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RESUMO

Nesta tese, nós estudamos soluções autosimilares para fluxo da curvatura média no espaço

hiperbólico. Depois de relembrar alguns fatos gerais sobre solitons em ambientes gerais munidos

com uma métrica produto torcido (warped product metric), nós focamos em solitons no espaço

hiperbólico cujo fluxo, na direção de expansão, pelo campo conforme cujas trajetórias são

ortogonais às horoesferas. Primeiramente, nós estudamos sua estabilidade, fornecendo uma

condição suficiente. Em particular, solitons, que são (convenientemente) gráficos, são estáveis.

Em seguida, nós investigamos solubilidade do Problema de Plateau no infinito. Por meio de

técnicas de equações diferenciais ordinárias, nós caracterizamos exemplos cilíndricos e rotaci-

onalmente simétricos, mostrando uma analogia estrita com solitons de translação (translating

solitons ou translators) no espaço euclidiano. De fato, as soluções são os análogos apropriados do

grim-reaper, bowl e winglike no espaço euclidiano. Por fim, sob algumas condições adicionais,

nós caracterizamos o grim-reaper como o único soliton cuja a fronteira assintótica é dois planos

paralelos. Um par de apêndices contém algum material auxiliar sobre varifolds e a fronteira

assintótica de variedades Cartan-Hadamard.

Palavras-chave: soliton; fluxo pela curvatura média; espaço hiperbólico; translator; problema

de Plateau assintótico; fronteira assíntotica.



ABSTRACT

In this thesis, we study self-similar solutions to the mean curvature flow in the hyperbolic space.

After recalling some general facts about solitons in ambient spaces endowed with a warped

product metric, we focus on solitons in hyperbolic space which flow, in the expanding direction,

by the conformal field whose trajectories are orthogonal to horospheres. First, we study their

stability, supplying a sufficient condition. In particular, solitons which are (suitably) graphical

are stable. Next, we investigate the solvability of Plateau’s problem at infinity. By means of

ODE techniques, we then characterize cylindrical and rotationally symmetric examples, showing

an analogy with translating solitons in Euclidean space. Indeed, the solutions are appropriate

analogies of the grim-reaper, bowl, and winglike translators in Euclidean space. Eventually,

under some additional conditions, we characterize the grim-reaper as the only soliton whose

boundary at infinity are two parallel hyperplanes. A pair of appendices contain some auxiliary

material about varifolds and the boundary at infinity of Cartan-Hadamard manifolds.

Keywords: soliton; mean curvature flow; hyperbolic Space; translator; asymptotic Plateau

problem; boundary at infinity.
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1 INTRODUCTION

In this thesis, we present the concept of mean curvature flow (MCF for short),

in which a submanifold flows in the direction of its mean curvature vector field. MCF was

vastly studied in the Euclidean space. An interesting problem related to MCF: given a vector

field 𝑋 ∈ 𝔛(𝑁) on the ambient space (𝑁,𝑔), we find a submanifold 𝑀 ⊂ 𝑁 such that, up a

reparametrization of 𝑀, the MCF of 𝑀 is moving along flow lines of the vector field 𝑋 . A

submanifold 𝑀 with the property above is known as self-similar soliton (soliton for short).

In Euclidean space R𝑚+1, there are symmetric solitons with respect to parallel vector

field 𝑋 = 𝜕0. For instance, a grim-reaper cylinder G is a soliton given by the Cartesian product

of a profile curve Γ by R𝑚−1 (see Example 2.1.5). Other examples of solitons are bowl solitons

and winglike solitons. Bowl solitons are rotationally symmetric solitons that can be written

as an entire graph of a slice {0} ×R𝑚 ⊂ R𝑚+1 (see Example 2.1.6). Winglike solitons are

rotationally symmetric solitons that can be written as bigraph over the complement of a ball

{0} × (R𝑚\𝐵𝑅) ⊂ R𝑚+1 (see Example 2.1.7).

In this thesis, we find appropriated analogies to grim-reaper, winglike soliton and

bowl soliton in the hyperbolic space with respect to the conformal field 𝑋 = 𝜕0 (see sections 4.2,

4.7 and 4.8). Eventually in Chapter 6, we prove that grim-reaper and vertical hyperplane are the

only solitons that asymptote at infinity two parallel (𝑚−1)-hyperplanes outside of a cylinder

(see Theorem 6.3.1).

We organize the text in the following way: in Chapter 2, we present the definition of

solitons in a more general context where the Riemannian manifold is equipped with a warped

product metric and some results needed throughout the thesis. Among them, we define the

Ilmanen space, where the solitons correspond to minimal manifolds (Equation (2.1.8)). In

Chapter 3, we derive some basic formula when the ambient space is hyperbolic space and we

prove stability for graphical soliton over the boundary at infinity. In Chapter 4, we study the

solitons that can be written as graphs over some subset of the boundary at infinity 𝜕∞H𝑚+1 (see

appendix A). We compute the quasilinear equation arising from the soliton identity and recall the

basic Comparison and Tangency Principle (Theorem 4.1.2 and Theorem 4.1.3). In Section 4.2,

we examine solitons that can be written as the Cartesian product of a profile curve Γ by R𝑚−1,

𝑀 = Γ×R𝑚−1 ⊂ H𝑚+1 (grim-reaper soliton, Lemma 4.2.1) as in the Euclidean space. In Section

4.3, we construct subsolutions for Soliton Equation (SE−) that act as barriers to prove some of

our main results. In Section 4.4 through 4.8, we study rotationally symmetric solitons. The
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main outcome is that there exist only two families of this kind of solitons which we call bowl

and winglike soliton in analogy with translators in the Euclidean space. In Chapter 5, as in the

classical Plateau problem for minimal submanifolds, we prove that for a given compact subset of

the boundary at infinity there exists a soliton with boundary at infinity equal to the given subset.

We describe the geodesics of Ilmanen space. In chapter 6, we prove that the grim-reaper and the

vertical hyperplane are the only solitons with respect to 𝑋 = −𝜕0 that are asymptotic at infinity to

parallel (𝑚−1)-hyperplane outside a cylinder (GR property, Definition 6.1.5)
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2 PRELIMINARIES

2.1 Solitons in warped product spaces

Throughout this thesis 𝑀 will be a 𝑚-dimensional manifold and 𝑁 an (𝑚 + 1)-

dimensional manifold equipped with a fixed Riemannian metric g. Let (𝜔1,𝜔2) be an interval

containing 0 and Ψ : (𝜔1,𝜔2) ×𝑀→ 𝑁 a smooth map. We say that Ψ is a one-parameter family

of immersions if the map Ψ𝑡 : 𝑀 → 𝑁 given by

Ψ𝑡 (𝑥) = Ψ(𝑡, 𝑥)

for any 𝑥 ∈ 𝑀, is an immersion. We often will denote by 𝑀𝑡 the image of 𝑀 in 𝑁 via the

immersion Ψ𝑡 .

Definition 2.1.1. An one-parameter family of immersions Ψ : (𝜔1,𝜔2) ×𝑀 → 𝑁 is called

solution to the mean curvature flow (MCF for short) if it satisfies the differential equation

𝜕𝑡Ψ(𝑡, 𝑥) = H(𝑡, 𝑥)

for any (𝑡, 𝑥) ∈ (𝜔1,𝜔2) ×𝑀 , where H(𝑡, 𝑥) is the non-normalized mean curvature vector of the

immersion Ψ𝑡 at the point 𝑥 ∈ 𝑀 .

Let us discuss now a special class of solutions to the mean curvature flow, following

the exposition in (Alías et al., 2020).

Definition 2.1.2 (Self-similar Soliton). Let 𝑋 ∈ 𝔛(𝑁) be a smooth vector field and Φ : (𝜎1,𝜎2) ×

𝑁 → 𝑁 its associated flow, defined in the time-interval (𝜎1,𝜎2) ⊂ R. A solution Ψ : (𝜔1,𝜔2) ×

𝑀→ 𝑁 to the mean curvature flow is called a self-similar soliton with respect to the vector field

𝑋 ∈ 𝔛(𝑁) if there exists an immersion 𝜓 : 𝑀 → 𝑁 , a reparametrization 𝑠 : (𝜔1,𝜔2) → (𝜎1,𝜎2)

of the flow lines of 𝑋 and a one-parameter family of diffeomorphisms 𝜂 : (𝜔1,𝜔2) ×𝑀 → 𝑀

such that

Ψ(𝑡, 𝑥) = Φ
(
𝑠(𝑡),𝜓(𝜂(𝑡, 𝑥))

)
, (2.1.1)

for any (𝑡, 𝑥) ∈ (𝜔1,𝜔2) ×𝑀 .

Roughly speaking, such a solution 𝑀𝑡 ⊂ 𝑁 to the MCF is moving along the flow

lines of the vector field 𝑋 . Differentiating the identity (2.1.1) with respect to 𝑡 and estimating at
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𝑡 = 0, we obtain the soliton equation

H = 𝑠′(0)𝑋⊥

where {·}⊥ is the orthogonal projection on the normal bundle of 𝜓. Without loss of generality,

we may assume that 𝑠′(0) = 1. Let 𝜓 : 𝑀 → 𝑁 be an immersion satisfying the partial differential

equation

H = 𝑋⊥.

Definition 2.1.3. An isometric immersion 𝜓 : 𝑀 → 𝑁 satisfying the differential equation

H = 𝑋⊥,

is called soliton solution to the MCF (soliton for short) with respect to 𝑋 .

Although in this thesis we shall consider solitons in the hyperbolic space H𝑚+1, it is

useful to recall some properties that hold true for solitons in warped product spaces. Suppose that

𝐼 ⊂ R is an open interval, ℎ : 𝐼 → (0,+∞) is a smooth function, 𝑃 is a 𝑚-dimensional manifold

equipped with a metric g𝑃 and 𝑁 = 𝐼 ×ℎ 𝑃 the manifold equipped with the metric

g = d𝑠2 + ℎ2g𝑃 . (2.1.2)

Let 𝜋𝐼 : 𝐼 ×ℎ 𝑃→ 𝐼 and 𝜋𝑃 : 𝐼 ×ℎ 𝑃→ 𝑃 be the natural projections onto the first and second

factor of 𝑁 , respectively. Hence, any 𝑌 ∈ 𝔛(𝑁) can be decomposed in the form 𝑌𝐼 +𝑌𝑃, where

𝑌𝐼 ∈ 𝔛(𝐼) and 𝑌𝑃 ∈ 𝔛(𝑃). From the Koszul formula, it follows that the Levi-Civita connection

𝐷 of 𝑁 is given by

𝐷𝑌𝑍 = 𝐷 𝐼×𝑃
𝑌 𝑍 +𝑌𝐼 (logℎ)𝑍𝐼 + 𝑍𝐼 (logℎ)𝑌𝐼 −g𝑃 (𝑌𝑃, 𝑍𝑃)ℎℎ′𝜕𝑠, (2.1.3)

where 𝐷 𝐼×𝑃 is the connection of the Riemannian product metric on 𝐼 ×𝑃. In warped product

manifolds there exist two "canonical"vector fields which generate the tangent space of the fibers

𝜋−1
𝐼
(𝑠), namely those defined by 𝑋± = ±ℎ 𝜕𝑠. It turns out that the smooth function 𝑓± ∈ 𝐶∞(𝑁)

is the potential of 𝑋± given by

𝑓±(𝑥) = ±
∫ 𝜋𝐼 (𝑥)

𝑠0

ℎ(𝜎)d𝜎, (2.1.4)

where 𝑠0 ∈ 𝐼 is a fixed number. Indeed,

𝑋± = ±ℎ 𝜕𝑠 = 𝐷 𝑓±. (2.1.5)
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Moreover, by (2.1.3), the Hessian 𝐷2 𝑓± of 𝑓± is given by the formula

𝐷2 𝑓±(𝑌, 𝑍) = g(𝐷𝑌𝑋±, 𝑍) = ±ℎ′g(𝑌, 𝑍), (2.1.6)

for any 𝑌, 𝑍 ∈ 𝔛(𝑁). Consequently, an immersion 𝜓 : 𝑀 → 𝐼 ×ℎ 𝑃 is a soliton of the MCF if its

mean curvature satisfies the equation

H = 𝐷 𝑓 ⊥± .

Example 2.1.4. The warped product model H𝑚+1 = R×𝑒−𝑠 R𝑚 with Riemannian metric

𝑔H = d𝑠2 + 𝑒−2𝑠
𝑚∑︁
𝑖=1

d𝑥2
𝑖 ,

where (𝑠;𝑥1, . . . , 𝑥𝑚) ∈ R×R𝑚. Therefore, the associated conformal field is 𝑋± = ±𝑒−𝑠𝜕𝑠.

Soliton solutions to the mean curvature flow share many similarities with minimal

submanifolds; see for example (Colding; Minicozzi, a), (Colding; Minicozzi, b), (Ilmanen, 1994)

and (Smoczyk, 2001). According to ideas developed by Ilmanen in (Ilmanen, 1994, Chapter

2), there is a duality between solitons in (𝐼 ×ℎ 𝑃,g) and minimal hypersurfaces in (𝐼 ×ℎ 𝑃,g 𝑓±),

where g 𝑓± is the metric given by

g 𝑓± � 𝑒
2 𝑓±
𝑚 g . (2.1.7)

By a straightforward computation, it follows that the mean curvature H̃ of the isometric im-

mersion 𝜓 : 𝑀 → (𝐼 ×ℎ 𝑃,g 𝑓±) relates to the mean curvature H of 𝜓 : 𝑀 → (𝐼 × 𝑃,g) by the

formula

H̃ = 𝑒−
2 𝑓±
𝑚

(
H−𝐷 𝑓 ⊥±

)
= 𝑒−

2 𝑓±
𝑚

(
H− 𝑋⊥

±
)
. (2.1.8)

Consequently, solitons in the warped product manifold (𝐼 ×ℎ 𝑃,g) correspond to minimal hyper-

surfaces in (𝐼 ×𝑃,g 𝑓±) and vice-versa. The Riemannian metric g 𝑓± is known in the literature as

the Ilmanen metric.

There is another equivalent way to express a soliton as a minimal hypersurface.

Consider the weighted Riemannian manifold (𝐼 ×ℎ 𝑃,g, 𝑒 𝑓±d𝑁) where d𝑁 is the volume form of

𝐼 ×ℎ 𝑃 with respect to the metric g. Suppose that 𝑀 ⊂ 𝐼 ×ℎ 𝑃 is an immersed hypersurface. Then,

the weighted volume of the hypersurface 𝑀 is defined by

Vol 𝑓± (𝑀) �
∫
𝑀

𝑒 𝑓±d𝑀
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where d𝑀 is the volume form of 𝑀 with respect to the volume induced from the Riemannian

metric g. Following Gromov (Gromov, 2003), the vector field

H 𝑓± � H−𝐷 𝑓 ⊥± ,

where H is the mean curvature of 𝑀 ⊂ (𝐼 ×ℎ 𝑃,g), is called the 𝑓±-mean curvature of the

hypersurface 𝑀 .

For any normal variation 𝑀𝑡 of 𝑀 , with respect to a compactly supported variation

normal along 𝑀 with velocity vector field 𝑍 , the first variation formula for the weighted volume

is given by

𝑑

𝑑𝑡

���
𝑡=0

Vol 𝑓± (𝑀𝑡) = −
∫
𝑔(𝑍,H 𝑓±)𝑒 𝑓±d𝑀,

see for example (Ilmanen, 1994, Chapter 2). Consequently, 𝑀 is a critical point of the weighted

volume if

H 𝑓± = H−𝐷 𝑓 ⊥± = 0.

Hypersurfaces of (𝐼 ×ℎ 𝑃,g, 𝑒 𝑓±d𝑁) with zero 𝑓±-mean curvature are called 𝑓±-minimal hyper-

surfaces. Therefore, there is a one-to-one correspondence between solitons and 𝑓±-minimal

hypersurfaces. Summarizing the notions of solitions, 𝑓±-minimal hypersurfaces , and minimal

hypersurfaces with respect to the Ilmanen metric are equivalent.

2.1.1 Solitons in the Euclidean space

In this subsection, we give some examples of solitons in the Euclidean space. For

more details, we refer to (Martín et al., 2019) and (Gama; Martín, 2020); see also (Alías et al.,

2020) for a more general setting.

Example 2.1.5 (Euclidean space as a Riemannian product). Using the same notation as above,

𝑁 = R𝑚+1 = R×R𝑚, 𝐼 = R, 𝑃 = R𝑚, and ℎ ≡ 1. Hence, the parallel vector field 𝑋± = ±𝜕0, where

𝑥 = (𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ R𝑚+1. An example of soliton with respect to 𝑋± = ±𝜕0 is the vertical

hyperplane 𝜋𝑣 = {𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ R𝑚+1 : 𝑥1 = 𝑐}, where 𝑐 ∈ R is a constant. Any rotation

of 𝜋𝑣 in which ±𝜕0 remains tangent to the hyperplane is another example of soliton with respect

to ±𝜕0. Another example of soliton with respect to 𝑋 = 𝜕0 is the cylinder over the grim reaper
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curve (or grim reaper cylinder):

G =

{
(𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ R𝑚+1 : −𝜋

2
< 𝑥1 <

𝜋

2
, 𝑥0 = − log(cos𝑥1)

}
.

More generally, for 𝜃 ∈
[
0, 𝜋2

)
, the tilted grim reaper is given by:

G𝜃 :=
{
(𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ R𝑚+1 : − 𝜋

2cos𝜃
< 𝑥1 <

𝜋

2cos𝜃
, 𝑥0 = −sec2(𝜃) log(𝑥1 cos𝜃) + tan(𝜃)𝑥𝑚

}
,

for more details, see (Gama; Martín, 2020). In this context, the soliton is called translating

soliton (or translator) because the mean curvature flow is given by a set-wise translation in the

direction of 𝑋± = ±𝜕0.

Example 2.1.6 (Bowl soliton). It was shown by (Altschuler; Wu, 1994) and (Clutterbuck et al.,

2007) that there does exist an entire rotationally symmetric, strictly convex graphical soliton

𝑀 = {(𝑢(𝜌), 𝑥1, · · · , 𝑥𝑚) ∈ R𝑚+1 : 𝜌2 = 𝑥2
1 + · · · + 𝑥

2
𝑚}

and the function 𝑢 : (0,∞) → R, 𝑚 ≥ 2, has the following asymptotic expansion at infinity

𝑢(𝜌) = 𝜌2

2(𝑚−1) −
1
2

log 𝜌2 +𝑂
(

1
𝜌

)
for more detail see Lemma 2.2 in (Clutterbuck et al., 2007). This solution is called the translating

paraboloid or the bowl soliton.

Example 2.1.7 (Winglike soliton). Given a radius 𝑅, we can construct an example of soliton

that can be written as a bigraph over R𝑚\𝐵𝑅 (0):

𝑀 = {(𝑢−(𝜌), 𝑥1, · · · , 𝑥𝑚) ∈ R𝑚+1 : 𝜌 ≥ 𝑅} ∪ {(𝑢+(𝜌), 𝑥1, · · · , 𝑥𝑚) ∈ R𝑚+1 : 𝜌 ≥ 𝑅}

where 𝑢+, 𝑢− are a solution to rotationally symmetric soliton equation in the Euclidean space

and

𝑢± =
𝜌2

2(𝑚−1) − ln 𝜌 +𝑂 (𝜌−1) +𝐶±.

For more details, see Lemma 2.3 in (Clutterbuck et al., 2007). We call a soliton as 𝑀 a winglike

catenoid translator.

Example 2.1.8. In general, for 𝑁 = R×ℎ 𝑃, with ℎ ≡ 1, {𝑐}×𝑃 is a soliton with respect 𝑋 = ±𝜕0

(see Example 2.1 in (Alías et al., 2020)).
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Example 2.1.9 (Euclidean space in polar coordinates). Let 𝑁 = R𝑚+1 − {0}, 𝐼 = (0,∞), 𝑃 = S𝑚

with the standard metric, ℎ(𝑠) = 𝑠. Hence, g = 𝑑𝑠2 + 𝑠2𝑔𝑃. Consider the vector field 𝑋± = ±𝑠𝜕𝑠.

One example of a solution with respect to 𝑋± is the sphere called self-expander for 𝑋+ and

self-shrinkers for 𝑋−.

2.2 The geometric maximum principle

Since solitons can be regarded as minimal hypersurfaces, we can use the geometric

maximum principle. According to this maximum principle, two different solitons of the MCF

cannot “touch” each other at one interior or boundary point; for more details see for example

(Eschenburg, 1989). More precisely the following holds true:

Theorem 2.2.1. Let 𝑀1 and 𝑀2 be embedded oriented connected submanifolds of a manifold

(possibly with boundary) N with unit normals 𝜈1 and 𝜈2, corresponding mean curvatures 𝐻1

and 𝐻2, and boundaries 𝜕𝑀1 and 𝜕𝑀2, respectively.

(a) (Interior principle) Suppose that there exists a common point 𝑥 in the interior of 𝑀1 and

𝑀2 where 𝜈1(𝑥) = 𝜈2(𝑥), 𝑀1 lies above 𝑀2 in a neighborhood 𝑈 of 𝑥, and 𝐻1 ≤ 𝑎 ≤ 𝐻2

therein, for a constant 𝑎. Then 𝑀1 ∩𝑈 = 𝑀2 ∩𝑈.

(b) (Boundary principle) Let 𝑊1 and 𝑊2 be open domains with connected 𝐶2-boundaries

𝜕𝑊1 = 𝑀1 and 𝜕𝑊2 = 𝑀2 intersecting 𝜕N transversally. Suppose that there exists a point

𝑥 in 𝑀1 ∩𝑀2 ∩ 𝜕N such that 𝜈1(𝑥) = 𝜈2(𝑥), 𝑀1 lies above 𝑀2 in a neighborhood𝑈 of 𝑥,

and 𝐻1 ≤ 𝑎 ≤ 𝐻2 therein, for a constant 𝑎. Then 𝑀1 ∩𝑈 = 𝑀2 ∩𝑈.

2.3 Second variation and stability

Let us suppose now that 𝑀 ⊂ 𝑁 = 𝐼 ×ℎ 𝑃 is a two-sided soliton solution to the MCF.

We denote by 𝜈 the oriented unit normal vector field along the hypersurface. The second variation

formula is

𝑑2

𝑑𝑡2

���
𝑡=0

Vol 𝑓± (𝑀𝑡) =
∫ (

|𝐷⊥𝑍 |2 −
(
|II|2 |𝑍 |2 +Ric𝑁 (𝑍, 𝑍) −𝐷2 𝑓±(𝑍, 𝑍)

) )
𝑒 𝑓±d𝑀,

where 𝑍 is a normal variational vector field along 𝑀, II is the second fundamental form of

the immersion and Ric𝑁 the Ricci curvature of the ambient space. Since 𝑀 is assumed to be

two-sided, any normal along 𝑀 vector field 𝑍 can be written in the form 𝑍 = 𝜑𝜂, where 𝜑 is a

smooth function and 𝜂 is a globally defined unit normal vector field. Then, the right hand side of
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the second variational formula gives rise to the quadratic form

𝑄 𝑓± (𝜑, 𝜑) �
∫ (

|∇𝜑 |2 −
(
|II|2𝜑2 +Ric𝑁 (𝜈, 𝜈) −𝐷2 𝑓±(𝜈, 𝜈)

)
𝜑2)𝑒 𝑓±d𝑀,

where 𝜑 is a compactly supported function. Integrating by parts, we obtain that

𝑄 𝑓± (𝜑, 𝜑) = −
∫
𝜑𝐽𝜑𝑒 𝑓±d𝑀,

where

𝐽𝜑 � Δ 𝑓±𝜑+
(
|II|2 +Ric𝑁 (𝜈, 𝜈) −𝐷2 𝑓±(𝜈, 𝜈)

)
𝜑, (2.3.1)

and

Δ 𝑓±𝜑 � Δ𝜑+g(𝐷 𝑓±,∇𝜑),

for any 𝜑 ∈ 𝐶2(𝑀); for details see for example (Barbosa et al., 2017). The form 𝑄 𝑓± is called

the stability operator, 𝐽 is called the Jacobi operator and Δ 𝑓± is called the weighted Laplace

operator.

Definition 2.3.1. A 𝑓±-minimal hypersurface 𝑀 ⊂ 𝑁 is called stable if it holds 𝑄 𝑓± (𝜑, 𝜑) ≥ 0

for all compactly supported functions 𝜑 ∈ 𝐶∞
𝑐 (𝑀). Otherwise, the hypersurface is called

unstable. Similarly, a compactly supported domain Ω ⋐ 𝑀 is called stable if 𝑄 𝑓± (𝜑, 𝜑) ≥ 0 for

all 𝜑 ∈ 𝐶∞(Ω).

Let us recall here the following stability result, proved independently by Fischer-

Colbrie & Schoen (Fischer-Colbrie; Schoen, 1980, Section 1) and Allegretto (Allegretto, 1981),

Moss & Piepenbrink (Moss; Piepenbrink, 1978).

Theorem 2.3.2. Let Ω ⋐ 𝑀 be an open subset. Then, the following conditions are equivalent:

- Ω is stable,

- There exists 𝑤 ∈ 𝐻1
loc(Ω), 𝑤 > 0 such that 𝐽𝑤 ≤ 0 weakly on Ω;

- There exists 𝑤 ∈ 𝐶∞(Ω), 𝑤 > 0 such that 𝐽𝑤 = 0 on Ω;

In the next proposition, we compute the Jacobi operator of the non-normalized scalar

mean curvature of a soliton of the mean curvature flow lying in an arbitrary warped product

space 𝐼 ×ℎ 𝑃.
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Proposition 2.3.3. Let 𝑀 ⊂ 𝑁 = 𝐼 ×ℎ 𝑃 be a 2-sided soliton with respect to the vector field

𝑋± = ∇ 𝑓± = ±ℎ𝜕𝑠. Then, the scalar mean curvature 𝐻 = g(H, 𝜈) satisfies

𝐽𝐻 = ±ℎRic𝑁 (𝜈, 𝜕𝑠) ∓2ℎ′𝐻, (2.3.2)

where 𝜈 is the oriented unit normal of the hypersurface.

Proof. Let 𝐻 be the scalar mean curvature of the soliton 𝑀 ⊂ 𝑁 , that is

𝐻 = g(H, 𝜈).

Then, from the soliton equation, we deduce that

𝐻 = g(𝑋±, 𝜈) = g(𝐷 𝑓±, 𝜈).

Furthermore, recall from the equation (2.1.6) that

𝐷2 𝑓± = ±ℎ′g . (2.3.3)

Let {𝑒1, . . . , 𝑒𝑚} be a local orthonormal tangent frame, which is normal at a fixed point 𝑝 ∈ 𝑀,

and denote by 𝑏𝑖 𝑗 the coefficients of II with respect to the aforementioned frame field. From the

Codazzi equation, we have

𝑏𝑖 𝑗𝑖 = 𝑏𝑖𝑖 𝑗 +𝑅𝑁𝜈𝑖𝑖 𝑗 ,

for any 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, where here 𝑅𝑁 stands for the curvature operator of 𝑁 . Let us compute

now the gradient and the Laplacian of the scalar mean curvature 𝐻. We have,

𝑒𝑖g(𝑋±, 𝜈) = −𝑏𝑖 𝑗 g(𝑋±, 𝑒 𝑗 ),

for any 𝑖 ∈ {1, . . . ,𝑚}. Moreover, by differentiating and estimating at 𝑝, we get

𝑒𝑖𝑒𝑖 g(𝑋±, 𝜈) = −𝑏𝑖 𝑗𝑖 g(𝑋±, 𝑒 𝑗 ) ∓ 𝑏𝑖 𝑗ℎ′𝛿𝑖 𝑗 − 𝑏𝑖 𝑗 g(𝑋±, 𝐷𝑒𝑖𝑒 𝑗 )

= −(𝑏𝑖𝑖 𝑗 +𝑅𝑁𝜈𝑖𝑖 𝑗 ) g(𝑋⊤
± , 𝑒 𝑗 ) + ℎ′𝐻 − 𝑏𝑖 𝑗𝑏𝑖 𝑗 g(𝑋±, 𝜈)

= −g(𝑋⊤
± ,∇𝐻) ∓ ℎ′𝐻 +Ric𝑁 (𝜈, 𝑋⊤

± ) − |II|2 g(𝑋±, 𝜈)

= −g(𝐷 𝑓±,∇𝐻) ∓ ℎ′𝐻 +Ric𝑁 (𝜈, 𝑋±−𝐻𝜈) − |II|2𝐻

= −g(𝐷 𝑓±,∇𝐻) ∓ ℎ′𝐻 ± ℎRic𝑁 (𝜈, 𝜕𝑠) −Ric𝑁 (𝜈, 𝜈)𝐻 − |II|2𝐻,

whereby {·}⊤ we denote the orthogonal projection on the tangent bundle of the hypersurface.

From the last equality and (2.3.1) and (2.3.3), we immediately deduce

𝐽𝐻 = ±ℎRic𝑁 (𝜈, 𝜕𝑠) ∓2ℎ′𝐻.

This completes the proof. □
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3 SOLITONS IN THE HYPERBOLIC SPACE

We restrict ourselves now to the case of solitons in the hyperbolic space (H𝑚+1, 𝑔H) of

constant sectional curvature −1. We will occasionally use the following models of the hyperbolic

space:

(a) The warped product model (Example 2.1.4).

(b) The half-space model H𝑚+1 = R+×R𝑚 with metric

𝑔H =
1
𝑥2

0

𝑚∑︁
𝑖=0

d𝑥2
𝑖 ,

where (𝑥0;𝑥1, . . . , 𝑥𝑚) ∈ R+×R𝑚.

Note that the map 𝐹 : R×𝑒−𝑠 R𝑚 → R+×R𝑚 given by

𝐹 (𝑠;𝑥1, . . . , 𝑥𝑚) = (𝑒𝑠;𝑥1, . . . , 𝑥𝑚)

is an isometry from the warped product model to the half-space model, so a soliton with respect

to the direction 𝑋 = ±𝑒−𝑠𝜕𝑠 in the warped product model is isometric to a soliton with respect to

the direction 𝑋 = ±𝜕0 in the half-space model.

We give some important relations between the scalar mean curvature 𝐻 and the

coordinate functions of the soliton 𝑀 ⊂ H𝑚+1.

Lemma 3.0.1. Let 𝑀 ⊂ H𝑚+1 be a two-sided hypersurface of the hyperbolic space, where H𝑚+1

is modelled via the half-space model R+×R𝑚. Assume that 𝑀 is a soliton of the mean curvature

flow, with respect to the vector field 𝑋± = ±𝜕0, and denote by 𝑥𝑘 : 𝑀→ R, 𝑘 ∈ {0,1, . . . ,𝑚}, also

the restriction of the coordinate function 𝑥𝑘 to 𝑀 . Then, the following formulas hold true:

(a) The coordinate function 𝑥0 : 𝑀 → R satisfies the following differential equations

∇𝑥0 = 𝑥
2
0𝜕

⊤
0 and |∇𝑥0 |2 + 𝑥4

0𝐻
2 = 𝑥2

0 .

Moreover,

∇2𝑥0(𝑒𝑖, 𝑒 𝑗 ) = ±𝑥2
0𝐻𝑏𝑖 𝑗 +2𝑥−1

0 g(𝑒𝑖,∇𝑥0) g(𝑒 𝑗 ,∇𝑥0) − 𝑥0𝛿𝑖 𝑗 ,

where {𝑒1, . . . , 𝑒𝑚} is a tangent local orthonormal frame on 𝑀 and 𝑏𝑖 𝑗 are the components

of the second fundamental form. Additionally,

Δ𝑥0 = ±(1∓2𝑥0)𝑥2
0𝐻

2 − (𝑚−2)𝑥0.
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Furthermore, the other coordinate functions 𝑥𝑘 : 𝑀 → R, 𝑘 ∈ {1, . . . ,𝑚}, satisfy the

equations

∇𝑥𝑘 = 𝑥2
0𝜕

⊤
𝑘 and Δ𝑥𝑘 = 𝑥

−2
0 (2𝑥0 ∓1)g(∇𝑥0,∇𝑥𝑘 ).

(b) The scalar mean curvature 𝐻 satisfies the differential equations

g(∇𝐻,𝑣) = ∓II(𝜕⊤0 , 𝑣) = ∓𝑥−2
0 II(∇𝑥0, 𝑣),

and

Δ𝐻 = ∓𝑥−2
0 g(∇𝑥0,∇𝐻) ± (𝑥−1

0 ∓ |II|2)𝐻.

for any tangent vector field 𝑣 ∈ 𝔛(𝑀).

Proof. Let us start with some general computations exploiting the conformally flat structure

of the hyperbolic space. Let us denote by 𝐷 the Levi-Civita connection of the hyperbolic

space H𝑚+1, by ⟨· , ·⟩ the standard inner product in R𝑚+1 and by 𝐷R the Euclidean Levi-Civita

connection. From the Koszul formula, we have that

𝐷𝑣1𝑣2 = 𝐷
R
𝑣1𝑣2 − 𝑥−1

0 ⟨𝜕0, 𝑣1⟩𝑣2 − 𝑥−1
0 ⟨𝜕0, 𝑣2⟩𝑣1 + 𝑥−1

0 ⟨𝑣1, 𝑣2⟩𝜕0, (3.0.1)

for any 𝑣1, 𝑣2 ∈ 𝔛(H𝑚+1). If 𝑢 ∈ 𝐶∞(H𝑚+1) is a smooth function then, from the formula (3.0.1),

we easily get that

𝐷2𝑢(𝑣1, 𝑣2) = Hess(𝑢) (𝑣1, 𝑣2) + 𝑥−1
0 𝑣2(𝑢)⟨𝜕0, 𝑣1⟩ (3.0.2)

+𝑥−1
0 𝑣1(𝑢)⟨𝜕0, 𝑣2⟩ − 𝑥−1

0 𝜕0(𝑢)⟨𝑣1, 𝑣2⟩,

for any 𝑣1, 𝑣2 ∈ 𝔛(H𝑚+1), where Hess stands for the Hessian operator with respect to the

Euclidean metric. Consider now the restriction of the function 𝑢 on 𝑀 , which for simplicity we

denote again by the letter 𝑢. Suppose that {𝑒1, . . . , 𝑒𝑚} is a local orthonormal frame 𝑀 which is

normal at a fixed point 𝑝 ∈ 𝑀 . Let us also denote by 𝜈 the unit normal along 𝑀 . Then, ∇𝑢 is the

orthogonal projection, with respect to the metric of the H𝑚+1, of 𝐷𝑢 on the tangent bundle of 𝑀 ,

i.e.,

∇𝑢 = g(𝐷𝑢, 𝑒𝑖)𝑒𝑖 .

Differentiating, we get that, for any 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, it holds

∇2𝑢(𝑒𝑖, 𝑒 𝑗 ) = 𝐷2𝑢(𝑒𝑖, 𝑒 𝑗 ) +g(𝐷𝑢, II(𝑒𝑖, 𝑒 𝑗 )). (3.0.3)
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(a) In the case where 𝑢 is the 𝑘 th-coordinate function 𝑥𝑘 : H𝑚+1 → R, we have

𝐷𝑥𝑘 = 𝑥
2
0𝜕𝑘 and ∇𝑥𝑘 = 𝑥2

0𝜕
⊤
𝑘 , (3.0.4)

for any 𝑘 ∈ {0,1, . . . ,𝑚}. Using the fact that 𝑀 is a soliton, from the second identity of

(3.0.4), we deduce that

|∇𝑥0 |2 = 𝑥4
0 g(𝜕⊤0 , 𝜕

⊤
0 ) = 𝑥

4
0 g(𝜕0, 𝜕0) − 𝑥4

0 g(𝜕⊥0 , 𝜕
⊥
0 ) = 𝑥

2
0 − 𝑥

4
0𝐻

2.

Since the Euclidean Hessian of each coordinate function 𝑥𝑘 : H𝑚+1 → R is zero, we obtain

from (3.0.2), (3.0.3) and (3.0.4) that

∇2𝑥0(𝑒𝑖, 𝑒 𝑗 ) = 𝑥0 g(𝑒𝑖, 𝐷𝑥0) g(𝜕0, 𝑒 𝑗 )

+𝑥0 g(𝑒 𝑗 , 𝐷𝑥0) g(𝜕0, 𝑒𝑖) − 𝑥0𝛿𝑖 𝑗 + 𝑏𝑖 𝑗 g(𝐷𝑥0, 𝜈)

= 2𝑥3
0 g(𝑒𝑖, 𝜕⊤0 ) g(𝜕⊤0 , 𝑒 𝑗 ) − 𝑥0𝛿𝑖 𝑗 + 𝑏𝑖 𝑗𝑥2

0 g(𝜕⊥0 , 𝜈)

= 2𝑥−1
0 g(𝑒𝑖,∇𝑥0) g(∇𝑥0, 𝑒 𝑗 ) − 𝑥0𝛿𝑖 𝑗 ± 𝑏𝑖 𝑗𝑥2

0𝐻.

Taking the trace with respect to the induced metric, we get

Δ𝑥0 = 2𝑥3
0 g(𝜕⊤0 , 𝜕

⊤
0 ) −𝑚𝑥0 ± 𝑥2

0𝐻
2

= 2𝑥3
0
(
g(𝜕0, 𝜕0) −g(𝜕⊥0 , 𝜕

⊥
0 )

)
−𝑚𝑥0 ± 𝑥2

0𝐻
2

= 2𝑥3
0
(
𝑥−2

0 −𝐻2) −𝑚𝑥0 ± 𝑥2
0𝐻

2

= ±(1∓2𝑥0)𝑥2
0𝐻

2 − (𝑚−2)𝑥0.

Moreover, again from (3.0.2), (3.0.3) and (3.0.4), we find that for 𝑘 ≥ 1 it holds

Δ𝑥𝑘 = 2𝑥0 g(𝑒𝑖, 𝐷𝑥𝑘 ) g(𝜕0, 𝑒𝑖) +g(𝐷𝑥𝑘 , 𝐻𝜈)

= 2𝑥3
0 g(𝑒𝑖, 𝜕𝑘 ) g(𝜕0, 𝑒𝑖) ± 𝑥2

0g(𝜕𝑘 , 𝜕⊥0 )

= 2𝑥3
0 g(𝜕⊤𝑘 , 𝜕

⊤
0 ) ± 𝑥

2
0g(𝜕𝑘 , 𝜕0 − 𝜕⊤0 )

= 2𝑥3
0 g(𝜕⊤𝑘 , 𝜕

⊤
0 ) ∓ 𝑥

2
0g(𝜕⊤𝑘 , 𝜕

⊤
0 )

= 𝑥−2
0 (2𝑥0 ∓1) g(∇𝑥0,∇𝑥𝑘 ).

(b) The proof follows the same lines as in Proposition 2.3.3. Differentiating with respect to 𝑒𝑖,

𝑖 ∈ {1, . . . ,𝑚}, we get that

𝑒𝑖𝐻 = 𝑒𝑖 g(±𝜕0, 𝜈) = ±g(𝐷𝑒𝑖𝜕0, 𝜈) ±g(𝜕0, 𝐷𝑒𝑖𝜈).
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From the formula (3.0.1) we see that

𝐷𝑒𝑖𝜕0 = −𝑥−1
0 𝑒𝑖,

for any 𝑖 ∈ {1, . . . ,𝑚}. Hence, keeping in mind (3.0.4), we have that

𝑒𝑖𝐻 = ±g(𝜕⊤0 , 𝐷𝑒𝑖𝜈) = ∓II(𝜕⊤0 , 𝑒𝑖) = ∓𝑥−2
0 II(∇𝑥0, 𝑒𝑖).

Differentiating once more, using Codazzi equations and (3.0.4), we deduce that at 𝑝 ∈ 𝑀

it holds

Δ𝐻 = 𝑒𝑖𝑒𝑖𝐻 = 𝑒𝑖
(
∓ 𝑏𝑖 𝑗 g(𝜕0, 𝑒 𝑗 )

)
= ∓𝑏𝑖 𝑗𝑖 g(𝜕0, 𝑒 𝑗 ) ∓ 𝑏𝑖 𝑗 g(𝐷𝑒𝑖𝜕0, 𝑒 𝑗 ) ∓ 𝑏𝑖 𝑗 g(±𝜕0, 𝐷𝑒𝑖𝑒 𝑗 )

= ∓g(𝜕⊤0 , 𝑏𝑖𝑖 𝑗𝑒 𝑗 ) ∓ 𝑏𝑖 𝑗 g(𝐷𝑒𝑖𝜕0, 𝑒 𝑗 ) − 𝑏𝑖 𝑗𝑏𝑖 𝑗 g(±𝜕0, 𝜈)

= ∓g(𝜕⊤0 ,∇𝐻) ± 𝑥
−1
0 𝐻 −𝐻 |II|2

= ∓𝑥−2
0 g(∇𝑥0,∇𝐻) ± 𝑥−1

0 𝐻 −𝐻 |II|2.

This completes the proof of lemma. □

Theorem 3.0.2. Let 𝑀 ⊂ H𝑚+1 be a 2-sided hypersurface whose scalar mean curvature does

not change sign. If 𝑀 is a soliton with respect to −𝜕0, then 𝑀 is stable. If 𝑀 is a soliton with

respect to 𝜕0, then 𝑀 is stable in the region

𝑆 = {𝑝 ∈ 𝑀 : 𝑥0(𝑝) ≥ 2/𝑚}.

Proof. Let us compute the Jacobi operator of 𝐻. Let 𝜈 be the unit normal along the soliton 𝑀.

Up to changing sign to the unit normal vector, we can assume that 𝐻 ≥ 0. From (2.3.1), (3.0.1)

and Lemma 3.0.1(b), we have

𝐽𝐻 = Δ𝐻 +g(±𝜕⊤0 ,∇𝐻) +𝐻 |II|2

+RicH
𝑚+1 (𝜈, 𝜈)𝐻 −g(±𝐷𝜈𝜕0, 𝜈)𝐻

= Δ𝐻 ±g(𝜕⊤0 ,∇𝐻) +𝐻 |II|2 −𝑚𝐻 ± 𝑥−1
0 𝐻

= −(𝑚∓2𝑥−1
0 )𝐻.

Hence,

𝐽𝐻 + (𝑚∓2𝑥−1
0 )𝐻 = 0.

By the strong maximum principle, 𝐻 > 0 on 𝑀 . The result follows from the result in Theorem

2.3.2. □
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4 BARRIERS AND SYMMETRIC EXAMPLES OF SOLITONS

4.1 Graphical solitons and their stability

Let us consider graphical solitons in H𝑚+1, that is, solitons that can be written in the

form

Γ(𝑢) =
{
(𝑢(𝑥);𝑥) ∈ H𝑚+1 = R+×R𝑚 : 𝑥 ∈ Ω ⊂ R𝑚

}
,

where Ω is an open subset of R𝑚 and 𝑢 : Ω→ R a smooth function.

Proposition 4.1.1. The graph Γ(𝑢) ⊂ H𝑚+1 is a soliton of the hyperbolic space, with respect to

the vector field 𝑋 = ±𝜕0, if and only if 𝑢 satisfies the following equation:

divR
(

∇R𝑢√︁
1+ |∇R𝑢 |2

)
=

−𝑚𝑢±1
𝑢2

√︁
1+ |∇R𝑢 |2

, (SE±)

where divR is the Euclidean divergence, ∇R denotes the Euclidean gradient and | · | the Euclidean

norm. In particular, solitons with respect to −𝜕0 have negative mean curvature in upward

direction and Γ(𝑢) has nowhere zero mean curvature.

Proof. Observe first that the graph Γ(𝑢) ⊂ H𝑚+1 is the image of the embedding 𝜓 : Ω→ H𝑚+1

given by 𝜓(𝑥) = (𝑢(𝑥);𝑥), for any 𝑥 ∈ Ω. One can readily check that the components of the

induced metric 𝑔H on the graph are

(𝑔H)𝑖 𝑗 =
𝑢𝑖𝑢 𝑗 + 𝛿𝑖 𝑗

𝑢2

where 𝑖, 𝑗 ∈ {1, . . . ,𝑚}. The components (𝑔H)𝑖 𝑗 of the inverse of the induced metric 𝑔H are given

by

(𝑔H)𝑖 𝑗 = 𝑢2
(
𝛿𝑖 𝑗 −

𝑢𝑖𝑢 𝑗

1+ |∇R𝑢 |2

)
(4.1.1)

for 𝑖, 𝑗 ∈ {1, . . . ,𝑚}; see for example (Osserman, 1969, page 1101), Moreover, the unit 𝑔H-normal

𝜈𝑔H along the graph is given by the expression

𝜈𝑔H =
𝑢 𝜕0 −𝑢∇R𝑢√︁

1+ |∇R𝑢 |2
=
𝑢 𝜕0 −𝑢

∑𝑚
𝑗=1𝑢 𝑗𝜕𝑗√︃

1+∑𝑚
𝑗=1𝑢

2
𝑗

. (4.1.2)
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Denoting 𝜓𝑖 𝑗 ≔ ∇R
𝑑𝜓(𝜕𝑖)𝑑𝜓(𝜕𝑗 ) and 𝜓𝑖 ≔ 𝑑𝜓(𝜕𝑖) and making use of (3.0.1) and (4.1.2), the

components of the second fundamental form of the graph are given by

(𝑏𝑔H)𝑖 𝑗 =𝑔H
(
∇H

𝑑𝜓(𝜕𝑖)𝑑𝜓(𝜕𝑗 ), 𝜈𝑔H
)
= 𝑔H(𝜓𝑖 𝑗 , 𝜈𝑔H) +𝑢−1⟨𝜓𝑖,𝜓 𝑗 ⟩𝑔H(𝜕0, 𝜈𝑔H)

=
1√︁

1+ |∇R𝑢 |2

(
𝑢𝑖 𝑗

𝑢
+
𝛿𝑖 𝑗 +𝑢𝑖𝑢 𝑗

𝑢2

)
,

(4.1.3)

for any 𝑖, 𝑗 ∈ {1, . . . ,𝑚}. Raising one index utilizing the graph metric, the shape operator satisfies

(𝑏𝑔H)𝑘𝑗 = (𝑔H)𝑘𝑖 (𝑏𝑔H)𝑖 𝑗 =
1√︁

1+ |∇R𝑢 |2

[
𝑢

(
𝑢𝑘𝑗 −

𝑢𝑘𝑢𝑖𝑢𝑖 𝑗

1+ |∇R𝑢 |2

)
+ 𝛿𝑘𝑗

]
. (4.1.4)

Therefore, the scalar mean curvature is

𝐻 = (𝑔H)𝑖 𝑗 (𝑏𝑔H)𝑖 𝑗 =
1√︁

1+ |∇R𝑢 |2

{
𝑢𝑢𝑖 𝑗

(
𝛿𝑖 𝑗 −

𝑢𝑖𝑢 𝑗

1+ |∇R𝑢 |2

)
+𝑚

}
= 𝑢divR

(
∇R𝑢√︁

1+ |∇R𝑢 |2

)
+ 𝑚√︁

1+ |∇R𝑢 |2
(4.1.5)

On the other hand, Γ(𝑢) is a soliton with respect to 𝑋 = ±𝜕0 only if

𝐻 = ±𝑔H(𝜕0, 𝜈𝑔H) =
±1

𝑢
√︁

1+ |∇R𝑢 |2
. (4.1.6)

Combining (4.1.5) with (4.1.6) we obtain the desired result. □

Remark 4.1.1. Let us mention here that Serrin considered quasilinear equations quite similar to

those of the form (SE±); see (Serrin, 1967) and (Serrin, 1969, Chapter IV, pages 477-478). In

particular, he studied equations of the form

div

(
𝐷𝑢√︁

1+ |𝐷𝑢 |2

)
= 𝑓 (𝑥,𝑢).

However, a gradient term on the right-hand side was not considered.

We recall the Comparison and Maximum Principle theorems by Pucci and Serrin

(Pucci; Serrin, 2007, Theorem 2.1.3 & 2.1.4).

Theorem 4.1.2 (Maximum Principle). Let Ω be a connected bounded open domain of R𝑚 with

boundary 𝜕Ω and 𝑢, 𝑣 ∈ 𝐶2(Ω) solutions of the nonlinear differential inequality

F
(
𝑥;𝑢;𝐷𝑢;𝐷2𝑢

)
≥ F

(
𝑥, 𝑣;𝐷𝑣;𝐷2𝑣

)
,

where the function F : Ω×R×R𝑚 ×R𝑚
2 → R is continuously differentiable. Suppose also that

the matrix 𝑄 = [𝑄𝑖 𝑗 ] given by

𝑄𝑖 𝑗 = F𝑢𝑖 𝑗
(
𝑥,𝑢(𝑥), 𝐷𝑢(𝑥), 𝜃𝐷2𝑢(𝑥) + (1− 𝜃)𝐷2𝑣(𝑥)

)
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is positive definite for any 𝑥 ∈ Ω and any 𝜃 ∈ [0,1]. If 𝑢 ≤ 𝑣 in Ω and 𝑢 = 𝑣 at some point 𝑥0 ∈ Ω,

then 𝑢 ≡ 𝑣 in Ω.

Theorem 4.1.3 (Comparison Principle). Let 𝑢, 𝑣 ∈ 𝐶2(Ω) ∩𝐶0(Ω) be solutions of the nonlinear

differential inequality given in Theorem 4.1.2. Suppose that the matrix 𝑄 = [𝑄𝑖 𝑗 ] is positive

definite in Ω and that for every fixed 𝑥 ∈ Ω the function

𝑡 ↦→ F
(
𝑥, 𝑡, 𝐷𝑣(𝑥), 𝐷2𝑣(𝑥)

)
(4.1.7)

is non-increasing on the half-line [𝑣(𝑥),∞)-but not necessarily differentiable. If 𝑢 ≤ 𝑣 in 𝜕Ω,

then 𝑢 ≤ 𝑣 in Ω. The terms 𝑢, 𝐷𝑢 in 𝑄 can be replaced by 𝑣, 𝐷𝑣 if at the same time the terms 𝐷𝑣,

𝐷2𝑣 in (4.1.7) are replaced by 𝐷𝑢, 𝐷2𝑢 and the semi-line [𝑣(𝑥),∞) is replaced by (−∞, 𝑢(𝑥)].

Definition 4.1.4. Let Ω be an open subset of R𝑚. A positive 𝐶2-smooth function 𝜑 : Ω→ (0,∞)

is called:

1. Subsolution to the quasilinear differential equation (SE±), if it satisfies the inequality

divR
(

∇R𝜑√︁
1+ |∇R𝜑|2

)
≥ −𝑚𝜑±1
𝜑2

√︁
1+ |∇R𝜑 |2

, (4.1.8)

2. Supersolution to the quasilinear differential equation (SE±), if if it satisfies the inequality

divR
(

∇R𝜑√︁
1+ |∇R𝜑 |2

)
≤ −𝑚𝜑±1
𝜑2

√︁
1+ |∇R𝜑 |2

. (4.1.9)

Proposition 4.1.5. If 𝑢 is a subsolution (supersolution) to

divR
(

∇R𝑢√︁
1+ |∇R𝑢 |2

)
=

−𝑚𝑢−1
𝑢2

√︁
1+ |∇R𝑢 |2

, (SE−)

then the region above (below) the graph of 𝑢 is 𝑔I-mean-convex.

Proof. Assume that 𝑢 is a subsolution. Notice that the scalar mean curvature with respect to

upward direction 𝜈𝑔I of the graph Γ(𝑢) ↩→ (H𝑚+1, 𝑔I) is positive. Therefore, the region above

Γ(𝑢) is 𝑔I-mean-convex. Similarly when 𝑢 is a supersolution.

□

Proposition 4.1.6. If 𝑢2 is a subsolution to (SE−) and 𝑢1 = 𝑢2 − 𝜀 for some 𝜀 > 0, then 𝑢1 is a

subsolution too. Similarly, if 𝑣1 is a supersolution to (SE−) and 𝑣2 = 𝑣1 + 𝜀 for some 𝜀 > 0, then

𝑣2 is a supersolution too.
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Proof. Notice that

divR
(

∇R𝑢2√︁
1+ |∇R𝑢2 |2

)
= divR

(
∇R𝑢1√︁

1+ |∇R𝑢1 |2

)
and

−𝑚𝑢2 −1
𝑢2

2

√︁
1+ |∇R𝑢2 |2

>
−𝑚𝑢1 −1

𝑢2
1

√︁
1+ |∇R𝑢1 |2

. Therefore,

divR
(

∇R𝑢1√︁
1+ |∇R𝑢1 |2

)
≥ −𝑚𝑢1 −1
𝑢2

1

√︁
1+ |∇R𝑢1 |2

.

Similarly, for 𝑣1 and 𝑣2. □

Combining Theorem 3.0.2 and Proposition 4.1.1 we obtain the following result.

Theorem 4.1.7. A graphical soliton, with respect to the vector field 𝑋 = −𝜕0, in the hyperbolic

space, is always stable. Moreover, a graphical soliton with respect to the vector field 𝑋 = 𝜕0 in

the hyperbolic space is stable if it is contained in the region 𝑆 =
{
(𝑥0;𝑥) ∈ R+×R𝑚 : 𝑥0 ≥ 2/𝑚

}
.

4.2 Cylindrical solitons

Let us describe here cylindrical solitons, that is, solitons which can be written

in the form Γ×R𝑚−1 ⊂ H𝑚+1, where here Γ is a curve in the 𝑥0𝑥1-plane. For simplicity, let

us work in regions where Γ can be represented as the graph of a smooth positive function

𝑢 : (𝜀1, 𝜀2) ⊂ R→ (0,∞) with respect to the direction 𝜕0. So we assume that Γ can be written as

the image of 𝛾(𝑡) = (𝑢(𝑡), 𝑡) in the 𝑥0𝑥1-plane. In this case, the equation (SE±) becomes:

divR
(

∇R𝑢√︁
1+ |∇R𝑢 |2

)
=

−𝑚𝑢±1
𝑢2

√︁
1+ |∇R𝑢 |2

𝑢𝑡𝑡√︃
1+𝑢2

𝑡

+𝑢𝑡
(
−1

2
1

(1+𝑢2
𝑡 )

3/2
2𝑢𝑡𝑢𝑡𝑡

)
=

−𝑚𝑢±1

𝑢2
√︃

1+𝑢2
𝑡

𝑢𝑡𝑡 −
𝑢2
𝑡

1+𝑢2
𝑡

𝑢𝑡𝑡 =
−𝑚𝑢±1
𝑢2

𝑢𝑡𝑡

1+𝑢2
𝑡

=
−𝑚𝑢±1
𝑢2 .
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CASE A: Let us first consider one dimensional solitons with respect to 𝑋 = 𝜕0. Here

we are interested in positive solutions to the ODE:

𝑢𝑡𝑡

1+𝑢2
𝑡

=
−𝑚𝑢 +1
𝑢2 . (SE+)

One obvious solution is the constant one given by

𝑢(𝑡) = 1
𝑚
,

for any 𝑡 ∈ R. Let us examine non trivial solutions now. Consider the function 𝑣 : (−𝜀1, 𝜀2) → R

given by 𝑣 = 𝑢𝑡 . Then, we get the following system of first order ODEs:
𝑢𝑡 = 𝑣,

𝑣𝑡 = 𝑢
−2(1−𝑚𝑢) (1+ 𝑣2),

Let us compute at first the integral curves of the vector field 𝑍 : R+×R→ R2 given by

𝑍 (𝑢, 𝑣) =
(
𝑣,𝑢−2(1−𝑚𝑢) (1+ 𝑣2)

)
.

In order to analyse the integral curves, let us consider the function 𝐺 : R+×R→ R given by

𝐺 (𝑢, 𝑣) = 𝑢−1 +𝑚 log𝑢 + log
√︁

1+ 𝑣2.

Therefore,

grad𝐺 =

(
− 1
𝑢2 +

𝑚

𝑢
,

𝑣

1+ 𝑣2

)
.

Note that the only critical point of 𝐺 is the point (1/𝑚,0) and that ⟨grad𝐺, 𝑍⟩ = 0. Therefore if

𝛼 = (𝛼1, 𝛼2) : (−𝜀1, 𝜀2) → R+×R is an integral curve of 𝑍 , then

(𝐺 ◦𝛼)′ = ⟨grad𝐺 (𝛼1, 𝛼2), 𝛼′⟩ = ⟨grad𝐺 (𝛼1, 𝛼2), 𝑍 (𝛼1, 𝛼2)⟩ = 0.

Hence, there exists a constant 𝑐 such that 𝐺 ◦𝛼 = 𝑐. Consequently, the level sets of 𝐺 are the

integral curves of 𝑍 . Putting everything together, we see that

𝑐 =
1
𝑢
+𝑚 log𝑢 + 1

2
log(1+𝑢2

𝑡 )

𝑒𝑐 = 𝑒
1
𝑢
+𝑚 log𝑢+ 1

2 log(1+𝑢2
𝑡 )

𝑒2𝑐 = 𝑒
2
𝑢𝑢2𝑚 (1+𝑢2

𝑡 )

𝑢2
𝑡 = 𝑒2𝑐𝑒−2/𝑢𝑢−2𝑚 −1 ≥ 0,
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where 𝑐 is a positive constant. One can easily check that, for 𝑐 > 𝑚(1− log𝑚), the function

𝑓 : (0,∞) → R given by

𝑓 (𝑠) = 𝑒2𝑐𝑒−2/𝑠𝑠−2𝑚 −1,

takes non-negative values only if the variable 𝑠 takes values in a suitable closed interval [𝑎, 𝑏] ⊂

R+ with 𝑎 > 0 and 𝑏 depending on 𝑐. Moreover, 𝑓 (𝑎) = 𝑓 (𝑏) = 0 and 𝑓 (𝑠) > 0 for any 𝑠 ∈ (𝑎, 𝑏).

Hence, any solution to (SE+) must be bounded above and below away from zero; see Figure 1.

Fig. 1 – Graph of 𝑓

s

y

Source: elaborated by the author.

Indeed, the graph of 𝑓 is given by Figure 1 because:

1. 𝑓 ′(𝑠) = 𝑒2𝑐2𝑒− 2
𝑠 𝑠−2𝑚

(
1
𝑠2 − 𝑚

𝑠

)
. Therefore 𝑓 ′(𝑠) > 0 for 0 < 𝑠 < 1

𝑚
, 𝑓 ′(𝑠) < 0 for 𝑠 > 1

𝑚
and

𝑓 ′( 1
𝑚
) = 0.

2. lim𝑠→0 𝑓 (𝑠) = −1

3. lim𝑠→∞ 𝑓 (𝑠) = −1

Moreover, notice from (4.2.1) that the part of the curve 𝛾 above the line 𝑥0 = 1/𝑚 is

concave and the part below 𝑥0 = 1/𝑚 is convex. Consequently, the solutions exist for all values

of the parameter 𝑡; see Figure 2.

CASE B: Let us examine now cylindrical solitons with respect to 𝑋 = −𝜕0. In this

case we have to deal with the following ODE:

𝑢𝑡𝑡

1+𝑢2
𝑡

=
−𝑚𝑢−1
𝑢2 . (SE−)

Observe that the solutions to such an equation must be concave. As in the previous case, consider

the function 𝑣 : (−𝜀, 𝜀) → R given by 𝑣 = 𝑢𝑡 and reduce the second order ODE into the following
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Fig. 2 – Graph of 𝑢

t

u

u = 1/m

Source: elaborated by the author.

system: 
𝑢𝑡 = 𝑣,

𝑣𝑡 = −𝑢−2(1+𝑚𝑢) (1+ 𝑣2).

Hence, the solutions to the above system are precisely the integral curves of the vector field

𝑍 : R+×R→ R2 given by

𝑍 (𝑢, 𝑣) =
(
𝑣,−𝑢−2(1+𝑚𝑢) (1+ 𝑣2)

)
.

Consider the potential 𝐺 : R+×R→ R is given by

𝐺 (𝑢, 𝑣) = log
√︁

1+ 𝑣2 +𝑚 log𝑢−𝑢−1

Observe that

grad𝐺 =

(
𝑚

𝑢
+ 1
𝑢2 ,

𝑣

1+ 𝑣2

)
.

Moreover, grad𝐺 is nowhere zero and perpendicular to 𝑍 . Consequently, the level sets of 𝐺 are

precisely the integral curves of 𝑍 . As a matter of fact, we get that

𝑐 = log
√︃

1+𝑢2
𝑡 +𝑚 log𝑢− 1

𝑢

𝑒2𝑐 = (1+𝑢2
𝑡 )𝑢2𝑚𝑒−

2
𝑢

𝑢2
𝑡 = 𝑒2𝑐𝑒2/𝑢𝑢−2𝑚 −1 ≥ 0,
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where 𝑐 is a positive constant. One can easily check that, for a fixed number 𝑐 and natural number

𝑚 ∈ N, the function 𝑔 : (0,∞) → R given by

𝑔(𝑠) = 𝑒2𝑐𝑒2/𝑠𝑠−2𝑚 −1,

takes positive values only if 𝑠 lies in an interval of the form (0, 𝑏]. Indeed, the graph of 𝑔 is as in

Figure 3 because:

1. 𝑔′(𝑠) = −2𝑒2𝑐𝑒
2
𝑠 𝑠−2𝑚 ( 1

𝑠2 + 1
𝑠
) < 0 ∀𝑠 > 0..

2. lim𝑠→0 𝑔(𝑠) =∞.

3. lim𝑠→∞ 𝑔(𝑠) = −1.

Observe now that since the equation (SE−) is autonomous, if 𝑢 is a solution then for any fixed

𝑎 ∈ R, 𝑢𝑎 (𝑡) = 𝑢(𝑡 − 𝑎) is again a solution to (SE−). This means that the solutions are invariant

under translations which keep fixed the 𝜕0 direction. Thus, without loss of generality, we may

assume that the interval of definition of 𝑢 contains 0.

Fig. 3 – Graph of 𝑔

s

y

Source: elaborated by the author.

Lemma 4.2.1 (Grim-Reaper). Let 𝑢 be a solution to the differential equation (SE−) satisfying

the initial conditions

𝑢(0) = ℎ > 0 and 𝑢𝑡 (0) = 0.

Then, the following hold true:

(a) The function 𝑢 is even and defined on a maximal bounded interval (−𝑇,𝑇), where 𝑇 =

𝑇 (ℎ) = 𝑇ℎ is a positive number; see Figure 4.

(b) The function 𝑢 and its derivative 𝑢𝑡 satisfy

lim
𝑡→±𝑇

𝑢(𝑡) = 0 and lim
𝑡→±𝑇

𝑢𝑡 (𝑡) = ∓∞.
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(c) The height ℎ and the length ℓ(ℎ) = 2𝑇 (ℎ) of the domain of definition of 𝑢 are related by

ℓ(ℎ) = 2
∫ ℎ

0

𝑑𝑠√︁
𝑒(2/𝑠−2/ℎ) (ℎ/𝑠)2𝑚 −1

.

(d) lim
ℎ→∞

ℓ(ℎ) =∞.

(e) ℓ(ℎ) = 2𝑇 (ℎ) is increasing in ℎ.

Fig. 4 – Graph of 𝑢

t

u

Source: elaborated by the author.

Proof. (a) We will show at first that the maximal domain of definition of 𝑢 is bounded. To

achieve this, let us suppose to the contrary that there exists a solution 𝑢 defined on an

interval of the form (−𝑎,∞), where 𝑎 > 0. Fix some point 𝑡1 > 0. Since 𝑢𝑡𝑡 < 0 by (SE−),

it follows that 𝑢 has at most one maximum point. Hence, from our initial conditions, 𝑢

attains at 𝑡 = 0 its global maximum. Moreover, 𝑢𝑡 is strictly decreasing and 𝑢𝑡 (𝑡) < 0 for

any 𝑡 > 0. Then, for any 𝑡 > 𝑡1 we have that

𝑢(𝑡) −𝑢(𝑡1) =
∫ 𝑡

𝑡1

𝑢𝑡 (𝑠)𝑑𝑠 ≤
∫ 𝑡

𝑡1

𝑢𝑡 (𝑡1)𝑑𝑠 = 𝑢𝑡 (𝑡1) (𝑡 − 𝑡1).

Hence,

0 < 𝑢(𝑡) < 𝑢(𝑡1) +𝑢𝑡 (𝑡1) (𝑡 − 𝑡1).

On the other hand, since 𝑢𝑡 (𝑡1) < 0, we obtain that

0 ≤ lim
𝑡→+∞

𝑢(𝑡) ≤ lim
𝑡→+∞

(
𝑢(𝑡1) +𝑢𝑡 (𝑡1) (𝑡 − 𝑡1)

)
= −∞,

which leads to a contradiction. Hence, 𝑡 cannot tend to +∞. In the same way, we prove that

there is no solution defined in an interval of the form (−∞, 𝑏) with 𝑏 > 0. Consequently,
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the maximal domain of definition of such a solution must be a bounded maximal time

interval of the form (−𝑎, 𝑏), where 𝑎 and 𝑏 are positive numbers. Note now that for

small values of 𝑡, the function �̃� given by �̃�(𝑡) = 𝑢(−𝑡) is again a solution to (SE−). Since,

�̃�(0) = 𝑢(0) and �̃�𝑡 (0) = 0 = 𝑢𝑡 (0), from the uniqueness, we get that �̃� = 𝑢 which implies

that 𝑢 is even. Hence, the maximal time of solution is of the form (−𝑇,𝑇), where 𝑇 is a

positive number.

(b) We will show now that 𝑢 tends to zero as 𝑡 tends to ±𝑇 and that 𝑢𝑡 tends to ∓∞ as time

tends to ±𝑇 . Recall that in the interval [0,𝑇) the function 𝑢 is decreasing. Suppose to the

contrary that

lim
𝑡→𝑇

𝑢(𝑡) = 𝑙,

where 𝑙 > 0. Then it is possible to extend the solution to the first order ODE

𝑢𝑡 = −
√︁
𝑒2𝑐𝑒2/𝑢𝑢−2𝑚 −1 (4.2.1)

in an interval 𝑇 + 𝜀, for some 𝜀 > 0. This contradicts the fact that 𝑇 is maximal. From

(4.2.1), we get that 𝑢𝑡 →−∞ as 𝑡 approaches 𝑇 . Analogously we treat the behaviour when

𝑡 approaches −𝑇 .

(c) Recall that on the interval [0,𝑇), the function 𝑢 satisfies the first order ODE

𝑢𝑡 = −
√︁
𝑒2𝑐𝑒2/𝑢𝑢−2𝑚 −1,

where 𝑐 is the constant given by 𝑒2𝑐 = ℎ2𝑚𝑒−2/ℎ. In this particular interval, 𝑢 is strictly

decreasing and its inverse 𝑡 : (0, ℎ) → (0,𝑇) satisfies the equation

𝑡𝑢 = − 1
√
𝑒2𝑐𝑒2/𝑢𝑢−2𝑚 −1

.

After an integration we get that

𝑇 =

∫ ℎ

0

𝑑𝑠
√
𝑒2𝑐𝑒2/𝑠𝑠−2𝑚 −1

.

This completes the proof.

(d) For 𝑠 ∈ ( ℎ2 , ℎ)

1√︃
𝑒

2/𝑠−2/ℎ (ℎ/𝑠)2𝑚 −1
>

1√︃
𝑒

2/𝑠−2/ℎ (ℎ/𝑠)2𝑚
=

1
𝑒

1/𝑠−1/ℎ (ℎ/𝑠)𝑚
>

1
𝑒

1/ℎ
2 −1/ℎ (ℎ/𝑠)𝑚

=
𝑠𝑚

𝑒
1
ℎ ℎ𝑚

.

Hence, 𝑇 >
∫ ℎ
ℎ
2

𝑠𝑚

𝑒
1
ℎ ℎ𝑚

𝑑𝑠 = 1
𝑒

1
ℎ ℎ𝑚 (𝑚+1)

(
ℎ𝑚+1 − (ℎ/2)𝑚+1

)
= ℎ

(𝑚+1)𝑒
1
ℎ

(
1− 1

2𝑚+1

)
. Therefore,

𝑇 →∞ as ℎ→∞.
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(e) We prove it in two steps:

(a) Suppose, by contradiction, that there exist ℎ2, ℎ1 > 0 with ℎ2 > ℎ1 such that 𝑇 (ℎ2) <

𝑇 (ℎ1). Denote by 𝑢ℎ𝑖 : (−𝑇 (ℎ𝑖),𝑇 (ℎ𝑖)) → R a solution to the differential equation

(SE−) with initial conditions 𝑢ℎ𝑖 (0) = ℎ𝑖 and 𝑢ℎ𝑖
′(0) = 0.

Notice that (𝑢ℎ2 −𝑢ℎ1) (0) > 0 and (𝑢ℎ2 −𝑢ℎ1) (𝑇 (ℎ2)) < 0. By continuity, there exists

𝛿 ∈ (0,𝑇 (ℎ2)) such that 𝑢ℎ2 (𝛿) = 𝑢ℎ1 (𝛿) and 𝑢ℎ2 (−𝛿) = 𝑢ℎ1 (−𝛿). By Comparison

Theorem (Theorem 4.1.3)), 𝑢ℎ1 = 𝑢ℎ2 in (−𝛿, 𝛿). This is a contradiction because

𝑢ℎ2 (0) = ℎ2 > ℎ1 = 𝑢ℎ1 (0).

(b) Suppose, by contradiction, that there exist ℎ2, ℎ1 > 0 with ℎ2 > ℎ1 such that 𝑇 (ℎ2) =

𝑇 (ℎ1). Fix a constant 𝜀 ∈ (0, ℎ2 − ℎ1), hence there exists a constant 𝑎 ∈ (0,𝑇 (ℎ2))

such that 𝑢ℎ2 > 𝜀 in (−𝑎, 𝑎). Set 𝑣ℎ2,𝜀 = 𝑢ℎ2 − 𝜀 in (−𝑎, 𝑎). Notice that 𝑣ℎ2,𝜀 is

a subsolution to (SE−). (𝑣ℎ2,𝜀 − 𝑢ℎ1) (0) > 0 and (𝑣ℎ2,𝜀 − 𝑢ℎ1) (𝑎) < 0. By conti-

nuity, there exists 𝛿 ∈ (0, 𝑎) such that 𝑣ℎ2,𝜀 (𝛿) = 𝑢ℎ1 (𝛿) and 𝑣ℎ2,𝜀 (−𝛿) = 𝑢ℎ1 (−𝛿).

By Comparison Theorem (Theorem 4.1.3) , 𝑢ℎ1 ≥ 𝑣ℎ2,𝜀 in (−𝛿, 𝛿), contradicting

𝑣ℎ2,𝜀 (0) = ℎ2 − 𝜀 > ℎ1 = 𝑢ℎ1 (0).

Thus, ℓ and 𝑇 are increasing in ℎ.

□

Remark 4.2.1. Similarly to (Martín et al., 2019) and (Gama; Martín, 2020), we call the graph

of 𝑢 a grim-reaper with maximum height ℎ and centered in 0, symbolically Gℎ,0. Furthermore,

Gℎ,[𝐻∗,𝐻∗] is the grim-reaper with maximum height ℎ and

𝜕∞Gℎ,[𝐻∗,𝐻∗] = {𝑥1 = 𝐻∗} ∪ {𝑥1 = 𝐻
∗} ⊂ 𝜕∞H𝑚+1.

4.3 Barriers

Now we construct some examples of barriers. To simplify the computation, we use

the relation between the Levi-Civita connections of conformal metrics.

Lemma 4.3.1. Let 𝑁 be a manifold equipped with two conformal metric 𝑔 = 𝑒2w�̃�.

(a) The relation between the Levi-Civita connections is:

∇𝑋𝑌 = ∇̃𝑋𝑌 + (𝑋 (w))𝑌 + (𝑌w)𝑋 − �̃�(𝑋,𝑌 )∇̃w,

for all 𝑋,𝑌 ∈ 𝔛(𝑁)
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(b) The relation between the gradients of a function 𝑢 : 𝑁 → R is:

∇̃𝑢 = 1
𝑒2w∇𝑢.

Proof. (a) For coordinate frame {𝜕𝑖} , by Koszul formula:

�̄�(𝜕𝑘 ,∇𝜕 𝑗𝜕𝑖) =
1
2
{𝜕𝑖 �̄� 𝑗 𝑘 + 𝜕𝑗 �̄�𝑖𝑘 − 𝜕𝑘 �̄�𝑖 𝑗 }

=
1
2
{𝜕𝑖 (𝑒2w�̃� 𝑗 𝑘 ) + 𝜕𝑗 (𝑒2w�̃�𝑖𝑘 ) − 𝜕𝑘 (𝑒2w�̃�𝑖 𝑗 )}

= 𝑒2w 1
2
{𝜕𝑖 (�̃� 𝑗 𝑘 ) + 𝜕𝑗 (�̃�𝑖𝑘 ) − 𝜕𝑘 (�̃�𝑖 𝑗 )}+

+ 1
2
𝑒2w{2𝜕𝑖 (w)�̃� 𝑗 𝑘 +2𝜕𝑗 (w)�̃�𝑖𝑘 −2𝜕𝑘 (w)�̃�𝑖 𝑗 }

= �̄�(𝜕𝑘 , ∇̃𝜕 𝑗𝜕𝑖) + �̄�(𝜕𝑘 , 𝜕𝑖 (w)𝜕𝑗 ) + �̄�(𝜕𝑘 , 𝜕𝑗 (w)𝜕𝑖)−

− �̄�(𝜕𝑘 , �̃�𝑖 𝑗 ∇̃w)

= �̄�(𝜕𝑘 , ∇̃𝜕 𝑗𝜕𝑖 + 𝜕𝑖 (w)𝜕𝑗 + 𝜕𝑗 (w)𝜕𝑖 − �̃�(𝜕𝑗 , 𝜕𝑖)∇̃w).

(b) Now the gradient in coordinate is given by ∇̃𝑢 = �̃�𝑖 𝑗𝜕𝑗𝑢𝜕𝑖 = 1
𝑒2w 𝑔

𝑖 𝑗𝜕𝑗𝑢𝜕𝑖 =
1
𝑒2w∇𝑢.

□

In the following lemma, we will give the relation between the second fundamental

forms in the hyperbolic metric and Ilmanen’s metric of a submanifold.

Lemma 4.3.2 (Conformal second fundamental forms). Let S be a hypersurface in H𝑚+1.

II𝑔I (𝑣1, 𝑣2) = 𝑒
1

𝑚𝑥0

{
II𝑔H (𝑣1, 𝑣2) − 𝜈𝑔H

(
1
𝑚𝑥0

)
𝑔H(𝑣1, 𝑣2)

}
, (4.3.1)

∀𝑝 ∈ S and ∀𝑣1, 𝑣2 ∈ 𝑇𝑝S, where II𝑔I and II𝑔H are the second fundamental form with respect to

𝑔I and 𝑔H respectively, 𝜈𝑔H is the 𝑔H-normal along S, where 𝜈𝑔I =
𝜈𝑔H

𝑒
1

𝑚𝑥0
.

Proof. Let {�̄�𝑖} be a 𝑔H-orthonormal frame along S. Define the 𝑔I-orthonormal frame by

�̃�𝑖 := �̄�𝑖

𝑒
1

𝑚𝑥0
. Similarly the 𝑔I-normal 𝜈𝑔I along S is given by

𝜈𝑔H

𝑒
1

𝑚𝑥0
. Using Lemma 4.3.1,

∇I
𝑋𝑌 = ∇H

𝑋𝑌 + 𝑋
(

1
𝑚𝑥0

)
𝑌 +𝑌

(
1
𝑚𝑥0

)
𝑋 −𝑔H(𝑋,𝑌 )∇H

(
1
𝑚𝑥0

)
,
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where ∇I and ∇H are the Levi-Civita connection in relation to 𝑔I and 𝑔H respectively. Therefore,

𝑔I(∇I
�̃�𝑖
𝜈𝑔I , �̃� 𝑗 ) = 𝑒

2
𝑚𝑥0 𝑔H

(
∇H

�̃�𝑖
𝜈𝑔I + �̃�𝑖

(
1
𝑚𝑥0

)
𝜈𝑔I + 𝜈𝑔I

(
1
𝑚𝑥0

)
�̃�𝑖 −𝑔H(�̃�𝑖, 𝜈𝑔I)∇H

(
1
𝑚𝑥0

)
, �̃� 𝑗

)
= 𝑒

2
𝑚𝑥0

{
𝑔H

(
�̃�𝑖

(
𝑒
− 1

𝑚𝑥0

)
𝜈𝑔H , �̃� 𝑗

)
+𝑔H(𝑒−

1
𝑚𝑥0 ∇H

�̃�𝑖
𝜈𝑔H , �̃� 𝑗 ) + 𝜈𝑔I

(
1
𝑚𝑥0

)
𝑔H(�̃�𝑖, �̃� 𝑗 )

}
= 𝑒

2
𝑚𝑥0

{
𝑒
− 1

𝑚𝑥0 𝑔H(∇H
�̃�𝑖
𝜈𝑔H , �̃� 𝑗 ) + 𝑒

− 1
𝑚𝑥0 𝜈𝑔H

(
1
𝑚𝑥0

)
𝑔H(�̃�𝑖, �̃� 𝑗 )

}
II𝑔I (�̃�𝑖, �̃� 𝑗 ) = 𝑒

1
𝑚𝑥0

{
II𝑔H (�̃�𝑖, �̃� 𝑗 ) − 𝜈𝑔H

(
1
𝑚𝑥0

)
𝑔H(�̃�𝑖, �̃� 𝑗 )

}
.

□

Fig. 5 – 𝑢𝜃,𝑟0

x1

x0

θ

θ θ

r0−r0

R0 R0

uθ,r0

Source: elaborated by the author.

To define a spherical barrier(see Figure 5), we need to set some notation. Given a

angle 𝜃 ∈
(
0, 𝜋2

]
, a radius 𝑟0 > 0 and a origin 𝑜 ∈ 𝜕∞H𝑚+1, we set

𝑅0 := 𝑟0 csc𝜃 𝐵𝑟0 (𝑜) = {𝑥 ∈ 𝜕∞H𝑚+1 : |𝑥− 𝑜 | ≤ 𝑟0},

𝑢𝜃,𝑟0 : 𝐵𝑟0 (𝑜) ⊂ 𝜕∞H𝑚+1 → R, 𝑢𝜃,𝑟0 (𝑥) :=
√︃
𝑅2

0 − |𝑥− 𝑜 |2 −𝑅0 cos𝜃,

B𝜃 (𝑜,𝑟0) =
{
(𝑥0, 𝑥) ∈ H𝑚+1 : 𝑥 ∈ 𝐵𝑟0 (𝑜), 𝑥0 = 𝑢𝜃,𝑟0 (𝑥)

}
.

Namely, B𝜃 (𝑜,𝑟0) is the intersection of H𝑚+1 with an Euclidean sphere of radius 𝑅0 that makes

an angle 𝜃 with 𝜕∞H𝑚+1.
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Proposition 4.3.3 (Spherical barrier). For all 𝜃 ∈
(
0, 𝜋2

]
and 𝑟0 ∈ R+, 𝑢𝜃,𝑟0 is a subsolution to

SE−.

Proof. Using that B 𝜋
2
(𝑜,𝑟0)) is totally geodesic with respect to 𝑔H, by Lemma 4.3.2,

II𝑔I (𝑣1, 𝑣2) = 𝑒
1

𝑚𝑥0

{
−𝜈𝑔H

(
1
𝑚𝑥0

)
𝑔H(𝑣1, 𝑣2)

}
,

for all 𝑣1, 𝑣2 ∈𝑇𝑝B 𝜋
2
(𝑜,𝑟0), where 𝜈𝑔H is the 𝑔H-normal field pointing upward. By −𝜈𝑔H

(
1
𝑚𝑥0

)
> 0,

II𝑔I is positive definite. Therefore, 𝐻 > 0 and B 𝜋
2
(𝑜,𝑟0). Hence B 𝜋

2
(𝑜,𝑟0) is a subsolution. For

𝜃 ≠ 𝜋/2, set 𝑢2 ≔ 𝑢𝜋/2,𝑟0 and 𝑢1 ≔ 𝑢𝜃,𝑟0 . Therefore, 𝑢1 = 𝑢2 − 𝜀 for suitable 𝜀 > 0. By Proposition

4.1.6, 𝑢1 is a subsolution. □

4.4 Rotationally symmetric graph over an annulus

Definition 4.4.1 (Rotationally symmetric graph soliton over an annulus). Let 𝑢 : (𝑇1,𝑇2) → R,

𝜌 ↦→ 𝑢(𝜌), be a function such that 𝑇2 > 𝑇1 > 0 and the 𝑚-submanifold generated by rotating

𝑥0 = 𝑢(𝑥1) about the 𝑥0-axis be a soliton with respect to 𝑋 = −𝜕0, that is,

𝑅𝑥0 (𝑢) : 𝐴 ⊂ 𝜕∞H𝑚+1 → R

(𝑥1, 𝑥2, · · · , 𝑥𝑚) ↦→ 𝑢

(√︃
𝑥2

1 + · · · + 𝑥
2
𝑚

)
,

where 𝐴≔
{
(𝑥1, · · · , 𝑥𝑚) ∈ 𝜕∞H𝑚+1 : 𝑇1 <

√︃
𝑥2

1 + · · · + 𝑥
2
𝑚 < 𝑇2

}
is an annulus. The𝑚-submanifold

graph of 𝑅𝑥0 (𝑢), 𝑀 ≔ Γ(𝑅𝑥0 (𝑢)), is a soliton with respect to 𝑋 = −𝜕0. 𝑀 is called rotationally

symmetric graph soliton over an annulus with respect to 𝑋 = −𝜕0.

Proposition 4.4.2 (ODE for a rotationally symmetric graph soliton over an annulus). Let

𝑀 = Γ(𝑅𝑥0 (𝑢)) be a rotationally graph soliton over an annulus. Therefore, the 𝐶2-function

𝑢 : (𝑇1,𝑇2) → R is a solution for:

𝑢′′(
1+𝑢′2

) + 𝑚−1
𝜌

𝑢′ = −1+𝑚𝑢
𝑢2 . (4.4.1)

Proof. Note that 𝜌2 = 𝑥2
1 + · · ·𝑥

2
𝑚, hence:
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2𝜌∇R𝜌 = 2𝑥1𝜕1 + · · · +2𝑥𝑚𝜕𝑚,

∇R𝜌 =
𝑥1𝜕1 + · · · + 𝜕𝑚

𝜌
,

|∇R𝜌 |R = 1,

and

divR(∇R𝜌) = 1
𝜌

divR(𝑥1𝜕1 + · · · + 𝑥𝑚𝜕𝑚) +𝑔R (−
1
𝜌2∇

R𝜌,𝑥1𝜕1 + · · · + 𝑥𝑚𝜕𝑚) =
𝑚

𝜌
− 1
𝜌
=
𝑚−1
𝜌

By equation (SE±),

divR
©«

∇R(𝑅𝑥0 (𝑢))√︃
1+ |∇R𝑅𝑥0 (𝑢) |2R

ª®®¬ =
−𝑚𝑅𝑥0 (𝑢) −1

𝑅𝑥0 (𝑢)2
√︃

1+ |∇R𝑅𝑥0 (𝑢) |2R

divR
©«

𝑢′(𝜌)∇R𝜌√︃
1+ |𝑢′(𝜌)∇R𝜌 |2R

ª®®¬ =
−𝑚𝑢(𝜌) −1

𝑢(𝜌)2
√︃

1+ |𝑢′(𝜌)∇R𝜌 |2R

divR
(
𝑢′(𝜌)∇R𝜌√︁
1+ (𝑢′(𝜌))2

)
=

−𝑚𝑢(𝜌) −1
𝑢(𝜌)2√︁1+ (𝑢′(𝜌))2

Define the auxiliar function 𝜑 : R→ R, 𝜑(𝑡) = 𝑡√
1+𝑡2

,

𝜑′(𝑡) = 1
(1+ 𝑡2) 3

2

. Therefore,

divR(𝜑(𝑢′(𝜌))∇R𝜌) = − 1+𝑚𝑢(𝜌)

𝑢(𝜌)2
√︃

1+𝑢′(𝜌)2

𝑔R (𝜑′(𝑢′(𝜌))𝑢′′(𝜌)∇R𝜌,∇R𝜌) +𝜑(𝑢′(𝜌))divR(∇R𝜌) = − 1+𝑚𝑢(𝜌)

𝑢(𝜌)2
√︃

1+𝑢′(𝜌)2

𝜑′(𝑢′(𝜌))𝑢′′(𝜌) +𝜑(𝑢′(𝜌))𝑚−1
𝜌

= − 1+𝑚𝑢(𝜌)

𝑢(𝜌)2
√︃

1+𝑢′(𝜌)2

𝑢′′(𝜌)
(1+𝑢′(𝜌)2) 3

2
+ 𝑚−1

𝜌

𝑢′(𝜌)√︃
1+𝑢′(𝜌)2

= − 1+𝑚𝑢(𝜌)

𝑢(𝜌)2
√︃

1+𝑢′(𝜌)2

𝑢′′(𝜌)
(1+𝑢′(𝜌)2)

+ 𝑚−1
𝜌

𝑢′(𝜌) = −1+𝑚𝑢(𝜌)
𝑢(𝜌)2 .

□
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Lemma 4.4.3. Let 𝑢2 and 𝑢1 be solutions to (4.4.1) on an interval (𝑟1, 𝑟2). Then, either 𝑢2 ≡ 𝑢1

or 𝑢2 −𝑢1 does not have any non-negative local maximum on (𝑟1, 𝑟2).

Proof. Assume to the contrary that 𝑢2 −𝑢1 attains a local maximum 𝑐0 ≥ 0 at a point 𝑟0. Then,

𝑢2 ≤ 𝑢1 + 𝑐0 near 𝑟0 with equality attained at the point 𝑟0. From 𝑐0 ≥ 0 and Proposition 4.1.6,

𝑢1 + 𝑐0 is a supersolution to (4.4.1) and this contradicts the Maximum Principle (Theorem

4.1.2). □

4.5 Rotationally symmetric graph over cylinder

We are going to analyze solitons which are radially symmetric graphs over a cylinder

in H𝑚+1. We are going to use the following coordinates in H𝑚+1:

𝑥0 = 𝑧,

𝑥2
1 + · · · + 𝑥

2
𝑚 = 𝜌2,

(𝑥1, . . . , 𝑥𝑚)
𝜌

= 𝜔 ∈ S𝑚−1 ⊂ R𝑚 ≈ 𝜕∞H𝑚+1.

(𝑧, 𝜌,𝜔) ∈ R+×R+×S𝑚−1 = H𝑚+1 − {𝑥2
1 + · · · + 𝑥

2
𝑚 = 0} and the Riemannian metric

�̄� =
1
𝑥2

0
(𝑑𝑥2

0 + · · · + 𝑑𝑥
2
𝑚) =

1
𝑧2 (𝑑𝑧

2 + 𝑑𝜌2 + 𝜌2𝑔2
S𝑚−1),

�̄�−1 = 𝑧2(𝜕𝑧 ⊗ 𝜕𝑧 + 𝜕𝜌 ⊗ 𝜕𝜌 +
1
𝜌2𝑔

−1
S𝑚−1).

Definition 4.5.1. A radially symmetric graph over the cylinder is given by:

𝔊𝜙 : 𝐴 ⊂ R+×S𝑚−1 → R+×R+×S𝑚−1

(ℎ,𝛼) ↦→ (ℎ, 𝜙(ℎ), 𝛼).

Now let us compute some quantities to find the mean curvature of 𝔊𝜙. Define

the function 𝔉𝜙 : H𝑚+1 → R given by 𝔉𝜙 (𝑧, 𝜌,𝜔) = 𝜌 − 𝜙(𝑧). Hence 𝑑𝔉𝜙 = 𝑑𝜌 − 𝜙′(𝑧)𝑑𝑧 and

𝔊𝜙 (R+×S𝑚−1) = 𝔉𝜙
−1(0). The gradient of 𝔉𝜙 is given by ∇𝔉𝜙 = 𝑖𝑑𝔉𝜙

�̄�−1 = 𝑧2(−𝜙′(𝑧)𝜕𝑧 + 𝜕𝜌).

The normal vector field 𝜈 is ∇𝔉𝜙

|∇𝔉𝜙 |𝑔
= 1
𝑧
√

1+(𝜙′)2
(𝑧2(−𝜙′𝜕𝑧 + 𝜕𝜌)).

Using Lemma 4.3.1 for 𝑔H = 1
𝑧2𝑔R , where w = − ln 𝑧. It follows that:

Lemma 4.5.2. Let {𝜕𝑧, 𝜕𝜌, 𝜕𝜃1, . . . , 𝜕𝜃𝑚−1} coordinate frame for R+×R+×S𝑚−1 with the hyper-

bolic metric 𝑔H. Then, the following equations hold:
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(a) ∇H
𝑋𝜕𝑧 = −1

𝑧
𝑋, ∀𝑋 ∈ 𝔛(𝑁).

(b) ∇H
𝜕𝜌𝜕𝜌 =

1
𝑧
𝜕𝑧 .

(c) ∇H
𝜕𝑧𝜕𝜌 = −1

𝑧
𝜕𝜌 .

(d) ∇H
𝜕𝜃 𝑖𝜕𝜌 = ∇H

𝜕𝜌𝜕𝜃𝑖 = 0.

(e) ∇H
𝜕𝜃 𝑖𝜕𝜃 𝑗 = ∇R

𝜕𝜃 𝑖𝜕𝜃 𝑗 +𝑔R (𝜕𝜃𝑖, 𝜕𝜃 𝑗 )
(

1
𝑧
𝜕𝑧

)
.

(f) ∇H
𝜕𝑧𝜕𝜃𝑖 = ∇H

𝜕𝜃 𝑖𝜕𝑧 = −1
𝑧
𝜕𝜃𝑖 .

(g) ∇H
𝜕𝜌𝜕𝜃𝑖 = ∇H

𝜕𝜃 𝑖𝜕𝜌 = 0.

Using Lemma 4.5.2 we can compute the second fundamental form and mean curva-

ture of the graph of 𝔊𝜙.

Lemma 4.5.3. Let {𝜕ℎ, 𝜕𝜉1, . . . , 𝜕𝜉𝑚−1} be a coordinate frame for R+ × S𝑚−1 such that the

set of last vector fields {𝜕𝜉1, . . . , 𝜕𝜉𝑚−1} is coordinate frame for S𝑚−1. As before let the set

{𝜕𝑧, 𝜕𝜌, 𝜕𝜃1, . . . , 𝜕𝜃𝑚−1} be coordinate frame for the codomain R+×R+×S𝑚−1 with the hyperbolic

metric 𝑔H. Define 𝐸0 :=𝔊𝜙∗(𝜕ℎ) = 𝜕𝑧+𝜙′𝜕𝜌 and 𝐸𝛼 :=𝔊𝜙∗(𝜕𝜉𝛼) = 𝜕𝜃𝛼 for 1 ≤ 𝛼 ≤𝑚−1. Denote

by 𝐻 the (unnormalized) mean curvature of 𝔊𝜙 . Then the following equations hold:

(a) ∇H
𝐸0𝐸0 =

(
−1
𝑧
+ 𝜙′2

𝑧

)
𝜕𝑧 +

(
−2𝜙′

𝑧
+𝜙′′

)
𝜕𝜌 .

(b) 𝑔H
(
∇H

𝐸0𝐸0, 𝜈
)
= 1
𝑧2

1√
1+(𝜙′)2

[−𝜙′− (𝜙′)3 +𝜙′′𝑧] .

(c) ∇H
𝐸𝛼
𝐸𝛽 = ∇H

𝜕𝜃 𝛼𝜕𝜃 𝛽 = ∇R
𝜕𝜃 𝛼𝜕𝜃 𝛽 +𝑔R (𝜕𝜃𝛼, 𝜕𝜃 𝛽)

(
1
𝑧
𝜕𝑧

)
.

(d) 𝑔H
(
∇H

𝐸𝛼
𝐸𝛽, 𝜈

)
= 𝑔H(𝜕𝜃𝛼, 𝜕𝜃 𝛽)

(
− 𝜙′√

1+(𝜙′)2

)
+𝑔H

(
∇R

𝜕𝜃 𝛼𝜕𝜃 𝛽,
𝑧√

1+(𝜙′)2
𝜕𝜌

)
.

(e) 𝐻 = 1√
1+(𝜙′)2

( 𝜙′′𝑧
1+(𝜙)2 −𝑚𝜙′) − (𝑚−1)𝑧

𝜙
√

1+(𝜙′)2
.

(f) 𝑔H(−𝜕𝑧, 𝜈) = 𝜙′

𝑧
√

1+(𝜙′)2
.

Proof. (a)

∇H
𝐸0𝐸0 = ∇H

𝐸0 (𝜕𝑧 +𝜙′𝜕𝜌)

= ∇H
𝐸0𝜕𝑧 +∇H

𝐸0 (𝜙′𝜕𝜌)

= ∇H
𝜕𝑧+𝜙′𝜕𝜌𝜕𝑧 +𝜙′′𝜕𝜌 +𝜙′∇H

𝜕𝑧+𝜙′𝜕𝜌𝜕𝜌

= ∇H
𝜕𝑧𝜕𝑧 +𝜙′∇H

𝜕𝜌𝜕𝑧 +𝜙′′𝜕𝜌 +𝜙′∇H
𝜕𝑧𝜕𝜌 + (𝜙′)2∇H

𝜕𝜌𝜕𝜌

= −1
𝑧
𝜕𝑧 +𝜙′

(
−1
𝑧
𝜕𝜌

)
+𝜙′′𝜕𝜌 +𝜙′

(
−1
𝑧
𝜕𝜌

)
+ (𝜙′)2 1

𝑧
𝜕𝑧

=

(
−1
𝑧
+ 𝜙

′2

𝑧

)
𝜕𝑧 +

(
−2𝜙′

𝑧
+𝜙′′

)
𝜕𝜌 .
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(b)

𝑔H(∇H
𝐸0𝐸0, 𝜈) =

= 𝑔H

((
−1+ (𝜙′)2

𝑧

)
𝜕𝑧 +

(
−2𝜙′+𝜙′′𝑧

𝑧

)
𝜕𝜌,

𝑧√︁
1+ (𝜙′)2

(
−𝜙′𝜕𝑧 + 𝜕𝜌

))
= (−1+ (𝜙′)2) 1√︁

1+ (𝜙′)2
(−𝜙) |𝜕𝑧 |2𝑔H + (−2𝜙′+𝜙′′𝑧) 1√︁

1+ (𝜙′)2
|𝜕𝜌 |2𝑔H

=
1
𝑧2

1√︁
1+ (𝜙′)2

(+𝜙′− (𝜙′)3 −2𝜙′+𝜙′′𝑧) =

=
1
𝑧2

1√︁
1+ (𝜙′)2

(−𝜙′− (𝜙′)3 +𝜙′′𝑧).

(c) It follows by (e) of lemma 4.5.2.

(d)

𝑔H

(
∇H

𝐸𝛼
𝐸𝛽, 𝜈

)
=

= 𝑔H

(
∇R

𝜕𝜃 𝛼𝜕𝜃 𝛽 +gR𝑚+1 (𝜕𝜃𝛼, 𝜕𝜃 𝛽)
(
1
𝑧
𝜕𝑧

)
,

𝑧√︁
1+ (𝜙′)2

(−𝜙′𝜕𝑧 + 𝜕𝜌)
)

= 𝑔H(𝜕𝜃𝛼, 𝜕𝜃 𝛽)
(
− 𝜙′√︁

1+ (𝜙′)2

)
+𝑔H

(
∇R

𝜕𝜃 𝛼𝜕𝜃 𝛽,
𝑧√︁

1+ (𝜙′)2
𝜕𝜌

)
.

(e)

𝐻 = (𝔊𝜙
∗𝑔H)00𝑔H(∇H

𝐸0𝐸0, 𝜈) +
∑︁
𝛼,𝛽

(𝔊𝜙
∗𝑔H)𝛼𝛽𝑔H(∇H

𝐸𝛼
𝐸𝛽, 𝜈)

=
𝑧2

1+ (𝜙′)2

(
1
𝑧2

1√︁
1+ (𝜙′)2

(−𝜙′− (𝜙′)3 +𝜙′′𝑧)
)
+

+
∑︁
𝛼,𝛽

(𝔊𝜙
∗𝑔H)𝛼𝛽

(
(𝔊𝜙

∗𝑔H)𝛼𝛽

(
− 𝜙′√︁

1+ (𝜙′)2

)
+𝑔H

(
∇R

𝜕𝜃 𝛼𝜕𝜃 𝛽,
𝑧√︁

1+ (𝜙′)2
𝜕𝜌

))
=

1√︁
1+ (𝜙′)2

(
−𝜙′− (𝜙′)3 +𝜙′′𝑧

1+ (𝜙′)2 − (𝑚−1)𝜙′
)
− (𝑚−1)𝑧
𝜙
√︁

1+ (𝜙′)2
.

It was used the Euclidean mean curvature of the sphere of radius 𝜙 and dimension 𝑚−1 is
𝑚−1
𝜙

.

(f)

𝑔H(−𝜕𝑧, 𝜈) = 𝑔H

(
−𝜕𝑧,

𝑧√︁
1+ (𝜙′)2

(−𝜙′𝜕𝑧 + 𝜕𝜌)
)

=
𝜙′

𝑧
√︁

1+ (𝜙′)2
.

□
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Now it follows that the cylindrical graph of 𝔊𝜙 is a soliton with respect to −𝜕0 = −𝜕𝑧
if and only if 1√

1+(𝜙′)2

(
𝜙′′𝑧

1+(𝜙)2 −𝑚𝜙′
)
− (𝑚−1)𝑧
𝜙
√

1+(𝜙′)2
= 𝐻 = �̄�(−𝜕𝑧, 𝜈) = 𝜙′

𝑧
√

1+(𝜙′)2
. Equivalently,

𝜙′′𝑧

1+ (𝜙′)2 −𝑚𝜙
′− (𝑚−1)𝑧

𝜙
=
𝜙′

𝑧
. (4.5.1)

Proposition 4.5.4 (ODE for cylindrical graph). A cylindrical graph Im(𝔊𝜙) is a soliton with

respect to −𝜕0 if and only if

𝜙′′

1+ (𝜙′)2 −
1+𝑚𝑧
𝑧2 𝜙′− (𝑚−1)

𝜙
= 0. (4.5.2)

In order to understand the rotationally symmetric graph over a cylinder, we need to

study the previous ODE.

4.6 Energy Method

In this section, we define an energy 𝐹 to help us to analyze the qualitative behaviour

of cylindrical graphs 𝔊𝜙. By (4.5.2),

𝜙′′𝑧

1+ (𝜙′)2 −𝑚𝜙
′− (𝑚−1)𝑧

𝜙
=
𝜙′

𝑧
.

Define 𝐹 (𝑧) := 𝑧−𝑚 𝜙′√
1+(𝜙′)2

. Hence,

𝐹′(𝑧) = 1
𝑧𝑚+1

√︁
1+𝜙′2

[
𝑧𝜙′′

1+ (𝜙′)2 −𝑚𝜙
′
]
.

By (4.5.2), 𝑧𝜙′′

1+𝜙′2 −𝑚𝜙
′ = 𝜙′

𝑧
+ (𝑚−1) 𝑧

𝜙
. Therefore,

𝐹′(𝑧) = 1
𝑧𝑚+1

√︁
1+𝜙′2

[
𝜙′

𝑧
+ (𝑚−1) 𝑧

𝜙

]
=

1
𝑧2𝐹 + 𝑚−1

𝑧𝑚𝜙
√︁

1+𝜙′2
.

Thus, 𝐹′− 1
𝑧2𝐹 = 𝑚−1

𝑧𝑚𝜙
√

1+𝜙′2
. Multiplying by 𝑒

∫ ℎ

𝑧
1
𝑟2 𝑑𝑟 ,

(𝐹𝑒
∫ ℎ

𝑧
1
𝑟2 𝑑𝑟)′ = 𝑒

∫ ℎ

𝑧
1
𝑟2 𝑑𝑟

𝑚−1
𝑧𝑚𝜙

√︁
1+𝜙′2

.

Integrating,

𝐹 (ℎ) −𝐹 (𝑧)𝑒
∫ ℎ

𝑧
1
𝑟2 𝑑𝑟 =

∫ ℎ

𝑧

𝑚−1
𝑟𝑚𝜙(𝑟)

√︁
1+𝜙′(𝑟)2

𝑒

∫ ℎ

𝑟
1
𝑠2 𝑑𝑠 𝑑𝑟 (4.6.1)

𝐹 (ℎ) −𝐹 (𝑧)𝑒− 1
ℎ
+ 1
𝑧 =

∫ ℎ

𝑧

𝑚−1
𝑟𝑚𝜙(𝑟)

√︁
1+𝜙′(𝑟)2

𝑒−
1
ℎ
+ 1
𝑟 𝑑𝑟 (4.6.2)
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To understand the behaviour of the solution to (4.5.2), it is necessary to prove some

technical lemmas.

Lemma 4.6.1 (Behaviour of concave branch). Given 𝑧0 > 0, 𝜏0 > 0 and 𝜙′0 > 0. Let 𝜙 : (ℎ∗, ℎ∗) →

R be the maximal solution to:

𝜙′′

1+ (𝜙′)2 −
1+𝑚𝑧
𝑧2 𝜙′− (𝑚−1)

𝜙
= 0,

𝜙(𝑧0) = 𝜏0,

𝜙′(𝑧0) = −𝜙′0.

(4.6.3)

where 𝑧0 ∈ (ℎ∗, ℎ∗). If 𝜙′′(𝑧0) ≤ 0, then the following statements hold true:

(a) 𝜙′ < 0, 𝜙′′ < 0 on (ℎ∗, 𝑧0).

(b) ℎ∗ = 0.

(c) lim
𝑧→0+

𝜙(𝑧) = 𝜙0 for some 𝜙0 > 0.

(d) lim
𝑧→0+

𝜙′(𝑧) = 0.

Proof. (a) We claim that 𝜙′(𝑧) < 0 ∀𝑧 ∈ (ℎ∗, 𝑧0). Otherwise, we would have a 𝑧𝑐 ∈ (ℎ∗, 𝑧0)

such that 𝜙′(𝑧𝑐) = 0 and 𝜙′ < 0 on (𝑧𝑐, 𝑧0). By (4.6.3), 𝜙′′(𝑧𝑐) > 0, therefore 𝜙′ is increasing

on a neighborhood of 𝑧𝑐, contradicting that 𝜙′ < 0 on (𝑧𝑐, 𝑧0). Thus, 𝜙′ < 0 on (ℎ∗, 𝑧0).

We claim that 𝜙′′ ≤ 0 on (ℎ∗, 𝑧0). Otherwise, we would have a interval (𝑎, 𝑏] ⊂ (ℎ∗, 𝑧0]

such that 𝜙′′ > 0 on (𝑎, 𝑏) and 𝜙′′(𝑏) = 0. By (4.6.3),

−𝜙′(𝑎)
(
𝑚 + 1

𝑎

)
≤ (𝑚−1) 𝑎

𝜙(𝑎) and −𝜙′(𝑏)
(
𝑚 + 1

𝑏

)
= (𝑚−1) 𝑏

𝜙(𝑏) .

Using that 𝜙 is decreasing on (ℎ∗, 𝑧0), we have:
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0 < 𝜙(𝑏) < 𝜙(𝑎) (4.6.4)

1
𝜙(𝑏) >

1
𝜙(𝑎) (4.6.5)

(𝑚−1) 𝑏

𝜙(𝑏) > (𝑚−1) 𝑎

𝜙(𝑎) (4.6.6)

−𝜙′(𝑏)
(
𝑚 + 1

𝑏

)
> −𝜙′(𝑎)

(
𝑚 + 1

𝑎

)
(4.6.7)

−𝜙′(𝑏) > −𝜙′(𝑎)

(
𝑚 + 1

𝑎

)(
𝑚 + 1

𝑏

) > −𝜙′(𝑎) (4.6.8)

𝜙′(𝑏) < 𝜙′(𝑎) < 0. (4.6.9)

Contradicting that 𝜙′ is increasing on (𝑎, 𝑏]. Thus, 𝜙′′ ≤ 0 on (ℎ∗, 𝑧0). Suppose by

contradiction that 𝜙′′(𝑧𝑖) = 0 for some 𝑧𝑖 ∈ (ℎ∗, 𝑧0). Therefore, 𝑧𝑖 is a critical point for 𝜙′′

on (ℎ∗, 𝑧0), hence 𝜙′′′(𝑧𝑖) = 0. Differentianting (4.6.3),

[
𝜙′′′

1+ (𝜙′)2 −
2(𝜙′′)2𝜙′

(1+ (𝜙′)2)2

]
−

[(
−2−𝑚𝑧
𝑧3

)
𝜙′+

(
1+𝑚𝑧
𝑧2

)
𝜙′′

]
+ 𝑚−1

𝜙2 𝜙′ = 0 (4.6.10)

Therefore,
((

2+𝑚𝑧
𝑧3

)
+ 𝑚−1

𝜙2

)
𝜙′ = 0 at 𝑧 = 𝑧𝑖, contradicting that

((
2+𝑚𝑧
𝑧3

)
+ 𝑚−1

𝜙2

)
> 0 and

𝜙′(𝑧𝑖) < 0. Thus, 𝜙′′ < 0 on (ℎ∗, 𝑧0).

(b) Suppose by contradiction that ℎ∗ > 0. We claim that:

(i) lim
𝑧→ℎ∗

+
𝜙(𝑧) = 𝜙ℎ∗ for some 𝜙ℎ∗ > 0.

(ii) lim
𝑧→ℎ∗

+
𝜙′(𝑧) = −𝜙′

ℎ∗
for some 𝜙′

ℎ∗
≥ 0.

If (i) and (ii) are true, then we could extend solution 𝜙 : (ℎ∗, ℎ∗) → R, a contradiction by

maximality of (ℎ∗, ℎ∗). Namely,

(i) As 𝜙 is decreasing on (ℎ∗, 𝑧0), either lim
𝑧→ℎ∗

+
𝜙(𝑧) =∞ or lim

𝑧→ℎ∗
+
𝜙(𝑧) = 𝜙ℎ∗ for some

𝜙ℎ∗ > 0. If lim
𝑧→ℎ∗

+
𝜙(𝑧) = ∞, we find a contradiction by Maximum Principle (Pro-

position C.0.1). Indeed, we put a small grim-reaper Gℎ,[𝐻∗,𝐻∗] (Remark 4.2.1)

below Im(𝔊𝜙), that is, ℎ < ℎ∗ and 𝐻∗ > 𝜙(𝑧0). Setting G𝑡 ≔ Gℎ𝑡 ,[𝐻∗ (ℎ𝑡 ),𝐻∗ (ℎ𝑡 )]

where ℎ𝑡 ≔ ℎ + 𝑡 and 𝐻∗(ℎ𝑡) ≔ 𝐻∗(ℎ). Increasing 𝑡, there exist a G𝑡0 such that

G𝑡0 ∩ Im𝔊𝜙 ≠ ∅, contradiction by the Maximum Principle. Thus, the only possibility

remained is lim
𝑧→ℎ∗

+
𝜙(𝑧) = 𝜙ℎ∗ for some 𝜙ℎ∗ > 0.

(ii) As 𝜙′′ < 0 on (ℎ∗, 𝑧0), 𝜙′ is decreasing on (ℎ∗, 𝑧0). As 𝜙′ < 0 on (ℎ∗, 𝑧0), 𝜙′ is

bounded therefore lim
𝑧→ℎ∗

𝜙′(𝑧) does exist.
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Thus, ℎ∗ must be equal to zero.

(c) As 𝜙 is decreasing, we just have to exclude the possibility that lim
𝑧→0+

𝜙(𝑧) =∞. Again, we

use the Maximum Principle to arrive at a contradiction. Namely, put a small grim-reaper

below Im(𝔊𝜙) and slide the grim-reaper in the direction 𝑥1 up to touching Im(𝔊𝜙), a

contradiction by Maximum Principle.

(d) As 𝜙′′ < 0 on (0, 𝑧0), 𝜙′ is decreasing. As 𝜙′ < 0 on (0, 𝑧0), lim
𝑧→0+

𝜙′(𝑧) = −𝜙′0 for some

𝜙′0 ≥ 0. By argument using a spherical barrier, 𝜙′0 cannot be positive. Thus, 𝜙′0 = 0.

□

Lemma 4.6.2 (Behaviour of a cylindrical graph with a critical point). Given 𝑧1 > 0 and 𝜏 > 0.

Let 𝜙 : (ℎ∗, ℎ∗) → R be the maximal solution to:



𝜙′′

1+ (𝜙′)2 −
1+𝑚𝑧
𝑧2 𝜙′− (𝑚−1)

𝜙
= 0,

𝜙(𝑧1) = 𝜏,

𝜙′(𝑧1) = 0.

(4.6.11)

Then the following statements hold:

(a) Every critical point of 𝜙 is a local minimum point.

(b) The only critical point of 𝜙 is 𝑧 = 𝑧1 and 𝜙 attains global minimum at 𝑧 = 𝑧1.

(c) 𝜙 is strictly decreasing on (ℎ∗, 𝑧1) and strictly increasing and convex on (𝑧1, ℎ
∗).

(d) ℎ∗ = 0.

(e) lim
𝑧→0+

𝜙(𝑧) = 𝜏∗ for some 𝜏∗ > 0.

(f) ℎ∗ is finite, lim
𝑧→ℎ∗−

𝜙(𝑧) = 𝜏∗ for some 𝜏∗ > 0 and lim
𝑧→ℎ∗−

𝜙′(𝑧) =∞.

(g) There exists 𝜆0 ∈ (0, 𝑧1) such that 𝜙′′(𝜆0) = 0, 𝜙′(𝜆0) < 0 and 𝜙′′(𝑧) > 0,∀𝑧 ∈ (𝜆0, 𝑧1).

(h) lim
𝑧→0+

𝜙′(𝑧) = 0.

(i) 𝜙′′(𝑧) < 0 ∀𝑧 ∈ (0,𝜆0) and 𝜙′′(𝑧) > 0,∀𝑧 ∈ (𝜆0, 𝑧1).

(j) 𝜙′ is bounded on (0, 𝑧1).

Proof. (a) By (4.6.11), 𝜙′′(𝑧) > 0 whenever 𝜙′(𝑧) = 0.

(b) Suppose by contradiction that there exists another critical point 𝑧 = 𝑧𝑐 for 𝜙. By (a), 𝑧 = 𝑧𝑐

is a local minimum. We must have a local maximal point between the two local minimum

points 𝑧 = 𝑧𝑐 and 𝑧 = 𝑧1, however, this is not possible by (a). Thus, 𝑧 = 𝑧1 is the only

minimum point in the maximal interval (ℎ∗, ℎ∗).
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(c) Suppose by contradiction that there exists 𝑧+ ∈ (ℎ∗, 𝑧1) such that 𝜙′(𝑧+) > 0. There exists

a interval (𝑧1 − 𝜖, 𝑧1) where 𝜙′ < 0 by minimality at 𝑧 = 𝑧1. Therefore, by continutity of 𝜙′,

there exists a critical point on (𝑧+, 𝑧1) contradicting (b). Similarly , we prove that 𝜙′ > 0

on (𝑧1, ℎ
∗). Therefore, by (4.6.11), 𝜙′′ > 0 on (𝑧1, ℎ

∗).

(d) By (c), there exists 𝑧0 ∈ (ℎ∗, 𝑧0) such that 𝜙′(𝑧0) < 0. Therefore, by Lemma 4.6.1.(b),

ℎ∗ = 0.

(e) Suppose by contradiction that lim
𝑧→0+

𝜙(𝑧) = ∞. We can put a small spherical barrier

B 𝜋
2
(𝑜,𝑟0) (see Proposition 4.3.3) below the cylindrical graph Im(𝔊𝜙) and we slide

B 𝜋
2
(𝑜,𝑟0) in the direction of 𝑥0 until some part of the spherical barrier has 𝑥0-coordinate

greater than 𝑥0-coordinate of some part of Im(𝔊𝜙) gives a contradiction by Comparison

Principle (Proposition 4.1.3). Therefore, lim
𝑧→0+

𝜙(𝑧) is finite.

(f) Suppose by contradiction that ℎ∗ = ∞. As 𝜙 is increasing on (𝑧1, ℎ
∗), there are two

situations:

(i) lim
𝑧→∞

𝜙(𝑧) =∞.

(ii) lim
𝑧→∞

𝜙(𝑧) = 𝜏0 for some 𝜏0 > 0.

We will show that (i) and (ii) are impossible:

(i) In this case, we can put a grim-reaper Gℎ,[𝐻∗,𝐻∗] below the cylindrical graph Im(𝔊𝜙)

and increasing ℎ until Gℎ,[𝐻∗,𝐻∗] touches Im(𝔊𝜙) in Im(𝔊𝜙 | (𝑧1 ,∞) ) finding a contra-

diction by Maximum Principle (Proposition C.0.1). Namely, there exists a small

grim-reaper Gℎ0,[𝐻∗ (ℎ0),𝐻∗ (ℎ0)] such that 𝑥1(Gℎ0,[𝐻∗ (ℎ0),𝐻∗ (ℎ0)]) > 𝜏∗ and ℎ0 < 𝑧1, that

is, Gℎ0,[𝐻∗ (ℎ0),𝐻∗ (ℎ0)] ⊂ {𝑥1 > 𝜏∗}∩ {𝑥0 < 𝑧1}. Set G𝑡 ≔ Gℎ𝑡 ,[𝐻∗ (ℎ𝑡 ),𝐻∗ (ℎ𝑡 )] where 𝑡 > 0,

ℎ𝑡 ≔ ℎ0 + 𝑡 and 𝐻∗(ℎ𝑡) ≔ 𝐻∗(ℎ0). Notice that G𝑡 ⊂ {𝑥1 > 𝜏∗}. Set 𝑡𝑠 ≔ sup{𝑡 > 0 :

G𝑟 ∩ Im(𝔊𝜙) = ∅ ∀0 < 𝑟 < 𝑡}. Therefore, G𝑡𝑠 ∩ Im(𝔊𝜙 | (𝑧1 ,∞) ) ≠ ∅ contradicting the

Maximum Principle.

(ii) In this case, there exists a inflection point 𝑟𝑖 ∈ (𝑧1,∞) such that 𝜙′′(𝑟𝑖) = 0. By

(4.6.11), 𝜙′(𝑟𝑖) < 0, a contradiction by (c).

Thus, ℎ∗ is finite. Now suppose by contradiction that lim
𝑧→ℎ∗−

𝜙(𝑧) =∞. We use a similar

argument as in (a). Therefore, there exists 𝜏∗ > 0 such that lim
𝑧→ℎ∗−

𝜙(𝑧) = 𝜏∗. By (III), 𝜙′ > 0

on (𝑧1, ℎ
∗). Hence, by (4.6.11), 𝜙′′ > 0 on (𝑧1, ℎ

∗) and 𝜙′ is strictly increasing on (𝑧1, ℎ
∗).

The limit of 𝜙′(𝑧) as 𝑧→ ℎ∗− cannot be finite because we could extend the solution 𝜙

contradicting the maximality of ℎ∗. Thus, lim
𝑧→ℎ∗−

𝜙′(𝑧) =∞.

(g) Define 𝜆0 as the smallest number in [0, 𝑧1] such that 𝜙′′(𝑧) > 0 ∀𝑧 ∈ (𝜆0, 𝑧1). We claim
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that:

(i) 𝜆0 > 0

(ii) lim𝑧→𝜆0
+ 𝜙(𝑧) is finite.

(iii) 𝜙′(𝜆0) < 0

(iv) 𝜙′′(𝜆0) = 0

Indeed, we prove this in the following way:

(i) Let us assume the opposite, 𝜆0 = 0, and see if it leads to a contradiction. As 𝜙′′ >

0 on (0, 𝑧1), 𝜙′ is increasing on (0, 𝑧1). Therefore, either lim𝑧→0+ 𝜙
′(𝑧) = −∞ or

lim𝑧→0+ 𝜙
′(𝑧) = −𝜙′

𝜆0
for some positive number 𝜙′

𝜆0
> 0. In any case, by (4.6.11)

and (e), lim𝑧→0+ 𝜙
′′(𝑧) = −∞, contradicting that 𝜙′′ > 0 on (0, 𝑧1). Thus, 𝜆0 must be

positive.

(ii) lim𝑧→𝜆0
+ 𝜙(𝑧) cannot be infinity because we can touch Im(𝔊𝜙 | (𝜆0 ,𝑧1 )

) with a grim-

reaper from below finding a contradiction by Maximum Principle as in the proof of

(d).

(iii) Suppose by contradiction that lim𝑧→𝜆0 𝜙
′(𝑧) = −∞. Therefore, changing coordinates

for a rotationally symmetric graph over an annulus (Definition 4.4.1), (𝑧, 𝜙(𝑧)) =

(𝑢(𝜌), 𝜌). Setting 𝜌0 ≔ 𝜙(𝜆0
+), 𝑢(𝜌0) = 𝜆0 and 𝑢′(𝜌0) = 0. Therefore, by Equation

(4.4.1), 𝑢′′(𝜌0) < 0, a contradiction by the behaviour of Im(𝜙 | (𝜆0,𝑧1)). Thus, we

conclude that lim𝑧→𝜆0
+ 𝜙′(𝑧) = −𝜙′

𝜆0
for some positive number 𝜙′

𝜆0
> 0.

(iv) By continuity of 𝜙′′ and 𝜙′′ > 0 on (𝜆0, 𝑧1), 𝜙′′(𝜆0) ≥ 0. Notice that 𝜙′′(𝜆0) cannot

be positive because we otherwise could extend on the left side the interval where

𝜙′′ > 0 beyond (𝜆0, 𝑧1). Thus, 𝜙′′(𝜆0) = 0.

(h) Using spherical barrier, we can assure that the graph of 𝜙 in 𝑥0𝑥1-plane meets orthogonally

the 𝑥1-axis, {𝑥0 = 0}.

(i) Differentianting (4.6.11),[
𝜙′′′

1+ (𝜙′)2 −
2(𝜙′′)2𝜙′

(1+ (𝜙′)2)2

]
−

[(
−2−𝑚𝑧
𝑧3

)
𝜙′+

(
1+𝑚𝑧
𝑧2

)
𝜙′′

]
+ 𝑚−1

𝜙2 𝜙′ = 0 (4.6.12)

Therefore, as 𝜙′ < 0 on (0, 𝑧1), if 𝜙′′(𝑧) = 0 for 𝑧 ∈ (0, 𝑧1), then, by Equation (4.6.12),

𝜙′′′(𝑧) > 0. Thus, every critical point of 𝜙′ on (0, 𝑧1) is a local minimum point. As in (II),

𝜙′| (0,𝑧1) attains global minimum at 𝑧 = 𝜆0 and 𝜙′′ < 0 on (0,𝜆0) and 𝜙′′ > 0 on (𝜆0, 𝑧1).

(j) By (g) and (h), Im𝜙′| (0,𝑧1) ⊂ (0, 𝜙′(𝜆0)]. Thus, 𝜙′| (0,𝑧1) is bounded.

□
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Lemma 4.6.3. For 𝑎 ∈ (0, ℎ∗), the quantity I(𝑧) :=
∫ 𝑎

𝑧
𝑚−1

𝑟𝑚𝜙(𝑟)
√

1+𝜙′ (𝑟)2
𝑒−

1
𝑎
+ 1
𝑟 𝑑𝑟 →∞ as 𝑧→ 0.

Proof. Noticing that |𝜙′| is bounded on (0, 𝑎) and setting 𝐾 ≔ max
𝑟∈(0,𝑎)

𝜙(𝑟)
√︁

1+𝜙′(𝑟)2,

∫ 𝑎

𝑧

𝑚−1
𝑟𝑚𝜙(𝑟)

√︁
1+𝜙′(𝑟)2

𝑒−
1/𝑎+1/𝑟𝑑𝑟 >

(𝑚−1)𝑒−1/𝑎

𝐾

∫ 𝑎

𝑧

𝑒
1/𝑟

𝑟𝑚
𝑑𝑟

>
(𝑚−1)𝑒−1/𝑎

𝐾

∫ 𝑎

𝑧

1
𝑟𝑚
𝑑𝑟 =

(𝑚−1)𝑒−1/𝑎

𝐾
(−𝑚 +1)

(
1

𝑎𝑚+1 −
1
𝑧𝑚+1

)
.

Therefore, lim
𝑧→0

I(𝑧) =∞.

□

Proposition 4.6.4 (Behaviour of a solution for a symmetric graph soliton over an anullus). Given

a radius 𝑅 > 0 and a height ℎ > 0. If 𝑢 : (𝑇1,𝑇2) → R is a maximal solution to:



𝑢′′(
1+𝑢′2

) + 𝑚−1
𝜌

𝑢′ = −1+𝑚𝑢
𝑢2 ,

𝑢(𝑅) = ℎ,

𝑢′(𝑅) = 0.

(4.6.13)

Then it follows that:

(a) 𝜌 = 𝑅 is a global maximum point for 𝑢.

(b) 𝑇2 is finite.

(c) 𝑇1 > 0.

(d) 𝑢′′ < 0 on (𝑇1,𝑇2).

(e) lim
𝜌→𝑇+

1

𝑢(𝜌) = 𝑧1 > 0 and lim
𝜌→𝑇+

1

𝑢′(𝜌) = +∞

(f) lim
𝜌→𝑇−

2

𝑢(𝜌) = 0 and lim
𝜌→𝑇−

2

𝑢′(𝜌) = −∞

Proof. (a) We claim that the only critical point is 𝜌 = 𝑅. Namely, by (4.4.1), 𝑢′′

(1+𝑢′2) = −1+𝑚𝑢
𝑢2

at 𝜌 = 𝑅. Hence 𝑢′′(𝑅) < 0. Therefore 𝜌 = 𝑅 is a strict local maximum point for 𝑢. There

is no other critical point besides 𝜌 = 𝑅. Indeed, suppose, by contradiction, that there

exists another critical point 𝑅1 ∈ (𝑇1,𝑇2), 𝑅1 ≠ 𝑅. Again by (4.4.1), 𝜌 = 𝑅1 is a strict local

maximum point. This is a contradiction by continuity of 𝑢′. Therefore, 𝑢′ > 0 in (𝑇1, 𝑅)

and 𝑢′ < 0 in (𝑅,𝑇2). Thus, 𝜌 = 𝑅 is the global maximum point.

(b) Suppose, by contradiction, that the solution 𝑢 is defined (𝑇1,∞), that is, 𝑇2 =∞. We know

that 𝑢 is decreasing in (𝑅,∞). Hence, because 𝑢 is decreasing and bounded below in
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(𝑅,∞), there exists 𝑧1 ≥ 0 such that lim
𝜌→∞

𝑢(𝜌) = 𝑧1. Then we can find a small spherical

barrier B 𝜋
2
(𝑜,𝑟0) (see Proposition 4.3.3) with radius 𝑟0 > 𝑧1 and below 𝑀 = Γ(𝑅𝑥0 (𝑢)).

To use the Maximum Principle (Proposition C.0.1), we increase the radius 𝑟0 until the

spherical barrier touches 𝑀. Namely, set 𝐼 = {𝑟 > 0 : B(𝑜,𝑟1) ∩𝑀 = ∅ ∀𝑟1 ≤ 𝑟} and

𝑟𝑆 = sup 𝐼. B(𝑜,𝑟𝑆) ∩𝑀 ≠ ∅ and B(𝑜,𝑟𝑆) touches 𝑀 inside H𝑚+1. This is a contradiction

by Proposition C.0.1. Thus, 𝑇2 is finite as claimed.

(c) Set the auxiliary function 𝜑 : R→ (−1,1), 𝜑(𝑡) = 𝑡√
1+𝑡2

, 𝜑′(𝑡) = 1
(1+𝑡2)

3
2

By Equation 4.4.1,

𝑢′′

1+ (𝑢′2)
+ 𝑚−1

𝜌
𝑢′ = −1+𝑚𝑢

𝑢2 (4.6.14)

𝑢′′

1+ (𝑢′2)
𝜌𝑚−1√︁

1+ (𝑢′)2
+ 𝑚−1

𝜌
𝑢′

𝜌𝑚−1√︁
1+ (𝑢′)2

= −1+𝑚𝑢
𝑢2

𝜌𝑚−1√︁
1+ (𝑢′)2

(4.6.15)

𝜑′(𝑢′)𝑢′′𝜌𝑚−1 +𝜑(𝑢′) (𝜌𝑚−1)′ = −1+𝑚𝑢
𝑢2

𝜌𝑚−1√︁
1+ (𝑢′)2

(4.6.16)

(𝜑(𝑢′)𝜌𝑚−1)′ = −1+𝑚𝑢
𝑢2

𝜌𝑚−1√︁
1+ (𝑢′)2

< 0. (4.6.17)

Set the auxiliary function𝛷(𝜌) ≔ 𝜑(𝑢′(𝜌))𝜌𝑚−1. Hence𝛷 is strictly decreasing,𝛷′ < 0.

𝜑(𝑢′(𝜌))𝜌𝑚−1 =𝛷(𝜌) > 𝛷(𝑅− 𝜖) = 𝜑(𝑢′(𝑅− 𝜖)) (𝑅− 𝜖)𝑚−1, for a small 𝜖 > 0, and 𝜌 ∈

(𝑇1, 𝑅 − 𝜖). As Im𝜑 = (−1,1), 𝜌𝑚−1 > 𝜑(𝑢′(𝑅 − 𝜖)) (𝑅 − 𝜖)𝑚−1 > 0. Hence, as 𝜌 → 𝑇1,

𝑇𝑚−1
1 ≥ 𝜑(𝑢′(𝑅− 𝜖)) (𝑅− 𝜖)𝑚−1 > 0. Thus, 𝑇1 cannot be equal to zero as claimed.

(d) By (4.6.13) and 𝑢′ ≥ 0 on (𝑇1, 𝑅], 𝑢′′ < 0 on (𝑇1, 𝑅). We only need to prove it for (𝑅,𝑇2).

The solution 𝑢 is defined in some neighborhood of 𝑅, say [𝑅−2𝛿, 𝑅 +2𝛿] for some small

𝛿 > 0. As 𝑢′′(𝑅+𝛿) < 0 and 𝑢′(𝑅+𝛿) < 0, we can change the coordinates for a rotationally

symmetric graph over the cylinder on the left side of 𝑅, that is, (𝑢(𝜌), 𝜌) = (𝑧, 𝜙(𝑧))

on {(𝑢(𝜌), 𝜌) : 𝑅 < 𝜌 < 𝑅 + 2𝛿}. Setting 𝑧0 ≔ 𝑢(𝑅 + 𝛿), 𝜏0 ≔ 𝑅 + 𝛿 and 𝜙′0 ≔ 1
𝑑𝑢
𝑑𝜌

(𝑅+𝛿) .

𝑑2𝜙
𝑑𝑧2 (𝑧0) < 0 and Lemma 4.6.1, 𝜙′′ < 0 on (0, 𝑧0) therefore 𝑢′′ < 0 on (𝑅,𝑇2).

(e) As 𝑢′ > 0 and 𝑢 > 0 in (𝑇1, 𝑅), the limit lim
𝜌→𝑇1

𝑢(𝜌) exists. As 𝑢′′ < 0 in (𝑇1,𝑇2), the limit

lim
𝜌→𝑇1

𝑢′(𝜌) exists or is +∞. Therefore, we have the following possibilities:

(i) lim
𝜌→𝑇1

𝑢(𝜌) = 𝑧1 > 0 and lim
𝜌→𝑇1

𝑢′(𝜌) = 𝑧′1 > 0.

(ii) lim
𝜌→𝑇1

𝑢(𝜌) = 0 and lim
𝜌→𝑇1

𝑢′(𝜌) = 𝑧′1 > 0.

(iii) lim
𝜌→𝑇1

𝑢(𝜌) = 0 and lim
𝜌→𝑇1

𝑢′(𝜌) =∞.

(iv) lim
𝜌→𝑇1

𝑢(𝜌) = 𝑧1 > 0 and lim
𝜌→𝑇1

𝑢′(𝜌) =∞.
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(i) It is not possible because we could extend the solution contradicting the maximality

of 𝑇1.

(ii) It is not possible because because we could touch 𝑀 = Γ(𝑅𝑥0 (𝑢)) from below with a

small spherical barrier B 𝜋
2
(𝑜,𝑟0) (see Proposition 4.3.3) contradicting the Maximum

Principle (Proposition C.0.1).

(iii) Here we need to change the coordinates and see part of the rotationally symmetric

graph as a radially symmetric over a cylinder. Set 𝑀1 ≔ Γ(𝑅𝑥0 (𝑢 | (𝑇1,𝑅)). 𝑀1 can be

viewed as a radially symmetric graph over a cylinder. Hence we find a 𝜙 : (0, ℎ) →R+

such that the image of 𝔊𝜙 is 𝑀1. By the Lemma 4.6.3 and the Equation 4.6.1,

𝐹 (𝑧)𝑒− 1
ℎ
+ 1
𝑧 →−∞ as 𝑧→ 0. Hence 𝐹 (𝑧) < 0 in some interval (0, 𝑧0). As 𝐹 and 𝜙′

have the same sign, 𝜙′(𝑧) < 0 in (0, 𝑧0). Contradicting the fact that 𝜙′ > 0 in (0, ℎ).

Therefore case (iii) is not possible.

(iv) This is the only remained possibility.

(f) Setting the constants as in the proof of (d) and by 𝑑2𝜙
𝑑𝑧2 (𝑧0) < 0 and Lemma 4.6.1, we

conclude that lim
𝜌→𝑇−

2

𝑢(𝜌) = 0 and lim
𝜌→𝑇−

2

𝑢′(𝜌) = −∞.

□

4.7 Winglike solitons

In this part, we use propositions 4.6.1, 4.6.2, and 4.6.4 to describe a winglike soliton.

Definition 4.7.1. A winglike soliton is a rotational symmetric soliton with respect to −𝜕0 that

can be generated by a rotation of a smooth curve 𝛾 in the first quadrant of the 𝑥0𝑥1-plane with

two ends at the boundary at infinity 𝜕∞H𝑚+1 where 𝑥0(𝛾) is bounded.

Theorem 4.7.2 (Winglike soliton’s behaviour). Suppose that 𝑥0 ◦𝛾 has a stationary point at 𝑡0

and let 𝛾(𝑡0) = (ℎ, 𝑅). Then 𝛾 can be written as the bi-graph over the 𝑥0 axis of 𝜙1, 𝜙2 : (0, ℎ] →

(0,∞) satisfying the following properties (Figure 7):

(a) It holds 𝜙1 < 𝜙2 on (0, ℎ) and 𝜙1(ℎ) = 𝜙2(ℎ) = 𝑅. Additionally, 𝜙1(0+) < 𝜙2(0+), namely,

𝛾 cannot have the same end-points;

(b) the graph of 𝜙2 is a concave branch on (0, ℎ);

(c) there exists 𝜆0 ∈ (0, ℎ) such that 𝜙1 is the union of a concave branch on (0,𝜆0) and a

convex branch on (𝜆0, ℎ);
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Fig. 6 – Behaviour of a winglike soliton

x1

x0

r2r1

h

R

Source: elaborated by the author.

Proof. In some neighborhood of 𝛾(𝑡0) = (ℎ, 𝑅), the image of 𝛾 is the graph of a function 𝑢

solution for (4.6.13). By Proposition 4.6.4, we can define 𝜙2 : (0, ℎ) → (0,∞) by (𝑢(𝜌), 𝜌) =

(𝑧, 𝜙2(𝑧)) for 𝜌 ∈ (𝑅,𝑇2). Define 𝑧1 ≔ lim
𝜌→𝑇+

1

𝑢(𝜌) and 𝜙1 | (𝑧1,ℎ) by (𝑢(𝜌), 𝜌) = (𝑧, 𝜙1(𝑧)) for

𝜌 ∈ (𝑇1, 𝑅). By Lemma 4.6.2 with 𝜏 = 𝑇1 = 𝜙1(𝑧1), we can extend 𝜙1 to (0, ℎ). By contruction

of 𝜙1, 𝑇1 = min𝜌∈(0,ℎ) 𝜙(𝜌) and 𝜙1 < 𝜙2 on (𝑧1, ℎ).

(a) Suppose by contradiction that 𝜙1(𝑧𝑖) = 𝜙2(𝑧𝑖) for some 𝑧𝑖 ∈ (0, 𝑧1) or 𝜙1(0+) = 𝜙2(0+) =𝑇2.

In first case, the image of 𝛾 intersects itself at (𝑧𝑖, 𝜙1(𝑧𝑖)). In the second case, the image of

𝛾 does not intersect itself but has the same ends in 𝜕∞H𝑚+1. In any case, we can write a

part of the image of 𝛾 as two graphs of functions 𝑢2, 𝑢1 : (𝑇1,𝑇3) → (0,∞) over 𝑥1-axis

solutions to (4.4.1), where 𝑇3 ≔ 𝜙1(𝑧𝑖) = 𝜙2(𝑧𝑖) in the first case or 𝑇3 ≔ 𝑇2 in the second

case with 𝑢2 ≥ 𝑢1. As 𝑢2 ≠ 𝑢1, 𝑢2−𝑢1 attains a maximum value, a contradiction by Lemma

4.4.3. Therefore, (a) is true as claimed.

(b) It follows by (d) of Proposition 4.6.4.

(c) It follows by (c) and (g) of Lemma 4.6.2.

□

4.8 Bowl soliton

In this section, we study the existence and behaviour of bowl soliton.

Definition 4.8.1. Given a height ℎ > 0, a bowl soliton 𝑀 is a soliton with respect to −𝜕0 obtained

by rotating a curve (𝑧, 𝜙(𝑧)) as in Definition 4.5.1 such that 𝜙(ℎ−) = 0.
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Theorem 4.8.2 (Existence of a bowl soliton). Given a height ℎ > 0, there exists a bowl soliton

𝑀 = Im𝔊𝜙, for some 𝜙 : (0, ℎ) → (0,∞). Futhermore, 𝜙 is a concave branch on (0, ℎ), that is,

𝜙′′ < 0 on (0, ℎ) and 𝜙′(ℎ−) = −∞.

Proof. We use a sequence of winglike soliton (𝑀𝑖) to converge to a bowl soliton. Namely, by

Theorem 4.7.2 and Proposition 4.6.4, for a sequence of positive number (𝜀𝑖), 𝜀𝑖 ↘ 0, there exists

a sequence of function 𝑢𝑖 : (𝑇1(𝜀𝑖),𝑇2(𝜀𝑖)) → (0,∞) solution to:

𝑢′′
𝑖(

1+𝑢′2
𝑖

) + 𝑚−1
𝜌

𝑢′𝑖 = −1+𝑚𝑢𝑖
𝑢2
𝑖

𝜌 > 0,

𝑢𝑖 (𝜀𝑖) = ℎ,

𝑢′𝑖 (𝜀𝑖) = 0,

(4.8.1)

where Γ(𝑅𝑥0 (𝑢𝑖)) ⊂ 𝑀𝑖.

Claim 1. {𝑇2(𝜀𝑖)} is bounded from below and away from zero.

Indeed, suppose the contrary that there is a subsequence 𝑇2(𝜀 𝑗 ) ↘ 0. Fix a grim-

reaper Gℎ≔Gℎ,0 =Gℎ,[𝐻∗,𝐻∗] (see Remark 4.2.1). Therefore, there exists 𝑗0 such that (𝑇1(𝜀 𝑗0),𝑇2(𝜀 𝑗0)) ⊂

(0, 𝐻∗). By the behaviour of the grim-reaper (Lemma 4.2.1), max{𝑥0(Gℎ)} = ℎ. By behaviour

of winglike soliton (Theorem 4.7.2), max{𝑥0(𝑀 𝑗0)} = ℎ = 𝑢 𝑗0 (𝜀 𝑗0). Hence, (𝑀 𝑗0 ∩Gℎ) ∩ {𝑥1 >

0} ≠ ∅. Now we increase the height of the grim-reaper up until it touches 𝑀 𝑗0 just at one point in

{𝑥1 > 0}. Namely, set ℎ𝑆 ≔ sup{𝑧 ∈ (ℎ,∞) : G𝑧 ∩𝑀 𝑗0 ≠ ∅}. (Gℎ𝑆 ∩𝑀 𝑗0) ∩ {𝑥1 > 0} is just one

point and 𝑀 𝑗0 is below 𝐺ℎ𝑆 , a contradiction by Maximum Principle (Theorem C.0.1). Therefore,

this proves Claim 1.

Define 𝑅 ≔ inf{𝑇2(𝜀𝑖)} and 𝑣𝑖 ≔ 𝑢𝑖 | [𝜀𝑖 ,𝑅) . {𝑣𝑖} has uniformly bounded 𝐶2-norm

on any fixed compact set of (0, 𝑅). Therefore, up to subquence, {𝑣𝑖} converge to a solution

𝑢 to a solution to (4.4.1) with lim𝜌→0+ 𝑢(𝜌) = ℎ and lim𝜌→0+ 𝑢
′(𝜌) = 0. Futhermore, 𝑢′′ < 0

on (0, 𝑅) because 𝑣′′
𝑖
< 0 and 𝑢′(0+) = 0. Therefore, for corresponding function 𝜙, such that

(𝑢(𝜌), 𝜌) = (𝑧, 𝜙(𝑧)), 𝜙′′ < 0 on (0, ℎ) and 𝜙′(ℎ−) = −∞.

□
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5 PLATEAU’S PROBLEM

In this section we will prove the existence of solitons 𝑀 ⊂ 𝑁 with respect to −𝜕0

with given asymptotic boundary Σ = 𝜕∞𝑀 . In order to accomplish this goal, the Theorem 1.5 in

(Castéras et al., 2018) (Theorem 5.0.2) will be adapted for our purposes.

Recall that a Cartan-Hadamard manifold is a complete, connected and simply con-

nected Riemannian (𝑚 +1)-manifold of non-positive sectional curvature.

Definition 5.0.1 (SC condition). Let (𝑁𝑚+1, 𝑔) be a Cartan-Hadamard manifold. We say that

𝑁 satifies the strict convexity condition (SC condition) if given 𝑥 ∈ 𝜕∞𝑁 and a relatively open

subset𝑊 ⊂ 𝜕∞𝑁 containing 𝑥, there exists a 𝐶2 open subset Ω ⊂ 𝑁 such that 𝑥 ∈ int 𝜕∞Ω ⊂𝑊

and 𝑁\Ω is convex.

Theorem 5.0.2 (Theorem 1.5, (Castéras et al., 2018)). Let 𝑁𝑚+1, 𝑚 + 1 ≥ 3 be a Cartan-

Hadamard manifold satisfying the SC condition and let Σ ⊂ 𝜕∞𝑁𝑚+1 be a (topologically) em-

bedded closed (𝑘 −1)-dimensional submanifold, with 2 ≤ 𝑘 ≤ 𝑚. Then there exists a complete,

absolutely area minimizing, locally rectifiable 𝑘-current 𝑀 modulo 2 in 𝑁𝑚+1 asymptotic to Σ at

infinity, i.e., 𝜕∞𝑀 = Σ

Our main theorem in this chapter is the following one:

Theorem 5.0.3 (Plateau’s problem). Let Σ ⊂ 𝜕∞H𝑛+1 be the boundary of a relatively compact

subset 𝐴 ⊂ 𝜕∞H𝑛+1 with 𝐴 = int(𝐴). Then, there exists a closed set𝑊 of local finite perimeter in

H𝑛+1 with 𝜕∞𝑊 = 𝐴 such that 𝑀 = 𝜕 [𝑊] is a conformal soliton for −𝜕0 on the complement of a

closed set S of Hausdorff dimension dimℋ (S) ≤ 𝑛−7, and that 𝜕∞ spt(𝑀) = Σ. Furthermore,

when 𝑛 < 7, then 𝑀 is a properly embedded smooth hypersurface of H𝑛+1.

Theorem 5.0.4 (Hopf and Rinow). Let 𝑁 be a Riemannian manifold and let 𝑝 ∈ 𝑁 . The following

assertions are equivalent:

(a) exp𝑝 is defined on all of 𝑇𝑝𝑁 .

(b) The closed and bounded sets on 𝑁 are compact.

(c) 𝑁 is complete as metric space.

(d) 𝑁 is geodesically complete.

(e) There exists a sequence of compact subsets 𝐾𝑛 ⊂ 𝑁 , 𝐾𝑛 ⊂ 𝐾𝑛+1 and
⋃
𝑛𝐾𝑛 = 𝑀 , such that

if 𝑞𝑛 ∉ 𝐾𝑛 then dist(𝑝, 𝑞𝑛) →∞.

For a proof of Theorem 5.0.4, see Theorem 2.7, Chapter 7 in (do Carmo, 1992).
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In our particular case in Theorem 5.0.2, we need to show that Ilmanen’s space

(H𝑚+1, 𝑔I) is a Cartan-Hadamard and the SC condition holds. By 𝑔I = 𝑒
2

𝑚𝑥0 𝑔H > 𝑔H, dist𝑔I (𝑝, 𝑞) >

dist𝑔H (𝑝, 𝑞). By the completeness of (H𝑚+1, 𝑔H) and Theorem 5.0.4.(e), (H𝑚+1, 𝑔I) is complete.

5.1 Sectional Curvature of Ilmanen’s Space

By the following proposition, the sectional curvature is non-positive for any pair of

vectors.

Proposition 5.1.1 (Ilmanen’s sectional curvature). The sectional curvatures of Ilmanen’s metric

are given by:

(a) sec𝑔I (𝜕𝑖, 𝜕0) =
−
(
2
(

1
𝑚𝑥0

)
+ 1
𝑥0

)
𝑒

2
𝑚𝑥0

∀𝑖 ≠ 0

(b) sec𝑔I (𝜕𝑖, 𝜕𝑗 ) = −
1
𝑚
+𝑥0

𝑒
2

𝑚𝑥0
∀𝑖, 𝑗 ≠ 0 and 𝑖 ≠ 𝑗

(c) sec𝑔I (sin𝜃𝜕0 + cos𝜃𝜕𝑖, 𝜕𝑗 ) = sin2 𝜃sec𝑔I (𝜕0, 𝜕𝑖) + cos2 𝜃sec𝑔I (𝜕𝑖, 𝜕𝑗 ), ∀𝑖, 𝑗 ≠ 0, 𝑖 ≠ 𝑗 and

𝜃 ∈ (0,2𝜋)

Proof. By exercise 4.7.14 of (Petersen, 2016), using the same notation 𝑔I = 𝑒
2

𝑚𝑥0
𝑥0
𝑔R = 𝑒2𝜓𝑔R ,

where 𝜓 = 1
𝑚𝑥0

− ln𝑥0. Hence, 𝜕0(𝜓) = − 1
𝑚𝑥2

0
− 1
𝑥0

and HessR𝜓(𝜕0, 𝜕0) = 2
𝑚𝑥3

0
+ 1
𝑥2

0
. Therefore the

sectional curvature in relation to Ilmanen’s metric is given by:

𝑒2𝜓sec𝑔I (𝑋,𝑌 ) =

= secR(𝑋,𝑌 ) −HessR𝜓(𝑋, 𝑋) −HessR𝜓(𝑌,𝑌 ) + (𝑋 (𝜓))2 + (𝑌 (𝜓))2 − |𝑑𝜓 |2R. (5.1.1)

Applying for 𝑋 = 𝜕𝑖 and 𝑌 = 𝜕0, (a) follows. For 𝑋 = 𝜕𝑖 and 𝑌 = 𝜕𝑗 , (b) follows. And for

𝑋 = sin𝜃𝜕0 + cos𝜃𝜕𝑖 and 𝑌 = 𝜕𝑗 , (c) follows. □

Proposition 5.1.2. Let 𝑝 be a point in H𝑚+1, 𝜋 be a 2-plane contained in 𝑇𝑝H𝑚+1 and sec𝑔I (𝜋)

be the sectional curvature with respect to 𝑔I. Then sec𝑔I (𝜋) ≤ 0.

Proof. Let 𝜏 ≤ 𝑇𝑝H𝑚+1 be a hyperplane parallel to 𝜕1, 𝜕2, . . . , 𝜕𝑚−1 and 𝜕𝑚. Then 𝜋 ∩ 𝜏 ≠ ∅.

Either 𝜋 ⊂ 𝜏 (In this first case, up to rotation, we can choose 𝜋 = 𝜕1∧𝜕2) or 𝜋∩𝜏 is a line (In this

second case, up to rotation, we can choose 𝜋 = 𝜕1∧𝑣, where 𝑣 = cos𝜃𝜕0+ sin𝜃𝜕2 for 𝜃 ≠ 𝜋
2 ). The

first case follows by Proposition 5.1.1.(b). The second case follows by Proposition 5.1.1.(c). □
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5.2 Geodesics of Ilmanen’s space

In this section, we study the qualitative behaviour of geodesics of (H𝑚+1, 𝑔I). We

just need to focus on the geodesics in the 𝑥0𝑥1-plane by the symmetries of (H𝑚+1, 𝑔I)

Let 𝛾 be a geodesic in the 𝑥0𝑥1-plane, 𝛾(𝑡) = (𝑥0(𝑡), 𝑥1(𝑡)). The coordinates of 𝛾

obey the geodesic equations:


𝑑2𝑥0
𝑑𝑡2

+Γ0
𝑖 𝑗
𝑑𝑥𝑖
𝑑𝑡

𝑑𝑥 𝑗
𝑑𝑡

= 0,

𝑑2𝑥1
𝑑𝑡2

+Γ1
𝑖 𝑗
𝑑𝑥𝑖
𝑑𝑡

𝑑𝑥 𝑗
𝑑𝑡

= 0.
(5.2.1)

where Γ𝑘
𝑖 𝑗

are the Christhoffel symbols of 𝑔I with respect to coordinate frame {𝜕𝑖}. By the Koszul

formula,

Γ0
10 =

1
2
𝑔I
𝑚0

(
𝜕𝑔I0𝑚
𝜕𝑥1

+ 𝜕𝑔I1𝑚
𝜕𝑥0

−
𝜕𝑔I10
𝜕𝑥𝑚

)
=

1
2
𝑥2

0

𝑒
2

𝑚𝑥0

(
𝜕

𝜕𝑥1

(
𝑒

2
𝑚𝑥0

𝑥2
0

))
= 0,

Γ0
11 =

1
2
𝑔I
𝑚0

(
𝜕𝑔I1𝑚
𝜕𝑥1

+ 𝜕𝑔I1𝑚
𝜕𝑥0

− 𝜕𝑔I11
𝜕𝑥𝑚

)
=

1
2
𝑥2

0

𝑒
2

𝑚𝑥0

(
− 𝜕

𝜕𝑥0

(
𝑒

2
𝑚𝑥0

𝑥2
0

))
=

(
1
𝑚𝑥2

0
+ 1
𝑥0

)
,

Γ0
00 =

1
2
𝑔I

00
(
𝜕𝑔I00
𝜕𝑥0

+
𝜕𝑔I00
𝜕𝑥0

−
𝜕𝑔I00
𝜕𝑥0

)
=

1
2
𝑔I

00
(
𝜕𝑔I00
𝜕𝑥0

)
= −

(
1
𝑚𝑥2

0
+ 1
𝑥0

)
,

Γ1
00 =

1
2
𝑔I

11
(
𝜕𝑔I01
𝜕𝑥0

+
𝜕𝑔I01
𝜕𝑥0

−
𝜕𝑔I00
𝜕𝑥1

)
= 0,
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Γ1
10 =

1
2
𝑔I

11
(
𝜕𝑔I01
𝜕𝑥1

+ 𝜕𝑔I11
𝜕𝑥0

−
𝜕𝑔I10
𝜕𝑥1

)
= −

(
1
𝑚𝑥2

0
+ 1
𝑥0

)
,

Γ1
11 =

1
2
𝑔I

11
(
𝜕𝑔I11
𝜕𝑥1

+ 𝜕𝑔I11
𝜕𝑥1

− 𝜕𝑔I11
𝜕𝑥1

)
= 0,

plugging them in (5.2.1),


𝑑2𝑥0
𝑑𝑡2

−
(

1
𝑚𝑥2

0
+ 1
𝑥0

) ((
𝑑𝑥0
𝑑𝑡

)2
−

(
𝑑𝑥1
𝑑𝑡

)2
)
= 0,

𝑑2𝑥1
𝑑𝑡2

−
(

1
𝑚𝑥2

0
+ 1
𝑥0

) (
2 𝑑𝑥0
𝑑𝑡

𝑑𝑥1
𝑑𝑡

)
= 0.

(5.2.2)

Fig. 7 – Behaviour of geodesic

𝛾(0) 𝛾′ (0) = (0, 𝑣1)

𝛾

𝑥1

𝑥0

Source: elaborated by the author.

Proposition 5.2.1 (Behaviour of geodesics). Let 𝛾 be a geodesic of (H𝑚+1, 𝑔I) in the 𝑥0𝑥1-plane

defined in a maximal interval R with initial conditions 𝛾(0) = (𝜆,0, . . . ,0) and 𝑑𝛾

𝑑𝑡
(0) = 𝑣1𝜕1 for

some 𝜆, 𝑣1 ∈ R 𝜆, 𝑣1 > 0. Then:

(a) 𝑑𝑥1
𝑑𝑡
> 0, ∀𝑡 ∈ R.

(b) 𝑑𝑥0
𝑑𝑡
< 0, ∀𝑡 > 0. and 𝑑𝑥0

𝑑𝑡
> 0, ∀𝑡 < 0.

(c)

lim
𝑡→∞

𝑥0(𝑡) = 0 and lim
𝑡→−∞

𝑥0(𝑡) = 0
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Proof. By the initial conditions, 𝑑𝑥1
𝑑𝑡
> 0 for small enough 𝑡. Suppose by contradiction that

𝑑𝑥1
𝑑𝑡

(𝑡0) = 0 for some 𝑡0 ∈ R. The ordinary differential equation in (5.2.2) involving 𝑥1 is:

𝑑2𝑥1

𝑑𝑡2
+𝐹 (𝑡) 𝑑𝑥1

𝑑𝑡
= 0 (5.2.3)

where 𝐹 (𝑡) = −
(

1
𝑚𝑥2

0
+ 1
𝑥0

) (
2 𝑑𝑥0
𝑑𝑡

)
. Setting 𝑦1 =

𝑑𝑥1
𝑑𝑡

,

𝑑𝑦1
𝑑𝑡

+𝐹 (𝑡)𝑦1 = 0. (5.2.4)

By linearity of (5.2.4), the solution is unique, and 𝑦1(𝑡) = 0 ∀𝑡 ∈ R is a solution with initial

condition 𝑦1(𝑡0) = 0. This is a contradiction because 𝑦1(0) = 𝑣1 ≠ 0. Therefore, 𝑑𝑥1
𝑑𝑡
> 0 ∀𝑡 ∈ R.

Dividing the second equation in (5.2.2) by 𝑑𝑥1
𝑑𝑡

,

𝑑2𝑥1
𝑑𝑡2

𝑑𝑥1
𝑑𝑡

=

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
2
𝑑𝑥0
𝑑𝑡

)
. (5.2.5)

Integrating in 𝑡,

ln
(
𝑑𝑥1
𝑑𝑡

)
= − 2

𝑚𝑥0
+2ln(𝑥0) +𝐶1 (5.2.6)

𝑑𝑥1
𝑑𝑡

= 𝑒
2
(
− 1

𝑚𝑥0
+ln(𝑥0)

)
𝑒𝐶1 (5.2.7)

𝑑𝑥1
𝑑𝑡

= 𝑒
−2
𝑚𝑥0 𝑥2

0𝑒
𝐶1 (5.2.8)

𝑥1 = 𝑒
𝐶1

∫
𝑒

2
(
− 1

𝑚𝑥0

)
𝑥2

0𝑑𝑡 +𝐶2. (5.2.9)

Plugging (5.2.7) in (5.2.2),

𝑑2𝑥0

𝑑𝑡2
−

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
+

(
1
𝑚𝑥2

0
+ 1
𝑥0

) ©«𝑒
2
(
− 1

𝑚𝑥2
0
+ln𝑥0

)
𝑒𝐶1ª®¬

2

= 0 (5.2.10)

𝑑2𝑥0

𝑑𝑡2
−

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
+

(
𝑥2

0
𝑚

+ 𝑥3
0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1 = 0 (5.2.11)

By the initial conditions and equation (5.2.7), 𝑒𝐶1 =
𝑣1

𝑒
2
𝑚𝜆 𝜆2

.

(a) The equation (5.2.8) proves that 𝑑𝑥1
𝑑𝑡
> 0 ∀𝑡 ∈ R.

(b) To prove that 𝛾 behaves as the figure above, that is, 𝛾 is concave in the Euclidean sense,

we need to demonstrate that 𝑔R (∇R
𝛾′𝛾

′, 𝜈R) is positive, where 𝜈R is the Euclidean normal

vector field along 𝛾 in the 𝑥0𝑥1-plane pointing downwards, i.e., 𝑔R (𝜕0, 𝜈R) < 0. Notice that

𝜈R = 𝛼(𝑡) (− 𝑑𝑥1
𝑑𝑡
,
𝑑𝑥0
𝑑𝑡

) for positive function 𝛼 =

√︂(
𝑑𝑥1
𝑑𝑡

)2
+

(
𝑑𝑥0
𝑑𝑡

)2
and ∇R

𝛾′𝛾
′ = ( 𝑑

2𝑥0
𝑑𝑡2
,
𝑑2𝑥1
𝑑𝑡2

).

Therefore,

𝑔R (∇R
𝛾′𝛾

′, 𝜈R) = 𝛼
(
−𝑑

2𝑥0

𝑑𝑡2
𝑑𝑥1
𝑑𝑡

+ 𝑑
2𝑥1

𝑑𝑡2
𝑑𝑥0
𝑑𝑡

)
. (5.2.12)
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By (5.2.11) and (5.2.2),

𝑔R (∇R
𝛾′𝛾

′, 𝜈R) =

= 𝛼

(
−

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
𝑑𝑥1
𝑑𝑡

+
(𝑥0
𝑚

+ 𝑥3
0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1

𝑑𝑥1
𝑑𝑡

+
(

1
𝑚𝑥2

0
+ 1
𝑥0

)
2
(
𝑑𝑥0
𝑑𝑡

)2
𝑑𝑥1
𝑑𝑡

)
= 𝛼

((
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2 (
𝑑𝑥1
𝑑𝑡

)
+

(
𝑥2

0
𝑚

+ 𝑥3
0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1

𝑑𝑥1
𝑑𝑡

)
> 0,

where we are using 𝑑𝑥1
𝑑𝑡
> 0. By 𝑔R (∇R

𝛾′𝛾
′, 𝜈R) > 0, the image of 𝛾 is concave in the

Euclidean sense as in the figure above. Therefore, 𝑑𝑥0
𝑑𝑡
< 0,∀𝑡 > 0, and 𝑑𝑥0

𝑑𝑡
> 0,∀𝑡 < 0.

(c) By concavity and 𝑑𝑥1
𝑑𝑡
> 0, lim𝑡→∞ 𝑥1(𝑡) must be finite (say, lim𝑡→∞ 𝑥1(𝑡) = 𝐻∗). By

concavity, lim𝑡→∞ 𝑥0(𝑡) does exist. We prove that it is zero. Now Suppose by contradiction

that lim𝑡→∞ 𝑥0(𝑡) =𝑉∗ > 0, for some 𝑉∗ ∈ R. Observe that:

length𝑔I (𝛾 | [0,∞]) ≤
𝑒

1
𝑚𝑉∗

𝑉∗
length𝑔R (𝛾 | [0,∞]) <∞,

where length𝑔R (𝛾) <∞ since 𝛾 | [0,∞] is a graph of a concave function on [0, 𝐻∗]. However,

length𝑔I (𝛾 | [0,∞]) = | ¤𝛾(0) |𝑔I (∞−0) since 𝛾 is 𝑔I-geodesic.

□

In the next lemma, we prove that in fact the behaviour of a geodesic with initial

velocity pointing upwards (but not vertically) still behaves as the geodesics in lemma 5.2.1.

Definition 5.2.2. A geodesic 𝛾 is of right-hand grim-reaper type if and only if: for some 𝑡𝑚 ∈ R

(a) The geodesic attains a maximum height, i.e,

sup
𝑡∈R

𝑥0(𝑡) = 𝑥0(𝑡𝑚).

(b) 𝑑𝑥1
𝑑𝑡
> 0 ∀𝑡 ∈ R.

(c) 𝑑𝑥0
𝑑𝑡
> 0 ∀𝑡 < 𝑡𝑚 and 𝑑𝑥0

𝑑𝑡
< 0 ∀𝑡 > 𝑡𝑚 .

(d) The geodesic 𝛾 goes to 𝜕∞H𝑚+1, i.e.,

lim
𝑡→±∞

𝑥0(𝑡) = 0.

(e) The geodesic 𝛾 is symmetric, i.e., 𝑥0(𝑡𝑚 + 𝑡) = 𝑥0(𝑡𝑚 − 𝑡) and 𝑥1(𝑡𝑚 + 𝑡) − 𝑥1(𝑡𝑚) = 𝑥1(𝑡𝑚) −

𝑥1(𝑡𝑚 − 𝑡) ,∀𝑡 ∈ R.

The definition of the left-hand grim-reaper type is symmetrically defined.
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Proposition 5.2.3. Let 𝛾 be a geodesic with initial velocity 𝛾′(0) = 𝑣0𝜕0 + 𝑣1𝜕1 with 𝑣0, 𝑣1 > 0.

Then the following claims are true:

1. The height is bounded, that is, 𝑀0 := sup𝑡∈R 𝑥0(𝑡) <∞.

2. The maximum height is attained, that is, there exists 𝑡𝑚 such that 𝑥0(𝑡𝑚) = 𝑀0.

3. 𝛾 is of grim-reaper type.

Proof. If 𝑑𝑥0
𝑑𝑡

= 0 for some 𝑡𝑚, we can reason as in Proposition 5.2.1 and the result is proven.

Therefore our goal is to prove that there exists such 𝑡𝑚 such that 𝑑𝑥0
𝑑𝑡

|𝑡=𝑡𝑚 = 0. Suppose by

contradiction that 𝑑𝑥0
𝑑𝑡
> 0 ∀𝑡 ∈ R.

We first examine the case that 𝑥0 → ∞ as 𝑡 → ∞. For 𝑥0-coordinate of 𝛾, the

differential equation (5.2.11) gives:

𝑑2𝑥0

𝑑𝑡2
−

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
+

(
𝑥2

0
𝑚

+ 𝑥3
0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1 = 0.

Notice that
(
𝑑𝑥0
𝑑𝑡

)2
≤ |𝛾′|2

𝐼
· 𝑥2

0

𝑒
2

𝑚𝑥0
, where |𝛾′|𝐼 is the constant Ilmanen’s norm because 𝛾 is a

geodesic. Hence, �����
(

1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
����� ≤

(
1
𝑚𝑥2

0
+ 1
𝑥0

)
|𝛾′|2𝐼

𝑥2
0

𝑒
2

𝑚𝑥0

(5.2.13)

≤ 2𝑥0

𝑒
2

𝑚𝑥0

|𝛾′|2𝐼 , (5.2.14)

for large enough 𝑥0. Estimating the third term, for 𝑥0 large enough:�����
(
𝑥2

0
𝑚

+ 𝑥3
0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1

����� ≤ 2𝑥3
0𝑒

−4
𝑚𝑥0 𝑒2𝐶1 .

Thus, 𝑑2𝑥0
𝑑𝑡2

=

(
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
−

(
𝑥2

0
𝑚
+ 𝑥3

0

)
𝑒

−4
𝑚𝑥0 𝑒2𝐶1 →−∞ as 𝑥0 →∞. This is a contradiction.

Indeed, given a large 𝑎 > 0. Then 𝑑2𝑥0
𝑑𝑡2

< −𝑎 for 𝑡 > 𝑡0 and a large enough 𝑡0. Then, integrating

the inequality:

𝑑𝑥0
𝑑𝑡

− 𝑑𝑥0
𝑑𝑡

|𝑡=𝑡0 < −𝑎(𝑡 − 𝑡0) (5.2.15)

𝑥0(𝑡) < −𝑎
(
𝑡2

2
− 𝑡0𝑡

)
+ 𝑑𝑥0
𝑑𝑡

|𝑡=𝑡0 · 𝑡 + 𝑥0(𝑡0) (5.2.16)

𝑥0(𝑡) < 𝐹 (𝑡) (5.2.17)

, where 𝐹 is a quadratic function, 𝐹 (𝑡) = −𝑎
(
𝑡2

2 − 𝑡0𝑡
)
+ 𝑑𝑥0

𝑑𝑡
|𝑡=𝑡0 · 𝑡 + 𝑥0(𝑡0). However, 𝐹 has a

maximum and 𝑥0(𝑡) →∞ as 𝑡→∞. Therefore sup𝑡∈R 𝑥0(𝑡) <∞.
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Now we prove that the maximum is attained. Suppose by contradiction that 𝑥0(𝑡) <

sup𝑡∈R 𝑥0(𝑡) =: 𝑀0 ∀𝑡 ∈ R. By the same reasoning in the proof of item 3) of Proposition 5.2.1,

the image of 𝛾 is Euclidean concave. Since 𝑑𝑥0
𝑑𝑡
> 0 and 𝑥0 → 𝑀0 as 𝑡→∞, 𝑑𝑥0

𝑑𝑡
→ 0 as 𝑡→∞.

Therefore, (
1
𝑚𝑥2

0
+ 1
𝑥0

) (
𝑑𝑥0
𝑑𝑡

)2
→ 0 as 𝑡→∞ (5.2.18)

=⇒
by 5.2.11

𝑑2𝑥0

𝑑𝑡2
→−

(
𝑀2

0
𝑚

+𝑀3
0

)
𝑒

−4
𝑚𝑀0 < 0. (5.2.19)

This is a contradiction. Indeed, define 𝐴0 =
(
𝑀2

0
𝑚

+𝑀3
0

)
𝑒

−4
𝑚𝑀0 𝑒2𝐶1 and for 𝑡 > 𝑡0 and some large

enough 𝑡0,

𝑑2𝑥0

𝑑𝑡2
< −𝐴0

2
(5.2.20)

𝑑𝑥0
𝑑𝑡

− 𝑑𝑥0
𝑑𝑡

����
𝑡=𝑡0

<
−𝐴0

2
(𝑡 − 𝑡0) (5.2.21)

𝑑𝑥0
𝑑𝑡

< −𝐴0
2
(𝑡 − 𝑡0) +

𝑑𝑥0
𝑑𝑡

����
𝑡=𝑡0

(5.2.22)

for a fixed 𝑡0 ∈ R and 𝑡 > 𝑡0. As 𝑡→∞, the right-hand side goes to −∞, but the left-hand side

goes to 0.

We conclude that there exist a 𝑡𝑚 ∈ R such that 𝑥0(𝑡𝑚) = 𝑀0 . Since 𝑑𝑥0
𝑑𝑡

���
𝑡=𝑡𝑚

= 0, we

can argument as in proposition 5.2.1 and conclude that 𝛾 is of grim-reaper type. □

5.3 Proof of Theorem 5.0.3

In the Ilmanen space (H𝑚+1, 𝑔I), we will denote by P∞ ∈ 𝜕∞H𝑚+1 the asymptote class

of the vertical geodesic and 𝜕′∞H
𝑚+1 := 𝜕∞H𝑚+1 − {P∞}. Notice that we can identify 𝜕′∞H

𝑚+1

with the set {𝑥0 = 0}.

Proposition 5.3.1 (SC condition on 𝜕′∞H
𝑚+1). Let S ⊂ H𝑚+1 be a hyperbolic totally geodesic

sphere and N be the upper connected component of H𝑚+1\S, that is, sup𝑥0(N) = ∞ and

Ω≔ H𝑚+1\N . Then N is strictly 𝑔I-convex in the upward direction.

Proof. By the lemma 4.3.2,

II𝑔I (𝑣1, 𝑣2) = 𝑒
1

𝑚𝑥0

{
II𝑔H (𝑣1, 𝑣2) − 𝜈𝑔H

(
1
𝑚𝑥0

)
𝑔H(𝑣1, 𝑣2)

}
.
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As S is totally 𝑔H-geodesic, II𝑔H ≡ 0 and 𝜈𝑔H
(

1
𝑚𝑥0

)
< 0, II𝑔I is positive definitive. Therefore, the

scalar mean curvature of S ↩→ (H𝑚+1, 𝑔I) with respect to the upward direction 𝜈𝑔I is positive,

and N is 𝑔I-convex. Thus, for any point in 𝜕∞H𝑚+1 different from P∞, the SC condition holds

using a suitable Ω. □

Proof of Theorem 5.0.3. By completeness and Lemma 5.1.1, the Ilmanen space (H𝑚+1, 𝑔I) is a

Cartan-Hadamard manifold. SC condition holds for points at 𝜕′∞H
𝑚+1 by Lemma 5.3.1. However,

SC condition may fail at P∞. To overcome this difficulty, let us proceed as in (Castéras et al.,

2018) and (Lang, 1995). Fix a point 𝑜 ∈ H𝑚+1. Define the cone

𝐶 (𝑜, 𝐴) := {𝛾𝑜,𝑥 (𝑡); 𝑡 ≥ 0, 𝑥 ∈ 𝐴}

, where 𝛾𝑜,𝑥 is the 𝑔I-geodesic joining 𝑜 and 𝑥 ∈ 𝐴. And denote by 𝐵𝑟 (𝑜) the 𝑔I-geodesic ball

with center in 𝑜 and radius 𝑟 . For each 𝑖 ∈ N, set

𝑇𝑖 = 𝜕𝐵𝑖 (𝑜) ∩𝐶 (𝑜, 𝐴)

with orientation pointing outside of 𝐵𝑖 (𝑜) and denote by [𝑇𝑖] its associated 𝑛-rectifiable current.

𝜕 [𝑇𝑖] is supported in 𝐶 (𝑜,Σ). Since 𝐴 relativily compact in 𝜕′∞H
𝑚+1, we can find a big enough

bowl soliton ℬ such that 𝐶 (𝑜, 𝐴) lies in the open subgraph 𝑈 of ℬ. According to a result

of (Lang, 1995), for each 𝑖 ∈ N, there exists a set 𝑊𝑖 ⊂ 𝐵𝑖 (𝑜) of finite perimeter such that

𝑀𝑖 = 𝜕 [𝑊𝑖] − [𝑇𝑖] is area minimizing in 𝐵𝑖 (𝑜). Note that 𝜕𝑀𝑖 = −𝜕 [𝑇𝑖] is supported in 𝑈.

Moreover, since 𝐵𝑖 (𝑜) is strictly convex, by Strong Maximum Principle of White (White, 2010)

we deduce that

spt𝑀𝑖 ∩ 𝜕𝐵𝑖 (𝑜) = spt𝜕𝑀𝑖, 𝑖 ∈ N.

Claim 1. spt𝑀𝑖 ⊂ 𝑈. In order to prove Claim 1, suppose to the contrary that this is not true and

consider the foliation of H𝑚+1 determined by bowl soliton. Then we could find a large bowl

soliton ℬ
′ lying above ℬ and touching spt𝑀𝑖 from above at some point 𝑝 ∉ spt𝜕𝑀𝑖. Let𝑈′ be

the open set below ℬ
′, and consider the manifold with boundary

𝑁′ =𝑈′∩𝐵𝑖 (𝑜).

Let 𝑣(𝑀′
𝑖
) be the stationary integral varifold obtained, by forgetting orientations, from the

connected component of 𝑀𝑖 whose support contains 𝑝; see (Simon, 1983, Section 27). The

strong maximum principle of White (White, 2010, Theorem 4), guarantees that spt𝑣(𝑀′
𝑖
) ∩𝑁′
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contains a connected component of ℬ∩ 𝐵𝑖 (𝑜). In particular, spt𝜕𝑀′
𝑖

contains a piece of

ℬ∩ 𝜕𝐵𝑖 (𝑜). This however contradicts 𝜕𝑀′
𝑖
⊂ spt𝜕𝑀𝑖 ⊂ 𝑈. Having observed that each 𝑊𝑖 is

contained in𝑈 and is therefore separated from P∞, the rest of the argument follows verbatim as

in (Lang, 1995; Castéras et al., 2018).

□
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6 UNIQUENESS THEOREM

The main goal of this chapter is to prove the Uniqueness Theorem (Theorem 6.3.1).

6.1 𝐶𝑘 -asymptotic to Euclidean half-spaces

As in (Gama; Martín, 2020) and (Martín et al., 2019), we will define an asymptotic

graph over a half-hyperplane outside a cylinder, and then we prove that the only solitons with

such behaviour at infinity are grim-reapers (Lemma 4.2.1) and vertical Euclidean hyperplane.

Definition 6.1.1 (Cylinder in the halfspace model). In the halfspace model, a cylinder C(𝑐,𝑟) of

center 𝑐 = (𝑐0, 𝑐1,0, . . . ,0) ∈ H𝑚+1 and radius 𝑟 > 0 is

C(𝑐,𝑟) = {𝑥 = (𝑥0, . . . , 𝑥𝑚) ∈ R𝑚+1 : (𝑥0 − 𝑐0)2 + (𝑥1 − 𝑐1)2 < 𝑟2}

For convenience, a cylinder C(𝑐,𝑟) will be denoted by C omitting the center 𝑐 and radius 𝑟

where 𝑟 is small enough that C(𝑐,𝑟) ⊂ H𝑚+1 = R+
∗ ×R𝑚

Definition 6.1.2 (Half-hyperplane with respect to a horosphere). Let 𝐻H = Π ∩H𝑚+1 be a

half Euclidean hyperplane in the half space model of H𝑚+1, where Π ⊂ R𝑚+1 is an Euclidean

hyperplane not parallel to 𝜕∞H𝑚+1. Suppose that 𝜎 = 𝐻H ∩ {𝑥0 = 𝑐0}, for some constant

𝑐0 ∈ R.(Note that 𝜎 is a horosphere). An H-half-hyperplane H𝜎 (𝛿) with respect a horosphere

𝜎 ⊂ Π𝐸 and distance 𝛿 is the following set:

H±
𝜎 (𝛿) := {𝑥 ∈ 𝐻H : ±𝑑𝐻H (𝜎,𝑥) > 𝛿}

where 𝑑𝐻H (𝜎,•) is the signed hyperbolic distance from 𝜎 with the agreement that 𝑑𝐻H (𝜎,•) is

positive in the direction of mean curvature of 𝜎. For symplicity, we will denote H+
𝜎 (0) by H+

𝜎 .

(Similarly, H−
𝜎 ).

Definition 6.1.3 (Euclidean graph over half hyperplane). Let 𝐴 be a subset of 𝐻H and 𝜑 : 𝐴→ R

be a real valued function. The Euclidean graph of 𝜑 over 𝐴 is given by

𝔊𝜑 = {𝑝 +𝜑(𝑝)𝜈R : 𝑝 ∈ 𝐴}

where 𝜈R is the Euclidean normal to 𝐻H.



65

Definition 6.1.4 (Euclidean 𝐶𝑘 -(𝐻H,𝜎,±)-asymptotic). Suppose that 𝐻H is a half-hyperplane,

let 𝜎 be a horosphere and define H±
𝜎 as in Definition 6.1.3. an embedded submanifold 𝑀 ⊂ H𝑚+1

is 𝐶𝑘 -asymptotic to H±
𝜎 if:

1. 𝑀 can be represented as an Euclidean graph of a 𝐶𝑘 -function 𝜑 : H±
𝜎 → R

2. ∀𝜖 > 0, ∃𝛿 > 0 such that:
sup

𝑝∈H±
𝜎 (𝛿)

|𝜑(𝑝) | < 𝜖,

sup
𝑝∈H±

𝜎 (𝛿)
|∇R (𝑙)

𝜑𝑝 |R < 𝜖 for any 1 ≤ 𝑙 ≤ 𝑘,

where ∇R (𝑙) is the 𝑙-th Euclidean derivative of 𝜑.

Definition 6.1.5 (GR Property). We say that a hypersurface 𝑀𝑚 ⊂ H𝑚+1 has the (GR) Property

if 𝑀 is a complete, connected, properly immersed soliton with respect to −𝜕0 that, outside a

cylinder C, is 𝐶1-asymptotic to two H-half-hyperplanes H𝜎1 and H𝜎2 , where 𝜎1 is a horosphere

such that 𝜎1 is one of the connected components of Π1 ∩ 𝜕𝐶 and H𝜎1 can be either H+
𝜎1 or

H−
𝜎1(similarly, for 𝜎2).

Definition 6.1.6 (Wings). Let 𝑀 be a hypersurface with the (GR) property. We call wings of 𝑀

the two parts that are 𝐶1-asymptotic to H𝜎1 and H𝜎2 .

6.2 Hyperbolic Dynamic Lemma

The main goal of this section is the Hyperbolic Dynamic Lemma (Lemma 6.2.3 ).

That lemma will be a crucial tool to obtain the Uniqueness Theorem (Theorem 6.3.1). For the

Hyperbolic Dynamic Lemma (Lemma 6.2.3), we recall some definitions:

Definition 6.2.1 (Locally bounded area). Let Ω ⊂ (H𝑚+1, 𝑔I) be a open set. We say that a

sequence of smooth manifolds {M𝑖} has locally bounded area if for any relatively compact open

subset 𝐵 ⋐ Ω there exists a constant 𝐾 = 𝐾 (𝐵) such that:

area𝑔I (𝐵∩M𝑖) < 𝐾 ∀𝑖 ∈ N

Definition 6.2.2 (Singular set). Let us denote by

Z :=
{
𝑝 ∈ Ω : limsup𝑖→∞area{𝑀𝑖 ∩B𝑟 (𝑝)} =∞ for every 𝑟 > 0

}
,

the set where the area blows up. Z is called the singular set. Clearly, Z is a closed set.
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To recall the definitions concerning varifolds, read appendix ??.

Lemma 6.2.3 (Hyperbolic Dynamic Lemma). Let 𝑀 have the (GR) property. Suppose that

{𝑣𝑖} ⊂ (𝑠𝑝𝑎𝑛{𝜕0, 𝜕1})⊥ and define 𝑀𝑖 := 𝑀 + 𝑣𝑖. Then, after passing to a subsequence, {𝑀𝑖}

weakly converges to a connected stationary integral varifold 𝑀∞. Moreover, 𝜕∞𝑀∞ ⊂ 𝜕∞𝑀𝑖.

Proof. As in Lemma 3.1 of (Gama; Martín, 2020), we use Theorem C.0.2. Summarizing the

proof:

First step: we prove that sequence {𝑀𝑖} has locally bounded area outside of the

cylinder C with respect to the Ilmanen’s metric 𝑔I. Then the singular set Z is inside C.

Second step: By Theorem C.0.3, we prove that the singular set Z is empty inside

cylinder C.

Third step: By Theorem C.0.2, there exists a limit varifold 𝑀∞ for a subquence

of {𝑀𝑖}. Furthermore, outside of cylinder C, 𝑀∞ is the limit of a sequence of graphs that are

stable and therefore they satisfy curvature bounds. Therefore, the convergence is smooth with

multiplicity 1 outside of C.

Fourth step: We prove that 𝜕∞𝑀∞ ⊂ 𝜕∞𝑀𝑖.

First step: For a fixed point 𝑃 = (𝑝0, . . . , 𝑝𝑚) ∈ H𝜎1(Respectively 𝑃 ∈ H𝜎2) and a

Euclidean normal 𝜈R= (𝑎0, . . . , 𝑎𝑚) to H𝜎1 with |𝜈R |R = 1. Hence there exists a 𝜃 ∈ (0, 𝜋) such

that 𝜈R = cos𝜃𝜕1 + sin𝜃𝜕0. We use the following change of coordinates:


𝑦0 = cos𝜃𝑥1 + sin𝜃𝑥0,

𝑦1 = −sin𝜃𝑥1 + cos𝜃𝑥0,

𝑦𝑘 = 𝑥𝑘 ∀𝑘 ∈ {2, . . . ,𝑚}.

For constants 𝑠 𝑗 > 0 ∀ 𝑗 ∈ {0, . . . ,𝑚} , we define the box 𝐵 centered in 𝑃 = (𝑝0, . . . , 𝑝𝑚) with
size lenghts 𝑠 𝑗 .

𝐵 := {𝑋 = (𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ H𝑚+1 | − 𝑠0 < 𝑎0 (𝑥0 − 𝑝0) + · · · + 𝑎𝑚 (𝑥𝑚− 𝑝𝑚) < 𝑠0 |𝑥 𝑗 − 𝑝 𝑗 | < 𝑠 𝑗 ∀ 𝑗 ∈ {2, . . . ,𝑚}

| cos𝜃 (𝑥1 − 𝑝1) + sin𝜃 (𝑥0 − 𝑝0) | < 𝑠0 and | − sin𝜃 (𝑥1 − 𝑝1) + cos𝜃 (𝑥0 − 𝑝0) | < 𝑠1}

Let W𝜎1,𝑖 be the wing of 𝑀𝑖 asymptotic to H𝜎1(see Definition 6.1.6). We claim there

exists a constant 𝐾 > 0 (depending only on 𝐵) such that, for all 𝑖 ∈ N, area𝑔I (𝐵∩W𝜎1,𝑖) < 𝐾

. Similarly to W𝜎2,𝑖. Indeed, by Definition 6.1.4, W𝜎1,𝑖 can be written as a graph over H𝜎1 .

Therefore, for each 𝑖, there exists a map 𝜑𝑖 : 𝐵∩H𝜎1 → 𝐵 such that 𝜑𝑖 (𝐵∩H𝜎1) = 𝐵∩W𝜎1,𝑖.
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Hence there exists a function 𝑓𝑖 : 𝐵∩H𝜎1 → R such that 𝜑𝑖 (𝑝) = 𝑝 + 𝑓𝑖 (𝑝)𝜈R. Therefore,

area𝑔I (𝐵∩W𝜎1,𝑖) =
∫

𝐵∩W𝜎1 ,𝑖

𝑑𝑉𝑔I

=

∫
𝐵∩H𝜎1

√︁
det𝑔I(𝑀𝑖)𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑚,

where det𝑔I(𝑀𝑖) = det
[
𝑔I

(
𝜑𝑖∗

(
𝜕
𝜕𝑦𝑘

)
, 𝜑𝑖∗

(
𝜕
𝜕𝑦𝑙

))]
𝑘,𝑙

.

By 𝑥0(𝐵∩W𝜎1,𝑖) is bounded and |∇R 𝑓𝑖 |R < 𝜖 for some 𝜖 > 0 and Lemma 6.2.4

below, there exists a constant 𝐶 > 0 such that
√︁

det𝑔I(𝑀𝑖) < 𝐶 in 𝐵∩H𝜎1 . Therefore,

∫
𝐵∩H𝜎1

√︁
det𝑔I(𝑀𝑖)𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑚 < 𝐶

∫
𝐵∩H𝜎1

𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑚 = 𝐶 area𝑔R (𝐵∩H𝜎1)

Define 𝐾 :=𝐶 area𝑔R (𝐵∩H𝜎1). Thus, area𝑔I (𝐵∩W𝜎1,𝑖) < 𝐾 , i. e., {𝑀𝑖} has locally

bounded 𝑔I-area outside of C.

Second step: By the first step, Z ⊂ C. In order to use Theorem C.0.3, we cho-

ose a open set N above B 𝜋
2
(𝑜,𝑟0) such that 𝜕N = B 𝜋

2
(𝑜,𝑟0) a spherical barrier (See Pro-

position 4.3.3) with 𝑟0 > 0 small enough such that B 𝜋
2
(𝑜,𝑟0) ∩ C = ∅. By Proposition ??,

the second fundamental form II𝑔I of B 𝜋
2
(𝑜,𝑟0) in the upward direction is positive definite

and 𝑔I (𝐻𝜕N , 𝜉) = 𝑔I
(∑𝑚

𝑖=1 II𝑔I (�̃�𝑖, �̃�𝑖)𝜈𝑔I , 𝜈𝑔I
)
≥ 0 where {�̃�𝑖} is a 𝑔I-orthonormal frame. Now

we increase the radius 𝑟0 and guarantee that Z = ∅. Namely, It is enough to prove that

sup{𝑟0 ∈ R+ : B 𝜋
2
(𝑜,𝑟0) ∩ C = ∅} = ∞. Suppose, by contradition, that the supremum is fi-

nite, 𝑟𝑀 := sup{𝑟0 ∈ R+ : B 𝜋
2
(𝑜,𝑟0) ∩ C = ∅}. By definition, B 𝜋

2
(𝑜,𝑟𝑀) ∩Z ≠ ∅ and Z ⊂ N .

Therefore, by Theorem C.0.3, 𝜕N ⊂ Z contradicting the fact that Z ⊂ C by the asymptotic

behaviour of B 𝜋
2
(𝑜,𝑟𝑀). Thus Z = ∅.

Third step: By first and second steps, {𝑀𝑖} has locally bounded 𝑔I-area. Thus, by

Theorem C.0.2, {𝑀𝑖} converges weakly to a stationary integral varifold 𝑀∞.

Fourth step: By (GR) property, 𝜕∞𝑀𝑖 = 𝜕∞𝑀 𝑗 ∀𝑖, 𝑗 ∈ N. Take a point 𝑃∞ that is not

in the boundary at infinity of 𝑀𝑖, 𝑃∞ ∈ 𝜕∞H𝑚+1\𝜕∞𝑀𝑖. By the uniform asymptotic behaviour

of {𝑀𝑖}, there exists a spherical barrier B 𝜋
2
(𝑜,𝑟0) (see Proposition 4.3.3) such that 𝑜 = 𝑃∞,

𝜕∞B 𝜋
2
(𝑜,𝑟0) ∩𝜕∞𝑀𝑖 = ∅ and B 𝜋

2
(𝑜,𝑟0) ∩𝑀𝑖 = ∅ ∀𝑖 ∈ N. Therefore, there is no point of 𝑀∞ in

the connected component of H𝑚+1\B 𝜋
2
(𝑜,𝑟0) whose boundary at infinity contains 𝑃∞. Therefore,

𝑃∞ is not in the boundary at infinity of 𝑀∞. Thus, 𝜕∞𝑀∞ ⊂ 𝜕∞𝑀𝑖.

□
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Lemma 6.2.4. It holds that:

det𝑔I = (𝑒2w)𝑚 (1+ |∇R 𝑓𝑖 |2),

where w = 1
𝑚𝑥0

− ln𝑥0

Proof. Recall that 𝜑𝑖 : 𝐵∩H𝜎1 → 𝐵 such that 𝜑𝑖 (𝐵∩H𝜎1) = 𝐵∩W𝜎1,𝑖. And 𝑓𝑖 : 𝐵∩H𝜎1 → R

such that 𝜑𝑖 (𝑋) = expR
𝑋
( 𝑓𝑖 (𝑋)𝜈R).

𝑔I𝑎𝑏 := 𝑔I
(
𝜑𝑖∗

(
𝜕

𝜕𝑦𝑎

)
, 𝜑𝑖∗

(
𝜕

𝜕𝑦𝑏

))
.

Notice that 𝜑𝑖∗

(
𝜕

𝜕𝑦𝑎

)
=

𝜕

𝜕𝑦𝑎
+ 𝜕 𝑓𝑖
𝜕𝑦𝑎

𝜕

𝜕𝑦0
. Hence,

𝑔I𝑎𝑏 = 𝑒
2w𝑔R

(
𝜕

𝜕𝑦𝑎
+ 𝜕 𝑓𝑖
𝜕𝑦𝑎

𝜕

𝜕𝑦0
,
𝜕

𝜕𝑦𝑏
+ 𝜕 𝑓𝑖
𝜕𝑦𝑏

𝜕

𝜕𝑦0

)
= 𝑒2w

(
𝛿𝑎𝑏 +

𝜕 𝑓𝑖

𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦𝑏

)
Thus,

det𝑔I = (𝑒2w)𝑚 det
(
𝛿𝑎𝑏 +

𝜕 𝑓𝑖

𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦𝑏

)
1≤𝑎,𝑏≤𝑚

Define 𝐷 := det
(
𝛿𝑎𝑏 +

𝜕 𝑓𝑖

𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦𝑏

)
1≤𝑎,𝑏≤𝑚

. We claim that 𝐷 = (1+ |∇R 𝑓𝑖 |2R) proving the lemma.

Indeed, define the matrix (𝐴𝑎𝑏) :=
(
𝛿𝑎𝑏 +

𝜕 𝑓𝑖

𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦𝑏

)
1≤𝑎,𝑏≤𝑚

. If we prove that 𝐴 has eigenvalues 1

with multiplicity 𝑚−1 and 1+ |∇R 𝑓𝑖 |2R with multiplicity 1, then 𝐷 = det 𝐴 = 1+ |∇R 𝑓𝑖 |2R. Namely,

take 𝑣 = (𝑣1, . . . , 𝑣𝑚), with 𝑔R
(
∇R 𝑓𝑖, 𝑣

)
= 0. Let us set 𝑤 = 𝐴𝑣:

𝑤𝑎 =
∑︁

1≤ 𝑗≤𝑚
𝐴𝑎 𝑗𝑣 𝑗 =

∑︁
1≤ 𝑗≤𝑚

𝛿𝑎 𝑗𝑣 𝑗 +
𝜕 𝑓𝑖

𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦 𝑗
𝑣 𝑗

𝑤𝑎 = 𝑣𝑎 +
𝜕 𝑓𝑖

𝜕𝑦𝑎
𝑔R

(
∇R 𝑓𝑖, 𝑣

)
= 𝑣𝑎

Therefore, 𝑤 = 𝑣, 𝐴𝑣 = 𝑣 and 1 is eigenvalue with multiplicity 𝑚−1. Let us set 𝑢 = 𝐴(∇R 𝑓𝑖).

𝑢𝑎 =
∑︁

1≤ 𝑗≤𝑚
𝐴𝑎 𝑗

𝜕 𝑓𝑖

𝜕𝑦 𝑗
=

∑︁
1≤ 𝑗≤𝑚

𝛿𝑎 𝑗
𝜕 𝑓𝑖

𝜕𝑦 𝑗
+ 𝜕 𝑓𝑖
𝜕𝑦𝑎

𝜕 𝑓𝑖

𝜕𝑦 𝑗

𝜕 𝑓𝑖

𝜕𝑦 𝑗

𝑢𝑎 =
𝜕 𝑓𝑖

𝜕𝑦𝑎
+ 𝜕 𝑓𝑖
𝜕𝑦𝑎

|∇R 𝑓𝑖 |2R

𝑢𝑎 = (1+ |∇R 𝑓𝑖 |2R)
𝜕 𝑓𝑖

𝜕𝑦𝑎

Therefore, 𝐴(∇R 𝑓𝑖) = (1+ |∇R 𝑓𝑖 |2R)∇
R 𝑓𝑖 and (1+ |∇R 𝑓𝑖 |2R) is eigenvalue with multiplicity 1. □
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6.3 Uniqueness Theorem

In this section we will prove the Uniqueness Theorem (Theorem 6.3.1). By matter

of organization, we separate the proof in two cases, when 𝑥0(𝑀) is bounded above and when it

is not.

Theorem 6.3.1 (Uniqueness Theorem). Let 𝑀𝑚 be a mean curvature flow soliton with respect to

−𝜕0 in (H𝑚+1, 𝑔H) with the (GR) property (see Definition 6.1.5). Then 𝑀 is a grim reaper or a

vertical totally 𝑔H-geodesic hypersurface.

In the case where 𝑥0 (𝑀) is bounded above, observe that every hyperplane at infinity

is downward pointing. We need the following lemmas.

Lemma 6.3.2 (Vertical half hyperplanes of the type −). Suppose that 𝑀 has the (GR) property

(Definition 6.1.5) and H−
𝜎𝑖

is one of the half hyperplanes. Then H−
𝜎𝑖

is vertical, that is, 𝑥1(H−
𝜎𝑖
) =

{𝑐1}, where 𝑐1 ∈ R is a constant.

Proof. Suppose by contradiction that H−
𝜎𝑖

is not vertical, that is, 𝑥1
(
H−
𝜎𝑖

)
≠ 𝑥1

(
𝜕∞H−

𝜎𝑖

)
. Up to

rotations, we can assume that 𝑥1
(
𝜕∞H−

𝜎𝑖

)
= {𝑐1} for a constant 𝑐1 ∈ R and 𝑥1

(
H−
𝜎𝑖

)
⊂ (−∞, 𝑐1]

(when 𝑥1
(
H−
𝜎𝑖

)
⊂ [𝑐1,∞) the reasoning is similar). By the asymptotic behaviour of 𝑀, there

exists a small spherical barrier B 𝜋
2
(𝑜,𝑟0) such that:

(i) 𝑟0 is small enough such that B 𝜋
2
(𝑜,𝑟0) ∩C = ∅.

(ii) B 𝜋
2
(𝑜,𝑟0) ∩𝑀 = ∅

(iii) 𝑥1

(
B 𝜋

2
(𝑜,𝑟0)

)
⊂ (−∞, 𝑐1)

In order to use the Maximum Principle (Proposition C.0.1), we have to find a

suitable spherical barrier. We move the center 𝑜 = (𝑞0, 𝑞1, 𝑞2, . . . , 𝑞𝑚) in the 𝑥1-direction until

the spherical barrier touches 𝑀 in the wing. Namely, define B𝜇 := B(𝑜𝜇, 𝑟0), where 𝑜𝜇 =

(𝑞0, 𝑞1 + 𝜇, 𝑞2, . . . , 𝑞𝑚). Define the interval 𝐼 := {𝜇1 ∈ [0,∞) : B𝜇 ∩𝑀 = ∅ ∀0 ≤ 𝜇 < 𝜇1} and

𝜇𝑆 := sup 𝐼.

We claim that sup𝑥1(B𝜇𝑆 ) < 𝑐1. In fact, for all 𝜇 such that sup𝑥1(B𝜇) > 𝑐1, B𝜇∩𝑀 ≠

∅ by the asymptotic behaviour of 𝑀 . And for 𝜇 such that sup𝑥1(B𝜇) = 𝑐1, B𝜇 must touch 𝑀 in

the wing, because B𝜇 is not 𝐶1-asymptotic to any subset of non-vertical half hyperplane H−
𝜎1 .

We claim that B𝜇𝑆 ∩𝑀 ≠ ∅. Indeed, by definition of supremum, there exists a

sequence of points (𝑃 𝑗 ) in 𝑀 such that distH(𝑃 𝑗 ,B𝜇𝑆 ) → 0 as 𝑗 → ∞. By the asymptotic

behaviours of 𝑀 and B𝜇𝑆 , inf{𝑥0(𝑃 𝑗 )} > 0. By the boundedness of coordinates of {𝑃 𝑗 }, up
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a subsequence, (𝑃 𝑗 ) converges to a point 𝑃∞ in H𝑚+1. 𝑃∞ ∈ 𝑀 because 𝑀 is closed. Hence

distH(𝑃∞,B𝜇𝑆 ) = 0. Therefore, 𝑃∞ belongs to B𝜇𝑆 too because B𝜇𝑆 is closed and we have a

sequence of point in B𝜇𝑆 converging to 𝑃∞.

Thus, by the Maximum Principle, B𝜇𝑆 must be a stationary hypersurface, a contra-

diction. Therefore, 𝑥1(H−
𝜎1) is not contained in (−∞, 𝑐1]. Similarly for [𝑐1,∞).

We conclude that 𝑥1(H−
𝜎1) = {𝑐1}, that is, H−

𝜎1 is vertical. □

Lemma 6.3.3. Let 𝑀𝑚 be a mean curvature flow soliton with respect to −𝜕0 in (H𝑚+1, 𝑔H) with

the (GR) property (see Definition 6.1.5) and sup𝑥0(𝑀) <∞. Then 𝑀 is contained in a chimney

𝐶 := {𝑥1 > 𝑏1} ∩ {𝑥1 < 𝑒1} ∩ {𝑥0 < 𝑐0} for some constants 𝑏1, 𝑒1 and 𝑐0.

Proof. By Lemma 6.3.2, H−
𝜎1 = {𝑥1 = 𝑐1} and H−

𝜎2 = {𝑥1 = 𝑑1}, say, 𝑐1 < 𝑑1. There exists a

small spherical barrier B 𝜋
2
(𝑜,𝑟0) such that:

(i) 𝑥1

(
B 𝜋

2
(𝑜,𝑟0)

)
< 𝑐1,

(ii) B 𝜋
2
(𝑜,𝑟0) ∩𝑀 = ∅.

We move the center 𝑜 = (𝑞0, 𝑞1, . . . , 𝑞𝑚) in 𝑥1-direction and increase the radius 𝑟0 in such a

way that the family of spherical barrier converges to a vertical hyperplane. Namely, define

B𝜆 := B 𝜋
2
(𝑜𝜆, 𝑟𝜆) where 𝑜𝜆 = (𝑞0, 𝑞1 − 𝜆, 𝑞2, 𝑞𝑚) and 𝑟𝜆 = 𝑟0 + 𝜆. Notice that 𝑃 = (𝑞0, 𝑞1 +

𝑟0, 𝑞2, . . . , 𝑞𝑚) ∈ 𝜕∞B𝜆 ∀𝜆 ∈ R. By the Maximum Principle (Proposition C.0.1), 𝐵𝜆 ∩𝑀 =

∅ ∀𝜆 > 0. Therefore, {𝑥1 < 𝑞1 +𝑟0}∩𝑀 = ∅. Now define 𝑏1 := 𝑞1 +𝑟0. Similarly we can find a

constant 𝑒1. Take a constant 𝑐0 greater than sup𝑥0(𝑀). Thus, 𝑀 ⊂ {𝑥1 > 𝑏1}∩{𝑥1 < 𝑒1}∩{𝑥0 <

𝑐0}. □

Lemma 6.3.4. Let 𝑀𝑚 be a mean curvature flow soliton with respect to −𝜕0 in (H𝑚+1, 𝑔H)

with the (GR) property (see Definition 6.1.5) and sup𝑥0(𝑀) < ∞ with H−
𝜎1 = {𝑥1 = 𝑐1} and

H−
𝜎2 = {𝑥1 = 𝑑1} where 𝑐1 < 𝑑1. Then there exists a small grim-reaper Gℎ,[𝐻∗,𝐻∗] below 𝑀

centered in [𝑐1, 𝑑1], that is,

(i) Gℎ,[𝐻∗,𝐻∗] ∩𝑀 = ∅.

(ii) 𝑐1 < 𝑥1
(
Gℎ,[𝐻∗,𝐻∗]

)
< 𝑑1.

(iii) 𝐻∗+𝐻∗

2 =
𝑐1+𝑑1

2 .

Proof. By the asymptotic behaviour of 𝑀 , there exists a small spherical barrier fitting between

H−
𝜎1 and H−

𝜎2 and not touching 𝑀 , that is, there exists B 𝜋
2
(𝑜,𝑟0) with center 𝑜 = (𝑞0, 𝑞1, . . . , 𝑞𝑚) ∈

𝜕∞H𝑚+1 such that:

(i) 𝑐1 < 𝑥1

(
B 𝜋

2
(𝑜,𝑟0)

)
< 𝑑1.
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(ii) B 𝜋
2
(𝑜,𝑟0) ∩𝑀 = ∅.

Define a half tube 𝑇 := {𝑃 ∈ H𝑚+1 |𝑞1 − 𝑟0 < 𝑥1(𝑃) < 𝑞1 + 𝑟0 and |𝑥0(𝑃) − 𝑞0 | < 𝑟0}. Moving

the spherical barrier below 𝑀 and between H−
𝜎1 and H−

𝜎2 , we can garantee that, by the Maxi-

mum Principle (Proposition C.0.1), 𝑇 ∩𝑀 = ∅. Indeed, define B𝜇2,𝜇3,...,𝜇𝑚 := B
(
𝑜𝜇1,𝜇2,...,𝜇𝑚 , 𝑟0

)
where 𝑜𝜇2,...,𝜇𝑚 = (𝑞0, 𝑞1, 𝑞2 + 𝜇2, 𝑞3 + 𝜇3, . . . , 𝑞𝑚 + 𝜇𝑚). By the Maximum Principle, varying

𝜇2, 𝜇3, . . . , 𝜇𝑚−1 and 𝜇𝑚, B𝜇2,𝜇3,...,𝜇𝑚 ∩𝑀 = ∅. Therefore,

©«
⋃

𝜇2,...,𝜇𝑚∈R+
B𝜇2,...,𝜇𝑚

ª®¬∩𝑀 = ∅.

Thus, 𝑇 ∩𝑀 = ∅ as claimed. Now there exists a small grim-reaper Gℎ1,[𝐻∗ (ℎ1),𝐻∗ (ℎ1)] contained

in 𝑇 . By the Maximum Principle using Gℎ1,[𝐻∗ (ℎ1),𝐻∗ (ℎ1)] as barrier, we can center a grim reaper

in [𝑐1, 𝑑1].

□

Proof of Uniqueness Theorem when sup𝑥0(𝑀) <∞. Suppose that 𝑀 is not a grim-reaper. In

this case, the two hyperplanes point downward, that is, 𝑀 is 𝐶1-asymptotic to H−
𝜎1 and H−

𝜎2 .

First step: Now we prove that 𝑀 is above a grim reapers with the same boundary at

infinity. Indeed, by Lemma 6.3.2, H−
𝜎1 and H−

𝜎2 are vertical. Hence H−
𝜎1 = {𝑥1 = 𝑐1} and H−

𝜎2 =

{𝑥1 = 𝑑1} with 𝑐1 < 𝑑1. By Lemma 6.3.4, there exists a grim-reaper Gℎ,[𝐻∗,𝐻∗] below 𝑀 such that
(𝐻∗+𝐻∗)

2 =
(𝑐1+𝑑1)

2 . In order to use Maximum Principle (Proposition C.0.1), we define a family of

grim reaper G𝜆 :=Gℎ𝜆,[𝐻∗ (ℎ𝜆),𝐻∗ (ℎ𝜆)] where ℎ𝜆 = ℎ+𝜆 and [𝐻∗(ℎ𝜆) , 𝐻∗(ℎ𝜆)] is the correspondent

interval in the 𝑥1-axis with the same center of [𝐻∗(ℎ), 𝐻∗(ℎ)]. We can increase this grim reaper

without contact with 𝑀 until it has the same boundary at infinity of 𝑀 . Namely, define the interval

𝐼 := {𝜆0 > 0 : G𝜆∩𝑀 = ∅ ∀0 < 𝜆 < 𝜆0} and 𝜆𝑆 := sup 𝐼. We claim that G𝜆𝑆 ∩𝑀 = ∅. Otherwise

𝑀 must coincide with G𝜆𝑆 by Maximum Principle and we are assuming that 𝑀 is not a grim

reaper. By definition of 𝜆𝑆, we have distR(G𝜆𝑆 , 𝑀) = 0. There exists a sequence of points (𝑄𝑖)𝑖∈N
in 𝑀 such that distR(𝑄𝑖,G𝜆𝑆 ) → 0 as 𝑖→∞. In order to use the Hyperbolic Dynamic Lemma

(Lemma 6.2.3), define 𝑀𝑖 = 𝑀 + 𝑣𝑖, where 𝑣𝑖 := (0,0,−𝑥2(𝑄𝑖), . . . ,−𝑥𝑚 (𝑄𝑖)). By the Hyperbolic

Dynamic Lemma, up a subsequence, {𝑀𝑖} weakly converges to a connected stationary integral

varifold 𝑀∞. Notice that 𝑅𝑖 := (𝑥0(𝑄𝑖), 𝑥1(𝑄𝑖),0, . . . ,0) ∈ 𝑀𝑖, up a to subsequence, converges

to a point 𝑅∞ and 𝑅∞ ∈ 𝑀∞∪ 𝜕∞𝑀∞. The grim reaper G𝜆𝑆 has the same boundary at infinity

as 𝑀𝑖 and 𝑀∞. Otherwise, by the asymptotic behaviours of G𝜆𝑆 and 𝑀∞, 𝑅∞ would not belong

to 𝜕∞G𝜆𝑆 ∪ 𝜕∞𝑀∞ therefore 𝑅∞ would belong to G𝜆𝑆 ∩𝑀∞ and , by the Maximum Principle,



72

𝑀∞ = G𝜆𝑆 . Therefore, as claimed 𝜕∞H−
𝜎1 ∪ 𝜕∞H

−
𝜎2 = 𝜕∞𝑀𝑖 = 𝜕∞G𝜆𝑆 . Thus, G𝜆𝑆 is the unique

grim reaper with boundary at infinity equal to 𝜕∞H−
𝜎1 ∪ 𝜕∞H

−
𝜎2 .

Second step: Now we prove that 𝑀 is below a grim reaper with the same boundary

at infinity. In fact, by Lemma 6.3.3, 𝑀 is inside a chimney𝐶 := {𝑥1 > 𝑏1}∩{𝑥1 < 𝑒1}∩{𝑥0 < 𝑐0}.

There exists a big grim reaper Gℎ0,[𝐻∗ (ℎ0),𝐻∗ (ℎ0)] above 𝐶 and with the same center as [𝑐1, 𝑑1] ,

that is, ℎ0 > 𝑐0, 𝐻∗(ℎ0) < 𝑏1, 𝐻∗(ℎ0) > 𝑒1 and 𝑐1+𝑑1
2 =

𝐻∗ (ℎ0)+𝐻∗ (ℎ0)
2 . We decrease this grim reaper

without contact with 𝑀 until it has the same boundary at infinity as 𝑀 . Namely, in order to use

the Maximum Principle again, we define a family of grim reapers G𝜇 := Gℎ𝜇 ,[𝐻∗ (ℎ𝜇),𝐻∗ (ℎ𝜇)] , where

ℎ𝜇 := ℎ0 + 𝜇 and define the interval 𝐽 := {𝜇0 ∈ (−∞,0] : G𝜇 ∩𝑀 = ∅ ∀𝜇 > 𝜇0} and 𝜇𝐼 = inf 𝐽.

We claim that G𝜇𝐼 ∩𝑀 = ∅. Otherwise 𝑀 must coincide with G𝜇𝐼 by the Maximum Principle

and we are assumiming that 𝑀 is not a grim reaper. By definition of 𝜇𝐼 , distR(G𝜇𝐼 , 𝑀) = 0.

There exists a sequence of points (𝑆𝑖)𝑖∈N in 𝑀 such that distR(𝑆𝑖,G𝜇𝐼 ) → 0 as 𝑖 → ∞. Like

in the last step, in order to use the Hyperbolic Dynamic Lemma (Lemma 6.2.3), define 𝑀𝑖 =

𝑀 + 𝑣𝑖, where 𝑣𝑖 := (0,0,−𝑥2(𝑆𝑖), . . . ,−𝑥𝑚 (𝑆𝑖)). By Hyperbolic Dynamic Lemma, up to a

subsequence, {𝑀𝑖} weakly converges to a connected stationary integral varifold 𝑀∞. Notice

that 𝑇𝑖 := (𝑥0(𝑆𝑖), 𝑥1(𝑆𝑖),0, . . . ,0) ∈ 𝑀𝑖, up a subsequence, converges to a point 𝑇∞ and 𝑇∞ ∈

𝑀∞ ∪ 𝜕∞𝑀∞. We claim that the grim reaper G𝜇𝐼 has the same boundary at infinity as 𝑀𝑖.

Otherwise, by the asymptotic behaviours of G𝜇𝐼 and 𝑀∞, 𝑇∞ would not belong to 𝜕∞G𝜇𝐼 ∪𝜕∞𝑀∞

therefore 𝑅∞ would belong to G𝜇𝐼 ∩𝑀∞ and , by the Maximum Principle, 𝑀∞ = G𝜇𝐼 . Therefore

as claimed 𝜕∞H−
𝜎1 ∪ 𝜕∞H

−
𝜎2 = 𝜕∞𝑀𝑖 = 𝜕∞G𝜇𝐼 . Therefore G𝜇𝐼 is the unique grim reaper with

boundary at infinity equal to 𝜕∞H−
𝜎1 ∪ 𝜕∞H

−
𝜎2 .

Third step: By the first and second steps, 𝑀 is between two grim reapers, G𝜆𝑆 and

G𝜇𝐼 , with the same boundary at infinity, 𝜕∞H−
𝜎1 ∪𝜕∞H

−
𝜎2 . However, there is only one grim reaper

with this boundary at infinity. Therefore G𝜆𝑆 and G𝜇𝐼 must coincide. Hence, 𝑀 must coincide

with G𝜆𝑆 and G𝜇𝐼 . This contradicts our assumption that 𝑀 is not a grim reaper. □

In this second part of this section, we prove the Uniqueness Theorem when 𝑥0(𝑀) is

unbounded above.

Proof of Uniqueness Theorem when sup𝑥0(𝑀) =∞. We are assuming that sup𝑥0(𝑀) =∞.

First case: Suppose that the two half hyperplanes point upward, that is, H𝜎1 and

H𝜎2 are of type +. In this case, inf 𝑥0(𝑀) > 0. Therefore, we can put a small grim reaper

Gℎ,[𝐻∗,𝐻∗] below 𝑀, that is, there is a grim reaper Gℎ,[𝐻∗,𝐻∗] such that ℎ < inf 𝑥0(𝑀). Hence
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Gℎ,[𝐻∗,𝐻∗] ∩𝑀 = ∅. We increase the height of Gℎ,[𝐻∗,𝐻∗] until it touches 𝑀 and we use the

Maximum Principle (Theorem C.0.1) to arrive at a contradiction. Namely, define

G𝜆 := Gℎ𝜆,[𝐻∗ (ℎ𝜆),𝐻∗ (ℎ𝜆)] ,

where ℎ𝜆 := ℎ+𝜆

Define 𝐼 := {𝜆0 > 0 : G𝜆∩𝑀 = ∅ ∀𝜆0 > 𝜆 > 0} and 𝜆𝑆 := sup 𝐼. If G𝜆𝑆 ∩𝑀 ≠ ∅, by

Maximum Principle, G𝜆𝑆 = 𝑀, contradiction. Therefore, G𝜆𝑆 ∩𝑀 = ∅ and, by definition of 𝜆𝑆,

distR(G𝜆𝑆 , 𝑀) = 0, that is, there exists a sequence of points (𝑄𝑖) in 𝑀 such that distR(G𝜆𝑆 ,𝑄𝑖) →

0 as 𝑖→∞. In order to use the Hyperbolic Dynamic Lemma (Lemma 6.2.3), define

𝑀𝑖 := 𝑀 + 𝑣𝑖,

where 𝑣𝑖 := (0,0,−𝑥3(𝑄𝑖), . . . ,−𝑥𝑚 (𝑄𝑚)). By the Hyperbolic Dynamic Lemma, up to a sub-

sequence, {𝑀𝑖} weakly converges to a varifold 𝑀∞. Notice that the sequence of points (𝑅𝑖),

𝑅𝑖 := (𝑥0(𝑄𝑖), 𝑥1(𝑄𝑖),0, . . . ,0) ∈ 𝑀𝑖, up to a subsequence, converges to a point 𝑅∞ and 𝑅∞

belongs to G𝜆𝑆 because:

(i) {𝑥0(𝑅𝑖)} and {𝑥1(𝑅𝑖)} are bounded.

(ii) inf{𝑥0(𝑅𝑖)} > 0.

(iii) distR(G𝜆𝑆 , 𝑅∞) = lim
𝑖→∞

distR(G𝜆𝑆 , 𝑅𝑖) = 0.

(iv) G𝜆𝑆 is closed.

As 𝑅∞ is a limit of points 𝑅𝑖 ∈ 𝑀𝑖, 𝑅∞ belongs to 𝑀∞. Hence,

G𝜆𝑆 ∩𝑀∞ ≠ ∅.

Therefore, G𝜆𝑆 = 𝑀∞ by Maximum Principle (Theorem C.0.1). This is a contradiction.

Second case: Now we suppose that one of the half hyperplanes points downward

and the other points upward, say, 𝑀 is 𝐶1-asymptotic to H−
𝜎1 and H+

𝜎2 . By Lemma 6.3.2, H−
𝜎1 is

vertical, that is, 𝑥1(H−
𝜎1) = {𝑐1} for a constant 𝑐1. We claim that for every 𝜖 > 0,

{𝑥1 > 𝑐1 + 𝜖} ∩𝑀 = ∅.

Indeed, by asymptotic behaviour of 𝑀, there exists a small spherical barrier B 𝜋
2
(𝑜,𝑟0) with

center 𝑜 = (𝑞0, 𝑞1, . . . , 𝑞𝑚) and radius 𝑟0 such that:

(i) sup𝑥1(B 𝜋
2
(𝑜,𝑟0)) = 𝑐1 + 𝜖 .

(ii) B 𝜋
2
(𝑜,𝑟0) ∩𝑀 = ∅.
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We increase the radius of 𝑟0 and move the center 𝑜 = (𝑞0, 𝑞1, . . . , 𝑞𝑚) in the 𝑥1-

direction in such a way that the spherical barriers converge to the half hyperplane {𝑥1 = 𝑐1 + 𝜖}

in order to use the Maximum Principle. Namely, define

B𝜆 := B(𝑜𝜆, 𝑟𝜆).

where 𝑜𝜆 := (𝑞0, 𝑞1 +𝜆, 𝑞2, . . . , 𝑞𝑚) and 𝑟𝜆 := 𝑟0 +𝜆. Define 𝐼 := {𝜆0 > 0 : B𝜆 ∩𝑀 = ∅ ∀𝜆0 >

𝜆 > 0}. We claim that sup 𝐼 =∞. Indeed, if 𝜆𝑆 = sup 𝐼, B𝜆𝑆 ∩𝑀 ≠ ∅ therefore, by the Maximum

Principle, B𝜆𝑆 =𝑀 , contradiction. Thus, {𝑥1 > 𝑐1+𝜖}∩𝑀 = ∅ as claimed. Similarly by symmetry

{𝑥1 < 𝑐1 − 𝜖} ∩𝑀 = ∅ for all 𝜖 > 0. We conclude that 𝑀 ⊂ {𝑥1 = 𝑐1} and 𝑀 = {𝑥1 = 𝑐1} by

Maximum Principle. □
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APPENDIX A – BOUNDARY AT INFINITY

In this part of the text we give a precise definition of boundary at infinity. For more

details about the subject, read (Eberlein; O’Neill, 1973).

Points at infinity

In this section, we provide an intrinsic definition for the boundary at infinity by

utilizing geodesics. To achieve this, we recall some basic definitions of Riemannian Geometry:

Definition A.0.1 (Unit tangent bundle). For a Riemannian Manifold (𝑁,𝑔). The unit tangent

bundle𝑈𝑇𝑁 of 𝑁 is the subset of unit tangent vectors of 𝑇𝑁 , i.e.,

𝑈𝑇𝑁 :=
∐
𝑝∈𝑁

{𝑣 ∈ 𝑇𝑝𝑁 : 𝑔𝑝 (𝑣, 𝑣) = 1}

The projection 𝜇 :𝑈𝑇𝑁 → 𝑁 given by 𝜇(𝑣𝑝) = 𝑝

Definition A.0.2. Given 𝑣,𝑤 ∈ 𝑈𝑇𝑝𝑁 , the angle 𝜃 = <) (𝑣,𝑤) between 𝑣 and 𝑤 is the unique

number 0 ≤ 𝜃 ≤ 𝜋 such that 𝑔(𝑣,𝑤) = cos𝜃.

Definition A.0.3. A Cartan-Hadamard manifold (𝑁,𝑔) is a complete, simply connected Rie-

mannian manifold of dimension 𝑛 ≥ 2 and having sectional curvature

𝑠𝑒𝑐𝑔 (𝑣,𝑤) ≤ 0 ∀𝑝 ∈ 𝑁, ∀𝑣,𝑤 ∈ 𝑇𝑝𝑁

For any two points 𝑝 ≠ 𝑞 in a Cartan-Hadamard manifold, there exists a unique

geodesic 𝛾𝑝𝑞 such that 𝛾𝑝𝑞 (0) = 𝑝 and 𝛾𝑝𝑞 (𝑡) = 𝑞 where 𝑡 = dist𝑔 (𝑝, 𝑞) (see section 6.9 of (Jost,

2008)).

Definition A.0.4. Given 𝑝 ≠ 𝑞 in a Cartan-Hadamard manifold (𝑁,𝑔), let 𝛾𝑝𝑞 be the unique (unit

speed) geodesic such that 𝛾𝑝𝑞 (0) = 𝑝 and 𝛾𝑝𝑞 (𝑡) = 𝑞 where 𝑡 = dist𝑔 (𝑝, 𝑞). The angle <) 𝑝 (𝑞1, 𝑞2)

subtended by points 𝑞1, 𝑞2 ∈ 𝑁 and a distinct point 𝑝 ∈ 𝑁 is defined by <) (𝛾′𝑝𝑞1 (0), 𝛾
′
𝑝𝑞2 (0)).

Now, we are able to classify the geodesics that asymptotically approach at infinity.

Definition A.0.5. The unit speed geodesics 𝛼 : (−∞,∞) → 𝑁 and 𝛽 : (−∞,∞) → 𝑁 in a

Cartan-Hadamard manifold 𝑁 are asymptotic provided there exists a number 𝑐 > 0 such that

dist𝑔 (𝛼(𝑡), 𝛽(𝑡)) ≤ 𝑐 ∀𝑡 ≥ 0

Proposition A.0.6. The following statements are true:
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(I) If 𝛼 and 𝛽 are asymptotic, then so are orientation-preserving unit speed reparametrizations

of 𝛼 and 𝛽.

(II) The asymptote relation is a equivalence relation on the set of all geodesics in 𝑁; The

equivalence classes are called asymptote classes.

(III) If asymptotic geodesics in 𝑁 have a point in commom, then they are the same up to

parametrization.

(IV) Given a geodesic 𝛼 and a point 𝑝 ∈ 𝑁 there exists a unique geodesic 𝛽 such that 𝛽(0) = 𝑝

and 𝛽 is asymptotic to 𝛼

Proof. (I), (II), (III) are straightforward and (IV) is proved in Proposition 1.2 of (Eberlein;

O’Neill, 1973). □

Hence, we can consider the asymptote classes as points at infinity and define the

boundary at infinity as follows:

Definition A.0.7 (Asymptote class). Let 𝛼 : (−∞,∞) → 𝑁 be a unit speed geodesic. We denote

the asymptote class of 𝛼 by 𝛼(∞) and the asymptote class of the reverse curve 𝑡 ↦→ 𝛼(−𝑡) by

𝛼(−∞).

Definition A.0.8 (Boundary at infinity). Let (𝑁,𝑔) be a Cartan-Hadamard manifold. A point

at infinity of 𝑁 is a asymptote class of geodesics of 𝑁 . The boundary at infinity of N, denoted

by 𝜕∞𝑁 , is the set of points at infinity of N. And 𝑁 := 𝑁 ∪ 𝜕∞𝑁 . If 𝑃 ∈ 𝜕∞𝑁 we write either

𝛼(∞) = 𝑃 or 𝛼 ∈ 𝑃 depending upon context.

Example A.0.9. For 𝑁 = H𝑚+1 = {(𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ R𝑚+1 : 𝑥0 > 0} with 𝑔 = 𝑔H = 1
𝑥2

0
𝑔R , the

boundary at infinity 𝜕∞H𝑚+1 can be identified with {(𝑥0, 𝑥1, . . . , 𝑥𝑚) ∈ R𝑚+1 : 𝑥0 = 0} ∪ {P∞}

where P∞ is the asymptote class of unit speed vertical geodesics pointing upward.

Cone topology

In this section, we define the cone topology in 𝑁 = 𝑁 ∪ 𝜕∞𝑁 to define a boundary at

infinity for a general subset of 𝑁 . For more details, read section 2 of (Eberlein; O’Neill, 1973).

For this purpose, we need to endow 𝑁 = 𝑁 ∪ 𝜕∞𝑁 with some topology such that it preserves the

topology of 𝑁 and some natural assumptions are required.

Definition A.0.10 (Admissible topology). A topology 𝜏 on 𝑁 is admissible if it satifies the

following four conditions:
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(1) Closure property: the topology on 𝑁 induced by 𝜏 is the original topology of 𝑁 , and 𝑁 is

a dense open set of 𝑁

(2) Geodecic extension property: if 𝛼 is any geodesic of 𝑁 then its asymptotic extension is

continuous.

(3) Isometric extension property: if 𝜑 is any isometry of 𝑁 , then its asymptotic extension is

continuous (and hence a homeomorphism by a functorial argument)

(4) Intensive property: if 𝑥 ∈ 𝜕∞𝑁 , 𝑉 is a neighborhood of 𝑥 in 𝑁 , and 𝑟 > 0 is any positive

number then there exists a neighborhood 𝑈 of 𝑥 such that 𝑁𝑟 (𝑈) ≔ {𝑞 ∈ 𝑁 : 𝑑 (𝑞,𝑈) <

𝑟} ⊂ 𝑉 . Here we have extended the metric trivially so that 𝑑 (𝑎, 𝑏) =∞ if 𝑎 ≠ 𝑏 and either

points lies in 𝜕∞𝑁

Now, we construct the cones that serve as a basis for an admissible topology known

as the cone topology.

Definition A.0.11 (Angle for points at infinity). Let 𝑝 be a point of 𝑁 distinct from points

𝑎, 𝑏 ∈ 𝑁 . The angle subtended by 𝑎, 𝑏 at 𝑝 is <) 𝑝 (𝑎, 𝑏) ≔ <) (𝛾′𝑝𝑎 (0), 𝛾′𝑝𝑏 (0))

Definition A.0.12 (Cone). Let 𝑣𝑝 ∈ 𝑈𝑇𝑝𝑁 and let 𝜀 be a number, 0 < 𝜀 < 𝜋. Then the set

𝐶 (𝑣, 𝜀) ≔ {𝑏 ∈ 𝑁 : <) 𝑝 (𝛾𝑣 (∞), 𝑏) < 𝜀} is called cone of vertex 𝑝 = 𝜇(𝑣𝑝), axis 𝑣𝑝 a angle 𝜀.

Proposition A.0.13 (Cone topology). If 𝑁 is a Hadamard manifold, there is a unique topology 𝜅

on 𝑁 such that:

(1) 𝜅 has the closure property

(2) For each 𝑥 ∈ 𝜕∞𝑁 the set of cones containing 𝑥 is a local basis for 𝜅 at 𝑥.

We call 𝜅 the cone topology on 𝑁

Proof. See proposition 2.3 in (Eberlein; O’Neill, 1973).

□

Proposition A.0.14. The cone topology 𝜅 for 𝑁 is admissible.

Proof. See proposition 2.9 in (Eberlein; O’Neill, 1973).

□

Definition A.0.15 (Boundary at infinity of a subset of 𝑁). Given a subset 𝐴 of 𝑁 , the boundary

at infinity of 𝐴, denoted by 𝜕∞𝐴, is the intersection between the clousure of 𝐴 in 𝑁 and 𝜕∞𝑁 .
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APPENDIX B – VARIFOLD

In this appendix, we give some definition about varifolds that we will need throughout

the text. This appendix is mostly based on (Simon, 2014) and chapter 3 of (Colding; Minicozzi,

2011).

The concept of varifold is a generalization of manifold. A varifold is a measure in

the space of ℓ-dimensional tangent spaces of ambient space. Having this concept at our disposal,

we can take advantage of the power of Geometric Measure Theory, including Compactness

Theorem (Theorem C.0.2).

Definition B.0.1 (Varifold). An ℓ-dimensional varifold 𝑉 in the Riemannian manifold (𝑁,𝑔) is

a Radon measure on the Grassiamannian 𝐺ℓ (𝑁) of ℓ-planes on 𝑁 .

Definition B.0.2 (Weight of 𝑉). Let 𝜋 : 𝐺ℓ (𝑁) → 𝑁, 𝜋(𝑝,W) = 𝑝 be the projection. The

Radon measure 𝜇𝑉 (called the weight of 𝑉) in 𝑁 is given by the the pushforward of Radon

measure 𝑉 by 𝜋, that is,

𝜇𝑉 (𝐵) ≔𝑉 (𝜋−1(𝐵)) =𝑉 (𝐺ℓ (𝐵)) ∀𝐵 ⊂ 𝑁 Borel set.

The support of 𝑉 is support of 𝜇𝑉 and the mass of 𝑉 on a set𝑈 ⊂ 𝑁 is just 𝜇𝑉 (𝑈)

Without loss of generality, we can assume that 𝑁 is isometrically embbeded in R𝑛+𝑘

for some 𝑘 ≥ 0 by Nash Theorem. Let ℋ𝑚 denote the 𝑚-Hausdorff measure in R𝑛+𝑘

Notice that we can associate an embedded submanifold 𝑀𝑚 in 𝑁 with a Radon

measure 𝑉𝑀 in 𝐺𝑚 (𝑁) given by:

𝑉𝑀 (𝐵) =ℋ
𝑚 (𝜋(𝐵∩𝑇𝑀)) ∀𝐵 ⊂ 𝐺𝑚 (𝑁) Borel set .

Therefore, the weight of 𝑉 is given by 𝜇𝑉𝑀 (𝑈) =ℋ
𝑚 (𝑈 ∩𝑀) for all Borel set 𝑈 ⊂ 𝑁 ⊂ R𝑛+𝑘 .

Thus, 𝑀 can be viewed as a varifold 𝑉𝑀 .

Now, we define an ℓ-rectifiable set, which can be described, in general terms, as a

set that exhibits as piece-wise smooth set.

Definition B.0.3 (ℓ-Rectifiable Set). A set 𝑆 ⊂ R𝑛+𝑘 is said to be ℓ-rectifiable if 𝑆 ⊂ 𝑆0 ∪ 𝑆1,

where ℋ
ℓ (𝑆0) = 0, where ℋ

ℓ is ℓ-dimensional Hausdorff measure of the ambient space R𝑛+𝑘

, and 𝑆1 is the image of Rℓ under a Lipschitz map. More generally, 𝑆 is said to be countably

ℓ-rectifiable if 𝑆 ⊂ ∪𝑖≥0𝑆𝑖, where ℋ
ℓ (𝑆0) = 0 and for 𝑖 ≥ 1 each 𝑆𝑖 is the image of Rℓ under a

Lipschitz map.
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Definition B.0.4 (Rectifiable Varifold). Let 𝑆 be a countably ℓ-rectifiable set of R𝑛+𝑘 with

ℋ
ℓ (𝑆) < ∞ and let 𝜃 be a positive locally ℋ

ℓ-integrable function on 𝑆. Set 𝑉 equal to the

varifold associated to the set 𝑆 (exactly as if 𝑆 were a smooth submanifold). The associated

varifold 𝑉 ′ = 𝜃𝑉 is called a rectifiable varifold. If 𝜃 is integer-valued, then 𝑉 ′ is an integral

varifold.

The next definition gives us a way to push the varifold forward by a map 𝑓 .

Definition B.0.5 (Image varifold). Suppose that𝑈 and �̃� are open subsets of R𝑛+𝑘 and 𝑓 :𝑈→ �̃�

is 𝐶1 with 𝑓 |spt𝜇𝑉∩𝑈 proper. We define the image varifold 𝑓♯𝑉 on �̃� by

𝑓♯𝑉 (𝐴) =
∫
𝐹−1 (𝐴)

𝐽W 𝑓 (𝑝)𝑑𝑉 (𝑝,W), 𝐴 Borel, 𝐴 ⊂ 𝐺ℓ (�̃�),

where 𝐹 :𝐺+
ℓ
(𝑈) →𝐺ℓ (�̃�) is defined by 𝐹 (𝑝,W) = ( 𝑓 (𝑝), 𝑓∗(W)), 𝑓∗(W) is the pushforward

of W by 𝑓 , and

𝐽W 𝑓 (𝑝) ≔ (det((𝑑𝑓𝑝 |W)∗ ◦ (𝑑𝑓𝑝 |W))) 1
2 , (𝑝,W) ∈ 𝐺ℓ (𝑁)

𝐺+
ℓ (𝑈) ≔ {(𝑝,W) ∈ 𝐺ℓ (𝑈) : 𝐽W 𝑓 (𝑝) ≠ 0}

Now, we can pushforward the varifold using the flow of a compactly supported

vector field, and subsequently measure the variations in mass, as in the case of smooth manifolds.

Then, we can find the right analogy to a stationary submanifold.

Definition B.0.6 (First variation). Given a 𝐶1 vector field 𝑍 compactly supported in an open set

Ω ⋐ 𝑁 , the first variation is defined as

𝛿𝑉 (𝑍) ≔ 𝑑

𝑑𝑡

����
𝑡=0

((Φ𝑡)♯𝑉) (Ω) =
∫
𝐺ℓ (Ω)

(divW𝑍)𝑑𝑉 (𝑝,W),

where Φ𝑡 : 𝐺ℓ (Ω) → 𝐺ℓ (Ω) is induced by the flow 𝜙𝑡 of 𝑍 by Φ𝑡 (𝑝,W) = (𝜙𝑡 (𝑝), (𝜙𝑡)∗(W)),

and divW𝑍 =
∑ℓ
𝑖=1 𝑔(∇𝑒𝑖𝑍, 𝑒𝑖) with {𝑒𝑖} an orthonormal basis of W. If V has locally bounded

first variation, that is,

|𝛿𝑉 (𝑍) | ≤ 𝐶 sup
𝑁

|𝑍 | for all 𝑍 compactly supported on Ω,

then the total variation measure | |𝛿𝑉 | | is a Radon measure on 𝑁 , where | |𝛿𝑉 | | is characterized

by
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| |𝛿𝑉 | | (Ω) = sup
𝑍,|𝑍 |≤1,spt𝑍⋐Ω

|𝛿𝑉 (𝑍) |.

A ℓ-varifold 𝑉 is called stationary provided 𝛿𝑉 = 0.
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APPENDIX C – WHITE’S COMPACTNESS THEOREM

In this appendix we introduce the main tools that we will use in the proofs.

Maximum Principle

The theorem below is the version of the Maximum Principle (Theorem 7.6 in (White,

2009)) for H𝑚+1

Theorem C.0.1 (Maximum Principle in H𝑚+1). Let 𝐵 be a open set in H𝑚+1. Let 𝑀 be a

smooth, connected hypersurface properly embedded in 𝐵 and dividing 𝐵 in two components. Let

Ω be one of the two components of 𝐵\𝑀 . Suppose that Ω is mean concave along 𝑀 , i.e., that at

each point of 𝑀 , the mean curvature is a nonnegative multiple of the outward unit normal to Ω.

Suppose 𝑆 is a spatial support of a nonzero stationary 𝑚-varifold in H𝑚+1 such that 𝑆 is disjoint

from Ω. If 𝑆 contains any point of 𝑀, then it must contain all of 𝑀, and 𝑀 must be a minimal

surface.

A compactness theorem for minimal surfaces

White (White, 2016, Theorem 2.6 and Theorem 7.4) shows that under some natural

conditions the singular set Z satisfies the same maximum principle as properly embedded

minimal surfaces without boundary.

Theorem C.0.2 ( Compactness Theorem for Integral Varifold). Let {𝑀𝑖} be a sequence of

minimal hypersurfaces in R𝑛+1, with not necessary the canonical metric, whose area is locally

bounded, then a subsequence of {𝑀𝑖} converges weakly to a stationary integral varifold 𝑀∞.

Theorem C.0.3 (White’s strong barrier principle Theorem 7.3 in (White, 2016) ). Let (Ω, 𝑔)

be a Riemannian (𝑚 + 1)-manifold and {𝑀𝑖}𝑖∈N a sequence of properly embedded minimal

hypersurfaces in (Ω, 𝑔). Suppose that the set Z of {𝑀𝑖}𝑖∈N is contained in a closed region N of

Ω with smooth, connected boundary 𝜕N such that 𝑔
(
𝐻𝜕N , 𝜉

)
≥ 0, at every point of 𝜕N , where

𝐻𝜕N (𝑝) is the mean curvature vector of 𝜕N at 𝑝 and 𝜉 (𝑝) is the unit normal at 𝑝 to the surface

𝜕𝑁 that points into N . If the set Z contains any point of 𝜕N , then it contains all of 𝜕N .

Remark C.0.1. The above theorem is a sub-case of a more general result of White. In fact

the strong barrier principle of White holds for sequences of embedded hypersurfaces of 𝑛-

dimensional Riemannian manifolds which are not necessarily minimal but have uniformly

bounded mean curvatures. For more details we refer to (White, 2016).
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