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Resumo

Modelos matemáticos têm sido amplamente utilizados para simular a dinâmica da

proliferação de doenças infecciosas, bem como para estudar propostas de políticas

públicas de contenção. O objetivo desse trabalho é estudar como uma estrutura de

network pode determinar a evolução de uma epidemia. Para tal, será usado o modelo

macroeconômico Suscetível­Infectado­Recuperado (SIR) na presência de um ambi­

ente de network. Em nosso modelo epidemiológico, a estrutura de network é um im­

portante motor da proliferação do vírus. Intuitivamente, pessoas mais conectadas no

círculo social são os principais vetores do virus. Por outro lado, aquelas pessoas com

poucas conexões estão menos expostas à doença. Será estudado o comportamento

da pandemia para diferentes tipos de network, desde uma pouco conectada até outra

muito conectada. É encontrada exatamente a relação esperada: como economias

mais conectadas (economias com um número médio maior de links) espalham o ví­

rus mais rapidamente, elas experimentam consequências mais duras em um cenário

pandêmico, tais como uma maior queda do consumo e horas trabalhadas agregados

devido tanto ao maior número de mortes quanto ao maior esforço dos agentes sus­

cetíveis para ficar em casa e evitar contatos físicos. Os agentes suscetíveis são mais

cautelosos em relação à decisão de seu nível de consumo e de horas trabalhadas

à medida que a economia é mais socialmente conectada, pois as consequências de

sair de casa para consumir ou trabalhar são maiores em economias mais conectadas

devido ao seu maior número de pessoas infectadas.

Palavras­chave: Epidemia, COVID­19, recessões.



Abstract

Mathematical models have been often used to simulate the dynamics of the spread

of infectious disease, as well as to test containment public policy proposals. The goal

of this work is to study how a network structure can determine the evolution of an

epidemic. For that, we use a Susceptible­Infected­Recovered (SIR) macroeconomic

model in the presence of a network environment. Network models have been impor­

tant in the job search discussion. In our epidemiological model, the network structure

is an important cause of the spread of the disease. Intuitively, more connected people

in the social circle are the main vector of the virus. On the other hand, those people

with few connections should be less exposed to the disease. We study the behavior

of the pandemic for different types of network, from a low connected one to a high

connected one. We find exactly the expected relationship: because more connected

economies (economies with a higher average number of links) spread the virus faster,

they face harder consequences in a pandemic scenario, such as a greater fall on ag­

gregate consumption and hours worked due to both the higher number of deaths and

the susceptible agents’ higher attempt to stay at home and avoid physical contacts.

Susceptible agents are more cautious in regard to the decision of their level of con­

sumption and hours worked as the economy becomes more socially connected, once

the consequences of leaving home to consume or to work are harder in the higher

connected economy because of its higher number of infected people.

Keywords: Epidemic, COVID­19, recessions.
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1 INTRODUCTION

In this paper, we extend the SIR­macromodel proposed by Eichenbaum et al. [2020]

to study the implications and the role of the social network on the evolution of a pandemic,

and the changes caused by the strengthening and the weakening of such social network.

Discovering the role of the social network in the behavior of the pandemic is quite important

for the choice of political measures to contain the spread of the virus.

In the economic field, the COVID­19 pandemic represents the worst economic crisis

since the Great Depression (Gopinath [2020]). Given the rapid spread of COVID­19, coun­

tries across theWorld have adopted several public health measures intended to prevent its

spread, including social distancing. The virus is the same, but its effects, frequently dev­

astating, has been quite heterogeneous between countries and regions by reasons that,

in the moment, are not clear enough. In the economic field, the effects are also heteroge­

neous, but in this case the reasons may be easier to be identified. How should countries

with different fiscal situation, or different productivity, react?

Not only we must observe the economic features of a country, but also its level of

social connection. A contact network is acknowledged to play a key role at the dynamics of

infectious diseases and other transmission phenomena. The same question arises: how

should a highly (socially) connected country react? Does it change when the country is

lowly connected? These questions suggest that, despite the universality of the virus, the

macroeconomics of an epidemic depends on local characteristics.

As also found by Eichenbaum et al. [2020], in our model, people’s decisions to

cut back on consumption and work reduce the severity of the pandemic, as measured by

total deaths. These same decisions exacerbate the size of the recession caused by the

pandemic. Another similarity between their result and ours is that a pandemic has both

aggregate demand and aggregate supply effects. The supply effect arises because the

epidemic exposes workers to the virus. Workers react to that risk by reducing their labor

supply. The demand effect arises because the epidemic exposes consumers to the virus.

Consumers react to that risk by reducing consumption. The supply and demand effects

work together to generate a large, persistent recession.

Our main contribution to the discussion of the macroeconomics of epidemics is the

implications of the social network on the spread of the virus. In particular, we simulate the

model for different social networks with respect to its average size, from a less connected

one to a more connected one. Results show that the economies that present more connec­

tions in the social network face a more severe pandemic, with more deaths. Meanwhile,
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the less connected economy experimented a less severe pandemic, with lesss deaths.

The SIR model will help us answer those questions. That is a model widely used

by epidemiologists, and was initially developed by Kermack and McKendrick [1927]. It

proposes three health status: susceptible, infected and recovered. Susceptible people

can contract the virus through interaction with the infected ones. Infected people can

transmit the virus, and also can either dye or recover. Recovered people are immune

and can no longer transmit the virus. The infection, recovery e mortality rate are the main

parameter of such model. The idea is that, with a sufficient time, the society acquires the

”herd immunity” as the susceptible population falls.

A feature of epidemiological models is that the transitions between the health status

are exogenous with respect to the economic variables. In other words, the expected fall on

consumption and hours worked are not considered in the SIR models. That is a problem,

for one of themain discussions in the course of an epidemic is the trade­off lives x economy:

people reduce their economic activities aiming to reduce the odds of infection. That been

said, the challenge is to study the efficiency of this trade­off, i.e., how to reduce the infection

rate at the lowest economic costs1.

Eichenbaum et al. [2020] discuss this question combining a general equilibrium

model with the standard SIR model. In their SIR­macro model, the number of infections

depends on the level of interaction between the agents when they consume and work, and

on other residual ways of infection. Therefore the susceptible population can reduce the

odds of infection by reducing their consumption level and hours worked. The competitive

equilibrium, however, is not Pareto efficient, for the infected and recovered agents do not

take into account that their actions influence the other agents’ infection and mortality rates.

Bethune and Korinek [2020] focus on this type of externality. The authors develop

Susceptible­Infected­Susceptible (SIS) and SIR models to quantify the externalities of in­

fection using both decentralized and social planner approaches. They find that, in a de­

centralized approach, the infected agents keep engaged in economics activities in order

to maximize utility, while the susceptible agents reduce their activities to reduce the odds

of infection. With a social planner approach, the planner forcefully reduces the infected

agents’ activities to mitigate the risk of the susceptible agents.

Another point of using this models is that a fraction of the infected population could

be asymptomatic, and, without realizing it, they could increase the level of infection. Berger

et al. [2020] study this incomplete information using a Susceptible­Exposed­Infected­Recovered

(SEIR) model based on Kermack and McKendrick [1927]. They work on the idea of in­

creasing the tests in the susceptible population to identify asymptomatic infected patients

1For a complete literature review of the economics of COVID­19, see Brodeur et al. [2021].
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looking to isolated that part of the population. The authors find that such directed quaran­

tine policy softens the negative impact of the pandemic on the economy and reduces the

peak of infection.

Some countries adopted the vertical isolation for the risk group. Acemoglu et al.

[2020] study this question with a multi­risk SIR model (MR­SIR) and divide the population

in different groups (young, middle­aged and old), with different infection, hospitalization

and mortality rates. Those conditions allow the possibility of vertical quarantine policy.

The heterogeneous lockdown across different groups, been more severe for the higher

risk group (the old), can reduce both the number of lives lost and the economic recession

when compared with horizontal lockdowns.

With respect to the Brazilian economy, Rabelo and Soares [2020] exploit the model

proposed by Eichenbaum et al. [2020] calibrating the parameters with Brazilian data. They

found that an optimal social containment policy causes a larger recession in the short run

than in the case where no measure of social containment are taken. On the other hand,

the optimal containment policy has the ability to save about 50 thousand lives.

Borelli and Góes [2020] uses the samemodel study the implications of COVID­19 on

the states of São Paulo, Amazonas, Ceará, Rio de Janeiro and Pernambuco. Results point

to great heterogeneity, which suggests that each state may require specific measures.

São Paulo is the state whose infected population reaches the higher fraction of its total

population in the competitive equilibrium between those five states studied. Meanwhile,

the macroeconomic schocks are more severe at Ceará and Pernambuco.

Our main contribution is to incorporate irregular networks into a SIR­model of infec­

tious disease. In particular, by acknowledging the role of heterogeneity in network connec­

tions, we provide one reason that agents are not equally likely to receive the virus through

their links. This article provides a framework to analyze the dynamics of the epidemic

and the optimal behaviour of the economic agents as driven by (non­observable) agent

heterogeneity in social connections.

Besides this introduction, this paper is organized in three additional sections. Sec­

tion 2 presents the model. In Section 3 we discuss the calibration of the parameters. In

Section 4 we present the results for a calibrated version of the model and conduct coun­

terfactual analyses. Section 5 concludes.

2 MODEL

The model proposed by this work intends to unit both an epidemiological model,
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following Eichenbaum et al. [2020], and a network model, following Arbex et al. [2019].

The economy is populated by a continuum of people with unit measure. When the

virus is introduced in the society, the population is divided into four groups: susceptible

(people who have not yet been exposed to the disease), infected (people who contracted

the disease), recovered (people who survived the disease and acquired immunity), and

deceased (people who died from the disease). The fractions of people in these four groups

are denoted bymS
t ,m

I
t ,m

R
t , andm

D
t , respectively. The number of newly infected people is

denoted by Tt.

Susceptible people can become infected in two ways. First, they can meet infected

people while purchasing consumption goods. Second, susceptible and infected people

can meet at work. Hence, the more they consume and work, the more risk they will take.

Moreover, we allow for heterogeneity on the risk of infection according to the number of

peers an agent has: Having many links is associated with a higher risk of infection.

2.1 Demography, Network and Transmission

In this model, the agents are connected to one another in a social network, whose

structure is exogenous. Each agent may have peers to whom she passes the virus when

infected, and from whom she may receive the virus when susceptible. A network is de­

scribed by a degree distribution {Dz}
∞

z=1, where Dz is the proportion of agents who have

z ∈ [1,∞) peers, and is given by (a− 1)z−a, where the power­law exponent a determines

how heavy the tail of the distribution is, that is, how common are nodes with much higher

than the mean number of pears.

The number of links will be centrally important, and so to clarify notation, we will

basically refer to the number of links with two names depending on the role of the agent

in the network when we refer to her. When we use z to denote her number of peers, the

agent is a generic one. When we denote the type as s, it will refer to the number of links

belonging to a peer of one of these agents.

The probability a given peer has s links is ψs = (sDs) /⟨z⟩, where ⟨z⟩ =


∞

z=1
(zDz) dz

is the average degree in the network. Note that ψs ̸= Ds, i.e., the probability one of your

peers has s links is not equal to the proportion of the population that has s links. This is

because those withmore peers aremore likely to be connected to the agent whose problem

we solve. Each agent contacts susceptible friends with probabilities ρct via consumption,

and ρnt via work. The infection rate among those agents with s links is mI
s,t.

The rate at which the virus is passed from infected agents to their susceptible peers
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depends on how much they consume (cIt and cSt ): ϕ(c
I
t , c

S
t ) = (mS

t c
S
t + mI

t c
I
t )

1−λc . Simi­

larly, such rate also depends on how much they work (nI
t and nS

t ): ϕ(n
I
t , n

S
t ) = (mS

t n
S
t +

mI
tn

I
t )

1−λn . Here, λc and λn measure the efficacy of this technology.

For a given agent, the joint probability another agent of type s is infected, meet her

susceptible friends, transmits the virus, and is a peer is mI
s,tρ

c
tϕ(c

I
t , c

S
t )ψs. The total prob­

ability of such an event integrates over all possible s. Thus, the probability a susceptible

agent receives the virus from a peer is

Ωc
t =

∫

∞

s=1

mI
s,tρ

c
tϕ(c

I
t , c

S
t )ψsds = mI

tρ
c
tϕ(c

I
t , c

S
t ), (1)

Ωn
t =

∫

∞

s=1

mI
s,tρ

n
t ϕ(n

I
t , n

S
t )ψsds = mI

tρ
n
t ϕ(n

I
t , n

S
t ), (2)

via consumption and via work, respectively.

Hence, the probability a susceptible agent of type z receives the virus from at least

one peer is

pct = 1− (1− Ωc
t)

z
, (3)

pnt = 1− (1− Ωn
t )

z
, (4)

via consumption and via work, respectively.

The aggregate probability susceptible agents of different types z receive the virus

via their network is

P c
t =

∫

∞

z=1

pctDzdz, (5)

P n
t =

∫

∞

z=1

pnt Dzdz, (6)

via consumption and via work, respectively.

2.2 SIR model

Epidemiology models generally assume that the probabilities governing the tran­

sition between different states of health are exogenous with respect to economic deci­

sions. Eichenbaum et al. [2020] modify the canonical SIR model proposed by Kermack

and McKendrick [1927] so that these transition probabilities depend on people’s economic

decisions. Since purchasing consumption goods or working brings people into contact

with each other, they assume that the probability of becoming infected depends on these
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activities.

We modify the the SIR­macro model proposed by Eichenbaum et al. [2020] in order

to account for the social network interactions. The social network plays a significant role

in the evolution of an epidemic, since the transmission of the virus depend on physical

connections between people.

The population is divided into four groups: susceptible (people who have not yet

been exposed to the disease), infected (people who contracted the disease), recovered

(people who survived the disease and acquired immunity), and deceased (people who

died from the disease). The fractions of people in these four groups are denoted by mS
t ,

mI
t , m

R
t , and mD

t , respectively. The number of newly infected people is denoted by Tt.

Susceptible people can become infected in two ways. First, they can meet infected

people while purchasing consumption goods. Second, susceptible and infected people

can meet at work. The equation that describes the number of new infections through

consumption and work changes in our model, when compared to Eichenbaum et al. [2020],

and is given by:

Tt =


mS
t P

c
t

γ 

mS
t P

n
t

(1−γ)
= mS

t (P
c
t )

γ (P n
t )

(1−γ)
, (7)

where γ is the relative weight of infection via consumption. The Tt variable is driven by

the network environment that we presented in the subsection 2.1.The term mS
t P

c
t repre­

sents the number of newly infected people through consumption activities, while mS
t P

n
t

represents the number of newly infected people through meetings at work.

The number of susceptible people in the next period, t + 1, equals the number of

susceptible people at the current time, t, discounted by the number of susceptible people

who got infected at time t:

mS
t+1 = mS

t − Tt. (8)

The number of infected people in the next period, t+1, equals the number of infected

people at the current time, t, added to the number of newly infected people, Tt, subtracted

by the number of infected people that recovered, πRm
I
t , and the number of infected people

who died, πDm
I
t :

mI
t+1 = (1− πR − πD)m

I
t + Tt. (9)

The parameter πR is the rate at which infected people recover from the disease and

πD is the mortality rate.

The timing convention implicit in Equation (9) is the same as in Eichenbaum et al.

[2020]. Social interactions happen in the beginning of the period (infected and susceptible

people meet). Then, changes in health status unrelated to social interactions (recovery or

death) occur. At the end of the period, the consequences of social interactions materialize:
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Tt susceptible people become infected.

The number of recovered people in the next period, t+1, is the number of recovered

people at the current time, t, added to the number of infected people that just recovered,

πRm
I
t :

mR
t+1 = mR

t + πRm
I
t . (10)

The number of deaths in the next period, t + 1, is the number of deceased people

at the current time, t, added to the number of new deaths, πDm
I
t :

mD
t+1 = mD

t + πDm
I
t . (11)

Total population in the next period, Popt+1, equals the total population at the current

time, Popt, minus the number of new deaths:

Popt+1 = Popt − πDm
I
t , (12)

with Pop0 = 1.

Like Eichenbaum et al. [2020], we assume that, at time zero, a fraction ε of suscep­

tible people is infected by a virus through zoonotic exposure, that is, the virus is directly

transmitted from animals to humans:

mI
0 = ε,

mS
0 = 1− ε.

Everybody is aware of the initial infection and understands the laws of motion gov­

erning population health dynamics.

2.3 Behavior of the economic agents

Now, we describe the optimization problem of different types of agents in the econ­

omy. The variable V J
t denotes the time­t value function of a type­J person (J=S, I, R). The

budget constraint a type­J agent faces is given by

(1 + µct)c
J
t = (1− µnt)w

J
t n

J
t + Γt, (13)

where cJt and nJ
t denote the consumption and hours worked of a type­J person, respec­
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tively. Moreover, wJ
t denotes the real wage of the type­J person, µct and µnt are Pigouvian

taxes rates on consumption and work2, respectively, and Γt denotes lump­sum transfers

from the government.

To simplify things, we assume that the instantaneous utility of a type­J agent is given

by

u


cJt , n
J
t



= lncJt −
θ

2
(nJ

t )
2. (14)

The value function of the susceptible agent is given by

V S
t = max

cS
t
,nS

t
,τS

t



u


cSt , n
S
t



+ β[(1− τt)V
S
t+1 + τtV

I
t+1]



, (15)

where the variable τt is the probability a susceptible agent becomes infected:

τt =
Tt

mS
t

= (P c
t )

γ (P n
t )

(1−γ)
. (16)

This means that the susceptible agent internalizes the fact that she can reduce the

probability of getting infected by consuming less and working less.

The first order conditions for consumption, hours worked and τt are, respectively,

u1(c
S
t , n

S
t )− λS

bt(1 + µct) + λrtγ

(

P n
t

P c
t

)1−γ
∂P c

t

∂cSt
= 0, (17)

u2(c
S
t , n

s
t ) + λS

btw
S
t (1− µnt) + λrt(1− γ)

(

P c
t

P n
t

)γ
∂P n

t

∂nS
t

= 0, (18)

β(V I
t+1 − V S

t+1)− λrt = 0, (19)

where λS
bt and λrt are the Lagrange multipliers associated with constraints (13) and (16),

respectively.

In a non­epidemic economy, the third term of both equations (17) and (18) would

not exist. In our model, those terms are the mechanism with which the agents internalize

the risks of becoming infected that they take by adopting a given level of consumption

and hours worked. Therefore, equations (17) and (18) represent the trade­off between the

utility the agents acquire directly by consuming and indirectly by working and the risks they

take of becoming infected by consuming and working.

A third term, in this sense, yet with another shape, also appears in Eichenbaum

et al. [2020]. What differs ours from theirs is that, in this model, the social network is

internalized.

2This is a subtle difference from Eichenbaum et al. [2020], since they do not account for a tax on work.
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The value function of the infected agent is

V I
t = max

cI
t
,nI

t

{u


cIt , n
I
t



+ β


(1− πR − πD)V
I
t+1 + πRV

R
t+1



}. (20)

The expression for V I
t embodies a common assumption in macro and health eco­

nomics that the cost of death is the forgone utility of life.

The first order conditions for consumption and hours worked are, respectively,

u1(c
I
t , n

I
t )− λI

bt(1 + µct) = 0, (21)

u2(c
I
t , n

I
t ) + λI

btw
I
t (1− µnt) = 0, (22)

where λI
bt is the Lagrange multiplier associated with constraint (6).

Note that the infected agent does not have the third term in their first order conditions

like the susceptible agent does. That is because infected people do not take any risk when

they consume or work, once they are already infected. Therefore, in this model, infected

people do not internalize the risks of consuming and working simply because they take no

risks at all. They same applies to the recovered agent. In the results section, we show that

the behavior of this agents corresponds to this analysis.

The value function of the recovered agent is

V R
t = max

cR
t
,nR

t

{u


cRt , n
R
t



+ βV R
t+1}. (23)

The first order conditions for consumption and hours worked are, respectively,

u1(c
R
t , n

R
t )− λR

bt(1 + µct) = 0, (24)

u2(c
R
t , n

R
t ) + λR

btw
R
t (1− µnt) = 0, (25)

where λI
bt is the Lagrange multiplier associated with constraint (6).

There is a continuum of competitive representative firms of unit measure that pro­

duce consumption goods (Ct) using hours worked (Nt) according to the production function:

Ct = ANt.

The aggregate hours worked of this economy is defined as

Nt = NS
t φ

S +N I
t φ

I +NR
t φ

R,
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with NS
t = mS

t n
S
t , N

I
t = mI

tn
I
t e NR

t = mR
t n

R
t . Moreover, φ

S, φI and φR denote the labor

productivity of susceptible, infected and recovered agents, respectively. It is equal to one

for susceptible and recovered people (φS = φR = 1) and less than one for infected people

(φI < 1).

In order to maximize its time­t profits, the firm chooses hours worked:

Πt = ANt − wS
t N

S
t − wI

tN
I
t − wR

t N
R
t .

The first order condition is

AφJ = wJ
t .

The government’s budget constraint is given by

µct



mS
t c

S
t +mI

t c
I
t +mR

t c
R
t



+ µnt



mS
t w

S
t n

S
t +mI

tw
I
tn

I
t +mR

t w
R
t n

R
t



= Γt



mS
t +mI

t +mR
t



.

In equilibrium, the government constraint is satisfied and each agent solves her

maximization problem. In addition, both the goods market and labor market clear:

mS
t c

S
t +mI

t c
I
t +mR

t c
R
t = ANt.

mS
t n

S
t +mI

tn
I
t +mR

t n
R
t = Nt.

We describe the algorithm for computing the equilibrium in the A appendix.

3 PARAMETERIZATION

In this section, we present how we assign values to model parameters. For parame­

ter that are specific to the Brazilian economy, we use Brazilian data or rely on the Brazilian

literature. For parameters that are not specific to the Brazilian economy ­ e.g., the pro­

ductivity of the infected agent (φi) ­, we rely on the international literature. The parameter

values are shown by Table 1.

First, each period of the model corresponds to a week. Moreover, we follow Atkeson

[2020] in assuming that it takes 18 days to either recover or to die from the disease. This

means that the daily probability to recover or to die, given by πR + πD, should equal 1/18.

But, because our model is weekly, we will set πR + πD = 7/18.

We do acknowledge the existence of heterogeneity in life expectancy and efficiency

of health systems between different countries. Therefore, we must consider probabilities



21

of dying and recovering from the disease that are adapted to the Brazilian context. For the

value of πD, we follow Rabelo and Soares [2020], that weighted Brazilian population age

groups by the correspondent mortality rate in South Korea. They dropped the population

aged more than 70 years, once their job market participation is relatively low, to finally get

a (daily) mortality rate of 0,3%. Converting to weekly rate, we have πD = 7× 0.003/18. πR

is given residually: πR = 7/18− πD.

The technological parameters A and θ were chosen to match, at the pre­epidemic

steady state, the number of weekly hours worked in Brazil at 2020 (39.1 hours per week)

and the Brazilian weekly income per capita of 2020 (BRL 1, 380.00/4). For that, we use the

average hours worked per week of people aged 14 years old or older and the real average

monthly income per capita. We obtain the average number of hours worked from SIDRA3,

from IBGE (Brazilian Institute of Geography and Statistics) 4 and the weekly per capita

income at 2020 from the National Household Sample Survey (PNAD), from IBGE.

Just like Eichenbaum et al. [2020], we calibrate the value of the parameter that con­

trols the relative productivity of the infected population, φI , to 0.8. This value is consistent

with the idea that symptomatic people do not work and with the hypothesis that 80% of

the infected population is asymptomatic, according to the Chine Center for Disease Con­

trol and Prevention. Therefore, just like Borelli and Góes [2020], we do not adapt such

parameter to the Brazilian context.

In contrast, all the previously calibrated parameters, πR, πD, A and θ, reflect the

Brazilian characteristics. Also, we assign the value of β = 0.966
1

52 in order to get a value

of life of BRL 2.9 million. This value of life is based on recent estimates for Brazil (Ferrari

et al. [2019] and Rocha et al. [2019]). For the initial infected population, ε, we consider a

fraction 0.001 of the total population.

We assume the network search effort is highly inefficient by setting λc and λn to

0.95, just like in Arbex et al. [2019]. The value of the parameter a is chosen such that ⟨z⟩

is equal to 5, again, just as in Arbex et al. [2019]. Without enough foundation, the value of

the remaining parameter γ, the relative weight of infection via consumption, is set to the

median value of 0.5. However, we will change its value in the next section in order to study

its implications to the evolution of the pandemic and the agents’ decisions on consumption

and hours worked. The variables ρct and ρ
n
t aremodeled in the following way: ρ

c
t = ρct = mS

t .

3IBGE’s Automatic Recovery System.
4Table 6373.
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Tabela 1: Calibration and description of parameters.

Parameter Description Value
πD Weekly mortality rate (7× 0.003) /18
πR Weekly recovery rate 7/18− πD

ε Initial infected population 0.001
A Labor augmenting technology 8.82352941
θ Desutility of labor 0.0006541

β Weekly discount factor 0.966
1

52

φS Productivity of susceptible people 1
φI Productivity of infected people 0.8
φR Productivity of recovered people 1
a Parameter of the degree distribution Dz 1.01015
λc Inefficacy of infection via consumption 0.95
λn Inefficacy of infection via working 0.95
γ Relative weight of infection via consumption 0.5

Fonte: Elaboração própria.

4 RESULTS

In this section, we discuss the properties of the competitive equilibrium through

a series of numerical simulations. In the first subsection, we analyze how to economy

responds to a pandemic in the SIR model with network. In the second subsection, we

compare the results for different number of average links in the economy ­ different ⟨z⟩ ­

by changing the parameter a. The third subsection presents robustness checks over the

parameter γ.

4.1 Competitive equilibrium

In general, the dynamics of the pandemic happens the following way: from a unit

population, a fraction ε gets infected by the virus at the time 0. The fraction of susceptible

people is, therefore, 1 − ε. At first, for ε = 0.001, the susceptible population is relatively

high. This makes the new weekly infections, given by Tt, relatively high as well, what, thus,

increases both the infected population and the new value of T − 1.

Such process continues until the number of infected people reaches a peak at some
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given time, from where the number of new infections stops increasing because of the

reduction of the susceptible population. In our numerical exercise, the infected population

peaks at the eighth week, representing 8.82% of the total population. Thus, the previous

process reverses, and the number of infected people falls as the number of new infections

falls. In the end of the pandemic, nearly 86.71% of initial population will eventually have

been infected.

At this point, the number of recovered people has reached a significant fraction

of the total population, and its growth is, in the absence of treatments and vaccines, the

only way of ending the pandemic, which is called the ”herd immunity”. In our simulation,

the long run recovered population represents 77.15% of the total population, while 22.61%

remains susceptible. Total deaths represent 0.23% of the initial population. Figure 1 shows

this dynamics.
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Figura 1 ­ Dynamics of the populations.

Fonte: Elaboração própria.

From the macroeconomics perspective, the dynamics of the epidemic induce re­

cessions. The aggregate consumption falls for two reasons. The first one is due to the

low productivity of the small fraction of the population that remains infected. The second,

and more important, is due to the number of deaths during the pandemic, that, in turn, also

leads to a permanent reduction of the workforce.

In this first analysis, we present the results for the competitive equilibrium, where

the government does not interfere in the economy to control the evolution of the pandemic.

The dynamics of the pandemic is affected only by the decisions of the economic agents,

who has the freedom to reduce their own probabilities of infection by reducing consumption

and hours worked.

Similar to what Eichenbaum et al. [2020] found, the results point to a scenario that
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only susceptible people are concerned about reducing the infection rate by consuming

and working less. Figure 2 shows this pattern. The recovered people are indifferent to the

pandemic, for they can no longer get infected, and, thus, act according to what they would

act if there was no pandemic.

On the other hand, the infected people reduce consumption, not to control the pan­

demic though, but because, given their lower labor productivity, their income is also lower,

and, thus, they face a higher budget constraint. They are obligated to consume less than

the recovered agent. More precisely, they consume approximately 20% less then their pre­

pandemic steady state consumption, while the recovered agent consumes exactly what

they would consume at the pre­pandemic steady state.

However, their hours worked do not differ from the steady state: because they are al­

ready infected, they do not have anything to lose by working ­ similar to the recovered peo­

ple. But, more precisely, the infected agent’s hours worked equals the recovered agent’s

because the desutility of labor, θ, is the same for all agents. But, say, if we set a higher

level of such parameter to the infected agent, then her hours worked would shift down just

like her consumption did.

The susceptible agent’s behavior on consumption and hours tends to imitate the tra­

jectory of the infected population in its upside down form. As already said, the susceptible

agent seeks to avoid infection by reducing contact with other people through consumption

and hours worked. As the number of infected people grow, so do grow the probability

of becoming infected. Therefore, these agents must cut even more on consumption and

hours worked. This process continues until the susceptible agent consumes and works

0.62% less then her steady state levels.

When the infected population falls, the opposite occurs: the probability of becoming

infected also falls, and, then, the susceptible agent can gradually increase her consumption

and hours worked until she returns to her pre­pandemic steady state level.
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Figura 2 ­ Agents’ consumption and hours worked.

Fonte: Elaboração própria.

4.2 Comparison between economies with different average number of links

Now we shall look at what happens when we increase the average number of peers

of the economy, given by ⟨z⟩. We do this by reducing the value of the parameter a. In the

baseline calibration, ⟨z⟩ = 5 corresponds to a = 1.01015, while ⟨z⟩ = 10 corresponds to

a = 1.02155, and ⟨z⟩ = 20 corresponds to a = 1.05.

The figures below present the results. Figure 3 shows the dynamics of the popula­

tions, while Figure 4 shows the consumption and work trajectory for the susceptible agent

alone, because the infected and recovered agents would maintain their behavior constant,
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just like in Figure 2.

Figura 3 ­ Populations dynamics for different ⟨z⟩.

Fonte: Elaboração própria.

Intuitively, one could expect that more connected economies would produce more

infected people and more deaths during a pandemic. And that is confirmed by the results.

The populations dynamics, shown by Figure 1, says that more connected economies are

associated with more infected people and more deaths. The blue, orange and green lines

indicate an economy where the average number of peers equals 5, 10 and 20, respectively.

When ⟨z⟩ = 10, the infected population reaches the peak a week sooner, at the

seventh weak. In that week, infected represent 17.39% of the total population, which is a

little growth compared to the baseline calibration. In addition, 85.26%of the total population

are recovered in the long run, which is also higher, because more people becomes infected
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and, thus, recover from the disease. Moreover, 14.47% remain susceptible, which is less

than the baseline calibration, and the deaths represent 0.25% of the initial population,

which is also a growth.

If we set ⟨z⟩ = 20, these numbers get quite worse. Infected population peaks, now,

three weeks sooner than the baseline calibration: at the fifth week, reaching 31.67% of the

total population. In the long run, the recovered population increase to 92.00%, because the

large increase in the number of infected people. Consequently, the susceptible population

falls to 7.72%, and total deaths increase to 0.27% of the initial population as expected.

Intuitively, that is the expected result. Because, on average, the number of peers

is relatively high, more connected societies allow a faster spread of the virus through their

social network. That will cause more infections, thus, more deaths, and, consequently,

less susceptible and more recovered people.

In the model, the increase of ⟨z⟩ is first introduced, at the first period, only in equa­

tions (5) and (6). Note that the probability a susceptible agent receives the virus from a

given peer, given by (1) and (2), does not change in the first period with the increase of

⟨z⟩.

Analytically, the answer is obvious: both Ωc
t and Ω

n
t do not depend on the parameter

a or ⟨z⟩. Intuitively, we must note that, in the first period, the probability a susceptible agent

receives the virus from a given peer must not change because there was no time yet for the

virus to spread through the social network: the virus is introduced by an external source.

The same applies to the probability a susceptible agent of type z receives the virus from

at least one peer, given by (3) and (4).

Differently from the previous equations, equations (5) and (6) introduce the effects

of the increase of ⟨z⟩ right from period 0. Analytically, it is easy to note that both equa­

tions integrate the term Dz, which is given by (a − 1)z−a, and the parameter a appears.

The intuition behind it is the following: equations (5) and (6) represent the probability the

average susceptible agent receives the virus via her network. In this case, there is a cru­

cial difference compared with the previous equations: the average susceptible agent has

changed.

The average susceptible person has ⟨z⟩ peers. But in the baseline calibration, that

number is 5, while in the other calibrations, that number increases to 10 and 20. Therefore,

even at the first period, the average person that has 10 links is more likely to receive the

virus through her social network than if she had 5 links. It is true that equations (1) and

(2) also refer to the average person. However, they do not account for receiving the virus

from her social network. It accounts only for receiving the virus from a given peer.

Figure 4 shows the trajectories of the susceptible agent consumption and hours
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worked for different levels of ⟨z⟩. We focus only on the susceptible agent because both

recovered and infected agents do not change their behavior when we change ⟨z⟩, for they

are not worried about getting infected. Susceptible people, on the other hand, do care

about the number of ⟨z⟩, because it will define the evolution of the pandemic, shown by

Figure 3, and, thus, influence the probability of becoming infected.

Figura 4 ­ Consumption and hours worked by susceptible agent for different ⟨z⟩.

Fonte: Elaboração própria.

When, on average, people have 5 peers, the susceptible agent cuts less on con­

sumption and work, than when the average number of links is 10 and 20. At the bottom

of the curve, as already said, these agents consume and work approximately 0.62% of

their steady state level. When the average number of peers is 10, the agents cut less on

their economic activities, until the consumption and the hours worked reach a fall of about
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1.19% of the their steady state levels. In an economy where ⟨z⟩ = 20, it is the extreme

case: the susceptible agents decrease their consumption only until they consume and

work approximately 2.5% less than their steady state levels.

4.3 Robustness

In this subsection, we do robustness check on the only parameter we do not have

a sufficiently reliable source, which is γ, the parameter governing the relative weight of

infection via consumption. In the baseline, it was set γ = 0.5.

Figure 5 shows the dynamics of the populations for different values of γ. By running

the model with extreme values ­ 0.1 and 0.9 ­, we get the same result as the one of the

baseline. The blue line, corresponding to the baseline calibration, was overlapped by

the orange one, that represents the scenario where γ = 0.1, and the orange line was

overlapped by the green line, that represents γ = 0.9. Therefore, we can state that the

results will change little if we change the value of γ. Thus, we maintain our guess that

γ = 0.5 without great concern.
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Figura 5 ­ Populations dynamics for different γ.

Fonte: Elaboração própria.

Now we analyze the behavior of the consumption and hours worked of each type

of agent as γ changes. Figures 6 and 7 show that behavior for the infected and recovered

agents.
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Figura 6 ­ Infected agent’s consumption and hours worked for different γ.

Fonte: Elaboração própria.
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Figura 7 ­ Recovered agent’s consumption and hours worked for different γ.

Fonte: Elaboração própria.

The same result we found at the populations dynamics is confirmed here: the results

do not change with variations of γ. The blue line was overlapped by the orange line, which

was also overlapped by the green line. Thus, infected and recovered agents do not change

their behavior according to changes in γ. But susceptible agents do change their behavior,

as shown by Figure 8.
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Figura 8 ­ Susceptible agent’s consumption and hours worked for different γ.

Fonte: Elaboração própria.

When γ = 0.1, the susceptible agent’s consumption and hours worked minimum

represents a 0.59% fall of their steady state levels. It is higher than the minimum achieved

in the baseline calibration, which is a fall of 0.62%.

Although γ is the relative weight of infection via consumption, the higher it is, the

lower is the relative weight, because P c
t , its base (see equation (7)) is between 0 and 1,

for it is a probability. Note also that, according to equation (7), 1­γ is the relative weight of

infection via work. Now, a higher γ means a higher weight. In this specific case, when we

set γ = 0.1, we are decreasing its value compared to the baseline calibration ­ γ = 05 ­,

and, thus, increasing the relative weight of infection via consumption and decreasing the

relative weight of infection via work.

According to our algorithm, the agents first decide howmuch to work, and, based on
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such decision, they consume. Because γ = 1 represents a decline of the relative weight

of infection via work, the susceptible agent would like to work more when compared to

the baseline calibration. Thus, the susceptible agent’s hours worked has the ”U” shaped

format, because of the pandemic, but it slightly shifts up.

The opposite occurs when we increase γ to 0.9. Because the relative weight of

infection via work has increased, the susceptible agent would like to work less compared

to the baseline calibration: the ”U” shaped trajectory of hours worked shifts down. At its

minimum level, the susceptible agents works 0.65% of the steady state hours worked.

Based on such trajectory, her consumption decision is also similar, reaching a 0.65% fall

of steady state consumption at its minimum.

Although we find important and intuitive changes on the susceptible agent’s decision

on consumption and hours worked, changes on the parameter γ are change the main

results very little. The trajectories of the populations and the infected and recovered agents’

decisions on consumption and hours worked does not change, and the changes found on

the susceptible agent’s consumption and hours worked are relatively small ­ about 0.3%.

Therefore, we are confident to state our main results with the baseline calibration of γ = 0.5.

5 CONCLUSION

In this paper, we analyze the specific effects of the COVID­19 pandemic on the

Brazilian economy, given the characteristics of its economy and social network. In ad­

dition, we study the sensibility of the dynamics of the pandemic on the social network

features. For that, we use a Susceptible­Infected­Recovered (SIR) model adapted to a

network environment.

Like Eichenbaum et al. [2020] found, the results show the already known behav­

ior of susceptible people reducing consumption and hours worked in order to reduce the

probability of becoming infected. With respect to the network environment, we find the

expected result. In our model, a person with a higher number of links will be more likely to

get infected through her network. Therefore, the higher the average number of links in the

society, the virus will spread faster, leading to more infected people and more deaths.

The decision of the agents’ consumption and hours worked was also expected. Re­

covered people maintain their level of pre­pandemic state steady consumption and hours

worked because they no longer can be infected by the disease. Infected people also can­

not be infected again by the disease, and thus, they also act as if there was no pandemic,

but the difference is that, because these people are less productive, they make less money,
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and, thus, consume less than they did at the pre­pandemic steady state.

On the other hand, susceptible people, during the course of the pandemic, decrease

their consumption and hours worked in order to avoid contact with other people, and,

thus, avoid acquiring the disease. With respect to the social network, in more connected

economies, the number of infected people is higher. With this, the susceptible agents

reduce their consumption and hours worked even more, because the chances of getting

infected increase. The opposite is also true: In less connected economies, with less in­

fected people, the susceptible agents’ consumption and hours worked, despite reducing

because of the presence of infected people, such reduction is quite slighter.
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A APPENDIX: ALGORITHM FOR COMPUTING THE EQUILIBRIUM

The algorithm used to compute the equilibrium is similar to the one that was used by

Eichenbaum et al. [2020]. The difference is that we adjust for the network environment.

For a given sequence of containment rates, {µct}
H−1
t=0 , for some large horizon, H, guess

the sequences for


nS
t , n

I
t , n

R
t

H−1

t=0
. Similarly, I solve the model for H = 250 weeks.

Compute the sequence of the remaining unknowns variables in each of the following

equilibrium equations:

θnR
t = AλR

bt(1− µnt),



cRt


−1
= (1 + µct)λ

R
bt,

u


cRt , n
R
t



= lncRt −
θ

2
(nR

t )
2,

(1 + µct) c
R
t = (1− µnt)An

R
t + Γt,

θnI
t = φI(1− µnt)Aλ

I
bt,



cRt


−1
= (1 + µct)λ

I
bt,

u


cIt , n
I
t



= lncIt −
θ

2
(nI

t )
2,

(1 + µct) c
S
t = (1− µnt)An

S
t + Γt,

u


cSt , n
S
t



= lncSt −
θ

2
(nS

t )
2,

Dz = (a− 1)z−a,

ρct = ms
t ,

ρnt = ms
t ,

Ωc
t = ρctϕ(c

I
t , c

S
t )m

I
t ,

Ωn
t = ρnt ϕ(n

I
t , n

S
t )m

I
t ,

pnt = 1− (1− Ωc
t)

z
,

pnt = 1− (1− Ωn
t )

z
,

P c
t =

∫

∞

z=1

pctDzdz = (a− 1)

∫

∞

z=1

[1− (1− Ωc
t)

z] z−adz,
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P n
t =

∫

∞

z=1

pnt Dzdz = (a− 1)

∫

∞

z=1

[1− (1− Ωn
t )

z] z−adz.

Given initial values for Pop0, S0, I0, R0 and D0, iterate forward using the following six

equations for t = 0, ..., H − 1:

Tt = mS
t (P

c
t )

γ (P n
t )

(1−γ)
,

Popt+1 = Popt − πDm
I
t ,

mS
t+1 = mS

t − Tt,

mI
t+1 = (1− πR − πD)m

I
t + Tt,

mR
t+1 = mR

t + πRm
I
t ,

mD
t+1 = mD

t + πDm
I
t .

Iterate backwards from the post­epidemic steady­state value of V S
t , V I

t and V R
t :

V R
t = max

cR
t
,nR

t



u


cRt , n
R
t



+ βV R
t+1



,

V I
t = max

cI
t
,nI

t



u


cIt , n
I
t



+ β


(1− πR − πD)V
I
t+1 + βπRV

R
t+1



,

τt =
Tt

mS
t

= (P c
t )

γ (P n
t )

(1−γ)
,

V S
t = max

cS
t
,nS

t
,τS

t



u


cSt , n
S
t



+ β[(1− τt)V
S
t+1 + τtV

I
t+1]



.

Calculate the sequence of the remaining unknowns in the following equations:

β(V I
t+1 − V S

t+1)− λrt = 0,



cSt


−1
− λS

bt(1 + µct)− λrtγ

(

P n
t

P c
t

)1−γ
ρctm

I
t (1− λc)m

S
t

(mS
t c

S
t +mI

t c
I
t )

λc

∫

∞

z=1

(1− Ωc
t)

z−1z1−adz = 0,

(1 + µct) c
I
t = AnI

t + Γt,

mS
t c

S
t +mI

t c
I
t +mR

t c
R
t = ANt,

−θnS
t + (1− µnt)λ

S
btw

S
t − λrt(1− γ)

(

P c
t

P n
t

)γ
ρnt m

I
t (1− λn)m

S
t

(mS
t n

S
t +mI

tn
I
t )

λn

∫

∞

z=1

(1− Ωn
t )

z−1z1−adz = 0.
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B APPENDIX: DERIVATION OF SUSCEPTIBLE AGENT’S MAXIMIZATION

The susceptible agent seeks to maximize the following function:

max
cS
t
,nS

t
,τt

V S
0 +

H−1
∑

t=0

{

λS
bt



(1 + µct)c
S
t − wS

t (1 + µct)n
S
t − Γt



− λrt

[

τt − (P c
t )

γ (P n
t )

(1−γ)
]}

.

The first order conditions for cSt and nS
t are given by (15) and (16), respectively.

Calculating
∂P c

t

∂cSt
:

∂P c
t

∂cSt
=

∂


∞

z=1
pctDzdz

∂cSt
.

Dz is given by (a− 1)z−a. Thus, and according to (3):

P c
t =

∫

∞

z=1

[1− (1− Ωc
t)

z] (a− 1)z−adz,

P c
t = (a− 1)


∫

∞

z=1

z−adz −

∫

∞

z=1

(1− Ωc
t)

z
z−adz



.

Therefore:

∂P c
t

∂cSt
= (1− a)

∂


∞

z=1
(1− Ωc

t)
zz−adz

∂cSt
,

∂P c
t

∂cSt
= (a− 1)

∫

∞

z=1

(1− Ωc
t)

z−1z1−a

(

∂Ωc
t

∂cSt

)

dz.

Solving
∂Ωc

t

∂cSt
separately:

∂Ωc
t

∂cSt
=

∂


ρct(m
S
t c

S
t +mI

t c
I
t )

1−λcmI
t



∂cSt
,
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∂Ωc
t

∂cSt
= ρctm

I
t

∂(mS
t c

S
t +mI

t c
I
t )

1−λc

∂cSt
,

∂Ωc
t

∂cSt
=

ρctm
I
t (1− λc)m

S
t

(mS
t c

S
t +mI

t c
I
t )

λc

.

Thefore:

∂P c
t

∂cSt
=

(a− 1)ρctm
I
t (1− λc)m

S
t

(mS
t c

S
t +mI

t c
I
t )

λc

∫

∞

z=1

(1− Ωc
t)

z−1z1−adz.

Similarly, doing the same steps:

∂P n
t

∂nS
t

=
(a− 1)ρnt m

I
t (1− λn)m

S
t

(mS
t n

S
t +mI

tn
I
t )

λn

∫

∞

z=1

(1− Ωn
t )

z−1z1−adz.


