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ABSTRACT

We consider an lattice of isotropic simple harmonic oscillators, with charge, immersed in

a dielectric background, which will couple strongly with the light traveling in the medium.

Neglecting quadrupoles, the oscillators have an electric dipole moment and interact with each

other through an instantaneous Coulombian interaction. Starting from a quantum formalism,

we obtain the dispersion relation, leading to the quantization of the Hamiltonian of the coupled

system, in terms of the bosonic operators of creation and annihilation. From the eigenstates and

energy eigenvalues of the polaritons, we obtained the canonical partition function, through which

the connection with thermodynamics is established, allowing us to determine physical quantities

of interest, such as the Helmholtz free energy, internal energy, specific heat, and pressure. In this

work, we analyze and discuss the effect of light-matter interaction on such physical properties.

Keywords: oscillator; light-matter coupling; dipole; light; matter; thermodynamics.



RESUMO

Consideramos uma rede de osciladores harmônicos simples isotrópicos, com carga, imersos em

um fundo dielétrico, que irão acoplar fortemente com a luz que viaja no meio. Desprezando os

quadrupolos, os osciladores possuem um momento dipolo elétrico, e interagem entre si através

de uma interação Coulombiana instantânea. Partindo de um formalismo quântico, obtemos a

relação de dispersão, levando à quantização da Hamiltoniana do sistema acoplado, em termos

dos operadores bosônicos de criação e aniquilação. A partir dos autoestados e das auto-energias

dos polaritons, obtivemos a função canônica de partição, através da qual se estabelece a conexão

com a termodinâmica, permitindo-nos determinar grandezas físicas de interesse, como a energia

livre de Helmholtz, energia interna, calor específico e pressão. Neste trabalho, analisamos e

discutimos o efeito da interação luz-matéria em tais propriedades físicas.

Palavras-chave: oscilador; acoplamento luz-matéria; dipolo; luz; matéria; termodinâmica.
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1 INTRODUCTION

In most cases, when trying to describe the physical properties of materials, the light 

is usually considered an external perturbation and is ignored due to the weak interaction with the 

material. This is a reasonable approximation for many cases, but when light and matter interact 

strongly, the physical and chemical properties of the material change, and the electromagnetic 

modes cannot be neglected. These coupling regimes are referred to as ultra strong coupling 

(USC) and deep strong coupling (DSC) and are defined by the relationship between the Rabi 

frequency and the excitation frequencies of the material. In the USC regime, the Rabi frequency 

is smaller and of the order of the excitation frequencies, while in the DSC regime it is larger 

(Anappara et al., 2009).

Strong coupling can be used to generate phase singularities for use in sensing and 

optoelectronics, in nanophotonic structures, following the concept of cavity-free strong coupling, 

because the electromagnetic modes maintained by the material are strong enough to strongly 

couple to the material’s own molecular resonance (Thomas et al., 2022).

Extreme regimes of light-matter coupling can be achieved by plasmonic crystals 

of metallic and semiconducting nanoparticles, applicable to nonlinear optics, the search for 

cooperative effects and ground states, and polariton chemistry (Mueller et al., 2020). Other 

examples of applications utilizing USC and DSC regimes are superconducting circuits, semicon-

ductor quantum wells, novel quantum optical phenomena, quantum simulation, and quantum 

computation (Forn-Diaz et al., 2019).

Given such applicability and interest in the USC and DSC regimes, it may be 

necessary to develop physical models that consider the strong interaction between light and 

matter. The study of such systems gave rise to the description of a new quasiparticle, the 

polariton, first studied by Fano (1956) and Hopfield (1958), associated with any coupling 

between an electromagnetic wave and a polarization wave within a medium.(Cardona; Peter, 

2005).

In general, polarization in materials has three different origins: due to phonons 

(quantized modes of vibration) in diatomic ionic crystals, whose ionic pairs have a dipole 

moment (Simon, 2013; Huang, 1951); by excitons, the quasiparticles formed by the electron-

hole pair (Cardona; Peter, 2005); and plasmons (plasma oscillation quantum (Kittel; Mceuen, 

2018)). Despite their conceptual differences, these three represent the same physical problem of 

dipole excitation on a periodic material.
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In this work, we consider a dielectric isotropic three-dimensional system consisting of 

a lattice of identical charged oscillators (dipoles) in a dielectric medium, where we consider that 

dipoles interact via the instantaneous Coulomb force, which consequently produces polarization 

modes. We will use the Coulomb gauge (Craig; Thirunamachandran, 1998), where the scalar 

potential is due only to charge distributions.

The temperature generates vibrations in the medium that mix with electromagnetic 

waves, resulting in a light-matter coupling Hamiltonian, diagonalized by a Bogoliubov transfor-

mation, from which we extract the polariton dispersion relation. Considering the context of the 

canonical ensemble, one can explore the statistics of the system taking into account all degrees 

of freedom, to find the thermal properties from our theoretical model. Our objective is to study 

and discuss the effect of the strong light-matter interaction on the thermodynamic properties of 

such systems.
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2 THEORETICAL FOUNDATION

2.1 Model

We consider that material excitations can be effectively described as a lattice of

identical and isotropic simple harmonic oscillators, with charge Q, mass M and natural oscillation

frequency ω0 uniformly distributed in space, with density N = 1/V , where V is the volume of the

unit cell −i.e., one oscillator per primitive cell− immersed in a background of dielectric constant

ε∞. The simple harmonic oscilatlator (SHO) oscillates around its equilibrium position with a

displacement u. In addition, the charge is displaced relative to another charge with a different

sign; therefore, this SHO will have a dipole moment, which will interact with the electric field of

the electromagnetic waves propagating in the medium. The described model is schematized in

figure 1.

Figure 1 – Schematic model.

Source: Elaborated by the author (2024).

This work focuses on cases where the quadruple moment (and higher order multiple 

moments) can be neglected (Barros et al., 2021). This model of coupled oscillators is conve-

nient for treating certain cases of different natures; for example, in nanoparticle supercrystals, the 

center of mass of the electronic cloud of each nanoparticle is displaced due to an external electric 

field and thus undergoes a restoring electric force due to a fixed positive charge (Moores; 

Goettmann, 2006). This force is linear to the displacement of the center of mass (Jackson, 2021)
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 and thus we can return to the model of SHOs. Another example is ionic diatomic crystals, 

where within each unit cell there are two different ionized atoms bound by a restoring force. In 

this case, we replace the displacement of the SHO by the relative displacement of the two ions 

inside the primitive cell and the mass by the effective mass of the two particles (Cardona; 

Peter, 2005):

Mu → µ(u+−u−). (2.1)

2.2 Noninteracting dipoles

Consider an electromagnetic plane wave traveling in a medium with an electric field

E = E0ei(k·r−ωt), (2.2)

where E0 is the amplitude of the electric wave polarized along λ̂k: E0 = E0λ̂k. Thus, in addition

to the restoring force −Mω2
0 u, the SHO will also feel a force due to the macroscopic electric

field QE. We could also consider the force due to the field caused by the dipole moment of each

SHO of the array, but we will ignore this effect for now, such that each SHO is independent of

the each other SHO in the lattice. Given these considerations, the equation of motion for a dipole

in r oscillating around this position is

M
d2

dt2
u =−Mω2

0 u+QE. (2.3)

To solve this equation, we can propose

u = u0ei(k·r−ωt). (2.4)

When inserting it into the equation of motion, the amplitude u0 must be

u0 =
QE0

M(ω2
0 −ω2)

. (2.5)

Knowing that the dipole moment of each SHO is Qu, the macroscopic polarization

due to the SHO will be

PSHO = NQu. (2.6)

Replacing eq.(2.5) by eq.(2.6) we get

PSHO =
NQ2

M(ω2
0 −ω2)

E. (2.7)
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For an isotropic medium, the equation of the displacement vector is

D = ε0E+P = ε0ε(ω)E, (2.8)

where ε(ω) is the scalar dielectric function and P is the total polarization, which is not just

PSHO because the valence electrons of the surrounding medium also produce polarization, so

P = PSHO +Pb; where Pb is the background polarization related to the macroscopic field by

Pb = ε0χbE = ε0(εb −1)E. (2.9)

The background dielectric function εb usually depends on ω , but we will focus 

on cases where the frequency ω is much smaller than the resonance frequency of the valence 

electrons. In this case, it is common to write εb(0) = ε∞, which is called the high-frequency 

dielectric constant (Smith; Shiles, 1978; Cardona; Peter, 2005), and Pb = ε0(ε∞ − 1)E. Therefore 

eq.(2.8) becomes

D = ε0

[

ε∞ +
NQ2

ε0M(ω2
0 −ω2)

]

E = ε0εE (2.10)

and we obtain the dielectric function

ε(ω) = ε∞

[

1+
NQ2

ε0ε∞M(ω2
0 −ω2)

]

, (2.11)

which, written in terms of the coupling frequency

Ω =
NQ2

4Mε0ε∞ω0
, (2.12)

will be

ε(ω) = ε∞

(

1+
4Ωω0

ω2
0 −ω2

)

. (2.13)

Since there are no free charges, ∇ ·D = 0, and by substituting D = εE, we get

ε(ω)(k ·E0) = 0. (2.14)

Two cases arise from this equation: when k ·E0 = 0 or the special case when ε = 0. In the

first case, the electric field must be perpendicular to the propagation direction and the nonzero

response of the SHOs is described by the dielectric function. On the other hand, if ε = 0, we

can conclude, from the Maxwell equations for a non-magnetic medium, that the electric field is

longitudinal (for any k other than zero) and the ω frequency, which eq.(2.13) solves for ε = 0, is

ωL =
√

ω2
0 +4Ωω0. (2.15)



18

This is the frequency at which the field is longitudinal, characterized by the upper horizontal line

in figure 2.

For a transverse field, from Maxwell’s equations in a dielectric medium, we get

k2 =
ω2ε

c2
, (2.16)

where substituting ε(ω) results in

k2 =
ω2ε∞

c2

(

1+
4Ωω0

ω2
0 −ω2

)

. (2.17)

By isolating ω from eq.(2.17), we obtain the two branches of the dispersion relation for the

coupled regime

ω± =

√

ω2
ph,k +ω2

0 +4Ωω0

2



1±

√
√
√
√1−

4ω2
ph,kω2

0

(ω2
ph,k +ω2

0 +4Ωω0)2





1/2

, (2.18)

where ωph,k is the uncoupled photon dispersion in the medium, kc/
√

ε∞. In units of ω0, eq.(2.2)

is plotted below as a function of kc/
√

ε∞ω0, for the coupling frequency Ω = 0.5ω0. Note that at

the long wavelength limit (k → 0), the upper branch tends to the longitudinal frequency eq.(2.15),

which is expected because at long wavelengths the transverse and longitudinal waves are identical

and thus are expected to be degenerate. The two transverse branches correspond to the polariton

states discussed in the quantum model below.

2.3 Interaction dipoles: quantum approach

We now introduce a quantum formalism to describe the same system. Let us consider

again a lattice of dipoles in a medium with dielectric constant ε∞, where each dipole is considered

as an SHO with mass M, charge Q and natural frequency ω0. For the quantum approach, we will

describe the system by obtaining the Hamiltonian in the Heisenberg formalism, i.e., in terms of

creation and annihilation operators. For this, we consider the energy of each SHO, the interaction

energy between dipoles and dipoles with light, and the energy of the photons.

2.3.1 Dipole Hamiltonian

Let us start with what does not depend on light: the part for the total energy due only

to the dipoles. The dipole Hamiltonian Hdip will have two parts: the term corresponding to the

individual energy of each oscillator H0 and the interaction energy between the dipoles Hint ,

Hdip = H0 +Hint . (2.19)
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Figure 2 – Dispersion relation for non-interacting dipoles.

Source: Elaborated by the author (2024).

For H0, we have

H0 = ∑
l

[

ΠΠΠ2(rl)

2M
+

Mω2
0

2
h2(rl)

]

(2.20)

where h(rl) is the shift of the SHO charge Q at site l and ΠΠΠ(rl) is the conjugate canonical

moment at h(rl). When we sum in components,

H0 = ∑
l

∑
î=x̂,ŷ,ẑ

[

Πî
2
(rl)

2M
+

Mω2
0

2
hî

2
(rl)

]

. (2.21)

Now, let us introduce the bosonic operators:

bî
rl
=

√

Mω0

2h̄
hî(rl)+ i

Πî(rl)√
2Mh̄ω0

; (2.22)

bî
rl

†
=

√

Mω0

2h̄
hî(rl)− i

Πî(rl)√
2Mh̄ω0

. (2.23)
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By writing hî(rl) and Πî(rl) in terms of them, we have

hî(rl) =

√

h̄

2Mω0

(

bî
rl

†
+bî

rl

)

(2.24)

and

Πî(rl) = i

√

Mh̄ω0

2

(

bî
rl

†
−bî

rl

)

, (2.25)

that, when replacing it into H0, we get

H0 = h̄ω0 ∑
î,l

(

bî
rl

†
bî

rl
+

1

2

)

. (2.26)

Using the representation of bosonic operators in reciprocal space

bî
rl
= N −1/2 ∑k eik·rl bî

k, eq.(2.26) becomes

H0 = h̄ω0 ∑
î,k

(

bî
k

†
bî

k +
1

2

)

. (2.27)

Where bî
k (bî

k
†
) annihilates (creates) a boson of wave vector k and oscillation mode î; as discussed

in the introduction, this boson can be, for example, a plasmon, an exciton, or a phonon.

Since all the retardation effects will be accounted for within the light-matter coupling,

for the interaction Hamiltonian, we can consider the instantaneous Coulombian interaction

between dipoles Vdip =
1

4πε0ε∞

p·p′−3(p·n̂)(p′·n̂)
|r′−r|3 , where n̂ = r′−r

|r′−r| . This leads to

Hint =
1

8πε0ε∞
∑
î, ĵ

∑
l,l′

(

δî, ĵ

r3
ll′

−3
rî

ll′r
ĵ

ll′

r5
ll′

)

pî
l p

ĵ

l′ . (2.28)

Again, replacing pî
l with Qhî(rl) and using eq.(2.24), we have

Hint =
h̄Q2

16πMε0ε∞ω0
∑
î, ĵ

∑
l,l′

(

δî, ĵ

r3
ll′

−3
rî

ll′r
ĵ

ll′

r5
ll′

)
[

bî
rl

†
b

ĵ
rl′

†

+bî
rl

†
b

ĵ
rl′

+bî
rl

b
ĵ
rl′

†

+bî
rl

b
ĵ
rl′

]

.

(2.29)

Replacing the creation and annihilation operators by their respective representations in reciprocal

space, bî
rl
= N −1/2 ∑k eik·rl bî

k, we get

Hint =
h̄Q2

16πMε0ε∞ω0
∑
î, ĵ

∑
k

{

−
[

∑
ρρρ

(

3
ρ îρ ĵ

ρ2
−δî, ĵ

)

eik·ρρρ

ρ3

]
(

bî
k

†
b

ĵ
−k

†

+bî
k

†
b

ĵ
k

)

−
[

∑
ρρρ

(

3
ρ îρ ĵ

ρ2
−δî, ĵ

)

e−ik·ρρρ

ρ3

]
(

bî
kb

ĵ
k

†

+bî
kb

ĵ
−k

)
}

.

(2.30)
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The term in the first square bracket is the matrix element Dî, ĵ(k) = 1
Nπ ∑ρρρ

(

3
ρ îρ ĵ

ρ2 −δî, ĵ

)

eik·ρρρ
ρ3

(except for a factor 1
Nπ ) and the second is it’s conjugate complex Dî, ĵ∗(k). Let us now write

the Hamiltonian in terms of the coupling frequency, defined in the classical formalism (see

eq.(2.12)), Ω = NQ2

4Mε0ε∞ω0
. The interaction Hamiltonian is then simply

Hint =− h̄Ω

4
∑
î, ĵ

∑
k

[

Dî, ĵ(k)
(

bî
k

†
b

ĵ
−k

†

+bî
k

†
b

ĵ
k

)

+Dî, ĵ∗(k)
(

bî
kb

ĵ
k

†

+bî
kb

ĵ
−k

)
]

. (2.31)

2.3.2 Coupling to light

To treat the coupling of matter to light, it is suitable to use the quantization of 

electromagnetic modes in a cavity with the dimensions of the crystal (Weick; Mariani, 2015; 

Hopfield, 1958). Consequently, the energy between the two subsystems (matter and light) is 

exchanged without loss. Thus, the Hamiltonian for the photonic subsystem of the cavity is

Hph = ∑
λ̂k,k

h̄ωph,kc
λ̂k
k

†

c
λ̂k
k , (2.32)

where c
λ̂k
k (c

λ̂k
k

†

) annihilates (creates) a photon of wavevector k and transverse polarization λ̂k

(λ̂k ·k = 0), and ωph,k = kc/
√

ε∞ is the dispersion of the uncoupled photon in the medium.

Finally, for the Coulomb gauge, the dipole and light interact through the following

Hamiltonian:

Hdip−ph = ∑
l

[
Q

M
ΠΠΠ(rl) ·A(rl)+

Q2

2M
A2(rl)

]

, (2.33)

where A(rl) is the potential vector at position rl . As just mentioned, the crystal is seen as a

cavity with quantized modes, where we can use the quantization of the electromagnetic field

(HUTTNER; BARNETT, 1992), from which we write the fields in terms of photonic annihilation

and creation operators, and hence A(rl) is given by

A(rl) = ∑
λ̂k,k

λ̂k

√

Nh̄

2ε0ε∞N ωph,k

(

c
λ̂k
k eik·rl + c

λ̂k
k

†

e−ik·rl

)

. (2.34)

Substituting ΠΠΠ(rl) for eq.(2.25) and the potential vector by eq.(2.34), the first term on the right

becomes

Q

M
∑

l

ΠΠΠ(rl) ·A(rl) = ih̄ω0

√

NQ2

4Mε0ε∞ω0
N

−1/2 ∑
λ̂k,î,l,k

î · λ̂k√
ωph,k

(

bî
rl

†
−bî

rl

)

×
(

c
λ̂k
k eik·rl + c

λ̂k
k

†

e−ik·rl

)
(2.35)
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and if we change the bosonic operators for the reciprocal space, we get

Q

M
∑

l

ΠΠΠ(rl) ·A(rl) = ih̄ω0 ∑
î,λ̂k,k

(î · λ̂k)

√

Ω

ωph,k

(

bî
k

†
c

λ̂k
k +bî

k
†
c

λ̂k
−k

†

−bî
kc

λ̂k
k

†

−bî
kc

λ̂k
−k

)

. (2.36)

Doing the same for the second term on the right:

Q2

2M
∑

l

A2(rl) = h̄ω0 ∑
λ̂k,k

Ω

ωph,k

(

c
λ̂k
k c

λ̂k
−k + c

λ̂k
k c

λ̂k
k

†

+ c
λ̂k
k

†

c
λ̂k
k + c

λ̂k
k

†

c
λ̂k
−k

†
)

. (2.37)

Therefore, the coupled Hamiltonian is

Hdip−ph = h̄ω0

{

∑
î,λ̂k,k

(î · λ̂k)

√

Ω

ωph,k

(

bî
k

†
c

λ̂k
k +bî

k
†
c

λ̂k
−k

†

−bî
kc

λ̂k
k

†

−bî
kc

λ̂k
−k

)

+ ∑
λ̂k,k

Ω

ωph,k

(

c
λ̂k
k c

λ̂k
−k + c

λ̂k
k c

λ̂k
k

†

+ c
λ̂k
k

†

c
λ̂k
k + c

λ̂k
k

†

c
λ̂k
−k

†
)}

.

(2.38)

The total Hamiltonian is the sum

H = H0 +Hint +Hph +Hdip−ph, (2.39)

whose terms are given by eq.(2.26), eq.(2.31), eq.(2.32) and eq.(2.38). Note that crystal momen-

tum is conserved; for example, the operation bî
k

†
c

λ̂k
k creates a boson of the material excitations

of wavevector k (e.g., bî
k

†
creates a plasmon or phonon), but it also annihilates a photon of the

same wavevector, and so the total variation of the momentum of this process is zero.

2.3.3 Diagonalization

Using the Bogoliubov transformation, we can find a base of operators that diagonal-

izes the Hamiltonian; i.e., an operator ηk such that

H = ∑
k

h̄ωpol,kηk
†ηk (2.40)

and must satisfy Heisenberg’s equation of motion

[ηk,H] = h̄ωpol,kηk (2.41)

for the polariton frequency ωpol,k. The operator ηk represents the strong coupling regimes where

light and matter form a polariton (e.g., plasmon-polariton, phonon-polariton, or exciton-polariton)

and must consist of a hybrid state of both:

ηk = ∑
î=x̂,ŷ,ẑ

(

uî
kbî

k + vî
kbî

−k
†
)

+∑
λ̂k

(

m
λ̂k
k c

λ̂k
k +n

λ̂k
k c

λ̂k
−k

†
)

. (2.42)
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If we use eq.(2.42) along with the total Hamiltonian in eq.(2.39) on the dynamical

equation eq.(2.41), we get a set of ten equations obtained from the known commutation relations.

[

bî
k′ ,b

ĵ
k

†]

= δî, ĵδk′,k (2.43)

and
[

c
λ̂ ′

k′
k′ ,cλ̂k

k

†]

= δ
λ̂ ′

k,λ̂k
δk′,k. (2.44)

By organizing them in a matrix 10×10:












ω0I3− 1
2 ΩFk

1
2 ΩFk −iω0

√
Ω

ωph,k
Pk iω0

√
Ω

ωph,k
Pk

− 1
2 ΩFk −ω0I3+

1
2 ΩFk iω0

√
Ω

ωph,k
Pk −iω0

√
Ω

ωph,k
Pk

iω0

√
Ω

ωph,k
PT

k iω0

√
Ω

ωph,k
PT

k

(

ωph,k+2
ω0Ω

ωph,k

)

I2 −2
ω0Ω

ωph,k
I2

iω0

√
Ω

ωph,k
PT

k iω0

√
Ω

ωph,k
PT

k 2
ω0Ω

ωph,k
I2 −

(

ωph,k+2
ω0Ω

ωph,k

)

I2






















uk

vk

mk

nk











=ωpol,k















uk

vk

mk

nk















. (2.45)

Where uk, vk, mk and nk are the vectors consisting of components uî
k, vî

k, m
λ̂k
k and n

λ̂k
k . Fk is the

matrix 3×3 whose elements are

Dî, ĵ(k) =
1

Nπ ∑
ρρρ

(

3ρ îρ ĵ

ρ2
−δî, ĵ

)

eik·ρρρ

ρ3
, (2.46)

and Pk is

Pk =








x̂ · λ̂1,k x̂ · λ̂2,k

ŷ · λ̂1,k ŷ · λ̂2,k

ẑ · λ̂1,k ẑ · λ̂2,k







, (2.47)

where λ̂1,k and λ̂2,k represent the two transverse polarization states, which are transverse to each

other, where we may orient as λ̂2,k = k̂× λ̂1,k.

The choice of axes x̂, ŷ and ẑ is arbitrary, and considering a photon with wave vector

k and transverse polarization directions λ̂1,k and λ̂2,k we can do ẑ = k̂, x̂ = λ̂1,k and ŷ = λ̂2,k,

which simplifies our matrix Pk. Furthermore, in this work we are mainly interested in the overall

physical behavior of these types of systems, so we will consider the continuum limit, where

the details of the crystal structure are not relevant, and we can observe that the lattice sum

factor is different from zero only for diagonal terms; this implies that the matrix Fk is simply

diagonal (thus, the nonzero elements are Dλ̂1,k,λ̂1,k(k), Dλ̂2,k,λ̂2,k(k) and Dk̂,k̂(k)). By assuming

these considerations, we simplify the problem because the equations for each direction do not
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mix terms from other directions, and then we have two independent matrices of dimension 4×4

for transverse modes, and one of dimension 2×2 for longitudinal modes:











ω0− 1
2 ΩD(k) 1

2 ΩD(k) −iω0

√
Ω

ωph,k
iω0

√
Ω

ωph,k

− 1
2 ΩD(k) −ω0+

1
2 ΩD(k) iω0

√
Ω

ωph,k
−iω0

√
Ω

ωph,k

iω0

√
Ω

ωph,k
iω0

√
Ω

ωph,k
ωph,k+2

ω0Ω

ωph,k
−2

ω0Ω

ωph,k

iω0

√
Ω

ωph,k
iω0

√
Ω

ωph,k
2

ω0Ω

ωph,k
−
(

ωph,k+2
ω0Ω

ωph,k

)





















uT
k

vT
k

mk

nk











= ωpol,k











uT
k

vT
k

mk

nk











; (2.48)




ω0 +

1
2
(4−D(k))Ω −1

2
(4−D(k))Ω

1
2
(4−D(k))Ω −ω0 − 1

2
(4−D(k))Ω








uL

k

vL
k



= ωL,k




uL

k

vL
k



 . (2.49)

or more compactly:

(MT −ωpol,kI4)











uT
k

vT
k

mk

nk











= 0; (2.50)

(ML −ωL,kI2)




uL

k

vL
k



= 0. (2.51)

Where

D(k) =
1

Nπ ∑
ρρρ




3

(

ρ λ̂k

)2

ρ2
−1






eik·ρρρ

ρ3
. (2.52)

For non-trivial solutions, this matrix equation is satisfied only if the determinant of MT −ωpol,kI4

is zero. By imposing it, we obtain the secular equation

ω2
ph,k

(
ω2

0 −ω0ΩD(k)
)
−
[

ω2
ph,k +ω2

0 +ω0Ω(4−D(k))
]

ω2
pol,k +ω4

pol,k = 0. (2.53)

From the equations of classical electrodynamics, for a transverse plane wave, the relation

eq.(2.16) must be valid and the dielectric function can be obtained from

ε =
k2c2

ω2
= ε∞

ω2
ph,k

ω2
pol,k

. (2.54)

Thus, by isolating ω2
ph,k/ω2

pol,k in eq.(2.53) and substituting it in eq.(2.54), we get the dielectric

function

ε(k,ωpol,k) = ε∞

(

1+
4ω0Ω

ω2
0 −ω0ΩD(k)−ω2

pol,k

)

. (2.55)
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The dispersion relation is determined by solving the biquadratic equation for ω2
pol,k:

ωpol,k± =

√

ω2
0 +ω2

ph,k +ω0Ω(4−D(k))

2







1±

√
√
√
√
√1−

4ω2
ph,k

(
ω2

0 −ω0ΩD(k)
)

[

ω2
0 +ω2

ph,k +ω0Ω(4−D(k))
]2







1/2

. (2.56)

If we do the same for the longitudinal equation, we get

ωL,k =
√

ω2
0 +(4−D(k))ω0Ω. (2.57)

These three bands are shown in figure 3, for the first Brillouin zone (BZ). The extra

bands are obtained by folding the photon states with large k into the first BZ which also couple

to material excitations. If we include the Umklapp processes in our Hamiltonian, we have a sum

in G for the photon annihilation operators c
λ̂k
k+G, where we get a dispersion relation for each

primitive wavevector G, as shown in figure 3.

It is interesting to note that for D(k) → 0, this reproduces perfectly the obtained

results in the classical approach when the dipole-dipole interaction is disregarded. Furthermore,

we can use the same classical approach taken in section 2.2 and obtain exactly the same dispersion

relation. This interesting result is shown in Appendix A, where we demonstrate the equivalence

between the quantum and classical formalisms for both one and two SHO per unit cell. In this

work, we have chosen to apply the quantum formalism because it provides us with more physical

information and a more detailed description of our system than classical formalism, as we will

study below.

2.4 Thermodynamic analysis: uncoupled system

If the dipole-light interaction does not exist, Ω = 0, and therefore the system is said

to be uncoupled. Thus we have a system with matter oscillation modes with constant dispersion

ω(k) = ω0 (Einstein solid) and free photons with dispersion ωph,k = c|k|/√ε∞, where the

total Hamiltonian consists only of H0 and Hph (see eq.(2.27) and eq.(2.32)). From the total

Hamiltonian of the free system, the canonical partition function can be obtained, but we will not

go into details now, as this will be discussed in detail later in the text, when we consider a more

general case, taking into account the coupling.

Analyzing first the matter part, as in the Einstein solid, the canonical function

partition will be

Zmat = ∏
k

|k|fπ/a

1

8
csch3

(
h̄ω0

2kBT

)

. (2.58)
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Figure 3 – Dispersion relation.

Source: Elaborated by the author (2024).

In the thermodynamic limit, the Helmholtz free energy is related to the partition function,

resulting in

Fmat = kBT ∑
k

|k|fπ/a

ln

[
1

8
sinh3

(
h̄ω0

2kBT

)]

, (2.59)

where Fmat is the Helmholtz free energy of the free excitations of the SHOs. We consider the

first BZ to be approximately a sphere of radius π/a, where a is the size of the unit cell. The table

1 shows some of its experimental values. At continuum limit we have

Fmat =
4V kBT

π2

∫ π/a

0
ln

[
1

8
sinh3

(
h̄ω0

2kBT

)]

k2dk =
4π

3
NkBT ln

[
1

8
sinh3

(
h̄ω0

2kBT

)]

. (2.60)

Free photons coexist with the material excitations inside the crystal, whose dispersion
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Table 1 – Brillouin zone size for different materials. The values used are found in (Drick-

Amer et al., 1967), (Bryksin et al., 1972), (Perumal; Mahadevan, 2005), 
(Torabi et al., 2014), (Wang; Herron, 1990), (Fryar et al., 2005),(Cardona; Peter, 
2005), and (Mueller et al., 2020).

Material excitation Phonons Excitons Plasmons

Material NaCl LiF CdF2 CdS ZnO Gold nanoparticle
π
a

(units of
ω0

√
ε∞

c
) 8,24×105 7,72×105 8,40×105 2,24×102 1,02×102 0,43−1,14

Source: Elaborated by the author.

is ωph,k = c|k|/√ε∞. Thus, the free photon canonical function partition is

Zph =
∞

∏
k

1

4
csch2

(
h̄ωph,k

2kBT

)

, (2.61)

leading to

Fph = kBT
∞

∑
k

ln

[
1

4
sinh2

(
h̄ωph,k

2kBT

)]

. (2.62)

Therefore, the total Helmholtz free energy of the free system is

F f ree = kBT






∑
k

|k|fπ/a

ln

[
1

8
sinh3

(
h̄ω0

2kBT

)]

+
∞

∑
k

ln

[
1

4
sinh2

(
h̄ωph,k

2kBT

)]







. (2.63)

Considering a free photon cavity, the photon wave functions must be zero at the contours, which

leads to a discretization of the wave vectors. Thus, in the continuum limit (V → ∞), the discrete

sum can be replaced by an integral, which allows us to determine F0 by

F f ree =
4V kBT

π2

{∫ π/a

0
ln

[
1

8
sinh3

(
h̄ω0

2kBT

)]

k2dk+
∫ ∞

0
ln

[
1

4
sinh2

(
h̄ck

2kBT
√

ε∞

)]

k2dk

}

. (2.64)

Or separating the ground state terms from the excited terms

F f ree =
4V kBT

π2

{∫ π/a

0
ln

[(

1− e−h̄ω0/kBT
)3
]

k2dk+
∫ ∞

0
ln

[(

1− e−h̄ck/kBT
√

ε∞

)2
]

k2dk

}

+
4V

π2

(

3

∫ π/a

0

h̄ω0

2
k2dk+2

∫ ∞

0

h̄ck/
√

ε∞

2
k2dk

)

=

4V kBT

π2

{∫ π/a

0
ln

[(

1− e−h̄ω0/kBT
)3
]

k2dk+
∫ ∞

0
ln

[(

1− e−h̄ck/kBT
√

ε∞

)2
]

k2dk

}

+E
f ree
GS .

(2.65)

We can now see that there is a problem in calculating the photon energy; the part

coming from the ground state tends to infinity. As this contribution is independent of temperature,

being only a constant energy, it is usual to omit this contribution and focus on the excited

components. We will follow this trend in this work and leave the discussion on the ground-state

contributions to the thermodynamics of these systems to a later work.
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The Helmholtz free energy of the excited states is then

F f ree
exc =

4V kBT

π2

{∫ π/a

0
ln

[(

1− e−h̄ω0/kBT
)3
]

k2dk+
∫ ∞

0
ln

[(

1− e−h̄ck/kBT
√

ε∞

)2
]

k2dk

}

, (2.66)

which solving the integrals we obtain

F f ree
exc =−4πNkBT ln

(

eh̄ω0/kBT

eh̄ω0/kBT −1

)

− 8π2

45

ε
3/2
∞ k4

BV

h̄3c3
T 4. (2.67)

Where the first term corresponds to the contribution from the matter-like states, while the second

contribution is that of the free photon gas.
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3 RESULTS

We now turn our attention to the coupled light-matter system.

3.1 Ground-state

As we have done so far, we have obtained the dispersion relation for each mode; ω±,k

for transverse and ωL,k for longitudinal vibrations. Thus, the energy is given by h̄ωk
(
nk +

1
2

)
,

where nk is the number of polaritons for a wave vector k. The ground-state (GS) corresponds to

the quantum vacuum of polaritons (nk = 0) whose quantum states are at the lowest energy; each

state k yields two transverse terms of energy
h̄ω+,k

2
and

h̄ω−,k
2

, and one longitudinal of energy

h̄ωL,k
2

. Therefore, the GS energy is calculated as follows:

EGS =
h̄

2




 ∑

k
|k|fkc

2ω+,k + ∑
k

|k|fπ/a

(
2ω−,k +ωL,k

)




 , (3.1)

where π/a is the size of the BZ, with a being the lattice constant. Note also that we impose a

cutoff kc on the summation for the upper polaritons; this is because, in reality, wavelengths of the

order of the dimensions of the centers of oscillation will not induce relevant dipole moments, and

thus the photons beyond this limit will not couple. For example, in nanoparticle supercrystals,

the electric field fluctuating in nanoparticle-like dimensions does not induce an effective dipole

moment. Therefore, since u0 is the dimension of the centers of oscillation, the cutoff must be

of the order of kc = π/u0. Therefore, we rewrite kc = απ/a, where α is another parameter

describing the properties of our system; it can range from values close to 1 to very high values.

Figure 4 shows the interesting energies.

Considering a cubic crystal of size L, the contour conditions of electrodynamics

impose that the photon wave functions must vanish in the surfaces, and hence the components

of the wave vector must be multiples of π/L. Therefore, in the limit L → ∞, we can change

the summation to an integral: ∑k f (k)→ 4L3

π2

∫
d3k f (k). In this case, the ground-state energy is

calculated by doing

EGS =
h̄L3

2π3

[∫

|k|fαπ/a
2ω+,kd3k+

∫

|k|fπ/a

(
2ω−,k +ωL,k

)
d3k

]

, (3.2)

Now we notice that the vector dependence on the frequencies is only given by D(k). As we

are mainly interested, in this work, in the continuum limit, we can exchange D(k) by a mean
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Figure 4 – The considered excitation energies for the sum-

mation of the total energy of the system; α de-

notes the cutoff in the contributions of the photon

energy for the coupling.

Source: Elaborated by the author (2024).

structure parameter D(k)→ s such that the frequencies have a fully spherical symmetry at k and

we can solve the integral by

EGS =
2h̄L3

π2

[∫ απ/a

0
2ω+k2dk+

∫ π/a

0
(2ω−+ωL)k2dk

]

, (3.3)

where

ω±(k) =

√

ω2
L + c2k2/ε∞

2






1±

√
√
√
√1− 4ω2

T c2k2/ε∞
[
ω2

L + c2k2/ε∞

]2







1/2

; (3.4)

ωL =
√

ω2
0 +(4− s)ω0Ω; (3.5)

ωT =
√

ω2
0 − sω0Ω. (3.6)

Again, we note that for α → ∞, the integration in the upper band should be of the

order of k4 and must diverge. To avoid this problem, we consider a finite α . Taking the difference
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of the ground-state of the coupled system with respect to the free system

∆EGS =
2h̄L3

π2

[∫ απ/a

0
2

(

ω+− ck√
ε∞

)

k2dk+
∫ π/a

0
(2ω−+ωL −3ω0)k2dk

]

. (3.7)

Is convenient to rearrange the integration of the following form

∆EGS =
2h̄L3

π2

{∫ π/a

0

[

2(ω++ω−)+ωL −2
ck√
ε∞

−3ω0

]

k2dk+2

∫ απ/a

π/a

(

ω+− ck√
ε∞

)

k2dk

}

. (3.8)

Let us first focus on the first integral. It is easy to prove the relation

ω+±ω− =

√

c2k2

ε∞

±2ωT
ck√
ε∞

+ω2
L, (3.9)

and so we have

∫ π/a

0
(ω+−ω−)k2dk =

∫ π/a

0

√

c2k2

ε∞

±2ωT
ck√
ε∞

+ω2
Lk2dk. (3.10)

This equation can be solved analytically by using trigonometric integration. However

the final expression is long and confusing, so we omit it. We can simplify this expression by

assuming that π/a is very large (π/a k ω0
√

ε∞/c), where we can take the expansion:
√

c2(π/a)2

ε∞

±2ωT
cπ/a√

ε∞

+ω2
L =

ck√
ε∞

{

1+
ωT

√
ε∞

cπ/a
+

1

2

(
ω2

L −ω2
T

)
ε∞

c2(π/a)2
− 1

3

(
ω2

L −ω2
T

)
ωT ε

3/2
∞

c3(π/a)3
+O

[(
ω0

√
ε∞

cπ/a

)4
]}

.

(3.11)

Taking this limit, in the result of eq.(3.10), the dominant term will be
√

c2k2

ε∞

±2ωT
ck√
ε∞

+ω2
L

[

−1

8
(π/a+ωT )(ω

2
L −5ω2

T )

+
1

4

(
(π/a)2 +2ωT π/a+ω2

L

)
(π/a−5ωT/3)

]

,

(3.12)

and, by using the expansion eq.(3.11) and grouping in powers of π/a, and joining with the other

trivial integrations of the parts on ωL, ω0 and ck/
√

ε∞ in eq.(3.8), we will get

∆EGS =
4ε

3/2
∞ h̄L3

π2c3

[(

ωT +
ωL

2
− 3ω0

2

)
c3(π/a)3

3ε
3/2
∞

+

(
ω2

L −ω2
T

4

)
c2(π/a)2

ε∞

]

+

4h̄L3

π2

∫ απ/a

π/a

(

ω+− ck√
ε∞

)

k2dk+O

[(
ω0

√
ε∞

cπ/a

)2
]

.

(3.13)

For the second integration, as we are considering π/a k ω
√

ε∞/c, let us take the

expansion ω+− ck√
ε∞

=
ω2

L−ω2
T

2ck/
√

ε∞
+O

[(
ω0

√
ε∞

ck

)2
]

to obtain

∫ απ/a

π/a

(

ω+− ck√
ε∞

)

k2dk =
4h̄L3

π2

(
ω2

L −ω2
T

4

)√
ε∞(π/a)2

c

(
α2 −1

)
+O

[(
πL

a

)3
]

. (3.14)
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Therefore, ignoring the remaining powers, we get the expression for the GS difference per unit

cell of the crystal

∆EGS

N
=

4π

3
h̄

(

ωT +
ωL

2
− 3ω0

2

)

+4π h̄ω0Ω

√
ε∞

cπ/a
α2, (3.15)

where we use a3 = V/N and ω2
L −ω2

T = 4ω0Ω. Let us be careful not to confuse this N with

what we named in section 2.2; now, N is the total number of unit cells. The dependence of the

ground-state energy difference on α is shown in figure 5, by solving numerically the integration

given by eq.(3.7).

Figure 5 – Energy ground-state relative to the free system for

Ω = 0,75ω0, s = 4/3, and π/a = 100ω0
√

ε∞/c.

Source: Elaborated by the author (2024).

For small values of α , the contribution from the dipole-dipole interaction dominates

and the GS energy decreases with increasing light-matter coupling. However, as α increases, the

photon terms dominate and ∆EGS becomes positive.

From figure 6 we see that the approximation made has an excellent agreement; the

red curve is the predicted behavior in eq.(3.15) and the black curve is the numerical calculation.

For π/a= 10ω0
√

ε∞/c the two curves practically overlap, so we cannot visualize their separation.

figure 7 shows the dependence of the GS energy with respect to the coupling intensity Ω, ranging

the structure parameter s. It is interesting to highlight that s = 2/3 is obtained for a face-centered

cubic lattice in the limit k → 0. The increase of s causes a reduction of the transverse frequency

ωT and, as we have already commented, the effect is that the GS energy difference becomes

negative and therefore, as s is larger, we have a wider range of values for which ∆EGS is negative,
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Figure 6 – Approximation taken for the ground-state energy.

Source: Elaborated by the author (2024).

as we see in figure 7. Furthermore, we note that as the coupling parameter approaches 1/s, the

curve becomes steep with a negative derivative. As we will see later, this behavior leads to

interesting results and we will refer to this condition Ω/ω0 = 1/s the collapse condition, for

reasons which will become clearer below.

Figure 7 – Ground-state energy for π/a = 100ω0
√

ε∞/c.

Source: Elaborated by the author (2024).

3.2 Thermodynamic properties of the coupled light-matter system

The diagonalization of the Hamiltonian leads to the well-known treatment of a unidi-

mensional harmonic oscillator. Each k supports an quantum oscillator of frequency ωk−which

we have already determined: ω±,k and ωL,k− with energy operator h̄ωk
(
ηk

†ηk +
1
2

)
, whose

eigenstates are |nkð with engenvalues of energy Enk = h̄ωk
(
nk +

1
2

)
. In the bosons statistics,

|nkð represents a single state particle, occupied with nk quanta (in our case, polaritons), which is

obtained by acting successively the creation operator ηk
† in the ground-state: ηk

† |0ð= 1√
nk!

|nkð.
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Our total Hamiltonian is

H = ∑
k

|k|fαπ/a

∑
λ̂k=λ̂k,1,λ̂k,2

h̄ω+,k

(

η λ̂k
+,k

†

η λ̂k
+,k +

1

2

)

+ ∑
k

|k|fπ/a

[

∑
λ̂k=λ̂k,1,λ̂k,2

h̄ω−,k

(

η λ̂k
−,k

†

η λ̂k
−,k +

1

2

)

+ h̄ωL,k

(

ηL,k
†ηL,k +

1

2

)]

,

(3.16)

where the eigenstates will be denominated by the ensemble of occupation numbers {n}, and are

given by the direct product

|ψ{n}ð= ∏
|k|fαπ/a

∏
λ̂k

|nλ̂k
+,kð¹ ∏

|k′|fπ/a

|nL,k′ð¹∏
λ̂k′

|nλ̂k′
−,k′ð , (3.17)

which constitutes the Fock space. The canonical partition function is obtained by doing

Z = Tr [exp(−βH)] = ∑
{n}

exp

(

−β

{

∑
|k|fαπ/a

∑
λ̂k

h̄ω+,k

(

n
λ̂k
+,k +

1

2

)

+ ∑
|k|fπ/a

∑
λ̂k

[

h̄ω−,k

(

n
λ̂k
−,k +

1

2

)

+ h̄ωL,k

(

nL,k +
1

2

)]})

,

(3.18)

where β = 1/kBT . Since there are no restrictions on the number of polaritons, we can use the

factoring:

Z = ∏
|k|fαπ/a

∏
λ̂k







∞

∑
n

λ̂k
+,k=0

exp

[

−β h̄ω+,k

(

n
λ̂k
+,k +

1

2

)]







× ∏
|k′|fπ/a







∞

∑
nL,k′=0

exp

[

h̄ωL,k′

(

nL,k′ +
1

2

)]





∏
λ̂k′







∞

∑
n

λ̂k′
−,k′=0

exp

[

−β h̄ω−,k′

(

n
λ̂k′
−,k′ +

1

2

)]







.

(3.19)

By using the geometric series, we get the final form for the canonical partition function

Z = ∏
k

|k|fαπ/a

1

4
csch2

(
β h̄ω+,k

2

)




 ∏

k
|k|fπ/a

1

8
csch2

(
β h̄ω−,k

2

)

csch

(
β h̄ωL,k

2

)




 , (3.20)

with the average occupancy numbers given by

ïn±,kð=
1

eβ h̄ω±,k −1
; (3.21)

ïnL,kð=
1

eβ h̄ωL,k −1
. (3.22)
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3.2.1 Helmholtz free energy

The connection with thermodynamics in the canonical ensemble is established by

the Helmholtz free energy

F =− 1

β
ln(Z) , (3.23)

leading to

F =
1

β






∑
k

|k|fαπ/a

ln

[
1

4
sinh2

(
β h̄ω+,k

2

)]

+ ∑
k

|k|fπ/a

ln

[
1

8
sinh2

(
β h̄ω−,k

2

)

sinh

(
β h̄ωL,k

2

)]







. (3.24)

Separating the parts corresponding to the ground-state and the excited states,

F =
1

β






∑
k

|k|fαπ/a

2ln
(

1− e−β h̄ω+,k
)

+ ∑
k

|k|fπ/a

[

2ln
(

1− e−β h̄ω−,k
)

+ ln
(

1− e−β h̄ωL,k
)]







+EGS. (3.25)

As already mentioned, the zero point energy must diverge for α → ∞, and for now, we will be

concerned only with studying the thermal properties coming from the excited states, that is, of

the boson gas. For the excited states, it is actually convenient to take α → ∞. Again, assuming

the periodicity conditions in the three-dimensional cavity and taking the continuum limit, the

difference of the Helmholtz free energy in comparison with the ground-state is calculated from

F −EGS =
4V kBT

π2

{∫ ∞

0
2ln
(

1− e−h̄ω+/kBT
)

k2dk+
∫ π/a

0

[

2ln
(

1− e−h̄ω−/kBT
)

+ ln
(

1− e−h̄ωL/kBT
)]

k2dk

}

.

(3.26)

3.2.2 Internal energy and specific heat

The average of the total energy is

U = 2
∞

∑
k

h̄ω+,k

(

ïn+,kð+
1

2

)

+ ∑
|k|fπ/a

[

2h̄ω−,k

(

ïn−,kð+
1

2

)

+ h̄ωL,k

(

ïnL,kð+
1

2

)]

, (3.27)

leading to

U = 2
∞

∑
k

h̄ω+,k

eh̄ω+,k −1
+ ∑

|k|fπ/a

[

2
h̄ω−,k

eβ h̄ω−,k −1
+

h̄ωL,k

eβ h̄ωL,k −1

]

+EGS, (3.28)

which, by exchanging the summation for integration, leads to

U =
4V

π2

{

2

∫ ∞

0

h̄ω+

eh̄ω+/kBT −1
k2dk+

∫ π/a

0

[

2
h̄ω−

eh̄ω−/kBT −1
+

h̄ωL

eh̄ωL/kBT −1

]

k2dk

}

+EGS. (3.29)
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For high temperatures, high-energy polaritons are dominant and, using the approximation

ω+ ≃ ωph +
ω2

L−ω2
T

2ωph
= ωph +

2ω0Ω
ωph

, and expanding in Taylor series the distribution

1

exp

[

β h̄ωph

(

1+ 2ω0Ω

ω2
ph

)]

−1

=
1

eβ h̄ck/
√

ε∞ −1
−β h̄

eβ h̄ωph

(

eβ h̄ωph −1
)2

2ω0Ω

ωph

+O





(

2ω0Ω

ω2
ph

)2


 , (3.30)

disregarding the powers
(

2ω0Ω
ωph

)2

and further, we can get

U −EGS =
8V

π2

∫ ∞

0

ωphk2dk

eβ h̄ωph −1
+

16V

π2

ε
3/2
∞ ω0Ω

h̄c3β 2

∫ ∞

0

ex(1− x)−1

(ex −1)2
xdx. (3.31)

We have that
∫ ∞

0
ex(1−x)−1

(ex−1)2 xdx =−π2/6, and therefore

U −EGS =
8V

π2

∫ ∞

0

ωphk2dk

eβ h̄ωph −1
− 8

3

ε
3/2
∞ k2

Bω0ΩV T 2

h̄c3
, (3.32)

by noting that the first term of the right hand is the energy of the free photons minus the respective

ground-state, we rewrite

U −EGS =U f ree −E
f ree
GS − 8

3

ε
3/2
∞ k2

Bω0ΩV T 2

h̄c3
. (3.33)

The behavior for low temperatures can also be obtained, but we will make a very

detailed analysis later in the calculation of the specific heat for this limit. To understand the

effect of coupling, it is interesting to study physical quantities by comparing them with the free

system. Thus, the change in the energy of the boson gas caused by the coupling will be

∆(U −EGS) =
4V

π2

{

2

∫ ∞

0

[
h̄ω+

eh̄ω+/kBT −1
− h̄ωph

eh̄ωph/kBT −1

]

k2dk

+
∫ π/a

0

[

2
h̄ω−

eh̄ω−/kBT −1
+

h̄ωL

eh̄ωL/kBT −1
−3

h̄ω0

eh̄ω0/kBT −1

]

k2dk

}

,

(3.34)

where ∆(U −EGS) is the energy difference between the excited states of the coupled and free

systems. If T → ∞, the energy will tend to the third term on the right of eq.(3.33).

By numerical solution of the integral in eq.(3.34), we plot the dependence on tem-

perature for different coupling magnitudes in figure 8, by noticing the transition in the signal

of ∆(U −EGS) with the increase of T , as expected in eq.(3.33). This negative value is because

the occupation number of the upper polaritons is smaller than the occupation number of the free

photons, despite having greater energy.
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Figure 8 – Energy difference between the excited states

of the coupled and free system, taking π/a =
ω0

√
ε∞/c.

Source: Elaborated by the author (2024).

The specific heat at constant volume can be obtained from the definition cv =

1
N

(
∂U
∂T

)

V,N
, from eq.(3.29):

cV =
8πkB

(π/a)3

{
∫ ∞

0

(
h̄ω+

kBT

)2
eh̄ω+/kBT

(
eh̄ω+/kBT −1

)2
k2dk

+
∫ π/a

0

[(
h̄ω−
kBT

)2
eh̄ω−/kBT

(
eh̄ω−/kBT −1

)2
+

1

2

(
h̄ωL

kBT

)2
eh̄ωL/kBT

(
eh̄ω−/kBT −1

)2

]

k2dk

}

.

(3.35)

At small temperatures, the distributions will tend to zero, except the low polaritons, which for

small k’s, will be dominant, as ω− tends to zero, and becomes highly populated. Therefore, let

us use the approximation ω− ≃ vgk (vg =
ωT

ωL
√

ε∞
c is the group velocity) to solve the integration,

obtaining

cV =
8

π2

V kB

Nh̄3v3
gβ 3

∫ ∞

0

exx4

(ex −1)2
dx =

32π2

15

V kB

Nh̄3v3
gβ 3

. (3.36)

By introducing the Debeye temperature TD =
h̄vgkD

kB
(kD is the Debeye wavevector defined as

kD =
(

3
4π

)1/3
π/a), we get the asymptotic behavior for small temperatures

cV =
8π4

5
kB

(
T

TD

)3

. (3.37)

The same result was predicted by Debeye (Gopal, 2012) for the solids, but with the

difference that vg is the sound velocity in the crystals. In our model, vg must be much larger,
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because it is proportional to the light velocity (as we can see in Table 1, in ionic crystals, the BZ

is large; π/a ∼ 105ω0
√

ε∞/c). For this reason, in regular crystals, the phonon contribution to the

specific heat is much larger than that of the polaritons and these can be readily disregarded when

discussing the thermodynamical properties. This may cease to be true as the coupling strength

becomes larger, lowering the group velocity of the polaritons.

For high temperatures, it is sufficient to derivate eq.(3.33) with respect to T , to obtain

the expression

cV = c
f ree
V − 16

3

ε
3/2
∞ k2

Bω0ΩV T

Nh̄c3
, (3.38)

where c
f ree
V is the specific heat of the photon gas. By numerically solving the integral, we plot

the specific heat, taking π/a = ω0
√

ε∞/c and s = 4/3, for different coupling strengths, as shown

in figure 9. We observe the expected cubic dependence for low temperatures and also, as the

coupling approaches its maximum value, cV becomes more expressive; the reason is that the

excitation frequency ωT becomes small, strongly increasing the population of lower polaritons,

where this can be seen mathematically from the reduction of the group velocity, corresponding

to the coefficient of T 3.

We also analyze the change with the size of the BZ, given in figure 10. For π/a =

100ω0
√

ε∞/c, the behavior with T 3 is seen only for temperatures outside the grid of the graph.

Looking at the same curve, we notice two temperature ranges where cV is almost constant,

corresponding to regions where the dipole-dipole interaction will dominate; in the first, ωT , and

the second, both ωT and ωL.

3.2.3 Pressure

The pressure is related to F by P =−(∂F/∂V )T,N . But its value will also diverge

due to the GS energy, and once again, we have decided to leave these terms aside. The pressure

corresponding to the polariton gas is

P =
1

V

(

Ω
∂

∂Ω
−1

)

Fexc +
4π

3

NkBT

V
ln

[(

1− e
h̄ω−(k=π/a)

kBT

)2(

1− e−h̄ωL/kBT
)
]

, (3.39)

where Fexc is the component of the free energy coming from the excited states

Fexc =
4V kBT

π2

{∫ ∞

0
ln

[(

1− e−h̄ω+/kBT
)2
]

k2dk

+
∫ π/a

0
ln

[(

1− e−h̄ω−/kBT
)2(

1− e−h̄ωL/kBT
)]

k2dk

}

.

(3.40)
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Figure 9 – Specific heat for π/a = ω0
√

ε∞/c and s = 4/3,

ranging the magnitude of the coupling.

Source: Elaborated by the author (2024).

Figure 10 – Specific heat ranging π/a, for Ω ≃ 0,75ω0 and

s = 4/3.

Source: Elaborated by the author (2024).
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The behavior of P with respect to T is shown in figure 11, for different coupling values.

Figure 11 – Pressure of the excitation states for π/a =
ω0

√
ε∞

c
.

Source: Elaborated by the author (2024).

To better visualize the dependence of the pressure on the coupling strength, we also

show in figure 12 the P×T plot for coupling parameters Ω/ω0 = 0.75−d, with d = 0.1, 0.01

and 0.001. We see that the negative pressure effect only becomes relevant as the relative coupling

parameter approaches the collapse condition Ω/ω0 = 1/s = 0.75. This is because the lower

polaritons get the domain at certain temperatures; the derivative with respect to Ω produces

a term proportional to 1/ωT . But it will not prevail, as we can see in figure 11 and figure 12,

because this contribution has a linear dependence with respect to T , and inevitably the high

energy polaritons will dominate the expression, having a behavior proportional to T 4, as we will

now show.

At high temperatures, the photon-like polaritons will predominate, and we can again
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Figure 12 – Pressure ranging coupling in logarithmic scale.

Source: Elaborated by the author (2024).

use the approximation ω+ ≃ ck√
ε∞

+
ω2

L−ω2
T

2ck/
√

ε∞
to obtain

P ≃ 8

π2β

∫ ∞

0

(

Ω
∂

∂Ω
−1

)

ln

(

1− e
− β h̄ck√

ε∞ e
− β h̄(ω2

L
−ω2

T
)

2ck/
√

ε∞

)

k2dk

≃ 8

π2

[

2h̄ω0Ω

c/
√

ε∞

∫ ∞

0

1

e
β h̄ck√

ε∞ −1

kdk

︸ ︷︷ ︸

coupling contribution

− 1

β

∫ ∞

0
ln

(

1− e
− β h̄ck√

ε∞

)

k2dk

︸ ︷︷ ︸

uncoupled photons

]

=
8

π2

[

2ε
3/2
∞ ω0Ω

h̄c3β 2

∫ ∞

0

1

ex −1
xdx+

ε
3/2
∞

c3h̄3β 4

∫ ∞

0
ln

(
ex

ex −1

)

x2dx

]

,

(3.41)

and thus, knowing that
∫ ∞

0
1

ex−1
xdx = π2

6
, and

∫ ∞
0 ln

(
ex

ex−1

)

x2dx = π4

45
, we get the approximate

equation for the pressure at high temperatures

P =
8ε

3/2
∞ k2

Bω0Ω

3h̄c3
T 2 +P f ree, (3.42)

where P f ree is the pressure of the free photon gas

P f ree =
8π2

45

k4
Bε

3/2
∞

h̄3c3
T 4, (3.43)
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noting that the coupling effect has a dependence on T 2.

Now let us get the pressure at low temperatures. In the limit T → 0, as in the same

analysis done for the specific heat, the high-energy polaritons and the longitudinal bosons become

irrelevant in comparison with the low-energy polaritons. The Helmholtz’s free energy can be

approximately written as

Fexc ≃− 8V

π2β

∫ π/a

0
ln

(

eβ h̄ω−

eβ h̄ω− −1

)

k2dk. (3.44)

Again, let us take the approximation ω− ≃ ωT

ωL
√

ε∞
ck = vgk, and apply the variables transformation,

to obtain

Fexc ≃− 8V

π2(h̄vg)3

1

β 4

∫ ∞

0
ln

(
ex

ex −1

)

x2dx. (3.45)

Substituting the integral
∫ ∞

0 ln
(

ex

ex−1

)

x2dx = π4

45
, and introducing the Debeye temperature, we

get

Fexc =−2π4

15

(
T

TD

)3

NkBT. (3.46)

From eq.(3.39), we can obtain the approximated pressure for regimes of low temper-

atures, knowing that ∂TD

∂Ω
=− TD

2ω0

[

s
ω2

0

ω2
T

+ s(4− s)
ω2

0

ω2
L

]

:

P =
2π4

15

{

1− 3Ω

2ω0

[

s
ω2

0

ω2
T

+(4− s)
ω2

0

ω2
L

]}(
T

TD

)3
NkBT

V
. (3.47)

Therefore, the final expression is

P =
8π2

45

{
ω2

T ω2
L

ω4
0

− 3

2

Ω

ω0

[

s
ω2

L

ω2
0

+(4− s)
ω2

T

ω2
0

]}
ω4

0 ωL

ω5
T

ε
3/2
∞ k4

B

h̄3c3
T 4, (3.48)

which we can rewrite as the form

P =
8π2

45

{[

1− (1+ s)
Ω

ω0

]2

−
(√

1+6s
Ω

ω0

)2
}

ω4
0 ωL

ω5
T

ε
3/2
∞ k4

B

h̄3c3
T 4, (3.49)

where inside the brackets the dimensionless term depending on the coupling gives us the pressure

signal, as we can see in figure 13, where we easily get the interesting coupling transition

ΩT/ω0 =
1

1+s+
√

1+6s
.

The negative sign in P is because the lower polaritons decrease their energy with

increasing coupling, so this negative contribution comes from the derivative with respect to

Ω applied to the term corresponding to ω− in eq.(3.39). If this negative part exceeds the
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other positive term inside the brackets in eq.(3.39), the pressure of the lower polariton gas is

negative. The presence of a negative pressure indicates that unless there is an external source of

pressure, the system would tend to collapse into itself. In real physical systems, other interactions

may prevent the collapse. In other hand, this effect may be a driving force for possible phase

transitions in such materials.

Figure 13 – Pressure as a function of T 4 at low temperatures,

taking π/a = ω0
√

ε∞/c.

Source: Elaborated by the author (2024).

Figure 14 shows the pressure as we vary the size of the unit cell. Note that for low

temperatures, the pressure is nearly independent of the unit-cell size. This is because the pressure

consists of the exchange of momentum between the coupled medium and the walls of the cavity,

but in the low-temperature regime the dominant wave vectors are small (long wavelengths) and

so the size of the unit cell is irrelevant.

It is interesting to comment that for all thermodynamic quantities at regimes of high

temperatures, we obtain a result where we have separated the component corresponding to the

free system from the components coming from the coupling, making a clearer visualization of

the effect of the light-matter interaction. Another important point is to note that the crystalline

structure details are irrelevant at such regimes (the coupling effects depend only on Ω, and not

s). On the other hand, for low temperatures, we note a dependence on s, denoting an expected

structure dependence. Given this, a more detailed structural analysis of the physical properties at
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Figure 14 – Pressure ranging the Brillouin zone for the cou-

pling magnitude Ω/ω0 = 0,7.

Source: Elaborated by the author (2024).

low temperatures may be appropriate.
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4 CONCLUSIONS AND FUTURE WORKS

In this work we focus on a general model applicable to cases where the material

elementary excitations can be interpreted as charged simple harmonic oscillators, strongly

interacting with light. As a starting point, we connect ourselves to a simplified situation by

considering only isotropic lattices, aiming to obtain an initial physical vision of such systems.

Through a quantum formalism, considering the canonical ensemble, we were able to analyze the

statistical features of the quantum system, where, through the thermodynamic connection, we

explored the thermodynamic properties of the coupled system.

We can analytically preview the behavior of the considered physical properties in

the low and high temperature regimes, commenting on the expected behavior and the physical

implications of the light-matter interaction. Our work opens doors for the study of other

thermodynamic properties such as entropy, bulk modulus, coefficient of thermal expansion, and

even other thermodynamic ensembles of interest.

To obtain the physical properties, we limit ourselves to approximations that simplify

the calculations. Such implemented approximations are important to have an overall physical

understanding of the coupling effect in materials. With this in mind, we plan to refine our

established model by making our assumptions more general, taking into account the details of

the lattice, by directly evaluating different crystalline structures.

For future works, we pretend to include ground state terms in our accounts, exploring

your hole for the thermodynamic properties. We also plan to take advantage of this work to

investigate the possible phase transitions in materials with strong light-matter coupling, taking

into account the ground state effects, based on Landau’s phenomenological theory for phase

transitions. Another future work is to improve the calculation of the ground state relative to the

free system, ∆EGS, for physical systems where α has large values, based on the same method

used to calculate the Casimir effect.
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APPENDIX A – QUANTUM-CLASSICAL EQUIVALENCE

A.1 One dipole: classical approach

In section 2.2, we did not consider the interactions between different dipoles in the

lattice; let us now follow the same path, but taking such interactions into account. The dipoles

interact via instantaneous electric field given by

Edip(r,r
′) =

1

4πε0ε∞

[
3p · (r′− r)
|r′− r|5 (r′− r)− p

|r′− r|3
]

. (A.1)

The component î of the force that the charge Q of a SHO located in rl undergoes due to the

dipole in rl′ is

F î
dip(r,rl′) =

Q

4πε0ε∞

(

3p · rll′

r5
ll′

rll′ −
p

r3
ll′

)

· î = Q

4πε0ε∞
∑

ĵ=x̂,ŷ,ẑ

[

3p
ĵ

l′( ĵ · rll′)(î · rll′)

r5
ll′

−
p

ĵ

l′( ĵ · î)
r3

ll′

]

, (A.2)

where rll′ = r′l − rl , rll′ = |r′l − rl| and p
ĵ

l′ is the ĵ component of the dipole moment of the SHO

in the l′-th unit cell. Substituting p
ĵ

l′ = Qu ĵ(rl′):

F î
dip(rl,rl′) =

Q2

4πε0ε∞
∑

ĵ

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

u ĵ(rl′), (A.3)

where rî
ll′ = î · rll′ and r

ĵ

ll′ = ĵ · rll′ .

The force at direction î due to all dipoles of the lattice is

F î
dip(rl) =

Q2

4πε0ε∞
∑

ĵ

∑
l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

u ĵ(rl′). (A.4)

Where the summation in l′ is taken over all "primed" dipoles of the crystal. We could delimit a

cutoff for these interactions, but the residue of dipoles that would leave behind is not expend-

able; the interaction terms are proportional to 1/r3 and the residuals must be of the order of
∫ R

ρc
d3r(1/r3) ∝

∫ R
ρc

dr/r = ln(R/ρc) where R have the dimensions of the crystal and ρc is the

cutoff.

Now, the equation of motion for the displacement over the direction î and natural

frequency ω0 (assumed to be the same for all directions) will be

M
d2

dt2
uî(rl, t) =−Mω2

0 uî(rl, t)+F î
dip(rl, t)+QE î

0ei(k·rl−ωt), (A.5)

where E î
0 = î ·E0. Let us exchange uî(rl,t) for its Fourier transform using

uî(rl, t) = N
−1/2 ∑

q
eiq·rl uî(q, t). (A.6)
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where N is the total number of unit cells of the lattice. Replacing it on the equation of motion:

N
−1/2

(
d2

dt2
+ω2

0

)

∑
q

eiq·rl uî(q, t) =

Q2N −1/2

4Mπε0ε∞
∑

ĵ

∑
q

∑
l

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

eiq·rl′u ĵ(q, t)+
QE î

0

M
ei(k·rl−ωt)

(A.7)

and applying the Fourier trick − that is, we multiply by e−ik·rl and we sum on rl − we have

N
−1/2

(
d2

dt2
+ω2

0

)

∑
q

∑
l

ei(q−k)·rl uî(q, t) =

Q2N −1/2

4Mπε0ε∞
∑

ĵ

∑
q

∑
l,l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

ei(q·rl′−k·rl)u ĵ(q, t)+
N QE î

0

M
e−iωt .

(A.8)

The following sums lead to

∑
l

ei(q−k)·rl = N δq,k (A.9)

and

∑
l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

ei(q·rl′−k·rl) = ∑
l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

eik·rll′δq,k. (A.10)

Actually, these summations are also different from zero when the difference vector

q−k is a reciprocal lattice vector G. Processes involving photons outside of the first BZ are

usually referred as Umklapp processes. For now, we will not take these terms into account. Thus,

by substituting eq.(A.9) and eq.(A.10) into eq.(A.8) we have

N
1/2

(
d2

dt2
+ω2

0

)

uî(k, t) =
Q2N −1/2

4Mπε0ε∞
∑

ĵ

∑
l,l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

eik·rll′ u ĵ(k, t)+
N QE î

0

M
e−iωt . (A.11)

From the translational symmetry of the lattice, we can assume that

∑
l,l′

(

3rî
ll′r

ĵ

ll′

r5
ll′

− ĵ · î
r3

ll′

)

eik·rll′ = N ∑
ρρρ

(

3ρ îρ ĵ

ρ5
− ĵ · î

ρ3

)

eik·ρρρ , (A.12)

where ρρρ is the separation vector of the SHO’s. The equation of motion will be

(
d2

dt2
+ω2

0

)

uî(k, t) =
Q2

4Mπε0ε∞
∑

ĵ

∑
ρρρ

(

3ρ îρ ĵ

ρ5
− ĵ · î

ρ3

)

eik·ρρρu ĵ(k, t)+
N 1/2QE î

0

M
e−iωt

=
NQ2

4Mε0ε∞
∑

ĵ

Dî, ĵ(k)u ĵ(k, t)+
N 1/2QE î

0

M
e−iωt ,

(A.13)

where

Dî, ĵ(k) =
1

Nπ ∑
ρρρ

(

3ρ îρ ĵ

ρ2
− ĵ · î

)

eik·ρρρ

ρ3
(A.14)
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is the dimensionless sum term of the array, which is discussed in more detail in Ref. (COHEN;

KEFFER, 1955).

Now, as we did in the section 2.2, let us propose uî(rl,t) = uî
0ei(k′·rl−ωt). The Fourier

transform of this function is:

uî(k, t) = N
−1/2e−iωtuî

0 ∑
l

ei(k′−k)·rl = N
1/2e−iωtuî

0δk′,k. (A.15)

Therefore, uî(k, t) is only different from zero when the wavevector of the material modes k′ is

equal to the light wavevector k. Replacing eq.(A.15) into eq.(A.13), we obtain

(
ω2

0 −ω2
)

uî
0 −

NQ2

4Mε0ε∞
∑

ĵ

Dî, ĵ(k)u ĵ
0 =

QE î
0

M
. (A.16)

For the amplitude of the transverse modes, we take î = λ̂k. Furthermore, for simplicity, we can

orient the directions of the coordinate axis as λ̂k = x̂, ŷ = k̂× λ̂k = λ̂ ′
k and ẑ = k̂. Thus,

[

ω2
0 −

NQ2

4Mε0ε∞

Dλ̂k,λ̂k(k)−ω2

]

u
λ̂k
0 − NQ2

4Mε0ε∞

[

Dλ̂k,λ̂ ′
k(k)uλ̂ ′

k
0 +Dλ̂k,k̂(k)uk̂

0

]

=
QE0

M
. (A.17)

By taking the continuum limit, we can see that the structure matrix elements are

diagonal; that is, Dλ̂k,λ̂ ′
k(k) = Dλ̂k,k̂(k) ≃ 0 (this is also common in some high symmetry

directions of cubic structures, and although not completely general, captures the physics of

interest). With these considerations, we will have only

[

ω2
0 −

NQ2

4Mε0ε∞

Dλ̂k,λ̂k(k)−ω2

]

u
λ̂k
0 =

QE0

M
. (A.18)

Where

Dλ̂k,λ̂k(k) =
1

Nπ ∑
ρρρ

[

3(λ̂k · ρ̂)2 −1
] eik·ρρρ

ρ3
. (A.19)

We thus obtain the relation between the amplitudes:

u0,T =
Q/M

ω2
0 −

NQ2

4Mε0ε∞
DT (k)−ω2

E0, (A.20)

where the index "T" denotes "transverse". Using it to get the polarization, as we did in eq.(2.2),

the expression for the displacement vector becomes

D = ε0



ε∞ +
NQ2/Mε0

ω2
0 −

NQ2

4Mε0ε∞
DT (k)−ω2



E = ε0ε(k,ω)E, (A.21)
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where do we get the dielectric function

ε(k,ω) = ε∞



1+
NQ2/Mε0ε∞

ω2
0 −

NQ2

4Mε0ε∞
DT (k)−ω2



= ε∞

[

1+
4ω0Ω

ω2
0 −ω0ΩDT (k)−ω2

]

. (A.22)

For transverse electric field (E0 ·k = 0), from eq.(2.16) we obtain the dispersion relation for

interacting dipoles

ω±(k) =

√

ω2
0 +ω2

ph,k +ω0Ω(4−DT (k))

2







1±

√
√
√
√
√1−

4ω2
ph,k

(
ω2

0 −ω0ΩDT (k)
)

[

ω2
0 +ω2

ph,k +ω0Ω(4−DT (k))
]2







1/2

. (A.23)

We can easily obtain the frequency for longitudinal modes by taking î = k̂ in

eq.(A.16). Since the electric field is transverse, the corresponding equation becomes

[

ω2
0 −

NQ2

4Mε0ε∞

Dk̂,k̂(k)−ω2

]

uk̂
0 = 0, (A.24)

and for a nontrivial solution, we conclude that

ωL(k) =
√

ω2
0 −ω0ΩDL(k), (A.25)

where the lattice sum factor for longitudinal modes is

DL(k) =
1

Nπ ∑
ρρρ

[
3(k̂ · ρ̂)2 −1

] eik·ρρρ

ρ3
. (A.26)

One can show the relation 2DT (k)+DL(k) = 0. At the continuum limit, where DT (k)→ 4/3

(COHEN; KEFFER, 1955), one can write the longitudinal frequency as

ωL =
√

ω2
0 +(4−DT (k))ω0Ω. (A.27)

We note that the quantum and classical models are equivalent.

A.2 Two dipoles: classical approach

let us now consider a lattice with the same aspects, but taking into account two

different dipoles inside each unit cell. We denominate the oscillators by type 1 and 2, where each

one has its specific oscillation natural frequency ωα , charge Qα and mass Mα , where α = 1,2.

Following the same path of the discussion with one SHO, from the electric field of eq.(A.1), the

îth component of the force that the charge Qα of a α dipole of the lth unit cell located in rα,l
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feels due to a β dipole in the position rβ ,l′ is

F î
dip(rα.l,rβ ,l′) =

Qα

4πε0ε∞

(

3pβ · rαβ ,ll′

r5
αβ ,ll′

−
pβ

r3
αβ ,ll′

)

· î =

Qα

4πε0ε∞
∑

ĵ=x̂,ŷ,ẑ




3p

ĵ

β ,l′( ĵ · rαβ ,ll′)(î · rαβ ,ll′)

r5
αβ ,ll′

−
p

ĵ

β ,l′( ĵ · î)
r3

αβ ,ll′





, (A.28)

where rαβ ,ll′ = rβ ,l′−rα,l , r
ĵ

αβ ,ll′ = ĵ ·rαβ ,ll′ and p
ĵ

β ,l′ = ĵ ·pβ ,l′ . Substituting p
ĵ

β ,l′ =Qβ u ĵ(rβ ,l′):

F î
dip(rα,l,rβ ,l′) =

QαQβ

4πε0ε∞
∑

ĵ

[

3( ĵ · rαβ ,ll′)(î · rαβ ,ll′)

r5
αβ ,ll′

− ĵ · î
r3

αβ ,ll′

]

u ĵ(rβ ,l′). (A.29)

Therefore, the force due to all dipoles of the lattice on the α dipole in rα,l will be

F î
dip(rα,l) =

Qα

4πε0ε∞

2

∑
β=1

∑
l′, ĵ

Qβ

[

3( ĵ · rαβ ,ll′)(î · rαβ ,ll′)

r5
αβ ,ll′

− ĵ · î
r3

αβ ,ll′

]

u ĵ(rβ ,l′). (A.30)

The equation of motion for an oscillation mode in the direction î for an α oscillator

is

Mα
d2uî(rα,l)

dt2
=−Mαω2

αuî(rα,l)+F î
dip(rα,l, t)+QαE î

0ei(k·rα,l−ωt). (A.31)

Exchanging uî(rα,l) for its Fourier transform using

uî(rα,l, t) = N
−1/2 ∑

q
eiq·rα,l uî

α(q, t), (A.32)

the equation of motion takes the form

N
−1/2

(
d2

dt2
+ω2

α

)

∑
q

eiq·rα,l uî
α(q, t) =

QαN −1/2

4Mαπε0ε∞
∑
β

∑
q

∑
ĵ,l′

Qβ




3rî

αβ ,ll′r
ĵ

αβ ,ll′

r5
αβ ,ll′

− ĵ · î
r3

αβ ,ll′



e
iq·rβ ,l′u

ĵ

β
(q, t)+

QαE î
0

Mα
ei(k·rα,l−ωt).

(A.33)

Now, by applying the Fourier trick and assuming the translational symmetry of the crystal

N
1/2

(
d2

dt2
+ω2

α

)

uî
α(k, t) =

NQαN 1/2

4Mαε0ε∞
∑
β

∑
ĵ

Qβ D
î, ĵ
βα

(k)u ĵ

β
(k, t)+

N QαE î
0

Mα
e−iωt , (A.34)

where this time the lattice sum factor takes the following form:

D
î, ĵ
βα

(k) =
1

Nπ ∑
ρρραβ




3ρ î

αβ ρ
ĵ

αβ

ρ2
αβ

− ĵ · î




eik·ρρραβ

ρ3
αβ

, (A.35)
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where ρρραβ is the separation vector between the dipoles α and β . As in the case for one oscillator,

we propose that u
ĵ
α (rα , t) = u

ĵ
0,αei(kα ·rα−ωt) and then your reciprocal function of the Fourier

space will be uî
α(k,t) =N e−iωtuî

0,αδk,kα and then we get the equation that relates the amplitudes

of the oscillators

(
ω2

α −ω2
)

uî
0,α − NQα

4Mαε0ε∞
∑

β=1,2
∑

ĵ=x̂,ŷ,ẑ

Qβ D
î, ĵ
βα

(k)u ĵ

0,β =
QαE î

0

Mα
. (A.36)

For a transverse electric field with polarization λ̂k, choosing k̂ = ẑ and λ̂k = x̂, taking

the mode of oscillation over the direction of polarization, eq.(A.36) becomes

(
ω2

α −ω2
)

u
λ̂k
0,α − NQα

4Mαε0ε∞
∑

β=1,2

Qβ D
λ̂k, ĵ
βα

(k)u ĵ

0,β =
QαE0

Mα
. (A.37)

Again, because we are dealing with the classical limit, the interactions of the transverse modes

with respect to the parallel modes must be small, and so we neglect them, leading to

(
ω2

α −ω2
)

u
λ̂k
0,α − NQα

4Mαε0ε∞

2

∑
β=1

Qβ D
λ̂k,λ̂k
αβ

(k)uλ̂k
0,β =

QαE0

Mα
. (A.38)

Since we are considering only two oscillators, we will have two equations; one for type 1, and

the other for type 2:

[

ω2
1 −

NQ1Q2

4M1ε0ε∞

D11(k)−ω2

]

u0,1 −
NQ1Q2

4M1ε0ε∞

D21(k)u0,2 =
Q1E0

M1
(A.39)

[

ω2
2 −

NQ1Q2

4M2ε0ε∞

D22(k)−ω2

]

u0,2 −
NQ1Q2

4M2ε0ε∞

D12(k)u0,1 =
Q2E0

M2
. (A.40)

Is easy to note that D11(k) = D22(k) because these sums are taken from the primitive vectors of

the lattice and D12(k) = D21(k) because for each vector ρρρ12 exist an other ρρρ21 =−ρρρ12 and then

we can say that D12(k) = 1
Nπ ∑ρρρ21

[

3(ρ
λ̂k
21 )

2

ρ5
21

− 1

ρ3
21

]

eik·ρρρ21 = 1
Nπ ∑ρρρ12

[

3(ρ
λ̂k
12 )

2

ρ5
12

− 1

ρ3
12

]

e−ik·ρρρ21 =

D∗
21(k). Substituting these relations and organizing eq.(A.39) and eq.(A.40) in matrix form:




A2 −ω2 −B2

−C2 F2 −ω2








u01

u02



=





Q1
M1

E0

Q2
M2

E0



 . (A.41)

Where we are calling

A2 = ω2
1 −

NQ1Q2

4M1ε0ε∞

D11(k); (A.42)

B2 = ω2
2 −

NQ1Q2

4M1ε0ε∞

D21(k); (A.43)
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C2 =
NQ1Q2

4M2ε0ε∞

D∗
21(k); (A.44)

F2 = ω2
2 −

NQ1Q2

4M2ε0ε∞

D11(k). (A.45)

and we can obtain the amplitudes u0,1 and u0,2:

u0,1 =−





B2Q2
M2

+
(
F2 −ω2

)
Q1
M1

(A2 −ω2)(F2 −ω2)− (BC)2



E0; (A.46)

u0,2 =−





C2Q1
M1

+
(
A2 −ω2

)
Q2
M2

(A2 −ω2)(F2 −ω2)− (BC)2



E0. (A.47)

We can get the macroscopic polarization for a transverse oscillation mode k from

P = ∑i Nipi +Pb, where Ni is the density of an oscillator type i, pi the dipole moment, and Pb

the polarization due to the electronic polarizability, related to the field by eq.(2.9). Since the

crystal is constituted by two oscillators per unit cell, N1 = N2 = N. The dipole moments will

be p1 = Q1u0,1ei(k·r−ωt) and p2 = Q2u0,2ei(k·r−ωt) and, substituting eq.(A.46) and eq.(A.47) we

have

∑i
Nipi =

N

(A2 −ω2)(F2 −ω2)− (BC)2

{

Q1Q2

(
B2

M2
+

C2

M1

)

− Q2
1

M1
(ω2 −F2)− Q2

2

M2
(ω2 −A2)

}

E.

(A.48)

Replacing A, B, C and F , and writing again in terms of the coupling frequencies Ω1 =
NQ2

1
4M1ε0ε∞ω1

and Ω2 =
NQ2

2
4M2ε0ε∞ω2

, the polarization due to the oscillators becomes

∑
i

Nipi = 4ε0ε∞

{

2ω1ω2Ω1Ω2 (Re[D21(k)]−D11(k))+ω1Ω1

(
ω2

2 −ω2
)
+ω2Ω2

(
ω2

1 −ω2
)

(
ω2 −ω2

1 +ω1Ω1D11(k)
)(

ω2 −ω2
2 +ω2Ω2D11(k)

)
−ω1ω2Ω1Ω2|D21(k)|2

}

E. (A.49)

The macroscopic equation of the displacement vector D = ε0E + P = ε0ε∞E +

∑i Nipi = ε0ε(k,ω)E leads to the dielectric function

ε(k,ω) = ε∞

(

1+4

{

2ω1ω2Ω1Ω2 (Re[D21(k)]−D11(k))+ω1Ω1

(
ω2

2 −ω2
)
+ω2Ω2

(
ω2

1 −ω2
)

(
ω2 −ω2

1 +ω1Ω1D11(k)
)(

ω2 −ω2
2 +ω2Ω2D11(k)

)
−ω1ω2Ω1Ω2|D21(k)|2

})

. (A.50)

From this equation, we obtain the dispersion relation, by substituting ε(k,ω) into eq.(2.16). Note

that in the limiting case Ω2 → 0, the dielectric function tends to the result that we get for one

oscillator:

ε(k,ω) = ε∞



1+
NQ2

1/M1ε0ε∞

ω2
1 −

NQ2
1

4M1ε0ε∞
D11(k)−ω2



 . (A.51)
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This is expected, since for Ω2 = 0 the SHOs of type 2 do not couple to light and do not interact

with each other, no oscillation modes are generated, and no polarization is produced. This

approach can be easily generalized to more than two oscillator types, where we can obtain

the amplitudes (or polarizability) by determinant calculations. Furthermore, we can add the

Umklapp processes for a more sophisticated model.

A.3 Two dipoles: quantum approach

Again, let us extend our problem to two SHO on the quantum treatment. For this, we

will take all the steps that were taken for one oscillator per unit cell, where our total Hamiltonian

will also be H = Hdip +Hph +Hph−dip.

A.3.1 Dipole Hamiltonian

The energy of both oscillators is trivial, given that we already obtained it in subsection

3.1.1, and therefore

H0 =
2

∑
α=1

∑
l

[

ΠΠΠ2
α(rl)

2Mα
+

Mαω2
α

2
h2(rl)

]

=
2

∑
α=1

∑
l

∑
î=x̂,ŷ,ẑ

[

Πî
α

2
(rl)

2Mα
+

Mαω2
α

2
hî

2
(rl)

]

, (A.52)

which in terms of the bosonic operators will be

H0 = h̄ ∑
α,î,k

ωαbî
α,k

†
bî

α,k, (A.53)

where bî
α,k(bî

α,k
†
) annihilates (creates) a boson from the oscillators of type α and wavevector k

with oscillation mode î.

Now for the part corresponding to the binding energy between dipoles in Hdip, using

the interaction potential energy, we have

Hint =
1

8πε0ε∞

2

∑
α=1

∑
î, ĵ

∑
l,l′




δî, ĵ

r3
ll′,αα

−3
rî

ll′,ααr
ĵ

ll′,αα

r5
ll′,αα



 pî
l,α p

ĵ

l′,α

+
1

4πε0ε∞
∑
î, ĵ

∑
l,l′




δî, ĵ

r3
ll′,12

−3
rî

ll′,12
r

ĵ

ll′,12

r5
ll′,αα



 pî
l,1 p

ĵ

l′,2.

(A.54)

We can note that

∑
î, ĵ

∑
l,l′




δî, ĵ

r3
ll′,12

−3
rî

ll′,12
r

ĵ

ll′,12

r5
ll′,αα



 pî
l,1 p

ĵ

l′,2 =
1

2
∑

α ̸=β
∑
î, ĵ

∑
l,l′




δî, ĵ

r3
ll′,αβ

−3
rî

ll′,αβ r
ĵ

ll′,αβ

r5
ll′,αβ



 pî
l,α p

ĵ

l′,β , (A.55)

and therefore we can write Hint as

Hint =
1

8πε0ε∞
∑
αβ

∑
î, ĵ

∑
l,l′




δî, ĵ

r3
ll′,αβ

−3
rî

ll′,αβ r
ĵ

ll′,αβ

r5
ll′,αβ



 pî
l,α p

ĵ

l′,β . (A.56)
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Substituting pî
l,α = Qhî(rl,α) and writing hî(rl,α) in terms of the lifting and lowering operators,

hî(rl,α) =
√

h̄
2Mα ωα

(

bî
rl,α

†
+bî

rl,α

)

, the energy takes the form

Hint =
h̄

16πε0ε∞
∑
αβ

∑
î ĵ

∑
ll′

Qα Qβ
√

Mα ωα Mβ ωβ




δî, ĵ

r3
ll′,αβ

−3
rî

ll′,αβ r
ĵ

ll′,αβ

r5
ll′,αβ





(

bî
rl,α

†
b

ĵ
rl′ ,β

†

+bî
rl,α

†
b

ĵ
rl′ ,β

+bî
rl,α

b
ĵ
rl′ ,β

†

+bî
rl,α

b
ĵ
rl′ ,β

)

.

(A.57)

By using the bosonic operators in the reciprocal space, taking bî
rl,α

=N −1/2 ∑k eik·rl,α bî
k,α ,

without considering the Umklapp processes, we will have

Hint =
h̄

16πε0ε∞
∑
αβ

∑
î ĵ

Qα Qβ
√

Mα ωα Mβ ωβ







−



∑
ρρραβ



3
ρ î

αβ ρ
ĵ

αβ

ρ2
αβ

−δî, ĵ




eik·ρρραβ

ρ3
αβ





×
(

bî
α,k

†
b

ĵ

β ,−k

†

+bî
α,k

†
b

ĵ

β ,k

)

−



∑
ρρραβ



3
ρ î

αβ ρ
ĵ

αβ

ρ2
αβ

−δî, ĵ




e−ik·ρρραβ

ρ3
αβ





(

bî
α,kb

ĵ

β ,k

†

+bî
α,kb

ĵ

β ,−k

)







,

(A.58)

where ρρραβ is the separation vector between the oscillators of the type α and β . Introducing the

coupling frequencies Ωα =
NQ2

α
4Mα ε0ε∞ωα

:

Hint =− h̄

4
∑
αβ

∑
î ĵ

∑
k

√

ΩαΩβ

[

D
î ĵ

αβ
(k)
(

bî
α,k

†
b

ĵ

β ,−k

†

+bî
α,k

†
b

ĵ

β ,k

)

+D
î ĵ

αβ

∗
(k)
(

bî
α,kb

ĵ

β ,k

†

+bî
α,kb

ĵ

β ,−k

)]

.

(A.59)

Where the lattice sum terms are

D
î ĵ

αβ
(k) =

1

Nπ ∑
ρρραβ



3
ρ î

αβ ρ
ĵ

αβ

ρ2
αβ

−δî, ĵ




eik·ρρραβ

ρ3
αβ

. (A.60)

Therefore, taking eq.(A.53) and eq.(A.59), the dipole Hamiltonian is

Hdip = h̄ ∑
α,î,k

ωαbî
α,k

†
bî

α,k −
h̄

4
∑
αβ

∑
î ĵ

∑
k

√

ΩαΩβ

[

D
î ĵ

αβ
(k)
(

bî
α,k

†
b

ĵ

β ,−k

†

+bî
α,k

†
b

ĵ

β ,k

)

+D
î ĵ

αβ

∗
(k)
(

bî
α,kb

ĵ

β ,k

†

+bî
α,kb

ĵ

β ,−k

)]

.

(A.61)

A.3.2 Coupling to light

As we did in the respective section for one oscillator, the Hamiltonian that describes

the light-matter coupling for two oscillators must be

Hdip−ph = ∑
α

∑
l

[
Qα

Mα
ΠΠΠα(rl) ·A(rl)+

Q2
α

2Mα
A2(rl)

]

. (A.62)
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By using eq.(2.34) for the potential vector and the canonical moment in eq.(2.25), the first term

of the right hand becomes

∑
α

∑
l

Qα

Mα
ΠΠΠα(rl) ·A(rl) = N

−1/2ih̄∑
α

∑
λ̂k,î,l,k

ωα

√

NQ2
α

4Mαε0ε∞ωα

î · λ̂k√
ωph,k

(

bî
α,rl

†
−bî

α,rl

)

×
(

c
λ̂k
k eik·rl + c

λ̂k
k

†

e−ikrl

)

,

(A.63)

that when we write bî
α,rl

= N 1/2 ∑k eik·rl bî
α,k, we get

∑
α

∑
l

Qα

Mα
ΠΠΠα(rl) ·A(rl) = ih̄∑

α
∑

λ̂k,î,k

(

î · λ̂k

)

ωα

√

Ωα

ωph,k

(

bî
α,k

†
c

λ̂k
k +bî

α,k
†
c

λ̂k
−k

†

−bî
α,kc

λ̂k
k

†

−bî
α,kc

λ̂k
−k

)

,

(A.64)

and for the second term of the right hand:

∑
α

∑
l

Q2
α

2Mα
A2(rl) = h̄∑

α
∑

λ̂k,k

ωαΩα

ωph,k

(

c
λ̂k
k c

λ̂k
−k + c

λ̂k
k c

λ̂k
k

†

+ c
λ̂k
k

†

c
λ̂k
k + c

λ̂k
k

†

c
λ̂k
−k

†
)

. (A.65)

Thus, the coupling Hamiltonian is

Hdip−ph =
2

∑
α=1

h̄ωα

{

∑
λ̂k,î,k

(

î · λ̂k

)

i

√

Ωα

ωph,k

(

bî
α,k

†
c

λ̂k
k +bî

α,k
†
c

λ̂k
−k

†

−bî
α,kc

λ̂k
k

†

−bî
α,kc

λ̂k
−k

)

+ ∑
λ̂k,k

Ωα

ωph,k

(

c
λ̂k
k c

λ̂k
−k + c

λ̂k
k c

λ̂k
k

†

+ c
λ̂k
k

†

c
λ̂k
k + c

λ̂k
k

†

c
λ̂k
−k

†
)}

.

(A.66)

A.3.3 Diagonalization

Let us suppose the polariton operator

ηk =
2

∑
α=1

∑
î=x̂,ŷ,ẑ

(

uî
α,kbî

α,k + vî
α,kbî

α,k
†
)

+∑
λ̂k

(

m
λ̂k
k c

λ̂k
k +n

λ̂k
k c

λ̂k
k

†
)

(A.67)

such that

[ηk,H] = h̄ωpol,kηk. (A.68)

Utilizing the commutation relations

[

bî
β ,k′ ,b

ĵ
α,k

†]

= δβ ,αδî, ĵδk′,k (A.69)

and
[

c
λ̂ ′

k′
k′ ,cλ̂k

k

†]

= δk′,kδ
λ̂ ′

k,λ̂k
, (A.70)
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we will get a set of 16 equations that we organize in a square matrix of dimension 16. Again,

taking advantage of the arbitrariness of the coordinate system, we take x̂ = λ̂1,k, ŷ = λ̂2,k and

ẑ = k̂. Furthermore, since we are considering the classical limit, only the diagonal lattice sum

terms are different from zero; that is, just D
λ̂1,k,λ̂1,k

αβ
(k) ̸= 0, D

λ̂2,k,λ̂2,k

αβ
̸= 0 and D

k̂,k̂
α,β ̸= 0. By

making such considerations, as in the case of one oscillator, we are left with three independent

matrices, one for each direction: λ̂1,k, λ̂2,k, and k̂. The matrix for the transverse modes, with

dimensionality 6×6, has the following form:

M =




















ω1−σ1,k −σ21,k σ1,k σ21,k −iω1ξ1,k iω1ξ1,k

−σ∗
21,k ω2−σ2,k σ∗

21,k σ2,k −iω2ξ2,k iω2ξ2,k

−σ1,k −σ2,k −ω1+σ1,k σ21,k iω1ξ1,k −iω1ξ1,k

−σ∗
21,k −σ2,k σ∗

21,k −ω2+σ2,k iω2ξ2,k −iω2ξ2,k

iω1ξ1,k iω2ξ2,k iω1ξ1,k iω2ξ2,k 2(ω1ξ 2
1,k+ω2ξ 2

2,k)+ωph,k −2(ω1ξ 2
1,k+ω2ξ 2

2,k)

iω1ξ1,k iω2ξ2,k iω1ξ1,k iω2ξ2,k 2(ω1ξ 2
1,k+ω2ξ 2

2,k) −2(ω1ξ 2
1,k+ω2ξ 2

2,k)−ωph,k




















, (A.71)

where

σ21,k =
1

2

√

Ω1Ω2D21(k); (A.72)

σ1,k =
1

2
Ω1D11(k); (A.73)

σ2,k =
1

2
Ω2D11(k); (A.74)

ξ1,k =

√

Ω1

ωph,k
; (A.75)

ξ2,k =

√

Ω2

ωph,k
, (A.76)

with D21(k) and D11(k) being the lattice sum terms for the transverse modes. Imposing that

Det(M−ωpol,kI6) = 0, and applying some manipulations, we get the

−ω2
ph,k +ω2

pol,k



1+4







2ω1ω2Ω1Ω2 (Re[D21(k)]−D11(k))+ω1Ω1

(

ω2
2 −ω2

pol,k

)

+ω2Ω2

(

ω2
1 −ω2

pol,k

)

(

ω2
pol,k −ω2

1 +ω1Ω1D11(k)
)(

ω2
pol,k −ω2

2 +ω2Ω2D11(k)
)

−ω1ω2Ω1Ω2|D21(k)|2









= 0. (A.77)

From eq.(2.16), ω2
ph,k =

ε(k,ωpol,k)
ε∞

ω2
pol,k, and thus

ε(k,ωpol,k) = ε∞



1+4







2ω1ω2Ω1Ω2 (Re[D21(k)]−D11(k))+ω1Ω1

(

ω2
2 −ω2

pol,k

)

+ω2Ω2

(

ω2
1 −ω2

pol,k

)

(

ω2
pol,k −ω2

1 +ω1Ω1D11(k)
)(

ω2
pol,k −ω2

2 +ω2Ω2D11(k)
)

−ω1ω2Ω1Ω2|D21(k)|2









 , (A.78)
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which again agrees with the dielectric function obtained in the classical context.

Arriving at such proof is important because it moves us away from the idea that the

equivalence is a happy coincidence as we restrict ourselves to a single SHO per unit cell, and

closer to the idea that there must be a physical reason for such agreement. Furthermore, we

are induced to imagine that this equivalence of formalisms is also valid for general cases with

a number of n oscillators. Given this, it is useful to follow the classical path to find functions

such as the dielectric function and the relation, given the simplification of a matrix problem of

dimensionality 2(n+1) (quantum) to one of dimensionality n (classical).
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