

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ZOOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

IURY LIMA ARAGÃO MAGALHÃES

ANÁLISE COMPARATIVA DO PROTEOMA DO MÚSCULO *LONGISSIMUS DORSI* EM OVINOS DA RAÇA MORADA NOVA E SANTA INÊS ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA NÃO PENEIRADO E FARELO DE MAMONA PENEIRADO

FORTALEZA 2021

IURY LIMA ARAGÃO MAGALHÃES

ANÁLISE COMPARATIVA DO PROTEOMA DO MÚSCULO *LONGISSIMUS DORSI* EM OVINOS DA RAÇA MORADA NOVA E SANTA INÊS ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA NÃO PENEIRADO E FARELO DE MAMONA PENEIRADO

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Zootecnia, Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Mestre em Zootecnia. Área de Concentração: Produção e Reprodução Animal.

Orientador: Prof. Dr. Arlindo de Alencar Araripe Noronha Moura.

Coorientador: Dr. Fábio Roger Vasconcelos.

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Sistema de Bibliotecas Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M166a Magalhães, Iury Lima Aragão.

Análise comparativa do proteoma do músculo Longissimus dorsi em ovinos da raça Morada Nova e Santa Inês alimentados com farelo de soja e farelo de mamona / Iury Lima Aragão Magalhães. – 2021. 81 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Zootecnia, Fortaleza, 2021. Orientação: Prof. Dr. Arlindo de Alencar Araripe Noronha Moura. Coorientação: Prof. Dr. Fábio Roger Vasconcelos.

1. Proteína. 2. Pequenos ruminantes. 3. Ricina. 4. Proteômica. I. Título.

CDD 636.08

IURY LIMA ARAGÃO MAGALHÃES

ANÁLISE COMPARATIVA DO PROTEOMA DO MÚSCULO *LONGISSIMUS DORSI* EM OVINOS DA RAÇA MORADA NOVA E SANTA INÊS ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA NÃO PENEIRADO E FARELO DE MAMONA PENEIRADO

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Zootecnia, Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Mestre em Zootecnia. Área de Concentração: Produção e Reprodução Animal.

Aprovado em 31/05/2021.

BANCA EXAMINADORA

Prof. Dr. Arlindo de Alencar Araripe Noronha Moura (Orientador) Universidade Federal do Ceará (UFC)

> Prof. Dr. Maurício Fraga Van Tilburg Universidade Federal do Semi-Árido (UFERSA)

Profa. Dra. Leda Maria Costa Pereira Universidade Estadual do Ceará (UECE)

Prof. Dr. Fagner Cavalcante Patrocinio dos Santos Universidade Estadual do Ceará (UECE)

Deus. Meus pais, Alzira e Aragão. Minha família. Dedico.

AGRADECIMENTOS

Primeiramente, a Deus, por ter me dado saúde quando enfermo, força quando fraquejei, paz quando aflito, animo quando deprimido, equilibro quando ansioso, aptidão quanto inapto. Obrigado por toda Sua glória.

À Universidade Estadual do Ceará, pelo apoio durante o período de graduação em Medicina Veterinária, principalmente por seu corpo docente e funcionários que nos apoiam sempre que possível.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), por conceder o financiamento do projeto e a manutenção da bolsa de mestrado.

Ao Curso de Pós Graduação em Zootecnia da UFC e à sua coordenação por conceder a oportunidade e a organização de tudo, em especial a Francisca e a atual coordenadora Profa. Elzania Sales Pereira.

Ao meu orientador, Dr. Arlindo Moura, por toda sua paciência, dedicação e atenção com os seus orientados.

Ao meu coorientador, Dr. Fábio Roger, pelos ensinamentos laboratoriais, sugestões, paciência e didática empregada em nosso aprendizado.

Aos membros da banca, Dr. Arlindo Moura, Dr. Maurício Van Tilburg, Dra. Leda Pereira e Dr. Fagner Cavalcante pela honra de compartilharem comigo os seus conhecimentos enriquecendo este trabalho.

A toda equipe do Laboratório de Fisiologia Animal da Zootecnia (LFA), em especial para Bruna Félix e Ylana Galiza pela companhia e suporte nesse período.

A minha base familiar, mãe e pai, por todo suporte que me foi dado para que pudesse realizar meus objetivos.

A todos os animais que fizeram parte dos meus estudos e serviram de inspiração para seguir minha carreira.

A toda comunidade científica que trabalhou arduamente nesse período crítico de pandemia para que fosse possível a criação de uma vacina eficaz.

Obrigado!

"A fé em Deus nos faz crer no incrível, ver o invisível e realizar o impossível.".

RESUMO

A dieta pode influenciar tanto no desempenho do animal quanto na expressão de proteínas musculares, impactando na qualidade da carne. No presente estudo, perfis proteômicos do músculo Longissimus dorsi de ovinos machos das raças Morada Nova e Santa Inês alimentados com três dietas distintas: contendo farelo de soja (FS), farelo de mamona dessolventizado (FMD) e farelo de mamona dessolventizado peneirado (FMDP) foram avaliados utilizando eletroforese unidimensional SDS-PAGE, análises computacionais, seguido de LC-MS e análises de ontologia gênica. O objetivo deste trabalho foi realizar uma análise comparativa entre os proteomas obtidos das análises do músculo L. dorsi nas três diferentes composições dietéticas. Os dados de desempenho dos animais foram publicados anteriormente, sem diferenças significativas (p <0,05) para ganho de peso e conversão alimentar. Nos perfis proteômicos, a raça Santa Inês alimentada com FMDP apresentou aumento na expressão de proteínas ligadas à via glicolítica (CMK, ENO3, PGKA1) e proteínas estruturais (ACTA1) na banda 11 (52 kDa) que atuam diretamente em alterações post mortem que podem influenciar a qualidade da carne. Para raça Morada nova, foram detectadas 22 bandas e 70 proteínas, para raça Santa Inês, foram detectadas 25 bandas e 68 proteínas. Análises in-silico foram feitas utilizando a base de dados STRING 10.0 para as proteínas da banda diferencial. Para concluir, de acordo com a metodologia utilizada neste trabalho, a dieta com inclusão do FMDP apresentou discreta alteração no perfil proteico do músculo L. dorsi.

Palavras Chaves: Ricinus communis; ricina; pequenos ruminantes; proteômica.

ABSTRACT

Diet can influence animal performance and muscle protein expression, impacting meat quality. In the present study, proteomic profiles of the Longissimus dorsi muscle of Morada Nova and Santa Inês male sheep fed with three different diets: containing soybean bran (FS), detoxified castor bean bran (FMP) and detoxified sifted castor bean bran (FMDP) were evaluated using one-dimensional SDS-PAGE electrophoresis and computational analyses, followed by LC-MS and gene ontology analyses. The objective of this work was to carry out a comparative analysis between the proteomes obtained from the analyzes of the L. dorsi muscle in the three different dietary compositions. Animal performance data were previously published, showing no significant differences (p < 0.05) in weight gain and feed conversion. In proteomic profiles, the FMDP-fed Santa Inês breed showed an increase in the expression of proteins linked to the glycolytic pathway (CMK, ENO3, PGKA1) and structural proteins (ACTA1) in band 11 (52 kDa) that act directly on post mortem alterations, which can impact on meat quality. For the Morada Nova breed, 22 bands and 70 proteins were detected, for the Santa Inês breed, 25 bands and 68 proteins were detected. Analyzes in silico were performed using the STRING database 10.0 for differential band proteins. In conclusion, according to the methodology used in this work, the diet with inclusion of FMDP showed a slight alteration in the protein profile of the L. dorsi muscle.

Key-words: Ricinus communis; ricin; small ruminants; proteomics.

LISTA DE FIGURAS

Figura 1 - Mecanismo de citotoxicidade da ricina				
Figura 2 - Ilustração anatômica do músculo L. dorsi				
Figura 3 - Exemplos de carne <i>PSE</i> , Normal e <i>DFD</i>	25			
Figura 4 - Análise proteômica botton up por: (a) abordagens baseadas em gel e (b) sen	1			
gel	. 29			
Figura 5 - Análise proteômica tipo <i>top-down</i>	29			
Figura 6 - Gel de eletroforese SDS-PAGE 12,5% de proteínas do músculo L. dorsi de	9			
ovinos machos da raça Morada Nova	40			
Figura 7 - Gel de eletroforese SDS-PAGE 12,5% de proteínas do músculo L. dorsi de	9			
ovinos machos da raça Santa Inês	. 40			
Figura 8 - Expressão diferencial das bandas de proteínas do músculo L. dorsi de ovinos	S			
da raça Santa Inês. As barras representam a intensidade média (Média ± SEM) das	3			
bandas expressas em cada tratamento. FS: Farelo de soja; FMD:Farelo de mamona	ì			
dessolventizado; FMDP: Farelo de mamona dessolventizado peneirado. As letras (a,b)			
representam o efeito do tratamento (p<0,05)	41			
Figura 9 - Rede de interação das proteínas diferenciais CMK, ACTA1, ENO3, PGK1 e	9			
das 10 proteínas de maior interação do músculo L. dorsi de Ovis aries da raça Santa	ì			
Inês, analisadas pelo STRING software	. 43			
Figura 10 - Funções moleculares, processos biológicos, componentes celulares e classes	3			
das proteínas do músculo L. dorsi de ovinos da raça Morada Nova identificadas po	r			
espectrometria de massa ESI-Q-TOF. Os dados de proteína foram analisados utilizando)			
o software GeneOntolony Resource Panther TM	4			
16.0	. 44			
Figura 11 - Funções moleculares, processos biológicos, componentes celulares e classes	3			
de proteínas do músculo L. dorsi de ovinos da raça Santa Inês identificadas por	r			
espectrometria de massa ESI-Q-TOF. Os dados de proteína foram analisados utilizando)			
o software GeneOntolony Resource Panther ^{TN}	1			
16.0	. 44			

LISTA DE TABELAS

Tabela 1 - Composição alimentar das dietas experimentais utilizadas no experimento	32
Tabela 2 - Desempenho dos ovinos para ganho de peso e conversão alimentar	
alimentados com FS, FMP e FMDP	39

LISTA DE ABREVIATURAS E SIGLAS

μg	micrograma
μL	microlitro
1D	unidimensional
CaCl ₂	Cloreto de Cálcio
CB-1A	Castor Bean Allergen
DFD	Dark, firm and dry
FMD	Farelo de mamona dessolventizado
FMDP	Farelo de mamona dessolventizado peneirado
FS	Farelo de soja
g	grama
h	hora(s)
kDa	kiloDalton
kg	quilograma
М	molar
mA	miliamperagem
mAu	miliunidade de absorbância
mg	miligrama
min	minuto
mL	mililitro
mM	milimolar
MS/MS	Espectometria de massa em tandem
NaCl	Cloreto de sódio
PAGE	eletroforese em gel de poliacrilamida
pН	potencial hidrogeniônico
PSE	Pale, soft and exudative
RCA	Ricinus communis agglutinin
SDS	dodecil-sulfato de sódio
Tris	Tris (hidroximetil) aminometano
V	Volts
W	Watt

SUMÁRIO

1	INTRODUÇÃO	15
2	REVISÃO DE LITERATURA	18
2.1	Ovinocultura no nordeste brasileiro	18
2.2	Farelo de mamona	19
2.3	Músculo <i>L. dorsi</i>	22
2.4	Impacto do pH na qualidade carne	24
2.5	Proteínas do músculo <i>L. dorsi</i>	25
2.6	Análises proteômicas do tipo <i>Bottom-up</i> e <i>Top-down</i>	28
3	MATERIAIS E MÉTODOS	31
3.1	Design experimental	31
3.2	Animais e localização do experimento	31
3.3	Tratamentos e coleta das amostras	31
3.4	Extração das proteínas	34
3.5	Eletroforese unidimensional (SDS-PAGE) e análises computacionais	35
3.6	Digestão das proteínas e espectrometria de massa (Eletrospray ionization	
	Quadrupole – Time of Flight / ESI-Q-TOF)	36
3.7	Análises estatísticas	38
3.8	Gene ontology, análises dos clusters funcionais e rede de interações	
	proteína-proteína <i>in silico</i>	38
4	RESULTADOS E DISCUSSÃO	38
5	CONCLUSÃO	47
	REFERÊNCIAS	48
	ANEXO A - PROTEÍNAS DE <i>LONGISSIMUS DORSI</i> DE OVINOS DA	
	RAÇA MORADA NOVA ALIMENTADOS COM FARELO DE SOJA,	
	FARELO DE MAMONA DESSOLVENTIZADO E FARELO DE	
	MAMONA DESSOLVENTIZADO PENEIRADO. AS PROTEÍNAS	
	FORAM SEPARADAS POR ELETROFORESE UNIDIMENSIONAL	
	(SDS-PAGE) E IDENTIFICADAS POR ESPECTROMETRIA DE	
	MASSAS (ESI-Q- TOF)	53

RAÇA SANTA INÊS ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA DESSOLVENTIZADO DE FARELO DE MAMONA DESSOLVENTIZADO PENEIRADO. AS PROTEÍNAS FORAM SEPARADAS POR ELETROFORESE UNIDIMENSIONAL (SDS-PAGE) E IDENTIFICADAS POR ESPECTROMETRIA DE MASSAS (ESI-Q-TOF).....

68

1. INTRODUÇÃO

A semente de mamona (*Ricinus communis L.*) tem sido utilizada como matériaprima para a criação de uma fonte de combustível não fóssil de maneira econômica e sustentável, o biodiesel (RODRIGUES, 2007). Além disso, o óleo derivado da semente de mamona tem muitas aplicações na indústria de limpeza, cosmética e farmacêutica (GOWDA *et al.*, 2009; SÁNCHEZ *et al.*, 2011; TUNARU *et al.*, 2012). Durante o processo de extração do óleo de mamona, uma grande quantidade de matéria orgânica é produzida, dado que, para cada 2,2 toneladas de matéria-prima utilizada, são produzidas uma tonelada de óleo de mamona e 1,2 toneladas de resíduos de alto teor proteico (MELO *et al.*, 2008). Essa matéria orgânica pode ser utilizada na dieta de animais como um alimento alternativo, contudo, devido às limitações relacionadas à toxicidade, seu uso para consumo animal é evitado e sua utilização é direcionada para fertilização orgânica e condicionador de solos (WORBS *et al.*, 2011).

A toxicidade dos subprodutos da mamona acontece devido à presença em altas concentrações das proteínas ricina, *Ricinus communis aglutinina* (RCA) e do complexo alergênico *Castor Bean Allergen* (CB-1A). A ricina possui alta toxicidade (GARDNER *et al.*, 1960) e é uma proteína constituída por duas cadeias polipeptídicas (A e B). A cadeia A é uma proteína catalítica inativadora de ribossomos classe II (RIP II) e a cadeia B é uma lectina com especificidade para galactose (LORD; SPOONER, 2011; ROY *et al.*, 2015). A limitação do uso de ricina em dietas animais justifica-se pela atividade metabólica. A cadeia B liga-se aos carboidratos que estão na membrana celular, favorecendo a fagocitose. Entrando na célula, as cadeias A e B são conduzidas ao complexo de Golgi por meio de vesículas endocíticas e, posteriormente, sofrem um transporte retrógrado até o retículo endoplasmático (AUDI *et al.*, 2005). No retículo endoplasmático, a cadeia A separa-se da cadeia B e, então, é translocada para o citosol,

inibindo a atividade ribossomal através da remoção dos resíduos de adenina da posição A4324 do rRNA 28S em mamíferos, que se tornam incapazes de realizar a síntese proteica (WALSH; DODD; HAUTBERGUE, 2013).

A relação de toxicidade entre a ricina e a RCA pode variar de 100 a 2000 vezes, sendo a citotoxicidade da ricina tão elevada a ponto que uma cadeia A pode ocasionar a morte celular devido à destruição dos ribossomos a uma velocidade superior à sua capacidade de renovação (OLSNES, S.; KOZLOV, 2001; WORBS, 2011).

Estudos indicam que a dose letal de ricina em humanos varia de 5 a 10 ug/kg de peso corporal nas vias de administração injetável e inalatória, enquanto, por via oral, essa dose foi de 1 a 20 mg/kg de peso corporal (KREUZER; WEST; EHLERINGER, 2013). O valor da dose letal quando há ingestão varia de acordo com a sensibilidade do animal, de forma que nos frangos a dose letal varia de 140 a 170 mg/kg de peso corporal, em suínos a dose fica entre 13 a 65 mg/kg de peso corporal, nos coelhos a dose é de 9 a 45 mg/kg de peso corporal. Os equinos são os mais sensíveis dentre as espécies estudadas, com dose letal entre 1 a 5 mg/kg de peso corporal (GARLAND; BAILEY, 2006).

Os ruminantes apresentam maior tolerância à exposição de derivados de mamona na alimentação. A inclusão da torta de mamona sem tratamento para detoxificação na dieta de ovinos não apresentou perdas expressivas de consumo e digestibilidade para um nível de inclusão de 8% (FURTADO *et al.*, 2012). Foi relatado o uso da torta de mamona não detoxificada na dieta de caprinos jovens por longos períodos, em uma inclusão de 15% da dieta, substituindo a torta de soja sem comprometer as características da carne. A justificativa de não haver perdas no desempenho animal pode ser atribuído a baixas concentrações de ricina na dieta total ou devido à degradação durante o metabolismo animal (OLIVEIRA *et al.*, 2015). Baseado

nisso, algumas técnicas para detoxificação por métodos químicos (utilização de compostos alcalinos), térmicos (autoclavação) e solventes orgânicos têm sido utilizadas para inativação da ricina no farelo de mamona, tornando mais segura sua inclusão como insumo em dietas para ruminantes (OLIVEIRA *et al.*, 2010; ARAÚJO, 2019; POMPEU, 2020).

As investigações proteômicas desempenham um papel importante na pesquisa de qualidade da carne, pois o objetivo final da criação de animais é a produção de proteína de alta qualidade para consumo humano (NAIR *et al.*, 2016). Estudos feitos por Desai *et al.* (2016) listaram proteínas presentes em carnes do tipo pálidas, moles e exudativas (*PSE-like*) de frango. Demonstraram que quando elevadas, enzimas que participam da via glicolíticas (fosfoglicerato quinase, beta-enolase, piruvato quinase) entre outras proteínas ligadas ao metabolismo energético (creatina quinase tipo-M, subunidades alfa da proteassoma, malato desidrogenase) podem gerar também uma rápida queda do pH, consequentemente, favorecendo a produção de carnes *PSE-like*.

A cor da carne é um importante atributo de qualidade que influencia as decisões de compra dos consumidores no ponto de venda (MANCINI; HUNT, 2005). Os consumidores costumam considerar a cor vermelha-cereja da carne fresca como um indicador confiável de salubridade. Durante a exibição no varejo, as carnes vermelhas frescas sofrem descoloração, resultando em perda de valor devido à redução de preço (SMITH *et al.*, 2000)

Desta forma, o objetivo deste trabalho é estabelecer uma análise comparativa entre os perfis proteicos do músculo *Longissimus dorsi* em ovinos da raça Santa Inês e Morada Nova alimentados com farelo de soja (FS), farelo de mamona dessolventizado (FMD) e farelo de mamona dessolventizado peneirado (FMDP).

2. REVISÃO DE LITERATURA

2.1. Ovinocultura no Nordeste brasileiro

No Brasil, a procura por derivados da ovinocultura vem apresentando notável crescimento. Em contexto nacional, a população de ovinos se aproxima de 20 milhões. No Nordeste brasileiro, essa população é estimada em mais de 13 milhões. (IBGE, 2019). Contudo, apesar do Nordeste ter a maior parte da população de ovinos, ainda se apresenta financeiramente frágil, pois está amplamente ligada à criação de subsistência familiar (SEBRAE, 2005).

Na região Nordeste, a criação predominante de ovinos pertence às raças deslanadas, que são mais adaptadas ao clima tropical, pois apresentam uma maior rusticidade para produção de carne e pele (CARVALHO *et al.*, 2016), sendo considerada uma importante atividade pecuária no contexto socioeconômico, pois para pequenas e médias propriedades torna-se possível integrar a criação de ovinos a outras espécies e culturas dentro da mesma propriedade (EMERECIMENTO *et al.*, 2016).

Embora ainda não represente uma grande fração econômica no agronegócio brasileiro, o consumo de carne ovina tem apresentado um grande crescimento em todas as regiões do país, em função do aumento da procura pelos produtos cárneos ovinos nos grandes centros urbanos (SOUZA, 2009). O desenvolvimento da pecuária é atribuído a uma série de fatores que levam a mudanças no sistema de produção. Entre esses fatores, está a crescente demanda por produtos de origem animal (CEPEA, 2019).

O cenário da ovinocultura atual é resultado da modernização da cadeia produtiva nos últimos anos. Os avanços no nível tecnológico dos sistemas de produção voltados ao melhoramento genético, nutrição e saúde aumentaram não só a produtividade, mas também a qualidade, a competitividade e a abrangência da ovinocultura no mercado consumidor (LIRA *et al.*, 2017). O clima semiárido é predominante da região nordeste, este se caracteriza por um período chuvoso, onde há abundância de alimentos com qualidade nutritiva das pastagens. Seguido de um período onde a seca é progressiva e há uma redução no suporte das pastagens, caindo não apenas sua disponibilidade, mas também a qualidade devido à lignificação (ARAUJO FILHO *et al.*, 1998).

Uma estratégia para melhorar o desempenho dos rebanhos de pequenos ruminantes do Nordeste com baixas taxas de produção seria o manejo nutricional adequado, principalmente em períodos de seca com escassez de ração, utilizando sistemas de produção intensivos, com confinamento ou semiconfinamento. Portanto, é necessário investigar a viabilidade da inclusão de fontes alternativas de alimentos e quantificar a resposta animal em termos de produção e economia, garantindo uma melhor rotatividade do sistema de carne ovina na região (CUNHA *et al.*, 2008).

2.2. Farelo de mamona

A mamona (*Ricinus communis L.*) é uma planta da família Euphorbiaceae que produz sementes ricas em óleo glicídico, solúveis em álcool (SANTOS *et al.*, 2013). São sementes oleaginosas de importância econômica e social para regiões áridas e semiáridas, demonstrando tolerância à seca, com uma exigência mínima de precipitação pluviométrica de 400 a 500 mm para desenvolvimento (TAVORA, 1982). As sementes têm diversos usos industriais, incluindo casca, farelo e torta de mamona, fornecendo rendimento de aproximadamente 45% de óleo e 55% de subproduto (MELO *et al.*, 2009).

No Brasil, a mamona é utilizada para extração de óleo e fabricação do biodiesel (VIEIRA *et al.*, 2011). Os subprodutos da mamona derivados da fabricação do biodiesel tem potencial nutricional para ser utilizado na nutrição de ruminantes. A cadeia

produtiva do biodiesel gera coprodutos que podem ser utilizados como alimentos alternativos nas dietas dos animais. (WORBS *et al.*, 2011)

As principais formas do uso da mamona nas dietas animais são a torta e o farelo, sendo a principal diferença entre elas o extrato etéreo que possui um teor reduzido quando na forma de farelo, sendo mais facilmente extraído por meio da utilização de solventes orgânicos. A torta da mamona é obtida por meio de um processo mecânico de prensagem das sementes para extração do óleo. Contudo, a torta ainda possui teores residuais de óleo (7% a 12%). O farelo de mamona, por outro lado, é obtido pela extração do óleo por um processo químico, contendo um teor menor de óleo (cerca de 1%) (SEVERINO *et al.*, 2006).

Contudo, esses coprodutos derivados da extração do óleo da mamona possuem três compostos que são tóxicos aos animais: ricina, ricinina e Castor Bean Allergen (CB-1A). A ricina possui alta toxicidade (GARDNER et al., 1960) e é uma proteína constituída por duas cadeias polipeptídicas (A e B). A cadeia A é uma proteína catalítica inativadora de ribossomos classe II (RIP II) e a cadeia B é uma lectina com especificidade para galactose (LORD; SPOONER, 2011; ROY et al., 2015). A limitação do uso de ricina em dietas animais deve-se à sua atividade metabólica. A cadeia B se liga aos carboidratos presentes na membrana celular, favorecendo a fagocitose. Entrando na célula, as cadeias A e B são conduzidas ao complexo de Golgi através de vesículas endocíticas e, posteriormente, sofrem um transporte retrógrado até o retículo endoplasmático (AUDI et al., 2005). No retículo endoplasmático, a cadeia A se separa da B e é translocada para o citosol, inibindo a atividade ribossomal pela remoção dos resíduos de adenina da posição A4324 do rRNA 28S em mamíferos, tornando-os de realizar a síntese proteica (WALSH; incapazes DODD; HAUTBERGUE, 2013). Esse mecanismo de ação foi ilustrado na figura 1.

A relação de toxicidade entre a ricina e a RCA pode variar de 100 a 2000 vezes, sendo a citotoxicidade da ricina tão elevada a ponto de uma cadeia A poder ocasionar a morte celular devido à destruição dos ribossomos a uma velocidade superior à qual eles possam se renovar (OLSNES, S.; KOZLOV, 2001; WORBS, 2011).

Estudos indicam que a dose letal de ricina em humanos varia de 5 a 10 µg/kg de peso corporal nas vias de administração injetável e inalatória, enquanto por via oral essa dose foi estimada entre 1 e 20 mg/kg de peso corporal (KREUZER; WEST; EHLERINGER, 2013). O valor da dose letal, quando há ingestão, varia de acordo com

a sensibilidade do animal. Em frangos, a dose letal varia de 140 a 170 mg/kg de peso corporal; em suínos, a dose fica entre 13 e 65 mg/kg de peso corporal; nos coelhos, a dose é de 9 a 45 mg/kg de peso corporal. Os equinos são os mais sensíveis dentre as espécies estudadas, com dose letal entre 1 e 5 mg/kg de peso corporal (GARLAND; BAILEY, 2006).

Os principais sintomas de envenenamento incluem: paralisia da respiração e do sistema vasomotor, cólicas abdominais, diarreia, perda de apetite, aumento do ritmo cardíaco, ausência de coordenação dos movimentos, febre e hemorragia (TÁVORA, 1982).

Os ruminantes apresentam maior tolerância à exposição a derivados de mamona na alimentação. A inclusão da torta de mamona sem tratamento para detoxificação na dieta de ovinos não apresentou perdas expressivas de consumo e digestibilidade para um nível de inclusão de 8% (FURTADO *et al.*, 2012). Foi relatado o uso da torta de mamona não detoxificada na dieta de caprinos jovens por longos períodos, em uma inclusão de 15% da dieta, substituindo a torta de soja sem comprometer as características da carne. A justificativa para não haver perdas no desempenho animal pode ser atribuída a baixas concentrações de ricina na dieta total ou à sua degradação durante o metabolismo animal (OLIVEIRA *et al.*, 2015).

2.3. Músculo L. dorsi

O músculo estriado esquelético é responsável pela contração muscular voluntária do indivíduo e é composto principalmente de fibras musculares e tecido conjuntivo. A sua organização permite observar as estrias transversais ao microscópio óptico. O termo "esquelético" é derivado de sua localização, uma vez que está firmemente preso ao esqueleto por tendões (HAM *et al.*, 1983).

L. dorsi trata-se de um músculo que, quando convertido em carne, possui alto valor comercial. Por essa razão, vem sendo amplamente estudado em pesquisas para avaliação dos parâmetros de qualidade. Entre os músculos esqueléticos, o *L. dorsi* (Figura 2) destaca-se por ser o maior e mais longo do corpo, originando-se nos processos espinhosos e inserindo-se na última vértebra lombar (GETTY, 2000).

Figura 2 - Ilustração anatômica do músculo L. dorsi (CARDOSO, 2005)

Após o abate, imediatamente nos tecidos e em todos os órgãos, ocorrem mudanças nos processos bioquímicos em resposta à parada do sistema respiratório e da circulação sanguínea. Nos tecidos musculares, as mudanças morfológicas e estruturais, assim como as mudanças no metabolismo energético que ocorrem no período *post mortem*, têm sido bem descritas, e atualmente já se sabe que a taxa e a extensão com que os processos metabólicos *post mortem* são executados têm importante influência em características como a maciez, capacidade de retenção de água e propriedades sensoriais da carne (LAWRIE, 1998).

2.4. Impacto do pH na qualidade da carne

O potencial hidrogeniônico, mais conhecido como pH, pode influenciar a qualidade da carne, uma vez que, quando o animal é abatido, parte do seu metabolismo energético continua funcionando, porém em condições anaeróbias devido à falta de oxigenação. Na ausência de oxigênio, ocorrerá glicólise por meio anaeróbio pela utilização do glicogênio muscular, formando ácido lático, que é responsável pela queda do pH da carne (DAVIES, 1989).

No animal vivo, o pH normal pode oscilar entre valores de 7,3 a 7,5 (ZEOLA *et al.*, 2002); porém, quando abatido, espera-se que esse pH diminua de forma gradual até atingir um patamar de 5,4 (bovinos) de duas a oito horas após a sangria e de 5,5 a 5,8 (ovinos) (PRATES, 2000).

A queda do pH na conversão do músculo em carne é fundamental para prolongar seu tempo de conservação; um pH inadequado em níveis acima do desejado favorecerá o crescimento de microrganismos (MILLER, 2001). Essa alteração de pH pode ser causada quando o animal é submetido a estresse pré-abate, jejum prolongado ou esforço físico intenso, reduzindo seus estoques de glicogênio. Consequentemente, o músculo não sofrerá completamente o processo de produção de ácido lático por anaerobiose (WATANNABE *et al.*, 1996). Quando essa redução no pH não acontece de maneira correta, o músculo pode se converter em uma carne escura, firme e seca (*DFD*) (ZEOLA *et al.*, 2007).

Animais submetidos a estresse intenso no período que antecede o abate são propensos a apresentarem carne do tipo pálida, macia e exsudativa (*PSE*). Esses animais depletam seus estoques de glicogênio em consequência da aceleração no processo de glicólise, causando uma rápida queda do pH muscular devido à intensa produção de ácido lático (MILLER, 2001). Na suinocultura, a carne do tipo *PSE* está ligada

principalmente à genética. A presença do gene halotano se destaca pela produção de uma carne mais magra, porém há evidências de que animais que possuem esse gene são mais sensíveis ao estresse pré-abate, produzindo carne *PSE* (CULAU *et al.*, 2002).

Figura 3 - Exemplos de carne PSE, Normal e DFD.

2.5. Proteínas do músculo L. dorsi

As proteínas dos músculos podem ser divididas em três classes: miofibrilares, sarcoplasmáticas e estromáticas. As proteínas miofibrilares são as que estão em maior quantidade no músculo (52% a 56%) e são representadas principalmente pela miosina, actina, proteína C, proteína M, tropomiosina, α -actina e β -actina. São proteínas, em sua maioria, insolúveis, que formam os miofilamentos grossos e finos que constituem a miofibrila e desempenham a função de contração muscular (SGARBIERI, 1996).

As proteínas sarcoplasmáticas são aquelas encontradas no citoplasma (sarcoplasma) das miofibras (células musculares), constituindo 25 a 30% de todas as proteínas musculares e responsável por funções metabólicas, representadas principalmente pelas enzimas glicolíticas e mioglobina. Elas geralmente são consideradas solúveis em água, especialmente em baixas concentrações de sal. Representam todas as enzimas envolvidas na via glicolítica e a maior parte das proteínas envolvidas no mecanismo de síntese de proteínas e glicogênio (LUCHIARI FILHO, 2000).

As proteínas do tecido conjuntivo, também chamadas de estromáticas, correspondem a 10% a 15% de toda a proteína dos músculos esqueléticos. Essas proteínas são menos solúveis em água. O colágeno e a elastina representam a maior parte da fração proteica estromática. Os colágenos representam 40% a 60% do estroma e são caracterizados pelo elevado conteúdo de glicina, prolina e hidroxiprolina, e pela completa ausência de aminoácidos sulfurados e de triptofano (SGARBIERI, 1996).

O principal mecanismo enzimático no processo de conversão do músculo em carne, responsável pela maciez da carne, é o sistema das calpaínas. Esse sistema enzimático representa 90% da importância no processo de maciez (GOLL *et al.*, 1992). Para Dransfield (1993), esse processo representou 65% da variação na maciez da carne.

As catepsinas são enzimas proteolíticas que têm afinidade por pH ácido e estão presentes nos lisossomos. Durante o processo de rigor mortis, elas usam como substratos a actina, a miosina e a linha Z. As catepsinas conseguem atuar de maneira eficaz quando o pH < 6,0. Elas degradam tanto proteínas miofibrilares quanto proteínas do tecido conjuntivo (colágeno) (KOOHMARAIE, 1994).

O sistema enzimático das calpaínas é formado por duas calpaínas: proteinase ativada por concentração micromolar de cálcio (µ-calpaína ou calpaína tipo I) e proteinase ativada por concentração milimolar de cálcio (m-calpaína ou calpaína tipo II), ativadas pelo cálcio livre (não retido no retículo sarcoplasmático ou nas mitocôndrias) e inibidas pela enzima denominada calpastatina (KOOHMARAIE, 1992).

As investigações proteômicas desempenham um papel importante na pesquisa de qualidade da carne, pois o objetivo final da criação de animais é a produção de proteína de alta qualidade para consumo humano (NAIR *et al.*, 2016). Estudos feitos por Desai *et al.* (2016) listaram proteínas presentes em carnes do tipo pálidas, moles e exsudativas (*PSE-like*) de frango. Demonstraram que, quando elevadas, enzimas que participam da

via glicolítica (fosfoglicerato quinase, beta-enolase, piruvato quinase) e outras proteínas ligadas ao metabolismo energético (creatina quinase tipo-M, subunidades alfa da proteassoma, malato desidrogenase) podem gerar também uma rápida queda do pH e, consequentemente, favorecer a produção de carnes *PSE-like*.

A cor da carne é um importante atributo de qualidade que influencia as decisões de compra dos consumidores no ponto de venda (MANCINI; HUNT, 2005). Os consumidores costumam considerar a cor vermelho-cereja da carne fresca como um indicador confiável de salubridade. Durante a exibição no varejo, as carnes vermelhas frescas sofrem descoloração, resultando em perda de valor devido à redução de preço (SMITH *et al.*, 2000).

O proteoma sarcoplasmático contém proteínas solúveis, incluindo mioglobina e enzimas, constituindo 30% das proteínas totais do músculo esquelético, e participa de diferentes processos bioquímicos que influenciam a estabilidade da cor da carne. As interações interinfluenciais entre a mioglobina e as proteínas sarcoplasmáticas são críticas para a estabilidade da cor da carne (RENERRE *et al.*, 1996; KIM *et al.*, 2006). O proteoma sarcoplasmático pode ser diferencialmente abundante nos músculos da carne com cores instáveis e estáveis.

Joseph *et al.* (2012) realizaram um estudo em bovinos comparando músculos de alta estabilidade na coloração e músculos de baixa estabilidade na coloração. Demonstraram que músculos com coloração estável expressaram as proteínas aldose redutase, creatina quinase, beta-enolase e piruvato desidrogenase em níveis mais elevados. Por outro lado, em músculos com coloração instável, a proteína com expressão elevada foi a aconitase mitocondrial.

De acordo com Nair *et al.* (2016), em um estudo realizado com músculo semimembranoso bovino, cortes de carnes com menor estabilidade em relação à

coloração expressaram elevados níveis de enzimas glicolíticas (frutose bifosfato, aldolase A, fosfoglicerato mutase 2, beta-enolase). Esse aumento da atividade glicolítica causado pelas enzimas supracitadas pode estar relacionado a um rápido declínio do pH enquanto a temperatura da carne ainda está alta, ocasionando condições *PSE-like* na carne.

2.6. Análises proteômicas do tipo Bottom-up e Top-down

As abordagens do tipo *bottom-up* envolvem uma digestão proteolítica antes da identificação das proteínas por espectrometria de massas. A informação "*bottom-up*" significa que a identificação da proteína é feita a partir de fragmentos de peptídeos que são sequenciados individualmente e, através do sequenciamento dos aminoácidos, a proteína é identificada. É a abordagem mais utilizada no mundo para identificação e caracterização de proteínas, porém apresenta uma menor cobertura na identificação das proteínas (FOURNIER *et al.*, 2007).

A Figura 4 ilustra a abordagem *bottom-up*. Pela abordagem utilizando gel, a mistura de proteínas é separada por eletroforese bidimensional, primeiro por focagem isoelétrica seguida por SDS-PAGE. Após a visualização dos spots, as proteínas são extraídas do gel, digeridas e analisadas por espectrometria de massa para posterior identificação por pesquisa em banco de dados. Pela abordagem sem gel, a mistura de proteínas é diretamente digerida em uma mistura de peptídeos separada por métodos de separação multidimensional. Os peptídeos são analisados em seguida por espectrometria de massa gerados usando pesquisa de banco de dados (FOURNIER *et al.*, 2007).

Na abordagem *top-down*, as proteínas podem ser caracterizadas em sua forma intacta a partir de amostras complexas. Nessa abordagem de identificação de proteínas, o espectrômetro de massa de captura de íons é utilizado para armazenar um íon de proteína isolado para a medição de massa e análise por espectrometria de massa em tandem (MS/MS) (Kelleher, 2014), ou outros métodos de purificação de proteínas, como a eletroforese em gel bidimensional em conjunto com MS/MS (Wright *et al.*, 2014).

A figura 5 ilustra como funciona a abordagem *top-down*. Misturas de proteínas de amostras biológicas são extraídas de células ou tecidos e, em seguida, podem ser separadas por cromatografia líquida ou gel de poliacrilamida. Essas misturas podem ser

Figura 5 - Análise proteômica tipo top-down (LINDON, 2016).

encaminhadas para detecção por espectrometria de massa sem a necessidade de digestão tríptica das proteínas (LINDON, 2016). Nessas técnicas, é possível sequenciar uma proteína completa, localizar e caracterizar modificações pós-traducionais e determinar isoformas de proteínas.

3. MATERIAIS E MÉTODOS

3.1. Design experimental

No presente estudo, 24 ovinos das raças Santa Inês e Morada Nova foram alimentados durante 77 dias com FS, FMD e FMDP. Ao final do experimento, amostras do músculo *L. dorsi* foram coletadas de todos os animais e submetidas à análise proteômica utilizando eletroforese em gel unidimensional, espectrometria de massa e recursos de bioinformática.

3.2. Animais e localização do experimento

O estudo foi previamente aprovado pela Comissão de Ética no Uso de Animais da Universidade Federal do Ceará (CEUA/UFC), sob o número de protocolo 3155291019. Foram utilizados 24 ovinos machos, sendo 12 da raça Morada Nova, pertencentes ao rebanho do Núcleo de Ensinos e Estudos em Forragicultura (NEEF), localizado no Campus do Pici, Fortaleza-CE, e 12 da raça Santa Inês, oriundos do rebanho da Fazenda Experimental Vale do Curú, localizada no município de Pentecoste-CE. Antes do início do tratamento, os animais foram vermifugados e receberam vitaminas A, D e E por via subcutânea. O experimento foi conduzido no NEEF, UFC – Campus do Pici, Fortaleza-CE, localizado em 3°44'34.0"S 38°34'41.3"W, nos meses de janeiro a março de 2020, com duração de 77 dias.

3.3. Tratamentos e coleta das amostras

O beneficiamento da semente de *R. communis* para a obtenção do farelo de mamona foi realizado pela indústria Azevedo Óleos Ltda., localizada no município de Itupeva, SP. O método baseia-se em cinco etapas. Inicialmente, a semente é aquecida a 80 °C por condução, por aproximadamente 10 minutos. Após esse aquecimento, ocorre

a primeira prensagem, do tipo expeller, dando origem à torta de mamona, ainda com resíduos de óleo. Em seguida, ocorre uma segunda prensagem, do tipo expeller expensor, tornando o prensado mais poroso devido à alta pressão exercida. Posteriormente, o material é levado ao processo de extração com solvente (hexano) e submetido a 12 lavagens sucessivas. Por fim, ocorre a remoção do solvente por evaporação, aquecendo o material a 95 °C até que o restante do solvente seja removido, tornando o material seguro para consumo por ruminantes. Para a obtenção do FMDP, foi realizado um peneiramento com uma peneira de 30 mesh (orifícios de 0,5 mm²), com o objetivo de remover resíduos e aumentar o teor proteico.

Os animais foram distribuídos em um delineamento inteiramente casualizado com arranjo fatorial 3x1 para cada raça, sendo três diferentes dietas compostas por FS, FMD, FMDP e capim-tifton 85 (Cynodon sp.) como volumoso (Tabela 1), fornecidas aos ovinos das raças Morada Nova e Santa Inês, considerando cada animal como uma repetição.

Tabela 1. Composição alimentar das dietas experimentais utilizadas no experimento.					
Composição	FS	FMD	FMDP		
alimentar					
Fubá de milho	47,00%	49,78%	51,45%		
Feno Tifton 85	40,00%	40,00%	40,00%		
FS	10,70%	0%	0%		
FMD	0%	9,20%	0%		
FMDP	0%	0%	7,73%		
Calcário	1,00%	0, 62%	0, 71%		
Ureia	0,10%	0,40%	0,10%		

Tabala 1. Composição alimentar das distas experimentais utilizadas no orregina onto

Legendas: Farelo de soja (FS); Farelo de mamona dessolventizado (FMD); Farelo de mamona dessolventizado peneirado (FMDP).

Fonte: Tabela de dados previamente publicados em boletim de pesquisa por Pompeu (2020).

As dietas foram formuladas com uma relação volumoso:concentrado de 40:60, sendo isoproteicas e isoenergéticas, com cálculo para ganho de peso diário de 200 g/dia. Os fornecimentos aconteciam duas vezes ao dia (8h e 16h), e os ajustes das dietas eram feitos diariamente, baseados nas pesagens das sobras de ração de cada animal, permitindo uma margem de até 10%, conforme recomendações do *National Research Council* (NRC, 2007).

Os animais foram mantidos em baias individuais de madeira, com área de aproximadamente 1,12 m², durante 77 dias, dos quais os 14 primeiros dias foram destinados à adaptação dos animais às dietas e ao ambiente experimental. As baias foram dotadas de cochos para o fornecimento do alimento, bebedouros com água à disposição e sal mineral *ad libitum*. Esses animais foram pesados semanalmente durante todo o período experimental até atingirem o peso de abate, aproximadamente 30 kg.

Ao final do experimento, os cordeiros foram pesados e abatidos em um matadouro comercial, de acordo com as normas do Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal (RIISPOA, 1980; OLIVEIRA *et al.*, 2015), estabelecido pelo Ministério da Agricultura, Pecuária e Abastecimento do Brasil. As amostras de músculo *L. dorsi* foram colhidas nos primeiros 10 minutos após o abate, por meio de um corte transversal na topografia anatômica entre a 12^a e a 13^a costela, sendo o lado esquerdo escolhido para análise. Foram coletados cerca de 10 gramas de amostra por animal. Após a coleta, as amostras foram imediatamente armazenadas em botijão criogênico contendo nitrogênio líquido e levadas ao Laboratório de Fisiologia Animal da Universidade Federal do Ceará.

3.4. Extração das proteínas

As amostras de músculo *L. dorsi* armazenadas a -80 °C foram liofilizadas (Liofilizador L101 – Liptop/Liobras, São Carlos, SP, BR) a -55 °C e a uma pressão atmosférica de 0,035 mBar durante um período de 24 horas. Posteriormente, o extrato muscular foi pesado novamente, triturado em um mini processador manual (Mini Wincy, Bauru, SP, BR) e peneirado até a obtenção de um pó fino. Este material resultante foi armazenado em tubos estéreis e mantido a -20 °C até que fosse realizada a extração das proteínas (BJARNADÓTTIR *et al.*, 2010).

O processo de extração das proteínas iniciou-se com a pesagem de 10 mg de cada amostra liofilizada de músculo. Em seguida, foi adicionado 100 µL de água destilada contendo 1% (vol/vol) de Triton X-100 (Thermo Scientific, Waltham, MA, EUA) e as amostras foram mantidas sob refrigeração a 5 °C por um período de 60 minutos, com leve agitação em intervalos de 15 minutos.

Posteriormente, foram adicionados 400 µL de tampão de amostra (7 M de ureia, 2 M de tioureia, 4% de 3 - [(3-colamidopropil) dimetilamônio] -1-propanossulfonato (CHAPS), 2% de tampão IPG pH 4-7, 40 mM DTT [ditiotreitol] – GE Healthcare, Piscataway, NJ, EUA). As amostras foram sonicadas (Fisher Scientific[™] CPXH5 Series Baths, Pittsburgh, PA, EUA) a 120W, frequência de 40 kHz, a 4 °C durante 5 minutos, depois centrifugadas (5.000 g, 60 minutos, 4 °C) e o pellet ressuspenso em 400 µL de tampão de amostra.

Após a ressuspensão, as amostras foram precipitadas com acetona fria (Neon, Suzano, SP, BR) a -20 °C, utilizando 10 vezes o volume das amostras. As amostras foram mantidas a -20 °C durante a noite. No dia seguinte, esse material foi submetido a uma nova centrifugação (5.000 g, 40 minutos, 4 °C), os sobrenadantes foram descartados e as amostras foram mantidas na geladeira durante a noite para secagem. No dia seguinte, as amostras foram novamente ressuspendidas em 400 µL de tampão de amostra e levadas para quantificação, utilizando o método de Bradford (1976).

3.5. Eletroforese unidimensional (SDS-PAGE) e análises computacionais

As proteínas obtidas das amostras de L. dorsi foram separadas por 1D SDS-PAGE, conforme descrito previamente (MARTINS et al., 2013). Em resumo, 30 µg de proteínas do L. dorsi de cada animal foram diluídos em tampão de amostra (Tris-HCl 0,125 M; pH 6,8; SDS 4%; glicerol 20% (v/v); DTT 0,2 M; azul de bromofenol 0,02%; GE Healthcare, Piscataway, NJ, EUA) até atingir o volume de 20 µL, fervidos por 90 segundos e então pipetados nos poços do gel de concentração (4% de poliacrilamida). Para o gel de corrida, foi utilizado um gradiente de 12,5%. Para as aferições de peso molecular, foram transferidos 10 µL de Amersham ECL Full-Range Rainbow (GE Healthcare, Piscataway, NJ, EUA) para um poço de cada gel. O equipamento utilizado foi o sistema SE 600 Ruby™ (GE Healthcare, Piscataway, NJ, EUA), com uma configuração de 500 V, 20 mA/gel, 90 W. Após o término da corrida eletroforética, os géis foram submersos em uma solução corante de azul brilhante de Coomassie [CBB-R250] (Bio-Rad Laboratories Inc., UK) por um período de 12 horas e, em seguida, descoloridos com uma solução descolorante de metanol (40%), ácido acético (7%) e água destilada (53%), com trocas sucessivas da solução a cada 30 minutos. Após a descoloração, o gel foi digitalizado a 300 dpi (Image Scanner, GE Healthcare, Piscataway, NJ, EUA) e salvo como um arquivo TIFF. A análise das intensidades do gel foi feita utilizando o software Quantity One® v.4.6.3 (Bio-Rad, Rockville, MD, EUA).

3.6. Digestão das proteínas e espectrometria de massa (Eletrospray ionization Quadrupole – Time of Flight / ESI-Q-TOF)

Utilizando o software Quantity One® v.4.6.3 (Bio-Rad, Rockville, MD, EUA), as bandas foram identificadas e delimitadas. As bandas foram cortadas em pedaços de 1 mm³ e submetidas à digestão com tripsina (Promega, Fitchburg, WI, EUA) (MOURA *et al.*, 2006; ROCHA *et al.*, 2009). Utilizando um bisturi estéril, os géis foram cortados e acondicionados em tubos Eppendorf de 500 µL. Cada banda foi cortada no mínimo três vezes por *lane*, dependendo da sua intensidade. Os pedaços foram descoloridos com 400 µL de acetonitrila 50% (ACN)/25 mM de bicarbonato de amônio, pH 8,0, realizando 3 lavagens de 15 minutos cada.

Após a descoloração, os pedaços de gel foram desidratados utilizando 200 μ L de acetonitrila 100% por 5 minutos e secados em Speedvac (Eppendorf, EUA) por 15 minutos. Para redução, foram utilizados 100 μ L de ditiotreitol (DTT) 10 mM/bicarbonato de amônio 100 mM por 30 minutos em temperatura ambiente. Para alquilação, foi adicionado 100 μ L de iodoacetamida 50 mM/bicarbonato de amônio 100 mM por 30 minutos em temperatura ambiente. Após isso, os pedaços foram desidratados e secos em Speedvac (Eppendorf, EUA) para receber a tripsina. Após a secagem, os pedaços de gel foram incubados com tripsina (Promega, Madison, WI, EUA) *overnight* a 37° C.

Os peptídeos oriundos da digestão tríptica foram analisados conforme a metodologia descrita por Tilburg *et al.*, 2013. Os peptídeos (5 μ L) foram injetados em solvente A (acetonitrila:água:ácido fórmico, na proporção de 5:94,9:0,1, respectivamente) utilizando a bomba auxiliar da unidade de UPLC para interagir com uma coluna Waters Symmetry 300TM (C-18, filme de 5 μ m; 0,3 mm × 5 mm) para dessalinização em linha e pré-concentração. Após a lavagem por 3 minutos com
solvente A a 5 mL/min, os peptídeos foram eluídos em um gradiente de concentração para a coluna analítica nanoACQUITY HSS T3 (C-18, 0,075 mm × 150 mm). A coluna analítica foi corrida em um gradiente (5 a 42% de solvente B; acetonitrila:água:ácido fórmico, na proporção de 95:5:0,2, durante 40 minutos). O espectrômetro de massa foi calibrado utilizando fragmentos de íons do peptídeo Glu-1-fibrinopeptídeo B (Glu-Fib), para manter a precisão em 10 partes por milhão. O espectrômetro de massas foi operado para obter espectros MS/MS dos peptídeos trípticos em modo dependente de dados (data-dependent acquisition; DDA) para o íon precursor, usando reconhecimento de estado de carga e limite de intensidade como critérios de seleção, com o aplicativo MassLynx 4.1. Para obter os dados MS/MS, uma varredura (2 seg.) foi executada nos dados de relação massa/carga (m/z) entre 400 e 1500. A partir de cada varredura, baseando-se nos critérios de seleção, foram escolhidos até quatro íons mais intensos para obtenção dos espectros resultantes da dissociação induzida por colisão (CID) na presença de argônio. Os espectros iônicos resultantes (6-8 seg.) foram processados utilizando o aplicativo Protein Lynx Global Server 2.4 e convertidos em arquivos de lista de picos (peak list files; PKL) para posterior pesquisa em banco de dados.

Os arquivos (.PKL) obtidos através do programa Protein Lynx Global Server 2.4 (Waters Corp.) foram analisados através do Mascot (Matrix Science, Londres, UK, v.2.6), utilizando o banco de dados SwissProt. Os critérios utilizados para análise foram: enzima tripsina (máximo de 1 clivagem), modificação variável (oxidação de metionina), modificação fixa (carbamidometilação das cisteínas), cargas peptídicas (+1, +2, +3), limites entre a variação de massa dos peptídeos dos fragmentos foram de $\pm 1,2$ Da e $\pm 0,6$ Da, máximo de taxa de descoberta falsa (FDR) de 0,05 e número mínimo de um peptídeo para validar a identificação das proteínas.

3.7. Análises estatísticas

Os dados de densitometria dos picos dos géis foram obtidos através do software Quantity One® v.4.6.3 (Bio-Rad, Rockville, MD, EUA), convertidos para logaritmo na base 10 e submetidos ao teste de análise de variância (ANOVA) e ao teste de Tukey para comparação de médias. Isso foi feito para estabelecer as diferenças estatísticas (p < 0,05) entre os tratamentos nas duas raças.

3.8. Gene ontology, análises dos *clusters* funcionais e rede de interações proteínaproteína *in silico*

As análises de ontologia gênica para as funções biológicas das proteínas foram obtidas a partir da base de dados UniProtKB. Para as proteínas identificadas no Mascot (Matrix Science, Londres, UK, v.2.6) que apresentaram diferenças estatísticas nos dados de densitometria, a análise foi complementada com a base de dados STRING 10.0 (http://string-db.org).

Os termos de ontologia gênica referentes a processos biológicos, componentes celulares, funções moleculares e classes de proteínas foram obtidos utilizando o Protein Analysis Through Evolutionary Relationships (PANTHER Classification System, versão 16.0; <u>http://geneontology.org</u>).

4. RESULTADOS E DISCUSSÃO

As análises previamente realizadas por Pompeu (2020) revelaram que não houve diferença estatística no ganho de peso e na conversão alimentar em função das dietas contendo FS, FMD e FMDP (Tabela 2).

,			
	FS	FMP	FMDP
Peso inicial (kg)	19,86	18,11	18,84
Peso final (kg)	33,50	31,19	31,60
GPT (kg)	13,64	13,07	12,76
CA (kg.kg ⁻¹)	4,98	4,71	4,48

Tabela 2. Desempenho dos ovinos para ganho de peso e conversão alimentar alimentados com FS, FMP e FMDP.

Legendas: Farelo de soja (FS). Farelo de mamona dessolventizado (FMD). Farelo de mamona dessolventizado peneirado (FMDP). Ganho de peso total (GTP). Conversão alimentar (CA). Fonte: Tabela adaptada de dados previamente publicados em boletim de pesquisa por Pompeu (2020).

Esse resultado corrobora com o estudo de Oliveira *et al.* (2015), que avaliou dietas compostas por farelo de soja e torta de mamona em caprinos e observou que não houve comprometimento no desempenho dos animais. Assim, de acordo com o método de detoxificação utilizado pela Azevedo Óleos Ltda., o consumo de farelo de mamona em dietas para pequenos ruminantes pode ser considerado seguro para os níveis de inclusão dos insumos especificados na Tabela 1.

De acordo com a análise do perfil eletroforético das proteínas do músculo *L. dorsi* dos ovinos da raça Morada Nova (Figura 6), foram evidenciadas 22 bandas, com a identificação de 70 proteínas por espectrometria de massas (Anexo A).

Figura 6 - Gel de eletroforese SDS-PAGE 12,5% de proteínas do músculo *L. dorsi* de ovinos machos da raça Morada Nova.

Legendas: MM – Marcador de peso molecular. Farelo de soja - 3, 4, 9,10.). Farelo de mamona dessolventizado - 5, 6, 11, 12. Farelo de mamona dessolventizado peneirado - 13, 14, 7, 8. Fonte: Elaborado pelo autor.

No perfil eletroforético dos ovinos da raça Santa Inês (Figura 7), foram detectadas 25 bandas, com a identificação de 68 proteínas (Anexo B).

Figura 7 - Gel de eletroforese SDS-PAGE 12,5% de proteínas do músculo *L. dorsi* de ovinos machos da raça Santa Inês.

Legendas: MM – Marcador de peso molecular. Farelo de soja - 3, 4, 9,10. Farelo de mamona dessolventizado - 5, 6, 11, 12. Farelo de mamona dessolventizado peneirado - 13, 14, 7, 8. Fonte: Elaborado pelo autor.

As bandas presentes no perfil eletroforético dos ovinos da raça Morada Nova não apresentaram diferenças relacionadas às dietas. Em contraste, no caso dos ovinos Santa Inês, apenas uma banda apresentou diferença estatística entre os tratamentos FMD

e FMDP (Figura 8).

Figura 8 - Expressão diferencial das bandas de proteínas do músculo *L. dorsi* de ovinos da raça Santa Inês. As barras representam a intensidade média (Média \pm SEM) das bandas expressas em cada tratamento. FS: Farelo de soja; FMD:Farelo de mamona dessolventizado; FMDP: Farelo de mamona dessolventizado peneirado. As letras (a,b) representam o efeito do tratamento (p<0,05).

Para os ovinos da raça Santa Inês, foram identificadas quatro proteínas na banda com valor diferencial: *Creatine kinase M-type, Actin (alfa skeletal muscle), Betaenolase* e *Phosphoglycerate kinase.*

As actinas são um grupo de proteínas compostas por três principais isoformas: alfa, beta e gama. Entre estas, as actinas alfa são encontradas no tecido muscular e constituem a maior parte do aparato contrátil dos músculos dos animais. Em contraste, os outros grupos, beta e gama, desempenham funções relacionadas à sustentação e motilidade celular. A actina, juntamente com a miosina, são as principais proteínas envolvidas no processo de rigor mortis, que ocorre quando há o esgotamento dos estoques de energia no músculo e a formação das pontes cruzadas entre essas duas proteínas (CANHOS; DIAS, 1985). O processo de transformação do músculo em carne ocorre por meio da liberação de enzimas proteolíticas que induzem a degradação dos principais componentes que causam a rigidez muscular, como o enfraquecimento da linha Z, a degradação da estrutura miofibrilar e outras proteínas residuais do músculo, incluindo desmina, nebulina e titina (ALVES *et al.*, 2005). Entre os processos enzimáticos proteolíticos, as catepsinas são as principais responsáveis pela degradação da actina, miosina e da linha Z (KOOHMARAIE, 1994). No presente estudo, os níveis de actina foram detectados em maior quantidade no grupo da dieta FMDP, o que pode impactar diretamente a maciez da carne. Oliveira *et al.* (2015) também encontraram níveis elevados de actina no *L. dorsi* de caprinos alimentados com torta de mamona.

A proteína beta-enolase parece ter uma função relacionada ao desenvolvimento e à regeneração do músculo estriado esquelético de bovinos. Essa proteína está envolvida na via glicolítica, atuando na conversão do 2-fosfoglicerato em fosfoenolpiruvato, que sintetiza piruvato para produção de energia (HOORN; FLIKWEERT; STAAL, 1974). A beta-enolase foi correlacionada positivamente com a estabilidade da coloração da carne em um estudo feito com *Longissimus lumborum* em bovinos. No entanto, essa correlação foi negativa quando com a análise foi feita musculo psoas, apresentando maior instabilidade na coloração (JOSEPH *et al.*, 2012). Para Nair *et al.* (2016), a abundância de beta-enolase, analisada a partir do músculo semimembranoso bovino, pode causar uma baixa estabilidade da coloração da carne. Esta instabilidade na coloração pode ser atribuída à participação da beta-enolase na via glicolítica, pois, quando abundante, a beta-enolase causa uma rápida queda do pH *post mortem* devido a produção excessiva de ácido lático decorrente do rápido consumo de glicogênio, podendo causar a alterações *Pale, Soft and Exudative-like (PSE)* em bovinos. Na rede de interações (Figura 9), a beta-enolase possui *links* com proteínas ligadas ao metabolismo energético como a PGK1, CKM, ENO1, GPI, GAPDH, GAPDHS.

Figura 9 - Rede de interação das proteínas diferenciais CMK, ACTA1, ENO3, PGK1 edas 10 proteínas de maior interação do músculo *L. dorsi* de *Ovis aries* das raça SantaInês,analisadaspeloSTRINGsoftware.

CKM: Creatine kinase M-type. ACTA1: Actin (alpha skeletal muscle). ENO3: Beta-enolase. PGK1: Phosphoglycerate kinase 1. TPI1: Bos taurus triosephosphate isomerase 1. GAPDH:Glyceraldehyde-3-phosphate dehydrogenase. PGAM1: Phosphoglycerate mutase 1. GAPDHS:Glyceraldehyde-3-phosphate dehydrogenase. PGAM2: Phosphoglycerate mutase 2. ENO1: Alpha-enolase. PKM: Bos taurus pyruvate kinase. TPM1: Tropomyosin alpha-3 chain. GPI: Glucose-6-phosphate isomerase.

A fosfoglicerato quinase 1 (PGK1) é uma enzima que atua na produção de ATP na via glicolítica, por meio da conversão reversível de 1,3-difosfoglicerato em 3-fosfoglicerato. Um estudo realizado por Desai *et al.* (2016) associou a presença elevada de PGK1 com defeitos na carne de frango, indicando que quantidades elevadas dessa enzima estão associadas a carnes do tipo *PSE-like*. Isso ocorre porque o aumento da atividade glicolítica provoca uma rápida diminuição do pH *post mortem*.

A análise de ontologia gênica é um sistema de classificação que visa definir e descrever as funções gênicas e proteicas em diferentes espécies (CARBON *et al.*, 2009). As análises para ontologia gênica estão apresentadas para as raças Morada Nova (Figura 10) e Santa Inês (Figura 11).

Figura 10 - Funções moleculares, processos biológicos, componentes celulares e classes das proteínas do músculo *L. dorsi* de ovinos da raça Morada Nova identificadas por espectrometria de massa ESI-Q-TOF. Os dados de proteína foram analisados utilizando

Figura 11 - Funções moleculares, processos biológicos, componentes celulares e classes de proteínas do músculo *L. dorsi* de ovinos da raça Santa Inês identificadas por espectrometria de massa ESI-Q-TOF. Os dados de proteína foram analisados utilizando

As principais funções moleculares associadas às proteínas do músculo *L. dorsi* dos ovinos da raça Morada Nova incluíram atividade catalítica (60%) e proteínas de ligação (32%). Para a raça Santa Inês, as funções principais foram atividade catalítica (62%) e proteínas de ligação (30%). Estudos anteriores em caprinos (JIA *et al.*, 2021) e ovinos (RIBEIRO *et al.*, 2020) mostraram que as proteínas mais expressas na carne estão relacionadas à atividade catalítica e de ligação, resultados que corroboram com os encontrados neste estudo.

A análise funcional revelou que os processos biológicos das proteínas musculares estavam principalmente associados a processos celulares e metabólicos. Estudos anteriores sobre o proteoma dos tecidos musculares, como o *L. dorsi* em suínos (XUEDONG *et al.*, 2019), o *L. lumborum* em ovinos (RIBEIRO *et al.*, 2020) e o *L. lumborum* em caprinos (JIA *et al.*, 2021), apresentaram resultados semelhantes. Para a raça Morada Nova, os processos biológicos mais associados foram processos celulares (37%) e metabólicos (31%). Para a raça Santa Inês, a maioria das proteínas do *L. dorsi* também esteve relacionada a processos celulares (39%) e metabólicos (32%). Durante a conversão do músculo em carne, a rápida degradação dos estoques de fosfocreatina pela glicólise pode levar a uma rápida queda do pH, o que pode alterar a maciez da carne (D'ALESSANDRO; ZOLLA, 2013).

Os componentes celulares associados às proteínas do *L. dorsi* das raças Morada Nova e Santa Inês foram semelhantes, com predominância de anatomia celular (45%) e proteínas intracelulares (43%). Entre os genes relacionados à anatomia celular e proteínas intracelulares, destacam-se as proteínas PGK1 e ENO3, que estão correlacionadas com as vias glicolíticas. Ribeiro *et al.* (2020) caracterizaram o proteoma do *L. lumborum* em ovinos e observaram resultados semelhantes quanto às frações obtidas neste estudo. Quanto às classes de proteínas, para Morada Nova, as frações encontradas foram: enzimas de interconversão de metabólitos (56%), proteínas de citoesqueleto (26%), proteínas transportadoras (15%) e proteínas de transferência/carreadora (3%). Para Santa Inês, as classes de proteínas foram: enzimas de interconversão de metabólitos (55%), proteínas de citoesqueleto (29%), proteínas transportadoras (10%), proteínas de transferência/carreadora (3%) e proteínas translacionais (3%).

As enzimas de interconversão de metabólitos são essenciais para o metabolismo energético, realizando transferências de compostos entre moléculas. A ENO3 pertence à classe das liases, que atuam removendo um grupo de uma molécula para formar uma ligação dupla ou adicionando um grupo a uma ligação dupla. A PGK1 faz parte do grupo das carboidratos quinases, que catalisam a fosforilação dos carboidratos. Outras enzimas comuns relacionadas à interconversão de metabólitos entre as raças estudadas incluem GAPDH, ALDOA, NDUFS3, PYGM, TPI1, PGAM, MDH1, PGM1, GOT2, PKM, CMK, LDHA e ALDH2.

As proteínas do citoesqueleto identificadas nas amostras de *L. dorsi* de ambas as raças incluem MYL1, MYL4, MYLPF, ACTC1, ACTA2, TPM2 e TPM1. As isoformas da miosina são essenciais para a formação e manutenção estrutural das fibras musculares e para a contração muscular. As proteínas TPM1 e TPM2 são membros da família das ATPases e se ligam aos filamentos de actina, estabilizando o citoesqueleto.

ATP5F1A e ATP5F1B são enzimas da classe transportadora e pertencem ao grupo das ATP sintases. Estas enzimas estão localizadas na membrana celular e realizam o transporte ativo de prótons através da energia liberada pela hidrólise de ATP.

Dentro da análise de ontologia gênica, observou-se semelhança entre os resultados obtidos para as raças estudadas, o que pode ser atribuído à herança genética compartilhada da raça Santa Inês em relação à raça Morada Nova.

5. CONCLUSÃO

O presente estudo descreve o proteoma geral do músculo L. dorsi de duas raças de ovinos, Morada Nova e Santa Inês. As principais proteínas do L. dorsi nesses animais estão associadas a estruturas do citoesqueleto e ao metabolismo celular. A alimentação dos ovinos com farelo de mamona dessolventizado não alterou o desempenho dos animais e, no caso dos Morada Nova, não induziu mudanças significativas no proteoma do L. dorsi, conforme o método utilizado neste estudo, baseado em eletroforese 1D e espectrometria de massas. Para os ovinos Santa Inês, as proteínas associadas à via glicolítica (ENO3 e PGK1) e à maciez da carne (ACTA1) mostraram expressões diferenciadas nos tratamentos com torta de mamona. Portanto, é provável que essas duas raças apresentem aspectos únicos em relação à digestão de certos componentes e ao metabolismo celular, afetando a expressão das proteínas musculares. Os resultados apresentados neste estudo são baseados em proteômica bottom-up, utilizando eletroforese unidimensional e espectrometria de massas. Embora essa abordagem forneça resultados válidos, existem limitações quanto à quantidade de proteínas identificadas e à capacidade de detectar diferenças estatísticas, como amplamente discutidas na literatura. Assim, estudos futuros são sugeridos para utilizar LC-MS/MS ou abordagens top-down, com a exploração de isoformas de proteínas e mapeamento de modificações pós-traducionais.

REFERÊNCIAS

ALVES, Dorismar David et al. Maciez da carne bovina. Ciência animal brasileira, v. 6, n. 3, p. 135-149, 2005.

ARAÚJO, Ricardo Alves de. Torta de mamona destoxificada por soluções alcalinas em dietas de fêmeas caprinas leiteiras. 2019.

AUDI, Jennifer et al. Ricin poisoning: a comprehensive review. Jama, v. 294, n. 18, p. 2342-2351, 2005.

BRADFORD, Marion M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. **Analytical biochemistry**, v. 72, n. 1-2, p. 248-254, 1976.

CANHOS, DAL; DIAS, E. L. Tecnologia de carne bovina e produtos derivados. Campinas, Secretaria da Indústria, Comércio. Ciência e Tecnologia, p. 440, 1985.

CARBON, Seth et al. AmiGO: online access to ontology and annotation data. **Bioinformatics**, v. 25, n. 2, p. 288-289, 2009.

CARDOSO, Susana et al. Estimulação eletrica, tipo de desossa e taxas de resfriamento da carne bovina (MM. Longissimus Lumborum e Semitendinosus): efeitos em características físicas, físico-quimicas, sensoriais e bacteriologicas. 2005.

CARVALHO, G. A. et al. Caracterização do mercado da carne ovina em Sobral, Estado do Ceará. **Informações Econômicas**, v. 46, n. 2, 2016.

CUNHA, Maria das Graças Gomes et al. Desempenho e digestibilidade aparente em ovinos confinados alimentados com dietas contendo níveis crescentes de caroço de algodão integral. **Revista Brasileira de Zootecnia**, v. 37, n. 6, p. 1103-1111, 2008.

D'ALESSANDRO, Angelo; ZOLLA, Lello. Meat science: From proteomics to integrated omics towards system biology. **Journal of proteomics**, v. 78, p. 558-577, 2013.

DAVIES, A. S. The structure and function of carcass tissues in relation to meat production. Meat production and processing New Zealand Society of animal production. Occasional publication, n. 11, p. 43-60, 1989.

DE ARAÚJO FILHO, J. A.; LEITE, E. Reis; DA SILVA, N. Lima. Contribution of woody species to the diet composition of goat and sheep in caatinga vegetation. Embrapa Caprinos e Ovinos-Nota Técnica/Nota Científica (ALICE), 1998.

DESAI, Monil A. et al. Proteome basis of pale, soft, and exudative-like (PSE-like) broiler breast (Pectoralis major) meat. **Poultry science**, v. 95, n. 11, p. 2696-2706, 2016.

DRANSFIELD, Eric. Modelling post-mortem tenderisation—IV: Role of calpains and calpastatin in conditioning. **Meat science**, v. 34, n. 2, p. 217-234, 1993.

EMERENCIANO NETO, J. V. et al. Produção e estrutura de pastos de capim-massai adubado com dejetos da produção animal. **B. Indústr. Anim.**, p. 117-110, 2016.SOUZA, D. A. SAG da carne ovina brasileira: resultados 2008 e perspectivas. 2009.

FOURNIER, Marjorie L. et al. Multidimensional separations-based shotgun proteomics. **Chemical reviews**, v. 107, n. 8, p. 3654-3686, 2007.

FURTADO, R. N. et al. Valor nutritivo de dietas contendo torta de mamona submetida a métodos alternativos de destoxificação para ovinos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 64, n. 1, p. 155-162, 2012.

GARDNER JR, H. K. et al. Detoxification and deallergenization of castor beans. Journal of the American Oil Chemists' Society, v. 37, n. 3, p. 142-148, 1960.

GARLAND, T.; BAILEY, E. M. Toxins of concern to animals and people. **Revue scientifique et technique-Office international des épizooties**, v. 25, n. 1, p. 341, 2006.

GETTY, R. Anatomia dos animais domésticos. Guanabara Koogan. vol. 2. 2000

GOLL, D. E. Role of proteinases and protein turnover in muscle growth and meat quality. In: Proceedings-Annual Reciprocal Meat Conference of the American Meat Science Association (USA). 1992.

GOWDA, N. K. S. et al. Evaluation of castor (Ricinus communis) seed cake in the total mixed ration for sheep. Journal of the Science of Food and Agriculture, v. 89, n. 2, p. 216-220, 2009.

GU, Xuedong et al. In-depth mapping of the proteome of Tibetan pig tenderloin (longissimus dorsi) using offline high-pH reversed-phase fractionation and LC-MS/MS. Journal of food biochemistry, v. 43, n. 11, p. e13015, 2019.

HAM, A. W.; CORMACK, D. H. Histologia. 8.ed. Rio de Janeiro: Guanabara Koogan, 23 1983. p. 508.

HOORN, R. K. J.; FLIKWEERT, J. P.; STAAL, Gerard EJ. Purification and properties of enolase of human erythrocytes. **International Journal of Biochemistry**, v. 5, n. 11-12, p. 845-846, 1974.

IBGE, Censo. Instituto Brasileiro de Geografia e Estatística-IBGE. 2019.

JIA, Wei et al. Molecular mechanism of protein dynamic change for Hengshan goat meat during freezing storage based on high-throughput proteomics. **Food Research International**, v. 143, p. 110289, 2021.

JOSEPH, Poulson et al. Proteomics of muscle-specific beef color stability. Journal of Agricultural and Food Chemistry, v. 60, n. 12, p. 3196-3203, 2012.

KIM, Yuan H. et al. Mechanism for lactate-color stabilization in injection-enhanced beef. Journal of agricultural and food chemistry, v. 54, n. 20, p. 7856-7862, 2006.

KOOHMARAIE, Mohammad. Muscle proteinases and meat aging. **Meat science**, v. 36, n. 1-2, p. 93-104, 1994.

KREUZER, Helen W.; WEST, Jason B.; EHLERINGER, James R. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations. Journal of forensic sciences, v. 58, p. S43-S51, 2013.

LAWRIE, R. A.; LEDWARD, D. A. The eating quality of meat. **Meat science**, v. 5, p. 184-223, 1998.

LINDON, John C.; TRANTER, George E.; KOPPENAAL, David. Encyclopedia of spectroscopy and spectrometry. Academic Press, 2016.

LIRA, Aianne Batista et al. Desempenho e características de carcaça de dois biótipos de ovinos da raça Santa Inês terminados a pasto suplementados com blocos multinutricionais. **Revista Brasileira de Saúde e Produção Animal**, v. 18, n. 2, p. 313-326, 2017. Animal. v.18, n.2, p.313-326, 2017.

LORD, J. Michael; SPOONER, Robert A. Ricin trafficking in plant and mammalian cells. **Toxins**, v. 3, n. 7, p. 787-801, 2011.

LORD, J. Michael; SPOONER, Robert A. Ricin trafficking in plant and mammalian cells. **Toxins**, v. 3, n. 7, p. 787-801, 2011.

LUCHIARI FILHO, A. Pecuária da carne bovina. São Paulo: Luchiari Filho, 2000. MANCINI, R. A.; HUNT, MCy. Current research in meat color. Meat science, v. 71, n. 1, p. 100-121, 2005.

MARTINS, Jorge André Matias et al. Major heparin-binding proteins of the seminal plasma from Morada Nova rams. **Small Ruminant Research**, v. 113, n. 1, p. 115-127, 2013.

MELO, Walber Carvalho et al. Produção de etanol a partir de torta de mamona (Ricinus communis L.) e avaliação da letalidade da torta hidrolisada para camundongos. **Química Nova**, v. 31, n. 5, p. 1104-1106, 2008.

MILLER, R. K. Obtendo carne de qualidade consistente. In: **Congresso Brasileiro de Ciência** e **Tecnologia de Carnes**. 2001. p. 123-142.

MINISTÉRIO DA AGRICULTURA. Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal (RIISPOA). Aprovado pelo decreto no. 30690 de 20.03. 52, alterado pelo decreto nº 1255, 1980.

MOURA, Arlindo A. et al. Identification of proteins in the accessory sex gland fluid associated with fertility indexes of dairy bulls: a proteomic approach. **Journal of andrology**, v. 27, n. 2, p. 201-211, 2006.

NAIR, Mahesh N. et al. Proteome basis for intramuscular variation in color stability of beef semimembranosus. **Meat science**, v. 113, p. 9-16, 2016.

NUTRIENT requirement of sheep. Washington, D.C.: Academic Press, 2007. 99 p

OLIVEIRA, C. H. A. et al. Meat quality assessment from young goats fed for long periods with castor de-oiled cake. **Meat science**, v. 106, p. 16-24, 2015.

OLSNES, Sjur; KOZLOV, Jurij V. Ricin. Toxicon, v. 39, n. 11, p. 1723-1728, 2001.

POMPEU, RCFF et al. Farelo de mamona industrialmente destoxificado na alimentação de ovinos. **Embrapa Caprinos e Ovinos-Boletim de Pesquisa e Desenvolvimento** (INFOTECA-E), 2020.

RENERRE, Michel; DUMONT, Françoise; GATELLIER, Ph. Antioxidant enzyme activities in beef in relation to oxidation of lipid and myoglobin. **Meat Science**, v. 43, n. 2, p. 111-121, 1996.

RIBEIRO, D. M. et al. The effects of improving low dietary protein utilization on the proteome of lamb tissues. **Journal of proteomics**, v. 223, p. 103798, 2020.

ROCHA, Surza LG et al. Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43. **Journal of proteome research**, v. 8, n. 5, p. 2351-2360, 2009.

RODRIGUES, Rodrigo Augusto. Programa nacional de produção e uso de biodiesel: uma referência para a análise da formulação, implementação e avaliação de políticas públicas. **Revista de Políticas Públicas e Gestão Governamental**, v. 6, n. 1, p. 1678-4057, 2007.

ROY, Chad J. et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. **Proceedings of the National Academy of Sciences**, v. 112, n. 12, p. 3782-3787, 2015.

ROY, Chad J. et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. **Proceedings of the National Academy of Sciences**, v. 112, n. 12, p. 3782-3787, 2015.

SÁNCHEZ, R. et al. Tribological characterization of green lubricating greases formulated with castor oil and different biogenic thickener agents: a comparative experimental study. **Industrial lubrication and tribology**, 2011.

SANTOS, P.A., LUDKE, M.C.M., LUDKE, J.V., SANTOS, M.J.B., MELO, A. G.S., OLIVEIRA, A.C., CAVALCANTI, A.S.A. 2013. Castor meal in feeding of non-ruminants. **Revista Eletrônica Nutritime**, 10, 2814-2827.

SEVERINO, L. S. O que sabemos sobre a torta da mamona. Embrapa Algodão-Documentos (INFOTECA-E), 2005.

SEVERINO, L. S.; MILANI, M.; BELTRAO, NE de M. Mamona: o produtor pergunta, a Embrapa responde. Brasília, DF: Embrapa Informação Tecnológica; Campina Grande: Embrapa Algodão, 2006., 2006.

SGARBIERI, Valdemiro C. Proteínas em alimentos protéicos: propriedades, degradações e modificações. In: Proteínas em alimentos protéicos: propriedades, degradações e modificações. 1996. p. 517-517.

SMITH, G. C. et al. Economic implications of improved color stability in beef. Antioxidants in muscle foods: Nutritional strategies to improve quality, p. 397-426, 2000.

TÁVORA, F. J. A. F. A cultura da mamona. Fortaleza: Epace, 1982. Multidimensional Separations-Based Shotgun Proteomics Marjorie L. Fournier,

TROUT, Graham. Biochemistry of lipid and myoglobin oxidation in post-mortem muscle and processed meat products-effects on rancidity. 2003.

TUNARU, Sorin et al. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. **Proceedings of the National Academy of Sciences**, v. 109, n. 23, p. 9179-9184, 2012.

VAN TILBURG, M. F. et al. Membrane-associated proteins of ejaculated sperm from Morada Nova rams, **Theriogenology**, v. 79, p. 1247-1261, 2013.

VIEIRA, M. M. M. et al. Ingestive behavior of sheep fed diets containing four levels of castor meal. **Revista Ceres**, v. 58, n. 4, p. 444-451, 2011.

WALSH, Matthew J.; DODD, Jennifer E.; HAUTBERGUE, Guillaume M. Ribosomeinactivating proteins: Potent poisons and molecular tools. **Virulence**, v. 4, n. 8, p. 774-784, 2013.

WATANABE, A.; DALY, C. C.; DEVINE, C. E. The effects of the ultimate pH of meat on tenderness changes during ageing. **Meat science**, v. 42, n. 1, p. 67-78, 1996. CULAU, Paulete de Oliveira Vargas et al. Influência do gene halotano sobre a qualidade da carne suína. **Revista Brasileira de Zootecnia**, v. 31, n. 2, p. 954-961, 2002.

WORBS, Sylvia et al. Ricinus communis intoxications in human and veterinary medicine—a summary of real cases. **Toxins**, v. 3, n. 10, p. 1332-1372, 2011.

ZEOLA, N. M. B. L. et al. Influência de diferentes níveis de concentrado sobre a qualidade da carne de cordeiros Morada Nova. Revista Portuguesa de Ciências Veterinárias, v. 97, n. 544, p. 175-180, 2002.Prates JAM (2000). Maturação da carne dos mamíferos: 1. Caracterização geral e modificações físicas. Revista Portuguesa de Ciências Veterinárias, Lisboa, 95(533): 34-41.

ANEXO A - PROTEÍNAS DE *LONGISSIMUS DORSI* DE OVINOS DA RAÇA MORADA NOVA ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA DESSOLVENTIZADO E FARELO DE MAMONA DESSOLVENTIZADO PENEIRADO. AS PROTEÍNAS FORAM SEPARADAS POR ELETROFORESE UNIDIMENSIONAL (SDS-PAGE) E IDENTIFICADAS POR ESPECTROMETRIA DE MASSAS (ESI-Q-TOF).

Ban	Protein Name	Gene	SwissProt	MS/MS	Sequenc	Start-End	Matched	Ion	m/z	Z
d		Name	Accession	Protein	e	peptides	pepetides	scor		
				score	covered			e		
					(%)					
26	Myosin-1	MYH1	MYH1_BOV	1885	24	192 - 205	VIQYFATIAVTGEK	50	770.4368	2
			IN			192 - 205	VIQYFATIAVTGEK	50	770.9091	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	37	1238.620	2
						261 - 273	LASADIETYLLEK	77	1	2
						371 - 386	QREEQAEPDGTEVADK	53	733.3798	3
						417 - 432	GQTVEQVYNAVGALAK	79	601.2727	2
						644 - 655	GSSFQTVSALFR	76	824.4211	2
						644 - 655	GSSFQTVSALFR	75	650.3261	2
						683 - 697	TPGAMEHELVLHQLR	108	650.3271	4
						683 - 697	TPGAMEHELVLHQLR	102	437.4739	3
						727 – 742	VLNASAIPEGQFIDSK	66	582.9641	2
						770 - 783	AGLLGLLEEMRDEK	68	844.9354	3
						770 - 783	AGLLGLLEEMRDEK	82	525.2750	2
						784 - 790	LAQLITR	59	795.4020	2
						980 - 994	NLTEEMAGLDETIAK	78	407.7401	2
						1001 - 1025	ALQEAHQQTLDDLQAEEDKVNTLTK	92	817.8883	3
						1064 - 1082	LAQESTMDIENDKQQLDEK	77	946.7983	3
						1118 - 1129	IEELEEEIEAER	56	745.6776	2
						1180 - 1196	DLEEATLQHEATAAALR	46	744.8467	3
						1199 – 1215	HADSVAELGEQIDNLQR	81	613.6363	3
						1283 - 1292	LQTESGEFSR	59	632.3036	2
						1293 – 1306	QLDEKDALVSQLSR	75	577.2575	2
						1330 - 1340	SALAHALQSAR	50	801.4171	2
						1348 - 1357	EQYEEEQEGK	44	562.8030	2
						1367 – 1375	ANSEVAQWR	53	634.7690	2
						1367 – 1375	ANSEVAQWR	53	530.7469	2
						1376 - 1385	TKYETDAIQR	75	531.2507	2
						1400 - 1413	LQDAEEHVEAVNAK	49	612.7946	3
						1424 - 1437	LQNEVEDLMIDVER	89	518.2487	2
						1489 - 1503	NAYEESLDQLETLKR	78	851.9141	3
						1507 - 1524	NLQQEISDLTEQIAEGGK	102	603.6277	2
						1507 - 1524	NLQQEISDLTEQIAEGGK	51	986.9871	3
						1507 - 1525	NLQQEISDLTEQIAEGGKR	87	658.3287	3
						1507 - 1525	NLQQEISDLTEQIAEGGKR	107	710.3550	2
						1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	60	1065.038	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	88	1	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	74	971.1231	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	89	723.9887	2
						1680 - 1692	RANLLQAEIEELR	50	724.0011	2
]				1681 - 1692	ANLLQAEIEELR	75	1085.502	2

						1681 - 1692	ANLLQAEIEELR	67	3	2
						1703 - 1715	KIAEOELLDASER	65	777.9238	2
						1704 - 1715	IAEOELLDASER	82	699.8687	2
						1732 - 1752	KLETDITOIOGEMEDIIOEAR	89	699.8730	3
						1800 - 1809	LDEAEOLALK	60	751.3854	2
						1867 - 1877	LODLVDKLOAK	66	687 3388	3
						1867 - 1877		62	820 7435	2
						1007 1077	EQUETUREQUIK	02	565 2965	2
									424 2369	
									635 8572	
26	Myosin-2	MVH2	MVH2 BOV	1595	17	261 - 273	ΙΑSADIETVI Ι ΕΚ	77	733 3798	2
20	Wryosin 2	WI I 112		1575	17	371 - 386	OREEOAEPDGTEVADK	53	601 2727	3
						417 432	GOTVEOVTNAVGALAK	80	703 /1/6	2
						646 657	GSSECTVSALER	76	650 3261	2
						646 657	CSSECTVS AL ED	75	650 3271	2
						685 600	TDCAMENEL VI HOLD	109	427 4720	
						685 - 699	TPCAMENEL VLHQLK	100	437.4739	4
						083 - 099		102	525 2750	4
						772 785	AGLIGLLEEMRDEK	00	323.2730	2
						772 - 783	AGLLGLLEEMKDEK	82	/93.4020	2
						982 - 990	NLIEEMAGLDEHAK	/8	046 7092	2
						1003 - 1027		92	940./983	2
						1120 - 1131		50	/44.846/	2
						1182 - 1198	DLEEAILQHEAIAAALK	46	613.6363	3
						1201 - 1217	HADSVAELGEQIDNLQR	81	632.3036	3
						1285 - 1294	LQIESGEFSR	59	5/7.2575	2
						13/8 - 138/	TKYETDAIQR	75	612.7946	2
						1426 - 1439	LQNEVEDLMLDVER	89	851.9141	2
						1491 - 1505	NAYEESLDQLETLKR	//8	603.6277	3
						1509 - 1526	NLQQEISDLTEQIAEGGK	102	986.9871	2
						1509 - 1526	NLQQEISDLTEQIAEGGK	51	658.3287	3
						1509 - 1527	NLQQEISDLTEQIAEGGKR	87	710.3550	3
						1509 - 1527	NLQQEISDLTEQIAEGGKR	107	1065.038	2
						1537 - 1562	QVEQEKSEIQAALEEAEASLEHEEGK	60	1	3
						1543 - 1562	SEIQAALEEAEASLEHEEGK	88	971.1231	3
						1543 - 1562	SEIQAALEEAEASLEHEEGK	74	723.9887	3
						1543 - 1562	SEIQAALEEAEASLEHEEGK	89	724.0011	2
						1682 - 1694	RANLLQAEIEELR	50	1085.502	2
						1683 - 1694	ANLLQAEIEELR	75	3	2
						1683 - 1694	ANLLQAEIEELR	67	777.9238	2
						1705 - 1717	KIAEQELLDASER	65	699.8687	2
						1706 - 1717	IAEQELLDASER	82	699.8730	2
						1734 - 1754	KLETDITQIQGEMEDILQEAR	89	751.3854	3
						1802 - 1811	LDEAEQLALK	60	687.3388	2
						1869 – 1879	LQDLVDKLQAK	66	820.7435	3
						1869 - 1879	LQDLVDKLQAK	62	565.2965	2
									424.2369	
									635.8572	
26	Sarcoplasmic/e	ATP2A	AT2A1 BO	63	2	437 - 451	VGEATETALTTLVEK	43	781.3931	2
	ndoplasmic	1	VIN			972 - 984	ISLPVIGLDEILK	51	705.4377	2
	reticulum									

	ATPase 1									
27	Myosin 1	MVH1	MVH1 BOV	2000	26	261 273	I ASADIETVI I EK	74	733 3037	2
21	Ivi yosiii-1	1011111		2099	20	201 - 273 644 655	CSSECTVSALER	56	650 3340	2
						644 - 655	GSSECTVSALER	43	650 3340	$\frac{2}{2}$
						683 607	TPGAMEHELVI HOLP	61	582 9644	2
						727 - 742	VINASAIPEGOEIDSK	57	844 9359	2
						770 - 780	AGLIGUEFEMR	60	601 3355	2
						770 - 780	AGLIGILEEMIK	58	609 3259	2
						770 - 783	AGLIGLIFFMRDEK	49	525 2761	3
						784 - 790	LAOLITR	59	407.7430	2
						812 - 822	ESIFCIOYNVR	42	714.8502	2
						956 - 966	DIDDLELTLAK	57	623.3248	2
						980 - 994	NLTEEMAGLDETIAK	88	817.8868	2
						980 - 994	NLTEEMAGLDETIAK	43	817.8977	2
						1001 - 1025	ALQEAHQOTLDDLQAEEDKVNTLTK	124	946.7977	3
						1028 - 1045	TKLEOOVDDLEGSLEOEK	79	697.0051	3
						1064 - 1082	LAQESTMDIENDKQQLDEK	109	745.6764	3
						1064 - 1082	LAQESTMDIENDKQQLDEK	81	751.0102	3
						1087 - 1096	EFEMSNLQSK	56	606.7741	2
						1145 - 1168	ELEEISERLEEAGGATSAQIEMNK	39	884.0804	3
						1180 - 1196	DLEEATLQHEATAAALR	76	613.6349	3
						1199 – 1215	HADSVAELGEQIDNLQR	112	947.9528	2
						1199 – 1215	HADSVAELGEQIDNLQR	100	632.3056	3
						1229 - 1243	MEIDDLASNMETVSK	46	841.8752	2
						1283 - 1292	LQTESGEFSR	60	577.2374	2
						1293 - 1306	QLDEKDALVSQLSR	89	801.4194	2
						1330 - 1340	SALAHALQSAR	53	562.8034	2
						1330 - 1340	SALAHALQSAR	43	375.5396	4
						1348 - 1357	EQYEEEQEGK	45	634.7666	2
						1376 - 1385	TKYETDAIQR	77	612.7891	2
						1400 - 1413	LQDAEEHVEAVNAK	61	518.2499	3
						1424 - 1437	LQNEVEDLMIDVER	102	851.9139	2
						1424 - 1437	LQNEVEDLMIDVER	82	859.9070	2
						1489 – 1503	NAYEESLDQLETLKR	78	603.6273	3
						1507 - 1524	NLQQEISDLTEQIAEGGK	94	986.9829	2
						1507 - 1525	NLQQEISDLTEQIAEGGKR	87	/10.35/2	3
						1507 - 1525	NLQQEISDLTEQIAEGGKR	99	1065.034	2
						1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	57	5	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	88	9/1.1308	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	69	123.9922	2
						1541 - 1563	SEIQAALEEAEASLEHEEGKILK	40	1085.502	4
						1655 - 1665		55	4	3
						10/2 - 10/9	EQLAMVEK DANI LOAFIFFI D	50	038.8193	2
						1080 - 1092	KANLLQAEIEELK DANI LOAEIEELD	50	432.8838	2
						1080 - 1092	KANLLQAEIEELK	32	400.24/9	2
						1001 - 1092 1681 1602	ANLLQAEIEELK	15	518 0510	2
						1001 - 1092 1704 1715	ANLLQAEIEELK IAFOFI I DASER	82	600 8568	$\frac{2}{2}$
1					1	1/04 - 1/13	IAEQELEDASEN	0.5	077.0300	

						1716 - 1730	VOLLHTONTSLINTK	47	699.8745	3
						1732 - 1752	KLETDITQIQGEMEDIIQEAR	104	687.3395	3
						1732 - 1752	KLETDITOIOGEMEDIIOEAR	93	570.6498	3
						1732 - 1752	KLETDITOIOGEMEDIIOEAR	97	820.7412	3
						1852 - 1862	ELTYOTEEDRK	77	820.7415	2
						1867 - 1877	LODLVDKLOAK	54	826.0693	3
						1867 - 1877	LÕDLVDKLÕAK	66	706.3315	2
						1913 - 1922	ADIAESOVNK	45	424.2332	2
							· · · · · · · · · · · · · · · · · · ·		635.8554	_
									537.7670	
27	Myosin-2	MYH2	MYH2 BOV	1762	20	261 - 273	LASADIETYLLEK	74	733.3937	2
	, , , , , , , , , , , , , , , , , , ,		IN			646 - 657	GSSFQTVSALFR	56	650.3340	2
						646 - 657	GSSFOTVSALFR	43	650.3340	2
						685 - 699	TPGAMEHELVLHQLR	61	582.9644	3
						772 - 782	AGLLGLLEEMR	60	601.3355	2
						772 - 782	AGLLGLLEEMR	58	609.3259	2
						772 – 785	AGLLGLLEEMRDEK	49	525.2761	3
						958 - 968	DIDDLELTLAK	57	623.3248	2
						982 - 996	NLTEEMAGLDETIAK	88	817.8868	2
						982 - 996	NLTEEMAGLDETIAK	43	817.8977	2
						1003 - 1027	ALQEAHQQTLDDLQAEEDKVNTLTK	124	946.7977	3
						1030 - 1047	TKLEQQVDDLEGSLEQEK	79	697.0051	3
						1147 - 1170	ELEEISERLEEAGGATSAQIEMNK	39	884.0804	3
						1182 - 1198	DLEEATLQHEATAAALR	76	613.6349	3
						1201 - 1217	HADSVAELGEQIDNLQR	112	947.9528	2
						1201 - 1217	HADSVAELGEQIDNLQR	100	632.3056	3
						1285 - 1294	LQTESGEFSR	60	577.2374	2
						1378 - 1387	TKYETDAIQR	77	612.7891	2
						1426 - 1439	LQNEVEDLMLDVER	102	851.9139	2
						1426 - 1439	LQNEVEDLMLDVER	82	859.9070	2
						1491 - 1505	NAYEESLDQLETLKR	78	603.6273	3
						1509 - 1526	NLQQEISDLTEQIAEGGK	94	986.9829	2
						1509 - 1527	NLQQEISDLTEQIAEGGKR	87	710.3572	3
						1509 - 1527	NLQQEISDLTEQIAEGGKR	99	1065.034	2
						1537 - 1562	QVEQEKSEIQAALEEAEASLEHEEGK	57	5	3
						1543 - 1562	SEIQAALEEAEASLEHEEGK	88	971.1308	3
						1543 - 1562	SEIQAALEEAEASLEHEEGK	69	723.9922	2
						1543 - 1565	SEIQAALEEAEASLEHEEGKILR	40	1085.502	4
						1657 - 1667	DTQIHLDDALR	53	4	3
						1674 - 1681	EQLAMVER	56	638.8193	2
						1682 - 1694	RANLLQAEIEELR	58	432.8838	2
						1682 - 1694	RANLLQAEIEELR	52	488.2479	3
						1683 - 1694	ANLLQAEIEELR	73	777.9215	2
						1683 - 1694	ANLLQAEIEELR	82	518.9519	2
						1706 - 1717	IAEQELLDASER	83	699.8568	2
						1718 - 1732	VQLLHTQNTSLINTK	47	699.8745	3
						1734 - 1754	KLETDITQIQGEMEDILQEAR	104	687.3395	3
						1734 - 1754	KLETDITQIQGEMEDILQEAR	93	570.6498	3
						1734 - 1754	KLETDITQIQGEMEDILQEAR	97	820.7412	3
						1854 - 1864	ELTYQTEEDRK	77	820.7415	2
						1869 - 1879	LQDLVDKLQAK	54	826.0693	2

						1869 - 1879	LQDLVDKLQAK	66	706.3315	2
						1886 - 1900	QAEEAEEQSNTNLSK	66	424.2332	2
						1915 - 1924	ADIAESOVNK	45	635.8554	2
							· · · · · · · · · · · · · · · · · ·		839 3765	
									537 7670	
28	Alpha-actinin-	ACTN2	ACTN2 BO	576	22	141 - 154	FAIODISVEETSAK	82	769 3847	2
20	2	1101112	VIN	570	22	155 - 163	FGLUWCOR	54	587 7996	2
	2		VII (203 - 221	I NKDDPIGNINI AMELAEK	44	705 3603	3
						203 - 221 272 281	VI AVNOENER	73	586 2077	2
						272 - 201 289 - 298	I ASELLEWIR	75	615 3455	$\frac{2}{2}$
						267 - 270 367 - 377	MUSDIAGAWOR	52	625 3011	2
						128 138	DVESSTI TEVP	60	650 3050	2
						420 - 430 562 572		41	520 7550	2
						503 - 572	OSU AIONEVEK	74	686 2725	$\frac{2}{2}$
						502 608	ISSEMILATIONE VER	04	884 4262	2
						595 - 008		40	622 2227	2
						616 - 631	OL VEIRDOSLOEELAR	49	622.5257	2
						010 - 031 712 721	UTNVTMEHID	49	420 8677	2
						712 - 721 724 745		41	439.0077	2
						754 - 745		15	108.8855	2
						700 - 707	ΑΓΙΝΠΓΟΚ	00	497.2247	2
						821 - 850		60	677.4103	
20	A 1. 1	A CTNI2	ACTN2 DO	460	10	$\frac{837 - 832}{149 - 161}$		08	4/2.31/4	4
28	Alpha-actinin-	ACTN3	ACIN3_BO	469	13	148 - 161	FAIQUISVEETSAK	82	/69.384/	2
	3		VIN			162 - 170	EGLLLWCQR	54	587.7996	2
						213 - 228	DDPIGNLNIAFEVAEK	60	866.9189	2
						2/9 - 288	VLAVNQENEK	53	572.3005	2
						296 - 305	LASELLEWIR	/5	615.3455	2
						315 - 325	VGEPSMSAMQR	60	612.7700	2
						391 - 401	GYEDWLLSEIR	70	690.8392	2
						391 - 401	GYEDWLLSEIR	50	690.8412	2
						391 - 402	GYEDWLLSEIRR	49	512.9281	3
						435 - 445	DYETASLQEVR	79	655.8111	2
						741 - 752	TINEVENQVLTR	93	708.3726	2
						756 - 766	GLSQEQLNEFR	87	660.8290	2
						767 – 774	ASFNHFDR	66	497.2247	2
28	Glycogen	PYGM	PYGM_SHE	321	12	18 - 30	GLAGVENVTELKK	85	453.2577	3
	phosphorylase		EP			279 - 290	VLYPNDNFFEGK	52	721.8445	2
						325 - 333	TNFDAFPDK	44	527.7430	2
						334 - 352	VAIQLNDTHPSLAIPELMR	42	706.7135	3
						334 - 352	VAIQLNDTHPSLAIPELMR	82	712.0447	3
						415 - 425	VAAAFPGDVDR	56	559.2808	2
						508 - 520	IGEEYIADLDQLR	50	767.8880	2
						522 - 533	LLSYVDDESFIR	71	728.8646	2
						741 – 754	HIIDQLSSGFFSPK	91	788.4070	2
28	Myosin-1	MYH1	MYH1_BOV	304	5	261 - 273	LASADIETYLLEK	71	733.3882	2
			IN			387 - 400	AAYLQGLNSADLLK	50	738.9002	2
						417 - 432	GQTVEQVYNAVGALAK	66	824.4329	2
						683 - 697	TPGAMEHELVLHQLR	82	437.4750	4
						683 - 697	TPGAMEHELVLHQLR	75	582.9678	3
						1272 - 1280	LINDLTTQR	49	537.2991	2
						1283 - 1292	LQTESGEFSR	46	577.2748	2

						1330 - 1340	SALAHALQSAR	46	562.8126	2
						1489 - 1503	NAYEESLDQLETLKR	47	603.6344	3
						1681 - 1692	ANLLQAEIEELR	72	699.8835	2
29	Myosin-1	MYH1	MYH1 BOV	544	9	74 - 84	EDQVFPMNPPK	58	659.3092	2
	-		IN			171 - 185	ENQSILITGESGAGK	81	752.3856	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	44	820.7484	3
						215 - 237	MOGTLEDOIISANPLLEAFGNAK	76	826.0777	3
						215 - 237	MÕGTLEDÕIISANPLLEAFGNAK	38	826.0810	3
						261 - 273	LASADIETYLLEK	74	733.3831	2
						373 - 386	EEOAEPDGTEVADK	61	759.3335	2
						387 - 400	AAYLOGLNSADLLK	76	738.8984	2
						417 - 432	GOTVEOVYNAVGALAK	86	824.4269	2
						600 - 614	NKDPLNETVVGLYOK	42	573,3040	3
						643 - 655	KGSSFOTVSALFR	79	714.3832	2
						683 - 697	TPGAMEHELVLHOLR	43	577.6356	3
						683 - 697	TPGAMEHELVLHOLR	58	582.9668	3
						784 - 790	LAOLITR	45	407.7618	2
						1283 - 1292	LOTESGEFSR	62	577.2777	2
						1367 - 1375	ANSEVAOWR	60	530.7662	2
						1681 - 1692	ANLLOAEIEELR	74	699.8785	2
29	Myosin-2	MYH2	MYH2 HOR	532	9	74 - 84	EDOVFPMNPPK	58	659.3092	2
			SĒ	002	-	171 - 185	ENOSILITGESGAGK	81	752.3856	2
			5E			213 - 235	MOGTLEDOIISANPLLEAFGNAK	44	820 7484	3
						213 - 235 213 - 235	MOGTLEDOUSANPLLEAFGNAK	76	826.0777	3
						213 - 235	MOGTLEDOUSANPLLEAFGNAK	38	826 0810	3
						259 - 271	LASADIETYLLEK	74	733 3831	2
						371 - 384	EEOAEPDGTEVADK	61	759 3335	2
						385 - 398	AAYLOGLNSADLLK	76	738.8984	2
						415 - 430	GOTVEOVTNAVGALAK	89	793.4246	2
						598 - 612	NKDPLNETVVGLYOK	42	573.3040	3
						642 - 654	KGSSFOTVSALFR	79	714 3832	2
						682 - 696	TPGAMEHELVLHOLR	43	577.6356	3
						682 - 696	TPGAMEHELVLHOLR	58	582.9668	3
						783 - 789	LAOIITR	45	407.7618	2
						1366 - 1374	ANSEVAOWR	60	530.7662	2
						1680 - 1691	ANLLOAEIEELR	74	699.8785	2
29	Alpha-actinin-	ACTN2	ACTN2 BO	135	3	289 - 298	LASELLEWIR	76	615.3522	2
	2		VIN	100	5	428 - 438	DYESSTLTEVR	73	650.3073	2
	_					734 - 745	TINEVETQILTR	58	708.8858	2
29	ATP-	PFKM	PFKAM BO	129	6	39 - 46	VGIYTGAR	55	418 7331	2
	dependent 6-	1111111	VIN	12)	Ŭ	184 - 200	IJEIVDAITTTAOSHOR	63	632 6728	3
	nhosphofructo					603 - 614	DLOVNVEHLVOK	54	711 3881	2
	kinase muscle					656 - 672	NVLGHMOOGGSPTPFDR	45	619 6270	3
	type					000 012			019.0270	
29	Aconitate	ACO2	ACON_BOV	121	5	234 - 245	LTGSLSGWTSPK	43	617.3308	2
	hydratase,		IN			412 - 424	SQFTITPGSEQIR	60	732.3760	2
	mitochondrial					430 - 437	DGYAQILR	65	468.2516	2
						565 - 577	LOLLEPFDKWDGR	45	539.6140	3

30	Mvosin-2	MYH2	MYH2 HOR	481	8	171 - 185	ENOSILITGESGAGK	74	752.3798	2
			SĒ			213 - 235	MOGTLEDOIISANPLLEAFGNAK	60	826.0869	3
						259 - 271	LASADIETYLLEK	73	733.3854	2
						259 - 271	I ASADIFTYI I FK	77	733 3891	2
						353 - 364	I TGAVMHYGNI K	57	660 3411	2
						385 - 398	A AVLOGI NSADI I K	46	738 9005	2
						415 430	GOTVEOVTNAVGALAK	75	793 4247	2
						415 - 430	COTVEOVINAVGALAK	108	702 4284	2
						413 - 430 508 612	NKDBI NETVUCI VOK	108	572 2022	2
						598 - 012		20	729 2912	2
						642 - 654	DELINE I V VOL I QK	39	730.3013	2
						042 - 034	KUSSFQIVSALFK	44	/14.3848	2
						11/9 - 1195		43	613.6411	3
						1680 - 1691	ANLLQAEIEELK	91	699.8815	2
			NUMBER OF		-	1912 - 1921	ADIAESQVNK	50	537.7765	2
30	Myosın-l	MYHI	MYHI_BOV	380	8	171 - 185	ENQSILITGESGAGK	/4	752.3798	2
			IN			215 - 237	MQGTLEDQIISANPLLEAFGNAK	60	826.0869	3
						261 - 273	LASADIETYLLEK	73	733.3854	2
						261 - 273	LASADIETYLLEK	77	733.3891	2
						355 - 366	LTGAVMHYGNLK	57	660.3411	2
						387 - 400	AAYLQGLNSADLLK	46	738.9005	2
						417 – 432	GQTVEQVYNAVGALAK	61	824.4301	2
						600 - 614	NKDPLNETVVGLYQK	44	573.3032	3
						602 - 614	DPLNETVVGLYQK	39	738.3813	2
						643 - 655	KGSSFQTVSALFR	44	714.3848	2
						1180 - 1196	DLEEATLQHEATAAALR	43	613.6411	3
						1681 - 1692	ANLLQAEIEELR	91	699.8815	2
						1913 – 1922	ADIAESQVNK	50	537.7765	2
30	Alpha-actinin-	ACTN2	ACTN2 BO	106	4	428-438	DYESSTLTEVR	73	650.3101	2
	2		VIN			734 - 745	TINEVETQILTR	45	708.8875	2
						734 - 745	TINEVETQILTR	45	709.3864	2
						837 - 851	ILASDKPYILAEELR	39	577.6591	3
31	Albumin	ALB	ALBU SHE	326	12	169 - 183	HPYFYAPELLYYANK	43	630.3121	3
			EP			375 - 386	EYEATLEDCCAK	61	744.8006	2
						402 - 412	HLVDEPONLIK	56	653.3530	2
						437 - 451	KAPOVSTPTLVEISR	73	542.6410	3
						438 - 451	APOVSTPTLVEISR	65	749.4118	2
						548 - 557	KOTALVELLK	55	571.8521	2
						569 - 580	TVMENFVAFVDK	99	700.3509	2
						569 - 580	TVMENFVAFVDK	74	708.3420	2
31	Myosin-2	MYH2	MYH2 BOV	267	4	25 - 35	IEAONKPEDAK	42	420 8877	3
51	Wryosin 2	111112		207		74 - 84	EDOVEPMNPPK	52	659 3095	2
			113			171 - 185	EDQVITWIRTIK	66	752 3801	$\frac{2}{2}$
						171 - 103 261 273	I ASADIETVI I EK	74	732.3801	2
						201 - 273	SVHIEVOITSNR	12	510 2511	3
						203 - 270 271 284	OPEEOAEDDCTEVADV	52	601 2726	2
						371 - 300 372 - 296	EEOAEDCTEVADK	17	750 2215	2
						373 - 380 417 - 422	COTVEOVINAVGALAV	07	702 4221	$\frac{2}{2}$
21	Muagin 1	MVII1	MVU1 DOV	220	4	+17 - 432		31	175.4221	2
51	iviyosin-1	MIHI		238	4	23-33	IEAQINKI'I'DAK EDOVEDMNDDV	42	420.88//	2
			IN			/4 - 84	EDQVFPMNPPK ENOSU ITOESCACY	52	039.3095	2
						1/1-185	ENQSILITGESGAGK	00	/32.3801	2

						261 - 273	LASADIETYLLEK	74	733.3875	2
						371 - 386	OREEQAEPDGTEVADK	53	601.2726	3
						373 - 386	EEOAEPDGTEVADK	47	759.3315	2
						417 - 432	GOTVEOVYNAVGALAK	79	824.4309	2
31	Heat shock 70	HSPA1	HS71A BO	108	8	57 - 71	NOVALNPONTVEDAK	52	829 9201	2
51	kDa protein	A	VIN	100	0	172 - 187	IINEPTAAAIAYGLDR	45	844 4511	2
	14	11				525 - 533	VKAEDEVOR	54	569 2789	2
	171					598 - 609	FLEOVCNPUSE	44	729 3687	2
21	Glucogen	DVCM	DVCM SHE	04	4	270 200	VI VINDNEEEGK	50	721.8467	2
51	mbaanhamilaaa	FION		24	4	279 - 290 225 222	TNEDAEDDV	50	527 7426	2
	phosphorylase,		Er			523 - 555		30	327.7430	2
	muscle form					308 - 320	IGEETIADLDQLK	49	/0/.8913	2
32	Phosphogluco	PGM1	PGM1_BOV	411	30	11 - 23	AYQDQKPGTSGLR	58	474.2407	3
	mutase-1		IN			11 - 23	AYQDQKPGTSGLR	71	710.8618	2
						28 - 52	VFQSSSNYAENFIQSIISTVEPAQR	50	939.1311	3
						77 - 85	IAAANGIGR	44	422.2367	2
						131 - 146	FNISNGGPAPEAITDK	51	815.9013	2
						278 - 293	TGEHDFGAAFDGDGDR	40	556.2252	3
						334 - 343	SMPTSGALDR	48	517.7562	2
						334 - 343	SMPTSGALDR	69	525.7454	2
						350 - 360	IALYETPTGWK	70	639.8355	2
						361 - 370	FFGNLMDASK	47	573,2663	2
						428 - 440	YDYEEVEAEGANK	72	758 8219	2
						471 - 486	IDNEEVSDPVDGSISR	63	907 4088	2
						4/1 400	LIEADGSR	55	/30 73/6	2
						504 515	LSGTGSAGATIP	56	545 8012	2
						504 - 515		10	196 5961	2
22	Maria 1	MAZITI	MULL DOM	145	2	310 - 327		40	400.3004	2
32	Niyosin-1	MYHI	MYHI_BOV	145	2	261 - 2/3	LASADIETYLLEK	/6	/33.38//	2
			IN			261 - 2/3	LASADIE I YLLEK	52	/33.3940	2
						41/-432	GQIVEQVYNAVGALAK	48	824.4357	2
						644 - 655	GSSFQTVSALFR	62	650.3383	2
32	Glycogen	PYGM	PYGM_BOV	104	2	279 – 290	VLYPNDNFFEGK	59	721.8617	2
	phosphorylase		IN			522 - 533	LLSYVDDESFIR	76	728.8672	2
33	Pyruvate	PKM	KPYM RAB	454	28	44 - 56	NTGIICTIGPASR	66	680.3498	2
	kinase PKM		IT			126 - 136	GSGTAEVELKK	73	559.8060	2
						142 - 151	ITLDNAYMEK	45	599.2927	2
						142 - 151	ITLDNAYMEK	52	607.2913	2
						208 - 224	GVNLPGAAVDLPAVSEK	73	818,9404	2
						208 - 230	GVNLPGAAVDLPAVSEKDIODLK	77	783.7542	3
						231 - 246	FGVFODVDMVFASFIR	73	938 4548	2
						279 - 294	REDEU FASDGIMVAR	58	613 3070	2
						38/ 302	EAEAAMEHR	17	531 2602	2
						304 - 392 384 202		4/	530 2424	2
						148 155		45	420 7520	$\frac{2}{2}$
						440-433		43	420.7520	
						448 - 455		45	421.2525	
						4/0 - 489	DPVQEAWAEDVDLK	51	821.8876	2
						490 - 498	VINLAMINVGK	49	481.2521	2
						490 - 498	VNLAMNVGK	46	481.7548	2
						505 - 526	KGDVVIVLTGWRPGSGFTNTMR	49	602.5641	4

33	Myosin-1	MYH1	MYH1_BOV	124	2	261 - 273	LASADIETYLLEK	74	733.3885	2
			IN			387 - 400	AAYLQGLNSADLLK	53	738.9041	2
						417 - 432	GQTVEQVYNAVGALAK	60	824.4322	2
33	Glycogen	PYGM	PYGM_BOV	93	2	279 - 290	VLYPNDNFFEGK	48	721.8502	2
	phosphorylase,		IN			279 - 290	VLYPNDNFFEGK	62	721.8502	2
	muscle					353 - 359	ILVDQER	43	436.7477	2
34	ATP synthase	ATP5F	ATPA_BOVI	313	16	46 - 58	TGTAEVSSILEER	86	696.3511	2
	subunit alpha,	1A	Ν			134 - 149	TGAIVDVPVGEELLGR	79	812.9454	2
	mitochondrial					150 - 161	VVDALGNAIDGK	80	586.3164	2
						176 - 182	APGIIPR	57	362.2302	2
						219 - 230	TSIAIDTIINQK	58	658.8714	2
						306 - 316	HALIIYDDLSK	57	644.3500	2
						335 - 347	EAYPGDVFYLHSR	69	518.5819	3
						494 - 503	GYLDKLEPSK	43	575.3104	2
34	Desmin	DES	DESM_BOV	154	6	59 - 70	TSGGAGGLGALR	93	508.7779	2
			IN			151 - 160	VAEIYEEELR	79	625.8137	2
						213 - 222	ADVDAATLAR	56	501.7641	2
34	Aldehyde	ALDH	ALDH2_BO	78	3	111 - 117	LADLIER	43	415.2441	2
	dehydrogenase	2	VIN			350 - 358	VVGNPFDSR	75	495.7541	2
	, mitochondrial									
34	UTPglucose-	UGP2	UGPA_BOV	73	2	378 - 389	SFENSLGINVPR	73	666.8439	2
	1-phosphate		IN							
	uridylyltransfe									
	rase									
35	ATP synthase	ATP5F	ATPB_BOVI	288	14	125 - 133	VLDSGAPIR	54	464.2623	2
	subunit beta,	1B	N			125 - 143	VLDSGAPIRIPVGPETLGR	85	649.7044	3
	mitochondrial					144 - 155	IMNVIGEPIDER	66	701.3589	2
						265 - 279	VALVYGQMNEPPGAR.A	63	809.4076	2
						311 - 324	FTQAGSEVSALLGR	79	718.3791	2
						311 - 324	FTQAGSEVSALLGR	78	718.3839	2
						407 - 422	IMDPNIVGSEHYDVAR	56	611.2922	3
35	Actin, alpha	ACTC1	ACTC_BOV	175	22	21 - 30	AGFAGDDAPR	67	488.7288	2
	cardiac muscle		IN			31 - 41	AVFPSIVGRPR	51	599.8448	2
	1					53 - 63	DSYVGDEAQSK	41	599.7639	2
						53 - 64	DSYVGDEAQSKR	43	452.2116	3
						199 - 208	GYSEVITAER.	46	565.////	2
						241 - 230 219 229	STELPDGQVIIIGNER	51	893.9434 590.2006	2
						318 - 328 362 - 374	OEVDEAGPSIVHP	50	500 00/18	2
36	Actin alpha	ACTC1	ACTC BOV	878	37	302 - 374 21 - 30	AGEAGDDAPR	86	488 6899	2
50	cardiac muscle	ACICI		070	57	21 - 30 21 - 30	AGFAGDDAPR	86	489 2113	$\frac{2}{2}$
	1					31 - 41	AVFPSIVGRPR	69	400 2331	3
	1					53 - 63	DSYVGDEAOSK	41	599,7683	2
						53 - 64	DSYVGDEAOSKR	91	452,2113	3
						53 - 64	DSYVGDEAOSKR	102	677.8153	2
						87 - 97	IWHHTFYNELR	50	505.9172	3
						87 - 97	IWHHTFYNELR	57	758.3809	2
						87 - 97	IWHHTFYNELR	50	506.2452	3
						98 - 115	VAPEEHPTLLTEAPLNPK	87	978.5107	2

						$\begin{array}{c} 150-179\\ 150-179\\ 150-179\\ 150-179\\ 199-208\\ 241-256\\ 241-256\\ 318-328\\ 318-328\\ 362-374\\ 362-374\\ 362-374\\ \end{array}$	TTGIVLDSGDGVTHNVPIYEGYALPHAI MR. TTGIVLDSGDGVTHNVPIYEGYALPHAI MR TTGIVLDSGDGVTHNVPIYEGYALPHAI MR TTGIVLDSGDGVTHNVPIYEGYALPHAI MR GYSFVTTAER SYELPDGQVITIGNER SYELPDGQVITIGNER EITALAPSTMK EITALAPSTMK QEYDEAGPSIVHR QEYDEAGPSIVHR	54 54 54 149 46 86 58 50 54 75 97	799.9022 803.9002 803.9026 1071.537 4 565.7347 895.9160 895.9432 581.3082 589.2684 500.8972 750.8599	4 4 3 2 2 2 2 2 2 3 2
36	Beta-enolase	ENO3	ENOB_BOV IN	349	19	$\begin{array}{c} 33-50\\ 133-162\\ 133-162\\ 133-162\\ 133-162\\ 133-162\\ 133-162\\ 133-162\\ 133-162\\ 163-179\\ 163-179\\ 229-239\\ 413-420\\ \end{array}$	AAVPSGASTGIYEALELR HIADLAGNPELILPVPAFNVINGGSHAGN K HIADLAGNPELILPVPAFNVINGGSHAGN K HIADLAGNPELILPVPAFNVINGGSHAGN K HIADLAGNPELILPVPAFNVINGGSHAGN K HIADLAGNPELILPVPAFNVINGGSHAGN K HIADLAGNPELILPVPAFNVINGGSHAGN K LAMQEFMILPVGASSFR LAMQEFMILPVGASSFR TAIQAAGYPDK IEFALGDK	100 36 52 62 36 37 52 62 81 45 64 41	902.9673 759.6499 1012.531 7 759.6540 759.8986 1012.863 9 759.9041 964.9776 643.6570 567.7919 437.7194	2 4 3 4 4 4 3 4 2 3 2 2
36	Phosphoglycer ate kinase 1	PGK1	PGK1_BOVI N	163	14	$76 - 86 \\ 157 - 171 \\ 200 - 216 \\ 280 - 297$	YSLQPVAVELK LGDVYVNDAFGTAHR ALESPERPFLAILGGAK ITLPVDFVTADKFDENAK	46 67 67 73	623.8565 545.5974 884.9981 675.0129	2 3 2 3
36	Creatine kinase M-type	СКМ	KCRM_RAB IT	119	8	$\begin{array}{r} 87-96 \\ 157-170 \\ 308-314 \end{array}$	DLFDPIIQDR LSVEALNSLTGEFK FEEILTR	67 79 43	616.3172 754.4040 454.2468	2 2 2
37	Creatine kinase M-type	СКМ	KCRM_RAB IT	767	38	$\begin{array}{c} 87-96\\ 108-116\\ 117-130\\ 117-130\\ 157-170\\ 157-170\\ 178-209\\ 178-209\\ 178-209\\ 178-209\end{array}$	DLFDPIIQDR TDLNHENLK GGDDLDPHYVLSSR GGDDLDPHYVLSSR LSVEALNSLTGEFK LSVEALNSLTGEFK SMTEQEQQQLIDDHFLFDKPVSPLLLASG MAR SMTEQEQQQLIDDHFLFDKPVSPLLLASG	63 45 63 109 106 78 52 59 52	616.2803 542.2733 510.9003 765.8546 754.3724 754.4026 911.9529 915.9494 915.9504	2 2 3 2 2 2 4 4 4

						178 - 209	MAR	58	919.9428	4
						178 - 209	SMTEQEQQQLIDDHFLFDKPVSPLLLASG	127	1226.262	3
						178 - 209	MAR	74	6	4
						224 - 236	SMTEOEOOOLIDDHFLFDKPVSPLLLASG	82	919.9492	2
						267 - 292	MAR	57	822.4087	4
						342 - 358	SMTEOEOOOLIDDHFLFDKPVSPLLLASG	90	736.6038	2
						342 - 358	MAR	43	893.4688	3
						370 - 381	SMTEOEOOOLIDDHFLFDKPVSPLLLASG	57	595.9875	2
						570 501	MAR	0,	659.8150	-
							SFLVWVNFEDHLR		00010100	
							AGHPFMWNFHI GYVI TCPSNI GTGI R			
							I GSSEVEOVOI VVDGVK			
							LGSSEVEQVQLVVDGVK			
							GOSIDDMIPAOK			
37	Actin alpha	ACTC1	ACTC BOV	147	12	53 - 64	DSVVGDEAOSKR	54	677 8175	2
57	cardiac muscle	ACICI		17/	12	53 - 64	DSTVGDEAQSKR	64	452 2168	3
						87 07	IWHHTEVNEL P	/3	505 0284	3
	1					199 - 208	GVSEVTTAER	45	565 7810	2
						241 - 256	SVEL PDGOVITIGNER	65	805 0444	2
27	Aspartata	COT2	AATM DOV	126	6	126 120		78	722 4014	2
57	Aspartate	0012		150	0	120 - 139 226 227		02	642 8668	2
	anniotransiera		11N			320 - 337	IASTILTSTDLK	92	043.8008	2
	50									
38	Fructose-	Aldoa	ALDOA_RA	471	32	29 - 42	GILAADESTGSIAK	65	666.8315	2
	bisphosphate		Т			44 – 57	LQSIGTENTEENRR	54	823.9018	2
	aldolase					44 - 57	LQSIGTENTEENRR	61	549.6066	3
						61 - 69	QLLLTADDR	69	522.7815	2
						61 - 69	QLLLTADDR	72	522.7869	2
						112 - 134	GVVPLAGTNGETTTQGLDGLSER	80	1136.579	2
						112 - 134	GVVPLAGTNGETTTQGLDGLSER	80	5	2
						154 - 173	IGEHTPSSLAIMENANVLAR	78	1137.073	3
						154 - 173	IGEHTPSSLAIMENANVLAR	76	2	3
						154 - 173	IGEHTPSSLAIMENANVLAR	82	708.3682	3
						174 - 201	YASICQQNGIVPIVEPEILPDGDHDLKR	58	708.3683	4
						332 - 342	ALANSLACQGK	43	713.6943	2
									794.9033	
									566.7861	
38	Creatine	CKM	KCRM_BOV	447	19	87 – 96	DLFDPIIQDR	68	616.3196	2
	kinase M-type		IN			157 - 170	LSVEALNSLTGEFK	88	754.3964	2
						157 - 170	LSVEALNSLTGEFK	107	754.4040	2
						224 - 236	SFLVWVNEEDHLR	48	822.4110	2
						320 - 341	RGTGGVDTAAVGSVFDVSNADR	92	717.6921	3
						321 - 341	GTGGVDTAAVGSVFDVSNADR	106	997.9750	2
						321 - 341	GTGGVDTAAVGSVFDVSNADR	77	997.9771	2
						342 - 358	LGSSEVEQVQLVVDGVK	69	893.4823	2
38	Fructose-	ALDO	ALDOA_RA	393	35	29 - 42	GILAADESTGSIAK	65	666.8315	2
	bisphosphate	Α	BIT			44 - 57	LQSIGTENTEENRR	54	823.9018	2
	aldolase A					44 - 57	LQSIGTENTEENRR	61	549.6066	3
						61 - 69	QLLLTADDR	69	522.7815	2
						61 - 69	QLLLTADDR	72	522.7869	2
						112 - 134	GVVPLAGTNGETTTOGLDGLSER	80	1136.579	2

						112 - 134	GVVPLAGTNGETTTQGLDGLSER	80	5	2
						154 - 173	IGEHTPSALAIMENANVLAR	43	1137.073	3
						154 - 173	IGEHTPSALAIMENANVLAR	39	2	3
						174 - 201	YASICOONGIVPIVEPEILPDGDHDLKR	58	708.3682	4
						323 - 331	AAOEEYVKR	52	708.3683	3
						323 - 331	AAOEEYVKR	64	794.9033	2
						332 - 342	ALANSLACOGK	43	365,1907	2
									547,2848	
									566.7861	
38	Tropomyosin	TPM2	TPM2 BOVI	348	29	13 - 21	LDKENAIDR	55	358.5255	3
	beta chain		Ň			38 - 48	OLEEEOOALOK	47	672.3394	2
						78 - 90	ATDAEADVASINR	88	666 8196	2
						78 - 91	ATDAEADVASLNRR	50	496 9222	3
						92 - 101	IOLVEEELDR	70	622 3334	2
						92 - 101	IOLVEFELDRAOER	118	576 6313	3
						169 - 178	I VII EGELER	47	585 8450	2
						206 - 217	SI FAQADKYSTK	69	670 8352	2
						250 - 217 252 - 264	TIDDI EDEVYAOK	87	769 8678	2
38	Tropomyosin	TPM1	TPM1 BOVI	234	13	13 - 21	I DKENAL DR	55	358 5255	3
50	alpha-1 chain	11 1011	N N	251	15	$13 \ 21 \ 78 \ -90$	ATDAFADVASI NR	88	666 8196	2
	aipiia-i chain		1			78 - 91	ATDAEADVASLNR	50	496 9222	3
						92 - 101	IOI VEEEI DR	70	622 3334	2
						92 - 101	IOI VEEEL DRAOER	118	576 6313	3
38	Glyceraldehyd	GAPD	G3P BOVIN	100	8	199 - 213	GAAONIIPASTGAAK	47	685 3696	2
50	e 3 phosphate	UAID H	USI_DOVIN	100	0	199 - 213 233 246	VPTPNVSVVDI TCP	/	778 0102	2
	dehydrogenase	11				233 - 240	VIIIIVUSVUDEICK	00	770.7102	-
20	Gl 1111	GADD	CAR DOLINI	510	41			40	400.0501	2
39	Glyceraldehyd	GAPD	G3P_BOVIN	510	41	/1 - /8	AITIFQER	42	489.2581	2
	e-3-phosphate	н				/1 - 84	AITIFQERDPANIK	46	539.2942	3
	dehydrogenase					11/-13/	VIISAPSADAPMFVMGVNHEK	40	/38.3/11	3
						144 - 160		86	910.4479	2
						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	61	873.4584	3
						161 - 184	VIHDHFGIVEGLMIIVHAIIAIQK	53	659.33/4	4
						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	46	527.6718	4
						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	109	8/8./8/8	3
						199 – 213	GAAQNIIPASTGAAK	59	685.3497	2
						226 - 232	LIGMAFR	46	406.2102	2
						233 - 246	VPTPNVSVVDLTCR	93	778.9003	2
						308 - 321	LISWYDNEFGYSNR	88	882.3967	2
						322 - 333	V V DLMVHMASKE	40	464.2236	3
20		TD1 (1	TDM1 DOM	166	20	322 - 333	V V DLM V HMASKE	64	695.8373	2
39	Tropomyosin	IPMI	IPMI_BOVI	466	30	13 - 21	LDKENALDR	54	358.5256	3
	alpha-1		Ν			13 - 21	LDKENALDR	85	537.2883	2
						13 - 21	LDKENALDR	85	537.7819	2
						36 - 48	SKQLEDELVSLQK	102	/58.9087	2
						38 - 48	QLEDELVSLQK	45	651.3435	2
						78 - 90	ATDAEADVASLNR	86	666.8199	2
						7/8 - 91	ATDAEADVASLNRR	52	496.9171	3
						92 - 101	IQLVEEELDK	70	622.3256	2
						92 - 105	IQLVEEELDRAQER	94	576.6315	3
1						113 - 125	LEEAEKAADESER	52	492.9000	3

Image: Section of the sectio												
39 Tropomyosin beta chain TPM2 TPM2 <thtpm2< th=""> TPM2 TPM2<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>169 - 178</td><td>LVIIESDLER</td><td>50</td><td>593.8344</td><td>2</td></thtpm2<>								169 - 178	LVIIESDLER	50	593.8344	2
39 Tropomyosin beta chain TPM2 TPM2 TPM2 TPM2 N 330 17 13 - 21 LDKENAIDR 54 358-256 39 Tropomyosin beta chain TPM2 TPM2 N 330 17 13 - 21 LDKENAIDR 54 358-256 39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 - 90 ATDAFADVASI.NR 52 496.917 39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 - 96 DLEPDPIQDR 68 616.320 39 Malate dehydrogenase . cytoplasmic MDH1 MDHC_BO 85 6 221 - 230 CEFTITVOOR 61 589.8082 39 Malate dehydrogenase . cytoplasmic MDH1 MDHC_BO 85 6 221 - 230 CEFTITVOOR 61 589.8082 40 L-lactate dehydrogenase . cytoplasmic MUI MU 225 24 6 - 22 DQLQNLLKEEHVPONK 48 477.4907 42 Spenpahate (Fragment)								252 - 264	SIDDLEDELYAQK	69	769.8589	2
39 Tropomyosin beta chain TPM2 TPM2, N N 330 17 13 - 21 LDKENAIDR 54 358,5256 39 Tropomyosin beta chain TPM2 TPM2, N N 330 17 13 - 21 LDKENAIDR 85 537,7819 39 Creatine K K S77,819 ATDAEADVASLNR 86 666,8199 39 Creatine KKM KCRM BOV 164 12 87 - 96 ATDAEADVASLNR 86 616,320 39 Malate MDH1 MDH BO 164 12 87 - 96 DLEPDIOR 68 616,320 39 Malate MDH1 MDH BO 85 6 221 - 230 GEFITIVQQR 61 589,802 40 LDHA LDHA LDHA BS 52 24 6 - 22 DQLIONLLKEEHVPONK 48 682,4083 40 Gityceraldehyd MU MU 225 24 6 - 22 DQLIONLLKEEHVPONK 48 666,33333 <												
19 Industrytem Industrytem Industrytem 19 10 10 12 11 12 11 10 13 13 13 13 13 13 13 13 13 11 13 11 13 11 10		20	Tronomyosin	TDM2	TDM2 DOVI	220	17	12 21	LDKENAIDD	54	258 5256	2
Deta chain N 13 - 21 LDRE-WIDK 03 37.7819 13 - 21 LDRE-WIDK R8 557.7819 88 557.7819 78 - 90 ATDAEADVASLNR 86 666.8199 78 - 90 ATDAEADVASLNR 86 666.8199 92 - 101 IQVEEELDA 70 622.325 94 576.6315 94 576.6315 39 Creatine KK KCRM BOV 164 12 87 - 96 DLFDPIIODR 68 616.3220 39 Malate MDHI MDHC_BO 85 6 221 - 230 LESEVEQVQLVVDGVK 78 893.4830 39 Malate MDH MDHC_BO 85 6 221 - 230 CEPTTVQQR 61 589.8082 -cytoplasmic VIN 80 225 24 622 DQLIQNLLKEEHVPQNK 48 624.8085 40 Licatet LDHA MD 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 632.4005 40 </td <td></td> <td>39</td> <td>hote choin</td> <td>111112</td> <td>N</td> <td>550</td> <td>17</td> <td>13 - 21 12 21</td> <td>LDKENAIDR</td> <td>95</td> <td>527 2822</td> <td>2</td>		39	hote choin	111112	N	550	17	13 - 21 12 21	LDKENAIDR	95	527 2822	2
40 Creatine kinase M-type CKM KCRM_BOV 164 12 85 6668 899 39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 96 113 125 LEEAEKADESER 94 576.6315 39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 96 DLFPDFIDOPR 68 6616.3220 39 Malate dehydrogenase - cytoplasmic MDH1 MDIC_BO 85 6 221-230 GEFITIVQQR 78 893.4830 40 L-lactate dehydrogenase - cytoplasmic LDHA LDHA_BOS 225 24 6 - 22 DQLIONLIKEEHVPQNK 48 682.6985 40 L-lactate dehydrogenase - cytoplasmic LDHA LDHA_BOS 225 24 6 - 22 DQLIONLIKEEHVPQNK 48 682.6985 40 L-lactate dehydrogenase LDHA LDHA_BOS 225 24 6 - 22 DQLIONLIKEEHVPQNK 48 657.6371 40 Gipeeraldehyd echydrogenase			beta cham		IN			13 - 21 12 21	LDKENAIDR	05	527 7910	2
39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 - 90 ATDAEADVASLNRK 52 496.9171 39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 - 96 DLEDPHQDR 68 616.3220 39 Malate MDH MDHC_BO 85 6 221 - 105 LEBEAEKAADESER 52 492.9000 39 Malate MDH MDHC_BO 85 6 221 - 230 GEFITTVQQR 61 589.8082 40 L-lactate dehydrogenase , cytoplasmic UNN 225 24 6 - 22 DQLIQNLKEEHVPQNK 48 682.6985 40 L-lactate dehydrogenase MU 91 - 99 LVITAGAR 48 477.900 40 Glyceraldehyd edwydrogenase A chain MU 225 24 6 - 22 DQLIQNLKEEHVPQNK 48 682.6985 4213 228 NLHPELGTDADKEQWK 51 627.6371 209- 78 78.0671 229.9808 40 Glyceraldehyd dehy								13 - 21		85	537.7819	2
Image: Second								/8 - 90	ATDAEADVASLNR	86	666.8199	2
39 Creatine kinase M-type CKM KCRM_BOV IN 164 12 87 - 96 113 - 125 DLEDPUIQDR ISVEALNSLTGEFK 64 52 75 - 63 492,9000 39 Creatine kinase M-type CKM KCRM_BOV IN 164 12 87 - 96 157 - 170 DLEDPUIQDR ISVEALNSLTGEFK 64 64 754,4006 39 Malate dehydrogenase , eytoplasmic MDHI MDHC_BO 85 6 221 - 230 GEHTITVQQR 61 589,3802 40 L-lactate dehydrogenase , eytoplasmic LDHA LDHA BOS 225 24 6 - 22 58 - 73 DQLIQNI_LKEEHVPQNK 48 682,6985 40 L-lactate dehydrogenase A chain LMH MU 225 24 6 - 22 58 - 73 DQLIQNI_LKEEHVPQNK 48 682,6985 40 Giyceraldehyd ed-syncogenase (-eytoplasmic LDHA LDHA BOS 225 24 6 - 22 58 - 73 DQLIQNI_LKEEHVPQNK 48 682,6985 410 J12 - 228 NLPELGTDADKEQWK 51 627,6371 299,8908 40 Giyceraldehyd ed-syncogenase (Fragment) GAPD								/8 - 91	AIDAEADVASLNKK	52	496.91/1	3
Image: Section of the sectio								92 - 101	IQLVEEELDR	70	622.3256	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								92 - 105	IQLVEEELDRAQER	94	5/6.6315	3
39 Creatine kinase M-type CKM KCRM_BOV 164 12 87 - 96 DLFDPIIQDR 68 616.3220 39 Malate dehydrogenase MDHI MDHC_BO 85 6 221 - 230 GEFFITTVQQR 61 589.8082 40 L-lactate dehydrogenase LDHA LDHA_BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 L-lactate dehydrogenase LDHA LDHA_BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 L-lactate dehydrogenase MU 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 Glyceraldehyd GAPD G3P_SHEEP 15 15 188 - 200 GAQNURAST, 83.732 13 - 228 NLHPELGTDADKFOWK 51 627.6371 40 Glyceraldehyd GAPD G3P_SHEEP 15 18 - 202 GAQNURAST, 84.4022 778.9067 40 Fractose- (Fragment) H 215 - 221 LTGMAFR 43								113 - 125	LEEAEKAADESER	52	492.9000	3
kinase M-type IN 157 - 170 LSVEALNSLTGEFK 64 754.4006 39 Malate MDHI MDHC_BO 85 6 221 - 230 GEFITTVQQR 61 589.8082 40 L-lactate LDHA_BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 L-lactate LDHA_BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 L-lactate LDHA_BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 Glyceraldehyd GAPD GAPD BTT 158 169 VIGSGCNLDSAR 84 457.2960 40 Glyceraldehyd GAPD GAPD G3P_SHEEP 175 15 188 - 602 GAAQNIIPASTGAAK 63 685.7324 40 Fructose- ALDO ALDOA_RA 94 9 61 - 69 QLLLTADDR 54 552.790 41 Actin, A BTT 2297 - 31		39	Creatine	CKM	KCRM_BOV	164	12	87 - 96	DLFDPIIQDR	68	616.3220	2
Image: State of the s			kinase M-type		IN			157 - 170	LSVEALNSLTGEFK	64	754.4006	2
39 Malate dehydrogenase , cytoplasmic MDH1 MDHC_BO VIN 85 6 221 - 230 GERTTVOQR 61 589,808,2 40 L-lactate dehydrogenase A chain LDHA LDHA, BOS 225 24 6 - 22 DQLIQNLLKEEHVPQNK 48 682,698,3 40 L-lactate dehydrogenase A chain LDHA LDHA, BOS 225 24 58 - 73 LKGEMMDLQHGSLFLR 84 477,4907 40 Glyceraldehyd e-3-phosphate GAPD G39_SHEEP 175 15 188 - 169 VIGSGCNLDSAR 48 624,8005 40 Glyceraldehyd e-3-phosphate GAPD G39_SHEEP 175 15 188 - 202 GAAQNIIPASTGAAK 63 685,3724 40 Fuctose- ALDO ALDOA_RA 94 9 61 - 69 QLLTADDR 54 522.7002 40 Fructose- ALDO ALDOA_RA 94 9 61 - 69 QLLTADDR 54 522.7002 41 Actin, ACTB_SHE 72 6 19 - 28 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>308 - 314</td> <td>FEEILTR</td> <td>55</td> <td>454.2484</td> <td>2</td>								308 - 314	FEEILTR	55	454.2484	2
39 Malate dehydrogenase , cytoplasmic MDH1 MDHC_BO VIN 85 6 221 – 230 29 – 310 GEFITTVQQR 61 589,8082 56 673,3533 40 L-lactate dehydrogenase A chain LDHA LDHA_BOS A chain LDHA LDHA_BOS MU 225 24 6 – 22 58 – 73 DQLIQNLLKEEHVPQNK 48 682,0985 40 L-lactate dehydrogenase A chain LDHA LDHA_BOS LDHA_BOS MU 225 24 6 – 22 58 – 73 DQLIQNLLKEEHVPQNK 48 682,0985 40 Glyceraldehyd e-3-phosphate dehydrogenase GAPD H G3P_SHEEP 175 15 188 – 202 222 – 235 CAAQNIIPASTGAAK 63 685,3724 682,7749 40 Fructose- bisphosphate aldolase A ALDO A ALDOA RA BIT 9 61 – 69 QLLLTADDR 54 522,790 41 L-lactate dehydrogenase X chain ACTB ACTB_SHE 72 6 19 – 28 AGFAGDDAPR 59 488,7278 41 L-lactate dehydrogenase A chain LDHA WU LDHA_BOS 61 5 82 – 90 239 – 254 DYNVTANSR 50								342 - 358	LGSSEVEQVQLVVDGVK	78	893.4830	2
dehydrogenase , cytoplasmic VIN 299 – 310 VVEGLPINDFSR 56 673.3533 40 Lactate dehydrogenase A chain LDHA LDHA LDHA LDHA BUS 225 24 6 – 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 Lactate dehydrogenase A chain LDHA LDHA LDHA LDHA BUS 225 24 6 – 22 DQLIQNLLKEEHVPQNK 48 682.6985 40 Glyceraldehyd e-3-phosphate dehydrogenase GAPD H G3P_SHEEP 175 15 188 – 202 GAAQNIPASTGAAK 63 685.3724 40 Glyceraldehyd e-3-phosphate dehydrogenase GAPD H G3P_SHEEP 175 15 188 – 202 GAAQNIPASTGAAK 63 685.3724 215 – 221 LTGMAFR 43 406.2071 778.9067 78 88.4022 40 Fructose- bisphosphate aldolase A ALDO A ACTB ACTB_SHE 72 6 19 – 28 AGFAGDDAPR 59 488.7278 41 Actin, eytoplasmic 1 ACTB		39	Malate	MDH1	MDHC BO	85	6	221 - 230	GEFITTVQQR	61	589.8082	2
40 L-lactate dehydrogenase A chain LDHA WŪ LDHA_BOS MŪ 225 24 6 - 22 58 - 73 14 DQLIQNLLKEEHVPQNK 58 - 73 14 48 682.6985 47.2960 40 L-lactate dehydrogenase dehydrogenase (Fragment) LDHA H LDHA_BOS 63P_SHEEP 225 24 6 - 22 58 - 73 158 - 169 DQLIQNLLKEEHVPQNK 188 - 202 213 - 228 48 457.2960 40 Glyceraldehyd e-3-phosphate dehydrogenase (Fragment) GAPD H G3P_SHEEP 175 15 188 - 202 213 - 221 CAAQNIIPASTGAAK 63 685.3724 40 Fructose- (Fragment) ALDO A LDOA_RA 94 9 61 - 69 297 - 310 QLLLTADDR 54 522.7902 40 Fructose- bisphosphate aldolase A ALDO A ALDA BIT ACTB_SHE 72 6 19 - 28 239 - 254 AGFAGDDAPR SYELPDGQVITIGNER 59 488.7278 485.9479 41 L-lactate dehydrogenase A chain LDHA_BOS MŪ 61 5 82 - 90 239 - 254 DYNVTANSR SYELPDGQVITIGNER 50 500.202460 41 L-lactate dehydrogenase A chain LDHA_BOS MŪ 61 5 82 - 90 91 - 99			dehydrogenase		VIN			299 - 310	VVEGLPINDFSR	56	673.3533	2
40 L-lactate dehydrogenase A chain LDHA MŪ LDHA_BOS MŪ 225 24 6 - 22 58 - 73 DQLIQNLLKEEHVPQNK LKGEMMDLQHGSLFLR LKGEMMDLQHGSLFLR UVITAGAR 48 682.6985 40 Glyceraldehyd e-3-phosphate dehydrogenase (Fragment) GAPD H G3P_SHEEP 175 15 188 - 202 GAAQNIIPASTGAAK 63 688.3724 40 Glyceraldehyd dehydrogenase GAPD H G3P_SHEEP 175 15 188 - 202 GAAQNIIPASTGAAK 63 688.3724 40 Fructose- dehydrogenase (Fragment) ALDO A ALDOA_RA BIT 94 9 61 - 69 QLLTADDR 54 522.7902 40 Fructose- dehydrogenase (Fragment) ACTB_SHE 72 6 19 - 28 AGFAGDDAPR SYELPDGQVITIGNER 54 522.7902 40 Fructose- dohydrogenase (A chain ACTB_SHE 72 6 19 - 28 AGFAGDDAPR SYELPDGQVITIGNER 54 572.2960 41 L-lactate dehydrogenase A chain LDHA_BOS MŪ 61 5 82 - 90 DYNVTANSR SYELPDGQVITIGNER 50 520.2460 4			, cytoplasmic									
How behaviors LDHA box bisplay 223 24 0 - 22 Delegation		40	I lactata	TDUA		225	24	6 22		18	682 6085	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		40	dahudra garaga	LDIIA	LDIIA_BOS	223	24	0 - 22	L KCEMMDLOHCSLELP	40	477 4007	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			A shain		MU			38 - 73		04	4/7.4907	4
Image: Second			A chain					91 - 99		48	437.2900	2
40 Glyceraldehyd e-3-phosphate dehydrogenase GAPD H GAPD H <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>158 - 169</td><td>VIGSGUNLDSAK</td><td>88</td><td>624.8005</td><td>2</td></thc<>								158 - 169	VIGSGUNLDSAK	88	624.8005	2
40 Glyceraldehd e-3-phosphate dehydrogenase G3P_SHEEP 175 15 188 - 202 (15 - 221 GAAQNIPASTGAAK 63 6853724 40 Glyceraldehd e-3-phosphate dehydrogenase G3P_SHEEP 175 15 188 - 202 GAAQNIPASTGAAK 63 6853724 40 Fructose- bisphosphate ALDO ALDOA_RA 94 9 61 - 69 QLLTADDR 54 522.78 41 Actin, cytoplasmic 1 ACTB ACTB_SHE 72 6 19 - 28 AGFAGDDAPR 59 488.7278 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 L-lactate dehydrogenase A chain 2 VIN 236 1								213 - 228	NLHPELGIDADKEQWK	51	627.6371	3
40 Glyceraldehyd GAPD G3P_SHEEP 175 15 188 - 202 GAAQNIIPASTGAAK 63 685.3724 40 e-3-phosphate dehydrogenase H 215 - 221 LTGMAFR 43 406.2071 40 Fructose- bisphosphate aldolase A ALDO ALDOA_RA 94 9 61 - 69 QLLLTADDR 54 522.7902 41 Actin, cytoplasmic 1 ACTB ACTB_SHE 72 6 19 - 28 AGFAGDDAPR 59 488.7278 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 L-lactate dehydrogenase A chain VIN 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 <								269 - 278	RVHPISTMIK	42	399.8908	4
e-3-phosphate dehydrogenase (Fragment) H 215 - 221 (22 - 235) LTGMAFR VPTPNVSVVDLTCR 43 406.2071 92 40 Fructose- bisphosphate aldolase A ALDO ALDOA_RA BIT 94 9 61 - 69 (88 - 99) QLLLTADDR 54 522.7902 41 Actin, cytoplasmic 1 ACTB ACTB_SHE EP 72 6 19 - 28 (239 - 254) AGFAGDDAPR SYELPDGQVITIGNER 59 488.7278 (47 895.9479 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS MU 61 5 82 - 90 (91 - 99) DYNVTANSR LVIITAGAR 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO VIN 229 36 11 - 21 (66 - 83) HGESTWNQENR.F TLWTILDGTDQMWLPVVR.T 57 1080.556 (66 - 83) 181 - 191 VIN 181 - 191 (196 - 231) RVLIAAHGNSLR.G HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 (75.8354)		40	Glyceraldehyd	GAPD	G3P_SHEEP	175	15	188 - 202	GAAQNIIPASTGAAK	63	685.3724	2
dehydrogenase (Fragment) 222 - 235 VPTPNVSVVDLTCR 92 778.9067 40 Fructose- bisphosphate aldolase A ALDO ALDOA_RA 94 9 61 - 69 QLLTADDR 54 522.718 41 Actin, cytoplasmic 1 ACTB ACTB_SHE EP 72 6 19 - 28 AGFAGDDAPR SYELPDGQVITIGNER 59 488.7278 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS MŪ 61 5 82 - 90 DYNVTANSR 91 - 99 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 L-lactate dehydrogenase A chain 2 VIN 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 Lotactate dehydrogenase A chain 2 VIN 249 36 11 - 21 HGESTWNQENR.F			e-3-phosphate	Н				215 - 221	LTGMAFR	43	406.2071	2
(Fragment) - 297 - 310 LISWYDNEFGYSNR 75 882.4022 40 Fructose- bisphosphate aldolase A ALDO ALDOA_RA 94 9 61 - 69 QLLLTADDR 54 522.7902 41 Actin, cytoplasmic 1 ACTB ACTB_SHE 72 6 19 - 28 AGFAGDDAPR 59 488.7278 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 Lenutase 2 2 VIN 56 520.2460 451.202 457.2961 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 41 Lissey 2 166 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66 - 83 TLWTILDGTDQMWLPVVR.T 57 0 147 - 162 <td></td> <td></td> <td>dehydrogenase</td> <td></td> <td></td> <td></td> <td></td> <td>222 - 235</td> <td>VPTPNVSVVDLTCR</td> <td>92</td> <td>778.9067</td> <td>2</td>			dehydrogenase					222 - 235	VPTPNVSVVDLTCR	92	778.9067	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Fragment)					297 - 310	LISWYDNEFGYSNR	75	882.4022	2
bisphosphate aldolase A A BIT 88 - 99 244 - 258 ADDGRPFPQVIK YSHEEIAMATVTALR 54 51 671.8572 569.9510 41 Actin, cytoplasmic 1 ACTB ACTB_SHE EP 72 6 19 - 28 239 - 254 AGFAGDDAPR SYELPDGQVITIGNER 59 488.7278 495.9479 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS MU 61 5 82 - 90 91 - 99 DYNVTANSR LVIITAGAR 50 520.2460 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO VIN 229 36 11 - 21 66 - 83 HGESTWNQENR.F TLWTILDGTDQMWLPVVR.T 40 453.2022 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 147 - 162 AGELPTCESLKDTIAR.A 102 1080.558 180 - 191 RVLIAAHGNSLR.G 41 8 181 - 191 VLIAAHGNSLR.G 57 587.6292 37 436.2598 575.8354 90 - 3154 90 - 3154 90 - 3154 90 - 3154 90 - 3154		40	Fructose-	ALDO	ALDOA_RA	94	9	61 - 69	QLLLTADDR	54	522.7902	2
aldolase A Control 244 – 258 YSHEEIAMATVTALR 51 569.9510 41 Actin, cytoplasmic 1 ACTB ACTB_SHE EP 72 6 19 – 28 239 – 254 AGFAGDDAPR SYELPDGQVITIGNER 59 488.7278 895.9479 41 L-lactate dehydrogenase A chain LDHA LDHA_BOS MU 61 5 82 – 90 91 – 99 DYNVTANSR LVIITAGAR 50 520.2460 455 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO VIN 229 36 11 – 21 66 – 83 147 – 162 HGESTWNQENR.F TLWTILDGTDQMWLPVVR.T 40 453.2022 457 41 8 147 – 162 AGELPTCESLKDTIAR.A 102 1080.556 57 147 – 162 AGELPTCESLKDTIAR.A 102 1080.558 180 – 191 181 – 191 VLIAAHGNSLR.G 41 8 181 – 191 VLIAAHGNSLR.G 57 587.6292 37 436.2598 577.587.6292 57 587.6292 196 – 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL KPTKPMR 57 587.6292 37 436.2598 577.58354			bisphosphate	Α	BIT			88 - 99	ADDGRPFPQVIK	54	671.8572	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			aldolase A					244 - 258	YSHEEIAMATVTALR	51	569.9510	3
International cytoplasmic 1 International EP InternateP International EP		41	Actin	ACTB	ACTB SHE	72	6	19 – 28	AGFAGDDAPR	59	488 7278	2
Cytoplasmic 1 Control Line Contro Line Control Line Control Line<			cytoplasmic 1	neib	ED_DITE	12	Ū	239 - 254	SVEL PDGOVITIGNER	47	895 9479	2
41L-lactate dehydrogenase A chainLDHA MULDHA_BOS MU61582 - 90 91 - 99DYNVTANSR LVIITAGAR50520.2460 4542Phosphoglycer ate mutase 2PGAM 2PGAM2_BO VIN2293611 - 21 66 - 83HGESTWNQENR.F TLWTILDGTDQMWLPVVR.T40453.2022 5742Phosphoglycer ate mutase 22VIN3611 - 21 66 - 83HGESTWNQENR.F TLWTILDGTDQMWLPVVR.T40453.2022 57418147 - 162 180 - 191AGELPTCESLKDTIAR.A RVLIAAHGNSLR.G1021080.558 571080.558 587.6292196 - 231HLEGMSDQAIMELNLPTGIPIVYELDQAL KPTKPMR37436.2598 570.3152			eytoplashile i		1.1			237 231	STEEDOQUINGIAER	17	0,5.,11,5	2
41 L-lactate LDHA LDHA_BOS 61 5 82 - 90 DYNVTANSR 50 520.2460 dehydrogenase A chain MU MU 91 - 99 LVIITAGAR 45 457.2961 42 Phosphoglycer PGAM PGAM2_BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 ate mutase 2 2 VIN 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66 - 83 TLWTILDGTDQMWLPVVR.T 57 0 147 - 162 AGELPTCESLKDTIAR.A 102 1080.558 180 - 191 RVLIAAHGNSLR.G 41 8 8 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 570.3152												
dehydrogenase A chain MU 91-99 LVIITAGAR 45 457.2961 42 Phosphoglycer ate mutase 2 PGAM PGAM2_BO 229 36 11-21 HGESTWNQENR.F 40 453.2022 42 Phosphoglycer ate mutase 2 2 VIN 66-83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66-83 TLWTILDGTDQMWLPVVR.T 57 0 147-162 AGELPTCESLKDTIAR.A 102 1080.558 180-191 RVLIAAHGNSLR.G 41 8 8 8 181-191 VLIAAHGNSLR.G 57 587.6292 196-231 HLEGMSDQAIMELNLPTGIPIVYELDQAL KPTKPMR 37 436.2598 570.2152		41	L-lactate	LDHA	LDHA_BOS	61	5	82 - 90	DYNVTANSR	50	520.2460	2
A chain PGAM PGAM2_BO 229 36 11 – 21 HGESTWNQENR.F 40 453.2022 42 Phosphoglycer ate mutase 2 2 VIN 66 – 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66 – 83 TLWTILDGTDQMWLPVVR.T 57 0 147 – 162 AGELPTCESLKDTIAR.A 102 1080.558 180 – 191 RVLIAAHGNSLR.G 41 8 181 – 191 VLIAAHGNSLR.G 57 587.6292 196 – 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL KPTKPMR 37 436.2598 570 2152 152 152 152			dehydrogenase		MU			91 – 99	LVIITAGAR	45	457.2961	2
42 Phosphoglycer ate mutase 2 PGAM2 BO 229 36 11 - 21 HGESTWNQENR.F 40 453.2022 1080.556 0 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 1080.556 107 - 162 AGELPTCESLKDTIAR.A 102 1080.558 1080.558 1080 - 191 RVLIAAHGNSLR.G 41 8 1181 - 191 VLIAAHGNSLR.G 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 807 - 152 87.0152 1080.556 1080.558			A chain									
ate mutase 2 2 VIN 66 - 83 TLWTILDGTDQMWLPVVR.T 57 1080.556 66 - 83 TLWTILDGTDQMWLPVVR.T 57 0 147 - 162 AGELPTCESLKDTIAR.A 102 1080.558 180 - 191 RVLIAAHGNSLR.G 41 8 181 - 191 VLIAAHGNSLR.G 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 575.8354 820.2152		42	Phosphoglycer	PGAM	PGAM2 BO	229	36	11 - 21	HGESTWNQENR.F	40	453.2022	3
66 - 83 TLWTILDGTDQMWLPVVR.T 57 0 147 - 162 AGELPTCESLKDTIAR.A 102 1080.558 180 - 191 RVLIAAHGNSLR.G 41 8 181 - 191 VLIAAHGNSLR.G 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 575.8354 570.2152			ate mutase 2	2	VIN			66 - 83	TLWTILDGTDOMWLPVVR.T	57	1080.556	2
147 - 162 AGELPTCESLKDTIAR.A 102 1080.558 180 - 191 RVLIAAHGNSLR.G 41 8 181 - 191 VLIAAHGNSLR.G 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 570.2152								66 - 83	TLWTILDGTDOMWLPVVR.T	57	0	2
180 - 191 RVLIAAHGNSLR.G 41 88 181 - 191 VLIAAHGNSLR.G 57 587.6292 196 - 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 575.8354 570.2152								147 - 162	AGELPTCESLKDTIAR.A	102	1080.558	3
181 – 191 VLIAAHGNSLR.G 57 587.6292 196 – 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 575.8354 570.2152								180 - 191	RVLJAAHGNSLR.G	41	8	3
196 – 231 HLEGMSDQAIMELNLPTGIPIVYELDQAL 37 436.2598 KPTKPMR 575.8354	ļ							181 - 191	VLIAAHGNSLR G	57	587.6292	2
KPTKPMR 575.8354								196 - 231	HLEGMSDOAIMELNLPTGIPIVYELDOAL	37	436.2598	5
20.0152	ļ							220 201	KPTKPMR		575.8354	
020.2133											820.2153	

42	Carbonic	CA3	CAH3_BOVI	228	38	25-36	GENQSPIELNTK	46	665.3283	2
	anhydrase 3		N			37 - 57	EISHDPSLKPWTASYDPGSAK	37	572.2767	4
	-					68 - 76	VVFDDTYDR	60	565.2529	2
						68 - 80	VVFDDTYDRSMLR	46	544,9301	3
						127 - 135	VNSVATALK	42	515 7600	2
						127 - 133 172 199	E A DENINENDS CLED A CD	20	1020 052	2
						1/2 - 100	EAFFINITINFIT	59	1020.933	2
						213 - 224	EPITVSSDQIAK	22	6	2
						227 - 242	TLYSSAENEPPVPLVR	93	644.3333	2
									886.4577	
42	Triosephosphat	TPI1	TPIS_BOVI	187	31	60 - 69	IAVAAQNCYK	50	569.2933	2
	e isomerase		N			70 - 85	VANGAFTGEISPGMIK	43	804.8969	2
						101 - 113	HVFGESDELIGQK	44	729.8661	2
						161 - 175	VVLAYEPVWAIGTGK	57	801.9456	2
						161 - 175	VVI AYEPVWAIGTGK	58	801 9479	2
						176 188		41	480 5770	3
						105 206	SNUSDAVAOSAD	71	602 7071	2
40	NADU	NDUE	NDUG2 DO	0.4	0	193 - 200		71	602.7971	2
42	NADH	NDUF	NDUS3_BO	84	9	112 - 124	SLADLIAVDIPIK	/6	686.3825	2
	dehydrogenase	83	VIN			221 - 233	VVAEPVELAQEFR	41	/43.8916	2
	[ubiquinone]									
	iron-sulfur									
	protein 3,									
	mitochondrial									
42	Actin. aortic	ACTA2	ACTA BOV	78	9	199 - 208	GYSFVTTAER	41	565.2619	2
	smooth muscle		IN		-	199 - 208	GYSEVTTAER	41	565,7672	2
						241 - 256	SYFLPDGOVITIGNER	54	895 9488	2
						318 328	EITAL APSTMK	13	580 3118	2
						510-520		-15	567.5110	2
43	Heat shock	HSPB1	HSPB1 BO	86	9	29-38	LFDQAFGLPR	45	29 - 38	2
	protein beta-1		VIN			29 - 38	LFDOAFGLPR	62	29 - 38	2
	1					111 – 119	DGVVEITGK	44	111 -	2
									119	
11	Myosin light	MVI 1	MVI 1 BOV	200	/3	0 32	ΚΡΛΛΛΛΛΡΛΡΛΡΛΡΛΡΛΡΛΡΛΡΟ	70	700.0638	3
	abain 1/2	IVI I LI		290	75	9 - 32		02	621 9417	1
	1 + 1 + 1		11N			9-33	KFAAAAAFAFAFAFAFAFAFAFAFAFKEEK	92	021.0417	4
	skeletal muscle					9-35	KPAAAAAPAPAPAPAPAPAPAPAPAPKEEK	66	828.7922	3
	isoform					/9 – 90	ALGINPINAEVK	44	608.3157	2
						79 – 91	ALGTNPTNAEVKK	69	671.8692	2
						105 - 122	KIEFEQFLPMLQAISNNK	44	722.7113	3
						136 - 151	VFDKEGNGTVMGAELR	41	580.2841	3
						136 - 151	VFDKEGNGTVMGAELR	41	580.6120	3
						152 - 160	HVLATLGEK	41	484.2805	2
44	Myosin light	Mvl4	MVI 4 MOU	87	6	80 - 92	ALGONPTNAEVLR	87	691 8738	2
- ⁻	chain 4	111 111	SF	07	0	00 - 72		07	071.0750	-
			5E							
44	Glyceraldehyd	GAPD	G3P_SHEEP	62	4	188 - 202	GAAQNIIPASTGAAK	62	685.3722	2
	e-3-phosphate	Н								
	dehydrogenase									
	(Fragment)									
45	Troponin C.	TNNC2	TNNC2 RA	57	7	10-21	SYLSEEMIAEFK	57	731.8458	2
	skeletal muscle		BIT							

46	Myosin	MYLP	MLRS_BOV	130	27	43 - 52	DGIIDKEDLR	70	587.3131	2
	regulatory	F	IN			53 - 60	DTFAAMGR	45	442.7011	2
	light chain 2,					61 - 73	LNVKNEELDAMMK	52	783.8786	2
	skeletal muscle					92 - 106	LKGADPEDVITGAFK	61	780.9163	2
	isoform									
46	Actin,	ACTB	ACTB_SHE	53	2	19 - 28	AGFAGDDAPR	53	488.7302	2
	cytoplasmic 1		EP							
47	Myoglobin	MB	MYG SHEE	412	35	18-32	VEADVAGHGQEVLIR	97	531.6173	3
			P			18 - 32	VEADVAGHGQEVLIR	102	796.9226	2
						33 - 43	LFTGHPETLEK	62	636.3370	2
						65 - 78	HGNTVLTALGGILK	82	697.4091	2
						65 - 78	HGNTVLTALGGILK	103	697.4117	2
						120 - 134	HPSDFGADAQGAMSK	50	512.2216	3
						120 - 134	HPSDFGADAQGAMSK	115	767.8299	2
						120 - 134	HPSDFGADAQGAMSK	56	512.2224	3

ANEXO B - PROTEÍNAS DE *LONGISSIMUS DORSI* DE OVINOS DA RAÇA SANTA INÊS ALIMENTADOS COM FARELO DE SOJA, FARELO DE MAMONA DESSOLVENTIZADO DE FARELO DE MAMONA DESSOLVENTIZADO PENEIRADO. AS PROTEÍNAS FORAM SEPARADAS POR ELETROFORESE UNIDIMENSIONAL (SDS-PAGE) E IDENTIFICADAS POR ESPECTROMETRIA DE MASSAS (ESI-Q-

TOF).

Ban	Protein Name	Gene	SwissProt	MS/MS	Sequenc	Start-End	Matched	Ion	m/z	Z
d		Name	Accession	Protein	e	peptides	pepetides	scor		
				score	covered			e		
					(%)					
1	Myosin-1	MYH1	MYH1_BOV	2571	30	74 - 84	EDQVFPMNPPK	45	659.3054	2
			IN			171 - 185	ENQSILITGESGAGK	62	752.3756	2
						192 - 205	VIQYFATIAVTGEK	55	770.4316	2
						192 - 205	VIQYFATIAVTGEK	55	770.9100	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	51	1230.619	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	53	9	2
						261 - 273	LASADIETYLLEK	74	1238.618	2
						371 - 386	QREEQAEPDGTEVADK	46	5	3
						417 - 432	GQTVEQVYNAVGALAK	82	733.3733	2
						576 - 599	AEAHFSLIHYAGTVDYNITGWLDK	41	601.2739	4
						644 - 655	GSSFQTVSALFR	70	824.4262	2
						644 - 655	GSSFQTVSALFR	75	681.0848	2
						683 - 697	TPGAMEHELVLHQLR	106	650.3224	4
						683 - 697	TPGAMEHELVLHQLR	115	650.3297	3
						727 – 742	VLNASAIPEGQFIDSK	72	437.4704	2
						770 - 783	AGLLGLLEEMRDEK	71	582.9651	3
						770 - 783	AGLLGLLEEMRDEK	64	844.9382	2
						770 - 783	AGLLGLLEEMRDEK	86	525.2738	2
						784 - 790	LAQLITR	59	787.4114	2
						956 - 966	DIDDLELTLAK	61	795.4052	2
						980 - 994	NLTEEMAGLDETIAK	84	407.7472	2
						980 - 994	NLTEEMAGLDETIAK	73	623.3173	2
						1001 - 1025	ALQEAHQQTLDDLQAEEDKVNTLTK	112	817.8926	3
						1028 - 1045	TKLEQQVDDLEGSLEQEK	40	825.8923	3
						1030 - 1046	LEQQVDDLEGSLEQEKK	39	946.8027	3
						1064 - 1082	LAQESTMDIENDKQQLDEK	81	697.0081	3
						1118 - 1129	IEELEEEIEAER	56	663.3289	2
						1180 - 1196	DLEEATLQHEATAAALR	73	751.0105	3
						1180 - 1196	DLEEATLQHEATAAALR	136	744.8473	2
						1199 - 1215	HADSVAELGEQIDNLQR	140	613.6318	2
						1199 - 1215	HADSVAELGEQIDNLQR	95	919.9533	3
						1283 - 1292	LQTESGEFSR	59	947.9534	2
						1293 - 1306	QLDEKDALVSQLSR	86	632.3070	2
						1309 - 1320	QAFTQQIEELKR	43	577.2528	3
						1330 - 1340	SALAHALQSAR	56	801.4197	2
						1330 - 1340	SALAHALQSAR	45	497.5881	3
						1348 - 1357	EQYEEEQEGK	39	562.8008	2
						1367 - 1375	ANSEVAQWR	67	375.5387	2
						1367 - 1375	ANSEVAQWR	67	634.7699	2
						1376 - 1385	TKYETDAIQR	81	530.7502	2

						1400 - 1413	LQDAEEHVEAVNAK	60	531.2535	3
						1400 - 1413	LQDAEEHVEAVNAK	116	612.7979	2
						1424 - 1437	LQNEVEDLMIDVER	102	518.2474	2
						1489 - 1503	NAYEESLDQLETLKR	90	776.8765	3
						1489 - 1503	NAYEESLDQLETLKR	101	859.9097	2
						1507 - 1524	NLQQEISDLTEQIAEGGK	102	603.6245	2
						1507 - 1525	NLQQEISDLTEQIAEGGKR	95	904.9452	3
						1507 - 1525	NLQQEISDLTEQIAEGGKR	105	986.9739	2
						1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	37	710.3533	4
						1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	51	1065.037	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	88	0	3
						1541 - 1560	SEIQAALEEAEASLEHEEGK	82	728.5922	2
						1541 – 1563	SEIQAALEEAEASLEHEEGKILR	45	971.1248	4
						1680 - 1692	RANLLQAEIEELR	44	723.9961	2
						1681 - 1692	ANLLQAEIEELR	75	1085.499	2
						1716 - 1730	VQLLHTQNTSLINTK	39	4	3
						1732 – 1752	KLETDITQIQGEMEDIIQEAR	99	638.8203	3
						1800 - 1809	LDEAEQLALK	48	777.9264	2
						1800 - 1809	LDEAEQLALK	48	699.8699	2
						1852 - 1862	ELTYQTEEDRK	77	570.6437	2
						1867 – 1877	LQDLVDKLQAK	57	820.7436	3
						1867 – 1877	LQDLVDKLQAK	65	565.2964	2
						1902 – 1912	LQHELEEAEER	73	565.7748	2
									706.3318	
									424.2396	
									635.8613	
									691.8234	
1	Myosın-2	MYH2	MYH2_BOV	2059	22	74 - 84	EDQVFPMNPPK	45	659.3054	2
			IN			1/1 - 185	ENQSILITGESGAGK	62	/52.3/56	2
						261 - 2/3	LASADIE I YLLEK	/4	/33.3/33	2
						3/1 - 386	QREEQAEPDGIEVADK	46	601.2739	3
						640 - 657	GSSFQ1VSALFK CSSECTVSALED	70	650.3224	2
						640 - 637	GSSFQ1VSALFK TDCAMEUELVLUOLD	106	030.3297	
						083 - 099	TPGAMEHELVLHQLK	100	437.4704	4
						083 - 099	I PGAMEHEL VLHQLK	115	382.9031	2
						729 - 744 720 744	V LNASAIPEOQ I IDSK VI NASAIPEOOVIDSK	43	032.4457	2
						729 - 744	ACLICLI EEMDDEK	42	632.9333 535 3739	2
						772 - 785	AGLIGLIEEMRDEK	64	323.2738	2
						772 - 785	AGLIGLIEEMRDEK	86	705 4052	$\frac{2}{2}$
						058 068	DIDDI ELTI AV	61	622 2172	$\frac{2}{2}$
						938 - 908	NI TEEMACI DETIAK	84	817 8026	$\frac{2}{2}$
						982 - 990 082 006	NLTEEMAGLDETIAK NITEEMAGLDETIAK	72	817.8920	2
						982 - 990 1002 1027		112	046 8027	2
						1003 - 1027 1030 1047	ΤΚΙ ΕΩΟΥΠΟΙ ΕΩΩΙ ΕΩΕΥ	112	607 0021	2
						1030 - 1047 1032 - 1047	I FOOVDDI EGSI EOEVV	20	663 2280	2
						1032 - 1048 1120 - 1131	IEEI EEEIEAED	59	744 8472	2
						1120 - 1131 1182 - 1108	DI FFATI ΟΗΓΑΤΑΔΑΙ Β	73	613 6318	3
						1182 - 1198 1182 - 1198	DIFFATI OHFATAAALK	136	010.0510	2
						1201 - 1217	HADSVAFI GEOIDNI OR	140	947 9534	$\frac{1}{2}$
						1201 - 1217 1201 - 1217	HADSVAELGEOIDNLOR	95	632.3070	3
	1	1	1	1	1	1401 141/	THE STREED VIEW NEW	1 15	0100-010	5

			1285 - 1294	LQTESGEFSR		59	577.2528	2
			1311 - 1322	QAFTQQIEELK	R	43	497.5881	3
			1378 - 1387	TKYETDAIQF	t l	81	612.7979	2
			1426 - 1439	LQNEVEDLMLD	VER	102	859.9097	2
			1491 - 1505	NAYEESLDQLET	LKR	90	603.6245	3
			1491 - 1505	NAYEESLDQLET	LKR	101	904.9452	2
			1509 - 1526	NLQQEISDLTEQIA	EGGK	102	986.9739	2
			1509 - 1527	NLQQEISDLTEQIA	EGGKR	95	710.3533	3
			1509 - 1527	NLQQEISDLTEQIA	EGGKR	105	1065.037	2
			1537 - 1562	QVEQEKSEIQAALEEAEA	SLEHEEGK	37	0	4
			1537 - 1562	QVEQEKSEIQAALEEAEA	SLEHEEGK	51	728.5922	3
			1543 - 1562	SEIQAALEEAEASLE	HEEGK	88	971.1248	3
			1543 - 1562	SEIQAALEEAEASLE	HEEGK	82	723.9961	2
			1543 - 1565	SEIQAALEEAEASLEH	EEGKILR	45	1085.499	4
			1682 - 1694	RANLLQAEIEE	LR	44	4	2
			1683 - 1694	ANLLQAEIEEI	R	75	638.8203	2
			1718 - 1732	VQLLHTQNTSLI	NTK	39	777.9264	3
			1734 - 1754	KLETDITQIQGEMED	ILQEAR	99	699.8699	3
			1802 - 1811	LDEAEQLAL	K	48	570.6437	2
			1802 - 1811	LDEAEQLAL	K	48	820.7436	2
			1854 - 1864	ELTYQTEEDR	K	77	565.2964	2
			1869 - 1879	LQDLVDKLQA	K	57	565.7748	3
			1869 - 1879	LQDLVDKLQA	K	65	706.3318	2
			1904 - 1914	LQHELEEAEE	R	73	424.2396	2
							635.8613	
							691.8234	

7	1
/	I

2 Myosin-1 MYHI MYHI BO 2548 26 261-273 LASADIETYLLEK 70 73.3889 2 8 683-697 TPGAMEINELVLIQUR 101 352.9674 3 770-780 AGLIGLIEEMR 64 693.200 2 770-780 AGLIGLIEEMR 46 603.3350 2 770-783 AGLIGLIEEMRE 49 525.2754 3 770-783 AGLIGLIEEMRDEK 39 767.4788 2 784-790 LAQLITIR 59 407.458 2 980-994 NLTEEMAGLETIAK 76 67.03331 2 980-994 NLTEEMAGLETIAK 78 82.5888 2 1001-1025 ALQEATMQETLDAK 86 83.271 3 1028-1046 TKLEQVDDLGESLEQEK 6 67.030 3 1030-1046 LEQESTMDIENDKQOLDEK 7 77.0131 3 1028-1042 LAQESTMDIENDKQOLDEK 7 77.0131 3 1028-1040 <											
IN 644-655 GSSTOTVSALFR 61 603.321 22 727-742 VLNASADFGQFIDSK 69 844.9387 2 770-780 AGLICLIEENR 61 601.336 2 770-780 AGLICLIEENR 48 603.250 2 770-783 AGLICLIEENRDEK 93 787.4138 2 770-783 AGLICLIEENRDEK 93 787.4138 2 770-783 AGLICLIEENRDEK 93 787.4138 2 980-994 NLTEEMAGLDETIAK 86 817.8949 2 980-994 NLTEEMAGLDETIAK 86 817.8949 2 980-994 NLTEEMAGLDETIAK 86 817.8949 2 980-994 NLTEMAGLDETIAK 86 817.8949 2 1001-1025 ALQEAHQOTLDDLQAEENKVTLT 121 946.8040 3 1032-1045 TKLEQQVDDLEGSLEQEK 663.271 3 1032-1045 TLEQQVDDLEGSLEQEK 663.271 3 1045-1166 ELEENSRLEAGGATSAQUENK	2	Myosin-1	MYH1	MYH1_BOV	2548	26	261 - 273	LASADIETYLLEK	70	733.3889	2
683-697 TPGAMEELVLHQLR 101 \$82.9674 3 770-742 VINASAIPEGQHDSK 69 \$44.937 2 770-780 AGLICULEENR 61 601.3336 2 770-780 AGLICULEENRDEK 48 609.320 2 770-783 AGLICULEENRDEK 49 525.2754 3 770-783 AGLICULEENRDEK 49 525.2754 3 770-783 AGLICULEENRDEK 89 795.4065 2 980-994 NLTEEMAGLDETIAK 80 63.2888 2 980-994 NLTEEMAGLDETIAK 80 83.888 2 1003-1045 TKLEQVDDLEGSLEVEK 663.3271 3 3 1028-1045 TKLEQVDLEGSLEVEK 663.3271 3 3 1030-1046 LEQVDDLEGSLEVEK 76 67.0090 3 1133-1165 LEEAGGATSAQIENNK 884.0824 3 3 3 3 1180-1197 DLEEATLOHEATAAALR 118 919.9502 2 3 <				IN			644 - 655	GSSFQTVSALFR	61	650.3321	2
1 127 - 742 VLNASNPEGQEIDSK 69 844-9387 2 1 770 - 780 AGLICULEENR 61 601-336 2 1 770 - 783 AGLICULEENR 48 609-3250 2 1 770 - 783 AGLICULEENRDEK 49 525.774 3 1 770 - 783 AGLICULEENRDEK 99 787.4138 2 1 770 - 783 AGLICULEENRDEK 99 787.4138 2 1 787.479 LAQUITR 9 407.748 2 980 - 994 NLTEEMAGLDETLAK 78 623.315 2 980 - 994 NLTEEMAGLDETLAK 78 825.8898 2 1001 - 1025 ALQEAHQOTLDDLQAEDENVNTLT 121 946.8040 3 1028 - 1045 TKLEQOVDDLEGSLEQEK 76 697.0090 3 1030 - 1046 LEQOVDDLEGSLEQEK 76 697.0090 3 1135 - 1168 ELEENSTLEAGGATSAQUENK 67 82.8895 2 1180 - 1196 DLEAATLQHEATAALR 18 919.562 2 1180 - 1197							683 - 697	TPGAMEHELVLHQLR	101	582.9674	3
770-780 AGLIGLLEEMR 61 603320 2 770-783 AGLIGLLEEMRDEK 49 525,274 3 770-783 AGLIGLLEEMRDEK 49 525,274 3 770-783 AGLIGLLEEMRDEK 89 784,418 2 770-783 AGLIGLLEEMRDEK 89 795,466 2 980-994 NLTEEMAGLDETIAK 86 817,8949 2 980-994 NLTEEMAGLDETIAK 78 825,8898 2 1001-1025 ALQEAHQOTLDDLQAEEDKVNTLT 71 124,8404 3 1023-1045 TKLEQQVDDLEGSLEQEK 76 663,3271 3 1044-1168 ELEEISERLEAGGATSAQIEMNK 683,2889 2 1180-1196 DLEEATLQHEATAAALR 118 99,9562 2 1180-1196 DLEEATLQHEATAAALR 18 613,6412 3 1180-1196 DLEEATLQHEATAAALR 18 613,6412 3 1180-1197 DLEEATLQHEATAAALR 86 632,3069 3 33,663 2 1293-1306 QLDEKDALVSQLR 632,3069 3 33,663 2							727 - 742	VLNASAIPEGQFIDSK	69	844.9387	2
770-780 AGLIGLLEEMR 48 609.320 2 770-783 AGLIGLLEEMRDEK 49 52.274 3 770-783 AGLIGLLEEMRDEK 89 787.4138 2 770-783 AGLIGLLEEMRDEK 89 785.405 2 784-790 LAQLITR 59 407.7458 2 980-994 NLTEEMAGLDETIAK 86 623.3315 2 980-994 NLTEEMAGLDETIAK 86 88.25 2 1001-1025 ALQEARQUIDEGLEQEK 76 697.0090 3 1028-1045 TKLEQOVDDLEGSLEQEK 76 697.0090 3 1030-1046 LEQOVDDLEGSLEQEK 76 697.0090 3 1145-1168 ELEEISERLEAGGATSAQUEMNK 78 822.8895 2 1180-1196 DLEEATLQHEATAAALR 86 613.6412 3 1180-1197 DLEEATLQHEATAAALR 86 613.6412 3 1180-1197 DLEEATLQHEATAAALR 86 632.3069 3 1180-1197 DLEEATLQHEATAAALR 86 632.3069 3 1283-1292							770 - 780	AGLLGLLEEMR	61	601.3336	2
770 - 783 AGLIGLLEEMRDEK 49 525.274 3 770 - 783 AGLIGLLEEMRDEK 89 781.418 2 784 - 790 LAQLITR 89 407.458 2 980 - 994 NLTEEMAGLDETIAK 86 817.8949 2 980 - 994 NLTEEMAGLDETIAK 78 825.8898 2 980 - 994 NLTEEMAGLDETIAK 78 825.8898 2 980 - 994 NLTEEMAGLDETIAK 78 825.8898 2 1001 - 1025 ALQEARQUTDDLQAEEDKVNTLT 71 31 346.840 3 1030 - 1046 LEOQVDDLEGSLEOEK 76 663.3271 3 1030 - 1046 LEQCVDDLEGSLEOEK 76 663.3271 3 1145 - 1168 ELEEISERLEEAGGATSAQIEMNK 6 832.8892 2 1180 - 1196 DLEEATQHEATAAALR 118 99.9562 2 1180 - 1196 DLEEATQHEATAAALR 86 613.6412 3 1293 - 1306 QLDEKDALVSQLR 6 632.3069 3 1293 - 1306 QLDEKDALVSQLR 51 546.63 3							770 - 780	AGLLGLLEEMR	48	609.3250	2
770 - 783 AGLIGLIEEMRDEK 93 774.138 2 770 - 783 AGLIGLIEEMRDEK 89 795.4065 2 784 - 790 LAQLITR 59 407.7458 2 956 - 966 DIDDLEITLAK 57 623.315 2 980 - 994 NLTEEMAGLDETTAK 86 817.8949 2 980 - 1025 ALQEARHQTLDQAEEDKVNTLT 12 946.040 3 1028 - 1045 TKLEQQVDDLEGSLEQEK 76 67.0090 3 1030 - 1046 LEQQVDDLEGSLEQEK 76 663.3271 3 1044 - 1082 LAQESTMDIENDKQQLDEK 74 751.0133 3 1145 - 1168 LEEAGGATSAQIEMNK 67 832.8895 2 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 632.3069 3 1233 - 1320 QAFTQUEATAAALR 45 652.307 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>770 - 783</td><td>AGLLGLLEEMRDEK</td><td>49</td><td>525.2754</td><td>3</td></tr<>							770 - 783	AGLLGLLEEMRDEK	49	525.2754	3
770 - 783 AGLLGLLEEMRDEK 89 79.4065 2 784 - 790 LAQLIR 59 407.458 2 980 - 994 NLTEEMAGLDETIAK 57 623.315 2 980 - 994 NLTEEMAGLDETIAK 88 817.8949 2 980 - 994 NLTEEMAGLDETIAK 88 817.8949 2 980 - 994 NLTEEMAGLDETIAK 88 817.8949 2 980 - 994 NLTEEMAGLDETIAK 88 825.8888 2 1001 - 1025 ALQEAMOQTLDDLQAEEDKVNTLT 121 946.8040 3 1028 - 1045 TKLEQQVDDLEGSLEQEKK 62 663.3271 3 1030 - 1046 LEQQVDDLEGSLEQEKK 67 670.0090 3 1145 - 1168 LEPAGATSAQUEMNK 68 884.0824 3 1180 - 1196 DLEFATLQHEATAAALR 86 613.6412 3 1180 - 1196 DLEFATLQHEATAAALR 86 613.2069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1293 - 1306 QLDEKDLVSQLSR 51 542.8038 2							770 - 783	AGLLGLLEEMRDEK	93	787.4138	2
784 - 790 LAQLITR 59 407.7458 2 956 - 966 DIDDLELTLAK 57 623.315 2 980 - 994 NLTEEMAGLDETIAK 88 817.8944 2 980 - 994 NLTEEMAGLDETIAK 78 825.8888 2 1001 - 1025 ALQEAHQQTLDDLAGEDKVNTLT 12 946.8040 3 1028 - 1045 TKLEQQVDDLEGSLEQEK 76 670.0090 3 1030 - 1046 LEQQVDDLEGSLEQEK 76 663.2371 3 1064 - 1082 LAQESTMDIENDKOQLDEK 74 751.0133 3 1153 - 1168 LEEAGGATSAQIEMNK 67 822.8895 2 1180 - 1196 DLEFATLQHEATAAALR 86 613.6412 3 1180 - 1196 DLEFATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 632.3069 3 1233 - 1292 LQTESGEFR 60 577.2624 2 1233 - 130 QAFTQQIEELKR 83 745.8455 2 1330 - 1340 SALAHALQSAR 59 562.8038 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>770 - 783</td><td>AGLLGLLEEMRDEK</td><td>89</td><td>795.4065</td><td>2</td></t<>							770 - 783	AGLLGLLEEMRDEK	89	795.4065	2
956-966 DIDDLETAK 57 623,3315 2 980-994 NLTEEMAGLDETIAK 86 817,8949 2 980-994 NLTEEMAGLDETIAK 86 817,8949 2 980-994 NLTEEMAGLDETIAK 86 817,8949 2 980-994 NLTEEMAGLDETIAK 86 847,8949 2 1001-1025 ALQEAHQQTLDDLQAEEDKVNTLT 121 946,8040 3 1028-1045 TKLEQQVDDLEGSLEOEK 66 3271 3 1030-1046 ELEQQVDDLEGSLEOEK 76 670,009 3 1145-1168 ELEEAGGATSAQIEMK 67 832,8895 2 1180-1196 DLEEATLOHEATAAALR 86 613,6412 3 1180-1197 DLEEATLOHEATAAALR 86 632,3069 3 1180-1197 DLEEATLOHEATAAALR 86 632,3069 3 1283-1292 LQTESGEFSR 60 577,2624 2 1293-1306 QLDEATLOHEATAALR 83 755,574 3 330-334 3330-							784 - 790	LAOLITR	59	407.7458	2
980 - 994 NLTEEMAGLDETIAK 86 817,8949 2 980 - 994 NLTEEMAGLDETIAK 78 825,8898 2 1001 - 1025 ALQEAHQQTLDLQAEEDKVNTLT 71 946,8040 3 1028 - 1045 TKLEQQVDDLEGSLEQFEK 76 697,0090 3 1030 - 1046 LEQQVDDLEGSLEQFEK 76 697,0090 3 1030 - 1046 LEQQVDDLEGSLEQFEK 76 697,0090 3 1030 - 1046 LEQQVDDLEGSLEQFEK 76 697,0090 3 1046 - 1082 LAQESTMDIENDKQQLDEK 74 751,0133 3 1145 - 1168 ELEEATLOHEATAAALR 18 840,824 3 1180 - 1196 DLEEATLOHEATAAALR 18 613,6421 3 1180 - 1197 DLEEATLOHEATAAALR 86 613,6421 3 1233 - 1320 QAFTQUEELKR 83 745,8945 2 1330 - 1340 SALAHALQSAR 43 355,374 3 1330 - 1340 SALAHALQSAR 49 562,8038 2							956 - 966	DIDDLELTLAK	57	623.3315	2
1000 1000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>980 - 994</td><td>NI TEEMAGI DETIAK</td><td>86</td><td>817 8949</td><td>2</td></th<>							980 - 994	NI TEEMAGI DETIAK	86	817 8949	2
1001 - 1025 ALQEAHQQTLDDLQAEEDKVNTLT 121 946.8040 3 1023 - 1045 TKLEQQVDDLGSLEQEK 76 697.0090 3 1034 - 1045 TKLEQQVDDLGSLEQEK 76 697.0090 3 1064 - 1082 LAQESTMDIENDKQQLDEK 74 751.0133 3 1145 - 1168 ELEEISERLEEAGGATSAQIEMNK 66 884.0824 3 1153 - 1168 LEEAGGATSAQIEMNK 67 832.8895 2 1180 - 1196 DLEEATLQHEATAAALR 118 919.9562 2 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1233 - 1292 LQTESGEFSR 60 577.2624 2 1239 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1300 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 46 562.8017 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>980 - 994</td> <td>NI TEEMAGI DETIAK</td> <td>78</td> <td>825 8898</td> <td>2</td>							980 - 994	NI TEEMAGI DETIAK	78	825 8898	2
1038-1045 TKLEQQVDDLEGSLEQEK 76 697.0090 3 1030-1046 LEQQVDDLEGSLEQEK 76 697.0090 3 1064-1042 LAQQVDDLEGSLEQEKK 72 663.2271 3 1064-1042 LAQESTMDIEDNEQQLDEK 74 751.0133 3 1145-1168 ELEEISERLEEAGGATSAQIEMNK 36 844.0824 3 1133-1161 DLEEATLQHEATAAALR 118 919.9562 2 1180-1196 DLEEATLQHEATAAALR 118 919.9562 2 1180-1196 DLEEATLQHEATAAALR 118 919.9562 2 1180-1196 DLEEATLQHEATAAALR 118 919.9562 2 1180-1197 DLEEATLQHEATAAALR 86 613.6412 3 1199-1215 HADSVAELGEQIDNLQR 96 632.3069 3 3 1233-1300 QLDEKDALVSQLSR 51 534.6163 3 3 3 3 3 3 54.6163 3 3 3 3 54.5163 3 3 3<							1001 - 1025	AL OF AHOOTI DDI OAFFDK VNTI T	121	946 8040	3
1030 - 1046 LEQQVDDLEGSLEQEKK 62 663.3271 3 1046 - 1082 LAQESTMDLENDKQQLDEK 62 663.3271 3 1145 - 1168 ELEGISERLEEAGATSAQIEMNK 66 840.824 3 1145 - 1168 LECAGATSAQIEMNK 67 832.8895 2 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1283 - 1292 LQTESGEFSR 60 677.2624 2 1300 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 45 562.8038 2 1330 - 1340 SALAHALQSAR 45 562.8038 2 1345 - 1629 EQYEELGEGK 43 634.7687 2 1340 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 859.9066 2							1001 - 1025 1028 1045	TKI EOOVDDI EGSI EOEK	76	697 0090	3
1030 - 1040 LLQESTMDIENDKQQLDEK 74 751.0133 3 1145 - 1168 LLQESTMDIENDKQQLDEK 74 751.0133 3 1145 - 1168 LEEAGGATSAQIEMNK 56 884.0824 3 1153 - 1168 LEEAGGATSAQIEMNK 67 832.8895 2 1180 - 1196 DLEEATLQHEATAAALR 118 919.9562 2 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 575.574 3 1330 - 1340 SALAHALQSAR 45 561.8083 2 1348 - 1357 EQVEEDEGEGK 43 634.7687 2 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 <							1020 - 1045 1020 1046	I EOOVDDI EOSI EOEVV	62	662 2271	2
1004 = 1063 LEAGESTRILEEAGGATSAQUEMA 74 71.01.03 3 1145 = 1168 ELEEISERLEEAGGATSAQUEMAK 66 832.8895 2 1180 = 1196 DLEEATLQHEATAAALR 118 919.9562 2 1180 = 1196 DLEEATLQHEATAAALR 118 919.9562 2 1180 = 1197 DLEEATLQHEATAAALR 18 919.9562 2 1180 = 1197 DLEEATLQHEATAAALRK 92 655.3400 3 1199 = 1215 HADSVAELGEQIDNLQR 96 632.3069 3 1283 = 1292 LQTESGEFSR 60 577.2624 2 1330 = 1340 SALAHALQSAR 43 375.5374 3 1330 = 1340 SALAHALQSAR 45 562.8038 2 1330 = 1340 SALAHALQSAR 45 562.8038 2 1348 = 1357 EQYEEEQEGK 43 634.7687 2 1424 = 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 = 1437 LQNEVEDLMIDVER 82 859.9066 2							1050 - 1040 1064 1082	LEQUIDDEE03EEQEKK	74	751 0133	3
1149 - 1108 LEELAGATSAQLEMNK 30 304-3024 3 1153 - 1168 LEEAGGATSAQLEMNK 67 832.8895 2 1180 - 1196 DLEEATLQHEATAAALR 118 919.9562 2 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1199 - 1215 HADSVAELGEQIDNLQR 96 632.3069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1306 QLDEKDALVSQLSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 45 56.28.038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 14424 - 1437 LQNEVEDLMIDVER 102 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2							1004 - 1082 1145 1168	ELEEISEDI EEACCATSAOIEMNIK	26	884 0824	2
1103 - 1196 DEEATLQHEATAAALR 07 632.8693 2 1180 - 1196 DEEATLQHEATAAALR 118 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALR 86 632.3069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1300 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 46 652.8117 2 1330 - 1340 SALAHALQSAR 46 652.8117 2 1345 TKYETDAIQR 55 612.8053 2 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1449 - 1503 NAYESLDQLETLKR 114 904.9041 2 150							1143 - 1108 1152 1168		50	004.0024	2
1180 - 1196 DLEEATLQHEATAAALR 118 919-3052 2 1180 - 1196 DLEEATLQHEATAAALR 86 613.6412 3 1180 - 1197 DLEEATLQHEATAAALRK 92 656.3400 3 1199 - 1215 HADSVAELGEQIDNLQR 96 632.3069 3 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9084 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2							1133 - 1106		110	010.0562	2
1180 - 1197 DLEEATLQHEATAAALRK 80 613.0412 3 1180 - 1197 DLEEATLQHEATAAALRK 90 653.3069 3 1199 - 1215 HADSVAELGEQIDNLQR 96 632.3069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1300 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 46 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8018 2 1330 - 1340 SALAHALQSAR 46 562.8038 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1440 - 1413 LQNEVEDLMIDVER 102 81.9154 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9086 2 1489 - 1503 NAYEESLDQLETLKR 714 904.9461 2 150							1180 - 1190		118	919.9302	2
1180 - 1197 DLEEAILQHEAIAAALKK 92 636.3400 3 1199 - 1215 HADSVAELGEQIDNLQR 96 632.3069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.574 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 14 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 86.9772 2 15							1180 - 1190 1180 - 1107		80	013.0412	2
1199 - 1215 114DSVAELGUEQIDNLQR 96 632.3069 3 1283 - 1292 LQTESGEFSR 60 577.2624 2 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 50 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9066 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 78 856.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 28 658.3266 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1180 - 119/</td><td>DLEEAILQHEAIAAALKK</td><td>92</td><td>656.3400</td><td>3</td></td<>							1180 - 119/	DLEEAILQHEAIAAALKK	92	656.3400	3
1283 - 1292 LQ IESGEPSK 60 577.4624 2 1293 - 1306 QLDEKDALVSQLSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 71 638.266 3 1507 - 1524 NLQQEISDLTEQIAEGGK 98 98.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507							1199 - 1215	HADSVAELGEQIDNLQK	96	632.3069	3
1293 - 1306 QLDEKDAUSQUSR 51 534.6163 3 1309 - 1320 QAFTQQIEELKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 92 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1525 NLQQEISDLTEQIAEGGK 92 658.5266 3							1283 - 1292	LQIESGEFSK	60	577.2624	2
1309 - 1320 QAF1QQIELLKR 83 745.8945 2 1330 - 1340 SALAHALQSAR 43 375.5374 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 89 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 82 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGK 85 96 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1293 - 1306</td><td>QLDEKDALVSQLSR</td><td>51</td><td>534.6163</td><td>3</td></tr<>							1293 - 1306	QLDEKDALVSQLSR	51	534.6163	3
1330 - 1340 SALAHALQSAR 43 3'5.5'3'4 3 1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9086 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9066 2 1459 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 86 1065.029 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1309 - 1320</td><td>QAFTQQIEELKR</td><td>83</td><td>745.8945</td><td>2</td></t<>							1309 - 1320	QAFTQQIEELKR	83	745.8945	2
1330 - 1340 SALAHALQSAR 59 562.8038 2 1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 76 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1330 - 1340</td><td>SALAHALQSAR</td><td>43</td><td>3/5.53/4</td><td>3</td></t<>							1330 - 1340	SALAHALQSAR	43	3/5.53/4	3
1330 - 1340 SALAHALQSAR 46 562.8117 2 1348 - 1357 EQYEEEQEGK 43 634.7687 2 1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 56 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1006.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 73 728.5955 <							1330 - 1340	SALAHALQSAR	59	562.8038	2
$ \begin{bmatrix} 1348 - 1357 & EQYEEEQEGK & 43 & 634.7687 & 2\\ 1376 - 1385 & TKYETDAIQR & 55 & 612.8053 & 2\\ 1400 - 1413 & LQDAEEHVEAVNAK & 46 & 518.2525 & 3\\ 1424 - 1437 & LQNEVEDLMIDVER & 102 & 851.9154 & 2\\ 1424 - 1437 & LQNEVEDLMIDVER & 92 & 859.9066 & 2\\ 1424 - 1437 & LQNEVEDLMIDVER & 84 & 859.9084 & 2\\ 1429 - 1503 & NAYEESLDQLETLKR & 77 & 603.6257 & 3\\ 1489 - 1503 & NAYEESLDQLETLKR & 114 & 904.9461 & 2\\ 1507 - 1524 & NLQQEISDLTEQIAEGGK & 98 & 986.9772 & 2\\ 1507 - 1524 & NLQQEISDLTEQIAEGGK & 52 & 658.3266 & 3\\ 1507 - 1525 & NLQQEISDLTEQIAEGGKR & 86 & 1065.029 & 2\\ 1535 - 1560 & QVEQEKSEIQAALEEAEASLEHEEGK & 50 & 9 & 4\\ 1535 - 1560 & QVEQEKSEIQAALEEAEASLEHEEGK & 73 & 728.5958 & 3\\ 1541 - 1560 & SEIQAALEEAEASLEHEEGK & 88 & 971.1261 & 3\\ 1541 - 1560 & SEIQAALEEAEASLEHEEGK & 79 & 724.0045 & 2\\ \end{bmatrix} $							1330 - 1340	SALAHALQSAR	46	562.8117	2
1376 - 1385 TKYETDAIQR 55 612.8053 2 1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 17 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1525 NLQQEISDLTEQIAEGGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1348 – 1357</td> <td>EQYEEEQEGK</td> <td>43</td> <td>634.7687</td> <td>2</td>							1348 – 1357	EQYEEEQEGK	43	634.7687	2
1400 - 1413 LQDAEEHVEAVNAK 46 518.2525 3 1424 - 1437 LQNEVEDLMIDVER 102 851.9154 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 - 1437 LQNEVEDLMIDVER 92 859.9084 2 1424 - 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1541 - 1560 SEIQAALEEAEASLEHEEGK 73 728.595							1376 – 1385	TKYETDAIQR	55	612.8053	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1400 - 1413	LQDAEEHVEAVNAK	46	518.2525	3
1424 – 1437 LQNEVEDLMIDVER 92 859.9066 2 1424 – 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 – 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 – 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 – 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 – 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1541 – 1560 SEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79							1424 - 1437	LQNEVEDLMIDVER	102	851.9154	2
1424 – 1437 LQNEVEDLMIDVER 84 859.9084 2 1489 – 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 – 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 – 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 – 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1424 - 1437	LQNEVEDLMIDVER	92	859.9066	2
1489 - 1503 NAYEESLDQLETLKR 77 603.6257 3 1489 - 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1424 - 1437	LQNEVEDLMIDVER	84	859.9084	2
1489 – 1503 NAYEESLDQLETLKR 114 904.9461 2 1507 – 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 – 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 – 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1489 - 1503	NAYEESLDQLETLKR	77	603.6257	3
1507 - 1524 NLQQEISDLTEQIAEGGK 98 986.9772 2 1507 - 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1489 - 1503	NAYEESLDQLETLKR	114	904.9461	2
1507 - 1524 NLQQEISDLTEQIAEGGK 52 658.3266 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1507 - 1524	NLQQEISDLTEQIAEGGK	98	986.9772	2
1507 - 1525 NLQQEISDLTEQIAEGGKR 100 710.3470 3 1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1507 - 1524	NLQQEISDLTEQIAEGGK	52	658.3266	3
1507 - 1525 NLQQEISDLTEQIAEGGKR 86 1065.029 2 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 - 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 - 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1507 - 1525	NLQQEISDLTEQIAEGGKR	100	710.3470	3
1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 50 9 4 1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1507 - 1525	NLQQEISDLTEQIAEGGKR	86	1065.029	2
1535 – 1560 QVEQEKSEIQAALEEAEASLEHEEGK 73 728.5958 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	50	9	4
1541 – 1560 SEIQAALEEAEASLEHEEGK 88 971.1261 3 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2 1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1535 - 1560	QVEQEKSEIQAALEEAEASLEHEEGK	73	728.5958	3
1541 – 1560 SEIQAALEEAEASLEHEEGK 79 724.0045 2							1541 - 1560	SEIQAALEEAEASLEHEEGK	88	971.1261	3
							1541 - 1560	SEIQAALEEAEASLEHEEGK	79	724.0045	2
1541 – 1563 SEIQAALEEAEASLEHEEGKILK /3 1085.508 4							1541 - 1563	SEIQAALEEAEASLEHEEGKILR	73	1085.508	4
1680 – 1692 RANLLOAEIEELR 67 3 2							1680 - 1692	RANLLQAEIEELR	67	3	2
1681 – 1692 ANLLOAEIEELR 73 638.8234 2							1681 - 1692	ANLLOAEIEELR	73	638.8234	2
1681 – 1700 ANLLOAEIEELRATLEOTER 69 777.9260 2							1681 - 1700	ANLLOAEIEELRATLEOTER	69	777.9260	2
1716 – 1730 VOLLHTONTSLINTK 47 699.8538 3							1716 - 1730	VOLLHTONTSLINTK	47	699.8538	3
1732 – 1752 KLETDITQIQGEMEDIIQEAR 93 1164.102 3							1732 - 1752	KLETDITQIQGEMEDIIQEAR	93	1164.102	3

2	Myosin-2	MYH2	MYH2 BOV	2391	22	$\begin{array}{c} 1732 - 1752 \\ 1733 - 1752 \\ 1761 - 1774 \\ 1775 - 1784 \\ 1800 - 1809 \\ 1800 - 1809 \\ 1800 - 1812 \\ 1852 - 1862 \\ 1867 - 1877 \\ 1867 - 1877 \\ 1913 - 1922 \\ 1913 - 1922 \\ 1913 - 1922 \\ \end{array}$	KLETDITQIQGEMEDIIQEAR AITDAAMMAEELKK EQDTSAHLER IDEAEQLALK IDEAEQLALK GEAEQLALKGGK ELTYQTEEDRK IQDLVDKLQAK ADIAESQVNK ADIAESQVNK	61 60 82 68 56 56 42 77 65 54 50 50	4 570.6482 820.7424 826.0727 1166.566 9 777.3762 395.8570 565.2998 565.7793 457.9184 706.3286 424.2347 635.8549 537.7488 538.2632	3 2 2 3 2 2 3 2 2 2 2 2 2 2
2	WLYOSIII-2	IVI I Π2	IN INZ_BOV	2371	22	$\begin{array}{r} 201 - 273 \\ 646 - 657 \\ 685 - 699 \\ 772 - 782 \\ 772 - 782 \\ 772 - 785 \end{array}$	GSSFQTVSALFR TPGAMEHELVLHQLR AGLLGLLEEMR AGLLGLLEEMR AGLLGLLEEMRDEK	61 101 61 48 49	650.3321 582.9674 601.3336 609.3250 525.2754	2 3 2 2 3
_	-									
---	----									
1	·2									
1	2									

772 – 785	AGLLGLLEEMRDEK	93	787.4138	2
772 – 785	AGLLGLLEEMRDEK	89	795.4065	2
958 - 968	DIDDLELTLAK	57	623.3315	2
982 - 996	NLTEEMAGLDETIAK	86	817.8949	2
982 - 996	NLTEEMAGLDETIAK	78	825.8898	2
1003 - 1027	ALQEAHQQTLDDLQAEEDKVNTLTK	121	946.8040	3
1030 - 1047	TKLEQQVDDLEGSLEQEK	76	697.0090	3
1032 - 1048	LEQQVDDLEGSLEQEKK	62	663.3271	3
1066 - 1078	LAQESIMDIENEK	70	768.3637	2
1147 - 1170	ELEEISERLEEAGGATSAQIEMNK	36	884.0824	3
1155 - 1170	LEEAGGATSAQIEMNK	67	832.8895	2
1182 - 1198	DLEEATLQHEATAAALR	118	919.9562	2
1182 - 1198	DLEEATLQHEATAAALR	86	613.6412	3
1182 - 1199	DLEEATLQHEATAAALRK	92	656.3400	3
1201 - 1217	HADSVAELGEQIDNLQR	96	632.3069	3
1285 - 1294	LQTESGEFSR	60	577.2624	2
1311 - 1322	QAFTQQIEELKR	83	745.8945	2
1332 - 1342	NALAHGLQSAR	50	569.2915	2
1332 - 1342	NALAHGLQSAR	53	569.8117	2
1378 - 1387	TKYETDAIQR	55	612.8053	2
1426 - 1439	LQNEVEDLMLDVER	102	851.9154	2
1426 - 1439	LQNEVEDLMLDVER	92	859.9066	2
1426 - 1439	LQNEVEDLMLDVER	84	859.9084	2
1491 - 1505	NAYEESLDQLETLKR	77	603.6257	3
1491 - 1505	NAYEESLDQLETLKR	114	904.9461	2
1509 - 1526	NLOOEISDLTEOIAEGGK	98	986.9772	2
1509 - 1526	NLÕÕEISDLTEÕIAEGGK	52	658.3266	2
1509 - 1527	NLOQEISDLTEQIAEGGKR	100	710.3470	3
1509 - 1527	NLOÕEISDLTEÕIAEGGKR	86	1065.029	2
1537 - 1562	OVEQEKSEIQAALEEAEASLEHEEGK	50	9	4
1537 - 1562	ÔVEÔEKSEIÔAALEEAEASLEHEEGK	73	728.5958	3
1543 - 1562	SEIQAALEEAEASLEHEEGK	88	971.1261	3
1543 - 1562	SEIQAALEEAEASLEHEEGK	79	724.0045	2
1543 - 1565	SEIQAALEEAEASLEHEEGKILR	73	1085.508	4
1682 - 1694	RANLLQAEIEELR	67	3	2
1683 - 1694	ANLLQAEIEELR	73	638.8234	2
1683 - 1702	ANLLQAEIEELRATLEQTER	69	777.9260	2
1718 - 1732	VQLLHTQNTSLINTK	47	699.8538	3
1734 - 1754	KLETDITQIQGEMEDILQEAR	93	1164.102	3
1734 - 1754	KLETDITQIQGEMEDILQEAR	61	4	3
1735 - 1754	LETDITQIQGEMEDILQEAR	60	570.6482	2
1763 - 1776	AITDAAMMAEELKK	82	820.7424	2
1777 – 1786	EQDTSAHLER	68	826.0727	3
1802 - 1811	LDEAEQLALK	56	1166.566	2
1802 - 1811	LDEAEQLALK	56	9	2
1802 - 1814	LDEAEQLALKGGK	42	777.3762	3
1854 - 1864	ELTYQTEEDRK	77	395.8570	2
1869 - 1879	LQDLVDKLQAK	65	565.2998	3
1869 - 1879	LÕDLVDKLÕAK	54	565.7793	2
1915 - 1924	ADIAESQVNK	50	457.9184	2
1915 - 1924	ADIAESQVNK	50	706.3286	2

									424.2347	
									635.8549	
									537.7488	
									538.2632	
3	Alpha-actinin-	ACTN2	ACTN2 BO	807	24	55 - 67	AGTQIENIEEDFR	58	761.3554	2
	2		VIN			141 - 154	FAIQDISVEETSAK	81	769.3811	2
						272 - 281	VLAVNOENER	71	586.3018	2
						289 - 298	LASELLEWIR	79	615.3359	2
						367 - 377	MVSDIAGAWOR	42	617.3029	2
						384 - 394	GYEEWLLNEIR	66	711.3500	2
						428 - 438	DYESSTLTEVR	73	650.3007	2
						458 - 482	VEOIAAIAOELNELDYHDAVNVNDR	134	947 1293	3
						563 - 572	ATI PEADGER	50	529 7553	2
						503 - 584	OSILAIONEVEK	74	686 3691	2
						593 - 608	ISSSNPYSTVTVDFIR	107	884 4315	2
						616 - 631	OI VPIRDOSLOFFI AR	52	632 3177	3
						616 - 631	OI VPIRDOSLOFFI AR	52	632.6763	3
						680 - 689	OVEHNIINYK	51	661 3294	2
						734 - 745	TINEVETOILTR	92	708 8801	2
						760 - 767	ASENHEDR	71	497 2282	2
						821 - 836	ETADTDTAEOVIASFR	116	877.4065	2
						837 - 851	ILASDKPYILAEELR	87	577.6576	3
3	Glycogen	PYGM	PYGM SHE	399	16	18 - 30	GLAGVENVTELKK	68	453 2560	3
5	phosphorylase	11000	EP	577	10	171 - 185	ISGGWOMEEADDWLR	63	896.8982	2
	phosphorymou					271 - 278	NLAENISR	46	458.7417	2
						279 - 290	VLYPNDNFFEGK	49	721.8451	2
						325 - 333	TNFDAFPDK	51	527.7409	2
						334 - 352	VAIOLNDTHPSLAIPELMR	83	706.7117	3
						415 - 425	VAAAFPGDVDR	58	559.2795	2
						508 - 520	IGEEYIADLDQLR	76	767.8847	2
						522 - 533	LLSYVDDESFIR	80	728.8639	2
						726 – 735	GYNAQEYYDR	71	639.7741	2
						741 – 754	HIIDQLSSGFFSPK	95	788.4058	2
4	Myosin-1	MYH1	MYH1 BOV	584	11	148 - 170	RQEAPPHIFSISDNAYQFMLTDR	77	688.8312	4
	-		IN			171 - 185	ENQSILITGESGAGK	63	752.3820	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	45	1238.615	2
						261 - 273	LASADIETYLLEK	74	5	2
						355 - 366	LTGAVMHYGNLK	43	733.3895	2
						373 - 386	EEQAEPDGTEVADK	58	660.3488	2
						387 - 400	AAYLOGLNSADLLK	48	759.3328	2
						387 - 400	AAYLOGLNSADLLK	76	738.8981	2
						417 - 432	GQTVEQVYNAVGALAK	82	738.9008	2
						600 - 614	NKDPLNETVVGLYQK	47	824.4272	3
						643 - 655	KGSSFQTVSALFR	64	573.3044	2
						644 - 655	GSSFQTVSALFR	91	714.3849	2
						683 - 697	TPGAMEHELVLHQLR	84	650.3301	3
						784 - 790	LAQLITR	58	582.9645	2
						283 - 1292	LQTESGEFSR	50	407.7609	2
						489 - 1503	NAYEESLDQLETLKR	70	577.2792	3
						681 - 1692	ANLLQAEIEELR	66	603.6365	2
									699 8842	

5	Myosin-1	MYH1	MYH1 BOV	951	10	148 - 170	RQEAPPHIFSISDNAYQFMLTDR	55	684.8302	4
			IN			149 - 170	QEAPPHIFSISDNAYQFMLTDR	45	866.0727	3
						171 - 185	ENQSILITGESGAGK	82	752.3803	2
						192 - 205	VIQYFATIAVTGEK	51	770.4224	2
						192 - 205	VIQYFATIAVTGEK	51	770.9085	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	59	820.7490	3
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	71	1238.613	2
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	82	0	3
						215 - 237	MQGTLEDQIISANPLLEAFGNAK	82	826.0888	3
						261 - 273	LASADIETYLLEK	50	826.4119	2
						261 - 273	LASADIETYLLEK	81	733.3782	2
						355 - 366	LTGAVMHYGNLK	57	733.3782	2
						355 - 366	LTGAVMHYGNLK	64	652.3455	2
						371 - 386	QREEQAEPDGTEVADK	49	660.3411	3
						373 - 386	EEQAEPDGTEVADK	62	601.2760	2
						417 - 432	GQTVEQVYNAVGALAK	82	759.3325	2
						600 - 614	NKDPLNETVVGLYQK	75	824.4306	2
						1541 - 1560	SEIQAALEEAEASLEHEEGK	68	859.4534	3
						1681 - 1692	ANLLQAEIEELR	73	724.0068	2
						1867 - 1877	LQDLVDKLQAK	51	699.8807	2
						1913 - 1922	ADIAESQVNK	49	635.8685	2
							-		537.7764	
5	Albumin	ALB	ALBU SHE	187	6	402 - 412	HLVDEPQNLIK	55	653.3561	2
			EP			437 - 451	KAPOVSTPTLVEISR	58	542.6415	3
						569 - 580	TVMENFVAFVDK	74	708.3466	2
6	Myosin-1	MYH1	MYH1 BOV	624	6	74 - 84	EDOVEPMNPPK	49	659 3076	2
Ŭ	Nijosii i		IN IN	021	0	171 - 185	ENOSILITGESGAGK	71	752 3884	2
						215 - 237	MOGTLEDOIISANPLLEAFGNAK	57	820.7455	3
						215 - 237	MOGTLEDOIISANPLLEAFGNAK	79	826.0797	3
						215 - 237	MOGTLEDOIISANPLLEAFGNAK	53	826.0803	3
						261 - 273	LASADIETYLLEK	76	733.3822	2
						261 - 273	LASADIETYLLEK	73	733.3829	2
						387 - 400	AAYLOGLNSADLLK	79	738.8981	2
						417 - 432	GOTVEOVYNAVGALAK	69	824.4296	2
						644 - 655	GSSFOTVSALFR	74	650.3342	2
						507 - 1525	NLOOEISDLTEOIAEGGKR	53	710.3635	3
						681 - 1692	ANLLOAEIEELR	90	699.8813	2
6	Heat shock 70	HSPA1	HS71B BOS	457	12	26 - 36	VEIIANDOGNR	67	614.8240	2
-	kDa protein 1B	В	MU	,		37 - 49	TTPSYVAFTDTER	85	744.3515	2
	ind a protoni rd	2				57 - 71	NOVALNPONTVFDAK	65	829.9280	2
						172 - 187	IINEPTAAAIAYGLDR	93	844.4440	2
						525 - 533	YKAEDEVOR	54	569.2833	$\frac{1}{2}$
						610 - 628	LYOGAGGPGAGGFGAOAPK	96	852.4270	2
6	Albumin	ALB	ALBU SHE	363	10	402 - 412	HLVDEPONLIK	53	653.3536	2
	1 110 0111111		EP	200	10	421 - 433	HGEYGFONALIVR	72	752.3867	2
			21			421 - 433	HGEYGFONALIVR	57	501.9283	3
						437 - 451	KAPOVSTPTI VEISR	103	813.4599	2
						437 - 451	KAPOVSTPTI VEISR	70	542,6436	3
						548 - 557	KOTALVELLK	59	571.8544	2
						569 - 580	TVMENEVAEVDK	79	708.3456	2
1	1	1	1	1	1	507 500			, 00.5 .50	

7	Phosphogluco	PGM1	PGM1 BOV	929	33	11 - 23	AYODOKPGTSGLR	58	474.2395	3
	mutase-1		IN			11 - 23	AYODOKPGTSGLR	72	710.8593	2
						28 - 52	VFOSSSNYAENFIOSIISTVEPAOR	66	939.1257	3
						131 - 146	FNISNGGPAPEAITDK	50	816.3908	2
						222 - 234	IDAMHGVVGPYVK	58	701.3627	2
						278 - 293	TGEHDFGAAFDGDGDR	49	556.2261	3
						278 - 299	TGEHDFGAAFDGDGDRNMILGK	50	780.3451	3
						334 - 343	SMPTSGALDR	72	525.7445	2
						334 - 343	SMPTSGALDR	66	525.7498	2
						350 - 360	IALYETPTGWK	70	639.8366	2
						361 - 370	FFGNLMDASK	49	573.2637	2
						428 - 440	YDYEEVEAEGANK	80	758 8198	2
						444 - 452	FLEALISDR	64	523 2775	2
						471 - 486	IDNFEYSDPVDGSISR	66	907 4064	$\frac{-}{2}$
						492 - 499	LIFADGSR	60	439 7364	2
						504 - 515	LSGTGSAGATIR	79	545 7958	2
						501 - 513	I VIDSVEKDI AK	49	486 5861	3
						510 527	ETIDOTEKDEAK		100.5001	
7	Glycogen	PYGM	PYGM BOV	174	4	279 - 290	VI VPNDNFFEGK	53	721 8450	2
,	nhosnhorvlase	11000	IN ISIN_BOT	1/1		415 - 425	VAAAFPGDVDR	54	559 2871	2
	phosphorylase					522 - 533	LLSYVDDESFIR	67	728 8604	2
0		DIZLA	KDVAC DAD	000	20	44 56			(00.2520	-
8	Pyruvate	PKM	KPYM_KAB	888	29	44 - 56	NIGHCHGPASK	66	680.3538	2
	kinase PKM		11			126 - 136	GSGIAEVELKK	82	559.8085	2
						142 - 151	II LDIA I MEK KOVNI DO AAVDI DAVSEK	57	007.2913	2
						207 - 224		70	818 0400	2
						200 - 224	ECVEODVDMVEASED	70	010.9409	2
						231 - 240 221 - 246	FOVEQUIVDNIVFASFIK	20	938.4437	2
						231 - 240 221 246	FOVEQUIVDMVEASFIR	61	625 0692	2
						231 - 240 270 204		01	612 2080	2
						2/9 - 294		51	521 2428	2
						364 - 392		51	502 2856	2
						393 - 400		52	303.2830	2
						448 - 455	APIIAVIK	55	420.7487	
						448 - 455		33	421.2491	2
						4/0 - 489	DPVQEAWAEDVDLK	8/	821.8800	
						490 - 498	VNLAMNVGK	55	4/3.262/	2
						490 - 498	VNLAMNVGK	65	481.2548	2
						303 - 326	KGDVVIVLIGWKPGSGFINIMK	65	602.3704	4
9	Desmin	DES	DESM BOV	655	24	17 - 37	TEGGAPSEPI GSPI SSPVEPP	60	1059 546	2
9	Desiliii	DES	DESIM_BOV	055	24	17 - 37 50 70	TSGGAGGLGALP	76	1039.340	$\frac{2}{2}$
			111			39 - 70	VELOELNDP	10	508 7742	2
						110 - 110 151 160	V ELQEENDK VAEIVEEELD	49	558 2880	2
						131 - 100 165 172	VAELI EEELK OVEVI TNOD	0/ 5/	625 0126	2
						103 - 1/3		54	542 7092	
						213 - 222 200 200		67	501 7600	
						300 - 309		02	502.7770	
						330 - 309	FASEASU I QDNIAK	52	323.1119	$\frac{2}{2}$
						408 - 413	LLEUEESK INI DIOTECA I NED	22	/04.8313	
						410 - 429	INLFIQIFSALNFK	15	817 1/81	2
1	1	1	1		1	1		1	1 01/.7701	1

9	ATP synthase	ATP5F	ATPA BOVI	555	17	46 - 58	TGTAEVSSILEER	87	696.3495	2
	subunit alpha	1A	N			59 – 73	ILGADTSVDLEETGR	71	788.3998	2
	1					134 - 149	TGAIVDVPVGEELLGR	70	812.9417	2
						150 - 161	VVDALGNAIDGK	86	586.3139	2
						176 - 182	APGIIPR	57	362.2239	2
						219 - 230	TSIAIDTIINOK	75	658.8710	2
						306 - 316	HALIIYDDLSK	63	644.3486	2
						335 - 347	EAYPGDVFYLHSR	48	777.3705	2
9	Aldehvde	ALDH	ALDH2 BO	220	8	111 - 117	LADLIER	60	415 2426	2
	dehydrogenase	2	VIN	220	0	163 - 175	TIPIDGDYFSYTR	53	774 3679	2
	achyarogenase	-	, 11,			109 - 212	LGPALATGNVVVMK	54	693 3901	2
						350 - 358	VVGNPFDSR	53	495 7518	2
10	ATP synthese	ATD5F	ATPR BOVI	116	20	110 121	TIAMDGTEGLVR	73	630 8228	2
10	subunit beta	1R	N N N	440	29	110 - 121 125 133	VIDSGAPIR	65	464 2625	$\frac{2}{2}$
	subuint beta	ID	19			125 - 133 125 143	VI DSCADIDIDVCDETI CD	101	640 7042	2
						123 - 143	IMNUICEDIDED	61	701 2565	2
						144 - 133		10	544 9109	2
						169 - 198 265 270		40 62	800 4028	$\frac{2}{2}$
						203 - 279	ETOACSEVSALLCD	03	719 2755	2
						311 - 324	FTQAOSEVSALLOR	82 70	718.3733	2
						311 - 324 225 - 245	IDSAVCYODTLATDMCTMOED	10	766 6022	2
						323 - 343		45	700.0922	2
						388 - 400		41 61	611 2000	2
						407 - 422	IMDPNIVGSEH I DVAR	20	611.2898	2
						463 - 480	FLSQPFQVAEVFIGHLGK	39	669.0182	3
10	A . 4 ¹	ACTC1	ACTC DOV	210	10	463 - 480	FLSQPFQVAEVFIGHLGK	55	669.0186	3
10	Actin, alpha	ACICI	ACIC_BOV	210	19	21 - 30	AGFAGDDAPK	50 70	488.7260	2
	cardiac muscle		IIN			53 - 64	DSYVGDEAQSKK	/8	452.2101	3
	1					199 - 208	GYSEVITAER	54	565.7754	2
						241 - 256	SYELPDGQVITIGNER	40	895.9434	2
						241 - 256	SYELPDGQVIIIGNER	/3	895.9450	2
						318 - 328	ETTALAPSTMK	41	581.3159	2
10				110	_	362 - 3/4	QEYDEAGPSIVHR	62	500.9043	3
10	Elongation	EEFIA	EFIA2_BOV	118	1	256 - 266	IGGIGTVPVGR	52	513.3076	2
	factor 1-alpha	2	IN			256 - 266	IGGIGT VPVGR	67	513.3082	2
	2					267 – 290	VETGILRPGMVVTFAPVNITTEVK	60	863.1401	3
10	Beta-enolase	ENO3	ENOB BOV	138	8	33 - 50	AAVPSGASTGIYEALELR	96	902.9704	2
			IN			229 - 239	TAIQAAGYPDK	54	567.7911	2
						413 - 420	IEEALGDK	59	437.7287	2
11	Creatine	CKM	KCRM BOV	516	33	12 - 25	LNEK AEEEYPDLSK	99	841 9206	2
	kinase M-type	CILINI	IN IN	510	55	87 - 96	DI FDPIIODR	68	616 2946	2
	kindse ivi type					178 - 209	SMTEOEOOOLIDDHELEDKPVSPLLLASG	50	911 9479	4
						178 - 209	MAR	50	915 9500	4
						178 - 209 178 - 209	SMTEOEOOOI IDDHEI EDKPVSPI I I ASG	38	915 9506	4
						178 - 209	MAR	43	919 9460	2
						178 - 209	SMTEOEOOOI IDDHEI EDKOVSDI LI ASC	37	010 0/67	2
						170 - 209 224 - 224	MAD	17	5/18 6052	$\frac{2}{2}$
						224 - 230 308 - 314	SMTEOEOOOI IDDHEI EDKAVSAI LI ASC	4/	454 2142	2
						308 - 314 308 - 314	MAR	44	454 7284	2
						320.341	SMTEOEOOOI IDDHEI EDKOVSDI LI ASC	06	717 6838	2
						320 - 341 321 - 241		125	007 0621	2
1	1	1	1		1	521-541	101741	133	27/.7021	L 2

						321 - 341	SFLVWVNEEDHLR	40	665.6469	3
						342 - 358	FEEILTR	73	893.4633	2
						370 - 381	FEEILTR	57	659.8098	2
							RGTGGVDTAAVGSVFDVSNADR			
							GTGGVDTAAVGSVFDVSNADR			
							GTGGVDTAAVGSVFDVSNADR			
							LGSSEVEQVQLVVDGVK			
							GOSIDDMIPAOK			
11	Actin, alpha	ACTA1	ACTS BOVI	794	45	21 - 30	AGFAGDDAPR	89	488.7017	2
	skeletal muscle		N			31 - 41	AVFPSIVGRPR	69	400.2415	3
						53 - 63	DSYVGDEAQSK	58	599.7134	2
						53 - 64	DSYVGDEAQSKR	102	677.8068	2
						53 - 64	DSYVGDEAQSKR	86	452.2102	3
						87 – 97	IWHHTFYNÈLR	65	758.3664	2
						98 - 115	VAPEEHPTLLTEAPLNPK	85	978.5275	2
						150 - 179	TTGIVLDSGDGVTHNVPIYEGYALPHAI	54	799.9010	4
						150 - 179	MR	44	803.8937	4
						150 - 179	TTGIVLDSGDGVTHNVPIYEGYALPHAI	124	1071.529	3
						199 - 208	MR	46	2	2
						241 - 256	TTGIVLDSGDGVTHNVPIYEGYALPHAI	100	565.7307	2
						293 - 314	MR	67	895.8881	3
						293 - 314	GYSFVTTAER	68	802.6978	3
						318 - 328	SYELPDGOVITIGNER	45	803.0262	2
						331 - 337	KDLYANNVMSGGTTMYPGIADR	42	581.3057	2
						362 - 374	KDLYANNVMSGGTTMYPGIADR	75	398.2213	3
						362 - 374	EITALAPSTMK	102	500.8881	2
							IIAPPER		750.8438	
							OEYDEAGPSIVHR			
							QEYDEAGPSIVHR			
11	Beta-enolase	ENO3	ENOB BOV	514	20	33 - 50	AAVPSGASTGIYEALELR	130	902.9665	2
			IN			133 - 162	HIADLAGNPELILPVPAFNVINGGSHAGN	73	759.6484	4
						133 - 162	К	57	1012.529	3
						133 - 162	HIADLAGNPELILPVPAFNVINGGSHAGN	50	5	4
						133 - 162	К	42	759.6523	4
						133 - 162	HIADLAGNPELILPVPAFNVINGGSHAGN	50	759.6542	4
						133 - 162	К	42	759.8947	4
						133 - 162	HIADLAGNPELILPVPAFNVINGGSHAGN	57	759.8955	3
						133 - 162	К	73	1012.858	4
						163 - 179	HIADLAGNPELILPVPAFNVINGGSHAGN	78	9	2
						163 - 179	К	41	759.8983	3
						229 - 239	HIADLAGNPELILPVPAFNVINGGSHAGN	69	964.9709	2
						240 - 253	К	67	643.6541	2
							HIADLAGNPELILPVPAFNVINGGSHAGN		567.7814	
							К		786.8881	
							HIADLAGNPELILPVPAFNVINGGSHAGN			
							K			
							LAMQEFMILPVGASSFR			
							LAMOEFMILPVGASSFR			
							TAIQAAGYPDK			
							VVIGMDVAASEFYR			

11	Phosphoglycer	PGK1	PGK1 BOVI	160	17	76 - 86	YSLQPVAVELK	50	623.8528	2
	ate kinase 1		N			157 - 171	LGDVYVNDAFGTAHR	54	545.6056	3
						172 - 183	AHSSMVGVNLPK	60	628.3211	2
						200 - 216	ALESPERPFLAILGGAK	50	884.9933	2
						280 - 297	ITLPVDFVTADKFDENAK	71	675.0102	3
12	Fructose-	ALDO	ALDOA RA	765	40	29 - 42	GILAADESTGSIAK	98	666.8185	2
	bisphosphate	А	BIT			29 - 43	GILAADESTGSIAKR	93	496.9381	3
	aldolase A					44 - 57	LQSIGTENTEENRR	72	549.5740	3
						44 - 57	LQSIGTENTEENRR	69	823.9006	2
						61 - 69	QLLLTADDR	75	522.7873	2
						61 - 69	QLLLTADDR	68	522.7897	2
						88 - 99	ADDGRPFPQVIK	70	671.8500	2
						109 - 134	VDKGVVPLAGTNGETTTQGLDGLSER	82	872.1123	3
						112 - 134	GVVPLAGTNGETTTQGLDGLSER	55	758.3726	3
						112 - 134	GVVPLAGTNGETTTQGLDGLSER	86	1137.061	2
						112 - 134	GVVPLAGTNGETTTQGLDGLSER	58	4	3
						154 - 173	IGEHTPSALAIMENANVLAR	37	758.3798	3
						174 - 201	YASICQQNGIVPIVEPEILPDGDHDLKR	90	708.3645	4
						174 - 201	YASICQQNGIVPIVEPEILPDGDHDLKR	90	794.8947	4
						244 - 258	YSHEEIAMATVTALR	64	795.1492	3
						244 - 258	YSHEEIAMATVTALR	91	569.9489	2
						323 - 331	AAQEEYVKR	57	854.4210	3
						323 - 331	AAQEEYVKR	49	365.1917	2
									547.2872	
12	Creatine	CKM	KCRM_BOV	299	16	87 – 96	DLFDPIIQDR	67	616.3173	2
	kinase M-type		IN			157 - 170	LSVEALNSLTGEFK	107	754.4005	2
						320 - 341	RGTGGVDTAAVGSVFDVSNADR	67	717.6850	3
						321 - 341	GTGGVDTAAVGSVFDVSNADR	98	997.9691	2
						342 - 358	LGSSEVEQVQLVVDGVK	90	893.4795	2
12	Troponin T	Tnnt3	TNNT3_BO	203	17	77 – 95	QNKDLMELQALIDSHFEAR	42	753.0346	3
			VIN			80 - 95	DLMELQALIDSHFEAR	80	952.4594	2
						159 - 173	ALSSMGANYSSYLAK	110	/89.8/34	2
10					-	197 - 210	KPLNIDHLSEDKLR	62	420.2323	4
12	Actin, aortic	ACTA2	ACTA_BOV	73	9	199 – 208	GYSEVITAER	46	565.7805	2
	smooth muscle		IN			241 - 256	SYELPDGQVITIGNER	45	895.9483	2
						318 - 328	EITALAPSIMK	44	589.3143	2
12	Aspartate	GOT2	AATM_BOV	72	2	326 - 337	IASTILTSPDLR	72	643.8674	2
	aminotransfera		IN							
	se									
12	Tropomyosin	TPM1	TPM1_BOVI	70	8	92 - 101	IQLVEEELDR	62	622.3305	2
	alpha-1 chain		N			252 - 264	SIDDLEDELYAQK	40	769.8637	2
13	Glyceraldehyd	GAPD	G3P_BOVIN	675	34	71 - 78	AITIFQER	45	489.2519	2
	e-3-phosphate	Н				71 - 78	AITIFQER	45	489.7628	2
	dehydrogenase					71 - 84	AITIFQERDPANIK	84	808.4425	2
	_					116 - 137	RVIISAPSADAPMFVMGVNHEK	64	801.0722	3
						117 - 137	VIISAPSADAPMFVMGVNHEK	45	743.6997	3
						117 - 137	VIISAPSADAPMFVMGVNHEK	38	749.0253	3
						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	90	873.4567	3
						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	12	878.7804	3

						161 - 184	VIHDHFGIVEGLMTTVHAITATQK	44	527.6736	4
						161 – 184	VIHDHFGIVEGLMTTVHAITATOK	74	878.7910	3
						199 - 213	GAAONIIPASTGAAK	61	685.3019	2
						199 - 213	GAAONIIPASTGAAK	46	685.3722	2
						199 - 213	GAAONIIPASTGAAK	61	685.8197	2
						199 - 213	GAAONIIPASTGAAK	46	685 8580	2
						233 - 246	VPTPNVSVVDI TCR	06	778 9023	2
						233 - 240 308 321	LISWYDNEEGVSNR	88	882 3840	2
						308 - 321 322 - 332	VVDI MVHMASK	46	631 3131	$\frac{2}{2}$
						322 - 332 222 - 222	VVDI MVUMASKE	74	605 8280	2
12	Transmissin	TDM1	TDM1 DOVI	100	21	322 - 333		50	651 2454	2
15	alpha 1	111111		162	21	38 - 48 78 00	QLEDEL V SLQK	50	666 8214	2
	aipna-1		IN			78 - 90	ATDAEADVASLINK	94	000.8214	2
						92 - 101		54	022.32/9	2
						113 - 125	LEEAEKAADESEK	54	493.0413	3
10		TD) (2		1.50	17	252 - 264	SIDDLEDELYAQK	4/	/69.8565	2
13	Tropomyosin	TPM2	TPM2_BOVI	153	17	78 - 90	ATDAEADVASLNR	94	666.8214	2
	beta chain		Ν			92 - 101	IQLVEEELDR	66	622.3279	2
						113 - 125	LEEAEKAADESER	54	493.0413	3
						252 - 264	TIDDLEDEVYAQK	40	769.8585	2
13	Creatine	CKM	KCRM_BOV	78	4	342 - 358	LGSSEVEQVQLVVDGVK	78	893.4857	2
	kinase M-typ		IN							
14	Tropomyosin	TPM1	TPM1 BOVI	635	30	13 - 21	LDKENALDR	55	358.5214	3
	alpha-1		N			13 - 21	LDKENALDR	85	537.2818	2
	1					36 - 48	SKOLEDELVSLOK	43	506.2755	3
						38 - 48	OLEDELVSLOK	69	651.3461	2
						77 - 90	KATDAFADVASLNR	127	730 8677	2
						78 - 90	ATDAFADVASINR	71	666 8192	2
						78 - 90	ATDAFADVASINR	79	666 8240	2
						78 - 91	ATDAFADVASINR	52	496 9171	3
						92 - 101	IOI VEEEI DR	68	622 3221	2
						92 - 101 92 - 105	IOI VEFEL DRAOER	103	576 6312	3
						113 125	LEEVERVADESER	81	738 8407	2
						113 - 123 112 125		62	/02 8062	2
						113 - 123 169 179	VI VIIESDI ED	62	492.8903	2
						100 - 170 160 179	I VIIESDLER	76	502 8250	2
						109 - 178		10	760 8577	2
						252 - 264	SIDDLEDELYAQK	42	769.8377	2
1.4		TD) (2	TDI (A. DOLU	471	17	252 - 264	SIDDLEDELYAQK	59	/69.8591	2
14	Tropomyosin	TPM2	IPM2_BOVI	4/1	1/	13 - 21	LDKENAIDR	33	358.5214	3
	beta chain		N			13 - 21	LDKENAIDR	85	537.2818	2
						77 – 90	KATDAEADVASLNR	127	/30.86//	2
						78 - 90	ATDAEADVASLNR	71	666.8192	2
						78 – 90	ATDAEADVASLNR	79	666.8240	2
						78 – 91	ATDAEADVASLNRR	52	496.9171	3
						92 - 101	IQLVEEELDR	68	622.3221	2
						92 - 105	IQLVEEELDRAQER	103	576.6312	3
						113 - 125	LEEAEKAADESER	81	738.8407	2
						113 - 125	LEEAEKAADESER	62	492.8963	3

14	Glyceraldehyd	GAPD	G3P BOVIN	152	22	71 - 78	AITIFQER	45	489.2730	2
	e-3-phosphate	Н	_			161 - 184	VIHDHFGIVEGLMTTVHAITATQK	46	878.7882	3
	dehydrogenase					199 - 213	GAAQNIIPASTGAAK	60	685.3702	2
						233 - 246	VPTPNVSVVDLTCR	55	778.9045	2
						308 - 321	LISWYDNEFGYSNR	71	882.4029	2
14	Malate	MDH2	MDHM BO	136	15	27 - 45	VAVLGASGGIGQPLSLLLK	47	897.0517	2
	dehydrogenase		VIN			53 - 74	LTLYDIAHTPGVAADLSHIETR	78	599.0629	4
	, ,					166 - 176	IFGVTTLDIVR	77	617.3629	2
14	Malate	MDH1	MDHC BO	103	6	221 - 230	GEFITTVOOR	61	589 8123	2
	dehvdrogenase	MDIII	VIN	105	0	221 - 230 299 - 310	VVFGI PINDESR	51	673 3397	2
	denyarogenase		V 11 V			299 - 310	VVEGLPINDESR	51	673 8458	2
1.4	Emertana 1.6	EDD3	E16D2 DOVI	102	0	200 218		51	570.2055	2
14	Fructose-1,0-	гвг2	FIOP2_BOVI	102	9	209 - 218 210 - 220	I I SLINEG I AK	51	3/9.2933	2
	bisphosphatase		IN			219 - 230 245 - 255		04	/18.338/	2
	1sozyme 2					245 - 255	YVGSMVADVHR	48	417.2080	3
15	L-lactate	LDHA	LDHA_BOS	261	20	58 - 73	LKGEMMDLQHGSLFLR	85	477.4849	4
	dehydrogenase		MU			58 - 73	LKGEMMDLQHGSLFLR	85	636.3169	3
	А					60 - 73	GEMMDLQHGSLFLR	41	833.3864	2
						77 - 90	IVSGKDYNVTANSR	47	508.5990	3
						158 - 169	VIGSGCNLDSAR	82	624.8034	2
						213 - 228	NLHPELGTDADKEQWK	40	627.6363	3
						269 - 278	RVHPISTMIK	41	399.8956	3
15	Fructose-	ALDO	ALDOA_RA	125	10	29 - 42	GILAADESTGSIAK	82	666.8487	2
	bisphosphate	Α	BIT			61 – 69	QLLLTADDR	52	522.7864	2
	aldolase A					244 - 258	YSHEEIAMATVTALR	52	569.9454	3
15	Glyceraldehyd e-3-phosphate dehydrogenase	GAPD H	G3P_BOVIN	62	4	199 – 213	GAAQNIIPASTGAAK	62	685.3721	2
16	Glycogen	PYGM	PYGM SHE	111	4	643 - 650	VIFLENYR	47	527.2910	2
	phosphorylase		EP		-	726 - 740	GYNAOEYYDRIPELR	54	629.6354	3
	F F 5					741 - 754	HIIDOLSSGFFSPK	82	788.4091	2
17	Glycogen	PVGM	PVGM SHE	198	7	623 - 640		49	945 4991	2
17	nhosnhorvlase	1100	FP	170	,	643 - 650	VIFI ENYR	45	527 2872	$\frac{2}{2}$
	phosphorylase		121			726 - 735	GYNAOFYYDR	79	639 7786	2
						726 - 740	GYNAOFYYDRIPFI R	72	629 6357	3
						741 - 754	HIDOI SSGFFSPK	59	788 4080	2
						741 - 754	HIDOLSSGFESPK	41	788 4118	2
						824 - 832	EIWGVEPTR	41	543 7782	2
17	Carbonic	CA3	CAH3 BOVI	154	18	25 - 36	GENOSPIELNTK	43	665 3358	2
17	anhydrase 3	0110	N N	101	10	68 - 76	VVFDDTYDR	64	565 2607	2
	unitydruse 5		14			213 - 224	FPITVSSDOIAK	47	644 3438	2
						213 221 227 - 242	TI VSSAENEPPVPI VR	88	886 4602	2
18	Phosphoglycer	PGAM	PGAM2 BO	221	11	147 - 162	AGELPTCESLKDTIAR	102	587,6305	3
10	ate mutase ?	2	VIN		11	147 - 162	AGELPTCESLKDTIAR	102	587 9629	3
	are matase 2	2	, 11,			180 - 191	RVLIA AHGNSI R	30	436 2583	3
						180 - 191 181 - 191	VI IA AHGNSI R	68	575 8371	2
18	Carbonic	CA3	CAH3 BOVI	194	28	25 - 36	GENOSPIEI NTK	46	665 3284	2
10	anhydrase 3	CAS	N	177	20	23 = 50 37 = 57	FISHDPSLKPWTASYDPGSAK	37	762 7016	3
	anny arabe 5		.,			68 - 76	VVFDDTYDR	64	565,2496	2
1						00 ,0	, , i bbi i bk		200.2.190	

						68 - 80	VVFDDTYDRSMLR	46	544.9263	3
						213 - 224	EPITVSSDQIAK	57	644.3362	2
						227 - 242	TLYSSAENEPPVPLVR	89	886.4609	2
18	Triosephosphat	TPI1	TPIS BOVI	98	10	161 - 175	VVLAYEPVWAIGTGK	57	801.9544	2
	e isomerase		N			195 - 206	SNVSDAVAOSAR	70	602.8013	2
18	NADH	NDUF	NDUS3_BO	67	4	221 - 233	VVAEPVELAQEFR	67	743.8986	2
	dehydrogenase [ubiquinone] iron-sulfur protein 3	S3	VIN							
19	Triosenhosnhat	TPI1	TPIS BOVI	463	50	19 - 33	KNNI GELINTI NAAK	87	806 9520	2
17	e isomerase		N	105	50	60 - 69	IAVAAONCYK	54	569 2922	2
	e isomerase		14			70 - 85	VANGAFTGEISPGMIK	30	796 4076	2
						70 - 85 70 - 85	VANGAFTGEISPGMIK	30	796 9050	$\frac{2}{2}$
						70 - 85 70 85	VANGAFTGEISPGMIK	64	804 4085	2
						70 85	VANGAFTGEISPGMIK	51	804.8035	2
						70-85	DI CATWAVI CHSED	52	512 0227	2
						86 00	DLOAT WVVLOHSER DLGATWVVLGHSEP	80	770 2088	2
						30 - 99		70	720 9614	2
						101 - 113 114 121	VAHALAECI CVLACICEV	54	602 2202	2
						114 - 151 150 160	VIADNUKDWSK	54 69	627 8402	2
						150 - 100 161 175		08	037.8402	2
						101 - 1/3 176 199		62	722 9624	2
						1/0 - 188 176 188	TATPOOAOEVIJEK	62 52	/33.8024	2
10	A. (1. 1	ACTCI	ACTC DOV	111	15	1/0 - 188		52	489.3783	2
19	Actin, alpha	ACICI	ACIC_BOV	111	15	199 - 208	GYSEVEL PDCOVIETCOVED	55	565.2626	2
	cardiac muscle		IIN			241 - 256	SYELPDGQVIIIGNER	51	895.9454	2
	1					318 - 328	ETTALAPSIMK	51	589.3107	2
						331 - 337	IIAPPER	42	398.2409	2
10		COTL		02	10	362 - 3/4	QEYDEAGPSIVHR	48	500.9065	3
19	Glutathione S-	GSTM	GSTMI_BO	83	13	19 - 31	LLLEYIDINYEER	78	829.9011	2
	transferase Mu 1	1	VIN			53 - 69	LGLDFPNLPYLIDGTHK	38	638.3405	3
19	Glyceraldehyd	GAPD	G3P BOVIN	77	8	199 - 213	GAAQNIIPASTGAAK	53	685.3720	2
	e-3-phosphate	Н				308 - 321	LISWYDNEFGYSNR	53	882.4050	2
	dehydrogenase									
20	Heat shock	HSPB1	HSPB1 BO	104	28	29 - 38	LFDQAFGLPR	46	582.3169	2
	protein beta-1		VIN			137 - 167	KYTLPPGVDPTLVSSSLSPEGTLTVEAPL	59	1065.245	3
						168 - 184	РК	52	4	2
							SATQSAEITIPVTFQAR		910.4808	
20	Fructose-	ALDO	ALDOA RA	92	3	29-42	GILAADESTGSIAK	92	666.8524	2
	bisphosphate aldolase A		BIT							
20	Myosin light	Myl4	MYL4 MOU	88	6	80 - 92	ALGQNPTNAEVLR	88	691.8704	2
	chain 4	-	SĒ							

						1		1		
20	Myosin light	MYL1	MYL1_BOV	64	6	79 - 90	ALGTNPTNAEVK	46	607.8190	2
	chain $1/3$,		IN			79 - 91	ALGTNPTNAEVKK	45	448.2452	3
	skeletal muscle									
	isoform									
20	Trioconhoenhot	TDI1	THE POVI	66	4	105 206	SNIVSDAVAOSAD	66	602 7072	2
20	i nosephosphat	1111		00	4	195 - 200	SINVSDAVAQSAK	00	002.7972	2
	e isomerase		N							
21	Myosin light	MYL1	MYL1 BOV	370	40	9 - 32	ΚΡΑΑΑΑΑΡΑΡΑΡΑΡΑΡΑΡΑΡΑΡΑΡ	86	700.0674	3
	chain 1/3		IN			9 - 35	ΚΡΑΑΑΑΑΡΑΡΑΡΑΡΑΡΑΡΑΡΑΡΑΡΚΕΕΚ	92	621 8401	4
	stralatal musala		111			0 25		60	021.0401	2
	skeletal muscle					9 - 33	KFAAAAAFAFAFAFAFAFAFAFFKEEK	00	626.7604	2
	isoform					/9 – 90	ALGINPINAEVK	50	607.8079	2
						79 – 91	ALGINPINAEVKK	54	671.8697	2
						79 - 91	ALGTNPTNAEVKK	41	448.5772	3
						123 - 135	DQGTYEDFVEGLR	65	764.8463	2
						136 - 151	VFDKEGNGTVMGAELR	40	580.2837	3
						136 - 151	VFDKEGNGTVMGAELR	38	870.4139	2
						140 - 151	EGNGTVMGAELR	47	625 2954	2
						140 151	ECNCTVMCAELR	17	625 7022	2
						140 - 131 152 160		47	484 2707	2
1		107.6	NUL (DOU	0.5	10	152 - 160	HVLAILGEK	42	484.2797	2
21	Myosin light	MYL6	MYL6_BOV	85	10	95 – 110	VFDKEGNGTVMGAEIR	40	580.2837	3
	polypeptide 6		IN			95 - 110	VFDKEGNGTVMGAEIR	38	870.4139	2
						99 - 110	EGNGTVMGAEIR	47	625.2954	2
						99 - 110	EGNGTVMGAEIR	47	625.7922	2
21	Adenvlate	AK1	KAD1 BOV	81	11	10 - 21	IIFVVGGPGSGK	63	565.8344	2
	kinase		IN			156 - 166	ATEPVIAFYEK	46	634 3328	2
	isoenzyme 1					150 100		10	051.5520	-
	isoenzynie i									
22	Adenylate	AK1	KAD1_BOV	256	29	32 - 44	YGYTHLSTGDLLR	97	499.2531	3
	kinase		IN			32 - 44	YGYTHLSTGDLLR	90	748.3793	2
	isoenzyme 1					64 - 77	GQLVPLETVLDMLR	70	800.4417	2
	5					89 - 97	GFLIDGYPR	40	519.2739	2
						98 - 107	EVOOGEEEER	56	625 7847	2
						156 167	ATEDVIAEVEKP	70	475 2546	3
22	Manala	MALD	MIDE DOV	110	22	130 - 107		50	475.2540 506 7009	2
23	Myosin	MYLP	MLKS_BOV	119	22	33 - 42	EAFTVIDQNR	59	596./998	2
	regulatory	F	IN			61 - 73	LNVKNEELDAMMK	48	783.8745	2
	light chain 2,					92 - 106	LKGADPEDVITGAFK	50	780.9138	2
	skeletal muscle					94 - 106	GADPEDVITGAFK	58	660.3231	2
	isoform									
24	Mvoglobin	MB	MYG CAPH	318	26	33 - 43	LFTGHPETLEK	55	636.3364	2
	5.8		Ī			65 - 78	HGNTVLTALGGILK	90	697 4064	2
			1			65 - 78	HGNTVI TALGGILK	102	697 4070	2
						65 70	UCNITVI TALOOILK	102	507 0725	2
						63 - 79		49	512 2211	3
						120 - 134	HPSDFGADAQGAMSK	53	512.2211	3
						120 - 134	HPSDFGADAQGAMSK	61	512.2232	3
						120 - 134	HPSDFGADAQGAMSK	118	767.8329	2
25	Myosin light	MYL1	MYL1 BOV	93	10	68 - 78	ITLSQVGDVLR	83	600.8492	2
	chain $1/3$.		IN			152 - 160	HVLATLGEK	40	484.2864	2
	skeletal muscle									
	isoform									
1	100101111		1			1		1	1	