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RESUMO

A compreensão de programa é essencial para aprimorar o entendimento e evitar erros no ciclo de

vida do desenvolvimento de software. A confusão de código ocorre quando um desenvolvedor e

o computador chegam a interpretações diferentes sobre o comportamento de um mesmo trecho

de código. Tais trechos de código podem ser representados como pequenos e isolados padrões

de código chamados Átomos de Confusão (ACs). Neste estudo, investigamos empiricamente

os efeitos dos ACs no ciclo de vida de desenvolvimento de 21 projetos Java de código aberto.

Construímos um dataset que relaciona mais de 8.000 commits, 4.000 issues e 7.000 ACs dos

projetos em questão. Nossos resultados demonstraram uma correlação positiva entre o número

de ACs e o número de bugs e melhorias relatados. Também investigamos mudanças em commits,

buscando uma compreensão mais aprofundada do contexto no qual ACs são removidos. Como

cada commit está vinculado a pelo menos uma issue relatada (por exemplo, bug e melhoria),

conseguimos comparar a taxa de remoção de ACs em relação a cada tipo de commit e utilizá-la

como um indicador para determinar se os ACs são provavelmente a causa por trás de uma issue

reportada. Encontramos uma taxa mais elevada de remoção de ACs em commits de correção de

bugs e melhorias do que em outros tipos de commits (tarefa, sub-tarefa, nova funcionalidade,

desejo e teste) em 14 dos 19 projetos estudados, que tiveram ACs removidos em commits.

Finalmente, para apoiar nossos resultados quantitativos, conduzimos uma análise qualitativa

para melhor entender com que frequência átomos de confusão contribuíram para a ocorrência

de bugs ou melhorias. Analisamos ACs removidos nesses tipos de commits com até dez linhas

removidas, analisando o código-fonte, mensagens de cada commit envolvido, além do título,

descrição e comentários das issues relacionadas no Jira. Em um universo de 8.641 commits

de 21 projetos analisados, 391 removeram ACs. Dentre eles, 53 atenderam à condição para

nossa análise qualitativa. Em 7 desses commits, 9 ACs removidos provavelmente contribuíram

diretamente para a ocorrência de um bug ou melhoria. Até onde sabemos, nossa pesquisa é a

primeira a investigar a conexão entre Átomos de Confusão e a ocorrência de bugs ou gatilhos

para melhorias em projetos Java.

Keywords: compreensão de programa; átomos de confusão; estudo empírico; mineração de

dados.



ABSTRACT

Software comprehension is essential to improve understanding and avoid mistakes in the software

development lifecycle. Code confusion occurs when a developer and the computer reach different

interpretations about the behavior of the same piece of code. Such pieces of code can be

represented as small and isolated code patterns called Atoms of Confusion (ACs). In this study,

we empirically investigated the effects of ACs in the software development lifecycle of 21 open-

source Java projects. We built a dataset linking more than 8,000 commits, 4,000 reported issues,

and 7,000 ACs from the subject projects. Our findings showed a positive correlation between

the number of ACs and the number of reported bugs and improvements. We also investigated

changes in commits, looking forward to gathering a better understanding of in what context ACs

are removed. As each commit is linked to at least one reported issue (e.g., bug and improvement),

we were able to compare the ratio of ACs removal regarding each kind of commit and use it as

a proxy to indicate whether ACs are likely to be the cause behind a reported issue. We found

a higher ratio of removed ACs in bug-fix and improvement commits than in the other kinds of

commits (task, sub-task, new feature, wish, and test) for 14 of the 19 studied projects, which had

ACs removed in commits. Finally, to support our quantitative results, we conducted a qualitative

analysis to understand better how often atoms of confusion contributed to the occurrence of a

bug or improvement. We inspected ACs removed in these types of commits with up to ten lines

removed, analyzing the source code, messages of each involved commit, and the title, description,

and comments of related Jira issues. Out of a universe of 8,641 commits from 21 analyzed

projects, 391 removed ACs. Among them, 53 met the condition for our qualitative analysis. In

7 of these commits, 9 removed ACs were likely to contribute directly to the occurrence of a

bug or improvement. To the best of our knowledge, our research is the first to investigate the

connection between Atoms of Confusion and the source of bugs or the cause of improvements in

Java projects.

Palavras-chave: program comprehension; atoms of confusion; empirical study; data mining.
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1 INTRODUCTION

This chapter provides a general overview of the research. Sections 1.1 and 1.2 offer

insights into the context and motivation behind the study. Following this, Section 1.3 introduces

the research questions that guided the investigation. Section 1.4 details the applied methodology.

Moving forward, Section 1.5 briefly summarizes the key objectives and contributions of this

dissertation. Finally, Section 1.6 explains the organization of this document, presenting a

roadmap for readers to navigate the forthcoming chapters.

1.1 Context

Software development is a complex activity that requires technical knowledge and

great abstraction skills (BANKER et al., 1998). Although the final product of this activity

is code, the development process is much broader and involves several other tasks besides

writing code (WEINBERG, 1971). Computer software could be so large and complex that

developers must create a mental model associated with the program’s operation and establish

relationships between it and the source code. The construction of this model is the basis for

program comprehension (SINGER et al., 2010; ROBILLARD et al., 2004; FREY et al., 2011).

Program comprehension is the process of understanding how a software system

works, particularly emphasizing its source code (BENNETT et al., 2002). It is an essential activity

for the entire software development lifecycle. Software engineers must spend a substantial

amount of time exploring source code and other artifacts (e.g., documentation and test files) to

identify and comprehend the subset of the code relevant to any intended change (SINGER et

al., 2010). In fact, previous studies have shown that more than half of the total time spent on

software development activities is used for code comprehension (MINELLI et al., 2015; XIA et

al., 2017).

The methods employed to comprehend software may vary among developers based

on their personality, experience, skills, tasks, and technology used. Knowing the fundamentals

of program comprehension is vital for software developers to guarantee the maintenance and

evolution of complex software systems (MAALEJ et al., 2014). While performing program

comprehension, developers may misjudge the software’s actual behavior. Small, self-contained,

and indivisible code patterns can cause this confusion. Gopstein et al. (2017) named those

code snippets in the C programming language as Atoms of Confusion (ACs). They can cause
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difficulties during program understanding, which may negatively impact the productivity of a

software development team. Also, according to the authors, ACs could introduce defects into the

system and increase costs (GOPSTEIN et al., 2017).

Since Gopstein et al. (2017)’s discoveries, researchers have been investigating the

presence, prevalence, and effects of ACs in various systems built in languages such as C and

C++ (GOPSTEIN et al., 2018), Java (LANGHOUT; ANICHE, 2021), and JavaScript (TORRES

et al., 2023). For instance, Gopstein et al. (2018) used 14 popular C and C++ open-source

projects to evaluate the significance and prevalence of ACs in real-world systems. They showed

a strong correlation between ACs and bugs in the analyzed projects. Langhout e Aniche (2021)

replicated the first Gopstein et al. (2017) ’s methodology and defined 14 ACs in Java (LANGH-

OUT; ANICHE, 2021). Inspired by these researches, Mendes et al. (2021), Mendes et al.

(2022) developed a tool to find ACs in Java source code to evaluate the prevalence of ACs

in the Java ecosystem, finding more than ten thousand occurrences of ACs in long-lived Java

projects (MENDES et al., 2021; MENDES et al., 2022).

1.2 Motivation

Previous studies on ACs in Java-based systems primarily focused on their definition,

the demonstration of confusion induced by these code snippets, and their prevalence in real-world

systems. However, there remains a dearth of studies aimed at comprehensively understanding

the implications of using such code patterns in the software development lifecycle, including

their potential impact on bug occurrences and subsequent refactoring. To address this research

gap and evolve the previous research in Mendes et al. (2022), we decided to conduct a study to

investigate the impact of ACs on Java-based systems. We compiled a comprehensive dataset

that links more than 8,000 commits, 4,000 reported issues, and 7,000 ACs from 21 open-source

Java projects.

While collecting and analyzing the data from our research, we discovered compelling

examples supporting a positive correlation between the number of ACs and the number of

reported bugs and improvements. For instance, the bug-fix commit hash c90048ca
1 (see Fig. 1)

in the commons-beanutils project modifies a single line of code. This line contains the Atom of

Confusion (AC) named Infix Operator Precedence, which occurs when more than one type of

binary operator is used in the same code instruction. Confusion regarding this AC arises from

1 https://github.com/apache/commons-beanutils/commit/c90048ca



14

developers not understanding the execution order of these operators, such that the original code

failed to use the order that would satisfy developer needs, resulting in a bug that had to be fixed

later by adding brackets to adjust the order of operators. Another example is the improvement

commit hash 9cc0604
2 (see Fig. 2) in the commons-compress project, which directly rewrites

the ternary operation, which abbreviates the if-then-else structure. The ternary operator may

cause code confusion, classified as Conditional Operator atom of confusion. Fig. 2 shows the

refactoring performed in the commit that only changes the ternary operation in the source code,

which may indicate that the improvement was just to ensure better readability.

Figure 1 – Commit c90048ca, commons-beanutils project, available in Github.

These findings motivated us to carry out a qualitative analysis aiming to find other

code confusion induced by ACs that were likely to contribute directly to the occurrence of a bug

or improvement. For this purpose, we inspected bug-fix and improvement commits with AC

removals to understand whether such ACs might have directly contributed to the code change.

1.3 Research Questions

The primary research objective is to investigate the impact of ACs on long-lived Java

systems thoroughly. Specifically, we aim to identify if there are significant correlations between

the presence of ACs and the subsequent occurrence of bugs. Furthermore, we also examined if

there are correlations between ACs and code improvements within these systems.

The study focuses on addressing the following research questions:

RQ1. To what extent do atoms of confusion relate to the type of maintenance tasks?

2 https://github.com/apache/commons-compress/commit/9cc0604



15

Figure 2 – Commit 9cc0604, commons-compress project, available in Github.

To find correlations between bugs and ACs, Gopstein et al. (2018) hypothesized that

if atoms of confusion cause confusion and are used frequently, their effects should be measurable

at the project level. Thus, they analyzed the correlation between the reported bugs for 14 C/C++

projects and the corresponding numbers of ACs, concluding that projects with more ACs tend to

have more bugs (GOPSTEIN et al., 2018).

Drawing inspiration from this study, we conducted a similar analysis to investigate

and gain insights into this phenomenon within Java projects. Specifically, we explored the

correlation between the number of ACs and distinct reported issue types across 21 Java projects,

which were carefully selected based on the criteria explained in Section 3.2.2.

RQ2. In what type of maintenance tasks are atoms of confusion more frequently removed?

Directly measuring the cause of bugs is challenging, but one of the most effective

proxies is the code that is changed in a bug-fix commit. Many software projects maintain

repositories where they document reports of incorrect behavior in their code and keep track

of how and when each issue is resolved. By analyzing the version control histories for each

bug reported, we can determine which code was modified to fix the problem. Code removed
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in a bug-fix commit is more likely to have contributed to the bug than the code removed in a

non-bug-fix commit. Previous studies showed that ACs are 1.25x as likely to be removed in a

bug-fix commit than a non-bug-fix commit in GCC (GOPSTEIN et al., 2018).

In this direction, to observe such events in Java and consider more projects, we

utilized the issue classification already provided by project developers in Jira to classify the

commits from 21 open-source projects into bug, improvement, task, sub-task, new feature, wish,

and test, according to the Apache Software Foundation’s wiki3, as shown in Table 1. This allows

us to compare the rate at which ACs are removed in bug-fixing versus the other types of commits.

This comparison can provide a proxy for determining whether atoms of confusion are more

likely to be responsible for bugs (GOPSTEIN et al., 2018).

RQ3. How often are atoms of confusion likely to directly contribute to a maintenance task?

To address RQ2, we investigated in what kind of issues ACs were more frequently

removed. However, the fact that ACs disappear may not necessarily mean that they were

intentionally removed. They may disappear simply because developers removed the piece

of code that contained them. So, to improve deeper insights and enhance our understanding,

a qualitative analysis was conducted to assess whether the removed AC could have directly

contributed to a bug-fix or improvement task.

1.4 Study Methodology

Fig. 3 shows the research workflow. First, we selected 21 open-source Java projects

as the object of our empirical study, according to the criteria discussed in Section 3.2.2.

In the second step, our objective was to establish a connection between the reported

issues and the respective commits that resolve them. To accomplish this, we developed a Python

script that extracted and processed information from both the project management tool Jira4 and

the Git version control system5, tools used by all 21 projects under study. All project data was

mined from their inception until May 22, 2023, the date when the dataset was built.

At this stage, we used the issue classification already provided by project developers

to classify commits. According to the Apache Software Foundation’s wiki, issues are classified

following the categories: bug-fix, improvement, new feature, sub-task, task, test, or wish. Table

3 https://cwiki.apache.org/confluence/display/FLUME/Classification+of+JIRA+Issues
4 https://issues.apache.org/jira
5 https://github.com/apache
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Figure 3 – Research Workflow

1 shows their definition.

Hence, 8,641 commits were classified based on the types of their 4,862 associated

issues in Jira. To facilitate this process, we utilized the Python data mining frameworks Pydriller6

and Jira-Python7 (SPADINI et al., 2018; JIRA-PYTHON-LIBRARY, 2012).

Table 1 – Apache Software Foundation’s Issues Classification

bug It’s a defect in the source code.

improvement It’s an improvement or enhancement to an existing feature.

new feature It’s a new feature that hasn’t been developed yet.

task It’s a task that needs to be done that doesn’t fall under any of the other issue types.

sub-task It’s a child of a task

test It’s a new unit or integration test.

wish It’s wish-list items that could be classified as new feature or improvement

To establish the connection between a commit and a Jira issue, we searched the

commit messages to identify the corresponding issue ID. The Apache Software Foundation

(ASF) projects follow this strategy to ensure traceability between source code modifications and

project management activities (VIEIRA et al., 2019).

After that, we used the BOHR tool (third step), created by Mendes et al. (2022), to

count the number of ACs in the latest release of each project. This tool can detect 10 out of the

6 https://pydriller.readthedocs.io
7 https://jira.readthedocs.io



18

14 types of ACs defined for Java by Langhout e Aniche (2021), as can be observed in Table 2. In

this phase, our focus was to answer the first research question detailed in Section 1.3. For that,

we used the information regarding the number of issues reported by type and the number of ACs

throughout the last release at the time the dataset was built of the 21 subject projects, as specified

in Table 4.

Subsequently, we identified the source code of the immediately previous version to

each commit. Our goal was to run the BOHR on the previous versions of the classified commits

to find the atoms of confusion existing in this version and search for them in the lines of code

removed from each classified commit. This step was necessary because the BOHR tool uses

Spoon’s open-source code library, which needs to have the structured source code of a project or

class as input. Hence, it is not possible to apply the BOHR tool to independent pieces of source

code. For this reason, we did not use it directly on the added and removed lines of a commit

(MENDES et al., 2021; MENDES et al., 2022; PAWLAK et al., 2015). Therefore, we executed

BOHR for all 8,641 analyzed commits to count the total number of ACs present in previous

versions and those after the commit, generating reports on the prevalence of ACs.

In the fourth step, Python scripts were built to search for the atoms identified in

the version immediately preceding each commit, analyzing their removed and added lines, thus

determining the ACs that were removed or changed in each commit, answering the second

research question described in Section 1.3.

In the fifth step, we focused on selecting a subset of bug-fix and improvement

commits that involved the removal of ACs. This step aimed to gain a deeper understanding

and evaluate whether the atom of confusion was likely to be the primary factor behind these

maintenance tasks. To facilitate a manual analysis, we only considered ACs removed from

commits with a maximum of ten lines deleted. This decision was based on the recognition that

as the number of lines deleted in a commit increased, it became more challenging, fuzzy, and

time-consuming to determine the specific impact of the AC on the bug or improvement.

We thoroughly examined the commit messages, source code, title, description, and

developers’ comments related to the corresponding issue during the manual analysis. Our

objective was to ascertain if the atom of confusion played a significant role in causing the bug

or improvement. For each AC, we documented whether it likely contributed directly to the

occurrence of the bug or improvement. Additionally, we specified the evidence that led to our

conclusion in the dataset.
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1.5 Goals and Contributions

There are some studies about Atoms of Confusion including definitions and confusion

in code comprehension (GOPSTEIN et al., 2017; CASTOR, 2018), the prevalence and impacts

of ACs in C/C++ software projects (GOPSTEIN et al., 2018), ACs in the context of Java

programming language (LANGHOUT; ANICHE, 2021; MENDES et al., 2021; MENDES et

al., 2022), etc. However, to the best of our knowledge, our study is the first to establish a

clear connection between Atoms of Confusion (ACs) and the source of bugs or the trigger of

improvements in Java projects.

This dissertation aims to provide a first insight into the impact of ACs in Java projects.

In addition to a study of the relationship between ACs and maintenance tasks in Java projects,

we also intend to provide a dataset with information on three perspectives: project management,

code versioning, and atoms of confusion from 21 open-source Java projects. Furthermore, all the

methodology and source code required to create the dataset are available at (PINHEIRO, 2023)

so that other researchers can expand it.

During our analysis, we detected a positive correlation between the number of ACs

and the number of reported bugs and improvements on the studied Java projects. We also

explored changes in commits, aiming to gain a better understanding of the context in which

ACs are removed. Since each commit is associated with at least one reported issue (such as a

bug or improvement), we were able to compare the ratio of AC removal across different types

of commits. This served as a proxy to assess whether ACs are likely contributing to reported

issues. Our findings revealed a higher ratio of removed ACs in bug-fix and improvement commits

compared to other types of commits (such as task, sub-task, new feature, wish, and test) in 14

out of the 19 studied projects where ACs were removed in commits.

In conclusion, to complement our quantitative findings, we conducted a qualitative

analysis to gain a deeper understanding of how frequently atoms of confusion played a role in

causing bugs or improvements. We examined ACs that were removed in commits related to

bugs or improvements, specifically those with up to ten lines removed. Our analysis involved

scrutinizing the source code, commit messages, as well as the title, description, and comments of

associated Jira issues. Out of a total of 8,641 commits across 21 analyzed projects, 391 involved

the removal of ACs. Among them, 53 met the criteria for our qualitative analysis. In 7 of these

commits, 9 removed ACs were deemed likely to have directly contributed to the occurrence of

a bug or improvement. To the best of our knowledge, our research is the first to explore the
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connection between Atoms of Confusion and the origin of bugs or the reasons for improvements

in Java projects.

We believe our findings motivate researchers and developers to investigate the

presence of ACs further and propose tools for detecting and refactoring such code fragments, as

ACs not only contribute to confusion but may also be the cause of system bugs and the trigger of

improvements.

1.6 Document Organization

The remainder of this work is structured as follows. Chapter 2 discusses the back-

ground and related work. Chapter 3 presents the dataset we built to support this study. The

results and discussion are described in Chapter 4. Finally, in Chapter 5, we provide the final

considerations, threats to validity, and proposals for further investigation.
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2 BACKGROUND AND RELATED WORK

This chapter presents the main concepts, definitions, and related works associated

with this research. This chapter is organized into three sections. Section 2.1 discusses the topic

of Program Comprehension, while Section 2.2 presents the works about Atoms of Confusion.

These sections explore the key concepts, motivations, objectives, state of the art, and related

works regarding this study. Finally, Section 2.3 provides the concluding remarks of this chapter.

2.1 Program Comprehension

Software development is a complex activity that requires technical knowledge and

great abstraction skills (BANKER et al., 1998). Although the final product of this activity is

code, the software development process is much broader and involves various other tasks besides

writing (WEINBERG, 1971). Software systems are so vast and intricate that developers need

to establish connections between the source code and the associated mental model that the

programmer must create. The construction of this model forms the foundation for Program

Comprehension (SINGER et al., 2010; ROBILLARD et al., 2004; FREY et al., 2011).

Program comprehension is a cognitive process in which developers consume and

produce a significant amount of knowledge about software (MAALEJ et al., 2014). To perform

this activity, software engineers seek to understand how a system works, with its source code as

the primary reference. Program comprehension requires an understanding and study of the user’s

domain of the system, software engineering, and technical programming knowledge (BENNETT

et al., 2002). Areas such as documentation, visualization, design, analysis, refactoring, and

reengineering, among others, are driven by the need for program comprehension (RAJLICH;

WILDE, 2002).

Thus, program comprehension becomes an essential part of every stage in the

software development process, especially during the phases of evolution and maintenance. After

all, software that is not understood cannot be modified. According to Singer et al. (2010), program

comprehension primarily takes place before changes in the software system, as developers need

to explore the source code and other artifacts to identify and understand the subset of code

relevant to their objectives. The strategies employed in this activity vary among professionals

and depend on their personalities, experiences, and skills, as well as the types of tasks they need

to perform and the related technologies (SINGER et al., 2010).
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Previous studies indicate that developers spend up to 50% of their working time

searching for information to answer questions about the system under development (MURPHY

et al., 2006; KO et al., 2007). In this vein, Minelli et al. (2015) conducted an experiment to assess

how developers allocate their time, concluding that, on average, program comprehension requires

70% of the development time (MINELLI et al., 2015). Similarly, Fjeldstad (1983) reported

that during software maintenance, programmers use approximately half of their working time

understanding code (FJELDSTAD, 1983). Corroborating these findings, Xia et al. (2017) found

in their study that, on average, developers dedicate 58% of their time to code comprehension

activities (XIA et al., 2017).

Therefore, this activity is a crucial aspect of both software development and main-

tenance, as programmers dedicate a significant portion of their time to code comprehension.

The more effort required for this task, the less time is available for other development-related

activities, such as code modification and navigation (RAHMAN, 2018). Thus, understanding

how a program works is essential for software engineers, and given its importance, this topic is

the focus of various studies and experiments aimed at evaluating approaches and techniques that

seek to enhance program comprehension (SCHRÖTER et al., 2017).

Although research in this field has evolved considerably in recent years, little is still

known about how developers practice program comprehension in their daily work. For this

reason, Maalej et al. (2014) conducted a quantitative and qualitative study to understand the

strategies, tools, and knowledge applied by developers when performing the activity of code

comprehension in practice. As a result, it was found that there is a gap between research and

practice since no use of program comprehension tools was observed, and developers seem to be

unaware of them (MAALEJ et al., 2014).

Therefore, exploring this subject is highly relevant to the literature, as enabling

a better understanding of the source code of a system assists various professionals, such as

developers, system analysts, software architects, testers, among others, in their daily practical

work, contributing to higher-quality software development and maintenance.

2.2 Atoms of Confusion

Related to the topic of program comprehension, humans often misinterpret the

meaning of source code, which can lead to an improper assessment of the actual behavior of a

software system. In this context, confusion can be defined when programmers and the computer
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arrive at different conclusions about the behavior of the same piece of code. Such confusion can

be caused by small and isolated code patterns that Gopstein et al. (2017) referred to as Atoms

of Confusion (ACs). An atom of confusion is defined as the smallest, indivisible portion of

source code that can confuse developers, potentially leading them to a misjudgment of code

comprehension, which can result in bugs and, consequently, have impacts such as decreased

productivity and increased costs in software development (GOPSTEIN et al., 2017).

Gopstein et al. (2017) empirically demonstrated, in a controlled experiment with

Computer Science students experienced in the C programming language, that certain code

patterns can lead to a significant increase in misinterpretations by developers when compared

to functionally equivalent code without such patterns. This study identified 15 statistically

significant atoms of confusion in the C language. Subsequently, a second experiment was

conducted to evaluate the impact, in terms of confusion intensity, caused by these atoms on the

experiment participants. Thus, this work defined a methodology for empirically deriving ACs, a

large, publicly available dataset for other researchers to replicate and extend the experiments,

and a survey of well-known and popular C style guidelines that recommend the use of ACs,

which contradicts the findings of this study (GOPSTEIN et al., 2017).

To delve deeper into the topic, Castor (2018) presented a more detailed definition for

an atom of confusion as a code pattern with the following characteristics:

– Precisely identifiable;

– Likely to cause confusion;

– Replaceable by a functionally equivalent snippet that causes less confusion;

– Indivisible.

In their work, previous studies related to ACs were applied to the Swift programming language,

resulting in a set of 6 candidate atoms of confusion in this language (CASTOR, 2018).

Intending to detect and compare the brain activity of developers while analyzing

functionally equivalent code snippets with and without confusion code, Yeh et al. (2017) em-

ployed an EEG (electroencephalogram) device to assess possible differences that might indicate

increased cognitive effort when trying to comprehend code with confusion. The results were

promising, as they indicated that more neurons were activated or oscillated in harmony while

participants analyzed confusing code snippets. Furthermore, the work demonstrated that ex-

periments involving a deeper analysis of brain activity are feasible and promising (YEH et al.,

2017).
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In a similar vein, Lewis et al. (2018) showed in their EEG studies that atoms of

confusion caused significant confusion among experiment participants (LEWIS et al., 2018).

To detect the visual attention of programmers while comprehending source code, Oliveira et al.

(2020) conducted research using an eye tracker to analyze the distribution of visual attention

during the evaluation of code with and without ACs. From an aggregate perspective, an increase

of 43.02% in time and 36.80% in gaze transition was observed when experiment participants

evaluated code with ACs. It was also confirmed that regions with ACs received the highest

attention from the eyes. These results corroborate the fact that atoms of confusion impact

comprehension and, consequently, the performance of developers (OLIVEIRA et al., 2020).

Until then, there had been no assessment of the impact of atoms of confusion on

real-world systems. Therefore, Gopstein et al. (2018) studied a set of 14 of the most popular and

important open-source projects in C and C++ to measure the prevalence and relevance of the 15

atoms of confusion defined in a previous work. The results showed that they frequently occur

in all studied projects, such as the Linux kernel and GCC, appearing on average once every 23

lines of code. Additionally, it was found that there is a strong correlation between the presence

of ACs and subsequent bug-fix commits. It was also inferred that code snippets containing ACs

are more likely to have comments in the code. Another explored relationship was at the project

level, indicating that the rate of security vulnerabilities is higher in projects with more ACs. This

demonstrates that atoms of confusion are prevalent, occurring frequently in real projects, and

significant, being removed by bug-fix commits at a high rate (GOPSTEIN et al., 2018).

In a similar vein of estimating the impacts of confusing code patterns on real-world

projects, Medeiros et al. (2019) conducted repository mining, analyzing 50 open-source projects

in C, including Apache, Redis, OpenSSL, and Python. This allowed them to find over 109,000

occurrences of confusing code patterns in these projects, showing that 92% of these code patterns

are indeed used in practice by developers of popular and relevant systems. Additionally, a survey

was conducted with developers of open-source projects to assess their perception of confusing

code patterns, with the majority agreeing that 50% of the analyzed patterns do indeed cause

confusion. In this work, the project guidelines were also analyzed to understand the guidelines

provided by these projects to developers regarding confusing code patterns. It was discovered

that only a few of these projects address the issue in their guidelines. Lastly, to measure the

importance given to the topic by developers of these projects, 35 random pull requests were made

to open-source projects, replacing code with a confusing pattern with a functionally equivalent
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but non-confusing snippet. As a result, only 8 out of 35 pull requests were accepted, 14 received

no feedback, and 13 were rejected, with responses indicating that the code was working without

errors and the current version was adequate. This demonstrates that the topic still does not

receive the attention it deserves from many developers (MEDEIROS et al., 2019).

In further assessing the impacts of code confusion, Ebert et al. (2019) studied this

topic in the context of code review, which is a widely used software quality assurance practice

with potential benefits such as defect detection, knowledge transfer, and adherence to project

code standards. The study showed that confusion during the code review process can delay

merge decisions, increase the need for discussion about a specific piece of code, and lower the

quality of the review. Moreover, the results indicated that confusion can lead developers to

approve a code change even without fully understanding it, which poses a risk to the related

system (EBERT et al., 2019).

On the other hand, in a recent study within the context of code reviews, Bo-

gachenkova et al. (2022) investigated the possibility of a relationship between the presence

of ACs and confusion in code reviews. Using a tool to detect atoms of confusion and manual

analysis of comments in code reviews, the statistical analysis performed did not reveal any

relationship between ACs and confusion in code reviews. Additionally, the results showed that

ACs present in pull requests are not eliminated after the review and acceptance of the pull request

(BOGACHENKOVA et al., 2022).

In more recent work, Gopstein et al. (2020) conducted a qualitative investigation

related to code comprehension and atoms of confusion to provide context for the results of

previous studies. They explored research gaps in the area of ACs, focusing on how and why

ACs confuse developers, while prior work had mainly focused on defining and quantifying ACs

without delving into these aspects. The study aimed to understand and describe how programmers

assess a piece of code, the step-by-step process they follow, the difficulties they encounter, and

how they address them. The study revealed that not all misinterpretations originated from the

same source, that some correct answers were obtained through incorrect reasoning, and that

confusion could exist even when arriving at a correct answer. Consequently, it was concluded

that research might be underestimating the number of misinterpretations caused by ACs because

in experiments, getting the output of a particular piece of code correct does not necessarily mean

that the reasoning was correct, or that it was easy, or that it was not confusing to reach that result.

Thus, the importance of considering a more flexible model that assesses multiple aspects, not just
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whether the output of a code snippet is correct or not, was observed (GOPSTEIN et al., 2020).

Building on the studies and methodology defined by Gopstein et al. (2017), Langhout

e Aniche (2021) generalized and replicated the knowledge about atoms of confusion for the Java

programming language. In this work, 14 ACs were defined in Java. Afterward, the impact of

these atoms was assessed through an experiment involving Computer Science students. The

results showed that participants were 2.7 to 56 times more likely to misinterpret code snippets

containing 7 of the 14 ACs defined for Java. Additionally, students reported that code snippets

with 10 of the 14 ACs were more confusing and/or less readable than their functionally equivalent

code without the respective ACs (LANGHOUT; ANICHE, 2021).

In the context of ACs in Java code, Mendes et al. (2021) introduced a tool called

BOHR - The Atoms of Confusion Hunter, designed to assist in the automated identification of

ACs in Java code. It produces reports on the prevalence of 8 out of the 13 ACs types pointed

out by Langhout e Aniche (2021). Furthermore, BOHR provides an API to expand the search

for existing ACs and create search mechanisms for new ACs. The tool’s accuracy was validated

through the analysis of three open-source Java projects, demonstrating 100% accuracy in correctly

identifying code snippets containing ACs, their types, the involved class names, and the line

numbers of their occurrences. In an evolution of this work, Mendes et al. (2022) demonstrated

that the tool now detects two additional AC types identified by Langhout e Aniche (2021). To

assess the precision and recall of the tool, a dataset was constructed and made available, based

on four open-source Java projects, with manual identification of ACs, their respective types,

corresponding code snippets, and locations. After discussions and adjustments, BOHR achieved

100% precision and identified all the ACs in the dataset. Moreover, with the support of this tool,

Mendes et al. (2022) conducted an assessment of the prevalence, co-occurrence, and evolution

of ACs in 27 open-source Java libraries. In this study, 11,404 AC occurrences were identified.

The AC types with the highest prevalence were the Conditional Operator and Logic as Control

Flow. It was also shown that these two ACs were more likely to co-occur in the same class.

Lastly, the analysis of the evolution of ACs over the library lifecycle demonstrated that AC

occurrences do not decrease; on the contrary, in 13 of the studied libraries, the occurrence of ACs

grew proportionally more than the project size in lines of code. Additionally, in 15 libraries, the

number of Java classes containing at least one atom of confusion increased over time (MENDES

et al., 2021; MENDES et al., 2022).

The BOHR tool can detect 10 out of the 14 types of ACs defined for Java by Langhout
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Table 2 – Atoms of Confusion Detected by BOHR from MENDES et al.

Atom of Confusion Type Snippet with Atom of Confusion Snippet without Atom of Confusion
Infix Operator Precedence int a = 2 + 4 * 2; int a = 2 + (4 * 2);

Post-Increment/Decrement a = b++;
a = b;
b += 1;

Pre-Increment/Decrement a = ++b;
b += 1;
a = b;

Conditional Operator b = a == 3 ? 2 : 1;
if(a == 3){b = 2;}
else{b = 1;}

Arithmetic as Logic (a - 3) * (b - 4) != 0 a != 3 && b != 4

Logic as Control Flow a == ++a > 0 || ++b > 0
if(!(a + 1 > 0)) {b += 1;}
a += 1

Change of Literal Encoding a = 013; a = Integer.parseInt("13", 8);

Omitted Curly Braces if(a) f1(); f2(); if(a){ f1(); } f2();

Type Conversion a = (int) 1.99f; a = (int) Math.floor (1.99f);

Repurposed Variables

int a[] = new int [5];
a[4] = 3;
while (a[4] > 0) {

a[3 - v1[4]] = a[4];
a[4] = v1[4] - 1;}

System.out.println(a[1]);

int a[] = new int [5];
int b = 5;
while (b > 0) {

a[3 - a[4]] = a[4];
b = b - 1;}

System.out.println(a[1]);

e Aniche (2021), as can be observed in Table 2.

2.3 Conclusion

In this chapter, we discussed the main concepts related to Program Comprehension

and Atoms of Confusion, covering definitions, related studies, and the impacts of this topic on

the software development process. Table 3 presents a summary of the main background and

related work shown in this chapter.

Most of the studies conducted on Atoms of Confusion have focused on demonstrating

the confusion caused by these code snippets, as well as their prevalence in real-world systems.

However, there are still few studies that aim to better understand the impacts of using these code

patterns throughout the software lifecycle, relating them to the occurrence of bugs, the need for

comments to better explain such code snippets, and subsequent refactoring, for example.

In this direction, Gopstein et al. (2018) studied these impacts in C/C++ projects,

concluding that atoms of confusion are 1.25 times more likely to be removed in bug-fix commits

than in other commits. Furthermore, it was observed that projects with more ACs also had

more bugs and vulnerabilities. The study also found that ACs are 1.13 times more likely to be

commented on than code snippets without ACs (GOPSTEIN et al., 2018).

Although Gopstein et al. (2018) addressed this research line, no study focusing

on the impacts of atoms of confusion was found for Java projects. Therefore, our study aims
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Table 3 – Summary of the Main Background and Related Work

Research
Programming
Language

Method Main Findings

Gopstein et al. (2017) C/C++ Manual code analysis
Definition of the concept
of Atom of Confusion and
proposition of its 15 types

Gopstein et al. (2018) C/C++
Prevalence analysis through
automatic code analysis

ACs are prevalent, occurring
frequently in real projects,
and significant, being re-
moved by bug-fix commits
at a high rate

Castor (2018) Swift Manual code analysis
Detailed definition of AC
and 6 ACs for Swift.

Gopstein et al. (2020) C/C++

Qualitative investigation fo-
cusing on how and why ACs
cause confusion in develop-
ers

Not all misinterpretations
originated from the same
source, some correct answers
were obtained through incor-
rect reasoning, and confu-
sion could exist even when
arriving at a correct answer

Oliveira et al. (2020) C/C++

Eye-tracking camera to ana-
lyze the distribution of visual
attention during the evalua-
tion of code with and without
ACs

Increase of 43.02% in time
and 36.80% in gaze transi-
tion was observed when ex-
periment participants evalu-
ated code with ACs. Regions
with ACs received the high-
est attention from the eyes.

Langhout e Aniche (2021) Java

Translation of ACs from
C/C++ to Java and evaluation
of the confusion on Java de-
velopers

Developers reported that
code snippets with 10 of the
14 ACs were more confusing
and/or less readable than
their functionally equivalent
code without the respective
ACs

Mendes et al. (2021) Java
Automated identification of
ACs in Java code

Tool BOHR to assist in the
automated identification of
ACs in Java code. API to ex-
pand the search for existing
ACs and create search mech-
anisms for new ACs.

Mendes et al. (2022) Java
Prevalence analysis through
automatic code analysis

ACs are prevalent and the
number of occurrences
grows over time in Java real
systems.

Source: the author.

to contribute to research in Program Comprehension, specifically on Atoms of Confusion, by

investigating their impacts on open-source Java projects and their relationship with maintenance

tasks. This investigation will be carried out using a Java Atoms of Confusion detection tool,

BOHR (MENDES et al., 2021); Git repository mining tools (Pydriller) (SPADINI et al., 2018);
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and Jira data analysis tools (Jira-Python) (JIRA-PYTHON-LIBRARY, 2012).

As highlighted, the ability to identify and remove elements that confuse source code

goes beyond simply avoiding bugs because understanding a program is one of the most important

activities carried out during the software development process, directly impacting productivity,

schedules, and project costs.
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3 DATASET

This chapter explains the motivation, the creation process, and the composition of

the dataset produced in this research. Section 3.1 provides the context and motivation for the

dataset. Following that, the dataset creation process is detailed in Section 3.2. Next, the dataset

is described and detailed in Section 3.3. Finally, Section 3.4 brings the final considerations about

this chapter.

3.1 Introduction

Open Source Software (OSS) is the product of collaborative efforts by geographically

and temporally dispersed contributors, including professional software developers and volunteers

from diverse backgrounds. Despite participating in a highly decentralized process, they manage

to work together efficiently and productively. To assist them in this process, Issue Tracking

Systems (ITS) and Version Control Systems (VCS) are essential (GERMAN, 2003; CROWSTON

et al., 2008).

Issue Tracking Systems (ITS) provide a valuable source of information related to

software development. Within these systems, an issue can describe various aspects of software

development, including bugs, new functionalities, security vulnerabilities, enhancements to

existing functionalities, or project tasks (AL-ZUBAIDI et al., 2017). In OSS projects, ITS

tools have a significant role, serving as task management tools and communication channels for

stakeholders involved in the issues’ life cycle. Thus, researchers and practitioners have been

using ITS information to investigate and explore important aspects of the software development

process (VIEIRA et al., 2019).

The source code, along with its historical evolution, serves as both the end product

and a detailed record of the software development process. It stands as an invaluable asset for

the examination and enhancement of software development practices. In this context, Version

Control Systems (VCS) are an indispensable tool in software development and collaborative

work. VCS enables the meticulous tracking of changes made to source code, offering a historical

record of who, when, and what changes were made. This feature aids in debugging, auditing,

and understanding the evolution of software (SPINELLIS, 2005; ALWIS; SILLITO, 2009;

JERMAKOVICS et al., 2011; MOCKUS, 2009).

To investigate and explore the impacts and the relationship of Atoms of Confusion
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with project management aspects and source code changes within a project, we constructed

a dataset, inspired in Vieira et al. (2019), that links Jira issues to their corresponding GitHub

commits, which were used as the Issue Tracking System and Version Control System, respectively,

in the 21 projects under study. This allowed us to combine information from three perspectives:

project management, code versioning, and Atoms of Confusion. Through the analysis of this

dataset, we generated important insights about the potential consequences of using ACs by

correlating them with source code changes and, consequently, with an issue reported in Jira, as

presented in the following chapter.

In addition to the research questions addressed in this study, we have made the

complete dataset available to the community, along with all the necessary scripts for its generation.

These resources are not only accessible to other researchers interested in testing their hypotheses

using an established dataset, but can also be utilized to enrich the dataset with information from

other Java projects that utilize Jira and GitHub. This provides an opportunity for collaboration

and extended research about atoms of confusion.

3.2 Dataset Creation Process

3.2.1 Dataset Preliminaries

The Apache Software Foundation (ASF) represents a decentralized open-source

community comprised of developers. Established as a U.S.-based non-profit organization

to provide support for Apache Software Projects, ASF consistently releases software under

the Apache License, ensuring that all offerings are both free and open source. Their official

website1 lists more than 8,400 committers contributing to more than 320 active projects. Our

study specifically focused on 21 ASF projects, which were carefully selected based on the

criteria explained in Section 3.2.2. Furthermore, ASF projects are well-established, extensively

documented, and popular among developers. This widespread adoption indicates a notable level

of trustworthiness from the developers’ standpoint.

Jira2 is a proprietary Issue Tracking System developed by the Australian Atlassian

Corporation. Atlassian offers free Jira services to several open-source projects. By default, the

ASF projects adopt Jira as their ITS tool. Git3 is a free and open-source distributed Version

1 https://www.apache.org/
2 https://www.atlassian.com/software/jira
3 https://git-scm.com/
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Control System used by the subject projects.

3.2.2 Selection of Java Projects

To initiate our research, we decided to select Java projects in which atoms of confu-

sion presence had already been demonstrated, and sufficient information was available about

the commits in these projects. The idea was to utilize the commit category and description (e.g.,

bug-fix) and developers’ comments to extract information regarding the impact of ACs on the

projects.

As discussed in Chapter 2, Langhout e Aniche (2021) defined atoms of confusion in

Java, while Mendes et al. (2022) demonstrated the frequent occurrence of such atoms in 27 real-

world Java systems. Inspired by these findings in (MENDES et al., 2022), we decided to follow

up on their research and explore the impacts of ACs in these 27 projects. However, upon further

examination, we found that only 21 projects, as shown in Table 4, within the Apache Commons

ecosystem4 complied with the criteria of using publicly accessible project management and

source code version control tools, facilitating traceability between project issues and associated

commits. This accessibility allowed us to acquire the necessary information for our study.

As explained by Mendes et al. (2022), all of these projects have automated tests

and use build automation systems, contributing to their analysis with Spoon, the library used

by BOHR to identify ACs. Moreover, these projects are constantly updated, used by thousands

of systems, and have an active lifecycle of over ten years. This demonstrates relevance and

significance for analyzing the possible impacts of ACs in them (MENDES et al., 2022).

3.2.3 Tools Used To Collect The Data

3.2.3.1 Python Jira

Python Jira5 is a Python library designed to ease the use of the Jira REST API, which

is used to interact with the Jira Server applications remotely. This tool facilitates the extraction

of data from Jira issues, such as priority, description, developers’ comments, activities, links to

other issues, and status, among others (JIRA-PYTHON-LIBRARY, 2012).

4 https://commons.apache.org
5 https://jira.readthedocs.io/
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Table 4 – Subject Projects

Version LoC Classes ACs ACTypes

bcel 6.7.0 29638 392 370 7

beanutils 1.9.4 11644 111 174 5

cli 1.5.0 2151 23 84 3

codec 1.16.0 9505 80 444 7

collections 4.4 28955 326 565 6

compress 1.23.0 45057 399 1168 9

configuration 2.9.0 20214 261 375 6

dbcp 2.9.0 14454 66 127 2

dbutils 1.8 3149 50 32 2

digester 3.2 9917 168 94 5

email 1.5 2815 23 50 5

exec 1.3 1757 32 38 4

fileupload 1.5 1861 34 33 6

functor 1.0 5861 158 495 3

io 2.13.0 17370 244 415 7

lang 3.12.0 29745 215 880 8

math 4.0 71856 721 2630 8

net 3.9.0 17179 213 402 6

pool 2.12.0 5931 52 87 5

proxy 2.0 2435 54 15 2

validator 1.7 7619 64 167 5

3.2.3.2 PyDriller

PyDriller6 is a Python framework designed for Git repositories mining, offering a

straightforward way to extract data from them. This tool provides easy extraction of various

information from a Git repository, including commit messages, developer statistics, modifications,

diffs, and the source code associated with a particular commit (SPADINI et al., 2018).

3.2.3.3 BOHR

The Atoms of Confusion Hunter (BOHR)7 is a tool designed to assist in the au-

tomated identification of ACs in Java code. It generates reports indicating the prevalence of

these atoms, the classes in which they occur, the lines of their occurrences, the associated code

snippets, and the types of atoms found (MENDES et al., 2021; MENDES et al., 2022).

6 https://pydriller.readthedocs.io
7 https://github.com/wendellmfm/bohr-aoc-api
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3.2.4 Data Collection Process

The dataset was constructed through an automated mining process using the Python

3.10.4 programming language to extract, process, and analyze the data. All data was sourced

from the official Apache Software Foundation repositories of Jira8 and Git9.

The process began by extracting information from Jira utilizing the Python Jira

library. During this phase, we retrieved all issues from 21 subject projects having ‘CLOSED’ or

‘RESOLVED’ status, a ‘FIXED’ resolution field, and resolved up to May 22, 2023, which is the

date when the dataset was generated.

To enable tracking between a reported issue on Jira and the commits performed to

resolve it, developers in ASF projects follow the practice of including the Jira issue ID in the

commits messages dedicated to addressing the issue (VIEIRA et al., 2019; RATH; MÄDER,

2019). As a result, we employ these issue IDs to trace and extract information about source

code changes from commits that fix issues using Pydriller. Figure 4 shows an example of issue

BEANUTILS-157 of project BEANUTILS as represented in Jira10. The VCS captures the

evolution of a project’s source code in the form of changesets according to the example of

commit 3a4fa4611 shown in the Figure 5. It is possible to observe the issue ID in the commit

message. This process reliably discovers traceability links among changesets of the VCS and

referenced issue artifacts in the ITS. All issues, changesets, and respective properties are part of

the dataset.

During this process of linking issues with the commits that resolve them, we observed

that there are commits linked to a single issue, while others are associated with multiple issues.

Additionally, some commits are not linked to any issue. Furthermore, we noticed that there are

issues that are related to more than one commit. As our research requires information at both

the source code and project levels, we included in the dataset only those issues and commits

that have at least one linkage between them. If a single commit is linked with more than one

issue, the commit is considered according to the number of issues it is related to, receiving the

classification of each respective issue.

To complement the dataset with information about atoms of confusion, we executed

BOHR on each version of the project, represented by each commit mapped in the previous step.

8 https://issues.apache.org/jira
9 https://github.com/apache
10 https://issues.apache.org/jira/browse/BEANUTILS-157
11 https://github.com/apache/commons-beanutils/commit/3a4fa468ab68d9a09e7963c2cd07a8540891cac6
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Figure 4 – Issue BEANUTILS-157, commons-beanutils project, available in Jira.

Figure 5 – Commit 3a4fa46, commons-beanutils project, available in Github.

Additionally, to identify changes at the level of atoms of confusion generated by each commit,

BOHR was also run on the immediately preceding system version of each mapped commit. This

approach ensures that the dataset contains information about atoms of confusion both before and

after each commit mapped in the dataset.
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3.3 Dataset Description

The dataset comprises information from three perspectives: project management

from Jira, code versioning from Git, and atoms of confusion from BOHR. It is organized into

Comma Separated Values (CSV) files. Table 5 displays the projects entity of the dataset with

general information about the 21 subject projects, like project name, owner, manager, category,

Git and Jira repositories, etc.

The entity Jira Dataset, identified by issue key, shows the data collected for each

project from the issues in the Jira repository, detailing issue description, status, type, identifier,

etc. Furthermore, the entity Issue Developer Comments Dataset displays the issue developer

comments history. Finally, the issue change log has been extracted and is represented by entity

Issue Changelog Dataset, encompassing every modification made at the issue level by any user.

The issues were linked to the commits that resolve them, as explained in the Sub-

section 3.2.4. At this point, we mapped the issue key, the commit hash that resolves it, and its

immediately preceding commit, as per entity Issues-Commits Dataset.

For each commit related to at least one issue, the log information from the version

control system was extracted, as specified in entity Commit Log Dataset. Then, for each issue

key, the data of the related commits was extracted from Git and aggregated, as shown in entity

Git Dataset.

In the perspective of ACs, as explained in Subsection 3.2.4, we ran the BOHR on the

Table 5 – Projects Dataset
Field Description
Name The project’s name
Owner The project’s owner

Manager The committe responsible for the project
Category The project’s domain category
JiraName The Jira project’s identifier

JiraRepository The Jira repository address
GitRepository The Git remote repository address
MainBranch The main Git branch’s name for the project

Site The project’s website address
SinceDate The starting date for mining project information

ToDate The ending date for mining project information
LastRelease The last project’s release within the SinceDate-ToDate interval

HashLastRelease The hash of the LastRelease
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version of each project corresponding to each mapped commit that resolves at least one issue, as

well as on each commit immediately preceding it. The tool generates detailed results, indicating

for each occurrence of AC, the class where it occurs, its type, the related source code, and the

corresponding line number, as can be observed in entity BOHR Detailed Dataset. Additionally, it

also provides an aggregate perspective per package of classes, indicating the number of involved

classes, the number of analyzed lines of code, the number of occurrences of ACs in these classes,

and a breakdown of occurrences by AC types, as displayed in entity BOHR Aggregated Dataset.

Still, in the context of ACs, we created two additional datasets to facilitate the

analysis of the research questions addressed in this study and provide an aggregated perspective

of the changes made to atoms of confusion for each mapped commit in this research. The first

provides information about commits that had a direct impact on existing AC, either through a

change in the same occurrence line of the atom or through complete removal of the atom, as

detailed in entity Changed/Deleted ACs Dataset. The second provides a quantitative breakdown

before and after each mapped commit, identifying the number of classes, the number of lines of

code, and the number of occurrences of atoms by type, among other information before and after

the commit, as displayed in entity Commit ACs Changes Dataset.

The details for all dataset entities, including their corresponding fields and descrip-

tions, can be found in Appendix A.

3.4 Conclusion

The dataset built in this work establishes a solid foundation for this research, provid-

ing the necessary infrastructure to address the research questions proposed in the study on the

impacts of atoms of confusion in open-source Java projects.

The dataset was created from three perspectives: project management, source code

versioning, and atoms of confusion. Data was extracted from 21 open-source Java projects,

linking over 8,000 commits, 4,000 reported issues, and 7,000 atoms of confusion from the subject

projects.

The entire dataset, along with the methodology and scripts necessary for its creation,

has been made available to the community at (PINHEIRO, 2023). In this way, other researchers

can validate this research, explore new hypotheses, and expand the dataset with additional data,

including new Java projects.
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4 RESULTS AND DISCUSSION

This chapter presents the results and discussions of this research. Section 4.1 presents

the concepts related to the methodology used to obtain the results that are discussed in this

chapter. Sections 4.2, 4.3, and 4.4 display the results for each research question proposed in this

study. Section 4.5 discusses the results and provides insights into them. Sections 4.6 and 4.7

detail the implications for researchers and practitioners. Ultimately, Section 4.8 presents the

concluding remarks for this chapter.

4.1 Preliminary Concepts

This section summarizes the methodology used in this research to obtain the results

presented in this chapter. Figure 6 depicts the research workflow.

First, 21 open-source Java projects were selected as the subject of our empirical

investigation, following the criteria outlined in Section 3.2.2.

In the second step, our objective was to mine project management information from

Jira and code versioning information from Git to form the first two perspectives of our dataset.

Then, we aimed to relate which commits resolve which issues for the 21 projects studied in this

research. From this association, we can infer the type of a particular commit, as the developers of

the studied projects classify each Jira issue in: bug-fix, improvement, new feature, sub-task, task,

test, or wish. Table 1 shows their definition. All project data was mined from their inception

until May 22, 2023, the date when the dataset was built. To link a commit with a Jira issue, we

searched the commit messages to identify the associated issue ID. This strategy, as described

by VIEIRA et al., is followed by the ASF projects to maintain traceability between source code

modifications and project management changes (VIEIRA et al., 2019).

To complete our dataset with its third perspective (third step), we executed the

BOHR tool to obtain information about ACs before and after each commit analyzed in this study.

During this phase, our primary objective was to address the first research question outlined in

Section 1.3. To achieve this, we utilized data about the number of issues reported by type and

the number of ACs across the last release of the projects, as we can observe in Table 4.

In the fourth step, Python scripts were used to search for the ACs identified in the

version immediately preceding each commit. These scripts analyzed the removed and added

lines of each commit, thereby identifying the ACs that were removed or changed in each commit,
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Figure 6 – Research Workflow

thus addressing the second research question outlined in Section 1.3.

Finally, in the fifth step, our focus is to select a subset of bug-fix and improvement

commits that involve the removal of ACs. This step aimed to deepen our understanding and

assess whether the removed ACs can directly contribute to these maintenance tasks. To facilitate

manual analysis, we only considered ACs removed from commits with a maximum of ten lines

deleted. This decision was made based on the recognition that as the number of lines deleted in a

commit increased, determining the specific impact of the AC on the bug or improvement became

more challenging, ambiguous, and time-consuming. During manual analysis, we thoroughly

examined the commit messages, source code, title, description, and developers’ comments related

to the corresponding issue. Our objective was to determine if the AC can significantly directly

contribute to the bug or improvement. For each AC, we documented whether it likely directly

contributed to the occurrence of the maintenance task. Additionally, we specified the evidence

that led to our conclusion in the dataset.

4.2 RQ1. To what extent do atoms of confusion relate to the type of maintenance tasks?

�




�

	

Summary of RQ1: Maintenance tasks tagged as bug-fix, improvement, and new

feature have a positive correlation (Pearson’s coefficient >0.60) with the number of

ACs.

The graph depicted in Fig. 7 illustrates the correlation between the number of issues
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Figure 7 – Number of Atoms of Confusion versus Reported Issues by Type

of a specific type and the number of ACs across the last release at the time the dataset was built

of the 21 subject projects, as specified in Table 4.

One can observe that maintenance activities (new feature, bug-fix, and improvement)

are the ones that have the highest correlation with the number of ACs, with a Pearson coefficient

greater than 0.60. Additionally, we also observe a high correlation between project size, in terms

of lines of code, and the number of ACs, as previously shown in other research (MENDES et al.,

2022).

Although the number of bugs and improvements increases as the number of ACs

grows, we further investigated this phenomenon to assess whether an atom of confusion could

likely have a direct impact on the occurrence of a subsequent bug-fix or improvement commit.

4.3 RQ2. In what type of maintenance tasks are atoms of confusion more frequently

removed?
�




�

	

Summary of RQ2: (i) Commits that remove ACs are rare (4.54%); (ii) The rate of AC

removal in bug-fix commits was not higher than the rate of removal in other types of

commits in 18 of 21 studied projects.
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To answer this question, we analyzed the commits that remove ACs. For that,

we counted the ACs removed in all 8,641 commits analyzed. We found only 391 commits

(4.52%), indicating the rarity of the phenomenon. Bug-fix and improvement commits had

higher occurrences with AC removals, 145 and 149 commits, respectively, as shown in Table 6.

However, we did not find bug-fix commits removing ACs in eight out of twenty-one projects. In

two of them, exec and pro, neither type of commit removed ACs.

Fig. 8 presents the distribution of commits with at least one removal for each

project. It shows how different types of commits contribute to removing ACs across the projects.

According to the figure, in a total of 12 projects, improvement commits were the majority in

terms of eliminating ACs. However, there were also five projects, such as io and dhcp, where

bug-fix constituted the majority of commits with ACs removed. For example, in the io project,

out of the 19 commits that removed atoms, 12 of them were categorized as bug-fix.

Fig. 9 displays the number of commits with at least one AC removal. It shows the

projects having at least eight commits satisfying this criteria. We observed that the math, lang,

and compress projects had the highest number of commits removing ACs. Not by chance, these

projects also have the most significant size in lines of code. Our results align with previous

research findings that larger projects tend to have more ACs, thus leading to an expectation of

more ACs being removed (MENDES et al., 2022).

As aforementioned, bug-fix and improvement commits were the most common types

that removed ACs across the projects, accounting for 75.2% of such cases. However, they also

represent the most frequent type of commits overall. Therefore, we needed to conduct a more

in-depth analysis to determine if bug-fix and improvement commits continue to have the highest

proportion of commits involving AC removals.

A shift in the results is observed by normalizing this phenomenon (dividing the

number of commits removing ACs by the total number of commits for each type), as illustrated

in Fig. 10. Task commits had the highest ratio of commits involving AC removals in eight

projects, exactly where task-type commits took place (i.e., we did not find in 13 projects task

Table 6 – Commits With ACs Removals
Bug-fix Improv NewFeat Task Others

Total Nº of Commits 3,857 2,763 1,161 421 439
Commits with Removals 145 149 40 42 15
Ratio 3.76% 5.39% 3.45% 9.98% 3.42%
Distribution 37.08% 38.11% 10.23% 10.74% 3.84%
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Figure 8 – Distribution of Commits with AC Removals per Project

commits removing ACs). We emphasize that task commits occurred in 20 projects (except for

the digest project). Regarding improvement and bug-fix commits, the first also had the highest

ratio in eight projects. In comparison, bug-fix commits had the highest percentage only in two

projects (i.e., io and pool).

Fig. 10 along with Table 6 reveal that although bug-fix and improvement commits
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Figure 9 – Projects with more than 8 commits removing ACs

are prominent in absolute terms, their proportional representation in this phenomenon changes

when we look at the total number of commits for each type.

In the previous analysis, we focused solely on the number of commits, disregarding

that a commit can remove multiple ACs. For this reason, we further pursue our study by checking

the number of ACs removed per commit type. Table 7 summarizes the analysis of the number of

atoms removed by commit type. We found 2425 atoms removed. Once again, the improvement

(999 out of 2425 ) and bug-fix (756 out of 2425) commits have the highest number of ACs

removed. The table also displays the number of ACs removed every 100 commits.

GOPSTEIN et al. in (GOPSTEIN et al., 2018) showed that for GCC, bug-fix commits

removed atoms at a rate of 1.25x compared to non-bug-fix commits. Fig. 11 shows the results

when grouping the commits in the same way for the 21 Java projects.

The mean removal rate per 100 bug-fix commits was 10,59 (SD = 2,35), while

the mean rate for non-bug-fix commits was 21.4 (SD = 2,51). Only three projects had

a higher AC removal rate in bug-fix commits (i.e., io, codec, and beanutils projects). A

Mann-Whitney U test was performed to evaluate whether non-bug-fix commits differed from

bug-fix commits regarding the ACs removal rate per 100 commits. The results indicated that
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Table 7 – Removed ACs per Commit Type
Bug-fix Improv NewFeat Task Others

Total Nº Commits 3,857 2,763 1,161 421 439
Nº of Removed ACs 756 999 241 408 21
Ratio Removed ACs 31.18% 41.20% 9.94% 16.82% 0.87%
ACs removed every

100 commits
19.60 36.16 20.76 96.91 4.78

non-bug-fix commits had a significantly greater rate of ACs removed than bug-fix commits,

z = [0.3], p = [0.02713],U = [297].

4.4 RQ3. How often are atoms of confusion likely to directly contribute to a maintenance

task?
�

�

�




Summary of RQ3: Out of a universe of 8,641 commits from 21 analyzed projects, 391

removed ACs. Among them, 53 met the condition for our qualitative analysis: bug-fix or

improvement commits that had up to 10 lines deleted. In 7 of these commits, 9 removed

ACs were likely to contribute directly to the occurrence of a bug or improvement.

Up to this point in the research, quantitative analyses had not yielded a strong

indication that ACs can directly cause bugs or serve as triggers for improvements. As a result, we

decided to further explore cases where atoms of confusion were removed in bug or improvement

Figure 10 – Ratio of Commits with At Least One AC Removal
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Figure 11 – Bug-fix x Non-Bug-fix Commits

commits, to better understand if such atoms could be directly contributing to the occurrence

of such maintenance tasks. According to GOPSTEIN et al., numerous studies on confusion in

software systems primarily focus on quantitative definitions and analysis but neglect qualitative

research, which can provide deeper insights and enrich the understanding of the topic. The

qualitative analysis explores how and why ACs can lead to confusion (GOPSTEIN et al.,

2020). With this in mind, during the process of validating and collecting data for our study, we
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Table 8 – Atoms of confusion that are likely to be the trigger of a maintenance tasks
Acronym Jira Issue Type Hash Evidence

IOP BEANUTILS-351 Bug c90048ca
Issue Title

Issue Description
Commit Message

IOP MATH-318 Bug 83f18d52
Issue Title

Issue Description
Commit Message

Post-Inc/Dec COMPRESS-389 Bug 0ee8f1e8
Issue Title

Issue Description
Commit Message

Pre-Inc/Dec BCEL-197 Improv. cf39e4cd Issue Comments
Pre-Inc/Dec BCEL-197 Improv. cf39e4cd Issue Comments
Pre-Inc/Dec COMPRESS-453 Bug e8c44e60 Issue Comments

TC MATH-153 Bug 409d56d2
Issue Comments
Issue Description

TC MATH-153 Bug 409d56d2
Issue Comments
Issue Description

TC POOL-85 Bug acb09a57
Issue Title

Issue Description
Commit Message

encountered instances where ACs were likely to contribute directly to the occurrence of a bug or

an improvement. Therefore, we conducted a more in-depth qualitative analysis to investigate this

phenomenon further.

As we mentioned in Section 1.3, we only analyzed bug-fix and improvement commits

removing ACs with a maximum of ten lines deleted. From the 19 projects with ACs removals,

we scrutinized 53 bug-fix and improvement commits. These commits had removed 77 ACs. To

achieve this, we investigated the 53 commit messages, over 2394 source code lines, and the 53

descriptions and titles of the linked issues, in addition to 374 developers’ comments.

We found 9 ACs that could likely have directly contributed to those maintenance

tasks, as displayed in Table 8. Thus, 11.68% of the 77 analyzed ACs could likely have contributed

directly to the occurrence of a bug or improvement.

Although some analyzed ACs showed indications of contributing to a maintenance

activity, they could not be classified as such because the issue and the commit lacked sufficient

information to support such a conclusion. This was the scenario with improvement commit

hash 9cc0604
1 described in the Introduction. We did not discover sufficient information on

the commit message and the issue’s title, description, or comment to substantiate our suspicion.

1 https://github.com/apache/commons-compress/commit/9cc0604
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Hence, we excluded it from the computation of the 9 ACs listed in Table 8.

We only counted cases that the contribution of the AC was clear based on the

information reported by the developers in the change control and project management systems.

We wrote one example of finding in the Introduction (i.e., the bug-fix commit hash c90048ca
2).

Below, we detail other examples.

The commit hash acb09a57
3 in the commons-pool can illustrate how we classify

whether an AC could likely have contributed to a maintenance task. This commit deleted a single

line of code that contained the Type Conversion Atom (see Fig. 12). This AC occurs when there

is a conversion from a larger data type to a smaller one, which can result in a loss of precision

and unexpected results for the programmer. From the commit message, highlighted in Fig. 13,

we observed that the cause of the reported bug in Jira issue POOL-854 was directly related to the

information loss caused by the atom that was removed.

Figure 12 – Commit acb09a57, commons-pool project, available in Github

Another example is the improvement commit hash cf39e4cd
5 in the commons-bcel,

which deleted only two lines of code, and both of them contained the Pre Increment/Decrement

Atom, as can be seen in the Fig. 14. This AC involves the use of pre-increment/decrement

unary operators. The pre-increment/decrement unary operator both increments/decrements the

associated variable and returns the result of the expression. Due to unfamiliarity with this

2 https://github.com/apache/commons-beanutils/commit/c90048ca
3 https://github.com/apache/commons-pool/commit/acb09a57
4 https://issues.apache.org/jira/browse/POOL-85
5 https://github.com/apache/commons-bcel/commit/cf39e4cd
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Figure 13 – Commit Message acb09a57 , commons-pool project, available in Github

operator, doubts about its functionality can arise, leading to confusion. Furthermore, another

potential source of confusion is the similarity between the pre-increment/decrement operator

and the post-increment/decrement operator, which only returns the variable’s value without

modifying it. In this case, the confusion caused by the AC becomes clear in the developers’

comments, as we can observe in Fig. 15.

Figure 14 – Commit cf39e4cd, commons-bcel project, available in Github
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Figure 15 – Issue BCEL-197 , commons-bcel project, available in Jira

4.5 Results Discussion

The primary objective of this research was to investigate the effects of ACs on

real-world Java systems. We observed a positive correlation between the number of maintenance

tasks in a project and the presence of atoms of confusion (RQ1). This correlation is more robust

with bug-fix and improvement commits. We also identified a similar pattern with lines of code.

These correlations, however, seem to be caused by the project’s scale, wherein larger projects
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tend to have a greater quantity of ACs as well as bug-fix and improvement tasks.

Our subsequent study (RQ2) aimed to determine, through quantitative analysis,

whether ACs are more commonly removed in bug-fix commits compared to other types of

commits. However, our findings diverged significantly from those reported in the study conducted

by GOPSTEIN et al. for the GCC project. Initially, bug-fix commits did not exhibit a prominent

status regarding the absolute number of AC removals or occurrences compared to other commit

types. When comparing the removal rate of ACs in bug-fix commits versus non-bug-fix commits,

we observed that ACs were more frequently removed in non-bug-fix commits in most analyzed

projects (18 out of 21). Surprisingly, improvement commits emerged as the category with

the highest number of AC removals (999) and occurrences (149 compared to 145 for bug-fix

commits). Even in terms of percentage, 5.49% of improvement commits removed at least one

AC, while the corresponding rate for bug-fix commits was 3.76%.

A bug-fix commit is intended to address and resolve a bug. In contrast, an improve-

ment commit aims to enhance the system with a potential consequence of bug prevention. For

this reason, we decided to redo our RQ2 analysis by comparing the removal of ACs between

bug-fix and improvement commits against other commit types.

As depicted in Figure 16, the removal rate of ACs exhibited a proportionally higher

trend in bug-fix and improvement commits across 14 of the 19 projects where AC removals

occurred. A Mann-Whitney U test was performed to evaluate whether bug-fix and improvement

commits differed from other commits regarding the ACs removal rate per 100 commits. The

results indicated that bug-fix and improvement commits had a significantly greater rate of ACs

removed than other commits, z = [0.4], p = [0.002936],U = [328].

This result implies that attention should also be given to improvement-type commits.

In response to RQ3, our qualitative analysis corroborates this insight, as two improvement

commits had the removal of ACs as their likely trigger cause.

Commenting further on the qualitative analysis, it is worth noting that the 9 ACs

found were of four types, namely: 3 Infix Operator Precedence, 1 Post Increment Decrement, 3

Pre Increment Decrement, and 3 Type Conversion.

Overall, Infix Operator Precedence was the most removed atom (1,410), followed

by Conditional Operator (361). Type Conversion (343) and Post Increment Decrement (230).

The others had less than 41 removals. For instance, Pre Increment Decrement occurred in 13

removals. Accordingly, despite being one of the least removed ACs, Pre Increment Decrement
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was likely the cause of one bug-fix and two improvement commits.

According to MENDES et al. such types of ACs are precisely the most prevalent,

second only to the Conditional Operator and Logic as Control Flow (MENDES et al., 2022).

These findings indicate that some ACs may deserve more attention during development as they

are more likely to impact future maintenance tasks.

4.6 Implications for Researchers

As previously mentioned, Gopstein et al. (2017) introduced the concept of Atom of

Confusion (AC). Previous research has shown that ACs have been identified as significant and

prevalent in C and C++ projects and can cause issues in code comprehension, hinder software

maintenance, and introduce challenges in software evolution in these projects (GOPSTEIN et al.,

2017; GOPSTEIN et al., 2018).
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In this regard, MENDES et al. showed that ACs in Java projects were also signifi-

cantly prevalent, and the number of their occurrences increased over time. However, to the best

of our knowledge, there is still no study that assesses the real impacts of ACs in open-source

Java projects.

Thus, aiming to measure the potential impacts of ACs in open-source Java projects,

we studied the relationship between the prevalence of ACs and subsequent occurrences of bugs

and triggers for improvements. As seen in the previous section, we obtained quantitative results

showing correlations between ACs and maintenance tasks, along with qualitative results listing

practical examples from real-world Java projects. In these examples, we mapped developer

comments, commit messages, issue titles, and descriptions suggesting that a particular atom

of confusion may have directly contributed to a bug or improvement. We believe our findings

motivate researchers to further investigate the presence and impacts of ACs in Java projects.

Beyond the experimental results of this work, we also provide essential infrastructure

for future research. We built a dataset linking over 8,000 commits, 4,000 reported issues, and

7,000 ACs from 21 Java projects, aggregating information from three distinct perspectives:

project management, code versioning, and atoms of confusion. This dataset enables future

studies to continue exploring the impacts of ACs in Java projects. Additionally, we have made

available all the necessary scripts for creating the dataset, which can be used to aggregate new

information and expand it with additional Java projects. Links to all our materials are available

at (PINHEIRO, 2023).

4.7 Implications for Practitioners

Previous studies have shown that atoms of confusion can cause serious difficulties

during code comprehension: a task performed at every stage of the software lifecycle. This

can negatively impact the productivity of a software development team, potentially leading to

delays in the schedule and an increase in the budget of a software project (MAALEJ et al., 2014;

GOPSTEIN et al., 2017).

Although there are already studies showing the significant prevalence of ACs in

real-world systems and their actual impact on confusing developers, they still do not give due

importance to the issue, as observed by (MEDEIROS et al., 2019). In this research, pull requests

to popular and relevant open-source projects were submitted, simply replacing a confusing code

pattern with an equivalent, non-confusing code. Only 22% were accepted, while the others were
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rejected with the justification that the code was functioning without errors, or they were not even

responded to (MEDEIROS et al., 2019).

This phenomenon may be occurring because we still have few results showing the

real impacts of using such code patterns in real-world systems. Therefore, addressing this issue

and being able to demonstrate how the use of ACs can negatively impact a software project

becomes important to motivate developers to avoid and refactor such code patterns to improve

code readability and prevent future issues in code comprehension, and consequently, in the

schedule and budget.

4.8 Conclusion

In conclusion, this chapter presented a comprehensive exploration of the results and

discussions arising from the investigation into the effects of Atoms of Confusion (ACs) on 21

open-source Java projects. The research aimed to address three key research questions, each

shedding light on distinct aspects of ACs’ impact on maintenance tasks and code comprehension.

In RQ1, the findings revealed a positive correlation (Pearson’s coefficient > 0.60)

between the number of ACs and the occurrence of maintenance tasks (bug-fix, improvement,

and new feature).

To better understand this correlation and deepen our analysis of the contributions

of ACs to the occurrence of maintenance tasks, in RQ2, we analyzed the context in which

ACs are removed in different types of commits throughout a Java project. To achieve this, we

compared the rate of removed ACs in each type of commit across 21 open-source Java projects.

By examining the version control histories for each reported bug, we could identify the modified

code aimed at resolving the issue. After all, code removed in a bug-fix commit is more likely to

have directly contributed to the bug than code removed in other types of commits (GOPSTEIN et

al., 2018). Our study revealed that commits removing ACs are rare, accounting for only 4.54%,

and the rate of AC removal in bug-fix commits was not higher than in other types for 18 out of

the 21 projects studied.

However, surprisingly, improvement commits emerged as the category with the

highest number of AC removals. While a bug-fix commit is intended to address and resolve

a bug, an improvement commit aims to enhance the system with the potential consequence of

preventing bugs. For this reason, we decided to revisit our RQ2 analysis by comparing the

removal of ACs between bug-fix and improvement commits against other commit types. The
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removal rate of ACs exhibited a proportionally higher trend in bug-fix and improvement commits

across 14 of the 19 projects where AC removals occurred. This result implies that attention

should also be given to improvement-type commits.

To support the quantitative analysis conducted in this study, in RQ3, we conducted a

qualitative analysis. We chose to investigate 53 bug-fix and improvement commits that had a

maximum of 10 lines removed. We scrutinized 53 commit messages, over 2394 source code lines,

and the 53 descriptions and titles of the linked issues, in addition to 374 developers’ comments.

Following this, out of the 77 analyzed atoms of confusion, we identified 9 (11.68%) that have a

high probability of having directly contributed to the occurrence of a bug or improvement.

In conclusion, our study contributes to the evolving understanding of ACs by bridging

the gap in research on their impacts on open-source Java projects. Moreover, beyond the

immediate experimental outcomes, we offer a valuable foundation for future research endeavors.

The comprehensive dataset we compiled serves as a robust resource for researchers exploring

the impacts of ACs in Java development. By providing essential infrastructure and scripts, we

facilitate the replication of our study and encourage the aggregation of additional data from

diverse Java projects. Despite existing research that demonstrates the substantial prevalence of

ACs in real-world systems and their tangible impact on developer confusion, the development

team still does not give due importance to the issue (MEDEIROS et al., 2019). This occurrence

might be taking place due to the limited number of results demonstrating the actual impacts of

employing such code patterns in real-world systems. Addressing this gap becomes imperative to

motivate developers to avoid and refactor ACs, enhancing code readability and preventing future

comprehension issues. By demonstrating the negative impact of ACs on software projects, our

research advocates for a heightened awareness of these issues among practitioners, promoting

proactive measures for improved code quality, comprehension, and overall project success.
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5 CONCLUSION

This chapter presents the conclusions of this study. Section 5.1 shows our final

considerations. Section 5.2 highlights the main contributions of this work. Section 5.3 discusses

the threats to validity. Finally, Section 5.4 presents proposals for further investigations.

5.1 Final Considerations

This study investigated the possible impacts of atoms of confusion on the software

development lifecycle of 21 open-source long-lived Java projects. In our analysis, our results

showed that there is a positive correlation between the number of ACs and the number of reported

bugs and improvements in a project (answering RQ1).

Additionally, we have better understood the context in which ACs were removed

in distinct commit types. First, we observed that commits removing at least one AC are rare

(4.54%). Also, we observed that in 14 out of 19 projects having commits removing ACs, there

was a higher rate of atom removal in bug-fix and improvement commits compared to the other

types of commits (answering RQ2). Such a phenomenon may indicate that the more ACs there

are, the greater the number of bugs and improvements in a project contribute to augmenting the

number of maintenance tasks.

To support these conclusions, we conducted a qualitative analysis to assess, based

on information reported by developers, whether ACs were likely to be the direct cause of a bug

or improvement. Of the analyzed cases, 11.68% were found to likely have directly contributed

to the maintenance task (answering RQ3). This study can assist developers in avoiding the

inclusion of atoms of confusion in their source code, as it can potentially lead to difficulties in

code comprehension during software maintenance and evolution.

5.2 Main Contributions

The main contributions of this work are summarized below:

• Dataset: we created a repository containing information on project management,

code versioning, and atoms of confusion from 21 open-source Java projects,

encompassing over 4,000 issues, 8,000 commits, and 7,000 ACs. Available at

(PINHEIRO, 2023).

• Methodology and Source Code: all the processes and source code required
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to create the dataset have been detailed so that researchers can expand it. The

scripts and complementary material can be found on the dataset website.

• Impacts of ACs in Java Projects: a study of the relationship between ACs and

maintenance tasks in 21 open-source Java projects.

In addition, a paper was published along the development of this work:

• O. Pinheiro, L. Rocha, and W. Viana, "How They Relate and Leave: Under-

standing Atoms of Confusion in Open-Source Java Projects" 2023 International

Working Conference on Source Code Analysis and Manipulation (SCAM),

2023.

Furthermore, I co-authored two papers on the topic of this dissertation:

• D. Tabosa, O. Pinheiro, W. Viana, and L. Rocha, "A Dataset of Atoms of Confu-

sion in the Android Open Source Project" 2024 Mining Software Repositories

(MSR), 2024.

• W. Mendes, O. Pinheiro, E. Santos, W. Viana, and L. Rocha, "Dazed and Con-

fused: Studying the Prevalence of Atoms of Confusion in Long-Lived Java

Libraries" 2021 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 2022.

5.3 Threats to Validity

We investigated the threats to the validity of our research using the threats clas-

sification presented by WOHLIN et al.: conclusion, internal, construct, and external validity

(WOHLIN et al., 2012).

5.3.1 Conclusion Validity

Threats to the conclusion validity are concerned with factors that impact the capacity

to make accurate inferences about the relationship between the treatment and the outcome of an

experiment. To mitigate this threat, we investigated known research questions for open-source

Java projects that have already been used in previous studies on the impacts of ACs in C and

C++ real-world systems (GOPSTEIN et al., 2018). Furthermore, we carefully chose proper

statistical tests and correlation measures (Mann-Whitney and Pearson Correlation Coefficient),

that have been investigated and validated in previous studies (KUMAR et al., 2011; JI et al., 2009;



57

STANTON, 2001). Additionally, we have observed the assumptions (e.g., sample distribution,

dependence, and size) of our statistical tests, trying to avoid wrong conclusions.

5.3.2 Internal Validity

Internal validity threats can potentially influence the independent variable’s causality

without the researcher’s knowledge. As a result, they threaten the inference of a potential

causal link between treatment and outcome. We conducted a qualitative analysis to mitigate this

threat to enhance the quantitative findings. In our qualitative analysis, in addition to examining

the commit message and source code, we also inspected the title, description, and developers’

comments on the related issue. Therefore, to determine if an atom of confusion was likely to be

the cause of a bug or improvement, we needed a wealth of information and discussions in each

issue/commit as evidence. During this task, we encountered removals of ACs that appeared to

have influenced the bug-fix/improvement when analyzing the involved source code. However, in

our results, they were not considered as a probable cause of the maintenance task due to a lack

of higher-quality information to support this conclusion. Furthermore, although this analysis

was primarily conducted by a single researcher, the more complex cases were reviewed by two

additional researchers for increased confidence in determining whether the atom was likely to be

the cause of a bug or improvement.

5.3.3 Construct Validity

Construct validity concerns generalizing the result of the research to the concept or

theory behind the study. We employed a peer debriefing strategy to validate the research design

and document review. The aim was to prevent discrepancies in result interpretation. Furthermore,

we used an automated detection tool to address our research questions, which has been used in

previous studies and had its precision and recall tested with excellent results (MENDES et al.,

2021; MENDES et al., 2022). Finally, to perform data mining of the Git and Jira repositories,

we used tools that have already been validated and used in other research: PyDriller and Jira

Python API (SPADINI et al., 2018; JIRA-PYTHON-LIBRARY, 2012).
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5.3.4 External Validity

Threats to external validity are conditions that limit the capability to generalize the

results of our research to industrial practice. One of the phases of our study involved linking

project commits with their respective Jira issues. To avoid external validity on this association,

we employed a strategy widely used in previous empirical studies on Apache projects: the ASF

project developers specify the issue ID in the messages of the commits that were necessary to

resolve the issue (VIEIRA et al., 2019).

The project selection that was the subject of this study was based on existing work

on the prevalence of ACs in Java systems, using the BOHR tool (MENDES et al., 2022). As this

previous study demonstrated the significant occurrence of ACs in real-world Java projects, we

decided to start from this point to show the possible impacts that such prevalence can cause. For

this purpose, 21 of the 27 projects addressed in the previous work were chosen. This is because

these 21 projects used the same project management and version control tools, which facilitated

the construction of our solution to conduct our analysis. The selected projects represent a single

domain of real-world Java systems, which can be a threat to external validity. Therefore, as an

evolution of this study, we propose to expand the selected projects as the research object, similar

to what GOPSTEIN et al. did in their research, in which 14 projects were selected, two from

each of the following seven domains: operating system, browser, compiler, database, version

control, text editor, and web server (GOPSTEIN et al., 2018).

5.4 Future Work

Based on this research, some questions arose that we believe are essential and can

be the subject of future work. One possible approach is the evolution of the research questions

proposed, regarding a more detailed study based on the individual analysis by type of AC.

Another aspect to be explored is expanding this study to open-source Java projects from other

domains (e.g., mobile, e-commerce), increasing the number of subject projects.

Another aspect that can be studied is the creation of new metrics to evaluate the

relationships between atoms of confusion and maintenance activities, such as:

– Are classes with more reported bugs and improvements the ones that have more ACs?

– What is the distance, in lines of code, between ACs and the changes made by bug-fix and

improvement commits?
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– Are releases with a higher number of ACs also the ones with the highest number of reported

bugs and code refactoring?

– Are the commits with a higher risk of changes the ones with the highest incidence of ACs?

The delta-maintainability metric is the proportion of low-risk change in a commit and can

be measured using the Open Source Delta Maintainability Model (OS-DMM). (BIASE et

al., 2019).
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APPENDIX A – DATASET DESCRIPTION

The tables below describe the dataset created in this study, providing details and

descriptions of its entities and their respective fields.
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Table 9 – Jira Dataset
Field Description
Key A unique identifier for the issue

Type
Issue type. Can be: bug, improvement, new feature, task,

sub-task, test or wish
Priority The importance of the issue in relation to other issues

Status
The stage the issue is currently at in its lifecycle

Can be: open, in progress, reopened, resolved or closed
Reporter The person who entered the issue into the system
Assignee The person to whom the issue is currently assigned

Components Project component(s) to which this issue relates

Resolution
A record of the issue’s resolution, if the issue has been

resolved or closed. Can be: done, won’t do, duplicate or
cannot reproduce

InwardIssueLinks
List of issues that affect the current issue and their respective

descriptions of how they affect it

OutwardIssueLinks
List of issues that are affected by the current issue and their respective

descriptions of how they are affected
NoComments How many developer comments there are in the issue
NoWatchers How many people are watching the issue

NoAttachments How many attachments there are in the issue
NoAttachedPatches How many patch attachments there are in the issue

Summary Issue title

SummaryTopWords
Preprocessing in the Summary field with the most frequent

words and their respective frequencies
Description A detailed description of the issue

DescriptionTopWords
Preprocessing in the Description field with the most frequent

words and their respective frequencies

CommentsTopWords
Preprocessing in the Developers Comments with the most frequent

words and their respective frequencies
CreationDate The time and date on which the issue was entered into Jira

ResolutionDate The time and date on which the issue was resolved
LastUpdateDate The date the last issue update

FirstCommentDate The date of the first developer issue comment
LastCommentDate The date of the last developer issue comment

FirstAttachmentDate The date of the first issue attachment
LastAttachmentDate The date of the last issue attachment

FirstAttachedPatchDate The date of the first issue patch attachment
LastAttachedPatchDate The date of the last issue patch attachment

AffectsVersions Project version(s) for which the issue is (or was) manifesting
FixVersions Project version(s) in which the issue was (or will be) fixed
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Table 10 – Issue Developer Comments Dataset
Field Description
Key A unique identifier for the issue

Author The developer who made the comment on the issue
CreationDate The date on which the comment was made

Content The content of the comment

ContentTopWords
Preprocessing in the Content field with the most frequent

words and their respective frequencies

Table 11 – Issue Changelog Dataset
Field Description
Key A unique identifier for the issue

Author The developer who made the change on the issue
ChangeDate The date on which the change was made on the issue

Field The issue field that was modified
From The content of the field before the change

To The content of the field after the change

Table 12 – Issues-Commits Dataset
Field Description

Issue Key A unique identifier for the issue
Related Commit The commit hash that is related to the issue
Previous Commit The previous hash commit to the Related Commit
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Table 13 – Commit Log Dataset
Field Description

CommitHash A unique identifier for the commit
Author The person who originally wrote the work

AuthorDate The datetime when the work was originally written
Committer The person who last applied the work

CommitterDate The datetime when the work was last applied
CommitMessage The message of the commit

CommitMessageTopWords
Preprocessing in the Commit Message field with the
most frequent words and their respective frequencies

FileName The name of the file that was modified in the commit
FilePath The path of the file that was modified in the commit

ChangeType
Type of the change made in the file.

Can be: Added, Deleted, Modified, or Renamed.

IsSrcFile
Returns True if the modified file is
a source code file, False otherwise

IsTestFile
Returns True if the modified file is

a source code test file, False otherwise
ModificationAddLines How many lines were added in the modified file
ModificationDelLines How many lines were deleted in the modified file

CommitInsertions How many lines were added in the commit
CommitDeletions How many lines were deleted in the commit

Diff Code changes in the commit
DiffAddedLines Code added in the commit
DiffDeletedLines Code deleted in the commit

NoMethods
Number of methods in the file after the change

Is empty if the file is not a source code file
LoC Lines Of Code (LOC) of the file
CyC Cyclomatic Complexity of the file

NoTokens Number of Tokens of the file
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Table 14 – Git Dataset

Field Description

Key Issue key to which the commits are linked

CommitsMessageTopWords

Preprocessing in the Issue Linked Commits

Message field with the most frequent words

and their respective frequencies

HasMergeCommit
Returns True if there is at least one linked merge commit,

False otherwise

NoCommits How many commits have been linked to the issue

NoAuthors
How many authors are involved in the commits

linked to the issue

NoCommitters
How many committers are involved in the commits

linked to the issue

AuthorsFirstCommitDate
The authored datetime of the first commit that is

linked to the issue

AuthorsLastCommitDate
The authored datetime of the last commit that is

linked to the issue

CommittersFirstCommitDate
The committed datetime of the first commit that is

linked to the issue

CommittersLastCommitDate
The committed datetime of the last commit that is

linked to the issue

NonSrcAddFiles
How many non-source files were added in the

commits linked to the issue

NonSrcCopyFiles
How many non-source files were copied in the

commits linked to the issue

NonSrcDeleteFiles
How many non-source files were deleted in the

commits linked to the issue

NonSrcModifyFiles
How many non-source files were modified in the

commits linked to the issue

NonSrcRenameFiles
How many non-source files were renamed in the

commits linked to the issue
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Table 14 continued from previous page

Field Description

NonSrcUnknownFiles
How many unknown non-source files were

changed in the commits linked to the issue

NonSrcAddLines
How many lines were added to non-source files

in the commits linked to the issue

NonSrcDelLines
How many lines were deleted to non-source files

in the commits linked to the issue

SrcAddFiles
How many source files were added in the

commits linked to the issue

SrcCopyFiles
How many source files were copied in the

commits linked to the issue

SrcDeleteFiles
How many source files were deleted in the

commits linked to the issue

SrcModifyFiles
How many source files were modified in the

commits linked to the issue

SrcRenameFiles
How many source files were renamed in the

commits linked to the issue

SrcUnknownFiles
How many unknown source files were

changed in the commits linked to the issue

SrcAddLines
How many lines were added to source files

in the commits linked to the issue

SrcDelLines
How many lines were deleted to source files

in the commits linked to the issue

TestAddFiles
How many test files were added in the

commits linked to the issue

TestCopyFiles
How many test files were copied in the

commits linked to the issue

TestDeleteFiles
How many test files were deleted in the

commits linked to the issue
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Table 14 continued from previous page

Field Description

TestModifyFiles
How many test files were modified in the

commits linked to the issue

TestRenameFiles
How many test files were renamed in the

commits linked to the issue

TestUnknownFiles
How many unknown test files were

changed in the commits linked to the issue

TestAddLines
How many lines were added to test files

in the commits linked to the issue

TestDelLines
How many lines were deleted to test files

in the commits linked to the issue
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Table 15 – BOHR Detailed Dataset
Field Description
Class The name of the class in which the AC was found
Atom The type of AC

Snippet The code snippet that contains the AC
Line The line number where the AC was found

Table 16 – BOHR Aggregated Dataset
Field Description

Version The package name that contains Java classes

Classes
The number of Java classes contained

in the package

LoC
The sum of lines of code of the Java classes contained

in the package

Ocurrences
The number of ACs found in the Java classes contained

in the package

AC Types
The number of AC Types found in the Java classes contained

in the package

Classes with AC
The number of Java package classes that contain

at least one AC

IOP
The number of Infix Operator Precedence Atoms found

in the Java package classes

PreIncDec
The number of Pre-Increment/Decrement Atoms found

in the Java package classes

PostIncDec
The number of Post-Increment/Decrement Atoms found

in the Java package classes

CO
The number of Conditional Operator Atoms found

in the Java package classes

OCB
The number of Omitted Curly Braces Atoms found

in the Java package classes

LaCF
The number of Logic as Control Flow Atoms found

in the Java package classes

AaL
The number of Arithmetic as Logic Atoms found

in the Java package classes

CoLE
The number of Change of Literal Encoding Atoms found

in the Java package classes

TC
The number of Type Conversion Atoms found

in the Java package classes

RV
The number of Repurposed Variables Atoms found

in the Java package classes
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Table 17 – Changed/Deleted ACs Dataset
Field Description
Key A unique identifier for the issue

CommitHash A unique identifier for the commit
CommitDeletions How many lines were deleted in the commit
CommitInsertions How many lines were added in the commit

Class The name of the class in which the AC was found
Line The line number where the AC was found
Atom The type of AC

Snippet The code snippet that contains the AC

Type
Issue type. Can be: bug, improvement, new feature, task,

sub-task, test and wish

Action

Impact of the commit on the atom of confusion.
Can be changed if the commit modifies the same

line as the AC, preserving it; or deleted if the
commit removes the AC
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Table 18 – Commit ACs Changes Dataset

Field Description

Issue A unique identifier for the issue

Type
Issue type. Can be: bug, improvement, new feature, task,

sub-task, test or wish

Related Commit The commit hash that is related to the issue

Previous Commit The previous hash commit to the Related Commit

PClasses The number of Java classes before the changes of the related commit

PLoC
The sum of lines of code of the Java classes before the changes

of the related commit

POcurrences
The number of ACs found in the Java classes before the changes

of the related commit

PAcTypes
The number of AC Types found in the Java classes before the changes

of the related commit

PClassesWithAC
The number of Java classes that contain at least one AC before the

changes of the related commit

PIOP
The number of Infix Operator Precedence Atoms found in the

Java classes before the changes of the related commit

PPreIncDec
The number of Pre-Increment/Decrement Atoms found in the

Java classes before the changes of the related commit

PPostIncDec
The number of Post-Increment/Decrement Atoms found in the

Java classes before the changes of the related commit

PCO
The number of Conditional Operator Atoms found in the

Java classes before the changes of the related commit

POCB
The number of Omitted Curly Braces Atoms found in the

Java classes before the changes of the related commit

PLaCF
The number of Logic as Control Flow Atoms found in the

Java classes before the changes of the related commit

PAaL
The number of Arithmetic as Logic Atoms found in the

Java classes before the changes of the related commit
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Table 18 continued from previous page

Field Description

PCoLe
The number of Change of Literal Encoding Atoms found in the

Java classes before the changes of the related commit

PTC
The number of Type Conversion Atoms found in the

Java classes before the changes of the related commit

PRV
The number of Repurposed Variables Atoms found in the

Java classes before the changes of the related commit

RClasses The number of Java classes after the changes of the related commit

RLoC
The sum of lines of code of the Java classes after the changes

of the related commit

ROcurrences
The number of ACs found in the Java classes after the changes

of the related commit

RAcTypes
The number of AC Types found in the Java classes after the changes

of the related commit

RClassesWithAC
The number of Java classes that contain at least one AC after the

changes of the related commit

RIOP
The number of Infix Operator Precedence Atoms found in the

Java classes after the changes of the related commit

RPreIncDec
The number of Pre-Increment/Decrement Atoms found in the

Java classes after the changes of the related commit

RPostIncDec
The number of Post-Increment/Decrement Atoms found in the

Java classes after the changes of the related commit

RCO
The number of Conditional Operator Atoms found in the

Java classes after the changes of the related commit

ROCB
The number of Omitted Curly Braces Atoms found in the

Java classes after the changes of the related commit

RLaCF
The number of Logic as Control Flow Atoms found in the

Java classes after the changes of the related commit

RAaL
The number of Arithmetic as Logic Atoms found in the

Java classes after the changes of the related commit
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Table 18 continued from previous page

Field Description

RCoLe
The number of Change of Literal Encoding Atoms found in the

Java classes after the changes of the related commit

RTC
The number of Type Conversion Atoms found in the

Java classes after the changes of the related commit

RRV
The number of Repurposed Variables Atoms found in the

Java classes after the changes of the related commit
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