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A B S T R A C T   

Micro-plastics (MPs) are an environmental threat that has been gaining importance lately with an increasing 
number of studies demonstrating that they are a larger threat than previously thought. Scientists around the 
world have used a wide number of methods in their studies and they have adapted changes in response to the 
specific nature of the research undertaken. This article provides an account of the historical development of the 
MP menace, development of methods and tools used in MP research and also describes the challenges that are 
faced to further advancement to take place. The article is categorized into various sections that include history, 
sources, isolation, extraction, and characterization of MPs. Among the thermal characterization techniques, 
direct pyrolysis mass spectrometry and secondary ion mass spectrometry, which are widely used to characterize 
the plastics, but not utilised so far in this field are also highlighted for future direction.   

1. Introduction 

1.1. Plastics: a complex history of market demand and dominance 

In essence, plastics are a long chain class of Organic polymers that 
have a high Molecular Weight. The organic mass that the common 
plastics compose of are largely derived from the fossil fuel feed (Resins, 
2015). In the process of deriving such a plastic that would suit a given 
application, plastic resins are added with various substances to render 
them with properties such as increased strength, greater durability, 
light weight and insulation (Thermal and electric). The substances 
added may well include fillers, plasticizing agents, stabilizers (UV and 
Thermal), antimicrobial agents, coloring dyes, etc., and the product 
may take up forms such as foams, sticking substances (Adhesives), fi-
bers, films and other moulds in solid. 

The introduction of such a developed polymer occurred as early as 
the mid-nineteenth century, where accelerated commercial production 
followed towards the finish of the second-world war. The development 
of several variants of plastics happened during the early twentieth 
century, in line with the exponential growth that followed the 1950s. 
One estimate for the prevalence of plastic forms today is that about 
seven types of commodity thermoplastics account for roughly 85% of 
the total plastic available in the markets globally (Resins, 2015). An-
other estimate puts the total plastic produced in terms of weight as of 

2014 at 3.11 × 108 metric tonnes (Europe, Plastic, 2015). 
The plastic material provided a range of solution to the market 

problem of packaging material. In the US alone, packaging plastic ac-
counts for a little over one third of the market demand, and in a similar 
trend, such plastics that serve very short-term needs account for the 
larger chunk of market demand. Another estimate states that a low 
8.8% of the total consumer plastic is recycled (EPA, US, 2014), this 
regardless of the greater fraction these plastics hold in the total waste 
generated (Estimated at 12.8% of solid waste mass collected at the 
municipality level, 4) and, the very convenient and feasible process of 
recycling that consists of a breaking down stage followed by re-melting 
(Andrady, 2015). A notable finding was that Europe, known for its 
greater recycling capabilities of plastic, only has a 30% recycle rate 
(Europe, Plastic, 2015), in spite of being an advanced and self-sufficient 
region. This can be accounted in for by the nature of use of consumer 
plastics that pose a challenge in its recycle abilities such as processing 
damages, improper discarding, In addition there are possibilities of feed 
contamination, and also the marketing difficulties of recycled plastics 
(Andrady, 2015). Publication trend in Microplastics (MPs) from 2011 to 
2020 searched in sci-finder (Fig. 1). This indicates that this field is 
booming in an unprecedented manner. 

The debris found in the marine environment is composed of those 
that were transported or readily dumped in the ocean such as solids that 
were manufactured for a relevant purpose. They may take up several 
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forms such as rubber, wood, textiles, paper, plastic, etc., this only goes 
on to reiterate the dependence and prevalence of plastic. In the sense 
that the solids classified as readily degradable that can be seen in the 
form of paper, wood and natural fibers are easily degraded, but other 
materials that are termed non plastic, but still remain degradable such 
as ceramics from sea wrecks (Schleicher et al., 2008). People are open 
to MPs by breathing, intake and skin contact, finally causing the chronic 
prolonged inflammatory lesions (Fig. 2) (Prata et al., 2020). 

The problem with plastic however is their non-biodegradable nature 
that exists in combination with their light weight, rendering them 
readily transportable by air and water currents. Among the research 
that goes into analysing the debris of the ocean, plastics have occupied 
a prime position, with wreckage investigation and fishery gear that 
became derelict in a close prominence. Previous studies have shown 
that among the debris collected from the surface, from the seabed and 
beaches. Plastics were found to be the greater fraction of floating debris 
in the ocean (Law et al., 2010), they are common in seabed samples 
(Galgani et al., 2000a) and, they were observed in large quantities 
during beach surveying and cleaning missions (Galgani et al., 2000b;  
Conservancy, Ocean, 2014). 

A depiction of plastic as a serious threat to the marine environment 
can be traced back to the early publications of Marine debris prevalence 

(Ryan, 2015). Continued development of research into the problem of 
plastics reaching the marine ecosystem does not merely call for an as-
sessment of the depth at which it impacts marine life and other linked 
ecosystems, but it also warrants the need to develop innovatory solu-
tions in a rapid phase. 

1.2. Microplastics: the smaller the size, the greater the threat 

Plastics were thought to be the biggest threat posed to the marine 
environment until the discovery of MPs. In the beginning of this cen-
tury, MPs were described as a collective debris of very minute or even 
microscopic plastic mass whose size is less than 5 mm (Andrady, 2011). 
Upon discovery, MPs became the greatest threat that we were faced 
with (Magnusson et al., 2016; Thompson et al., 2004). The definitive 
range of their size is debatable and it varies with every study, some 
estimating them at a diameter size < 1 mm (Browne et al., 2007;  
Browne et al., 2010a; Claessens et al., 2011a), while on the other hand, 
they have been linked to a much greater diameter of size < 10 mm 
(Graham and Thompson, 2009), and others with varying estimates in- 
between these ranges (Barnes et al., 2009; Betts, 2008; Derraik, 2002;  
Ryan et al., 2009). 

A Research team from Korea observed the existence of MPs in 4 
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Fig. 1. Publication trend in MPs from 2011 to 2020. The data is searched in Scifinder, search hint MPs as keyword and marine as refine word. Only published in 
English are included here. Assessed on 28th July 2020. 

Fig. 2. Possible passageways of ex-
posure and particle toxicity for MPs in 
the body. 
Represented by the permission of Prata, 
Joana Correia, João P. da Costa, Isabel 
Lopes, Armando C. Duarte, and Teresa 
Rocha-Santos. “Environmental ex-
posure to microplastics: An overview 
on possible human health effects.” 
Science of the Total Environment 702 
(2020): 134455. 
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marketable bivalves from their 3 main cities, whose mean concentra-
tion of MPs was 0.15  ±  0.20 particles/g and it was assessed that the 
Korean people intakes 212 particles/person/year from shellfish inges-
tion (Cho et al., 2019). Entering of MPs in marine creatures is leading a 
conduit for litters and pollutants into our food (Fig. 3). 

Such variations lacking consistency demands that a set of standards 
must be established in order to avoid problems that could potentially 
arise (Claessens et al., 2011b; Costa et al., 2010). There have also been 
suggestions of classifying a third kind of plastic based on size called the 
Mesoplastics, referring to MP debris that would be visible to the naked 
eye, but does not require the aid of a microscope (Andrady, 2011). 

1.3. MP sources and its classification 

MPs are broadly classified into primary and secondary MPs, based 
on their size. This is done based on the source of origin of such plastics. 
This classification seeks to differentiate the MPs that were manu-
factured to the current size from that which has undergone degradation 
to arrive at the current size. In the case of being manufactured to mi-
croscopic size, the debris thus created post application of the plastics, is 
termed primary MP debris, where in there was no need for the de-
gradation of the plastic to attain its current size. Such plastics are often 
found in cosmetic products (Zitko and Hanlon, 1991), air blasting 
material (Gregory, 1996) and rarely seen applied in medicine (Patel 
et al., 2009). 

Plastics of greater size such as pellets used for multiple household 
application that were suggested as mesoplastics were also seen to be a 
significant, yet subjectable addition to the contribution of primary MPs 
(Costa et al., 2010; Andrady, 2011). Cosmetic micro-scrubs were cre-
ated as an exfoliating material, in competition against the traditional 
scrubs such as ground nuts, fibers and pumice (Derraik, 2002; Fendall 
and Sewell, 2009). Primary MPs have in addition, been found play a 
crucial role in air blasting technology, this technology removes rust and 
paint from a given industrial substrate that had undergone the dete-
rioration process by using MPs like polyester(PES) (Browne et al., 2007;  
Derraik, 2002; Gregory, 1996). These air blasting scrubs are reused 
until they lose efficiency and at the point of discard, they also have 
heavy metal contaminants among the likes of lead and cadmium 
(Derraik, 2002; Gregory, 1996). MPs that has reached its classified size 
over degradation during a given period of time is called Secondary MPs 

(Magnusson et al., 2016; Thompson et al., 2004), which are degrade on 
land and reach the ocean in their designated size, or they are directly 
reach the ocean and degrade in it. Fragmentation of macroplastics (or 
mesoplastics) occur because of several factors such as physical, che-
mical, or biological (Browne et al., 2007). 

Photo-oxidation of plastics by nonionizing rays such as UV rays, 
even from natural sunlight has been reported. These rays dissociate the 
polymer matrix by a bond cleavage (Browne et al., 2007; Halle et al., 
2017; Hüffer et al., 2018; Moore, 2008; Rios et al., 2007). In order to 
tackle such oxidation reaction, additives are found to be used in most 
industries, resulting in a product cast with greater durability and re-
sistance to photo-degradation (Talsness et al., 2009). Photo-degrada-
tion is not a concern to the plastic debris already in the ocean, as the 
marine aquatic conditions of temperature and salinity are not favour-
able for the photo-degradative process, but on land, plastics undergo a 
much more rapid process of photo-degradation (Barnes et al., 2009;  
Andrady, 2011; Moore, 2008). 

Physical factors such as surface waves, turbulence of water currents 
etc., are also considered to be prominent factors driving fragmentation 
after the loss of structural integrity of the original debris that reached 
the ocean. This process is cyclic and will result in MP debris that is 
clearly classifiable as MP (Magnusson et al., 2016; Browne et al., 2007;  
Barnes et al., 2009; Fendall and Sewell, 2009; Rios et al., 2007). Other 
studies have suggested that these MPs do not stop their fragmentation 
at near micrometric scales but go on to form nanoplastics (Galgani 
et al., 2010). 

2. Extraction of microplastics 

2.1. Sampling methods 

Broad observations of the debris collected from a given spot such as 
the surface of the ocean or the seabed could result in a misleading 
observation of various characteristics such as surface morphology and 
measures of particulate size. The area of collection could often be large 
as required by the nature of the research study. The extraction and 
separation processes of MPs is a laboratory based process that requires 
efficient and maximal isolation of MPs from the large samples that 
predominantly constitute masses that can infringe with further studies 
(Rocha-Santos and Duarte, 2015). 

Fig. 3. A representation displaying 
how influence of human beings cause 
MPs to get in food network, make a 
way to our food and, finally, our or-
gans. 
Adapted from Cho, Youna, Won Joon 
Shim, Mi Jang, Gi Myung Han, and 
Sang Hee Hong. “Abundance and 
characteristics of microplastics in 
market bivalves from South Korea.” 
Environmental Pollution 245 (2019): 
1107–1116. 
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For the process of sampling, several plastics are used, these include 
vessels (Rocha-Santos and Duarte, 2015; Dubaish and Liebezeit, 2013), 
benthic trawls (Cole et al., 2011), bongo nets (Cole et al., 2011) and 
surface trawls (Lee et al., 2014). MP isolation from aquatic samples is 
easier, as compared to the soil and sediments from the marine en-
vironment. Samples from the general marine areas such as beach, es-
tuaries and sea floor can also be used for MP isolation. This is done with 
the help of stainless-steel spatulas and spoons, if the sample is super-
ficial, and the Cores and bottom trawls are used for deep sampling 
(Vianello et al., 2013a; Harrison et al., 2012; Cauwenberghe et al., 
2013). 

2.2. Extraction from sediments and waters 

For the post sampling of water and sediments, the density separa-
tion techniques are applied to separate the MPs from the samples. High 
concentrates of salt are normally used to float a fraction of the MPs. The 
use of NaCl solution for such separations was first documented with 
samples collected from Norderney, a Northern Sea Island (Fries et al., 
2013a). Following this, a density separation procedure based on NaCl 
solution was reported from Canterbury coast lines in New Zealand 
(Clunies-Ross et al., 2016). Other such ionic solutions have also been 
shown to be effective in this principle of gradient separation, some 
examples include, Sodium bromide, Sodium iodide, Zinc chloride and 
Zinc iodide. These solutions, however proved to be costly and toxic to 
the environment (Mintenig et al., 2017). 

In line with expectations, the increase in gradient density of the 
solution, gave rise to the amount of MP recovered. NaI and ZnBr2 were 
noted to have a significantly greater rate (p  <  0.001) of recovery of 
MPs. The size of the particles being recovered has shown to be a strong 
factor, and had to be taken into consideration while determining the 
solution (Quinn et al., 2017). Prior treatment of the sample is reported 
to increase the amount of MP recovered from the sample, whereby 
stubborn debris such as algae and organic matter are removed. An 
additional step of peroxidation with H2O2 was found to increase the 
yield and remove debris with a negligible degree of destruction to the 
sample (Zhao et al., 2017). The use of the Fentons reagent causes very 
negligible damage to the intrinsic properties of the MPs and causes 
considerable reduction of the preparation time (Tagg et al., 2017). 
Ultrasonic extraction methods have also been demonstrated to be ef-
fective in retrieving MPs from the gastro-intestinal tract of fish, and the 
use of ultrasonication resulted in a reduction of hazardous occupational 
risks involved and raised protocol safety (Wagner et al., 2017). 

For the preparation of samples, several devices have been developed 
in addition to the available methods of chemical extraction. Mechanical 
separation of MP particles from water was achieved and reported in 
2016, wherein the separating device was constructed with pipes (PVC) 
and connectors(Fig. 4). 

A disk was randomly drilled through its area with a mesh layer 
(1 mm and 50 μm) glued to it, that was designed for the process of 
separation. The lesser density of the MPs assured that they flowed to the 
top of the separator, with the water flow. This instrument gave a re-
covery rate of 97.25% (Wessel et al., 2016). Team from the Chinese 
Academy of Science had developed an integrative device that assured a 
comparable recovery of MPs from sedimentary samples (Zhang et al., 
2015). 

2.3. Extraction from organisms 

Some of these sampling protocols are advantageous to the re-
searcher and have a greater preference in the field than the others for 
the purpose of sample collection of MPs from sediments, waters, and 
biological samples. In the case of biological samples, pre-treatment is 
highly necessary, there must be a procedure that involves solutions 
such as H2O2 to discard the contaminating mass. Some of the other such 
pre-treatment agents include KOH, HNO3, NaClO and HCl (Rocha- 

Santos and Duarte, 2015). Oxidation agents did not cause any sig-
nificant damage to the isolated MPs, as seen at the point of observation, 
but these methods did take a toll on the degree of recovery of these 
plastics being extracted from the biological sample and its accuracy. 

The use of enzymes as an extraction agent was found to be more 
suitable, effective in terms of both cost and time for biological samples 
for recovery with minimal destruction (Courtene-Jones et al., 2017). 
Several enzymes that are of digestive employability, such as proteases 
were used and optimized to suitable reaction conditions of effective 
degradation, bar the MP. The effect of such enzymes is also tested with 
MPs to understand any possibility of sample deterioration. Trypsin was 
found to be an effective enzyme, among those that were tested for the 
suitability as a pre-treatment agent. It showed one of the greatest de-
gradation rates, with an 88% loss of extra biological material at a 
working concentration of 0.3125% of trypsin (Courtene-Jones et al., 
2017). Several other methods have also been used as complexity of the 
biological samples increased. 

One prominent method developed was to test and optimize the 
temperature at which the oxidizing agent degraded the most of extra 
biological matter in the sample. The treatment of the biological mass 
with KOH caused significant biological degradation at 40 °C, this 
temperature made the process time efficient, and inflicted very little 
damage to the MPs. Another good procedure was to pre-treat with NaI 
and then to treat with KOH as described earlier, which is also proved to 
be efficient (Karami et al., 2017). The addition of NaI solution was 
reported to remove any residual minerals that may have been persisting 
in the samples. MPs, regardless of type showed good degrees of retrieval 
and upon separation, were found to only have mild damage to char-
acteristics such as color, weight and size, suggesting that these tech-
niques have potential application prospects with biological samples 
(Roch and Brinker, 2017). 

Determining suitable extraction methods becomes crucial for fur-
ther studies. Variations in methods limits drawing comparisons, as 
there are no established standard protocols already available (Besley 
et al., 2017). Details of sampling, such as sampling depth, location of 
collection, extraction repeats and time for settling are parameters that 
are critical in line with literature. Trawl specifications, such as its 
texture and diameter are also essential to be studied for good isolation. 
Certain reports have emerged, suggesting that the season of the year 
also must be taken into consideration, while collecting the MP sedi-
ments. They observed some variations in the concentration of MPs with 
respect to season (Veerasingam et al., 2016). The presence of MPs 
within the environment of the lab may also cause great interference in 
analysis (Woodall et al., 2015). This goes on to demonstrate that de-
velopment of procedures, and techniques are highly required to analyse 
MPs in aquatic environments. These standards must be globally agreed 
on and set up as keys to guided research, in order to meet its purpose 
(Woodall et al., 2015). 

3. Identification and characterization 

The presence of MPs is everywhere in the marine ecosystem, and its 
delirious impact on biological life forms were well understood, there 
arose a need to study these particles and the effects caused in detail 
with respect to their size (Lee et al., 2013; Canesi et al., 2015). These 
studies required a good understanding of the physiochemical properties 
of this particulate matter, thereby requiring a detailed characterization. 
A good characterization would further help to understand, the nature of 
these particles, such as their shapes, colors, and constituent polymer 
material. Here, we present a broad outline of prevalent characterization 
tools and their application in MPs characterization. 

3.1. Optical and electron microscopy 

Optical microscopy (Dissection microscopy) is a commonly used 
tool to study the larger particulate masses, ranging in at a size of about 
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a 100 μm or more, as seen in the case of the net samples (Eriksen et al., 
2014; Desforges et al., 2014; Laglbauer et al., 2014; Mathalon and Hill, 
2014; Kang et al., 2015; Nel and Froneman, 2015). This method allows 
the study of surface texture and enables the differentiation of MPs from 
the contaminating ambiguous mass. 

In spite of the most particles being easily identifiable under the 
optical microscope, there may be particles classified under the sub 
100 μm range that can be very difficult to identify by optical micro-
scopy, as in addition to their size constrain, they may also have no 
specified shape or color (Song et al., 2015). The contaminating sedi-
ment that persist because of poor separation in the gradient method of 
separation may also interfere during observation in MPs identification. 
Further, in extracting the biogenic material from sedimentary samples, 
the microscopic observation is difficult as a result of chemical digestion 
that has not been successful in eradicating the contaminants. Prior 
studies have also demonstrated that the false positive count was high 
for material being mistaken as MPs. It was seen that the average per-
centage for such misidentifications were high at the rate of 20% and in 
the case of transparent polymers, at 70% (65–67). This was later con-
firmed with spectroscopy. About 14% of these particles had a polymeric 
MPs composition, regardless of like resemblance (Löder and Gerdts, 
2015). Microscopic methods also proved to be a weak means to dis-
tinguish between the synthetic and natural fibers (e.g., PES vs dyed 
cotton). Surveys have shown that fibers occupy a predominant position 
in the fractions of MPs found in the ocean, in the water, sedimentary 
and biological samples (Browne et al., 2010a, 2010b; Lusher et al., 
2013). 

The use of Scanning Electron Microscopy (SEM) can provide a much 
clearer image, given all these limitations of typical optical microscopy. 
The high-resolution nature of electron microscopy gives us a clear 
distinction between the organic particles and the plastic particles 
(Cooper and Corcoran, 2010). Further an Energy Dispersive X-Ray 
(EDX) analysis, can give us the exact elemental composition of the 
particles and ensure that the plastic particles are differentiated from the 
others as the plastics have a much greater percentage of carbon content 
(Vianello et al., 2013b). 

3.2. Fourier transform infrared (FTIR) spectroscopy 

Fourier Transform Infra-Red (FTIR) spectroscopy is another tool 
that is found to be greatly useful in the characterization of MPs. It gives 

the data on the available chemical functional groups in a given 
polymer. Every polymer produces a unique set of spectroscopic band 
signature that allows the differentiation and among the plastics, as well 
as of the plastics from the organic mass (Löder and Gerdts, 2015). A 
properly established and detailed database of available standard spec-
troscopic data for the various plastic polymers makes the identification 
of polymers an easy task. In the cases of very low particulate size of 
samples available, the option of micro FTIR (μ-FTIR) may be used (Song 
et al., 2014). In the μ-FTIR, the preliminary studies are conducted by 
switching between the objective lens and the IR probe prior to spec-
troscopic studies. Overview of the different analytical methods used to 
assess the concentration, chemical composition and morphology of 
MP’s in biological tissues, sediments and water, from 2018 to 2020 is 
given in Table 1. 

Phenomenon such as attenuated total internal reflectance (ATR), 
Transmission (Turner and Holmes, 2011; Ugolini et al., 2013), and 
reflectance (Ng and Obbard, 2006) modes are applied in the form of IR 
spectroscope operational modes for MPs analysis. As opposed to the 
transmission mode, the ATR and reflectance modes does not need any 
sample preparation step in the case of an opaque sample. Further, the 
ATR mode gives a stable and reliable spectral line data, even in the case 
of studying surfaces that have a rough texture, which would otherwise 
give out unstable spectral lines. It is understood that the particulates 
that have a size lower than the IR beam aperture are easily detectable 
by the probe. 

3.3. Raman spectroscopy 

Apart from the use of FT-IR, the use of Raman's spectroscopy for the 
identification of MPs are also a common practice (Van Cauwenberghe 
et al., 2013; Collard et al., 2015). Based on the molecular structure of 
the atoms on the surface, the laser beam that has been shot at the 
particles gives rise to a unique pattern of backscatter (Löder and Gerdts, 
2015). The Raman's spectroscopy, in addition to identifying the plastic, 
it will also provide a composition of the polymers with respect to FTIR, 
which only allows an identification of the polymer. Further, in addition 
to the non-destructive methods of chemical analysis and microscopy, 
Raman's spectroscopy gives us a comparable tool of identification with 
the FTIR, bearing in mind the heavy cost of the instrumentation. FTIR 
and Raman spectroscopy can be used in a complimentary fashion with 
one another. The Raman spectroscopy methods allow the 

Fig. 4. Density separator design and 
setup. a) Part identification and as-
sembly and b) functional depiction 
identifying internal components and 
separation process location. 
Reprinted by the permission of Wessel, 
C.C., Lockridge, G.R., Battiste, D., & 
Cebrian, J. (2016). Abundance and 
characteristics of microplastics in 
beach sediments: insights into micro-
plastic accumulation in northern Gulf 
of Mexico estuaries. Marine Pollution 
Bulletin, 109 (Resins, 2015), 178–183. 
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characterization of particles ranging in size at the level of few microns, 
this is made possible by the very narrow slit beam in the Raman 
Spectroscope (Cole et al., 2013). 

Raman spectroscopy is advantageous in the sense that it is, like 
FTIR, a noncontact method. This is further used to identify MPs among 
zooplankton samples, which is made possible by the confocal micro-
scopic attachment seen in the Raman Spectroscopy (Cole et al., 2013). 

On the contrary, Raman's spectroscopy had the great disadvantage 
in Interference faced by the additives and pigments to make the final 
plastic cast meet the requirement (Van Cauwenberghe et al., 2013; Tagg 
et al., 2015). List of studies carried out on using Py-GC/MS for the past 
2 years are given in Table 2. 

3.4. Thermal analysis 

Among the tools used in the identification of MPs, the thermo- 
analytical method is the most recent tool to make debut, where in it is 
used to study changes in the intrinsic physiochemical properties of the 
plastic with respect to its thermal stability (Tagg et al., 2015; Castañeda 
et al., 2014). 

One such tool is the Differential Scanning Calorimetry (DSC), which 
studies the thermal properties of the unknown polymer microparticles 
(Tsukame et al., 1997). This technique requires the use of reference 
materials for the identification and matching of a given MP sample. 
Therefore, this technique is prevalently used in the identification of 
primary plastics, which readily have reference material such as micro 
beads of PE (Castañeda et al., 2014). The idea of attaching thermo-
gravimetric analysis (TGA) to DSC was tried, and it was observed that 
this could help to differentiate between the PP and PE polymers, but the 
method faced the problem of overlap in phase transition and as a result 
could not be able to identify few important polymers such as PVC, PES, 
PA and PET (Majewsky et al., 2016). 

TGA in combination with solid phase extraction (SPE), and being 
coupled to a thermal desorption gas chromatography mass spectro-
photometry (TDS-GC–MS), grants the user a set of advantages. It allows 
larger sampling size in comparison to a Py-GC/MS and grants greater 
resolution when compared to a DSC (Dümichen et al., 2015). TGA-SPE- 
TDS-GCMS was found to be effective in the identification and quanti-
fication of PE from a sample of soil and mussels, whereas the PP, PS and 
mixed polymer also gave out similar results to validate this method 
(Dümichen et al., 2015). 

Py-GC/MS is the most commonly used tool for identification of the 
polymeric type today. In the Py-GC/MS technique, the polymer is 
pyrolyzed under inert atmosphere, which was then fed to a gas chro-
matography (GC) coupled with mass spectrometry, in which GC sepa-
rates the pyrolyzed products and pyrogram is generated. The pyrogram 
of the unknown samples are compared with available or developed 
reference pyrogram to understand the constitution of the polymer mass 
under study. The method allows the use of relatively much lesser mass, 
in the range of 0.35–7 mg of particulate debris, at temperatures as high 
as 700 °C in comparison with TGA. The bulk of the analysed sediments 
and solid particulates under suspension revealed the presence of PVC, 
PS, poly(vinyl acetate) (PVA) and styrene-butadiene styrene rubber in 
good resolution (Fabbri et al., 2000; Fabbri, 2001). Py-GC/MS was also 
used to study the particles such as PA and chlorinated polyethylene 
(CPE)/chloro-sulphonated polyethylene (CSPE) (Fries et al., 2013b;  
Nuelle et al., 2014; Dekiff et al., 2014). According to the instrument 
condition, we need to choose the pyrolyzing filament for the identifi-
cation of the polymer. 

4. Future directions 

The characterization of MPs by thermal techniques studied so far 
and to be applied in future are highlighted in Fig. 5 below. In the ex-
isting literature, studies on MPs thermal degradation are usually re-
ported using Py-GC/MS technique and thermal desorption gas Ta
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chromatography–mass spectrometry (TD-GC–MS), which could be due 
to the expertise only in these techniques. The characterization of MPs 
by direct pyrolysis mass spectrometry (DPMS) and secondary ion Mass 
spectrometry (SIMS) have to be studied in future. 

Earlier studies on the analysis of the degradation products of MPs 
using the Py-GC/MS technique provided information only on the sec-
ondary degradation products. The MPs by both DPMS and Py-GC/MS 
techniques, will have to be studied in future, which will shed light both 
on the end groups that are formed during the hydrolysis and/or pho-
todegradation (please note photodegradation does not happen for 
sample in ocean/water) of these MPs in marine environment. Generally, 
DPMS technique has been applied to study the degradation products of 
most of the polymers, to cite a few hydroxyl terminated polybutadiene 
(HTPB) (Ganesh et al., 2000), polysulfides (PLS) (Sundarrajan et al., 
2002; Sundarrajan et al., 2005; Montaudo et al., 1994), PET (Montaudo 
et al., 1993) and so on. In DPMS technique, polymer is pyrolyzed very 
near to the ion source, and the primary chain cleavage products formed 
are instantaneously reached to detector for obtaining the mass spectra. 
The comparison between DPMS and Py-GC/MS technique are briefly 
presented in Table 3. In future, we are aiming to study the MPs in 
marine environment by using the above two techniques. As the time 
scales of the two pyrolysis techniques are very different, we expect that 
thermally labile pyrolysis products, end group formed during photo-
oxidation of MPs in the sea-shore and hydrolysed groups formed in the 
case of MPs in marine (aqueous) environment will be detected in DPMS. 
Also, a comparative study by DPMS and Py-GC/MS may be able to 
detect different chemical compounds. 

Detection limit of MPs in the marine environment must be im-
proved, which can enter into human food chain through fish. Secondary 
ion mass spectrometry (SIMS) has been widely used to characterize the 
polymers, additives in polymers, and so on. However, to the best of our 
knowledge (confirmed by Sci-finder search), it has not been applied to 
characterize the MPs in marine environment. This study will provide an 

insight into the functional groups formed through the hydrolysis and/or 
photo-degradation of these MPs in marine environment and thereby its 
human health impact can be assessed, which has also to be studied in 
future. It is to be noted here that only two reports are available on SIMS, 
in which 1) metal ion diffusion into plastics (Kern et al., n.d.) and 2) sea 
surface exposure (Jungnickel et al., 2016) are studied. 

5. Conclusion 

There is much left to study about these MPs debris that are making a 
great hindrance for the Marine eco-system. While we are currently 
capable of understanding the individual composition, there are several 
limitations to these tools, such as the reduced size, of these particles 
that sometimes falls beyond the frame of the characterization or iso-
lation method, the time consuming extraction processes and persistent 
non-plastic mass. The development in available technology seen today 
for the purpose of isolation and identification of MPs is a result of slow 
improvement that happened over four decades to facilitate the rise of 
demand for efficiency and speed in this process. With the understanding 
of the need to study this debris being consistent, there is a strong need 
for better and advanced technology to aid the researcher. In conclusion, 
we suggest that further advancements developed must take into con-
sideration, the fragmenting nature of this debris and seek to reduce the 
minimal separable and identifiable size of the MPs. Earlier studies on 
the analysis of the degradation products of MPs using the Py-GC/MS 
technique provided information only on the secondary degradation 
products. The identification and characterization of MPs by both DPMS 
and Py-GC/MS techniques, will have to be studied in future, which will 
shed light both on the end groups that are formed during the hydrolysis 
and/or degradation of these MPs in marine environment. In addition, 
SIMS studies must be carried out, which will shed light on formed 
functional groups, adsorbed metal ions, and other adsorbed species on 
MP surfaces. 

Fig. 5. Characterization of MPs by thermal techniques.  

Table 3 
Comparison between DPMS and Py-GC/MS.     

Pyrolysis DPMS Py-GC/MS  

Residence time in 
pyrolysis zone 

Less than a second Milli seconds 

Pyrolysis products Polymer is pyrolyzed very close to the ion source, and the primary chain 
cleavage products are instantaneously reached to the detector. Primary pyrolysis 
products are detected 

Primary pyrolyzed products have enough residence time to go 
through secondary reactions. Secondary pyrolysis products are 
mostly detected 

Thermally labile products Can be detected without any secondary reactions Secondary reactions are possible 
Molecular weight effect Higher molecular weight degradation products can be analysed Generally, higher molecular weight degradation products are lost 

in the column or after formation    
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