

MICAEL ESTEVÃO PEREIRA DE OLIVEIRA

METODOLOGIA PARA CÁLCULO/ANÁLISE DO ESPECTRO RAMAN DE SISTEMAS RNA/DNA EM MEIO AQUOSO BASEADA NA TEORIA DO FUNCIONAL DA DENSIDADE

FORTALEZA 2024

MICAEL ESTEVÃO PEREIRA DE OLIVEIRA

METODOLOGIA PARA CÁLCULO/ANÁLISE DO ESPECTRO RAMAN DE SISTEMAS RNA/DNA EM MEIO AQUOSO BASEADA NA TEORIA DO FUNCIONAL DA DENSIDADE

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Físicoquímica. Área de concentração: Química.

Orientador: Prof. Dr. Valder Nogueira Freire.

FORTALEZA 2024

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Sistema de Bibliotecas Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

O48m Oliveira, Micael Estevão Pereira de.

Metodologia para cálculo/análise do espectro Raman de Sistemas RNA/DNA em meio aquoso baseada na Teoria do Funcional da Densidade / Micael Estevão Pereira de Oliveira. – 2024. 154 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Química, Fortaleza, 2024. Orientação: Prof. Dr. Valder Nogueira Freire.

1. Bases Nitrogenadas. 2. Nucleotídeos. 3. Códons. 4. DFT. I. Título.

CDD 540

MICAEL ESTEVÃO PEREIRA DE OLIVEIRA

METODOLOGIA PARA CÁLCULO/ANÁLISE DO ESPECTRO RAMAN DE SISTEMAS RNA/DNA EM MEIO AQUOSO BASEADA NA TEORIA DO FUNCIONAL DA DENSIDADE

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Físicoquímica. Área de concentração: Química.

Aprovada em: 26 / 09 / 2023.

BANCA EXAMINADORA

Prof. Dr. Valder Nogueira Freire (Orientador)

Universidade Federal do Ceará (UFC)

Prof. Dr. Ewerton Wagner Santos Caetano Instituto Federal do Ceará (IFCE)

Prof. Dr. Antoninho Valentini Universidade Federal do Ceará (UFC)

A Deus, Senhor e consumador da ciência, a meus pais e irmã, os quais fortaleceram-me nas intempéries mais árduas da vida.

AGRADECIMENTOS

A Deus, sobretudo, por me conceder o dom de saber um pouco da sua infinita ciência.

À CNPq, pelo apoio financeiro com a manutenção da bolsa de auxílio durante 24 meses.

Ao Prof. Dr. Valder Nogueira Freire, pela sua atenciosa, dedicada e responsável orientação, a qual me elevou ao entendimento mais salutar da Química e Física Quântica, bem como da Biologia Celular.

Aos colegas da turma de Mestrado, por toda disponibilidade existente e todos os ensinamentos pacientemente concedidos.

Agradeço à minha família, presente de Deus para minha árdua trajetória acadêmica, tornando-me rotineiramente irrepreensível e resiliente. A minha avó, *in memoriam*, que acreditou em mim desde antes da graduação. Ademais, para além dos laços de sangue, devo honra também a todos aqueles amigos que estiveram ao meu lado em oração e acnselhamento nos momentos mais pesados. Sou, também, profundamente grato ao Prof. Dr. Valder Nogueira Freire, que com profissionalismo e atenção, ajudou-me diante de todas as adversidades que ultrapassei. Também tenho profunda gratidão por todos os professores que acreditaram e, de alguma forma, abriram as portas de seus laboratórios para receber os meus trabalhos. Agradeço à minha professora de graduação, Solange de Oliveira Pinheiro (UECE), por ter sido a primeira mentora que acreditou nos frutos provenientes da minha labuta acadêmica.

Aos meus colegas Me. José Barbosa da Silva, Me. José Avelar Sousa da Silva, Dr. Bruno Poti da Silva, IC César Henrique Vito Bruno, que juntos à minha pessoa, auxiliaram diretamentetanto na aprendizagem teórica, quanto aplicabilidade da DFT. Sou grato também, em específico por me auxiliar na técnica de Dinâmica Molecular, ao mestrando Victor Lucas Bernardes França, que tanto se dedicou a passar-me as devidas instruções.

Agradecimento especial ao Dr. Mauricélio Bezerra por sua valorosa contribuição na produção:

APÊNDICE A – TEORIA DO FUNCIONAL DA DENSIDADE (modificada)

"O presente trabalho foi realizado com apoio da Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq)".

"Um pouco de ciência nos afasta de Deus. Muito, nos aproxima"

Louis Pasteur

RESUMO

A espectroscopia vibracional (Raman e infravermelho, a última menos própria para sistemas em solução aquosa), ferramenta amplamente utilizada na química e física para caracterização de sistemas moleculares, tem limitações severas para a realização das atribuições dos modos normais de vibrações atômicas aos seus comprimentos de onda (ou frequências) quando o número de átomos é grande, o que é o caso de sistemas RNA/DNA de interesse biológico. Nesta dissertação, desenvolvemos uma metodologia (baseada na utilização da Teoria do Funcional da Densidade - DFT) para cálculo/caracterização dos espectros Raman de sistemas RNA/DNA em sistemas aquosos, inicialmente no contexto do Modelo Contínuo Polarizável (PCM). No nível zero da metodologia (o mais simples), consideramos que o Raman do sistema depende fortemente das propriedades vibracionais das bases individuais, levando-se em consideração a sequência das bases e a porcentagem de cada uma no sistema RNA/DNA para se obter seu espectro Raman e fazer as atribuições dos seus modos vibracionais a partir daqueles das bases individuais – não são levadas em conta as interações entre as bases nem a existência dos açúcares e monofosfatos. Todavia, dois outros níveis serão realizados para resultados futuros, são estes: nível um, o qual estabelece que o Raman do sistema depende das propriedades vibracionais das bases + açúcares (ribose ou desoxirribose) + grupo monofosfato, ou seja, nucleotídeos individuais - sem considerar as interações entre tais; nível dois, onde conceituou-se que o Raman do sistema RNA/DNA depende também das propriedades vibracionais oriundas das interações entre os próprios nucleotídeos (64 codons, no caso do RNAm), avaliando assim um conjunto molecular mais completo. Ademais, será analisada posteriormente a influência direta das Águas Explicitas (próximas às moléculas das bases) + PCM, a fim de se observar a diferença de aproximação dos picos DFT com experimentais. Para validar a metodologia, apresentamos aqui: (a) cálculos DFT no modelo PCM (meio aquoso) e medidas Raman das propriedades vibracionais das bases RNA/DNA, bem como suas atribuições; (b) cálculos de Dinâmica Molecular, a fim de se avaliar as águas explícitas; (c) cálculos de nível zero em dados vibracionais publicados na literatura, tendo se obtido um bom nível de concordância entre os comprimentos de onda teóricos (PCM) e experimentais, como no caso do microRNA-16 associado ao câncer, cuja sequência é UAGCAGCACGUAAAUAUUGGCG.

Palavras-chave: bases nitrogenadas; nucleotídeos; códons; DFT.

ABSTRACT

Vibrational spectroscopy (Raman and infrared, the latter less suitable for systems in aqueous solution), a tool widely used in chemistry and physics for the characterization of molecular systems, is capable of carrying out assignments of the normal modes of atomic vibrations to their lengths wave (or frequencies) when the number of atoms is large, which is the case of RNA/DNA systems of biological interest. In this qualification, we developed a methodology (based on the use of the Density Functional Theory - DFT) to calculate/characterize the Raman spectra of RNA/DNA systems in aqueous systems, initially in the context of the Continuous Polarizable Model (PCM). At the zero level of the methodology (the simplest), we consider that the Raman of the system strongly depends on the vibrational properties of the individual bases, taking into account the sequence of the bases and the percentage of each one in the RNA/DNA system to obtain its Raman spectrum and making assignments of their vibrational modes from those individual bases - are not taken into account as inevitably between bases nor the existence of sugars and monophosphates. However, two other levels will be carried out for future results, they are: level one, which establishes that the Raman of the system depends on the vibrational properties of the bases + sugars (ribose or deoxyribose) + monophosphate group, that is, individual nucleotides – without considering so comfortable among such; level two, where it was conceptualized that the Raman of the RNA/DNA system also depends on the vibrational properties arising from the happy moments between the nucleotides themselves (64 codons, in the case of mRNA), thus evaluating a more complete molecular set. In addition, the direct influence of Explicit Waters (close to the base sequences) + PCM will be followed, in order to observe the difference in approximation of DFT peaks with experimental ones. To validate the methodology, we present here: (a) calculating DFT in the PCM model (aqueous medium) and Raman measurements of the vibrational properties of the RNA/DNA bases, as well as their assignments; (b) Molecular Dynamics calculations, in order to evaluate the translations explicitly; (c) zero-level calculations on vibrational data published in the literature, having obtained a good level of agreement between theoretical (PCM) and experimental wavelengths, as in the case of microRNA-16 associated with cancer, whose sequence is UAGCAGCACGUAAAUAUUGCGCG.

Keywords: nitrogenated bases; nucleotides; codons; DFT.

LISTA DE FIGURAS

Figura 1 -	(A) Cromossomo humano e a dupla fita do DNA; (B) Hélices duplas e	
	simples do DNA e RNA; (C) Pontes de hidrogênio que ligam partes do	
	RNA; (D) Formas A, B e C do DNA; (E) Visão bidimensional (esquerda)	
	tridimensional (direita) do RNA transportador (tRNA)	21
Figura 2 -	Medida SERS no microRNA-16 associado ao câncer, com sequência	
	UAGCAGCACGUAAAUAUUGGCG	23
Figura 3 -	Medidas Raman dos quatro Trinucleotídeos do DNA: ACA, CAA, CAC e	
	CCA	24
Figura 4 -	Acima: Dinâmica molecular da interação das bases do RNA/DNA com	
	moléculas de água considerando os raios r=4 Å (interação direta) e	
	r > 4 Å (MCP). Abaixo: posição das moléculas de água mais próximas das	
	bases do RNA/DNA (em Å)	25
Figura 5 -	Recipientes da Sigma-Aldrich com os pós (microcristais) das bases	
	uracila, timina, citosina, adenina e guanina	26
Figura 6 -	Descrição e nomeação dos movimentos atômicos em moléculas comuns:	
	geometrias tetraédrica, trigonal planar, piramidal e angular	28
Figura 7 -	Descrição e nomeação dos movimentos atômicos em anéis moleculares	
	benzênicos e derivados	29
Figura 8 -	Estrutura molecular das bases do RNA/DNA e açúcares (com nomeação	
	dos átomos)	30
Figura 9 -	Nomeação dos átomos nos nucleotídeos do RNA e DNA	31
Figura 10 -	Nomeação dos átomos nos nucleotídeos do códon AUG	32
Figura 11 -	Espectros Raman de todas as bases, dos açúcares e do grupo P; calculados	
	via DFT em PCM, no nível de cálculo M062X/6-311++g(d,p)	35
Figura 12 -	Comparação entre o Raman experimental e o calculado DFT-PCM da	
	base uracila	59
Figura 13 -	Comparação entre o Raman experimental e o calculado DFT-PCM da	
	base timina	60
Figura 14 -	Comparação entre o Raman experimental e o calculado DFT-PCM da	
	base citosina	61

Figura 15 -	Comparação entre o Raman experimental e o calculado DFT-PCM da	
	base guanina	62
Figura 16 -	Comparação entre o Raman experimental e o calculado DFT-PCM da	
	base adenina	63
Figura 17 -	Deslocamentos atômicos de vários modos vibracionais das bases do	
	RNA/DNA	66
Figura 18 -	Estrutura tridimensional da hélice do microRNA-16 obtida via biologia	
	computacional	68
Figura 19 -	Comparativo entre Raman calculado em PCM via DFT obtido em nível	
	zero e o resultado SERS experimental medido por autor e colaboradores	
	(DRISKELL et al., 2008)	69
Figura 20 -	Deslocamentos atômicos de principais modos vibracionais do miRNA-16	
	relacionado ao câncer que foram obtidos com a metodologia aqui	
	desenvolvida	70
Figura 21 -	Permutação de três nucleotídeos do DNA: ACA, CAA, CAC e CCA	74
Figura 22 -	Comparativo entre Raman calculado em PCM via DFT obtido em nível	
	zero e o resultado experimental medido por autor e colaboradores do	
	trinucleotídeo ACA (RUBIN; NGUYEN; FAINMAN, 2021)	75
Figura 23 -	Comparativo entre Raman calculado em PCM via DFT obtido em nível	
	zero e o resultado experimental medido por autor e colaboradores do	
	trinucleotídeo CAA (RUBIN; NGUYEN; FAINMAN, 2021)	76
Figura 24 -	Comparativo entre Raman calculado em PCM via DFT obtido em nível	
	zero e o resultado experimental medido por autor e colaboradores do	
	trinucleotídeo CAC (RUBIN; NGUYEN; FAINMAN, 2021)	77
Figura 25 -	Comparativo entre Raman calculado em PCM via DFT obtido em nível	
	zero e o resultado experimental medido por autor e colaboradores do	
	trinucleotídeo CCA (RUBIN; NGUYEN; FAINMAN, 2021)	78
Figura 26 -	Estimativa do enorme crescimento e diversidade de aplicações da DFT	94
Figura 27 -	Cientistas com atividade importante na mecânica quântica e no	
	desenvolvimento da Teoria do Funcional da Densidade	95

	acordo com ("Tulane University - Department of Physics and Engineering Physics News & amp" 2018) : b) púmero de publicações a cada ano no	
	Physics News frame, 2018) : b) número de publicações a cada ano no	
	Thysics - News Kamp , 2018), b) numero de publicações a cada ano no	
	período 1975 – 2014 garimpadas na base de dados Web of Science em	
	fevereiro 2015 utilizando-se as palavras-chave "density functional" ou	
	"DFT" – ver (JONES, 2015); (c) número de artigos (em unidade de mil)	
	obtidos da pesquisa do tópico "DFT" na base de dados Web of Science	
	(barras com extremidades cinza) para os dois mais populares funcionais o	
	B3LYP e o PBE	97
Figura 29 -	Densidades radiais e potenciais para o átomo de hélio (energias em	
	Hartree, distâncias em Bohr). A linha vermelha é -2/r, a atração de	
	elétrons reais pelo núcleo. A linha púrpura é o potencial exato de Kohn-	
	Sham. Dois elétrons falsos no orbital 1s deste potencial possuem a mesma	
	densidade no estado fundamental que o hélio real. A linha verde é o	
	potencial da aproximação GGA que, embora imprecisa, fornece uma	
	densidade altamente acurada. Ver Fig. 1 na ref. (PRIBRAM-JONES;	
	GROSS; BURKE, 2015)	102
Figura 30 -	O número de citações sobre a Teoria do Funcional da Densidade (DFT)	
	explodiu (assim como também as dos métodos ab initio). PBE representa	
	o número de citações da ref. (PERDEW; BURKE; ERNZERHOF, 1996),	
	e B3LYP representa o número de citações da ref. (BECKE, 1993) O	
	violeta indica artigos que utilizam ambas as aproximações sem citar os	
	artigos originais, e Other representa as citações de todos os outros artigos	
	sobre DFT. Todos os números são estimativas	104
Figura 31 -	Ciclos de auto consistência dos cálculos de DFT	114
Figura 32 -	Esquema da realização de cálculo autoconsistente de pseudopotencial	121
Figura 33 -	Diferenças entre funções de Slater e Gaussiana	122
Figura 34 -	Parâmetros Otimizados nos métodos M06 e M06-2X	128
Figura 35 -	miRNA: Região a	133
Figura 36 -	miRNA: Região b	134
Figura 37 -	miRNA: Região c	135
Figura 38 -	miRNA: Região d	136
Figura 39 -	miRNA: Região e	137

Figura 40 -	miRNA: Região f	138
Figura 41 -	miRNA: Região g	139
Figura 42 -	Nucleotídeos do RNA e DNA Otimizados	142
Figura 43 -	Comparativo: Assinalamentos Vibracionais Raman "Fracos" e "Fortes"	
	do RNA	143
Figura 44 -	Comparativo: Assinalamentos Vibracionais Raman "Fracos" e "Fortes"	
	do DNA	144
Figura 45 -	Espectros Raman Parciais dos oito nucleotídeos, de sistemas RNA/DNA;	
	calculados via DFT em PCM, no nível de cálculo M062X/6-311++g(d,p)	145
Figura 46 -	Binucleotídeo formado pela junção de UMP e AMP em 570 cm ⁻¹	
	(modo 61)	146
Figura 47 -	Uracila no Assinalamento Vibracional Raman "Forte" UM07 – 571 cm⁻¹	148
Figura 48 -	(A) Moléculas de água (vermelho) determinam a estrutura do DNA. (B)	
	Pontes de Hidrogênio das moléculas de água em camada de hidratação de	
	B-DNA via dinâmica molecular e modelo de salto analítico	150
Figura 49 -	64 tipos de códons formados por três bases do RNA	150
Figura 50 -	Sequências das bases, juntamente com seus respectivos espectros, de	
	vários miRNAs avaliados por autor e colaboradores (DRISKELL et al.,	
	2008)	151
Figura 51 -	Espectros Raman e atribuições experimentais dos modos vibracionais de	
	sistemas ACA, CAA, CAC e CCA	152
Figura 52 -	Sistemas RNA com diferentes sequências e características estruturais	
	com seus respectivos espectros Raman	153
Figura 53 -	Três representações das interações presentes entre nucleotídeos no RNA	
	de transferência com níveis crescentes de complexidade estrutural	154

LISTA DE TABELAS

Tabela 1 -	Identificação de modos Raman das bases do RNA/DNA: assinaturas	
	vibracionais de cada base com seus números de onda característicos (de	
	0 à 1000 cm ⁻¹)	36
Tabela 2 -	Identificação de modos Raman das diferentes bases do RNA/DNA que	
	são: as assinaturas vibracionais de cada base com seus números de onda	
	característicos (de 1000 à 4000 cm ⁻¹)	37
Tabela 3 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da base uracila de acordo com as	
	frequências (em cm ⁻¹) dos seus modos vibracionais Raman. Os cálculos	
	DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o	
	software comercial Gaussian 09	38
Tabela 4 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da base timina de acordo com os	
	comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais Raman.	
	Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados	
	usando o software comercial Gaussian 09	39
Tabela 5 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da base citosina de acordo com os	
	comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais Raman.	
	Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados	
	usando o software comercial Gaussian 09	40
Tabela 6 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da base guanina de acordo com os	
	comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais Raman.	
	Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados	
	usando o software comercial Gaussian 09	41
Tabela 7 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da base adenina de acordo com os	
	comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais Raman.	
	Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados	
	usando o software comercial Gaussian 09	42

Tabela 8 -	Identificação de modos Raman das bases uracila, timina, citosina e	
	guanina do RNA/DNA com interferência de pentoses e fosfato:	
	Assinaturas Vibracionais Raman Fortes das bases e Assinaturas	
	Vibracionais da ribose, desoxirribose e fosfato (de 0 a 740 cm ⁻¹)	46
Tabela 9 -	Identificação de modos Raman da base adenina do RNA/DNA com	
	interferência de pentoses e fosfato: Assinaturas Vibracionais Raman	
	Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e	
	fosfato (de 0 a 740 cm ⁻¹)	47
Tabela 10 -	Identificação de modos Raman das bases uracila, timina, citosina e	
	guanina do RNA/DNA com interferência de pentoses e fosfato:	
	Assinaturas Vibracionais Raman Fortes das bases e Assinaturas	
	Vibracionais da ribose, desoxirribose e fosfato (de 740 a 1400 cm ⁻¹)	48
Tabela 11 -	Identificação de modos Raman da base adenina do RNA/DNA com	
	interferência de pentoses e fosfato: Assinaturas Vibracionais Raman	
	Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e	
	fosfato (de 740 a 1400 cm ⁻¹)	49
Tabela 12 -	Identificação de modos Raman das bases uracila, timina, citosina e	
	guanina do RNA/DNA com interferência de pentoses e fosfato:	
	Assinaturas Vibracionais Raman Fortes das bases e Assinaturas	
	Vibracionais da ribose, desoxirribose e fosfato	
	(de 1400 a 4000 cm ⁻¹)	50
Tabela 13 -	Identificação de modos Raman da base adenina do RNA/DNA com	
	interferência de pentoses e fosfato: Assinaturas Vibracionais Raman	
	Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e	
	fosfato (de 1400 a 4000 cm ⁻¹)	51
Tabela 14 -	Assinaturas vibracionais "fortes" (não sublinhado) e "fracas"	
	(sublinhadas); juntamente com as assinaturas vibracionais das pentoses e	
	do grupamento fosfato. Os cálculos DFT-PCM nos níveis M062X/6-	
	311++g(d,p), para bases e fosfato; e M062X/6-31++g(d,p) para as	
	pentoses foram realizados usando o software comercial Gaussian 09	52

Tabela 15 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da pentose ribose de acordo com os	
	comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais Raman.	
	Os cálculos DFT-PCM no nível M062X/6-31++g(d,p) foram realizados	
	usando o software comercial Gaussian 09	53
Tabela 16 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos da pentose desoxirribose de acordo	
	com os comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais	
	Raman. Os cálculos DFT-PCM no nível M062X/6-31++g(d,p) foram	
	realizados usando o software comercial Gaussian 09	54
Tabela 17 -	Atribuições (realizadas visualmente) dos movimentos	
	individuais/coletivos dos átomos do grupamento fosfato de acordo com	
	os comprimentos de onda (em cm ⁻¹) dos seus modos vibracionais	
	Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram	
	realizados usando o software comercial Gaussian 09	55
Tabela 18 -	Modos associados do miRNA-16 obtidos da aproximação de ordem zero	
	(de 0 a 1140 cm ⁻¹). Os cálculos DFT no nível M062X/6-311++g(d,p)	
	foram realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	71
Tabela 19 -	Modos associados do miRNA-16 obtidos da aproximação de ordem zero	
	(de 1140 a 1800 cm ⁻¹). Os cálculos DFT no nível M062X/6-311++g(d,p)	
	foram realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	72
Tabela 20 -	Modos associados do trinucleotídeo ACA obtidos da aproximação de	
	ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram	
	realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	80
Tabela 21 -	Modos associados do trinucleotídeo CAA obtidos da aproximação de	
	ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram	
	realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	81

Tabela 22 -	Modos associados do trinucleotídeo CAC obtidos da aproximação de	
	ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram	
	realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	82
Tabela 23 -	Modos associados do trinucleotídeo CCA obtidos da aproximação de	
	ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram	
	realizados usando o software comercial Gaussian09. *sobrescritos	
	representam os picos de acordo com o espectro	83

LISTA DE ABREVIATURAS E SIGLAS

А	Adenina
С	Citosina
D	Desoxirribose
DFT	Teoria do Funcional da Densidade
G	Guanina
miRNA	Micro RNA
mRNA	RNA mensageiro
Р	Fosfato
PCM	Modelo Contínuo Polarizável
R	Ribose
rRNA	RNA ribossômico
SERS	Espectroscopia Raman Aprimorada por Superfície
Т	Timina
tRNA	RNA transportador
U	Uracila

LISTA DE SÍMBOLOS

- σ Movimento da tesoura
- δ Deformação da ligação
- v Alongamento da ligação
- β Flexão
- ω Abanando
- ρ Balanço
- τ Torção
- s Deslocamento simétrico
- a Deslocamento assimétrico
- *out* Movimento externo
- in Movimento interno

SUMÁRIO

1	INTRODUÇÃO	19
2	OBJETIVOS	22
2.1	Objetivo Geral	22
2.2	Objetivos Específicos	22
3	METODOLOGIA	26
3.1	Amostras das Bases Nitrogenadas	26
3.2	Medidas Raman	26
3.3	Cálculos Computacionais na Teoria do Funcional da Densidade (DFT)	27
3.4	Nomeação dos Modos Normais das Moléculas	27
4	RESULTADOS OBTIDOS	30
4.1	Nomeação dos Átomos das Bases e Nucleotídeos do RNA/DNA	30
4.2	Nível Zero da Metodologia: Raman DFT-PCM das Bases do RNA/DNA	33
4.2.1	Interferência das Pentoses e do Grupamento Fosfato na Identificação dos Modos Normais de Vibração das Bases Nitrogenadas	43
4.3	Comparação entre Espectros Raman Medidos e DFT-PCM das Bases	56
4.4	Atribuição dos Modos Raman DFT-PCM das Bases do RNA/DNA	64
5	ESPECTRO RAMAN DO microRNA-16 (miRNA-16)	67
6	ESPECTRO RAMAN DE Trinucleotídeos (DNA)	74
7	CONCLUSÃO	84
	REFERÊNCIAS	85
	APÊNDICE A – TEORIA DO FUNCIONAL DA DENSIDADE	94
	APÊNDICE B – DESLOCAMENTOS ATÔMICOS DOS MODOS	
	COMPLETOS DO miRNA-16	133
	APÊNDICE C – CONTINUIDADE E NOVAS APLICAÇÕES	140

1 INTRODUÇÃO

Os cromossomos são estruturas que abrigam o material genético dentro da célula. Em outras palavras, um cromossomo é uma molécula de DNA condensada (HSIEH, 1992), que carrega a informação genética herdada dos progenitores – ver Figura 1A. Um cromossomo tem de centenas a milhares de genes (BIANCHI et al., 2012). Cada célula humana normal contém 23 pares de cromossomos, totalizando 46 cromossomos, todos formados por genes, segmentos de uma molécula de DNA (ácido desoxirribonucleico) responsável pelas características herdadas geneticamente (CRABBE, 2000). Cada gene é composto por uma sequência específica de DNA (WATSON; CRICK, 1953) - as letras A, T, C e G para as bases adenina, timina, citosina e guanina - que contém uma "receita" para produzir uma proteína que desempenha uma função no organismo. Esta "receita", oriunda principalmente da sequência das bases, é transcrita para moléculas de RNA (ácido ribonucleico, constituído pelas bases U, T, C e G, a uracila substituindo a timina), que funciona como uma intermediadora capaz de expressar as informações presentes no DNA, sendo essencial na síntese de proteínas (PABO; SAUER, 1992).

A molécula de RNA é formada a partir da molécula de DNA em um processo chamado de transcrição. O RNA funciona como uma intermediadora capaz de expressar as informações presentes no DNA. Ele pode ser encontrado na forma de três tipos principais: o mensageiro (mRNA), codificador das proteínas, 5%-10% de todo o RNA celular; o transportador (tRNA), pequeno e com estrutura semelhante à de uma folha de trevo que possui quatro braços, sendo o adaptador entre o mRNA e os aminoácidos que constituirão uma proteína, 10%-15% de todo o RNA celular – ver Figura 1E; e o ribossômico (rRNA), que compõe a estrutura do ribossomo, uma organela que é o local da síntese de proteínas, 80% do total de RNA em uma célula (SHARP, 2009). Por outro lado, microRNAs (miRNAs) são pequenos RNAs não-codificantes com 10-40 bases, conservados ao longo da evolução, capazes de regular a expressão gênica através da degradação ou repressão da tradução de moléculas-alvo de RNA mensageiro, e que podem ser relacionados à doenças (MARCHESE; RAIMONDI; HUARTE, 2017)- o miRNA-16, cujas propriedades vibracionais Raman são investigadas nesta dissertação, é associado ao câncer (DRISKELL et al., 2008).

A estrutura tridimensional do DNA é formada por seus nucleotídeos ligados entre si (ligações de hidrogênio A-T e G-C das bases A, T, C, G, e ao açúcar desoxirribose e grupo monofosfato), que dá origem à famosa hélice dupla, revelada pela primeira vez por Watson e Crick em 1953 – ver Figura 1B. Existem três tipos de formas do DNA (ZIMMERMAN,

1982), A, B e C, sendo B a mais comum – ver Figura 1D. Por outro lado, o RNA tem a estrutura de fitas simples (MESSIAS; SATTLER, 2004) formadas pelos seus nucleotídeos (interação *pi-stacking* entre as bases U, T, C, G juntamente com as ligações covalentes destas com o açúcar ribose e grupo monofosfato) – ver Figura 1B. Partes do RNA podem ligar-se entre si através de ligações de hidrogênio (BARLOW et. al., 1991) do tipo U-T e G-C entre suas bases – ver Figura 1C, 1E.

A finalidade desta dissertação é propor o desenvolvimento e teste de uma metodologia dividida em três níveis: primeiramente, tratar as bases de forma independente; posteriormente, considerar independentes os nucleotídeos e por fim tomar grupos de 2, 3 (códons) e 4 nucleotídeos para análise do espectro Raman de sistemas RNA/DNA em meio aquoso, angariando informações em Modelo Contínuo Polarizável - PCM (Polarizable *Continuum Model*) e água explícita, que é baseada na Teoria do Funcional da Densidade – DFT (Density Functional Theory) para a consequente elucidação dos seus modos vibracionais, ou seja, números de onda e atribuições às vibrações dos seus átomos. Vale ressaltar, que para todas as aproximações, almeja-se realizar um comparativo entre o PCM e água explícita. Entretanto, no que diz respeito ao desenvolvimento da dissertação não serão descritos: (i) os resultados para a modelagem no contexto de se considerar as moléculas de água de forma explícita; (ii) resultados para as propriedades vibracionais Raman dos 64 códons do RNA; (iii) outras aplicações da metodologia desenvolvida a outros sistemas RNA/DNA que não o do microRNA-16 associado ao câncer, embora a metodologia possibilite quantidade considerável de utilização devido à disponibilização de dados vibracionais, descritos na literatura, de sistemas RNA/DNA que mesmo atualmente não são bem compreendidos.

Figura 1 – (A) Cromossomo humano e a dupla fita do DNA; (B) Hélices duplas e simples do DNA e RNA; (C) Pontes de hidrogênio que ligam partes do RNA; (D) Formas A, B e C do DNA; (E) Visão bidimensional (esquerda) e tridimensional (direita) do RNA transportador (tRNA).

Fonte: Elaborado pelo autor.

2 OBJETIVOS

2.1 Objetivo Geral

Proposição, desenvolvimento e teste de uma metodologia em três níveis: bases independentes, nucleotídeos independentes, e grupos de 2, 3 (códons) e 4 nucleotídeos para análise do espectro Raman de sistemas RNA/DNA em meio aquoso (PCM e água explícita) baseada na Teoria do Funcional da Densidade (DFT).

2.2 Objetivos Específicos

- Nomeação dos átomos (ver Figs. 7-9) na estrutura molecular de cada base do RNA/DNA (uracila, timina, citosina, adenina e guanina) e de seus nucleotídeos com o intuito de tornar possível uma descrição comparativa de suas propriedades vibracionais Raman como os comprimentos de onda dos picos nos seus espectros e atribuições dos modos normais das suas vibrações às vibrações atômicas;
- Realização de cálculos DFT e de medidas experimentais do espectro Raman de cada base individual do RNA/DNA para comparação entre eles, bem como a realização de cálculos DFT dos espectros Raman dos açúcares ribose/deoxirribose e do grupo fosfato para se descobrir a influência destes grupos moleculares nos assinalamentos vibracionais das bases independentes e nucleotídeos do RNA/DNA (ver Figs. 11, 11-15 e Tabelas 1 e 2);
- Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos das bases do RNA/DNA de acordo com as frequências (em cm⁻¹) dos seus modos vibracionais Raman calculados DFT no nível M062X/6-311++g(d,p) usando-se o software comercial Gaussian 09 (ver Tabs. 3-7);
- Realização de cálculos DFT de cada nucleotídeo do RNA/DNA para obtenção dos seus espectros Raman, confirmando-se assim a contribuição dos açúcares ribose/deoxiribose e do grupo fosfato (indicada anteriormente via bases independentes) aos mesmos;
- Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos de cada nucleotídeo do RNA/DNA de acordo com as frequências (em cm⁻¹) dos seus modos vibracionais Raman calculados DFT no nível M062X/6-311++g(d,p) usando-se o software comercial Gaussian 09;
- Realização de cálculos DFT em conjuntos de dois, três (os códons no caso do RNA), quatro

nucleotídeos do RNA/DNA para obtenção dos seus espectros Raman, descobrindo-se assim o efeito das interações de hidrogênio (no caso das fitas duplas) e *pi-stacking* entre eles nos seus espectros Raman;

- Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos em conjuntos de dois, três (os códons no caso do RNA) e quatro nucleotídeos do RNA/DNA de acordo com as frequências (em cm⁻¹) dos seus modos vibracionais Raman calculados DFT no nível M062X/6-311++g(d,p) usando-se o software comercial Gaussian 09;
- Validações das modelagens, sob comparação com experimental, das propriedades vibracionais de sistemas RNA/DNA nos três níveis propostos, obtendo-se os comprimentos de ondas dos picos vibracionais Raman associados às bases, nucleotídeos, grupos de nucleotídeos do RNA/DNA, bem como realização das atribuições dos modos vibracionais destes sistemas, destacando-se os resultados para o microRNA-16 (Figura 2) associado ao câncer, cuja sequência é UAGCAGCACGUAAAUAUUGGCG (a qual nenhuma atribuição de vibração atômica a quaisquer dos picos foi realizada pela literatura); e para quatro trinucleotídeos do DNA, cuja sequência de bases é: ACA, CAA, CAC e CCA (Figura 3). Comprovando, desta forma, a metodologia para sistemas RNA e DNA.

Figura 2 – Medida SERS no microRNA-16 associado ao câncer, com sequência UAGCAGCACGUAAAUAUUGGCG.

Fonte: Elaborado pelo autor.

Figura 3 – Medidas Raman dos quatro Trinucleotídeos do DNA: ACA, CAA, CAC e CCA.

Fonte: Elaborado pelo autor.

 Estudar o efeito gerado pelas moléculas de água explícita nas propriedades vibracionais de sistemas RNA/DNA nos três níveis (ordens zero, um e dois) de modelagens propostos para obtenção dos espectros Raman em sistemas RNA/DNA. As localizações das águas em torno das bases serão obtidas através da realização de dinâmicas moleculares das bases em uma caixa à temperatura ambiente - ver Figura 4. O processo será estendido aos outros níveis.

Figura 4 – **Acima:** Dinâmica molecular da interação das bases do RNA/DNA com moléculas de água considerando os raios r=4 Å (interação direta) e r > 4 Å (PCM). **Abaixo:** posição das moléculas de água mais próximas das bases do RNA/DNA (em Å).

Fonte: Elaborado pelo autor.

3 METODOLOGIA

3.1 Amostras das Bases Nitrogenadas

Pós (microcristais) das bases do RNA/DNA da Sigma-Aldrich com pureza > 98% foram utilizadas nos experimentos depois de caracterizadas por difração de raios-X. Elas foram dissolvidas em água milli-Q para obtenção de suas soluções aquosas, 100 μM.

Figura 5 – Recipientes da Sigma-Aldrich com os pós (microcristais) das bases uracila, timina, citosina, adenina e guanina.

Fonte: Elaborada pelo autor.

3.2 Medidas Raman

As medidas de espectroscopia Raman foram realizadas nas soluções preparadas anteriormente em água milli-Q das bases do RNA/DNA por meio do espectrômetro triplo T64000 Jobin Yvon, equipado com uma carga, acoplada e refrigerada a nitrogênio, e dispositivo detector (CCD) do Departamento de Física da UFC. Uma fonte de excitação laser Nd:YAG em 532 nm com uma potência de saída de 40 mW foi usada para gravar os espectros Raman no intervalo 40 - 4000 cm⁻¹, adquiridos ao longo de 512 varreduras com resolução espectral de 4 cm⁻¹ em medidas realizadas à temperatura ambiente. O espectrômetro foi calibrado e as medidas referenciadas em relação ao pico do silício em 521 cm⁻¹.

3.3 Cálculos Computacionais na Teoria do Funcional da Densidade (DFT)

A modelagem das estruturas das Bases Nitrogenadas, bem como dos Nucleotídeos isolados e ligados (ausentes neste documento), se deu através do visualizador GaussView, Version 6 (Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., ShawneeMission, KS, 2016), executando os devidos cálculos de otimização, frequência, otimização+frequência, *singlepoint* etc, no pacote Gaussian 09, Revision B.01 (KAMIŃSKI; JARZEMBSKA; DOMAGAŁA, 2013). Os cálculos computacionais na DFT foram realizados no nível M062X/6-311++g(d,p), no caso das Bases, Nucleotídeos e conjuntos de Nucleotídeos, assim como para o grupamento fosfato isolado; e M062X/6-31++g(d,p) para os açúcares (ribose e desoxirribose). Para a realização destes procedimentos utilizou-se tal software comercial citado anteriormente, bem como servidores da sala de computação Saturno do Departamento de Física UFC.

3.4 Nomeação dos Modos Normais das Moléculas

As atribuições dos modos normais são executadas e descritas usando as seguintes abreviações: σ , movimento da tesoura; δ , deformação da ligação; v, alongamento da ligação; β , flexão; ω , abanando; ρ balanço; e τ , torção. Os subscritos "s" e "a" são empregados para denotar deslocamentos simétricos e assimétricos respectivamente, enquanto *out* e *in* subscritos denotam movimentos externos e internos em relação a um determinado plano molecular (Figura 6). Os modos de rede e translação encontrados para frequências baixas (caso dos cristais) são indicados explicitamente. Vale ressaltar que uma molécula tem movimento de translação quando há mudança de seu centro de massa, enquanto na rotação e vibração o centro de massa molecular permanece inalterado (sendo este último tipo o retratado nessa dissertação). No caso dos anéis aromáticos (ou que porventura possuem algum tipo de aromaticidade ressonante) utilizou-se uma relação coerentemente explicada na literatura (VARSÁNYI; SZÕKE, 1969), a qual estabelece uma correlação existente entre a simetria e os modos vibracionais, de modo que: a_{1g} , e_{2g} e b_{1u} equivalem respectivamente a *breathing* ("respiração"), *in-plane bending* (flexão no plano) e *trigonal bending* (flexão trigonal), por exemplo – ver Figura 7. Figura 6 – Descrição e nomeação dos movimentos atômicos em moléculas comuns: geometrias tetraédrica, trigonal planar, piramidal e angular.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

4 RESULTADOS OBTIDOS

4.1 Nomeação dos Átomos das Bases e Nucleotídeos do RNA/DNA

Para se fazer uma descrição coerente das contribuições dos átomos de cada base às propriedades vibracionais de sistemas RNA/DNA, necessita-se levar em conta a posição e vizinhança de cada átomo. Na Figura 8 pode-se notar que os átomos nas estruturas hexaméricas são numerados 1-6 de forma similar, mas com distinção entre eles (5, 5' e 5", por exemplo) decorrente da diferença de sua vizinhança. Um processo de nomeação similar nas estruturas pentaméricas também ocorre. Com esta nomeação dos átomos nas bases do RNA/DNA fica fácil intuir que as propriedades vibracionais do C5 uracila e citosina devem ser similares, e um pouco diferentes daquelas do carbono C5' da timina e C5" da adenina e guanina, por causa da diferença da vizinhança entre eles. Seguindo este critério, as vibrações do N4' na citosina serão similares ao N4' da adenina, mas não similares ao N2" da guanina; as vibrações nos carbonos C2, C2', C2" e C2''' (no caso das pentoses nos nucleotídeos) são todas influenciadas pelas diferentes vizinhanças atômicas que possuem. Uma nomeação atômica similar para os nucleotídeos é apresentada na Figura 9; e de modo equivalente para o códon AUG da metionina, como mostrado na Figura 10. As nomeações dos átomos na ribose, desoxirribose e grupamento fosfato seguem o mesmo raciocínio.

Fonte: Elaborado pelo autor.

Figura 9 - Nomeação dos átomos nos nucleotídeos do RNA e DNA.

Fonte: Elaborada pelo autor.

Figura 10 - Nomeação dos átomos nos nucleotídeos do códon AUG.

Fonte: Elaborada pelo autor.

4.2 Nível Zero da Metodologia: Raman DFT-PCM das Bases do RNA/DNA

Vale relembrar que nesta dissertação a finalidade é desenvolvermos uma metodologia (baseada na utilização da Teoria do Funcional da Densidade) para caracterização dos espectros Raman de sistemas RNA/DNA em sistemas aquosos no contexto do contínuo polarizável (PCM), e posteriormente considerando moléculas de água interagindo explicitamente com os sistemas RNA/DNA. No nível zero da metodologia, consideramos que o Raman do sistema depende fortemente das propriedades vibracionais das bases individuais, e que, portanto, conhecendo a sequência das bases e a porcentagem de cada uma das estruturas RNA/DNA (ou seja, sistemas moleculares mais complexos) pode-se obter seu espectro Raman e fazer as atribuições dos seus modos vibracionais a partir daqueles das bases individuais – não levando em conta as interações entre as bases, a existência dos açúcares e grupos monofosfatos.

Embora existam vários trabalhos teóricos onde são obtidos os espectros Raman das bases do RNA/DNA, de acordo com a revisão efetuada neste presente estudo constatou-se que não existem publicações em que os espectros de todas as cinco bases tenham sido obtidos com DFT no mesmo nível de cálculo e tipo de código, o que é indispensável para a construção de uma metodologia coerente. Neste trabalho, usamos o Gaussian 09 e realizamos os cálculos DFT-PCM no nível M062X/6-311++g(d,p), obtendo-se os espectros vibracionais das bases uracila (U), timina (T), citosina (C), guanina (G) e adenina (A), que são apresentados na Figura 11 no intervalo de comprimentos de onda de 0 – 4000 cm⁻¹. Também apresentamos os Raman dos açúcares ribose (R) e desoxirribose (D), e do grupo fosfato (P) calculados por DFT-PCM no sentido de antever a influência dos mesmos nas propriedades dos sistemas RNA/DNA, principalmente onde os comprimentos de onda devem ser influenciados por eles.

Comparando os modos vibracionais das bases de acordo com seus comprimentos de ondas e intensidades, podemos determinar: (a) as assinaturas vibracionais de cada base individual (também reconhecidas como modos normais de identidade dos compostos), isto é, os picos que caracterizam cada base de forma individual por diferirem > 9-10 cm⁻¹ dos números de onda dos modos próximos das outras bases. Neste ponto, algo instigou-nos a atenção: as assinaturas vibracionais encontradas para as bases foram divididas em "Assinaturas Vibracionais Raman Fracas", que se classificam de acordo com o fato de que elas estão associadas com algum modo vibracional das pentoses ou do grupamento fosfato, tornando-as assim um assinalamento vibracional para bases isoladas apenas; e "Assinaturas

Vibracionais Raman Fortes", as quais referem-se aqueles modos que não estão associados nem aos açúcares, nem ao grupamento fosfato, sendo portanto um assinalamento vibracional em qualquer tratamento teórico envolvendo nível de cálculo M062X/6-311++g(d,p) em sistemas RNA/DNA, ou seja, bases independentes ou considerando a presença dos constituintes dos nucleotídeos, havendo um pequeno deslocamento nos espectros devido a mudança de interações das bases com as pentoses e fosfato e a presença de pontes de hidrogênio e interações *pi-stacking*. Desta forma, os modos normais de vibração de cada base estão indicados por números vermelhos (U), azuis (T), verdes (C), laranjas (G) e violetas (A) nas Tabelas 1 e 2 dos modos das bases, sendo que as assinaturas Raman fracas possuem seus valores de números de onda sublinhados, enquanto as assinaturas Raman fortes não possuem suas indicações sublinhadas nas Tabelas 1 e 2; (b) os modos comuns/coletivos das bases (indicados também por modos acoplados); que diferem < 9-10 cm⁻¹ nos seus números de onda (entre 9 e 5 cm⁻¹ em sua maior parte), com algumas exceções onde o acoplamento de modos realizou-se em 10 cm-1 ou valores ligeiramente maiores - os modos comuns/coletivos das bases estão hachurados de amarelo nas Tabelas 1 e 2, como, por exemplo, a série de modos UM29-3612, TM38-3614, GM40-3612 cm⁻¹. Vale ressaltar que de acordo com tais Tabelas existem modos com os números de onda similares para dubletos (34) e tripletos (18) de bases, totalizando 52 conjuntos de modos próximos; todavia, com relação aos quartetos e quintetos de bases, nenhuma sequência foi encontrada.

Em sistemas RNA/DNA, os modos das assinaturas vibracionais individuais fortes sugerem que poderemos ter a mesma base nitrogenada vibrando de forma única (as demais permanecem sem vibrações ativas) em diferentes números de onda característicos de tais assinalamentos, enquanto através das assinaturas vibracionais individuais fracas supõe-se que embora as demais bases presentes na molécula complexa de RNA ou DNA permaneçam com vibrações inativas, as pentoses e/ou grupamento fosfato irão vibrar de maneira considerável em conjunto com a o modo vibracional fraco da base. Por outro lado, os modos coletivos ou acoplados implicarão que bases de diferentes tipos poderão vibrar em comprimentos de onda semelhantes, mas não vibrarão coletivamente em outros comprimentos de onda diferentes daqueles dos modos coletivos. Estas implicações ficarão mais esclarecidas, quando apresentarmos resultados DFT para os modos vibracionais a 2-4 nucleotídeos, considerando assim o nível dois da metodologia aqui proposta para caracterização dos espectros Raman de sistemas RNA/DNA em sistemas aquosos. Finalmente, as atribuições dos movimentos dos átomos/grupos atômicos são apresentadas nas Tabelas 3-7.

Figura 11 – Espectros Raman de todas as bases, dos açúcares e do grupo P; calculados via DFT em PCM, no nível de cálculo M062X/6-311++g(d,p).

Fonte: Elaborada pelo autor.

	U			Т			С			G			Α	
М	ω	Ι	М	ω	I	М	ω	I	М	ω	I	М	ω	Ι
-			-			_			-			<u>AM 01</u>	<u>48</u>	<u>2.18</u>
-			<u>TM 01</u>	<u>113</u>	<u>0.63</u>	-			-			-		
-			-			-			GM 01	140	0.52	-		
UM 01	154	0.1	TM 02	154	0.05	CM 01	<mark>150</mark>	<mark>0.09</mark>	- CM 02	164	0.14	-	1.61	0.6
	108	<mark>0.42</mark>	<u>1 M 03</u>	109	<mark>0.94</mark>	- CM 02	100	0.42	GM 02 CM 03	104	0.14 0.36	AM 02	101	0.0
_			_			CM 02 CM 03	216	1.76	<u>-</u>	170	0.50	AM 03	213	0.01
-			TM 04	<mark>284</mark>	0.25	-			-			AM 04	281	6.28
-			TM 05	292	1.03	-			-			-		
-			-			-			-			<u>AM 05</u>	<u>302</u>	<u>0.01</u>
-			_			_			<u>GM 04</u>	<u>324</u>	<u>3.68</u>	-		
-			_			_			<u>GM 05</u>	<u>335</u>	<u>4.53</u>	-		
_			_			- CM 04	369	2.26	<u>GM 06</u> GM 07	<u>355</u> 360	4.86	_		
UM 03	394	2.63	_			<u>–</u>	509	2.20	-	<mark>.300</mark>	0.98	_		
UM 04	395	4.78	TM 07	<mark>396</mark>	<mark>3.84</mark>	CM 05	<mark>404</mark>	<mark>1.61</mark>	_			_		
-			-			-			<u>GM 08</u>	<u>447</u>	<u>2.19</u>	-		
-			<u>TM 08</u>	<u>467</u>	7.27	-			-			-		
-			_			_			<u>GM 09</u>	<u>496</u>	<u>9.21</u>	-		
	507	4.71	_			_			_			<u>AM 06</u>	<u>524</u>	5.7
UM 05	<u>527</u>	<mark>4./1</mark>	_			_			_			AM 07	529 522	0.6 5.07
_			_			CM 06	547	0.31	GM 10	541	7.57	- ANI 00	555	5.07
<mark>UM 06</mark>	<mark>553</mark>	11.81	TM 09	<mark>556</mark>	<mark>9.78</mark>	CM 08	551	1.39	-	-		<mark>AM 09</mark>	<mark>555</mark>	0.59
UM 07	571	3.89	-			-			-			-		
<mark>UM 08</mark>	<mark>579</mark>	<mark>0.04</mark>	<mark>TM 10</mark>	<mark>579</mark>	<mark>0.03</mark>	-			-			-		
-			-			<mark>CM 09</mark>	<mark>587</mark>	<mark>13.52</mark>	<mark>GM 11</mark>	<mark>587</mark>	0.22	<mark>AM 10</mark>	<mark>591</mark>	<mark>0.66</mark>
_			TM 11	<mark>616</mark>	<u>13.71</u>	-	CO7	0.55	<mark>GM 12</mark>	<mark>615</mark>	<mark>0.92</mark>	-	(0)	10.75
	647	1.1	- TM 12	652	1.00	<u>CM 10</u>	627	0.55	- CM 13	642	58 65	<u>AM 11</u> _	<mark>624</mark>	13.75
<u>-</u>	047	1.1	<u>- 1101 12</u>	052	1.09	_			GM 13 GM 14	670	0.85	AM 12	<mark>674</mark>	0.62
_			_			_			GM 15	685	0.95	AM 13	<mark>693</mark>	0.44
_			_			_			GM 16	706	0.73	-		
<mark>UM 10</mark>	<mark>731</mark>	<mark>0.77</mark>	-			CM 11	<mark>734</mark>	<mark>0.43</mark>	-			<mark>AM 14</mark>	<mark>736</mark>	<mark>57.85</mark>
-			TM 13	<mark>752</mark>	<mark>27.36</mark>	_			GM 17	<mark>745</mark>	<mark>0.41</mark>	-		
-	765	0.20	TM 14	760	0.83	_			-			-		
UM 11 UM 12	700	0.38 42.05	<u>1 M 15</u>	/69	<mark>4.1</mark>	- CM 12	700	13	- CM 18	784	20	_		
<u>-</u>	790	42.03	_			CM 12 CM 13	794	61.72	-	704	2.9	_		
_			_			CM 14	797	0.79	_			_		
<mark>UM 13</mark>	<mark>810</mark>	<mark>2.95</mark>	<mark>TM 16</mark>	<mark>816</mark>	<mark>11.65</mark>	_			-			<mark>AM 15</mark>	<mark>811</mark>	<mark>0.76</mark>
-			-			-			GM 19	847	3	-		
-			-			-			<u>GM 20</u>	<u>879</u>	<u>3.08</u>	-		
-			_			-			-			<u>AM 16</u>	<u>904</u>	<u>2.17</u>
_			- TM 17	042	2.00	_			_			<u>AM 17</u>	<u>910</u>	<u>6.27</u>
_			1 IVI 1 /	944	5.09	CM 15	960	13 37	- GM 21	<mark>960</mark>	23 37	AM 18	956	14 58
<mark>UM 14</mark>	<mark>993</mark>	<mark>2.19</mark>	TM 18	<mark>993</mark>	17.38	-	200	20.01	_	200	<u></u>	-	~~~	
UM 15	<mark>996</mark>	5.07	-			CM 16	<mark>997</mark>	<mark>3.58</mark>	-			<mark>AM 19</mark>	<mark>996</mark>	<mark>0.27</mark>
					-							_	_	_

Tabela 1 – Identificação de modos Raman das bases do RNA/DNA: assinaturas vibracionais de cada base com seus números de onda característicos (de 0 a 1000 cm⁻¹).

Fonte: Elaborada pelo autor. (*) Letras vermelhas, azuis, verdes, laranjas e violetas em negrito representam os modos normais de vibração; os modos vibracionais comuns/coletivos (com números de onda próximos) a bases diferentes – modos hachurados de amarelo.

Tabela 2 – Identificação de modos Raman das diferentes bases do RNA/DNA que são: as assinaturas vibracionais de cada base com seus números de onda característicos (de 1000 a 4000 cm^{-1}).

	U			Т			С			G			Α	
Μ	ω	Ι	Μ	ω	Ι	Μ	ω	Ι	Μ	ω	Ι	М	ω	Ι
UM 16	1004	<mark>8.9</mark>	-			CM 17	<mark>998</mark>	10.09	-			_		
_			_			-			_			AM 20	1016	13.19
_			TM 19	1032	5.1	_			-			_ `		
_			TM 20	1069	1.57	_			GM 22	1060	5.22	-		
UM 17	1105	<mark>9.46</mark>	_			_			GM 23	1100	25.05	AM 21	1110	17.81
-		<u></u>	-			CM 18	1119	6.24	GM 24	1120	4.71	_		
_			_			CM 19	1140	14 34	-	1120		_		
_			TM 21	1177	12.06	-	1140	1101	GM 25	1170	24 51	AM 22	1163	7 29
_			_	11//	12.00	_			GM 26	1203	5 58	_	1105	1.27
UM 18	1221	1 33	TM 22	1223	47	CM 20	1226	19 79		1200	0100	_		
UM 19	1221	76.32	-	1225	T. /	<u></u>	1220	17.17	_			_		
<u>UM 17</u>	1237	10.04	TM 23	1253	27 17	_			_			AM 23	1258	24 52
_			<u>1 NI 23</u>	1255	<u>27.17</u>	_			_			AM 24	1230	<u>41 12</u>
_			_			CM 21	1307	02 17	_			<u>ANI 24</u>	1200	41.12
_			_				1307	94.17	CM 27	1220	44.00	_		
									GIVI 27	1550	44.00	434.25	1240	145 50
_			_			_			CM 29	12(0	26.94	<u>ANI 25</u>	1349	145.58
-			-			<u></u>	1075	20.20	<u>GIVI 28</u>	1300	<u>30.84</u>	-	1202	0.00
-			-	1000	114 70	CM 22	13/5	<mark>28.38</mark>	CD 5 00	1000	20.02	AM 20	1382	2.62
_			<mark>TM 24</mark>	1390	114.78	_			<mark>GM 29</mark>	1 <u>386</u>	<u>39.03</u>	AM 27	<mark>1390</mark>	<u>227.6</u>
<u>UM 20</u>	1402	<u>68.53</u>	-			-			-			-		
-			TM 25	1419	15.96	-			<mark>GM 30</mark>	<mark>1419</mark>	<u>227.47</u>	-		
UM 21	1431	3.13	<mark>TM 26</mark>	1426 1426	<mark>7.95</mark>	-			-			-		
<mark>UM 22</mark>	<mark>1439</mark>	2.17	-			-			-			<mark>AM 28</mark>	<mark>1440</mark>	<mark>75.22</mark>
-			<mark>TM 27</mark>	<mark>1453</mark>	<mark>5.14</mark>	CM 23	1454	<u>14.63</u>	GM 31	<u>1455</u>	<mark>81.3</mark>	-		
-			<mark>TM 28</mark>	1467	<mark>14.41</mark>	-			-			<mark>AM 29</mark>	1462	<mark>15.69</mark>
-			TM 29	1490	13.59	-			-			-		
-			-			CM 24	1511	9.1	-			-		
<mark>UM 23</mark>	1527	<mark>44.25</mark>	<mark>TM 30</mark>	<mark>1530</mark>	<mark>56.32</mark>	-			-			<mark>AM 30</mark>	<mark>1526</mark>	<mark>8.09</mark>
-			-			-			<mark>GM 32</mark>	1542	<mark>296.95</mark>	<mark>AM 31</mark>	<mark>1546</mark>	<mark>254.39</mark>
-			-			CM 25	1590	<mark>62.26</mark>	<mark>GM 33</mark>	1589	<mark>96.9</mark>	-		
-			-			-			-			AM 32	1620	7.83
-			-			CM 26	1630	<mark>25.34</mark>	GM 34	1632	<mark>65.45</mark>	-		
-			-			-			GM 35	1638	374.42	-		
-			-			-			GM 36	1661	27.57	AM 33	1661	137.89
-			-			-			-			AM 34	1670	21.53
UM 24	1698	108.58	-			CM 27	1696	37.26	-			_		
-			-			CM 28	1718	64.7	_			_		
_			TM 31	1729	216.55	_			-			-		
UM 25	1746	<mark>94 92</mark>	TM 32	1743	38.05	_			_			_		
_	<u></u>	× ••×=	_		20100	_			GM 37	1762	142.99	-		
UM 26	1796	115 53	TM 33	1788	101 11	_			_			_		
<u> </u>	1790	115.55	TM 34	3068	443.11	_			_			_		
_			TM 35	3130	163.00	_			_			_		
_			TM 26	3150	125 51	_			_			_		
_			111 30	5155	143.31	_			_			AM 25	2106	240.20
UM 27	2251	151.02	TM 27	3241	182.56	CM 20	2245	136 19	_			AIVI 33	3190	449.49
	3231	151.92	111 37	<mark>3241</mark>	102.30	CM 29 CM 20	3243 3244	220.00	_			_		
	2270	206 72	-			CIVI 30	3400	439.00	CM 29	2202	102 47	AM 26	2200	107.95
UNI 28	<u>3219</u>	200.72	-			-			GIVI 38	3283	195.4/	AIVI 30	<u>3280</u>	197.85
-	2612	105.05	-	2614	1 40 00	_			GM 39	3608	08.12	-		
<mark>UM 29</mark>	<mark>3612</mark>	125.35	TM 38	<mark>3614</mark>	142.33	-	0.000	A 100 1-	<mark>GM 40</mark>	<u>3612</u>	<mark>436.38</mark>	-	2 12 1	0.00
-			-			CM 31	<mark>3623</mark>	<mark>247.48</mark>	-			<mark>AM 37</mark>	<mark>3624</mark>	<mark>367.48</mark>
-	-		-	-		CM 32	3636	276.65	-			-		
<mark>UM 30</mark>	<mark>3644</mark>	<mark>201.66</mark>	<mark>TM 39</mark>	<mark>3649</mark>	<mark>219.2</mark> 4	—			-			-		
-			-			-			<mark>GM 41</mark>	<mark>3659</mark>	<mark>254.14</mark>	AM 38	<mark>3659</mark>	<mark>262.2</mark>
-			-			-			GM 42	3727	89.83	_		
						CM 33	<mark>3756</mark>	<mark>88.26</mark>				<mark>AM 39</mark>	<mark>3757</mark>	<mark>79.93</mark>

Fonte: Elaborada pelo autor. (*) Letras vermelhas, azuis, verdes, laranjas e violetas em negrito representam os modos normais de vibração; os modos vibracionais comuns/coletivos (com números de onda próximos) a bases diferentes – modos hachurados de amarelo.

Tabela 3 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da base uracila de acordo com as frequências (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

U MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
UM 01	154	0.1	$τ_{ring}$ (C2C4O2O4N3); $β_{(out)ring}$ (11); $δ_{out}$ (N3H); $δ_{out}$ (N1H)
UM 02	168	0.42	δ_{out} (C5H); Libration mode (10b); δ_{out} (N1H); δ_{out} (C6H)
UM 03	394	2.63	$\beta_{(out)ring} (16b); \delta_{out} (C6H); \delta_{out} (N1H); \delta_{out} (N3H); \delta_{out} (C4O4); \delta_{out} (C5H)$
UM 04	395	4.78	δ_{in} (C4O4); δ_{in} (C2O2); v_{ring} (19a)
UM 05	527	4.71	$\beta_{(in)ring}$ (6a); δ_{in} (N3H); δ_{in} (C4O4); δ_{in} (C5H); δ_{in} (C6H); δ_{in} (C2O2)
UM 06	553	11.81	$\beta_{(in)ring}(6a); \delta_{in}(C5H); \delta_{in}(N3H); \delta_{in}(C6H); \delta_{in}(C2O2); \delta_{in}(C4O4); \delta_{in}(N1H)$
UM 07	571	3.89	$\nu_{ring} (19b); \delta_{in} (N1H); \delta_{in} (C2O2); \delta_{in} (N3H); \delta_{in} (C4O4)$
UM 08	579	0.04	δ_{out} (N1H); δ_{out} (N3H); Libration mode (10a); δ_{out} (C5H); δ_{out} (C6H)
UM 09	647	1.1	δ_{out} (N3H); δ_{out} (N1H); $\beta_{(out)ring}$ (17a); δ_{out} (C6H)
UM 10	731	0.77	δ_{out} (C5H); δ_{out} (N1H); δ_{out} (C6H); τ_{ring} (C4C5C6); Libration mode (10b)
UM 11	765	0.38	τ_{ring} (C2N1N3); $\beta_{(out)ring}$ (5); δ_{out} (N1H); δ_{out} (C6H)
UM 12	790	42.05	v_{ring} (1); δ_{in} (N3H); δ_{in} (C5H); δ_{in} (N1H)
UM 13	810	2.95	δ_{out} (C5H); δ_{out} (C6H); τ_{ring} (C4C5); $\beta_{(out)ring}$ (17b)
UM 14	993	2.19	δ_{in} (C5H); δ_{in} (N3H); δ_{out} (C6H); $\beta_{(in)ring}$ (12)
UM 15	996	5.07	δ_{out} (C6H); δ_{out} (C5H); τ_{ring} (C5C6); δ_{out} (N1H); $\beta_{(out)ring}$ (17b)
UM 16	1004	8.9	$\delta_{in} (\text{N3H}); \delta_{in} (\text{C6H}); v_{ring} (\text{19b}); \delta_{in} (\text{C4O4}); \delta_{in} (\text{C2O2})$
UM 17	1105	9.46	δ_{in} (C5H); δ_{in} (N1H); δ_{in} (C6H); v_{ring} (14)
UM 18	1221	1.33	$\delta_{in}(\text{C6H});\delta_{in}(\text{N1H});\delta_{in}(\text{N3H});\delta_{in}(\text{C5H});\nu_{ring}(\text{8b});\nu(\text{C2N3})$
UM 19	1239	76.32	δ_{in} (C5H); δ_{in} (N3H); δ_{in} (N1H); v_{ring} (14)
UM 20	1402	68.53	$\delta_{in} (\text{C6H}); \delta_{in} (\text{N3H}); \delta_{in} (\text{C5H}); \delta_{in} (\text{N1H}); \beta_{(in) \text{ring}} (\text{18b}); \text{v} (\text{C2N1})$
UM 21	1431	3.13	$\delta_{in}(\text{N3H});\delta_{in}(\text{C6H});\delta_{in}(\text{C5H});\beta_{(in)ring}(18b);\nu(\text{C4O4});\nu(\text{C2N1})$
UM 22	1439	2.17	δ_{in} (N1H); δ_{in} (C6H); $\beta_{(in)ring}$ (18b); $\beta_{(in)ring}$ (9a)
UM 23	1527	44.25	δ_{in} (N1H); $\beta_{(in)ring}$ (9b); v (C2O2)
UM 24	1698	108.58	$δ_{in}$ (C6H); v (C5C6); $δ_{in}$ (C5H); $δ_{in}$ (N1H); $β_{(in)ring}$ (9a); v (C4O4)
UM 25	1746	94.92	$\delta_{in}(\text{N3H});\nu(\text{C4O4});\nu(\text{C2O2});\delta_{in}(\text{N1H});\beta_{(in)ring}(\text{18a})$
UM 26	1796	115.53	v (C2O2); δ_{in} (N1H); v (C4O4); δ_{in} (N3H); $\beta_{(in)ring}$ (18b)
UM 27	3251	151.92	v (C6H); v (C5H)
UM 28	3279	206.72	v (C5H); v (C6H)
UM 29	3612	125.35	v (N3H); v (N1H)
UM 30	3644	201.66	v (N1H); v (N3H)

Tabela 4 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da base timina de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

T MODI	$\omega (\text{cm}^{-1})$	INT.	ASSIGNMENTS
TM 01	113	0.63	ρ (C7H2H3); $\beta_{(out)ring}$ (16b); δ_{out} (C5'C7); δ_{out} (C7H1); δ_{out} (N3H)
TM 02	154	0.05	$\tau_{ring} \left(\text{C2C4O2O4N3}\right); \beta_{(out)ring} \left(11\right); \delta_{out} \left(\text{N3H}\right); \delta_{out} \left(\text{N1H}\right); \delta_{out} \left(\text{C4O4}\right); \rho \left(\text{C7H1H2H3}\right)$
TM 03	169	0.94	ρ(C7H1H2H3); δ_{out} (N1H); $\beta_{(out)ring}$ (11)
TM 04	284	0.25	ρ (C7H1H2H3); δ_{in} (C5'C7); δ_{out} (C4O4); δ_{in} (C6H); $\beta_{(in)ring}$ (3); δ_{out} (N1H); δ_{out} (C2O2)
TM 05	292	1.03	ρ (C7H2H3); δ_{out} (C7H1); δ_{out} (C5'C7); Libration mode (10b); δ_{out} (N1H); δ_{out} (N3H)
TM 06	396	2.3	$\delta_{out} \text{ (C6H); } \delta_{out} \text{ (N3H); } \beta_{(out)ring} \text{ (16b); } \delta_{out} \text{ (N1H); } \rho \text{ (C7H2H3); } \delta_{out} \text{ (C7H1); } \delta_{out} \text{ (C4O4)}$
TM 07	396	3.84	$δ_{in}$ (C2O2); $δ_{in}$ (C4O4); $ν_{ring}$ (19a); $δ_{in}$ (C7H1); $δ_{out}$ (N1H); $δ_{out}$ (C6H)
TM 08	467	7.27	$\beta_{(in)ring}$ (6a); δ_{in} (C5'C7); δ_{in} (C2O2); δ_{in} (N3H); δ_{in} (C6H)
TM 09	556	9.78	$\delta_{out} (\text{N1H}); \delta_{out} (\text{N3H}); \delta_{in} (\text{C6H}); \beta_{(in)ring} (\text{6a}); \delta_{in} (\text{C4O4}); \delta_{in} (\text{C2O2})$
TM 10	579	0.03	δ_{out} (N1H); δ_{out} (N3H); δ_{out} (C6H); Libration mode (10a); ρ (C7H2H3)
TM 11	616	13.71	$\delta_{in} \text{(C7H1); } \delta_{in} \text{(C6H); } \delta_{out} \text{(N1H); } \delta_{out} \text{(N3H); } \omega \text{(C7H2H3); } \beta_{(in)ring} \text{(3)}$
TM 12	652	1.09	δ_{out} (N3H); δ_{out} (N1H); δ_{out} (C6H); $\beta_{(out)ring}$ (17a); ρ (C7H2H3)
TM 13	752	27.36	$\delta_{in} (\text{N3H}); \delta_{in} (\text{C7H1}); v_{ring} (1); v (\text{C5'C7}); \delta_{out} (\text{N1H}); \delta_{in} (\text{C4O4})$
TM 14	760	0.83	τ_{ring} (C2C4N3); $\beta_{(out)ring}$ (5); ρ (C7H2H3); δ_{out} (N1H); δ_{out} (C7H1)
TM 15	769	4.1	$\tau_{ring} (C2C4N3); \beta_{(out)ring} (17a); \rho (C7H2H3); \delta_{out} (C7H1); \delta_{out} (N3H); \delta_{out} (C6H)$
TM 16	816	11.65	$ω$ (C7H2H3); $β_{(in)ring}$ (12); $δ_{in}$ (C6H); $δ_{in}$ (N1H); $δ_{in}$ (N3H); $ν$ (C5'C7)
TM 17	942	3.09	$δ_{out}$ (C6H); ρ (C7H2H3); $δ_{out}$ (C7H1); $β_{(out)ring}$ (17a); $δ_{out}$ (N1H); $δ_{out}$ (C5'C7)
TM 18	993	17.38	$\delta_{in} (\text{C7H1}); \ \omega \ (\text{C7H2H3}); \ \delta_{in} \ (\text{N3H}); \ \delta_{in} \ (\text{C6H}); \ v_{ring} \ (\text{19b}); \ v_s \ (\text{C2C6N1}); \ \delta_{out} \ (\text{C2O2}); \ \delta_{in} \ (\text{C4O4})$
TM 19	1032	5.1	$\delta_{in} (\text{C7H1}); \omega (\text{C7H2H3}); \delta_{in} (\text{C6H}); \delta_{in} (\text{N1H}); \delta_{in} (\text{N3H}); \beta_{(in)ring} (\text{12}); \delta_{out} (\text{C5'C7})$
TM 20	1069	1.57	ρ (C7H2H3); δ_{out} (C7H1); δ_{out} (C6H); δ_{out} (C5'C7); $\beta_{(out)ring}$ (5); δ_{out} (N1H)
TM 21	1177	12.06	$\delta_{in}(\text{N1H});\delta_{in}(\text{N3H});\delta_{in}(\text{C6H});\delta_{in}(\text{C7H1});\nu_{ring}(\text{19b});\delta_{in}(\text{C5'C7})$
TM 22	1223	4.7	$\delta_{in}(\text{N1H});\delta_{in}(\text{C6H});\delta_{in}(\text{N3H});\beta(\text{C7H1H2H3});\nu(\text{C5'C7});\nu_{ring}(\text{8b})$
TM 23	1253	27.17	$δ_{in}$ (C6H); $δ_{in}$ (C7H1); v (C5'C7); $δ_{in}$ (N3H); β (C7H1H2H3); v _{ring} (14)
TM 24	1390	114.78	$\delta_{in} (\text{C6H}); \sigma (\text{C7H2H3}); \delta_{in} (\text{N1H}); \beta_{(in)ring} (\text{15}); \delta_{out} (\text{N3H})$
TM 25	1419	15.96	β (C7H1H2H3); v (C5'C7); δ_{out} (C6H); δ_{out} (N1H); δ_{out} (N3H)
TM 26	1426	7.95	$\delta_{in} (\text{N3H}); \delta_{in} (\text{N1H}); \delta_{in} (\text{C6H}); \beta_{(in)ring} (\text{18b}); \sigma (\text{C7H2H3}); v (\text{C4O4}); v (\text{C2O2}); \delta_{out} (\text{C7H1})$
TM 27	1453	5.14	$\delta_{in} (\text{N1H}); \beta_{(in)ring} (9b); \delta_{out} (\text{N3H}); \delta_{in} (\text{C6H}); v (\text{C5'C7}); \omega (\text{C7H2H3}); \delta_{out} (\text{C7H1})$
TM 28	1467	14.41	$δ_{out}$ (C7H1); τ (C7H2H3); $δ_{out}$ (C5'C7)
TM 29	1490	13.59	σ (C7H2H3); $δ_{out}$ (C7H1); $δ_{in}$ (C6H); $δ_{in}$ (N1H); $δ_{out}$ (C5'C7); $β_{(in)ring}$ (18b)
TM 30	1530	56.32	$δ_{in}$ (N1H); $β_{(in)ring}$ (9b); δ_{in} (C7H1); σ (C7H2H3); ν (C2O2)
TM 31	1729	216.55	v (C5'C6); δ_{in} (C6H); δ_{in} (N3H); $\beta_{(in)ring}$ (9a); v (C4O4); δ_{in} (C7H1); v (C2O2); σ (C7H2H3)
TM 32	1743	38.05	$\delta_{in} (N3H); v (C4O4); v_{ring} (20b); \delta_{in} (C6H); \delta_{in} (N1H); v_a (C5'C6C7); \sigma (C7H2H3)$
TM 33	1788	101.11	v (C2O2); v (C4O4); v _{ring} (13); δ_{in} (N1H); δ_{in} (N3H); δ_{out} (C7H1); δ_{out} (C6H); ω (C7H2H3)
TM 34	3068	443.11	v _s (C7H1H2H3); v (C5'C7)
TM 35	3130	163.99	v _a (C7H2H3); δ _{out} (C5'C7); δ _{out} (C7H1)
TM 36	3159	125.51	ν (C7H1); ν _s (C7H2H3); δ _{out} (C5'C7)
TM 37	3241	182.56	v (C6H)
TM 38	3614	142.33	v (N3H); v (N1H)
TM 39	3649	219.24	v (N1H)

Tabela 5 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da base citosina de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

C MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
CM 01	150	0.09	τ_{ring} (C5C6N1); δ_{out} (C5H); δ_{out} (C4'N4'); δ_{out} (N4'H2); δ_{out} (C2O2)
CM 02	199	0.42	τ_{ring} (C4'N3'N4'); δ_{out} (N1H); ω (N4'H1H2); δ_{out} (C2O2); δ_{out} (C6H); δ_{out} (C5H)
CM 03	216	1.76	$ω$ (N4'H1H2); $δ_{out}$ (N1H); $τ_{ring}$ (C2C4'O2N3'N4'); $δ_{out}$ (C6H)
CM 04	369	2.26	ρ (N4'H1H2); δ_{in} (C4'N4'); δ_{in} (C2O2); δ_{in} (C5H); β_{in} (C2C4'C5C6N1N3')
CM 05	404	1.61	δ_{out} (C6H); τ (N4'H1H2); $\beta_{(out)ring}$ (17b)
CM 06	547	0.31	τ (N4'H1H2); δ_{out} (C5H); δ_{out} (N1H); $\beta_{(out)ring}$ (16a)
CM 07	549	8.77	ρ (N4'H1H2); δ_{in} (C5H); δ_{in} (N1H); δ_{in} (C2O2); $β_{(in)ring}$ (6a); δ_{in} (C4'N4')
CM 08	551	1.39	$\delta_{out} (N4'H2); \delta_{out} (N1H); \beta_{(in)ring} (6a); \delta_{in} (C6H); \delta_{in} (C4'N4'); \delta_{out} (C5H); \delta_{in} (C2O2)$
CM 09	587	13.52	$\beta_{(in)ring}$ (6b); δ_{in} (C5H); δ_{in} (C6H); δ_{in} (N4'H1); δ_{in} (N1H)
CM 10	627	0.55	δ_{out} (N1H); τ (N4'H1H2); Libration mode (10b); δ_{out} (C6H)
CM 11	734	0.43	$δ_{out}$ (C5H); $δ_{out}$ (N1H); $β_{(out)ring}$ (5); τ (N4'H1H2); $δ_{out}$ (C2O2)
CM 12	790	1.3	$\delta_{out} \text{ (C5H)}; \tau_{ring} \text{ (C2N1N3')}; \beta_{(out)ring} \text{ (17b)}; \delta_{out} \text{ (C6H)}; \delta_{out} \text{ (N4'H1)}; \omega \text{ (N4'H1H2)}; \delta_{out} \text{ (N1H)}$
CM 13	794	61.72	v_{ring} (1); v (C4'N4'); δ_{in} (N4'H1); δ_{in} (N1H); δ_{out} (C5H)
CM 14	797	0.79	δ_{out} (C5H); δ_{out} (C6H); $\beta_{(out)ring}$ (17b); δ_{out} (N4'H2); δ_{out} (C2O2)
CM 15	960	13.37	$\rho (\text{N4'H1H2}); \delta_{\text{in}} (\text{C6H}); \delta_{\text{in}} (\text{N1H}); \nu_s (\text{C2N1N3'}); \beta_{(\text{in})\text{ring}} (\text{9b})$
CM 16	997	3.58	δ_{out} (C6H); δ_{out} (C5H); $\beta_{(out)ring}$ (17b); ρ (N4'H1H2)
CM 17	998	10.09	$δ_{out}$ (C5H); ρ (N4'H1H2); $β_{(in)ring}$ (12); $δ_{out}$ (C6H)
CM 18	1119	6.24	ρ (N4'H1H2); δ _{in} (C6H); β _{(in)ring} (15)
CM 19	1140	14.34	$δ_{in}$ (C5H); $δ_{in}$ (N1H); $δ_{in}$ (C6H); v _s (C5C6N1); ρ (N4'H1H2)
CM 20	1226	19.79	δ_{in} (C6H); δ_{in} (N1H); δ_{in} (C5H); ρ (N4'H1H2); $\beta_{(in)ring}$ (9b)
CM 21	1307	92.17	$δ_{in}$ (C6H); $δ_{in}$ (N4'H1); $β_{(in)ring}$ (15); $δ_{in}$ (N1H)
CM 22	1375	28.38	$δ_{in}$ (C6H); $δ_{in}$ (C5H); σ (N4'H1H2); $β_{(in)ring}$ (3); ν (C4'N4'); $β_{(in)ring}$ (15)
CM 23	1454	14.63	$δ_{in}$ (N1H); ρ (N4'H1H2); $β_{(in)ring}$ (15); $δ_{in}$ (C5H)
CM 24	1511	9.1	$\beta_{(in)ring}$ (18a); σ (N4'H1H2); v (C4'N4'); δ_{in} (N1H); v (C2O2)
CM 25	1590	62.26	$δ_{in}$ (N1H); β _{(in)ring} (9b); ρ (N4'H1H2)
CM 26	1630	25.34	σ (N4'H1H2); ν (C4'N4'); ν (C2O2); δ _{in} (N1H)
CM 27	1696	37.26	$\delta_{in}(\text{C6H});\beta_{(in)ring}(9a);\nu(\text{C2O2});\delta_{in}(\text{N4'H1});\nu(\text{C4'N3'})$
CM 28	1718	64.7	v (C2O2); δ_{in} (N1H); σ (N4'H1H2); v (C4'N4'); $\beta_{(in)ring}$ (9b)
CM 29	3245	136.18	v (C6H); v (C5H)
CM 30	3266	239.88	v (C5H); v (C6H)
CM 31	3623	247.48	v _s (N4'H1H2); v (N1H); v (C4'N4')
CM 32	3636	276.65	v (N1H); v _s (N4'H1H2)
CM 33	3756	88.26	ν _a (N4'H1H2); δ _{in} (C4'N4')

Tabela 6 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da base guanina de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

G MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
GM 01	140	0.52	$ω$ (N2"H1H2); $δ_{out}$ (C8H); $δ_{out}$ (C2"N2"); $β_{(out)ring}$ (16b); τ (C8N7N9); $δ_{out}$ (N7H)
GM 02	164	0.14	δ_{out} (N7H); δ_{out} (C8H); δ_{out} (N2"H1); $\beta_{(out)ring}$ (11); τ (C8N7N9)
GM 03	198	0.36	δ_{out} (N3H); Libration mode (10b); δ_{out} (C8H); δ_{out} (N7H); δ_{out} (N2"H1); τ (C8N7N9)
GM 04	324	3.68	$δ_{in}$ (C8H); $δ_{in}$ (N7H); $δ_{in}$ (C4O4); $δ_{out}$ (N2''H2); $β_{in}$ (C5''C6'C8N7N9); $β_{(in)ring}$ (18b)
GM 05	335	4.53	δ_{out} (N2"H2); δ_{out} (N2"H1); δ_{out} (N3H); δ_{out} (C2"N2"); δ_{out} (C8H); Libration mode (10b)
GM 06	355	4.86	ρ (N2''H1H2); δ_{out} (C2''N2''); δ_{in} (C4O4); δ_{out} (C8H); Libration mode (10b); τ (C8N7N9)
GM 07	360	0.98	$ω$ (N2"H1H2); $δ_{out}$ (C8H); Libration mode (10b); $β_{out}$ (C5"C6'C8N7N9); δ_{out} (C2"N2"); δ_{out} (N7H)
GM 08	447	2.19	δ_{out} (N2"H1); δ_{out} (N3H); δ_{out} (N2"H2); δ_{out} (C2"N2"); δ_{out} (N7H)
GM 09	496	9.21	$δ_{out}$ (N2''H1); $δ_{out}$ (N2''H2); $β_{(in)ring}$ (6a); $β_{in}$ (C5''C6'C8N7N9); $δ_{out}$ (N3H)
GM 10	541	7.57	$\rho (\text{N2"H1H2}); \delta_{\text{out}} (\text{N7H}); \beta_{(\text{in})\text{ring}} (\text{Ga}); \delta_{\text{out}} (\text{N3H}); \beta_{\text{in}} (\text{C5"C6'C8N7N9}); \delta_{\text{in}} (\text{C8H}); \delta_{\text{in}} (\text{C2"N2"})$
GM 11	587	0.22	δ_{out} (N7H); δ_{out} (N3H); δ_{out} (C8H); β_{out} (C5"C6'C8N7N9); Libration mode (10b); δ_{out} (N2"H1)
GM 12	615	0.92	δ_{out} (N3H); δ_{out} (N7H); τ (N2"H1H2); Libration mode (10a); τ (C8N7N9); δ_{out} (C8H)
GM 13	642	58.65	$\nu_{ring} (1); \delta_{in} (\text{N7H}); \omega (\text{N2''H1H2}); \delta_{out} (\text{C8H}); \beta_{in} (\text{C5''C6'C8N7N9})$
GM 14	670	0.85	δ_{out} (N7H); δ_{out} (C8H); β_{out} (C5"C6'C8N7N9); δ_{out} (N3H); Libration mode (10b); τ (N2"H1H2)
GM 15	685	0.95	$δ_{out}$ (N3H); ρ (N2''H1H2); $β_{(in)ring}$ (3); $δ_{out}$ (N7H); $δ_{out}$ (C4O4); $δ_{out}$ (C8H); $β_{out}$ (C5''C6'C8N7N9)
GM 16	706	0.73	$τ_{ring}$ (C2''C6'N1'); $β_{(out)ring}$ (17b); $δ_{out}$ (N3H); $δ_{out}$ (N7H); $δ_{out}$ (N2''H2); ρ (N2''H1H2); $δ_{out}$ (C8H); τ (C8N7N9)
GM 17	745	0.41	$\tau_{ring} (C2''N3H); \beta_{(out)ring} (17b); \delta_{out} (N3H); \delta_{out} (N2''H2); \delta_{out} (C8H); \delta_{out} (N7H); \beta_{out} (C5''C6'C8N7N9)$
GM 18	784	2.9	$\beta_{(out)ring} (5); \beta_{out} (C5''C6'C8N7N9); \delta_{out} (C8H); \delta_{out} (N7H); \delta_{out} (N3H)$
GM 19	847	3	ρ (N2"H1H2); $β_{(in)ring}$ (12); $δ_{in}$ (C8H); $δ_{in}$ (N3H); $δ_{in}$ (N7H); $β_{in}$ (C5"C6'C8N7N9)
GM 20	879	3.08	$δ_{out}$ (C8H); $β_{out}$ (C5''C6'C8N7N9)
GM 21	960	23.37	$\beta_{in} (\text{C5''C6'C8N7N9}); \delta_{in} (\text{N7H}); \delta_{in} (\text{C8H}); v_{ring} (1); \delta_{in} (\text{N3H}); \rho (\text{N2''H1H2}); v (\text{C4O4})$
GM 22	1060	5.22	$\rho (N2"H1H2); \delta_{in} (N3H); v (C2"N3); \beta_{(in)ring} (18b); \delta_{out} (N7H); \delta_{out} (C2"N2"); v_{breathing} (C5"C6'C8N7N9); \delta_{out} (C8H)$
GM 23	1100	25.05	δ_{in} (N7H); δ_{in} (C8H); ρ (N2"H1H2); v (C8N7); $\beta_{(in)ring}$ (9b)
GM 24	1120	4.71	$\rho (\text{N2''H1H2}); \delta_{\text{out}} (\text{N3H}); \beta_{(\text{in}) \text{ring}} (3); \delta_{\text{out}} (\text{C8H}); \nu (\text{C4N3}); \nu (\text{C2''N2''}); \delta_{\text{out}} (\text{N7H}); \nu (\text{C8N7})$
GM 25	1170	24.51	$\rho (\text{N2''H1H2}); \delta_{\text{in}} (\text{N3H}); \delta_{\text{in}} (\text{C8H}); \beta_{(\text{in}) \text{ring}} (15); \delta_{\text{in}} (\text{N7H}); \nu (\text{C6'N7}); \delta_{\text{in}} (\text{C2''N2''})$
GM 26	1203	5.58	$\delta_{in} (C8H); \delta_{in} (N7H); \beta_{(in)ring} (15); v_s (C4C5"N9); v (C4N3); v (C6'N7); \delta_{out} (N3H); \beta_{in} (C5"C6'C8N7N9)$
GM 27	1330	44.08	$\delta_{in} (C8H); \delta_{in} (N7H); v_a (C5''C8N9); \delta_{out} (N2''H2); v_s (C6'N1'N7); \beta_{(in)ring} (9a); \delta_{out} (N3H)$
GM 28	1360	36.84	$\delta_{in} (N3H); \\ \delta_{in} (N2''H1); \\ \sigma (N2''H1H2); \\ \nu (C2''N2''); \\ \delta_{in} (N7H); \\ \beta_{in} (C5''C6'C8N7N9); \\ \beta_{(in)ring} (15); \\ \delta_{in} (C8H); \\ \nu (C4O4) \\ \beta_{in} (N7H); \\ \beta_{in} (N2''H1); \\ \delta_{in} (N$
GM 29	1386	39.03	$\delta_{in} (C8H); \delta_{in} (N7H); \beta_{(in)ring} (15); v_{breathing} (C5''C6'C8N7N9); \delta_{in} (N2''H1); \delta_{in} (N3H); v (C4O4)$
GM 30	1419	227.47	$\delta_{in} (\text{N7H}); \delta_{in} (\text{C8H}); \beta_{in} (\text{C5''C6'C8N7N9}); \rho (\text{N2''H1H2}); \beta_{(in)ring} (\text{15})$
GM 31	1455	81.3	$\delta_{in} (N3H); \beta_{(in)ring} (18b); \delta_{in} (N3H); \beta_{in} (C5''C6'C8N7N9); \rho (N2''H1H2); \delta_{in} (N7H); \delta_{in} (C8H)$
GM 32	1542	296.95	$\delta_{in} \text{ (N3H); } \delta_{in} \text{ (C8H); } v \text{ (C8N9); } \beta_{(in)ring} \text{ (9b); } \beta_{(in)ring} \text{ (18b); } \delta_{in} \text{ (N2''H1); } \sigma \text{ (N2''H1H2)}$
GM 33	1589	96.9	$\delta_{in}\text{(N3H)};\delta_{in}\text{(C8H)};\sigma\text{(N2''H1H2)};\nu\text{(C8N9)};\nu_{ring}\text{(13)};\delta_{in}\text{(N7H)}$
GM 34	1632	65.45	σ (N2"H1H2); δ _{in} (N3H); β _{(in)ring} (9b); δ _{in} (C8H); β _{in} (C5"C6'C8N7N9)
GM 35	1638	374.42	$δ_{in}$ (N7H); σ (N2"H1H2); $β_{(in)ring}$ (9a); $δ_{in}$ (C8H); $β_{in}$ (C5"C6'C8N7N9)
GM 36	1661	27.57	$\sigma (N2''H1H2); \delta_{out} (N3H); v_a (C2''N1'N2''); \delta_{out} (N7H); v_s (C2''C6'N1'); \beta_{(in)ring} (9b)$
GM 37	1762	142.99	ν (C4O4); $β_{(in)ring}$ (9b); δ_{in} (N3H); σ (N2''H1H2); δ_{in} (C8H); ν (C8N9); δ_{in} (N7H)
GM 38	3283	193.47	v (C8H); v (N7H)
GM 39	3608	68.12	v (N3H); v _s (N2''H1H2)
GM 40	3612	436.38	v _s (N2''H1H2); v (N3H); v (C2''N2''); v (N7H)
GM 41	3659	254.14	v (N7H); v (N3H); v _s (N2''H1H2); v (C8H)
GM 42	3727	89.83	v _a (N2"H1H2); δ _{in} (C2"N2")

Tabela 7 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da base adenina de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

A MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
AM 01	48	2.18	$ω$ (N4'H1H2); $δ_{out}$ (C4'N4'); $τ_{ring}$ (C4'N3'N4')
AM 02	161	0.6	ω (N4'H1H2); δ_{out} (N7H); δ_{out} (C4'N4'); τ (C8N7N9); Libration mode (10b)
AM 03	213	0.01	$δ_{out}$ (C8H); $δ_{out}$ (N4'H1); τ (N4'H1H2); $δ_{out}$ (C2'H); $δ_{out}$ (N7H); Libration mode (10b); τ (C5''C8N9)
AM 04	281	6.28	ρ (N4'H1H2); δ_{in} (C4'N4'); δ_{in} (C8H); δ_{in} (N7H); β_{in} (C5''C6'C8N7N9)
AM 05	302	0.01	δ_{out} (C2'H); δ_{out} (C8H); Libration mode (10b); β_{out} (C5''C6'C8N7N9); ω (N4'H1H2)
AM 06	524	5.7	$\rho (\text{N4'H1H2}); \tau (\text{N4'H1H2}); \delta_{\text{out}} (\text{N7H}); \delta_{\text{out}} (\text{C2'H}); \delta_{\text{out}} (\text{C8H}); \beta_{(\text{in}) \text{ring}} (3); \beta_{\text{in}} (\text{C5''C6'C8N7N9})$
AM 07	529	0.6	τ (N4'H1H2); δ_{out} (N7H); δ_{out} (C8H); δ_{out} (C2'H); β_{out} (C5"C6'C8N7N9)
AM 08	533	5.07	$\delta_{out} (N4'H1); \tau (N4'H1H2); \beta_{(in)ring} (6a); \delta_{out} (C8H); \delta_{out} (C2'H); \beta_{in} (C5''C6'C8N7N9)$
AM 09	555	0.59	$\delta_{\text{out}} (\text{N7H}); \delta_{\text{out}} (\text{C2'H}); \delta_{\text{out}} (\text{C8H}); \tau (\text{C5''C6'C8N7N9}); \tau (\text{N4'H1H2}); \beta_{(\text{out}) \text{ring}} (\text{16b})$
AM 10	591	0.66	$δ_{out}$ (N7H); $δ_{out}$ (C2'H); $δ_{out}$ (N4'H2); τ (N4'H1H2); $β_{(out)ring}$ (17a); $β_{out}$ (C5"C6'C8N7N9)
AM 11	624	13.75	$\delta_{in} (\text{N4'H2}); \rho (\text{N4'H1H2}); \delta_{in} (\text{C2'H}); \beta_{(in)ring} (\text{6b}); \beta_{in} (\text{C5''C6'C8N7N9}); \delta_{in} (\text{C4'N4'})$
AM 12	674	0.62	$δ_{out}$ (C8H); $δ_{out}$ (N7H); $β_{out}$ (C5"C6'C8N7N9); $δ_{out}$ (C2'H); τ (N4'H1H2); $β_{(out)ring}$ (17b)
AM 13	693	0.44	$\tau_{ring} (C4'C5''C6'); \beta_{(out)ring} (17a); \delta_{out} (N7H); \delta_{out} (C8H); \delta_{out} (N4'H1); \omega (N4'H1H2); \beta_{out} (C6'C8N7)$
AM 14	736	57.85	$\delta_{in} (\text{N4'H2}); v_{\text{breathing}} (\text{C5''C6'C8N7N9}); v_{\text{ring}} (1); \delta_{in} \left(\text{C2'H}\right); \delta_{in} \left(\text{N7H}\right)$
AM 15	811	0.76	$\beta_{(out)ring}(5); \delta_{out}(C2'H); \beta_{out}(C5''C6'C8N7N9); \delta_{out}(C8H); \omega (N4'H1H2); \delta_{out}(N7H)$
AM 16	904	2.17	δ _{out} (C8H); β _{out} (C5"C6'C8N7N9)
AM 17	910	6.27	$\beta_{(in)ring} (12); \delta_{out} (C8H); \delta_{in} (N7H); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (N4'H2); \nu (C5''N9); \nu (C4'N4')$
AM 18	956	14.58	$\delta_{in}(N7H);\beta_{in}(C5''C6'C8N7N9);\delta_{in}(C8H);\delta_{in}(N4'H1);\nu_{ring}(1);\delta_{in}(C2'H)$
AM 19	996	0.27	δ_{out} (C2'H); δ_{out} (N4'H1); $\beta_{(out)ring}$ (17b)
AM 20	1016	13.19	$\rho(N4'H1H2);\delta_{in}(C2'H);\delta_{in}(C4'N4');\nu_s(C2'C4'N3');\nu_{ring}(19b);\delta_{out}(N7H);\beta_{in}(C8N7N9)$
AM 21	1110	17.81	$δ_{in}$ (N7H); $δ_{in}$ (C8H); ν (C8N7); $δ_{out}$ (C2'H); ρ (N4'H1H2)
AM 22	1163	7.29	$\delta_{in} (\text{C8H}); \ \delta_{in} (\text{N7H}); \ \delta_{in} (\text{N4'H2}); \ \rho (\text{N4'H1H2}); \ \delta_{in} (\text{C2'H}); \ \beta_{(in)ring} (\text{18a}); \ \nu_s (\text{C6'N1'N7}); \ \nu (\text{C4'N4'}); \ \beta_{in} (\text{C5''C6'C8N7N9}) = 0.5 \text{ M}^{-1} M$
AM 23	1258	24.52	$\delta_{in} (C8H); \rho (N4'H1H2); \delta_{in} (C2'H); v (C5''N9); v_{breathing} (C5''C6'C8N7N9); v_{ring} (1); \delta_{in} (N7H); \delta_{in} (C4'N4')$
AM 24	1280	41.12	$\delta_{in} \text{(C8H)}; \delta_{in} \text{(N7H)}; \delta_{in} \text{(C2'H)}; \nu_{ring} \text{(1)}; \nu \text{(C2'N3')}; \nu \text{(C8N9)}; \delta_{in} \text{(N4'H1)}$
AM 25	1349	145.58	$\delta_{in}(\text{C2'H});\beta_{(in)ring}(\text{15});\delta_{in}(\text{C8H});\rho(\text{N4'H1H2});\delta_{out}(\text{N7H});\nu(\text{C8N9})$
AM 26	1382	2.62	$\delta_{in} (C2'H); \delta_{in} (N4'H1); \sigma (N4'H1H2); \delta_{in} (N7H); \delta_{out} (C8H); v (C4'N4'); \beta_{(in)ring} (15); v_{breathing} (C5''C6'C8N7N9)$
AM 27	1390	227.6	$\delta_{in} (C8H); \delta_{in} (C2'H); \delta_{in} (N7H); \nu (C5''N9); \nu_a (C2'C4'N3'); \beta_{(in)ring} (18b); \beta_{in} (C8N7N9); \delta_{in} (N4'H2)$
AM 28	1440	75.22	$\delta_{in} (N7H); \delta_{in} (C2'H); \nu (C8N7); \delta_{in} (C8H); \beta_{(in)ring} (18b); \nu (C4'C5''); \rho (N4'H1H2)$
AM 29	1462	15.69	$δ_{in}$ (N4'H2); σ (N4'H1H2); ν (C6'N7); $β_{(in)ring}$ (18b); $δ_{in}$ (C2'H); ν (C4'N4'); $δ_{out}$ (N7H); ν (C8N9)
AM 30	1526	8.09	$\delta_{in} (C2'H); \sigma (N4'H1H2); v_s (C4'C5''N3'); v (C4'N4'); \beta_{(in)ring} (9b); \delta_{out} (N7H); \beta_{in} (C5''C6'C8N7N9)$
AM 31	1546	254.39	$δ_{in}$ (C8H); v (C8N9); σ (N4'H1H2); δ_{in} (N7H); $β_{(in)ring}$ (9b); v (C5''C6')
AM 32	1620	7.83	σ (N4'H1H2); δ _{in} (C2'H); v (C4'N4'); v (C2'N1'); β _{(in)ring} (9a); δ _{out} (C8H)
AM 33	1661	137.89	$\beta_{(in)ring} (9a); v (C6'N1'); \delta_{in} (N7H); \delta_{in} (C2'H); \sigma (N4'H1H2); v (C4'N4'); \delta_{in} (C8H); v (C8N9)$
AM 34	1670	21.53	$\delta_{in} (N4'H1); v (C4'C5''); \beta_{(in)ring} (9b); \delta_{in} (N7H); \delta_{in} (C8H); \beta_{in} (C5''C6'C8N7N9)$
AM 35	3196	249.29	v (C2'H)
AM 36	3280	197.85	v (C8H)
AM 37	3624	367.48	v _s (N4'H1H2); v (C4'N4')
AM 38	3659	262.2	v (N7H)
AM 39	3757	79.93	v_a (N4'H1H2); δ_{in} (C4'N4')

4.2.1 Interferência das Pentoses e do Grupamento Fosfato na Identificação dos Modos Normais de Vibração das Bases Nitrogenadas

Como foi relatado anteriormente, existem modos específicos das bases nitrogenadas que se encontram na mesma região espectral dos modos das pentoses e/ou grupamento fosfato, sob diferença < 9-10 cm⁻¹ entre os números de onda (Tabelas 8 a 13). Em tais tabelas, seguindo o padrão das Tabelas 1 e 2, modos sem hachura e com as respectivas cores dos espectros (Figura 11) são "Assinalamentos Vibracionais Raman Fortes" das bases e Assinalamentos Vibracionais das pentoses e fosfato. Entretanto, os modos hachurados de amarelo representam apenas bases acopladas; os hachurados de vermelho sinalizam bases acopladas entre si e entre ribose, desoxirribose e/ou fosfato (ou entre dois destes três grupos e até mesmo todos estes); aqueles demarcados de verde são referentes às pentoses, ou uma destas, que interferem em modos das bases; por fim, os modos compreendidos em azul são condizentes aos modos do grupamento fosfato que interferem nas bases. Sendo assim, estes modos "interferentes" das pentoses e fosfato tornam certos modos de assinalamento vibracional das bases isoladas (os quais não possuem coletividade de modos entre as outras bases) limitadas apenas aos tratamentos teóricos de ordem zero, sem considerar, portanto, a presença dos açúcares e do fosfato que compõem os nucleotídeos, unidades constituintes dos sistemas RNA/DNA. Dessa forma, por exemplo, o modo AM01-48 cm⁻¹ da adenina é assinalamento vibracional enquanto comparada com as demais bases, haja vista não possui modos coletivos; porém, este mesmo modo está próximo da RM01-44 cm⁻¹ e DM01-58 cm⁻¹, da ribose e desoxirribose respectivamente (percebamos que a diferença destes açúcares para o modo 01 da adenina é de 4 e 10 cm⁻¹ consecutivamente, ou seja, obedecendo ao critério de valores acoplados < 9-10 cm⁻¹), tornando o assinalamento vibracional AM01 em um do tipo fraco. Outros exemplos se repetem dentro a extensão dos espectros, como pode ser observado em TM05-292 cm⁻¹, um modo normal da timina (seguindo os mesmos critérios citados anteriormente para o modo 01 da adenina), mas que possui sua proximidade com DM07-289 cm⁻¹ e PM01-294 cm⁻¹, desoxirribose e fosfato respectivamente (com a diferença destes para o modo da timina 05 de 3 e 2 cm⁻¹); assim, tal modo possui interferentes e passa a ser classificado como assinalamento vibracional Raman fraco da timina. Todavia, alguns modos não possuem interferência dos açúcares, mas apenas do grupamento fosfato, como é o caso do AM06-524 cm⁻¹, outro modo normal da adenina que se encontra próximo ao modo PM04-521 cm⁻¹ (diferença de 3 cm⁻¹), mas que neste caso não possui proximidades com modos das pentoses; ainda assim passa a ser considerado um assinalamento vibracional Raman fraco da

adenina. Ademais, deve-se observar que a intensidade dos modos vibracionais pode influenciar diretamente na classificação de "Assinalamento Vibracional Raman Fraco e Forte"; uma vez que há modos das bases intensos o bastante para "sobrepor" o correspondente modo, ou correspondentes (em números de onda), das pentoses e/ou do fosfato. O mesmo se aplica a estes, ao encontrar modos das pentoses e do fosfato demasiadamente intensos a ponto de "interpor" o(s) modo(s) da(s) base(s). Assim, quando este fenômeno ocorre, ter-se-ão falsos "Assinalamentos Vibracionais Raman Fracos", sendo estes possuidores de alta ou nenhuma influência das pentoses e/ou grupamento fosfato quando os nucleotídeos são avaliados, levando a dois casos incomuns: bases vibram isoladamente (aparente assinalamento Raman forte) e pentoses e/ou fosfato vibram isoladamente, quando eram para vibrar em conjunto. Além desta discrepância, outra pode ser observada, mas desta vez com os considerados "Assinalamentos Vibracionais Raman Fortes", haja vista alguns destes têm a possibilidade de apresentar influência das pentoses e/ou fosfato, saindo rapidamente do quesito e ampliando a faixa espectral de acoplamento. Todavia, apesar de considerar a possível presença destes desvios, o padrão relatado desde o início do tópico se repete pela maior parte dos modos avaliados (poucas e irrisórias são as exceções), tornando assim a aproximação aceitável e dentro dos limites teóricos estabelecidos.

Não obstante, além dos modos considerados interferentes das pentoses e do grupamento fosfato, percebemos a existência de modos destes compostos que podem ser classificados como assinalamentos vibracionais Raman das pentoses e do grupamento fosfato. Para tal feito, necessitou-se considerar o mesmo padrão observado nas bases nitrogenadas para a ribose, desoxirribose e fosfato, isto é, modos com diferença > 9-10 cm⁻¹ são considerados assinalamentos vibracionais. Interessante salientar que embora o nível teórico utilizado na obtenção dos espectros dos açúcares ter sofrido uma mudança no conjunto de base (de 6-311++g(d,p) para 6-31++g(d,p), mas mantendo o mesmo funcional), o mesmo comportamento de diferença de números de onda que determinam os assinalamentos vibracionais avaliado nas bases independentes foi observado em ambas as pentoses. Dessa maneira, a Tabela 14 apresenta todos os assinalamentos vibracionais Raman da ribose, desoxirribose e grupamento fosfato; bem como os assinalamentos vibracionais Raman fortes e fracos das bases nitrogenadas. Segundo ela, obtiveram-se 4 assinalamentos vibracionais da ribose, 5 da desoxirribose e 3 do grupamento fosfato. De igual modo, constatou-se a existência de 28 assinaturas vibracionais Raman "fracas" (3 da uracila, 6 da timina, 3 da citosina, 9 da guanina e 7 da adenina) e 23 assinaturas vibracionais Raman "fortes" (1 da uracila, 5 da timina, 5 da citosina, 7 da guanina e 5 da adenina). Por fim, assim como foi efetuado para as bases, realizou-se a construção de tabelas com as devidas atribuições vibracionais Raman, relativas aos espectros calculados e demonstrados na Figura 11, das pentoses e do fosfato (Tabelas 15-17).

Uracil (U) Thymine (T) Cytosine (C) Guanine (G) М ω I М ω I М ω I М ω I _ _ _ _ _ TM 01 113 0.63 _ **GM 01 140** 0.52 **UM 01** 154 0.1 TM 02 154 0.05 CM 01 150 0.09 _ UM 02 168 0.42 TM 03 169 0.94 GM 02 164 0.14 GM 03 _ CM 02 199 0.42 198 0.36 _ CM 03 216 1.76 _ _ _ _ TM 04 284 0.25 TM 05 292 1.03 _ _ _ _ _ _ _ GM 04 324 3.68 _ GM 05 335 _ 4.53 GM 06 _ _ 355 4.86 CM 04 2.26 GM 07 369 360 0.98 UM 03 TM 06 394 2.63 396 2.3 _ UM 04 395 4.78 TM 07 396 CM 05 404 1.61 _ 3.84 _ _ _ _ _ GM 08 447 2.19 TM 08 467 7.27 _ GM 09 496 9.21 _ _ _ UM 05 _ 527 4.71 _ _ _ _ CM 06 547 0.31 GM 10 541 7.57 CM 07 8.77 549 UM 06 553 11.81 TM 09 556 9.78 CM 08 551 1.39 _ **UM 07** 571 _ 3.89 **UM 08 TM 10** 579 0.04 579 0.03 _ CM 09 587 13.52 GM 11 587 0.22 GM 12 615 TM 11 13.71 0.92 616 _ CM 10 627 0.55 _ **UM 09** TM 12 GM 13 647 1.1 652 1.09 642 58.65 **GM 14** 670 0.85 0.95 **GM 15** 685 _ _ _ **GM 16** 706 0.73 **UM 10** 731 0.77 _ CM 11 734 0.43 _

Tabela 8 – Identificação de modos Raman das bases uracila, timina, citosina e guanina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes das bases e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 0 a 740 cm⁻¹).

Tabela 9 – Identificação de modos Raman da base adenina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 0 a 740 cm⁻¹).

MoIMoIMoIMoIMoIAM01482.18RM 01440.1DM 015880.16 <th>A</th> <th>Adenine (A</th> <th>)</th> <th>]</th> <th>Ribose (R)</th> <th>)</th> <th>Dee</th> <th>oxyribose (</th> <th>D)</th> <th colspan="3">Phosphate (P)</th>	A	Adenine (A)]	Ribose (R))	Dee	oxyribose (D)	Phosphate (P)		
AM 01482.18RM 01440.11DM 01580.16RM 030.21880.18DM 02980.11<	М	ω	I	М	ω	I	М	ω	I	М	ω	I
-RM02880.189M02980.10RM021210.211230.211230.21AM021610.60RM041611.320.701.001.001.001.00	AM 01	48	2.18	RM 01	44	0.1	DM 01	58	0.16	-		
And 31210.210.401230.210.2	-			RM 02	88	0.18	DM 02	98	0.1	-		
nnnnnnAM021610.68RM041.611.320.7nKN1051990.5DM 042061.05AM032130.011KN1062340.87DM 052360.651KN1062371.1DM 052360.652KN1053020.01RN1083020.281KN1083020.211.1DM 052.890.98PM 01242.28AM042816200.01RN1083020.281KN1083020.211.1DM 052.890.98PM 10242.28AM053020.01RN1083020.281.11KN1193640.15-F1KN1123871.22F1KN1123873.59DM 104493.60 <th>-</th> <th></th> <th></th> <th>RM 03</th> <th>121</th> <th>0.21</th> <th>DM 03</th> <th>123</th> <th>0.21</th> <th>-</th> <th></th> <th></th>	-			RM 03	121	0.21	DM 03	123	0.21	-		
AN 021610.6RM 041611.32AN 332130.010.50.041.05AN 332130.010.72.71.1DM 052.360.65RM 072.71.1DM 062.900.01RM 072.800.65RM 03.020.21DM 072.900.090.912.91	-			-			-			-		
AM 021610.60RM 041611.32	-			-			-			-		
<table-container>-RN 05IP90.5DM 042.00I.05I.01</table-container>	AM 02	161	0.6	RM 04	161	1.32	-			-		
AM 032130.01	-			RM 05	199	0.5	DM 04	206	1.05	-		
-RN 062340.87DM 052360.65-AM 042816.286.281.1DM 062690.91AM 053020.01RM 083020.28RM 093272.177RM 103470.86DM 083442.45RM 103470.86DM 093570.47RM 113480.15RM 113480.15 <t< th=""><th>AM 03</th><th>213</th><th>0.01</th><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th></th><th></th></t<>	AM 03	213	0.01	-			-			-		
-RN 072571.1DM 062690.91-AM 042816.28BM 072890.98PM 01292.28AM 053020.01RM 083020.28RM 083020.28RM 103470.68PM 083442.45RM 113640.15RM 113640.15RM 113640.15RM 113640.15RM 123871.22	_			RM 06	234	0.87	DM 05	236	0.65	-		
AM 042816.286.28FJJJ <t< th=""><th>-</th><th></th><th></th><th>RM 07</th><th>257</th><th>1.1</th><th>DM 06</th><th>269</th><th>0.91</th><th>-</th><th></th><th></th></t<>	-			RM 07	257	1.1	DM 06	269	0.91	-		
DM 072890.988PM 012942.28AM 053020.01RM 083020.28 <th>AM 04</th> <th>281</th> <th>6.28</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th>	AM 04	281	6.28				-			-		
AM 053020.01RM 083020.28RM 093272.17RM 103470.86DM 083442.45SM 093570.47RM 113640.15RM 123871.05RM 123871.01 <t< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th>DM 07</th><th>289</th><th>0.98</th><th>PM 01</th><th>294</th><th>2.28</th></t<>	-						DM 07	289	0.98	PM 01	294	2.28
RN 093272.17RN 103470.86DM 083442.45DM 093570.47RM 113640.15RM 123871.22<	AM 05	302	0.01	RM 08	302	0.28	-			-		
RM 103470.86DM 083442.45DM 093570.47RM 113640.15RM 123871.22PM 024022.7PM 034146.81PM 034146.81PM 034146.81PM 034146.81PM 035.16.81PM 035.16.81PM 035.16.81PM 045.213.36<	-			RM 09	327	2.17	-			-		
- $ -$ RN 11 364 0.15 $ -$ RN 12 387 1.22 $ -$	-			RM 10	347	0.86	DM 08	344	2.45	-		
RM 113640.15RM 123871.22PM 024022.7PM 034146.81PM 034146.81PM 034146.81PM 034146.81PM 034146.81 <td< th=""><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>DM 09</th><th>357</th><th>0.47</th><th>-</th><th></th><th></th></td<>	-			-			DM 09	357	0.47	-		
RM 123871.22PM 024022.7PM 034146.81PM 034146.81RM 134553.59DM 104493.6RM 144893.43RM 144893.43RM 144893.43RM 155303.43AM 065245.7 </th <th>-</th> <td></td> <td></td> <td>RM 11</td> <td>364</td> <td>0.15</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-			RM 11	364	0.15	-			-		
PM 024022.7PM 034406.81RM 134553.59DM 104493.60DM 114681.17RM 144893.43DM 125062.16AM 055245.7AM 055335.07 <th>-</th> <td></td> <td></td> <td>RM 12</td> <td>387</td> <td>1.22</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-			RM 12	387	1.22	-			-		
$ \begin{array}{c c c c c c c } - & - & - & - & - & - & - & - & - & - $	-			-			-			PM 02	402	2.7
- RM 13 455 3.59 DM 10 449 3.6 - - - - DM 11 468 1.17 - - RM 14 489 3.43 - - - - - DM 12 506 2.16 - - - DM 12 506 2.16 - AM 06 524 5.7 - - PM 04 521 3.36 AM 07 529 0.6 - <th>-</th> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>PM 03</td> <td>414</td> <td>6.81</td>	-			-			-			PM 03	414	6.81
- - DM 11 468 1.17 - RM 14 489 3.43 - - - - - DM 12 506 2.16 - AM 06 524 5.7 - - PM 04 521 3.36 AM 07 529 0.6 - - - - - - - AM 08 533 5.07 - <th>-</th> <th></th> <th></th> <th>RM 13</th> <th>455</th> <th>3.59</th> <th>DM 10</th> <th>449</th> <th>3.6</th> <th>-</th> <th></th> <th></th>	-			RM 13	455	3.59	DM 10	449	3.6	-		
- RM 14 489 3.43 - - - - - DM 12 506 2.16 - 3.36 AM 06 524 5.7 - - PM 04 521 3.36 AM 07 529 0.6 - - - - - - 3.36 AM 08 533 5.07 -	-			-			DM 11	468	1.17	-		
- - DM 12 506 2.16 - AM 06 524 5.7 - - PM 04 521 3.36 AM 07 529 0.6 - <th>-</th> <th></th> <th></th> <th>RM 14</th> <th>489</th> <th>3.43</th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th>	-			RM 14	489	3.43	-			-		
AM 06 524 5.7 - - - PM 04 521 3.36 AM 07 529 0.6 - <th< th=""><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>DM 12</th><th>506</th><th>2.16</th><th>-</th><th></th><th></th></th<>	-			-			DM 12	506	2.16	-		
AM 07 529 0.6 - - - - AM 08 533 5.07 - - - - - RM 15 539 3.47 - - - - RM 15 539 3.47 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	AM 06	524	5.7	-			-			PM 04	521	3.36
AM 08 533 5.07 - - - - - - RM 15 539 3.47 - - - - - - - - - - - - - AM 09 555 0.59 - - DM 13 552 3.01 - - - - - - - - - - - <	AM 07	529	0.6	-			-			-		
RM 15 539 3.47 - - AM 09 555 0.59 - DM 13 552 3.01 - AM 09 555 0.59 - DM 13 552 3.01 - - - - - - - - - - AM 09 555 0.59 - - DM 13 552 3.01 - - - - - - - - - - - -<	AM 08	533	5.07	-			-			-		
AM 09 555 0.59 DM 13 552 3.01 - <th>-</th> <td></td> <td></td> <td>RM 15</td> <td>539</td> <td>3.47</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-			RM 15	539	3.47	-			-		
AM 09 555 0.59 - DM 13 552 3.01 - -	-			-			-			-		
- -	AM 09	555	0.59	-			DM 13	552	3.01	-		
AM 10 591 0.66 -	_			-			-			-		
AM 10 591 0.66 - - - AM 11 624 13.75 RM 16 632 7.39 - - AM 12 674 0.62 - - - - AM 13 693 0.44 - - -	-	501	0.66	-			-			_		
AM 11 624 13.75 RM 16 632 7.39 - - AM 12 674 0.62 - - - - AM 13 693 0.44 - - - - - - - - - - - AM 12 674 0.62 - - - - AM 13 693 0.44 - - - - - - - - - - - - - - - - - - - - -	AM 10	591	0.66	-			-			_		
AM 11 624 15.75 KM 16 652 7.39 - - - - - - - - AM 12 674 0.62 - - - AM 13 693 0.44 - - - - - - - - -	-	(24	10.75	-	(22)	7.20	-			_		
AM 12 674 0.62 - - - AM 13 693 0.44 - - - - - - - -	AMII	624	13.75	KIVI 16	632	7.39	-			_		
AM 12 0/4 0.02	- AM 12	674	0.62	-			-			_		
AM 13 093 0,44	AM 12	6/4	0.62	-			-			_		
	AM 13	693	0.44	_			_			_		
	- AM 14	726	57.05	_			-			_		

Tabela 10 – Identificação de modos Raman das bases uracila, timina, citosina e guanina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes das bases e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 740 a 1400 cm⁻¹).

<u> </u>	Uracil (U)		Т	hymine (T)	C	ytosine (C)	G	auanine (G)
М	ω	I	М	ω	Ι	М	ω	Ι	М	ω	I
-		-	TM 13	752	27.36	-			GM 17	745	0.41
-			TM 14	760	0.83	-			-		
UM 11	765	0.38	TM 15	769	4.1	-			_		
UM 12	790	42.05	-			CM 12	790	1.3	GM 18	784	2.9
-			-			CM 13	794	61.72	_		
-			-			CM 14	797	0.79	_		
UM 13	810	2.95	TM 16	816	11.65	-			-		
-			-			-			GM 19	847	3
-			_			_			_		
-			_			_			GM 20	879	3.08
-			_			_			-		
-			_			_			_		
-			TM 17	942	3.09	-			-		
-			-			CM 15	960	13.37	GM 21	960	23.37
-			-			-			-		
UM 14	993	2.19	TM 18	993	17.38	-			_		
UM 15	996	5.07	-			CM 16	997	3.58	-		
UM 16	1004	8.9	-			CM 17	998	10.09	-		
-			-			-			-		
-			TM 19	1032	5.1	-			_		
-			TM 20	1069	1.57	-			GM 22	1060	5.22
-			-			-			-		
-			-			-			-		
UM 17	1105	9.46	-			-			GM 23	1100	25.05
-			-			CM 18	1119	6.24	GM 24	1120	4.71
-			-			-			-		
-			-			CM 19	1140	14.34	-		
-			-			-			_		
-			TM 21	1177	12.06	-			GM 25	1170	24.51
-			-			-			GM 26	1203	5.58
-			-			-			-		
UM 18	1221	1.33	TM 22	1223	4.7	CM 20	1226	19.79	-		
UM 19	1239	76.32	-			-			-		
-			TM 23	1253	27.17	-			-		
-			-			-			-		
-			-			-			-		
-			-			CM 21	1307	92.17	-		
-			-			-			GM 27	1330	44.08
-			-			-			-		
-			-			-			-		
-			-			-			GM 28	1360	36.84
-			-			CM 22	1375	28.38	-		
-			TM 24	1390	114.78	-			GM 29	1386	39.03
UM 20	1402	68.53	-			-			-		

Tabela 11 – Identificação de modos Raman da base adenina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 740 a 1400 cm⁻¹).

A	Adenine (A)	F	Ribose (R)		Deo	xyribose (1	D)	Ph	osphate (P)
М	ω	I	М	ω	I	М	Ø	I	М	ω	I
_			RM 17	747	3.52	DM 14	751	3.13	-		
-			-			-			-		
-			-			-			-		
-			-			DM 15	782	1.78			
-			RM 18	792	2.23	-			PM 05	794	8.6
-			-			-			-		
AM 15	811	0.76	-			-			-		
-			-			-			-		
-			_			DM 16	870	26.36	-		
-			RM 19	880	22.49	DM 17	880	2.96	-		
AM 16	904	2.17	RM 20	906	3.7	-			-		
AM 17	910	6.27	-			DM 18	919	10.99	-		
-			-			-			-		
AM 18	956	14.58	-			-			-		
-			-			-			PM 06	971	9.59
-			-			DM 19	983	2.65	-		
AM 19	996	0.27	RM 21	996	10.73	-			-		
-			-			-			PM 07	1009	19.45
AM 20	1016	13.19	-			-			-		
-			RM 22	1037	3.18	DM 20	1029	7.79	-		
-			-			DM 21	1067	9.6	PM 08	1062	18.9
-			RM 23	1072	7.08	DM 22	1073	12.59	-		
-			RM 24	1076	11.89	DM 23	1088	4.54	PM 09	1083	37.46
AM 21	1110	17.81	RM 25	1107	3.47	DM 24	1110	3.03	-		
-			RM 26	1113	4.92	-			-		
-			RM 27	1133	5.94	DM 25	1131	13.02	-		
-			RM 28	1146	3.83	-			-		
AM 22	1163	7.29	-			DM 26	1157	5.18	-		
-			RM 29	1173	15.09	-			-		
-			RM 30	1209	0.74	DM 27	1201	6.6	-		
-			-			DM 28	1213	7.09	-		
-			RM 31	1224	3.27	-			-		
-			RM 32	1231	8.7	DM 29	1231	3.78	PM 10	1242	6.07
-			RM 33	1252	10.03	DM 30	1253	11.32	-		
AM 23	1258	24.52	RM 34	1257	15.81	-			_		
AM 24	1280	41.12	-			DM 31	1271	11.27	-		
-			RM 35	1317	9.61	DM 32	1304	2.34	-		
-			-			DM 33	1336	10.39	-		
-			RM 36	1345	5.87	-			_		
AM 25	1349	145.58	RM 37	1349	7.58	DM 34	1350	6.16	-		
-			-			DM 35	1354	6.88	-		
AM 26	1382	2.62	RM 38	1371	4.3	-			-		
AM 27	1390	227.6	RM 39	1395	4.17	-			-		
-			-			DM 36	1406	7.32	-		

Tabela 12 – Identificação de modos Raman das bases uracila, timina, citosina e guanina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes das bases e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 1400 a 4000 cm⁻¹).

	Uracil (U)		Т	hymine (T	")	C	Cytosine (C	5)	Guanine (G))
М	ω	I	М	ω	Ι	М	ω	Ι	М	ω	I
-		-	TM 25	1419	15.96	-			GM 30	1419	227.47
UM 21	1431	3.13	TM 26	1426	7.95	-			-		
UM 22	1439	2.17	-			-			-		
-			TM 27	1453	5.14	CM 23	1454	14.63	GM 31	1455	81.3
-			-			-			-		
-			TM 28	1467	14.41	-			-		
-			-			-			-		
-			TM 29	1490	13.59	-			-		
-			-			CM 24	1511	9.1	-		
UM 23	1527	44.25	TM 30	1530	56.32	-			-		
-			-			-			GM 32	1542	296.95
-			-			CM 25	1590	62.26	GM 33	1589	96.9
-			-			-			-		
-			-			CM 26	1630	25.34	GM 34	1632	65.45
-			-			-			GM 35	1638	374.42
-			-			-			GM 36	1661	27.57
-			-			-			-		
UM 24	1698	108.58	-			CM 27	1696	37.26	-		
-			-			CM 28	1718	64.7	-		
-			TM 31	1729	216.55	-			-		
UM 25	1746	94.92	TM 32	1743	38.05	-			-		
-			-			-			GM 37	1762	142.99
UM 26	1796	115.53	TM 33	1788	101.11	-			-		
-			-			-			-		
-			-			-			-		
-			TM 34	3068	443.11	-			-		
-			-			-			-		
-			-			-			-		
-			-			-			-		
-			-			-			-		
-			-			-			-		
-			TM 35	3130	163.99	-			-		
-			TM 36	3159	125.51	-			-		
-			-			-			-		
UM 27	3251	151.92	TM 37	3241	182.56	CM 29	3245	136.18	-		
-			-			CM 30	3266	239.88	-		
UM 28	3279	206.72	-			-			GM 38	3283	193.47
-			-			-			GM 39	3608	68.12
UM 29	3612	125.35	TM 38	3614	142.33	-			GM 40	3612	436.38
-			-			CM 31	3623	247.48	-		
-			-			CM 32	3636	276.65	-		
UM 30	3644	201.66	TM 39	3649	219.24	-			-		
-			-			-			GM 41	3659	254.14
-			-			-			GM 42	3727	89.83
-			-			CM 33	3756	88.26	-		
-			-			-			-		
-			-			-			-		
-			-			-			-		
-			-			-			-		
-			-			-			-		

Tabela 13 – Identificação de modos Raman da base adenina do RNA/DNA com interferência de pentoses e fosfato: Assinaturas Vibracionais Raman Fortes da adenina e Assinaturas Vibracionais da ribose, desoxirribose e fosfato (de 1400 a 4000 cm⁻¹).

А	denine (A)		I	Ribose (R)		Dec	xyribose (l))	Pl	hosphate	(P)
М	ω	Ι	Μ	ω	Ι	М	ω	Ι	М	ω	Ι
-			RM 40	1420	8	-			-		
-			RM 41	1429	1.06	-			-		
AM 28	1440	75.22	-			DM 37	1440	8.97	-		
-			-			DM 38	1444	3.66	-		
AM 29	1462	15.69	RM 42	1460	4.11	DM 39	1462	3.45	-		
-			RM 43	1469	4.49	-			-		
-			-			DM 40	1479	8.49	-		
-			-			-			-		
-			-			-			-		
AM 30	1526	8.09	RM 44	1525	13.12	DM 41	1523	12.34	-		
AM 31	1546	254.39	-			-			-		
-			-			-			-		
AM 32	1620	7.83	-			-			-		
-			-			-			-		
-			-			-			-		
AM 33	1661	137.89	-			-			-		
AM 34	1670	21.53	-			-			-		
-			-			-			-		
-			-			-			-		
_			-			-			-		
_			-			-			-		
-			-			-			-		
_			-			-			-		
_			-			-			PM 11	2455	380.14
-			RM 45	3051	254.54	DM 42	3053	255.81	-		
-			-	2005	00.40	_			_		
—			RM 46	3095	89.12	- DM 42	2000	204.12	_		
_			KWI 47	3098	189.47	DM 45	3099	204.12	_		
			KN1 48 DM 40	2107	159.76	DM 44	2109	160 5			
_			KWI 49	3107	138.70	DM 45	3115	346.84	_		
_			BM 50	3125	242.23	DM 40	3124	318 77	_		
_			_	5125	242.25	DM 47	3169	143 59	_		
AM 35	3196	249.29	_			-	0100	110100	_		
_			_			_			_		
_			_			_			_		
AM 36	3280	197.85	_			_			_		
_			_			_			_		
_			_			_			_		
AM 37	3624	367.48	_			_			_		
_			_			_			_		
_			_			_			_		
AM 38	<u>3659</u>	262.2	-			_			_		
-			-			_			-		
AM 39	3757	79.93	-			_			-		
-			RM 51	3830	125.65	_			_		
_			RM 52	3869	175.48	DM 49	3867	177.25	-		
_			-			DM 50	3878	169.75	PM 12	3882	136.09
-			RM 53	3893	144.89	-			-		
_			RM 54	3894	179.54	DM 51	3895	167.79	_		

Tabela 14 – Assinaturas vibracionais "fortes" (não sublinhado) e "fracas" (sublinhadas); juntamente com as assinaturas vibracionais das pentoses e do grupamento fosfato. Os cálculos DFT-PCM nos níveis M062X/6-311++g(d,p), para bases e fosfato; e M062X/6-31++g(d,p) para as pentoses foram realizados usando o software comercial Gaussian 09.

U	Т	С	G	Α	R	D	Р
UM 03 - 304	TM 01 - 113	CM 13 - 794	GM 01 - 140	AM 01 - 48	RM 36 - 1345	DM 12 - 506	PM 03 - 414
<u>UM 07 - 571</u>	TM 05 - 292	<u>CM 13 - 794</u> CM 14 - 797	GM 01 - 140 GM 04 - 324	AM 05 - 302	RM 46 - 3095	DM 12 - 500	PM 06 - 971
UM 10 - 1230	TM 08 - 467	CM 19 - 1140	<u>GM 05 - 335</u>	AM 06 - 524	RM 40 - 3035	DM 10 - 070	PM 11 - 2455
$\frac{0M119 - 1239}{11M20 - 1402}$	TM 14 - 760	<u>CM 21 - 1307</u>	<u>GM 06 - 355</u>	AM 08 - 533	RM 53 - 3893	DM 20 - 1213	-
011 20 - 1402	TM 17 042	$\frac{\text{CM 21} - 1507}{\text{CM 24} + 1511}$	CM 08 447	AM 16 004	KWI 55 - 5075	DM 46 2115	_
	TM 10 1022	CM 24 - 1511 CM 29 1719	$\frac{GW100 - 447}{CM 00 - 406}$	ANI 10 - 904		DN1 40 - 5115	
-	<u>1 W 19 - 1052</u>	CNI 20 - 1/10	<u>GNI 09 - 490</u>	<u>ANI 17 - 910</u>	-	-	-
-	TM 29 - 1490	CM 30 - 3266	GM 16 - 706	AM 20 - 1016	-	-	-
-	TM 31 - 1729	CM 32 - 3636	GM 19 - 847	<u>AM 24 - 1280</u>	-	-	-
-	TM 34 - 3068	-	<u>GM 20 - 879</u>	<u>AM 25 - 1349</u>	-	-	-
-	<u>TM 35 - 3130</u>	-	<u>GM 26 - 1203</u>	AM 32 - 1620	-	-	-
-	<u>TM 36 - 3159</u>	-	<u>GM 27 - 1330</u>	AM 34 - 1670	-	-	-
-	-	-	<u>GM 28 - 1360</u>	AM 35 - 3196	-	-	-
-	-	-	GM 35 - 1638	-	-	-	-
-	-	-	GM 37 - 1762	-	-	-	-
-	-	-	GM 39 - 3608	-	-	-	-
_	-	-	GM 42 - 3727	_	-	_	-

Tabela 15 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da pentose ribose de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-31++g(d,p) foram realizados usando o software comercial Gaussian 09.

R MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
RM 01	44	0.1	$δ_{out}$ (01H1); ρ (C1 ^{III} 01H); δ_{out} (08H8); ρ (C2 ^{III} 08H); ρ (C5 ^{III} 010H ^{III}); ρ (C3 ^{III} 09H); δ_{out} (010H10); $β_{out}$ (C1 ^{III} C2 ^{III} 07); τ (C3 ^{III} C4 ^{III} 07)
RM 02	88	0.18	$\rho(\text{C5'''O10H''}); \delta_{\text{out}}(\text{O1H10}); \delta_{\text{out}}(\text{O1H1}); \rho(\text{C1'''O1H}); \delta_{\text{out}}(\text{C3'''H}); \delta_{\text{out}}(\text{C2'''H}); \rho(\text{C2'''O8H8})$
RM 03	121	0.21	$\rho(C5'''H''H'''); \delta_{out}(O9H9); \delta_{out}(O8H8); \delta_{out}(C3'''H); \rho(C3'''O9H); \delta_{out}(O10H10); \delta_{out}(C5'''O10); \delta_{out}(C4'''H); \rho(C4'''C5'''H); \delta_{out}(C3'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''C5'''H); \rho(C4'''H); \rho(C4''''H); \rho(C4'''H); \rho(C4'''H$
RM 04	161	1.32	δ _{out} (08H8); δ _{out} (09H9); δ _{out} (C2 ^{'''} 08); ρ (C5 ^{'''} H ^{''} H ^{'''}); δ _{out} (010H10); δ _{out} (C3 ^{'''} H)
RM 05	199	0.5	$\delta_{out}(010H10); \rho(C5^{''H'H'''}); \delta_{out}(09H9); \delta_{m}(C5^{''O10}); \delta_{out}(C4^{''C5'''}); \delta_{out}(C4^{''H}); \delta_{out}(C3^{''H}); \rho(C3^{''O9H})$
RM 06	234	0.87	$\delta_{out}(010H10); \\ \delta_{out}(01H1); \\ \omega(C5''H''H'''); \\ \delta_{out}(08H8); \\ \delta_{out}(C4'''H); \\ \sigma(C4'''C5'''O7); \\ \delta_{out}(09H9); \\ \delta_{out}(C3'''O9); \\ \delta_{out}(C1''O1); \\ \beta_{out}(C1'''O1); \\ \delta_{out}(C1'''O1); \\$
RM 07	257	1.1	$\delta_{out}(010H10); \\ \delta_{out}(01H1); \\ \rho(c5^{''H}'''H^{'''}); \\ \delta_{out}(08H8); \\ \rho(c2^{'''08H}); \\ \delta_{out}(c3^{''}09); \\ \rho(c4^{''}C3^{'''}H); \\ \delta_{out}(09H9); \\ \delta_{out}(c3^{''}H); \\ \beta_{out}(c1^{'''}C2^{'''}C3^{'''}C4^{'''}O7) \\ \delta_{out}(c3^{''}H); \\ \delta_{out}(c3^{'$
RM 08	302	0.28	$\delta_{out}(09H9); \delta_{out}(08H8); \delta_{out}(C2'''08H); \delta_{out}(C2'''08H); \delta_{out}(C3'''09); \tau(C3'''09H); \delta_{out}(01H1); \rho(C5''H''H'''); \tau(C1'''01H); \beta_{out}(C1'''C2'''C3'''C4'''07)$
RM 09	327	2.17	δ _{out} (01H1); δ _{out} (09H9); δ _{out} (C1 ^{''} H); τ (C2 ^{''} O8H); β _{out} (C1 ^{''} C2 ^{''} C3 ^{''} C4 ^{''} O7); ρ (C4 ^{''} C5 ^{''} O7); δ _{out} (010H10)
RM 10	347	0.86	$\delta_{out}(O9H9); \\ \delta_{out}(O1H1); \\ \delta_{out}(O1H1); \\ \delta_{out}(C1'''O1); \\ \rho(C2'''O8H); \\ \delta_{out}(C1'''H); \\ \omega(C5'''H''''); \\ \delta_{out}(O1H10); \\ \tau(C1'''C4'''O7); \\ \beta_{out}(C1'''C2'''C3'''C4'''O7); \\ \delta_{out}(C1'''O1); \\ \rho(C2'''O3H); \\ \delta_{out}(C1'''H); \\ \omega(C5'''H'''''); \\ \delta_{out}(O1H10); \\ \tau(C1'''C4'''O7); \\ \delta_{out}(C1'''C4'''O7); \\ \delta_{out}(C1'''O1); \\ \rho(C2'''O3H); \\ \delta_{out}(C1'''H); \\ \omega(C5'''H'''''); \\ \delta_{out}(O1H10); \\ \tau(C1'''C4'''O7); \\ \delta_{out}(C1'''O1); \\ \rho(C2'''O3H); \\ \delta_{out}(C1'''O1); \\ \rho(C1'''O1); \\ \rho(C1'$
RM 11	364	0.15	δ _{out} (O1H1); δ _{out} (O9H9); δ _{out} (C2 [™] H); τ (C2 [™] O8H); τ (C1 [™] O1H); δ _{out} (C3 [™] O2); β _{out} (C1 [™] C2 [™] C4 [™] O7); τ (C3 [™] C4 [™] O7)
RM 12	387	1.22	$\delta_{out}(O1H1); \delta_{out}(O9H9); \delta_{out}(C1'''H); \omega(C1'''O1H); \delta_{out}(O8H8); \tau(C3'''O9H); \tau(C2'''O8H); \beta_{out}(C1'''C2'''C3'''C4'''O7); \rho(C5'''H'''H''')$
RM 13	455	3.59	ρ (C5 [™] H [™] H [™]); σ (C4 [™] C5 [™] O7); σ (C4 [™] C5 [™] O10); δ _{out} (C1 [™] H); ω (C1 [™] O1H); δ _{out} (C1 [™] H); δ _{out} (C10H10); δ _{out} (C3 [™] H); β _{out} (C1 [™] C2 [™] C3 [™] C4 [™] O7)
RM 14	489	3.43	$\delta_{out}(\text{CS''H''}); \rho(\text{CS''H''H'''}); \delta_{out}(\text{C4''H}); \delta_{out}(\text{O9H9}); \delta_{out}(\text{O1H1}); \delta_{out}(\text{C4'''C5'''}); \delta_{out}(\text{O10H10}); \tau(\text{C3'''O9H}); \delta_{out}(\text{C2'''O8H}); \tau(\text{C2'''O8H}); \delta_{out}(\text{C4'''C5'''}); \delta_{out}(\text{O10H10}); \tau(\text{C3'''O9H}); \delta_{out}(\text{C2'''H}); \tau(\text{C2'''O8H}); \tau(\text{C2''''O8H}); \tau(\text{C2'''''O8H}); \tau(\text{C2''''''O8H}); \tau(\text{C2'''''''''''''O8H}); \tau(C2''''''''''''''''''''''''''''''''''''$
RM 15	539	3.47	$\delta_{out}(C5^{''H}'); \rho(C5^{''H}''H^{''}); \delta_{out}(O1H1); \delta_{out}(C4^{''H}); \delta_{out}(C3^{''H}); \tau(C1^{''O1H}); \delta_{out}(C2^{''H}); \omega(C2^{''O3H}); \delta_{out}(O1H10); \rho(C4^{''C5''O7}); \omega(C2^{''H}); \omega(C2^{''O3H}); \delta_{out}(O1H10); \rho(C4^{''C5''O7}); \omega(C2^{''H}); \omega(C2^{''H})$
RM 16	632	7.39	$\delta_{out}(C2^{''H}); \rho(C5^{''H}H^{''}); \delta_m(C4^{''H}); \delta_{out}(C1^{''H}); v_{breathing}(C1^{''C2^{''}C3^{''}C4^{''}O7}); \delta_m(C2^{''O8}); \delta_{out}(C1^{''O1}); \beta_{out}(C1^{''C2^{''}O7}); \delta_m(C2^{''}O8); \delta_{out}(C1^{''O1}); \delta_m(C1^{''O1}); \delta_$
RM 17	747	3.52	$\beta_{in} (C1^{un}C2^{un}C3^{un}C4^{un}O7); \delta_{out} (C2^{un}H); \delta_{out} (C4^{un}H); \delta_{out} (C1^{un}H); \delta_{out} (O9H9); \delta_{out} (O8H8); \rho (C5^{un}H^{un}H^{un}); \beta_{out} (C1^{un}C2^{un}C3^{un}); \omega (C3^{un}O9H); \delta_{out} (C1^{un}C2^{un}C3^{un}); \omega (C3^{un}O9H); \delta_{out} (C1^{un}C3^{un}C$
RM 18	792	2.23	ρ (C2 ^{\''} 08H8); ρ (C5 ^{\''} H''H'''); δ _{out} (C3 ^{\''} H); β _{out} (C1 ^{\''} C2 ^{\''} C3 ^{\''}); β _{in} (C1 ^{\''} C2 ^{\''} C3 ^{\''} C4 ^{\''} O7); δ _{out} (C2 ^{\''} H); δ _{out} (C1 ^{\''} H)
RM 19	880	22.49	ρ (C5'''H"H"'); δ _{out} (C2'''H); δ _{out} (C3'''H); ν _{breathing} (C1'''C2'''C3'''C4'''O7); δ _{out} (C4'''H); δ _{in} (O1H1); δ _{out} (O9H9); ρ (C2'''O8H8)
RM 20	906	3.7	$\delta_{out}(C3'''H); \rho(C5'''H''H'''); \delta_{out}(C2'''H); \delta_{out}(C4'''H); \rho(C2'''O8H8); \delta_{out}(C1'''H); \rho(C1'''O1H1); \rho(C3'''O9H9); v_a(C2'''C3'''C4'''); v_s(C3'''C4'''O7)$
RM 21	996	10.73	$\delta_{out}(C4''H); \delta_{out}(C1''H); \delta_{out}(C5''H'''); \rho(C5''H''H'''); v_{breathing}(C1'''C2'''C3'''C4'''O7); \delta_{out}(C3''H); \delta_{out}(O10H10); \rho(C3'''O9H9)$
RM 22	1037	3.18	$\delta_{out}(C4^{un}H); \tau(C4^{un}C5^{un}H); \delta_{out}(C2^{un}H); \delta_{out}(C3^{un}H); \delta_{in}(O1H1); \rho(C1^{un}O1H1); \rho(C5^{un}H^{un}H^{un}); \delta_{out}(C1^{un}H); \omega(C1^{un}O1H); \rho(C1^{un}H); \omega(C1^{un}O1H); \omega(C1^{$
RM 23	1072	7.08	$\delta_{in}(O10H10); \delta_{out}(C3^{iii}H); \delta_{in}(C5^{iii}H^{ii}); \rho(C5^{iii}H^{ii}H^{iii}); \delta_{out}(C4^{iii}H); \sigma(C4^{iii}C5^{iii}H); \delta_{out}(C2^{iii}H); v(C4^{iii}C5^{iii})$
RM 24	1076	11.89	δ _{out} (C4 ^m H); δ _{out} (C2 ^m H); δ _{out} (C3 ^m H); δ _{in} (O1H1); ρ (C5 ^m H ^m H ^m); δ _{out} (C1 ^m H); δ _{out} (O9H9); ν (C3 ^m O9); ν (C1 ^m C2 ^m C3 ^m C4 ^m O7)
RM 25	1107	3.47	$\delta_{out}(C1^{''H}); v_a(C1^{''O107}); v_a(C1^{''C4^{''O7}}); \beta_{in}(C1^{''C2^{''C4^{''O7}}}; \delta_{out}(O1H1); v(C5^{''O10}); \omega(C5^{''H}^{''H}); \delta_{out}(C2^{''H}); \sigma(C2^{''O8H}); \sigma(C2^{'''O8H}); \sigma(C2^{''$
RM 26	1113	4.92	$\delta_{out}(C4^{iii}H); v(C1^{iii}O1); \beta_{out}(C1^{iii}C2^{iii}O7); \delta_{in}(O9H9); \delta_{out}(C1^{iii}H); \delta_{out}(C5^{iii}H^{ii}); v(C5^{iii}O10); v(C2^{iii}O8); \delta_{in}(O10H10); v_a(C3^{iii}C4^{iii}O7) = 0$
RM 27	1133	5.94	δ _{out} (C5 ^{¹¹H¹¹}); ρ (C5 ¹¹¹ H ¹¹); δ _{out} (C1 ¹¹ H); δ _{in} (O9H9); δ _{out} (O1H1); δ _{out} (C2 ¹¹ H); δ _{out} (C4 ¹¹ H); δ _{out} (C3 ¹¹ H); ν (C5 ¹¹¹ O1); ν _a (C1 ¹¹ C3 ¹¹ C4 ¹¹ O7)
RM 28	1146	3.83	$\delta_{m}(08H8); \delta_{m}(09H9); \delta_{out}(C2^{m}H); \delta_{out}(C3^{m}H); \rho(C5^{m}H^{m}H^{m}); \delta_{out}(01H1); v_{a}(C2^{m}C3^{m}O9); v_{a}(C2^{m}C3^{m}O8); v_{a}(C1^{m}C2^{m}C3^{m}); \beta_{out}(C3^{m}C4^{m}O7); \rho_{a}(C3^{m}C4^{m}O7); \rho_{a}(C3^{m}O7); \rho_{a}(C3^{m$
RM 29	1173	15.09	$\delta_{out}(C1^{im}H); \\ \delta_{out}(C2^{im}H); \\ \nu(C2^{im}O8); \\ \beta_{out}(C1^{im}C2^{im}C3^{im}); \\ \delta_{out}(O1H1); \\ \omega(C5^{im}H^{im}H^{im}); \\ \delta_{out}(C4^{im}H); \\ \delta_{out}(O9H9); \\ \nu_a(C1^{im}C4^{im}O7) \\ \lambda_{aut}(C1^{im}C4^{im}O7) \\ \lambda_{aut}(C1^{im}O7) \\ \lambda_{aut$
RM 30	1209	0.74	$\delta_{in}(O9H9); \delta_{out}(C3'''H); \delta_{out}(O8H8); \delta_{out}(C2'''H); \tau(C5'''H''H'''); \delta_{out}(C4'''H); \sigma(C4'''C5'''H); \delta_{out}(O10H10); \delta_{out}(C1'''H); v(C3'''O9)$
RM 31	1224	3.27	$\delta_{out}(C1'''H); \tau(C1'''O1H); \delta_{in}(O1H1); \sigma(C1'''O1H1); \delta_{in}(O10H10); \delta_{out}(C5'''H''); \delta_{out}(C2'''H); \delta_{out}(C4'''O7H)$
RM 32	1231	8.7	$\delta_{in} (010H10); \sigma (C5'''010H10); \delta_{out} (C5'''H''); \delta_{in} (01H1); \delta_{out} (C1'''H); \delta_{out} (C4'''H); \delta_{out} (C3'''H)$
RM 33	1252	10.03	δ _{in} (O8H8); δ _{out} (C3 ^{'''} H); δ _{out} (C2 ^{'''} H); ρ (C2 ^{'''} O8H); δ _{out} (O9H9); τ (C5 ^{''} H''H'''); δ _{out} (C4 ^{'''} H)
RM 34	1257	15.81	$\delta_{out}(C5'''H''); \tau(C5'''H''H'''); \delta_{in}(O10H10); \delta_{out}(C3''H); \delta_{out}(O9H9); \delta_{out}(C2'''H); \delta_{out}(C1'''H)$
RM 35	1317	9.61	$\delta_{out}(C2^{iii}H); \delta_{out}(C4^{iii}H); \delta_{out}(C3^{iii}H); \delta_{out}(D1H1); \rho(C5^{iii}H^{iiii}H^{iiii}); \delta_{out}(C1^{iii}H); \delta_{out}(O8H8)$
RM 36	1345	5.87	$\delta_{out}(C4^{un}H); \delta_{out}(C1^{un}H); \delta_{out}(C5^{un}H^{un}); \delta_{in}(O10H10); \sigma(C5^{un}O10H10); \delta_{out}(C3^{un}H); \delta_{out}(O9H9)$
RM 37	1349	7.58	δ _{out} (C4 ^{III} H); ω (C4 ^{III} C5 ^{III} H); δ _{out} (C3 ^{III} H); δ _{out} (C1 ^{III} H); δ _{out} (C2 ^{III} H); τ (C5 ^{III} H ^{III}); δ _{in} (O9H9)
RM 38	1371	4.3	$\delta_{out}(C3^{''H}); \delta_{in}(O9H9); \sigma(C3^{''}O9H9); \delta_{out}(C1^{''H}); \delta_{out}(C4^{''H}); \delta_{out}(C2^{''H}); \delta_{out}(O1H1)$
RM 39	1395	4.17	$\delta_{out}(C1^{''}H); \omega(C1^{''}O1H); \delta_{in}(C2^{''}H); \sigma(C2^{''}O8H); \delta_{out}(C4^{''}H); \delta_{in}(O1H1); \sigma(C1^{''}O1H1)$
RM 40	1420	8	$\delta_{out}(C1^{im}H); \sigma(C1^{im}O1H); \delta_{out}(C2^{im}H); \delta_{out}(O8H8); \sigma(C2^{im}O8H8); \delta_{in}(O1H1); \sigma(C1^{im}O1H1)$
RM 41	1429	1.06	$δ_{out}$ (C3 ^{···} H); δ_{out} (O9H9); σ (C3 ^{···} O9H9); δ_{out} (C5 ^{···} H ^{···}); ω (C5 ^{···} H ^{··} H ^{···}); ν (C3 ^{···} C4 ^{···}); δ_{in} (O8H8)
RM 42	1460	4.11	$\omega (CS''H''H'''); \delta_{in} (O10H10); \sigma (CS'''O10H10); \delta_{in} (C4'''H); \delta_{out} (C3'''H); v (C4'''C5'''); \delta_{out} (C1'''H) = 0$
RM 43	1469	4.49	$\delta_{out}(C2^{un}H); \\ \delta_{out}(C1^{un}H); \\ \delta_{in}(O1H1); \\ \sigma(C1^{un}O1H1); \\ \delta_{in}(O8H8); \\ \delta_{out}(C3^{un}H); \\ \delta_{out}(C4^{un}H); \\ \omega(C5^{un}H^{un}H^{un}); \\ \nu_{s}(C1^{un}C2^{un}C3^{un}); \\ \sigma(C1^{un}C1^{un}H); \\ \delta_{in}(O1H1); \\ \delta_{in}$
RM 44	1525	13.12	$\sigma(C5^{""H"H"}); \delta_{out}(C4^{""C5"}); \delta_{out}(C2^{""H}); \delta_{out}(C4^{"H}); \delta_{out}(C4^{"H}); \delta_{out}(O8H8)$
RM 45	3051	254.54	v _s (C5"'H"H"'); δ _{out} (C4"'C5"'); v (C4"'H); v (C2"'H)
RM 46	3095	89.12	v (C3"'H); v (C2"'H); v (C1"'H); v (C1"'H); v (C4"'H)
RM 47	3098	189.47	$v_{a}(C5'''H''H'''); v(C4'''H); v(C2'''H); \delta_{out}(C4'''C5'''); v(C3'''H); v(C1'''H)$
RM 48	3105	372.31	v (C1"'H); v (C3"'H); v (C2"'H); v a (C5"'H"H"'); v (C4"'H)
RM 49	3107	158.76	v (C2"'H); v (C3"'H); v (C1"'H); v a (C5"'H''H'''); v (C4"'H)
RM 50	3125	242.23	v (C4'''H); v _a (C5'''H''H'''); v (C1'''H); v (C3'''H)
RM 51	3830	125.65	v (O9H9); v (O8H8)
RM 52	3869	175.48	v (01H1); v (08H8)
RM 53	3893	144.89	v (O8H8); v (O10H10); v (O9H9); v (O1H1)
RM 54	3894	179 54	v(010H10)·v(08H8)·v(01H1)

Tabela 16 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos da pentose desoxirribose de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-31++g(d,p) foram realizados usando o software comercial Gaussian 09.

D MODE	(INT	ASSIGNMENTS
DMOL	ω (cm)	0.16	
DM 01	20	0.10	
DM 02	102	0.1	$p(G = n + j, \phi_{at}(G = 0, u), p(G = n, j), \phi_{at}(G = 0, u), \phi_{at}(G = n, j), \phi_{at}(G = G = 0, u), \phi_{at}(G = 0, u)$
DM 03	206	1.05	
DM 04	200	1.05	$\sigma_{out}(U_{10}U_{10})$; $p(C = H + j; \sigma_{out}(O = H); p(C = H); \sigma_{out}(C = H); \sigma_{out}(L = H); \sigma_{out}(C = H)$
DM 05	250	0.05	$\delta_{out}(0,0,0,1)$, $\beta_{out}(0,0,0,1)$, $\delta_{out}(0,0,0,1)$, $\beta_{out}(0,0,0,0,1)$, $\beta_{out}(0,0,0,1)$, $\beta_{out}(0,0,0,0,1)$, $\beta_{out}(0,0,0,1)$
DM 00	205	0.91	$\delta_{out}(0,0,0), \delta_{out}(0,0,0,0), \beta(0,0,0,0), \beta(0,0,0,0,0), \beta(0,0,0,0,0), \beta(0,0,0,0,0), \beta(0,0,0,0,0), \beta(0,0,0,0,0,0), \beta(0,0,0,0,0,0), \beta(0,0,0,0,0,0,0), \beta(0,0,0,0,0,0,0), \beta(0,0,0,0,0,0,0,0,0), \beta(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
DM 08	203	0.56	$Q_{out}(U)$ (2014), $Q_{out}(U)$ (2014), $P(U)$ (14), $Q_{out}(U)$ (2014), $Q_{out}(U)$ (2014), $P_{out}(U)$ (20
DM 00	257	0.47	
DM 10	449	2.6	
DM 11	445	1 17	
DM 12	506	2.16	
DM 12	552	2.10	$\sigma_{out}(\Box = \pi, \mu(\Box = \pi\pi, \mu(z = \pi\pi, \sigma_{out}(\Box = \pi, \mu(z = \sigma_{out}(\Box = \sigma_{out}($
DM 14	751	2 12	
DM 15	792	1 78	
DM 16	870	26.36	
DM 17	880	2 96	
DM 18	919	10.99	$\sigma_{out}(z_1, v_1, p_1(z_1, v_1, v_1, v_1, v_2, v_1, v_2, v_2, v_1, v_1, v_2, v_1, v_1, v_2, v_1, v_1, v_2, v_1, v_1, v_1, v_1, v_1, v_1, v_1, v_1$
DM 19	983	2 65	$\sigma_{001}(\omega + \eta), \sigma_{001}(\omega + \eta), r_{101}(\omega + \eta), r_{101}(\omega + \eta), r_{001}(\omega + \eta), r_{001}(\omega + \eta), r_{101}(\omega + $
DM 20	1029	7 79	5. (C4 ^{IIII}): (C ^{IIII}): (CC ^{IIIII}): (CC ^{IIII}): (CC
DM 21	1067	9.6	Control (Control (Contro) (Control (Contro) (Control (Contro) (Contro) (Contro) (C
DM 22	1073	12.59	δ_{m} (C4"'H): δ_{m} (C2"'H): δ_{m} (C4"'H): δ_{m} (C4"'H): δ_{m} (C4"'H): δ_{m} (C4"'H): V_{m} (C1"'C2"'O1)
DM 23	1088	4.54	$\delta_{-1}(C^{m}(1)) : \tau(C^{m}(1)) : \omega_{-1}(C^{m}(1)) : \omega_{-1}(C^{m}(1)) : \omega_{-1}(C^{m}(2)) : \omega_{-1}(C^{m}(2)) : \omega_{-1}(C^{m}(1)) : \tau(C^{m}(1)) : \omega_{-1}(C^{m}(1)) : \omega_$
DM 24	1110	3.03	$\delta_{-+}(C2^mH^1): t_1(C2^mH^1): \delta_{-+}(C3^mH^1): \delta_{-+}(C3^mH^1): \delta_{-+}(C3^mH^1): \delta_{-+}(C3^mH^1): \delta_{-+}(C1^mH^1): \delta_{-+}(C1^mC3^mC3^mC3^mC3^mC3^mC3^mC3^mC3^mC3^mC3$
DM 25	1131	13.02	- (oct +)
DM 26	1157	5.18	$\delta_{}(C1^{m} 1); \delta_{}(C2^{m} 1); \delta_{}(C3^{m} 1); \delta_{}(C3^{m} 1); v_{+}(C1^{m} 1); v_{+}(C1^{m} 1); v_{+}(C1^{m} 2); $
DM 27	1201	6.6	δ, (01H1): τ(C2 ^m H'H): δ, (C1 ^m H): τ(C5 ^m H'H ^m): δ, (C3 ^m H): δ, (C4 ^m H): σ(C4 ^m C5 ^m H): ν(C3 ^m O9)
DM 28	1213	7.09	δ ₁₀ (O9H9): δ ₂₋₄ (C3 ¹¹ H): δ ₂₋₄ (C4 ¹¹ H): δ ₂₋₄ (C10H10): δ ₂₋₄ (C5 ¹¹ H ¹¹ H ¹¹): δ ₂₋₄ (C1 ¹¹ H): γ ₂ (C1 ¹¹ C4 ¹¹ O7): β ₂₋₄ (C1
DM 29	1231	3.78	$\delta_{n,n}$ (C5 ^m H ^m); δ_n (O10H10); $\delta_{n,n}$ (C4 ^m H); δ_n (C5 ^m H ^m); $\delta_{n,n}$ (C1 ^m H); $\delta_{n,n}$ (O1H1); $\delta_{n,n}$ (C3 ^m H)
DM 30	1253	11.32	δ_{mar} (CS ^{''} H ^{''} H ^{''}); τ (CS ^{''} H ^{''} H ^{''}); δ_{mar} (010H10); σ (CS ^{'''} O10H10); δ_{mar} (O1H1); δ_{mar} (C1 ^{''} H); δ_{mar} (C2 ^{''} H')
DM 31	1271	11.27	τ(C2 ^{III} H'H); δ _{out} (C1 ^{III} H); δ _{out} (C2 ^{III} H); δ _{out} (CS ^{III} H'); τ(CS ^{III} H'H'); δ _{out} (C3 ^{II} H); δ _{out} (O10H10); β _{out} (C10H10); β _{out} (C1 ^{III} C2 ^{III} C3 ^{III} C4 ^{III} O7)
DM 32	1304	2.34	$\omega(C2^{''H}H); \delta_{out}(C4^{''H}H); \tau(C5^{''H}H^{'H''}); \delta_{m}(O9H9); \delta_{out}(C1^{''H}); \delta_{out}(C3^{''H}); \delta_{out}(O1H1); v_{a}(C2^{''C}G^{''C}C4^{'''})$
DM 33	1336	10.39	δ _{pot} (C4"'H); δ _{pot} (C1"'H); δ _{pot} (C3"'H); ω (C3"'O9H); δ _m (O9H9); δ _{pot} (C5"'H"); τ (C5"'H"H"); δ _m (O1H1); ν _g (C1"'C2"'C3"'); β _m (C1"'C2"'C3"'C4"'O7)
DM 34	1350	6.16	$\delta_{out}(C4^{m}H); \delta_{out}(C5^{m}H^{m}); \delta_{n}(O10H10); \delta_{out}(C1^{m}H); \delta_{n}(O9H9); \omega(C2^{m}H'H); \beta_{out}(C2^{m}C3^{m}C4^{m}O7)$
DM 35	1354	6.88	$\delta_{out}(C3'''H); \omega(C2'''H'H); \tau(C5'''H''H''); \delta_{out}(C4''H); \delta_{out}(C1''H); \delta_{in}(O9H9); v(C3'''C4'''); \beta_{out}(C2'''C3'''C4'''O7)$
DM 36	1406	7.32	$\delta_{out}(C1^{11}H); \\ \delta_{out}(C4^{11}H); \\ \delta_{out}(C3^{11}H); \\ \delta_{m}(O9H9); \\ \delta_{out}(C2^{11}H); \\ \delta_{m}(O1H1); \\ v_{4}(C1^{11}C4^{11}O7); \\ \beta_{out}(C1^{11}C2^{11}C3^{11}C4^{11}O7); \\ \delta_{m}(C1H1); \\ $
DM 37	1440	8.97	$\delta_{out}(C3^{''H}); \\ \delta_{out}(C1^{''H}); \\ \sigma(C2^{''H}H); \\ \delta_{m}(O9H9); \\ \delta_{out}(C4^{''H}); \\ \delta_{out}(C3^{''H}H^{''}); \\ \delta_{out}(O1H1); \\ \sigma(C1^{''O}O1H1); \\ \nu_{a}(C3^{''C4^{''}O9}); \\ \beta_{out}(C1^{''C2^{''C4^{''}O7}}); \\ \delta_{out}(C3^{''H}H^{''}); \\ \delta_{out}(C3^{''H$
DM 38	1444	3.66	$\delta_{out}(C1^{''H}); \sigma(C1^{''O1H}); \delta_{in}(O1H1); \sigma(C1^{''O1H1}); \delta_{out}(C3^{''H}); \delta_{in}(O9H9); \omega(C2^{''H}'H); \omega(C5^{''H}''H''); v(C1^{''C}2^{''})$
DM 39	1462	3.45	ω (C5 ^{'''} H"H"'); δ _{in} (O10H10); σ (C5 ^{'''} O10H10); δ _{out} (C4 ^{'''} H); δ _{out} (C3 ^{'''} H); v _a (C3 ^{'''} C4 ^{'''} C5 ^{'''}); δ _{in} (O9H9)
DM 40	1479	8.49	$\sigma(C2^{''H'H}); \delta_{out}(C1^{''H}H); \delta_{out}(C3^{''H}H); \delta_{out}(O1H1); \sigma(C1^{''O1H1}); \delta_{out}(O9H9); \sigma(C5^{''H'H'''}); \nu_{breathing}(C1^{''C2^{''}C3^{''}C4^{''}O7})$
DM 41	1523	12.34	σ (C5"'H"H"'); σ (C2"'H'H); δ _{out} (C4"'C5"'); δ _{out} (C4"'H); δ _{out} (C3"'H); δ _{in} (O9H9)
DM 42	3053	255.81	ν₂ (C5"'H''H'''); δ _{out} (C4"'C5"'); ν (C4"'H); ν (C2"'H)
DM 43	3099	204.12	v _s (C5 ^{'''} H''H''); v (C4 ^{'''} H); δ _{ort} (C4 ^{'''} C5 ^{'''}); v (C3 ^{'''} H); v _s (C2 ^{'''} H'')
DM 44	3103	96.98	v(C3 ^{III} H); v _s (C2 ^{III} H'H); v(C1 ^{III} H); v _s (C5 ^{III} H'H ^{III}); v(C4 ^{III} H)
DM 45	3108	169.5	v (C1""H); v ₄ (C2""H'H); v (C4"'H); v ₄ (C5""H"H"); v ₄ (C5""H"H"); v (C3""H)
DM 46	3115	346.84	v _z (C2 ^{III} HH); v (C3 ^{III} H); v (C4 ^{III} H); v _b (C5 ^{III} H ^{III} H ^{III})
DM 4 7	3124	318.77	v (C4 [™] H); v₃ (C5 [™] H [™] H [™]); v (C1 [™] H); v₄ (C2 [™] H [™]); v (C3 [™] H); δ _{oct} (C4 [™] C5 [™])
DM 48	3169	143.59	v _a (C2 ^m H'H); v (C1 ^m H); v (C4 ^m H); v _a (C5 ^m H'H ^m); v (C3 ^m H)
DM 49	3867	177.25	v (01H1)
DM 50	3878	169.75	v (O9H9)
DM 51	3895	167.79	v (010H10)

P MODE	ω (cm ⁻¹)	INT.	ASSIGNMENTS
PM 01	294	2.28	δ _{out} (O12H12); τ (PO12H); ρ (PO11O13)
PM 02	402	2.7	$δ_{out}$ (O12H12); σ (PO11O12); τ (PO12H); τ (PO11O13)
PM 03	414	6.81	σ (PO11O13); δ_{out} (PH); σ (PO12H); δ_{out} (O12H12)
PM 04	521	3.36	β (PO11O12O13); σ (PO11O13); δ_{out} (O12H12)
PM 05	794	8.6	v (PO12); δ_{out} (O12H12); β (PO11O13H); δ_{out} (PH)
PM 06	971	9.59	δ_{in} (O12H12); δ_{out} (PH); τ (PO12H); δ_{out} (PO13)
PM 07	1009	19.45	$δ_{out}$ (PH); σ (PO12H); $δ_{out}$ (O12H12); σ (PO11O13)
PM 08	1062	18.9	δ_{out} (PH); ω (PO12H); δ_{out} (O12H12); δ_{out} (PO13); ρ (PO11O13)
PM 09	1083	37.46	ν _s (PO11O13); δ_{out} (PH); σ (PO12H); δ_{out} (O12H12)
PM 10	1242	6.07	ν_a (PO11O13); δ_{in} (O12H12); σ (PO12H12); δ_{out} (PH); ω (PO12H)
PM 11	2455	380.14	v (PH)
PM 12	3882	136.09	v (O12H12)

Tabela 17 – Atribuições (realizadas visualmente) dos movimentos individuais/coletivos dos átomos do grupamento fosfato de acordo com os comprimentos de onda (em cm⁻¹) dos seus modos vibracionais Raman. Os cálculos DFT-PCM no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian 09.

Os espectros Raman das bases uracila, timina, citosina, adenina e guanina, que foram medidos (linhas pretas contínuas) e calculados DFT-PCM (linhas vermelhas pontilhadas) no nível zero da metodologia proposta nesta dissertação são apresentados juntos nas Figuras 12-16 para facilitar a comparação entre eles. De maneira geral, observa-se uma concordância considerável entre os picos experimentais e DFT-PCM dos espectros Raman, mais precisamente com desvios inferiores a ou da ordem de 12% dos números de onda (levando em consideração o espectro total de 4000 cm⁻¹). No entanto, visando uma maior acurácia na descrição dos resultados de comparação entre resultados teóricos e experimentais, faz-se necessária a divisão dessas concordâncias em dois tipos principais: regiões espectrais de alta e baixa concordância. Esta divisão corrobora com o fato de que regiões dos espectros experimentais são melhores explicadas pelos espectros DFT do que outras, haja vista o modelo PCM com ausência de águas explícitas traz a implicância da falta de interação das pontes de hidrogênio geradas de diferentes maneiras em regiões específicas das moléculas. De tal modo, avaliando cada base isoladamente, tem-se que a uracila possui sua região de alta concordância de 0-1600 cm⁻¹ (com discrepância que vai desde 0,025% à 0,7%) e de baixa concordância de 1600-4000 cm⁻¹, a qual possui de 2,075% à 9,175% de diferença entre experimental e teórico. Com relação à timina, de forma similar à anteriormente retratada, esta apresentou alta concordância de 0-1600 cm⁻¹ aproximadamente (região de discrepância entre 0,025% e 0,825%) e baixa concordância de 1600-4000 cm⁻¹, abrangendo de 1,475% à 4,525% de segregação nos números de onda. No que diz respeito à citosina, sua região de alta concordância se restringe a 0-1700 cm⁻¹ – com uma faixa de 0,025% à 1,15% comparativa ao espectro medido – e a de baixa concordância está situada entre 1700-4000 cm⁻¹, com desvio de 3,9% à 12,425% do resultado experimental. Prosseguindo, referente à guanina, tal molécula demonstrou concordância alta de 0-1000 cm⁻¹, com a diferença variando de 0-1,225% em números de onda, e concordância baixa de 1000-4000 cm⁻¹ aproximadamente, permutando entre 2,825% e 7,375% nas variações entre medição e resultado calculado. Por fim, a adenina demonstrou uma peculiaridade em relação aos outros espectros, a qual se correlacionou com o fato de que mesmo na região de baixa concordância alguns modos foram detectados mais próximos do que o de costume (mais precisamente da região de 1300-1800 cm⁻¹); assim, a região de alta concordância (com maior quantidade de picos teóricos que caracterizavam melhor o resultado experimental) deteve-se na região de 0-1300 cm⁻¹, partindo de uma diferença em 0,05% até 1,275%, e a de baixa concordância entre 1300-4000 cm⁻¹, com variação em representação experimental de 0,575% à 8,3% dos números de onda.

Ademais, notou-se também a presença de certas peculiaridades durante o comparativo entre os espectros. A primeira destas foi o fato de alguns picos experimentais, como P137-791 cm⁻¹ da citosina e P114-536 cm⁻¹ da adenina, ser representados por mais de um modo teórico (ambos os picos relatados anteriormente possuem três modos correlacionados - CM12-790 cm⁻¹/CM13-794 cm⁻¹/CM14-797 cm⁻¹ e AM06-524 cm⁻¹/AM07-529 cm⁻¹/AM08-533 cm⁻¹ respectivamente), levando-nos assim a compreender tais modos como representantes de um único pico medido. Entretanto, para se obter uma relação mais exata entre os picos medidos, utilizaram-se apenas os modos mais intensos (expressivos) dentre os demais que se encontraram em conjunto. Além destes parâmetros detectados, outra característica foi encontrada, desta vez condizente com a variação da intensidade dos picos nos espectros calculados e experimentais, ou seja, em alguns casos as intensidades de ambos se aproximaram fortemente (como em P48-789 cm⁻¹ e UM12-790 cm⁻¹ da uracila, e P157-722 cm⁻¹ e AM14-736 cm⁻¹ da adenina), mas em outros houve o que podemos catalogar como "sobre-estimação" e "subestimação" dos picos, por exemplo, em P126-617 cm⁻¹ e TM11-616 cm⁻¹ na timina e P241-1023 cm⁻¹ e AM20-1016 cm⁻¹ na adenina; trazendo a percepção de que estes picos e modos correlatos poderão ser melhor representados utilizando-se a abordagem teórica de PCM/água explícita, uma vez que estas diferenças situam-se com as ligações de hidrogênio, as quais são mais predominantes em regiões específicas das moléculas do que em outras. Em outras palavras, uma modelagem molecular em água deverá ser mais bem avaliada com precisão em suas regiões distintas, e não apenas considerando um raio comum à estrutura completa. Todavia, outra diferença que se fez notória nos espectros em geral é a presença de picos nos espectros experimentais que não possuem representação teórica, com ausência nos cálculos. Dois destes podem ser utilizados como exemplificação: pico experimental da uracila em 1460 cm⁻¹ e da guanina em 1550 cm⁻¹. Para se explicar o ocorrido, contactamo-nos ao fato de que as pontes de hidrogênio representadas pelas camadas próximas de água nas bases nitrogenadas promovem o aparecimento de outros modos vibracionais, ainda não reconhecidos nesta presente dissertação. Prosseguindo, observou-se também o inverso do evento relatado anteriormente, ou seja, alguns modos (com picos teóricos correlatos) não foram detectados nos espectros experimentais, como é o caso do modo TM30-1530 cm⁻¹ da timina. Nesta situação, especificamente, a presença das interações de hidrogênio provavelmente gerarou uma intensidade baixa ou nula em determinados picos dos espectros Raman medidos. Vale ressaltar, que este comportamento foi mais comum nas regiões de baixa concordância (onde o redshift foi identificado). Por fim, notou-se que nesta mesma região de

"deslocamento para o vermelho" alguns picos medidos apresentaram um alargamento, diferentemente dos teóricos; dentre tais podem-se destacar P521-3125 cm⁻¹ da adenina (associado ao modo AM36-3280 cm⁻¹) e P477-3089 cm⁻¹ da citosina (justificado pelo modo CM29-3245 cm⁻¹). Este comportamento pode ser ligeiramente explicado tanto pelas ligações de hidrogênio, quanto pelos modos de estiramento das ligações O-H das moléculas de água (interferentes nos modos de estiramento das bases nitrogenadas).

No geral, a diferença de números de onda experimentais e teóricos (modos) foi da faixa de 0-497 cm⁻¹; isto significa que apenas um dos modos, de todos os espectros, apresentou concordância absoluta com o experimental, o modo GM19-847 cm⁻¹ juntamente com seu devido pico medido em P241-847 cm⁻¹ da guanina (todos demais espectros se mostraram variantes com relação aos seus modos e picos experimentais). A faixa avaliada como recorrente nas discrepâncias foi de 20-219 cm⁻¹ em média ponderada. As maiores concordâncias, levando em consideração todas as bases presentes em um mesmo sistema RNA/DNA, entre os modos teóricos (DFT - PCM) e os picos medidos ocorrem na região 0-1440 cm⁻¹. Portanto, qual atribuição a movimentos atômicos dos modos vibracionais calculados DFT-PCM pode ser correlacionado diretamente com os picos experimentais, mesmo no nível zero da metodologia que está sendo implementada? Os níveis subsequentes da metodologia trarão à tona os efeitos dos açúcares/grupos fosfatos e as diversas interações entre os nucleotídeos. No primeiro caso, o nível um da metodologia mostrará a atribuição de modos que serão relacionados aos açúcares/grupo fosfato, enquanto o nível dois da metodologia mostrará como as atribuições já realizadas serão influenciadas ou poderão mudar fortemente de acordo com as interações entre dois, três (no caso do RNA, 64 códons), quatro nucleotídeos, e assim por diante.

Podemos destacar as seguintes concordâncias entre os picos Raman das bases RNA/DNA experimentais e calculadas DFT-PCM:

<u>URACILA</u> P21-556:UM06-553; P48-789:UM12-790; P93-1235:UM19-1239; P123-1393:UM20-1402 <u>TIMINA</u> P03-117:TM01-113; P126-617:TM11-616; P160-739:TM13-752; P323-1367:TM24-1390 <u>CITOSINA</u> P90-553:CM07-549; P137-791:CM13-794; P282-1292:CM21-1307; P294-1376:CM22-1375 <u>GUANINA</u> P121-495:GM09-496; P170-649:GM13-642; P372-1230:GM30-1419; P401-1361:GM32-1542 <u>ADENINA</u> P114-536:AM06-524; P134-622:AM11-624; P157-722:AM14-736; P307-1333:AM27-1390

Figura 12 – Comparação entre o Raman experimental e o calculado DFT-PCM da base uracila.

Fonte: Elaborada pelo autor.

Thymine

Fonte: Elaborada pelo autor.

Figura 14 – Comparação entre o Raman experimental e o calculado DFT-PCM da base citosina.

Fonte: Elaborada pelo autor.

Figura 15 – Comparação entre o Raman experimental e o calculado DFT-PCM da base guanina.

Fonte: Elaborada pelo autor.

Figura 16 – Comparação entre o Raman experimental e o calculado DFT-PCM da base adenina.

Fonte: Elaborada pelo autor.

4.4 Atribuição dos Modos Raman DFT-PCM das Bases do RNA/DNA

É fundamental a atribuição dos modos Raman das bases do RNA/DNA calculados DFT/PCM aos movimentos de átomos e grupos dos mesmos, pois é a partir dela que se podem inferir atribuições válidas para medidas experimentais, contanto que os modos vibracionais calculados pela teoria DFT descrevam bem aqueles medidos experimentalmente. Já mostramos anteriormente (Figs. 12-16) que os picos dos espectros das bases do RNA/DNA calculados por DFT-PCM no nível de cálculo M062X/6-311++g(d,p) demonstraram considerável nível de concordância e acurácia com os medidos nos experimentos realizados para esta dissertação, a exceção sendo aqueles na região que consideramos como sendo de "baixa concordância", na faixa média de 1440-4000 cm⁻¹, que em geral não são considerados na maior parte dos trabalhos. Portanto, no nível zero da metodologia que estamos propondo, as atribuições DFT-PCM dos modos de vibração das bases RNA/DNA podem ser usadas para se realizar as atribuições dos modos vibracionais de sistemas RNA/DNA experimentais complexos.

Nas Tabelas 3-7, apresentadas anteriormente, realizamos as atribuições dos deslocamentos de átomos e seus devidos grupos aos modos normais de vibração das bases do RNA/DNA. Foram realizadas atribuições para todos os modos com intensidades Raman relevantes; sendo 30 modos da uracila, 38 para a timina, 33 para a citosina, 42 para a guanina e 39 para a adenina. Pode-se notar que há muitos modos de alongamento ou flexão de ligações associados a anéis, podendo se destacar o UM06 $[\beta_{(in)ring} (6a)]$ e o UM12 $[v_{ring} (1)]$ em 553 cm⁻¹ e 790 cm⁻¹, respectivamente; o TM08 [$\beta_{(in)ring}$ (6a)] em 467 cm⁻¹ e TM13 [ν_{ring} (1)] em 752 cm⁻¹ com vetores menos expressivos; o CM13 [v_{ring} (1)] e o CM22 [$\beta_{(in)ring}$ (3)] em 794 cm⁻¹ e 1375 cm⁻¹, sendo este último representado por vetores menores; o GM13 [v_{ring} (1)] em 642 cm⁻¹ e GM37 [$\beta_{(in)ring}$ (9b)] em 1762 cm⁻¹ como segunda atribuição mais importante do modo (vetores intermediários); o AM14 [vring (1)] em 736 cm⁻¹, como terceira atribuição representativa do modo (vetores de tamanho reduzido), e AM33 [$\beta_{(in)ring}$ (9a)] em 1661 cm⁻¹. No caso de vibrações entre aproximadamente 100 - 200 cm⁻¹, mais precisamente próximo de 150 cm⁻¹, temos torções como no caso UM01 [τ_{ring} (C2C4O2O4N3)] em 154 cm⁻¹, TM02 [τ_{ring} (C2C4O2O4N3)] em 154 cm-1, CM01 [τ_{ring} (C5C6N1)] em 150 cm⁻¹, GM01 [τ (C8N7N9)] em 140 cm⁻¹ e AM02 [τ (C8N7N9)] em 161 cm⁻¹, sendo estes dois últimos pouco expressivos. Outra diferença perceptível, com relação às torções, é que tanto na guanina quanto na adenina (purinas) as torções nas regiões descritas são originárias nos anéis em "C8N7N9", em detrimento aos aromáticos; diferentemente das pirimidinas (uracila, timina e citosina). Além deste, outro detalhe pode ser observado: atribuições torcionais estão presentes em picos/modos teóricos pouco intensos. Em suma, para validar os parâmetros propostos, sabe-se que todas as atribuições dos modos, com exceção de UM01 e TM02, possuem concordância com o espectro medido experimentalmente. Isso nos leva à conclusão de que a região espectral comprometida, em quesito da explicação experimental na uracila e timina, é aquela condizente às torções.

Comparando entre si os modos de bases RNA/DNA diferentes, pode se notar que elas possuem modos vibracionais cujos comprimentos de onda são relativamente próximos, com diferenças menores do que 9-10 cm⁻¹ do valor dos números de onda (entre 9 e 5 cm⁻¹ em sua maior parte). Como consequência, modos em bases diferentes podem vibrar com o mesmo número de onda. Por exemplo, os modos TM17, CM15, GM21 e AM18 vibram todos com comprimento de onda no intervalo 942-960 cm⁻¹, mas as atribuições dos modos diferem entre si, sendo as principais: δ_{out} (C6H) para a timina, ρ (N4'H1H2) para a citosina, β_{in} (C5"C6'C8N7N9) para a guanina e δ_{in} (N7H) para a adenina. Uma análise detalhada das tabelas de atribuições (Tabelas 3-7), como referido anteriormente na seção 4.2, mostrou que 34 e 18 conjuntos de bases vibram em dubletos e tripletos respectivamente, totalizando 52 conjuntos de modos próximos cujos números de onda diferem por cerca de menor que 9-10 cm⁻¹ dos seus valores (houve ausência de quartetos e quintetos). Eles, portanto, podem vibrar com um mesmo número de onda específico (igual região espectral) sendo formados por bases diferentes, em outros termos, sistemas complexos de DNA/RNA poderão vibrar em um mesmo número de onda hipotético. Alguns dos modos mais característicos, marcados de amarelo em tais tabelas, foram gerados através do software Gaussian 09 e estão apresentados na Figura 17.

Neste ponto, comparações entre as Figuras 2 e 19, assim como entre as Figuras 3 e 22 a 25, mostram claramente como a metodologia que está sendo proposta pode ser útil. Uma atribuição dos modos baseada somente no acúmulo de resultados experimentais é um tanto quanto limitada, podendo levar a uma grande quantidade de atribuições errôneas ou que não podem ser realizadas, inferidas por parte de quem opera a instrumentalização laboratorial Raman. No caso da metodologia que está sendo proposta e desenvolvida, pode-se avaliar nas Figuras 19 e 22-25 que o contorno geral dos espectros medidos é reproduzido mesmo no nível zero da metodologia, e todas as atribuições dos modos podem ser realizadas com certa confiabilidade.

Figura 17- Deslocamentos atômicos de vários modos vibracionais das bases do RNA/DNA.

Fonte: Elaborada pelo autor.

5 ESPECTRO RAMAN DO microRNA-16 (miRNA-16)

Os microRNAs (miRNAs) são pequenos fragmentos de RNAs não-codificantes (19-25 unidades) que regulam a expressão gênica através da degradação do RNA mensageiro (mRNA) ou inibição da translação, também conhecida como tradução (DRISKELL et al., 2008). Os miRNAs possuem papéis-chave em caminhos regulatórios que incluem desenvolvimento, apoptose, proliferação celular, diferenciação, desenvolvimento de órgãos e câncer. Algoritmos computacionais têm predito potencialmente centenas de alvos prováveis para RNAs individuais, e já foi mostrado que simples transcrições podem ser reguladas por miRNAs múltiplos. A partir destes dados foi sugerido que até cerca de 30% do genoma humano pode ser regulado por miRNAs. Os papéis reconhecidos para os miRNAS sugerem que alguns de seus tipos ou padrões deles expressados podem servir como biomarcadores para doenças, particularmente no desenvolvimento de alguns cânceres. O desenvolvimento de métodos analíticos para uma rápida e sensível identificação do miRNA é essencial para a descoberta de potenciais indicadores biológicos ou patogênese de uma doença e para detecção de perfis à expressão de miRNAs ligados a estados das doenças (DRISKELL et al., 2008).

Nesta seção do trabalho da dissertação, é aplicada a metodologia de ordem zero que está sendo desenvolvida para explicar vários aspectos do espectro do miRNA-16 (associado ao câncer), que foi medido por Drikell e colaboradores (2008) via utilização da Espectroscopia Raman Aprimorada por Superfície - SERS (Surface Enhanced Raman Spectroscopy) - considera-se que SERS altera consideravelmente as intensidades do espalhamento de luz, mas não varia muito os seus números de onda. O espectro SERS do miRNA-16 para os números de onda 400 – 1800 cm⁻¹ medido por DRIKELL 2008, cuja sequência de 22 bases é UAGCAGCACGUAAAUAUUGGCG (Fig. 18), está apresentado na parte central da Fig. 19. Nenhum ensaio de atribuição dos modos vibracionais foi feito para esta estrutura de RNA, uma fita simples helicoidal. No topo da Fig. 19 apresentamos o espectro Raman calculado por DFT-PCM considerando a adição de cinco espectros uracila U1+U11+U15+U17+U18, (Lorentzianos) da sete espectros da adenina A2+A5+A8+A12+A13+A14+A16, seis da guanina G3+G6+G10+G19+G20+G22, e quatro da citosina C4+C7+C9+C21.

Figura 18 – Estrutura tridimensional da hélice do microRNA-16 obtida via biologia computacional.

Fonte: Elaborada pelo autor.

Na parte debaixo da Fig. 19 são apresentados os modos de vibrações mais importantes do miRNA-16, além dos deslocamentos de seus átomos e estruturas mais importantes relacionadas aos respectivos comprimentos de onda associados a cada base (Figura 20). Vale ressaltar que a utilização da ordem zero de metodologia também originou a correlação direta com os picos experimentais e todos os valores teóricos, concedendo assim uma tabela com todos os modos atômicos associados com o miRNA-16 (Tabelas 18 e 19). É auspicioso que, mesmo no nível zero da metodologia aqui proposta, consegue-se não somente uma boa concordância entre os picos experimentais e os calculados DFT-PCM, mas também se é capaz de fazer atribuições de movimentos atômicos a todos os picos do espectro. Todavia, qual seria a contribuição: dos açúcares e grupo fosfato? E quanto às interações de hidrogênio entre os nucleotídeos?

Figura 19 - Comparativo entre Raman calculado em PCM via DFT obtido em nível zero e o resultado SERS experimental medido por autor e colaboradores (DRISKELL et al., 2008).

Figura 20 – Deslocamentos atômicos de principais modos vibracionais do miRNA-16 relacionado ao câncer que foram obtidos com a metodologia aqui desenvolvida.

Fonte: Elaborada pelo autor.
Tabela 18 – Modos associados do miRNA-16 obtidos da aproximação de ordem zero (de 0 a 1140 cm⁻¹). Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment	
411	404 ⁻¹	CM05	6.44	δ_{out} (C6H); τ (N4'H1H2); $\beta_{(out)ring}$ (17b)	
441	447 ²	GM08	13.16	$\delta_{out} (N2''H1); \delta_{out} (N3H); \delta_{out} (N2''H2); \delta_{out} (C2''N2''); \delta_{out} (N7H)$	
498	496 ³	GM09	55.26	$\delta_{out} (N2''H1); \delta_{out} (N2''H2); \beta_{(in)ring} (6a); \beta_{in} (C5''C6'C8N7N9); \delta_{out} (N3H)$	
531	527 ⁴	UM05	23.57	$\beta_{\text{(in)ring}}(6a);\delta_{\text{in}}(N3H);\delta_{\text{in}}(C4O4);\delta_{\text{in}}(C5H);\delta_{\text{in}}(C6H);\delta_{\text{in}}(C2O2)$	
554	549 ⁵	CM07	35.1	$\rho(N4'H1H2);\delta_{in}(C5H);\delta_{in}(N1H);\delta_{in}(C2O2);\beta_{(in)ring}(6a);\delta_{in}(C4'N4')$	
_	553 ⁶	UM06	59.07	$\beta_{(in)ring}(6a);\delta_{in}(C5H);\delta_{in}(N3H);\delta_{in}(C6H);\delta_{in}(C2O2);\delta_{in}(C4O4);\delta_{in}(N1H)$	
590	587 ⁷	СМ09	54.08	$\beta_{(in)ring}(6b);\delta_{in}(C5H);\delta_{in}(C6H);\delta_{in}(N4'H1);\delta_{in}(N1H)$	
_	587 ⁸	GM11	1.32	$\delta_{out} (N7H); \delta_{out} (N3H); \delta_{out} (C8H); \beta_{out} (C5''C6'C8N7N9); Libration mode (10b); \delta_{out} (N2''H1)$	
622	615 ⁹	GM12	5.54	$\delta_{out} (N3H); \delta_{out} (N7H); \tau (N2''H1H2); Libration mode (10a); \tau (C8N7N9); \delta_{out} (C8H)$	
_	624 ¹⁰	AM11	96.26	$\delta_{in} (N4'H2); \rho (N4'H1H2); \delta_{in} (C2'H); \beta_{(in)ring} (6b); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C4'N4')$	
641	•642 ¹¹	GM13	351.91	$v_{ring}(1); \delta_{in}(N7H); \omega (N2''H1H2); \delta_{out}(C8H); \beta_{in}(C5''C6'C8N7N9)$	
_	647 ¹²	UM09	5.51	δ_{out} (N3H); δ_{out} (N1H); $\beta_{(out)ring}$ (17a); δ_{out} (C6H)	
732	731 ¹³	UM10	3.84	$\delta_{out} (C5H); \delta_{out} (N1H); \delta_{out} (C6H); \tau_{ring} (C4C5C6); Libration \ mode \ (10b)$	
_	734 ¹⁴	CM11	1.7	δ_{out} (C5H); δ_{out} (N1H); $\beta_{(out)ring}$ (5); τ (N4'H1H2); δ_{out} (C2O2)	
_	•736 ¹⁵	AM14	404.98	$\delta_{in}(N4'H2);\nu_{breathing}(C5''C6'C8N7N9);\nu_{ring}(1);\delta_{in}(C2'H);\delta_{in}(N7H)$	
794	•790 ¹⁶	UM12	210.23	$v_{ring}(1);\delta_{in}(N3H);\delta_{in}(C5H);\delta_{in}(N1H)$	
_	• 794 ¹⁷	CM13	246.87	$v_{ring}(1); v(C4'N4'); \delta_{in}(N4'H1); \delta_{in}(N1H); \delta_{out}(C5H)$	
852	847 ¹⁸	GM19	18.02	$\rho(N2''H1H2);\beta_{(in)ring}(12);\delta_{in}(C8H);\delta_{in}(N3H);\delta_{in}(N7H);\beta_{in}(C5''C6'C8N7N9)$	
879	879 ¹⁹	GM20	18.47	δ_{out} (C8H); β_{out} (C5''C6'C8N7N9)	
918	910 ²⁰	AM17	43.87	$\beta_{(in)ring}(12); \delta_{out}(C8H); \delta_{in}(N7H); \beta_{in}(C5''C6'C8N7N9); \delta_{in}(N4'H2); \nu(C5''N9); \nu(C4'N4')$	
956	956 ²¹	AM18	102.03	$\delta_{in}(N7H);\beta_{in}(C5''C6'C8N7N9);\delta_{in}(C8H);\delta_{in}(N4'H1);\nu_{ring}(1);\delta_{in}(C2'H)$	
961	960 ²²	CM15	53.48	$\rho (N4'H1H2); \delta_{in} (C6H); \delta_{in} (N1H); \nu_s (C2N1N3'); \beta_{iin)ring} (9b)$	
_	960 ²³	GM21	140.24	$\beta_{in} (C5''C6'C8N7N9); \delta_{in} (N7H); \delta_{in} (C8H); v_{ring} (1); \delta_{in} (N3H); \rho (N2''H1H2); v (C4O4)$	
996	996 ²⁴	UM15	25.37	$\delta_{out}(C6H); \delta_{out}(C5H); \tau_{ring}(C5C6); \delta_{out}(N1H); \beta_{(out)ring}(17b)$	
1013	1016 ²⁵	AM20	92.34	$\rho (N4'H1H2); \delta_{in} (C2'H); \delta_{in} (C4'N4'); v_s (C2'C4'N3'); v_{ring} (19b); \delta_{out} (N7H); \beta_{in} (C8N7N9)$	
1056	1060 ²⁶	GM22	31.29	$\rho(N2''H1H2); \delta_{in}(N3H); v(C2''N3); \beta_{(in)ring}(18b); \delta_{out}(N7H); \delta_{out}(C2''N2''); v_{breathing}(C5''C6'C8N7N9); \delta_{out}(C8H)$	
1105	1100 ²⁷	GM23	150.32	$\delta_{in}(N7H);\delta_{in}(C8H);\rho(N2''H1H2);\nu(C8N7);\beta_{(in)ring}(9b)$	
_	1105 28	UM17	47.32	$\delta_{in}\left(C5H\right);\delta_{in}\left(N1H\right);\delta_{in}\left(C6H\right);\nu_{ring}\left(14\right)$	
1112	1110 ²⁹	AM21	124.69	$\delta_{in}(\mathrm{N7H});\delta_{in}(\mathrm{C8H});\nu(\mathrm{C8N7});\delta_{out}(\mathrm{C2'H});\rho(\mathrm{N4'H1H2})$	
1120	1119 ³⁰	CM18	24.95	$\rho (N4'H1H2); \delta_{in} (C6H); \beta_{(in)ring} (15)$	
1136	1140 ³¹	CM19	57.35	$\delta_{in}(C5H);\delta_{in}(N1H);\delta_{in}(C6H);v_{s}(C5C6N1);\rho(N4'H1H2)$	

Tabela 19 – Modos associados do miRNA-16 obtidos da aproximação de ordem zero (de 1140 à 1800 cm⁻¹). Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment
1164	1163 ³²	AM22	51.03	$\delta_{in}(C8H);\delta_{in}(N7H);\delta_{in}(N4'H2);\rho(N4'H1H2);\delta_{in}(C2'H);\beta_{(in)ring}(18a);\nu_{s}(C6'N1'N7);\nu(C4'N4');\beta_{in}(C5''C6'C8N7N9)$
_	1170 ³³	GM25	147.05	$\rho \left(N2''H1H2 \right) \! ; \; \delta_{in} \left(N3H \right) \! ; \; \delta_{in} \left(C8H \right) \! ; \; \beta_{(in)ring} (15) \! ; \; \delta_{in} \left(N7H \right) \! ; \; \nu \left(C6'N7 \right) \! ; \; \delta_{in} \left(C2''N2'' \right) \! $
1207	1203 ³⁴	GM26	33.48	$\delta_{in} \left(C8H \right); \delta_{in} \left(N7H \right); \beta_{(in)ring} \left(15 \right); v_s \left(C4C5''N9 \right); v \left(C4N3 \right); v \left(C6'N7 \right); \delta_{out} \left(N3H \right); \beta_{in} \left(C5''C6'C8N7N9 \right); \delta_{out} \left(N3H \right); \delta_{in} \left(N3$
1221	1221 ³⁵	UM18	6.63	$\delta_{in}(C6H);\delta_{in}(N1H);\delta_{in}(N3H);\delta_{in}(C5H);v_{ring}(8b);\nu(C2N3)$
1243	•1239 ³⁶	UM19	381.61	$\delta_{in}\left(C5H\right);\delta_{in}\left(N3H\right);\delta_{in}\left(N1H\right);\nu_{ring}\left(14\right)$
1253	1258 ³⁷	AM23	171.66	$\delta_{in}(C8H);\rho(N4'H1H2);\delta_{in}(C2'H);\nu(C5''N9);\nu_{breathing}(C5''C6'C8N7N9);\nu_{ring}(1);\delta_{in}(N7H);\delta_{in}(C4'N4')$
1279	1280 ³⁸	AM24	287.86	$\delta_{in}(C8H);\delta_{in}(N7H);\delta_{in}(C2'H);\nu_{ring}(1);\nu(C2'N3');\nu(C8N9);\delta_{in}(N4'H1)$
1299	•1307 ³⁹	CM21	368.68	$\delta_{in}\left(C6H\right);\delta_{in}\left(N4'H1\right);\beta_{(in)ring}(15);\delta_{in}\left(N1H\right)$
1329	1330 ⁴⁰	GM27	264.47	$\delta_{in} (C8H); \delta_{in} (N7H); v_a (C5''C8N9); \delta_{out} (N2''H2); v_s (C6'N1'N7); \beta_{(in)ring} (9a); \delta_{out} (N3H)$
1359	1349 ⁴¹	AM25	1019.03	$\delta_{in}({\rm C2'H});\beta_{(in)ring}(15);\delta_{in}({\rm C8H});\rho({\rm N4'H1H2});\delta_{out}({\rm N7H});\nu({\rm C8N9})$
—	1360 ⁴²	GM28	221.05	$\delta_{in} (N3H); \ \delta_{in} (N2''H1); \ \sigma (N2''H1H2); \ \nu (C2''N2''); \ \delta_{in} (N7H); \ \beta_{in} (C5''C6'C8N7N9); \ \beta_{(in)ring} (15); \ \delta_{in} (C8H); \ \nu (C4O4) (C4O4)$
1398	•1390 ⁴³	AM27	1593.17	$\delta_{in}(C8H);\delta_{in}(C2'H);\delta_{in}(N7H);\nu(C5''N9);\nu_{a}(C2'C4'N3');\beta_{(in)ring}(18b);\beta_{in}(C8N7N9);\delta_{in}(N4'H2)$
1401	1402 44	UM20	342.65	$\delta_{in}(C6H);\delta_{in}(N3H);\delta_{in}(C5H);\delta_{in}(N1H);\beta_{(in)ring}(18b);\nu(C2N1)$
1416	•1419 ⁴⁵	GM30	1364.85	$\delta_{in}(N7H);\delta_{in}(C8H);\beta_{in}(C5''C6'C8N7N9);\rho(N2''H1H2);\beta_{(in)ring}(15)$
1439	1431 ⁴⁶	UM21	15.64	$\delta_{in}(N3H);\delta_{in}(C6H);\delta_{in}(C5H);\beta_{(in)ring}(18b);\nu(C4O4);\nu(C2N1)$
_	1439 ⁴⁷	UM22	10.87	$\delta_{in}(N1H);\delta_{in}(C6H);\beta_{(in)ring}(18b);\beta_{(in)ring}(9a)$
_	1440 ⁴⁸	AM28	526.57	$\delta_{in}(N7H);\delta_{in}(C2'H);\nu(C8N7);\delta_{in}(C8H);\beta_{(in)ring}(18b);\nu(C4'C5'');\rho(N4'H1H2)$
1452	1454 ⁴⁹	CM23	58.51	$\delta_{in} \left(N1H \right); \rho \left(N4'H1H2 \right); \beta_{(in)ring} \left(15 \right); \delta_{in} \left(C5H \right)$
_	1455 ⁵⁰	GM31	487.83	$\delta_{in}(N3H);\beta_{(in)ring}(18b);\delta_{in}(N3H);\beta_{in}(C5''C6'C8N7N9);\rho(N2''H1H2);\delta_{in}(N7H);\delta_{in}(C8H)$
1464	1462 ⁵¹	AM29	109.82	$\delta_{in} (N4'H2); \sigma (N4'H1H2); \nu (C6'N7); \beta_{(in)ring}(18b); \delta_{in} (C2'H); \nu (C4'N4'); \delta_{out} (N7H); \nu (C8N9)$
1529	1511 ⁵²	CM24	36.4	$\beta_{(in)ring}(18a); \sigma (N4'H1H2); v (C4'N4'); \delta_{in} (N1H); v (C2O2)$
_	1526 ⁵³	AM30	56.6	$\delta_{in}(C2'H);\sigma(N4'H1H2);\nu_{s}(C4'C5''N3');\nu(C4'N4');\beta_{(in)ring}(9b);\delta_{out}(N7H);\beta_{in}(C5''C6'C8N7N9)$
_	1527 54	UM23	221.27	$\delta_{in} (N1H); \beta_{(in)ring} (9b); \nu (C2O2)$
1544	•1542 ⁵⁵	GM32	1781.7	$\delta_{in}(N3H);\delta_{in}(C8H);\nu(C8N9);\beta_{(in)ring}(9b);\beta_{(in)ring}(18b);\delta_{in}(N2''H1);\sigma(N2''H1H2)$
	•1546 ⁵⁶	AM31	1780.7	$\delta_{in} (C8H); \nu (C8N9); \sigma (N4'H1H2); \delta_{in} (N7H); \beta_{(in)ring} (9b); \nu (C5''C6')$
1593	1589 ⁵⁷	GM33	581.4	$\delta_{in}(N3H);\delta_{in}(C8H);\sigma(N2''H1H2);\nu(C8N9);\nu_{ring}(13);\delta_{in}(N7H)$
_	1590 ⁵⁸	CM25	249.04	$\delta_{in} (N1H); \beta_{(in)ring} (9b); \rho (N4'H1H2)$
1634	1630 ⁵⁹	CM26	101.35	$\sigma(N4'H1H2);v(C4'N4');v(C2O2);\delta_{\rm in}(N1H)$
	1632 ⁶⁰	GM34	392.72	$\sigma(N2''H1H2);\delta_{in}(N3H);\beta_{(in)ring}(9b);\delta_{in}(C8H);\beta_{in}(C5''C6'C8N7N9)$
	•1638 ⁶¹	GM35	2246.5	$\delta_{in}(N7H);\sigma(N2''H1H2);\beta_{(in)ring}(9a);\delta_{in}(C8H);\beta_{in}(C5''C6'C8N7N9)$
1665	1661 ⁶²	AM33	965.24	$\beta_{(in)ring}(9a); \nu (C6'N1'); \delta_{in} (N7H); \delta_{in} (C2'H); \sigma (N4'H1H2); \nu (C4'N4'); \delta_{in} (C8H); \nu (C8N9)$
—	1661 ⁶³	GM36	165.41	$\sigma (N2''H1H2); \ \delta_{out} (N3H); \ v_a (C2''N1'N2''); \ \delta_{out} (N7H); \ v_s (C2''C6'N1'); \ \beta_{(in)ring} (9b)$
—	1670 ⁶⁴	AM34	150.7	$\delta_{in}(N4'H1);\nu(C4'C5'');\beta_{(in)ring}(9b);\delta_{in}(N7H);\delta_{in}(C8H);\beta_{in}(C5''C6'C8N7N9)$
1693	1696 ⁶⁵	CM27	149.02	$\delta_{in}(C6H);\beta_{(in)ring}(9a);\nu(C2O2);\delta_{in}(N4'H1);\nu(C4'N3')$
	1698 66	UM24	542.92	$\delta_{in}(C6H);\nu(C5C6);\delta_{in}(C5H);\delta_{in}(N1H);\beta_{(in)ring}(9a);\nu(C4O4)$
1721	1718 ⁶⁷	CM28	258.78	$\nu \left(C2O2 \right); \delta_{in} \left(N1H \right); \sigma \left(N4'H1H2 \right); \nu \left(C4'N4' \right); \beta_{(in)ring} \left(9b \right)$
1743	1746 68	UM25	474.62	$\delta_{in}(N3H);\nu(C4O4);\nu(C2O2);\delta_{in}(N1H);\beta_{(in)ring}(18a)$
1760	1762 ⁶⁹	GM37	857.96	$v(C404);\beta_{(in)ring}(9b);\delta_{in}(N3H);\sigma(N2''H1H2);\delta_{in}(C8H);v(C8N9);\delta_{in}(N7H)$
1794	•1796 ⁷⁰	UM26	577.63	$\nu(C2O2);\delta_{in}(N1H);\nu(C4O4);\delta_{in}(N3H);\beta_{(in)ring}(18b)$

Vale salientar que os modos marcados nas tabelas 18 e 19 estão entre os mais expressivos e, portanto, se encontram presentes na Figura 20. Os demais modos estão presentes, com detalhes, no Apêndice B. Prosseguindo, ao avaliar cuidadosamente o resultado obtido, observou-se que alguns dos 70 modos condizentes com o resultado experimental, exposto por Driskell e colaboradores, estavam em conjunto relacionados com um único pico medido. Por exemplo, podemos citar os modos UM10, CM11 e AM14; os quais foram detectados próximos ao pico experimental P37-732 cm⁻¹. Desta forma, inferimos que os três modos podem representar determinado pico detectado. Outro padrão percebido ao se aplicar a aproximação de ordem zero de metodologia pode ser pontuado ao se relacionar as regiões de a até g dos espectros calculado somado e experimental (acima e ao meio da Figura 19, respectivamente). Nestas divisões, notou-se que alguns picos possuíam proximidade observável, como é o caso dos picos somados P09-736 cm⁻¹ e P10-792 cm⁻¹ com os picos medidos por SERS P37-732 cm⁻¹ e P38-794 cm⁻¹, trazendo à tona a acurácia obtida na utilização do nível teórico aqui aplicado. Além destes, outros picos, como em P24-1160 cm⁻¹ e P33-1352 cm⁻¹ (somados após o cálculo) com P81-1159 cm⁻¹ e P103-1359 cm⁻¹ (experimentais), respectivamente. Entretanto, alguns picos medidos se mostraram "mais largos" e/ou "menos intensos" que os respectivos teóricos; como no comparativo entre P36-1416 cm⁻¹ (calculado) com P108-1416 cm⁻¹ (experimental). É perceptível que este último se encontrou quase sobreposto por outros picos. A resposta para tal comportamento pode advir tanto das interações entre as bases, quando da presença das pentoses e grupamento fosfato (nucleotídeos). Supõe-se que esta diferença seja contornada à medida que avançaremos na descrição dos níveis 1 e 2 de metodologia. No mais, foi notório que apenas as bases nitrogenadas, tratadas individualmente, podem configurar muitos picos experimentais. Sabese, todavia, que alguns modos serão tratados como assinalamento vibracional Raman "fortes" e "fracos", conforme foi esclarecido e resumido nas tabelas 1, 2 e 14.

6 ESPECTRO RAMAN DE Trinucleotídeos (DNA)

Figura 21 – Permutação de três nucleotídeos do DNA: ACA, CAA, CAC e CCA.

Fonte: Elaborada pelo autor.

Após a concretização de uma boa aproximação (com pouca margem de erro) em um sistema de RNA, no caso, um micro-RNA, percebeu-se a necessidade de reavaliar os resultados obtidos para o nível de ordem zero em um sistema de DNA. Desse modo, tomaram-se como base as avaliações obtidas por Rubin e colaboradores (2021) que trabalharam com espectroscopia Raman de quatro trinucleotídeos: ACA, CAA, CAC e CCA (Figura 21); sob o fenômeno da permutação de nucleotídeos (RUBIN; NGUYEN; FAINMAN, 2021). De um modo geral, autor e colaboradores realizaram um comparativo entre espectros Raman convencionais (utilizados neste estudo) e SERS, tal qual o estudo envolvendo miRNA-16; com o intuito de avaliar, experimental e numericamente, as discrepâncias acarretadas pelo efeito dos arranjos espaciais de bases de DNA em ambas as técnicas espectroscópicas.

Assim, a presente dissertação teve como um dos objetivos caracterizar com boa precisão tais espectros experimentais. Vale ressaltar que Rubin e colaboradores (2021) também desenvolveram cálculos teóricos, mas sem obter uma resposta necessariamente ampla para os modos vibracionais relativos às regiões dos espectros experimentais. De maneira similar ao que foi realizado na seção 5, utilizamos apenas as bases Adenina e Citosina (uma vez que estas são permutadas) para avaliar a proximidade dos picos teóricos aos medidos, considerando as respectivas intensidades (Figuras 22 a 25).

Figura 22 – Comparativo entre Raman calculado em PCM via DFT obtido em nível zero e o resultado experimental medido por autor e colaboradores do trinucleotídeo ACA (RUBIN; NGUYEN; FAINMAN, 2021).

Fonte: Elaborada pelo autor.

Figura 23 – Comparativo entre Raman calculado em PCM via DFT obtido em nível zero e o resultado experimental medido por autor e colaboradores do trinucleotídeo CAA (RUBIN; NGUYEN; FAINMAN, 2021).

Fonte: Elaborada pelo autor.

Figura 24 – Comparativo entre Raman calculado em PCM via DFT obtido em nível zero e o resultado experimental medido por autor e colaboradores do trinucleotídeo CAC (RUBIN; NGUYEN; FAINMAN, 2021).

Figura 25 – Comparativo entre Raman calculado em PCM via DFT obtido em nível zero e o resultado experimental medido por autor e colaboradores do trinucleotídeo CCA (RUBIN; NGUYEN; FAINMAN, 2021).

Portanto, tal qual foi realizado para o sistema de RNA (miRNA-16), dividiu-se os espectros experimentais e teóricos, bem como os seus devidos assinalamentos, em 5 regiões principais, que com o comparativo com os nossos resultados obtidos percebemos a boa proximidade de caracterização visual entre os espectros calculados e medidos. Assim, tem-se que em CAA os picos experimentais em 616, 710 e 804 cm⁻¹ podem ser representados, respectivamente, por 625, 733 e 792 cm⁻¹; enquanto na região do espectro com os picos em 1585 e 1681 cm⁻¹, a representação teórica se deu em 1543 e 1660 cm⁻¹, consecutivamente; levando em consideração no espectro calculado a soma das bases individuais e as intensidades destas (uma citosina para duas adeninas). Prosseguindo com esta associação plausível, os modos atribuídos podem ser correlacionados com cada um dos picos citados acima: em 616, 710 e 804 cm⁻¹, os principais modos encontrados foram AM11/AM14- δ_{in} (N4'H2), CM10- δ_{out} (N1H), AM12- δ_{out} (C8H), AM13- τ_{ring} (C4'C5"C6') e CM11- δ_{out} (C5H), sendo o mais intenso δ_{in} (N4'H2); no caso de 1585 e 1681 cm⁻¹, tem-se que os modos mais influentes se deram por AM30-δ_{in} (C2'H), AM31-δ_{in} (C8H), CM25-δ_{in} (N1H), AM32/CM26-σ (N4'H1H2), AM33- $\beta_{(in)ring}$ (9a); AM34- δ_{in} (N4'H1) e CM27- δ_{in} (C6H), dentre os quais destaca-se em intensidade δ_{in} (C8H). As Tabelas 20 a 23 abrangem todos os modos relativos a cada um dos picos experimentais e teóricos, com os sobrescritos representando numericamente cada um dos modos marcados na parte de baixo das Figuras 22-25.

Há de se ressaltar o fato de que a aproximação de ordem zero facilita a detecção dos picos fortemente dependentes das bases nitrogenadas, mas desviam-se do resultado experimental no quesito de não considerar pentoses (neste caso, desoxirribose) e grupamento fosfato, bem como ao se desconsiderar as interações do tipo π -stacking entre as bases presentes nos nucleotídeos (um dos alvos do trabalho de Rubin e colaboradores (2021)). Dessa forma, é de se considerar que as demais ordens de metodologia (um e dois) em conjunto com os resultados em água explícita (considerando interações moleculares locais com solvente) os resultados se aproximação com uma acurácia cada vez melhor dos espectros medidos experimentalmente. Entretanto, apesar de ausentes, a ribose/desoxirribose, fosfato e interações entre anéis aromáticos das bases puderam ser contornadas através da aplicação da aproximação de ordem zero e as principais regiões espectrais puderam ser inter-relacionadas e bem representadas (considerando a margem de erro existente).

Tabela 20 – Modos associados do trinucleotídeo ACA obtidos da aproximação de ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment
616	624 ¹	AM11	27.5	$\delta_{in} (N4'H2); \rho (N4'H1H2); \delta_{in} (C2'H); \beta_{(in)ring} (6b); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C4'N4')$
_	627 ²	CM10	0.55	δ_{out} (N1H); τ (N4'H1H2); Libration mode (10b); δ_{out} (C6H)
714	674 ³	AM12	1.25	$ δ_{out}$ (C8H); $δ_{out}$ (N7H); $β_{out}$ (C5''C6'C8N7N9); $δ_{out}$ (C2'H); $τ$ (N4'H1H2); $β_{(out)ring}$ (17b)
_	693 ⁴	AM13	0.89	$\tau_{ring} (C4'C5''C6'); \beta_{(out)ring} (17a); \delta_{out} (N7H); \delta_{out} (C8H); \delta_{out} (N4'H1); \omega (N4'H1H2); \beta_{out} (C6'C8N7)$
_	734 ⁵	CM11	0.43	δout (C5H); δout (N1H); β(out)ring (5); τ (N4'H1H2); δout (C2O2)
_	736 ⁶	AM14	115.71	δ_{in} (N4'H2); $v_{breathing}$ (C5''C6'C8N7N9); v_{ring} (1); δ_{in} (C2'H); δ_{in} (N7H)
803	790 ⁷	CM12	1.3	δ _{out} (C5H); τ _{ring} (C2N1N3'); β _{(out)ring} (17b); δ _{out} (C6H); δ _{out} (N4'H1); ω (N4'H1H2); δ _{out} (N1H)
_	794 ⁸	CM13	61.72	$v_{ring}(1); v (C4'N4'); \delta_{in} (N4'H1); \delta_{in} (N1H); \delta_{out} (C5H)$
_	811 9	AM15	1.52	β _{(out)ring} (5); δ _{out} (C2'H); β _{out} (C5''C6'C8N7N9); δ _{out} (C8H); ω (N4'H1H2); δ _{out} (N7H)
910	904 ¹⁰	AM16	4.35	δout (C8H); $βout$ (C5''C6'C8N7N9)
_	910 ¹¹	AM17	12.53	$\beta_{(in)ring}(12); \delta_{out}(C8H); \delta_{in}(N7H); \beta_{in}(C5''C6'C8N7N9); \delta_{in}(N4'H2); \nu(C5''N9); \nu(C4'N4')$
959	956 ¹²	AM18	29.15	$\delta_{in} (N7H); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C8H); \delta_{in} (N4'H1); \nu_{ring} (1); \delta_{in} (C2'H)$
_	960 ¹³	CM15	13.37	$ρ$ (N4'H1H2); $δ_{in}$ (C6H); $δ_{in}$ (N1H); v_s (C2N1N3'); $β_{(in)ring}$ (9b)
1011	996 ¹⁴	AM19	0.55	δ_{out} (C2'H); δ_{out} (N4'H1); $\beta_{(out)ring}$ (17b)
_	998 ¹⁵	CM17	10.09	δout (C5H); ρ (N4'H1H2); β(in)ring (12); δout (C6H)
_	1016 ¹⁶	AM20	26.38	$\rho (N4'H1H2); \delta_{in} (C2'H); \delta_{in} (C4'N4'); v_s (C2'C4'N3'); v_{ring} (19b); \delta_{out} (N7H); \beta_{in} (C8N7N9)$
1067	1110 ¹⁷	AM21	35.62	δin (N7H); δin (C8H); ν (C8N7); δout (C2'H); ρ (N4'H1H2)
-	1119 ¹⁸	CM18	6.24	ρ (N4'H1H2); δ_{in} (C6H); $\beta_{(in)ring}$ (15)
1179	1140 ¹⁹	CM19	14.34	δ_{in} (C5H); δ_{in} (N1H); δ_{in} (C6H); v_s (C5C6N1); ρ (N4'H1H2)
_	1163 ²⁰	AM22	14.58	$\delta_{in} (C8H); \\ \delta_{in} (N7H); \\ \delta_{in} (N4'H2); \\ \rho (N4'H1H2); \\ \delta_{in} (C2'H); \\ \beta_{(in)ring} (18a); \\ v_s (C6'N1'N7); \\ v (C4'N4'); \\ \beta_{in} (C5''C6'C8N7N9) \\ (C5''C6'C8N$
-	1226 ²¹	CM20	19.79	δin (C6H); δin (N1H); δin (C5H); ρ (N4'H1H2); β(in)ring (9b)
1284	1258 ²²	AM23	49.04	$\delta_{in} (C8H); \rho (N4'H1H2); \delta_{in} (C2'H); \nu (C5''N9); \nu_{breathing} (C5''C6'C8N7N9); \nu_{ring} (1); \delta_{in} (N7H); \delta_{in} (C4'N4')$
-	1280 ²³	AM24	82.25	$\delta_{in} (C8H); \delta_{in} (N7H); \delta_{in} (C2'H); v_{ring} (1); v (C2'N3'); v (C8N9); \delta_{in} (N4'H1)$
1343	1349 ²⁵	AM25	291.15	$\delta_{in} (C2'H); \beta_{(in)ring} (15); \delta_{in} (C8H); \rho (N4'H1H2); \delta_{out} (N7H); v (C8N9)$
_	1375 ²⁶	CM22	28.38	δin (C6H); δin (C5H); σ (N4'H1H2); β(in)ring (3); ν (C4'N4'); β(in)ring (15)
-	1382 27	AM26	5.24	$\delta_{in} (C2'H); \\ \delta_{in} (N4'H1); \\ \sigma (N4'H1H2); \\ \delta_{in} (N7H); \\ \delta_{out} (C8H); \\ \nu (C4'N4'); \\ \beta_{(in)ring} (15); \\ \nu_{breathing} (C5''C6'C8N7N9) \\ (C5'$
1430	1390 ²⁸	AM27	455.19	$\delta_{in} \left(C8H \right); \delta_{in} \left(C2'H \right); \delta_{in} \left(N7H \right); \nu \left(C5''N9 \right); \nu_a \left(C2'C4'N3' \right); \beta_{(in)ring} \left(18b \right); \beta_{in} \left(C8N7N9 \right); \delta_{in} \left(N4'H2 \right); \delta$
_	1440 ²⁹	AM28	150.45	$\delta_{in} (N7H); \delta_{in} (C2'H); v (C8N7); \delta_{in} (C8H); \beta_{(in)ring} (18b); v (C4'C5''); \rho (N4'H1H2)$
1452	1454 ³⁰	CM23	14.63	δin (N1H); ρ (N4'H1H2); β(in)ring (15); δin (C5H)
_	1462 ³¹	AM29	31.38	$\delta_{in} (N4'H2); \sigma (N4'H1H2); \nu (C6'N7); \beta_{(in)ring} (18b); \delta_{in} (C2'H); \nu (C4'N4'); \delta_{out} (N7H); \nu (C8N9)$
1584	1526 ³³	AM30	16.17	$\delta_{in} (C2'H); \sigma (N4'H1H2); \nu_s (C4'C5''N3'); \nu (C4'N4'); \beta_{(in)ring} (9b); \delta_{out} (N7H); \beta_{in} (C5''C6'C8N7N9)$
_	1546 ³⁴	AM31	508.77	$\delta_{in} (C8H); v (C8N9); \sigma (N4'H1H2); \delta_{in} (N7H); \beta_{(in)ring} (9b); v (C5''C6')$
_	1590 ³⁵	CM25	62.26	δ_{in} (N1H); $\beta_{(in)ring}$ (9b); ρ (N4'H1H2)
_	1620 ³⁶	AM32	15.65	$\sigma \left(N4'H1H2\right); \delta_{in}\left(C2'H\right); \nu \left(C4'N4'\right); \nu \left(C2'N1'\right); \beta_{(in)ring}\left(9a\right); \delta_{out}\left(C8H\right)$
	1630 ³⁷	CM26	25.34	σ (N4'H1H2); v (C4'N4'); v (C2O2); δ_{in} (N1H)
1680	1661 ³⁸	AM33	275.78	$\beta_{(in)ring}(9a); v(C6'N1'); \delta_{in}(N7H); \delta_{in}(C2'H); \sigma(N4'H1H2); v(C4'N4'); \delta_{in}(C8H); v(C8N9)$
_	1670 ³⁹	AM34	43.06	$\delta_{in} (N4'H1); v (C4'C5''); \beta_{(in)ring} (9b); \delta_{in} (N7H); \delta_{in} (C8H); \beta_{in} (C5''C6'C8N7N9)$
_	1696 ⁴⁰	CM27	37.26	δ _{in} (C6H); β _{(in)sign} (9a); ν (C2O2); δ _{in} (N4'H1); ν (C4'N3')

Tabela 21 – Modos associados do trinucleotídeo CAA obtidos da aproximação de ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment
616	624 ¹	AM11	27.5	$\delta_{in} (N4'H2); \rho (N4'H1H2); \delta_{in} (C2'H); \beta_{(in)ring} (6b); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C4'N4')$
_	627 ²	CM10	0.55	δ_{out} (N1H); τ (N4'H1H2); Libration mode (10b); δ_{out} (C6H)
710	674 ³	AM12	1.25	$\delta_{out}(C8H); \delta_{out}(N7H); \beta_{out}(C5''C6'C8N7N9); \delta_{out}(C2'H); \tau (N4'H1H2); \beta_{(out)ring}(17b)$
_	693 ⁴	AM13	0.89	$\tau_{ring}(C4'C5''C6'); \beta_{(out)ring}(17a); \delta_{out}(N7H); \delta_{out}(C8H); \delta_{out}(N4'H1); \omega (N4'H1H2); \beta_{out}(C6'C8N7) = 0.0000000000000000000000000000000000$
_	734 ⁵	CM11	0.43	δ_{out} (C5H); δ_{out} (N1H); $\beta_{(out)ring}$ (5); τ (N4'H1H2); δ_{out} (C2O2)
_	736 ⁶	AM14	115.71	δ_{in} (N4'H2); $v_{breathing}$ (C5''C6'C8N7N9); v_{ring} (1); δ_{in} (C2'H); δ_{in} (N7H)
804	790 ⁷	CM12	1.3	$\delta_{out} (C5H); \tau_{ring} (C2N1N3'); \beta_{(out)ring} (17b); \delta_{out} (C6H); \delta_{out} (N4'H1); \omega (N4'H1H2); \delta_{out} (N1H)$
_	794 ⁸	CM13	61.72	v_{ring} (1); v (C4'N4'); δ_{in} (N4'H1); δ_{in} (N1H); δ_{out} (C5H)
_	797 ⁹	CM14	0.79	δ_{out} (C5H); δ_{out} (C6H); $\beta_{(out)ring}$ (17b); δ_{out} (N4'H2); δ_{out} (C2O2)
_	811 10	AM15	1.52	$\beta_{(out)ring}(5); \delta_{out}(C2'H); \beta_{out}(C5''C6'C8N7N9); \delta_{out}(C8H); \omega (N4'H1H2); \delta_{out}(N7H)$
913	904 ¹¹	AM16	4.35	δ _{out} (C8H); β _{out} (C5''C6'C8N7N9)
_	910 ¹²	AM17	12.53	$\beta_{(in)ring}(12); \delta_{out}(C8H); \delta_{in}(N7H); \beta_{in}(C5''C6'C8N7N9); \delta_{in}(N4'H2); \nu(C5''N9); \nu(C4'N4')$
954	956 ¹³	AM18	29.15	$\delta_{in} (N7H); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C8H); \delta_{in} (N4'H1); \nu_{ring} (1); \delta_{in} (C2'H)$
_	960 ¹⁴	CM15	13.37	ρ (N4'H1H2); δ_{in} (C6H); δ_{in} (N1H); v_s (C2N1N3'); $\beta_{(in)ring}$ (9b)
1011	996 ¹⁵	AM19	0.55	δ_{out} (C2'H); δ_{out} (N4'H1); $\beta_{(out)ring}$ (17b)
_	998 ¹⁶	CM17	10.09	δ _{out} (C5H); ρ (N4'H1H2); β _{(in)ring} (12); δ _{out} (C6H)
_	1016 ¹⁷	AM20	26.38	$\rho (N4'H1H2); \delta_{in} (C2'H); \delta_{in} (C4'N4'); v_s (C2'C4'N3'); v_{ring} (19b); \delta_{out} (N7H); \beta_{in} (C8N7N9)$
1073	1110 ¹⁸	AM21	35.62	$δ_{in}$ (N7H); $δ_{in}$ (C8H); v (C8N7); $δ_{out}$ (C2'H); ρ (N4'H1H2)
_	1119 ¹⁹	CM18	6.24	$ρ$ (N4'H1H2); $δ_{in}$ (C6H); $β_{(in)ring}$ (15)
1186	1140 ²⁰	CM19	14.34	δin (C5H); δin (N1H); δin (C6H); vs (C5C6N1); ρ (N4'H1H2)
_	1163 ²¹	AM22	14.58	δ _{in} (C8H); δ _{in} (N7H); δ _{in} (N4'H2); ρ (N4'H1H2); δ _{in} (C2'H); β _{(in)ring} (18a); ν _s (C6'N1'N7); ν (C4'N4'); β _{in} (C5''C6'C8N7N9)
_	1226 22	CM20	19.79	δin (C6H); δin (N1H); δin (C5H); ρ (N4'H1H2); β(in)ring (9b)
1279	1258 ²³	AM23	49.04	$\delta_{in} (C8H); \rho (N4'H1H2); \delta_{in} (C2'H); v (C5''N9); v_{breathing} (C5''C6'C8N7N9); v_{ring} (1); \delta_{in} (N7H); \delta_{in} (C4'N4')$
_	1280 ²⁴	AM24	82.25	δ _{in} (C8H); δ _{in} (N7H); δ _{in} (C2'H); ν _{ring} (1); ν (C2'N3'); ν (C8N9); δ _{in} (N4'H1)
1346	1349 ²⁶	AM25	291.15	$δ_{in}$ (C2'H); $β_{(in)ring}$ (15); $δ_{in}$ (C8H); $ρ$ (N4'H1H2); $δ_{out}$ (N7H); v (C8N9)
1378	1375 27	CM22	28.38	δ_{in} (C6H); δ_{in} (C5H); σ (N4'H1H2); $\beta_{(in)ring}$ (3); v (C4'N4'); $\beta_{(in)ring}$ (15)
_	1382 28	AM26	5.24	$δ_{in}$ (C2'H); $δ_{in}$ (N4'H1); σ (N4'H1H2); $δ_{in}$ (N7H); $δ_{out}$ (C8H); v (C4'N4'); $β_{(in)ring}$ (15); v _{breathing} (C5''C6'C8N7N9)
_	1390 ²⁹	AM27	455.19	$\delta_{in} (C8H); \delta_{in} (C2'H); \delta_{in} (N7H); v (C5''N9); v_a (C2'C4'N3'); \beta_{(in)ring} (18b); \beta_{in} (C8N7N9); \delta_{in} (N4'H2)$
1430	1440 ³⁰	AM28	150.45	δ _{in} (N7H); δ _{in} (C2'H); ν (C8N7); δ _{in} (C8H); β _{(in)ring} (18b); ν (C4'C5''); ρ (N4'H1H2)
_	1454 ³¹	CM23	14.63	δin (N1H); ρ (N4'H1H2); β(in)ring (15); δin (C5H)
_	1462 ³²	AM29	31.38	δ _{in} (N4'H2); σ (N4'H1H2); ν (C6'N7); β _{(in)ring} (18b); δ _{in} (C2'H); ν (C4'N4'); δ _{out} (N7H); ν (C8N9)
1585	1526 34	AM30	16.17	δ _{in} (C2'H); σ (N4'H1H2); ν _s (C4'C5''N3'); ν (C4'N4'); β _{(in)ring} (9b); δ _{out} (N7H); β _{in} (C5''C6'C8N7N9)
_	1546 ³⁵	AM31	508.77	δin (C8H); v (C8N9); σ (N4'H1H2); δin (N7H); β(in)ring (9b); v (C5''C6')
_	1590 ³⁶	CM25	62.26	δin (N1H); β(in)ring (9b); ρ (N4'H1H2)
_	1620 ³⁷	AM32	15.65	σ (N4'H1H2); δ _{in} (C2'H); v (C4'N4'); v (C2'N1'); β _{(in)ring} (9a); δ _{out} (C8H)
_	1630 ³⁸	CM26	25.34	σ (N4'H1H2); v (C4'N4'); v (C2O2); δ _{in} (N1H)
1681	1661 ³⁹	AM33	275.78	β _{(in)ring} (9a); v (C6'N1'); δ _{in} (N7H); δ _{in} (C2'H); σ (N4'H1H2); v (C4'N4'); δ _{in} (C8H); v (C8N9)
_	1670 ⁴⁰	AM34	43.06	$δ_{in}$ (N4'H1); v (C4'C5''); $β_{(in)ring}$ (9b); δ_{in} (N7H); δ_{in} (C8H); $β_{in}$ (C5''C6'C8N7N9)
	1606 41	CM27	37.26	$\delta_{\rm c}$ (C6H): $\delta_{\rm c}$ (, (9a): v (C2O2): $\delta_{\rm c}$ (N4'H1): v (C4'N3')

Tabela 22 – Modos associados do trinucleotídeo CAC obtidos da aproximação de ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment
600	591 ¹	AM10	0.66	$ δ_{out}$ (N7H); $δ_{out}$ (C2'H); $δ_{out}$ (N4'H2); τ (N4'H1H2); $β_{(out)ring}$ (17a); $β_{out}$ (C5''C6'C8N7N9)
648	624 ²	AM11	13.75	$\delta_{in} (N4'H2); \rho (N4'H1H2); \delta_{in} (C2'H); \beta_{(in)ring} (6b); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C4'N4')$
_	627 ³	CM10	1.1	δ_{out} (N1H); τ (N4'H1H2); Libration mode (10b); δ_{out} (C6H)
_	674 ⁴	AM12	1.25	$\delta_{out}(C8H); \delta_{out}(N7H); \beta_{out}(C5''C6'C8N7N9); \delta_{out}(C2'H); \tau (N4'H1H2); \beta_{(out)ring}(17b)$
706	693 ⁵	AM13	0.89	$\tau_{ring} (C4'C5''C6'); \beta_{(out)ring} (17a); \delta_{out} (N7H); \delta_{out} (C8H); \delta_{out} (N4'H1); \omega (N4'H1H2); \beta_{out} (C6'C8N7) = 0.000 \text{ m}^{-1}$
_	734 ⁶	CM11	0.43	δ_{out} (C5H); δ_{out} (N1H); $\beta_{(out)ring}$ (5); τ (N4'H1H2); δ_{out} (C2O2)
-	736 ⁷	AM14	115.71	$\delta_{in} (N4'H2); \nu_{breathing} (C5''C6'C8N7N9); \nu_{ring} (1); \delta_{in} (C2'H); \delta_{in} (N7H)$
804	790 ⁸	CM12	1.3	$\delta_{out} (C5H); \tau_{ring} (C2N1N3'); \beta_{(out)ring} (17b); \delta_{out} (C6H); \delta_{out} (N4'H1); \omega (N4'H1H2); \delta_{out} (N1H)$
_	794 ⁹	CM13	61.72	$v_{ring}(1); v(C4'N4'); \delta_{in}(N4'H1); \delta_{in}(N1H); \delta_{out}(C5H)$
_	797 ¹⁰	CM14	0.79	$\delta_{out} (C5H); \delta_{out} (C6H); \beta_{(out)ring} (17b); \delta_{out} (N4'H2); \delta_{out} (C2O2)$
_	811 11	AM15	1.52	$\beta_{(out)ring}$ (5); δ_{out} (C2'H); β_{out} (C5''C6'C8N7N9); δ_{out} (C8H); ω (N4'H1H2); δ_{out} (N7H)
911	904 ¹²	AM16	4.35	δout (C8H); βout (C5''C6'C8N7N9)
_	910 ¹³	AM17	12.53	$\beta_{(in)ring} (12); \delta_{out} (C8H); \delta_{in} (N7H); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (N4'H2); v (C5''N9); v (C4'N4')$
968	956 ¹⁴	AM18	29.15	$\delta_{in}(N7H);\beta_{in}(C5''C6'C8N7N9);\delta_{in}(C8H);\delta_{in}(N4'H1);\nu_{ring}(1);\delta_{in}(C2'H)$
_	960 ¹⁵	CM15	13.37	$\rho (N4'H1H2); \delta_{in} (C6H); \delta_{in} (N1H); v_s (C2N1N3'); \beta_{(in)ring} (9b)$
992	996 ¹⁶	AM19	0.55	δ_{out} (C2'H); δ_{out} (N4'H1); $\beta_{(out)ring}$ (17b)
_	998 ¹⁷	CM17	10.09	δout (C5H); ρ (N4'H1H2); β(in)ring (12); δout (C6H)
_	1016 ¹⁸	AM20	26.38	$\rho (\text{N4'H1H2}); \delta_{\text{in}} (\text{C2'H}); \delta_{\text{in}} (\text{C4'N4'}); v_{s} (\text{C2'C4'N3'}); v_{\text{ring}} (19b); \delta_{\text{out}} (\text{N7H}); \beta_{\text{in}} (\text{C8N7N9})$
1063	1110 ¹⁹	AM21	35.62	δin (N7H); δin (C8H); v (C8N7); δout (C2'H); ρ (N4'H1H2)
_	1119 ²⁰	CM18	6.24	ρ (N4'H1H2); δ_{in} (C6H); $\beta_{(in)ring}$ (15)
1176	1140 ²¹	CM19	14.34	$\delta_{in} \left(\text{C5H} \right) \! ; \; \delta_{in} \left(\text{N1H} \right) \! ; \; \delta_{in} \left(\text{C6H} \right) \! ; \; v_s \left(\text{C5C6N1} \right) \! ; \; \rho \left(\text{N4'H1H2} \right)$
_	1163 ²²	AM22	14.58	$\delta_{in} (C8H); \\ \delta_{in} (N7H); \\ \delta_{in} (N4'H2); \\ \rho (N4'H1H2); \\ \delta_{in} (C2'H); \\ \beta_{(in)ring} (18a); \\ \nu_s (C6'N1'N7); \\ \nu (C4'N4'); \\ \beta_{in} (C5''C6'C8N7N9) \\ (C4'N4'); \\ \beta_{in} (C5''C6'N9) \\ (C4'N4'); \\ \beta_{in} ($
_	1226 ²³	CM20	19.79	$\delta_{in} \left(C6H \right); \delta_{in} \left(N1H \right); \delta_{in} \left(C5H \right); \rho \left(N4'H1H2 \right); \beta_{(in)ring} \left(9b \right)$
1308	1307 ²⁶	CM21	184.34	$\delta_{in} (C6H); \delta_{in} (N4'H1); \beta_{(in)ring} (15); \delta_{in} (N1H)$
1344	1349 ²⁷	AM25	291.15	δ_{in} (C2'H); $\beta_{(in)ring}$ (15); δ_{in} (C8H); ρ (N4'H1H2); δ_{out} (N7H); v (C8N9)
1370	1375 ²⁸	CM22	28.38	δin (C6H); δin (C5H); σ (N4'H1H2); β(in)ring (3); ν (C4'N4'); β(in)ring (15)
_	1382 29	AM26	5.24	$\delta_{in}(C2'H); \delta_{in}(N4'H1); \sigma(N4'H1H2); \delta_{in}(N7H); \delta_{out}(C8H); \nu(C4'N4'); \beta_{(in)ring}(15); \nu_{breathing}(C5''C6'C8N7N9)$
_	1390 ³⁰	AM27	455.19	$\delta_{in} (C8H); \ \delta_{in} (C2'H); \ \delta_{in} (N7H); \ \nu (C5''N9); \ \nu_a (C2'C4'N3'); \ \beta_{(in)ring} (18b); \ \beta_{in} (C8N7N9); \ \delta_{in} (N4'H2) = 0.000 \ (M4'H2) \ M_{10} (M4'H2) \$
1430	1440 ³¹	AM28	150.45	$\delta_{in} (N7H); \delta_{in} (C2'H); \nu (C8N7); \delta_{in} (C8H); \beta_{(in)ring} (18b); \nu (C4'C5''); \rho (N4'H1H2)$
_	1454 ³²	CM23	14.63	δ_{in} (N1H); ρ (N4'H1H2); $\beta_{(in)ring}$ (15); δ_{in} (C5H)
_	1462 ³³	AM29	31.38	$\delta_{in} (N4'H2); \sigma (N4'H1H2); \nu (C6'N7); \beta_{(in)ring} (18b); \delta_{in} (C2'H); \nu (C4'N4'); \delta_{out} (N7H); \nu (C8N9)$
1584	1526 ³⁵	AM30	8.09	$\delta_{in} (C2'H); \sigma (N4'H1H2); v_s (C4'C5''N3'); v (C4'N4'); \beta_{(in)ring} (9b); \delta_{out} (N7H); \beta_{in} (C5''C6'C8N7N9)$
_	1546 ³⁶	AM31	508.77	δin (C8H); v (C8N9); σ (N4'H1H2); δin (N7H); β(in)ring (9b); v (C5''C6')
_	1590 ³⁷	CM25	62.26	δ_{in} (N1H); $\beta_{(in)ring}$ (9b); ρ (N4'H1H2)
_	1620 ³⁸	AM32	15.65	$σ$ (N4'H1H2); $δ_{in}$ (C2'H); $ν$ (C4'N4'); $ν$ (C2'N1'); $β_{(in)ring}$ (9a); δ_{out} (C8H)
_	1630 ³⁹	CM26	25.34	σ (N4'H1H2); ν (C4'N4'); ν (C2O2); δ _{in} (N1H)
1684	1661 ⁴⁰	AM33	275.78	$\beta_{(in)ring}(9a); \nu (C6'N1'); \delta_{in} (N7H); \delta_{in} (C2'H); \sigma (N4'H1H2); \nu (C4'N4'); \delta_{in} (C8H); \nu (C8N9)$
_	1670 ⁴¹	AM34	43.06	$\delta_{in} (N4'H1); v (C4'C5''); \beta_{(in)ring} (9b); \delta_{in} (N7H); \delta_{in} (C8H); \beta_{in} (C5''C6'C8N7N9)$
_	1696 ⁴²	CM27	37.26	δ _{in} (C6H); β _{(in)trace} (9a); v (C2O2); δ _{in} (N4'H1); v (C4'N3')

Tabela 23 – Modos associados do trinucleotídeo CCA obtidos da aproximação de ordem zero. Os cálculos DFT no nível M062X/6-311++g(d,p) foram realizados usando o software comercial Gaussian09. *sobrescritos representam os picos de acordo com o espectro.

Exp	DFT	Modes	INT.	Assignment
600	591 ¹	AM10	0.66	$\delta_{out} (N7H); \delta_{out} (C2'H); \delta_{out} (N4'H2); \tau (N4'H1H2); \beta_{(out)ring} (17a); \beta_{out} (C5''C6'C8N7N9)$
-	624 ²	AM11	13.75	$\delta_{in} (N4'H2); \rho (N4'H1H2); \delta_{in} (C2'H); \beta_{(in)ring} (6b); \beta_{in} (C5''C6'C8N7N9); \delta_{in} (C4'N4')$
651	627 ³	CM10	1.1	δ_{out} (N1H); τ (N4'H1H2); Libration mode (10b); δ_{out} (C6H)
-	674 ⁴	AM12	1.25	$\delta_{out}(\text{C8H}); \delta_{out}(\text{N7H}); \beta_{out}(\text{C5''C6'C8N7N9}); \delta_{out}(\text{C2'H}); \tau (\text{N4'H1H2}); \beta_{(out)ring}(\text{17b})$
704	693 ⁵	AM13	0.89	$\tau_{ring}(C4'C5''C6'); \beta_{(out)ring}(17a); \delta_{out}(N7H); \delta_{out}(C8H); \delta_{out}(N4'H1); \omega (N4'H1H2); \beta_{out}(C6'C8N7) = 0.0000000000000000000000000000000000$
-	734 ⁶	CM11	0.43	δ_{out} (C5H); δ_{out} (N1H); $\beta_{(out)ring}$ (5); τ (N4'H1H2); δ_{out} (C2O2)
_	736 ⁷	AM14	115.71	$\delta_{in} (N4'H2); v_{breathing} (C5''C6'C8N7N9); v_{ring} (1); \delta_{in} (C2'H); \delta_{in} (N7H)$
803	790 ⁸	CM12	1.3	$\delta_{out} (C5H); \tau_{ring} (C2N1N3'); \beta_{(out)ring} (17b); \delta_{out} (C6H); \delta_{out} (N4'H1); \omega (N4'H1H2); \delta_{out} (N1H)$
_	794 ⁹	CM13	61.72	v_{ring} (1); v (C4'N4'); δ_{in} (N4'H1); δ_{in} (N1H); δ_{out} (C5H)
_	797 ¹⁰	CM14	0.79	δ_{out} (C5H); δ_{out} (C6H); $\beta_{(out)ring}$ (17b); δ_{out} (N4'H2); δ_{out} (C2O2)
_	811 11	AM15	1.52	$\beta_{(out)ring}(5); \delta_{out}(C2'H); \beta_{out}(C5''C6'C8N7N9); \delta_{out}(C8H); \omega (N4'H1H2); \delta_{out}(N7H)$
912	904 ¹²	AM16	4.35	δ _{out} (C8H); β _{out} (C5''C6'C8N7N9)
_	910 ¹³	AM17	12.53	$\beta_{(in)ring}(12); \delta_{out}(C8H); \delta_{in}(N7H); \beta_{in}(C5''C6'C8N7N9); \delta_{in}(N4'H2); \nu(C5''N9); \nu(C4'N4')$
955	956 ¹⁴	AM18	29.15	$\delta_{in}(N7H);\beta_{in}(C5''C6'C8N7N9);\delta_{in}(C8H);\delta_{in}(N4'H1);v_{ring}(1);\delta_{in}(C2'H)$
_	960 ¹⁵	CM15	13.37	$\rho (N4'H1H2); \delta_{in} (C6H); \delta_{in} (N1H); \nu_s (C2N1N3'); \beta_{(in)ring} (9b)$
996	996 ¹⁶	AM19	0.55	δ_{out} (C2'H); δ_{out} (N4'H1); $\beta_{(out)ring}$ (17b)
_	998 ¹⁷	CM17	10.09	δout (C5H); ρ (N4'H1H2); $β(in)ring$ (12); $δout$ (C6H)
_	1016 ¹⁸	AM20	26.38	$\rho (N4'H1H2); \delta_{in} (C2'H); \delta_{in} (C4'N4'); v_s (C2'C4'N3'); v_{ring} (19b); \delta_{out} (N7H); \beta_{in} (C8N7N9)$
1061	1110 ¹⁹	AM21	35.62	δ_{in} (N7H); δ_{in} (C8H); v (C8N7); δ_{out} (C2'H); ρ (N4'H1H2)
1173	1119 ²⁰	CM18	6.24	$ρ$ (N4'H1H2); $δ_{in}$ (C6H); $β_{(in)ring}$ (15)
_	1140 ²¹	CM19	14.34	δin (C5H); δin (N1H); δin (C6H); vs (C5C6N1); ρ (N4'H1H2)
_	1163 ²²	AM22	14.58	$\delta_{in} (C8H); \\ \delta_{in} (N7H); \\ \delta_{in} (N4'H2); \\ \rho (N4'H1H2); \\ \delta_{in} (C2'H); \\ \beta_{(in)ring} (18a); \\ v_s (C6'N1'N7); \\ v (C4'N4'); \\ \beta_{in} (C5''C6'C8N7N9) \\ (C4''N4'); \\ \beta_{in} (C5''C6'N7N9) \\ (C4''N4'); \\ \beta_{in} (C5''N7N9) \\ (C4''N4$
_	1226 ²³	CM20	19.79	δin (C6H); δin (N1H); δin (C5H); ρ (N4'H1H2); β(in)ring (9b)
1308	1307 ²⁶	CM21	184.34	$\delta_{in} \left(C6H \right); \delta_{in} \left(N4'H1 \right); \beta_{(in)ring} \left(15 \right); \delta_{in} \left(N1H \right)$
1350	1349 ²⁷	AM25	291.15	δin (C2'H); β(in)ring (15); δin (C8H); ρ (N4'H1H2); δout (N7H); ν (C8N9)
1371	1375 ²⁸	CM22	28.38	$ δ_{in}$ (C6H); $δ_{in}$ (C5H); $σ$ (N4'H1H2); $β_{(in)ring}$ (3); v (C4'N4'); $β_{(in)ring}$ (15)
_	1382 ²⁹	AM26	5.24	$\delta_{in} (C2'H); \\ \delta_{in} (N4'H1); \\ \sigma (N4'H1H2); \\ \delta_{in} (N7H); \\ \delta_{out} (C8H); \\ \nu (C4'N4'); \\ \beta_{(in)ring} (15); \\ \nu_{breathing} (C5''C6'C8N7N9) \\ \beta_{in} (N4'H1); \\ \sigma (N4'H1H2); \\ \delta_{in} (N7H); \\ \delta_{out} (C8H); \\ \nu (C4'N4'); \\ \beta_{(in)ring} (15); \\ \nu_{breathing} (C5''C6'C8N7N9) \\ \beta_{in} (N4'H1); \\ \delta_{in} (N4'H1);$
_	1390 ³⁰	AM27	455.19	$\delta_{in} (C8H); \delta_{in} (C2'H); \delta_{in} (N7H); v (C5''N9); v_a (C2'C4'N3'); \beta_{(in)ring} (18b); \beta_{in} (C8N7N9); \delta_{in} (N4'H2) = 0.0000000000000000000000000000000000$
1430	1440 ³¹	AM28	150.45	$\delta_{in} (N7H); \ \delta_{in} (C2'H); \ \nu (C8N7); \ \delta_{in} (C8H); \ \beta_{(in)ring} (18b); \ \nu (C4'C5''); \ \rho (N4'H1H2)$
_	1454 ³²	CM23	14.63	δin (N1H); ρ (N4'H1H2); β(in)ring (15); δin (C5H)
_	1462 ³³	AM29	31.38	$δ_{in}$ (N4'H2); σ (N4'H1H2); ν (C6'N7); $β_{(in)ring}$ (18b); δ_{in} (C2'H); ν (C4'N4'); δ_{out} (N7H); ν (C8N9)
1583	1526 ³⁵	AM30	8.09	δin (C2'H); σ (N4'H1H2); νs (C4'C5''N3'); ν (C4'N4'); β(in)ring (9b); δout (N7H); βin (C5''C6'C8N7N9)
_	1546 ³⁶	AM31	508.77	δin (C8H); v (C8N9); σ (N4'H1H2); $δin$ (N7H); $β(in)ring$ (9b); v (C5''C6')
_	1590 ³⁷	CM25	62.26	δin (N1H); β(in)ring (9b); ρ (N4'H1H2)
_	1620 ³⁸	AM32	15.65	$σ$ (N4'H1H2); $δ_{in}$ (C2'H); v (C4'N4'); v (C2'N1'); $β_{in)ring}$ (9a); $δ_{out}$ (C8H)
_	1630 ³⁹	CM26	25.34	$ σ$ (N4'H1H2); v (C4'N4'); v (C2O2); $δ_{in}$ (N1H)
1683	1661 ⁴⁰	AM33	275.78	$\beta_{(in)ring}$ (9a); v (C6'N1'); δ_{in} (N7H); δ_{in} (C2'H); σ (N4'H1H2); v (C4'N4'); δ_{in} (C8H); v (C8N9)
_	1670 ⁴¹	AM34	43.06	$δ_{in}$ (N4'H1); v (C4'C5''); $β_{(in)ring}$ (9b); $δ_{in}$ (N7H); $δ_{in}$ (C8H); $β_{in}$ (C5''C6'C8N7N9)
_	1606 42	CM27	37.26	$\delta_{1}(C(H), R_{1}) = (Q_{2}) \cdot \chi(C(2Q_{2}), \delta_{2}) \cdot \chi(C(4^{1}N_{1}^{2}))$

7 CONCLUSÃO

Até o presente, concluímos que os espectros Raman de sistemas RNA/DNA dependem das propriedades vibracionais das bases individuais, e que, portanto, é necessário conhecer a sequência das bases e a porcentagem de cada uma no sistema RNA/DNA para se obter com boa acurácia seu espectro Raman e descrever as atribuições dos seus modos vibracionais a partir daqueles das bases individuais – não são levadas em conta as interações entre as bases nem a existência dos açúcares e monofosfatos. Por consequência, sugerimos que o nível zero da metodologia para análise do espectro Raman de sistemas RNA/DNA em meio aquoso baseada na Teoria do Funcional da Densidade dá resultados promissores, hipótese confirmada de forma preliminar ao se calcular por DFT os espectros Raman do miRNA-16, associado ao câncer, e de quatro trinucleotídeos do DNA (ACA, CAA, CAC e CCA); fazendo posteriormente as atribuições de seus modos vibracionais, sendo estes realizados com aproximação considerável e, até certo ponto, de forma solucionável para a explicação dos dados experimentais já publicados para este sistema. Vale ressaltar que os dados comprovados para a ordem zero de metodologia foram devidamente comparados e validados no Apêndice C; o qual possui os resultados que se encontram em andamento de testes experimentais. Contudo, de antemão, observa-se que os níveis um e dois de metodologia, além de comprovarem assinalamentos vibracionais (fortes e fracos) importantes relatados nesta dissertação, corroboram com o fato de que as interações entre as bases (avaliadas previamente em pares de nucleotídeos) nem sempre são importantes no momento da detecção de um assinalamento específico de uma base (ex: Uracila). Comprovou-se também que em tais modos, previstos para somente as bases vibrarem, os açúcares e fosfato pouco influenciaram das atribuições (conforme o esperado). Poucos, até mesmo ínfimos, foram os casos de discrepância daquilo que se previa.

REFERÊNCIAS

ABRAMSON, S. R.; SHARIFZADEH, S.; JAIN, M.; BAER, R.; NEEATON, J. B.; KRONIK, L. Gap Renormalization of Molecular Crystals from Density-Functional Theory. *Phys. Rev. B* 2013,88 (8).

BARLOW, D. P., STÖGER, R., HERRMANN, B. G., SAITO, K., SCHWEIFER, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the *Tme* locus. *Nature*. 1991, v. 354, p. 56–58.

BECKE, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A*. 1988, *38* (6), 3098–3100.

BECKE, A. D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. *J.Chem. Phys.* 1993, *98* (2), 1372.

BIANCHI, I.; LLEO, A.; GERSHWIN, M. E.; INVERNIZZI, P. The X chromosome and immune associated genes. *Journal of Autoimmunity*, 2012, v. 38, n. 2–3, p. J187–J192.

BONHOMME, C.; GERVAIS, C.; BABONNEAU, F.; COELHO, C.; POURPOINT, F.; AZAIS, T.; ASHBROOK, S. E.; GRIFFIN, J. M.; YATES, J. R.; MAURI, F.; PICKARD, C. J. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist's Point of View. *Chem. Rev.* 2012, *112* (11), 5733–5779.

CEPERLEY, D. M.; ALDER, B. J. Ground State of the Electron Gas by a Stochastic Method. *Phys.Rev. Lett.* 1980, 45 (7), 566–569.

CHAN, M. K. Y.; CEDER, G. Efficient Band Gap Prediction for Solids. *Phys. Rev. Lett.* 2010, *105* (19), 196403.

CLARK, S. J.; SEGALL, M. D.; PICKARD, C. J.; HASNIP, P. J.; PROBERT, M. I. J.; REFSON, K.; PAYNE, M. C. First Principles Methods Using CASTEP. *Zeitschrift für Krist.* - *Cryst. Mater.* 2005, *220* (5/6).

CRABBE, John; PLOMIN, Rober J. [S. l.], v. 12, n. 6, p. 806–828, 2000.

DAGA, L. E.; CIVALLERI, B.; MASCHIO, L. Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs System-Specific Optimizations. *J.Chem.Theory Comput.* 2020, *16* (4), 2192–2201.

DALMASCHIO, Cleocir José; FIRMIANO, Edney Geraldo da Silveira; PINHEIRO, Antonio Narcisio; SOBRINHO, Diego Guedes; MOURA, André Farias de; LEITE, Edson Roberto. Nanocrystals Self-Assembled in Superlattices Directed by the Solvent–Organic Capping Interaction. *Nanoscale* 2013, *5* (12), 5602.

DAY, G. M.; COOPER, T. G.; CRUZ, A. J. C.; HEJCZYK, K. E.; AMMON, H. L.; BOERRIGTER, S. X. M.; TAN, J. S.; DELLA, R. G. V.; VENUTI, E.; JOSE, J. Significant Progress in Predicting the Crystal Structures of Small Organic Molecules – a Report on the Fourth BlindTest. *Acta Crystallogr. Sect. B Struct. Sci.* 2009, *65* (2), 107–125.

DION, M.; RYDBERG, H.; SCHRÖDER, E.; LANGRETH, D. C.; LUNDQVIST, B. I. Van Der Waals DensityFunctional for General Geometries. *Phys. Rev. Lett.* 2004, *92* (24), 246401.

DIRAC, P. A. M. Note on Exchange Phenomena in the Thomas Atom. *Math. Proc. CambridgePhilos. Soc.* 1930, 26 (3), 376.

DRISKELL, J. D.; SETO, A. G.; JONES, L. P.; JOKELA, S.; DLUHY, R. A.; ZHAO, Y. P.; TRIPP, R. A. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). *Biosensors and Bioelectronics*. 2008, v. 24, n. 4, p. 917–922.

FERMI, E. Un Metodo Statistico per La Determinazione Di Alcune Prioprietà Dell Atomo. *Rend. Accad. Naz. Lincei* 1927, 602–607.

FERMI, E. Eine Statistische Methode Zur Bestimmung Einiger Eigenschaften Des Atoms Und Ihre Anwendung Auf Die Theorie Des Periodischen Systems Der Elemente. *Zeitschrift forPhys.* 1928, 48 (1–2), 73–79.

FILIPPI, C.; Umrigar, C. J.; Taut, M. Comparison of Exact and Approximate Density Functionals for an Exactly Soluble Model. *J. Chem. Phys.* 1994, *100* (2), 1290.

FIOLHAIS, C.; NOGUEIRA, F.; MARQUES, M. A. L.; FRANKFU, G. A Primer in Density Functional Theory; Springer; p 256.

FOCK, V. Näherungsmethode Zur Lösung Des Quantenmechanischen Mehrkrperproblems. *Zeitschrift for Phys.* 1930, *61* (1–2), 126–148.

GANESH, P.; KIM, J.; PARK, C.; YOON, M.; REBOREDO, F. A.; KENT, P. R. C. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van Der Waals Density Functional Methods. *J. Chem. Theory Comput.* 2014, *10* (12), 5318–5323.

GOBRE, V. V.; TKATCHENKO, A. Scaling Laws for van Der Waals Interactions in NanostructuredMaterials. *Nat. Commun.* 2013, *4*.

GRIMME, S. Accurate Description of van Der Waals Complexes by Density Functional TheoryIncluding Empirical Corrections. *J. Comput. Chem.* 2004, *25* (12), 1463–1473.

GRIMME, S. Semiempirical hybrid density functional with perturbative secondorder correlation. *Journal of Chemical Physics*, v. 124, n. 3, 2006.

GRIMME, S. Semiempirical GGA-Type Density Functional Constructed with a Long-RangeDispersion Correction. J. Comput. Chem. 2006, 27 (15), 1787–1799.

GRIMME, S.; ANTONY, J.; EHRLICH, S.; KRIEG, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, *132* (15), 154104.

GROSS, E. K. U.; DOBSON, J. F.; PETERSILKA, M. Density Functional Theory of Time-DependentPhenomena. In *Density Functional Theory II*; Springer-Verlag: Berlin/Heidelberg, 1996; pp81–172.

HAMANN, D. R.; SCHLÜTER, M.; CHIANG, C. Norm-Conserving Pseudopotentials. *Phys. Rev. Lett.* 1979, *43* (20), 1494–1497.

HANKE, F.; DYER, M. S.; BJÖRK, J.; PERSSON, M. Structure and Stability of Weakly Chemisorbed Ethene Adsorbed on Low-Index Cu Surfaces: Performance of Density Functionals with van Der Waals Interactions. *J. Phys. Condens. Matter* 2012, 24 (42), 424217.

HARTREE, D. R.; HARTREE, W. Self-Consistent Field, with Exchange, for Beryllium. *Proc. R.Soc. A Math. Phys. Eng. Sci.* 1935, *150* (869), 9–33.

HEYD, J.; SCUSERIA, G. E.; ERNZERHOF, M. Hybrid Functionals Based on a Screened Coulomb Potential. *J. Chem. Phys.* 2003, *118* (18), 8207–8215.

HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. *Phys. Rev.* 1964, *136* (3B), B864–B871.

HSIEH, Tao-shih. DNA topoisomerases. Curr. Opin. Cell Biol. 1992, v. 4, n. 3, p. 396-400.

JONES, A. P.; GROSS, D. A.; BURKE, K. DFT: A Theory Full of Holes? Annu. Rev. Phys. Chem. 2015, 66, 283–304.

JONES, R. O.; GUNNARSSON, O. The Density Functional Formalism, Its Applications and Prospects. *Rev. Mod. Phys.* 1989, *61* (3), 689–746.

JUREČKA, P.; ŠPONER, J.; ČERNÝ, J.; HOBZA, P. Benchmark Database of Accurate (MP2 and CCSD(T) Complete Basis Set Limit) Interaction Energies of Small Model Complexes, DNABase Pairs, and Amino Acid Pairs. *Phys. Chem. Chem. Phys.* 2006, *8* (17), 1985–1993.

JUREČKA, P.; ČERNÝ, J.; HOBZA, P.; SALAHUB, D. R. Density Functional Theory Augmented withan Empirical Dispersion Term. Interaction Energies and Geometries of 80 Noncovalent Complexes Compared with Ab Initio Quantum Mechanics Calculations. *J. Comput. Chem.* 2007, *28* (2), 555–569.

KAMIŃSKI, Radosław; JARZEMBSKA, Katarzyna N.; DOMAGAŁA, Sławomir. CLUSTERGEN: A program for molecular cluster generation from crystallographic data. *J. Appl. Cryst.* 2013, v. 46, n. 2, p. 540–543.

KIM, M. C.; SIM, E.; BURKE, K. Understanding and Reducing Errors in Density Functional Calculations. *Phys. Rev. Lett.* 2013, *111* (7), 73003.

KIM, M. C.; SIM, E.; BURKE, K. Ions in Solution: Density Corrected Density Functional Theory (DC-DFT). J. Chem. Phys. 2014, 140 (18).

KNUDSON, M. D.; DESJARLAIS, M. P.; LEMKE, R. W.; MATTSSON, T. R.; FRENCH, M.; NETTELMANN, N.; REDMER, R. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700GPa and 3.8 G / Cm 3. *Phys. Rev. Lett.* 2012, *108* (9).

KOHN, W.; ROSTOKER, N. Solution of the Schrödinger Equation in Periodic Lattices with anApplication to Metallic Lithium. *Phys. Rev.* 1954, *94* (5), 1111–1120.

KOHN, W.; SHAM, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. *Phys. Rev.* 1965, *140* (4A), A1133–A1138.

KOHN, W.; SHAM, L. J. Quantum Density Oscillations in an Inhomogeneous Electron Gas. *Phys. Rev.* 1965, *137* (6A), A1697–A1705.

KOIDE, A. A New Expansion for Dispersion Forces and Its Application. J. Phys. B At. Mol. Phys. 1976, 9 (18), 3173–3183.

KRISTYÁN, S.; PULAY, P. Can (Semi)local Density Functional Theory Account for the London Dispersion Forces? *Chem. Phys. Lett.* 1994, 229 (3), 175–180.

KRONIK, L.; STEIN, T.; ABRAMSON, S. R.; BAER, R. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. *J. Chem. TheoryComput.* 2012, 8 (5), 1515–1531.

KRONIK, L.; TKATCHENKO, A. Understanding molecular crystals with dispersioninclusive density functional theory: Pairwise corrections and beyond. *Accounts of ChemicalResearch*, v. 47, n. 11, p. 3208–3216, 2014.

KRYACHKO, E. S.; LUDEÑA, E. V. Density functional theory: Foundations reviewed. *Physics Reports*, v. 544, n. 2, p. 123–239, 2014.

KUBBA, Rehab M.; SAMAWI, Khalida A. Geometry, and normal modes of vibration (3n-6) for DI and tetra-rings layer (6, 0) linear (zigzag) SWCNTs; a DFT treatment. *Baghdad Science Journal*. 2019, v. 16, n. 3, p. 726–739.

LANGRETH, D. C. et al. A density functional for sparse matter. *Journal of PhysicsCondensed Matter*, v. 21, n. 8, 2009.

LANGRETH, D. C.; PERDEW, J. P. Theory of Nonuniform Electronic Systems. I. Analysis of the Gradient Approximation and a Generalization That Works. *Phys. Rev. B* 1980, *21* (12), 5469–5493.

LEE, C.; YANG, W.; PARR, R. G. Development of the Colle-Salvetti Correlation- Energy Formulainto a Functional of the Electron Density. *Phys. Rev. B* 1988, *37* (2), 785–789.

LEE, K.; KELKKANEN, A. K.; BERLAND, K.; ANDERSSON, S.; LANGRETH, D. C.; SCHRÖDER, E.; LUNDQVIST, B. I.; HYLDGAARD, P. Evaluation of a Density Functional with Account of van Der Waals Forces Using Experimental Data of H2 Physisorption on Cu(111). *Phys. Rev. B* 2011, *84*(19), 193408.

MARCHESE, Francesco P.; RAIMONDI, Ivan; HUARTE, Maite. The multidimensional mechanisms of long noncoding RNA function. *Genome Biology*. 2017, v. 18, n. 1, p. 1–13.

MESSIAS, Ana C.; SATTLER, Michael. Structural basis of single-stranded RNA recognition. *Accounts of Chemical Research*. 2004, v. 37, n. 5, p. 279–287.

MOSZYNSKI, R. Theory of Intermolecular Forces: An Introductory Account. In *Molecular Materials with Specific Interactions – Modeling and Design*; Springer Netherlands: Dordrecht; pp 1–152.

ORTMANN, F.; BECHSTEDT, F.; SCHMIDT, W. G. Semiempirical van Der Waals Correction to the density Functional Description of Solids and Molecular Structures. *Phys. Rev. B* 2006, *73* (20).

PABO, Carl O.; SAUER, Robert T. Transcription factors: Structural families and principles of DNA recognition. *Annual Review of Biochemistry*. 1992, v. 61, p. 1053–1095.

PAYNE, M. C.; TETER, M. P.; AILAN, D. C.; ARIAS, T. A.; JOANNOPOUIOS, J. D. Iterative Minimization Mechniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. *Rev. Mod. Phys.* 1992, *64*, 1045–1097.

PERDEW, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* 1986, *33* (12), 8822–8824.

PERDEW, J. P. J.; BURKE, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77 (18), 3865–3868.

PERDEW, J. P.; SCHMIDT, K. Jacob's Ladder of Density Functional Approximations for the Exchange-Correlation Energy. In *AIP Conference Proceedings*; AIP, 2001; Vol. 577, pp 1–20.

PERDEW, J. P.; KURTH, S. Density Functionals for Non-Relativistic Coulomb Systems in theNew Century; Springer, Berlin, Heidelberg, 2003; pp 1–55.

PHILLIPS, J. C.; KLEINMAN, L. New Method for Calculating Wave Functions in Crystals and Molecules. *Phys. Rev.* 1959, *116* (2), 287–294.

ROTH, C. M.; NEAL, B. L.; LENHOFF, A. M. Van Der Waals Interactions Involving Proteins. *Biophys. J.* 1996, *70* (2), 977–987.

ROUSSEAU, D. L.; BAUMAN, R. P.; PORTO, S. P. S. Normal Mode Determination in Crystals. *J.Raman Spectrosc.* 1981, *10* (1), 253–290.

RUBIN, S.; NGUYEN, P. H. L.; FAINMAN, Y. The Effect of DNA Bases Permutation on Surface-enhanced Raman Scattering Spectrum. *Nanophotonics*. 2021, *10* (5), 1581-1593.

SCHRÖDINGER, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. *Phys. Rev.* 1926, 28 (6), 1049–1070.

SCHRÖDINGER, E. What Is Life?: With Mind and Matter and Autobiographical Sketches (Canto Classics), Reprint edition.; Cambridge University Press, 2012.

SEGALL, M. D.; LINDAN, P. J. D.; PROBERT, M. J.; PICKARD, C. J.; HASNIP, P. J.; CLARK, S. J.; PAYNE, M. C. First-Principles Simulation: Ideas, Illustrations and The CASTEP Code. J. Phys.Condens. Matter 2002, 14 (11), 2717–2744.

SHARP, Phillip A. The Centrality of RNA. Cell. 2009, v. 136, n. 4, p. 577–580.

SLATER, J. C. A Simplification of the Hartree-Fock Method. *Phys. Rev.* 1951, 81 (3), 385–390.

SNYDER, J. C.; RUPP, M.; HANSEN, K.; BLOOSTON, L.; MÜLLER, K. R.; BURKE, K. Orbital-FreeBond Breaking via Machine Learning. *J. Chem. Phys.* 2013, *139* (22), 224104.

SOLER, J. M.; ARTACHO, E.; GALE, J. D.; GARCÍA, A.; JUNQUERA, J.; ORDEJÓN, P.; PORTAL, D. S. The SIESTA Method for Ab Initio Order Materials Simulation. *J. Phys. Condens. Matter* 2002, *14* (11), 2745–2779.

TAO, J.; PERDEW, J. P.; STAROVEROV, V. N.; SCUSERIA, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Moleculesand Solids. *Phys. Rev. Lett.* 2003, *91* (14), 146401.

TELLER, E. On the Stability of Molecules in the Thomas-Fermi Theory. *Rev. Mod. Phys.* 1962, 34 (4), 627–631.

TKATCHENKO, A.; SCHEFFLER, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. *Phys. Rev. Lett.* 2009, *102* (7), 73005.

TRONCOSO, A. B.; Acosta, E. Van Der Waals Free Energy Model for Solubilization of Oil in Micelles. *Soft Matter* 2015, *11* (3), 516–531.

TERESHCHUK, P.; SILVA, J. L. F D. Ethanol and Water Adsorption on Close- Packed 3d, 4d, and 5d Transition-Metal Surfaces: A Density Functional Theory Investigation with van Der WaalsCorrection. *J. Phys. Chem. C* 2012, *116* (46), 24695–24705.

VARSÁNYI, G. Vibrational Spectra of Benzene Derivatives. *Academic Press (AP)*1969, 68–72.

VOORHIS, T. V.; SCUSERIA, G. E. A novel form for the exchange-correlation energy functional. J. Chem. Phys. 1998, 109 (2), 400–410.

WATSON, J. D.; CRICK, F. H. The structure of DNA. *Cold Spring Harbor symposia on quantitative biology*. 1953, v. 18, p. 123–131.

WONG, S. D.; SRNEC, M.; MATTHEWS, M. L.; LIU, L. V.; KWAK, Y.; PARK, K.; BELL, C. B.; ALP, E. E.; ZHAO, J.; YODA, Y. Elucidation of the Fe(iv)=O Intermediate in the Catalytic Cycleof the Halogenase SyrB2. *Nature* 2013, *499* (7458), 320–323.

YASUI, K.; KATO, K. Oriented Attachment of Cubic or Spherical BaTiO 3 Nanocrystals by van Der Waals Torque. *J. Phys. Chem. C* 2015, *119* (43), 24597–24605.

ZAREMBA, E.; KOHN, W. Van Der Waals Interaction Between an Atom and a Solid Surface. *Phys.Rev. B* 1976, *13* (6), 2270–2285.

ZHAO, Y.; SCHULTZ, N. E.; TRUHLAR, D. G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. *J. Chem. Phys.* 2005, *123* (16), 1–4.

ZHAO, Y.; SCHULTZ, N. E.; TRUHLAR, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. *J. Chem. Theory Comput.* 2006, *2* (2), 364–382.

ZHAO, Y.; TRUHLAR, D. G. The M06 suite os density functionals for main group termochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Account.* 2008, *120* (2008), 215–241.

ZHENG, X.; COHEN, A. J.; SÁNCHEZ, P. M.; HU, X.; YANG, W. Improving Band Gap Prediction in Density Functional Theory from Molecules to Solids. *Phys. Rev. Lett.* 2011, *107* (2), 26403.

ZIMMERMAN, Steven B. THE THREE-DIMENSIONAL. [S. l.], 1982.

APÊNDICE A – TEORIA DO FUNCIONAL DA DENSIDADE

A equação de Schrödinger independente do tempo, H Ψ n = En Ψ n, prediz que, se certas propriedades de um sistema são medidas, o resultado deve ser sua quantização, *i.e.* somente valores discretos das mesmas podem ocorrer, que são associados aos famosos números quânticos *n*. A equação de Schrödinger encontrou ampla aceitação inicial na explicação da estabilidade e propriedades do átomo de hidrogênio (sistema de dois corpos), e depois a uma miríade de sistemas com "dimensões quânticas", (*i.e.*) da ordem de poucos Angstrons mas limitados a dois corpos. Este sucesso levou mesmo seu criador a buscar explicar com uma fundamentação quântica o que é a vida com argumentações compiladas no seu célebre livro *What is life*? que influenciou gerações seguidas de biólogos, inclusive Crick. No entanto, a solvabilidade na mecânica quântica de sistemas com N-elétrons é exaurida logo pelo hidrogênio (N = 1) e o átomo de hélio (N = 2) (BETHE; SALPETER, 1957; FOK, 1954; KRYACHKO; LUDEÑA, 2014; RAU, 1996; SCHMID, E. W.; ZIELGELMANN, H., 1974).

Figura 26 – Estimativa do enorme crescimento e diversidade de aplicações da DFT.

Fonte: Modificação pelo autor de figura em http://internships.dipc.org/DFT_1.html.

Com o desenvolvimento da ciência dos materiais, química fina e biologia molecular, os muitos ramos da física da matéria condensada, os sistemas nanoscópicos atualmente, etc. a questão de como lidar com a mecânica quântica de sistemas de muitaspartículas formadas por milhares de elétrons e centenas de núcleos atômicos, tem relevância destacada (KRYACHKO; LUDEÑA, 2014) – ver **Figura 26**. A dificuldade básica é que uma solução exata destes problemas por intermédio da aplicação direta e trabalhosa da equação de Schrödinger, tanto de forma numérica, variacional ou em versões da teoria da perturbação, é atualmente fora do alcance mesmo com os mais potentes supercomputadores. É por esta razão que maneiras alternativas para lidar com o problema de muitos-corpos na mecânica quântica têm sido vigorosamente perseguidas, mesmo logo após a proposição da equação de Schrödinger, tanto por químicos como por físicos. Como consequência destes esforços, a Teoria do Funcional da Densidade (DFT) tem emergido (são pelo menos cinco décadas de desenvolvimento já!) como uma opção viável para o tratamento deste problema (FIOLHAIS; NOGUEIRA; MARQUES, 2003; GROSS; DREIZLER, 1995; KRYACHKO; LUDEÑA, 1990, 2014; MARCH, 1982).

Figura 27 - Cientistas com atividade importante na mecânica quântica e no desenvolvimento da Teoria do Funcional da Densidade.

Erwin Schroedinger

Paul Dirac

Douglas Hartree

John Pople

Walter Kohn

Pierre Hohenberg

Lu Jeu Sham

John Perdew

Axel Becke

Michele Parrinello

Fonte: Elaborada pelo Prof. V. N. Freire com diversas fotos obtidas via download do Google.

A Real Academia de Ciências da Suécia outorgou o Prêmio Nobel de Química em 1998 aos pesquisadores: Walter Kohn, Professor da Universidade da Califórnia, Santa Bárbara, Califórnia, EUA, por sua contribuição ao desenvolvimento da Teoria do Funcional de Densidade; e a John A. Pople, Universidade Northwestern, Evanston, Illinois, EUA, por sua contribuição ao desenvolvimento de métodos computacionais em química quântica. Fotos de cientistas com atividades importantes na mecânica quântica e no desenvolvimento da Teoria do Funcional da Densidade encontram-se na **Figura 27**.

O que é a Teoria do Funcional da Densidade?

A popularidade da teoria do funcional da densidade (DFT) como um método de estrutura eletrônica sem paralelo (PRIBRAM-JONES; GROSS; BURKE, 2015) vem aumentando no decorrer dos anos, com aplicações de biologia (WONG et al., 2013) a exoplanetas (KNUDSON et al., 2012). Entretanto, a peculiaridade de sua lógica e os diversos modos de sua aplicação prática tem levado a discordâncias em muitas frentes e de muitos partidos. Desenvolvedores da DFT são guiados por muitos diferentes princípios, enquanto os práticos, em busca da sua aplicabilidade em diversos problemas (*i.e.* seus usuários), são questionadores/suspeitos, na DFT, tanto por razões objetivas/diretas (qual o funcional que devo usar entre tantas escolhas?) quanto culturais (com tantas escolhas, por que deveria eu chamar a DFT de teoria de primeiros princípios?).

Nos dias de hoje, um cálculo de DFT pode começar com a compra de um computador, que pode ser tão pequeno quanto um *laptop* (mas com pelo menos 16 GB de memória RAM e um processador i7, para não levar uma eternidade no processamento de dados de casos simples pela DFT) ou uma estação de trabalho com maior capacidade de processamento de dados, e um software de física/química quântica baseado na DFT (SNYDER et al., 2013). Posteriormente, um conjunto de bases é escolhido, que atribui predeterminadas funções para a descrição dos elétrons de cada átomo da molécula ou sólido que está sendo estudada (o). Finalmente, uma aproximação na DFT de algo denominado de energia de troca-correlação é escolhida (a primeira escolha a gente sempre esquece!), e o software começa a funcionar. Para cada tentativa das posições nucleares, o software baseado na DFT calcula uma energia total aproximada (SNYDER et al., 2013). Uma otimização de geometria é realizada, pelo software, para se encontrar a configuração das posições atômicas de acordo com o mínimo de energia mais factível. Com variações deste tema pode se estudar geometrias moleculares, energias de dissociação, barreiras para reações químicas, frequências

vibracionais (espectros Infravermelho e Raman), etc. (DREIZLER; GROSS, 1990; HOHENBERG; KOHN, 1964; JONES, 2015; KOHN; SHAM, 1965b; PATRICK;, BULTINICK.; DE WINTER, HANS; LANGENAEKER, WILFRIED; TOLLENAERE, 2003).

Figura 28 – (a) Os dez trabalhos mais citados de físicos no período 1980–2010 de acordo com ("Tulane University - Department of Physics and Engineering Physics - News & amp", 2018) ; b) número de publicações a cada ano no período 1975 – 2014 garimpadas na base de dados *Web of Science* em fevereiro 2015 utilizando-se as palavras-chave "*density functional*" ou "DFT" – ver (JONES, 2015); (c) número de artigos (em unidade de mil) obtidos da pesquisa do tópico "DFT" na base de dados *Web of Science* (barras com extremidades cinza) para os dois mais populares funcionais o B3LYP e o PBE.

Fonte: Elaborada pelo Prof. V. N. Freire. Adaptado de http://tulane.edu/sse/pep/newsand-events/upload/mostcitedpapers-1981-2010 (("Tulane University - Department of Physics and Engineering Physics - News & amp", 2018)) e (JONES, 2015).

Um moderno computador de mesa (*desktop*) pode realizar cálculos DFT para sistemas de cerca de 100 átomos em um dia (claro, se tiver oito núcleos de processamento i7 e uma memória de 128 Gram pelo menos). Entretanto, um usuário cuidadoso irá repetir as partes mais importantes dos cálculos com um conjunto de bases (maior e melhor), funcionais diversos, variação de parâmetros de convergência e energia de corte (no caso de ondas planas)

para ter a certeza de que os resultados não mudam muito. Claro, quem paga a conta é o orientador/chefe do grupo de pesquisa na instituição onde se desenrola o estudo!

Historicamente, os fundamentos teóricos da DFT devem-se a Hohenberg, Kohn e Sham em 1964-1965, mas os anos de formação foram ~1980 – 2010. Uma análise na base de dados Web of Science revela que a DFT foi o mais ativo campo de pesquisa na física durante este período de 30 anos ("Tulane University - Department of Physics and Engineering Physics - News & amp", 2018). Dos três primeiros físicos mais citados, o primeiro (Perdew: 65.757 citações) e o terceiro (Becke: 62.581 citações) eram teóricos com atuação na DFT. E mais ainda: entre os dez trabalhos mais citados de físicos no período 1980 – 2010, oito são da DFT. Uma listagem dos mesmos encontra-se na Figura 28(a) ("Tulane University - Department of Physics and Engineering Physics - News & amp", 2018). O número de publicações a cada ano no período 1975 - 2014 (garimpadas na base de dados Web of Science em fevereiro 2015 utilizando-se as palavras-chave "density functional" ou "DFT") é mostrado na Figura 28(b), que também tem um inset que apresenta uma variação importante do número de publicações na transição 1990-1991 (JONES, 2015). Finalmente, a Figura 28(c) mostra o número de artigos (em unidade de mil) obtidos da pesquisa do tópico "DFT" na base de dados Web of Science (barras com extremidades cinza) (KRYACHKO; LUDEÑA, 2014) para os dois mais populares funcionais: o B3LYP - mais usado em ciências dos materiais (barras verdes), e o PBE – mais usado em química (barras azuis).

Apresentamos na seção **A.2** uma descrição mais objetiva da DFT, procurando dar uma visão prática dos seus contornos gerais. Ela é baseada fundamentalmente no texto do artigo de Pribram-Jones *et al.* (PRIBRAM-JONES; GROSS; BURKE, 2015). A seguir, mostramos na seção **A.3** de forma mais detalhada e com base mais apoiada em equações, o formalismo da DFT. Para esta abordagem, sugerimos como referência o artigo de Jones (JONES, 2015) se a escolha for a única, ou os vários artigos que usamos e são citados durante o desenvolvimento de **A.3**. Devido ao sucesso da DFT, há uma imensa literatura científica disponível sobre ela, que aumenta em qualidade e quantidade diariamente. Avança-se também em direção à sua utilização em problemas cada vez mais complexos e com maior número de átomos (ou número de elétrons) – ver problemas de bioquímica quântica, por exemplo. De fato, calcular por DTF as propriedades de uma molécula ou cristal ou sistemas moleculares (o sítio de ligação de uma droga em uma proteína, por exemplo, ou mesmo o conjunto de resíduos envolvidos na interação entre duas proteínas) com mais de uma centena de átomos é factível hoje, mesmo com razoável recurso computacional. Embora a popularidade da Teoria do Funcional da Densidade (DFT) tenha "subido como um foguete" desde que suas aplicações em química, física, ciência dos materiais, etc. tornaram-se úteis e rotineiras, suas raízes se estendem a um passado bem mais distante (PRIBRAM-JONES; GROSS; BURKE, 2015), (JONES, 2015). De fato, o formalismo DFT mostra que o estado fundamental e outras propriedades de um sistema de elétrons em um campo externo pode ser determinado pelo conhecimento da distribuição da densidade eletrônica $\rho(\mathbf{r})$, somente. Fermi e Thomas (FERMI, 1927, 1928; THOMAS, 1927) reconheceram a natureza básica da densidade de elétrons e a aplicaram a átomos, enquanto Dirac (DIRAC, 1930) mostrou como efeitos de troca poderiam ser incorporados neste quadro. Com uma antevisão premonitória e numa observação pouco lembrada, Dirac (DIRAC, 1930) destacou que a "função densidade" – que hoje nós conhecemos como a matriz densidade reduzida de uma partícula – "determina completamente todo o estado do átomo no contexto da aproximação de Hartree-Fock: não é necessário se especificar as funções de onda individuais tridimensionais".

A Velha Teoria do Funcional da Densidade

Desenvolvida sem referência à equação de Schröedinger (SCHRÖDINGER, 1926), a teoria de Thomas-Fermi (FERMI, 1927, 1928; THOMAS, 1927) pode ser reconhecida como a "primeira" Teoria do Funcional da Densidade. Ela é DFT pura, tendo se baseado no conceito de densidade eletrônica $\rho(\mathbf{r})$ como ponto de partida. A energia cinética do sistema molecular nela é aproximada como aquela de um gás uniforme de elétrons, enquanto a repulsão entre os elétrons foi modelada considerando a clássica repulsão eletrostática de Coulomb, novamente dependente da densidade eletrônica como início.

Misturando Orbitais

Slater foi um mestre da estrutura eletrônica, e seu trabalho foi precursor do desenvolvimento da DFT. Em particular, seu método X α (SLATER, 1951) foi uma aproximação para as interações entre elétrons em sistemas no estado fundamental e melhorava o método de Hartee-Fock (FOCK, 1930; HARTREE, D. R.; HATREE, 1935) sendo uma das maneiras mais simples de capturar o princípio de exclusão de Pauli. Uma das maiores

inspirações (*insights*) de Slater foi a importância dos buracos, uma maneira de descrever a menor probabilidade de se encontrar elétrons próximos uns dos outros. Estando além de seu tempo, o método X α de Slater tinha foco no buraco, satisfazia condições exatas como regras de soma, e considerava o grau de localização existente no sistema de interesse.

Um Grande Salto Lógico

Embora os métodos de Slater fossem um avanço em relação ao método de Hartree-Fock, não foi antes de 1964 que Hohenberg e Kohn (HOHENBERG; KOHN, 1964; KOHN; SHAM, 1965b) formularam seus famosos teoremas, que agora servem como fundamento para a DFT:

(1) As propriedades do estado-fundamental de um sistema eletrônico são completamente determinadas por $\rho(\mathbf{r})$.

(2) Há uma correspondência um a um entre o potencial externo e a densidade.

Nós escrevemos isto subdividindo a energia eletrônica em duas partes:

$$Eelet[densidade] = F[densidade] + NucAtr, (A.1)$$

Onde *Eelet* é a energia total dos elétrons; F é a soma exata da energia cinética quântica e da energia de repulsão elétron-elétron; e *NucAtr* é a atração dos elétrons pelos núcleos na molécula que está sendo estudada. Os parênteses [] indicam dependência (muito complexa) em relação à densidade de um elétron $\rho(\mathbf{r})$, que dá a probabilidade relativa de se encontrar um elétron em uma pequena porção do espaço em torno de \mathbf{r} . F é o mesmo para todos os sistemas eletrônicos e, portanto, é chamado de universal. Para qualquer molécula, um computador simplesmente encontra $\rho(\mathbf{r})$ que minimiza *Eelet*. Nós podemos comparar esta estratégia ao princípio variacional na mecânica quântica: em vez de gastar todo o tempo buscando por funções de onda que dependem de 3N coordenadas e mais uma de spin (x, y, z e um spin), a ideia é buscar a densidade de um elétron, que somente necessita de três coordenadas para ser descrita.

O que é incômodo em relação aos teoremas de Hohenberg-Kohn, entretanto, é que eles nos contam que estas coisas existem sem, contudo, nos dizer como as encontrar. Isto

significa que para usar a DFT na realidade temos que nos aproximar da F[densidade]. Nós reconhecemos que a velha teoria de Thomas-Fermi faz precisamente isto, com aproximações muito cruas para as duas principais contribuições para F:

$$F[densidade] \sim \int d^{3}r \rho^{5/3}(\mathbf{r}) + RepCoul \quad (\text{TF}), \quad (A.2)$$

onde não estamos preocupados com constantes, etc. O primeiro termo é uma aproximação para a energia cinética como uma simples integral sobre a densidade. Ela é uma aproximação local, já que a contribuição de cada ponto vem somente da densidade naquele ponto. A outra parte é o termo de auto-repulsão entre os elétrons, que é simplesmente modelado como o termo de repulsão eletrostático clássico, frequente chamado de energia de Hartree dos elétrons ou de energia de Coulomb, mais diretamente. Estas aproximações simples são boas, tipicamente com erros de 10% na energia eletrônica; entretanto, as ligações são uma pequena fração dela, de modo que não são descritas de forma precisa numa teoria tão crua (TELLER, 1962).

Um Grande Salto no Cálculo

Kohn e Sham propuseram reescrever o funcional universal para o aproximar de uma pequena parte da energia. Eles mapearam o sistema eletrônico com interações para um sistema falso sem interações com o mesmo $\rho(\mathbf{r})$. Isto requer a mudança do potencial externo, de maneira que estes elétrons distantes não-interagentes produzam a mesma densidade do que seus primos interagentes O funcional universal pode então ser dividido em novas partes. Onde, no sistema interagente, nós tínhamos termos como a energia cinética e a interação elétron-elétron, no sistema de Kohn-Sham temos o funcional

$$F = O r b K E + R e p C o u l + X C, \qquad (A.3)$$

onde OrbKE é a energia cinética dos elétrons falsos KS. XC contém todo o resto, que inclui as partes cinética e potencial. Embora ela seja pequena comparada ao total, a cola da natureza (TELLER, 1962) é crítica para se obter a química e a física correta. A parte X é (essencialmente) o termo de troca de Fock de um cálculo Hartree-Fock, e C é a energia de correlação (*i.e.*, aquela parte que métodos tradicionais como o de agregados acoplados

usualmente obtém de forma muito precisa) (TELLER, 1962).

Figura 29 – Densidades radiais e potenciais para o átomo de hélio (energias em Hartree, distâncias em Bohr). A linha vermelha é -2/r, a atração de elétrons reais pelo núcleo. A linha púrpura é o potencial exato de Kohn-Sham. Dois elétrons falsos no orbital 1*s* deste potencial possuem a mesma densidade no estado fundamental que o hélio real. A linha verde é o potencial da aproximação GGA que, embora imprecisa, fornece uma densidade altamente acurada. Ver Fig. 1 na ref. (PRIBRAM-JONES; GROSS; BURKE, 2015).

Fonte: Adaptada da Figura 1 do artigo de Pribram-Jones et al. (PRIBRAM-JONES; GROSS; BURKE, 2015)

No processo de minimização desta nova expressão em termo da energia, encontrase um conjunto de equações orbitais, as celebradas equações de Kohn-Sham (HOHENBERG; KOHN, 1964; KOHN; SHAM, 1965b). Elas são quase idênticas às equações de HartreeFock, demonstrando que a ideia de Slater poderia se tornar exata (se o funcional exato fosse conhecido). A genialidade do esquema de Kohn-Sham é que, por calcular orbitais as energias cinéticas associadas a eles, somente *XC*, que é uma pequena fração da energia total, necessita ser aproximada como um funcional da densidade. O esquema de KohnSham usualmente produz excelentes densidades auto-consistentes, mesmo com aproximações simples como a aproximação da densidade local (LDA), mas os potenciais aproximados para este sistema não interagente de Kohn-Sham são tipicamente muito diferentes do potencial exato KS (ver **Figura 29**).

Aproximações Populares para Troca-Correlação

Mesmo com o esmagador número de aproximações disponíveis em um *software* DFT, a maior parte dos cálculos se baseia em algumas poucas aproximações populares. A sequência destas aproximações é:

$X C \sim X C^{unif}(\rho)$	(LDA)
$X C \sim X C^{GGA}(\rho, \nabla \rho)$	(GGA)
$\sim \sim a (X - X^{GGA}) + XC^{GGA}$	(híbrido)

A primeira aproximação foi o terceiro maior passo na criação da DFT na metade dos anos 60 e foi inventada por Kohn e Sham (KOHN; SHAM, 1965b). Ela foi o esteio dos cálculos no estado sólido por uma geração e permanece popular para algumas aplicações específicas ainda hoje. Ela não é mais usada (quase) na química quântica, já que tipicamente ela superestima as ligações por aproximadamente 1 eV por ligação. A LDA (KOHN; SHAM, 1965b) faz a hipótese de que a energia *XC* depende somente da densidade eletrônica em cada posição, e esta dependência é a mesma que a do gás uniforme de elétrons.

A adição de um outro nível de complexidade leva às mais precisas aproximações dos gradientes generalizados (GGA) (BECKE, 1988; PERDEW, 1986) que utilizam informação sobre a densidade e seu gradiente em cada ponto. Aproximações híbridas misturam uma fração (a) do termo exato de troca com a GGA (BECKE, 1993) Estas manobras além da GGA usualmente melhoram a precisão de certas propriedades com um aceitável crescimento do custo computacional (PERDEW, 2001). Meta-GGAs tentam usar a dependência em relação à energia cinética de Kohn-Sham para evitar o cálculo do termo de troca de Fock pelos híbridos (PERDEW; KURTH, 2003; TAO et al., 2003) os quais podem ser bem dispendiosos em termos de tempo de processamento computacional.

Figura 30 mostra os dois funcionais mais populares, o PBE (PERDEW; BURKE; ERNZERHOF, 1996), (LEE; YANG; PARR, 1988) e o B3LYP (LEE; YANG; PARR, 1988), (BECKE, 1993) os quais determinam um grande número de citações sobre a DFT a cada ano (em torno de dois terços), apesar de que atualmente eles são citados somente cerca de metade das vezes em que são utilizados. PBE é um GGA, enquanto B3LYP é híbrido (BECKE, 1993). Como um método ligado a Hartree-Fock, a velha terra em que os químicos quânticos gostam de pisar, e com precisão tipicamente mais elevada do que PBE, o B3LYP é a mais frequente escolha dos químicos. Os erros mais sistemáticos do PBE, seu racionalismo matemático, e a falta de uma troca exata mais cara, torna o PBE mais popular na física do estado sólido e na ciência dos materiais. Na realidade, eles são usados em ambos os campos e em muitos outros também.

Figura 30 – O número de citações sobre a Teoria do Funcional da Densidade (DFT) explodiu (assim como também as dos métodos *ab initio*). PBE representa o número de citações da ref. (PERDEW; BURKE; ERNZERHOF, 1996), e B3LYP representa o número de citações da ref. (BECKE, 1993) O violeta indica artigos que utilizam ambas as aproximações sem citar os artigos originais, e Other representa as citações de todos os outros artigos sobre DFT. Todos os números são estimativas.

Fonte: Adaptada da Figura 1 do artigo de Pribram-Jones et al. [11].

Guerras Culturais

A LDA foi definida por Kohn e Sham em 1965; não há nenhuma controvérsia sobre como ela foi projetada. Entretanto, a adição de mais complexidade à aproximações funcionais implicam em escolhas sobre como dar o próximo passo. Os desenvolvedores de funcionais empíricos ajustam suas aproximações a conjuntos altamente precisos de dados de referências de átomos e moléculas. Os desenvolvedores não empíricos usam condições matemáticas exatas sobre o funcional e levam em conta sistemas de referências para testes, como o gás de elétrons uniforme e aquele cuja densidade varia suavemente. O PBE GGA é a mais popular aproximação não empírica, enquanto a mais popular aproximação empírica é o híbrido B3LYP. As modernas conferências sobre a DFT usualmente incluem debates sobre a moralidade deste tipo de empirismo.

Ambas as filosofias têm logrado incrível sucesso, como se demonstra pelo grande número de seus seguidores entre os desenvolvedores e usuários, mas cada sucesso é acompanhado por falhas. Não há uma única aproximação que funcione bem o suficiente para toda propriedade de todo material que se possa ter interesse. Muitos usuários estão de maneira honesta e pragmática no meio das duas facções, buscando o que há de melhor da realização e inspiração de ambas. Frequentemente, os empiristas e os não empiristas encontram-se eles próprios com produtos finais similares, o que é uma boa indicação de que algo valioso foi criado com a força de ambos.

Em síntese, temos atualmente as seguintes guerras de cultura no desenvolvimento/criação de novos funcionais na DFT:

I. Um funcional intuitivo e inspirado não necessita esperar por uma derivação oficial. Um parâmetro pode ser extraído por um ajuste e obtido posteriormente;

II. Um funcional ajustado irá usualmente ser mais preciso do que sua versão derivada para os casos com os quais ele foi ajustado. A magnitude dos erros irá ser menor, mas menos sistemática.

III. O funcional ajustado irá perder as propriedades universais de um funcional obtido por derivação.

IV. Querer adicionar a próxima correção ao LDA começando com a constante errada irá tornar a vida mais difícil.

O que está na Fronteira?

Gaps Precisos

Cálculos do *gap* de energia precisos e erros de auto-interação são dificuldades notórias na DFT (FIOLHAIS; NOGUEIRA; MARQUES, 2003). Erros de auto-interação decorrem da interação espúria de um elétron com ele mesmo no termo de repulsão de Coulomb. Métodos dependente dos orbitais frequentemente solucionam a maior parte deste problema, mas eles são exigentes computacionalmente. O denominado problema do *gap* de energia na DFT decorre do tratamento do *gap* de Kohn-Sham entre o mais elevado orbital molecular ocupado (HOMO) e o mais baixo orbital molecular desocupado (LUMO) como o *gap* de energia fundamental, mas a diferença entre o *gap* HOMO-LUMO e aquele em um sistema Kohn-Sham não é a mesma que aquela entre o potencial de ionização e a afinidade eletrônica (FIOLHAIS; NOGUEIRA; MARQUES, 2003). Métodos *ad hoc* são frequentemente usados para corrigir os *gaps* de energia calculados pela DFT, mas estes métodos requerem cálculos adicionais laboriosos (em geral), conhecimento empírico para o sistema de interesse em particular, ou ajustamento empírico. Entretanto, tem sido demonstrado recentemente que algumas classes de erros de auto-interação se configuram assim devido aos potenciais limitados que levam a densidades também limitadas (KIM; SIM; BURKE, 2013, 2014). Estes erros são evitados pelo uso de densidades mais precisas.

Híbridos Separados por Intervalos

Híbridos separados por intervalos (HEYD; SCUSERIA; ERNZERHOF, 2003) melhoram os *gaps* de energia fundamentais calculados pela DFT como *gaps* HOMO-LUMO (KRONIK et al., 2012). Híbridos separados (*i.e.* com blindagem por intervalos) podem levar à renormalização do *gap* de energia quando se passa de moléculas na fase gasosa para cristais moleculares (REFAELY-ABRAMSON et al., 2013). O esquema básico de híbridos separados por intervalos divide a problemática interação de Coulomb em partes de ação longa e curta. A versão com blindagem salienta condições exatas para determinar onde a separação ocorre, e incorpora a constante dielétrica como parâmetro adaptativo. Esta técnica leva em conta uma blindagem crescente que ocorre quando as moléculas formam sólidos, resultando em *gaps* reduzidos críticos para os cálculos no caso de aplicações em eletrônica molecular.

Interações Fracas

Outra falha clássica na DFT é o seu pobre tratamento de interações fracas (GROSS; DOBSON; PETERSILKA, [s.d.]; JONES; GUNNARSSON, 1989). Dipolos induzidos e as resultantes interações de dispersão não são bem descritas pelas mais populares aproximações da DFT. Isto impede a modelagem precisa de uma vasta gama de sistemas biológicos, assim como também uma larga gama de outros fenômenos, como a adsorção em superfícies e o empacotamento de cristais moleculares. A GGA e os híbridos são incapazes de descrever bem as correlações de longo alcance entre as flutuações induzidas na densidade eletrônica. A aproximação não empírica baseada no trabalho de Langreth, Lundqvist e colaboradores (DION et al., 2004; KANNEMANN; BECKE, 2010; LEE et al., 2011; SOLER
et al., 2002) e o funcional empírico DFT-D de Grimme (GRIMME, 2006), (JUREČKA et al., 2006) têm dominado os avanços nesta área, junto com o mais recente e menos empírico funcional de Tkatchenko e Scheffler (TKATCHENKO; SCHEFFLER, 2009).

Formalismo Moderno da Teoria do Funcional da Densidade

Teoremas de Hohenberg-Kohn

Os teoremas nos quais a DFT está baseada estabelecem que todas as propriedades de um sistema de muitos corpos podem ser escritas como funcionais da densidade eletrônica $\rho(r)$ (HOHENBERG; KOHN, 1964). Assim, a densidade passa a desempenhar o papel de variável fundamental.

Teorema 1: O potencial externo $U(\mathbf{r})$ é, a menos de uma constante, um funcional único de $\rho(\mathbf{r})$.

Corolário 1. A determinação de $U(\mathbf{r})$ determina o hamiltoniano \hat{H} e todas as propriedades do sistema.

Demonstração: Para um sistema de N elétrons, o operador hamiltoniano é

$$H^{2} = T^{4} + U^{4} + V^{6}, (A.4)$$

onde:

 $T^{\sim} \rightarrow$ Representa a energia cinética de todos os elétrons;

 $U^{\wedge} \rightarrow$ Representa a energia de interação elétron-elétron;

O potencial externo normalmente é devido às interações coulombianas com os núcleos:

$$V = -\sum_{i}^{N} \sum_{l}^{M} \frac{I}{|\mathbf{r}_{i} - \mathbf{R}I|} = \sum_{i=1}^{N} v(\mathbf{r}_{i}) z$$
(A.5)

A função de onda ψ_0 para o estado fundamental tem energia correspondente a $\langle \psi_0 | H \rangle \psi_0 \rangle$. Tomando a Eq. (A.4) podemos explicitar o potencial externo de forma que seu valor esperado fique em função da densidade eletrônica $\rho(\mathbf{r})$,

$$\langle \psi_0 | V \rangle \psi_0 \rangle = \int \rho(\mathbf{r}) V(\mathbf{r}) d^3 \mathbf{r} \cdot (A.6)$$

Para provar o primeiro teorema de Hohenberg-Kohn, vamos admitir que existam dois potenciais externos, $V_1 \in V_2$ tais que $V_1 = V_2 \neq$ constante mas que conduzem à mesma densidade eletrônica no estado fundamental. Os dois potenciais externos determinam hamiltonianos distintos, $H_1 \in H_2$, com diferentes estados fundamentais $|\Psi_0^1\rangle \in |\Psi_0^2\rangle$ (uma vez que a diferença entre os potenciais externos não é constante) que supostamente levam à mesma densidade de elétrons para o estado de menor energia, $\rho_0(\mathbf{r})$. Como $|\Psi_0^2\rangle$ não é o estado fundamental de H_1 , temos que:

$$E_{1} = \langle \psi_{0}^{1} | H_{1}^{1} | \psi_{0}^{1} \rangle < \langle \psi_{0}^{2} | H_{1}^{1} | \psi_{0}^{2} \rangle, \text{ (A.7)}$$

Exclui-se aqui a possibilidade de degenerescência. O último termo da equação (A2.7) pode ser escrito como:

$$\langle \psi_0^2 | H_1^2 | \psi_0^2 \rangle = \langle \psi_0^2 | H_2^2 | \psi_0^2 \rangle + \langle \psi_0^2 | H_1^2 - H_2^2 | \psi_0^2 \rangle = E_2 + \int \rho \left(\boldsymbol{r} \right) (V_1(\boldsymbol{r}) - V_2(\boldsymbol{r})) d^3 \boldsymbol{r},$$
(A.8)

de modo que:

$$E_1 < E_2 + \int \rho(\mathbf{r})(V_1(\mathbf{r}) - V_2(\mathbf{r})) d^3\mathbf{r}$$
, (A.9)

Por outro lado, tratando E_2 exatamente da mesma forma, temos:

$$E_2 < E_1 + \int \rho(\mathbf{r}) (V_2(\mathbf{r}) - V_1(\mathbf{r})) d^3\mathbf{r}$$
, (A.10)

Adicionando as equações (A.9) e (A.10), chegamos a uma contradição:

$$E_1 + E_2 < E_1 + E_2$$
, (A.11)

Isto prova que não podem existir dois potenciais externos diferindo por mais que uma constante produzindo a mesma densidade de elétrons do estado fundamental. A densidade eletrônica possui uma correspondência de um para um com o potencial externo.

Teorema 2: Pode-se definir um funcional universal da energia $E[\rho]$ em termos da densidade $\rho(\mathbf{r})$ para qualquer potencial externo $V(\mathbf{r})$. No caso de um potencial externo particular, a energia exata do estado fundamental do sistema é o mínimo global desse funcional, e a densidade que minimiza o funcional é a densidade exata do estado fundamental, $\rho_0(\mathbf{r})$.

Corolário 2. O funcional $E[\rho]$ basta, sozinho, para determinar a energia e a densidade exatas do estado fundamental. Estados excitados devem ser encontrados por outros meios.

Demonstração: Consideremos as densidades eletrônicas $\rho(\mathbf{r})$ que são densidades de mais baixa energia do hamiltoniano eletrônico para algum potencial externo $V(\mathbf{r})$ (densidades *V*representáveis). Elas definem um espaço de densidades possíveis dentro do qual podem ser construídos funcionais da densidade. Como todas as propriedades são determinadas de modo único a partir de $\rho(\mathbf{r})$, então cada propriedade pode ser vista como um funcional da densidade, incluindo o funcional da energia total:

$$E_{HK}[\rho] = T[\rho] + U[\rho] + \int \rho(r) V(r) d^{3}r.$$
(A.12)

Definindo

$$F_{HK}[\rho] \equiv T[\rho] + U[\rho], (A.13)$$

temos $E_{HK}[\rho] = F_{HK}[\rho] + \int \rho(\mathbf{r})V(\mathbf{r}) d^3\mathbf{r}$. O funcional $F_{HK}[\rho]$ deve ser universal por construção, já que a energia cinética e a energia de interação das partículas dependem apenas da densidade eletrônica. Consideremos agora um sistema com densidade eletrônica no estado fundamental igual a ρ_1 . De acordo com o que se acabou de ver, o funcional de Hohenberg-Kohn é igual ao valor esperado do hamiltoniano para o estado fundamental único $|\Psi_1\rangle$:

$$E_1 = E_{HK}[\rho_1] = \langle \Psi_1 | H_1^{\hat{}} | \Psi_1 \rangle.$$
(A.14)

Considerando em seguida uma densidade diferente, ρ_2 , que corresponde necessariamente a um outro estado $|\Psi_2\rangle$, a energia E_2 desse novo estado é maior que E_1 :

$$E_{1} = \langle \Psi_{1} | H_{1}^{\hat{}} | \Psi_{1} \rangle < \langle \Psi_{2} | H_{1}^{\hat{}} | \Psi_{2} \rangle = E_{2}.$$
(A.15)

Logo, a energia obtida usando o funcional de Hohenberg-Kohn para a densidade correta do estado fundamental é de fato mais baixa que o valor para qualquer outra densidade. Portanto, se o funcional $F_{HK}[\rho]$ for conhecido, a minimização da energia total do sistema com respeito a variações na densidade eletrônica permitirá encontrar a densidade e a energia exatas do estado fundamental, estabelecendo o Corolário II.

A Formulação de Kohn-Sham

O funcional universal $F_{HK}[\rho]$ pode ser escrito como:

$$F_{HK}[\rho] = \langle \psi_0[\rho] | T^+ U^{\dagger} | \psi_0[\rho] \rangle, \text{ (A.16)}$$

onde $|\psi_0[\rho_1]\rangle$ é o estado fundamental (não degenerado) associado à densidade eletrônica ρ . Analisemos o funcional universal $F_{HK}[\rho_1]$ da seguinte forma:

$$F_{HK}[\rho] = T[\rho] + J[\rho] + (U[\rho] - J[\rho]),$$
(A.17)

onde os termos acima são:

 $T[\rho] \rightarrow$ Energia cinética eletrônica;

 $J[\rho] \rightarrow$ Energia da interação coulombiana clássica (repulsiva) dos elétrons entre si;

 $U[\rho] - J[\rho] \rightarrow$ Energia de interação elétron-elétron menos a energia de interação coulombiana clássica.

Desses termos, somente $J[\rho]$ é conhecido:

$$J[\rho] = \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{2|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'.$$
(A.18)

O modelo desenvolvido por Kohn e Sham em 1965 para estimar a contribuição dos termos desconhecidos na Eq. (A2.17) parte da ideia de usar um sistema fictício no qual os elétrons não interagem entre si. A função de onda para tal sistema difere da função de onda real (CLARK et al., 2005), (SEGALL et al., 2002), (PAYNE et al., 1992), (KORRINGA, 1947; PHILLIPS; KLEINMAN, 1959). Entretanto, escolhendo um potencial adequado, ela deve produzir a mesma densidade eletrônica do estado fundamental do sistema de elétrons interagentes que se deseja investigar. O hamiltoniano desse sistema é chamado de hamiltoniano de Kohn-Sham, e é dado por:

$$\hat{\mathbf{H}}^{KS} = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_i^2 + V^{KS}(\boldsymbol{r}_i) \right] = \sum_{i=1}^{N} \hat{h}_{iKS}, \quad (A.19)$$

onde V^{KS} refere-se a um potencial efetivo (potencial de Kohn-Sham) percebido pelos elétrons do sistema fictício. A função de onda total é um determinante de Slater:

$$\Psi^{KS} = \frac{1}{\sqrt{N!}} \begin{bmatrix} \chi_1^{KS}(\boldsymbol{x}_1) & \chi_2^{KS}(\boldsymbol{x}_2) & \cdots & \chi_1^{KS}(\boldsymbol{x}_N) \\ \vdots & \ddots & \vdots \\ \chi_N^{KS}(\boldsymbol{x}_1) & \chi_N^{KS}(\boldsymbol{x}_2) & \cdots & \chi_N^{KS}(\boldsymbol{x}_N) \end{bmatrix},$$
(A.20)

onde os χ^{KS_i} são os orbitais de Kohn-Sham. As coordenadas \mathbf{x}_i incluem as coordenadas espaciais \mathbf{r}_i e de *spin* S_i . As partes espaciais, Ψ^{KS_i} , de cada orbital são autofunções do hamiltoniano unieletrônico:

$$\hat{\mathbf{h}}^{KS}\boldsymbol{\psi}_{i}{}^{KS} = \left[-\frac{1}{2}\nabla^{2} + V^{KS}(\mathbf{r})\right]\boldsymbol{\psi}_{i}{}^{KS} = i\boldsymbol{\psi}_{i}{}^{KS}.$$
(A.21)

Na ausência de interações entre elétrons, a energia cinética e a densidade eletrônica podem ser calculadas explicitamente como:

$$T^{KS}[\rho^{KS}] = \sum_{i}^{N} \langle \psi_{i}^{KS}[\rho^{KS}]|^{-1} - \nabla^{2}_{i} |\psi_{i}^{KS}[\rho^{KS}]\rangle, \text{ (A.22)}$$
$$\rho^{KS} = \sum_{i}^{N} |\psi_{i}^{KS}|^{2}. \text{ (A.23)}$$

A conexão do sistema auxiliar acima, com o real, está na escolha do potencial efetivo, v^{KS} , tal que a densidade ρ^{KS} seja igual a densidade do estado fundamental do sistema de elétrons interagentes, ρ_0 . Kohn e Sham perceberam que não conseguiriam resolver o hamiltoniano para elétrons interagentes de maneira exata. No entanto, era possível reescrever o funcional universal de Hohenberg-Kohn, $F_{HK}[\rho]$, da seguinte forma:

$$F_{HK}[\rho^{KS}] = J[\rho^{KS}] + T^{KS}[\rho^{KS}] + E_{XC}[\rho^{KS}].$$
(A.24)

Com o funcional de troca e correlação E x c dado por:

$$E_{XC}[\rho] = (T [\rho] - T^{KS}[\rho]) + (U[\rho] - J[\rho]) = T_{R}[\rho] + (U[\rho] - J[\rho]).$$
(A.25)

O termo acima é composto pela parte residual da energia cinética, T_R , e contribuições eletrostáticas não clássicas. A expressão para a energia total (incluindo o potencial nuclear externo V) é:

$$E[\rho^{KS}] = \frac{1}{2} \iint \frac{\rho^{KS}(\mathbf{r})\rho^{KS}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + T^{KS}[\rho^{KS}] + E_{XC}[\rho^{KS}] + \int \rho^{KS}(\mathbf{r})V(\mathbf{r}) d\mathbf{r}.$$
 (A.26)

Para minimizarmos o funcional de energia, a densidade ρ^{KS} deve satisfazer o princípio estacionário $\delta E \left[\rho^{KS}\right] = 0$, sujeita a condições de vínculo $\int \rho(\mathbf{r}) d\mathbf{r} - N = 0$, ou seja,

$$\delta \left\{ \frac{\frac{1}{2} \iint \frac{\rho^{KS}(\mathbf{r})\rho^{KS}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + T^{KS}[\rho^{KS}] + E_{XC}[\rho^{KS}] + \int \rho^{KS}(\mathbf{r})V(\mathbf{r}) d\mathbf{r} - \mu[\int \rho^{KS}(\mathbf{r})d\mathbf{r} - N] \right\} = 0.$$
(A.27)

que leva a:

$$\int \delta \psi_i^{*KS} \left\{ \frac{\delta T^{KS}[\rho^{KS}]}{\delta \psi_i^{*KS}} + \left(\frac{\delta E_{XC}[\rho^{KS}]}{\delta \rho^{KS}} + \frac{1}{2} \int \frac{\rho^{KS}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V(\mathbf{r}) - \epsilon_i \right) \frac{\delta \rho^{KS}}{\delta \psi_i^{*KS}} \right\} d\mathbf{r} = 0.$$
(A.28)

Mas:

$$\frac{\delta T^{KS}[\rho^{KS}]}{\delta \psi_i^{*KS}} = -\frac{1}{2} \nabla^2 \psi_i^{KS}; \ \frac{\delta \rho^{KS}}{\delta \psi_i^{*KS}} = \psi_i^{KS}$$
(A.29)

Definindo o potencial de troca e correlação $V_{XC}(\rho)=\frac{\delta E_{XC}(\rho)}{\delta\rho}$ temos :

$$\int \delta \psi_i^{*KS} \left\{ -\frac{1}{2} \nabla^2 \psi_i^{KS} + \left(V_{\rm XC}[\rho^{KS}] + \frac{1}{2} \int \frac{\rho^{KS}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V(\mathbf{r}) - \epsilon_i \right) \psi_i^{KS} \right\} d\mathbf{r} = 0.$$
(A.30)

De onde obtemos as equações para os orbitais de Kohn-Sham:

$$\left(-\frac{1}{2}\nabla^2 + V^{KS}\right)\psi_i^{KS}(\boldsymbol{r}) = \varepsilon_i\psi_i^{KS}(\boldsymbol{r}), \qquad (A.31)$$

onde:

$$V^{KS} = V_{XC} + V_H + V$$
, (A.32)

e $V_{\rm H}(\mathbf{r}) = \frac{1}{2} \int \frac{\rho^{KS}(r')|}{|r-r'|} dr'$ é o potencial de Hartree.

As equações de Kohn-Sham devem ser resolvidas de modo auto-consistente de acordo com o esquema da **Figura 31**.

Funcionais de Troca e Correlação

Aproximação da Densidade Local

No mesmo artigo em que apresentaram seus resultados, Kohn e Sham (KOHN; SHAM, 1965b), (KOHN; SHAM, 1965a), também mencionaram o fato de que os elétrons em um sólido podem ser considerados em muitas situações como um gás aproximadamente homogêneo. No limite de um gás de elétrons homogêneo, sabe-se que os efeitos de troca e correlação são locais. Portanto, Kohn e Sham propuseram uma aproximação de densidade local (*Local Density Approximation* – LDA) para o funcional de troca e correlação ($E \times c$), em que a forma da energia de $E \times c$ em um sólido é obtida pela da densidade de energia

Figura 31 – Ciclos de auto consistência dos cálculos de DFT.

Fonte: Retirada da ref. (ALENCAR, A. BORGES, 2016)

 ε_{xc} de um gás de elétrons homogêneo avaliada usando-se o valor da densidade eletrônica local:

$$E x c [\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \varepsilon x c [\rho(\mathbf{r})] d^{3}\mathbf{r} \cdot (A.33)$$

Dito isto, o potencial de troca e correlação pode ser escrito como:

$$V_{XC}(\mathbf{r}) = \frac{\delta \varepsilon_{XC}[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})} = \frac{\delta \rho(\mathbf{r}) \varepsilon_{XC}[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})}, \quad (A.34)$$
$$V_{XC}(\mathbf{r}) = \varepsilon_{XC}[\rho(\mathbf{r})] + \delta \rho(\mathbf{r}) \frac{\partial \varepsilon_{XC}[\rho(\mathbf{r})]}{\partial \rho(\mathbf{r})}. \quad (A.35)$$

Separemos, agora, o termo de troca e correlação, $E \times c$, em duas partes, um termo de troca, $E \times c$, e outro de correlação, E c de modo que podemos escrevê-lo na forma

$$E_{XC}[\rho(\boldsymbol{r})] = E_{X}[\rho(\boldsymbol{r})] + E_{C}[\rho(\boldsymbol{r})].$$
(A.36)

Logo, podemos reescrever a Eq. (A.33), como

$$E_{XC}^{LDA}[\rho(\boldsymbol{r})] = \int \rho(\boldsymbol{r}) \{ x[\rho(\boldsymbol{r})] + \varepsilon_{\mathcal{C}}[\rho(\boldsymbol{r})] \} d^{3}\boldsymbol{r}, \quad (A.37)$$

O potencial de troca e correlação, V_{XC} , pode ser calculado exatamente para a parte de troca e numericamente para a parte de correlação (usando métodos de Monte Carlo). Embora devesse funcionar bem apenas no limite de um material metálico, a aproximação LDA também é relativamente bem-sucedida para casos não tão homogêneos.

Aproximação do Gradiente Generalizado

O sucesso da aproximação LDA levou ao desenvolvimento de aproximações do funcional de troca e correlação que tentam levar em conta a variação da densidade eletrônica, as chamadas aproximações de gradiente generalizadas (Generalized Gradient Approximation – GGA) (PAYNE et al., 1992), (LANGRETH; PERDEW, 1980), que melhoram os resultados da aproximação LDA em muitos problemas envolvendo moléculas (o que é interessante para os químicos). A parametrização de um funcional GGA é bem mais complicada que a de um funcional LDA, envolvendo termos de gradiente da densidade eletrônica. Para um sistema de camada aberta, ou seja, com elétrons não emparelhados, podemos escrever o funcional de energia de troca e correlação GGA como:

$$E_{XC}^{GGA}[\rho(\mathbf{r})] = \int f[\rho_{\alpha}, \rho_{\beta}, \nabla \rho_{\alpha}, \nabla \rho_{\beta}] d\mathbf{r}, \qquad (A.38)$$

Da mesma forma como é feito na aproximação LDA, na metodologia GGA o funcional E_{XC}^{GGA} é separado em duas partes uma contendo o termo de troca E_X^{GGA} e outra contendo o termo de correlação E_C^{GGA} ,

$$E_{XC}^{GGA} = E_X^{GGA} + E_C^{GGA} . \tag{A.39}$$

Alguns funcionais de troca e correlação baseados na metodologia GGA foram desenvolvidos usando considerações teóricas sobre o comportamento esperado dos funcionais E_X^{GGA} e E_c^{GGA} em várias situações e dados empíricos (FILIPPI; UMRIGAR; TAUT, 1994). Um exemplo de funcional GGA muito usado é o funcional de Perdew e Wang, publicado em 1986, designado pela sigla PW86 e que prevê bem certas propriedades moleculares. A combinação

guiada por experimento de funcionais LDA e GGA com a energia de troca calculada exatamente produz os chamados funcionais híbridos. São muito usados, especialmente em química. Alguns exemplos de funcionais híbridos são os funcionais B3LYP, B3PW91 e o B1B96 (CEPERLEY; ALDER, 1980), (BONHOMME et al., 2012).

As formas mais utilizadas para a energia de troca em funcionais GGA são as de Becke (B88), Perdew e Wang (PW91) e Perdew-Burke-Enzerhof (PBE). Por outro lado, a energia de correlação é mais difícil de expressar matematicamente, sendo sua contribuição para a energia tipicamente muito menor que a da energia de troca. Perdew e Wang e Perdew-Burke-Enzerhof desenvolveram expressões para a energia de correlação que são bastantes usadas, e os químicos adotam com frequência o funcional de correlação de LeeYang-Parr (LYP) (PERDEW; ZUNGER, 1981), (HAMANN; SCHLÜTER; CHIANG, 1979b), (CHAN; CEDER, 2010), (ROUSSEAU; BAUMAN; PORTO, 1981; ZHENG et al., 2011).

Enfim, para muitas propriedades, por exemplo, geometrias e energias do estado fundamental de moléculas, o formalismo GGA pode fornecer melhores resultados do que o formalismo LDA. Funcionais corrigidos pelo gradiente e funcionais híbridos fornecem boas geometrias de equilíbrio, frequências vibracionais e momentos de dipolos apesar de muitos dos funcionais E x c apresentarem falhas em descrever ligações de van der Waals.

Inclusão de interações de van der Waals

Dentro da teoria do funcional da densidade, funcionais locais e semilocais como o LDA e GGA não são capazes de descrever forças dispersivas como as interações de van der Waals (vdW) (KRISTYÁN; PULAY, 1994). Embora as interações de vdW já possam ser incorporadas *ad hoc* a esses funcionais, há ainda muitas dificuldades a superar [35]-[38]. O que motiva sua inclusão nas simulações DFT é o papel essencial que desempenham na dinâmica e estabilização molecular de sistemas tão diversos como o ADN, ARN, polímeros, longas cadeias carbônicas (ROTH; NEAL; LENHOFF, 1996; TRONCOSO; ACOSTA, 2015), moléculas adsorvidas (GANESH et al., 2014; HANKE et al., 2012; TERESHCHUK; DA SILVA, 2012; ZAREMBA; KOHN, 1976) e agregados orientados de nanopartículas (DALMASCHIO et al., 2013; GOBRE; TKATCHENKO, 2013; MOSZYNSKI, [s.d.]; YASUI; KATO, 2015).

As principais contribuições para as interações de vdW são de origem eletrostática: (i) forças dipolo-dipolo permanentes ou de Keesom; (ii) forças dipolo induzido-dipolo permanente de Debye; (iii) e forças dipolo induzido-dipolo induzido de London (KRISTYÁN; PULAY, 1994), (MOSZYNSKI, [s.d.]). Do ponto de vista da densidade eletrônica, elas se originam do movimento correlacionado dos elétrons do sistema. É conveniente, portanto, acrescentar à energia total de Kohn-Sham (KOHN; SHAM, 1965b), (KOHN; ROSTOKER, 1954) um funcional extra de dispersão (E v d W), de acordo com:

$$E_T = E_{DFT} + E_{vdW} \tag{A.40}$$

Quando se incluem apenas as forças de London:

$$E_{vdW} = -\frac{1}{2} \sum_{a,b} f_{damp} \left(R_{ab}, a, b \right) \frac{C_{ab}}{R_{ab}^6}$$
(A.41)

Os parâmetros C_{ab} e R_{ab} , associados aos pares de átomos a e b, são, respectivamente, o coeficiente de dispersão decorrente de efeitos de polarização e a sua distância. Já o termo f_{damp} é uma função de amortecimento que tende a 1 se $R_{ab} \rightarrow \infty$, mas que anula se $R_{ab} \rightarrow 0$ de modo a prevenir a divergência do termo $1/R_a{}^6_b$, fazendo E_{vdW} ir para zero ou algum outro valor constante.

Existe uma variedade de soluções semiempíricas para o amortecimento da dispersão no formalismo da DFT. Os esquemas mais conhecidos foram apresentados por Grimme (GRIMME, 2006), Jurecka *et al.* (JUREČKA et al., 2006), Ortmann, Bechstedt e Schmidt (ORTMANN, F.; BECHSTEDT, F.; SCHMIDT, W. G., 2006) e, mais recentemente, por Tkatchenko e Scheffler (TKATCHENKO; SCHEFFLER, 2009), com bons resultados na determinação de estruturas e polimorfos de cristais moleculares (DAY et al., 2009). O método de Grimme é o mais usual para a parametrização empírica do termo C_{ab} . Nas suas implementações mais antigas, conhecidas por DFT-D (GRIMME, 2004) e DFT-D2 (GRIMME, 2006), a correção vdW leva em conta apenas interações entre dois átomos, enquanto a implementação mais recente, conhecida como DFT-D3 (BLEIZIFFER; KRUG; GÖRLING, 2015), considera interações de três átomos. Apesar de seu caráter fortemente empírico, o método proposto por Grimme forneceu valiosas contribuições no estudo das forças de vdW no escopo da DFT.

A energia total dada pela Eq. (A.41) é computacionalmente simples de implementar. A maior dificuldade é garantir sua transferibilidade entre os mais diversos sistemas. Detalhes como a variação substancial nas propriedades entre os "átomos" efetivos

da mesma espécie na molécula, por exemplo, ou a influência dos estados de hibridação na polarizabilidade efetiva, precisam ser ignorados, o que pode ser particularmente ruim para estudos de adsorção na superfície de um metal, na qual a redução da constante dielétrica efetiva devida ao *screening* de carga deve ser refletida nos coeficientes de dispersão para átomos em camadas mais profundas do substrato.

O estado da arte nos métodos de correção dispersiva semiempíricos é o esquema proposto por Tkatchenko e Scheffler (TS) (TKATCHENKO; SCHEFFLER, 2009), que tenta se livrar da parametrização empírica determinando os coeficientes C_{ab} e os raios de vdW dos átomos a partir da densidade eletrônica (ρ) . A função $\rho(r)$ é utilizada, portanto, para calcular diretamente os coeficientes de dispersão. Embora o esquema TS use a mesma função de amortecimento que o esquema de Grimme (GRIMME, 2006), ele segue Jurecka *et al.* (JUREČKA et al., 2006), e apresenta uma qualidade superior ao método de Grimme. A correção TS explora a relação entre polarizabilidade $(\alpha_a(i\omega))$ e volume, explicando em parte a variação relativa nos coeficientes de dispersão de átomos com ligações químicas diversas a partir da integral de Casimir-Polder:

$$C_{ab} = -\frac{3}{\pi} \int_{0}^{\infty} \alpha_a (i\omega) \alpha(i\omega) d\omega$$
 (A.42)

A Eq. (A.42) serviu de base para que Tkatchenko-Scheffler propusessem três métodos em sucessão. O primeiro é o método Tkatchenko-Scheffler (TS) original (TKATCHENKO; SCHEFFLER, 2009), o segundo foi chamado de TS-SCS (KOIDE, 1976) e o terceiro método foi chamado de MBD, e baseia-se no cálculo da energia de dispersão a partir do Teorema de Dissipação-Flutuação por Conexão Adiabática (*Adiabatic Connection Fluctuation Dissipation Theorem*-ACFDT) (BLEIZIFFER; KRUG; GÖRLING, 2015), (MCLACHLAN; BALL, 1964; NIMALAKIRTHI; HUNT, 1993). Nos dois primeiros métodos, TS e TS-SCS, a energia de dispersão é calculada a partir dos parâmetros *C ab*, enquanto no terceiro a contribuição da dispersão eletrônica é isolada do termo de troca exato considerando efeitos relativos às flutuações na densidade de carga e de dispersão causados por interações de curto/longo alcance envolvendo muitos corpos (many-body dispersion-MBD) (KOIDE, 1976).

Simulações Computacionais

O uso de simulações computacionais quânticas tem se tornado cada vez mais difundido para o tratamento de sistemas de muitos corpos. O estudo computacional de sistemas atômicos, moleculares ou sólidos baseia-se na construção de um hamiltoniano e na solução de equações do tipo Schrödinger. Nesta seção é feito um breve resumo de cálculos em sistemas periódicos, tema desta dissertação, como também o código computacional usado durante o desenvolvimento do trabalho.

Bases e pseudopotenciais

Basicamente existem três abordagens para a expansão das funções de onda em aproximações de partícula independente: o uso de ondas planas, orbitais atômicos localizados e o método de esfera atômica.

Ondas planas são autofunções da equação de Schrödinger com potencial constante, de forma que elas se tornam uma escolha natural para a descrição de bandas na aproximação do elétron quase livre. Pseudopotenciais podem ser usados para representar os elétrons mais internos (elétrons de caroço), reduzindo o tamanho da base necessário para alcançar boa convergência. Já uma base de orbitais atômicos localizados, captura de imediato as características atômicas em sólidos e moléculas (KORRINGA, 1947), (ANTONČÍK, 1954, 1959, 1960; BLÖCHL, 1990; PHILLIPS, 1958).

O terceiro método, da esfera atômica, divide o problema da estrutura eletrônica em duas regiões: a vizinhança de cada núcleo, onde as funções de onda variam mais abruptamente, e o espaço entre os átomos, com variação suave. As funções de onda podem ser amplificadas perto de cada núcleo resolvendo-se a equação de Schrödinger na esfera e assegurando a continuidade com a função de onda na região externa (KORRINGA, 1947), (KOHN; ROSTOKER, 1954).

Todas essas abordagens e mesmo a geração de pseudopotenciais envolvem a determinação de um campo autoconsistente (*self-consistent field - SCF*) dentro do contexto da metodologia de Kohn-Sham. Payne *et al.* apontam os passos (**Figura 32**) da realização de um cálculo autoconsistente de pseudopotencial para computar a energia total de um sistema físico.

Os Programas Gaussian e GaussView

Neste trabalho, as simulações computacionais foram realizadas usando o pacote Gaussian 09, Revision B.01 (KAMINSKI; JARZEMBSKA; DOMAGAŁA, 2013), através da modelagem molecular no visualizador GaussView, Version 6 (Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., ShawneeMission, KS, 2016). Em suma, os procedimentos realizados foram para além dos devidos cálculos de otimização, frequência, otimização+frequência, singlepoint etc. Segundo os desenvolvedores do Gaussian 09, sabe-se que este se trata de um conjunto interligado de programas criados para realizar cálculos teóricos semi-empíricos do funcional da densidade e de orbitais moleculares ab initio. Para isto, o ponto inicial é as leis fundamentais da mecânica quântica, prevendo assim as energias, estruturas moleculares, frequências vibracionais, propriedades moleculares e processos reacionais em uma gama de ambientes químicos específicos. Vale salientar que os cálculos em Gaussian 09 podem ser utilizados tanto para espécies estruturalmente estáveis quanto para compostos quimicamente impossíveis de serem analisados e estudados a nível experimental (por exemplo, intermediários de reação, como radicais livres). Todavia, há de se pontuar algumas diferenças existentes entre os pacotes Gaussian 09 e 16 (apesar de similares em certos quesitos). A primeira destas é a presença de novos modelos semi-empíricos, incluindo AM1, PM3, PM3MM, PDDG e PM6, que acrescenta primeira e segunda derivadas analíticas, parâmetros especificáveis por quem opera as máquinas e funciona com os modelos de solvatação PCM. Outra diferença é observada em gradientes TD-DFT (cálculos DFT dependentes do tempo) e frequências numéricas. Uma característica avaliada no Gaussian 16 é a combinação de diversos modelos ONIOM + PCM, proporcionando assim um resultado resoluto em entender as contribuições da solvatação juntamente com a "divisão de camadas" em diversos níveis teóricos. Por fim, o último exemplo que leva à diferenciação dos softwares Gaussian 09 e 16 é de que, neste, as formas de bandas de excitação eletrônica utilizam-se a teoria de Herzberg-Teller ou Franck-Condon-Herzberg-Teller. Entretanto, apesar de notórias diferenças entre ambos os pacotes, a acurácia dos cálculos não foi comprometida ao se utilizar a versão 09; haja vista os resultados experimentais se mostraram consideravelmente representados pelos cálculos teóricos. Ademais, tratando-se das especificações do programa, temos sumariamente: criação de input e output, visualização (tanto do modelo molecular quanto das keywords em arquivo de texto) e modelo computacional (convergido o sistema até atingir o mínimo total de energia potencial, e não apenas um ponto na superfície). Todavia, estes termos serão tratados com mais detalhes na próxima seção.

Figura 32 – Esquema da realização de cálculo autoconsistente de pseudopotencial.

Fonte: Retirado e adaptado de (PAYNE et al., 1992).

Com relação aos modelos teóricos – forma de modelar um sistema usando um conjunto de aproximações, as quais são combinadas com um algoritmo de cálculo – o Gaussian 09 possui, como foi citado anteriormente, métodos *ab initio* (HF, MP_N, CI), semiempíricos (ZINDO, AM1), DFT (M062X, B3LYP, PW91, VWN), mecânica molecular (UFF, MMFF). Entretanto, o cálculo é realizado também com os chamados "conjuntos de base" para *ab initio* ou DFT (outros modelos utilizam conjuntos de base internos), que nada mais são do que um conjunto de funções de onda que descreve a forma dos orbitais atômicos (AOs); com os orbitais moleculares (MOs) sendo calculados usando o modelo teórico selecionado combinando linearmente os AOs (C.-K. SKYLARIS, Gaussian Bases Sets). Inicialmente, no processo de descrição destes, dois tipos de orbitais são utilizados: Orbitais Tipo Slater (STOs) e Orbitais Tipo Gaussiano (GTOs), cujas funções são representadas na **Figura 33**. A diferença entre ambos que mais se acentua é a vantagem que os GTOs têm sobre os STOs: são mais fáceis e, portanto, mais rápidos de serem calculados em detrimento do cálculo de um STO.

Figura 33 – Diferenças entre funções de Slater e Gaussiana

Fonte: Slater VS Gaussian Type functions (C.-K. Skylaris, CHEM3023: Spins, Atoms and Molecules, Lecture 6: Basis Sets).

Preparando um job no GaussView

A seguir são listadas as principais tarefas que o Gaussian 09 executa:

- Cálculo de scan;
- Cálculo de energia de uma estrutura fixa (single point);
- Otimização de geometria;
- Propriedades vibracionais e ópticas;
- Mecânica molecular;
- Cálculo de constantes elásticas;
- Pesquisa de estado de transição;
- Confirmação de estado de transição;
- ONIOM (MO:MM, MO:MO:MM, QM:MM);
- Propriedades diversas.

Cada um desses cálculos pode ser configurado para a determinação de propriedades químicas e físicas específicas em combinação com a opção de Propriedades. Como relatado anteriormente, o programa utilizado para a preparação dos inputs (cálculos) e estruturas moleculares. Diferentemente de outros softwares, como CASTEP (Cambridge Sequencial Total Energy Package) (SEGALL et al., 2002), a utilização de CSD (Cambridge Structural Database – Base de Dados Estruturais de Cambridge) ou ICSD (Inorganic Crystal Structure Database – Base de Dados de Estruturas Cristalinas Inorgânicas) se tornam pouco exploradas, muito embora haja trabalhos que correlacionem conjuntos de bases gaussianas com cristais (DAGA; CIVALLERI; MASCHIO, 2020). Desse modo, as estruturas podem ser construídas diretamente no próprio GaussView, seguidas do clean e prosseguindo para os ajustes das keywords. Nesta etapa são selecionadas as diversas propriedades que são almejadas (scan, otimização geométrica, propriedades vibracionais e ópticas, características HOMO-LUMO etc.), selecionando assim os níveis teóricos desejados (HF, B3LYP, M062X, BLYP, PW91 etc.). O funcional aqui utilizado, M062X - considerado uma variação do funcional híbrido M06 de Truhlar e Zhao (ZHAO; TRUHLAR, 2008) - assegura-se de três variáveis: densidade de spin (ρ_{σ}), gradiente de densidade de spin reduzido (x_{σ}) e densidade de energia cinética de spin (τ_{σ}), como apresentado nas Equações A.43 e A.44.

$$x_{\sigma} = \frac{|\nabla \rho_{\sigma}|}{\rho_{\sigma}^{4/3}} \quad \sigma = \alpha, \beta \tag{A.43}$$
$$\tau_{\sigma} = \frac{1}{2} \sum_{i}^{\text{occup}} |\nabla \Psi_{i\sigma}|^2 \tag{A.44}$$

Resumidamente, o funcional M06 acrescenta termos fundamentados no funcional VSXC, e tais termos envolvem uma variável de trabalho z_{σ} e duas funções de trabalho γ e *h* (Equações A.45 à A.47).

$$z_{\sigma} = \frac{2\tau_{\sigma}}{\rho_{\sigma}^{5/3}} - C_F, \quad C_F = \frac{3}{5}(6\pi^2)^{2/3}$$
 (A.45)

$$\gamma(x_{\sigma}, z_{\sigma}) = 1 + \alpha(x_{\sigma}^2 + z_{\sigma})$$
(A.46)

$$h(x_{\sigma}, z_{\sigma}) = \left(\frac{a_0}{\gamma(x_{\sigma}, z_{\sigma})} + \frac{a_1x_{\sigma} + a_2z_{\sigma}}{\gamma_{\sigma}^2(x_{\sigma}, z_{\sigma})} + \frac{d_3x_{\sigma}^4 + d_4x_{\sigma}^2z_{\sigma} + d_5z_{\sigma}^2}{\gamma_{\sigma}^3(x_{\sigma}, z_{\sigma})}\right)$$
(A.47)

Percebe-se, portanto, que σ denota o componente ao longo do eixo fixo no espaço arbitrário do momento angular de rotação do elétron. Com relação ao Funcional de Troca de Aproximação de Gradiente Metageneralizado (GGA), citado anteriormente, o funcional M06 comporta-se igualmente ao M06-L, que é uma combinação linear das formas funcionais dos funcionais de troca M05 e VSXC (ZHAO; TRUHLAR, 2008). Majoritariamente, a funcionalidade de troca M06 é dada por:

$$E_{\rm X}^{\rm M06} = \sum_{\sigma} \int dr \bigg[F_{\rm X\sigma}^{\rm PBE}(\rho_{\sigma}, \nabla \rho_{\sigma}) f(w_{\sigma}) + \varepsilon_{\rm X\sigma}^{\rm LSDA} h_{\rm X}(x_{\sigma}, z_{\sigma}) \bigg]$$
(A.48)

Onde $h_X(x_{\sigma}, z_{\sigma})$ é definido na Equação A.47, $F_{X\sigma}^{PBE}$ ($\rho_{\sigma}, \nabla \rho_{\sigma}$) é a densidade de energia de troca do modelo PBE (versão alterada do funcional de troca B86), $\varepsilon_{X\sigma}^{LSDA}$ é a aproximação da densidade de spin local para troca, e o fator $f(w_{\sigma})$ relativo ao aumento da densidade de energia cinética de spin:

$$\varepsilon_{X\sigma}^{\text{LSDA}} = -3/2 \left(\frac{3}{4\pi}\right)^{1/3} \rho_{\sigma}^{4/3} \tag{A.49}$$

$$f(w_{\sigma}) = \sum_{i=0}^{m} a_i w_{\sigma}^i \tag{A.50}$$

Onde a variável w_{σ} é uma função de t_{σ} , e este é uma função da densidade de energia cinética de spin τ_{σ} e densidade de spin ρ_{σ} :

$$w_{\sigma} = (t_{\sigma} - 1)/(t_{\sigma} + 1) \tag{A.51}$$

$$t_{\sigma} = \tau_{\sigma}^{\text{LSDA}} / \tau_{\sigma} \tag{A.52}$$

Onde:

$$\tau_{\sigma}^{\text{LSDA}} \equiv \frac{3}{10} (6\pi^2)^{2/3} \rho_{\sigma}^{5/3} \tag{A.53}$$

Portanto, conclui-se que a forma funcional do funcional de troca em M06-2X é o caso especial em que $h_X(x_{\sigma}, z_{\sigma}) = 0$; onde a forma funcional M06 para a troca se reduz à forma funcional M05 (ZHAO; TRUHLAR, 2008).

Outro parâmetro, a correlação Meta-GGA funcional, é estabelecido na forma funcional dos funcionais M06 e M06-2X como sendo a mesma dos funcionais M06-L ou M06-HF. Esta forma baseia-se nos funcionais de correlação M05 e VSXC. No funcional de correlação, tratamos a correlação de spin oposto e de paralelo de maneira diferente. A energia de correlação M06 de spin oposto é expressa como:

$$E_{\rm C}^{\alpha\beta} = \int e_{\alpha\beta}^{\rm UEG} \left[g_{\alpha\beta}(x_{\alpha}, x_{\beta}) + h_{\alpha\beta}(x_{\alpha\beta}, z_{\alpha\beta}) \right] \mathrm{d}r \tag{A.54}$$

Onde $g_{\alpha\beta}(x_{\alpha}, x_{\beta})$ é definido como:

$$g_{\alpha\beta}(x_{\alpha}, x_{\beta}) = \sum_{i=0}^{n} c_{C\alpha\beta,i} \left(\frac{\gamma_{C\alpha\beta}(x_{\alpha}^{2} + x_{\beta}^{2})}{1 + \gamma_{C\alpha\beta}(x_{\alpha}^{2} + x_{\beta}^{2})} \right)^{i}$$
(A.55)

e $h_{\alpha\beta}(x_{\alpha\beta}, z_{\alpha\beta})$ é definida na Equação A.47, com $x^2_{\alpha\beta} \equiv x^2_{\alpha} + x^2_{\beta}$ e $z_{\alpha\beta} \equiv z_{\alpha} + z_{\beta}$.

Para spins paralelos,

$$E_{\rm C}^{\sigma\sigma} = \int e_{\sigma\sigma}^{\rm UEG} \left[g_{\sigma\sigma}(x_{\sigma}) + h_{\sigma\sigma}(x_{\sigma}, z_{\sigma}) \right] D_{\sigma} \, \mathrm{d}r \tag{A.56}$$

Onde $g_{\sigma\sigma}(x_{\sigma})$ é definido como:

$$g_{\sigma\sigma}(x_{\sigma}) = \sum_{i=0}^{n} c_{C\sigma\sigma,i} \left(\frac{\gamma_{C\sigma\sigma} x_{\sigma}^{2}}{1 + \gamma_{C\sigma\sigma} x_{\sigma}^{2}} \right)^{i}$$
(A.57)

e $h_{\sigma\sigma}(x_{\sigma}, z_{\sigma})$ é definido na Equação A.47. D_{σ} é o fator de correção de auto interação:

$$D_{\sigma} = 1 - \frac{x_{\sigma}^2}{4(z_{\sigma} + C_F)} \tag{A.58}$$

Percebeu-se, contudo, que D_{σ} desaparece para qualquer sistema contendo um elétron (ZHAO; TRUHLAR, 2008) e que $e_{\alpha\beta}^{UEG}$ e $e_{\sigma\sigma}^{UEG}$ nas Equações A.54 e A.56 se tratam da densidade de energia de correlação UEG para os casos de spin antiparalelo e spin paralelo. A energia total de correlação M06 do novo funcional de correlação é dada por:

$$E_{\rm C} = E_{\rm C}^{\alpha\beta} + E_{\rm C}^{\alpha\alpha} + E_{\rm C}^{\beta\beta} \tag{A.59}$$

Tem-se que os valores dos dois parâmetros não lineares (ZHAO; SCHULTZ; TRUHLAR, 2005) (ZHAO; SCHULTZ; TRUHLAR, 2006) nas Equações A.55 e A.57 são respectivamente:

$$\gamma_{C\alpha\beta} = 0.0031, \quad \gamma_{C\sigma\sigma} = 0.06 \tag{A.60}$$

Os valores dos três parâmetros não lineares α_x , $\alpha_{C\alpha\beta} e \alpha_{C\sigma\sigma}$ na Equação A.47, de acordo com o empregado nas Equações A.48, A.54 e A.56; foram retirados de outros trabalhos (VOORHIS; SCUSERIA, 1998). No caso do meta funcional híbrido, a energia híbrida de troca e correlação pode ser exposta na forma:

$$E_{\rm XC}^{\rm hyb} = \frac{X}{100} E_{\rm X}^{\rm HF} + \left(1 - \frac{X}{100}\right) E_{\rm X}^{\rm DFT} + E_{\rm C}^{\rm DFT}$$
(A.61)

Onde E_X ^{HF} é a energia de troca Hartree-Fock (HF) não local, *X* é a porcentagem de troca Hartree-Fock no funcional híbrido, E_X ^{DFT} é a energia de troca DFT local e E_C ^{HF} é a energia de correlação DFT local. Otimiza-se, portanto, *X* juntamente com os parâmetros nas novas funcionalidades de meta troca e correlação. Mas, como se dá o procedimento da otimização? Adiante este assunto será tratado com maiores detalhes. Assim, a classificação dos funcionais M06 e M06-2X como aproximações de gradiente meta-generalizadas híbridas (meta-GGAs híbridas) pode ser realizada. Finalmente, tratando-se da otimização do novo meta-GGA híbrido (relatado no parágrafo anterior), todas as otimizações dos parâmetros foram realizadas de modo autoconsistente. Ou seja, os parâmetros a_i nas Equações A.48 e A.50, $c_{C\alpha\beta, i}$ nas Equações A.54 e A.55, $c_{C\sigma\sigma, i}$ nas Equações A.56 e A.57, d_i em $h_X(x_{\sigma}, z_{\sigma})$ – Equações A.47 e A.48, $d_{C\alpha\beta, i}$ em $h_{\alpha\beta}(x_{\alpha\beta}, z_{\alpha\beta})$ – Equações A.47 e A.54 e $d_{C\sigma\sigma, i}$ em $h_{\sigma\sigma}(x_{\sigma}, z_{\sigma})$ – Equações A.47 e A.56, juntamente com X foram determinados ajustando-os aos dados no conjunto de treinamento. Para se obter o limite UEG correto, algumas restrições foram tomadas:

$$a_0 + d_0 + X/100) = 1$$
 (A.62)
 $c_{\alpha\beta,i} + d_{\alpha\beta,i} = 1$ (A.63)
 $c_{C\sigma\sigma,i} + d_{C\sigma\sigma,i} = 1$ (A.64)

A otimização dos parâmetros em M06 pode ser efetuada em relação aos dados precisos para minimizar (sujeito a duas restrições especificadas a seguir) uma função de treinamento F definida por:

$$F = \text{RMSEPB}(\text{MGAE109}) + \text{RMSE}(\text{IP13})$$

+ RMSE(EA13) + RMSE(PA8) + RMSE(DBH76)
+ 10 × RMSE(NCCE31) + RMSE(TMML30)
+ RMSE(ABDE4) + RMSE(AE17)
+ RMSE(π TC13) (A.65)

Sendo que:

 $RMSEPB \rightarrow erro quadrático médio (RMSE) por título;$ $RMSE \rightarrow erro quadrático médio.$

Os demais termos são considerados bancos de dados, encontrados em Zhao e Truhlar, 2008, mais precisamente na Tabela 1 do artigo. Entretanto, o único banco de dado que não é relatado por autor e colaborador é o TMML30, que se trata de uma combinação de TMAE9 com MLBE21.

Mas, como ocorre a otimização do funcional M06-2X? Ela se dá de maneira igual, retirando-se apenas o termo TMML30 da Equação A.65. Como o conjunto de treinamento para M06-2X é menos diverso que o anterior (M06), eliminam-se os parâmetros d_{0-5} no funcional M06-2X, de tal forma que a restrição UEG para a parte de troca M06-2X é reduzida para:

$$a_0 + (X/100) = 1 \tag{A.66}$$

Por conseguinte, minimiza-se a função de treinamento em relação a esses parâmetros de uma forma autoconsistente, resolvendo a Equação de Fock-Kohn-Sham utilizando os conjuntos de base e geometrias específicas, mas sujeito a duas restrições:

$$\begin{vmatrix} c_{C\alpha\beta,0} \end{vmatrix} < 5 \tag{A.67}$$
$$\begin{vmatrix} c_{C\sigma\sigma,0} \end{vmatrix} < 5 \tag{A.68}$$

Devido a estas restrições, a função de treinamento é apenas aproximadamente minimizada, mas a funcionalidade é mais física do que para uma otimização irrestrita. Para uma melhor compreensão a nível de valores numéricos, trazendo à tona as resoluções analíticas das Equações aqui apresentadas, todos os parâmetros otimizados para M06 e M06-2X se encontram listados na **Figura 34**.

Figura 34 – Parâmetros Otimizados nos métodos M06 e M06-2X

	a _i	ССар,1	CCoo,i	d_i	$d_{C\alpha\beta,l}$	d _{Coo,l}
i			MO	6		
0	5.877943E-01	3.741539E+00	5.094055E-01	1.422057E-01	-2.741539E+00	4.905945E-01
1	-1.371776E-01	2.187098E+02	-1.491085E+00	7.370319E-04	-6.720113E-01	-1.437348E-01
2	2.682367E-01	-4.531252E+02	1.723922E+01	-1.601373E-02	-7.932688E-02	2.357824E-01
3	-2.515898E+00	2.936479E+02	-3.859018E+01		1.918681E-03	1.871015E-03
4	-2.978892E+00	-6.287470E+01	2.845044E+01		-2.032902E-03	-3.788963E-03
5	8.710679E+00					
6	1.688195E+01					
7	-4.489724E+00					
8	-3.299983E+01					
9	-1.449050E+01					
10	2.043747E+01					
11	1.256504E+01					
X			27			
i	M06-2X					
0	4.60000E-01	8.833596E-01	3.097855E-01		1.166404E-01	6.902145E-01
1	-2.206052E-01	3.357972E+01	-5.528642E+00		-9.120847E-02	9.847204E-02
2	-9.431788E-02	-7.043548E+01	1.347420E+01		-6.726189E-02	2.214797E-01
3	2.164494E+00	4.978271E+01	-3.213623E+01		6.720580E-05	-1.968264E-03
4	-2.556466E+00	-1.852891E+01	2.846742E+01		8.448011E-04	-6.775479E-03
5	-1.422133E+01					
6	1.555044E+01					
7	3.598078E+01					
8	-2.722754E+01					
9	-3.924093E+01					
10	1.522808E+01					
11	1.522227E+01					
X				54		

Fonte: tabela retirada do artigo (ZHAO; TRUHLAR, 2008).

Por fim, ao concluir os cálculos, observa-se o resultado obtido nos *outputs*, gerados pelo próprio pacote Gaussian 09 juntamente com os chamados arquivos CHK, possibilitando assim uma organização das informações angariadas e fornecendo, se necessária, a opção de corrigir erros de convergência e/ou de parâmetros específicos de força. O programa utilizado aqui nesta dissertação trouxe-nos as devidas respostas esperadas, considerando, obviamente, erros peculiares aos cálculos aproximativos quando equiparados às medias realizadas experimentalmente. Em outras palavras, a utilização do pacote Gaussian 16 não se fez necessária em detrimento ao 09.

Correção Delta-Sol

Como é bem sabido, funcionais DFT em geral não são capazes de prever acuradamente o *band gap* de cristais. Uma forma de melhorar suas estimativas com baixo custo computacional é o método Delta-Sol (Δ -sol) proposto por Chan e Ceder (CHAN; CEDER, 2010), capaz de corrigir em até 70% o erro típico do *gap* de Kohn-Sham no estado sólido usando um *ansatz* derivado do estudo de sistemas moleculares (CHAN; CEDER, 2010), (ZHENG et al., 2011).

A teoria do funcional da densidade prevê muito bem as propriedades do estado fundamental de um sistema de elétrons, mas não é uma teoria de estados excitados, e para achar o *gap* é preciso determinar o valor da energia da primeira excitação eletrônica . No caso de um sistema com N elétrons, a energia que o sistema ganha quando passa a ter um elétron extra e um buraco é dada por:

$$E_1^* = E(N+1) + E(N-1) - 2E(N),$$
 (A.69)

onde N é o número de elétrons do sistema e $E(N \pm 1)$ é a energia do sistema com mais ou menos um elétron. O problema do estado sólido é que o valor de N é infinito. Se fizermos $N \rightarrow \infty$ na equação (A.69), o *gap* tende a zero nos funcionais de aproximação contínuos, como o LDA ou o GGA.

A solução Delta-Sol é não fazer tal limite, mas considerar que, quando um elétron é acrescentado ou removido $(N \pm 1)$ do sistema, o elétron ou buraco adicionais correspondentes são blindados pelo condensado de elétrons em volta dentro de um certo volume, de modo que apenas o número de elétrons nesse volume de blindagem V_B contribui para determinar o *band gap*. Se o número de elétrons nele contido é N_B , então o *gap* Delta-Sol é dado por:

$$E_{1,\Delta-sol}^* = E(N_B + 1) + E(N_B - 1) - 2E(N_B)$$
(A.70)

O tamanho de V_B e o valor de N_B irão depender do número de elétrons de valência na célula unitária do cristal, do tipo de funcional de troca e correlação (XC) utilizado em cada cálculo, de uma parametrização para ajuste a dados experimentais, e de uma normalização para considerar apenas os elétrons de valência dentro de uma única célula unitária do cristal (CHAN; CEDER, 2010).

O método Delta-Sol toma as energias de três estados fundamentais, um do sistema neutro com n_0 elétrons de valência por célula unitária, $E(n_0)$ e dois em que o sistema está carregado com $n_0 \pm \Delta n$ elétrons de valência por célula unitária, $E(n_0 \pm \Delta n)$, de acordo com o seguinte procedimento:

- I. Usa-se a e célula unitária determinada experimental;
- II. Avalia-se o número de elétrons de valência n_0 ;
- III. Escolhe-se em uma Tabela o parâmetro de normalização de carga adequado n com base no funcional de troca e correlação do cálculo. Todos os parâmetros são listados na Tabela I do artigo de referência cristal (CHAN; CEDER, 2010);
- IV. Determina-se $\Delta n = n_0/n_1$;
- V. Calculam-se as energias $E(n_0), E(n_0 + \Delta n), E(n_0 \Delta n);$
- VI. Estima-se o *gap* por meio da expressão:

$$E_{1^{*},\Delta-sol} = [E(n_{0} + \Delta n) + E(n_{0} - \Delta n) - 2E(n_{0})]/\Delta n, \qquad (A.71)$$

Uma Tendência e um Novo Desenvolvimento

Gostaríamos ainda, de forma muito breve, de chamar a atenção para uma tendência e um novo desenvolvimento da DFT, que seriam:

a sua utilização como ferramenta de *design* de novos materiais funcionais. De fato, as leis fundamentais que governam o comportamento de um sistema de N-elétrons têm a possibilidade de predizer a performance de um material (existente ou projetado) para uma determinada aplicação alvo – ver artigo *Computational predictions of energy materials using density functional theory*, de A. Jain, Y. Shin, K. A. Persson, Nature Reviews Materials 1, 15004 (2016);

• a descrição das interações elétron-fônons com base em primeiros princípios. De fato, enquanto a interação elétron-fônons tem sido estudada desde há praticamente um século, cálculos preditivos não-empíricos têm se tornado possíveis somente durante as duas últimas décadas atualmente é possível de calcular com base em primeiros princípios muitas

• propriedades de materiais relacionadas com a interação elétrons-fônon, o que inclui a temperatura crítica de supercondutores convencionais, a mobilidade de portadores em semicondutores, a dependência com a temperatura do espectros ópticos em semicondutores de gap direto e indireto, as taxas de relaxação de portadores fotoexcitados, e correções não-adiabáticas para as relações de dispersão de fônons – ver o artigo *Electron-phonon interactions from first principles*, de F. Giustino, Rev. Mod. Phys. **89**, 015003 (2017), onde é revista a o quadro teórico e computacional que fundamenta os modernos cálculos da interação elétron-fônon com base em primeiros princípios, assim como investigações referências sobre o papel da interação elétron-fônon em materiais reais.

DFT no Brasil (São Paulo) e em Fortaleza/Natal

Um dos primeiros trabalhos baseados na DFT no Brasil foi devido a José Roberto Leite (USP, *in memorian*) e Luiz G. Ferreira (UNICAMP) [Effects of the Coulomb Correlation on the Calculated Results for Atoms with and Without Spin Polarization], que foi publicado na Phys. Rev. A em 1971 (LEITE; FERREIRA, 1971), menos de 10 anos após as publicações fundamentais de Kohn e Sham (KOHN; SHAM, 1965b), (KOHN; SHAM, 1965a). A. Fazzio, Marília J. Caldas e L. M. Brescansin começaram a publicar em DFT em 1978/1979, inicialmente em cooperação com Leite e Ferreira. Para o período 1970-2018, com Leite e Fazzio tendo cerca de 300 publicações cada (a maioria em DFT) e Ferreira, Caldas e Brescansin em torno de 100 publicações cada, é razoável se considerar que o grupo paulistano pioneiro e fomentador de trabalhos científicos sobre a DFT tenha publicado uma média de 250 artigos científicos no período 1970-2018 (cerca de 50 anos), o que dá uma média de 5 artigos por ano publicados por pesquisador sobre assuntos relacionados à DFT.

No período 2003-2018 (cerca de 15 anos), o grupo de pesquisadores coordenados pelo prof. Eudenilson L. Albuquerque (inicialmente no Departamento de Física e depois no Departamento de Biofísica e Farmacologia da UFRN em Natal), e o *LabInitio* na UFC coordenado pelo Prof. Valder N. Freire, iniciaram a aprendizagem, implantaram facilidades computacionais (*hardware* e *software*) e desenvolveram *ab initio* condições para a utilização da DFT em uma série de pesquisas em conjunto que resultou na publicação de cerca de 90 artigos, o que dá uma média de 6,0 (seis) artigos por ano, um pouco maior do que aquela estimada para os pesquisadores individuais do grupo da USP. Entre estes artigos, da ordem de 40 foram sobre DFT em cristais, 7 em moléculas, 10 em sistemas nanoscópicos, 13 em aplicações, e 20 em proteínas.

APÊNDICE B – DESLOCAMENTOS ATÔMICOS DOS MODOS COMPLETOS DO miRNA-16

Figura 35 – miRNA-16: Região a

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Figura 38 – miRNA-16: Região d

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

APÊNDICE C – CONTINUIDADE E NOVAS APLICAÇÕES

Resultados em Andamento

Nucleotídeos, fase inicial da Aproximação de Primeira Ordem: Cálculos de Scan, Otimização, Vibração e Atribuições iniciais

A fim de se prosseguir nos níveis da metodologia proposta (comparando entre estas a acurácia obtida com os resultados experimentais), realizaram-se os cálculos de otimização seguido de frequência dos oito nucleotídeos: Uridina Monofosfato (UMP), Citidina Monofosfato (CMP), Adenosina Monofosfato (AMP) e Guanosina Monofosfato (GMP), do RNA; e Desoxitimidina Monofosfato (dTMP), Desoxicitidina Monofosfato (dCMP), Desoxiadenosina Monofosfato (dAMP) e Desoxiguanosina Monofosfato (dGMP). Todos estes estão representados a seguir na **Figura 42**. Sucedeu-se que, após a otimização geométrica, os modos vibracionais foram calculados (ambos os procedimentos teóricos foram gerados no mesmo nível da ordem zero, M062X/6-311++g(d,p), em PCM) e comparados previamente com alguns modos comuns/coletivos e assinalamentos vibracionais Raman "fortes" e "fracos" identificados nas bases isoladas. Alguns destes, portanto, estão representados nas **Figura 43** e **44**.

A validação da metodologia, todavia, ainda está em processo de construção; uma vez que se necessita da comprovação experimental (medidas Raman dos 8 nucleotídeos) para os cálculos já então realizados. Ademais, apesar de ainda estarmos em processo de término, o nível 1 de metodologia se mostra de antemão com resultados passíveis de validez. Isto porque, como podemos observar de acordo com as **Figuras 43** e **44**, determinados modos coincidem, como esperado, com o resultado indicado pelas Tabelas 1 e 1. Primeiramente, com relação aos nucleotídeos do RNA, tomou-se um assinalamento vibracional de cada um especificamente (utilizando como critério de escolha as bases individuais, ou seja, nível zero de metodologia); mais precisamente: UM03, CM13, GM01 e AM08; sendo os dois primeiros do tipo assinalamento vibracional Raman "fracos" e os dois últimos assinalamentos vibracionais Raman "fortes". Portanto, observou-se que nos modos da Uracila e Citosina (em comparativo com UMP e CMP), como esperado, as pentoses apresentaram pequenas vibrações, com os maiores vetores concentrados nas bases nitrogenadas (**Figura 43**), confirmando a hipótese da interferência das pentoses e grupamento fosfato nos assinalamentos vibracionais daquelas, obtidos quando tratadas isoladamente. Outra

característica da aproximação de primeira ordem é a de que os deslocamentos dos modos causados pela presença das pentoses e fosfato são ínfimos (relativo aos exemplos da Figura 43, a variação ocorreu de 0-8 cm⁻¹). Outra caraterística identificada, ao compararmos os resultados da ordem zero com os parciais de primeira ordem é que as atribuições vibracionais se conservaram, mesmo frente ao acréscimo das pentoses e fosfato. Contudo, estes comportamentos poderão ser consideravelmente alterados no tratamento de nucleotídeos ligados entre si, aumentando a proximidade de uma estrutura real de Sistemas DNA/RNA. Em seguida, de acordo com a Figura 44, percebeu-se que apenas um, dos quatro nucleotídeos exemplificados representou uma discrepância à hipótese aqui proposta: dGMP. Esta, por vez, no modo GM19 - 847 cm⁻¹ estava disposta como Assinalamento Vibracional Raman "Forte" na Tabela 1.1, de acordo com a aproximação de ordem zero. No entanto, ao observar seu modo referente em dGMP46 – 864 cm^{-1} , notou-se que atribuições referentes ao açúcar (desoxirribose) sobressaiam àquelas das bases isoladas; em outras palavras, apesar da conservação atributiva sob a base, o modo não se classificaria como um Assinalamento Vibracional "Forte", mas sim subordinado à influência dos modos vibracionais do açúcar e fosfato. Com relação aos outros modos relatados na Figura 44, algo similar ao sistema RNA foi avaliado, com a previsão relatada na ordem zero sendo obedecida: conservação das atribuições das bases e os modos dTMP08 – 117 cm⁻¹ e dCMP55 – 1134 cm⁻¹ corroboram com Assinalamentos Vibracionais Raman "Fracos" e dAMP50 – 1015 cm⁻¹ com um Assinalamento Vibracional Raman "Forte" (concentração vetorial sobre a adenina). Os deslocamentos dos números de onda, assim, foram da faixa de 1-17 cm⁻¹.

Por fim, como título de informação, na **Figura 45** se encontram presentes os espectros teóricos (calculados) dos oito nucleotídeos dos sistemas RNA/DNA como resultado parcial (susceptível a alterações futuras) até que a medição experimental seja realizada em perspectivas futuras. No mais, a comprovação da hipótese predita pela ordem zero, na primeira ordem, se mostra consideravelmente condizente; haja vista que de 16 Assinalamentos Vibracionais, apenas 1 não logrou o êxito desejado.

Figura 42 – Nucleotídeos do RNA e DNA Otimizados

Fonte: Elaborada pelo autor.

Figura 43 – Comparativo: Assinalamentos Vibracionais Raman "Fracos" e "Fortes" do RNA

Fonte: Elaborada pelo autor.

Figura 44 – Comparativo: Assinalamentos Vibracionais Raman "Fracos" e "Fortes" do DNA

Fonte: Elaborada pelo autor.

Figura 45 – Espectros Raman Parciais dos oito nucleotídeos, de sistemas RNA/DNA; calculados via DFT em PCM, no nível de cálculo M062X/6-311++g(d,p).

Fonte: Elaborada pelo autor (passível de alterações).

Binucleotídeos: prévia para a Aproximação de Segunda Ordem

Figura 46 – Binucleotídeo formado pela junção de UMP e AMP em 570 cm⁻¹ (modo 61)

Fonte: Elaborada pelo autor

Com o objetivo de se obter informações antecipadas no tocante às possíveis variações dos modos e validação da terceira hipótese (aproximação de terceira ordem de cálculo), tomou-se como foco interpretativo a avaliação das mudanças ocorridas, em comparação com os demais níveis de cálculo anteriores, dois nucleotídeos unidos retirados de um fragmento de RNA/DNA (similar ao nucleotídeo). Para tal, neste caso específico, dados cristalográficos destes sistemas moleculares mais complexos foram utilizados, com a finalidade de melhorar a aproximação de resultados reais mais estáveis (mínimo de energia mais aceitável). Assim, o cálculo de frequência foi efetuado no nível teórico M062X/6-311++g(d,p), tal qual em todos os procedimentos relatados nesta dissertação.

Posteriormente, avaliou-se individualmente alguns Assinalamentos Vibracionais Raman "Fortes" e "Fracos" (similar ao exposto no tópico anterior). Como resposta, constatouse que modos considerados Assinalamentos Vibracionais, de ambos os tipos, se conservaram mesmo com a consideração da interação do tipo *pi-stacking* entre as bases nitrogenadas. Como exemplo, pode-se referir o modo da uracila em **UM07 – 571 cm⁻¹**, o qual classifica-se como Assinalamento Vibracional Raman "Forte" de acordo com o nível zero de metodologia. Ao comparar-lhe com o binucleotídeo (par de nucleotídeos ligados) formado pela união de UMP e AMP – **Figura 46** – no modo UMP/AMP61 – 570 cm⁻¹, percebeu-se que somente a uracila vibrava de forma considerável, como pode ser notado através dos vetores concentrados sobre a base na **Figura 46**. Em seguida, na **Figura 47** temos o modo da uracila em **UM07 – 571 cm⁻¹**. Ao analisá-lo, constatou-se uma alteração do tipo de atribuição presente na base para o binucleotídeo: em **UM07 – 571 cm⁻¹** tem-se efetivamente um v_{ring} (19b), enquanto na UMP/AMP61 – 570 cm⁻¹ é perceptível a presença de $\beta_{(in)ring}$ (6a); ou seja, alterou-se de um alongamento do anel com aromaticidade para uma flexão do mesmo.

Dessa forma, ao estabelecer um comparativo direto entre ordem zero e terceira ordem, passando pelas informações primárias obtidas da segunda ordem, conclui-se que modos podem não se alterar tão drasticamente ao se adicionar pentoses, grupamento fosfato e interação entre bases e que, de forma aproximada, estabelece outra confirmação da validade encontrada no nível inicial tratado aqui (zero). Entretanto, o resultado relativo tanto aos binucleotídeos quanto aos códons (RNA) e grupamentos de três ou mais nucleotídeos do DNA, até a avaliação de uma estrutura mais complexa de tais sistemas, ainda está em construção; uma vez que medidas experimentais de pares de nucleotídeos à RNA/DNA mais completos ainda necessita ser realizada para uma posterior constatação. Portanto, assim como foi tratado com a segunda ordem, resultados futuros virão. Mas, antes da realização destas medidas, podemos obter uma prévia sobre a possível validação do cálculo de sistemas RNA/DNA (conforme o nível teórico relatado neste presente trabalho) considerando que tanto a segunda, quanto a terceira ordem, inter-relacionam-se com a ordem zero. E esta, por vez, obteve comprovação experimental - ver seção 4.3 da dissertação. Apenar de não ser o suficiente para uma melhor representação (medidas Raman experimentais de bases isoladas desprezam as influências de pentoses, fosfato e interações *pi-stacking*), pode-se deduzir uma constatação considerável a posteriori.

Figura 47 – Uracila no Assinalamento Vibracional Raman "Forte" UM07 – 571 cm⁻¹

Fonte: Elaborada pelo autor

Continuidade

Já estão sendo providenciadas as medidas experimentais Raman dos nucleotídeos do RNA/DNA, bem como de pares, trincas (códons) e quádruplos deles (estruturas complexas), a fim de se constatar os cálculos já realizados e futuros procedimentos teóricos envolvendo tais sistemas. Por dinâmica molecular em quadruplicata, já se iniciou também o estudo do efeito da água explicita nos espectros Raman de sistemas RNA/DNA (Fig. 3). Todavia, os cálculos ainda estão em processamento. Em suma, pretende-se confirmar ambos os níveis um e dois da metodologia, com base não apenas nos cálculos expostos nesta seção, mas em novas percepções no porvir.

Novas Aplicações

- Estudar efeitos da água explícita (Fig. 3 e 19) nas metodologias 0-2 com aplicações no estudo do pareamento horizontal e vertical das bases em sistemas RNA/RNA, e na obtenção das assinaturas vibracionais para os 64 códons do RNA;
- Utilizar a metodologia proposta para explicar os resultados do artigo citado em: Detecção e classificação rápida do microRNA (miRNA) através de espectroscopia Raman de superfície (SERS).
- Utilizar a metodologia proposta para explicar os resultados do artigo citado em: *O efeito da permutação das bases do DNA no espectro Raman de superfície*.
- Utilizar a metodologia proposta para explicar os resultados do artigo citado em: Desconstrução do RNA: medição óptica da composição e estrutura.
- Utilizar a metodologia proposta para explicar os resultados do artigo citado em: Interações presentes entre nucleotídeos no tRNA: avaliação teórica da complexidade estrutural de sistemas RNA/DNA.

Detecção e Classificação Rápidas de microRNA (miRNA) por meio de Superfície Aprimorada (Rapid microRNA (miRNA) Detection and Classification via Surfaceenhanced)

Figura 48 – (A) Moléculas de água (vermelho) determinam a estrutura do DNA. (B) Pontes de Hidrogênio das moléculas de água em camada de hidratação de B-DNA via dinâmica molecular e modelo de salto analítico.

Fonte: (A) WWW.diariodasaude.com.br. (B) J. Am. Chem. Soc. 138, 24, 7610-7620 (2016).

Figura 49 – 64 tipos de códons formados por três bases do RNA.

				TO 1 TH TO THE T		
		U	C	A	G	
	U	UUU] Fenil- UUC alanina UUA] Leucina	UCU UCC UCA UCG	UAU UAC UAA Stop codon UAG Stop codon	UGU UGA UGA Stop codon Tryptophan	UCAG
Base G	c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC Histidina CAA CAG Glutamina	CGU CGC CGA CGG	D C C G
Primeira	A	AUU AUC AUA AUA AUG Metionina start codon	ACU ACC ACA ACG	AAU AAC AAA AAA AAA Lisina	AGU AGC AGA AGA AGG - Arginina	DOAG
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Ácido GAC Aspártico GAA Acido GAG Glutâmico	GGC GGA GGG	UCAG

Segunda Base

Fonte: WWW.brasilescola.uol.com.br.

Detecção e Classificação Rápidas de microRNA (miRNA) através de Espectroscopia Raman Amplificada por Superfície (SERS)

	miRNA	Sequence				
Unrelated miRNAs	miR-16	U.A.G.C.A.G.C.A.C.G.U.A.A.A.U.A.U.U.G.G.C.G				
	miR-21	U.A.G.C.U.U.A.U.C.A.G.A.C.U.G.A.U.G.U.U.G.A				
	miR-24a	U.G.G.C.U.C.A.G.U.U.C.A.G.C.A.G.G.A.A.C.A.G				
	miR-133a	U.U.G.G.U.C.C.C.C.U.U.C.A.A.C.C.A.G.C.U.G.U				
	let-7a	U.G.A.G.G.U.A.G.U.A.G.G.U.U.G.U.A.U.A.G.U.U				
let-7 miRNAs	let-7b	U.G.A.G.G.U.A.G.U.A.G.G.U.U.G.U.G.U.G.U.				
	let-7c	U.G.A.G.G.U.A.G.U.A.G.G.U.U.G.U.A.U. <mark>G</mark> .G.U.U				
	let-7d	A.G.A.G.G.U.A.G.U.A.G.G.U.U.G.C.A.U.A.G.U				
	let-7e	U.G.A.G.G.U.A.G. <mark>G</mark> .A.G.G.U.U.G.U.A.U.A.G.U				
	let-7f	U.G.A.G.G.U.A.G.U.A.G. <mark>A</mark> .U.U.G.U.A.U.A.G.U.U				
	let-7g	U.G.A.G.G.U.A.G.U.A.G.U.U.U.G.U.A.C.A.G.U				
	let-7	U.G.A.G.G.U.A.G.U.A.G. <mark>U</mark> .U.U.G.U. G .C.U.G.U				
0.14						
U.14	t-7a					
0.12 m	iD_16	Â				
0.12	IR-10	h l				
0.40	IR-21					
0.10 j — m	IR-24a					
— m	IR-133a	h				
0.08	Λ					
ff	1					
£ 0.06 −	A					
te	B					
<u> </u>						
0.02 -						
	. / / / /					
0.00 -						
-0.02	- VV	A. A have A had				
	· · ·					
400 6	00 800) 1000 1200 1400 1600 1800				
Raman Shift (cm ⁻¹)						

Figura 50 – Sequências das bases, juntamente com seus respectivos espectros, de vários miRNAs avaliados por autor e colaboradores (DRISKELL et al., 2008).

Fonte: Biosensors and Bioelectronis 24 (2008) 917-922.

Figura 51 – Espectros Raman e atribuições experimentais dos modos vibracionais de sistemas ACA, CAA, CAC e CCA.

Fonte: Nanophotonics 2021; 10(5): 1581-1593.

Desconstrução do RNA: medição óptica da Composição e Estrutura

Figura 52 – Sistemas RNA com diferentes sequências e características estruturais com seus respectivos espectros Raman.

Fonte: Phys. Chem. Chem. Phys., 2013, 15, 13199.

Interações presentes entre nucleotídeos no tRNA: avaliação teórica da complexidade estrutural de sistemas RNA/DNA.

Figura 53 – Três representações das interações presentes entre nucleotídeos no RNA de transferência com níveis crescentes de complexidade estrutural.

Fonte: J. Biol. Chem., 2021, 296, 100555.