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“First Law of Technology: ‘Technology is neither

good nor bad; nor is it neutral.’”

(Dr. Melvin Kranzberg)

https://thefrailestthing.com/2011/08/25/kranzbergs-six-laws-of-technology-a-metaphor-and-a-story/


ABSTRACT

The ever-growing number of space missions has made manual searching for exoplanet candidates

infeasible due to the increasing volume of data. Consequently, the astrophysics community has

extensively employed machine learning methods not only to handle the sheer amount of available

data but also to enhance the sensitivity of detections concerning the signal noise inherent in

relevant observational cases. This work builds upon and refines a previous review study, also

presenting a conceptual trial for an alternative method to those previously discussed in the

literature for classifying potential exoplanet signals using deep learning. We developed, trained,

and evaluated Convolutional Neural Network (CNN) models to analyze light curves from the

Kepler space mission, allowing inference on whether a given signal refers to an exoplanet or not.

The distinction of this work lies in the imaging of these light curves before they are passed to the

CNNs, which practically increases the number of dimensions available for analysis and enables

the use of powerful and successful computer vision techniques for classification problems. Our

best model ranks plausible planet signals higher than false-positive signals 97.22% of the time

in our test dataset and demonstrates promising performance on entirely new data from other

datasets. Our best model also shows a moderate capacity to generalize what it learned with data

from other space missions, such as K2 and TESS. A good performance on entirely new data is a

critical characteristic for upcoming space missions such as PLATO, and is work in progress at

time of writing. Additionally, we provide new perspectives on how this imaging method can be

further explored and tested in future works.

Keywords: exoplanets; light curve imaging; deep learning; convolutional neural networks.



RESUMO

O número cada vez maior de missões espaciais tornou inviável a busca manual por candidatos a

exoplanetas devido ao crescente volume de dados. Consequentemente, a comunidade astrofísica

tem empregado extensivamente métodos de aprendizagem automática não só para lidar com

a grande quantidade de dados disponíveis, mas também para aumentar a sensibilidade das

detecções relativas ao ruído do sinal inerente em casos observacionais relevantes. Este trabalho

baseia-se e refina um estudo de revisão anterior, apresentando também um ensaio conceitual

para um método alternativo aos discutidos anteriormente na literatura para classificação de

potenciais sinais de exoplanetas usando aprendizagem profunda. Desenvolvemos, treinamos e

avaliamos modelos de Rede Neural Convolucional (CNN) para analisar curvas de luz da missão

espacial Kepler, permitindo inferir se um determinado sinal se refere a um exoplaneta ou não.

O diferencial deste trabalho está na geração de imagens dessas curvas de luz antes de serem

passadas para as CNNs, o que praticamente aumenta o número de dimensões disponíveis para

análise e permite o uso de técnicas poderosas e bem-sucedidas de visão computacional para

problemas de classificação. Nosso melhor modelo classifica os sinais plausíveis do planeta acima

dos sinais falso-positivos 97,22% das vezes em nosso conjunto de dados de teste e demonstra um

desempenho promissor em dados inteiramente novos de outros conjuntos de dados. Nosso melhor

modelo também mostra uma capacidade moderada de generalizar o que aprendeu com dados de

outras missões espaciais, como K2 e TESS. Um bom desempenho em dados inteiramente novos

é uma característica crítica para as próximas missões espaciais, como a PLATO, e é um trabalho

em andamento no momento da escrita. Além disso, fornecemos novas perspectivas sobre como

este método de imagem pode ser mais explorado e testado em trabalhos futuros.

Palavras-chave: exoplanetas; imageamento de curvas de luz; deep learning; redes neurais

convolucionais.
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1 INTRODUCTION

A celestial body is defined as a planet if (I) it orbits around a star, (II) has sufficient

mass for its own gravity to overcome rigid body forces and maintain hydrostatic equilibrium,

and (III) clears its orbital neighborhood (Etangs; Lissauer, 2022). Planets located outside the

solar system are referred to as extrasolar planets or simply exoplanets. The study of these

celestial bodies is important as it enables a better understanding of the formation and evolution

of planetary systems and their components. Specifically, we can develop more accurate models

to study the process of Earth’s formation, as well as its current physical and chemical structure.

This allows us to search for planets with characteristics similar to ours, in the quest for habitable

worlds with life as we know it so far.

The concept of extrasolar planets as a serious research topic is relatively new when

considering the history of physics and astronomy. A few notable milestones in the 20th century

mark significant points (Greicius, 2017; Campbell et al., 1988; Wolszczan; Frail, 1992), with

a major breakthrough occurring in 1995 (Mayor; Queloz, 1995). This achievement, which led

to the first detection of an exoplanet orbiting a star similar to the Sun, went on to win the 2019

Nobel Prize. The then-emerging field of exoplanetology made great use of the technological

advancements in the following century. Earth-based and space telescopes were planned and put

into operation with the main objective, or one of the main objectives, of searching for planets

outside the solar system (Hellier, 2019; Boisnard; Auvergne, 2006; Borucki, 2016; Howell et al.,

2014; Ricker et al., 2014).

As of the writing of this text, there are exactly 5,539 confirmed exoplanets (Brennan,

2023). This number is highly dynamic, with weekly or even daily updates being common during

certain periods. Figure 1 illustrates the quantity of confirmed exoplanets over the years using

different detection methods. Additionally, there are more than 9,400 planet candidates, which is

also a significant number. Data from space telescopes contribute to the majority of these figures.

Specifically, up until its last mission conclusion in October 2018, the Kepler space telescope was

responsible for discovering 2,662 planets throughout its two missions, known as Kepler and K2,

over nine years of operation (NASA, 2018b). Today, that number has reached 3,326 (NASA,

2023).
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Figure 1 – Number of exoplanets discovered over the years and their respective detection methods
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(b) Data without the planetary transit method
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Note: Up to 17, April 2023.
Source: Self elaboration. Data from NASA Exoplanet Archive, available at

https://exoplanetarchive.ipac.caltech.edu. Accessed 17 April 2023.

One of the conclusions drawn from population studies based on data from the Kepler

telescope is that planets outnumber stars in our galaxy (NASA, 2018a). Small planets between

the sizes of Earth and Neptune, which are more difficult to detect, substantially outnumber

Jupiter-sized planets. (Howard, 2013). For comparison, the Global Astrometric Interferometer

https://exoplanetarchive.ipac.caltech.edu/
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for Astrophysics (Gaia) space telescope currently collects data from over 1 billion stars (Vallenari

et al., 2022). These numbers highlight a significant challenge as the scientific community has not

been able to fully digest all the information from completed missions, such as Kepler, or ongoing

missions such as the Transiting Exoplanet Survey Satellite (TESS) (NASA, 2019). In this decade

alone, for example, we will witness the launch of another space telescope, PLAnetary Transits

and Oscillations of stars (PLATO), which promises to provide an even larger and more precise

volume of data on exoplanets than its predecessors (Rauer; Heras, 2018).

Given this scenario, the scientific community has begun to explore ways of cataloging

exoplanets in a more automated manner. The Robovetter project, for instance, has successfully

utilized decision trees to automate the process of filtering out false exoplanet signals, mimicking

human judgment (Coughlin et al., 2016). Similarly, the Autovetter project has leveraged machine

learning techniques, specifically a random forest model, to classify data related to exoplanets

(McCauliff et al., 2015).

The AstroNet was the first deep learning model used to detect an exoplanet (Shallue;

Vanderburg, 2018). It is an algorithm that uses a deep neural network to classify exoplanet

data. This work gained prominence by discovering the first planetary system with eight planets,

equating to our own Solar System. Originally developed to work with data from the Kepler

mission, AstroNet was modified to work with the K2 mission data (Dattilo et al., 2019) and

further adapted to handle data from TESS (Yu et al., 2019). Following the benefits of deep

learning usage, GPC (Armstrong et al., 2021) was able to validate 50 new exoplanets and more

recently ExoMiner (Valizadegan et al., 2022) achieved the incredible mark of 301 new exoplanets

validations.

The models mentioned work based on the exoplanet detection method known as

planetary transit, which essentially consists of observing drops in the brightness of a target star

caused by the transit of a planet. As shown in Figure 1, this method is the most successful so

far, and we will delve into its details in the next chapter. Some members involved in AstroNet

were also part of another project that uses the same type of neural network to work with an

appropriate approach to another detection method: radial velocity, which involves observing

small oscillations in the motion of a target star caused by gravitational interaction of the planet-

star system in question (de Beurs et al., 2022). This method is the second most successful in the

literature and will also be briefly discussed in the next chapter. Both of these mentioned methods

analyze data that can be characterized as time series. In the case of the transit method, these
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series are called light curves.

Numerous other research groups have proposed implementing their own machine

learning or deep learning models to enhance the search for exoplanets. Some are based on the

approach of AstroNet itself, such as the algorithm Nigraha algorithm (Rao et al., 2021). Others

continue to analyze radial velocity data, such as the ExoplANNET algorithm (Nieto; Díaz, 2023).

In this work, we present a general review of the main methods for detecting exoplan-

ets and show how machine learning and deep learning techniques can be applied in their search.

As a conceptual test, we present and incorporate techniques of temporal series imaging for the

construction of a robust processing pipeline for light curves. In brief, imaging methods transform

time series, that can be described by one-dimensional arrays, into images or two-dimensional

arrays (Wang; Oates, 2015). The advantage of this is that powerful and successful techniques

from deep learning and computer vision can be used to classify signals in this data as planets or

non-planets. In particular, we will make use of Convolutional Neural Network (CNN) models to

evaluate if the time series imaging technique is viable and helpful on augment the performance of

deep learning models. To the best of our knowledge, this methodology has not yet been explored

by the astrophysics community.

The structure of this dissertation is presented as follows. First, in Chapter 2, we will

give a brief introduction on the main exoplanet detection methods in order to understand how

they influence space missions for the observation of targets of interest. We will delve deeper into

the details of the Kepler space mission in order to understand the structure of the data worked

on and how they are normally processed and evaluated by the astrophysical community. In

Chapter 3, we will introduce some of the general concepts and methods of machine learning

and deep learning. With this, we will show some possibilities for constructing the classification

models used in this work and how they can be implemented. In Chapter 4, we will discuss the

method of temporal series imaging, how it is being implemented in this work, and how we can

reduce its products size while preserving the relevant information. In Chapter 5 we explain the

models architectures and settings used in this work and evaluate their performance metrics on a

portion of our original dataset and on a sample of targets from K2 and TESS missions. Finally,

in Chapter 6, we make an overview of the whole work and show some perspectives with the

results we achieved.
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2 EXOPLANET DETECTION

Numerous exoplanets with various characteristics have been detected and confirmed

over the years. To achieve this, astrophysicists employ different detection methods that take into

account the dynamics of physical properties of the target star-planet system. Table 1 presents

all the methods found in the literature and their contributions to official confirmations. Among

these, the transit method, radial velocity, and gravitational microlensing stand out.

Table 1 – Count of planets confirmed by each
detection method

Method Count
Transit 3985

Radial Velocity 1032
Microlensing 187

Imaging 65
Transit Timing Variations 25
Eclipse Timing Variations 17

Orbital Brightness Modulation 9
Pulsar Timing 7

Astrometry 2
Pulsation Timing Variations 2

Disk Kinematics 1
Note: Data updated up to the date of access.
Source: NASA Exoplanet Archive, available at
https://exoplanetarchive.ipac.caltech.edu. Accessed
17 April 2023.

2.1 Physical Characteristics of the Main Methods

The following subsections focus on discussing the physical characteristics of the

three main methods, with particular emphasis on the transit method, which is used in this work.

The gravitational microlensing and radial velocity methods are briefly presented to complement

the discussion on the implementation of temporal series imaging. Understanding these concepts

is crucial for the analyses conducted throughout the rest of this work.

https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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2.1.1 The Gravitational Microlensing Method

Einstein’s theory of general relativity predicts that massive objects warp the fabric

of spacetime. As a consequence, a beam of light traveling in a straight line on an undeformed

portion of this tissue suffers a deviation in its path when passing close to a massive object. When

a star passes in front of a more distant one in relation to the line of sight, the more distant

one appears to be brighter than normal for a short period of time due to the light deflected by

the gravitational effect. When the nearest star has an exoplanet orbiting it, we can observe a

secondary peak of the luminosity observed by the telescope, as given in figure Figure 2.

Figure 2 – Example of a typical graph generated by gravitational microlensing observations

Note: Gravitational microlensing event model. The solid line expresses the behavior of the graph generated by
observing a microlensing event where the closest star to the observer has a planet orbiting it. The dotted line
represents the same situation, but disregarding the planet.

Source: Self-made using MulensModel software (Poleski; Yee, 2019).

We can use machine learning to investigate whether this secondary peak is caused

by a planet or some other type of perturbation. This is interesting because often this analysis

is challenging, both due to the inherent noise in the measurements and other factors in the

observation itself. As a time series, the imaging method presented in this work can be used in

contrast to more conventional methods. The reader may refer to chapter 5 of Perryman (2018)

for details on the microlensing method.

2.1.2 The Radial Velocity Method

The presence of a planet generates periodic disturbances in the motion of a star due

to the gravitational interaction present. Consider a two-body system consisting of a star and a



21

planet. Through the theory of the problem of central force for two bodies, considering Newton’s

law of universal gravitation, we can see that both planet and star orbit the barycenter of the

system. Each body moves in a closed elliptical orbit, with the center of mass at one of the foci.

As the difference in mass between the star and the planet is very large, this effect is very small,

but still appreciable.

Relative to an observer’s line of sight, the star moves away as the planet approaches

and vice versa. From a spectroscopic point of view, this movement generates periodic dynamics

in the star’s spectral lines, where it is possible to observe Doppler shifts. A representation of this

can be seen in Figure 3.

Figure 3 – Example of observing the spectral dynamics of a star
(a) (b)

(c)

Note: Considering the observer in the same perspective as the reader, when the star approaches and the planet moves
away, we observe a deviation of the spectral lines to the left (blueshift). When the planet approaches and the
star moves away, we observe a deviation of the spectral lines to the right (redshift). Elements out of scale.

Source: Self elaboration.

Through the amplitude of the oscillation, it is possible to calculate the Radial Velocity

(RV) of the star and estimate parameters such as the orbital period, the mass, among others. The

radial velocity method is also known in the literature as Doppler Spectroscopy. We can generate

theoretical profiles for radial velocity curves, which can help us in fitting the measured data.

Some examples can be seen in Figure 4.

The analysis of data measured by radial velocity should take stellar activity into

account. Factors such as stellar oscillation, granulation, and short-term and long-term stellar
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Figure 4 – Radial velocity profiles for stars HD 73256, HD 142022 and HD 4113

Source: Extracted from Udry et al. (2003), Eggenberger et al. (2006) and Tamuz et al. (2008), respectively.

activities can significantly reduce the accuracy of the measurements. The reader may refer

to chapter 2 of Perryman (2018) for details on the radial velocity method. Machine learning

algorithms can analyze this data in order to eliminate or reduce the influence of these effects and

facilitate planet detection. As this data constitutes a time series, the application of an imaging

method to enhance the analysis might be helpful in this context.

2.1.3 The Planetary Transit Method

Similarly to the gravitational microlensing method, we also observe the brightness

of the star over time in the planetary transit method. However, in this case, we do not rely on

another star but rather on the star that constitutes the planetary system of interest. Due to stellar

activities and other external factors, fluctuations in the data are common. In a situation where

a planet orbits a star and the inclination of the system’s orbit is favorable for observation, as

illustrated in Figure 5, we can measure a decrease in brightness of the star due to the passage of

the planet in front of it. In other words, as the planet transits in front of the star relative to the

line of sight, it blocks a portion of the light reaching the telescope.

Figure 5 – Angular region where the transit can be observed

Source: Adapted from Seager (2010).
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Figure 6 illustrates the photometric influence of the planet on the star’s observed

brightness. It is depicted in a circular shape to illustrate the cyclical nature of the phenomenon.

There are two main situations occurring. The first one is the already described planetary transit,

where the planet blocks part of the starlight as it passes between the star and the observer. This

results in a primary drop in the light flux. The second occurs when the planet is behind the star in

relation to the observer, where it is also possible to observe a drop in the flux, the secondary drop

or planetary occultation. It occurs because the flux of light received by the telescope is greater

than the flux of the star alone due to the reflection of light from the star itself on the surface of

the planet. The illuminated side of the planet, or the “day side”, will impact the increase in flux

observed by the telescope depending on the planet’s albedo (reflection coefficient) (Mallama,

2017).

Figure 6 – Scheme of a planetary transit and occultation

Source: Extracted from Seager (2010).

Due to the translational motion, the light flux as a function of time considered in this

example is periodic. The time interval between one primary transit and its neighboring transit (or

any reference point with its corresponding neighbor) is called the orbital period. Additionally,

the transit event is characterized by four time instants, as illustrated in Figure 7.

These times occur at the instants when the planet’s disk touches the star’s disk,

called contact points. The contact points 𝑡𝐼 𝐼 and 𝑡𝐼 𝐼 𝐼 do not occur when the planet is seen in

the penumbra region. The total transit duration is given by 𝑇𝑡𝑜𝑡 = 𝑡𝐼𝑉 − 𝑡𝐼 . The duration of the

complete transit, i.e., the time interval in which the planet’s disk is completely contained in
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Figure 7 – Characteristic instants of a planetary transit

Source: Extracted from Seager (2010).

the star’s disk, is given by 𝑇 𝑓 𝑢𝑙𝑙 = 𝑡𝐼 𝐼 𝐼 − 𝑡𝐼 𝐼 . Planet’s ingress occurs when the planet’s disk is

entering the star’s disk region and its duration is given by 𝜏𝑖𝑛𝑔 = 𝑡𝐼 𝐼 − 𝑡𝐼 . Similarly, planet’s

egress occurs when the planet’s disk is leaving the star’s disk region and its duration is given

by 𝜏𝑒𝑔𝑟 = 𝑡𝐼𝑉 − 𝑡𝐼 𝐼 𝐼 . In general, considering eccentric orbits, 𝜏𝑖𝑛𝑔 ≠ 𝜏𝑒𝑔𝑟 . Regarding the flux

decrease 𝛿, for transits we have that

𝛿𝑡𝑟𝑎 ≈ 𝑘2
[
1 −

𝐼𝑝 (𝑡𝑡𝑟𝑎)
𝐼𝑠

]
, (2.1)

being usual to approximate 𝛿𝑡𝑟𝑎 ≈ 𝑘2. In this expression, 𝑘 = 𝑅𝑝/𝑅𝑠 is the ratio of the radius of

the planet to that of the star, 𝐼𝑝 (𝑡𝑡𝑟𝑎) and 𝐼𝑠 are the disk-averaged intensities of the planet during

transit and the star, respectively. The reader can refer to chapter 2 of Seager (2010) and chapter 6

of Perryman (2018) for more details.

The trapezoidal approximation of the transit illustrated in Figure 7 assumes a linear

variation of flux with respect to time. However, this is not what is actually observed due to the

non-uniform motion of both the star and the planet discs, as the overlapping area does not vary

linearly over time, and because a real stellar disc does not have a uniform density. This last point

is essentially the effect known as limb darkening1, where the center of the star is brighter than

the edges. This results in a drop in flux greater than 𝑘2 when the planet is close to the center and

1Latin, “limbus” means edge.
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less than 𝑘2 when close to the edges of the stellar disk. Because of this, the bottom of the graph

given in Figure 7 becomes more rounded and, therefore, the points of contact 𝑡𝐼 𝐼 and 𝑡𝐼 𝐼 𝐼 are

obstructed. Limb darkening occurs due to the variation in temperature and opacity with height in

the star’s atmosphere. An actual example of a planetary transit graph is shown in Figure 8.

Figure 8 – example of an observed transit.

Source: Self elaboration.

We can see that this light curve has some noise, but we can easily observe a similar

drop as seen in Figure 7 when taking into account the aforementioned effects, which smooth out

the bottom of the graph. In most cases, this pattern is not easily noticeable. This particular drop

represents a blocking of only 0.8% of the star’s flux by the planet. The most challenging cases

for the transit method occur when the planet’s radius is very small compared to that of the star.

This is because, according to equation 2.1, the smaller the planet’s radius, the smaller the drop in

flux. This can cause the planet’s signal to be overshadowed by the noise from the observation.

The aim of this work is to overcome this difficulty through the imaging method, enabling deep

learning models to better recognize transits even in noisy data.

2.2 Photometry Data for the Transit Method

After providing a general context of the topic and understanding the nature of the

problem we aim to solve, the next step in this work is to obtain, explore, and prepare the data for

training the algorithm. All data produced by Kepler for the Autovetter catalog were downloaded

from the Mikulski Archive for Space Telescopes (MAST). This section will focus on the technical

understanding of the observation instrument so that we can properly explore and work with the

data. We also make a contrast on how manual classification of planets are made.

https://archive.stsci.edu/
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2.2.1 The Kepler Mission Data

The Kepler mission, initiated in March 2009, was developed to determine the fre-

quency of planets with sizes similar to Earth that are in the habitable zone of stars similar to the

Sun (Borucki et al., 2010). The habitable zone is a region around a star where liquid water can

exist on the surface of rocky planets for an extended period of time (Gonzalez et al., 2001). For

this purpose, the telescope spent four years observing brightness variations of approximately

160,000 target stars in a fixed region near the Cygnus and Lyra constellations2 (Thompson et al.,

2016).

Raw data, directly obtained from the telescope, are rarely ready to be used for their

intended purposes. Therefore, they need to undergo a series of specific operations, collectively

known as a data pipeline (Quemy, 2019). The raw data from Kepler are grouped quarterly into

packages called quarters, referenced as Q0, Q1, Q2, and so on. They are then unpacked and

grouped by cadence and pixel type (Jenkins et al., 2010c). The exception to this pattern is the

first two quarters. The first quarter, Q0, refers to the first 10 days of the mission. Q1 refers to

approximately the 34 days following Q0. All other quarters span around 90 days.

Cadence refers to the interval at which the data is collected. In the case of Kepler,

there are long cadence and short cadence data. Long cadence is characterized by 29.4-minute

intervals (Jenkins et al., 2010a), while short cadence, widely used in asteroseismology studies,

is characterized by approximately 1-minute intervals (Gilliland et al., 2010). In this work, we

will focus on long cadence data. Additionally, the pixels in each collected image can be of three

types: target pixels, background pixels, or collateral pixels used for calibration purposes.

Once separated, these data are processed by the Kepler Science Processing Pipeline

and subsequently archived. This pipeline is responsible, among other things, for providing

calibrated pixels and corrected photometric flux data (Jenkins et al., 2010b). After this processing,

the data is finally stored in files in the Flexible Image Transport System (FITS) format, which is

the standard for astronomical data. Due to enhancements in this pipeline, raw data is processed

and archived multiple times, with each processing uniquely classified with a Data Release (DR)

number.

As a product of this pipeline, we have processed Target Pixel Files (TPFs) and light

curves, as well as the raw data itself, which are useful for some more specific treatments. The

TPFs are also used in the K2 and TESS missions, and each of them consists of a set of images

2Figure 77 illustrates the field of view of Kepler.
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and other data related to a target star (Barclay, 2023). Naturally, there is an image for each

cadence, as shown in Figure 9, generated with the help of the Lightkurve package in Python

(Lightkurve Collaboration et al., 2018).

Figure 9 – Images generated from the TPF of the star Kepler-90’s Q6.

Note: The time interval between one cadence and another is 30 minutes. The images above show the variation of
the star’s flux over approximately 2.3 hours.

Source: Self elaboration.

In this image, it is only possible to see the brightness of the pixels from the target

star, as the background brightness is already removed in the Kepler pipeline. The background

brightness typically consists of zodiacal light, which is the light from stars and other luminous

sources reflected by cosmic dust, sometimes hindering the visualization of small flux variations

(Morris et al., 2020). The background is then cleaned, but its original data is also stored in the

FITS file and can be accessed for analysis when pertinent.

From the TPF of a star, it is possible to extract information about its light flux as

a function time3. This a relation called is called a light curve and is generated using aperture

photometry techniques (Cleve et al., 2016). The most common technique is the Simple Aperture

Photometry (SAP), which involves selecting the pixels that maximize the Signal-to-Noise Ratio

(SNR) of the target and summing them to generate a single point corresponding to the light flux

at a given moment in time. The ordered set of these points forms a one-dimensional light curve

(Bryson et al., 2010). The signal-to-noise ratio, as the name suggests, is the power of the signal

(𝑃𝑆) divided by the power of its inherent noise (𝑃𝑅) (Johnson, 2006), given by (DÍAZ et al.,

2014):

SNR =
𝑃𝑆

𝑃𝑅
=
𝛿

𝜎

√︁
𝑁𝑡 , (2.2)

where 𝛿 is the transit depth, 𝜎 is the standard deviation of out-of-transit observations and 𝑁𝑡 is

the number of in-transit data-points.

3Note, however, that the flux unit 𝑒−𝑠−1 indicated in Figure 9 is more commonly associated with the measure-
ment of electron flux or the rate of incoming electrons rather than light flux. Light flux is typically measured in
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The selection of optimal pixels is performed by the Kepler pipeline itself through an

aperture mask and is stored in the FITS file. However, it is possible to use any previously created

mask. Figure 10 shows an example of selecting the best pixels for a given cadence using the

mask created by the Kepler pipeline.

Figure 10 – Example of selecting the pixels that optimize the star’s SNR

Source: Self elaboration.

This process is performed for all cadences in the file (both for the fluxes and their

errors and other measurement parameters), and the results are stored in a table. It is possible

to generate plots like the one in Figure 11 using the generated flux and time data. The time is

displayed on the Barycentric Kepler Julian Date (BKJD) scale, which is a unit derived from

Barycentric Julian Date (BJD) (Eastman et al., 2010; Cleve; Caldwell, 2016), and it is the

reference time used in counting Julian days with corrections for the Earth’s position relative

to the barycenter of the Solar System, minus a constant of 2,454,833 days. This constant

corresponds to 12:00 on January 1, 2009, and was defined this way to allow the satellite to use

less memory when processing time values.

The light curve in Figure 11 exhibits a decreasing trend caused by systematic errors

stemming from various astrophysical or instrumental sources (Hippke; Angerhausen, 2015;

Twicken et al., 2010). A common method, among several in literature, to address this issue

is using the Savitzky-Golay filter (Savitzky; Golay, 1964), which removes these undesired

trends while preserving important features of the curve that will be discussed in the next section.

This filter is even employed in the Kepler pipeline itself, specifically in the component called

units like photons per second, watts, or other related measures. For astrophotometry, the concept of electron flux
can be important when dealing with detectors, such as Charge-Coupled Devices (CCDs), which are commonly used
in astronomy to detect and measure the intensity of light. The rate of incoming electrons on the detector is related to
the amount of light received (Mackay, 1986). From hereon, we will follow the literature standards and use only the
term flux instead of light flux or electron flux, having this observation in mind.
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Presearch Data Conditioning (PDC) (Twicken et al., 2010).

Figure 11 – Example of light curve generated by SAP data for Quarter 4 of Kepler 90

Source: Self elaboration.

The pipeline-processed flux is labeled as PDCSAP, and an example can be seen in

Figure 12. However, Hippke et al. (2019) points out that the Savitzky-Golay filter misses 16

out of every 100 planet signals (which will be discussed shortly) in their test set. Compared

to the performance of other types of filters, the Savitzky-Golay filter is not excellent for this

work. Instead, the filtering method used here is based on splines, described in Section 2.3 of

Vanderburg and Johnson (2014) and time-windowed sliders (Hippke et al., 2019).

Figure 12 – Comparison between SAP and PDCSAP data for Quarter 4 of Kepler 90

Note: Both have been normalized to be viewed at the same scale.
Source: Self elaboration.

All of this processing was done for just one of the star’s quarters. By repeating

this filtering process for all quarters and combining them into a single graph, we obtain the

result shown in Figure 13. The reason why each quarter is on a different scale is due to the
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approximately 90◦ rotation that Kepler performed to keep its solar panels facing the Sun when

necessary, without changing its field of view. This caused the star to be observed in a different

area of the telescope’s focal plane, and the variation in flux magnitude from one quarter to

another occurs because each area of this plane generally had a different photometric sensitivity

compared to the others (Cleve; Caldwell, 2016).

Figure 13 – All available quarters from the star Kepler-90 individually filtered

Source: Self elaboration.

This problem can be solved by normalizing the flux of each individual quarter.

Figure 14 shows the normalized light curve. This light curve summarizes all the observations of

the Kepler-90 star made by the telescope throughout the Kepler mission. Some discontinuities (or

gaps) in the curve are observed and have various causes. One of the most common types of gap

is related to the monthly data download, where the telescope changes its orientation to point its

High Gain Antenna (HGA) towards Earth. This lasts for approximately one day, and the telescope

does not collect data during this period. Temperature variations in the telescope’s components

also cause gaps (Cleve; Caldwell, 2016). Missing measurements naturally also result in gaps

and can occur for various reasons. In addition, data with low photometric precision is discarded

by the Kepler pipeline and replaced with NaNs (Cleve; Caldwell, 2016; Pascual-Granado et al.,

2015). There is a space in the FITS file dedicated exclusively to the quality specifications of the

measurements.

Based on this normalization, data points far from the value 1 on the ordinate axis

can characterize outliers, which are values that notably deviate from the others (Grubbs, 1969).

Considering that the transit method essentially consists of observing flux drops, only the upper

outliers of the light curve were removed in order to preserve the transits. The chosen value for
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Figure 14 – Complete light curve of the star Kepler-90

Source: Self elaboration.

this removal was 3𝜎, and the result can be seen in Figure 15.

Figure 15 – Kepler-90 star light curve without outliers.

Source: Self elaboration.

2.2.2 Finding Periodic Signals in Light Curves

As discussed in subsection 2.1.3, planetary transit is a periodic event. Once the light

curve has been processed up to the state shown in Figure 15, we are able to search for periodic

signals within it. Specifically, these signals should exhibit a characteristic decrease in flux. This

decrease, in turn, should have similar characteristics to those illustrated in Figure 7. We have

seen that the time interval between flux drops is referred to as the orbital period. Such a drop

also has a depth and a duration. Regarding an isolated transit, we refer to the temporal reference

where the first occurrence of this transit in our light curve happens or should happen as an epoch.

For later convenience, we will use 𝑡0 instead of “epoch”. Thus, the 𝑡0 of the deepest transit in
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Figure 15, for example, is approximately 140 BKJD. In that figure, we easily observe sharp

drops in the flux. However, some drops are larger than others. This is because they are signatures

of two distinct planets, Kepler-90g and Kepler-90h.

All these properties are used to characterize a planetary transit. A periodic signal

detected by the Kepler pipeline in the light curve, such as drops that have transit-like character-

istics, are referred to as Threshold Crossing Events (TCEs) (Batalha; others, 2010). However,

not every TCE in the light curve indicates an exoplanet. In fact, the modus operandi for validat-

ing exoplanets in this way is to evaluate all other astrophysical and instrumental possibilities

that could explain such behavior in the flux. If nothing other than an exoplanet can explain

a given TCE, then validation is achieved. There are many programs that perform automated

searches for TCEs, such as VARTOOLS (HARTMAN; BAKOS, 2016) and AstroPy (ASTROPY

COLLABORATION et al., 2018). Here, we will understand the general idea of this process.

In the case of Figure 15, a qualitative identification of periodic signals is immediately

visible to the naked eye for two of the eight planets orbiting Kepler-90. Nevertheless, considering

the cadence of measurements, a single drop often does not precisely show us the shape of the

transit due to the relatively limited number of observations throughout the event, especially if its

duration is short. Therefore, we can use the phase folding technique from light curve analysis

(Gregory; Loredo, 1992), as explained in the paragraphs preceding Figure 21.

So far, we considered the standard procedure of an astronomer dealing with partially

processed data from the Kepler Science Operation Center (SOC) Science Processing Pipeline. It

is instructive to have a glance at it before working with any further examples. Figure 16 shows a

representation of the data flow for this pipeline. As Jenkins et al. (2010c) points out:

Several processing steps must be completed before TPS, which lies at the heart
of the Pipeline, can perform its search for signatures of transiting planets. First,
CAL calibrates the raw pixels downlinked from the spacecraft to remove on-
chip artifacts and to place the measurements on a linear scale with estimated
uncertainties. Second, PA identifies and removes cosmic rays from the pixel
time series, estimates and subtracts the background flux and then sums the
resulting pixel values over the photometric aperture underneath each target star
image. Third, PDC identifies and removes signatures of systematic effects in
the photometric time series, such as changes in pointing or focus, and fills any
gaps to condition the time series for TPS. TPS then searches the corrected flux
time series for signatures of periodic pulse trains indicative of transiting planets.
Threshold-crossing events flagged by TPS are examined in detail by DV to
establish or break confidence in the transit-like features as planetary signatures.

The Transiting Planet Search (TPS) of Kepler’s pipeline, as illustrated in Figure 17, is described

in details in Jenkins (2002) or, more briefly, in section 2 of Tenenbaum and others (2012).
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Figure 16 – Data flow diagram for the SOC Science Processing Pipeline

Source: Extracted from Jenkins et al. (2010c).

Figure 17 – Block diagram for TPS

Source: Extracted from Jenkins et al. (2010c).

In summary, it decomposes the light curve into its frequency components using a

wavelet technique (Daubechies, 1988) to search for individual transit-like signals over a range of

transit durations from 1 to 12 hours. The time-varying noise in each frequency band is computed

and a Single Event Statistic (SES) time series is extracted. For each sample in the original flux

time series, this new time series describes the significance of the detection of the signal. The

search is performed repeatedly using a discrete set of different model transit and a SES time

series is produced for each model transit used in the search. Then, this results are used to search

transit-like features that are periodic by folding the SES across time into Multiple Event Statistics

(MES). At each tested transit period, the search analyses a set of possible phases and a vector of

MES versus period is yield. The final step is to remove from further analysis the signals that

do not satisfy certain criteria. The most important one is to cut any star for which all of the

MES for all periods and all pulse durations fall below 7.1𝜎. This values fits a good trade-off

between the number of expected false-positive detections due to pure statistical fluctuations and

the sensitivity to Earth analogs (Jenkins et al., 2002).
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The process above illustrates how planet candidates are classified in the Kepler

pipeline. In practice, to study this candidates or to search for new ones the pipeline might have

missed, let’s follow the example of the light curve from Kepler-30 star, treated as explained in

section 2.2.1 and presented in Figure 18.
Figure 18 – Treated light curve for quarter 4 of the star Kepler-30

Source: Self elaboration.

To find periodic signals in a time series like this, we need to generate a spectrum

of it, so that we can assess the significance of the signals present in terms of their frequencies

or periods. For this purpose, it is common to apply a Fourier transform, generate a Lomb-

Scargle periodogram (Lomb, 1976; Scargle, 1982; Zechmeister; KÜrster, 2009), or generate this

spectrum using the Box Least Squares (BLS) method (KovÁcs et al., 2002). In the case of the

BLS method, which is easier to show and comprehend without giving much mathematical details,

the periodic signals sought in the curve are those that can be approximated by a rectangular-

shaped fit, as shown in Figure 19. Figure 20 displays the periodogram returned by the search for

this case.

Figure 19 – Transit model searched by the BLS method.
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Figure 20 – Periodogram generated for the star Kepler-30

Source: Self elaboration.

We observe a very significant peak at around 60 days. More precisely, the peak

occurs at 60.3 days. Speaking arbitrarily, phase folding involves dividing the light curve into

cycles defined by a given period and then overlaying these cycles, centering them around a

reference time 𝑡0. By doing this, we gain more information about the transit shape, and the flux

is now expressed in terms of phase instead of time. We can then use the obtained value to fold

the original light curve in phase and assess if the signal is consistent with a planetary transit.

Figure 21(a) shows the result of this process.

Figure 21 – Light curve of Kepler-30
(a) Folded Light Curve (b) Folded Light Curve with transit model

Source: Self elaboration.

We can see that this is indeed a strong candidate for a planet. With BLS, we can

create a model for this transit. Essentially, it fits the data with horizontal lines until the point
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where they change abruptly, as is the case with a flux drop. The transit data is fitted separately.

Figure 21(b) shows the result of this fit. Based on this model, we can determine that the duration

of the transit is 0.25 days. Combining this information with the period found in the analysis of

Figure 20, we can mark all the points in the original light curve that represent the transit with a

mask, as shown in Figure 22.

Figure 22 – Light curve of Kepler-30 with the transit mask

Source: Self elaboration.

At first glance, we could say that 𝑡0 occurs a little over 240 BKJD, but this analysis

should also consider the transit period found and the time of the curve’s start on the graph. This

is because it’s possible that some of the transits are lost in gaps, including the first one, as shown

in Figure 23. In this case, 𝑡0 is at 183.5 BKJD, precisely within the observed gap on the left side

of the data. Thus, we obtain all the necessary parameters to analyze this explained TCE. By the

way, it refers to the planet Kepler-30c. Other TCEs can also be found in the same curve as shown

Figure 23 – Beginning of the light curve of Kepler-30

Source: Self elaboration.
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in Figure 18. For this, it’s necessary to analyze the other relevant signals in Figure 20 or generate

similar ones with different period intervals.

Following the same methodology, it is possible to find the planet Kepler-30d, with

a period of 143.3 days. It’s also possible to find the planet Kepler-30b, but its signal is very

weak and therefore prone to be confused with noise. In situations like this, a list of TCEs can be

generated as in the previous steps. Most of them are likely not signals of interest, but all can be

analyzed with machine learning or deep learrning (see Chapter 3). The period of Kepler-30b is

29.3 days. The highlighted transits of all the planets can be seen in Figure 24.

Figure 24 – Light curve with the transits of the planets from Kepler-30 highlighted

Source: Self elaboration.

Everything that has been done so far illustrates the practical features for the search

for exoplanets through the transit method. Operationally speaking, this method has two stages:

detection and validation (or confirmation). What we have been presented here are possible steps

for the detection stage. The second stage takes these signals into account and investigates them

thoroughly to confirm whether they correspond to an exoplanet or not. Confirmations can be

made through statistical methods, based on the available data and other existing work, or they can

be observational, where more data is collected to complement the investigations. It is common

for observational confirmations to combine information from another detection method.

The most sensitive and error-prone part of this detection process occurs when analyz-

ing periodograms like the one in Figure 20. In many cases, this is due to the peaks of exoplanet

signals being obscured by signals of any other nature, as discussed in section 2.1. At this point,

manually analyzing all possible peaks for just one target star can become overwhelming, even

considering signals with a minimum SNR value. The situation becomes more challenging when
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searching for small planets, where the SNR falls below this minimum threshold. This is because

the false positive rate becomes very high, which can be very costly in the confirmation stage.

Therefore, all this problematic situation justifies the use of automatic detection methods, such as

machine learning, as discussed in Chapter 3.

2.2.3 Manual and Machine Vetting of Exoplanet Candidates

In the previous subsection, we gave an overview on how to detect potential transit

signals on a light curve. Now, we focus on how to confirm or validate this signals. As discussed

previously, Kepler and also TESS pipelines have a very complex algorithm to label a pattern as a

planetary candidate (PC). The signals that were considered by the pipeline as such, but failed

some consistency test are labeled false positives (FP). To confirm or validate a candidate, it has

to pass on all the consistency tests and a review of all the evidence by the entire space mission’s

Science Team has to be made. The reader can refer to Borucki and others (2011) for details of

these tests. When possible, high-precision RV measurements (Borucki; others, 2010; Jenkins;

others, 2010) or transit timing variations (Holman et al., 2010; Lissauer et al., 2011) methods

are used to confirm exoplanets. When this is not the case, an extensive analysis of the spacecraft

and ground-based data is done and it may allow the statistical validation of an exoplanet. This

is done by showing that the planetary interpretation is at least 100 times as probable as a false

positive (Lissauer et al., 2011; Torres; others, 2010).

In what regards FP transit events, Kepler/TESS pipeline might confuse planetary

transits with sources like Eclipsing Binaries (EBs), Background Eclipsing Binaries (BGEBs)

planet transiting background stars, stellar variability, and instrument-induced artifacts (Borucki;

others, 2011). EBs are binary star systems in which the orbital plane of the two stars is aligned in

such a way that one star periodically passes in front of the other, as observed from the telescope.

This results in a regular decrease in the system’s brightness, mimicking the signature of a

transiting exoplanet. BGEBs refer to eclipsing binary star systems that are not associated with

the target star being observed for exoplanet transits. These binaries are located in the background,

meaning they are not the star of interest, but their light overlaps with the light from the target

star.

Both Kepler and TESS pipelines have a Data Validation (DV) step, where several

diagnostic tests are provided to identify many possibilities of a FP flag for a candidate (Twicken;

others, 2018; Twicken et al., 2020). For each target star with at least one TCE in a given Pipeline
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run, a comprehensive DV Report in a PDF format is automatically generated and delivered to

the NASA Exoplanet Archive at NASA Exoplanet Science Institute (NExScI), where they are

accessible by the science community and general public (Twicken; others, 2018). This PDF file

contains a one-page DV summary report, which includes:

1. TCE information and stellar parameters regarding the target star;

2. Unfolded light curve flux data;

3. The phase-folded full orbit and the transit view of the flux data to determine the existence

of a secondary eclipse and shape of the signal;

4. The phase-folded transit view of the secondary eclipse;

5. The phase-folded whitened transit view;

6. The phase-folded odd and even transit view;

7. The difference image related to background image of the target;

8. An analysis table with values related to the model fit and various DV diagnostic parameters.

As explained in Twicken and others (2018), all of these informations are relevant in

the process of validating a PC. This points will not be discussed in details in this work, but we

strongly encourage the reader to refer to the cited paper. An example of a one-page DV summary

report is presented in Figure 25.

All this manual analysis for each TCE is very time-consuming and machine learning

methods are well suited for reducing the amount of time required for finding exoplanets in this

kind of situation. Among many machine classifiers models (not necessarily machine learning

models) present in literature, some gained special attention due to their impact in the time they

were proposed and due their influence on other works. They are vespa (Morton; Johnson, 2011;

Morton, 2012; Morton et al., 2016), Robovetter (Coughlin; others, 2015; Coughlin et al., 2016),

Autovetter (Jenkins et al., 2012; McCauliff et al., 2015), AstroNet (Shallue; Vanderburg, 2018),

ExoNet (Ansdell; others, 2018), GPC/RFC (Armstrong et al., 2021) and ExoMiner (Valizadegan

et al., 2022).

AstroNet marked a historical point in the exoplanet search field, not only being the

first deep learning model used to find a new planet, but also helping to confirm the first known

eight-planet system. GPC was able to validate 50 new exoplanets and more recently ExoMiner

achieved the incredible mark of 301 new exoplanets validations. This later model represents the

state-of-the-art in terms of deep learning applied to exoplanet search. Considering the types of
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Figure 25 – Example of a one-page data validation summary report

DV One-Page Summary

Note: The red big numbers indicate the corresponding enumeration given on the text above.
Source: NASA Ames Research Center. Available via download at https://mast.stsci.edu/portal/Mashup/Clients/

Mast/Portal.html. Accessed on 15 May 2023.

information and parameters used on manual vetting, Table 2 shows what kind of data the cited

models use.

Table 2 – Comparison of different models in literature for exoplanet classification
vespa Robovetter Autovetter AstroNet ExoNet GPC RFC ExoMiner

Primary properties ✓ ✓ ✓ ✓ ✓ ✓
Transit fit model ✓ ✓ ✓ ✓ ✓
Stellar parameters ✓ ✓ ✓ ✓ ✓
Optical ghost test ✓ ✓ ✓ ✓ ✓
Bootstrap fap ✓ ✓ ✓ ✓ ✓
Rolling band-fgt ✓ ✓ ✓

Scalar inputs

Secondary properties ✓ ✓ ✓ ✓ ✓

Unfolded flux +
Phase-folded flux + + ✓ ✓ ✓ + ✓
Odd and even views + + + + ✓
Weak secondary flux + + + + ✓
Difference image + + + +

Nonscalar inputs

Centroid motion test + + ✓ ✓

Note: The symbol ✓means that the model uses the original nonscalar time series or image as its input; + means that
the model uses only a few scalar values summarizing the time series or image as its input. Primary properties
includes MES, planet radius, transit depth and duration, etc. Secondary properties includes geometric albedo,
planet effective temperature, and MES for secondary transit.

Source: Adapted from Vallenari et al. (2022).
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Although not being the best model nowadays, we chose to follow in the footsteps of

AstroNet to perform a conceptual trial on the time series imaging, discussed in chapter 4. As

we can see in Table 2, it only uses one type of astrophysical data to make its predictions, which

simplify some things. Recent literature indicates that flux analysis alone is not enough to achieve

state-of-the-art performance on exoplanet detection. However, we stress that the aim of this work

is no other than to evaluate if the time series imaging technique is viable and, most importantly,

helpful to improve a deep learning model performance in this context.

2.3 Preparing the Data for Machine Learning Algorithms

In this section, we illustrate the process of adjusting the light curves discussed in the

previous sections to ensure compatibility with machine learning algorithms. Standardizing the

light curves is essential to facilitate seamless integration with these algorithms. The need for

standardization arises because machine learning models operate with a predetermined number of

inputs, whereas our light curves typically consist of varying numbers of measured flux points. To

exemplify the standardization procedure, let’s revisit the example of the Kepler-90 star. After the

phase folding process with respect to the most prominent signal, we have 𝑡0 = 140.480 BKJD

and its period 𝑝 = 331.603 BKJD. Coincidentally, this happens to be the signal associated with

the planet Kepler90-h (Cabrera et al., 2013), and the result of this process is shown in Figure 26.

Figure 26 – Phase diagram of the star Kepler-90 for the transit of the planet Kepler-90 h

Source: Self elaboration.

The range of phase values on the 𝑥-axis is equal to the signal period (from − 𝑝

2 to 𝑝

2 )

and is given in Julian days. Comparing Figures 15 and 26, it is possible to observe a greater
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number of points describing the central transit in the second figure than in any of the individual

flux drops for that TCE in the first figure. However, we should take a closer look at this event

to analyze it properly. We can select only the flux and time data that surrounds the transit of

interest, as shown in the in Figure 27.

Figure 27 – Detailed transit of the planet Kepler-90h

Source: Self elaboration.

We then have a localized view of the transit, which will be referred to as the local

view. To maintain a standard when performing the same procedure for the other light curves, all

local views have their TCEs approximately located in the center of the graph and a data interval

equal to 𝑘 transit durations to the left and right of them. The choice of this value is somewhat

arbitrary, and the convention in this work is 𝑘 = 4. Continuing with the idea of standardizing all

the data, a problem that arises when expanding the transit in this way is the number of points

that each light curve will have. More periodic transits, for example, will have more points

constituting their graph in the phase diagram.

This can be resolved using a technique called data binning (Deepchecks, 2023;

Roberts, 2023). Essentially, data binning involves grouping the data. More precisely, we define

several intervals of width 𝛿 on the time axis (or on the phase axis in this case), separated by

a distance 𝜆, and choose how to categorize the flux data contained in each of these intervals.

We choose to represent them by the median of the values in that interval, as it is a statistical

representation less affected by potential outliers and better preserves the shape of the transits.

The values of these two parameters are also arbitrary to some extent, but it was observed that

some transits became better distinguishable when 𝛿 > 𝜆, where the intervals overlap. This

technique is a very similar to a Piecewise Aggregate Approximation (PAA) (Keogh; Pazzani,
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2000), which divides a time series into 𝑁 equi-sized parts and takes the mean of the data that

falls within each interval.

By performing this procedure, another parameter that naturally arises is the number

of bins that the new light curve will have, that is, the number of points that will describe the

light curve. To maintain a general standard for the light curves, we established that all local light

curves will have exactly 201 points, or bins. This odd number is chosen so that the curve has a

central point where the transit can ideally be positioned symmetrically whenever possible. Since

a fixed number of bins has been established, the relationship that gives us the parameter values is

𝜆 =
𝛿

2
=
Δ𝑑

𝑁𝑏
, (2.3)

where 𝑁𝑏 is the number of bins and Δ𝑑 refers to the amount of data (points) from the original

curve that describes it in the considered time interval. Finally, since we are only interested

in studying the transit shape from planets of various sizes, the flux values were normalized

between 0 and 1 to prevent the transit depth from exerting too much influence on the planet

characterization. The final local curve for the example of the planet Kepler-90 h is shown in

Figure 28.

Figure 28 – Local view of the Kepler-90h transit

Source: Self elaboration.

At the end of this process, all transit information becomes described by a one-

dimensional array. This is particularly interesting from the perspective of machine learning, as

with binning, we will have less noise in the data, in addition to more efficient and faster-to-train

models (Ke et al., 2017). However, we will be losing valuable information if we only consider

the local view of a TCE. By performing the entire data processing process on the light curve of
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the star KIC 5130380 and selecting the first of its two TCEs in the catalog table, we generate the

phase diagram shown in Figure 29.

Figure 29 – KIC 5130380 star phase diagram for one of its TCEs

Source: Self elaboration.

If we fold the light curve based on the period of a specific TCE, we expect that any

signal, apart from the one of interest, that has the same period will add up at a fixed location on

the curve. This is precisely what happens in this case, as we can observe two well-defined dips

in this diagram. The centrally located dip corresponds to the chosen TCE for analysis, while

the other dip corresponds to the second TCE of this star. We see that the second dip has the

same period as the highlighted TCE, albeit with a phase difference. This provides an indication

that this system is a binary star4 (Prša; Zwitter, 2005) rather than necessarily a transiting planet.

In fact, we can observe from Figure 26 that a transit with a different period (that of the planet

Kepler-90 g) from the one we are analyzing is unevenly distributed in the plot.

Thus, it is also important to consider what happens throughout the phase diagram.

We followed a similar procedure to the local curves regarding data binning. Since the Δ𝑑 is

now larger, it is natural to represent the curve with a larger number of bins to avoid the loss of

important information, as seen in Figure 29. We refer to these larger curves as global curves and

define a fixed number of bins equal to 2001. Equation 2.3 also applies in this case. The result of

this process can be seen in Figure 30.

One reason for not using only the global light curves is that more subtle information

is lost in the data binning process in some cases. Specifically, very short transits can end up
4A binary star is a system composed of two stars that are close to each other. They orbit the center of mass of

the system, and due to their proximity, the light from one star can be “hidden” by the other for an observer situated
far from the system when the stars align. In addition to the secondary dip, another very recurrent characteristic is
the “V” shape that the curve assumes, with or without a secondary transit.
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Figure 30 – KIC 5130380.01 global light curve

Source: Self elaboration.

completely within the width 𝛿, causing their shape to be partially or completely lost in a global

view, as shown in the global curve of Kepler-90 h itself in Figure 31.

The binning process removed all significant influence that the transit of Kepler-90

g could have had on the curve, but it also did so for Kepler-90 h itself. It is hard to expect the

algorithm to understand that there is a planet in this global curve, but there is no doubt when

looking at its local representation. In cases like those in Figure 30, it is expected that the global

curve is more useful in indicating that the TCE is not a planet rather than the opposite. With this,

the data processing is complete, and the curves can now be used by machine learning algorithms.

Figure 31 – Kepler-90 h global light curve

Source: Self elaboration.
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2.4 Dataset Statistics

The data used in this study comes from the Autovetter Planet Candidate Catalog for

Q1-Q17 DR245 (Catanzarite, 2015). This catalog was generated by the autovetter (McCauliff

et al., 2015), which is a machine learning algorithm for the automatic classification of TCEs.

The catalog has a direct but independent relationship with the one produced by the robovetter

(Coughlin; others, 2015), which is also an algorithm for the automatic classification of TCEs,

but does not use machine learning. Both algorithms make use of data processed by the Kepler

pipeline to generate their products. More precisely, the autovetter classifies TCEs with labels

described by Table 3.

Table 3 – Types of labels for TCE classification by the autovetter.
Label Description
Planet Candidate
(PC)

Contains signals that are consistent with planetary transits and there is
no reason to discard the hypothesis that it is a planet.

Astrophysical False
Positive (AFP)

Contains signals of astrophysical origin that can mimic planetary transits,
such as binary eclipses, pulsating stars, sunspots, and other periodic
signals that provide strong evidence to discard the hypothesis of a transit
due to a planet.

Non-Transiting
Phenomenon
(NTP)

Contains signals that are evidently of instrumental or noise origin.

Unknown (UNK)
Refers to TCEs not included in the dataset of this work but part of the
rest of the used dataset.

Source: Adapted text from McCauliff et al. (2015) and Catanzarite (2015).

There are more recent Kepler catalogs, such as the final official Kepler Data Release

25, Q1–Q17 (Thompson; others, 2018) and updated versions of it (Lissauer et al., 2023).

However, DR24 was chosen so we could use the autovetter labels, as indicated in Table 3. There

are 20367 TCEs in total, but the usable data for this work’s purpose were chosen to be only

those whose labels are PC, Astrophysical False Positive (AFP) and Non-Transiting Phenomenon

(NTP). The filtered dataset ended up with 15737 TCEs. From these, 9596 are labeled as AFP,

3600 as Planet Candidate (PC) and 2541 as NTP. For a binary classification problem, we are

interested only on what is planet or not. Therefore, we are dealing with a skewed dataset, since

PC class only represents 22,88% of all data.

Next step is to see if the data is, indeed, representative with the available data we

currently have from exoplanets. A classic plot is the radius-period distribution, were, along with

many other distributions, one can try to find clues to distinguish between potential planetary

5The TCE interactive table for this data can be found here: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/
TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr24_tce



47

formation mechanisms (BEAUGE; NESVORNỲ, 2012; UZSOY et al., 2021). Figure 32 shows

this particular distribution for all TCE classes, whilst Figure 33 shows the same distribution, but

only for the PCs.

Figure 32 – Radius-period distribution for all TCEs in the used dataset

Source: Self elaboration.

Figure 33 – Radius-period distribution for all PC-labeled TCEs in the used dataset

Source: Self elaboration.

On both plots, TCEs are distinguished by the number of associated KOIs (#KOIs). A

Kepler Object of Interest (KOI) is a star identified by the Kepler space telescope that exhibits
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periodic dimming events suggestive of an exoplanet transit. Therefore, this distinction takes into

account the total number of TCEs detected in a KOI. Table 4 shows the counting of TCEs with

all available number of associated KOIs. Interestingly, PC-labeled TCEs do not have any null

number of associated KOIs, whilst all non-PCs have the maximum count of them. We see a

clear proportion between PC rate and #KOIs. However, since the number of associated KOIs is a

measure strongly related to Kepler’s pipeline, this observation must be taken with prudence.

Table 4 – Counting of the number of associated KOIs for TCEs in the dataset
All TCEs PCs Non PCs

# Associated KOI Count # Associated KOI Count # Associated KOI Count
0 7376 0 0 0 7376
1 6435 1 1945 1 4490
2 1084 2 856 2 228
3 474 3 443 3 31
4 238 4 229 4 9
5 108 5 106 5 2
6 15 6 15 6 0
7 7 7 6 7 1

Source: Self elaboration.

Other information of interest is the SNR of the TCE. As explained in subsection

2.2.1, it is the power of the signal divided by the power of inherent noise, estimated via equation

2.2. We can take leverage of the distribution from Figure 33 to see the dependency of the SNR

on planetary radii and orbital period, as shown in Figure 34.

Figure 34 – SNR of TCEs as a function of location in the period-radius plane
(a) Total SNR (b) Mean SNR

Source: Self elaboration.

On both panels, each square represents 1 to 11 planets and they have a factor of

≈ 1.09 in period an ≈ 1.06 in radius. Figure 34(a) shows the total SNR of a region in the plane

and Figure 34(b) shows the average (mean) SNR per transit. The average SNR was calculated
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by dividing the total SNR by the square root of the number of observed transits for each PC

(Lissauer et al., 2023). This is an important analysis to have in mind because SNR, along

with MES, have threshold values for cutting away many TCE from further analysis in Kepler’s

pipeline (Kunimoto et al., 2018).

Figure 35 shows the counts of radii and orbital period for all planets in the dataset.

Many other analysis could be done, but comparing this findings with Figure 36 shows that our

planet data is diverse and representative.

Figure 35 – Radius and orbital period counts for planets in the used dataset

Source: Self elaboration.

Figure 36 – Radius-period distribution for all confirmed planets and all planet candidates

Note: Up to November 9th, 2023.
Source: NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/exoplanetplots/.

Access on: 19 nov. 2023.
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3 ARTIFICIAL INTELLIGENCE

The Autovetter Planet Candidate Catalog for Q1-Q17 DR24 (Catanzarite, 2015)

brings an interesting approach opportunity for machine learning purposes. There are other

works in the literature that use artificial intelligence for the classification of TCEs, each with

their own characteristics. In the particular autovetter case, it uses a machine learning algorithm

known as Random Forest (Breiman, 2001), which is famous for being fast to train and producing

high-quality models. However, our interest is to recognize patterns in light curves, and there

are algorithms in the literature that have gained strong relevance in this type of task: Artificial

Neural Networks, or simply Neural Network (NN).

In short, an artificial neural network is a machine learning model inspired by the

functioning of the biological neural networks in our brains, where neural activity can be treated

using logical-mathematical concepts (McCulloch; Pitts, 1943). With the advancement in the

complexity of these models, a subfield of machine learning known as deep learning emerged,

which delivers increasingly accurate results (SCHMIDHUBER, 2014; Mu; Zeng, 2019). These

concepts will be further addressed in the following sections, but it is worth mentioning that

deep learning is very successful in tasks such as image classification and recognition of complex

patterns, being used in various areas where complex analyses are required, such as medicine and

biomedicine (Suganyadevi et al., 2022; Hafiz; Bhat, 2020; Liu et al., 2022; Luo et al., 2021),

engineering (Dimiduk et al., 2018; Zhang et al., 2021; Fan et al., 2019), economics (Long et al.,

2019; Andres et al., 2021; Maliar et al., 2021), social and political sciences (Kottursamy, 2021;

Chatsiou; Mikhaylov, 2020; Balaji et al., 2021; NYAWA et al., 2022), among many others.

As mentioned in Chapter 1, this work is a continuation of a previous study. Inspired

by the work of Shallue and Vanderburg (2018), we created a neural network capable of ranking

plausible individual planet signals higher than false-positive signals by the likelihood that they

are indeed planets 90% of the time, compared to the 98.8% from the deep learning model in the

reference work. However, the previously created algorithm did not fit as an actual deep learning

algorithm and its hyperparameters were not adequately adjusted.

In this chapter, we will provide a brief review of the basic concepts of machine

learning and discuss one more part of the methodology being employed in this work.
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3.1 A Brief Introduction to Machine Learning

Machine Learning (ML) is a subfield of what is known as Artificial Intelligence.

The classical definition is given by Samuel (1959) (Samuel, 1959): “Machine learning is the

field of study that gives computers the ability to learn without being explicitly programmed”.

The concept of “learning” became clearer with Mitchell (1997) (Mitchell, 1997): “A computer

program is said to learn from experience E with respect to some task T and performance measure

P, if its performance on T, as measured by P, improves with experience E”.

The objective of our algorithm, or its task (T), is to analyze examples of light curves

that represent planets or non-planets so that the algorithm can learn from them and develop

a model that differentiates and correctly classifies them. These examples, referred to as the

training set, serve as the experience (E) for the algorithm. We will further discuss in section 3.5

some performance measures (P), but a simple example would be the ratio of the number of

correct classifications to the total number of classifications. This particular measure is called

accuracy. Given the aforementioned specifications, we are dealing with supervised training of

a classification algorithm. It is supervised because we know in advance which data represents

planets or non-planets.

The process of constructing the algorithm consists of implementing various machine

learning models and evaluating which one performs best in recognizing exoplanets. Once the

most promising model is chosen, it will be further refined through adjusting hyperparameters

to deliver even better results. Hyperparameters are parameters that control various aspects of

the learning process of a model and directly affect its performance (Claesen; Moor, 2015). In

general, we have the freedom to arbitrarily choose their values. Next, we will discuss two of the

most common machine learning models suitable for the present case.

3.1.1 Logistic Regression Model

The training process of the logistic regression algorithm essentially consists of

determining a hypothesis that best describes the data of interest. As a basic example of this

application, we can assume that TCEs are described by two generic features, so they can be

represented in a 2D space like in Figure 37. In this pictorial example, TCEs corresponding to

planets are represented by circles, while non-planetary ones are represented by crosses. Naturally,

this is a binary classification, which was the case considered in this work. TCEs with AFP
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and NTP labels were all treated as non-planets, and those with the UNK label were discarded.

Despite a few errors observed through manual inspection of some TCEs, all labels were treated

as ground truth.

Figure 37 – Representation of an arbitrary two-dimensional feature space
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Source: Self elaboration.

In this example case, the hypothesis will take into account a linear function that

separates the two classes into well-defined regions in feature space. This function is called the

decision boundary and is expressed in terms of these features. Figure 38 shows two examples of

boundaries that the algorithm can determine.

Figure 38 – Examples of decision boundaries
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The TCEs depicted in the figures are part of the training set. When the algorithm learns from the

training data and establishes a decision boundary, it can classify new TCEs by evaluating which

region of the feature space that new data belongs to. In the specific case of this example, this

boundary is defined by

𝑋 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2, (3.1)

in which 𝑥1 and 𝑥2 are the two generic features considered in this example, the parameters 𝜃1

and 𝜃2 represent the weights assigned to the features in order for the decision boundary to fit

the data, and the parameter 𝜃0 is a constant called the bias term, also used in fitting the decision

boundary. There are situations where a linear boundary is not able to separate the data well, as

shown in Figure 72. Equation 3.1 can be modified to take into account non-linear terms for such

situations.

In our case, the feature space for local curves has 201 dimensions, while that of global

curves has 2001 dimensions. Thus, the decision boundary separates the respective hyperspaces

into appropriate regions for data classification. Equation 3.1 can be generalized to describe data

with more features and written in a matrix form as

X (𝑖) = θ𝑇x(𝑖) , where θ =



𝜃0

𝜃1
...

𝜃𝑛


, x(𝑖) =



𝑥
(𝑖)
0

𝑥
(𝑖)
1
...

𝑥
(𝑖)
𝑛


and 𝑥

(𝑖)
0 = 1. (3.2)

The indices 𝑖 indicate which of the 𝑚 samples we are considering. Since the term 𝑥
(𝑖)
0 was

included for the sake of matrix multiplication coherence, due to the bia term 𝜃
(𝑖)
0 , the feature

space is now R𝑛+1. This term is always equal to 1 for any sample in the dataset.

Roughly speaking, the algorithm learns when it finds the optimal values of θ that

define a decision boundary that accurately describes the training data and can generalize the

results to new data. We refer to the situation where a boundary allows a model to learn well from

the training data but fails to generalize well to test data as overfitting. In contrast, underfitting

refers to the situation where the model does not learn well from the training data and does not

make accurate classifications with test data. Given a decision boundary, we define our hypothesis

as

ℎ𝜃 (x(𝑖)) = 𝑔
(
θ𝑇x(𝑖)

)
. (3.3)
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The function 𝑔(𝑧) is non-linear and its role is to evaluate if a given instance x(𝑖) belongs to a

class or not. A common choice for this is the function known as logistic function or sigmoidal

function, which is given by

𝑔(𝑧) = 1

1 + 𝑒−𝑧 . (3.4)

Figure 39 shows its graph. The possible values of 𝑔(𝑧) are in the range between 0 and 1.

Figure 39 – Logistic function
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Source: Self elaboration.

When 𝑧 > 0, 𝑔(𝑧) is greater than 0.5 and the algorithm considers that data to be a positive one6.

Setting 𝑧 = θ𝑇x(𝑖) , we then have

ℎθ

(
x(𝑖)

)
=

1

1 + 𝑒−θ𝑇x(𝑖) . (3.5)

Thus, we can understand that the hypothesis returns the probability that a TCE is a

planet, given its features x, parameterized by θ. This is mathematically equivalent to

ℎθ

(
x(𝑖)

)
= 𝑃(𝑦 = 1|x(𝒊);θ). (3.6)

In this case, 𝑦 is the classification that the model gives to the TCE. If it is a planet, then it is

established that 𝑦 = 1; otherwise, 𝑦 = 0. Naturally, the sum of the probabilities of a TCE being a

planet and not being a planet is 100%, i.e.,

𝑃(𝑦 = 0|x(𝑖);θ) + 𝑃(𝑦 = 1|x(𝑖);θ) = 1. (3.7)

In order for the algorithm to choose the parameters θ, it must take into account how

certain the hypothesis is. From the equations above, it is possible to find a function that measures
6This choice is arbitrary, it could be the other way around.
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the error the hypothesis makes in relation to the data it should predict. We call this function the

cost function, and it is given by

𝐽 (θ) = − 1

𝑚

𝑚∑︁
𝑖=1

[
y (𝑖) log

(
ℎθ

(
x(𝑖)

))
+ (1 − y (𝑖)) log

(
1 − ℎθ

(
x(𝑖)

))]
(3.8)

The best values of θ occur when this error is minimized. The algorithm used to

minimize this cost function is called gradient descent. Its operation consists of initializing

random values for all7 𝑛 + 1 parameters 𝜃 and iteratively adding or subtracting a given quantity

from all of them in order to decrease the value of 𝐽 (θ) throughout the iterations. Therefore, the

gradient descent algorithm involves repeating the operation simultaneously for all 𝜃 𝑗 , where

𝜃 𝑗 = 𝜃 𝑗 − 𝛼
𝜕

𝜕𝜃 𝑗
𝐽 (θ) ⇒ 𝜃 𝑗 = 𝜃 𝑗 −

𝛼

𝑚

𝑚∑︁
𝑖=1

[
ℎθ

(
x(𝑖)

)
− y (𝑖)

]
x(𝑖) . (3.9)

This is repeated until the cost function converges to a minimum value. The (hy-

per)parameter 𝛼 is called the learning rate and determines how quickly this minimization occurs.

Its value directly affects the model’s performance, as very low values make the training time-

consuming, while very high values can cause the values to diverge. In the case of the example

with the two features shown in Figure 37, the representation of the path that the gradient descent

takes in the space of θ until it converges to a minimum value is given by Figure 40. Given a

random initial point in this space, the gradient will follow the path that leads to a point where the

derivative of 𝐽 (θ) is zero.

Figure 40 – Gradient Descent

𝜃1

𝜃2

𝐽 (θ)

max.

min.

Source: Self elaboration.

7Here, 𝑛 represents the number of features in the training set. The “+1” is included due to the bias term 𝜃0.
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There are many other optimization algorithms, such as Stochastic Gradient Descent

(BOTTOU et al., 1991) or Adam (Kingma; Ba, 2017). The reader can refer to the respec-

tive papers for details, but the general idea is that they also search for a optimum parameter

configuration in order to increase a model’s performance.

3.1.2 Neural Network Model

An artificial neural network is a machine learning model that consists of a series of

logical operations inspired by the biological neural networks in our brains. In this comparison,

the biological neuron is represented by a logistic unit or perceptron (Lefkowitz, 2019), as shown

in Figure 41.

Figure 41 – Scheme of a logistic unit
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Source: Self elaboration.

This unit receives input data, multiplies each of them by a parameter 𝜃, sums

these products, and then calculates a new value by inserting this sum into a function called

the activation function. This is exactly what happens in the case of equation 3.3 for logistic

regression. An important note is that equation 3.3 takes into account a bias term (𝑥0 and 𝜃0) that

is not included in the figure but should be considered in the model. The great advantage of a

neural network is its ability to relate these units in a network to describe complex data in an

optimized way. The way these units are connected is called the network architecture, and an

example is shown in Figure 42.

The notation for the mathematical descriptions of neural networks is slightly different

from that used in logistic regression. The terms 𝑎 ( 𝑗)
𝑖

represent the activation function of logistic
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Figure 42 – Example of a neural network
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unit 𝑖 in layer 𝑗 . In particular, layer 𝑗 = 1 is called the input layer because it is where the data

enters to be analyzed (𝑎 (1)
𝑖

= 𝑥𝑖). Additionally, 𝑎 ( 𝑗)0 is the bias term of the j-th layer (which,

despite being shown in the figure, is usually omitted and implicit). We then have that8

a( 𝑗) = 𝑔
(
z ( 𝑗)

)
, (3.10)

where a( 𝑗) is the vector with all functions of layer 𝑗 and z ( 𝑗) = a( 𝑗−1)𝚯( 𝒋) .

Instead of a vector to represent the weights, we now use a matrix 𝚯( 𝒋) that maps the

parameters of a layer 𝑗 to a layer 𝑗 +1. If a layer 𝑗 has 𝑠 𝑗 units and a layer 𝑗 +1 has 𝑠 𝑗+1, then the

dimension of the matrix 𝚯( 𝒋) is 𝑠 𝑗+1× (1+ 𝑠 𝑗 ). The last layer is called output layer, as it is where

the processing result comes out and is displayed to us. With that, we have (ℎ𝚯(x))𝑖 = 𝑎
(𝐿)
𝑖

,

where 𝐿 is the total number of layers (and therefore last in this notation). The other layers

between the input and output layers are culturally called hidden layers, as we don’t see their

values directly. All layers, except the output layer, have a bias unit.

Upon receiving data, the flow of operations of a neural network starts at the input

layer and goes to the output layer. This is called forward propagation. The most popular

algorithm for training neural networks is backpropagation. As the name suggests, the processing

flow of this algorithm goes in the opposite direction of what was seen before and the calculations

have a lot to do with the gradient descent algorithm.

8Bold terms in the context of neural networks will represent matrix notation.
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For reasons of objectivity of the work, the mathematical details of this process will

not be addressed here, but the reader can consult any introductory material on NN, such as Rojas

and Rojas (1996). However, a qualitative description can be made. Very succinctly, it takes

place by dividing the training set into small groups (called mini-batches) and passing them to the

neural network, which has its parameters 𝚯 randomly initialized. We say that the algorithm has

completed an epoch when it uses all these groups once. This pass is the forward propagation

commented above. All results from each logistic unit are saved to be used in the backpropagation

step.

When reaching the end of the network with a sample, the error between the prediction

made by the last layer and the expected result is evaluated, as well as how much each logistic

unit contributed to it. This is done by computing the cost gradient in that layer. From there, the

algorithm evaluates how much each unit of the previous layer contributed to the error, also using

the gradient, and does so until it reaches the beginning of the network. This measurement of

errors takes into account the results of each unit generated and stored in the forward propagation

process. Using all these errors, the algorithm performs a gradient descent to find the parameter

values that minimize the errors made by the network units and adjusts them accordingly. This

process is repeated for all samples of a mini-batch, then for all mini-batches of the training set

and repeats everything again in a previously defined amount of epochs. The number of epochs is

chosen so that the algorithm can converge to an optimized result and varies in each situation.

Because of this, the epoch is a hyperparameter that directly influences the performance of the

model.

In the discussion about equation 3.3, the sigmoidal function was chosen for 𝑔(𝑧).

However, this is not the only possible choice. In fact, other common choices for the activation

function are the hyperbolic tangent, Rectified Linear Unit (ReLU), and Softplus (see Figure 73).

Among these, ReLU proves to be particularly advantageous in this kind of network compared to

sigmoidal and hyperbolic tangent. This is because when using the latter two, the gradients of

the model practically cancel out as the backpropagation algorithm approaches the earlier layers,

which causes a problem known as the “vanishing gradient problem”. In addition to avoiding this

problem, computations performed with ReLU are much faster due to its linear nature.

It is possible to combine multiple activation functions in the same network. In the

case of neural networks for classification problems, there are two more functions that are useful

when used in the output layer: ArgMax and SoftMax. As an example, suppose, in the network
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of Figure 42, that all layers use ReLU as the activation function, except for the last one. As

currently constructed, the network returns the “probabilities”9 that a sample is non-planet in the

first unit of the output layer and planet in the second unit. SoftMax takes all the values from

each logistic unit that the output layer receives from the previous layer and normalizes them to

values between 0 and 1. The equation that describes it is

a(𝑳+1) =

[∑︁
𝑖

exp
(
𝑎
(𝐿)
𝑖

)]
exp

(
a(𝑳)

)
(3.11)

In this expression, 𝐿 + 1 is just a convenient notation to indicate that SoftMax

performs its calculations based on the values received by the output layer and returns something

extra. In a didactic way, we can think of an additional layer beyond the output layer whose

function is to process the “raw” values received from the latter before displaying the final results.

This caveat arises because the network representation in Figure 63 shows a relationship of two

logistic units in the output layer to three units in the previous layer, which would be incompatible

with equation 3.11 considering that the network only returns two values.

Since the classes are mutually exclusive, SoftMax ensures that the sum of these

probabilities is 1. Additionally, this function can be used in the training phase of the network,

as it has a convenient derivative for use in backpropagation. This is not the case, for example,

when using the ArgMax activation function in the final layer. It works with the same analogy as

SoftMax, but returns the value 1 for the most probable class and 0 for the others. Due to this

characteristic, it is only used after the network is trained. With ArgMax, the network can provide

its classifications in a more direct and assertive manner in a context where the model is already

in its real-world application phase.

3.2 A Brief Introduction to Deep Learning

Neural networks given in the previous section are the most basic cases of their

interpretation and application. In this section, we briefly explore more advanced and robust NN

algorithms, that enters in the realm of what is known today as Deep Learning (DL).

9In quotation marks because these values depend on how the network’s parameters were initialized. This is
because the algorithm can converge to a different minimum in each training, depending on its starting point in
parameter space. A more appropriate term for this value might be the “confidence” that a model has, based on what
it has learned and how it has learned (depending on the configuration of its hyperparameters), that a sample belongs
to a given class.
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3.2.1 Definition

As mentioned earlier, deep learning is a sub-field of machine learning. Neural

networks serve as a conceptual bridge between these two branches, since more complex networks

than the ones we saw before can have a larger number of parameters to be processed during

training and application. Based on this, it is conceivable to have a primitive notion of what deep

learning is, for starts, which involves a more extensive and complex use of machine learning. A

clear consensus does not seem to have been reached in the literature, though. For example, in the

decade of 1990, the concept of deep learning would refer to a neural network with more than

two hidden layers. Today, with significantly greater computational power, deep learning would

involve a network with dozens or even hundreds of hidden layers.

Although this conception indicates a correct line of thought, it is limited. In fact, deep

learning is indeed a more complex concept, but it is not merely about operational complexity.

It is important to consider the conceptual complexity inherent in the observed capabilities

of deep learning algorithms. Several authors, in an attempt to provide a coherent definition

for this concept, directly or indirectly agree that deep learning involves gaining knowledge

from a hierarchy of features (Bengio; others, 2009; LeCun et al., 2015; Bengio et al., 2013;

SCHMIDHUBER, 2015). However, this consensus is challenged when we question the definition

of features. We have seen that features represent the characteristics of the data of the problem, but

this already highlights the vague nature of the definition, as the data depends on the application.

On the other hand, some argue that deep learning algorithms, in addition to hierar-

chical learning, acquire multiple levels of representations that correspond to different levels of

abstraction. In this case, these levels would form a hierarchy of concepts (Deng et al., 2014).

Once again, we face the problem of establishing definitions with vague terms, as the meaning

of “abstraction” remains unclear. These definitions, naturally, have their merits but also present

vague aspects. Nevertheless, there is a particularly cohesive definition presented by Zhang et

al. (2018). The authors consider a modeling of the nature of learning itself10. In simplified

terms, they argue that learning is a process of establishing the relationship between two or more

variables or instances. Then, they define deep learning as a process not only for learning the

relationship between variables but also for acquiring the knowledge that governs that relationship

and the knowledge that gives meaning to that relationship. In practical terms, the abstraction

capability (as explained in the last lines of the previous paragraph) of deep learning algorithms

10See Lin and Zhang (2004), Zhang et al. (2005), Zhang et al. (2018) for more information.
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enables a better performance in the tasks they are designed for, compared to more common

machine learning algorithms in general. This improvement in performance becomes gradually

evident as the complexity of the task increases.

3.2.2 Convolutional Neural Networks 11

As commented in section 3.1.2, biological neural networks served as inspiration

for artificial ones. Both aim to receive and process information through neural synapses or

by operating an activation function. In order to recognize patterns in images, artificial neural

networks began to be used to mimic the specific behavior of the visual cortex in living beings, as

was the case with the neocognitron algorithm (Fukushima, 1980). A classic work in the field of

pattern recognition in images is the one by LeCun et al. (1998), who introduced the LeNet-5

network architecture for recognizing handwritten numerical digits, trained on the NIST image

database. This database was later updated with more data and improvements and became known

as MNIST, which now contains over 70,000 images. It has become a classic reference and is

widely used as a “safe haven” for various algorithm tests and educational purposes. Figure 43

shows some samples of the images.

Each MNIST image has a resolution of 28× 28 pixels (LeCun et al., 2009). With the

tools we have today focused on machine learning in general, such as Scikit Learn (Pedregosa;

others, 2011), TensorFlow (ABADI et al., 2015) and PyTorch (Paszke; others, 2019), it is

possible to build a fully connected neural network, or dense NN, quite easily, as explained in

subsection 3.1.2, to recognize the digits contained in these images. In this specific case, each

pixel would represent a feature in the network and we would then have 784 features in the input

layer, each with a value from 0 to 1 representing a shade of gray. Even so, we are talking about

images with a very low resolution, compared to the standards of images present in our daily

lives. A slightly larger image, say 100 × 100, would need a network with 104 inputs to do the

same task. The number of parameters, of course, will depend on the size of the network, but it

is possible that more complex data will require a more complex network to perform well. This

number can be significantly larger than the number of inputs.

This problem can be solved using convolutional neural networks, where the logistic

units of a network are locally connected. In other words, instead of connecting each logistic unit

11Most of the content of this subsection was extracted and/or adapted form Géron (2022). The reader can refer
to this reference for more details.
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Figure 43 – NIST database samples

Source: Extracted from LeCun et al. (1998).

to all units in the next layer, as shown in Figure 42, we impose a restriction so that each unit is

connected to only a small number of other units. In addition to this characteristic, an even more

distinctive feature of convolutional networks is the ability to work with data in matrix format.

That is, instead of using 784 features for MNIST images, we can directly use a 28 × 28 matrix of

values.

In this representation, it is easier to discuss the connections that elements in one

layer make with those in the previous layer than vice versa. A visual representation of these

connections is shown in Figure 44(a). Note that a unit located in a row 𝑖 and column 𝑗 of a given

layer is connected to the units in the previous layer located between rows 𝑖 to 𝑖 − 1 + 𝑓ℎ and

columns 𝑗 − 1 + 𝑓𝑤, where 𝑓ℎ and 𝑓𝑤 are the height and width of what is known as the local

receptive field12. The idea here is similar to that of a typical neural network. The logistic units

in a layer that are contained within a local receptive field will connect to a single unit in the

next layer through weights and activation functions. A filter, convolution kernel or just kernel

is a small matrix of weights that is used to extract features from a local receptive field. It is

common to think that the units in the next layer will learn to analyze specific elements from the

12A note to physicists: the concept of field used in any computational discussion in this work is purely a region in
which each point has an associated value. I include these terms as they are used in the specific literature of machine
learning in general.
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previous layer. Additionally, it is usual, but not mandatory, to add units with a value of zero

around the input units so that the next layer has the same height and width as the previous layer.

This is known as zero padding or simply padding, which explains the −1 when describing the

window of receptive fields. The term “convolution” comes from the convolution operation in

mathematics (Smith; others, 1997), although the actual concept being slightly different.

Figure 44 – Connections between layers of a CNN
(a) (b)

Source: Adapted from Géron (2022)

In case it is convenient to reduce the size of the next layer in relation to the previous

layer, it is possible to add a separation between the windows of the fields, as shown in Figure 44(b).

The horizontal and vertical spacing are referred as 𝑠ℎ and 𝑠𝑤 , respectively, and are called strides.

They may be equal or not. By this point of view, a logistic unit located in row 𝑖 and column 𝑗

of a layer connects with the units of the previous layer within the window of the kernel. This

window goes in the range of rows from 𝑖 × 𝑠ℎ to 𝑖 × 𝑠ℎ − 1 + 𝑓ℎ and of columns from 𝑗 × 𝑠𝑤 to

𝑗 × 𝑠𝑤 − 1 + 𝑓𝑤. This provides an expressive reduction in the computational complexity of the

algorithm.

Naturally, we can observe patterns that repeat themselves in various areas of an

image, such as edges, lines, curves, among others. This is interesting because the features that

the network learns in a given area of the input image can be used in other parts of it. As an

example, consider the way we represent the MNIST images. Each pixel has a value between 0

and 1 and so the weights of each logistic unit can also be represented by a small image that has

the size of its associated receptive field. These are the already mentioned kernels.

A generic example is given by the Figure 45. It shows the process of creating these

features through a given kernel based on an arbitrary image. A complete layer of logistic units

that use the same kernel gives us a feature map, which highlights the areas in an image where
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that kernel has been activated the most.

Figure 45 – Formation of a new feature by convolution

Source: Ng and others (2017)

As an example, consider Figure 46, where a filter 7× 7 has been applied to the image.

The kernel on the left has the central column with values equal to 1 (white) and the others equal

to zero (black). The kernel on the left has the center line filled with 1’s and the others with zeros.

Through this, it is easy to notice the vertical and horizontal patterns for the left and right kernels,

respectively. It is worth remembering that the best kernels will be automatically learned by the

network, so that the upper layers can learn to combine them into even more complex patterns,

and so on.

The images we usually deal with in our daily routine are in color, and this gives a

whole new perspective in relation to CNNs. Briefly, this new perspective is due to the fact that

pixels are made up of a combination of primary colors. A color channel is a matrix of the same

size as the original image, but its values correspond only to the intensity of one of these primary

colors. Some references call this matrix as a grayscale image. The color image is then generated

by combining these channels (Gonzalez; Woods, 2018). For simplicity, the functioning of CNNs

introduced so far took into account only 2D convolutional input and output layers, but their real
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Figure 46 – Examples of feature maps

Source: Adapted from Géron (2022)

power comes from the fact that it is not only possible, but very common, to work with multiple

kernels and build a feature map from each of these kernels. A common representation of images

is based on RGB channels (Red, Green, Blue). From there, a more accurate representation of

convolutional layers with their kernels for this example is given as in Figure 47.

We can use more channels besides RGB. In theory, we can use as many channels as

we want. Interesting situations where more types of channels are explored are in multispectral

and hyperspectral images, which essentially exploit the capture of image data in wavelengths

beyond the visible range in the electromagnetic spectrum (Verhoeven, 2018). This type of image

is particularly useful in astrophysics studies for several factors. Figure 78 shows our Sun seen in

different wavelengths.

Another interesting example is given by Gonzalez and Woods (2018) and depicted

in Figure 48, which shows an area of Washington D.C. In it, images a to c show channels in the

(visible) red, green, and blue (RGB) bands, respectively. Image d is in the near-infrared (IR)

range. Observing in this spectrum band is particularly useful for analyzing the biomass of the

region. Thus, it is possible to combine RGB channels with the infrared channel to emphasize

vegetation areas. Image e is a combination of the IR, green, and blue channels, while image f

is a combination of the red, IR, and blue channels. The possibility of combining channels is
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Figure 47 – Examples of convolutional layers with multiple kernels

Source: Adapted from Géron (2022)

promising in the context of temporal series imaging, as explained in Chapter 4.

Figure 48 – Example of multispectral images

Note: The authors credit NASA for the multispectral images.
Source: Adapted from Gonzalez and Woods (2018).
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As mentioned before, the fact that all the logistic units in a feature map share the

same parameters significantly reduces the number of parameters in the model. The patterns that

the network learns to recognize in a given region can be used in any other region. However, even

with this improvement in performance with fewer parameters, CNNs still require a significant

amount of computer memory, especially during training, where the backpropagation algorithm

needs to access all the intermediate values in the forward propagation.

Exemplo 1 A concrete example given by Aurlien Géron in “Hands-On Machine Learning with

Scikit-Learn, Keras, and TensorFlow” is as follows: a convolutional layer with 200 kernels of

size 5×5, 𝑠ℎ = 𝑠𝑤 = 1, and same padding will require (5×5×3+1) ×200 = 15, 200 parameters

to analyze an RGB image (three kernels) with a resolution of 150 × 100. The “+1” is due to

the bias term. However, each of the 200 feature maps contains 150 × 100 logistic units, and

each of these units needs to calculate a weighted sum of its 5 × 5 × 3 = 75 inputs, resulting in a

total of 225 million floating-point multiplications. If the feature maps are represented by 32-bit

floats, then the output of a convolutional layer will occupy 200 × 150 × 100 × 32 = 96 million

bits, which is approximately 12 MB of RAM. This is for just one instance. If we consider 100 of

these instances, then the layer will use about 1.2 GB of RAM. To produce an output of the same

size with a fully connected neural network, we would need 200 × 150 × 100 logistic units, each

connected to all 150 × 100 × 3(+1) inputs. This would result in approximately 135 billion (109)

parameters.

CNNs are much more optimized and ideal for this type of task compared to standard

NNs. Nonetheless, the computational cost is still relatively high, especially for large databases.

Fortunately, the computational burden of CNNs can be reduced somewhat through the use of

pooling layers. They are responsible for sub-sampling the original image, effectively shrinking

the input. This results in lower computational load, reduced memory usage, and fewer parameters.

Having fewer parameters is desirable to limit the risk of overfitting. These layers follow the

same principle as the convolutional layers. Each logistic unit in a pooling layer is connected to

the outputs of the units within a receptive field of the previous layer. Here, we also have control

over the size of this field, the strides, and the type of padding. The main difference is that the

logistic units in the pooling layer do not have weights. They simply aggregate information from

the previous layer through a predefined aggregation function, such as maximum or average value

within the receptive field. An example of this can be seen in Figure 49.



68

Figure 49 – Example of a pooling layer

Source: Adapted from Géron (2022)

Pooling layers still have the characteristic of introducing some level of invariance to

small translations of elements in the image or image region being analyzed. In the example of

Figure 50, where a 2 × 2 kernel was used with a stride13 of 2, images B and C had their content

shifted by 1 and 2 pixels compared to image A, respectively. The pooling layers of A and B are

Figure 50 – Example of invariance under small translations of the pooling layers

Source: Adapted from Géron (2022)

identical, but that of C is different. Note that, relative to the position of the content in A, the

content of C shifted the most. In this case, the content shift in B is considered small and invariant.

Similarly, a small degree of invariance can also be observed for rotation and scale variation. This

13When denoting only “stride equal to 𝑛” or simply “stride 𝑛”, it is implicit that 𝑠ℎ = 𝑠𝑤 = 𝑛.
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is particularly useful in cases where the algorithm’s prediction does not depend on these factors,

such as in most classification tasks. A cat will still be recognized as a cat, even if it is shifted

from a given reference, rotated, or scaled, for example. Despite all of this, a pooling layer has,

by its nature, a destructive characteristic regarding input information. Therefore, it needs to be

used wisely according to the project’s requirements in order to achieve the desired objective.

When we talk about CNNs, it is usually implicit that we are referring to the processing

of two-dimensional data such as images and videos in general. However, it is possible to apply

all these CNN concepts to work with one-dimensional data (Kiranyaz et al., 2021) and even

three-dimensional data (QI et al., 2016; Huang et al., 2019; Bayu; Setyanto, 2022). In the case

of 1D data, a straightforward example of application is in the use of time series, such as financial

time series or the light curves we are working with. The operating principle is similar to what

was explained earlier. There is a kernel, like the one shown in Figure 51, that scans the entire

series, generating feature maps and so on.

Figure 51 – 1D Convolutional Kernel

. . .

Time

︷                                ︸︸                                ︷Kernel

Flux

Source: Self elaboration.

The advantage of this approach is the significant reduction in computational com-

plexity: an image of size 𝑁 × 𝑁 with a kernel 𝐾 × 𝐾 will have a computational complexity

of approximately ∼ 𝑂 (𝑁2𝐾2), while a similar series, with dimensions 𝑁 and 𝐾, will have a

computational complexity of approximately ∼ 𝑂 (𝑁𝐾). Thus, one of the proposals of this work,

discussed in Chapter 5, is to evaluate whether the temporal series imaging method introduced in

the following chapter is worth the computational cost it brings compared to using a 1D CNN.

3.3 Famous CNN Architectures

So far, what we have seen are basic concepts of CNNs. But with them, as we will

see in Chapter 5, we can create models that are much better than the ones that rely only on the

dense networks introduced in subsection 3.1.2. However, the attempt to achieve state of the art

performance requires much more complex architectures, many of which uses techniques and
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concepts whose details goes far beyond the scope of this work. Still, we can have a superficial

look at some of them. For the sake of space, only four models will be displayed not only for

didactic purposes but because they were implemented and tested in this work. Each of them

representing a benchmark at their time: the classic LeNet-5, AlexNet, ResNet and EfficientNet.

As mentioned earlier, LeCun et al. (1998) used the classic LeNet-5 for pattern

recognition in images, specially handwritten digit recognition. Its architecture is described in

Table 5. This is the arguably the most straightforward way of building a CNN “toy model”

nowadays. We sure can change some of the values, make it larger or smaller, change some

activation functions, and so on, but the idea is the same.

Table 5 – LeNet-5 architecture
Layer Type Maps Size Kernel size Stride Activation

In Input 1 32x32 - - -
C1 Convolution 6 28x28 5x5 1 tanh
S2 Avg pooling 6 14x14 2x2 2 tanh
C3 Convolution 16 10x10 5x5 1 tanh
S4 Avg pooling 16 5x5 2x2 2 tanh
C5 Fully connected 120 1x1 5x5 1 tanh
F6 Fully connected - 84 - - tanh
Out Output - 10 - - RBF

Note: “RBF” stands for Radial Basis Function (Broomhead; Lowe, 1988).
Source: Adapted from LeCun et al. (1998).

The decade of 2010 was marked by a significant improvement in the state of the

art related to object detection and classification, mainly because competitions such as ILSVRC

ImageNet challenge (RUSSAKOVSKY et al., 2015). The competition, of course, consists on

evaluating the candidates models’ performance by measuring the error rate of them. The training

and test images where extracted by online sources, standardized to the size (something in the

range of 200 × 200 to 300 × 300) and manually labeled with one of the 1000 target objects. One

thing they also considered was the top-five error rate, which means the number of test images for

which the system’s top five prediction did not include the correct answer. Over the course of

only four years, between 2010 and 2014, the image classification error dropped from 28.2% to

6.7% (Howard et al., 2018).

The AlexNet CNN architecture (Krizhevsky et al., 2012), who won the 2012 ILSVRC

challenge, is an example of how some modifications on the LeNet-5 can result in a very significant

improvement on a model’s performance, taking into account the state of the art at the time. As

Table 6 shows, it is much larger and deeper. Its success, however, is not only due to the

https://image-net.org/challenges/LSVRC/
https://image-net.org/challenges/LSVRC/


71

architecture itself, but also due to regularization techniques, such as dropout, data augmentation

and local response normalization. With the exception of the data augmentation, which, in the

context of this work, consists only on making a horizontal flipped copy of a light curve and

putting them into the dataset, and dropout, which consists on “turnin off” (drop) some neurons

of the network to avoid overfitting, the other techniques cited from hereon will not be discussed

in this work, but the reader can refer to Géron (2022, p.392-399, 500-501) for more details.

Table 6 – AlexNet architecture
Layer Type Maps Size Kernel size Stride Padding Activation

In Input 3 (RGB) 227x227 - - - -
C1 Convolution 96 55x55 11x11 4 valid ReLu
S2 Max pooling 96 27x27 3x3 2 valid -
C3 Convolution 256 27x27 5x5 1 same ReLu
S4 Max pooling 256 13x13 3x3 2 valid -
C5 Convolution 384 13x13 3x3 1 same ReLu
C6 Convolution 384 13x13 3x3 1 same ReLu
C7 Convolution 256 13x13 3x3 1 same ReLu
S8 Max pooling 256 6x6 3x3 2 valid -
F9 Fully connected - 4096 - - - ReLu
F10 Fully connected - 4096 - - - ReLu
Out Fully connected - 1000 - - - Softmax

Source: Adapted from Krizhevsky et al. (2012).

Other architectures gained attention for their performance along the years on the

ILSVRC challenges, such as GoogLeNet (Szegedy et al., 2015), VGGNet (Simonyan; Zisser-

man, 2014), ResNet (He et al., 2016), Xception (CHOLLET, 2017), SENet (Hu et al., 2018).

All of them inspired many other architecture variants, including variants of themselves. For

instance, SENet not only uses and extends inception networks and ResNets, but also boosts their

performance. ResNet, on the other hand, brings some remembrance from GoogLeNet, and so on.

ResNets serves as inspiration and basis for many modern architectures. With orig-

inally 152 layers, they confirmed a trend that was being seen in the middle of the last decade:

CNNs in general were getting deeper and deeper, with fewer parameters. This introduced the us-

age of the term extremely deep CNNs. The availability to train such a network rely on something

called skip connections or shortcut connections. This means that the signal that arrives into a

layer is also added to the output of a layer above. Figure 52 compares a regular signal flow with

a skip flow.

We saw on subsection 3.1.1 that the goal, when training, is to target a hypothesis

function ℎ𝜃 (x(𝑖)) with the minimum error possible. By adding a skip connection, we are adding



72

Figure 52 – Skip connection for residual learning

Source: Géron (2022, p.506)

the input x(𝑖) to the output of the network. This will make the network now target a new

hypothesis function 𝑓 (x(𝑖)) = ℎ𝜃 (x(𝑖)) − x(𝑖) , instead of only ℎ𝜃 (x(𝑖)). This is called residual

learning, so then the name of the architecture.

With enough skip connections, the network can start making progress even if several

layers have not started learning yet. This also helps to overcome the vanishing gradient problem

(Hochreiter, 1998; Borawar; Kaur, 2023), since the signals can cross the whole network. We can

organize the parts of a deep residual network by a stack of residual units, where each residual

unit is a small neural network with a skip connection. Figure 53 shows a representation of the

ResNet architecture. From it, we can see (red-dashed arrow) that some specific inputs cannot

be added directly to the outputs of a residual unit, since the number of feature maps doubles its

size and their height and width are halved and, therefore, the input and output do not have the

same shape. This can be overcomed by adding a convolutional layer in the middle of the skip

connection with the right specifications.

One of the most noteworthy architectures from recent years is the EfficientNet (Tan;

Le, 2019). It is based on a technique called compound scaling, which by fixing a compound

coefficient 𝜙, the depth, width and resolution are scaled by 𝛼𝜙, 𝛽𝜙 and 𝛾𝜙, respectively, with

𝛼 · 𝛽2 · 𝛾2 ≈ 2 and 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1. The authors shows that this approach is more effective

than scaling each dimension independently. They explain that 𝜙 is a user-specified coefficient

that controls how many more resources are available for model scaling. It is a logarithmic

measure of the compute budget in the sense that if the compute budget doubles, then 𝜙 increases

by 1. This gives the relation that the number of floating-point operations available for training is

proportional to 2𝜙. Also, 𝛼, 𝛽 and 𝛾 indicates how to assign these extra resources to the network
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Figure 53 – ResNet architecture

Source: Géron (2022, p.507)

width, depth and resolution, respectively.

The authors developed their baseline network by performing a multi-objective neural

architecture search that optimizes both accuracy and FLOPS14 (Tan et al., 2019). At the end of

their process, they had a computational efficient network which they called the EfficientNet-B0

baseline, described by Table 7. It uses mobile inverted bottleneck MBConv layers instead of

regular convolutional layers (Sandler et al., 2018; Tan et al., 2019) and squeeze-and-excitation

optimization (Hu et al., 2018).

The compound scaling method proposed by them was applied at this point. Once the

base network was created, they assumed the double of resources by fixing 𝜙 = 1 and performed

a small grid search for 𝛼, 𝛽, 𝛾. They found that, for the EfficientNet-B0, the best values were

𝛼 = 1.2, 𝛽 = 1.1 and 𝛾 = 1.15. Then, they fixed 𝛼, 𝛽, 𝛾 as constants and scaled up this baseline

network to create larger architectures, named EfficientNet-B1 to EfficientNet-B7, for increasing

values of 𝜙.

More recently, the training bottlenecks of EfficientNets were analysed to improve

the architectures even further (Tan; Le, 2021). By progressively increasing image size during

training and dynamically adjusting regularization, the authors created a new and even more

14FLOPS, or FLoating point Operations Per Second, is a measure of computer performance. It measures the
speed of a computer in operations per second, especially arithmetic operations involving floating-point numbers
(Smith, 1999, p.526).
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Table 7 – EfficientNet-B0 baseline network
Stage Operator Resolution #Channels #Layers
𝑖 F̂𝑖 𝐻𝑖 × �̂�𝑖 𝐶𝑖 �̂�𝑖
1 Conv3x3 224 × 224 32 1
2 MBConv1, k3x3 112 × 112 16 1
3 MBConv6, k3x3 112 × 112 24 2
4 MBConv6, k5x5 56 × 56 40 2
5 MBConv6, k3x3 28 × 28 80 3
6 MBConv6, k5x5 14 × 14 112 3
7 MBConv6, k5x5 14 × 14 192 4
8 MBConv6, k3x3 7 × 7 320 1
9 Conv1x1 & Pooling & FC 7 × 7 1280 1

Note: As the authors indicate, each row describes a stage i with �̂�𝑖 layers, with input resolution
〈
𝐻𝑖 , �̂�𝑖

〉
and output

channels 𝐶𝑖 . Their notations where kept.
Source: Tan and Le (2019).

powerful family of EficientNets, called EficientNetsV2. The detais of go far beyond the scope of

the proposal of this section, but the reader may refer to their paper for more information.

3.4 Transfer Learning

Transfer learning is a technique that consists on the reuse of a pre-trained network

from a previous problem on a new one (Dai et al., 2007). The reason to do this is that Deep

Neural Network (DNN) in general can be trained with little data, when we comparing with the

amount of data required for the full training process. Since a pre-trained network will have

partially adjusted wights on its neurons, the amount of computation required to achieve a decent

performance with the new data might be reduced as well (Torrey; Shavlik, 2010).

The relevance of this topic for this work relies on the fact that there is arguably little

exoplanet data if we take into account the dozens of thousands, or even millions of instances

used to train models on other tasks in order to achieve state-of-the-art performance. Examples of

such other applications are general image classification (Jiao; Zhao, 2019; He, 2020; OTTONI

et al., 2023), object detection (Masita et al., 2020; WU et al., 2020; KAUR; SINGH, 2023),

medical imaging (Chakraborty; Mali, 2023; Li et al., 2023; SAILUNAZ et al., 2023) and so on.

There are several transfer learning techniques and approaches available (Torrey;

Shavlik, 2010), but, in the context of deep learning, the most common one is using a model

trained with a highly relateble dataset to the one we have and then finetune it with our data (Iman

et al., 2023). Although prone to catastrophic forgetting, i.e., the tendency of for knowledge of

the peviously learned task(s) to be abruptly lost as information relevant to the current task is
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incorporated (Kirkpatrick et al., 2017), it is very effective. The second most popular approach is

freezing DNN layers of a pre-treined model and finetuning lateral fully connected layers (Iman

et al., 2023).

As mentioned in section 3.3, many powerful networks were trained with the Im-

ageNet dataset for the ILSVRC challenge. These models can be used for both approaches

described above, since they are easily accessible (Simon et al., 2016). Considering that the

training of such models from scratch can take days, even with powerful hardware such as clusters

of GPUs/TPUs, downloading and using a public available pre-trained model can save a lot of

time and resources if the transfer is successful.

3.5 Performance Metrics

All the algorithms used in this work serves for a specific purpose: classifying patterns

in lightcurves as either planet or non-planet. The effectiveness of each algorithm, trained on the

training data, is assessed by examining its performance on the test set data. To accomplish this,

we assess the algorithm’s performance using performance measures. This section provides a

brief overview of some of these measures for binary classification.

When an algorithm performs classification on a given data, we can make four

evaluations about the result. Taking our dataset as an example, if the label of a TCE is planet

and the algorithm classifies it as such, then this result is a true positive (𝑇𝑃). If the algorithm

classifies it as non-planet, then this result would be a false negative (𝐹𝑁 ). If the label of a TCE

is non-planet and the algorithm classifies it in the same way, then this result would be a true

negative (𝑇𝑁 ). Finally, if this TCE is classified as planet by the algorithm, then the result would

be a false positive (𝐹𝑃). A false positive and false negative are, respectively, Type I and Type

II errors in the context of statistical hypothesis testing (Shuttleworth; Wilson, 2008). These

evaluations can be summarized in a confusion matrix, as describe in Table 8.

Table 8 – Generic confusion matrix
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𝑇𝑃

Source: Adapted from Géron (2022).

The most immediate performance measure in evaluating a classifier is its accuracy,
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which is the percentage of correct predictions achieved by the algorithm. Assuming the test was

performed on a test set with 𝑚𝑡 samples, then

accuracy =
𝑇𝑃 + 𝑇𝑁
𝑚𝑡

. (3.12)

In this particular case, we have that 𝑚𝑡 is numerically equal to the sum of all the results, that is,

𝑚𝑡 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 . The accuracy percentage of an algorithm should not be overestimated,

especially in situations where the dataset is unbalanced. An unbalanced dataset is one where

the number of samples from the classes considered by the model is significantly unequal. An

example of this is our own dataset, where the planet class represents only 23% of the entire

dataset15. This implies that a classifier algorithm programmed to only return negative results

(non-planet), regardless of the light curve’s characteristics, would be correct 77% of the time.

The concept of accuracy can be refined into a new metric when evaluating only the

accuracy of positive predictions. This is referred to as precision and it is given by

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (3.13)

In other words, precision tells us the portion of selected positives that are true. One metric that is

always taken into account when discussing precision is the recall (also called sensitivity), given

by

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3.14)

That is, the recall tells us the portion of true positives that were correctly identified relative to all

the positives in the dataset. It is also referred to as sensitivity because it assesses the algorithm’s

effectiveness in successfully detecting positive results. A high value in both measures is important

for the algorithm to perform well. However, increasing precision implies decreasing recall, and

vice versa.

The algorithm determines whether an instance on the dataset belongs to the positive

or negative class based on a score returned by a decision function. This decision is based on the

decision boundaries discussed in subsection 3.1.1. If the value returned by the decision function

is greater than an established limit, for example, then the instance is classified as positive. The

choice of this limit directly affects the precision and recall values, as shown in Figure 54.

The trend of accuracy is to increase when the algorithm becomes more stringent with

punctuation, but in some cases it may decrease, as is the case with the third threshold indicated

15The AFP and NTP labels, described in the Table 3, have been merged into a single non-planet class.
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Figure 54 – Example of switching between Precision (P) and Recall (R) for different decision
function score thresholds

min. max.Decision Function Scores

P: 10/12 = 83,33% | R: 10/10 = 100%

P: 9/10 = 90% | R: 9/10 = 90%

P: 8/9 = 88,89% | R: 8/10 = 80%

P: 5/5 = 100% | R: 5/10 = 50%

Source: Adapted from Géron (2022).

in the figure. In general, we have the freedom to choose this threshold in order to optimize the

precision-recall trade-off that best suits the needs of the work. In the particular case of this study,

a slightly higher recall over precision is preferred in order to reduce the loss of planets (especially

in unexplored data). By choosing these values, we can plot precision against recall (𝑃 × 𝑅) to

evaluate the performance of models using these measures.

In order to compare two or more models on a task, it is often common to use one

single metric called F1 score. It is given by the harmonic mean of precision and recall, so that

𝐹1 = 2 × precision × recall
precision + recall

. (3.15)

This metric is interesting, because the harmonic mean is more sensitive to low values. In other

words, one can only have a high 𝐹1 score if both precision and recall are high as well.

Another important metric is specificity. Just as recall can be understood as the

algorithm’s ability to correctly detect positives, specificity is the algorithm’s ability to correctly

detect negatives. It is defined by

specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (3.16)

Thus, the specificity can also be called the true negative rate. With it, we can still derive the

False Positive Rate (FPR) or Fall-Out, given by

FPR = 1 − specificity =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (3.17)

According to Figure 54, FPR increases as recall increases. A graph of recall, referred to as True

Positive Rate (TPR) in this context, plotted against FPR can be generated to compare models in

a similar way to precision-recall. The curve of this graph is known as the Receiver Operating

Characteristic (ROC) curve.

All these metrics are strongly dependent on the threshold chosen, as illustrated

in Figure 54, since it impacts directly a model’s confusion matrix. There are two important
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measures that do not depend on a specific threshold: the Area Under Curve (AUC) from Precision

vs Recall (PR) curves (PR-AUC) and from ROC curves (ROC-AUC). ROC curves analysis are

the most common (He; Ma, 2013) and then it is customary to find in literature the term AUC

implicitly related to the ROC curve.

Fernández et al. (2018, p.54) state that the ROC-AUC can be interpreted as the

probability that the scores given by a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one. In other words, ROC-AUC can be understand as a

measure of a model’s ability to distinguish between positive and negative cases. However, the

authors argue that this metric can be unreliable under the presence of class rarity (FERNÁNDEZ

et al., 2018, p.55). This relates to the same accuracy problem exposed after equation 3.12:

imagine how would be this problem, but with a dataset with only 0.1% of a positive class. In

these cases with highly skewed data, PR curve analysis and PR-AUC are more recommended

(Branco et al., 2015).
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4 THE TIME SERIES IMAGING METHOD

Aiming for the rising success of deep learning, the work of Wang and Oates (2015)

brought a new approach on working with time series using artificial intelligence algorithms.

The technique introduced by the authors is based on the creation of three types of images

through transformations made with the data of the processed time series. In the language used

in section 3.2 and using the example from Figure 47, each generated image will be used as a

channel that provides information about the analyzed time series. A fourth type of image was

used in this work, which relies on the work of Eckmann et al. (1987). Let’s now examine each

of the types, along with examples already generated by the pipeline created in this work to

transform the light curves treated as in section 2.3.

4.1 Angular Gramian Field

Consider a discrete time series F = { 𝑓1, 𝑓2, . . . , 𝑓𝑛} of 𝑛 real values. Let’s take as

an example an arbitrary local light curve already treated by the procedures of the section 2.3,

given by Figure 55. In this case, 𝑛 = 𝑛𝑙 = 201 for local curves. The following procedure is

analogous to global light curves, where 𝑛 = 𝑛𝑔 = 2001. Note that, due to the nature of the

processing we did before, this light curve is already normalized so that its values are in the range

of [0, 1]. This imaging technique requires an arbitrary time series to be rescaled so that its

values fall within the range [−1, 1] or [0, 1]. For completeness, we will refer to the rescaled

time series as F̃ =
{
𝑓1, 𝑓2, . . . , 𝑓𝑛

}
.

Figure 55 – Arbitrary local light curve for imaging

Note: PC refers to Planet Candidate, that is, in this example we will be following the imaging of a light curve of a
TCE that represents a planet.

Source: Self elaboration.
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Thus, we can represent these values in polar coordinates following the equation 4.1:
𝜙 = arccos

(
𝑓𝑖

)
, −1 ⩽ 𝑓𝑖 ⩽ 1, 𝑓𝑖 ∈ 𝐹

𝑟 =
𝑡𝑖
𝑁
, 𝑡𝑖 ∈ N

, (4.1)

where 𝑡𝑖 is the time associated with each measurement and 𝑁 is a constant to regularize the

interval of points in the polar coordinate system. Considering a unit radius in the polar plane and

treating the curve through equation 2.3, 𝑟 can be calculated by dividing the interval from 0 to 1

into 𝑛𝑙 or 𝑛𝑔 equal parts. For our example light curve, this transformation results in the graph

shown in Figure 56. The interval [−1, 1] was considered for comparison.

Figure 56 – Example of a light curve plotted in polar coordinates
(a) Normalization from 0 to 1 (b) Normalization from -1 to 1

Source: Self elaboration.

We can identify the temporal correlation between different points in the polar plane

by leveraging trigonometric operations. Specifically, we can bild a matrix of values considering

the sum and difference of the 𝜙’s just calculated. These matrices are referred to as the Gramian

Summation Angular Field (GSAF) and the Gramian Difference Angular Field (GDAF), and they

are defined as

GSAF =
[
cos

(
𝜙𝑖 + 𝜙 𝑗

) ]
(4.2)

= F̃ ′ · F̃ −
(√︁
1 − F̃ 2

)′
·
√︁
1 − F̃ 2; (4.3)

GDAF =
[
sen

(
𝜙𝑖 − 𝜙 𝑗

) ]
(4.4)

=

(√︁
1 − F̃ 2

)′
· F̃ − F̃ ′ ·

√︁
1 − F̃ 2, (4.5)

where 1 is defined here as the unit vector [1, 1, . . . , 1]. Examples of these fields generated for

our example light curve can be seen in Figure 57.
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Figure 57 – Examples of gramian angular fields

Note: The number associated of the light curve refers to the sequential number from the dataset.
Source: Self elaboration.

Wang and Oates (2015) comment that the Gramian Angular Fields (GAF) have

their advantages. They preserve the temporal dependence of the series, as time increases as the

position moves from the upper left corner to the lower right corner. The position in terms of 𝑖

and 𝑗 , such that the difference between 𝑖 and 𝑗 is equal to 𝑘 , can be represented by 𝐺 (𝑖, 𝑗 | |𝑖− 𝑗 |=𝑘) ,

and it represents the relative correlation by superposition or difference of directions with respect

to the time interval 𝑘 . The main diagonal 𝐺𝑖, 𝑗 when 𝑘 = 0 is the special case that contains the

original angular values. Consequently, we can completely recover the light curve through it.

4.2 Markov Transition Field

Campanharo et al. (2011) use the technique of mapping a time series to a network in

order to use network measures to determine properties of time series. Different concepts for this

purpose are discussed, one of which is the transition of probabilities. Wang and Oates (2015)

propose a similar approach to this work but extend the idea by sequentially representing the

transition probabilities of Markov to preserve information in the time domain. These probabilities

are derived from the theory of Markov chains (Gagniuc, 2017).
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Wang and Oates (2015) introduce a state transition matrix as follows. Consider a

time series F = { 𝑓1, 𝑓2, . . . , 𝑓𝑛} of size 𝑛. We begin the transformation by aggregating each

value of the time series into 𝑄 quantiles. Each of these quantiles is a state in the terminology

of the Markov model. We then want to construct a state transition matrix, whose values are

𝑊𝑖 𝑗 = 𝑃(𝑠𝑡 = 𝑗 |𝑠𝑡−1 = 𝑖) and represent the probability of transitioning from state 𝑖 to state 𝑗 .

With 𝑄 quantiles,𝑊 is a 𝑄 ×𝑄 matrix.

The Markov Transition Field (MTF) follows a similar approach. It is a matrix 𝑀 of

size 𝑛 × 𝑛, where 𝑀𝑘𝑙 = 𝑊𝑞𝑘𝑞𝑙 , with𝑊 following the normalization
∑
𝑞𝑙
𝑊𝑞𝑘𝑞𝑙 = 1. In practical

terms,𝑊𝑞𝑘𝑞𝑙 is the count or frequency at which a point in quantile 𝑞𝑘 transitions to 𝑞𝑙 , where 𝑞𝑘

is the quantile for the values 𝑓𝑘 and 𝑞𝑙 is the quantile for the values 𝑓𝑙16. Thus, 𝑀𝑘𝑙 represents

the probability of a transition from the quantile of 𝑓𝑘 values to the adjacent quantile of 𝑓𝑙 values.

In summary, the MTF shows how related two points in the time series are. An illustration of this

is given in Figure 58, where the example light curve of this section was transformed to 𝑄 = 8

using the Python package pyts (Faouzi; Janati, 2020).

Figure 58 – MTF example for a light curve

Source: Self elaboration.

More examples of images generated by the transformations introduced above are

shown in Figures 74, 75, and 76. Through them, we can, naturally, see that the MTFs do not

16Contrary to what the authors (and several other sources) do, I made the difference between the indices of 𝑀
and𝑊 explicit because those of 𝑀 refer to time and those of𝑊 refer to states.
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depend on the normalization between [−1, 1] or [0, 1], as in the Gramian fields. The most

striking characteristic of the light curves from TCEs known to be from planets is the sharp cross

pattern generated by the decrease in light flux during planetary transit in all channels. This shows

promise in the context of image classification, and the implications of it will be discussed in the

next chapter.

4.3 Recurrence Plot

To exploit the possibilities of the present technique, we used one more type of time

series imaging, the Recurrence Plot (RP). First introduced by Eckmann et al. (1987), RPs

were used on diagnosis of assumptions of whether or not a time series was obtained from an

autonomous dynamical system, i.e., if the evolution equations do not contain the time explicitly.

This assumptions are necessary to compute dynamical parameters from time series such as

information dimension, entropy, Liapunov exponents, dimension spectrum, and so on, by an

alternative approach. This is done, in general, by projecting a time series into a multidimensional

space by embedding procedures and identifying time correlations, or recurrences, that are not

directly apparent with a conventional one-dimensional representation.

The process to generate a recurrence plot, proposed by the authors, is given as

follows. Consider a time series X = (𝑥1, . . . , 𝑥𝑛). We choose an embedding dimension

𝑑 and a time delay 𝜏, so that we can extract a d-dimensional orbit, or trajectory, u, where

u𝑖 =
(
𝑢𝑖, 𝑢𝑖+𝜏, . . . , 𝑢𝑖+(𝑑−1)𝜏

)
, ∀𝑖 ∈ {1, . . . , 𝑛 − (𝑑 − 1)𝜏}. We then generate a 𝑛 × 𝑛 matrix R

and insert a point in R𝑖, 𝑗 if the point described by u 𝑗 is sufficiently close to u𝑖. This closeness is

given by a chosen 𝑟 (𝑖) so that the d-dimensional ball of radius 𝑟 (𝑖) centered at u𝑖 in R𝑑 contains

a reasonable (but also arbitrary) number of other points u 𝑗 of the orbit. The filled matrix R is

the recurrence plot.

It is very common in literature to consider 𝜏 = 1. Equation 1 of Thiel et al. (2004)

gives the mathematical description of R𝑖, 𝑗 for this particular case. Considering the general case

where 𝜏 can be different of 1 and maintaining the consistency of the notation just presented, we

have (ZBILUT et al., 2002)

R𝑖, 𝑗 = Θ
(
𝜀 − ||u𝑖 − u 𝑗 | |

)
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛 − (𝑑 − 1)𝜏} , (4.6)

where Θ(•) is the Heaviside function (i.e. Θ(𝜉) = 0 if 𝜉 < 0, and Θ(𝜉) = 1 otherwise). In

practical terms, there is a trade-off between the transformation complexity and the amount of
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information we can retrieve from RPs. Figure 59 shows some examples of this procedure applied

on pre-processed light curves with the methods described in section 2.3. They were created by

choosing 𝑑 = 2 and 𝜀 = 0.7, which came to be a reasonable choice of parameters after a careful

visual inspection on a representative sample of the full dataset.

Figure 59 – Examples of representative cases of recurrence plots
(a) Recurrence plot for KIC 6948054 (b) Recurrence plot for KIC 7022573

(c) Recurrence plot for KIC 5471688 (d) Recurrence plot for KIC 4670388

Source: Self elaboration.

Once again, we see in Figure 59(a) the cross shape we saw with the other imaging

methods for PCs. PCs with more noise in the light curve also maintain this trend, as we see in

Figure 59(b). Although AFPs may have a transit-like drop in the light curve, it is very clear by

Figure 59(c) that the resulting recurrence plot generates a somewhat different pattern in this case.



85

Finally, Figure 59(d) shows that a NTPs generates the most distinct RPs from that we see in the

PCs cases.

One of the observed advantages of RPs such the ones in Figure 59 in terms of

machine learning in general is that they are binary recurrence plots, containing only 0’s and 1’s

in their array. In comparison, a RP might not be binary if it is unthresholded (i.e. 𝜀 = 0) (THIEL

et al., 2004). Unthresholded RPs might contain more information about time series in general,

but they are more difficult to quantify than binary RPs. With binary data, the patterns a ML or

DL model have to learn are simpler because now they can focus more on the topology of the

data over their magnitude of values. This simplicity may be helpful when the data is not very

complex.

4.4 Reducing Data Size

With all these transformations, the size of the data set was increased dramatically,

going from roughly 1 GB to over 1 TB. This was already expected, since we are essentially

squaring the size of each light curve for each type of filter. For the global view light curves

alone, each filter produced has a resolution of 2001× 2001 pixels, which is even grater then a 2K

resolution (2048 × 1080 pixels). This represents a very serious computational problem, specially

for machine learning purposes. Wang and Oates (2015) overcame this issue by performing a

Piecewise Aggregation Approximation (PAA) (Keogh; Pazzani, 2000) on their time series to

smooth them while also preserving trends. As explained on section 2.3, it is a very similar

process to the data binning already performed on the light curves to the limit balance between

lightweight files and information loss.

Since reducing the light curves is no longer productive at this point, we reduced the

size (or resolution) of each generated image. To do this, we introduced an additional step on the

image generation pipeline, called here as pre-pooling, that was inspired on the process to create

a pooling layer on CNNs, described on subsection 3.2.2. As in the pooling process, we divide

the image data on windows and make a new image by taking the outputs of a desired aggregation

function. Figure 60 shows a small example image to illustrate this. First, on Figure 60(a), we

have a arbitrary image that we want to shrink. Then, on the gray areas of Figure 60(b), we select

specific regions on the image whit a window of established height and width (3 for both, in this

case). These windows are separated by a chosen value gap between them (1, in this case). If

we are to maintain the CNN formalism, this gap refers to the stride and should not be counted
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merely as a gap between windows, but as the step the windows take from one another. The gap of

1 becomes a stride of 4 in this example. Finally, Figure 60(c) shows the resultant image formed

by taking the mean of the gray areas in Figure 60(b).

Figure 60 – Example of a pre-pooling process with stride 4
(a) Original image (b) Selected windows (c) Result image

Source: Self elaboration.

Note that we reduced the size of a image from 13 × 13 to 4 × 4. Using the same

3 × 3 window size and decreasing the gap to -1 (stride 2), we overlap the windows, similar as in

Figure 45, and generate yet another image with a little higher resolution. Figure 61 shows that

the new image size is now 7 × 7.

Figure 61 – Example of a pre-pooling process with stride 2
(a) Original image (b) Result image

Source: Self elaboration.

The aggregation function used in the previous example was the mean of the data

contained on the windows, however we are free to chose any other appropriate function. The

pre-pooling process was made using a 3 × 3 window and stride 2 on the images generated from
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the local light curves and using a 6 × 6 window and stride 2 on the global light curves. The

output images are 41 × 41 and 401, respectively. Different aggregation functions were tested, as

shown in Figure 62.

Figure 62 – Pre-pooling results for different aggregation functions

Source: Self elaboration.

Visual inspection on some dozens of samples of both classes of TCE was made to

evaluate which of the tested aggregation function produced a better result, based on the the

preservation of the trends on the images. The mean, maximum value and sum presented the

best outputs and, among these three, the mean was arbitrarily chosen as a aggregation function

for the whole pipeline. At the end of the process, the light curves and images were serialized,

compressed and then saved as TFRecords files17. The new dataset, that had approximately 1 TB,

ended up with ∼ 80 GB.

17More detais in: https://www.tensorflow.org/tutorials/load_data/tfrecord
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5 RESULTS AND DISCUSSIONS

The main types of models introduced in Chapter 3 where based on the concepts of

Logistic Regression (LogistReg), Dense Neural Network (DenseNet), 1D Convolutional Neural

Network (1D CNN) and 2D Convolutional Neural Network (2D CNN). In this chapter, we give a

brief summary of the best models, compare their overall performance and then show an extra

test that will gide the next steps of future work.

5.1 An Overview of the Types of Models Tested

Based on what was discussed in subsections 3.1.1 and 3.1.2, a LogistReg model

can be given by a DenseNet, such as the one in Figure 42, but with no hidden layers. Since we

have 2001 bins representing a light curve in its global view and 201 bins in its local view, our

LogistReg model counted with 2202 inputs. In this context, both light curve views data were

concatenated into a single array, so that the spatial disposition of the data were kept. This is the

most simple tested model and, because of the nature of the logistic regression itself, makes the

assumption that planets and non-planets can be separated by a linear surface in the input space.

Although most of the models were implemented using scikit-learn (Pedregosa; others, 2011), the

final version of this type of model was implemented, along with all the other models ahead, with

TensorFlow (ABADI et al., 2015).

A DenseNet, by the other hand, makes fewest assumptions about the input data and

can generalize better more complex patterns. With a DenseNet, we have way more parameters to

handle, so the search for an appropriate architecture and hyperparameter setting is crucial for a

good performance. Many different models were created, trained, tested and compared among

them. The one that showed the best performance has its architecture depicted in Figure 63. It has

two branches: one to process the data from global view alone and other to process the local view

alone. We used ReLU activation function and a 25% dropout on all the layers. We also used

stochastic gradient descent as the optimizer function with a learning set to 0.01. These values,

and the following ones, were found using KerasTuner (O’MALLEY et al., 2019).

The third type of model tested was a 1D CNN. The level of complexity it can learn

to distinguish is considerably higher than DenseNets in general, specially if we have spatially

structured data, which is the case for the signals in our light curves. Since the data is originally

one-dimensional, this kind of convolutional network is applicable. In the search for maximizing
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Figure 63 – Architecture of the best dense neural network used in this work
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Source: Self Elaboration.

ROC-AUC in the validation dataset, the architecture found was the one depicted in Figure 64

and its best hyperparameters were 𝛼 (learning rate) = 10−5, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8,

which are inherent hyperparameters for the Adam optimization algorithm (Kingma; Ba, 2017).

Once again, the network is firstly divided in two segments, one for the global view

and one for the local view. Both segments are independent 1D convolutional networks whose

outputs are passed to a dense neural network with 4 layers using ReLU activation function without

dropout and a 2 unit Sigmoid output layer. Interestingly, this is the exact same architecture and

hyperparameters setting found by (Shallue; Vanderburg, 2018). This is not surprising, though,

since the authors made an intensive architecture and hyperparameter search for the best model

that received a 2001 and 201 global and local views sized light curves, respectively.
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Figure 64 – Architecture of the best 1D convolutional network used in this work
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The fourth and last type of model tested was a 2D CNN. With what we have seen

in subsection 3.2.2, they overcome all the others models here presented in terms of complexity.

They can be applied in a wide variety of tasks, being computer vision a very recurrent example.

All this power and complexity, however, might come with just the opposite effect. Over-complex

models might perform worse than simpler ones mainly because of overfitting. Indeed, many 2D

models, among the thousands of tested ones, manifested this problem. The standard approach

when creating any kind of model, 2D CNNs in particular, is to start from the simplest possible

architecture and then start making little changes until finding one configuration that presents a



91

good performance. This process was done several times until we find a promising model.

After that, we tried to apply transfer learning, as explained in section 3.4, to use a

state-of-the-art pre-trained model with an a priori high performance. Many models are available

online, in the Keras API18, including those displayed in section 3.3. Some of these models

are very large, so we selected one with a good balance between size and performance. The

performance data available in the Keras API documentation refers to top-1 and top-519 accuracy

on the ImageNet validation dataset. With this, we divided a model’s accuracy by its size and

created a simple metric we called Accuracy-Memory Ratio (AMR) for cost-benefit analysis.

Naturally, AMR can be given in terms of top-1 and top-5 accuracy. A summary of this is

displayed on Table 9. EfficientNetV2-B0 was chosen for being the model with top-1 accuracy

grater than 75% with the best AMR.

Table 9 – Accuracy-Memory Ratio for some models available in Keras API
Model Size (MB) Top-1 Accuracy Top-1 AMR (%/MB)

MobileNetV2 14.00 71.3% 5.10
MobileNet 16.00 70.4% 4.40

NASNetMobile 23.00 74.4% 3.23
EfficientNetV2B0 29.00 78.7% 2.71

EfficientNetB0 29.00 77.1% 2.66
EfficientNetB1 31.00 79.1% 2.55

EfficientNetV2B1 34.00 79.8% 2.35
DenseNet121 33.00 75.0% 2.27

EfficientNetB2 36.00 80.1% 2.23
EfficientNetV2B2 42.00 80.5% 1.92

EfficientNetB3 48.00 81.6% 1.70
EfficientNetV2B3 59.00 82.0% 1.39

DenseNet169 57.00 76.2% 1.34
EfficientNetB4 75.00 82.9% 1.11

Note: Only models with AMR ≥ 1 are shown.
Source: Self elaboration. Data retrieved from Keras API: https://keras.io/api/applications/

With the selected architecture, a transfer learning approach was made by using the

weights for ImageNet dataset. To do this, the whole local views light curves dataset had to be

re-generated with the procedures described in Chapters 2 and 4, since the images from ImageNet

in EfficientNetV2-B0 architecture have a 224×224 size. Then, all the new local view light curves

have 224 points instead of the previous 201. Therefore, all images generated from them are

18See https://keras.io/api/applications/.
19Top-1 accuracy is the usual accuracy, explained in section 3.5, but taking into consideration that ImageNet

is a multi-class dataset with 1000 different classes. The top-5 accuracy is a more lenient measure that gives the
proportion of times a classifier’s top 5 most likely predictions match the true label.
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224 × 224 sized, except for the recurrence plots, which, because of the nature of their generation,

ended up with a size of 223×223. The reason to deal only with local view light curves is because

images generated for global view are large and demands impractical computational resources for

our hardware. As a matter of fact, once this problem was observed, all 2D models tested after

did not used the images generated from global light curves.

All the tested models with transfer learning performed poorly. This outcome was

expected, even with a state-of-the-art model, since the ImageNet data is very unrelated with

the ones generated by the imaging methods discussed in Chapter 4. Because of that, no harsh

fine tuning was made for ImageNet transfer learning models. However, the EfficientNetV2-B0

architecture was not left aside, since we could use it to train the network from scratch with our

data, without any pre-loaded weights. Among several dozens of trials, the model described by

Figure 65 outperformed all the other 2D models when analyzing ROC-AUC.

Figure 65 – Architecture of the best large 2D convolutional network used in this work

Source: Self elaboration.

This model has five segments. One of them is a 1D convolutional column that

recieves the data from the global view light curves, very similar to the ones in Figure 64. The
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other four are independent EfficientNetV2-B0. Each 2D convolutional segment is dedicated to

analyse the images generated from the local views. Notice the the local view light curve it self is

not inputted into the network. All the information of the segments converges into a DenseNet

with 20% dropout to finally arrive at the sigmoid output layer. With a batch size of 10 and 50

epochs, the training of this network lasted approximately 9 hours in a T4 cloud GPU.

Roughly speaking, our 2D models were designed and grouped by three categories:

small (few convolutional layers), medium (using one famous architecture) and large (using two

or more famous architectures). Most of the small models had good performance scores, while

most of the large were poor due to overfitting. Smaller models were less harder and faster to fine

tune, which explains part of their performance. As we see, the best model of all tested 2D CNN

was one considered large. However, an interesting fact is that a small model is in a technical tie

with this one. Figure 66 shows its architecture.

Figure 66 – Architecture of the best small 2D convolutional network used in this work

Source: Self elaboration.

Because of their sizes, we did not performed a harsh fine tune on ts their hyperpa-

rameters yet, so the performances displayed in the next section come mainly from raw parameter

initialization. Still, we trained and evaluate their performances on both 201×2001 and 224×2001

local-global sized datasets. The best performance, in both small and large model, came from the

later size configuration. We also noticed that all three types of tested 2D models so far (small,
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medium and large) had a moderate performance when combining images to form a 3-chanel or

from a 4-chanel image, similar to what is exposed in Figure 47.

5.2 Best Models Comparison

Using the performance metrics introduced in section 3.5, we could evaluate the

results of the best models in each model category, as explained in the previous section. Those

who better performed on the test set were selected and again compared among themselves.

Figure 67 and Table 10 shows the performance curves and metrics, respectively, of the best

models.

Figure 67 – Performance curves for the best models
(a) PR curve (b) ROC curve

Note: The dots indicate where the models achieved the highest accuracy.
Source: Self elaboration.

Table 10 – Performance metrics for the best models

Model PR-AUC ROC-AUC Accuracy Precision Recall

1D CNN 93.55% 98.60% 95.74% 87.47% 95.00%
2D CNN (Large) 91.70% 97.22% 93.78% 85.45% 88.25%
2D CNN (Small) 88.81% 97.04% 93.93% 86.90% 87.02%

DenseNet 87.98% 96.93% 92.07% 83.51% 83.29%
LogistReg 79.38% 93.96% 89.50% 76.00% 81.94%

Note: The table shows the highest possible accuracy value. The precision and recall relates to the threshold choice
that maximizes accuracy.

Source: Self elaboration.

From these results, we can clearly see a higher overall performance of the 1D CNN



95

over the other models. Once again, this was not a surprise since it has the same architecture and

hyperparameters from the work of Shallue and Vanderburg (2018), who made a full hyperparam-

eter tuning in regards of all aspects of the model. Even the local and global representations of

the light curves themselves were fine tuned, having in mind equation 2.3. Still, the two best 2D

models had a good performance. As discussed in section 3.5, ROC-AUC metric says that the

large 2D CNN ranks plausible planet signals higher than false-positive signal 97.22% of the time

in our test dataset. Both 2D models scored almost 94% accuracy, but the metric of most interest

for the purposes of application of this work is perhaps recall. Since it gives the proportion of

positives that were correctly identified, a model that has a good precision, but an even better

recall is important. This being said, 1D CNN has a far advantage.

The left column of Figure 68 shows both precision and recall in terms of the threshold

used for evaluation of the three overall best models. The right column shows the distribution

of true positives and negatives also in terms of the threshold. With the plots on the column on

the right, we can make an analysis similar to the one made with Figure 54. From this figure

and Table 10, we can see that a lower threshold implies a higher recall. Also, we see that the

Maximum Accuracy Threshold (MAT) is inversely proportional to the number of false positives.

An interesting observation regards the recall of the large 2D CNN. It presents two

approximately linear regimes with negative slope. When this happens, the critical point of regime

transition coincides with the precision curve, but this, in general, is not necessarily the case. At

this point, the model abruptly starts becoming overly conservative in its predictions, but we can

see why when looking at its distribution of predictions in the histogram on the right. At threshold

≈ 0.68, a great concentration of true positives is observed, which suggests that the model was

able to find a strong pattern in the data. This high concentration of true positives is also observed

in the smaller 2D CNN. This observation also suggests that the success of the 1D CNN is related

to its capacity of rejecting false positives. By doing this, a smaller value to the threshold is viable

for a higher performance, particularly recall.

Another observation worth taking is that all of those three models used a sigmoid

activation function for their output layers. As equation 3.6 states, the output of a sigmoid function

can be interpreted as the probability that the input sample belongs to the positive class. Since the

thresholds are given in terms of these output values, the 1D CNN and, especially, the larger 2D

CNN did not had any full (100%) confidence on any sample in the test dataset. The smaller 2D

CNN, by the other hand, had the greatest counts on confidence when classifying true positives,
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at the cost of being more erroneous in the same region of confidence in its predictions.

Figure 68 – Threshold analysis for the best models

Note: The 2D CNNs were trained and tested with more data, because we had more freedom to augment the images
datasets. The distribution of classes remained the same the for all three models.

Source: Self elaboration.

5.3 Test on Data from Other Space Missions

In order to measure the applicability of the models on other space missions data, we

selected a sample of 522 TCEs from K2 and TESS missions together20. More specifically, 144

TCEs are confirmed planets from the K2 mission, 10 are AFP also from K2 mission and the rest

368 are AFP from TESS mission. Notice that the proportion of the positive class over the entire

20The K2 and TESS TCE data references are available in the K2 Planets and Candidates and TESS Project
Candidate tables at https://exoplanetarchive.ipac.caltech.edu/.
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new dataset is approximately the same as in the training dataset (≈ 27,59%). All the light curves

treatment was made exactly as described in Chapters 2 and 4. We, then, inputed the formatted

data into our models so they could make predictions. Figure 69 shows the performances of the

models.

Figure 69 – Threshold analysis for the best models in the extra test dataset

Note: The thresholds indicated on the plots are those correspondent to the model’s maximum accuracy (MAT) in
the original test dataset.

Source: Self elaboration.

As we can see, the models’ performances are substantially worse than in the test made before.

Tables 11, 12 and 13 shows, in numbers, these results. Considering equations 3.12, 3.13 and 3.14

and table 8, by setting the models’ thresholds as the same as the MATs from the test before, the

large 2D CNN had an accuracy of 70.50%, the highest of all three models. However, the small

2D CNN achieved a recall of 44.44%, being the model that most retrieved true planets. All the
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metrics extracted from the confusion matrices of this test are presented in table 14.

Table 11 – Confusion matrix for the 1D CNN

model on the extra test dataset

PositiveNegative
Negative

PositiveO
ri

gi
na

l

Predicted

102

88

276

56

1D CNN

Source: Self elaboration.

Table 12: Confusion matrix for the small 2D

CNN model on the extra test dataset

PositiveNegative
Negative

PositiveO
ri

gi
na

l

Predicted

96

80

282

64

2D Small

Source: Self elaboration.

Table 13 – Confusion matrix for the large 2D CNN model on the extra test dataset

PositiveNegative
Negative

PositiveO
ri

gi
na

l

Predicted

66

88

312

56

2D Large

Source: Self elaboration.

Table 14 – Performance metrics for the complementary test

Model Accuracy (%) Precision (%) Recall (%)

1D CNN 63.60 35.44 38.89
2D CNN (small) 66.28 40.00 44.44
2D CNN (large) 70.50 45.90 38.89

Source: Self elaboration.

Based on the results above, we can infer that the models work well on Kepler Mission

data, but not as well on data from other space missions, K2 and TESS in this case. Although

the physical process of transit is the same, systematic trends and noise inherent in the missions

might influence some decisions made by the networks. Notice that the 1D CNN model, which

was the best on the first test, performed worst in all aspects. This suggests that the model might

have given a lot of importance to the training trends at the cost low generality on other datasets.

In practical terms, the most accurate network (the larger 2D CNN) was able to filter 82.54% of

the true negatives at the cost of 61, 11% of the planets being lost. With this, an astronomer would

find a true planet 45, 90% of the time, if following the predictions of the model. Although not

the best scenario, this represents a welcoming improvement in an initial finding rate, considering

that the whole dataset had only ≈ 27, 59% of planets.
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An important observation is that all the representations of the TCEs from this test

were inspect by eye, one by one. We could see, in fact, that all samples were coherent with the

theory given in subsection 2.1.3 for the positive class. Also, we saw that the AFP class data was,

in some cases, very similar to transit-like signals, which could present a difficult challenge for

the models.

A natural step for improving the models performance in this case would be to train

them with data not only from the Kepler mission data, but also with K2 and TESS data as well.

This is expected to make the models more general while working with future telescopes data,

such PLATO. Another desirable aspect the models must improve is the sensitivity on lower SNR

and MES data. NASA Ames Research Center made a whole dataset with Kepler mission data

with injected signals to mimic planetary transits, EBs, and other kinds of signal with many values

of MES, including those that are lower than the Kepler’s pipeline threshold (Christiansen, 2017).

We did not made any tests on these data yet, but Shallue and Vanderburg (2018) already show

that their 1D CNN (using our nomenclature to represent their model tested here) is not sensitive

enough to weak secondary eclipses to classify many of these simulated signals as false positives.

It will be interesting to see if the 2D CNN presented in here will have a better performance on

these data in future works.
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6 CONCLUSIONS AND PERSPECTIVES

In this work, we revised the main methods of exoplanet detection and gave a glance

at some technicalities of the astrophysical data processing and evaluation. In summary, we

considered space telescopes that measure photometric data in a given region of the sky. With this

data, astrophysicists can search for periodic signals and study their properties to evaluate if it is

given by a planetary transit or not. The evaluation of this signal candidate is made with a series

of rigorous and time-consuming tests. With the ever-growing number of data and space missions

launched, manual evaluation is becoming unpractical.

We also revised the basics concepts behind machine learning and, more specifically,

deep learning algorithms. In subsection 2.2.3, we saw some of the most well known machine

models to automatically classify the supra mentioned astrophysical data into planet or not.

Although having their unique specific characteristics, all of them share the same overall goal,

that is to reduce the manual load of analysis once required from the astrophysical community

while making reliable evaluations.

With all this, we were able to pursue an approach given by Shallue and Vanderburg

(2018) on how to build a deep learning algorithm to automatically classify signals candidates.

Although not being the best model nowadays, it is simple enough so we could review and briefly

explain the concepts of interest from both areas of exoplanetology and artificial intelligence and

how they can be related. Also, it served as a good model for comparison with the data treatment

proposed in this work: the time series imaging.

The time series imaging technique was proposed in the deep learning and computer

vision context by Wang and Oates (2015). As we saw with Eckmann et al. (1987), in section 4.3,

the concept it self of transforming a time series into an image is not new. Wang and Oates (2015)

showed that time series imaging was a valid and relevant method to produce state-of-the-art

models at the time of their proposal. In addition to carrying out a didactic review on the subjects

discussed above, one other objective of this work was to perform a conceptual trial to see if the

time series imaging method could provide an improvement on a deep learning algorithm that

works with exoplanet detection.

To pursue this objective, we reproduced the algorithm from Shallue and Vanderburg

(2018) (the 1D CNN model) and compared with the best ones we built (the small and large

2D CNN models). The models used part of the data from Kepler mission available on the

Autovetter Planet Candidate Catalog for Q1-Q17 DR24 (Catanzarite, 2015), were 80% of it was
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dedicated for training, 10% for validation and 10% for testing. Given the nature of the method

proposed, an immediate observation is that the 2D models are way heavier than the one we took

as reference. This had a direct impact on the computational cost for the models’ training and,

specially, hyperparameters fine tuning. Even so, our results so far, presented in Figure 67 and

Table 10, shows that we can build a decent classifier based on the imaged data from Kepler

mission. By what was discussed in section 3.5, the ROC-AUC metric says that the large 2D

CNN ranks plausible planet signals higher than false-positive signal 97.22% of the time in our

test dataset. Both 2D models scored almost 94% accuracy. Due to computational limitations,

we did not had time to search and fine-tune an even better model, so we did not achieved a

performance on the test set as good as the 1D CNN model proposed by Shallue and Vanderburg

(2018) (ROC-AUC = 98.60% and accuracy = 95.74%).

However, the aspect of most concern is, perhaps, the capacity of the models to

generalize their performance on other datasets, specially the ones generated with data from other

space missions, such as K2, TESS and the coming PLATO. A complementary test was made

using data from K2 and TESS missions. Surprisingly, Figure 69 and Table 14 showed that both

our models performed better and could generalise more on new data. Even though the metrics

themselves are no match for the state-of-the-art ExoMiner’s metrics (Vallenari et al., 2022), this

result suggests that the time series imaging method might, indeed, be helpful on the task of

exoplanet search.

As discussed in sections 5.2 and 5.3, one of the greatest problems of all the models,

including the 1D CNN models from Shallue and Vanderburg (2018), lacks on the robust capacity

of efficiently reject false positives. Even though we demonstrated that phase-folded flux alone is

a very strong information to describe transiting planets, it is not completely sufficient by what

was discussed in subsection 2.2.3. There, with the help of Table 2, we commented that a trend in

recent literature is to include more and more astrophysical information as inputs for the models

(Ansdell; others, 2018; Armstrong et al., 2021; Valizadegan et al., 2022). By mimicking the

rigorous analysis made by an astrophysicist on all the parameters given by a data validation

summary report generated from Kepler/TESS pipeline (Twicken; others, 2018), such as the one

in Figure 25, ExoMiner could validate 301 new planets and enhance the state-of-the-art of deep

learning usage on exoplanet detection.

The time series imaging has shown to be a method that produces large models and,

therefore, the computational demand for them is high. Because of this downside, we still could
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not fully explore the potential of the method. However, since both 2D models tested here could

generalize better on new data in comparison with 1D data, we think it is still worth to search for

better models configurations. Besides phase-folded light curves, they should also try to follow the

example of ExoMiner and take into consideration aspects such as the ones presented in Table 2.

There is space to train the eventual upgraded models with data not only from Kepler, but also

from K2, TESS and even with the injected/artificial data (Christiansen, 2017), as discussed in

section 5.3. Besides, by what was discussed in subsections 2.1.1 and 2.1.2, we still can evaluate

if time series imaging serves of any help on other exoplanet detection methods, such as radial

velocity and gravitational microlensing.

Even if future tests on the time series imaging technique shows that it is not the way,

the usage of deep learning in exoplanet detection and in astrophysics in general is here to stay.

Considering technological novelties from this decade, such as the PLATO mission, we will have

way more data than Kepler was ever able to provide and that we are still digesting. With this

in mind, the spread of the knowledge on automatic astrophysical data processing with artificial

intelligence has become essential. With this work, we contribute to this spread and also opened

paths for new models we will develop in the future.
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APPENDIX A – COMPLEMENTARY FIGURES

Figure 70 – Examples of global curves generated by the developed pipeline

Source: Self elaboration.
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Figure 71 – Examples of local curves generated by the developed pipeline

Source: Self elaboration.
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Figure 72 – Helper examples of decision boundaries for classifying TCEs

Source: Self elaboration.
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Figure 73 – Other activation functions and their derivatives
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Figure 74 – Images generated from a light curve for an NTP TCE (LC0)

Source: Self elaboration.
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Figure 75 – Images generated from a light curve for an NTP TCE (LC18)

Source: Self elaboration.
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Figure 76 – Images generated from a light curve for an AFP TCE (LC6)

Source: Self elaboration.
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ANNEX A – AUXILIARY FIGURES

Figure 77 – Illustration of Kepler’s field of view

Source: MAST, available at https://archive.stsci.edu. Accessed on 30 April 2023.

https://archive.stsci.edu/missions-and-data/kepler
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Figure 78 – Image of the Sun observed in different wavelengths

Source: NASA Solar Dynamics Observatory, available at https://youtu.be/Sr9Aih_IlCs. Accessed on 29 May 2023.

https:\/\/youtu.be\/Sr9Aih_IlCs
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