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RESUMO

Em um novo contextos, como o das mudanças climáticas e a expansão de doenças endêmicas 

tropicais, a exemplo da recente pandemia de COVID19, a desinformação e a não aderência ao 

método científico pode potencializar os impactos socio-econômicos da situação, o que justifica 

a relevância de novas formas de agilizar pesquisas na área. O método tradicional para 

desenvolvimento de fármacos é por tentativa e erro, o que é demorado e custoso, portanto não 

é o ideal dentro do novo cenário da saúde mundial. Uma forma de afunilar e filtrar possíveis 

fármacos, de modo a agilizar o processo e diminuir os custos é por meio da química 

computacional. Diante disto, nesta tese buscou-se por um conjunto de moléculas que possam 

inibir os vírus SARS-CoV-2 e o vírus da Chikungunya. Assim, o primeiro trabalho consistiu em 

utilizar um conjunto de moléculas relatadas na literatura, derivados de fenóis e cromonas de 

Daldinia sp., para a inibição da glicoproteína espícula do SARS-CoV-2, importante para a 

entrada viral nas células. Baseando-se na afinidade de ligação, realizou-se docking molecular 

obtendo então o Derivado 4 (Der4) com menor energia, removeu-se PAINS e interferentes para 

a modelagem molecular. Foram obtidos 557 Hits com afinidade entre -7 kcal/mol e -13 

kcal/mol, dos quais se selecionou o de maior acessibilidade de síntese (Hit 48, 80%) e o de 

menor energia de ligação (Hit 250, -13 kcal/mol) e realizou-se novamente o método de docking 

molecular junto com a dinâmica molecular e ADMET. Ambos apresentaram propriedades que 

indicam boa ação inibitória dos resíduos importantes da glicoproteína espícula assim como 

viabilidade de uso como droga oral, apesar da dificuldade em sintetizá-los. O segundo estudo 

avaliou este mesmo grupo de moléculas de Daldinia sp. para a inibição do vírus da 

Chikungunya (CHIKV). Foram escolhidos como alvos as proteínas não estruturais nsP2 e nsP3. 

Os resultados de docking mostraram que todos os derivados têm alta energia de ligação com o 

nsP2 e baixa com o nsP3, com resultados abaixo de -6,2 kcal/mol, com todos os resíduos 

importantes com interações moderadas a fortes, com destaque para os Der9 a Der12. Apesar da 

baixa energia, os resultados de ADMET indicam desvantagens no seu uso como fármaco, tendo 

alta probabilidade de gerar metabólitos tóxicos, porém destaca-se o Der8 por apresentar boa 

energia de ligação, bons descritores medicinais e já ser relatado como um inibidor in vitro do 

vírus da zika. Assim, as moléculas selecionadas e modeladas são viáveis para as etapas 

seguintes do desenvolvimento como fármacos.

Palavras-chave: SARS-CoV-2; CHIKV; Daldinia sp.; modelagem molecular; Cromonas.



ABSTRACT

In a new context, such as climate change and the spread of endemic tropical diseases, such as 

the recent COVID-19 pandemic, misinformation and non-adherence to the scientific method 

can exacerbate the socio-economic impact of the situation, which justifies the relevance of new 

ways of streamlining research in this area. The traditional method of drug development is trial 

and error, which is time-consuming and expensive, and therefore not ideal in this new scenario 

of global health. One way to narrow down and screen potential drugs, streamline the process 

and reduce costs is through the computational chemistry. With this in mind, the aim of this 

thesis was to find a group of molecules capable of inhibiting the SARS-CoV-2 and 

Chikungunya viruses. Thus, the first work consisted in the use of a group of molecules reported 

in the literature, derivatives of phenol and chromones from Daldinia sp., for the inhibition of 

the spike glycoprotein of SARS-CoV-2, important for the viral entry into the cells. Based on 

the binding affinity, a molecular docking simulation was perfomed to obtain the lowest energy 

derivative (Der4), the PAINS and interferents were filtered out for molecular modelling, 

yielding 557 hits with binding affinities between -7 kcal/mol and -13 kcal/mol, from which the 

one with the highest synthetic accessibility (hit 48, 80%) and the one with the lowest energy 

(hit 250, -13 kcal/mol) were selected, a new docking simulation was perfomed, then a molecular 

dynamics and ADMET. Both presented properties indicating a good inhibitory action in 

important residues of the spike glycoprotein as well as the viability to be an oral drug, despite 

the difficulty to synthesise. After the first work, the second is the evaluation of the same group 

of molecules from Daldinia sp. for the inhibition of the Chikungunya virus (CHIKV), the 

targets chosen being the non-structural proteins nsP2 and nsP3. The docking results showed 

that all the derivatives have high binding energy with nsP2 and low with nsP3, with results 

below -6,2 kcal/mol, with all major residues having strong to moderate interactions, highlighted 

for Der9 to Der12. Despite the low energy, the ADMET results show some drawbacks of these 

derivatives as a drugs, with high probability of producing toxic metabolites, nevertheless Der8 

is highlighted due to good binding energy, good medicinal descriptors and has already been 

reported as an inhibitor of Zika virus in vitro. Therefore, the selected and modelled molecules 

are viable for the next steps for drug development.

Keywords: SARS-CoV-2; CHIKV; Daldinia sp.; molecular modelling; Chromones.
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CHAPTER I

1 INTRODUCTION AND OBJECTIVES

Introduction

Humanity has perennially grappled with pandemic and endemic viral diseases. In 

the 20th century, notable instances include the Spanish flu (influenza virus, coinciding with the 

conclusion of the First World War) (Martini et al., 2019), Ebola (caused by the eponymous 

virus, discovered in the 1970s, with a pandemic occurrence in the last decade) (Li & Chen, 

2014), and AIDS (HIV, emerging in the 1980s) (Sharp & Hahn, 2011). In the 21st century, 

challenges persist with outbreaks such as SARS (coronavirus, 2002) (Cherry & Krogstad, 2004) 

and COVID-19 (coronavirus, 2019) (Rabi et al., 2020), which have occurred more frequently 

in recent years, inflicting significant health and social impacts. Among the myriad factors 

contributing to this increased frequency, it is noteworthy to highlight globalization, particularly 

facilitated by transportation, urbanization leading to denser populations4sometimes residing 

in unsanitary conditions with limited access to healthcare4and climate change, which 

facilitates the spread of vectors to new regions and fosters human-animal interactions. 

Examples of the species barrier being breached by certain viruses include HIV and 

coronaviruses. Additionally, immigration of healthcare professionals exacerbates shortages in 

countries with low to moderate income levels, as these professionals often migrate to countries 

with higher income levels (Haileamlak, 2022), thereby amplifying the probability of disease 

transmission.

Viral infections are difficult to treat due to the nature and diversity of viruses, which 

are not living and use the cell as a means of replication, and the specificity of antiviral drugs. 

To develop these antivirals, it is necessary to know the replication cycle of the viruses, or at 

least some of its steps, and the role of the proteins and enzymes involved in each step, then a 

group of potential drugs are tested to inhibit one of the steps of the cycle, effectively ending the 

replication cycle. Because each virus has a different preferred cell, different ways to infect cells, 

different protein targets, and a different DNA or RNA delivery route, the development of 

antivirals is a difficult task, which is why it is more common to develop antibiotics and viral 
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vaccines than antivirals (CHENG et al., 2016), with the exception of increasing antibiotic 

resistance in bacteria and collateral effects, respectively.

Drug research and development (R&D) is divided into three phases: drug discovery, 

preclinical development and clinical trials. The traditional method, also the oldest, of drug 

discovery is trial and error, it is, as the name suggests, to discover new drugs by chance, with 

historical examples such as penicillin as the first antibiotic, nitroglycerin (an explosive 

molecule) used as a vasodilator and to treat angina, and chlordiazepoxide as a result of work on 

a class of dye molecules, obtaining the first benzodiazepine (DOYTCHINOVA, 2022). It is 

clear that this method was overcome, and had to be, since the first molecules were the result of 

accidents. In the case of antivirals, it would be a more difficult task because of the 

characteristics mentioned above.

New molecular modelling methods, particularly computational methods, are now 

widely used to identify molecular targets involved in one or more pathogenic processes and to 

test and evaluate the effect of a candidate (potential drug) on that target. The target can vary 

depending on the disease, but the most common is a viral protein or a cellular receptor. The 

initial ligand to be used can be very diverse, but certain criteria are usually used to define it, 

usually the similarity of diseases (to be able to treat both), pathogens (to be able to inhibit both), 

targets and so on. In the event of failure, an assessment of the binding affinity, structural 

interactions, medical prediction and stability of the target-ligand complex forms the basis of an 

optimisation process that can be carried out to generate new molecules from the initial one or 

to test new classes of molecules.

Among drugs, the most common and successful source is natural products, due to 

the history of drug development, which only in recent years (last century) has reached the 

achievement of new synthetic drugs, thanks to new methodologies and drug modifications. 

With a diverse biodiversity and undiscovered biomolecules, this is a promising area for the 

search, research and discovery of new drugs or a molecular framework (DIAS; URBAN; 

ROESSNER, 2012), some of which are widely used today in the form of extracts, such as 

Papaver somniferum (marketed in Brazil as "Elixir Paregórico"), Valeriana officinalis, Aloe 

vera, Cannabis sativa, Ginkgo biloba and Salvia officinalis, to name a few. The advantages over 

synthetic drugs are that they have fewer side effects (less frequent and less severe) and are 

generally cheaper to obtain than synthetic drugs (SINGH; BHARDWAJ; PUROHIT, 2022). 

With these characteristics, there is a high probability of finding an inhibitor molecule or its 

derivatives that are safe for use in the treatment of viral diseases.
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To develop new medicines from natural products, it is necessary to explore 

molecules from sources that have been little studied. Among several sources, the fungus of the 

genus Daldinia emerges as a potential source as it is little studied, widely distributed worldwide 

(in South America, Central America, North America, East and Southeast Asia, Oceania, Sub-

Saharan Africa and Europe) and recent studies have identified the presence of 

immunosuppressive polyketones in D. eschscholzii and the antioxidant isoindolinone in D. 

concentrica. Some of these biomolecules have shown antibacterial and anti-H1N1 activity (LI 

et al., 2021). Therefore, natural products derived from Daldinia species represent a promising 

line of research for the development of antiviral agents against a variety of viruses.

Among the scarce literature (Figure 1) on the subject, the work of Zhang and 

collaborators stands out for the novel molecules, chromone and phenols, which are well 

characterised and which show in vitro activities against influenza A virus (IAV) and Zika virus 

(ZIKV, which causes the eponymous disease), which is important to note that it is spread 

concomitantly with dengue and Chikungunya (ZHANG et al., 2021a).

This study explores the potential of chromones and phenolic derivatives as drug 

candidates to inhibit both SARS-CoV-2 and CHIKV. Although the SARS-CoV-2 pandemic may 

have subsided, the occasional emergence of variants and sporadic cases highlights the 

continuing threat. Moreover, the inevitability of future SARS pandemics, given historical 

precedent, underscores the importance of existing drugs for treatment or as lead molecules for 

drug development. In addition, diseases transmitted by the same vector, such as dengue, Zika 

and chikungunya, remain endemic in tropical regions and are neglected diseases that primarily 

affect economically disadvantaged regions. However, with the increasing impact of climate 

change, these diseases are attracting increased global attention as they spread to new 

geographical areas. Figure 1 illustrates the trend in publications related to daldinia and 

chromone, indicating a growing interest in these topics.

Chapter II provides an overview of the diseases, computational tools, Daldinia derivatives and 

the state of the art. Chapter III is the paper "Phenol and chromone compounds for in silico 

inhibition of nsP2 and nsP3 of Chikungunya virus" submitted to the DARU Journal of 

Pharmaceutical Sciences. Chapter IV presents the results of the paper "De novo Design of 

bioactive phenol and chromone derivatives for Inhibitors of Spike glycoprotein of SARS-CoV-

2 in silico", published in 3 Biotech. Chapter V presents a general conclusion of the work and 

the perspective of further work to develop the drug at the end of the research and development 

line. The chapters and their contents are shown in Figure 2.
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Figure 1 3 Scientific production involving <Daldinia= (top) 
and <Chromone= (bottom), on ScienceDirect website on 
December 15, 2023.

Source: Author.

Figure 2 3 Thesis structure.

Source: Author.
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1.2 Objectives

1.2 General

To evaluate the potential antiviral activity of chromone and phenolic derivatives 

(ligands) and to discover new compounds for the treatment of Chikungunya fever and COVID-

19 in silico.

1.2.2 Specifics

a) To perform the molecular docking of the ligands with non-structural protein 

targets of CHIKV;

b) To evaluate the ADMET of the ligands;

c) To perform molecular docking of the ligands with GP spike;

d) To propose novel synthetic molecules from the best ligand obtained from 

molecular docking;

e) To evaluate the synthetic accessibility and oral safety of the proposed ligands.
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CHAPTER II

OVERVIEW

Epidemic and Pandemic diseases
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Figure 3 3 Burying the black death victims, Tournai, Belgium, circa 
1353. 

Source: Tractatus quartus. Image in public domain.
Note: Despite the sorrow, the illustrated scene and context may recur in the XXI century.

To further discuss diseases and their occurrence in modern times, it is necessary to 

clearly define the terms 'endemic', 'epidemic', and 'pandemic'. These terms are defined by the 

World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC, 

2012) and are described in Chart 1.

Chart 1 3 Terms for the occurrence and distribution of a disease, accordingly to CDC.
Occurrence concept details

Endemic Common presence of the disease 
in a community

Sporadic Irregular occurrence
Hyperendemic Persistent

Epidemic Sudden growth of cases in a 
population of a determined area

outbreak Delimited geographic region

Cluster Cluster of cases that may be higher 
than reported in a space and time

Pandemic Epidemic that has spread globally Affects a high amount of people in the world
Source: CDC (2012).

Advances in sanitation techniques, medicine, and diagnostics, as well as the 

discovery, research, and development of antibiotics, from penicillin to azithromycin, have 

significantly contributed to mitigating bacterial diseases. Although the threat of antibiotic-

resistant bacteria is growing, viruses have emerged as the biggest threat among the myriad of 
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pathogens that cause infectious diseases. Recent epidemics and pandemics have been 

predominantly viral in nature, including Spanish flu (Influenza A) (MARTINI et al., 2019), 

polio, smallpox, rubella, AIDS, Ebola, SARS, MERS and SARS-CoV-2. Some, such as 

smallpox, have been eradicated through global vaccination campaigns. When reflecting on 

virus outbreaks and their contagious nature, it is important to note that in recent decades the 

term 'viral' has acquired a broader connotation. In addition to its biological meaning, the term 

'viral' can now refer to anything that is highly contagious and spreads quickly. This semantic 

evolution is exemplified in the common use of 'viral' as an adjective, such as in the phrase 'the 

article went viral', indicating a sudden increase in citations over a specific period of time.

Chart 2 presents some infectious viruses. It should be noted that while some have 

drugs, others such as herpes and AIDS do not have a cure, but their symptoms can be treated. 

However, an increase in resistant strains of herpes has made treatment ineffective. Nocchi et al. 

(CHENG et al., 2016; NOCCHI et al.) have discussed this scenario. In 2022, a topic formulation 

was developed using an extract from the bark of Schinus terebinthifolia, commonly known as 

'Aroeira'. This extract is popular in folk medicine for its anti-inflammatory, antimicrobial, 

analgesic, and antiulcerogenic properties, and is used to treat urinary tract and mucosal injuries. 

The formulation was tested in vivo on mice and was found to be an effective antiviral, similar 

to acyclovir but less irritating.
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Chart 2 3 Some of the common human viral infections. 

Family Viruses Transmissio
n Symptoms Diagnostic Treatment Vaccine

Herpesviridae HSV-1, 
HSV-2 Contact Oral/genital 

herpes *
Acyclovir, 
valacyclov

ir
3

Orthomyxoviridae

Influenza A
Contact
Droplets

Pneumonia Immunoflu
oresce Neuramini

dase 
inhibitor,

Favipiravir

Trivalent or 
Quadrivalent 

influenza 
vaccine

Influenza B Encephalitis
*Influenza C Respiratory 

infection

Filoviridae
Ebola virus

Contact Hemorrhagic 
fever * 3

Ebola 
vaccine
(trial)

Marburgviru
s 3

Picornaviridae

Hepatovirus

Droplets

Hepatitis A

* 3

Hepatitis A 
vaccine

Poliovirus Poliomelitis Polio oral 
vaccine

Enterovirus Diverse** 3

Rhabdoviridae Rabies virus Contact Rabies * Immunogl
obulin

Rabies 
vaccine

Flaviviridae

Dengue 
virus Arthropod Hemorrhagic 

fever * 3
Dengue 
vaccine 
(trial)

Hepatitis C Blood 
contact

Acute and 
chronic 
hepatitis

* interferon 3

Zika virus Arthropod Zika fever * 3 3

Paramyxoviridae Measles 
virus Droplets Measles * 3 MMR 

vaccine

Togaviridae

Rubella 
virus Droplets Rubella

* 3

MMR 
vaccine

Chikunguny
a virus Arthropod Chikunguny

a 3

Retroviridae HIV-1, HIV-
2

Body fluid
contact AIDS * HAART 3

Hepadnaviridae Hepatitis B 
virus

Body fluid
Contact

Acute and 
chronic 

hepatitis B
*

Nucleoside
,

Immunogl
obulin

Hepatitis B 
vaccine

Coronaviridae
SARS-CoV
SARS-CoV-

2
Droplets Acute 

Pneumonia *** 3 Vaccines**

Papillomaviridae
Human 

papillomavir
us

Contact Warts * Imiquimod HPV 
vaccine

Source: adapted from CHENG et al. (2016).
Note: The diagnostics noted with * indicates that the diagnostic methods are PCR, viral culture and/or serology; 
The ** notation includes: respiratory illness, meningitis, myocarditis, among others. The *** notation indicates a 
large group of diagnostics (for example RT-PCR, RT-LAMP, GICA and ELISA) and vaccines.



26

2.2.1 Coronavirus Disease-19

To understand the COVID-19 pandemic, it is important to note that it was a sudden 

global outbreak of cases. This crisis has posed significant challenges across all sectors and is 

considered one of the biggest health crises of the century (BRITO et al., 2020). Despite the 

WHO declaring an end to the COVID-19 public health emergency (WISE, 2023), its impacts 

are still being felt today and have brought about significant changes in our societies.

The COVID-19 pandemic has provided on the scientific community and healthcare 

workers with new perspectives on the search for vaccines and drugs. The first, vaccine was 

developed in record time of less than a year after the WHO declared the pandemic. mRNA 

vaccines were rapidly approved and manufactured, saving millions of lives (GOTE et al., 2023). 

The latter treatment repurposed antiviral drugs, such as Nirmatrelvir with Ritonavir, 

Remdesivir, Molnupiravir, which were approved by the Food and Drug Administration (FDA) 

(CDC, 2023). However, SARS-CoV-2 is a RNA virus. As a less stable ribonucleic acid than 

DNA with only a single short strand, it is more susceptible to mutations, being able to evolve 

in a matter of months or years (MARKOV et al., 2023). Additionally, its highl contagiousness, 

relatively low lethality, latent period, public health policies and social factors (BRITO et al., 

2020; XIN et al., 2022) have resulted in a proliferation of variant strains, leading to a 

asynchronous epidemic waves.

Although vaccines and drugs can reduce the lethality, recovery time, and symptoms 

of COVID-19, their effectiveness is diminished by emerging variants (WU et al., 2023). 

Therefore, it is expected that humanity will not eradicate SARS-CoV-2, but rather coexist with 

it in cases of epidemics and/or hyperendemics (CONTRERAS; IFTEKHAR; PRIESEMANN, 

2023). In this scenario, it is likely that another outbreak of SARS-CoV will occur in the future, 

as history has demonstrated with previous outbreaks such as SARS (2002) (CHERRY, 2004; 

GOLDSMITH et al., 2004) and MERS (RABI et al., 2020). This outbreak could be a derivative 

of SARS-CoV-2 or have a sylvatic origin.

Numerous lessons have been gleaned from the COVID-19 pandemic. Among these 

lessons, pertaining to the rapid development of drugs and vaccines, is the imperative of research 

focus and diversity (VON DELFT et al., 2023). Additionally, there has been a reevaluation of 

the role played by professionals, research institutions, and scientific methodology. The urgency 

driven by governmental pressures and societal demands led to the publication of studies with 

rapid but inadequate peer review and diminished rigor. Regrettably, this hastiness resulted in 
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instances of misinformation disseminated via social media platforms, with repercussions for 

public health. For instance, the controversial work of Raoult and colleagues (GAUTRET et al., 

2020) regarding the efficacy of (hydroxy)chloroquine contributed, among other factors, to 

elevated death tolls in countries such as Brazil (NOGUEIRA; BRITO, 2020) and the USA, with 

702,116 and 1,144,877 total confirmed deaths respectively, by 2023 (WHO, 2023a). It is 

noteworthy that Raoult's work garnered considerable attention, with 1565 citations in 2020, 838 

in 2021, 257 in 2022, and 100 in 2023 (according to PubMed, accessed on December 16, 2023), 

serving as both a subject of critique (KERRIDGE; SILVA; UPSHUR, 2023) and a reference for 

ongoing investigations (SOBNGWI et al., 2023). Furthermore, an intriguing aspect pertains to 

the business model adopted by journals and publishers. Critiques of certain studies often require 

paid or institutional access, while research that aligns with positive clinical outcomes, such as 

those related to (hydroxy)chloroquine, tends to be freely accessible. This discrepancy in access 

to knowledge has the potential to introduce bias into research, particularly in matters pertaining 

to public health. The multifaceted impacts of the COVID-19 pandemic on research and society 

continue to be extensively studied and documented, underscoring its significance in shaping 

humanity's response to health crises.

Before the pandemic 67% of approved antivirals targeted to HIV and HCV. Even 

with rapid phase I drug through computational tools and methods, phases II (preclinical) and 

III (clinical) remain lengthy and costly. As COVID-19 cases began to surge globally, researchers 

from diverse fields worked to solve the emerging problems. Some solutions, such as oral 

repurposed drugs, like Merck's molnupiravir and the vaccines, were developed in record time. 

In the field of COVID-19 design, there are two possible classes of targets: the virus itself (such 

as Mpro and GP spike) or the infected host (ACE2 and TMPRSS2). Significant effort has been 

made to discover host target ligands to prevent SARS-CoV-2 cell binding, with the reasoning 

that a host directed drug would have a broader spectrum against other pathogens. Cleary, 

binding to a cell target may prevent its proper function, leading to toxicity and worsening of the 

clinical condition. Therefore, the safest method is to target viral proteins. To achieve this,  

genome sequencing, viral cycle elucidation and protein analysis (XRD) should be conducted to 

propose a potential ligand (VON DELFT et al., 2023)

The SARS-CoV-2 is an Coronaviridae, ranging from 60 to 140 nm (BAR-ON et al., 

2020), with a single stranded positive-sense RNA (+ssRNA). The RNA is involved in the 

nucleocapsid protein (N), that in sequence is involved by the envelope, which has 3 

components: membrane protein (Mpro), spike protein (Spro, also known as glycoprotein spike, 
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GP spike, what give coronavirus its name, as the spikes resembles a crown), and envelope 

protein (E) (WANG et al., 2020), its structure is represented in Figure 4a. 

The spike protein is composed of fused trimeric membrane stalk (S2) that have 

trimeric protein heads that act as a receptor-binding (S1) on top of S2. The receptor-binding 

domain (RBD), in S1, actuate in the angiotensin-converting enzyme 2 (ACE2, the receptor) 

specifically, the S1 can switch between an up or down position, for binding with the receptor 

or avoiding immune response, respectively. After a successful binding, to entry in the cell a 

protease, transmembrane protease serine 2 (TMPRSS2, a host cell surface protease), act on the 

boundary between S1 and S2, the later is induced a structural change to entry in the cell. The 

mechanism is illustrated in Figure 4b (SHANG et al., 2020).

Figure 4 3 SARS-CoV-2 Structure and schematic of the cellular infection 
mechanism

(a)
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Source: user SPRQ10 (a) and adapted from Shang et al. (SHANG et al., 2020) (b). (a) obtained from 
<https://commons.wikimedia.org/wiki/File:Coronavirus_virion_structure.svg>. Accessed in December 16, 
2023. Image licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0), < 
https://creativecommons.org/licenses/by/4.0/deed.pt>, All the rights reserved to the original authors.

In front of this, surface proteins of SARS-CoV-2 are preferable as targets for drug 

discovery, with emphasis on the GP spike as it is the key to the entry in the host cells and 

common to coronaviruses. Concerning the infection, one of the defense mechanisms 

characteristics to the COVID-19 infection is a high release of pro-inflammatory cytokines, as a 

result of which there is a cascade of immunological defense and inflammation of the lung 

epithelial tissue (infected or not).

In this scenario, an individual infected with a weakened and occupied immune 

system is more susceptible to concurrent diseases. During quarantine and lockdowns, the 

population stayed at home, close to mosquitoes breeding sites, especially during rainy seasons. 

Some of these diseases are typical in tropical regions, like Dengue, Zika and Chikungunya, 

which, due to the effort in the COVID-19 pandemic, reports indicate that the cases of these 

diseases are underreported during this period (BORRE et al., 2022; SILVA; MAGALHÃES; 

PENA, 2021; VICENTE et al., 2021).

2.2.2 Chikungunya

Arboviruses are infectious viruses, such as Dengue virus (DENV), Zika virus 

(ZIKV), and Chikungunya virus(CHIKV), which are transmitted by the anthropophilic 

(b)

https://commons.wikimedia.org/wiki/File:Coronavirus_virion_structure.svg
https://creativecommons.org/licenses/by/4.0/deed.pt
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mosquitoes of the Aedes genus. The most common vectors are Aedes aegypti and Aedes 

albopictus (Figure 5a),  and they are found in tropical regions (Figure 6). These diseases may 

have similar symptoms in the early stages, such as fever. Therefore, it can be difficult to 

diagnose them, especially during the COVID-19 pandemic. The lack of correct treatment may 

lead to a worsening of the clinical condition and sequelae (VICENTE et al., 2021).

To control the disease, the vector must be removed from the cycle, so, the vector 

and its cycle must be studied in details to assess the transmission. The urban expansion and the 

sanitary conditions have allowed the proliferation of Aedes, of which humans are the main 

reservoir of the disease, and when the conditions for proliferation in urban areas cease , during 

the inter-epidemic period, animals are the main reservoir, especially monkeys. During this 

period, another genus of mosquitoes, Haemagogus (in particular H. janthinomys and H. 

leucocelaenus) (DE ABREU et al., 2019), do the opposite of Aedes: the main reservoirs are 

animals and occasionally infect a human (Figure 5b). For this reason, the epidemics are 

persistent and to solve this public health challenge, the vectors should be removed from the 

cycle.

Figure 5 3 Aedes aegypti and Aedes Albopictus mosquitoes (a), the main vectors of dengue, 
Zika and Chikungunya. For an easier species differentiation, note the different white strips 
pattern. The urban and sylvatic cycle or arboviruses (b).

(a)

(b)
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Source: (a) Institute Oswaldo Cruz/Fiocruz. Photo authorship: Josué Damacena, 2016. (b) Figueiredo 
(FIGUEIREDO, 2019). Image licensed under Creative Commons Attribution 4.0 International (CC-BY-4.0), < 
https://creativecommons.org/licenses/by/4.0/deed.pt>, All the rights reserved to the original authors.

Strategies of vector control, in the case of Brazil, are traditionally health awareness 

campaigns, which consist of mechanical control (prevention of possible spawning sites and 

prevention of contact with the vector), biological control (natural predators, such as fish, most 

common in Brazil the Betta splendens (CAVALCANTI et al., 2007)), chemical control (use of 

chemical products to kill larvae and adult mosquitoes). Health agents for the mechanical and 

chemical control of the vector, to detect and prevent any possible water reservoir for the Aedes 

mosquito spawning. These methods are effective in reduzing the incidence, but are far from 

being the ideal solution to prevent the return of the outbreaks in the period of urban proliferation 

period, and the research is scarce for being a tropical disease, that affects low-income countries, 

a solution to their problems and for being of little interest to the majority of research 

powerhouses countries, thus being nominated as Neglected Tropical Diseases (NTD) by the 

WHO, and among  the 20 different diseases, Chikungunya has no approved drug or vaccine 

(Chart 2)  (MOLYNEUX et al., 2021; WHO, 2023b).

The distribution of Chikungunya is shown in Figure 3, which shows that it is mainly 

found in tropical regions. Due of globalization, deforestation, climate change, population 

disorder, increasing rates of population density and sanitization, the vector can and does migrate 

to other regions, making it a global concern (BARTHOLOMEEUSEN et al., 2023; BATTISTI; 

URBAN; LANGER, 2021; MOLYNEUX et al., 2021). 

https://creativecommons.org/licenses/by/4.0/deed.pt
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Figure 6 3 Notification rate of cases of Chikungunya virus per 100.000 habitants, from 
November 2022 to October 2023, produced by the European Center for Disease prevention and 
control (ECDC).

Source: ECDC (2023).

Most antivirals for CHIKV target its surface proteins, such as envelope (E1, E2), 

capsid protease (C), non-structural proteins 1, 2, 3 and 4. Of these, highlights the nsP2 stands 

out as a well-established target and the nsP3 as an understudied target, both of which are 

important for its replication cycle. The first is a common target because of the early XRD 

obtained, mostly molecules in silico that were capable of effective inhibition share some 

characteristics, as long chains, high number of aromatic rings and Ã staking sites (BATTISTI; 

URBAN; LANGER, 2021), the latter, a relatively larger protein with 4 different chains (A, B, 

C and D), has few published works, according to Science Direct (<nsP3 chikungunya=), from 

2013 to 2023, no more than 50 papers per year were published with the exception of 2021 (51) 

and 2023 (52), in the work of Zhang et al. (ZHANG et al., 2021c), small molecules (similar to 

chromones, but nitrogenated) had better fit in the receptor binding pocket than the larger 

molecules of nsP2, showing that it is possible to use small molecules, which are safer to use, 

may be used to treat chikungunya fever.
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Despite the difficulty, history proves that a global effort to eradicate diseases is 

possible, as evidenced when in 1980 WHO declared that smallpox was eradicated. To do this, 

detection, monitoring of cases and vaccination has to be made. Smallpox had characteristics 

that made it easier to eradicate, for instance, only affect humans (in contrast to Chikungunya), 

easily diagnosticated, vaccination of the contacts, fast production of vaccine a single dose 

vaccine induces long lasting resistance. COVID-19 vaccines differ from the 2 later 

characteristics (MEYER; EHMANN; SMITH, 2020).

Each infectious disease presents unique challenges that researchers must address in 

a specific way. In drug discovery for these diseases, computational chemistry is emerging as a 

fast, economical and powerful method in the search for new drugs, given the diverse 

possibilities of finding molecules, but the low probability of finding a viable molecule that is 

capable of inhibiting the pathogen and is safe to use.

2.2 Computational chemistry

Computational chemistry can be defined as the use of computers and its tools to 

solve chemical problems. It envolves the use of theoretical equations and experimental data to 

model and optimeze chemical processes. This work focueses on the use of computational 

chemistry tools for drug development. Specifically, it involves testing a ligand (a molecule 

intended to be a drug) against a target, analyzing the binding and residues involved, and 

assessing the stability of the ligand-target complex. The ultimate goal é to ensure the safety of 

the drug before proceeding to in vitro and in vivo assays, regulatory approval and 

commercialization.

Generally, the pharmaceutical industry wastes a significant portion of its clinical 

trial budget due to the high failure rate of around 90%. The primary cause of this failure is 

attributed to the drug discovery stage, which includes poor properties and unsuitability for the 

recipient (Sadybekov; Katritch, 2023). To summarize the workflow of drug discovery, Figure 7 

is presented. However, some studies may extend beyond this, incorporating in vitro assays 

(INDU et al., 2022) to validate results and confirm molecular docking and molecular dynamics 

simulations, as well as retrosynthesis to propose a synthetic route or synthesize and characterize 

compounds (BORN et al., 2021a). From now on in this work, retrosynthesis will refer to the 

reverse route of organic synthesis of a determined compound from simpler and available 

reagents, that may be ranked by number of steps to produce the compound of interest, price and 

delivery time of precursors. Regardless of some recent work on nanoparticles as ligands is 



34

promising,on computational nanoparticles as ligands (MEHRANFAR; IZADYAR, 2020), only 

molecules are considered for drug discovery due to computational limitations.

Figure 7 3 General workflow of computational drug discovery. In green the steps made in 
Chapter III, in red, the steps made in Chapter IV.

Source: Author

From Figure 7, the candidates may come from the literature, as the result of 

experiments (e.g. organic synthesis of novel compounds) or the prospection of products (usually 

extraction from plants, fungus and marine life) (LI et al., 2021) that present some potential 

against a virus target. This set of molecules may be optimized to obtain accurate conformers 

(ALENCAR et al., 2022) and screen reactivity (e.g. analysis of HOMO-LUMO) (HUSSAIN; 

AMIR; RASOOL, 2020). In sequence, submitted to a molecular docking simulation (docking), 

were the molecules interacts with the target and the binding affinity is measured and the target 

residues may be analyzed. After that, three paths are possible: 1) use of a generative approach 

to produce a new set of molecules or extend the existing one (e.g. virtual screening, De Novo 

Design) (BAI et al., 2022) to be sent to docking again; 2) a molecular dynamics simulation to 

assess the stability and behavior, in physiological medium, of the ligand-receptor complex in 

time; 3) after a docking simulation to be sent to an Absorption, Distribution, Metabolism, 

Excretion and Toxicity (ADMET) evaluation, to estimate the physicochemical properties, 

druglikeness, clearance rate, half-life, oral bioavailabilty, the probabilities of metabolism (and 
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its sites), hepatotoxicity, mutagenicity and more indicators and descriptors depending on the 

objective of the drug and the development of ADMET tools.

Some of the widely used webservers and softwares are presented in Chart 3, with 

the official websites presented in Appendix A. In this work context, AutoDock Vina, MolAICal, 

ADMET server, MarvinSketch and UCSF Chimera are highlighted. AutoDock Vina is to date 

one the most utilized docking softwares (BAI et al., 2021; EBERHARDT et al., 2021; 

SHITYAKOV; FÖRSTER, 2014; TORNG; ALTMAN, 2019; TROTT; OLSON, 2010), thus it 

is a standard in literature. UCSF Chimera is used to prepare and visualize proteins, removing 

interferents, targets non-related residues, water, ligands (from the PDB file) (PETTERSEN et 

al., 2004), MarvinSketch is a chemical drawing software with many functionalities, like 

prediction of NMR spectra, ADME descriptors, generating SMILES string, .mol files, 

conformers, isomer analysis to name a few (CHEMAXON, 2022).

MolAICal is a powerful and versatile tool for drug discovery, it uses some other 

programs and algorithms as base (e.g. AutoDock Vina) with slight modifications to improve its 

accuracy, it has a friendly Graphical User Interface (GUI) in comparison with other software of 

the genre, it is easy to install, setup and use, with well described manual and forum support, 

and in a single package brings molecular docking, De Novo Design, virtual screening, molecular 

dynamics , quantitative structure-activity relationship (QSAR), synthetic accessibility (SA) and 

filters (Lipinski (LIPINSKI et al., 2001), pan-assay interference compounds (PAINS) (BAELL; 

WALTERS, 2014)). Despite being a new software, MolAICal community and publications are 

increasing (BAI et al., 2021).
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Chart 3 3 Softwares and webservers for in silico drug development. An * indicates some 
limitation in the function.

Type Name License Functions and observations References

Server 

PaccMannrl Free Retrosynthesis, De Novo Design
(need python g3.7)

(BORN et al., 2020, 
2021b)

AiZynthFinder Free Retrosynthesis
(need python 3.9) (GENHEDEN et al., 2020)

Manifold Free trial (15 
days)

Retrosynthesis, medicinal 
chemistry* (FLORESTA et al., 2022)

ADMETlab 
2.0 Free ADMET (XIONG et al., 2021)

SwissADME Free ADMET (DAINA; MICHIELIN; 
ZOETE, 2017)

ProTox-II Free ADMET (toxicity) (BANERJEE et al., 2018)

XenoSite Free ADMET (metabolism and 
toxicity)

(MATLOCK; HUGHES; 
SWAMIDASS, 2015)

pkCSM Free ADMET (PIRES; KAMINSKAS; 
ASCHER, 2018)

ADMETboost Free ADMET (TIAN; KETKAR; TAO, 
2022)

PreADMET Free ADMET (KOVA
EVI� et al., 
2014)

StopTox Free ADMET (metabolism and 
toxicity) (BORBA et al., 2022)

C6H6 NMR Free IR*, NMR spectra prediction (PATINY et al., 2018)
DockThor Free Docking (SANTOS et al., 2020)

Software 

MolAICal
Free to 

noncommercial 
use

De Novo Design, virtual 
screening, molecular docking, 

MM/GBSA
(BAI et al., 2021)

UCSF 
Chimera

Free to 
noncommercial 

use

Visualization, structure analysis, 
sequence alignments and density 

maps

(PETTERSEN et al., 
2004)

MarvinSketch
Free to 

noncommercial 
use

Structure drawing, NMR 
prediction, generate SMILES 

string and .mol files
(CHEMAXON, 2022)

ORCA Free for 
academic uses DFT (NEESE et al., 2020)

PyMOL Open-source Molecular visualization ( DELANO, 2002)
AutoDock 

Vina Open-source Molecular docking (TROTT; OLSON, 2010)

GROMACS Open-source Molecular dynamics (ABRAHAM et al., 2015)
CP2K Free DFT and molecular dynamics (KÜHNE et al., 2020)

Gabedit Package 
(ORCA)

Visualizaiton, MO, UV-Vis, IR, 
Raman spectra (ALLOUCHE, 2012)

Source: Author.

An important observation must be made for ADMET, which is based on datasets of 

already known molecules or fragments, commercial or not, and every server uses different 

groups of datasets and algorithms, that may outcome some disparity in the results. In the case 

of Chikungunya diagnostics, to treat the symptoms in Brazil, the most common drugs are 

presented in Table 1.
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Table 1 3 Physicochemical descriptors of common medicine for the treatment of chikungunya, 
obtained from ADMETlab 2.0. The * notation indicates low to moderate probability.

Property Dipyrone Prednisone Acetaminophen
(paracetamol)

Physicochemical Properties
logP -0.541 1.694 0.608
logD -0.933 1.043 0.789
MW 333.08 g/mol 358.18 g/mol 151.06 g/mol
HBA 7 5 3
HBD 0 2 2
TPSA 83.370 Å² 91.67 Å² 49.33 Å²
nRot 4 2 2
nRing 2 4 1
MaxRing 6 17 6
nHet 9 5 3
fChar 0 0 0
nRig 14 23 7
nStereo 0 6 0
Medicinal Chemistry
Pfizer rule* (3) (3) (3)
GSK filter (3) (3) (3)
Golden Triangle (3) (3) 1 alert; MW<200 g/mol
QED 0.453 0.785 0.595
Fsp3 0.308 0.667 0.125
MCE-18 14.0 73.6 6.0
Highlighted descriptors
AMES (+) (3) (3)*
H-HT (+) (3)* (3)
BBB (+++) (+++) (++)
VD 1.573 L/Kg 0.563 L/Kg 0.923 L/Kg

Source: Author.

Although dipyrone and paracetamol are already approved by Agência Nacional de 

Vigilância Sanitária (ANVISA), and are well-known and studied commercial drugs, they 

present low values of quantitative estimated druglikeness (QED), that is the similarity of some 

physico-chemical properties of the compound with already commercialized and well-studied 

drugs, with criteria of QED > 0,67 as excellent and f 0,67 a poor result, that would mean that 

dipyrone and paracetamol are similar to commercially available drugs, even that they are 

already in this set. Also, the evaluation presented that they have moderate probability of being 

mutagenic (AMES test, allows for positive or negative results or probability to cause DNA 

damage), which is not the case of dipyrone in vitro studies (ARAGÃO; TOBIAS, 2019), and 

all three drugs presented a high probability of blood-brain barrier permeability, that is they are 

able to reach the central nervous system, usually for viral diseases it is an undesirable property 

as it may accumulate and/or cause nervous system damage, but in an analgesic it would be 

expected and desirable, also with excellent volume distribution (VD, concentration of the drug 

on the circulation). Therefore, even with good accuracy overall, according to the druglikeness 
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criteria rule (Pfizer, GSK and Golden triangle, with the exception of paracetamol that have 1 

alert) that correlates the molecule to commercially available drugs or drug fragments from 

databases, the in vitro and in vivo assays are very important to assess the real effects and to 

feedback the ADMET algorithms and database, but also a method that considers different 

reliable algorithms to produce a consensus.

2.3 Natural products from Daldinia

Daldinia is an Ascomycota fungus, an important lignocellulolytic fungi with global 

distribution that has more than 40 species, with interesting metabolites reported as antioxidants, 

anti-HIV, anti-IAV, anti-ZIKV, and antibacterial, to name from the few studies of this genus. 

Some of the common studied species are D. eschscholzii, D. concentrica, D. sp., D. loculata, 

D. hawksworthii and D. childiae, and despite this, it is understudied  (LI et al., 2021; YUYAMA 

et al., 2013; ZHANG et al., 2021a).

Some Daldinia extracted compounds are classified as ketenes (LU et al., 2023), 

polyketide (DU; KING; CICHEWICZ, 2014; LIN et al., 2022; WUTTHIWONG et al., 2021), 

polyketones, lactone, naphtoquinones, naphtofuran, chromone, phenols and indole derivatives, 

the majority with interesting bioactive properties (LI et al., 2021). Some of the chromones 

derivatives are shown in Figure 8.
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Figure 8 3 Chromone molecule (a), chromone derivatives from the works of Zhang et al. (b) 
and Wutthiwong et al. (c).

Source: Author (a), Zhang et al. (2021) (b), Wutthiwong et al. (2021) (c).

Thereby, as a wood-decaying fungus distributed globally, with bioactive molecules 

in natura and understudied, Daldinia natural products are potential candidates for drug 

discovery in the treatmen of antiviral diseases, as previously reported by Lin et al. and Zhang 

et al. (LIN et al., 2022; ZHANG et al., 2021a) for H1N1, Influenza A, and Zika.

Then, in this context, natural products from Daldinia can be used as a set for in 

silico development of antivirals for COVID-19 and CHIKV as innovative proposal for a base 

drug that could be used in future SARS epidemics or pandemics, as wll as for the treatment of 

Chikungunya.
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CHAPTER III

3 PHENOL AND CHROMONE COMPOUNDS FOR IN SILICO INHIBITION OF NSP2 
AND NSP3 OF CHIKUNGUNYA VIRUS

Abstract

The rising concern about neglected tropical diseases imposes a global challenge, in this sense, 

this work brings 12 potential candidates, as the natural chromone and phenol compounds 

extracted from Daldinia sp. to inhibit the nsP2 and nsP3 of the Chikungunya virus. A molecular 

docking was carried to determine the energy affinity between ligand and receptor and a ADMET 

prediction was made. The docking simulations for the nsP2 showed mild binding, in the nsP3 

all the derivatives presented -6 kcal.mol-1 binding affinity and interacts with crucial residues in 

the replication cycle of CHIKV, the 5 best were chosen as the main derivatives for ADMET. 

The ADMET results shows high QED values, with good oral and intestinal absorption, 

excretion, distribution and toxicity, with moderate (Der9 to Der12) and poor (Der8) 

metabolism. Therefore, the 5 derivatives are potential candidates do treat chikungunya, with a 

focus on Der8 as they also have in vitro inhibitory action against zika virus. Those candidates 

may progress to in vitro assays to treat an actual endemic tropical disease.

Keywords: Molecular Docking; ADMET; Neglected Tropical Disease; Natural products; 
Daldinia.

3.1. Introduction

Neglected tropical diseases (NTDs) are an ever-increasing world concern due to the 

impact in tropical and subtropical countries that struggles to eradicate them, but mostly due to 

climate change that may spread NTDs to novel regions and the possibility of new epidemics 

and pandemics in the world after the COVID-19 pandemic (ROUGERON et al., 2015). Among 

the NTDs, Chikungunya is a disease caused by a namesake virus (CHIKV), an arbovirus like 

dengue and zika (SARKAR; GARDNER, 2016), which is transmitted mainly by Aedes Aegypti 

and Aedes Albopticus, common in tropical weather (FERREIRA; DE MORAES; 

ANDRICOPULO, 2022; ROUGERON et al., 2015).

. This chapter is based on the results of the submitted paper entitled <Phenol and chromone compounds for in 
silico inhibition of nsP2 and nsP3 of Chikungunya virus=, to DARU Journal of Pharmaceutical Sciences.
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3.2. Methodology

3.2.1. Ligands

The chromone and phenols molecules for Docking and ADMET, Figure 9, is based 

on the work of Zhang et al. (ZHANG et al., 2021a), which extracted (HPLC, ethyl acetate) and 

characterized novel compounds from Daldinia sp. and tested their antiviral properties against 

zika virus (ZIKV) and influenza A virus (IAV). In this sense a computational simulation may 

indicate a potential anti-CHIKV for further in vitro testing.

Initially, the molecules can be classified in phenol and chromone-like: from Der1 

to Der8 are the phenolic compounds and Der9 to Der12 are the chromone derivatives. Among 

the derivatives, some molecules stand out. Using the PubChem database, using the SMILES 

code obtained from drawn in MarvinSketch 22.22 (CHEMAXON, 2022), were not found 

molecules for the phenol derivatives Der1, Der2, Der3, and the chromone derivatives Der9 and 

Der10, wherefore those are novel molecules. Also, Der8 and Der4 are already well-known 

molecules, Der8 is known as Tyrosol (IUPAC name: 4-(2-hydroxyethyl)phenol), a plant (e.g. 

olive oil) and fungus metabolite that has antiarrihtimia, neuroprotective and antioxidant 

activities, for that cause it is a promising molecule for ischemic stroke (PLOTNIKOV; 

PLOTNIKOVA, 2020), were as Der4 is the salidroside (IUPAC name: (2R,3S,4S,5R,6R)-2-

(hydroxymethyl)-6-[2-(4-hydroxyphenyl)oxane-3,4,5-triol), a glycoside commonly found on 

Rhodiola rosea (also known as golden root), that has been vastly reported its neuroprotective, 

in the work of Liu et al.  (LIU et al., 2017) salidroside has been tested in vitro (Schwann cells) 

and in vivo (rats, injured in the sciatic nerve), demonstrating good results in nerve regeneration. 

Also, there is reports of in vitro testing of salidroside as an anti-dengue virus (anti-DENV), with 

good indications of potential blocking of the viral cycle (LOAIZA-CANO et al., 2021).

The compounds obtained and characterized by Zhang et al., which is worth 

mentioning the characterization analysis (antiviral activities, 1H NMR, 13C NMR, IR and UV 

in particular) in the supplementar material of the original paper. The SMILES of the derivatives, 

link to the PubChem pages and the supplementar material of the original paper are present in 

Appendix B.
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Figure 9 3 Chromone and phenol derivatives from Daldinia sp.

Source: LIMA et al.(2023).

3.2.2. Docking

Molecular docking simulations were performed to evaluate the potential action of 

the novel derivatives of phenol and chromones molecules in the replication enzymes nsP2 and 

nsP3 of CHIKV. The structures were obtained from the repository Protein Data Bank (PDB) 

and identified as <Structure of Chikungunya virus nsP2 protease= (PDB 3TRK), submitted 

without mutations with 2.4 Å of resolution determined by x-ray diffraction (XRD), classified 

as a hydrolase expressed in Escherichia coli BL21 (R. P. D. BANK, [s.d.]) and <Crystal 

structure of macro domain of Chikungunya virus= (PDB 3GPG) with 1.65 Å resolution 

determined by XRD, expressed in Eschericia coli without mutations (MALET et al., 2009). 

Both targets are presented in Appendix C. It is important to note that the original PDB file of 

nsP3 already nominates the chains with A (red), B (orange), C (light cyan), and D (blue).

The AutoDock Vina software was used to perform the molecular docking 

simulations, set to execute a Lamarckian Genetic Algorithm (LGA) (FUHRMANN et al., 

2010). The grid box for nsP2 was centered in 16.472, 24.972. and 24.389 Å for the x, y and z 

axis respectively with size parameters of 116 Å (x), 126 Å (y) and 120 Å (z) and the nsP3 in 

the coordinates 16.667 (x), -25,139 (y) and -1,722 (z) Å with size parameters of 126 Å (x), 126 

Å (y) and 120 Å (z). To further enhance the pocket, both grid were confirmed with 
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DoGSiteScorer (DA FONSECA et al., 2022; VOLKAMER et al., 2010, 2012a), to determine 

the potential active sites based on the protein structure. The DoGSiteScorer was used to evaluate 

only the pockets, without ligands, with properties and druggability and on all the chains (A, B, 

C and D, given by the PDB). To select the pockets, a simple score of 0.4 or above was used.

As criteria for the protein structure, the methodology proposed by Yan and 

coworkers (YAN et al., 2014), which were added Gasteiger charges, essential hydrogen atoms 

and removed water molecules. The code for the preparation was made through AutoDockTools 

(ADT) (MORRIS et al., 2009b). A total of 30 independent simulations were realized, being able 

to obtain 20 poses per simulation.

To improve the partial refinement of each calculus, the exhaustiveness criteria was 

set to 64, all bonds and torsion of the ligands were adjusted to twist while the protein structure 

kept rigid (NGUYEN et al., 2017). As the criteria to select the best pose, the root mean square 

deviation (RMSD) was carried, with ideal valors bellow 2 Å (YUSUF et al., 2008). To evaluate 

the stability of the complex binder-ligand through the simulations, the energy affinity (&G) was 

used, with desirable values close to -6.0 kcal/mol (SHITYAKOV; FÖRSTER, 2014).

3.2.3 ADMET

For the ADMET evaluation, an approach similar to the work of Rocha (NUNES DA 

ROCHA et al., 2022), Lima(LIMA et al., 2022) and Lima(LIMA et al., 2023b) was used, as the 

online websites utilizes different drug databases and algorithms, a consensus based on the 

numerical (like physico-chemical descriptors) and empirical (in vitro assays) can be made to 

predict the properties of the drugs.

The compounds were drawn in MarvinSketch v22.22 as described in the work of 

Zhang and coworkers(ZHANG et al., 2021a), then converted to a SMILES format and .mol to 

submit to ADMETlab 2.0, ADMETboost and SwissADME (http://www.swissadme.ch/). In 

order to produce a .mol file in MarvinSketch, the force field used was the MMFF94, with 

maximum number of conformers of 10.

In the sense of the state of the art, AI Drug Lab was used to further improve the 

results of the consensus, due to the recent implementation of the ADMETboost algorithm 

trained in the Therapeutics Data Commons ADMET Benchmark, achieving high rank in several 

tasks and also has a higher degree of specificity in the results(TIAN; KETKAR; TAO, 2022), 

and also, uses the same limits for optimal data as ADMETlab 2.0, then being easily comparable.



45

For druglikeness, the Quantitative Estimation of Druglikeness (QED) and 

Medicinal Chemistry Evolution 2018 (MCE-18) were performed with the rules of Pfizer (logP 

< 3 and 40 < TPSA < 90 Å²) (HUGHES et al., 2008), , GSK (MW f 400 g/mol, logP f 4) 

(GLEESON, 2008) and the Golden Triangle (GT) rule (200 < MW f500 g/mol, -2 < logD f 5) 

(JOHNSON; DRESS; EDWARDS, 2009), from the ADMETlab 2.0.

The metabolism sites, reactive fragments and excretion descriptors were 

determined from XenoSite and ADMETlab 2.0 webservers, while the toxicity was evaluated at 

pkCSM and ProTox II.

3.3 Results and discussion

3.3.1. Molecular Docking

The nsP2 and nsP3 enzymes perform important roles in the viral replication, as the 

nsP2 exhibits phosphatase helicase and proteolytic activities, and the nsP3 synthesize the 

reverse if the negative RNA strip (POWERS, 2018). Therefore, the inhibition of those enzymes 

may be a possible treatment for Chikungunya.

It is important to note that the nsP2 is a well-studied target for molecular docking 

of CHIKV, in the works of Basseto et al. (BASSETTO et al., 2013) and Das et al. (DAS et al., 

2016) long compounds were obtained with rich Ã-stacking sites with potential inhibitory of 

nsP2, however in the in vitro assays the first compound of Basseto was unable to inhibit, but 

some of their derivatives  and the best compound of Das were able to, besides the importance 

of biological assays to reinforce computational simulations, small molecules with few Ã-
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stacking sites may not be suited for the inhibition of nsP2, a possible explanation for the 

performance of the compounds presented.

Figure 10 3 Energy affinity through molecular docking for the nsP2.

Source: Author.

A further evaluation of the interaction modes between the ligands and residues in 

the target, Figure 11 and Table 2, shows the influence of the stereoisomerism and alkyl group 

in the carbon 2. Der9 (R and methyl group) has the lowest energy affinity although it has 5 

interactions, which they are predominantly hydrophobic and weak (distance > 3 Å). Der10 (R 

and propyl group) has 4 interactions, one of which is moderately strong (A:Trp1084, distance 

= 2.14 Å), responsible for it binding. Der11 (S and methyl group) has 6 interactions, 2 weaks 

(hydrophobic), 2 moderates (hydrogen bond) and 2 strong bonds (hydrogen bonds, A:Tyr-1079, 

distances: 1.85 Å; 1.96 Å). Der12 (S and propyl group) has 3 weak hydrophobic interactions 

and 2 moderate hydrogen bond interactions, reason that has slight higher binding energy with 

the ligand than Der9.
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Figure 11 3 Energy affinity through molecular docking for the nsP2.

Source: Author.
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Table 2 3 Interactions between the Der9 to Der12 with the nsP2 enzyme 
residues.

Ligand RMSD (Å) Receptor Interaction Distance (Å)

Der 9 1.821

A:Trp-1084 Hydrofobic 3.43

A:Leu-1205 Hydrofobic 3.78

A:Asn-1082 Hydrofobic 3.44

A:Ala-1046 Hydrofobic 3.89

A:Trp-1084 H-Bond 3.78

Der 10 1.865

A:Tyr-1079 Hydrofobic 3.83

A:Trp-1084 Hydrofobic 3.65

A:Tyr-1079 H-Bond 3.39

A:Trp-1084 H-Bond 2.14

Der 11 1.416

A:Tyr-1079 Hydrofobic 3.87

A:Trp-1084 Hydrofobic 3.86

A:Tyr-1079 H-Bond 1.85

A:Tyr-1079 H-Bond 1.96

A:Asn-1082 H-Bond 2.08

A:Trp-1084 H-Bond 2.21

Der 12 1.625

A:Ala-1046 Hydrofobic 3.60

A:Tyr-1079 Hydrofobic 3.99

A:Trp-1084 Hydrofobic 3.61

A:Tyr-1079 H-Bond 2.73

A:Trp-1084 H-Bond 2.06

Source: Author.

In the Figure 12, the energy affinity of the ligands and nsP3 is shown. The same 

criteria for selection were used for selecting the best ligands (energy affinity close to or lower 

than -6.0 kcal/mol). All the ligands has lower energy affinity with nsP3 than nsP2, as expected 

when comparing with the compounds (pyrimidone derivatives) tested by Zhang (ZHANG et 

al., 2021c) through docking simulation, which were able to inhibit the nsP3 and they have some 

similarities with the chromones and phenol derivatives.
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Figure 12 3 Energy affinity through molecular docking for the nsP3.

Source: Author.

The Figure 13 represents the possible binding sites of the enzyme 3GPG, 

DoGSiteScorer is a method based in grid that uses a Gaussian Difference (Difference of 

Gaussian - DoG)  Filter for the detection of possible binding subpockets that is able to fit a 

sphere-like object, based on the density, a cluster of subpockets forms a pocket. Subsequently, 

physico-chemical descriptors are calculated to determine the volume, surface area, lipophilicity, 

that are used to calculate the simple score of each pocket(VOLKAMER et al., 2012b).

In the Figure 13 its clearly stand out the central pocket (yellow), that pervades all 

the chains, with a simple score of 0.63 due to the high volume (1924.48 Å3) and surface area 

(2328.39 Å2). The second highest score, 0.61, is in the D chain (blue), the lilac pocket, with 

949.4 Å3 of volume and 1044.95 Å2 of surface area. The third (green), 0.57, is in the B chain 

(orange), with 866.67 Å3 and 1077.46 Å2 and the last (red), 0.45, in the A chain (red) has 653.74 

Å3 and 748.74 Å2. Although there is a higher probability of interaction the yellow pocket, the 

size of the ligands must be accounted for, so in the case of a small ligand that can fit in a small 

pocket may have a suitable interaction with its surrounding, while a large pocket size relative 

to a small ligand may indicate a greater distance of interaction, in contrast to the nsP2 

simulation.
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Figure 13 3 Energy affinity through molecular 
docking for the nsP3.

Source: Author.

The interaction between the ligands Der9 and Der10, the two best ligands (-7.5 

kcal/mol and -7.4 kcal/mol), and the nsP3 residues are presented in the Figure 14 and Table 3, 

which contains only the residues with the best interaction, with the exception of Der11, included 

due to the similarity and for comparison to the nsP2 enzyme. The main residues for the 

replication process of CHIKV are Asp 10, Ile 11, Asn 24, Asp 31, Gly 32, Val 33, Cys 34, Ser 

11, Tyr 114, Val 133 and Arg 144, as described in the work of Puranik et al. (PURANIK et al., 

2019). The Der9 and Der11 docking results corroborate with the residues interaction, which 5 

and 3 critical interactions, respectively.

As mentioned before, the main protein chains of nsP3 involved in interactions are 

the smallest, and their interactions have high potential of inhibition, it is an important contrast 

when compared to nsP2, while the ligands can fit in the yellow and lilac pockets, the distances 

are relatively long, decreasing the binding affinity. Also, a big pocket to a small ligand may 

increase instability of the binding in time, due to weak interactions with target, possible 

interactions with surroundings and freedom of movement, as in a small pocket site the opposite 

can be true, the ligand has higher probability to be entrapped because of the strong interactions 

and less degrees of freedom. Both cases may be evaluated by a Molecular Dynamics simulation.

Although Der8 has the lowest affinity for the target, -6,2 kcal/mol, it is interesting 

to note that, in the original work of the compounds, presented in vitro inhibitory action against 

ZIKV and still is inside the -6 kcal/mol against CHIKV, making it a candidate for an in silico 

simulation targeting ZIKV proteins or further studies in vitro to discover or propose a 
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mechanism of inhibition and the in vitro test of Der8 and CHIKV to develop as a potential drug 

to treat zika and chikungunya, as they share the vector and some symptoms. For an even further 

study, both simulations and in vitro assays should be made for dengue.

Figure 14 3 3D interactions of the complex of enzyme nsP3-ligands (Der9 and Der11), 
represented in orange (Der9) and lilac (Der11).

Source: Author.
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Table 3 3 Main Interactions between the Der9 to Der12 with the nsP3 
enzyme residues. Only critical role in viral replication of CHIKV are 
presented.

Ligand RMSD (Å) Amino Acid Interaction Distance (Å)

Der9 1.821

A:Val-33 Hydrofobic 3.77

A:Tyr-114 Hydrofobic 3.39

A:Asp-31 H-Bond 3.52

A:Val-33 H-Bond 2.28

A:Ser-110 H-Bond 2.37

Der10 1.865

B:Asn-24 Hydrofobic 3.82

B:Val-33 Hydrofobic 3.73

B:Tyr-114 Hydrofobic 3.47

B:Ser-110 H-Bond 2.98

Der11 1.416

A:Tyr-114 Hydrofobic 3.72

A:Val-33 H-Bond 2.74

A:Ser-110 H-Bond 2.20

Der12 1.574

B:Asn-24 Hydrofobic 3.81

B:Val-33 Hydrofobic 3.68

B:Tyr-114 Hydrofobic 3.62

B:Ser-110 H-Bond 1.93

B:Tyr-114 Ã Stacking 4.91

Source: Author.

3.3.2. ADMET

As described by Wager and coworkers (WAGER et al., 2016a), more polar (40 < 

TPSA f 90 Å²), less lipophilic (logP f 3), less basic and larger than drugs available from data 

sets of commercially available, including from Pfizer (WAGER et al., 2010), are less likely to 

be toxic in the nervous system in vivo. From those sets, some of the drugs are propofol (a phenol 

derivative), caffeine, clonazepam, modafinil, alprazolam, quetiapine, fluoxetin, escitalopram 
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and zolpidem, which are all permitted in Brazil under prescription or used as general anhestesic 

(BRASIL, 1998), with the exception of caffeine, from coffee drinks and anti-inflammatory 

drugs.

In the oral bioavailability radar in Figure 15a, it is possible to observe the 

physicochemical properties of the compounds Der1 to Der12 applied to the druglikeness criteria 

of Pfizer and GSK. The properties clearly show compounds of polarity within the ideal limit 

predicted by the 2016 Pfizer rule (WAGER et al., 2016b) due to low logP and high TPSA values, 

due to the solvent extraction of the fermented material of Daldinia sp. with ethyl acetate (HPLC 

grade), as should be expected. The high hydroxylated, ether, phenolic and chromone groups 

also contribute to a high number of hydrogen bonding sites (HBA and HBD), relatively to the 

size and MW of those molecules.

In the sense of the druglikeness in Table 4, most of the molecules presents high 

QED values (above 0.6, in a range of 0.0 to 1.0), the main cause are the low molecular size 

(MW < 300.12 g.mol-1) and low lipophilicity (logP < 2), with the exception of Der4, owing this 

to the most different molecular structure (highest TPSA, lowest number of logP and second 

highest MW), indicating that the Der1 to Der3 and Der5 to Der12 are similar to already known 

and well characterized drugs from the databases used by ADMET consensual prediction. In the 

MCE-18, it is possible to observe that scores g 40 suggest that the compounds Der4, Der9, 

Der10, Der11 and Der12 present an Fsp3 of at least 50% (Fsp3 g 0.5), which basically follows 

the trends observed in medicinal chemistry, where it is worth highlighting the compounds Der10 

and Der12 as leading compounds in occupying the ideal physicochemical space (Figure 15a) 

(IVANENKOV; ZAGRIBELNYY; ALADINSKIY, 2019). The physicochemical space of all the 

derivatives, as obtained by ADMETlab 2.0, is presented in the Appendix D.
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Table 4 3 Physicochemical properties of Der1 to Der12, with the Pfizer, Golden 
Triangle and GSK criteria for druglikness

Prop. Derivatives
1 2 3 4 5 6 7 8 9 10 11 12

logP 1.12 1.12 1.31 -0.61 1.83 0.61 0.69 0.77 -0.28 0.55 -0.37 0.50
logD 1.01 0.94 1.13 -0.65 2.13 1.02 1.09 0.94 -0.62 0.05 -0.36 0.57
MW 224.

1
310.1 224.1 300.1 222.1 168.0 168.0 138.0 196.0 224.1 196.0 224.1

HBA 4 6 4 7 3 3 3 2 4 4 4 4
HBD 2 2 2 5 2 2 2 2 2 2 2 2
TPSA 66.7

6
93.06 66.76 119.6 49.69 49.69 49.69 40.46 70.67 70.67 70.67 70.67

RB 6 10 6 5 6 3 3 2 0 2 0 2
NR 1 1 1 2 1 1 1 1 2 2 2 2
SC 1 2 1 5 1 0 0 0 2 2 2 2

Druglikeness criteria
Pfizer 
rule*

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)

GSK 
filter

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)

GT 
rule

(3) (3) (3) (3) (3) (+) (+) (+) (+) (3) (+) (3)

QED 0.73 0.70 0.73 0.46 0.71 0.70 0.70 0.63 0.62 0.78 0.62 0.78
Fsp3 0.41 0.50 0.41 0.57 0.38 0.33 0.33 0.25 0.50 0.58 0.50 0.58
MCE
-18

14.0 18.0 14.0 44.90 14.0 6.0 6.0 5.0 42.4 41.05 42.4 41.05

Source: Author.

Note: The prediction was made using the ADMETlab 2.0 platform, where the + tokens indicate an unfavorable 
druglikeness attribute; in bold, the descriptor that has at least one alert from the rules. *Pfizer's rule relates logP 
and TPSA attributes to the physical-chemical space of the ligands: low logP and high TPSA (logP < 3 and TPSA > 
75 Å²), low toxic risk; high logP and low TPSA (logP > 3 and TPSA < 75 Å²), toxic risk.

The Table 5 brings the pharmacokinectics descriptors of the derivatives, which the 

results expressed in terms of percentage are considered excellent or moderate when between 

30-70% (- token) and poor above 70% (+ token). A high Madin-Darby Canine Kidney cells 

passive permeability (Papp MDCK) is related to high oral bioavailability, with standard threshold 

value of 2x10-6 cm/s, below that would be estimated to have a poor oral absorption. The results 

are expected because of the size and logD7.4, as described in the work of Johnson and coworkers 

(JOHNSON; DRESS; EDWARDS, 2009). It is worth highlighting that the compounds with the 

best druglikeness scores, that is, Der10 and Der12, also obtained the best fit to the golden 

triangle rule (GT rule), especially due to the lowest logD values of positive order (0.05 and 

0.57, respectively), within a range of MW 200-500 g/mol (Figure 15b), with Papp MDCK values 

on the order of 1.6x10{u and 2.3x10{u cm/s, respectively.

As empirical data and literature reports, low molecular weight compounds usually 

are easily metabolized, nonetheless, some reactive metabolites can be originated in second 
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phase metabolism, especially in aromatic structures (HUGHES; MILLER; SWAMIDASS, 

2015). With the GT rule plot, it was possible to observe that compounds Der6 to Der8 are more 

displaced from the ideal physicochemical space for good metabolic stability, due to MW < 200 

g/mol (Figure 15b), being compounds more susceptible to metabolism of phase I (by CYP450) 

and phase II (by UGT). With the prediction of the site of metabolism, it was possible to observe 

that the compounds Der6 and Der7 have MW < 200 g/mol and are O-dealkylated by the 

CYP450 isoforms 2C9 and 2D6 due to the presence of a highly specific -OCH3 group, while 

the absence of this functional group increases the susceptibility of Der8 to undergo O-

conjugation (-OH groups) by the UGT in phase II of metabolism. Despite the presence of 

metabolism sites, the compounds do not pose a risk of human hepatotoxicity (HT) or Ames 

mutagenicity due to the formation of reactive secondary metabolites (Table 5).

On the other hand, it is important to highlight that the compounds Der10 and Der12, 

despite the stereoisomeric difference in the p-OH position, can undergo conjugation with 

reduced glutathione (GSH) of the GSH-R-OH type in their o-OH groups, constituting a 

metabolite capable of covalently interacting with proteins and DNA (Figure 15c), presenting a 

structural warning regarding the HT model (Table 5).

The low probability of being a P-glycoprotein (P-gp) substrate of Der1 to Der8 

indicates that these molecules can be easily absorbed in the intestine, in conform with elevated 

human intestine absorption (HIA), with HIA values estimated to be at least 70% (Table 5). In 

contrast to Der9 to Der12, which the P-gp may favors the excretion. It should clearly reflects 

in the clearance rate and half-life, although if safe for use as an efficient drug to treat 

chikungunya, novel methods of drug delivery can be used to bypass this, as example, in the 

form of a delayed release drugs, functionalization or core and shell nanoparticles with 

biocompatible molecules or materials (SEIDENSTUECKER et al., 2017).

The plasma protein binding (PPB) indicates the interaction of the molecules with 

the proteins in blood serum, therefore an important descriptor for distribution and excretion, 

related to oral bioavailability. Due to the lipophilic character of these proteins and high polarity 

of the derivatives, the PPB is low (< 90%), showing that they can be transported with ease along 

the body. It9s related with the volume distribution (VD), that corroborates with the PPB. Also, 

the capability to cross the blood-brain barrier (BBB) to act in the CNS, is low, due to the low 

lipophilicity(WAGER et al., 2010), similar to PPB. Should be noted that ADMETlab 2.0 

express BBB in terms of cm/s, were as the logBB > -1 is classified as BBB+ and logBB f -1 is 

classified as BBB-, the result expressed in the Table 5 is the probability of BBB+.
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Figure 15 3 (a) Oral bioavailability radar with physicochemical properties of the most 
favorable ligands in relation to the druglikeness criteria: LIPO (logP < 5), SIZE (200 < 
MW < 500 g.mol-1), POLAR (20 < TPSA < 120 Å²), INSOLU (logD < 4), INSATU 
(Fsp3 > 0.5) and FLEX (RB < 10). (b) Alignment between MW and logD to estimate 
the ideal physicochemical space for Papp and CLint,u descriptors. (c) Site of metabolism 
prediction for the Der6 to Der8, Der10 and Der12 compounds.

Source: Author.
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Table 5 3 Predicted ADMET properties for Der1 to Der12 compounds.

Prop. Derivatives
1 2 3 4 5 6 7 8 9 10 11 12

Absorption
Papp*

(x10{u) 2.1 2.5 2.1 3.7 1.4 1.5 1.5 1.6 11 1.6 13 2.3

P-gp% (3)
5.4

(3)
0.1

(3)
2.7

(3)
4.5

(3)
0.6

(3)
3.9

(3)
3.9

(3)
0.3

(+) 
99.7

(+) 
99.9

(+) 
99.7

(+) 
99.8

HIA% 73.0 71.3 73.2 72.0 73.1 73.2 74.5 73.6 73.2 72.9 73.2 72.9
Distribution

VD* 0.77 0.82 0.67 0.74 1.86 1.24 1.27 3.17 1.01 1.02 0.94 0.81
PPB% 56.6 55.3 58.3 38.9 49.1 42.8 42.5 38.9 44.2 46.8 44.2 46.8
BBB% 24.4 27.1 24.8 22.2 31.3 33.3 33.2 28.9 30.2 33.0 30.2 33.0
CYP450 metabolism

2C9 (+) (3) (+) (3) (3) (+) (+) (+) (+) (+) (3) (+)
2D6 (3) (3) (3) (3) (+) (+) (+) (3) (3) (3) (3) (3)
3A4 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)

Excretion
CLint,u* 15.1 12.2 14.8 2.5 12.2 12.6 12.8 13.4 3.3 3.4 4.7 4.7
Organic Toxicity

HT% (3) 
13.1

(3) 
18.6

(3)
7.2

(3) 
04.5

(3)
27

(3)
9.4

(3)
12

(3)
4.8

(+) 
84.4

(+) 
95.3

(+) 
73.3

(+) 
91.9

Ames
%

(3)
9.4

(3)
3.4

(3) 
12.2

(3) 
30.2

(3) 
12.5

(3) 
17.7

(3) 
15.9

(3) 
10.3

(3) 
18.3

(3) 
33.2

(3)
5.9

(3) 
19.4

Source: Author.

When compared to literature, the ADMET results of Der8 agrees with the reports, 

as in the rapid oral absorption and excreted in about 8h, through kidney, phase II UGT and the 

ortho-sulphate (SULT) metabolic pathways. The sulphated product of Der8/Tyrosol (Tyr 4-O-

sulphate) may protect cells from oxidized cholesterol and enhances the functionalities of the 

high density lipoprotein (HDL cholesterol) through its antioxidant property. Also, an important 

care when to prescribe Der8 for chikungunya is that the diagnostic must be correct, because in 

a case of a false negative for hemorrhagic dengue (concurrent disease that shares symptoms and 

vectors), the reported reduction of the blood viscosity can lead to a worsening clinical condition 

(MARKOVI� et al., 2019).

3.4 Conclusion

The novel natural phenolic and chromone derivatives presented mild potential to 

inhibit the nsP2, but outstanding potential to inhibit the nsP3 enzyme of CHIKV. The docking 

simulation showed binding affinity below -6.2 to -7.5 kcal.mol-1 to the nsP3 target, with strong 

interactions with residues crucial to its replication cycle. While the ADMET results shows that 
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the best docking molecules may have some drawbacks, the Der8 are one of the best candidates, 

for having a binding affinity of -6.2 kcal.mol-1, high QED with good absorption, distribution, 

toxicity and excretion and moderate metabolism (CYP2C9), that can be address through a 

design of novel drugs, like virtual screening and de novo design, although the metabolites 

generated less likely to be toxic. But it has many advantages over the others, as it is already 

effective in vitro against ZIKV, a disease that shares the same vector and some symptoms, is an 

anti-inflammatory and viable for treatment of some cholesterol related conditions. As a natural 

compound with potential to treat chikungunya and zika, a step further in the sense of in vitro 

assays and in silico for dengue virus, should be made to treat endemic diseases.
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CHAPTER IV

4. DE NOVO DESIGN OF BIOACTIVE PHENOL AND CHROMONE DERIVATIVES 

FOR INHIBITORS OF SPIKE GLYCOPROTEIN OF SARS-COV-2 IN SILICO

Abstract

This work presents the synthesis of twelve phenol and chromone derivatives, prepared by the 

analogs, and the possibility of conducting an in silico study of its derivatives as a therapeutic 

alternative to combat the SARS-CoV-2, pathogen responsible for COVID-19 pandemic, using 

its S glycoprotein as a macromolecular target. After the initial screening for the ranking of the 

products, it was chosen which structure presented the best energy bond with the target. As a 

result, derivative 4 was submitted to a molecular growth study using artificial intelligence, 

where 8,436 initial structures were obtained that passed through the interaction filters and 

similarity to the active glycoprotein pocket through the MolAICal computational package. 

Thus, 557 Hits with active configuration were generated, which is very promising compared to 

the BLA reference link for inhibiting the biological target. Molecular dynamics also simulated 

these compounds to verify their stability within the active protein site to seek new therapeutic 

propositions to fight against the pandemic. The Hit 48 and 250 are the most active compounds 

against SARS-CoV-2. In summary, the results show that the Hit 250 would be more active than 

the natural compound, which could be further developed for further testing against SARS-CoV-

2. The study employs the De Novo approach to design new drugs, combining artificial 

intelligence and molecular dynamics simulations to create efficient molecular structures. This 

research aims to contribute to the development of effective therapeutic strategies against the 

pandemic.

Keywords: main protease; COVID-19; molecular docking; pandemic; deep learning.

. This chapter is based on the results of the paper entitled <De novo Design of bioactive phenol and chromone 
derivatives for Inhibitors of Spike glycoprotein of SARS-CoV-2 in silico=, published in the 3 Biotech.
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Introduction

The worldwide outbreak of COVID-19 caused by the novel SARS-CoV-2 virus 

(Figure 16) has generated a significant health problem (ROSA et al., 2021) WHO declared this 

outbreak a pandemic, and China has been the most affected country. It is one of the most 

challenging problems of the 21st century and has changed the lives of people all over the world. 

SARS-CoV-2 is a novel coronavirus that is responsible for the outbreak of COVID-19, a disease 

that resembles SARS or MERS coronaviruses (ZHANG et al., 2021b). It is classified as a new 

type of epidemic pneumonia with a high mortality rate (GE et al., 2021). The disease is 

transmitted from person to person, and its symptoms are fever, coughing, and pneumonia 

(THANH TUNG et al., 2020).

Figure 16 3 Transmission electronic microscopy, digitally colored, of SARS-CoV-2 
isolated getting out of the cellular surface in a culture medium.

Source: National Institute of Allergy and Infectious Diseases 3 Rocky Mountain Laboratories (2020). 
Image licensed under Creative Commons 2.0 (CC BY 2.0), 
<https://creativecommons.org/licenses/by/2.0/deed.pt>, assigned to NIAID-RML. No alteration has been 
made, original version:<https://www.flickr.com/photos/niaid/49534865371/>. All the rights reserved to 
the original authors.

https://creativecommons.org/licenses/by/2.0/deed.pt
https://www.flickr.com/photos/niaid/49534865371/
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In response, researchers and doctors rushed to find a suitable treatment for COVID-

19, repurposing drugs like hydroxychloroquine, ivermectin, and remdesivir, to name a few. 

Many of those drugs showed no benefit and in some cases even harmful effects (FERREIRA et 

al., 2021; SHIRAZI et al., 2022). Some promising drugs are natural molecules and their 

derivatives, which are generally cheaper and more available than synthetic drugs (SINGH; 

BHARDWAJ; PUROHIT, 2022), like limonoids (OLIVEIRA et al., 2021), tangerentin (DA 

ROCHA et al., 2021), resveratrol, emodin, naringenin (CHAKRAVARTI et al., 2021) that may 

interact with the ACE2, S protein or Mpro, the main targets for COVID-19 treatment.

In this sense, Zhang et al. (2021) found phenols and chromones derivated from 

Daldinia sp. had antiviral and antibacterial properties. In his work, the molecules (Figure 2) 

and their derivatives assays showed anti-ZIKV (zika virus) and anti-influenza activities 

(ZHANG et al., 2021a).

As the need for rapid screening of drugs and testing, amid a pandemic, 

computational tools can be an alternative to traditional drug development, as it's effective and 

cheaper. Among the diverse approaches, Deep learning is a prevalent form of artificial 

intelligence that has been successfully applied in medical diagnostics, cell image analysis, 

organic synthesis, drug classification, and others(KERMANY et al., 2018; MIAO et al., 2019; 

MOEN et al., 2019; SEGLER; PREUSS; WALLER, 2018).
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Methodology

In silico study

An overall view of this work is simplified and represented in the Figure 17. First, 

an evaluation of the binding affinity of the derivatives and BLA (Biliverdin IX Alpha) with the 

Spike glycoprotein, through molecular docking, is realized to rank and select the lowest binding 

affinity from the compounds. In the second step, the selected molecule was used in the De Novo 

Design, in MolAICal, obtaining some potential drugs, from which the lowest binding affinity 

and highest synthetic accessibility are chosen as the best potential drugs and starting points to 

the furter steps. In the sequence, study and evalution of molecular docking (binding affinity, 

interaction with protein residues and MM/GBSA), molecular dynamics (RMSD, RMSF, H-

bond, SASA) and ADMET (druglikeness, MCE-18, pharmacokinetic prediction, metabolism 

and oral toxicity) is performed to assess the potential to an in vitro and clinical trials of these 

molecules, using the BLA as a reference molecule.

Figure 17 3 General workflow.

Source: Author.



63

4.2.2. Preparation of binders and proteins

The derivatives (1-12), from the work of Zhang et al. (ZHANG et al., 2021a) 

(Figure 18), BLA, and the Hits 48 and 250 were created in Chem3D software (AHMADI et al., 

2005). The structures obtained in 3D were submitted subsequently to auto-optimization settings 

which was applied the force field MMFF94S (WAHL et al., 2019), to generate bioactive 

conformations by minimization of randomly generated conformers, with algorithm Steepest 

Descent algorithm (PETROVA; SOLOV9EV, 1997), and Step per Update 4 (SUTTON; 

MAHMOOD; WHITE, 2016) by software AVOGADRO® (HANWELL et al., 2012). All files 

with ligands were converted to corresponding formats (.mol2 and .pdbqt) with the addition of 

ionization and tautomeric states at pH 7.4 by using OpenBabel ver. 3.0.0 software (O9BOYLE 

et al., 2011).

Figure 18 3 Chromone and phenols derivatives, from Daldinia sp. (a). BLA, Hit 48 and 
Hit 250 (b).

Source: Author.

b)

a)
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4.2.3. Protein Structural Preparation

The receptor under study was the spike glycoprotein (glycoprotein S or E2) of 

SARS-CoV-2, obtained from the protein database repository code (PDB) ID 7B62 (ROSA et 

al., 2021), whose crystalline structure was obtained by X-ray diffraction. To validate the 

simulations, the redocking technique was performed on the co-crystallized ligand, biliverdin ix 

alpha (BLA), which was in the original file of the co-crystallized protein. In addition, the 

interfering residues, water molecules, and synthetic inhibitors were removed. Polar hydrogens 

were added to binders and protein separately. The used software was AutoDock Tools 

(MORRIS et al., 2009a, 2009b). The BLA and GP spike, without water, interfering residues 

and not showing the hydrogens are presented in Figure 19, made in UCSF Chimera 1.17.1 

(PETTERSEN et al., 2004).

Figure 19 3 BLA + GP spike protein structure. No interfering residues and water. 

Source: Author.

4.2.4. Deep Learning Model and De Novo Drug Design

MolAICal contains the deep learning generator model of the drug, which was 

trained from 21,064 FDA-approved drug fragments. The 90 fragments generated by MolAICal 

and another 30 primary fragments were mixed for fragment growth in the cavity of the spike 

glycoprotein.

4.2.5. Grid coordinates

The x, y, and z coordinates of the center of the cavity box of the glycoprotein were 
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set to 21.404, 14.571, and -18.006 Å, respectively. The cavity box lengths of the protein will be 

set to 30.0 Å along the x, y, and z directions. The fittest molecules were extracted for the 

subsequent evolved growth of 10% of the generated molecular populations. The 140 best 

molecules of generated molecular populations will be developed as the mother molecules. Thus, 

over 60 molecules were randomly selected from the generated molecular populations to 

increase the diversity and novelty of growth ligands. The maximum population was set at 3000.

4.2.6. Fibonacci Points, Lipinski filter, and Interference

Fibonacci's 361 points are generated for the search for fragment disturbance, using 

the golden angle to distribute the points of the subsequent fragments from the initial growth 

fragment in the Spike glycoprotein pocket. Them when the fragments grow and forms a ligand, 

a genetic algorithm is applied to optimize molecular conformation of the ligand. Crossover and 

mutation operators were set to 1.0 and 0.5, respectively. 

According to Lipinski's rule of five, a set of rules of the physico-chemical 

descriptors that encompasses most drugs used for druglikeness and ADMET, values of crystal 

binders in the glycoprotein was be defined for the values of XLOGP (5.0), hydrogen acceptors 

(10), hydrogen donors (5), molecular weight (500), and rotary bonds (10).

Pan-assay interference compounds (PAINS) are compounds that may not have a 

therapeutic effect in vivo despite showing in silico fitting scores (BAELL; WALTERS, 2014), 

these compounds that usually are false positives, in the case of genetic algorithm may induce a 

false convergence of the optimal solution, were filtered out of unwanted growth binders.

After the genetic algorithm produced a generation, MolAICal uses a Vinardo score, 

to select the fittest ligands for the next generation. For this, it considers steric interactions, 

hydrophobicity and H-bonds to evaluate the affinity between ligand and protein pocket.

4.2.7. Synthesis Accessibility

MolAICal has the Ambit-SA library, which allows to evaluate how easy a 

compound can be synthesize. This library utilizes 4 scores: molecular, stereochemical, fused 

and bridged systems complexity, which ranges from 0 to 100 (hardest to easiest). The synthetic 

accessibility score of the growth ligands was saved in the statistical results file at the end of the 

simulation. A total of 30 cycle generations were carried out for the entire drug design process. 
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A total of six parallel drug design processes were carried out at protein. The spike glycoprotein 

of the generated binders was saved between 480 and 785 from the molecular weight. 

To further investigate the viability of the molecules, a retrosynthesis evaluation of 

the Hit 48 and Hit 250 were made, to show the real viability to obtain through organic synthesis 

mechanistic route, their inputs and costs. For this, it was used the Manifold, an online platform 

that allows to input a SMILES string or draw a chemical structure to develop a synthetic route 

based on database of reagents that already exist and are commercially available internationally. 

The routes can be classified by the number of steps, cost, database (PubChem, SureChembl), 

stores (Sigma, Enamine, Chemspace, Emolecules, Mcule, Moplport, Wuxi) and delivery time 

(1 to 12 weeks), for each step of the route the name of the mechanism and reaction, which the 

literature and patents that are based on for the majority of the mechanisms proposed. 

Futhermore, Manifold also presents the physicochemical descriptors and medicinal chemistry 

alerts of the final product, with each alert to a fragment of the product theres a citation or 

database (for instance, ZINC) that indicates the probable problem in each fragment.

4.2.8. Processing

A total of 30 CPU multicores were executed in parallel for the entire molecular 

growth process. Drug as the whole design process combined with deep learning model and 

classical programming was carried out automatically by MolAICal's designed package.

Molecular generation against the target protein was performed using the MolAiCal 

computational package (BAI et al., 2021) on a 10th Generation Intel®# Core Intel CPU, up to 

32 GB RAM, and an NVIDIA® GeForce® GTX 1660 Ti GPU, with a scanning time set to 8h. 

Ten clusters were used to generate the structures. An average of approximately 8,436 molecules 

were developed for the target protein during the experimental period. 

4.2.9. Molecular docking and dynamics general filter

For this study, it is curious to point out that the estimated Gibbs free energy (�G) 

of binding is dependent on the semi-empirical free energy force field AMBER (EBERHARDT 

et al., 2021) which composes the Autodock Vina algorithm. While stability analysis of ligand-

receptor complex formation is possible through stability analysis using MM/GBSA 

calculations.
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4.2.10. Molecular Docking 

The code used was AutoDock Vina, with its Lamarckian genetic algorithm (AG) in 

combination with grid-based affinity energy (Trott & Olson, 2010), with the anchor region 

according to the synthetic binding found co-crystallized in the protein (BLA). The Spike 

glycoprotein was obtained from the RCSB Protein Data Bank (PDB ID: 7B62) (ROSA et al., 

2021). Its structure was archived in the Protein Database with a resolution of 2.16 Å, determined 

from X-ray diffraction, classified as viral protein. The Lipinski9s rule of five (Benet et al, 2016), 

RMSD of up to 2.0 Å (HEVENER et al., 2009), and affinity energy less than -7.0 kcal/mol 

were used as an exclusion factor. The most favorable ones were represented by the lowest free 

binding energy (�G) (GURUNG et al., 2016). Discovery Studio (BIOVIA, 2015) conducted 

interaction 3D/2D visualization analysis studies, and Poseview was added (FRICKER; 

GASTREICH; RAREY, 2004; STIERAND; MAASS; RAREY, 2006).

4.2.11. Molecular dynamics 

Molecular dynamics (MD) simulations were performed with the program NAMD 

(PHILLIPS et al., 2005). The best conformations obtained in molecular docking were in the 

water solvated case in the TIP3P model (KATO et al., 2021), and in the CHARMM36-mar2019 

force field (HUANG et al., 2017). The preparation of the system was carried out in two steps. 

In the first step, the ligands were parameterized on the Charmm-Gui server (JO et al., 2013), 

and then they were submitted to the CGenFF server for parameter identification for 

CHARMM36 (VANOMMESLAEGHE et al., 2010).

In the second step, the protein was prepared in the NAMD program. 1 Na+ ion per 

ligand was added to neutralize the total charge of the system. The latter was subjected to energy 

minimization by the Steepest Descent method. Then, the system was subjected to NVT and 

NPT equilibrations under conditions described by Langevin (FARAGO, 2019). The production 

simulations to study the system were performed for 100 ns. N3 was used as a standard reference 

drug to analyze the interactions between the ligand and the protein.

The quality of the structures obtained in MDs was evaluated using the following 

parameters with NAMD: Potential Energy (kcal/mol) (DIEZ et al., 2014); Protein-Ligand 

Interaction Energy (kcal/mol); Root Mean Square Deviation (RMSD, Å) of protein, ligands and 

distances between them; Root Mean Square Fluctuation (RMSF, Å), minimum distances 
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between proteins and ligands observed in MD (ARSHIA et al., 2021). Hydrogen bonds were 

evaluated with Visual Molecular Dynamics (VMD) (HUMPHREY; DALKE; SCHULTEN, 

1996). The graphs will be generated using the Qtrace program (LIMA et al., 2012; PHILLIPS 

et al., 2005) 

4.2.12. MM/GBSA calculations

MM/GBSA was calculated by MolAICal (BAI et al., 2021) on the basis of the MD 

log file of NAMD software (PHILLIPS et al., 2005). The MM/GBSA is estimated by equations 

(1), (2), and (3).

�Gbind = �H 3 T�S j �EMM + �Gsol - T�S                                                        (1)

�EMM =�Einternal + �Eele +�Evdw                                                                        (2)

�Gsol =�GGB + �GSA                                                                                         (3)

Where �EMM, �Gsol, and T�S represent the gas phase MM energy, solvation-free 

energy (sum of polar contribution �GGB and nonpolar contribution �GSA), and conformational 

entropy, respectively. �EMM contains van der Waals energy �Evdw, electrostatic �Eele, and 

�Einternal of bond, angle, and dihedral energies.

Molecular dynamics simulations are an effective tool for understanding the 

relationships between the structure and function of macromolecules. Thus, this means that the 

information obtained from the dynamic properties of macromolecules is detailed enough to 

challenge the conventional paradigm of structural bioinformatics, which focuses on studying 

unique structures, and instead allows the analysis of conformational sets. The entropic 

contribution can be assessed based on MD trajectories by performing MD simulations.

However, this contribution is usually ignored and, when considered, is mostly 

configurational rather than thermal. Configurational entropy can be estimated using trajectories 

based on the variance-covariance matrix of atomic positional fluctuations. A quasi-harmonic 

method can be used, in which the variance-covariance matrix is calculated for all atoms of the 

complex. In the quasi-harmonic process, the mass-weighted variance-covariance matrix is 

calculated from the DM trajectories using Cartesian coordinates. The global translations and 

rotations of the solute molecule are removed using the slightest squares adjustments of mass-

weighted coordinates.
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The GB method (with a, b, and c set to 0.8, 0, and 2.91, respectively, and with the 

default modified Bondi radii) was used to calculate the polar solvation energy, and the non-

polar solvation energy was calculated using the solvent accessible surface area, according to 

equation (4).

�Gnp = ³ SASA + b                                                                                                (4)

The nonpolar component of desolvation was estimated by using the LCPO 

algorithm, with ³ being 11.948 kcal/mol/Å2 and b 12.862 kcal/mol. Entropy was calculated by 

a standard mode analysis of the calculated harmonic frequencies at the MM level. In addition 

to water, to increase the accuracy waste with more than 8 Å of the binders (GENHEDEN; 

RYDE, 2010).

In the MM/GBSA calculations, the polar component of desolvation was calculated 

by the modified GB model (GBOBC1, igb = 2 in Amber18) developed by Onufriev et al. 

(ONUFRIEV; BASHFORD; CASE, 2000), the exterior (solvent) dielectric constant was set to 

80 as default. 

4.2.13. Statistical analysis

The results were expressed as standard error ± of each experiment. After confirming 

the normality of distribution and data variance homogeneity, the groups' differences were 

submitted to variance analysis (unidirectional ANOVA), followed by the Tukey test (BLAND; 

ALTMAN, 1995). All analyses were performed using Origin 8.5, with a statistical significance 

of 5% (p < 0.05).

4.2.14. In silico ADMET study

This predictive study of druglikeness properties and pharmacokinetic descriptors of 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) was adapted from the 

methodologies of Lima et al. and Rocha et al. (LIMA et al., 2022; ROCHA et al., 2022), where 

different services available online constitute a consensus prediction between empirical 

decisions and numerical descriptors of in vivo and in vitro tests deposited in databases. Initially, 

the two-dimensional structural representation of the compounds was converted into a simplified 
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molecular-input line-entry system (SMILES) and submitted to the ADMETlab 2.0 server for 

quantitative estimation of druglikeness (QED) and for the similarity test with compounds 

registered in patents of the Medicinal Chemistry Evolution algorithm, 2018 (MCE-18), 

presented in equations (5) and (6) respectively.

��� = ���(1�3���
�=1 ��) (5)

��� = (�� +��� + �/���� + ����� + ��³ + ��� 2 ����1 + ��³ )�¹ (6)

where QED is defined by the sum of the physical-chemical properties (n = 8) that are within 

the ideality limit (di), which include: molecular weight (MW), partition coefficient (logP), H-

bond donors (HBD), and H-bond acceptors (HBA), Topological Polar Surface Area (TPSA), 

number of rotatable bonds (nRot), number of aromatic rings (nAR) and reactive molecular 

fragments (BICKERTON et al., 2012). MCE-18 relates the distribution of sp³ hybridization 

atoms between cyclic and acyclic structures, which include aromatic (AR) and non-aromatic 

(NAR) rings, chiral centers, and spiro-cyclic groups, where the final score expresses the degree 

of similarity of the compounds with substances registered in patents in recent years, where 

MCE-18 values > 45 show a better fit in this spectrum (IVANENKOV; ZAGRIBELNYY; 

ALADINSKIY, 2019). The results were compared to the druglikeness from the Pfizer Rule 

(optimal: logP f 3, and TPSA > 75 Å²) (HUGHES et al., 2008), GSK Filter (optimal: logP f 4 

and MW f 400 g/mol) (GLEESON, 2008) and Golden Triangle rule (optimal: -2 < logD f 5 

and 200 < MW f 500 g/mol) (JOHNSON; DRESS; EDWARDS, 2009).

And then, the SMILES code of the ligands was reported to PreADMET and 

ADMETlab 2.0 servers for estimation of passive permeability by the Madin-Darby Canine 

Kidney cells model (Papp MDCK), P-glycoprotein substrate (Pgp), human intestinal absorption 

(HIA), volume of distribution (VD), plasma protein binding (PPB) and blood-brain barrier 

permeability (BBB) as indicative of activity in the central nervous system (CNS). Finally, 

metabolism sites and reactive structural fragments were detected from the consensual structural 

reading between XenoSite and Stoptox servers and related to excretion descriptors, including 

intrinsic clearance rate (CLint,u) and half-life (T1/2), organ toxicity descriptors, which include 

human hepatotoxicity (H-HT) and Ames Mutagenicity (Xu et al., 2012), as well as acute 

toxicity, such as median lethal dose (LD50) in rats and median lethal concentration (LC50) in 
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Minnow, performed on ProTox-II and pkCSM.

4.2.15. Prediction of NMR spectra

To further characterize the novel theoric molecues and to facilitate the work after 

obtaining Hit 48 and Hit 250, the hydrogen-1 nuclear magnetic resonance (1H NMR) and 

carbon-13 nuclear magnetic resonance (13C NMR) were predicted using MarvinSketch 22.22, 

the results are presented in Appendix E. Should be noted that the IR spectra of both compounds 

were tried in C6H6 IR predictor, with no success due to no response of the server.

Results and discussion

4.3.1. In silico study

Based on the virtual screening performed by AutoDock Vina, it was possible to 

verify the affinity energies (kcal/mol) and correlated Root Mean Square Deviation (RMSD) 

between binder receptor against the Spike glycoprotein, especially derivative 4, with affinity 

energy of -6.8 kcal/mol (RMSD 1.088 Å), evidencing moderate competitiveness, compared to 

the reference linker BLA with -8.1 kcal/mol (TUMSKIY; TUMSKAIA, 2021; WU et al., 2022) 

(Table 6 and Figure 20).

All simulations performed (docking and re-docking) presented RMSD values lower 

than 2 Å, highlighting the best pose of the BLA-glycoprotein complex, which presented RMSD 

in the order of 2.0 Å. From the best pose choices based on the RMSD, the binding affinity of 

the complexes for the ligands was evaluated, where again, the complex can be highlighted, 

which presented energy in the order of -8.1 kcal/mol.

Thus, to assess the stability of the complex (proteins/ligand), the binding energy 

was used as a parameter, which has ideality parameters values below -6.0 kcal/mol 

(SHITYAKOV; FÖRSTER, 2014). Then, compound 4, which interactions with GP spike 

residues are presented in Figure 20 was used as a starter for drug design De novo to potentiate 

binding capacity and bring new bioactive structures.
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Table 6 3 Classification of the compounds accordingly to its binding 
Affinity in the molecular docking.

Compounds Binding Affinity 
AutoDock vina (kcal/mol)

BLA -8.1
Der 4 -6.8

Der 12 -6.5
Der 2 -6.4
Der 1 -6.3
Der 9 -6.3
Der 3 -6.2
Der 5 -6.2

Der 10 -6.2
Der 11 -6.1
Der 6 -5.2
Der 7 -5.2
Der 8 -5.1

Source: Author

Figure 20 3 3D interactions of Der4 and the residues of GP spike.

Source: Author.

4.3.2. Production of Hits

After the new drug design method, using MolAICal artificial intelligence software, 

557 hits (the active substance in the system) were obtained, from the initial phenol derivative 

growth structure (derivative 4), in Figure 20. 

Up to 10 clusters were processed, all of which obtained structures with affinity 

Der 
4
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energy variation ranging from -13.0 to -7.0 kcal/mol, which obtained more favorable energies. 

As show in Figure 21.

Figure 21 3 Graph of clusters by binding affinity.

Source: Author.

4.3.3. Synthetic accessibility

In the case of a molecule projected by De novo design, the experimental validation 

of its activity requires the synthesis of the compound. An approach to estimate the ease of 

synthesis of a ligand is called synthetic accessibility (SA), which is used to generate drug-like 

molecules and is necessary for many areas in the drug discovery process (JAIN; AGRAWAL, 

2004; WANG et al., 2022). The evaluation of the SA of a lead candidate is a task that plays a 

role in the discovery of the lead, regardless of the method by which the lead candidate is 

identified (SCOTTI et al., 2012). The more complex the synthesis of the leading candidate, the 

more time and resources are needed to explore this specific area of the chemical space.

When chemical structures are built during the De novo drug design process, it 

cannot be taken for granted that such compounds' chemical synthesis is feasible. The synthetic 

accessibility pattern of the study9s hits presented a very characteristic behavior of literature, 

where when the best fits protein, the more complex the synthesis becomes (ERTL; 

SCHUFFENHAUER, 2009). However, it is possible to get hits with ease of 75-80%, with an 

energy affinity of up to 37.29 to -13.02 kcal/mol, as shown in Figure 22.



74

Figure 22 3 Synthetic accessibility graph by binding affinity.

Source: Author.

From the obtained results, the best molecules, accordingly to binding affinity 

(extreme right of the graph) and synthetic accessibility (top of the graph) were selected under 

the threshold of binding affinity of -7.0 kcal/mol or bellow. Therefore, the Hit 48 (highest 

synthetic accessibility, near 80% and -7.29 kcal/mol) and Hit 250 (64% and -13.02 kcal/mol).

Curiously, Hit 250 does not have a stereocenter, an important factor considered by 

Ambit-AS, the algorithm used by MolAICal to evaluate the synthetic accessibility, whilst Hit 

48 has only one stereocenter, in the carbon bonded to iodine. It can be argued that the difference 

between then is more related to the size of the molecule, characteristic relatively higher in Hit 

250 than in Hit 48. Besides that, can be supposed, based in the graph of the Figure 10, that the 

difference of stereoisomers does not have significant influence in the binding energy.

The obtained results are consistent with the literature, because it is expected that for 

a molecule that better fit in the target site of a protein, more specific it is (ERTL; 

SCHUFFENHAUER, 2009). However, its relatively easy obtain Hits between 67.5% and 

72.5% with binding affinity between -11.5 kcal/mol and -13.0 kcal/mol, as can be seen in the 

clusters of Hits in Figure 22.

4.3.3.1 Evaluation of synthetic accessibility

After obtained the synthetic accessibility, then a mechanistic proposal synthetic 

route through softwares or webservers of retrosynthesis, like Manifold. Between the many 
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possible routes, it is demonstrated in Figure 23, one of the possible routes for Hit 48, starting 

from 2 reagents readily available in big international chemical suppliers or in the search engine 

database of those suppliers. The reaction occurs in 3 steps, starting from N-[(5-bromo-2-

methoxyphenyl)methyl]acetamide (PubChem CID: 49172932) and 2-(3-

bromophenyl)acetaldehyde (PubChem CID: 20387554), that reacts in a Nozaki-Hiyama-Kishi 

reaction mechanism (reaction NHK), in which a nickel and chromium catalyst, from a aldehyde 

and a phenyl halide forms an alcohol as a product. In sequence, an Appel reaction for the 

insertion of iodine, using triphenylphosphine (PubChem CID: 11776) and carbon tetraiodide 

(PubChem CID: 10487), that converts the alcohol to a halide. In final, converts the methoxide 

in hydroxide utilizing and strong acid (for instance, H2SO4).

Figure 23 3 Mechanistic proposal synthetic route by Manifold for Hit 48.

Source: Author.

Despite the result from MolAICal/Ambit-SA, the reaction suggested by Manifold 

shows an economic challenge even for the Hit 48, what requires an route expansion from more 

common and cheaper reagents, in other words, the synthesis of the starting molecules of the 

proposed route by common reagents of organic laboratories and industry, to make the 

production feasible to attend to a large scale demand. Nonetheless, this possibility incurs in 

more time consuming steps and high probability of less yield, for optimization, scalable pilot 

plants and industry simulation should be made.

In contrast, the Hit 250 is in line with the synthesis accessibility factor, with routes 

varying between 8 and 10 steps, with little divergence between starting reagents. An example 
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of the synthetic routes of Hit 250 is show in Figure 24. In this route, the intermediate molecules 

are called A (light orange), B (light blue) and C (light green), and in their reactions, those 

fragments were highlighted for better visualization.

It is noted an excess of coupling steps that needs metallic catalysts, in these specific 

reaction, palladium catalysts (Suzuki coupling and Heck9s reaction), which is known for, among 

many interesting uses in chemistry, as an expensive metal, that would further raise costs of this 

synthesis. Besides that, the precursors of A and B may poison the catalyst, lowering its 

efficiency, in an already extensive process, therefore with a low final yield and life cost 

(ERHARDT et al., 2008).

Figure 24 3 Mechanistic proposal synthetic route by Manifold for Hit 250. In a) the 
precursors, in b) the production of Hit 250.

Source: Author.

a)

b)
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4.3.4. Affinity energy

The 100 closest best results in affinity energy and RMSD were selected from the 

analogs produced, triggering the ligands to be grouped into clusters of similarity. The results of 

the generation experiments showed that the molecules obtained later had a better-fit score. The 

consequences for spike glycoprotein demonstrate this trend well because the clusters generated 

were formed in proportion to time. Thus, this is possible because larger values generate more 

diverse molecules, but the convergence of mooring scores becomes poorer. According to the 

methodology, cluster 1 initially presented two structures that did not interact very well with the 

protein, giving energies up to > -7.0 kcal/mol. From Cluster 2 up to Cluster 10, there was an 

increase in affinity in the results, presenting energies below -9.5 kcal/mol, where the most stable 

structure was Hit 250, with a binding energy of -13.02 kcal/mol, representative of Cluster 4, 

taking into account, that the designs presented greater structural complexity, which decreased 

their SA. Cluster 1, in particular, presented a model that best adapted to synthetic accessibility 

80%, in this case, the Hit 48, with an affinity energy of -7.29 kcal/mol. These results are 

presented in Figure 10.

4.3.5. Interaction with protein residues

In a series of docking simulations performed by Singh et al. (SINGH; 

BHARDWAJ; PUROHIT, 2022; SINGH; PUROHIT, 2023a, 2023b), it is possible to observe 

the strong influence of compounds consisting of at least two rigid rings that have ether (R-O-

R) and carbonyl (R-C=O) functional oxygenated groups, whether ester or ketone, on the 

selective modulation of Spike glycoprotein of SARS -CoV-2.

Hit 250 provided in molecular docking an RMSD of 1.3 Å, with an affinity energy 

of -13.02 kcal/mol, interacting in the same region as the native BLA linker, as shown in Figure 

25a. With strong interactions, it presented four hydrogen bonds in the residues Ser 94 (2.74 Å), 

Ile 101 (2.10 Å), Tyr 170 (2.28 Å), and Arg 190 (3.04 Å), with a strong contribution from its 

oxygenated H-bond donor groups, accompanied by hydrophobic interactions pi-alkyl and alkyl 

with residues Ile 119 (3.77 Å), Phe 192 (3.94/3.78 Å), and Leu 226 (3.79 Å), with a strong 

contribution from its benzene and the heterocyclic rigid rings (Figure 25a). The luminant 

represented by Hit 48, in Figure 25b, presented the polar interaction represented by a strong 

hydrogen bond in the residue Asn 121 (2.51Å), where the ether group (R-O-R) is the 
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nucleophilic acceptor. In addition, a pi-Stacking interaction was observed with the residue Phe 

175 (3.71 Å) and a halogen bond between the leu 176 residue (3.96 Å) and the bromine atom 

of the ligand. The coronaviral spike is the dominant viral antigen and the target of neutralizing 

antibodies. Finally, the linker used as a reference standard, the BLA, in the redocking study 

showed strongly three hydrogen bonds with the residues Ser 94 (2.54 Å), Asn 121 (2.29 Å), and 

Ser 205 (2.56 Å). With hydrophobic interactions in the residues Ile 101, Trp 104, Val 126, Phe 

175, Met 177, and Leu 226, shown in Figure 25c. Previous studies have shown that substitutions 

of Spike residues closely involved in ligand binding as His 207, Arg 190, and Asn 121, have 

Influenced in inhibition mechanism of the protein (KIM et al., 2021; KUMAR et al., 2020; 

ROSA et al., 2021; WAGENER et al., 2020). Additional data are presented in more detail in 

Table 7.

Figure 25 3 3D interactions of Hit 250 (a), Hit 48 (b) and BLA (c).

Source: Author.



79

Table 7 3 Interactions between the residues of GP spike and BLA, Hit 250, Hit 48 
and Der 4 

GP spike residues

Molecular Docking results
Ligand distance (Å)

BLA Hit 250 Hit 48 Der 4

Ser 94 2,54 (HB) 2,74 (HB) - 2,69 (HB)
Ile 101 3,84 (HI) 2,10 (HB) 3,54 (HI)
Gly 103 - - - 2,92 (HB)

Trp 104 3,87 (HI)
2,85 (HI) - - 3,62 (HI)

Ile 119 - 3,77 (HI) - 3,58 (HI)

Asn 121 2,29 (HB) - 3,65 (HI)
2,51 (HB) 2,16 (HB)

Val 126 3,27 (HI) - 3,41 (HI) 3,78 (HI)
Ile 128 - - - 3,88 (HI)
Tyr 170 - 2,28 (HB) - -
Phe 175 3,79 (HI) - 3,71 (PS) -
Leu 176 - - 3,96 (HaB) -
Met 177 3,78 (HI) - - -
Arg 190 5,05 (SB) 3,04 (HB) - 2,79 (HB)

Phe 192 - 3,94 (HI)
3,78 (HI) 3,77 (HI) 3,73 (HI)

Ile 203 - - - 3,84 (HI)
Ser 205 2,56 (HB) - - -
His 207 4,36 (SB) - - 2,73 (HB)
Leu 226 3,30 (HI) 3,79 (HI) - 3,63 (HI)

Source: Author.
Note: HI (hydrophobic interactions: alkyl e Ã-alkyl) HB (hydrogen bond), SB (saline bridge), HaB 
(halogen bond) and PS (Ã stacking)

4.3.6. MM/GBSA calculations

After balancing the production dynamics, the sampling of the steps was performed 

from 5 to 5, following the sampling interval of 10ns of the methodology for estimating the free 

energy variation using multiple trajectories. MM/GBSA calculations were performed in an 

implicit solvent field simulating a 0.15M saline solution. 

Although formally, the calculation of the free energy variation in this technique 

goes through the analysis of entropy from the normal modes of the system equations (7), (8), 

and (9).�������������(���) = (���������� 2 ��������� ) 2 (���������� 2 ��������� ) + ���������� (7)�������������(���) = ���������� 2 ��������� 2 ���������� + ��������� + ���������� (8)�������������(���) = ��������� 2 ��������� + ���������� (9)
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Calculations of normal modes are pretty time-consuming and computationally 

costly. This type ultimately makes virtual screening calculations, which are the focus of this 

study, not entirely impossible. However, there is a more important reason. It has been shown 

that entropy calculations decrease the correlation of predicted affinity values with experimental 

values when the analysis is done with a few microstates sampled from the trajectories (HOU et 

al., 2011; RASTELLI et al., 2009). Because calculation time limitations are essential, including 

these calculations in the procedure is not encouraged.

MM/GBSA energies are considered a way to estimate free energy for in silico study 

of ligands in protein complexes (GENHEDEN; RYDE, 2015). They are typically based on MD 

simulations and bring accuracy between empirical punctuation and strict alchemical 

disturbance (CHEN et al., 2018). As in conformational entropy, it is tough to obtain a concurrent 

value. Mainly, if ligands do not have any binding-induced structural changes in MD 

simulations, conformational entropy is generally ignored to calculate by standard mode analysis 

(WANG et al., 2017). MolAICal, therefore, provided a quick way to evaluate bonding free 

energy without ligand entropy based on the three-trajectory approach. Where, once again, the 

native ligand BLA/S-glycoprotein complex proved to be the best result, which continued to be 

the most stable in the study system, based on its free energy, with -28.79 kcal/mol concerning 

the other ligand under study, Hit 48, which presented a free energy -20.91 kcal/mol, and Hit 

250, with free energy estimative -15.50 kcal/mol. Therefore, the interaction energy 

decomposition technique revealed the contribution of the ligand-receptor complex and its final 

energy in Table 8. 

Table 8 3 Predicted free energy of BLA, Hit 48 and Hit 250 with GP spike

Complex &E (electrostatic) + 
&G (sol)

&E 
(VDW)

&G binding 
(kcal.mol-1)

Standard
Deviation

BLA/ GP spike 24,01 -52,80 -28,79 ± 0,0262
Hit 48/ GP spike 15,51 -36,42 -20,91 ± 0,0180
Hit 250/ GP spike 31,20 -45,69 -14,50 ± 0,0260
Source: Author.
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4.3.7. Molecular dynamics

4.3.7.1. RMSD analysis

After the analysis of the energy values, other important parameters to investigate 

the quality of the molecular dynamics are Root Mean Square Deviation (RMSD) of protein 

(backbone) to Hit 250, Hit 48, and BLA. The RMSD values obtained by the protein backbone 

along the MDs show all values between 0.76 Å and 2.10 Å. In the MD with the Hit 250 ligand, 

the profile is closer to 0.8 Å. Soon after the MD of Hit 48 demonstrated similar behavior to the 

previous one, but only reached a more stable configuration when it arrived at 82 ns, with an 

average RMSD of 1.0 Å. Already finalizing, the RMSD values of MD with the reference linker 

BLA showed a situation of suitability to the most favorable system during the trajectory of 

100ns, with an average value of 1.9 Å, as shown in Figure 26.

Figure 26 3RMSD values of GP spike with 
BLA (black), Hit 48 (red) and Hit 250 (green).

Source: Author.

4.3.7.2. RMSF analysis

The Root Mean Square Fluctuation (RMSF) is a parameter related to the flexibility 

of individual protein residues, serving to qualitatively assess the progression of molecular 

dynamics(DONG et al., 2018). Considering Figure 27, a similar profile of RMSF values is 

observed regardless of the ligand in contact. However, it should be noted that the native leach 

er has obtained greater fluctuations in the residues Gln 52, Phe 135, and Gly 232, with values 

above 2.0 Å. 
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Figure 27 3 RMSF values of GP spike with BLA (black), 
Hit 48 (red) and Hit 250 (green).

Source: Author.

4.3.7.3. H-bonds

The number of hydrogen bonds (H-Bond) found during MDs, considering the 

maximum value of 3.3 Å, are shown in Figure 28 and Table 9. About MD with reference ligand, 

BLA presents up to 4 hydrogen bonds per frame and several frames with three hydrogen bonds. 

The Hit 250 has only ten frames with three hydrogen bonds and several frames with two 

hydrogen bonds during molecular dynamics. And finally, MD with Hit 48 presents a smaller 

number of frames with two hydrogen bonds and several frames with one hydrogen bond. 

Therefore, it can be inferred that so much of the BLA as Hit 250 tend to interact more with 

Spike glycoprotein, making it a possible efficient antiviral against this virus. The interaction 

tendency between glycoprotein and Hit 250 can be confirmed by maintaining the binding site 

along the MD, evidenced by the hydrogen bonds detected in the three systems.
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Figure 28 3 Frames of the number of hydrogen bonds 
between GP spike with BLA (black), Hit 48 (red) and 
Hit 250 (green).

Source: Author.

Table 9 3 Residues of the GP spike that showed H-bond along the MDs. In bold, 
critical role in the replication cycle residues.

System H-Bond
MD with BLA Ser 94, Glu 96, Asn 99, Ile 101, Asn 121, Tyr 170, Ser 172, Gln 173, Asp 178, Arg 

190, and His 207 
MD with Hit 250 Ser 94, Glu 96, Ile 101, Asn 121, Gln 173, and Arg 190 
MD with Hit 48 Gly 103, Ser 205, His 207, and Leu 226

Source: Author.

In the residues identified with H-bonds along the molecular dynamics, in Table 9, 

the recurrence of residues Asn 121, Arg 190, and His 207 is observed, thus demonstrating an 

interaction potential of both Hit 48 and Hit 250, like the interaction between S-glycoprotein and 

BLA.

4.3.7.4. Solvent Accessible Surface Area

Solvent Accessible Surface Area (SASA) is defined as the surface area of a protein 

that interacts with its solvent molecules (MAZOLA et al., 2015). Average SASA values for free 

BLA, Hit 250, and Hit 48 complexes were monitored during 100 ns MD simulations. The traces 

for the SASA in Figure 29 show a steep increase within 10 ns indicating structural relaxation. 

The average SASA values for free BLA, Hit 250, and Hit 48 complexes were found to be 16,611 

Å2, 16,249 Å2, and 16,223 Å2, respectively. There was no major change observed in the SASA 
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values due to ligand binding. After this time, the values fluctuate around a constant value. We 

thus assume that the simulation times of 100 ns were sufficient for sampling equilibrated 

systems. The highest SASA is found for the S-glycoprotein molecules with the stabilizing 

monovalent ions. The run without monovalent ions shows a large fluctuation, whereas the 

systems with higher ion concentrations have smaller areas and may be shrinking under the 

influence of the surface charge, yielding more compact protein structures. Further inspection of 

the data demonstrates that the fluctuation or 8breathing9 of the relaxed surface is mainly due to 

a fluctuation of the SASA of the flexible C-terminal area.

Figure 29 3 SASA values of GP spike BLA (black), Hit 48 (red) 
and Hit 250 (green).

Source: Author.

4.3.8. In silico ADMET study

4.3.8.1. Evaluation of druglikeness

For Wager and coworkers (WAGER et al., 2016b), low lipophilic compounds (logP 

< 3) that are larger and more polar than commercially available CNS active substances (TPSA > 

75 Å²) reside in a physicochemical space where in vivo toxicity is unlikely. Compounds with 

high lipophilicity and low polarity tend to be more toxic than safe, in addition to showing 

unfavorable pharmacodynamic interactions against biological targets (HUGHES et al., 2008).

In the druglikeness radar of Figure 30, it is possible to notice that the three 
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compounds, that is, Hit 48 (Figure 30a), Hit 250 (Figure 30b), and the BLA ligand (Figure 30c) 

move outside an ideal spectrum of mediated lipophilicity by logP, with values greater than 3.0 

(Table 10). Compound Hit 48 showed low topological polarity (TPSA = 58.56 Å²) which, when 

combined with high lipophilicity, classified it as possibly CNS permeant toxicant, according to 

the Pfizer filter that combines these two attributes (Table 10).

Table 10 3 Physicochemical Properties and estimation of druglikeness. The * notation indicates 
that Pfizer's rule relates logP and TPSA attributes to the physical-chemical space of the ligands: 
low logP and high TPSA (logP < 3 and TPSA > 75 Å²), low toxic risk; high logP and low TPSA 
(logP > 3 and TPSA < 75 Å²), toxic risk. Note: in bold, properties favorable to binders.

Property Hit 48 Hit 250 BLA
Physicochemical Properties
logP 3.84 3.98 5.46
logD 3.14 1.24 2.08
MW 488.94 g/mol 496.11 g/mol 582.25 g/mol
HBA 4 9 10
HBD 2 3 6
TPSA 58.56 Å² 137.0 Å² 171.63 Å²
nRot 7 9 11
nRing 2 4 4
MaxRing 6 9 5
nHet 6 11 10
fChar 0 0 0
nRig 13 26 29
nStereo 1 0 0
Medicinal Chemistry
Pfizer rule* 2 Alerts; logP>3 and 

TPSA<75 Å²; (3)
1 alert; logP>3; (+) 1 alert; logP>3; (+)

GSK filter 1 Alert; MW>400 g/mol; 
(3)

1 Alert; MW>400 g/mol; 
(3)

2 Alerts; logP>4 and 
MW>400 g/mol; (3)

Golden Triangle 0 alert; (+) 0 alert; (+) 1 alert; MW>500 g/mol; 
(3)

QED 0.468 0.305 0.202
Fsp3 0.23 0.12 0.21
MCE-18 26.0 54.0 60.0

Source: Author.

It is curious to note that both Hit 48 and Hit 250 failed the GSK filter druglikeness 

criteria for having MW > 400 g/mol, an indication that these substances may have limited 

pharmacokinetics, such attributes include solubility, absorption and stability metabolism 

(GLEESON, 2008). However, it was possible to observe that Hit 250 passed the safety and 

pharmacodynamic criteria of the Pfizer rule, as it occupies a physical-chemical space where 

compounds with TPSA reside within the ideality spectrum (Figure 30b).
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4.3.8.2. Evaluation of MCE-18

In recent years, the molecules claimed for patents follow a physicochemical trend 

that deviates from the medicinal chemistry spectrum of the commonly used "rule of five". This 

chemical singularity focuses on how the fraction of sp³ hydrous carbons is distributed in 

aliphatic structures, chiral centers, and aromatic and non-aromatic cyclic structures. In this 

perspective, molecules registered in patents have been shown to be slightly more lipophilic and 

more polar than commercially available therapeutics (IVANENKOV; ZAGRIBELNYY; 

ALADINSKIY, 2019; WAGER et al., 2010).

In this test, it was possible to observe that QED values lower than 0.5 (on a scale 

ranging from 0.0 to 1.0) are directly related to the large molecular size of the ligands (MW > 

400 g/mol), and are reduced as that the TPSA increases to 171.63 Å² (BLA), depending on the 

number of HBA atoms (Table 10). However, the structural complexity involving the Hit 250 

and BLA ligands, especially due to the total of 4 aromatic (or heteroaromatic) rings, including 

the total of 9 atoms in the 2,3-dihydro-1H-isoindole-1,3-dione of the BLA complexed ligand, 

which yielded the ligands an MCE-18 score of 54.0 and 60.0, respectively. This finding suggests 

that the ligands present an excellent degree of similarity with the structural complexity of the 

compounds registered in patents in recent years (Table 10).

4.3.8.3. Predicted pharmacokinetic descriptors

The oral bioavailability of a drug concerns the alignment between the 

pharmacological portion absorbed as a function of a low rate of hepatic clearance. 

Pharmacological databases, such as Pfizer, Inc., estimate that a ligand exhibits high passive 

permeability when its in vitro Papp MDCK value is greater than 10x10-6 cm/s, which results in 

high oral bioavailability as it the clearance rate decreases (VAN DE WATERBEEMD; 

GIFFORD, 2003; WAGER et al., 2010). For Johnson et al. (HUGHES et al., 2008), these 

descriptors are closely related to the buffer lipophilicity (logD) at pH 7.4, limited to small 

compounds that are not very lipophilic, that is, that occupy a physical-chemical space formed 

by -2 < logD at pH 7.4 f 5 and 200 < MW f 500 g/mol.

In the graph in Figure 30d, it is possible to observe that the three ligands are outside 

the ideality spectrum for good intestinal permeability. This empirical decision corroborates the 

estimated Papp MDCK descriptors, where values equal to and less than 4.7x10-8 cm/s suggest a 



87

low passive permeability (Table 11). However, the substances showed low susceptibility to 

being Pgp substrates, as an indication of good intestinal absorption, with HIA values > 90% for 

compounds Hit 48 and Hit 250 (Table 11).

In addition, it is possible to note the contribution of the high lipophilicity in the 

distribution of the compounds in the blood plasma and in the CNS. Compounds of greater 

lipophilicity can bind strongly with serum proteins and have their tissue distribution affected 

(DYABINA et al., 2016; PIRES; KAMINSKAS; ASCHER, 2018). In this study, it was possible 

to observe that the compounds presented PPB < 90%, which allows a considerable distribution 

in biological tissues. At the same time, the low polarity of Hit 48 makes it more susceptible to 

distribution in the CNS, corroborating the permeability coefficient in the BBB in the order of 

2.969, which represents a ratio of the concentration of the compound in the brain by its 

distribution in the blood (C[Brain]/C[Blood]) (Table 11).

Table 11 3 Pharmacokinetic descriptors of the ligands.
Property Hit 48 Hit 205 BLA
Papp MDCK 4,70.E-8 cm.s-1 4,35.E-9 cm.s-1 4,34.E-9 cm.s-1

Pgp-sub (3) (3) (3)
HIA 95,92% 91,51% 86,78%
VD 0,76 L.kg-1 0,68 L.kg-1 0,41 L.kg-1

PPB 89,67% 86,55% 86,43%
BBB 
(C[Brain]/C[Blood])

2,969 0,029 0,098

H-HT (3) 0,72 (3) 0,66 (3) 0,75
Mutagen (3) 0,69 (3) 0,71 (3) 0,71
LC50 Pimephales p. 0,02 mM 0,32 mM 1,86 mM

Source: Author.
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Figure 30 3 Relationship between structure and druglikeness (QSAR) of Hit 48 (a), 
Hit 250 (b) and BLA (c), prediction of balance between absorption and clearance 
(d) and pharmacokinetic physical-chemical space (e).

Source: Author.

4.3.8.4. Metabolism and oral acute toxicity

Predicting the sites of metabolism allows us to estimate the effects of drug 

biotransformation on hepatic clearance and adverse effects on the human liver. Empirical 

analysis suggests that compounds with MW around 500 g/mol are metabolically unstable that 

is, they have structural fragments susceptible to biotransformation, forming secondary 

metabolites that are more water-soluble and more favorable to excretion. However, some 

biotransformations can form chemically reactive intermediates, such as epoxidation mediated 

by aromatic hydroxylation(HUGHES; MILLER; SWAMIDASS, 2015; JOHNSON; DRESS; 

EDWARDS, 2009).
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In this predictive test, the fragments are identified from a data library that relates 

the degree of sensitivity of the functional groups and structural fragments to be biotransformed 

in the human liver microsome system with the degree of specificity of these in the molecular 

structure (ZHENG et al., 2009). Here, it was possible to observe, mainly, that the aromatic 

centers of the ligands do not pose a risk of hydroxylation, reducing the risk of these substances 

forming reactive secondary metabolites (Figure 31a-c), which implies a low risk of human 

hepatotoxicity and mutagenicity (Table 6). Hit 48 has a phase II metabolism site in its phenolic 

hydroxyl, sensitive to conjugation reactions via UGT (UDP-glucuronosyltransferase), 

indicating that the substance is more resistant to phase I metabolism, with an order of CLint,u 

estimated at 1.36 mL/min/kg which may be indicative of good oral bioavailability (Figure 16a). 

However, this metabolism pathway seeks to optimize the excretion pathway.

A low rate of hepatic clearance implies a longer half-life (T1/2) for pharmacological 

action (VAN DE WATERBEEMD; GIFFORD, 2003). This is observed when comparing the 

metabolism pathways of Hit 48 (Figure 31a) and Hit 250 (Figure 31b), where the higher 

incidence of metabolism sites induces a shorter T1/2 time to Hit 250, estimated at 0.24 h, 

depending on its highest clearance order compared to Hit 48, with an estimated CLint,u value of 

2.17 mL/min/kg (Figure 31b). In the probability maps of Figures 31d-f, it is possible to observe 

that the metabolism sites are within the positive contributions that reduce the acute toxicity of 

the Hit 48 ligands (Figure 31d) and Hit 250 (Figure 31e), where the predicted LD50 values of 

1500 mg/kg and 1000 mg/kg indicate that they are compounds of toxicity class 4 (DIAZA et 

al., 2015), which are compounds that require control of the administered oral dose. These 

compounds showed an order of similarity greater than 70% (inside the threshold) with the 

compounds deposited in the PubMed database (BORBA et al., 2022).

In addition, it is worth mentioning that Hit 250 and BLA binders showed the best 

LC50 values for Fathead Minnow, where values of 0.32 mM and 1.86 mM (in logarithmic scale), 

respectively, suggest that the minimum effective dose does not pose a risk to a fish population 

tested, as an indication of the safety of oral administration in humans (Table 10).
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Figure 31 3 Metabolism site prediction of Hit 48 (a), Hit 250 (b) and BLA (c) 
and fragment-based acute toxicity prediction of Hit 48 (d) Hit 250 (e) and 
BLA (f).

Source: Author.

One of the limitations of De Novo drug design has been that they cannot identify a 

perfect compound for synthesis since some of the potential hits generated have complexity that 

compromises the realization of their synthesis. However, in return, they can identify high-

quality ideas for future in vitro and in vivo assays. Considering the imperfections of automated 

chemical synthesis planning and reaction pathway design, combining AI-driven generative 

molecular design models with advanced synthesis and retrosynthesis algorithms could offer 

ample future opportunities for new molecular discoveries.

4.4. Conclusion

It was carried out through the innovative computer-aided drug design De novo, 

researching new drug candidates to treat Sars-Cov-2, more precisely, S-glycoprotein as a target. 

Therefore, an important role was played in developing new anti-Covid-19 drugs, which was of 

significant importance because, amid the limitation of resources, it accelerated the drug 

development process, reducing the time and additional costs of traditional screening.
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Some new derivatives of phenols and chromones were designed and studied 

through molecular docking, where 557 hits were generated. The mode of binding of the 

proposed compounds with the target protein was evaluated, and the data from docking studies 

explained that some newly designed analogs had a significantly high affinity for the target 

protein compared to BLA as a reference linker. 

The compound with the highest affinity value was Hit 250, which proved to be the 

most potent inhibitor in this in silico study series with a binding energy of -13.02 kcal/mol. 

Still, its synthetic viability was close to 50%, besides showing lower stability in the molecular 

dynamics analysis studies of RMSD, RMSF, and SASA. While another drew attention was Hit 

48, with -7.29 kcal/mol of affinity energy, presenting better synthetic viability, close to 80%, 

and better stability in the study of molecular dynamics, compared to the reference drug BLA, 

with the binding affinity of -8.1 kcal/mol. In the ADMET tests, Hit 250 showed greater 

similarity with species registered in patents and stands out concerning Hit 48, for occupying a 

physical-chemical space with a low toxic incidence in vivo, due to its high polarity. Therefore, 

it is suggested that these compounds can be used in clinical trials to test their effectiveness for 

social benefits as a standard for future projects, optimization, and research in producing more 

effective analogs.
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CHAPTER V

5. CONCLUSION

Computational chemistry is one of the first and major steps in drug development, 

the last decade it has increased substantially because of the technology, softwares, servers, and 

novel approaches, to increase the chances of success and provide better starting point in 

preclinical trials. Thus, this worked showed that the molecules extracted from Daldinia sp. has 

interesting bioactivities that should be explored further as it is, to date, understudied despite 

almost global distribution and with in silico and in vitro desirable properties. Therefore, it is an 

economic, sustainable and viable source of high valor bioactive molecules.

In the first work, the chromone and phenol derivatives from Daldinia, as potential 

drugs capable of inhibiting CHIKV, are safe for oral use with the exception of chromones. From 

the phenol derivatives, the Der 8 is highlighted as the best candidate, as it is able to inhibit 

ZIKV and readily available (Tyrosol).

In the second work, the Hits 48 and 250 showed great potential to treat SARS-CoV-

2, despite the difficulty of synthesis of both, and good oral safety. These molecules may also be 

potential candidates for inhibition of future SARS viruses.

Therefore, this work is expected to provide a fresh perspective on Daldinia natural 

products and make significant contributions to the literature on drug discovery and in silico 

design, as presented in Appendix F. The results demonstrate the advantages of using the 

computational method in the first phase of drug development. As a next step, future research 

should focus on prospecting bioactive natural products from Daldinia, optimizing the 

extraction, purification, and production of derivatives, conducting organic synthesis of Hit 48 

and Hit 250, and performing preclinical tests of CHIKV and SARS-CoV-2 (including its 

variants).
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APPENDIX A 3 WEBSERVERS AND SOFTWARES MAIN PAGES AND EASE OF 

ACCESS TO DATA

Name Link

ADMETboost <https://ai-druglab.smu.edu/admet>

ADMETlab 2.0 <https://admetmesh.scbdd.com/>

AiZynthFinder <https://github.com/MolecularAI/aizynthfinder>

AutoDock Vina <https://vina.scripps.edu/>

C6H6 <https://www.cheminfo.org/flavor/c6h6/index.html> 

CP2K <https://www.cp2k.org/>

Gabedit <https://gabedit.sourceforge.net/> 

GROMACS <https://www.gromacs.org/>

Manifold <https://app.postera.ai/> 

MarvinSketch <https://chemaxon.com/marvin> 

MolAICal <https://molaical.github.io/> 

ORCA <https://orcaforum.kofo.mpg.de/app.php/portal> 

PaccMannrl <https://github.com/PaccMann/paccmann_rl> 

pkCSM <https://biosig.lab.uq.edu.au/pkcsm/> 

PreADMET <https://preadmet.webservice.bmdrc.org/> 

ProTox-II <https://tox-new.charite.de/protox_II/> 

PyMOL <https://pymol.org/2/> 

STopTox <https://stoptox.mml.unc.edu/> 

SwissADME <http://www.swissadme.ch/> 

UCSF Chimera <https://www.cgl.ucsf.edu/chimera/> 

XenoSite <https://xenosite.org/> 

To favor the continued work and provide the data for scientific checking (after 

publication of related papers), the following QR code are presented to access the Github folder 

(<https://github.com/PetrusChem/In-silico-inhibition-of-SARS-CoV-2-and-CHIKV-by-

phenol-and-chromone-derivatives>),  containing data and shortcuts, for the print version. 

https://ai-druglab.smu.edu/admet
https://admetmesh.scbdd.com/
https://github.com/MolecularAI/aizynthfinder
https://vina.scripps.edu/
https://www.cheminfo.org/flavor/c6h6/index.html
https://www.cp2k.org/
https://gabedit.sourceforge.net/
https://www.gromacs.org/
https://app.postera.ai/
https://chemaxon.com/marvin
https://molaical.github.io/
https://orcaforum.kofo.mpg.de/app.php/portal
https://github.com/PaccMann/paccmann_rl
https://biosig.lab.uq.edu.au/pkcsm/
https://preadmet.webservice.bmdrc.org/
https://tox-new.charite.de/protox_II/
https://pymol.org/2/
https://stoptox.mml.unc.edu/
http://www.swissadme.ch/
https://www.cgl.ucsf.edu/chimera/
https://xenosite.org/
https://github.com/PetrusChem/In-silico-inhibition-of-SARS-CoV2-and-CHIKV-by-phenol-and-chromone-derivatives
https://github.com/PetrusChem/In-silico-inhibition-of-SARS-CoV2-and-CHIKV-by-phenol-and-chromone-derivatives
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APPENDIX B 3 SMILES STRINGS AND PUBCHEM LINKS

Compounds SMILES Analysis PubChem link
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Der2
CC(CO)C(=O)OCC(C)C(=O)OCCC1=CC=C(

O)C=C1
3

Der3 C[C@H](O)CC(=O)OCCC1=CC=C(O)C=C1 3

Der4
OC[C@H]1O[C@@H](OCCC2=CC=C(O)C

=C2)[C@H](O)[C@@H](O)[C@@H]1O

<https://pubchem.ncbi.nlm.nih

.gov/compound/159278> 

Der5 CC(=C)[C@H](O)COC1=CC=C(CCO)C=C1
<https://pubchem.ncbi.nlm.nih

.gov/compound/50993978> 

Der6 COC1=C(O)C=CC(CCO)=C1
<https://pubchem.ncbi.nlm.nih

.gov/compound/16928> 

Der7 COC1=C(O)C=C(CCO)C=C1
<https://pubchem.ncbi.nlm.nih

.gov/compound/10034991> 

Der8 OCCC1=CC=C(O)C=C1
<https://pubchem.ncbi.nlm.nih

.gov/compound/10393> 

Der9
CC1=CC(=O)C2=C(C[C@H](O)C[C@H]2O)

O1
3

Der10
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2O)O1
3

Der11
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<https://pubchem.ncbi.nlm.nih

.gov/compound/156582518> 

Der12
CCCC1=CC(=O)C2=C(C[C@@H](O)C[C@

H]2O)O1

<https://pubchem.ncbi.nlm.nih

.gov/compound/156582517> 

Hit48
CC(=O)NCC1=CC(=CC=C1O)C(I)COC1=CC(Br)=CC=C

1
3

Hit250
OC(=O)C1=CC(CCOC2=CC3=C(C(=O)N(C=O)C3=O)C(

F)=C2C(=C)C2=CC=CN2)=C(CF)C=C1O
3

Prednisone
CC12CC(=O)C3C(C1CCC2(C(=O)CO)O)CCC4=CC(=O)

C=CC34C

<https://pubchem.ncbi.nlm.nih

.gov/compound/Prednisone>

Dipyrone
CC1=C(C(=O)N(N1C)C2=CC=CC=C2)N(C)CS(=O)(=O)

[O-].[Na+]

<https://pubchem.ncbi.nlm.nih

.gov/compound/522325>

Paracetamol CC(=O)NC1=CC=C(C=C1)O

<https://pubchem.ncbi.nlm.nih

.gov/compound/Acetaminophe

n>

https://www.rsc.org/suppdata/d1/ra/d1ra03754d/d1ra03754d1.pdf
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https://pubchem.ncbi.nlm.nih.gov/compound/50993978
https://pubchem.ncbi.nlm.nih.gov/compound/50993978
https://pubchem.ncbi.nlm.nih.gov/compound/16928
https://pubchem.ncbi.nlm.nih.gov/compound/16928
https://pubchem.ncbi.nlm.nih.gov/compound/10034991
https://pubchem.ncbi.nlm.nih.gov/compound/10034991
https://pubchem.ncbi.nlm.nih.gov/compound/10393
https://pubchem.ncbi.nlm.nih.gov/compound/10393
https://pubchem.ncbi.nlm.nih.gov/compound/156582518
https://pubchem.ncbi.nlm.nih.gov/compound/156582518
https://pubchem.ncbi.nlm.nih.gov/compound/156582517
https://pubchem.ncbi.nlm.nih.gov/compound/156582517
https://pubchem.ncbi.nlm.nih.gov/compound/Prednisone
https://pubchem.ncbi.nlm.nih.gov/compound/Prednisone
https://pubchem.ncbi.nlm.nih.gov/compound/522325
https://pubchem.ncbi.nlm.nih.gov/compound/522325
https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen
https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen
https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen
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APPENDIX C 3 TARGETS NSP2 AND NSP3 3D STRUCTURES

nsP2
(3TRK)

nsP3
(3GPG)

Chain A

Chain B

Chain C

Chain D
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APPENDIX D 3 RELATIONSHIP BETWEEN STRUCTURE AND DRUGLIKENESS 
OF DER1 TO DER12

 

Der1 Der2

Der3 Der4
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Der5 Der6

Der7 Der8

Der9 Der10
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Der11 Der12
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APPENDIX E 3 PREDICTED NMR SPECTRA FOR HIT 48 AND HIT 250

1H NMR of Hit48

13C NMR of Hit48
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1H NMR of Hit250

13C NMR of Hit250
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