by geometric

search holds potential for the practical implementation of this solution in low-cost embedded

systems. This advancement could enhance HEMS soon and contribute to popularizing this kind

of equipment.

Besides optimization, achieving energy bill savings constrained by flattening demand

is important as it contributes to reducing investments of energy suppliers in the distribution

network. This helps decrease the constant need to expand the system to maintain the availability

of ever-increasing energy consumption (Albuquerque, 2018). While the current state of geometric

search is not able yet to directly relate to demand restrictions, the present work has also tested

two methodologies to enhance the geometric search methodology so it could also comply with

demand response restriction problems.

The proposed hybrid algorithm achieved superior benchmark results than its linear

programming counterpart, with improvements of at least 40% for larger load sets. However,

better ways to include demand constraints should be also included in future works. Some other

hypotheses using Game Theory (Coutinho, 2013) are currently under study.

The analysis of local energy storage, including batteries or electric vehicles EV, and

generation methods like photovoltaic PV systems or wind turbines is a crucial aspect of future

research endeavors. These investigations are pivotal in understanding the impact of decentralized

energy solutions within the context of smart homes and appliance scheduling. By examining

the integration of these technologies, we can unveil their potential to enhance energy efficiency,

reduce costs, and contribute to sustainable living.

Time itself is a substantially complex subject, and this work may have started to open

a window that will allow us to explore its properties even further. The decomposition of time

into a geometric space is a new methodology that is far from reaching its full potential. Future

research should include extrapolation of tariff space for hour-based tariffs or even continuous

ones. The works proposed by Hausmann e Knutson (1996), Hausmann e Knutson (1998) seem

to be a key path to continue this discussion.
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APPENDIX A – GITHUB PROJECT PAGE

The GitHub link bellow has all extra information needed to follow all procedures in

this thesis.

https://github.com/rodolforbcoutinhoUFC/GeoFind_SHC

https://github.com/rodolforbcoutinhoUFC/GeoFind_SHC
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APPENDIX B – TIME DECOMPOSITION INTO TARIFF SPACE EXAMPLES

Figure 13 – All startup times for a 30 min load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 14 – All startup times for a 1 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 15 – All startup times for a 2 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 16 – All startup times for a 3 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 17 – All startup times for a 4 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.
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Figure 18 – All startup times for a 6 hour load crossing intermediate and peak post tariffs.

Source: Prepared by the author.



68

APPENDIX C – SCHEDULING RESULTS FOR ALL RANDOM LOADS

SCENARIOS

Figure 19 – 10 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 20 – 25 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 21 – 50 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 22 – 75 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 23 – 100 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 24 – 250 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 25 – 500 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.
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Figure 26 – 750 Random Loads Schedule Results.

Expected user defined schedule, maximum comfort Geofind Algorithm output

Hierarchical without demand restriction Hierarchical with demand restriction

Hierarchical initialized with Geofind output Hybrid Algorithm
Source: Prepared by the author.



76

APPENDIX D – DETAILED BENCHMARKS OUTPUTS

All benchmarks data generated are available in GitHub link provided at Appendix

A inside data folder and identified by its alias "RNDxx.BSON". In Figure 27 is illustrated the

main attributes of the generated output. Each benchmark trial has fully executed the referenced

procedure for n samples, and this samples have been repeated in m evaluations.

Figure 27 – Graphic Tutorial to Read Benchmark Outputs

Source: Prepared by the author.

The Code written in Julia language presented in 3 could be used to read the refered

"*.BSON" files.

Algorithm 3 – "*.BSON" files load function

1 using BenchmarkTools

2 using BSON

3

4 function Load_Benchmarks(filename :: String)

5 Temp = BSON.load(filename * ".bson")

6 return Vector{BenchmarkTools.Trial}(Temp[:H])

7 end



#	10	random	LOADS

GEOFINDER	–	B[1]
Mean	Comfort	=	0.976386362928405,	Mean	NormCost	=	0.8714381522761603

BenchmarkTools.Trial:	100	samples	with	9	evaluations.
	Range	(min	…	max):		2.433	μs	…	11.889	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					2.511	μs														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			3.005	μs	±		1.187	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		█▃										▂▂
		██▁▄▄▁▁▁▄▄▁▁██▁▄▄▄▁▁▄▁▁▁▁▁▁▁▁▁▆▁▁▁▁▁▄▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄	▄
		2.43	μs						Histogram:	log(frequency)	by	time								7	μs	<

	Memory	estimate:	1.17	KiB,	allocs	estimate:	40.

MOA	NO	DEMAND	-	B[2]
Mean	Comfort	=	0.9749415934038286,	Mean	NormCost	=	0.8283399571996333

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		17.325	ms	…	66.797	ms		┊	GC	(min	…	max):	0.00%	…	63.51%
	Time		(median):					20.823	ms														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			21.857	ms	±		6.373	ms		┊	GC	(mean	±	σ):		3.71%	±		8.84%

					▅█▃▁
		▅▃▆████▆▁▃▃▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃	▃
		17.3	ms									Histogram:	frequency	by	time								62.1	ms	<

	Memory	estimate:	5.84	MiB,	allocs	estimate:	111352.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[3]
Mean	Comfort	=	0.8874726559393806,	Mean	NormCost	=	0.8432466187473191

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		1.195	s	…			1.753	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					1.228	s														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			1.249	s	±	81.524	ms		┊	GC	(mean	±	σ):		0.35%	±	0.85%

			▃█▆█			
		▆█████▄▅▃▄▃▄▃▁▃▃▃▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃	▃
		1.2	s										Histogram:	frequency	by	time								1.66	s	<

	Memory	estimate:	37.84	MiB,	allocs	estimate:	858383.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[4]
Mean	Comfort	=	0.8874726559393806,	Mean	NormCost	=	0.8432466187473191

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		1.038	s	…			1.267	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					1.055	s														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			1.066	s	±	31.774	ms		┊	GC	(mean	±	σ):		0.41%	±	0.97%

					▃▃█▃▅	▄			
		▃▅▅█████▇█▆▅▅▄▁▁▃▁▁▃▃▅▄▃▁▃▃▃▃▁▁▁▁▁▄▁▁▁▁▁▁▃▁▁▃▃▁▁▁▁▁▁▁▁▁▁▃	▃
		1.04	s									Histogram:	frequency	by	time								1.17	s	<

	Memory	estimate:	37.87	MiB,	allocs	estimate:	859654.

HYBRID	-	B[5]
Mean	Comfort	=	0.8874726559393806,	Mean	NormCost	=	0.8432466187473191
MOA	in	Hybrid	executed	for	1	times	with	9	loads,	limited	to	5	iterations

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		1.152	s	…			1.639	s		┊	GC	(min	…	max):	0.00%	…	2.23%
	Time		(median):					1.187	s														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			1.208	s	±	73.616	ms		┊	GC	(mean	±	σ):		0.36%	±	0.89%

				▇▆█▅		
		▅▆████▄▁▄▄▁▄▄▄▄▁▄▁▁▃▁▁▃▁▁▁▃▁▁▃▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃	▃
		1.15	s									Histogram:	frequency	by	time								1.58	s	<

	Memory	estimate:	36.53	MiB,	allocs	estimate:	810913.



#	25	random	LOADS

GEOFINDER	–	B[26]
Mean	Comfort	=	0.9639094809094808,	Mean	NormCost	=	0.9230197173139565

BenchmarkTools.Trial:	100	samples	with	4	evaluations.
	Range	(min	…	max):			7.850	μs	…	22.425	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):						8.488	μs														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			10.074	μs	±		3.063	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		▃██▂▂											▃▁▂
		█████▅▅▅▅▁▁▅▁▁▁▁███▁▇▅▁▁▁▅▁▁▁▅▁▁▁▅▁▁▁▅▁▇▁▁▁▁▁▅▅▁▁▁▁▁▁▁▁▁▁▁▅	▅
		7.85	μs						Histogram:	log(frequency)	by	time						21.8	μs	<

	Memory	estimate:	3.66	KiB,	allocs	estimate:	150.

MOA	NO	DEMAND	-	B[27]
Mean	Comfort	=	0.948171976487766,	Mean	NormCost	=	0.8932962131930267

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		52.094	ms	…	148.151	ms		┊	GC	(min	…	max):	0.00%	…		0.00%
	Time		(median):					61.573	ms															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			65.340	ms	±		15.461	ms		┊	GC	(mean	±	σ):		4.79%	±	11.08%

						▃█		█▇▃▂																																																		
		▃▁▅▆███▆████▅▄▄▆▁▃▁▃▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▃▁▁▁▄▁▄	▃
		52.1	ms									Histogram:	frequency	by	time										116	ms	<

	Memory	estimate:	19.09	MiB,	allocs	estimate:	347771.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[28]
Mean	Comfort	=	0.9450894177234609,	Mean	NormCost	=	0.8932962131930267

BenchmarkTools.Trial:	78	samples	with	1	evaluation.
	Range	(min	…	max):		1.188	s	…				1.796	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					1.250	s															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			1.285	s	±	108.193	ms		┊	GC	(mean	±	σ):		1.13%	±	1.62%

			▄██▄▄█	▁	▃	▃
		▄██████▄█▇█▄█▆▄▄▄▁▇▁▁▁▄▄▁▄▁▁▁▁▁▄▁▁▁▁▄▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄	▁
		1.19	s									Histogram:	frequency	by	time									1.74	s	<

	Memory	estimate:	92.67	MiB,	allocs	estimate:	2340138.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[29]
Mean	Comfort	=	0.9450894177234609,	Mean	NormCost	=	0.8932962131930267

BenchmarkTools.Trial:	80	samples	with	1	evaluation.
	Range	(min	…	max):		1.202	s	…			1.621	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					1.243	s														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			1.256	s	±	55.580	ms		┊	GC	(mean	±	σ):		1.17%	±	1.66%

				▁	█▁	▃▃▆▁		▁
		▆▄█▇██▇████▇▄█▇▄▇▇▆▆▁▁▆▄▁▇▄▄▁▁▄▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄	▁
		1.2	s										Histogram:	frequency	by	time								1.44	s	<

	Memory	estimate:	92.64	MiB,	allocs	estimate:	2340086.

HYBRID	-	B[30]
Mean	Comfort	=	0.9574150417544913,	Mean	NormCost	=	0.9149488437502726
MOA	in	Hybrid	executed	for	1	times	with	14	loads,	limited	to	5	iterations,	demand	scale	=	0.95

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		779.227	ms	…			1.221	s		┊	GC	(min	…	max):	0.00%	…	5.05%
	Time		(median):					809.448	ms														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			821.517	ms	±	47.871	ms		┊	GC	(mean	±	σ):		1.07%	±	1.95%

								▂	▄▂█▂	▄▆▂▂█▂▂		▂
		▄▁▄▄▁▁██████▄███████▄▄█▆▁▄▁▁▆▁▄▄▁▁▁▁▆▄▄▁▆▄▁▄▆▄▄▄▄▄▁▁▁█▁▄▁▄▁▄	▄
		779	ms										Histogram:	frequency	by	time										886	ms	<

	Memory	estimate:	60.82	MiB,	allocs	estimate:	1417806.



#	50	random	LOADS

GEOFINDER	–	B[6]
Mean	Comfort	=	0.9424540465743902,	Mean	NormCost	=	0.859369331571671

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		12.400	μs	…	66.200	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					17.500	μs														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			20.748	μs	±		8.883	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		▂					█▂
		█▁▁▄▁▁██▄▁▁▁▄▁▁▄▆▆█▆▄▄▄▆▁▄▁▁▁▆▁▁▁▄▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▄	▄
		12.4	μs						Histogram:	log(frequency)	by	time						57.1	μs	<

	Memory	estimate:	5.45	KiB,	allocs	estimate:	199.

MOA	NO	DEMAND	-	B[7]
Mean	Comfort	=	0.9422429981279123,	Mean	NormCost	=	0.8332566146021511

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):			85.064	ms	…	192.506	ms		┊	GC	(min	…	max):	0.00%	…	29.27%
	Time		(median):						99.148	ms															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			105.358	ms	±		20.351	ms		┊	GC	(mean	±	σ):		6.74%	±	11.55%

						▄	█					▇	▄				
		▆▃▃▅███▆▃▅▇▇█▆█▆█▅▃▃▅▅▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▃▁▅▁▁▁▅▁▃▃▃▆▁▁▁▁▅▃▅	▃
		85.1	ms										Histogram:	frequency	by	time										153	ms	<

	Memory	estimate:	40.51	MiB,	allocs	estimate:	805825.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[8]
Mean	Comfort	=	0.941484632300033,	Mean	NormCost	=	0.8394151118337146

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		2.274	s	…			2.860	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					2.354	s														┊	GC	(median):				1.42%
	Time		(mean	±	σ):			2.370	s	±	79.184	ms		┊	GC	(mean	±	σ):		0.99%	±	0.71%

						▂	▂▇	█▃	▇▃
		▅▁▁▇███████▇██▆▇▃▆█▅▃▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▃	▃
		2.27	s									Histogram:	frequency	by	time								2.73	s	<

	Memory	estimate:	180.14	MiB,	allocs	estimate:	4505808.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[9]
Mean	Comfort	=	0.941484632300033,	Mean	NormCost	=	0.8394151118337146

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		2.274	s	…			2.595	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					2.340	s														┊	GC	(median):				1.49%
	Time		(mean	±	σ):			2.343	s	±	49.459	ms		┊	GC	(mean	±	σ):		1.01%	±	0.73%

		▃				▄		▁		▃▆▄▄██▁	▃
		█▄▆▆▆█▇▇█▆▄███████▆█▇▇▆▆▁▆▁▆▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▄▁▁▁▄	▄
		2.27	s									Histogram:	frequency	by	time								2.54	s	<

	Memory	estimate:	180.07	MiB,	allocs	estimate:	4505707.

HYBRID	-	B[10]
Mean	Comfort	=	0.9355471323000331,	Mean	NormCost	=	0.8394151118337146
MOA	in	Hybrid	executed	for	1	times	with	22	loads,	limited	to	5	iterations

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		919.000	ms	…			1.075	s		┊	GC	(min	…	max):	0.00%	…	3.54%
	Time		(median):					955.835	ms														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			965.704	ms	±	32.149	ms		┊	GC	(mean	±	σ):		0.96%	±	1.42%

							▄	█	▄▃▃		▁			▃				▄		▁▃
		▆▁▆▆▆█▄█▆███▇▇█▄▄▆█▄▄▁▄█▆▆██▇▁▄▄▇▁▄▄▄▁▁▁▄▁▁▄▄▁▁▄▁▄▁▁▁▁▁▁▁▁▁▄	▄
		919	ms										Histogram:	frequency	by	time										1.07	s	<

	Memory	estimate:	82.99	MiB,	allocs	estimate:	1944734.



#	75	random	LOADS

GEOFINDER	–	B[31]
Mean	Comfort	=	0.965594157994735,	Mean	NormCost	=	0.8731028016424748

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		17.800	μs	…	45.300	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					18.700	μs														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			19.975	μs	±		4.019	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		▁█▆				
		███▆▅▃▁▁▂▁▂▁▂▁▁▁▁▁▁▂▄▃▂▂▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂	▂
		17.8	μs									Histogram:	frequency	by	time								39.5	μs	<

	Memory	estimate:	7.50	KiB,	allocs	estimate:	280.

MOA	NO	DEMAND	-	B[32]
Mean	Comfort	=	0.9641357587807503,	Mean	NormCost	=	0.8520352126644017
BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		146.323	ms	…	269.027	ms		┊	GC	(min	…	max):	0.00%	…	21.46%
	Time		(median):					166.986	ms															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			178.618	ms	±		30.085	ms		┊	GC	(mean	±	σ):		8.15%	±	11.10%

			▃▁▄		▆	▄	▁▁	█	▃																								▁
		▇███▆▆█▇█▇██▇█▇█▁▄▁▁▁▄▆▁▁▁▁▁▁▁▁▁▁▇▁▁▁▆▁▄█▁▁▄▇▄▄▁▄▆▇▆▁▁▄▁▁▄▁▁▄	▄
		146	ms											Histogram:	frequency	by	time										248	ms	<

	Memory	estimate:	72.37	MiB,	allocs	estimate:	1427439.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[33]
Mean	Comfort	=	0.9623237967523719,	Mean	NormCost	=	0.8522446853593528

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		3.822	s	…				5.029	s		┊	GC	(min	…	max):	1.17%	…	0.80%
	Time		(median):					3.902	s															┊	GC	(median):				1.20%
	Time		(mean	±	σ):			3.933	s	±	142.631	ms		┊	GC	(mean	±	σ):		1.17%	±	0.24%

						▄▁▁█▆▂▇		▂
		▄▃▆████████▇▄█▃▄▃▁▄▄▁▁▁▁▁▃▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▃▁▁▁▁▁▁▁▃▁▁▁▃▁▁▁▃	▃
		3.82	s									Histogram:	frequency	by	time									4.36	s	<

	Memory	estimate:	273.62	MiB,	allocs	estimate:	6894608.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[34]
Mean	Comfort	=	0.9623237967523719,	Mean	NormCost	=	0.8522446853593528

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		3.611	s	…			4.166	s		┊	GC	(min	…	max):	0.00%	…	1.06%
	Time		(median):					3.692	s														┊	GC	(median):				1.13%
	Time		(mean	±	σ):			3.715	s	±	89.649	ms		┊	GC	(mean	±	σ):		1.10%	±	0.25%

								▃▄██▁		▁																																													
		▄▁▁▆▆▆█████▆▆█▄▃▃▁▆▁▁▁▃▁▁▁▁▁▃▃▁▃▁▁▁▁▃▁▃▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▃	▃
		3.61	s									Histogram:	frequency	by	time								4.11	s	<

	Memory	estimate:	273.53	MiB,	allocs	estimate:	6894512.

HYBRID	-	B[35]
Mean	Comfort	=	0.9631459800762635,	Mean	NormCost	=	0.8731028016424748
MOA	in	Hybrid	executed	for	2	times	with	19	loads,	limited	to	5	iterations,	demand	scale	=	0.95

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		1.714	s	…				2.452	s		┊	GC	(min	…	max):	0.00%	…	3.48%
	Time		(median):					1.802	s															┊	GC	(median):				1.93%
	Time		(mean	±	σ):			1.829	s	±	112.209	ms		┊	GC	(mean	±	σ):		1.19%	±	1.10%

					▂	█▂	▄	▆▃	
		▃▅▁█▆████▇██▅▃▆▄▄▃▁▃▁▁▃▃▁▅▁▁▁▁▁▁▃▁▁▁▁▄▁▃▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▃	▃
		1.71	s									Histogram:	frequency	by	time									2.27	s	<

	Memory	estimate:	153.42	MiB,	allocs	estimate:	3424844.



#	100	random	LOADS

GEOFINDER	–	B[11]
Mean	Comfort	=	0.9415650261786803,	Mean	NormCost	=	0.910174210245961

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		32.000	μs	…	68.300	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					32.950	μs														┊	GC	(median):				0.00%
	Time		(mean	±	σ):			35.647	μs	±		6.777	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		▁█						
		███▄▁▁▁▁▃▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▂▁▄▂▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂	▂
		32	μs											Histogram:	frequency	by	time								61.7	μs	<

	Memory	estimate:	15.59	KiB,	allocs	estimate:	598.

MOA	NO	DEMAND	-	B[12]
Mean	Comfort	=	0.935025223525277,	Mean	NormCost	=	0.8635966532303432

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		206.271	ms	…	344.406	ms		┊	GC	(min	…	max):	0.00%	…	13.60%
	Time		(median):					247.769	ms															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			252.238	ms	±		32.443	ms		┊	GC	(mean	±	σ):		8.60%	±		8.65%

						█		▆																																	▂													▂							
		▄▆▁▆██▆███▆▁▄▄▆▁██▆█▁▆▁▄▄▆▄▄█▄█▁▄▁▁▁▁▆▄▄▁█▄▆▆█▄█▆▄▆▁▁▆▄█▁▁▄▄█	▄
		206	ms											Histogram:	frequency	by	time										308	ms	<

	Memory	estimate:	123.39	MiB,	allocs	estimate:	2347730.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[13]
Mean	Comfort	=	0.934350172260752,	Mean	NormCost	=	0.8635966532303432

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		5.777	s	…				7.111	s		┊	GC	(min	…	max):	0.54%	…	0.56%
	Time		(median):					5.976	s															┊	GC	(median):				0.79%
	Time		(mean	±	σ):			6.055	s	±	241.260	ms		┊	GC	(mean	±	σ):		1.10%	±	0.53%

					▂▆▂▃▃▂	█▅							▃							▂
		▄▁▄█████████▅▅▅█▇▁▄██▄▁▁▁▄▁█▅▅▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▄▄▁▁▄▁▁▁▁▄▁▁▅	▄
		5.78	s									Histogram:	frequency	by	time									6.82	s	<

	Memory	estimate:	421.92	MiB,	allocs	estimate:	10058408.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[14]
Mean	Comfort	=	0.934350172260752,	Mean	NormCost	=	0.8635966532303432

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		5.781	s	…				6.777	s		┊	GC	(min	…	max):	0.68%	…	1.92%
	Time		(median):					5.937	s															┊	GC	(median):				0.78%
	Time		(mean	±	σ):			5.968	s	±	167.129	ms		┊	GC	(mean	±	σ):		1.09%	±	0.48%

						▂▅▃		▅	█				▂	▂
		▇██▇███▇▇█▁█▇██████▇▅▅▄▄▄▁▁▁▁▁▁▁▁▁▁▁▁▄▅▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▅	▄
		5.78	s									Histogram:	frequency	by	time									6.57	s	<

	Memory	estimate:	421.79	MiB,	allocs	estimate:	10058257.

HYBRID	-	B[15]
Mean	Comfort	=	0.9452532449688483,	Mean	NormCost	=	0.9072415400919384
MOA	in	Hybrid	executed	for	1	times	with	41	loads,	limited	to	5	iterations

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		1.871	s	…				3.101	s		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					1.956	s															┊	GC	(median):				1.75%
	Time		(mean	±	σ):			1.975	s	±	149.731	ms		┊	GC	(mean	±	σ):		1.08%	±	0.96%

			▂█		▂▃▆	
		▆██▅▄███▇▅▆▁▄▄▁▁▃▁▁▁▁▁▃▁▃▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃	▃
		1.87	s									Histogram:	frequency	by	time									2.64	s	<

	Memory	estimate:	161.99	MiB,	allocs	estimate:	3552429.



#	250	random	LOADS

GEOFINDER	–	B[36]
Mean	Comfort	=	0.9686602443650579,	Mean	NormCost	=	0.8814729522448811

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):			99.000	μs	…	128.500	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					101.250	μs															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			102.471	μs	±			4.588	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

				▃▁█▁▂		
		▇▇█████▇▄▄▅▄▄▄▄▁▄▁▃▁▄▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▃	▃
		99	μs												Histogram:	frequency	by	time										125	μs	<

	Memory	estimate:	31.16	KiB,	allocs	estimate:	1182.

MOA	NO	DEMAND	-	B[37]
Mean	Comfort	=	0.9597947104532378,	Mean	NormCost	=	0.8471496564591503

BenchmarkTools.Trial:	100	samples	with	1	evaluation.
	Range	(min	…	max):		870.018	ms	…			1.262	s		┊	GC	(min	…	max):		8.55%	…	12.45%
	Time		(median):					955.984	ms														┊	GC	(median):				14.49%
	Time		(mean	±	σ):			961.677	ms	±	59.026	ms		┊	GC	(mean	±	σ):		13.15%	±		2.82%

				▁▄						▁▁█▃▆▁▁	▄	▄	▃▆
		▇▄██▄▄▆▁▄▆███████▇█▇█▇██▇▁▄▆▁▁▁▁▁▁▁▄▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄	▄
		870	ms										Histogram:	frequency	by	time										1.21	s	<

	Memory	estimate:	508.57	MiB,	allocs	estimate:	10688015.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[38]
Mean	Comfort	=	0.9588104658178256,	Mean	NormCost	=	0.8477152327355184

BenchmarkTools.Trial:	50	samples	with	1	evaluation.
	Range	(min	…	max):		16.501	s	…			17.951	s		┊	GC	(min	…	max):	1.39%	…	1.80%
	Time		(median):					16.864	s															┊	GC	(median):				1.61%
	Time		(mean	±	σ):			16.958	s	±	347.121	ms		┊	GC	(mean	±	σ):		2.05%	±	1.24%

		▃▃		▃	█	███	▃	█	▃	█		▃								▃▃								▃
		██▁▇█▁█▇███▁█▁█▇█▁█▇▇█▇▁▇▁▁▁▇▇██▁▁▁▇▁▁▁▁█▇▁▁▁▇▁▁▁▁▁▁▁▁▁▇▁▁▇	▁
		16.5	s										Histogram:	frequency	by	time											18	s	<

	Memory	estimate:	1.21	GiB,	allocs	estimate:	29612248.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[39]
Mean	Comfort	=	0.9588104658178256,	Mean	NormCost	=	0.8477152327355184

BenchmarkTools.Trial:	50	samples	with	1	evaluation.
	Range	(min	…	max):		16.534	s	…			18.245	s		┊	GC	(min	…	max):	1.63%	…	1.46%
	Time		(median):					16.779	s															┊	GC	(median):				1.61%
	Time		(mean	±	σ):			16.919	s	±	412.275	ms		┊	GC	(mean	±	σ):		2.01%	±	1.20%

		▅▅▂█		▂	▂	▂			
		█████▅█▅█▅███▅▁█▅▅▅▅▁▁▁▁▁▁▅▁▁▁▁▅▁█▁▁▅▁▁▅▅▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅▁▅	▁
		16.5	s										Histogram:	frequency	by	time									18.2	s	<

	Memory	estimate:	1.21	GiB,	allocs	estimate:	29611768.

HYBRID	-	B[40]
Mean	Comfort	=	0.9679278437007202,	Mean	NormCost	=	0.8814729522448811
MOA	in	Hybrid	executed	for	1	times	with	75	loads,	limited	to	5	iterations,	demand	scale	=	0.95

BenchmarkTools.Trial:	50	samples	with	1	evaluation.
	Range	(min	…	max):		3.973	s	…			4.313	s		┊	GC	(min	…	max):	0.00%	…	1.13%
	Time		(median):					4.044	s														┊	GC	(median):				1.20%
	Time		(mean	±	σ):			4.061	s	±	63.910	ms		┊	GC	(mean	±	σ):		1.19%	±	0.31%

							▃	█▃▃	▃		▁		▆
		▄▁▄▁▁█▁███▇█▁▇█▇▇█▄▇▁▄▄▁▁▄▁▁▁▁▁▁▁▁▁▁▄▄▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▄	▁
		3.97	s									Histogram:	frequency	by	time								4.31	s	<

	Memory	estimate:	303.17	MiB,	allocs	estimate:	6868449.



#	500	random	LOADS

GEOFINDER	–	B[16]
Mean	Comfort	=	0.9477226036278417,	Mean	NormCost	=	0.8976236764940347

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		147.600	μs	…	374.300	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					155.000	μs															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			173.276	μs	±		52.319	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		█▃▁
		███▆▄▁▄▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄	▁
		148	μs											Histogram:	frequency	by	time										374	μs	<

	Memory	estimate:	68.56	KiB,	allocs	estimate:	2632.

MOA	NO	DEMAND	-	B[17]
Mean	Comfort	=	0.9340477659599157,	Mean	NormCost	=	0.854916245697625

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		3.073	s	…				4.562	s		┊	GC	(min	…	max):	13.39%	…	36.05%
	Time		(median):					3.368	s															┊	GC	(median):				15.09%
	Time		(mean	±	σ):			3.509	s	±	422.020	ms		┊	GC	(mean	±	σ):		18.76%	±		7.37%

		▃				▃█▃										
		█▁▁▁▇███▇▇▁▇▁▇▇▇▇▇▁▁▁▇▁▁▁▇▇▁▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇▁▁▇▁▇	▁
		3.07	s									Histogram:	frequency	by	time									4.56	s	<

	Memory	estimate:	1.72	GiB,	allocs	estimate:	37102644.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[18]
Mean	Comfort	=	0.9374017478498075,	Mean	NormCost	=	0.8589854911857181

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		36.424	s	…			38.919	s		┊	GC	(min	…	max):	1.93%	…	4.04%
	Time		(median):					37.140	s															┊	GC	(median):				2.14%
	Time		(mean	±	σ):			37.316	s	±	720.675	ms		┊	GC	(mean	±	σ):		2.90%	±	1.04%

				█				█						▃																			█
		▇▇█▁▇▁▁█▁▁▁▁▇▁█▁▇▁▁▁▁▁▇▇▁▁▇▇▁▁▁▁▁▁█▇▁▁▇▁▁▁▁▇▁▁▁▁▁▁▁▁▁▁▇▁▁▁▇	▁
		36.4	s										Histogram:	frequency	by	time									38.9	s	<

	Memory	estimate:	3.13	GiB,	allocs	estimate:	74251275.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[19]
Mean	Comfort	=	0.9374017478498075,	Mean	NormCost	=	0.8589854911857181

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		36.535	s	…			38.210	s		┊	GC	(min	…	max):	2.00%	…	2.09%
	Time		(median):					37.307	s															┊	GC	(median):				2.27%
	Time		(mean	±	σ):			37.328	s	±	427.619	ms		┊	GC	(mean	±	σ):		2.88%	±	0.90%

																	█									▃						█
		▇▁▁▁▁▁▁▁▇▁▁▇▁▁▇█▁▁▇▇▁▇▁▁▁█▁▇▇▇▇▁█▁▁▇▁▁▁▁▁▁▁▁▇▇▁▁▁▁▁▁▇▁▁▁▁▇▇	▁
		36.5	s										Histogram:	frequency	by	time									38.2	s	<

	Memory	estimate:	3.13	GiB,	allocs	estimate:	74250288.

HYBRID	-	B[20]
Mean	Comfort	=	0.9440877054912669,	Mean	NormCost	=	0.8858661444044644
MOA	in	Hybrid	executed	for	2	times	with	123	loads,	limited	to	5	iterations,	demand	scale	=	0.9

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		15.800	s	…			17.031	s		┊	GC	(min	…	max):	1.23%	…	1.51%
	Time		(median):					16.068	s															┊	GC	(median):				1.50%
	Time		(mean	±	σ):			16.124	s	±	281.248	ms		┊	GC	(mean	±	σ):		1.42%	±	0.18%

					▁			▁█					▁▁			▁
		▆▁▁█▆▁▁██▁▆▆▆▁██▁▆▆█▁▆▁▁▁▁▁▁▁▁▆▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆▁▁▁▁▁▁▁▁▆	▁
		15.8	s										Histogram:	frequency	by	time											17	s	<

	Memory	estimate:	1.22	GiB,	allocs	estimate:	28035690.



#	750	random	LOADS

GEOFINDER	–	B[21]
Mean	Comfort	=	0.9544973455513059,	Mean	NormCost	=	0.885632940326576

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		309.100	μs	…	377.100	μs		┊	GC	(min	…	max):	0.00%	…	0.00%
	Time		(median):					312.000	μs															┊	GC	(median):				0.00%
	Time		(mean	±	σ):			319.320	μs	±		18.712	μs		┊	GC	(mean	±	σ):		0.00%	±	0.00%

		▂▂█							
		███▄▆▁▆▁▁▄▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▄	▁
		309	μs											Histogram:	frequency	by	time										377	μs	<

	Memory	estimate:	97.38	KiB,	allocs	estimate:	3719.

MOA	NO	DEMAND	-	B[22]
Mean	Comfort	=	0.9401988131896606,	Mean	NormCost	=	0.8469380416492673

BenchmarkTools.Trial:	15	samples	with	1	evaluation.
	Range	(min	…	max):		6.154	s	…				8.206	s		┊	GC	(min	…	max):	15.17%	…	30.54%
	Time		(median):					6.525	s															┊	GC	(median):				15.89%
	Time		(mean	±	σ):			6.699	s	±	594.260	ms		┊	GC	(mean	±	σ):		18.24%	±		5.11%

										▃▃		█			
		▇▁▁▇▇▁▁▁██▇▇█▁▁▁▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇▁▁▁▁▇	▁
		6.15	s									Histogram:	frequency	by	time									8.21	s	<

	Memory	estimate:	3.67	GiB,	allocs	estimate:	80863966.

MOA	WITH	DEMAND	NO	INITIALIZATION	-	B[23]
Mean	Comfort	=	0.9410324265947129,	Mean	NormCost	=	0.8486072582247249

BenchmarkTools.Trial:	22	samples	with	1	evaluation.
	Range	(min	…	max):		91.284	s	…			93.604	s		┊	GC	(min	…	max):	2.32%	…	2.33%
	Time		(median):					92.362	s															┊	GC	(median):				2.29%
	Time		(mean	±	σ):			92.339	s	±	548.134	ms		┊	GC	(mean	±	σ):		2.27%	±	0.18%

		▃														▃	▃											█
		█▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁█▁▇▇▁▇▁▁▇▇▁▇█▁▁▇▁▇▁▁▇▇▇▁▁▁▁▁▁▁▁▁▁▇▁▁▁▁▁▁▁▇	▁
		91.3	s										Histogram:	frequency	by	time									93.6	s	<

	Memory	estimate:	5.93	GiB,	allocs	estimate:	146133549.

MOA	WITH	DEMAND	INITIALIZED	WITH	GEOFINDER	-	B[24]
Mean	Comfort	=	0.9410324265947129,	Mean	NormCost	=	0.8486072582247249

BenchmarkTools.Trial:	24	samples	with	1	evaluation.
	Range	(min	…	max):		83.063	s	…	92.177	s		┊	GC	(min	…	max):	1.77%	…	2.26%
	Time		(median):					84.655	s													┊	GC	(median):				2.48%
	Time		(mean	±	σ):			84.897	s	±		1.698	s		┊	GC	(mean	±	σ):		2.43%	±	0.24%

					▃	▃▃▃	██▃▃
		▇▁▁█▁███▁████▇▇▁▇▁▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇	▁
		83.1	s									Histogram:	frequency	by	time								92.2	s	<

	Memory	estimate:	5.93	GiB,	allocs	estimate:	146125698.

HYBRID	-	B[25]
Mean	Comfort	=	0.9461439865428813,	Mean	NormCost	=	0.8623114111212535
MOA	in	Hybrid	executed	for	2	times	with	217	loads,	limited	to	5	iterations,	demand	scale	=	0.95

BenchmarkTools.Trial:	25	samples	with	1	evaluation.
	Range	(min	…	max):		37.821	s	…			40.890	s		┊	GC	(min	…	max):	1.32%	…	3.17%
	Time		(median):					38.451	s															┊	GC	(median):				1.45%
	Time		(mean	±	σ):			38.664	s	±	667.657	ms		┊	GC	(mean	±	σ):		1.78%	±	0.83%

									▁▄	▄	█			▁
		▆▁▁▁▁▆▁██▆█▆█▁▁▁█▆▁▁▆▁▁▆▁▁▁▁▁▆▁▁▁▁▆▁▁▁▁▁▆▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆	▁
		37.8	s										Histogram:	frequency	by	time									40.9	s	<

	Memory	estimate:	2.67	GiB,	allocs	estimate:	62802981.
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APPENDIX E – BINOMIAL TARIFF ANALYSIS

In this appendix will be considered two types of Energy Tariff: A constant one TC

and a binomial composed by a off-peak and an peak posts CB = {Tf ,Tp}. For all cases here

analyzed Tf < TC < Tp. Table 11 lists two hypothetical values for these tariffs that will be used

for graphical analysis later in this text.

Table 11 – Comparison between constant tariff and binomial tariffs A and B.
Tariff Post Tc (R$/kWh) Tariff A (R$/kWh) Tariff B (R$/kWh)

Off-peak 1.00 0.50 0.50
Peak 1.00 1.50 2.00

Source: Prepared by the author.

Repeating the procedures in Chapter: Proposed Definitions and Methodology, we

can define the cost of a load in Binomial Tariff as Equation (E.1).

CB = k ·L.P̂ · [( f̂ , p̂) � (Tf ,Tp)] (E.1)

where:

| f̂ |+ |p̂|= L.W∆; (E.2)

Equation (E.2) is geometrically a line that intercept the axis f̂ and p̂ at L.W∆. For

the binomial tariff scenario, the line segment of this Equation for f̂ ≥ 0 and p̂≥ 0 also represent

the basic load locus in binomial tariff space. That stated, we can also define the thresholds for

Equation (E.1) resulting in the Inequation (E.5):

Cmin = k ·L.P̂ ·L.W∆ ·Tf (E.3)

Cmax = k ·L.P̂ ·L.W∆ ·Tc (E.4)

Cmin ≤CB ≤Cmax←→ L.W∆ ·Tf ≤ [ f̂ ·Tf + p̂ ·Tp]≤ L.W∆ ·Tc (E.5)

As expected, the lower bound can only be reached if the load is fully moved to

off-peak post. The analysis of upper bound results in a single point illustrated in Equation (E.6):
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(
p̂ = L.W∆

Tc−Tf

Tp−Tf
; f̂ = L.W∆

Tp−Tc

Tp−Tf

)
(E.6)

Using values of Tariff A from Table 11 in Equation (E.6) we find: f̂ = 1
2L.W∆ and

p̂ = 1
2L.W∆ . That result can be represented by a line shown in Equation (E.7):

f̂ = p̂ (E.7)

The intersection point between the line defined by Equation (E.2) and the line from

Equation (E.7) represents a set point at which the cost of a load under Tariff A equals the

cost under a Constant Tariff. The line segment originating from this point towards the point

( f̂ = L.W,0) denotes the lower-cost region that needs to be identified. Figure 28 illustrates the

tariff space for the binomial tariff, with the lower-cost region highlighted in gray for a load with

a duration of 3h under Tariff A settings. Any point within this line segment is a valid result for

scheduling to optimize cost. To achieve the comfort goal, it is necessary to first locate the load in

the Tariff Space. If the load is already in the lower-cost region at the expected instant defined by

the user, no further action is necessary. Otherwise, select the inner point of this line segment

closest to the point defined in Equation (E.6).

Using values of Tariff B from Table 11 in Equation (E.6) we find: f̂ = 2
3L.W∆ and

p̂ = 1
3L.W∆. That result can be represented by a line shown in Equation (E.8):

f̂ = 2 · p̂ (E.8)

Like in first case, the intersection point between the line defined by Equation (E.2)

and the line from Equation (E.8) represents a set point at which the cost of a load under Tariff B

equals the cost under a Constant Tariff. The line segment originating from this point towards

the point ( f̂ = L.W,0) denotes the lower-cost region that needs to be identified. In Figure 28 the

lower-cost region is highlighted in purple for a load with a duration of 6h under Tariff B settings.

Any point within this line segment is a valid result for scheduling to optimize cost. To achieve

the comfort goal, it is necessary to first locate the load in the Tariff Space. If the load is already

in the lower-cost region no further action is necessary. Otherwise, select the inner point of this

line segment closest to the point defined in Equation (E.6).
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Figure 28 – Binomial Tariff Basic Analysis

Source: Prepared by the author.

Graphically, it’s important to note that the lines resulting from settings in Tariffs A

and B could intersect any available load locus with a duration of 12 hours or less. However, this

intersection can not occur when the tariff post length is restricted, as in the case of the Brazilian

White Tariff. To better understand this restriction, we will analyze a set of ten loads whose

properties are listed in Table 12 under different scenarios for peak and off-peak duration.

The following five figures will have common features. The first timeline graphic

will display loads from L1 to L5, shown in blue, representing small-length loads. The second

timeline graphic will showcase loads from L6 to L10, depicted in green, with durations of 12

hours or more, demonstrating the typical behavior of large-length loads. Loads from L1 to L3

and L6 to L8 share the same locus due to their identical durations.
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Additionally, the third graphic will illustrate the Tariff Space for the binomial Tariff

scheme. In Tariff Space, the gray and purple lines represent the solutions for the upper bound of

Inequation (E.5) for Tariffs A and B, respectively. The red asymptotes signify the size restriction

for the Tariff Posts, while the yellow area highlights all possible space for a load locus exists

within the post-size restrictions.

In the upper right corner of the figures, there will be a depiction of the time decom-

position into Binomial Tariff Space, considering the starting instant from Table 12 and a sample

rate ∆t of 30min. Here the reader is invited to observe how the time decomposition values change

due to the realocation of tariff posts.

Table 12 – Properties of loads used in tariff post size restriction analysis.
Load Start instant (L.s) Length (L.W)

L1 0h 3h
L2 10h30m 3h
L3 21h 3h
L4 0h30m 9h
L5 16h30m 6h
L6 0h 12h
L7 6h 12h
L8 12h 12h
L9 0h 18h

L10 2h 22h

Source: Prepared by the author.

Figure 29 illustrates a homogeneous case in which all tariff posts have the same

duration and are allocated contiguously. Observe that this scenario has an interesting symmetry

around the locus of a 12h duration load. All locus equations that result in points outside the

yellow area should not be considered, as they express negative time components or loads with

more than 24h of duration.

Figure 30 illustrates a heterogeneous case where the peak post has only 6 hours of

duration, and the posts are allocated contiguously. Here, observe how the loci region changes

in response to the restrictions. Additionally, note that the Tariff B scheme has more valid

points within the yellow region than Tariff A. This observation suggests that the Tariff Space

methodology could be of interest to Energy Distributors for determining the price and positioning

of Tariff Posts.

Figure 31 shows a homogeneous symmetric case in which the peak post is positioned

between 6h and 18h, creating two off-peak regions of 6h each. In this scenario, it’s notable that

loads with more than 18h of duration have the same time decomposition value regardless of their
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starting instant. Additionally, observe that the loci region is now restricted to a small yellow

rectangle between the asymptotes and a line segment parallel to the f̂ axis. This line segment

corresponds to the load locus of loads larger than 18h and smaller than 24h.

Figure 32 shows a heterogeneous symmetric case in which a 6h peak post is po-

sitioned between 9h and 15h, creating two off-peak regions of 9h each. In this scenario, it’s

notable that loads with more than 15h (= 6h + 9h) of duration have the same time decomposition

value regardless of their starting instant. Additionally, observe that the loci region has changed

to adapt to the new restrictions from the asymptotes. Also note that line segment parallel to the f̂

axis also belongs to loci region. This line segment corresponds to the load locus of loads larger

than 15h and smaller than 24h.

Our final scenario, seen in Figure 33, depicts a heterogeneous asymmetric case where

a 6-hour peak post is allocated between 12h and 18h. Similar to the previous scenarios, some

long-duration loads (exceeding 18h = 12h + 6h) will exhibit a fixed-time decomposition into

Tariff Space, resulting again in a loci region comprised of a rectangle and a line segment.
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