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ABSTRACT

Genome-Wide Association Studies (GWAS) identify genome variations related to specific 

phenotypes, typically analyzed by Single Nucleotide Polymorphism (SNP) markers. 

Genotyping platforms such as those involving genomic hybridization microarray (SNP-Chip or 

SNP-Array) or sequencing-based genotyping techniques (GBS) are effective in genotyping 

various samples with hundreds of thousands of SNPs. However, these approaches can introduce 

bias in tropical maize germplasm analyses, as the temperate line B73 is commonly used as the 

reference genome. Therefore, an alternative to overcome this limitation is using a simulated 

genome called “Mock,” which is adapted to the population and created with bioinformatics 

tools. A few recent studies have shown that SNP-Array, GBS, and Mock yield similar results 

concerning population structure, definition of heterotic groups, tester selection, and genomic 

hybrid prediction. However, no studies have been identified thus far regarding the results 

generated by these different genotyping approaches for GWAS. Therefore, this study aims to 

test the equivalence among the three genotyping scenarios in identifying significant effect genes 

in GWAS. To achieve this, maize was used as the model species, where 360 inbred lines from 

a public panel were genotyped by SNP-Array via the Affymetrix platform and GBS. The GBS 

data were used to perform SNP calling using the temperate inbred line B73 as the reference 

genome (GBS-B73) and a simulated genome “Mock” obtained in-silico (GBS-Mock). The 

study encompassed four above-ground traits with plants grown under two levels of water 

supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were 

identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two 

water levels. Overall, the candidate genes identified varied along the scenarios but had the same 

functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were 

identified even without coincidence in the physical position of the SNPs. These genes and 

regions are involved in various processes and responses with applications in plant breeding. In 

terms of accuracy, the combination of genotyping scenarios compared to those isolated is 

feasible and recommended, as it increased all traits under both water supply conditions. In this 

sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only 

due to the increase in the resolution of GWAS results but also due to the reduction of costs 

associated with genotyping as well as the possibility of conducting genomic breeding methods.

Keywords: SNP-Array; genotyping by sequencing; simulated genome; GWAS.



RESUMO

Estudos de genética de associação (GWAS) identificam variações no genoma relacionadas a 

fenótipos específicos, geralmente analisadas por marcadores SNP (Single nucleotide 

polymorphisms). Plataformas de genotipagem como aquelas que envolvem a hibridização 

genômica de microarray (SNP-Chip ou SNP-Array) ou técnicas de genotipagem por 

sequenciamento (GBS) são eficazes para genotipar várias amostras com centenas de milhares 

de SNP. No entanto, essas abordagens podem causar viés em análises de germoplasma de milho 

tropical, pois geralmente se utiliza a linhagem temperada B73 como genoma de referência. 

Assim, uma alternativa para contornar esse entrave é o uso de um genoma simulado 

denominado “Mock”, adaptado à população e criado com ferramentas de bioinformática. 

Alguns poucos estudos demonstraram recentemente que SNP-Array, GBS e Mock geram 

resultados semelhantes no que diz respeito a estruturação de população, definição de grupos 

heteróticos, escolha de testadores até a predição genômica de híbrido. Contudo, não foram 

identificados estudos até o momento sobre os resultados gerados por essas diferentes 

abordagens de genotipagem quanto a GWAS. Portanto, o objetivo do estudo foi verificar a 

equivalência entre os três cenários de genotipagem na identificação de genes de efeito 

significativo em GWAS. Para isso, usou-se o milho como espécie modelo, na qual 360 

linhagens endogâmicas de um painel público foram genotipadas por SNP-Array via plataforma 

Affymetrix e GBS. Os dados de GBS foram usados para realizar a chamada SNP utilizando a 

linhagem endogâmica temperada B73 (GBS-B73) como genoma de referência e, um genoma 

simulado “Mock” obtido in sílico (GBS-Mock). O estudo contemplou quatro caracteres da parte 

aérea com plantas crescidas em dois níveis de suprimento de água: bem irrigado (WW) e 

estresse hídrico (WS). No total, foram identificados 46, 34 e 31 SNP nos cenários SNP-Array, 

GBS-B73 e GBS-Mock, respectivamente, nos dois níveis de suplementação hídrica. De forma 

geral, observou-se entre os cenários a identificação de genes candidatos diferentes, mas que 

apresentam a mesma funcionalidade. Em relação a SNP-Array e GBS-B73, foram identificados 

genes com semelhança funcional mesmo sem coincidência na posição física dos SNP. Esses 

genes ou regiões estão envolvidos em diversos processos e respostas com aplicações no 

melhoramento vegetal. Em termos de acurácia, a combinação de cenários de genotipagem em 

comparação a aqueles isolados, é viável e recomendada, pois resultou em aumento para todos 

os caracteres nas duas condições de suprimento hídrico. Neste sentido, vale destacar a 

combinação dos cenários GBS-B73 e GBS-Mock, não apenas devido ao incremento na 



resolução dos resultados de GWAS, mas também pela redução de custos associados à 

genotipagem bem como a possibilidade de conduzir métodos de melhoramento genômico.

Palavras-chave: SNP-Array; genotipagem por sequenciamento; genoma simulado; GWAS.
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1 INTRODUCTION

Water is the most abundant and often the most limiting of all the resources plants 

need to grow and function (TAIZ et al., 2015). Water availability is considered one of the most 

influential factors in agricultural productivity, controlling species distribution in different 

climatic zones on Earth (Turner; Jones, 1980). In the tropical zone, characterized by relatively 

high temperatures and low rainfall compared to other zones, plants thriving in these 

environments are often more exposed to prolonged periods of water scarcity, especially in arid 

and semi-arid regions. According to climate change projections, this scenario will likely 

continue or worsen over the years, with potentially more drastic effects on plants (Raza et al., 

2019).

Stress can be considered a significant deviation from optimal life conditions 

(LARCHER, 2003) inducing changes and responses as the plant fails to complete its 

physiological processes for growth and production. The lack of adequate water supply causes 

greater expansion of the root system into deeper and moister zones of the soil profile, reduction 

in the development of cells in the aerial tissues, resulting in decreased growth and stomatal 

closure to reduce transpiration rate and, consequently, photosynthetic activity (FRENSCH; 

HSIAO, 1994; HSIAO, 1973). Control measures are complex and difficult to manage by 

humans, and the search for genotypes that will perform better and economically viable yields 

in water-limited environments has been increasingly important for genetic improvement.

Conventional breeding for water deficit conditions is still time-consuming, 

laborious, and costly, as experimental conditions must be carefully managed. However, in 

recent years, with advances in molecular biology, the development of high-throughput 

genotyping technologies, and progress in platform development, new opportunities have 

emerged to enhance this process. This is partly due to cost reduction, which has consequently 

driven advances in genomic sequencing; another factor is the versatility of SNP (Single 

Nucleotide Polymorphism) markers, most commonly used in this process (Ingvarsson; Street, 

2011). SNPs are abundant markers in crop genomes and are ideal for genetic discovery research 

and molecular improvement (Rasheed et al., 2017). According to the same authors, genotyping 

platforms involving Next Generation Sequencing (NGS) and SNP-Array technologies are 

suitable for genotyping hundreds to thousands of samples with many SNP markers in a single 

assay much more quickly, revolutionizing the study of genomics and molecular biology.
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Genotyping techniques by sequencing or GBS (Genotyping by Sequencing) are 

simple and highly multiplexed systems used for constructing libraries intended for next-

generation sequencing. SNP-Array is a technique that uses microarrays designed to pre-select 

previously identified genetic markers characterized by wide polymorphism. These markers are 

then incorporated into a specific platform. GBS-scored SNP platforms provide a large number 

of markers, although with high rates of missing data. On the other hand, Array-scored SNP 

platforms are of high quality but have relatively high costs (Elbasyoni et al., 2018) and possible 

ascertainment bias if the genetic material used for array development is not related with the 

tested germplasm (Heslot et al., 2013). 

Arrays are well-designed and established in the market to assist studies and 

breeding programs of major commodity crops (GANAL et al., 2011). For minor crops, arrays 

are still rarely available, and researchers often rely on information from other crops that is 

already accessible. However, due to the high cost associated with array development, these 

platforms are preferably employed when it is possible to use a "universal" approach that applies 

to a wide variety of germplasms. However, this can be challenging if researchers are attempting 

to identify rare SNPs across various germplasms; a universal design can become large and 

expensive, resulting in a large number of monomorphic loci for non-target germplasm groups 

(THOMSON, 2014).

The advancement of model genome knowledge and the advent of next-generation 

sequencing techniques open up the possibility of a great leap in understanding the genome of 

relatively lesser-known species. The GBS pipelines are based on a reference genome or 

assembly of a new genome, applied to model organisms and species lacking pre-existing 

genomic information (DAVEY et al., 2011; POLAND et al., 2012). In cases where a reference 

genome is not yet available, a simulated genome can be employed for SNP discovery, which 

can serve as a valid alternative (MELO et al., 2016). The same authors developed a 

bioinformatics pipeline to construct a simulated genome called “Mock,” adapted to the 

population and built from GBS data. This genome is already being used in genomic studies and 

indicated that the Mock produces comparable results when it comes to organizing populations, 

identifying heterotic groups, selecting testers, and predicting genomic characteristics of hybrids 

compared to standard approaches (SNP-Array and GBS)  (MACHADO et al., 2023; SABADIN 

et al., 2022). This suggests that simulated genomes, can be a good alternative, especially for 

species where the reference genome is not available. However, no studies have been identified 
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on the results generated by these different genotyping approaches in Genome-Wide Association 

Studies (GWAS).

Other studies have compared datasets from different high-throughput genotyping 

technologies in GWAS. Darrier et al. (2019) using standard platforms, GBS and SNP-Array, 

demonstrated efficiency in characterizing genetic diversity in barley, although accessing 

different regions of the genome. Despite capturing different regions, there was a positive 

correlation between the genetic distance matrices of both approaches, validating the use of 

either one for the characterization. These authors emphasized that the choice between GBS and 

SNP-Array genotyping platforms should be based on various factors, including the nature of 

the research and group preferences. For example, GBS may be preferable for studies requiring 

broader genomic coverage due to its ability to sequence a large number of genetic markers. 

Conversely, SNP-Array may be more appropriate for analyses focused on specific genome 

regions. Group preferences, previous experience, and practical considerations such as cost and 

resource availability also influence platform choice. In a study with inbred maize lines, Negro 

et al. (2019) concluded that GBS and SNP-Array were complementary for detecting QTL 

marking different haplotypes in association studies. Assuming they are complementary, 

combining these platforms seeks to determine if it will result in greater data accuracy. 

To date, there is no study comparing GBS, SNP-Array, and simulated genome for 

GWAS published yet. The application of studies of this nature is crucial because they provide 

evidence that the information obtained from various genotyping approaches may be 

complementary during the genotyping process, thus demonstrating an efficient alternative for 

identifying polymorphisms. This, in turn, should offer better support to breeding programs that 

consistently grapple with the necessity of identifying more efficient and tolerant genotypes 

against various abiotic and biotic factors. In this context, the objectives of this study were: i) to 

verify if there is a difference in the identification of genes with significant effects among 

genotyping platforms, SNP-Array, GBS, and simulated genome (“Mock”) in GWAS; ii) once 

differences are confirmed, to determine if the identified genomic regions are complementary 

and if they provide better accuracy.
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2 MATERIAL AND METHODS

To enhance the comprehensibility of the analyses conducted in this study, we 

present a workflow in which the experimental and data analysis components are summarized 

in Figure 1. The subsequent sections provide detailed explanations.

2.1 Genetic material and experimental trials

This study used maize as the model species in a public diversity panel consisting of 

360 tropical inbred lines (Yassue et al., 2021). The data to be explored were obtained from eight 

experiments conducted in 2020 and 2021, as detailed below. This study involves contrasting 

water supply conditions, well-watered (WW), and water stressed (WS), so a pilot experiment 

was conducted before to the main experiments. A water retention curve was established through 

regression to obtain field capacity and determine the amount of water to be provided via 

irrigation (DE SOUZA SILVEIRA et al., 2024). This pilot experiment involved five randomly 

selected lines from the panel and five levels of water supply: 100% of water applied (WA), 80% 

of WA, 70% of WA, 50% of WA, and 40% of WA. As a result, the WW and WS points were 

determined, with the 80% WA and 40% WA treatments representing these conditions, 

respectively.

The main experiments were conducted at experimental fields of the Department of 

Agriculture at UFC, Campus do Pici, Fortaleza-CE, located at 3°44’24.27” S latitude and 

38°34’29.93” W longitude. The main experiments were conducted under WW and WS in 

augmented partially repeated block design (augmented p-rep designs), with two temporally 

spaced replicates (WILLIAMS et al., 2011). Five common treatments (checks) were used, 

randomly selected from within the panel and distributed in each block, within the WW and WS 

conditions (Figure 2). 

These experiments were always conducted in the second semester of each year, 

following the rainy season in the region, a period that resembles the climate of the semi-arid 

zone. The sowings were carried out in plastic pots with a capacity of 2000 cm3, containing 

substrate (easily reproducible) in a ratio of 3:1 (sand: earthworm humus). The use of earthworm 

humus was chosen due to its easy obtainability and its effectiveness in providing nutrients to 

the plants. The use of sand is justified by its easy acquisition, availability, and low cost.
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Two seeds were sown per pot at an average depth of 3-4 cm. Thinning was 

performed when the seedlings reached the V2 stage, leaving only one seedling per pot (plot). 

At this same phenological stage, water deficit was also initiated, which continued until the V6 

stage (harvest). Planting and topdressing fertilizations were based on the chemical analysis of 

the substrate, taking into consideration the crop recommendations, in order to isolate nutritional 

stress during the experimental conduct.

As the experiment was conducted in an open field, irrigation control for each 

experiment was carried out manually and daily. Thus, 15 random samples were used to calculate 

the daily average weight of the pots within each water supply level. Subsequently, the difference 

between the current weight and the total weight obtained at each water supply level was 

calculated to replenish the water volume. It is worth noting that, for each vegetative stage, the 

average plant weight was obtained in order to subtract it along with the current weight, thus not 

affecting the volume of water to be replenished.

2.2 Phenotypic data

The phenotypic evaluation was conducted when most plants reached the V6 

phenological stage. The traits considered in this study were:

• Plant height (PH) - measured from the soil to the insertion of the flag leaf, 

measured using a graduated ruler (cm);

• Stalk diameter (SD) - average of two measurements above ground level at the 

second node of the stem obtained using a caliper (mm); 

• Chlorophyll content estimation - using SPAD, measuring three leaves per plant 

to get the average.

Subsequently, the plants were cut off at ground level, placed in paper bags, and 

placed in forced-air oven at 65°C for 72 hours to obtain:

• Shoot dry matter (SDM)- quantified using an electronic analytical balance 

(0,005 g).

2.3 Phenotypic analysis

The outliers of the phenotypic data for the traits described in section 2.2 were 

removed. Then, the remaining data were adjusted for normality using the bestNormalize 
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package (PETERSON, 2017) and the assumptions of normal distribution were checked via 

the Shapiro test and Q-Q plots. Subsequently, equations of mixed linear models were fitted to 

obtain the BLUP by REML for each trait studied under WW and WS conditions, using the 

sommer package (Covarrubias-Pazaran, 2016).

These analyses were performed using the following model:𝒚 = 𝐗𝟏𝒕 + 𝐗𝟐𝒍 + 𝐗𝟑𝒏 + 𝐙𝟏𝒃 + 𝐙𝟐𝒈 +  𝐙𝟑𝒊 + 𝜺       Eq. 1

where, 𝒚 is the vector of phenotypic values of the inbred lines panel and checks; 𝐗𝟏, 𝐗𝟐, and 𝐗𝟑 

are incidence matrices for t, l, and n fixed effects; Z1, Z2 and Z3 are incidence matrices for b, g 

e i random effects; t is the water supply fixed effect vector (WW and WS conditions); l is the 

replicate (season) fixed effect vector within water supply; n is the number of leaves used as a 

covariate to correct for differences in plant vigor and development; b is the block/water 

supply/season random effect vector, where 𝑏∼𝑁(0, 𝐼𝜎𝑏2); g s the genotype random effect vector, 

where g∼𝑁(0, 𝐼𝜎𝑔2); i is the random effect vector of the genotype–water supply interaction, 

where i~𝑁 (0, 𝐼𝜎𝑖2); 𝜺 is the experimental error, where 𝜺~𝑁(0, 𝑅𝜎𝑒2), obtained using a structured 

diagonal matrix to make it possible to estimate two residual variances, one for each water supply 

level (𝜎𝑒𝑊𝑊2  and  𝜎𝑒𝑊𝑆2 ). The significance of fixed effects was assessed using the Wald test, and 

random effects using the likelihood ratio test.

The variance components were used to estimate the heritabilities (h2) by the 

following estimator: 𝒉𝟐 = 𝝈𝒈𝟐𝝈𝒈𝟐 +𝝈𝒈𝒆𝟐𝒔 +(𝝈𝒆𝑾𝑾𝟐 +𝝈𝒆𝑾𝑺𝟐 )𝒓𝒔                    Eq. 2

where h2 refers to the entry-mean heritability; 𝜎𝑔2 is the genotypic variance of the inbred lines 

panel,  𝜎𝑔𝑒2  is the variance of the genotype–water supply interaction; 𝜎𝑒𝑊𝑊 𝑒 2 𝜎𝑒𝑊𝑆2   are the 

environmental variance components in WW and WS; s are levels of WW and WS; and r is the 

number of repetitions in each water supply level. 𝑅2(𝛼�̂�)]
𝑅2(𝛼�̂�)  =  1 − 𝑉𝑎𝑟(𝛼𝑖−�̂�𝑖)𝑉𝑎𝑟(𝛼𝑖)𝑉𝑎𝑟(𝛼𝑖 − �̂�𝑖) 𝑉𝑎𝑟(𝛼𝑖)
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The de-regressed BLUPs (dBLUPs) were obtained by calculating the ratio between 

the BLUPs of each inbred line in WW and WS and their respective average reliabilities. After 

these analyses, 313 lines remained out of the 360 in the panel. The dBLUPs of these lines in 

WW and WS were used in the GWAS analyses.

2.4 Genotypic data

The lines were genotyped using two SNP genotyping platforms: Affymetrix® 

Axiom Maize Genotyping Array with 18.413 SNP markers (SNP-Array) and genotyping-by-

sequencing (GBS) process following the sequencing protocol established by Poland et al. 

(2012). In this method, genomic DNA was digested by two restriction enzymes, PstI and MseI, 

to reduce the genome complexity. Subsequently, specific adapters for sequencing on the 

Illumina NextSeq 500 platform (Illumina Inc., San Diego, CA, United States) were attached to 

the digested fragments.

The primary GBS data were employed for two purposes: firstly, to perform SNP 

calling using the temperate line B73 as the reference genome (RefGen v4). Secondly, to 

construct a simulated reference genome (mock genome) for SNP calling, following the pipeline 

proposed by Melo et al. (2016), considering all the lines in the panel (Mock).

Therefore, the SNP data were subjected to three GWAS approaches: 1) SNP-Array; 

2) GBS with SNP calling based on the B73 reference genome (GBS-B73); 3) GBS using the 

simulated genome as the reference (GBS-Mock). The SNPs for the GBS dataset was identified 

from raw data using the TASSEL 5.0 GBSv2 pipeline (GLAUBITZ et al., 2014), considering 

both GBS-B73 and GBS-Mock as reference genomes, employing the BWA aligner. Using the 

BWA aligner (LI; DURBIN, 2009), where the tags were aligned against the reference genome 

(GBS-B73 and GBS-Mock).

The SNP sets obtained in these scenarios were submitted to quality control 

parameters as call rate (CR) and Minor Allele Frequency (MAF) procedures, where markers 

with CR < 90%  and MAF  lower than 5%, and non-biallelic markers were removed from the 

datasets(Morosini et al., 2017). Imputation of missing data was performed using the Beagle 5.0 

algorithm  Browning et al. 2018).

2.5 Population structure and LD decay
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In order to minimize potential bias caused by population structure, a PCA was 

performed based on the additive genomic relationship matrix among the remaining 313 panel 

lines, following VanRaden (2008)  using the SNPRelate package (Zheng et al., 2012). 

FarmCPU automatically incorporated the correction via PCA in the association analysis. Two 

principal components were used to correct for the population structure effect, and the best fit to 

the model was determined based on Q-Q plots. The most likely number of groups within the 

panel was determined according to Yassue et al. (2021) as it involved the same diversity panel.

 The Linkage Disequilibrium (LD) estimation between each pair of SNP within the 

chromosomes was calculated by the square of the allele frequency correlation (r²), among all 

SNP within a distance less than 1 Mbp, and the r² values were plotted against the base pair 

distance of the SNP pair to obtain the LD decay by chromosome. This procedure was performed 

with all SNP retained from the quality control procedures.

2.6 Association analysis (GWAS)

GWAS were performed for each trait under WW and WS conditions using the 

FarmCPU method (LIU et al., 2016). The FarmCPU.P.Threshold function was employed to 

obtain the p-threshold, specific for each trait via a simulation process with 100 permutations. 

Subsequently, the cutoff point was obtained by the ratio between the p-threshold and the 

number of markers used. Subsequently, p-values (significance), MAF, and ASE (Average 

Effect of Allele Substitution) were obtained for each significantly associated SNP, designated 

hereafter as a potential candidate gene underlying the target trait. Furthermore, the coefficient 

of determination for each significant SNP (𝑅𝑆𝑁𝑃2 ) was obtained based on ASE and MAF using 

equations described in Da et al. (2014). Next, multiple linear regressions were established for 

each trait using the significant SNPs as predictor variables to quantify the influence of the 

markers on the expression of that trait (𝑅𝑇𝑂𝑇2 ). The Manhattan and Q-Q plots graphs were 

generated using the CMplot package (YIN, 2020) and the graphs showing the proportion of 

phenotypic variance explained by the SNP were generated using the ggplot2 package 

(Wickham, 2011) in the R software. Venn diagrams based on the common gene functionality 

for the traits at each water supply level were created using LucidChart (lucidchart.com).

2.7 Correlation among markers of different scenarios
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Given the stability and efficiency of SNP-Array technology in accurately 

genotyping numerous markers, we conducted Pearson correlation analysis (r) among significant 

markers with known functions identified in GWAS within the GBS-Mock scenario and markers 

present in the SNP-Array scenario for each trait under both WW and WS conditions. This 

approach aimed to assess the concordance and potential overlap between markers identified 

through different genotyping methods and their associations with specific traits. By comparing 

these markers across scenarios, we sought to elucidate common genetic factors contributing to 

trait variation and explore the utility of integrating data from diverse genotyping platforms in 

genomic analyses related to crop improvement and adaptation to environmental stressors.

2.8 Gene annotation

A candidate gene association mapping was performed for traits with significant 

SNP. The physical positions of SNP for GBS-Mock were assigned using BLAST (Altschul et 

al., 1990) to align them with the maize genome assembly for comparison purposes. These 

positions were used to obtain 41 bp DNA fragments on a single chromosome (Supplementary 

Table S1). Subsequently, exclusively for GBS-Mock, a BLAST was conducted on MaizeGDB 

via blastn, utilizing the B73 RefGen_v4 sequence database to locate the chromosome by 

inserting the DNA fragment. The MaizeGDB database and its functional information associated 

with each SNP based on B73 RefGen_v4 were utilized for all scenarios. After defining the 

region to be considered, potential candidate genes flanking each marker were identified. 

Candidate genes linked to each trait were determined through annotation within a sliding 

window of 50 kb around each significant SNP, following a conservative approach described by 

Yassue et al. (2021). All genes within a range of 50 kb downstream and 50 kb upstream were 

annotated. Subsequently, they were assessed and considered based on two criteria: proximity 

to the SNP and functional similarity as per databases available on the Maize eFP Browser 

(2023) and Maize Genomics Resource (2023).
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3 RESULTS

3.1 Phenotypic analysis

In general, significant effects were detected for all sources of variation, except for 

the G x WA interaction, in the studied traits (Table 1). The variance components showed a 

similar pattern for all traits, with a predominance of genotypic variance over the residual 

variance of the interaction. Except for the PH trait, there was a higher residual variance for the 

well-watered environment than the low-water availability. The genotypic variance component 

ranged from 0.09 to 0.19, and the genotype x environment interaction approached zero for all 

traits, affecting the estimates of heritabilities and accuracy. Heritabilities ranged from moderate 

to high magnitude, ranging from 0.58 to 0.73. PH was the trait least influenced by the 

environment, showing a higher coefficient of genotypic variation, 0.197. The adjusted means 

fall within the same range observed in other studies.

3.2 Genotypic scenarios: number and distribution of SNP 

After the quality control, heterozygous markers were eliminated using the MAF and 

CR procedures, resulting in 12.704 SNP markers for SNP-Array out of a total of 18.413, 11.153 

out of 131.350 for GBS-B73, and 4.935 out of 46.926 for GBS-Mock, which were used in the 

association analyses (Table 2). Approximately 69% of the marker set remained in the SNP-

Array, while 10.5% remained in the GBS-Mock and 8.5% in the GBS-B73 scenario. However, 

there was a balanced distribution of SNP across the chromosomes in the standard scenarios 

(SNP-Array and GBS-B73).

3.3 GWAS analysis 

Significant SNP were found on five of the ten maize chromosomes for the SNP-

Array scenario and four for GBS-B73 for the SPAD trait under the WW condition (Figure 3a; 

Table 3). The Q-Q plots showed data fitted to the model (Figures 3c, 3d, and 3e). The significant 

marker/trait association threshold ranged from 4.99 to 12.85 (Table 4).

A total of 46, 34, and 31 significant SNP were found for SNP-Array, GBS-B73, and 

GBS-Mock, respectively (Table 3). Of these, at least one SNP was common among these 
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scenarios (Figure 4). SPAD had the highest number of significant SNP, totaling 34, followed 

by PH, SDM, 27, and SD, 23. The SNP array presented more markers for SPAD and PH and 

GBS-B73 for SD, and there was an equivalence among the three scenarios for SDM. Overall, 

GBS-B73 and GBS-Mock showed some similarity in the quantity of markers.

3.4 Correlation among SNP in the GBS-Mock and SNP-Array scenarios

Our results revealed 20 significant markers identified in the GBS-Mock that 

positively correlated with the SNP-Array scenario to traits under different environmental 

conditions (Table 5). Pearson correlation coefficients (r) were observed, ranging from weak to 

strong. Specifically, for SDM in WW conditions, correlations ranged from 0.94 to 0.30. 

Similarly, SPAD values showed moderate to strong correlations with markers, ranging from 

0.52 to 0.76 in WW conditions and from 0.40 to 0.76 in WS conditions. For PH, correlations 

were moderate, with values of 0.36 for WW and 0.51 and 0.53 for WS. Notably, SD exhibited 

correlations ranging from 0.35 to 0.87 in WW conditions and from 0.30 to 0.87 in WS 

conditions. Additionally, SDM showed moderate to strong correlations, ranging from 0.46 to 

0.94 in WW conditions and 0.47 in WS conditions.

3.5 Candidate genes and functional annotations

Based on the physical location of significant SNP in the B73 reference genome for 

SNP-Array and GBS-B73 and the reference genome for GBS-Mock, genomic regions and 

candidate genes related to significant loci were identified (Table 4). In some cases, the same 

genes and regions were identified for a given trait under both water supply conditions. For 

example, Zm00001d042735 and Zm00001d001852 in the GBS-Mock scenario for SPAD and 

SD, respectively; Zm00001d017978 located on chromosome 5 in SNP-Array for PH. Similarly, 

identical genes and regions were found in different scenarios, for instance, Zm00001d031759 

located on chromosome 1 was detected in SNP-Array and GBS-B73 for SPAD in WW and WS. 

The same gene was also identified for different traits, such as Zm00001d005090 for SD and 

SDM in GBS-B73.

The genomic regions and candidate genes with similar functions were grouped 

considering each trait under the same water supply level across genotyping scenarios (Figure 

4; Supplementary Table S2). For SNP-Array and GBS-B73, regions and genes with the same 
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functionality on the same chromosome were observed, such as Zm00001d031445 and 

Zm00001d027626, both on chromosome 1, which are correlated with ethylene biosynthesis for 

SDM in WW. Conversely, these platforms also identified genomic regions and candidate genes 

on different chromosomes but with coinciding functions. For example, Zm00001d026477 on 

chromosome 10 and Zm00001d027695 on chromosome 1 are responsible for responses to 

abiotic stress by reactive oxygen species (ROS), jasmonic acid (JA), and ethylene; 

Zm00001d044194 on chromosome 3 and Zm00001d018127 on chromosome 5 function in the 

regulation of the circadian cycle for SPAD under WW; Zm00001d017978 on chromosome 5 

and Zm00001d008952 on chromosome 8 are involved in endoglucanase activity for PH in WW; 

and Zm00001d053809 on chromosome 4 and Zm00001d042481 on chromosome 3 for GBS-

B73 are associated with ubiquitin proteins for PH in WS; Zm00001d016786 on chromosome 5 

and Zm00001d005090 on chromosome 2 act in response to water stress through abscisic acid 

(ABA) for SDM in WS.

In scenarios involving GBS-B73 and GBS-Mock, genomic regions and candidate 

genes with similar functions were identified for Zm00001d021708 on chromosome 7 and 

Zm00001d012719 on the single chromosome, related to plant responses to ABA for PH in WW; 

Zm00001d014899 on chromosome 5 and Zm00001d001852 on the single chromosome, 

associated with the phytohormone gibberellin for SD in WW; Zm00001d00509 on chromosome 

2 and Zm00001d053262 on the single chromosome, involved in ABA regulation for SD in WS.

3.6 Phenotypic variation explained by SNP in different genotyping scenarios

The proportions of phenotypic variance explained by significant SNP (𝑅𝑇𝑂𝑇2 ) for 

the analyzed traits under both water supply conditions, ideal (WW) and deficit (WS), were less 

explained in the isolated genotyping scenarios for the studied traits (Figure 5). Regarding to the 

isolated scenarios, 𝑅𝑇𝑂𝑇2  in SNP-Array ranged from 0.18 for SD (WW in WS) to 0.53 for SPAD 

(WW), GBS-B73 ranged from 0.11 for SD (WS) to 0.48 for SD (WW), and GBS-Mock from 

0.11 for PH (WW) to 0.53 for SPAD (WW). Overall, SNP-Array performed better 

independently for SPAD and PH, except for SD (WW), where GBS-B73 stood out, and SDM, 

was almost the same among the scenarios. When combined, the value of 𝑅𝑇𝑂𝑇2  ranged from 0.26 

in SNP-Array + GBS-B73 for SD (WS) to 0.65 in SNP-Array + GBS-Mock for SPAD (WW). 

The best scenario combination was SNP-Array + GBS-Mock for SPAD (WW) with 

an increase of 0.12 in accuracy compared to the best isolated scenario. For PH and SDM under 
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WW condition, SNP-Array + GBS-B73 was superior, increasing accuracy by 0.07 and 0.16, 

respectively, compared to the best single scenario. For SD, combining GBS-B73 + GBS-Mock 

increased accuracy by 0.05. Regarding water availability, the ideal water supply condition 

achieved better overall accuracy, except for PH in isolated SNP-Array and combined with GBS-

Mock. In the WS condition, better accuracy was also observed for all traits when combining 

scenarios.
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4 DISCUSSION

Water is one of the most important factors limiting crop growth. Maize requires a 

large amount of water throughout all stages of development, from seed germination to the 

reproductive phase. In this context, the significant effect of water supply levels reveals 

contrasting conditions in WW and WS, indicating that the irrigation treatments used in the 

present study to generate contrasting environments were sufficient for all traits (Table 1). 

Moreover, the significance of genotypes suggests that the panel used in this study exhibits 

genetic variability. Previous studies have also reported genetic diversity for the same tropical 

maize germplasm panel (YASSUE et al., 2021; DE SOUZA SILVEIRA et al., 2023). Genetic 

variability is a fundamental factor for any breeding program. 

However, the interaction effect shows that the responses were not differentiated for 

the genotypes across environments; they exhibit similar phenotypic responses to environmental 

changes. Genotype x environment is important when estimating heritability because it 

influences a trait's genetic and environmental variation (FALCONER and MACKAY, 1996). 

The low effect of interaction also maximizes the accuracy (RESENDE et al., 2012), high 

accuracy estimatives indicate good experimental precision. Heritability was higher for plant 

height, followed by stem diameter, consistent with Sabiel et al. (2014) results, who reported 

moderate heritabilities for plant height and stem diameter in maize under water stress.

4.1 SNP in genotyping scenarios

Advances in molecular biology have facilitated the creation of high-throughput, 

precise, and cost-effective technologies, encompassing the development of platforms and novel 

genotyping methodologies. Platforms such as SNP-Array and GBS are well-suited for 

genotyping hundreds to thousands of samples, each containing numerous SNP markers, in a 

single assay, and at a significantly faster pace (RASHEED et al., 2017). This study had there 

was a balanced distribution of SNP across chromosomes in the SNP-Array and GBS-B73 

genotyping scenarios, perhaps attributed to using the same reference genome (Table 2). The 

inbred line B73 has been utilized as the reference genome for maize sequencing (SCHNABLE 

et al., 2009) and an example of a reference genome-based pipeline is TASSEL-GBS.

In the GBS-Mock scenario, a smaller number of SNP markers was observed. In 

cases where a reference genome is not yet available, a simulated genome can be employed to 
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perform SNP discovery, serving as a valid alternative, especially for minor crops (MACHADO 

et al., 2023; SABADIN et al., 2022). Regarding the smaller number of markers observed in 

GBS-B73 compared to SNP-Array, this may be related to the low genomic coverage of GBS 

resulting in missing SNP (Wang et al., 2020). However, this issue can be partially addressed by 

using software employed in imputation, as missing SNP are imputed to fill in the gaps in 

obtaining intermediate genotype information.

4.2 GWAS and candidate genes

GWAS has emerged as a crucial tool, allowing for a systematic approach to 

identifying associations between thousands of genomic loci and complex traits. In this study, 

overall, more SNP were identified in association with the trait under ideal water supply 

conditions than under water deficit conditions in all genotyping scenarios (Table 3). A similar 

result was found by De Souza Silveira et al. (2023), who identified more SNPs associated with 

root traits of tropical maize under ideal water supply conditions than those subjected to water 

scarcity. Moreover, Yassue et al. (2021; 2023) found more SNP associated with tropical maize 

traits not evaluated under inoculation by growth-promoting bacteria, such as plant height, stem 

diameter, and aboveground dry mass. These authors also consider that growth-related traits, 

such as plant height, stem diameter, and dry mass, are complex and controlled by many genes 

with small individual effects.

The genes found in the study have small effects (ASE), revealing the polygenic 

nature of the traits, controlling a relatively small portion of the genotypic variation (Table 4). 

Complex traits in plants, such as height, diameter, and tolerance to environmental stresses, often 

have a multifactorial genetic basis involving the interaction of various genes and environmental 

factors. Thus, knowledge of the genomic regions associated with the traits of interest will 

provide insight into this genetic basis. Additionally, the study also detected a common marker 

associated with more than one trait at different water supply levels, indicating a possible 

pleiotropic effect. Bouchet et al. (2017) reported pleiotropy among phenology-related traits, 

such as plant height and leaf number, and Zhang et al. (2022) for maize productivity traits. 

Pleiotropic effects in GWAS studies can increase the complexity of understanding genetic and 

phenotypic relationships, indicating that phenotypes are more interconnected than initially 

thought. This complicates the interpretation of study results, as it may need to be clarified which 

phenotype is directly influenced by the variant and to what extent. In genetic improvement 
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studies, pleiotropic effects can affect the selection of desirable traits, as a single genetic variant 

can influence multiple agronomic or desirable traits.

The candidate gene Zm00001d005090, associated with SD under both water 

conditions and SDM under water deficit, possibly indicating a pleiotropic effect regulating the 

expression of these two traits. This gene is responsible for the clathrin heavy chain, one of the 

main subunits of clathrin, an essential protein in eukaryotic cells playing a crucial role in the 

endocytosis process. Hence, endocytosis  takes place in many vital processes for the plant 

development, such as abscisic acid (ABA) responses (Sutter et al., 2007). These authors state 

that in situations involving ABA, specific proteins in the plasma membrane are negatively 

regulated through the induction of their endocytosis. It has been demonstrated that ABA and 

salicylic acid positively regulate a gene encoding a clathrin chain in maize (Zeng et al., 2013). 

ABA is produced in various parts of plants, including the stem, and it influences gene 

expression by activating stress-response protein-coding genes and repressing growth-related 

genes. There is also evidence that clathrin impacts Arabidopsis's stomatal function, gas 

exchange, and vegetative growth (Larson et al., 2017). Thus, this gene may have a pleiotropic 

effect, resulting in reduced height, stem diameter growth, and dry mass.

SNP were found to be associated with the trait simultaneously in both water 

availability levels, such as the gene Zm00001d017978 identified in association with the PH trait 

in the SNP-Array scenario and the gene Zm00001d001852 in association with the SD trait in 

the GBS-Mock scenario. Zm00001d017978 has a putative function in the endoglucanase 

enzyme, a subgroup of a larger enzyme family called cellulase. Cellulases are part of a 

superfamily of enzymes called hydrolases that use water to break down molecules. All 

cellulases are essential to  degrading cellulose, a structural polysaccharide found in plant cell 

walls (Rahman et al., 2018). The cell wall plays a crucial role in plants' support and mechanical 

support, allowing them to grow by providing rigidity and resistance. Therefore, any alteration 

in cellulose degradation, caused by overexpression or underexpression of enzymes can affect 

structural integrity and, consequently, plant height. The applied water deficit may have 

negatively affected stem elongation, contributing to plant height, as at the V6 stage, the stem 

initiates the accelerated elongation phase. The gene Zm00001d001852 has a putative function 

as Gibberellin-regulated protein 2 (GRP) with expression positively regulated by gibberellin. 

The plant hormone gibberellin regulates major aspects of plant growth and development 

(YAMAGUCHI, 2008), stimulating cell division and growth. The effect of gibberellin on stem 

diameter may be related to cell division and radial expansion of cells, increasing the number of 



33

cell layers. Additionally, there is evidence that biotic stresses impact gibberellin and GRP 

levels, as it has been reported that a slight increase in temperature can raise endogenous 

gibberellin concentration (Camut et al., 2019).

The genes Zm00001d042735 and Zm00001d031759 were also identified at both 

water supply levels and are associated with the SPAD trait. The first one was identified in the 

GBS-Mock scenario, while the other one was identified in both the SNP-Array and GBS-B73 

scenarios, and both belongs to the zinc finger family. Zinc finger proteins are named for their 

three-dimensional structure resembling a finger, binding to zinc ions through amino acids in 

the peptide sequence and are widely distributed in eukaryotic organisms (Han et al., 2020). 

They bind to specific genetic sequences, interact with various proteins, participate in signal 

transduction, and regulate gene expression, playing an essential role in growth, development, 

and environmental adaptation. Zm00001d042735 was described as a RING-type E3 ubiquitin 

transferase. Ubiquitin is a protein that acts as a molecular marker, signaling various cellular 

functions such as protein degradation, cell cycle regulation, cellular stress response, and 

intracellular signaling (Lee; Kim, 2011). E3 ubiquitin proteins respond to water stress by 

regulating ABA biosynthesis and signal transduction, modifying and degrading stress-related 

proteins  (Han et al., 2022). An example is ZmAIRP4 involved in ABA signaling in maize and 

the overexpression of this gene increased water stress tolerance in Arabidopsis (Yang et al., 

2018). Changes in water content induced by water stress can directly affect the SPAD index 

and chlorophyll content, as ABA concentration increases, causing stomatal closure to reduce 

water loss, which may affect the expression of genes related to stress response.

The gene Zm00001d031759, also belonging to the zinc finger protein family, has a 

putative function in the Protein shoot gravitropism 5 group, acting in the morphogenesis of 

aerial organs and responses to gravitropism. Some genes from the shoot gravitropism family 

have been identified and are involved in the perception and signal transduction for gravity 

associated with the branching angle (YAMAUCHI et al., 1997). It has also been found that loss 

of functionality of the shoot gravitropism 5 gene (SGR5) resulted in decreased starch 

accumulation in aerial tissues and consequently reduced gravity sensitivity (TANIMOTO; 

TREMBLAY; COLASANTI, 2008). Gravity is an important regulator of plant architecture, 

allowing plants to optimize their position relative to the soil for nutrient absorption and to light 

for photosynthesis. Furthermore, some genes and regions manifest for the expression of the trait 

independently of the water supply level, probably unrelated to water stress.
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Genes and regions shared among the genotyping scenarios were identified based on 

their function for the same trait (Supplementary Table S2). For example, genes 

Zm00001d026477 in SNP-Array and Zm00001d027695 in GBS-B73 are related to jasmonic 

acid (JA) response, associated with SPAD in WW traits. Jasmonate ZIM domain proteins, 

known as JAZ proteins, play a crucial role in pathogen responses (Ishiga et al., 2013) and are 

important signaling molecules in the JA pathway (Liu et al., 2017). Glutaredoxins are 

associated with water-induced stress response  in maize, also participating in the abiotic stress 

response mediated by JA and ethylene through their interaction with transcription factors (Ding 

et al., 2019). As JA is involved in various signaling pathways regulating physiological and 

molecular processes in plants, in defense against biotic and abiotic stresses, such as drought 

(Rehman et al., 2023), signaling pathways induce stomatal closure, activating potassium efflux 

in guard cell protoplasts (Evans, 2003) enhancing  the plants' ability to cope with environmental 

stresses. 

Regarding ABA regulation, Zm00001d016786 was associated with SDM in WS in 

SNP-Array, and Zm00001d005090 in GBS-B73. Zm00001d021708 was found in GBS-B73, 

and Zm00001d012719 in GBS-Mock for PH under WW conditions. Zm00001d005090 and 

Zm00001d053262 were also identified in GBS-B73 and GBS-Mock, respectively, for SD under 

WS conditions. Protein disulfide-isomerase (PDI) is a member of the thioredoxin superfamily 

of redox proteins with multiple physiological functions (Khan; Mutus, 2014), playing a crucial 

role in abiotic stress tolerance. Thioredoxin (TRXo1) is involved in ABA perception through 

redox regulation of specific receptors (De Brasi-Velasco et al., 2023). In maize, genes related 

to PDI were highly responsive to ABA and water stress (LIU et al., 2009). Additionally, a PDI-

like protein strongly associated with aboveground biomass and leaf size was identified (Kang 

et al., 2015). According to Tanz et al. (2012), PDI is a family proteins affect chlorophyll 

biosynthesis in Arabidopsis seedlings.

The PPR (pentatricopeptide repeat) proteins are located in mitochondria or 

chloroplasts. In contrast, the BZIP (basic leucine zipper) proteins constitute a family of 

transcription factors (TFs) associated with plant growth, development, and stress responses. A 

typical PPR protein is targeted to mitochondria or chloroplasts, binds to one or several 

organellar transcripts, and influences their expression by altering RNA sequence, turnover, 

processing, or translation (Barkan; Small, 2014). It has been found that the PPR96 protein, 



35

located in mitochondria, altered the transcription levels of various stress-responsive genes 

under ABA treatments (Liu et al., 2016). BZIP proteins are involved in various stress responses, 

primarily through the ABA signaling pathway (Uno et al., 2000). Changes in the transcription 

levels of maize BZIP TFs were observed in response to ABA treatments (Cao et al., 2019).

As mentioned earlier in SDM and SD, the Clathrin heavy chain indicates possible 

pleiotropy. Calcium-dependent lipid-binding protein acts in response to abiotic stress, such as 

drought. The expression of sANN3, a calcium-dependent lipid-protein, increased in response 

to water stress in rice, inducing various genes in the ABA signaling pathway and promoting 

root growth to enhance water absorption and stomatal closure to reduce water loss (LI et al., 

2019). Therefore, these proteins and the biosynthesis pathways in ABA regulation may 

influence photosynthesis and plant development and growth.

The genes Zm00001d014899 in GBS-B73 and Zm00001d001852 in GBS-Mock are 

associated with the trait SD under WW conditions, involved with the phytohormone gibberellin. 

The first encodes a protein from the tetratricopeptide repeat (TPR)-like superfamily. Proteins 

containing tetratricopeptide repeats play an important role in protein-protein interaction and 

regulating various cellular functions (Rosado et al., 2006). They serve different crucial roles in 

plants, including their involvement in phytohormone signaling, such as gibberellin 

(JACOBSEN; OLSZEWSKI, 1993; SILVERSTONE et al., 2007). Therefore, TPR-repeat-

containing proteins are pivotal in signaling phytohormones and regulating various 

physiological processes, including growth, development, and environmental response. 

Gibberellin-regulated protein 2 (GRP) was mentioned earlier, occurring at both levels of water 

availability for SD.

Genes associated with SDM under WW conditions were found on the same 

chromosome, Zm00001d031445 in the SNP-Array and Zm00001d027626 in the GBS-B73, both 

involved in ethylene biosynthesis. The ethylene-insensitive3-like/ethylene-insensitive3 

(EIL/EIN3) is one of the major regulatory families in ethylene signaling, also serving as a hub 

for ethylene connections with various plant responses to different environmental conditions 

(Wu; Yang, 2019). Ethylene is a crucial regulator in stress signaling, and its interaction with a 

receptor complex triggers the inactivation of kinase response, resulting in the initial 

dephosphorylation of EIN2, followed by the cleavage of the C-terminal of EIN2. Subsequently, 

EIN2 translocate to the nucleus, regulating the activation of EIN3/EIL1. These proteins, in turn, 

exert control over ethylene response factors (Yoshida et al., 2011). 
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S-adenosyl-L-methionine synthetase, known as SAM, is a donor of methyl groups 

in the biosynthesis of nucleic acids, proteins, lipids, polysaccharides, and secondary compounds 

(Heidari et al., 2020). SAM is involved in many important biological processes such as the 

biosynthesis of ethylene. Yu et al. (2012) found that alterations in the expression level of SAM 

affected protein synthesis, phytohormones (JA and ethylene), and genes related to stress defense 

response. Ethylene is a volatile compound produced endogenously by the plant for growth 

regulation - roots, stems, leaves, and flowers (Shilev, 2020). Plants increase the synthesis of 

this hormone when subjected to stressful situations, whether biotic or abiotic. Water deficit, in 

particular, is one of the main factors related to its increase (Apelbaum; Yang, 1981). Thus, in 

response, the plant alters its growth rates, decreases biomass, and reduces development (Glick, 

2014).

Zm00001d044194 was identified in the SNP-Array, and Zm00001d018127 in the 

GBS-B73 under WW condition associated with the SPAD trait acting in the circadian clock. 

The MYB proteins constitute one of the most extensive families of transcription factors found 

in plants, playing an important role in growth and development, with widespread expression in 

the development of corn and soybeans in stress responses, and are closely correlated with the 

circadian rhythm (Du et al., 2013). MYB-related genes can act as repressors and activators 

associated with the circadian clock (KAMIOKA et al., 2016; HSU; DEVISETTY; HARMER, 

2013; HU et al., 2024; SCHAFFER et al., 1998). 

The SNW/Ski domain protein is involved in the post-transcriptional regulation of 

circadian clock genes. SkipP interacts with the serine/arginine-rich spliceosomal protein 45 

(SR45) and controls the circadian cycle through alternative splicing of circadian clock genes 

under biotic stress conditions (Wang et al., 2012). The circadian clock in plants refers to an 

internal timing system on a cycle of approximately 24 hours that regulates the behavioral and 

physiological processes of plants, including photosynthesis (Niwa; Yamashino; Mizuno, 2009). 

Likely, each guard cell maintains its circadian rhythm, and the involvement of a clock 

controlling stomatal opening seems to be advantageous for the plant, helping prevent 

unnecessary water loss through transpiration (DODD et al., 2005; GORTON et al., 1993). Thus, 

besides the environmental and internal factors that influence stomatal function, the circadian 
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pattern in regulating stomatal movements is advantageous as it can enhance both photosynthetic 

efficiency and water use efficiency.

The genes associated with the PH trait under WS conditions were Zm00001d053809 

in SNP-Array and Zm00001d042481 in GBS-B73, which are related to the regulation of protein 

ubiquitination. Culins neddylation modulates the ubiquitin ligase activity of the complex, 

leading to increased ubiquitination and degradation of target proteins by the proteasome 

(BISWAS et al., 2007; MOHANTY; CHATTERJEE; DAS, 2021; PAN et al., 2004). 

Neddylation is the post-translational protein modification most closely related to the regulation 

of protein ubiquitination (Rabut; Peter, 2008).

Ubiquitin thioesterases play a fundamental role in regulating the degradation of 

proteins marked with ubiquitin in plants. The ubiquitin system regulates virtually all aspects of 

cellular function (Ernst et al., 2013), playing an important role in controlling abiotic stress and 

processes that affect agronomic traits. For example, the ubiquitin-proteasome system is an 

essential pathway for protein degradation in plant growth and development (Linden; Callis, 

2020). In the regulation of transcription responsive to ABA, the ubiquitin-proteasome system 

is involved, allowing plants to respond to abiotic stresses such as drought (Dreher; Callis, 2007). 

Thus, ubiquitination affects gene expression or protein abundance to determine agronomic traits 

and stress control, enabling dynamic adjustments in physiological and biochemical responses 

contributing to plant survival and adaptation under adverse conditions.

Concerning the SNP-Array and GBS-B73 genotyping scenarios, these platforms 

are based on the same reference genome (B73) and are physically fixed, making it possible to 

determine the physical position of the marker in the genome. The coincidence between genes 

and regions on the same chromosome occurred only for Zm00001d031445 in the SNP-Array 

and Zm00001d027626 in the GBS-B73, both on chromosome 1. However, it was observed that, 

even though there was no coincidence regarding the physical position of the markers and 

chromosomes, there was still similarity regarding the gene functions.
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Considering the three scenarios, when considering the identification of the gene and 

region, it was observed that there was coincidence only for one marker, in the SPAD trait under 

both irrigation conditions. However, when deeper analyses were conducted regarding the gene 

function, it highlighted possible coincidences. Negro et al. (2019) concluded that GBS and 

SNP-Array were complementary for detecting QTLs in maize, marking different haplotypes. 

In a study performed in barley by Darrier et al. (2019), GBS and SNP-Array were shown to be 

efficient in accessing diversity. Still, they accessed different regions of the genome. However, 

even though they captured different regions, there was a positive correlation between the 

similarity matrices of both approaches. Thus, even when accessing different genome regions, 

these platforms demonstrate that they can be complementary. In the study, there was also a 

coincidence for the simulated genome, GBS-Mock, validating the complementarity for this 

scenario as well.

4.3 Association of markers in genotyping scenarios

The correlation between the markers in the SNP-Array and GBS-Mock scenarios 

provides information about the location of the markers on the chromosomes. Identifying a 

marker highly correlated with the GBS-Mock suggests that this marker is likely on a specific 

chromosome. The strength of the correlation between two markers is related to their physical 

proximity; the closer the markers are, the stronger the linkage disequilibrium (LD) (Myles et 

al., 2009). When markers are closer, there is a higher likelihood that they will be inherited 

together, leading to a stronger correlation between them. This is because when two markers are 

very close, they have fewer opportunities for recombination during meiosis, the process of 

gamete formation, which maintains stable combinations of adjacent alleles across generations. 

This information can be useful for guiding research, providing an initial direction for 

investigating the specific position of the marker in the genome. 

However, according to the study results, the markers are located throughout the 

genome and not necessarily physically close. In other words, despite the relationship between 

the strength of the correlation and the physical proximity of the markers, the results showed 

that the markers are distributed across the entire genome. This suggests that other factors, 

besides physical proximity, may influence the correlation between the markers, such as genetic 

inheritance patterns, recombination rate, and genomic structure, highlighting the importance of 

considering these aspects.
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4.4 Combining genotyping scenarios

The combination of genotyping scenarios can be a valid alternative for GWAS 

studies, providing higher resolution results than those obtained in isolated scenarios. In the 

approach involving Array and GBS, it was noticed that one tool complements the other, 

regardless of how GBS data are explored, whether with the referenced genome or in-silico, as 

there was little difference between SNP-Array + GBS-B73 and SNP-Array + GBS-Mock. Using 

multiple genotyping platforms, it is possible to capture a broader range of genetic markers in 

linkage disequilibrium with the loci of interest, which can increase the ability to detect 

significant associations between genetic variants and phenotypes in GWAS studies.

With regard to the use of simulated genomes, Machado et al. (2023) and Sabadin et 

al. (2022), assert that it is an excellent strategy for studies on diversity, population structure, 

heterotic group definition, tester selection, and genomic prediction for minor crops. Another 

caveat is that using temperate germplasm as a reference genome may introduce a significant 

bias when analyzing tropical germplasm (Xu et al., 2017). As a result, favorable alleles hidden 

in tropical maize, in specific tropical genomic regions, may be lost (Rasheed et al., 2017). With 

GBS, marker discovery and genotyping occur simultaneously, mitigating this bias and enabling 

the identification of markers in the analyzed diversity panel (Heslot et al., 2013). Furthermore, 

combining information obtained via conventional approaches with a reference genome obtained 

from the simulated genome should improve accuracy in association studies and impact the 

advancement of genetic research and the development of breeding strategies.

4.5 Applicability

Negro et al. (2019) and Darrier et al. (2019) highlighted the complementarity 

between standard genotyping platforms for GWAS, demonstrating that both SNP-Array and 

GBS can identify markers strongly linked to genes influencing key phenotypic traits. However, 

adopting different genotyping platforms may incur substantial costs due to their distinct 

methodologies. Conversely, GBS genotyping offers the flexibility to utilize both the reference 

genome and in-silico genome, thereby avoiding additional expenses associated with combining 

these scenarios. In our study, combining GBS-B73 and GBS-Mock datasets resulted in a 

notable increase in accuracy for several traits compared to the highest accuracy achieved by 
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GBS alone. Specifically, we observed accuracy gains of 0.06, 0.03, 0.05, and 0.15 for SPAD, 

PH, SD, and SDM, respectively. This integration of datasets allows for more comprehensive 

analyses, capturing a broader range of SNPs and providing enhanced resolution in explaining 

phenotypic variation. Ultimately, leveraging a single genotyping method enables more 

informative and efficient exploration of data, facilitating a deeper understanding of the genetic 

basis of traits and informing crop improvement strategies.

Indeed, when a study aims to uncover greater genetic polymorphism within a 

species, and SNP-Array technology is unavailable, leveraging GBS approaches becomes a 

viable alternative. By conducting GWAS using GBS methods, researchers can effectively 

identify additional polymorphisms, thereby increasing the resolution and depth of the study. 

This strategy proves particularly beneficial for minor or orphan crops that possess a genome 

reference but lack access to SNP-Array technology. In such cases, GBS offers a cost-effective 

and accessible means to explore the genetic diversity present within these crops, facilitating a 

more comprehensive understanding of their genetic architecture and potential avenues for crop 

improvement. By harnessing the power of GBS-based GWAS, researchers can unlock valuable 

insights into the genetic factors underlying traits of interest, ultimately contributing to the 

development of improved varieties tailored to the specific needs of these crops.
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5 CONCLUSIONS

The conclusions drawn from the study emphasize the importance and effectiveness 

of combining multiple genotyping scenarios (SNP-Array, GBS-B73, and GBS-Mock) for 

association mapping in crops, in specific case under varying water supply conditions. Despite 

differences in genotyping methods, genes and regions associated with specific traits were 

consistently identified, indicating the reliability and robustness of the approaches.

Furthermore, the study highlights that certain candidate genes shared functional 

similarities across genotyping scenarios, even when their physical positions on chromosomes 

did not align. This suggests that functional similarity, rather than physical proximity, plays a 

crucial role in influencing traits of interest.

In terms of accuracy, combining GBS-B73 and GBS-Mock was found to improve 

the accuracy of trait associations across all traits and water supply conditions. This suggests 

that this combined approach not only enhances accuracy but also provides better resolution in 

GWAS. Importantly, this strategy offers a cost-effective solution for genotyping, making it 

more accessible for research and breeding programs.

Overall, the findings underscore the importance of considering multiple genotyping 

scenarios and highlight the value of combining GBS-B73 and GBS-Mock approaches for 

association mapping studies in crops, particularly for traits related to drought tolerance. This 

approach not only improves accuracy but also reduces costs, making it a practical and viable 

option for crop improvement programs.
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APPENDIX A - LIST OF TABLES AND FIGURES

Table 1. Wald test of fixed effects, likelihood-ratio test (LRT) of random effects, variance 
components, heritability, accuracy, and adjusted average for SPAD, plant height (PH), stalk 
diameter (SD), and shoot dry matter (SDM) of the inbred lines evaluated in WW (well-water) 
and WS (water stress) conditions water supply.

   𝜎𝑔2  𝜎𝑔×𝑒2  𝜎𝑒𝑊𝑊2   𝜎𝑒𝑊𝑆2
   ℎ2

***: significant at the 0.001 probability level (by Wald test or LRT), respectively. NS non-
significant.
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Table 2. Number of markers scored (raw data) and the final number of markers (clean data) 
total and per chromosome (Chr) after quality control for all genotyping scenarios used to assess 
inbred lines evaluated in WW and WS conditions water supply.

a SNP-Array: Affymetrix® Axiom Maize Genotyping array; GBS-B73: genotyping-by-sequence with SNP calling 
using B73 as reference genome; GBS-Mock: genotyping-by-sequence with SNP calling using the mock reference 
built with all parental lines.
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Table 3. Number, average and standard deviation (SD) of significant SNPs per trait in WW and WS conditions water supply and genotyping 
scenario.
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Table 4. Marker, chromosome (Chr), physical position (pos), -log10 of the p-value, minor allele frequency (MAF), allele substitution effect (ASE), 
the proportion of phenotypic variance explained by the SNP (𝑅𝑆𝑁𝑃2 ), and annotation of candidate genes detected by GWAS analysis for traits in 
three genotyping scenarios under WW and WS conditions water supply. 𝑹𝑺𝑵𝑷𝟐

To be continued

SPAD in 

WS
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Continuation
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Continuation
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Conclusion.
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Table 5. Pearson correlation among significant markers from the GBS-Mock scenario with 
known functions and markers from the SNP-Array scenario for traits under WW and WS 
conditions water supply.



57

Figure 1. The workflow employed in the study. Different colors are used to represent distinct 
phases of the analysis.
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Figure 2. Aerial image showing an overview of the experimental area. Block on the right shows 
WW condition and the left WS condition, blocks are 1.5m apart.
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Figure 4. Venn diagrams with the number of significant SNPs for traits in three genotyping 
scenarios. a WW (well-watered) water supply condition column; b WS (water-stressed) water 
supply condition column. SPAD, PH (plant height), SD (stalk diameter), and SDM (shoot dry 
matter).

a b
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APPENDIX B - SUPPLEMENTARY MATERIAL

Table S1. DNA fragments obtained via BLAST in GBS-Mock for each character under in WW 
(well-watered) and WS (water stressed) in water supply conditions. SPAD, PH (plant height), 
SD (stalk diameter) and SDM (shoot dry matter).
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Table S2. Marker, chromosome (Chr), physical position (pos), annotation of candidate genes and common function detected by GWAS analysis 
for traits in three genotyping scenarios under WW (well-watered) and WS (water stressed) conditions water supply. SPAD, PH (plant height), SD 
(stalk diameter) and SDM (shoot dry matter).

Zinc finger proteins- 
gravitropism

Jasmonic acid

 Circadian clock

Zinc finger proteins- 
gravitropism

Cellulose catabolic 
process 

ABA

Zm00001d014899 67342178 Tetratricopeptide repeat (TPR)-like superfamily

157770180
Zm00001d053262


