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  Table 2. Metabolites annotated in the samples of seven varieties of 

pineapple leaves, in negative (ESI-) and positive (ESI+) modes   

  Table 3. Quantification of minerals in samples of commercial 

pineapple leaves   

  Table 4. Cytotoxic activity of the hydroethanolic extract of pineapple 

leaves of different commercial varieties determined by MTT assay 

-1 (% 

inhibition ± SD*)   

  Table 5. Annotation of metabolites in guaraná seeds, positive and 

negative ionization modes ..   

  Table 6. Proton and carbon chemical shifts, coupling constant, 

multiplicity and long-range heteronuclear 1H-13C HMBC correlations 

gathered for the twelve identified guaraná metabolites .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

   

 

  

    

   

 

 

 
 
 
 
 
 
 



 

 

 

 

 



 

 

 



 

 

 

 



 

 

 



 

 

 

 

 

 

 

 

 Identificar os metabolitos e estabelecer os perfis químicos dos extratos 

hidroetanólicos das folhas de abacaxizeiro de sete variedades comerciais 

(Pérola, Smooth Cayenne, Perolera, Gold, BRS Ajubá, BRS Vitória e BRS 

Imperial), através do UPLC-QTOF-MSE; 

 Avaliar a composição mineral das variedades comercias de folhas de 

abacaxizeiro através do ICP-OES; 

 Correlacionar os perfis metabólicos e minerais das diferentes variedades de 

folhas de abacaxizeiro através ferramentas quimiométricas (PCA e HCA); 

 Determinar as variáveis discriminantes, metabolitos ou minerais, que 

influenciam na diferenciação entre as folhas de abacaxizeiro; 

 Avaliar a atividade citotóxica in vitro dos extratos hidroetanólicos das 

variedades de abacaxizeiro frente às linhagens tumorais HL60 (leucêmica), 

HCT-116 (colo humano), PC3 (próstata), SNB19 (astrocitoma), MCF-7 

(mama), B16F10 (melanoma) e HeLa (colo do útero); 

 Identificar os metabolitos e determinar os perfis químicos dos extratos 

hidroetanólicos de sementes de guaraná em cinquenta e seis clones distintos, 

por meio do UPLC-QTOF-MSE; 

 Através da análise metabolômica alvo, quantificar os metabólitos nas 

sementes de guaraná, por meio da RMN; 

 Correlacionar os perfis metabólicos de sementes de clones de guaraná 

através de análise quimiométricas (PCA); 



 

 

 

3.1 Abacaxizeiro   

 

 

 

 

 
 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 
 



 

 

 
 

 

 



 

 

 

 



 

 

 

 

 

3.2 Guaranazeiro 

 

 



 

 

 

 

 

 

 

 



 

 

 



 

 

 

 

3.3 Metabolismo vegetal 
 

 

 



 

 

 

 

 
 



 

 

 

 

 

 

   

 

  

 

 

 

 
 

 



 

 
   

 

 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 
 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 



 

 

 

 

 

 
 

 



 

 

 

 

 

 

3.4 Metabolômica  
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1 Introduction 

 

The growing concern with health and nutrition has driven the 

development and commercialization of functional foods. There was a greater 

understanding of how foods and drinks can be used to reduce the risk of 

diseases and consequently improve overall health. As a result, the 

development and consumption of functional foods have become increasingly 

important as they offer more than just standard nutrition (Contini et al., 2023; 

Corbo et al., 2014). In this context, for centuries, guaraná seeds (Paullinia 

cupana Kunth, family Sapindaceae) have been used by the indigenous tribes 

of the Amazon Forest as a stimulant and for a variety of medicinal purposes. 

Thus, this plant has been cultivated on a large scale by the beverage industry 

as a natural stimulant, with Brazil being the largest guaraná producer in the 

world. Currently, guaraná seeds not only represent a global trend in the soft 

drinks and energy drinks market but are also promising materials for the 

development of herbal medicines and dietary supplements (Santana; Macedo, 

2018; Silva, F. de A. et al., 2018). 

The guaraná fruit consists of a seed partially covered by a white 

substance called aril, surrounded by red skin. Only the seeds are consumed 

and sold in powder or whole grains form. In general, guaraná seeds have a 

varied composition that includes 2-6% caffeine, 60% starch, 15% protein, 

0.16% lipids, and 14% phenolic constituents. Among the phenolics, 13% 

tannins and 5.72% condensed tannins were detected (Santana; Macedo, 

2018). Guaraná seeds are rich in methylxanthines, such as caffeine, 

theophylline, and theobromine, which have positive effects on the central 

nervous system, cardiovascular, gastrointestinal, respiratory, and renal 



 
 

systems (Dorneles et al., 2018; Santana; Macedo, 2019). In addition, they 

have catechins, epicatechins, and epicatechin gallate, which are antioxidant 

(Santana; Macedo, 2018), antimicrobial (Santana; Macedo, 2018), 

antiproliferative (Carla Cadoná et al., 2016), antitumor (del Giglio et al., 2013), 

and cytoprotective (Bonadiman et al., 2017). These characteristics make 

guaraná an important commodity and a functional food ingredient (Marques et 

al., 2016; Santana; Macedo, 2018, 2019). 

The determination of the metabolic profile is an important strategy 

to establish an overview of a biological system, as well as a comprehensive 

view of the biochemical state of these organisms at a given time. Thus, an 

important tool to establish the metabolic profile of a given organism is the 

metabolomics approach. Metabolomic studies are performed through the 

association of analytical tools for separation and detection, known as 

hyphenated or coupled approaches (González-Riano et al., 2020; Pilon et al., 

2020; Pontes et al., 2017). Among the most popular combinations are liquid 

and gas chromatography coupled with ultraviolet detectors or mass 

spectrometers such as HPLC-UV-DAD, LC-MS, or GC-MS. In addition, 

nuclear magnetic resonance (NMR) has also been applied both for the 

structural elucidation of previously isolated and purified molecules and the 

study of enriched fractions or crude extracts of high complexity (Ouyang et al., 

2014; Pilon et al., 2020). Nuclear Magnetic Resonance (NMR) requires little 

manipulation of the samples and does not require chromatography, allowing 

easy quantification. In addition, it offers several ways to identify metabolites, 

although it is usually limited to detecting the most abundant metabolites. 

( 1  mM) (Marshall; Powers, 2017). The great value of NMR spectroscopy 

resides in its capacity to provide information of an unambiguous identification 

and an absolute quantification of the detected metabolites without the need to 

resort to calibration curves for each analyte. This capability is due to the direct 

proportionality between the NMR spectrum signals and the actual molar levels 

of the metabolites in question (Salem et al., 2020). On the other hand, LC-MS 

is considered the most versatile technique to cover the metabolome and the 



 
 

most appropriate for the rapid dereplication of natural products in complex 

mixtures. Its high sensitivity together with the multiplicity of stationary phases 

with different chemistries, allied to the diverse sources of ionization that cover 

a wide variety of compounds, allows it to be optimized for almost all classes 

of natural products (González-Riano et al., 2020; Ibáñez et al., 2015; Salem 

et al., 2020; Zhang et al., 2019). 

The aforementioned analytical techniques are of paramount 

importance in the design of targeted and non-targeted metabolomics studies. 

Targeted analysis is used in order to identify and quantify a specific metabolite 

or class of metabolites. For this, selective extractions and/or separations can 

be used to concentrate the desired metabolites and avoid possible 

interference from other compounds. This approach allows the obtainment of a 

sensitive and reliable identification, as well as a precise and accurate result 

for the selected compounds. However, this technique does not provide a 

complete view of the chemical composition of the sample and may leave out 

other compounds not considered at the beginning of the analysis (Daglia et 

al., 2014; González-Riano et al., 2020; Pilon et al., 2020). On the other hand, 

non-target analysis comprises the use of various approaches, such as 

metabolic fingerprinting and metabolite profiling. Metabolic fingerprinting is 

employed when it is necessary to distinguish between samples without 

identifying particular metabolites, while metabolite profiling requires 

recognition and sometimes quantification of metabolites from different classes 

of compounds (Daglia et al., 2014; González-Riano et al., 2020; Pilon et al., 

2020). 

Due to the reported above, the present work aims to select guaraná 

clones with the desired characteristics to meet the needs of the different types 

industry, such as food industry, cosmetic industry and pharmaceutical 

industry. In this context, once the chemical profiles of the clones have been 

established, the different clones can be useful for different purposes. For 

example, a potential source of bioactive compounds to be explored by the 

pharmaceutical and cosmetic industries. On the other hand, in the case of the 



 
 

food industry, clones with higher or lower levels of certain metabolites can be 

selected, aiming to develop products to serve people of different age groups, 

such as children and adults. In order to achieve this, a set of different analytical 

methods was used, which involve sample preparation, NMR, LC-MS/MS and 

chemometrics tools. 

In general, it is important to highlight that the combination of the set 

of analytical methods used, through target and non-target metabolomics 

approaches, provided the execution of a comprehensive chemical analysis 

(qualitative and quantitative) of specialized metabolites from guaraná seeds. 

Consequently, the methodological strategy used in this work offers 

advantages over other studies that use unique analytical methods. 

Considering that the combination of analytical methods used allows the sum 

of desirable and essential characteristics to obtain results with quality and 

analytical reliability. In this way, this combination brings together the 

compound separation power of chromatography, the identification capacity of 

mass spectrometry and nuclear magnetic resonance and tools that support 

the most accurate interpretation of results (MS-DIAL (Tsugawa et al., 2015), 

MS-FINDER (Lai et al., 2018; Tsugawa et al., 2016), LOTUS Natural Products 

Online (Rutz et al., 2022), NPClassifier (Kim et al., 2021), ClassyFire 

(Djoumbou Feunang et al., 2016) and multivariate analysis). 

Thus, metabolomic fingerprinting of guaraná seed extracts was 

obtained using NMR and LC-MS/MS techniques, generating valuable and 

complex information on the clones. As to evaluate the large volume of data 

obtained, multivariate analyzes were applied, such as principal component 

analysis (PCA). These analyses made it possible to assess and identify the 

similarities and differences between the studied guaraná clones. 

 

2 Experimental 

 

2.1 Plant material 

 



 
 

The guaraná (Paullinia cupana) samples evaluated in this study 

were collected from fifty-six different plants located at Embrapa Western 

Amazon Guaraná Germplasm Active Bank, Manaus, AM, Brazil. 

Ripe fruits were collected, and the seeds were separated from the 

aril. Subsequently, the samples were cleaned in running water, selecting 

seeds ranging from dark brown color to black. Selected seeds were placed in 

paper bags, duly identified, and dried in an oven with forced air circulation at 

45 oC. Then, the samples were crushed until the formation of a fine powder 

and stored. 

The project has activities to access the genetic heritage of guaraná, 

conserved in the Embrapa Western Amazon Guaraná Germplasm Active 

Bank, as well as clones and progenies from genetic breeding in evaluation 

and selection trials. This project has received authorization from the Genetic 

Heritage Management Council under authorization number A1BCD7A (access 

registration on the SISGEN platform). 

 

2.2 Reagents and chemicals 

 

The materials used in the analysis and the preparation of solutions 

necessary for the development of the work were: ultrapure water obtained by 

Milli-Q system (Millipore, Bedford, MA, USA); acetonitrile (LC-MS grade) 

supplied by Tedia (Fairfield, Ohio, EUA); hexane (95%) and ethanol (96%) 

purchased from Tedia (Rio de Janeiro, RJ, Brazil); and formic acid (purity 

98%), deuterated methanol (99.9%), deuterated water (99.9%), and sodium-

3-trimethylsilyl propionate (TMSP-d4 98%) purchased from Cambridge Isotope 

Laboratories (Tewksbury, MA, USA), as analytical standard: Catechin, 

Procyanidin B2, Caffeine, Epicatechin, Procyanidin B1 (Sigma-Aldrich 

Canada Ltd., Oakville, Canada), and EDTA from Vetec Quimica Fina Ltd. 

(Duque de Caxias, RJ, Brazil). 

 

2.3 Sample preparation for UPLC analysis 



 
 

 

The guaraná seed samples of the 56 evaluated clones were 

submitted to a microextraction procedure adapted from the literature (Chagas-

Paula et al., 2015; Guedes et al., 2020; Nehme et al., 2008). Thus, 50 mg of 

dry, ground, and homogenized plant material samples were weighed, 4 mL of 

hexane were added and vortexed for 1 min. Samples were placed in an 

ultrasonic bath (fixed power of 135 W) for 20 min. Following this, 4 mL of a 

ethanol:water (7:3) solution was added, vortexed again for 1 min, and placed 

in the ultrasound bath for 20 min. To complete the separation of the hexane 

and hydroethanolic phases, the test tube containing the mixture was 

centrifuged for 10 min. Afterward, 2 mL aliquot was removed from the 

hydroethanolic phase and filtered (PTFE filter, 0.22 µm) before being added 

to vials. Seed samples of 56 different guaraná clones were extracted in 

biological triplicate, extraction temperature 25 to 27 °C, where each extract 

was analyzed only once by UPLC-QTOF-MSE. In addition, 10 blanks were 

extracted, totaling 178 extractions. From the sample extracts, 24 analytical 

was removed and added to a vial (24 QC). 

 

2.3.1 UPLC-HRMS analysis 

 

The chromatographic separation was performed on an Acquity 

UPLC (Waters Corp., Milford, MA, USA) and coupled to a quadrupole/time of 

flight (QTOF) mass spectrometer. Chromatographic runs were conducted 

through a Waters Acquity UPLC BEH 100 mm x 2.1 mm, 1.7 

constant temperature of 40 °C, with a flow rate of 0.4 mL min-1. The analysis 

was carried out by applying the following binary gradient (A (water containing 

0.1% formic acid) and B (acetonitrile containing 0.1% formic acid)) at a flow 

rate of 0.4 mL min-1: 0.0  10.0 min, 5 to 35% B; 10.1, 85% B; 11.0 min, 80% 

B; 11.1   



 
 

The chromatographic system employed was a UPLC system 

coupled to a QTOF-MSE mass spectrometer and operated in ESI+ and ESI- 

ionization modes. The desolvation gas flow was set at 350 L h-1 (ESI+) and 

500 L h-1 (ESI-), while the temperature of the ionization source and the 

desolvation gas were set at 120 °C and 350 °C, respectively. Leucine 

enkephalin was used as a lock mass, and the capillary voltage was set at 3 

kV. The acquisition range was set at 50  1500 m/z in MS mode and 50  1500 

m/z in MS/MS mode. 

The data obtained from the UPLC-ESI-QTOF-MSE was analyzed 

using the software MS-DIAL 4.9.221218 (Data Independent Analysis) to set 

up the parameters for untargeted metabolomics, including deconvoluted 

spectra, peak alignment, and filtering (Lai et al., 2018; Tsugawa et al., 2015, 

2019). After this, the unidentified metabolites were annotated using the MS-

FINDER 3.60 (Lai et al., 2018; Tsugawa et al., 2016, 2019). This annotation 

was done by comparing the MS and MS/MS mass spectra to databases like 

KNApSAcK Core System, Human Metabolome Database (HMDB), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), SciFinder, ChemSpider, and 

PubChem. The annotation of metabolites was performed following the 

Metabolic Standards Initiative (MSI) level 2.1 guidelines (Sumner et al., 2007). 

This annotation of metabolites also included the molecular formulas and the 

fragment ions related to the metabolites. Furthermore, the annotation of 

metabolites was done considering the chemotaxonomy (family, genus, and 

species). 

 

2.4 NMR spectroscopy analysis 

 

Approximately 30 mg of each sample of guaraná seed powder were 

(99.9%), 1.6 mg mL-1 of sodium-3-

trimethylsilyl propionate (TMSP-d4) as internal standard, and EDTA (5.6 mg 

mL-1). This solution was sonicated for 2 min and subsequently centrifuged for 



 
 

10 min at 4,032 g (6,000 rpm in a 100 mm rotor, model 80-2B Centrifuge, 

Edulab, Curitiba-PR, Brazil), and the supernatant was transferred to a 5 mm 

NMR tube. 

The NMR experiments were performed on an Agilent 600 MHz 

spectrometer equipped with a 5 mm inverse detection One Probe  for high 

(1H-19F) and low (15N-31P) frequencies and actively shielded Z-gradient. The 
1H NMR spectra were acquired in triplicate using the PRESAT pulse sequence 

for water suppression (  4.82 ppm). In order to ensure complete relaxation of 

all nuclei of the samples, the inversion recovery sequence was used after 

 

the probe was adequately tuned and matched. A 7 times T1 recycling delay 

between pulses was applied to ensure the full relaxation of all protons present 

in the samples. Therefore, a relaxation delay of 23.0 s was used, with an 

acquisition time of 3.32 s, 40 scans, 32 k of time-domain points with a spectral 

window of 16.0 ppm. The pre-fixed value for the receiver gain was achieved 

by comparing the spectra using same signal-to-noise ratio, which had been 

used for all acquisitions. The temperature was conserved at 298 K. Free 

induction decay was multiplied by an exponential function equivalent to 0.3 Hz 

line-broadening before applying Fourier transform for 16 k points. Phase 

correction was manually performed and the automatic baseline correction 

using polynomial degree 5 was applied over the entire spectral range. 

Two-dimensional NMR experiments were acquired using the 

standard spectrometer library pulse sequences. The 1H-1H COSY 

experiments were obtained with a spectral width of 18,028.1 Hz in both 

dimensions; 1442 × 200 data matrix; 32 scans per t1 increment, and a 

relaxation delay of 1.0 s. The one-bond 1H-13C HSQC experiments were 

acquired with an evolution delay of 1.7 ms for an average 1J(C, H) of 145 Hz; 

1442 × 200 data matrix; 80 scans per t1 increment; spectral widths of 9615.4 

Hz in f2 and 30,165.9 Hz in f1, and relaxation delay of 1.0 s. The 1H-13C HMBC 

experiments were recorded with an evolution delay of 50.0 ms for LRJ(C, H) of 

10 Hz; 1442 × 200 data matrix; 180 scans per t1 increment; spectral widths of 



 
 

9615.4 Hz in f2 and 30,165.9 Hz in f1, and relaxation delay of 1.0 s. Then, the 

constituents identification was performed through 2D-NMR analyses, using 

correlation spectroscopy (COSY), heteronuclear single quantum coherence 

(HSQC), heteronuclear multiple bond correlation (HMBC), assessments using 

an open-access database (www.hmdb.ca) (Wishart et al., 2012), and literature 

reports (Alves Filho et al., 2017; Cren-Olivé et al., 2002; da Silva et al., 2016, 

2017). Molecular structures, 1H and 13C chemical shifts, multiplicity, 

correlations, and constant coupling are available in the Supporting 

Information. 

 

2.4.1 Quantification and analysis of variance 

 

The compounds in guaraná samples that presented high variations 

in chemometrics and did not exhibit overlapping resonances were quantified 

by the external reference method provided by the VnmJ  program (version 

4.2, Agilent). This technique is based on the principle of reciprocity and the 

NMR signals strengths are correlated with a reference sample. A stock 

solution composed of D2O (99.9%) and sucrose (5.0 mg mL-1) was used to 

calibrate the equipment, and the probe file was later updated with all the 

parameters required to determine the concentrations of other compounds. 

Quantitative results were evaluated by analysis of variance (ANOVA 

single factor) using the Origin  9.4 software (OriginLab Corporation, USA) in 

order to statistically certify the differences among the concentrations at a 

significance level of 0.05. Tukey and Levene's tests were applied to assess 

the variance of homogeneity. The combined uncertainties were based on 

analytical errors and standard deviation from the triplicate of the spectra 

acquisitions. 

 

2.5 Multivariate statistical analysis 

 



 
 

A numerical matrix containing a total of 162 1H NMR spectra (56 

different samples acquired in triplicate) was created using chemical shifts 

Standard Code for Information Interchange (ASCII) files when imported by the 

same Origin  software. The spectral region between  0.7 and 8.7 was 

selected for evaluation, excluding the influenced area according to the 

saturation profiling of the non-deuterated water signal (at  4.82) (da Silva et 

al., 2016). Then, this numerical matrix presented a dimensionality of 1,326,864 

data points (168 spectra × 7,898 variables into each spectrum), which was 

imported by the PLS Toolbox  software (version 8.6.2, Eigenvector Research 

Incorporated, Manson, WA USA) for exploratory chemometric evaluation 

(unsupervised) by principal component analysis (PCA). Aiming at baseline 

correction and signals alignment using correlation optimized warping (COW) 

with a segment of 50 data points and a slack of 5 data points, algorithms were 

applied over the variables (Tomasi; van den Berg; Andersson, 2004), and 

posteriorly the samples were mean-centered, enhancing the differences 

between them (Beebe; Pell; Seasholtz, 1998). The singular value 

decomposition algorithm (SVD) was applied to decompose the matrix in 

scores and loading matrices. Relevant information was obtained at the first 

two principal components (PC axes), under a confidence level of 95%. 

The multivariate analysis of guaraná seed samples from the data 

obtained by UPLC-QTOF-MSE was submitted and processed through the 

MarkerLynx XS software. For data processing, some parameters were 

defined, such as retention time interval, from 0.5 to 9.0 min; mass range, from 

110 to 1500 Da; and mass tolerance, 0.02 Da. In addition, the data matrix was 

scaled with the Pareto method. Subsequently, the principal components 

analysis (PCA) was conceived, being described through graphs of scores and 

loadings. 

 

2.6 Analysis of Variance 

 



 
 

Compounds with non-overlapped signals were quantified by the 

external reference method provided by the VnmJ  program (version 4.2, 

Agilent): a technique based on the principle of reciprocity, in which NMR 

signals strengths are correlated with a reference sample. A stock solution 

composed of D2O (99.9%) and sucrose (5.0 mg mL-1) was used to calibrate 

the equipment, then the probe file was updated with all the parameters 

required to determine the unknown concentrations of other compounds. 

The quantitative results were evaluated by the analysis of variance 

(ANOVA single factor) using Origin  9.4 software in order to statistically 

certify the differences or equalities among the concentrations at the 

the variance in homogeneity. The combined uncertainties were based on 

analytical errors and standard deviation from the triplicate of the 1H spectra 

acquisitions. 

 

3 Results and discussion 

 

3.1 Non-targeted analysis of guaraná seeds by UPLC-HRMS 

 

Hydroethanolic extracts from seeds of 56 guaraná clones were 

analyzed by UPLC-ESI-QTOF-MSE, positive (ESI+), and negative (ESI-) 

ionization modes. Thus, a non-targeted metabolomics approach was adopted 

to perform an exploratory screening of the chemical profiles of the samples. 

The joint evaluation of MS and MS/MS spectra allowed the observation of 

specialized metabolites, mainly proanthocyanidins, and methylxanthines. In 

general, the ESI- spectra revealed the presence of procyanidin monomers, 

dimers, trimers, and tetramers, which are summarized in Table 6. On the other 

hand, the ESI+ spectra indicated the presence of methylxanthines, caffeine, 

and theobromine. In Fig. 13, we can observe the chemical structure of some 

annotated molecules. Additionally, Fig. 14 illustrates the chromatograms (ESI+ 



 
 

and ESI-) representative of the chemical profiles, together with the indications 

of the annotated specialized metabolites (Table 5), from the guaraná seeds. 



 

 

 

 
 

 

 



 
 

 

 

 

 

 

  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

    
 

 
        

 

            
  

    
 

 
       

  

        

 

 

 

 

    
 

    

 

 

 

   
 

   
 

  

    
 

 
       

 

  

    

 

 

 

 

   

 

 

 

 

 

 

 

   
 

 

 

 

 



 
 

 

 

 

 

 

  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

    

 

 

 

 

   

 

 

 

   
 

  

        

 

 

 

 
 

  
 

    

 

 

 

 

   

 

 

 

   
 

 
 

    
 

 
   

 

 

 

 

 

 

   
 

  

    

 

 

 

 

   

 

 

 

  
 

 

 
 

    

 

 

 

 

 

   

 

 

 

   
 

 
 

    

 

 

 

      
 

 

 
 



 
 

 

 

 

 

 

  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

    

 

 

 

 

   

 

 

 

   
 

  

    

 

 

 

   
 

 
   

 

 
 

    

 

 

 

 

 

       
 

 
 

    

 

 

 

      
 

 

 
 

    
 

 
       

 

 
 

 

 
 
 
 
 
 



Figure 14 Fig. 14. Representative chromatograms of guaraná seed samples, 
together with the indication of the specialized metabolites annotated (Table 1): 
(a) positive ionization mode (ESI+); (b) negative ionization mode (ESI-).

The identification and annotation of compounds were performed 

with the aid of analytical standards and an extensive review of the literature. It 

is important to point out that the literature review was conceived based on the 

research of substances found in the family, genus, and species of the plant 

under study (Chemotaxonomy). In addition, corroborating with the annotations 

of metabolites, SciFinder, LOTUS Natural Products Online (Rutz et al., 2022),

NPClassifier (Kim et al., 2021), ClassyFire (Djoumbou Feunang et al., 2016)

and other databases available in the MS-DIAL and MS-FINDER software were 

consulted, as well as the in silico spectra available in this software. With that, 

a total of nineteen metabolites were noted, Table 6.

Procyanidins are oligomeric compounds formed by catechin and 

epicatechin monomers. These metabolites are widely found in foods and have 

significant medicinal properties. Since they  act by exerting beneficial effects 

in the prevention or treatment of numerous diseases, such as cancer, 

diabetes, cardiovascular diseases, neurological diseases, immune 

imbalances, and obesity, which represent a major threat to a significant portion 

of the world's population et al., 2022). Procyanidins can be 



 
 

categorized into A-type and B-type, depending on the stereo configuration and 

the bond between the monomers. The m/z deprotonated ions 577, 865, and 

1153 are intercalated by the elimination of 288 Da, which occurs by cleavage 

via quinone methide (QM). These ions correspond to the deprotonated 

molecules of the (epi)catechin dimers, trimers, and tetramers, respectively of 

the procyanidin series, corresponding to B-type. The A-type procyanidins 

found in the peaks presented ions at m/z 575, 863, and 1151 and are 

differentiated from B-type by two units of mass. This difference is caused by 

the additional C-O-C bond (da Silva et al., 2017; Rue; Rush; van Breemen, 

2018). 

Peaks 7 and 11 were annotated and identified (Table 6 and Fig. 14), 

respectively, as the diastereoisomers catechin and epicatechin, ESI- m/z 289 

and ESI+ m/z 291. These polyphenols are characterized as two monomers 

which are the building blocks of several procyanidins. The MS/MS (ESI-) 

spectra of these ions revealed the presence of product ions m/z 109, 125, 205, 

and 245. The ion fragment m/z - is due to the loss of 44 Da 

(CH2=CH OH). The m/z 109 fragment is a result of the loss of 180 Da. 

Furthermore, the m/z - ion results from the loss of the benzene 

moiety, and the m/z  - ion comes from heterocyclic ring fission 

(HRF) (AbouZeid et al., 2022; Said et al., 2017). 

In general, the main fragmentation pathways of procyanidins include 

reaction mechanisms involving cleavage by quinone methide (QM) of the inter 

flavonoid bond, heterocyclic ring fission (HRF), and the retro-Diels-Alder 

reaction (RDA). Thus, the different types of mechanisms can lead to the 

elimination of different amounts of masses. For example, in the case of HRF, 

it promotes the loss of 126 Da, while the RDA reaction leads to the elimination 

of 152 Da. In addition, other rearrangements may occur, as well as water loss 

(-18 Da) (Rue; Rush; van Breemen, 2018; Said et al., 2017; Salles et al., 

2022). Peaks 5, 6, 8, and 11 have the same precursor ion m/z -. 

Together with the analysis of the product ions observed in the MS/MS, this 

indicates the annotation of the metabolites as isomeric forms of the B-type 



 
 

procyanidins. In different combinations, these metabolites are dimers formed 

by two monomeric units (diastereoisomers) of catechin and epicatechin (Fig. 

13). These monomers are usually connected through an inter flavonoid linkage 

3). 

Lending weight to the annotation of the B-type procyanidins dimers, 

the product ions m/z 451, 425, 407, and 289 were observed in the MS/MS 

spectra. The fragmentation of the B-type procyanidin (m/z 577) through HRF 

results in the ion m/z -). Fragment ions m/z 425 and 407 result 

-) with the successive loss of a water 

-. Furthermore, cleavage via quinone methide (QM) 

of the inter flavonoid linkage, which joins the monomeric units, produced the 

fragment ion at m/z 289  (AbouZeid et al., 2022; Qiang et al., 2015; Said et al., 

2017; Salles et al., 2022; Sui et al., 2016). 

The analysis of guaraná seeds also revealed the presence of 

oligomeric procyanidins formed by three and four monomeric units, which 

were annotated respectively as B-type procyanidin trimer (peaks 10, m/z 865) 

and tetramer (peak 12, m/z 1153), Table 6. The MS/MS spectra of the B-type 

trimers showed product ions m/z 289, 407, 425, 577, 695, and 739. The 

fragments m/z - and m/z - are due to 

successive cleavages via QM. The fragment ion m/z -) is 

formed from RDA (-152 Da) with the successive loss of H2O (-18 Da). On the 

hand, the presence of ion m/z -) is the result of 

successive cleavages of the precursor ion (m/z 865) by QM (-288 Da) and 

RDA (-152 Da). Furthermore, the fragment m/z 425 through the loss of one 

water molecule forms the product ion m/z -). On the 

other hand, the m/z -) comes from an HRF (-126 Da). The 

procyanidin B-type tetrameter (m/z -) shows fragmentation similar 

to the trimer, with the addition of the product ion m/z 865 which is the result of 

a QM cleavage (-288 Da) (da Silva et al., 2017; Said et al., 2017). 



 
 

As shown in Table 6, dimers, trimers, and tetramers of A-type 

procyanidins were also annotated. Peaks 16 and 19 showed the precursor ion 

m/z - characteristic of A-type procyanidin dimers. Fragmentation of 

the precursor ion led to the formation of product ions m/z 449, 423, and 289. 

The fragment ion m/z - is due to the HRF of the dimer by 

elimination of the phloroglucinol molecule (1,3,5-trihydroxybenzene). The ion 

m/z - is derived from the RDA reaction. There is also the 

presence of the product ion m/z 289, which is formed by QM fission of A-type 

procyanidin dimer (Salles et al., 2022). 

Peaks 13 and 17 suggest the presence of A-type procyanidin 

trimers, m/z 863. Considering that the MS/MS spectra exhibited fragment ions 

m/z 711, 575, 451, 411, and 289.  In addition, we also verified the presence of 

A-type procyanidin tetramers (peaks 14 and 18), with precursor ion m/z 1151 

and with product ions m/z 863, 575, and 289. The formation of these fragments 

ions is attributed to the mechanisms of reaction of the RDA, HRF, and QM, 

which represent the typical mechanisms of fragmentation of procyanidins (da 

Silva et al., 2017; Li et al., 2012; Salles et al., 2022). 

 

3.2 Multivariate analysis of data obtained by UPLC-HRMS 

 

Principal component analysis (PCA) was used to investigate the 

complex data matrix with minimal loss of original information, aiming to 

observe trends in guaraná seed extract samples and evaluating similar 

characteristics, differences, and relationships between samples. In general, 

the numeric data matrix of guaraná seeds is 239,909, which consists of a 

matrix with 168 chromatograms x 1,428 variables (tR-m/z pairs). PCA was 

applied to the data matrix, and its graphics are shown in Fig. 15. To identify 

possible outliers, we used multivariate control charts of Hotelling's T2 type, as 

illustrated in Fig. 15(b) and (e). 



 
 

 

 
 

 

It is important to highlight that the presence of outliers is inherent to any 

data set with a large and complex magnitude, such as the data set evaluated in this 

study, which is formed by 56 subsets of guaraná seeds from different clones. 

In general, outliers can have a great influence on data analysis. This influence 

can lead to erroneous inferences about the data; in these cases, the outliers 



 
 

constitute data that need to be removed. Thus, methods and criteria are 

needed to verify the presence of possible anomalous samples. Thereby, as 

mentioned previously, in this work, the evaluation of possible outliers was 

performed using Hotelling's T2 graphs, with 95% confidence. 

Therefore, according to Hotelling's T2, two guaraná seed clones 

behaved as outliers, with 95% confidence (Fig. 15 (b)). Thus, after removing 

the outliers from the model, the PCA was redesigned and the scores plot 

showed a separation of clones, as shown in Fig. 3(d). The two principal 

components (PC) present an accumulated explained variance of 31%. This 

percentage of explained variance shows great chemical similarity between the 

56 samples of guaraná seeds evaluated in this study. This fact is 

understandable, considering that the evaluated samples are representatives 

of a plant organism of the same family, genus, and species. 

However, according to the score plot shown in Fig. 15(d), we can 

verify the formation tendencies of four distinct groups. The analysis of loadings 

(Fig. 15(c)) allowed identifying the main specialized metabolites responsible 

for the discrimination of the four groups. Thus, the metabolite responsible for 

the separation of group 1 in positive PC1 was a fragment ion of the 

epicatechin. The separation of Group 2 was influenced by caffeine. On the 

other hand, in group 3 we observed the influence of the A-type procyanidin 

dimer metabolite, and finally, the metabolites responsible for the separation of 

group 4 were attributed to catechin, procyanidin B2, and epicatechin. 

 

3.3 Targeted analysis (quantification and analysis of variance) 

 

1H NMR spectroscopy coupled with chemometrics analysis was 

applied to identify the organic compounds in guaraná samples from different 

clones. Initially, the identification of the main organic compounds was 

performed in the MeOD/D2O (70:30) extract of guaraná seed powder. In 

general, all samples comprised a high level of caffeine. Fig. 16 illustrates a 

representative 1H NMR spectrum: the region between  0.5 and 3.0 



corresponding to aliphatic hydrogen; 3.0 and 5.6 for carbinolic hydrogen; 

aromatic and carbonylic hydrogen (around 6.0 and 10.0). The structures of 

the compounds, 1H and 13C chemical shifts, multiplicity, and constant coupling 

are described in Table 7.

Figura 16 Fig. 16. Representative 1H NMR spectrum ( 0.0 to 9.0 ppm) of guarana 
seed powder (600 MHz, CD3OD-d4 + D2O + EDTA).

Due to the high number of identified compounds and guaraná clones 

(total of 56), an unsupervised chemometric method by PCA was applied to 

explore the 1H NMR dataset, achieving the main composition variability among 

the samples and the relationship between the composition and the guaraná 

clone.



Numbered structurea
1H (ppm),

[multiplicity, J (Hz)]

13C (ppm)
HSQC

C-n
HMBC

Alanine

- 178.7 (C-1)
3.85 (m, o, 1H-2) 52.6 (C-2)

1.49 (d, 7.0, 3H-3) 18.9 (C-3) C-1

Valine

- no (C-1)
3.62 (m, o, 1H-2) 63.0 (C-2)
2.33 (m, o, 1H-3) 32.6 (C-3)
1.02 (m, o, 3H-4a) 19.4 (C-4)
1.06 (m, o, 3H-4b) 19.9 (C-4)

Threonine 

- no (C-1)
3.64 (m, o, 1H-2) 63.4 (C-3)
4.03 (m, o, 1H-3) 69.1 (C-3)

1.30 (m, o, 3H-4) 23.0 (C-3)

Acetic acid

1.94 (s, 3H-1) 25.8 (C-2) C-1

- 179.0 (C-1)

Formate

8.46 (s, 1H-4) 175.8

GABA

(t,o, 7.4, 2H-2) 38.0 (C-2) C-1
1.99 (q, 7.4, 2H-3) 27.6 (C-3) C-4
2.30 (m, o, 2H-4) 41.8 (C-4)

- 178.0 (C-1)

Malic acid

- 176.1 (C-1)
4.79 (d, 7.4, 2H-2) 38.0 (C-2) C-1
2.55, 2.77 (m, o, 7.4, 2H-3a, 3b) 27.6 (C-3)

- no (C-4)

Caffeineb

-1`) 30.4 (C- C-
157.4 (C-

-3`) 32.4 (C- C-
153.7 (C-
110.9 (C-
156.9 (C-

-7`) 36.2 (C-
C-8
C-5

-8) 145.8 (C-8)
C-4
C-7`



Numbered structurea
1H (ppm),

[multiplicity, J (Hz)]

13C (ppm)
HSQC

C-n
HMBC

Sucroseb

Glucose moiety

5.40 (d, 3.5, 1H-1) 92.25 (C-1)
C-2

3.45 (dd, 3.5, 8.0, 1H-2) 72.8 (C-2)

3.70 (m, o, 3.2,1H-3) 76.2 (C-3)

3.78 (m, o,1H-4) 73.3 (C-4)

3.99 (m, o, 1H-5) 76.0 (C-5)

3.72 (dd, 3.2, 8.0, 2H-6) 63.7 (C-6)

Fructose moiety

3.62 (m, 2H- 64.0 (C- C-

- 103.4 (C-

4,07 (d, 8.0, 1H- 75.7 (C-

4.02 (d, 8.0, 1H- 72.9 (C-

3.80 (m,1H- 102.4 (C-

3.77 (m, 2H- 63.5 (C-

Catechinb / Gallocatechin

Ring A - Spin AB Coupling System

5.99/5.91 (d, 2.3, 1H-8 I)c 95.7 (C-8) C-7

6.09/6.15 (d, 2.1, 1H-8 II)c 95.7 (C-8)

- 158.7 (C-7)

5.93 (d, 2.3, 1H-6 I e II) 94.7 (C-6)
C-5
C-5a

- 157.0 (C-5)

- 157.5 (C-8a)

- 102.4 (C-5a)

C ring - ABMX Spin Coupling System

4.65 (d, 8.0, 1H-2 I e II) 81.2 (C-

4.06 (m, o, 1H-3 I e II) 69.5 (C-

2.89 (dd, 16.1, 8.0, 1H-4eq I)c 27.8 (C-

2.88 (dd, 16.0, 8.0, 1H-4eq II)c 27.8 (C-
26.9 (C-

C-
C-

2.51 (dd, 16.0, 8.2, 1H-4ax I e II) 26.9 (C- C-

Ring B of I - ABC Spin Coupling System

- 130.8 (C-

6.84 (d, 1.5, 1H- I) 115.0 (C-

- 145.8 (C-

- 144.9 (C-

6.86 (d, 8.2, 1H- I) 114.7 (C-

6.76 (dd, 8.2, 1.5, 1H- I) 118.7 (C-

Ring B of II

- 131.9 (C-

6.99 (s, 2H- II)
114.3
(C-

C-2
C-

- 146.4 (C- C-

- 133.0 (C-

- 146.9 (C-



Numbered structurea
1H (ppm),

[multiplicity, J (Hz)]

13C (ppm)
HSQC

C-n
HMBC

Cyanolipidd

- 118.4 (C-1)

5.35 (s,1H-2) 129.8 (C-2)

- 114.3 (C-3)

4.85 (s, 4H-4a) 78.4 (C-4a, 4b)
C-2
C-3

2.28 (m, CH2 ) CH2 (C-

1.58 (m, CH2) CH2 (C-

1.27 (m, CH2) 31.3 [C-(N-2)]

1.28 (m, CH2) 22.3 [C-(N-1)]

0.87 (s, CH3) 13.2
C-(N-1)
C-(N-2)d

Abbreviations - The resonance multiplicity of protons: singlet, doublet, quartet, multiplet for s, 
d, q and m, respectively; GABA: Gamma-aminobutyric acid; eq: equatorial, ax, axial; Absence 
of the expected sign (-); signal overlap; (O); unidentified: ni; C-n: numbering given to carbon 
in the structure of the molecule.
Remarks a All spectroscopic data collected are in accordance with data from the Spectral 
Database for Organic Compounds, SDBS (https://sdbs.db.aist.go.jp/sdbs/cgi-
bin/cre_index.cgi) and Human Metabolome Database, HMDB (https://hmdb.ca/); b The 
spectroscopic data of catechin, sucrose, and caffeine were compared with the analytical 
standard and the chemical shift used for the quantification step of the relative concentrations 
of the metabolites is highlighted in bold; c Most of the signals from the A and C rings of I and 
II are in a superposition, however, some differences in the proton and carbon assignments 
were possible through couplings via heteronuclear correlation map (qHSQC and qHMBC); d

The size of the cyanolipid fatty acid (N*) chain is not fully understood.

Fig. 17(a) illustrates the PC1 × PC2 scores coordinate system that 

retained the main information regarding the study aim with 58.25% of the total 

data variance. The relevant loadings are plotted in line form in Fig. 17(b). 

Additionally, to improve the composition variability among the guaraná clones, 

a second PCA was developed excluding the samples numbered 13, 14, 15, 

and 17, since these guaraná seed powders were considered outliers based 

T2 × Q residuals and leverage × studentized residuals plots, 

and therefore, these samples impaired the visualization of the data variability 

from the other samples. Fig. 17(c) illustrates the PC1 × PC2 scores coordinate 

system from this detailed PCA evaluation that retained 50.28% of the total 

data variance, with respective loadings plotted in lines form in Figure 5(d).



 
 

 

 
 

 

It was clear that caffeine was the main compound for discrimination 

of guaraná clones, considering the entire 1H NMR spectra followed by catechin 

and gallocatechin. The clones numbered 13, 14, 15, and 17 at positive PC1 

and PC2 scores provided samples with fewer amounts of these compounds 

mentioned above (caffeine, catechin, and gallocatechin). The additional PCA 

developed excluding the clones 13, 14, 15, and 17 revealed that caffeine was 

also the main compound for samples discrimination according to the PC2 axis. 

In general, the samples from the clones 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 



 
 

55, 56, and 57 presented high amounts of caffeine considering all the 

compounds detected by the 1H NMR signals (  0.7 and 8.7). 

In order to complement and corroborate the composition variability of the 

samples according to the guaraná clone, quantification by 1H NMR (1H qNMR) of 

each organic compound with a non-overlapped signal was developed. Figure 6 

presents concentrations (%) of acetic acid (a), alanine (b), caffeine (c), gallocatechin 

(d), malic acid (e), sucrose (f), and total catechin (g) in guaraná seed powder. 

Caffeine variability (Fig. 6(c)) detected by PCA analyses was 

corroborated by quantitative analyses, revealing its high concentration (above 

average) in guaraná samples from clones 42, 44, 46, 48, 49, 50, 51, 52, 53, 

54, 55, 56, and 57 (as described by the PCA), in addition to complementing 

the results with clones 11, 27, 31, 32, 36, and 37. Fascinating data obtained 

by employing PCA analysis and confirming by analysis of variance 

demonstrated that clones 13, 14, 15, and 17 have a low percentage of 

caffeine. This information is very relevant, as seeds with low caffeine content 

are of great interest to the food industry. Thus, these clones can be selected 

by genetic improvement systems to generate new guaraná cultivars that meet 

industry demands regarding the development of products with low caffeine 

content. 

According to the literature, guaraná contains a significantly higher 

amount of caffeine than other foods, such as coffee, cocoa, and yerba tea, 

respectively about 4, 30, and 10 times higher. Excessive consumption of 

caffeine can lead to some adverse reactions such as increased heart rate, 

increased blood pressure, stress, anxiety, reduced fertility, and insomnia 

(Santana; Macedo, 2018). In addition, studies show that consumption of more 

than 200 mg of caffeine per day can cause problems such as tachycardia, 

ventricular arrhythmia, and seizures disease states including type 2 diabetes 

mellitus, Parkinson's disease, liver disease, stroke risk, Alzheimer's disease, 

some cancers and depression (Yousefi et al., 2017). These are some of the 

possible effects. Therefore, guaraná with low levels of caffeine prevents these 



 
 

adverse reactions from being triggered by excessive consumption (Patrick et 

al., 2019; Tfouni et al., 2007). 

Furthermore, considering the concentration means, guaraná 

samples from the clones 46, 48, 49, 50, 52, 53, 54, 55, 56, and 57 showed 

higher concentrations of gallocatechin and total catechin in samples from the 

clones UEPAE, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 (Fig. 18a). Moreover, 

catechins exert antioxidant activity, acting in the destruction of free radicals 

and neutralizing active ions of transition metals. In addition, because of the 

many phenolic hydroxyl groups present in their structures, they have also 

demonstrated the ability to prevent cardiovascular metabolic diseases and 

have positive effects on lipid metabolism (Portella et al., 2013; Yonekura et 

al., 2016). Additionally, studies have shown that ingesting catechin from green 

tea can increase fat oxidation during exercise. The magnitude of the increase 

 (Bag et al., 2022; 

Hodgson; Croft, 2010). Other beneficial health effects are attributed to 

catechins, such as antimicrobial, antiviral, anti-inflammatory, anti-allergic, and 

anticancer action. This bioactive compound can contribute to the treatment 

and prevention of various diseases, infectious or not. Furthermore, catechins 

have been widely studied for their ability to prevent premature aging and boost 

immunity (Bae et al., 2020; Musial; Kuban-Jankowska; Gorska-Ponikowska, 

2020). 

In this study, we also verified that the clones 49, 54, and 56 

presented higher concentrations of acetic acid and malic acid in samples from 

clones 27, 28, and 49 (Fig. 18(a)). In general, organic acids, such as acetic 

and malic, are widely used in the food industry as acidulants, flavoring, and/or 

food preservatives. They can also play an important role as natural 

antimicrobials, aiming to inhibit the growth and proliferation of microbial 

pathogens (Bevilacqua et al., 2023; Bushell et al., 2019). 

 
 
 



 
 

Figura 18  Fig. 18. Quantification using 1H NMR: acetic acid (a), alanine (b), caffeine 
(c), gallocatechin (d), malic acid (e), sucrose (f), and total catechin (g) in guaraná 
seed powder from different clones. 
 

 
 

 

Finally, a higher concentration of amino acid alanine was observed 

in samples from the clones 49, 50, 53, and 54 as well as a higher concentration 

of sucrose in samples from the clones 9, 38, 39, 40, 45, 46, 49, 50, 52, 53, 

and 55. 

 



 
 

4 Conclusions 

 

Through the non-target metabolomics approach, the metabolic 

profile of fifty-six guaraná seed clones was established by UPLC-QTOF-MSE, 

so that a total of 19 metabolites were duly annotated, including caffeine and 

procyanidins. On the other hand, through the target metabolomics approach, 

metabolites in guarana seeds were identified and quantified by NMR. 

The large volume of data obtained by the UPLC-QTOF-MSE and 

NMR analyses was submitted for chemometric analysis. Thus, the use of 

unsupervised multivariate analysis tools such as PCA allowed the evaluation 

of similarities and differences between clones. Furthermore, it was possible to 

infer some specific characteristics of some of the fifty-six guaraná clones 

studied, such as the presence, absence, and different concentration levels of 

certain metabolites in some samples, such as caffeine. 

Finally, the set of analyzes methods carried out (UPLC-QTOF-MSE, 

NMR, and chemometric tools) allowed obtaining valuable information about 

the different chemical compositions of guaraná seeds. Thus, contributing to 

the selection of the best clones with different purposes, enabling an adequate 

use in the different types of industry, such as food industry and pharmaceutical 

industry, in addition to the possibility of being a potential source of bioactive 

compounds. 
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