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ABSTRACT

Atrial Ąbrillation (AF) is the most common cardiac arrhythmia encountered in clinical

practice, and it is estimated to be responsible for one-fourth of cerebrovascular accidents.

The persistent form of this arrhythmia is a complex case characterized by uncoordinated

and irregular cardiac activation. Although catheter ablation is increasingly used due to its

lower recurrence rate compared to other treatments, widely accepted intervention protocols

by the cardiology community are still being established. Surface electrocardiogram (ECG)-

based analysis is relevant due to its low cost and non-invasive nature. The development

of new mathematical tools to characterize AF through ECG can improve intervention

guidance and increase success rates, reducing the duration of arrhythmia and the risk of

complications. However, despite the growing interest in these methodologies to evaluate

the complexity of persistent AF signals, their performance is still limited. To overcome

these limitations, this study proposes the application of tensor decomposition techniques

to quantify the complexity of ECG signals during catheter ablation procedures for AF

treatment. Tensor decompositions are powerful signal processing tools. However, their

application in AF signal analysis is recent. The Constrained Alternating Group Lasso

(CAGL) algorithm was developed to simultaneously calculate the block term tensor

decomposition (BTD) into block terms and estimate its parameters (number and rank of

the blocks), for the multilinear rank-(Lr, Lr, 1) particular case. This algorithm showed

promise in extracting atrial activity during AF and estimating its complexity. To evaluate

its performance, we compare its results with the Nondipolar Component Index (NDI)

method in the context of ablation, which demonstrates the multilinear advantages over

matrix methods in non-invasively extracting and quantifying AF complexity. The tensor

index correlates with the reduction in AF complexity throughout the ablation steps as

instinctively expected. Additionally, it has presented a signiĄcant negative correlation

with AF recurrence episodes, which presents clear clinical interest, since it can assist in

the development of new medical protocols.

Keywords: Atrial Ąbrillation. block term tensor decomposition. electrocardiogram.

electrophysiological complexity. tensor.



RESUMO

A Ąbrilação atrial (FA) é a arritmia cardíaca mais comum encontrada na prática clínica,

e estima-se que seja responsável por um quarto dos acidentes vasculares cerebrais. A

forma persistente da arritmia é um caso complexo, caracterizado por ativação cardíaca

descoordenada e irregular. Embora a ablação por cateter seja cada vez mais utilizada

devido à sua baixa taxa de recorrência em comparação a outros tratamentos, ainda não há

protocolos de intervenção amplamente aceitos pela comunidade cardiológica. As análises

baseadas em eletrocardiograma (ECG) de superfície são relevantes devido ao baixo custo e à

natureza não invasiva desses exames. O desenvolvimento de novas ferramentas matemáticas

para caracterizar a FA por meio do ECG pode melhorar a orientação das intervenções e

aumentar a taxa de sucesso, reduzindo a duração da arritmia e o risco de complicações. No

entanto, apesar do crescente interesse nessas metodologias para avaliar a complexidade do

sinal de FA persistente, seu desempenho ainda é limitado. Para superar essas limitações,

este estudo propõe a aplicação de técnicas de decomposição tensorial para quantiĄcar

a complexidade dos sinais de ECG durante o procedimento de ablação por cateter no

tratamento da FA. As decomposições tensoriais são ferramentas poderosas para análise de

dados, mas sua aplicação na análise de sinais de FA é recente. O algoritmo Constrained

Alternating Group Lasso (CAGL) foi desenvolvido para calcular simultaneamente a

decomposição tensorial em blocos de termos (block term tensor decomposition , BTD) e

estimar seus parâmetros (número e posto multilinear dos blocos), para o caso particular do

posto multilinear (Lr, Lr, 1). Esse algoritmo mostra-se promissor na extração da atividade

atrial durante a FA e na estimativa de sua complexidade. Para avaliar o desempenho do

CAGL, o método Nondipolar Component Index (NDI) é aplicado no contexto da ablação,

demonstrando as vantagens das técnicas multidimensionais na extração e quantiĄcação da

complexidade da FA de forma não invasiva. O índice tensorial se correlaciona com a redução

da complexidade da FA ao longo das etapas de ablação, conforme instintivamente esperado.

Além disso, apresentou uma correlação negativa signiĄcativa com episódios de recorrência

da FA, o que o torna clinicamente relevante, pois pode auxiliar no desenvolvimento de

novos protocolos médicos.

Palavras-chave: Complexidade eletroĄsiológica. decomposição tensorial em termo de

blocos. eletrocardiograma. Ąbrilação atrial. tensor
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1 INTRODUCTION

This chapter introduces the topics and structure of this dissertation. In

Section 1.1 we present the motivation behind our line of work. In Section 1.2 we provide a

brief overview of previous work in noninvasive complexity analysis tools. In Section 1.3 we

describe the dissertation objectives as well as we highlight our main contributions. Finally,

Section 1.4 presents the structure of this work.

1.1 Motivation

Atrial Fibrillation (AF) is the most common sustained arrhythmia in clinical

practice, with a complex and not completely understood pathophysiology. It can lead to

harmful consequences such as blood clots, strokes, and, in severe cases, even death.

Given the uncertainty surrounding the mechanisms that trigger AF and the

increasing number of afected individuals due to the aging world population, this heart

disease has become a signiĄcant topic in public health discussions. There is a need for

more efective and standardized protocols, supported by physiological signal analysis, to

enhance the understanding and management of the atrial substrate. The atrial substrate

plays a critical role in the pathophysiology of AF, inĆuencing the stability, duration, and

progression of the arrhythmia.

The primary objective is to improve the understanding and management of

AF providing precise and relevant information using low-cost tools such as the surface

Electrocardiogram (ECG), which is widely used in cardiology.

However, this task is both complex and costly. Mathematical models based on

matrix and tensor decompositions have emerged to support this endeavor. These models

are applied to characterize the physiological nature of the phenomena observed in signals.

They allow the assessment of Atrial Activity (AA) complexity evolution of persistent

AF and the investigation of the impact of therapies aimed at mitigating the efects of

Ąbrillation. Ultimately, they may assist in the development of new protocols and support

clinical decisions with minimal invasive risk.
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1.2 Related Work

Previous studies have demonstrated the potential of arranging an ECG signal

as a matrix, where each row contains the time samples of one lead. It allows us to estimate

the sources with a Blind Source Separation (BSS) model. Singular Value Decomposition

(SVD), Principal Components Analysis (PCA), and Independent Components Analysis

(ICA) are the most celebrated techniques to perform the decomposition and may be

efective in extracting meaningful information from ECG data and contribute to AF

analysis (RIETA et al., 2004; CASTELLS et al., 2005; OLIVEIRA; ZARZOSO, 2019).

However, they rely on strong mathematical constraints to assure decomposition uniqueness,

such as mutual orthogonality between spatial factors, suicient spectral diversity, and

statistical independence (ZARZOSO, 2009).

To overcome these limitations, the application of tensor approaches to perform

BSS has gained attention in the literature, as the tensor decompositions outperform

matrices, with uniqueness ensured under much milder constraints. The Block Term

Decomposition (BTD) has been shown as an efective method to estimate sources based

on exponential models (LATHAUWER, 2011). Furthermore, the AA during AF can be

modeled as a sum of complex exponentials, in a suitable manner to decompose the ECG

signals into distinct components, with at least one characterizing the atrial substrate. Still,

the Nonlinear Least-Squares (NLS) approach, acclaimed to compute BTD (SORBER et al.,

2013), imposes prior knowledge about the tensor structure, i.e, number of blocks and its

multilinear rank. In scenarios where the structure of the estimated data can be controlled,

this task does not impose as much diiculty as in the case of biologic signals, e.g., wireless

communications (FREITAS et al., 2019; HAN et al., 2021). In biomedical signal processing

Ąeld, usually the measured data are the only knowledge to start from, and they are already

mixed and inĆuenced by other physiological processes, artifacts, noise, etc. Hence, the

estimation of these tensor parameters for biomedical signals becomes a new challenge to

overcome (RIBEIRO et al., 2015; ZARZOSO, 2017; OLIVEIRA; ZARZOSO, 2019).

The Alternating Group Lasso (AGL) algorithm and its constrained version,

Constrained Alternating Group Lasso (CAGL), present a novel approach for computing ap-

proximate low-rank BTD with little information about the tensor parameters (GOULART

et al., 2020; RONTOGIANNIS et al., 2021). It has been shown to be efective in simulta-

neously estimating AA and measuring its complexity (ABDALAH et al., 2020).
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Finally, taking into account the CAGL performance, the present work explore

its advantages to perform the source separation and assess the AA complexity and to

compare with other index proposed in the literature.

1.3 Objective and Contribution

This work proposes a discussion on the foundations of AA analysis during AF

episodes. In addition, we discuss the foundations of signal processing based on tensor

models and their advantages over matrix approaches, with a special focus on BSS context.

The present dissertation will focus in two main topics: persistent AF treated

with stepwise-Catheter Ablation (CA) approach, detailed in the chapter 2. This theory

will serve as a support for the analysis of atrial substrate modiĄcation, as well as the basis

for other strategies aiming to mitigate the Ąbrillatory repercussions and understand atrial

activation in general and reentry mechanisms. Moreover, we aim to present a study to:

• Investigate the behavior of Hankel matrices with real data to provide more evidence

for their use in exponential models;

• Reinforce the efectiveness of CAGL in jointly estimating AA and quantifying its

complexity from short ECG segments;

• Compare with the Non-Dipolar Component Index (NDI) (MEO et al., 2018), a

state-of-the-art complexity index;

• Explore the statistical correlation between the complexity indices and the response

to CA therapy in a dataset comprising 20 patients with persistent AF.

During the development of this work, the following scientiĄc contributions has

been accepted and/or:

• L. Abdalah, P. M. R. Oliveira, W. Freitas Jr., V. Zarzoso, ŞTensor-based noninvasive

atrial Ąbrillation complexity index for catheter ablationŤ, Computing in Cardiology,

Rimni, Italy, Sep. 13-16, 2020.

• V. Zarzoso, L. Abdalah, P. M. R. Oliveira, ŞDécomposition tensorielle en termes

blocs contrainte pour la mesure non invasive de la complexité de la Ąbrillation atriale

persistanteŤ, XXIXème Colloque Francophone de Traitement du Signal et des Images

(GRETSI 2023), Grenoble, France, Sep. 2023. Final version submitted, accepted for

publication and presentation.
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1.4 Dissertation Structure

The rest of the manuscript is organized as follows: Chapter 2 presents the

electrophysiological background and an overview of AF perspectives in western countries

and Brazil. Chapter 3 presents mathematical notations and describes the tensor-based

decomposition to estimate AA. Chapter 4 recalls the concept of AF complexity and its

importance in characterizing CA therapy, presented in Section 2.2.3. The proposed tensor-

based index to measure AF complexity and the state-of-the-art matrix-based index are

also presented. Chapter 5 presents the database setup, experimental and statistical results

with real AF ECG recordings, as well as a discussion on the advantages and drawbacks of

the proposed method. Finally, Chapter 6 concludes the manuscript and provides some

perspectives for future research on the topic.
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2 ELETROPHYSIOLOGICAL BACKGROUND

A healthy heartbeat is the result of a complex and coordinated electrical and

mechanical process within the heart. It functions as a pump for the human body. During

the cardiac cycle, the atria relax and blood enters them, while the ventricles receive the

blood from the atria. These phases are known as diastole and systole, respectively. In a

healthy heart, these contractions and relaxations occur in a regular pattern called sinus

rhythm. The sinus rhythm originates from the Sinoatrial (SA) or sinus node, often referred

to as the Şbiological pacemakerŤ (AMBESH; KAPOOR, 2017). This node consists of a

small cluster of cells that spontaneously and rhythmically initiate electrical impulses, which

then propagate to the Atrioventricular (AV) node. As the atria contract, they propel blood

into the ventricles. Subsequently, the ventricles contract and pump blood out of the heart

as the electrical signals reach the ventricular muscle cells. After contraction, the ventricles

go through a repolarization phase during which the electrical signals return to their resting

state. This prepares the heart for the next heartbeat cycle. A visual representation of

these phenomena will be presented in the subsequent sections (see Fig. 2.4).

2.1 Standard 12-Lead ECG Mechanisms

The standard 12-lead ECG provides a comprehensive assessment of the heartŠs

electrical activity from diferent perspectives, allowing medical professionals to diagnose

and monitor a wide range of cardiac conditions. It consists of recording the electrical

signals generated by the heart from 12 diferent perspectives or ŞleadsŤ by placing 10

electrodes on the body.

An ECG recording is obtained by placing electrodes at speciĄc locations on

the patientŠs chest, arms, and legs. The leads are divided into two categories: limb

leads and precordial leads. The limb leads measure the electrical activity between the

limbs, while the precordial leads measure the electrical activity in the horizontal plane

of the chest (DUPRE et al., 2005). In the recordings a series of waveforms known as the

PQRST complex are observed. They represent the electrical activity of the heart during one

cardiac cycle. The P wave corresponds to atrial depolarization, the QRS complex represents

ventricular depolarization, and the T wave represents ventricular repolarization. These

waveforms provide important information about the timing, duration, and morphology of
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the cardiac electrical activity, allowing for the identiĄcation of various cardiac conditions

and abnormalities (MAINARDI et al., 2008a).

Interpreting the ECG recordings involves analyzing the shape, duration, and

amplitude of the waveforms in each lead, as well as assessing the relationships between

the diferent leads. Various parameters, such as heart rate, PR interval, QRS duration,

and QT interval, are measured and analyzed to assess the overall cardiac function and

detect any abnormalities or arrhythmias.

It may summarized as a fundamental tool in diagnosing and monitoring various

cardiac conditions, including myocardial infarction, arrhythmias, conduction abnormalities,

and electrolyte imbalances. It provides valuable insights into the electrical activity of the

heart and aids in guiding appropriate treatment strategies for patients.

2.1.1 The Electrodes

The electrodes used in an ECG typically consist of a conductive material, such

as silver/silver chloride or carbon, enclosed in a gel or adhesive pad. The conductive

material helps to pick up the electrical signals generated by the heart.

Before attaching the electrodes, the skin needs to be properly prepared to

ensure good conductivity. The areas where the electrodes will be placed are cleaned to

remove any oils, lotions, or dirt that could interfere with the electrical signal transmission.

This is done by gently rubbing the skin with an alcohol swab and then allowing it to dry.

Once the skin is prepared, the electrodes are attached to the designated locations. The

adhesive pads or gel help to secure the electrodes in place and ensure good contact with

the skin. It is important to ensure that the electrodes are Ąrmly attached but not too

tight to avoid discomfort for the patient.

The electrodes detect the electrical signals generated by the heart, which are

very weak in magnitude. These signals travel through the conductive material of the

electrodes and are transmitted to the ECG monitor through lead wires. The device then

processes and records the waveforms. Each electrode is connected to a speciĄc lead wire,

which corresponds to a speciĄc lead conĄguration (e.g., limb leads or chest leads).

The limb leads are obtained by placing electrodes on the limbs of the patient

and they serve as the positive or negative terminals to these leads. SpeciĄcally, there are

four limb electrodes placed on the patientŠs arms and legs, as illustrated in Fig. 2.1:
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Figure 2.1 Ű 12 leads resting ECG electrode placement.

Source: Norav Users Guide Personal Computer ECG 1200 (NORAV MEDICAL, 2021).

• Right Arm (RA) electrode: This electrode is placed on the right arm, usually on the

wrist or lower part of the forearm.

• Left Arm (LA) electrode: This electrode is placed on the left arm, also on the wrist

or lower part of the forearm.

• Right Leg (RL) electrode: This electrode is placed on the right leg, typically on the

ankle or lower part of the leg.

• Left Leg (LL) electrode: This electrode is placed on the left leg, similar to the right

leg electrode.

The three bipolar limb leads, known as Lead I, Lead II, and Lead III, measure

the voltage between two limb electrodes. Lead I records the potential between the RA and

the LA electrodes. Lead II measures the potential between the RA and the LL electrodes.

Lead III records the potential between the LA and the LL electrodes. In addition, there

are also three augmented unipolar limb leads: aVR, aVL, and aVF. These leads measure

the potential between one limb electrode and a central reference point formed by the

average of the other two limb electrodes. The aVR lead measures the potential between

the RA electrode and the average of the LA and LL electrodes. The aVL lead measures

the potential between the LA electrode and the average of the RA and LL electrodes. The



24

aVF lead measures the potential between the LL electrode and the average of the RA and

LA electrodes.

The precordial leads V1-V6 are placed on speciĄc locations on the chest wall

(Fig. 2.1), providing a more detailed view of the electrical activity in the horizontal plane of

the heart (DUPRE et al., 2005). They are commonly referred to as Şchest leads,Ť and their

measurements are related to the baseline established by the limb leads and augmented

limb leads.

2.1.2 Electrical Signal Representation

The electrical signals obtained by combining the electrodes are recorded as

voltage waveforms over time, resulting in 12 leads. These detected signals are very weak

and require ampliĄcation before they can be analyzed. The recording machine ampliĄes,

and Ąlter out unwanted noise and interference. Fig. 2.2 illustrates how the activity of the

heart is reĆected in the lead II signal.

Figure 2.2 Ű A typical waveform for the lead II is compared to the timing of AV and valve
activity, along with which segments of the cardiac cycle the ventricles are in systole/diastole.

Source: Anthony Dupre, 2005, Basic ECG Theory, Recordings, and Interpretation (DUPRE et al., 2005).

These voltage waveforms represent the depolarization and repolarization of

diferent regions of the heart during each cardiac cycle. The ECG waveform consists of

several key components presented in Fig. 2.3. The main components of the cardiac cycle

can be described as follows:
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Figure 2.3 Ű A typical ECG waveform for one cardiac cycle measured from lead II. The P
wave denotes atrial depolarization, the QRS indicates ventricular depolarization, and the
T wave denotes ventricular repolarization. The events on the waveform occur on a scale of
hundreds of milliseconds.

Source: Anthony Dupre, 2005, Basic ECG Theory, Recordings, and Interpretation (DUPRE et al., 2005),
modified from D.E. Mohrman and L.J. Heller, (eds.), Cardiovascular Physiology, 5th Ed., McGraw-Hill
Companies, 2003.

• P Wave: Represents the depolarization of the atria, indicating the initiation of atrial

contraction.

• QRS Complex: Represents the depolarization of the ventricles. It consists of three

main deĆections: the Q wave, the R wave (the tallest waveform), and the S wave.

The QRS complex reĆects the initiation of ventricular contraction.

• T Wave: Represents the repolarization of the ventricles, indicating the recovery of

the ventricular muscle before the next contraction.

• PR Interval: Measures the time it takes for the electrical signal to travel from the

atria to the ventricles.

• QT Interval: Measures the time between the start of ventricular depolarization (QRS

complex) and the completion of ventricular repolarization (T wave). It represents

the total time for ventricular depolarization and repolarization.

The presented signals are analyzed by cardiologists to assess the electrical

activity of the heart and identify any abnormalities. Various aspects are examined,

including the shape, duration, and intervals between diferent waveforms. Deviations from

the normal ECG pattern can indicate cardiac conditions such as arrhythmias, ischemia, or

structural abnormalities.
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2.2 Atrial Fibrillation

AF is the most common sustained arrhythmia observed in clinical practice.

Since its trigger and perpetuation mechanisms continue to bale cardiologists, being

referred as the last great frontier of cardiac electrophysiology. This arrhythmia, which

primarily afects the elderly, is responsible for up to 1/4 of strokes (JANUARY et al., 2019).

The management of AF places a substantial burden on healthcare resources, including

hospitalizations, medications, and interventions such as cardioversion or catheter ablation.

AF consequences are not limited to the individual level. It also has economic

implications, with signiĄcant healthcare costs associated with the management of AF-

related complications. The impact on healthcare systems is expected to increase as the

population ages and the prevalence of AF continues to rise. Projections indicate that by

2050, between 6 and 12 million individuals in the USA and up to 18 million in Europe

alone by 2060 will be afected by AF (MORILLO et al., 2017).

The present work focuses on persistent AF, though it is important to note

that this is only one form of AF manifestation. There is no consensus on the best

way to classify atrial Ąbrillation. However, we present the most common classiĄcation

schemes (MAINARDI et al., 2008a; CALKINS et al., 2017):

• Paroxysmal AF refers to AF that terminates spontaneously or with intervention

within 7 days of onset.

• Persistent AF refers to AF that is sustained beyond 7 days.

• Permanent AF refers to AF where no attempts to interrupt it have been made, or

if made, they were unsuccessful (i.e., failed restoration of sinus rhythm or recurrence

of AF). In such cases, no further attempts to restore or maintain sinus rhythm will

be undertaken.

The management of persistent AF typically involves a combination of strategies

aimed at controlling the heart rate, restoring and maintaining normal sinus rhythm, and

reducing the risk of complications associated with AF. Some commonly used therapies

and protocols (JANUARY et al., 2019; FAVARATO, 2021):

1. Antiarrhythmic drugs: they may be prescribed to control the heart rate and rhythm.

Examples include beta-blockers, calcium channel blockers, and antiarrhythmic medi-

cations such as amiodarone, Ćecainide, or propafenone;

2. Anticoagulation therapy: AF increases the risk of blood clot formation, which can
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lead to stroke. To mitigate this risk, anticoagulant medications such as warfarin or

direct oral anticoagulants (e.g., apixaban, dabigatran) may be prescribed;

3. Electrical cardioversion: This procedure involves delivering a controlled electric shock

to the heart to restore normal sinus rhythm. It is often performed under sedation or

anesthesia.

4. Catheter ablation: This is a minimally invasive procedure where catheters are guided

to the heart to identify and selectively destroy abnormal tissue responsible for the

AF. Radiofrequency energy or cryotherapy may be used to create lesions and restore

normal electrical conduction (HAïSSAGUERRE et al., 1998; VERMA et al., 2015;

SEITZ et al., 2017).

ItŠs important to note that the choice of therapy or protocol depends on various

factors, including the patientŠs overall health, the duration and severity of AF, presence of

underlying heart conditions, and individualized assessment by a healthcare professional.

Eforts are being made to raise awareness about AF, improve detection and diagnosis,

and develop efective management strategies (VERMA et al., 2015; ROTTNER et al.,

2020). Early detection, appropriate treatment, and lifestyle modiĄcations can help manage

AF and reduce the associated risks. Public health initiatives and research eforts aim to

address the challenges posed by AF and improve patient outcomes.

2.2.1 Endemic In Brazil

AF is a signiĄcant concern in Brazil, as it is in many countries worldwide.

Studies have shown that the prevalence of AF has been steadily increasing over the years,

primarily due to factors such as an aging population, lifestyle changes, and improved

detection methods.

In the Brazilian population, the overall prevalence of AF is estimated to be 1.8%,

with higher rates of 8.4% among octogenarians and 11.0% among nonagenarians (MAR-

COLINO et al., 2015). AF prevalence increases signiĄcantly with age, particularly in older

adults. Other studies reinforce the exponential increase in AF with advancing age, with a

5-fold increase in the age range of 50-59 years, a 7-fold increase in the age range of 60-69

years, and a 9-fold increase in individuals over 80 years old. It is worth noting that men

tend to have a higher incidence of AF (FAVARATO, 2021).

The impact of AF in South America is multifaceted. While the prevalence of
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AF in the region is similar to that in high-income countries, with hypertension being the

most commonly associated disease (SANTOS et al., 2021), there is a speciĄc endemic

problem in the region: Chagas disease. Studies have shown that Chagas disease has the

strongest association with AF in the Brazilian scenario (MARCOLINO et al., 2015).

The current protocols for managing AF primarily focus on assessing the risk of

thromboembolism and implementing appropriate anticoagulation strategies. For symp-

tomatic individuals, additional approaches such as rhythm control and aggressive modiĄ-

cation of cardiovascular risk factors are considered.

In recent years, advancements in technology, such as improved diagnostic tools

and therapeutic options, have provided new opportunities for managing AF. These include

the use of catheter ablation techniques, novel medications, and the development of digital

health solutions for remote monitoring and follow-up care.

Overall, addressing the challenges posed by AF in Brazil requires a comprehen-

sive approach that includes preventive measures, early detection, access to appropriate

healthcare services, and ongoing management to improve patient outcomes and reduce the

burden of the condition on individuals, families, and the healthcare system.

2.2.2 AF Electrophysiology

AF is characterized by rapid and irregular electrical activity in the atria

of the heart. It is caused by abnormal electrical impulses originating from multiple

locations within the atria, rather than the usual single location (the SA node) in a healthy

heart (MAINARDI et al., 2008a). This abnormal electrical activity disrupts the normal

coordination and timing of the heartŠs electrical signals and mechanical contractions,

resulting in the following efects:

1. Irregular Electrical Signal Initiation: The atria experience rapid and disorganized

electrical signals Ąring from multiple sources. These abnormal signals can arise from

various areas within the atrial tissue, such as the Pulmonary Veins (PVs) or other

atrial regions. As a result, the atrial muscle Ąbers do not contract in a coordinated

manner, leading to inefective atrial contractions or atrial quivering (Ąbrillation).

2. Irregular AV Node Conduction: The irregular electrical signals generated in the

atria reach the AV node, which serves as a gatekeeper between the atria and the

ventricles. The AV node attempts to Ąlter and regulate the incoming signals before
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allowing them to pass to the ventricles. However, due to the chaotic and disorganized

nature of the electrical impulses in AF, the AV node may conduct some signals to

the ventricles while blocking others. This results in an irregular ventricular response.

3. Irregular Ventricular Contraction: The irregularly conducted electrical signals from

the atria cause the ventricles to contract in an irregular pattern. The ventricles

may beat at a rapid, irregular, or both rapid and irregular rate. As a result, the

pulse may feel irregular, and individuals with AF often describe the sensation of a

ŞĆutteringŤ heartbeat.

4. Increased Risk of Blood Clots: AF disrupts the normal blood Ćow within the atria.

The chaotic and ineicient contractions of the atria can cause blood to pool or

stagnate in certain areas. Stagnant blood increases the risk of blood clot formation

within the atria. If a blood clot forms and becomes dislodged, it can travel through

the bloodstream and potentially cause a blockage in a smaller blood vessel elsewhere

in the body. This can result in serious complications, such as stroke, organ damage,

or other complications depending on the afected area.

5. Persistent AF: Persistent AF refers to the manifestation of AF where the irregular

electrical activity in the atria is sustained for a prolonged period, lasting longer than

seven days (CALKINS et al., 2017). In persistent AF, the abnormal electrical signals

persist, and the atria fail to restore their normal coordinated contractions. This may

require medical intervention to restore normal sinus rhythm.

From a signal processing perspective, AF during AA is characterized by the

presence of irregular and chaotic signals. ECG recordings during AF show rapid, irregular,

and often Ąbrillatory waves known as f waves (MEO et al., 2018), which indicate the

disorganized electrical activity in the atria (see Fig. 2.4).

The phenomena of AF shown in Figs. 2.4 and 2.5, compared to the healthy

cardiac cycle shown in Figs. 2.2 and 2.3, exhibit four key aspects that difer from a normal

heartbeat: irregular rhythm, absence of P waves, chaotic f waves, and rapid ventricular

response.

1. Irregular Rhythm: The normal regularity and pattern of the R-R intervals (the time

interval between consecutive R-peaks in the ECG) observed in a healthy heart are

lost during AF. Instead, the R-R intervals become highly irregular, reĆecting the

irregularity in atrial depolarization and subsequent ventricular response.



30

Figure 2.4 Ű Comparison of two ECG signals in lead V5: a healthy cardiac cycle (left) vs.
AF (right). The waveforms demonstrate distinct electrical patterns associated with each
condition. A simpliĄed representation of the heartŠs structure responsible for generating
each electrical activity is presented below each signal.

Source: Atrial Fibrillation - About the Heart (StopAfib.org - American Foundation for Women’s Health,
2021)

Figure 2.5 Ű Example of AF: Ąve cardiac cycles presenting Ąbrillation events in lead V5
from a standard 12-lead ECG.

Source: Elaborated by the author.

2. Absence of P waves: In a normal sinus rhythm, each heartbeat is preceded by a

P wave on the ECG, representing atrial depolarization. In AF, the P waves are

typically absent or obscured due to the disorganized atrial electrical activity. Instead,

rapid and irregular oscillations are observed.

3. Chaotic Atrial Fibrillation Waves: The f waves seen on the ECG during AF are
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characterized by irregular amplitude, frequency, and morphology. These Ąbrillation

waves represent the superposition of multiple irregular electrical signals originating

from diferent regions of the atria. The irregularity and variability in the shape and

timing of the f waves indicate the disorganized AA during AF.

4. Rapid Ventricular Response: The irregular AA during AF afects the conduction

of electrical signals to the ventricles. As a result, the ventricular response can be

rapid and irregular, leading to a high heart rate. This rapid ventricular response is

reĆected in the irregularity of the R-R intervals on the ECG.

Signal processing techniques are used to analyze and interpret these irregulari-

ties. Various algorithms and methods, such as time-domain analysis, frequency-domain

analysis, and nonlinear dynamics analysis, can be applied to quantify the irregularity,

assess the complexity of the signals, and extract relevant features. These techniques

contribute to the understanding of AF mechanisms, assist in diagnosis, guide treatment

strategies, and facilitate the development of innovative approaches for AF management,

as explored in Chapter 3.

2.2.3 Catheter Ablation

Catheter ablation is currently the most efective treatment option for persistent

AF, despite its cost and potential complications. This therapy involves using intracardiac

catheters inserted through a blood vessel in the groin to guide them towards the heart and

locate the tissue responsible for the arrhythmia. Radiofrequency energy is then applied to

these speciĄc points in the atrial tissue. The goal of catheter ablation is to terminate AF

and restore sinus rhythm (cardioversion) or convert it into a more organized arrhythmia.

The widely adopted approach, known as the Şsequential stepwiseŤ procedure, is

followed in most clinical centers that perform ablation (VERMA et al., 2015; SEITZ et al.,

2017). This procedure begins with the Pulmonary Vein Isolation (PVI) technique, which

electrically isolates the PVs (HAïSSAGUERRE et al., 1998; CALKINS et al., 2017). The

PVs often contain ectopic foci triggering AF (Fig. 2.6). Subsequently, attention is directed

towards the atrial substrate, targeting conduction zones responsible for the abnormal

propagation patterns of AF.

The literature suggests that theAF becomes more organized throughout the

ablation procedure (MCCANN et al., 2021), resulting in a decrease in f wave complex-
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Figure 2.6 Ű Schematic drawing showing catheter ablation of AF. Shows a typical wide
area lesion set created using radiofrequency energy. Ablation lesions are delivered in a
Ągure of eight pattern around the left and right PVs. A multielectrode circular mapping
catheter is positioned in the left inferior PV.

Source: Tim Helps © 2017 Johns Hopkins University, AAM (CALKINS et al., 2017).

ity (MEO et al., 2018). However, the success rates and procedures can vary signiĄcantly

across diferent centers, introducing a subjective element in the therapy. The development

of robust and widely accepted intervention protocols remains an open challenge (VERMA

et al., 2015; ROTTNER et al., 2020). This work aims to address such limitations by

providing a new complexity index measurement, described in chapter 4.
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3 MATHEMATICAL BACKGROUND

Signal processing techniques play a crucial role in extracting meaningful infor-

mation from complex data, particularly in scenarios where multiple sources contribute

to the observed signals. Matrix and tensor decompositions are powerful approaches that

have gained signiĄcant attention in the Ąeld of signal processing. These techniques ofer

relevant tools for estimating and separating sources from mixed observations, enabling the

recovery of underlying signals that would otherwise remain hidden.

In this chapter, we delve into the concept of a tensor and how its structure

can be exploited to extract latent components in sophisticated scenarios. We will provide

an overview of the underlying principles, algorithms, and applications of BSS, matrix

factorization, and tensor decompositions.

Notation and Algebra Prerequisites: Scalars, vectors, matrices and tensors are

represented by lower-case (a, b, . . . ), boldface lower-case (a, b, . . . ), boldface capital (A,

B, . . . ) and calligraphic (A, B, . . . ) letters, respectively. The matrix transpose operator

is represented by (·)T, ♣♣ · ♣♣F is the Frobenius norm and ◦ is the outer product. Symbol IN

represents an identity matrix of size N × N . A matrix A ∈ C
I1×I2 , with scalar entries

ai1,i2
, has its ith

1 row and ith
2 column represented by ai1. and a.i2

, respectively. Symbol

♣♣ · ♣♣ denotes the l2-norm and ♣♣ · ♣♣2,1 denotes the mixed l2,1-norm, deĄned for an arbitrary

matrix A with I2 columns as:

♣♣A♣♣2,1 =
I2
∑

i2=1

♣♣a.i2
♣♣ . (3.1)

3.1 Blind Source Separation

The cocktail party problem refers to the challenge of selectively listening to a

particular sound source in a noisy and complex environment, such as a crowded cocktail

party. The problem arises because the sound signals from diferent sources mix together,

making it diicult for the listener to isolate and focus on a speciĄc source of interest.

The BSS model appears as an approach to address the cocktail party problem, aiming to

separate mixed signals into their individual source components without prior knowledge

of the sources or their characteristics (CARDOSO, 1998). It relies on statistical and

mathematical techniques to identify the independent sources based on their statistical
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properties.

Figure 3.1 Ű Example of the cocktail party problem. Two source signals (e.g., heartŠs
electrical activity) are generated in two distinct locations and then recorded by two sensors
(e.g. electrodes) resulting in two linear and instantaneous mixtures. The goal of this
problem is to recover the original signals from the mixed signals.

Source: Adapted from Independent component analysis: An introduction (THARWAT, 2021).

BSS algorithms analyze the mixed signals received by multiple sensors to

estimate the original source signals, as illustrated in Fig. 3.1. These algorithms leverage

statistical dependencies and properties of the sources to separate and extract the individual

sources from the mixture.

An ECG recording composed of K leads and N time samples can naturally be

stored in a matrix Y ∈ R
K×N , where the (i, j)-entry is given by the jth time sample of

the ith lead yi(t):

yi,j = yi(tj) 1 ≤ i ≤ K, 1 ≤ j ≤ N.

This matrix may be expressed as the factorization (CARDOSO, 1998):

Y = MST =
R
∑

r=1

m·rsT

·r (3.2)

where the columns of factor matrix S ∈ R
N×R, denoted s·r, are the temporal patterns

or source signals contributing to the observed multi-lead record through the associated

spatial patterns m·r, the columns of mixing matrix M ∈ R
K×R, 1 ≤ r ≤ R, modeling the

propagation of electrical sources from the heart to the body surface. Here, R represents

the number of source signals.
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Figure 3.2 Ű An illustrative example of the process of mixing signals, where two source
signals are mixed linearly by the mixing matrix M to form two new mixture signals.

Source: Adapted from Independent component analysis: An introduction (THARWAT, 2021).

This electrical propagation is indicated as the mixing process in Fig. 3.2. It

illustrates the source mixing behavior taken into account by the BSS model. The only prior

information is that the mixture (Y), sources, and mixture matrices (respectively S and

M) are unknown in real applications. Since M is unknown, matrix-based techniques such

as PCA and ICA may be used to estimate M̂−1, the inverse of the mixing matrix. Then,

the estimated sources Ŝ can be obtained, as presented in (ZARZOSO, 2009; OLIVEIRA;

ZARZOSO, 2019).

During AF, the AA and the Ventricular Activity (VA) signals are assumed

uncoupled, allowing the AA extraction from an ECG to be formulated using BSS (RIETA

et al., 2004). Nevertheless, the factorization presented in (3.2) lacks uniqueness unless

additional constraints are imposed, such as mutual orthogonality between spatial factors

and statistical independence (CARDOSO, 1998; ZARZOSO, 2009).

To overcome these limitations, the ECG data can be arranged using a tensorial

approach to explore milder constraints, ensuring uniqueness and outperforming matrix-

based methods in terms of estimation quality as shown in (OLIVEIRA; ZARZOSO,

2019).
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3.2 Block Term Decomposition

Tensor operations play an important role in tensor calculus. They allow us to

rearrange the elements of a tensor into a vector or a matrix, and more generally into a

reduced order tensor, to deĄne tensor models and decompositions, and to compute the

eigenvalues of a tensor. In this chapter, we will study two tensor multiplication operations,

called a special case of BTD, named rank-(Lr, Lr, 1) Block Term Decomposition.

Figure 3.3 Ű Representation of vector ∈ R
I , matrix ∈ R

I×J and third order tensor ∈ R
I×J×K ,

respectively, where I = J = K = 3.

vector matrix tensor

Source: Elaborated by the author.

3.2.1 Basic Definitions

The tensor introduces a concept that allows us to extend the concept of a

matrix. While a matrix is a two-dimensional array of numbers arranged in rows and

columns, a tensor is arranged in N -dimensions, where N may assume any positive integer

value. Fig. 3.3 provides the geometric representation for vectors, matrices, and tensors.

We can denote a tensor as X . More formally, an N way or Nth-order tensor is

an element of the tensor product of N vector spaces, each of which has its own coordinate

system (KOLDA; BADER, 2009). The third-order tensor X ∈ C
I1×I2×I3 , with scalar

entries ai1,i2,i3
, has its frontal slices represented by X..i3

∈ C
I1×I2 .

DeĄnition 3.1. Let Y ∈ R
I1×I2×···×IN be an N -th order tensor. A scalar component of Y
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is indicated as:

yi1,i2,...,iN
= [Y ]i1,i2,...,iN

, (3.3)

where in is the n-th dimension of Y , also called the mode-n of Y .

DeĄnition 3.2. The outer product X ◦ Y of orders M and N , respectively, where

X ∈ R
I1×I2×···×IM and Y ∈ R

J1×J2×···×JN is tensor deĄned by

[X ◦ Y ]i1,i2,...,iM ,j1,j2,...,jN
= xi1,i2,...,iN

yj1,j2,...,jN
, (3.4)

For instance, the equation (3.4) is an extension of the concept applied to vectors.

DeĄnition 3.3. The rank−1 tensor X ∈ C
I1×I2×...×IN can be written as the outer product

of N vectors u[1] ∈ C
I1 , u[2] ∈ C

I2 , . . ., u[N ] ∈ C
IN , i.e.:

xi1,i2,...,iN
= u[1]

i1
· u[2]

i2
· . . . · u[N ]

iN
. (3.5)

Each vector u[n] is called a component of X . The outer product of two vectors yields

a matrix, i.e, a second-order tensor, which is important to notice since it supports to

introduce the notion of rank−1 tensor as a special case.

DeĄnition 3.4. The rank of an arbitrary tensor X ∈ C
I1×I2×...×IN , denoted by:

R = r(X ), (3.6)

is the minimal number of rank−1 tensors that yield X in a linear combination.

DeĄnition 3.5. The Frobenius norm of a tensor X ∈ C
I1×I2×...×IN is deĄned as:

♣♣X♣♣F =
√

⟨X ,X⟩ =





I1
∑

i1=1

I2
∑

i2=1

. . .
IN
∑

iN =1

♣x♣2i1,i2,...,iN





1/2

. (3.7)

The Frobenius norm may be interpreted as the amount of energy carried in the ten-

sor (GOLUB; LOAN, 2013; FAVIER, 2021).

DeĄnition 3.6. Let Xn be the n-th mode unfolded matrix of X ∈ C
I1×I2×...×IN . The

mode-n rank of X is the dimension of the vector space generated by the n-th mode vectors

(i.e., the columns of Xn).
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In the matrix case, both row and column ranks are equal, Rrow = Rcolumn = R.

The mode-n rank is a generalization of the classical concept of rank for matrices (Fig. 3.4

illustrates this for third-order tensor). However, the mode-n ranks of a higher-order tensor

are not necessarily the same. Moreover, when mode-n ranks are the same, they can still

difer from the rank of the tensor. The mode-n rank is always inferior or equal to the rank,

i.e., Rn ≤ R (KOLDA; BADER, 2009).

Figure 3.4 Ű Representation of the unfolded versions of a third-order tensor. Respectively,
Ąrst (green), second (blue), and third (red) mode slices are indicated. The arrow reinforces
the unfold direction.

Source: Elaborated by the author.

3.2.2 Decomposition in multilinear rank-(Lr, Lr, 1) terms

The BTD is a tensor decomposition technique that aims to decompose a

higher-order tensor into a sum of simpler component tensors. Particularly useful to

analyze and represent multiway data structures, where the data can be rearranged as

multidimensional arrays. The decomposition results into a sum of block terms, consequently

it is named a ŞBlock Term DecompositionŤ (LATHAUWER, 2011). Each block term

represents a component tensor that captures speciĄc patterns or structures (i.e, underlying

characteristics in original data) within the original tensor. The BTD may be regarded as

a generalization of matrix-based factorization, such as the SVD, to tensors. The present

work is interested in the special case where it results in the decomposition in multilinear

rank-(Lr, Lr, 1) terms.

In this section we focus on the third order tensor, which represents the data

structure of our model.
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DeĄnition 3.7. An arbitrary tensor Y ∈ C
I×J×K decomposition into a sum of rank(Lr, Lr, 1)

terms is deĄned as:

Y =
R
∑

r=1

Hr ◦ cr (3.8)

where the (I × J) matrices Hr are rank-Lr. Each vector cr represents the scaling factors

and is equivalent to a column of the mixing matrix M. We also consider the decomposition

of a tensor into a sum of matrix-vector outer products, in which the diferent matrices do

not necessarily all have the same rank. Fig. 3.5 presents the visual representation for the

(3.8) model.

Figure 3.5 Ű Visual representation of the decomposition in rank-(Lr, Lr, 1) terms of a
third-order tensor into terms of the sum of R block terms for Hr and cr outer product, for
r = 1, . . . , R.

H1

c1

HR

cR

Y ≈ + · · ·+

Source: Elaborated by the author.

The model presented in (3.8) admits a decomposition Hr = ArB
T

r yielding:

Y =
R
∑

r=1

(

ArB
T

r

)

◦ cr (3.9)

where Ar ∈ C
I×Lr and Br ∈ C

J×Lr are the factor matrices and have rank Lr. See Fig. 3.6.

We recall the matrix model presented in (3.2), where the columns of factor

matrix S ∈ R
N×R, denoted s·r, are the temporal patterns or source signals. During AF,

the AA and the VA signals are assumed uncoupled (RIETA et al., 2004), allowing the AA

extraction from an ECG using BSS. Due to the quasi-periodic nature of AF signals, atrial

sources can be well represented by an all-pole model (STRIDH; SöRNMO, 2001).

DeĄnition 3.8. Assume that a discrete-time signal s(n) is a linear combination of Lr

damped complex exponentials, given by:

sr,n =
Lr
∑

ℓ=1

λr,ℓz
n−1
r,ℓ (3.10)
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Figure 3.6 Ű Visual representation of the decomposition in rank-(Lr, Lr, 1) terms of a
third-order tensor into terms of the sum of R block terms for ArB

T

r and cr outer product,
for r = 1, . . . , R. .

Y ≈ A1 AR

B
⊤

1 B
⊤

R

c1 cR

+ · · ·+

Source: Elaborated by the author.

where Lr is the number of exponential terms, zr,ℓ is the ℓth pole of the rth source, and λr,ℓ is

the scaling coeicient, with r = 1, . . . , R representing the source number and n = 1, . . . , N

the discrete-time index.

DeĄnition 3.9. Given a vector y of length N , one can build a Hankel matrix H ∈ R
I×J ,

where I = J = N+1
2

if N is odd or I = N
2

and J = N
2

+ 1 if N is even, with entries:

hi,j ≜ yi+j−1 (3.11)

where i = 1, . . . , I, j = 1, . . . , J . Hankel-matrix construction is illustrated in Fig. 3.7.

Considering the signal model in (3.10), a data vector can be mapped onto an M×

M Hankel matrix. For simplicity, we assume a vector with an odd number of samples, where

each sample is placed along the anti-diagonal of Hs. A major result in signal processing

states that Hs can be decomposed using the Vandermonde decomposition (SCHARF, 1991;

BOLEY et al., 1997; LATHAUWER, 2011):

Hs = Vs D VT

s , (3.12)

where Vs is the Vandermonde matrix:

Vs =





















1 1 . . . 1

z1 z2 . . . zLr

...
...

...

zM−1
1 zM−1

2 . . . zM−1
Lr





















∈ C
M×Lr , (3.13)

and D = diag(c1, c1, . . . , cLr
) ∈ C

Lr×Lr is a diagonal matrix.
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Figure 3.7 Ű Visual representation of a signal mapped into a Hankel matrix, Hs, built from
a signal, s(n). Without loss of generality, the number of samples N is assumed to be odd.

s(0) s(1) s(2) . . . s(M−1) . . . s(N−1)

s(0) s(1) s(2) . . . s(M−1)

s(1) s(2) s(M−1) ...

s(2) . . .
s(M−1)

...
s(M−1) s(N−3)

s(M−1) s(N−3) s(N−2)

s(M−1) . . . s(N−3) s(N−2) s(N−1)

Signal

Source: Elaborated by the author.

As a result of the Vandermonde decomposition (3.13), we see that the matrix

Hs has rank at most min¶Lr, M♢, accepts a low-rank Hankel source model, and the signal

separation can be performed via BTD in rank-(Lr, Lr, 1) terms (LATHAUWER, 2011;

GOULART et al., 2020).

Consider the ECG matrix Y containing the signals measured along an arbitrary

segment, including VA as well as other sources of noise and interference. To transform

the matrix model in (3.2) into a tensor model suitable for source separation via low-rank

Hankel BTD, each lead (i.e., row) of Y is mapped into a Hankel matrix:

yk· ∈ R
N 7→ H(k)

Y
∈ R

I×J (3.14)

as deĄned in (3.11). Then, we build a third-order tensor Y ∈ R
I×J×K by stacking Hankel

matrices H(k)
Y

along its third mode (frontal) slices, as shown in Fig. 3.8:

Y·,·,k = H(k)
Y

1 ≤ k ≤ K. (3.15)
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Thus the tensor, after some algebraic steps, may be reformulated as:

Y =
K
∑

k=1

H(k)
Y
◦ ek =

K
∑

k=1

(

R
∑

r=1

mk,rH
(r)
S



◦ ek

=
R
∑

r=1

H(r)
S
◦

(

K
∑

k=1

mk,rek



=
R
∑

r=1

H(r)
S
◦mr (3.16)

where ek is the kth canonical basis vector of RK . Its important to notice that (3.16) is a

direct implication of Hankel mapŠs linearity, since:

H(k)
Y

=
R
∑

r=1

mk,rH
(r)
S

.

where H(r)
S

is the Hankel matrix associated with the rth source signal.

We consider that: rank
(

H(r)
S

)

= Lr, 1 ≤ r ≤ R, thus (3.16) deĄnes a decom-

position of tensor Y into blocks with multilinear rank-(Lr, Lr, 1) terms, where H(r)
S

admits

a factorization H(r)
S

= ArBT

r , with Ar ∈ R
I1×Lr and Br ∈ R

I2×Lr presenting full column

rank Lr.

Figure 3.8 Ű The Hankel-BTD model for ECG data: A third-order tensor Y built by
stacking the Hankelized leads along its 3rd mode slices.

y1 y2 y3 . . . yn

y2 y3 yn ...

y3 . . .
yn

...
yn y2n−3

yn y2n−3 y2n−2

yn . . . y2n−3 y2n−2 y2n−1

y1 y2 y3 . . . yn

y2 y3 yn ...

y3 . . .
yn

...
yn y2n−3

yn y2n−3 y2n−2

yn . . . y2n−3 y2n−2 y2n−1

y1 y2 y3 . . . yn

y2 y3 yn ...

y3 . . .
yn

...
yn y2n−3

yn y2n−3 y2n−2

yn . . . y2n−3 y2n−2 y2n−1 . .
.

. .
.

K Leads

Lead I

. .
.

Lead AVF

. .
.
Lead V6

Source: Elaborated by the author.

This technique is referred as decomposition in multilinear rank-(Lr, Lr, 1) terms,

a special case of BTD, that arrange Y with Hankel structure.

Uniqueness Conditions: There is ample evidence in the literature to ensure the

uniqueness of the model presented under certain assumptions (LATHAUWER, 2008;
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LATHAUWER, 2011). If the following conditions are satisĄed, then the BTD is essentially

unique:

Theorem 3.1. Both matrix factors A =
[

A1 A2 . . . AR

]

∈ R
I1×

∑R

r=1
Lr and

B =
[

B1 B2 . . . BR

]

∈ R
I2×

∑R

r=1
Lr are full-column rank. This condition requires

that
∑R

r=1 Lr ≤ I1, I2.

Proof. Formulation proposed by (LATHAUWER, 2011) in theorem 2.2.

Theorem 3.2. Linear independence between the columns of the matrix

M =
[

m1 m2 . . . mR

]

∈ R
I3×R.

Proof. Formulation proposed by (LATHAUWER, 2011) in theorem 2.3.

The decomposition is subject to the following indeterminacies:

1. The diferent multilinear rank-(Lr,Lr,1) terms can be arbitrarily permuted.

2. Ar can be postmultiplied by any nonsingular matrix, given that BT
r is premultiplied

by the inverse of that nonsingular matrix.

3. As long as the resulting product remains the same, the factors of the same multilinear

rank-(Lr,Lr,1) term can be arbitrarily scaled.

Still, both theorems 3.1 and 3.2 are suicient to ensure uniqueness. It implies that

I, J ≈ N+1
2
≥
∑R

r=1 Lr, which sets a lower bound on the length of ECG segments.

The condition for satisfying the mixing matrix M requires the presence of

sources that are spatially localized in diferent regions. However, in our application, this

condition is not restrictive since the atrial sources and ventricular sources are naturally

associated with distinct regions of the heart. In (LATHAUWER, 2011) a more relaxed set

of uniqueness conditions is addressed in the context of the BTD.

Once the block terms have been identiĄed using an appropriate approach, the

mixing matrix M can be estimated based on the recovered vector factors. Furthermore, the

source signals may be estimated by calculating the average values along the anti-diagonals

of the estimated source Hankel matrices H(r)
S

, where 1 ≤ r ≤ R.

Finally, as discussed over this section, the Hankel matrix rank, rank(H(r)
S

),

is intrinsically linked to the original source. Since these estimated sources are mapped

onto Hankel matrices, their rank matches the number of poles in the result derived from

the Vandermonde decomposition (LATHAUWER, 2011; ZARZOSO, 2017). Hence, the
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Hankel-BTD model is well suited to extract characteristics of AA in AF episodes. The

rank Lr of the Hankel factor associated with the atrial source is directly linked with the

number of poles generating the atrial signal and, therefore, can be considered as a natural

measure of AF complexity in ECG records.

3.2.3 Constrained Alternating Group Lasso

In general, the algorithms that perform BTD are Least Squares (LS)-based,

e.g., Gauss-Newton BTD (LATHAUWER; NION, 2008). Such approaches aim to minimize

the Euclidean distance between the observed data tensor and a model of Ąxed structure

with respect to the model components (SORBER et al., 2013). These conditions, which

impose prior knowledge about the model parameters, are typically unknown.

The limitations mentioned are addressed in (GOULART et al., 2020) through

the introduction of a novel algorithm known as the AGL. The technique aims to compute

low-rank BTDs and overcomes these limitations. It achieves this by minimizing a Ątting

term (applying the LS) and a regularization term (sum of mixed-norms) to promote group

sparsity in the factor matrices. The algorithm is provably convergent and ofers a simpler

alternative to existing methods, such as the Alternating Least Squares (ALS) method.

The AGL variant, CAGL, is also introduced to handle linearly constrained

blocks. This technnique incorporates a structured low-rank approximation method to

ensure the blocks have low rank and belong to the speciĄed subspace, in our scenario

structured as Hankel matrices.

Typically, the Ąxed structure used in BTD model is designed to minimize the

Euclidean distance with regard to an observed data tensor Y ∈ C
I×J×K :

f(A, B, C) ≜
∥

∥

∥

∥

Y −
∑R

r=1

(

ArBT

r

)

◦ cr

∥

∥

∥

∥

2

F
. (3.17)

In the approach being considered, each H(r)
S

matrix must belong to the Hankel

subspace with dimensions (I × J), denoted SH . The 3rd mode slices Y·,·,k of the observed

tensor are Hankel by construction, as shown in Fig. 3.9. However, due to inherent model

limitations and noise, a solution (Â, B̂, Ĉ) of (3.17) may not satisfy ÂrB̂T

r ∈ SH . Besides

that, techniques that rely on (3.17) are heavily inĆuenced by its matrix factors initialization

and require prior knowledge about its structure. It implies that the algorithm must use

Ąxed values for the number of blocks R and their ranks Lr, even in the absence of this
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Figure 3.9 Ű Visual representation of Hankel-BTD decomposed into rank-(Lr, Lr, 1) terms.
The third-order tensor Y follows the mapping presented in Fig. 3.8. The terms of the
sum of R block terms for Hr and cr outer product, for r = 1, . . . , R. Each factor matrix
represents an estimated source.

H1

m1

HR

mR

Y ≈ + · · ·+

Source: Elaborated by the author.

information. A mismatch between the assumed parameters and the actual ones may

impact estimation performance.

AGL and its constrained version address such limitations, including penalization

terms promoting low-rank blocks and controlling the number of blocks, instead of using a

Ąxed BTD structure as in (3.17), resulting in the form of:

F (A, B, C) ≜ f(A, B, C) + γ g(A, B, C) (3.18)

where γ > 0 is a regularization parameter and g is a regularization function of the form:

g(A, B, C) ≜ ∥A∥2,1 + ∥B∥2,1 + ∥C∥2,1. (3.19)

The method takes advantage of the so-called group lasso, a generalization of

the lasso estimator principle (YUAN; LIN, 2006), that presents geometric properties of

the mixed ℓ2,1-norm. Thus, solutions where A, B and C have null columns (for values of

γ that are suiciently high) will be induced, allowing one to select the relevant low-rank

blocks. It allows the algorithm to estimate the number of blocks R and their ranks Lr.

To ensure the Hankel structure of the matrix factors, the CAGL applies a

structured low-rank approximation once the algorithm converges. At this stage, CadzowŠs

algorithm (CADZOW, 1988) is employed to perform alternating projections onto the

Hankel subspace SH . This ensures that Ĥr ≈ ÂrB̂T

r ∈ SH . A more in-depth description

of the algorithm is presented in (GOULART et al., 2020).
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4 COMPLEXITY ANALYSIS

In this chapter, we present the envisioned concept of complexity analysis. Since

there is an absence of a universally accepted deĄnition for AF complexity, this results in

the use of this term to describe various characteristics associated with the electrical activity

occurring in the Ąbrillating atria. In literature, some authors shed light on this problem,

where atrial organization or complexity analysis may assume quite diferent meanings.

Special emphasis is placed on highlighting the distinct characteristics of organization that

are examined and captured by each method, which we refer to later in this chapter as the

complexity index. Furthermore, we address the fundamental signal processing techniques

used for analyzing atrial electrical activity, as discussed in (SIH, 2001; BARBARO et al.,

2001; MAINARDI et al., 2008b). As discussed in these works, each class includes methods

that share the conceptual interpretation of organization in terms of:

1. temporal regularity (rhythmic) of atrial activations;

2. regularity/complexity of single site electrograms;

3. coupling/synchronization between the electrical activity of two adjacent sites;

4. similarity of activation wave morphologies.

The approach proposed in this work explores a variety of signal processing methods

to analyze atrial recordings mainly in the time domain and to characterize the level

of complexity, i.e., the regularity of the Ąbrillating atria. Therefore, our work falls

into category 1 of the classiĄcation. In addition, our framework leverages noninvasive

information since the only data we have access to is from the standard 12-lead ECG.

Studies exploring these indices can be characterized also by the number of

leads they consider simultaneously: single-lead or multi-lead. During single-lead analysis,

each row of the ECG matrix is examined individually. This analysis can be performed

as a time series or in the frequency domain using spectral representations. Commonly

used complexity indices for AF include entropy-based methods, such as Shannon entropy,

which quantify the unpredictability and randomness of the signal. Additionally, frequently

reported methods in the literature encompass heart rate variability analysis, f-wave

amplitude analysis, and techniques based on entropy and frequency tracking (PORTA et

al., 1999; VIKMAN et al., 2003; MEO et al., 2015; MCCANN et al., 2021).

However, assessing the leads individually may lead to the overlooking of valuable

information, disregarding the inherent spatial diversity present in the multi-lead nature of



47

the ECG. To address this limitation, the present study focuses exclusively on assessing

multi-lead indices. Our choice is justiĄed by the following arguments:

1. Limited information: Single-lead approaches often rely on data from a single electrode

or lead, which provides limited information about the spatial distribution of signals

within the atria. This limited perspective may overlook important patterns and

complexities present in the overall electrical activity.

2. Incomplete representation: Atrial Ąbrillation is a complex arrhythmia that involves

the interaction of multiple electrical sources and pathways within the atria. Analyzing

a single-lead fails to capture the full extent of this spatially diverse activity, resulting

in an incomplete representation of the underlying complexity.

3. Ignoring spatial relationships: The spatial diversity of signals in the atria plays a

signiĄcant role in understanding the dynamics and complexity of atrial Ąbrillation.

Single-lead approaches do not consider the interplay between diferent regions or

the propagation patterns of electrical signals, which can limit the accuracy and

comprehensiveness of complexity analysis.

4. Missed abnormalities: By not accounting for spatial diversity, single-lead approaches

may overlook localized abnormalities or focal sources of electrical activity that

contribute to the overall complexity. These abnormalities can have important clinical

implications and may require speciĄc diagnostic and treatment strategies.

5. Multi-lead advantages: Comparatively, a multi-lead approach allows for a compre-

hensive assessment of the spatial characteristics of atrial signals. By considering

multiple leads simultaneously, you can capture the interactions between diferent

regions and uncover complex patterns that would be missed by focusing solely on a

single-lead.

In contrast, multi-lead indices leverage matrix techniques to exploit the spatial

diversity information (RIETA et al., 2004; MEO et al., 2013; OLIVEIRA; ZARZOSO,

2019; CIRUGEDA et al., 2020), yielding more robust results to extract AA during AF

compared to the single-lead approach. Among these techniques, those based on PCA

are particularly popular due to their simplicity and promising predictive capabilities for

cardiac arrhythmia outcomes1 (MAINARDI et al., 2008a; BONIZZI et al., 2010; MEO

et al., 2018; MCCANN et al., 2022). However, their practical implementation in clinical
1 Note that is this context, the use of PCA is not exactly the same as the presented in BSS model.
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settings is limited as they primarily rely on body surface potential maps (BSPM) and

necessitate long recordings. Additionally, TQ-interval segmentation, concatenation, or

other preprocessing techniques are often employed, leading to signal discontinuity and

potential loss of important data relationship.

Beyond the matrix approach, the utilization of tensor to organize ECG data,

followed by factorization techniques, has demonstrated signiĄcant advantages in extracting

AA from surface ECG signals. These approaches, along with its associated algorithmic

advancements, has shown promising in various studies (ZARZOSO, 2017; GOULART et

al., 2020; OLIVEIRA et al., 2022). However, the clinical potential of tensor-based methods

and their ability to derive AF markers and assist in therapeutic decision-making have not

been extensively investigated thus far.

The present chapter introduces the matrix-based AF complexity index, NDI,

chosen for comparison with the tensor-based AF complexity index, CAGL. While both

indices aim to quantify AF complexity, they employ fundamentally diferent mathematical

frameworks. Our decision to compare them is based on the following factors: promising

results (MEO et al., 2018; MCCANN et al., 2022), well-established theoretical founda-

tions (MAINARDI et al., 2008a; BONIZZI et al., 2010), and our familiarity with the

fundamental principles underlying each method. This comparative analysis enables us to

evaluate the advantages and limitations of the tensor approach compared to the PCA-

based approach in capturing the underlying dynamics of AF. Moreover, understanding the

relative performance of these methods provides valuable insights into the robustness and

reliability of the indices across various clinical conditions.

4.1 Matrix-Based AF Complexity Indices

The NDI is a complexity method that measures the presence of non-dipolar or

abnormal activity in AF. The ECG signals are traditionally expected to exhibit a dipolar

pattern, which arises from the coordinated electrical activity of the heart (HOLT et al.,

1969). This dipolar pattern corresponds to the normal activation sequence of the atria

and ventricles. However, in certain conditions, such as AF or other cardiac disorders, the

ECG signals deviate from this expected dipolar pattern. The deviation from a purely

dipolar pattern suggests the involvement of additional sources or abnormalities in the

atrial electrical activity.
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These additional sources could arise from irregular and chaotic electrical signals

within the atria, resulting in the absence of a clear dipole orientation. Such irregularities

can occur due to abnormal conduction pathways, reentrant circuits, or the presence of

focal sources of electrical activity. These deviations from the dipolar pattern can be

observed as changes in the morphology, amplitude, and timing of the ECG waveforms.

The P-wave, which represents atrial depolarization, may exhibit varying shapes, durations,

and amplitudes, indicating the presence of spatial inhomogeneities in the atrial electrical

activity. Furthermore, the irregularity in the atrial electrical signals may manifest as

irregular R-R intervals on the ECG, reĆecting the irregular ventricular response associated

with atrial Ąbrillation.

The NDI is a PCA-based method that analyzes the spatial distribution of

the ECG signals across multiple leads and quantiĄes the contribution of non-dipolar

components. It aims to quantify the extent to which electrophysiological signals deviate

from a purely dipolar pattern, indicating the presence of additional sources or abnormalities

in the atrial electrical activity. A higher NDI value indicates increased complexity and

non-dipolar activity in AF, potentially reĆecting underlying pathological conditions or

disturbances in atrial conduction.

The PCA is a technique that enforces orthonormality among the columns of

factor matrices M while maximizing the L2-norm of consecutive columns of S, which are

known as Principal Components (PCs) (JOLLIFFE, 2002). The contribution of these

PCs to the observed data can be measured by summing their individual power, given by
∑k

r=1 σ2
r , where σ2

r represents the power associated with the rth PC. This power can be

computed by squaring the rth dominant singular value of Y, the ECG data.

In the Ąeld of electrocardiography, it is generally assumed that the electrical

activity of the heart may be a Ąrst-order approximation. It is generated by a single electric

dipole with Ąxed position but a time-varying orientation in three-dimensional space (HOLT

et al., 1969; MALMIVUO; PLONSEY, 1995). Based on this assumption, the majority

of the power distribution across multiple leads can be efectively approximated by the

Ąrst three PCs. (LUX et al., 1981). Inspired by the encouraging results obtained with

the model proposed in (BONIZZI et al., 2010; MARCO et al., 2012), a new index for

measuring the organization of AF is introduced (MEO et al., 2018), based on the matrix

factorization model discussed earlier.



50

The Ąrst step in the proposed approach involves automatically segmenting the

TQ intervals, which exclusively contain AA, and storing them in the matrix Y. It consists

in extracting only the ECG segment that preponderantly presents the AF (The algorithm

is illustrated in Fig. 4.1 and detailed in Algorithm 1). After extracting the segments of

interest, we must concatenate them in order to get a data matrix with the AA signal. The

hypothesis is that organized AA can be adequately represented by the single-dipole model.

Accordingly, the multi-lead signal matrix Y is approximated by the 3D subspace spanned

by its Ąrst 3 PCs. This approximation assumes that the majority of the variability in the

observed matrix can be captured by these three PCs. Conversely, more complex patterns

are expected to require a greater number of PCs to provide a more accurate description of

the observed matrix. Finally, the proportion of power that cannot be explained by the

three dominant PCs is referred to as the NDI:

NDI = 1−
∑3

r=1 σ2
r

∑R
r=1 σ2

r

. (4.1)

As explained earlier, the higher the complexity of the underlying AA, the lower the power

ratio explained by the dipole model and the higher the value of NDI.

Figure 4.1 Ű This patient present abnormally short QT intervals. Hindering the TQ-
segmentation.

Source: Elaborated by the author.

The computation of NDI requires the concatenation of at least three TQ

segments, highlighted by red dotted rectangles in the Fig. 4.1 . However, to obtain reliable

outcomes, it is recommended to use ECG segments of up to 12 seconds, as stated in (MEO

et al., 2018).
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4.2 Tensor-Based AF Complexity Index

In this section, we describe the CAGL tensor complexity index to noninvasively

quantify AF complexity. Because of the quasi-periodic nature of AF signals, the atrial

sources can be efectively modeled using (3.10) (STRIDH; SöRNMO, 2001). As mentioned

previously, when these signals are mapped onto Hankel matrices, the rank of these matrices

is equal to the number of poles, resulting from the Vandermonde decomposition (LATH-

AUWER, 2011).

After performing the BTD using CAGL, a challenge remains in selecting which

block H(r)
S
◦mr , corresponds to the atrial activity source in (3.16) model. Measuring the

quality of estimation is challenging due to the unavailability of ground truth. However,

certain characteristics of AA during AF can be utilized to guide the selection of sources. In

our proposed framework, we compute Spectral Concentration (SC), Dominant Frequency

(DF), and kurtosis (ZARZOSO; COMON, 2010; OLIVEIRA; ZARZOSO, 2018; OLIVEIRA;

ZARZOSO, 2019). We consider that among the estimates, only one block carries the AA

source, and the selection is based on which source maximizes the SC, deĄned as:

SC =





1.17fp
∑

fi=0.82fp

PAA(fi)









Fs/2
∑

fi=0

PAA(fi)





−1

, (4.2)

where fp is the value of the DF, deĄned as arg maxfi
PAA(fi), Fs is the sampling frequency,

fi is the discrete frequency and PAA is the power spectrum of the AA signal computed

using WelchŠs method as in (CASTELLS et al., 2005). An AA signal during AF typically

should have a DF between 3 and 9 Hz with high SC. Finally, the kurtosis of the signal in

the frequency domain, acquired by a 4096-point Fast Fourier Transform, is computed as

in (ZARZOSO; COMON, 2010). Since kurtosis measures peakedness (i.e, the degree to

which data values are concentrated around the mean) and sparsity of a distribution, it

consequently provides a quantitative measure of harmonicity of in the frequency domain

of the computed signal. A high kurtosis is thus suggestive of a harmonic signal like AA

during AF.

We identify the rth block that corresponds to the AA from this analysis and

then compute the CAGL complexity index

LrAA
= rank

(

H(rAA)
S

)

.
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5 RESULTS AND DISCUSSION

This chapter presents the results of the conducted analyses. The chapter is

structured as follows: In Section 5.1, we provide the patients summary statistics. In

section 5.2 we present the experimental framework, presenting the details about the

parameter used for each algorithm. Additionally, we present some examples of algorithm

performance, indicating cases where they showed good and poor results in section 5.3.

Afterwards, the computed complexity indices are summarized and assessed in terms of

their evolution throughout the stepwise-CA in section 5.4. Finally, the key Ąndings are

presented in section 5.5, where a negative Pearson correlation between the CAGL and

episodes of AF recurrence is observed. This promising result indicates that patients with

more complex atrial activities experience relapses faster than patients who exhibit more

organized activity, and it may support clinical guidelines.

5.1 AF Database

A group of np = 20 persistent AF patients was enrolled in this study. Written

informed consent was obtained from each participant in accordance with the principles

outlined in the Declaration of Helsinki (World Medical Association, 2013). Their baseline

characteristics are reported in Table 5.1. All patients underwent stepwise CA at the Car-

diology Department of Princess Grace Hospital Center, Monaco. CA ended in procedural

AF termination in all cases. During the intervention the ECG was continuously acquired

at a sampling rate of 977 Hz.

5.2 Experimental Setup

To standardize the assessment of AF complexity evolution throughout the

ablation procedure, we propose a framework dividing the intervention into three stages:

• Initial: represents the baseline, before the procedure.

• Intermediate: after each step including the Ąrst and penultimate steps.

• Outcome: after the last CA step.

Our patient population has a total of 59 ECG records, which are grouped according to

their respective stages. Each ECG is labeled according to its stage (Fig. 5.1). Depending

on the number of steps performed in the CA procedure, each patient may have between
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Table 5.1 Ű Characteristics of the study population: The analysis included a cohort of 20
male patients, among whom seven had arterial hypertension and one patient had diabetes.
The symbols µ and σ represent the mean and standard deviation, respectively. Missing
values (indicated by symbols a and b) were present in two and one instance, respectively,
and were imputed with the mean.

Characteristic µ± σ Units

Age 60.8 ± 9.5 years

Weight 85.6 ± 12.7 kg

Height 177.7 ± 5.9 cm

AF History 68.6 ± 59.6 months

Current AF Episodea 14.2 ± 9.8 months

Left atrium diameterb 44.3 ± 7.4 mm

Left atrium surfaceb 28.0 ± 5.4 cm2

Left ventricular ejection fraction (LVEF) 58.9 ± 13.5 (%) -

Source: Elaborated by the author.

two and Ąve ECG records. For example, a patient with two ECG records would have one

initial and one outcome stage; a patient with Ąve ECG records would have one initial,

three intermediate, and one outcome stage. All ECG records are preprocessed using a

zero-phase forward-backward type-II Chebyshev bandpass Ąlter with cutof frequencies of

0.5 and 40 Hz to suppress high-frequency noise and baseline wandering.

The simulations were conducted on Intel(R) Core(TM) i7-10510U CPU @

1.80GHz/2.30 GHz with 20.0 GB of RAM.

Figure 5.1 Ű The number of steps performed for each patient can vary signiĄcantly,
depending on stepwise CA progression. To standardize the assessment, we present a
framework to organize each ECG record into one of the following stages.

Initial Intermediate Outcome

Baseline, i.e., be-

fore any procedure

After each step, in-

cluding the first and

penultimate steps

After the last CA step

Source: Elaborated by the author.
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5.2.1 NDI

Following the guidelines presented in (MEO et al., 2018), we apply TQ-

segmentation using Ąxed 12-second ECG segments per ablation stage to compute the NDI,

as the method requires suiciently long segments to produce consistent results. First, to

detect accurately the segment TQ intervals, we begin by performing The Pan-Tompkins

algorithm (PAN; TOMPKINS, 1985) to locate the R-wave time instants in lead V1. For the

Q-wave onsets, we subtract by 40 ms from the R peak, representing a typical ventricular

activation time, as in (ZARZOSO et al., 2016). To estimate the T-wave ofsets, we perform

an adapted WoodyŠs method (CABASSON; MESTE, 2008). Finally, the segments were

mean-centered and concatenated. For the implementation of the NDI, Algorithm 1 presents

pseudocode outlining the steps involved.

In section 5.3 we illustrate algorithm performance to compute the complexity

index.

Algorithm 1: NDI Complexity Index Pseudocode
Require: ECG matrix Y

1: r = 2
2: tNDI = 0
3: while tNDI < 12 s do

4: R-wave(r) ← PanTompkins algorithm in lead V1
5: Q-wave(r−1) ← R-wave(r) - 40 ms
6: T-wave(r−1) ← offsets were estimated by an adapted Woody’s method
7: r = r + 1;
8: Segments mean centred
9: X ← Concatenate segmented intervals

10: end while

11: Σ ← Compute PCA(X)

12: NDI = 1−

∑3
r=1 σ2

r
∑R

r=1 σ2
r

Ensure: NDI.

5.2.2 CAGL

For CAGL, after each ablation step of each patient, we Ąnd the QQ segment

with the largest TQ interval in the ECG, and map it into a data tensor as an input to the

CAGL method. Segments length range from 0.72 to 1.42 seconds (1.06 ± 0.20 s).

We downsample the signals by a factor of 10 before applying the tensor de-
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composition in order to reduce its computing time, with no information loss since the

frequency content of interest in AA is below 10 Hz (HOLM et al., 1998).

Example: an observation window with length 1.06 s yields 1037 samples and a direct

row-Hankelization of this matrix results in a tensor of dimensions 519× 519× 12, whose

approximate BTD demands a large computing time. Downsampling leads to a resulting

tensor Y with dimensions 52× 53× 12.

CAGL is applied to the ECG recording after each CA step with a γ-sweeping

procedure, inspired by solution path techniques (HASTIE et al., 2015; GOULART et al.,

2020), by taking 50 equispaced values in the interval [8× 10−4, 0.5× 10−2] and keeping

the last solution. We start the algorithm with R = 6 random blocks and rank Lr = 40,

r = 1, 2, . . . , R as initial guess (GOULART et al., 2020). The task of measuring estimation

quality is challenging since the ground truth is unknown, as discussed previously. We take

into account the parameters used to evaluate AA extraction as detailed in chapter 4. For

the present work, we consider that only one AA source exists and the selection is based on

which source maximizes the SC.

The algorithm 2 shows a pseucode for the CAGL index implementation.

Algorithm 2: CAGL Complexity Index Pseudocode
Require: Data tensor Y, penalty parameter γ, proximal term weight τ , initial point

A(0), B(0), C(0)

1: t = 1;
2: while stopping criteria not met do

3: Estimate A(t) from A(t−1), B(t−1) and C(t−1) via group lasso
4: Estimate B(t) from A(t), B(t−1) and C(t−1) via group lasso
5: for r = 1, . . . , R do

6: L
(t)
r ← rank

(

A
(t)
r (BT

r )
)

7: (A
(t)
r , B

(t)
r )← Cadzow algorithm to enforce Hankel structure

8: end for

9: Estimate C(t) from A(t), B(t) and C(t−1)

10: end while

11: HrAA
← Select Atrial Source (rAA)

12: LrAA
← rank (HrAA

)
Ensure: LrAA

, Â, B̂, Ĉ
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5.3 Real ECG Scenario: AF Complexity

We present four patients results to illustrate both algorithmsŠ performance,

indicating the cases where some constraints may impair the quality of the complexity

estimation. The x symbol present in the patients A and B exams indicate the detected

peaks, i.e, R-waves.

Patient A: The patient presents abnormally short QT intervals in the ECG at all the

CA stages. However, the most severe case is shown in Fig. 5.2, at the initial stage. This

shortened QT interval hampers the TQ-segmentation, therefore, the NDI algorithm fails

to estimate the AA complexity in this case, whereas the CAGL estimates the Hankel

matrix rank equal to 15. NDI is able to estimate the subsequent steps, as shown in

Ągures 5.3 and 5.4. Normally, the QT intervals are expected to have a speciĄc minimal

duration. However, in some cases, they may appear shorter than usual. This observation

can indicate various possibilities, ranging from a normal variation within the patientŠs

cardiac physiology to certain medical conditions, abnormalities, medication efects, or an

underlying heart condition. Further evaluation by a cardiologist is necessary to determine

the exact cause in the speciĄc patientŠs case.

Figure 5.2 Ű Patient A: Initial stage - NDI fails to measure complexity. Top plot: ECG
Lead V1 presenting abnormally short QT intervals and the detected R-waves. Bottom
plot: Hindering the TQ-segmentation. CAGL is 15.
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Figure 5.3 Ű Patient A: Intermediate stage - Even with the abnormally short QT intervals,
we compute the TQ-segmentation successfully. Top plot: ECG Lead V1 presenting
abnormally short QT intervals and the detected R-waves. Bottom plot: The concatenation
result for the Lead V1. NDI = 0.0088, CAGL = 11.
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Figure 5.4 Ű Patient A: Outcome stage - Even with the abnormally short QT intervals, we
compute the TQ-segmentation successfully. Top plot: ECG Lead V1 presenting abnormally
short QT intervals and the detected R-waves. Bottom plot: The concatenation result for
the Lead V1. NDI = 0.0072, CAGL = 11.
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Patient B: The patient presents normal QT intervals, what makes the TQ-

segmentation easier to compute. Both NDI and CAGL algorithms are able to estimate

the AA complexity for all stages (The values are indicated on the Figs. 5.5 and 5.6). We

can see that as the ablation was performed, the complexity index indicated a decrease on

the AA complexity.

Figure 5.5 Ű Patient B: Initial stage - the exam presents normal QT intervals and we
compute the TQ-segmentation successfully. Top plot: ECG Lead V1 presenting normal QT
intervals with visible AF signal and the detected R-waves. Bottom plot: The concatenation
result for the Lead V1. NDI = 0.00542, CAGL = 25.
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Patient C: The CAGL estimates 5 sources at the initial stage, where the 3rd

block presents the AA signal, as shown in Fig. 5.7. The comparison between the estimated

source and the ECG Lead V1 illustrates how accurate the decomposition is performed (see

Fig. 5.8). In the outcome stage, 4 sources are estimated, where the 4th block presents the

AA signal, as shown in Fig. 5.9. Once more, the plot of Fig. 5.10, the estimated source vs.

the ECG Lead V1, illustrates how accurate the decomposition is performed.



59

Figure 5.6 Ű Patient B: Outcome stage - the exam presents normal QT intervals and we
compute the TQ-segmentation successfully. Top plot: ECG Lead V1 presenting normal QT
intervals with visible AF signal and the detected R-waves. Bottom plot: The concatenation
result for the Lead V1. NDI = 0.029, CAGL = 6.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.6

-0.4

-0.2

0

0.2

m
V

0 1 2 3 4 5 6

Time (s)

-0.2

-0.1

0

0.1

0.2

m
V

Source: Elaborated by the author.

Figure 5.7 Ű Patient C: Initial Stage - each plot represents a source estimated by CAGL.
AA is present 3rd block.
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Figure 5.8 Ű Patient C: Initial Stage - ECG Lead V1 presenting a heartbeat and the
estimated AA source. Parameters: NDI = 0.0542, CAGL = 25, SC = 63.46, DF = 6.20,
P(r) = 1.07e-03, kurtosis = 126.63.
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Figure 5.9 Ű Patient C: Outcome Stage - CAGL estimates 4 sources, AA is present 4th
block.
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Figure 5.10 Ű Patient C: Outcome Stage - ECG Lead V1 presenting a heartbeat and the
estimated AA source. Parameters: NDI = 0.0282, CAGL = 6, SC = 81.52, DF = 5.49,
P(r) = 3.77e-04, kurtosis = 333.52.
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Patient D: The CAGL estimates 6 sources at the initial stage, where the

5th block presents the AA signal, as shown in Fig. 5.11 In the present case, both NDI

and CAGL algorithms can estimate AA complexity in the intermediate stage. However,

CAGL did not present a good performance to estimate the source, see Fig. 5.12. Although

the visual representation deviates from the expected instinctive pattern of FA, the other

parameters and even the AA signal representation in frequency domain (Fig. 5.13) reveals

results commonly associated with atrial source.

Figure 5.11 Ű Patient D: Intermediate Stage - CAGL estimates 6 sources, AA is present
5th block.
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Figure 5.12 Ű Patient D: Intermediate Stage - ECG Lead V1 presenting a heartbeat and
the estimated AA source. Parameters: NDI = 0.0529, CAGL = 15, SC = 90.20, DF =
5.49, P(r) = 4.14e-05, kurtosis = 272.49.
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Figure 5.13 Ű Patient D: Intermediate Stage - AA estimated signal in the frequency
domain acquired by a 4096-point Fast Fourier Transform. The indicated parameters and
the plot presents AA source characteristics.
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5.4 Complexity Evolution During CA

To assess the impact of ablation on AF complexity, Fig. 5.14 presents violin

plots of the computed indices grouped by stage for the two non-invasive indices. The

violin plot is a data visualization that combines aspects of a box plot and kernel density

plot. It displays the distribution of a continuous variable or numeric data across categories

or groups. The width of each violin corresponds to the data frequency in that category.

A white dot or central line represents the median. The width of the violin at any point

indicates the density or concentration of data. Wider sections indicate higher density,

while narrower sections indicate lower density. This plot facilitates intuitive comparison of

variable distributions across groups, revealing central tendency, spread, and skewness. It

aids in identifying group diferences, similarities, outliers, and unusual patterns.

The evolution of complexity for both NDI and CAGL is shown in Fig. 5.14.

The indices decrease throughout the stages of cardiac ablation: initial (before ablation),

intermediate (after each step, including the Ąrst and penultimate steps), and outcome

(after the last step).

This assessment includes the entire population under study, comprising 20

patients. The symbols np and nr represent the number of patients and ECG records

contributing to each stage, respectively. It is important to highlight that NDI failed to

estimate the complexity of three ECG segments, as indicated by the smaller nr values

shown in the violin plot. As discussed in Section 5.3, patients with very short QT intervals

or other cardiac abnormalities that impair TQ-segmentation may result in performance

loss for NDI.

In contrast to CAGL, which can compute the decomposition for all 20 patients,

it is important to emphasize that both complexity indices decrease throughout the CA

procedure, reaching their lowest values at the end of the intervention (outcome). While

both methods demonstrate a trend towards more organized signals as the procedure

approaches AF termination, CAGL exhibits a notable advantage with a more signiĄcant

decrease in complexity per stage
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Figure 5.14 Ű Evolution of NDI (left) and CAGL (right) complexity indices along CA stages:
initial (before ablation), intermediate (after each step including Ąrst and penultimate
steps); outcome (after the last step). Symbols np and nr represent the number of patients
and ECG records contributing to each stage, respectively.
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5.5 AF Recurrence

To assess the relationship between the features of the population, we compute

the data correlation matrix. The Pearson correlation coeicients (r) are arranged as a

heatmap for all available features.

A correlation matrix is a table that summarizes the strength and direction of

relationships between multiple variables. Each cell in the matrix represents the correlation

coeicient between two variables, ranging from −1 to +1. Negative values indicate a

negative correlation, positive values indicate a positive correlation, and 0 indicates no

correlation.

A heatmap is a graphical representation of the correlation matrix using color

gradients. It visually displays the correlation patterns between variables, with colors

representing the strength and direction of the correlation. Cool colors like blue represent

negative correlations, while warm colors like red represent positive correlations.

Correlation matrices and their heatmaps are valuable tools for analyzing rela-

tionships and identifying patterns in data. They help identify variables that are strongly or

weakly correlated and reveal signiĄcant positive or negative relationships among variables.

The correlation matrix heat map shown in Fig. 5.15 shows that the correlation

between the initial rank estimated by CAGL, i.e., before patients had undergone any

CA procedures, and AF recurrence, i.e., the time that each patient remained in sinus
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rhythm before AF relapse is −0.63. A statistical relevant value of negative correlation

well illustrated by its scatter plot and linear regression in Fig. 5.17 seems to indicate an

inĆuence of initial rank on AF recurrence.

Figure 5.15 Ű Correlation matrix plot comparing the complexity indices at the initial stage.
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Neither complexity index shows a relevant correlation with the outcome stage

results, as indicated in Fig. 5.16.
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Figure 5.16 Ű Correlation matrix plot comparing the complexity indices at the outcome
stage.
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We are interested in the relationship between pre-ablation AA complexity

and AF recurrence, which refers to the time elapsed between the end of the procedure

and the recurrence of the arrhythmia. In the scatter plots of Fig. 5.17, CAGL exhibits

a statistically signiĄcant Pearson correlation (r = −0.63, p = 0.005). This negative

correlation is consistent with the concept of complexity: the more complex the AF is

before ablation, the shorter the period during which the patient remains free of arrhythmia

before recurrence after ablation. On the other hand, the matrix-based index does not show

a signiĄcant correlation (r = −0.14, p = 0.591).
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Figure 5.17 Ű Linear Regression
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Finally, it is important to note that two patients lacked information regarding

AF recurrence after the CA procedure, as they dropped out of the study. Consequently,

they were excluded from this assessment. For these patients, CAGL complexity indices

were 12 and 18, whereas NDI complexity index was 0.1135 for the Ąrst patient, but it was

not available for the second patient.
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6 CONCLUSION

This work introduces a novel complexity index for noninvasive measurement of

AF complexity utilizing tensor techniques. The proposed index is based on the CAGL

algorithm, which employs Hankel-based BTD. This algorithm enables the simultaneous

extraction of the AA signal and quantiĄcation of AF complexity, even from very short

ECG recordings (1.06 ± 0.20 s).

Comparisons with the NDI complexity index revealed limitations in the accuracy

of this matrix-based method. Nevertheless, both were able to characterize AA activity,

particularly in the cases for ECG recordings with short QT intervals. This is due to the

TQ-concatenation technique, which the Hankel-BTD model does not depend on, what

becomes an advantage to the tensor-based index in very complex/disorganized scenarios.

The conducted experiments on a database comprising 20 patients with persis-

tent AF highlighted the impact of each step in stepwise-CA on AF complexity. It was

observed that the CAGL algorithm exhibited a more signiĄcant and noticeable decrease in

complexity throughout the ablation procedure, indicating its potential as an efective tool

for quantifying changes in AA complexity during ablation.

The assessment of the correlation between pre-ablation complexity and AF

recurrence revealed a statistically signiĄcant negative correlation for the CAGL algorithm.

This suggests that patients with higher complexity in their AA before ablation experienced

a shorter duration of freedom from arrhythmia before AF recurrence. The NDI algorithm,

however, did not exhibit a signiĄcant correlation in this regard.

This Ąnding suggests that the rank parameter derived from the BTD could

potentially enhance the outcomes of CA procedures and improve the patient care. Overall,

our Ąndings suggest that the tensor-based index has the potential to assist in clinical

decisions, as it presents a correlation with CA success before the intervention. In addition,

the CAGL approach has the potential to guide CA in real-time by quantifying the overall

AF complexity and organization, and could prove useful to deĄne more efective ablation

protocols.

Overall, this work highlights the potential of complexity indices, particularly

the CAGL algorithm, in assessing AF complexity and predicting AF recurrence after

ablation. However, further research and validation are necessary to better understand and

utilize these complexity indices in clinical practice. The Ąndings of this study contribute
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to the growing body of knowledge in the Ąeld of AF complexity assessment and may have

implications for improving patient outcomes and optimizing treatment strategies for AF

patients undergoing ablation procedures.

6.1 Main Contributions

The tensor approach is shown to:

1. evolve in coherence with the decrease in complexity expected along the diferent

steps of the intervention;

2. correlate signiĄcantly with AF recurrence after the intervention. In addition, the

proposed index can be computed from ECG records as short as a single heartbeat,

thus ofering the possibility of noninvasively monitoring catheter ablation in real

time.

An outcome of this work resulted on a paper named ŞDécomposition tensorielle

en termes blocs contrainte pour la mesure non invasive de la complexité de la fibrillation

atriale persistanteŤ in the XXIXème Colloque Francophone de Traitement du

Signal et des Images (GRETSI 2023), accepted for publication and presentation.

6.2 Further Work

This study acknowledges the challenges posed by the limited number of patients

and the heterogeneity of steps across CA intervention. To provide a more comprehensive

step-by-step complexity assessment, future work should focus on increasing the number of

patients and implementing a more homogeneous CA approach for all participants.

Comparing the tensor-based index with other state-of-the-art algorithms is

very relevant to reinforce its relevance among the methods that extract or measure AF

complexity.

It is relevant to consider scenarios that involve multiple atrial sources in order

to address the limitations of the present model, which assumes a single source. Ignoring

the presence of multiple sources may result in the omission of relevant information. By

addressing this limitation and accounting for multiple atrial sources, it becomes possible

to achieve a more accurate estimation of the AA and a comprehensive measurement of AF

complexity. This improvement is crucial for enhancing our understanding of the underlying
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mechanisms and dynamics of AF.

Explore other relevant factorization and optimization methods: e.g., perform

the CAGL with the Alternating Direction Method of Multipliers (ADMM), that solves

convex optimization problems by breaking them into smaller pieces. It has recently found

wide application in a number of areas.

Additionally, incorporating machine learning techniques could enhance the

analysis of AF complexity. Machine learning algorithms, particularly those specialized in

pattern recognition, can be trained on an expanded dataset to identify subtle patterns

and correlations that may not be evident through traditional analysis, especially given the

limited number of patients.

By addressing these aspects, a more robust and detailed understanding of the

complexity dynamics during the procedure can be achieved.
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