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RESUMO 

 

A proporção de fatalidades envolvendo motociclistas tem aumentado nos países latinos e 

asiáticos nos últimos anos. A Segunda Década de Ação para a Segurança Viária 2021-2030 

preconiza que a visão sistêmica do Sistema Seguro (SS) é o meio para alcançar zero fatalidades. 

Os estudos tradicionais da severidade dos sinistros geralmente utilizam uma abordagem 

baseadas em dados com uma única regressão, podendo não representar adequadamente essa 

visão. O objetivo principal desta dissertação é desenvolver uma análise causal dos fatores que 

influenciam a severidade dos sinistros a partir da perspectiva do SS. A consolidação do 

conhecimento das abordagens de inferência causal em estudos de segurança viária da gravidade 

dos sinistros envolvendo motociclistas é necessária, portanto, um exemplo simulado de Monte 

Carlo foi elaborado para compreender as características dessa nova abordagem. Posteriormente, 

uma extensa revisão da literatura foi realizada para a formulação de uma representação 

conceitual baseada na abordagem do Sistema Seguro para o processo causal da severidade dos 

sinistros envolvendo motociclistas. Hipóteses causais foram formuladas com base na 

representação conceitual e nos dados coletados de sinistros envolvendo motociclistas nas 

rodovias brasileiras. O modelo causal foi estimado para avaliar a relação entre o uso de álcool 

e a severidade dos sinistros viários nas rodovias federais do estado do Ceará utilizando a 

metodologia SEM. Por fim, os resultados apontaram uma relação significativa ao nível de 90% 

para o álcool em vias urbanas. Outros resultados indicaram que fins de semana e horas noturnas 

estão associadas ao uso de álcool, enquanto veículos pesados, colisões frontais e horas fora do 

pico estão diretamente associadas a maiores severidades devido à maior energia de impacto. 

Além disso, foram encontradas diferenças nas relações em áreas rurais e urbanas. O uso de uma 

abordagem causal possibilitou obter resultados mais confiáveis, ao controlar variáveis de 

confusão e utilizar-se de um arcabouço teórico incorporando o Sistema Seguro. Ademais, essa 

abordagem permitiu obter, em um único modelo, as interrelações entre as variáveis do estudo, 

o que propicia um maior entendimento dos fatores associados com a severidade. Por fim, os 

resultados obtidos podem auxiliar os tomadores de decisão a elaborarem um plano de ação 

capaz de alcançar um sistema seguro para os motociclistas. 

 

Palavras-chave: motociclistas; inferência causal; severidade; segurança viária; modelos de 

equações estruturais.  
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ABSTRACT 

 

The proportion of motorcyclist fatalities has increased in Latin and Asian countries in recent 

years. The Second Decade of Action for Road Safety 2021-2030 has shown that the systematic 

view of the Safe System (SS) is the means to achieve zero fatalities. Traditional studies often 

use a data-driven approach and a single regression, which may not adequately represent this 

view. The main aim of this dissertation is to develop a causal analysis for motorcyclists from 

the Safe System perspective using observational data. To consolidate the knowledge of causal 

inference approaches in road safety studies of the motorcyclists’ severity, Monte Carlo 

Simulations were elaborated to understand the characteristics of this new approach. 

Subsequently, an extensive literature review was carried out to formulate a conceptual model 

based on the Safe System approach for the causal process of motorcyclists' injury. Causal 

hypotheses were formulated based on the conceptual model and the data collected from 

motorcyclist crash data on Brazilian highways. The causal model was estimated to evaluate the 

relationship between alcohol use and the severity of road crashes on federal highways in the 

state of Ceará, using the SEM methodology. Finally, the results indicated a significant 

relationship between alcohol use and severity in urban roads. Other findings suggested that 

weekends and nighttime hours are associated with alcohol use, while heavy vehicles, head-on 

collisions, and off-peak hours are directly associated with higher severities due to increased 

crash energy. Furthermore, differences were found in the relationships in rural and urban areas. 

The use of a causal approach allowed for obtaining more reliable results by controlling 

confounding variables and incorporating a theoretical framework that includes the Safe System 

approach. Moreover, it enabled obtaining, in a single model, the interrelationships among the 

study variables, leading to a better understanding of road safety. Finally, the obtained results 

can assist decision-makers in developing an action plan capable of achieving a safe system for 

motorcyclists. 

 

Keywords: motorcyclists; causal inference; severity; road safety; structural equations 

modeling.  
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1 INTRODUCTION 

 

Each year, 1.35 million people die in traffic crashes, and half of the victims are 

vulnerable roadway users (VRUs), such as motorcyclists (WHO, 2018). Furthermore, 

motorcyclist fatalities occurred nearly 29 times more than passenger vehicles when controlled 

for miles traveled (NHTSA, 2019). 

In the United States, the National Highway Traffic Safety Administration (NHTSA) 

(2016) stated that motorcycle fatalities increased by 48% between 2002 and 2015. The situation 

is worse in East Asian and Latin American countries. In China, the average of fatal crashes 

involving motorcyclists rose by 64% between 2010 and 2018 (FERNÁNDEZ et al., 2020). In 

Brazilian capitals, the proportion of motorcyclist fatalities nearly increased from 17% to 42% 

between 2010 and 2019 (DATASUS, 2021; WHO, 2018). 

The United Nations (2020) decreed the period between 2021 and 2030 as the 

Second Decade of Action for Road Safety (UNITED NATIONS, 2020). The Safe System (SS) 

approach points to a systematic and sustainable long-term road safety strategy that is deemed 

to be appropriate to reach the 50% reduction in road fatalities goal by 2030 (UNITED 

NATIONS, 2020). The countries that adopted the Safe System approach achieved the lowest 

fatality rates per 100,000 inhabitants (WELLE et al., 2018).  

Under the SS paradigm, road fatalities and serious injuries are not acceptable. The 

SS principle recognizes that humans are vulnerable to crash forces in road crashes. However, 

this new paradigm requires an understanding of the causal relationships between the severity 

of the crashes and the factors associated with the SS dimensions: Roads, Speeds, Vehicles, and 

Road Users (ETIKA, 2018; OPAS, 2018; WELLE et al., 2018). The collaboration of all 

components of these dimensions works towards reducing the likelihood of harm. Therefore, if 

any of the components fail, the remaining parts must ensure safety to prevent a serious or fatal 

crash (BAMBACH; MITCHELL, 2015; ETIKA, 2018; ITF, 2016). 

Understanding the magnitude of the effects of the main causes associated with road 

users, speeds, roads, and vehicles can help decision-makers find the best way to avoid serious 

crashes (CUMMINGS, 2006; DUFOURNET et al., 2016). Despite the benefits of using 

regression models such as logistic regression to understand associations between factors related 

to severity, several studies interpret the coefficients as a total effect (AZIMI et al., 2020; 

CHANG et al., 2016; CUNTO; FERREIRA, 2017; MORRISON et al., 2019). However, it's 

important to note that the estimated coefficients in single regressions may have an interpretation 
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of association and partial effect, rather than a causal effect interpretation (WOOLDRIDGE, 

2013). 

Randomized studies can estimate the causal effect but are rarely used in road safety 

for ethical and practical reasons. The studies with observational data require a suitable approach 

for estimating causal effects. Therefore, Pearl (2009) proposes a method to estimate causal 

effects using observational studies which are common in road crash severity analysis.  

Pearl's Causal Inference paradigm emphasizes the importance of identifying and 

controlling for confounding variables, which can bias the relationship between a cause and its 

effect. Background knowledge plays a crucial role in identifying potential confounders, and 

conceptual models (or representation) can aid in visualizing the interrelationships among 

factors associated with severity (PEARL, 2009; SIQUEIRA, 2020).  

The Safe System (SS) approach could be instrumental in elaborating on a 

conceptual model, as it serves as a cornerstone for understanding the main relationships 

between crash severity and associated factors. Nevertheless, an extensive literature review is 

still needed to identify all confounders to evaluate the causal effects of an observational study. 

Meanwhile, there is a lack of research that has conducted a comprehensive causal 

inference analysis based on a thorough literature review to examine the relationships between 

various factors associated with the severity of motorcyclist crashes (LAUBACH et al., 2021). 

Additionally, many studies on road safety severity often neglect to address the issue of 

confounding and interpret coefficients such as total effects, which could be biased. 

Furthermore, these conventional studies often rely solely on available data, adopting a data-

driven approach, and do not incorporate a theoretical framework to guide their analyses and 

interpret findings. 

The causal inference paradigm provides an approach to establishing relationships 

among factors associated with crash severity. These relationships can be valuable in proposing 

action strategies to effectively reduce crash severity, empowering decision-makers to develop 

a comprehensive action plan toward achieving a Safe System for motorcyclists. 

 

1.1 Problem Statement 

 

The research problem is that road safety studies that utilize observational data and 

single regression models may yield skewed results due to the presence of confounding 

variables. Additionally, traditional models may not adequately encompass the perspective of 
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the Safe Systems approach, which takes into account multiple relationships among factors 

associated with severity.  

 

1.2 Research Questions  

 

The introduction of this research highlights road safety gaps, which leads to the 

following central question: how can the Causal Inference paradigm be effectively incorporated 

to assess the causal relationships among factors associated with motorcycle crash severity, 

taking into account the Safe Systems approach and utilizing observational data from Brazilian 

highways as the basis of analysis? 

Despite there being studies that show how causal inference works with practical 

examples (LÜBKE et al., 2020), the use in studies of crash severity is not fully understood. 

Therefore, the first specific question is: how to apply the causal inference approaches in road 

safety studies of motorcyclists’ severity? 

The causal relationships between factors and the injury severity of motorcyclists 

have not been satisfactorily evaluated. Nevertheless, a conceptual model of the factors 

associated with motorcyclists is necessary to discover the confounders. Therefore, the second 

specific question is: what is a conceptual model of the interrelationships among factors in 

motorcycle crashes incorporating the Safe Systems approach and Causal Inference? 

The conceptual model is based on causal hypotheses formulated in advance by the 

researcher. The appropriate statistical methods are necessary to evaluate these hypotheses. It 

also needs a proper approach to deal with intrinsic issues of crash databases. Thus, the third 

specific question is: how valid are the causal hypotheses using observational studies of crash 

severity involving motorcyclists on Brazilian highways based on the Causal Inference 

paradigm? 

 

1.3 Research Objectives 

         

 To answer the four research questions, this research is separated into one principal 

and three specific objectives. The main objective is to develop an analysis of cause-effect 

relationships between severity and factors on motorcycle crashes from the Safe Systems 

perspective using observational data and incorporating the Causal Inference paradigm. The 

specific objectives are as follows: 
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a) To consolidate the knowledge of the causal inference approach in road safety 

studies of motorcyclists’ severity; 

b) To propose a conceptual model based on the Safe System approach identifying 

the causal hypotheses of the factors impacting the severity of motorcycle 

crashes; and 

c) To verify the causality hypotheses using motorcycle crash data from Brazilian 

highways. 

 

1.4 Dissertation Outline 

 

This dissertation is structured as follows (Figure 1). Chapter 2 presents an 

explanation of causal inference and the causal process of injury severity in motorcyclist crashes. 

Chapter 3 proposes our methodology to find the causal effects of factors using observational 

data. Chapter 4 presents the analysis results. Finally, Chapter 5 presents the final considerations. 

 

Figure 1 – Dissertation outline 

 

Source: the author.  
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2 THE CAUSAL PROCESS OF INJURY SEVERITY IN MOTORCYCLIST 

CRASHES 

 

This chapter is structured into three sections. The first section outlines traditional 

approaches for identifying factors associated with motorcycle crash severity. In the second 

section, conceptual models of motorcycle crash severity are reviewed and the primary factors 

affecting it are highlighted. The third and final section examines the application of the theory 

of causal inference, providing examples from road safety. 

 

2.1 The traditional approaches to finding associations in motorcycle crash severity 

 

The traditional approaches to finding associations between the factors and severity 

in motorcyclist crashes are the use of categorical models such as logit and probit models. Some 

classifications of these models are as follows (ALNAWMASI; MANNERING, 2019; 

RAHMAN et al., 2021): 

• Binary logit/probit: This type of logistic regression is used to model the relationship 

between a binary outcome variable (e.g., fatal and no-fatal) and one or more 

predictor variables; 

• Ordered logit/probit: This type of logistic regression is used to model the 

relationship between an ordinal outcome variable (e.g., uninjured < serious < fatal) 

and one or more predictor variables; 

• Multinomial logit: the outcome has more than two categories and the categories do 

have not an ordered nature. Generally used when parallel lines (same slope) 

assumption in the ordered model has not been satisfied, or when the interest is to 

know how each category of a risk factor affects each severity category; 

• Nested logit: when have a hierarchical dependency in outcome categories. Used 

when multinomial logit has independence of irrelevant alternatives (IIA) 

specification errors; 

• Multi-collinearity logistic regression: This type of logistic regression is used when 

there is multi-collinearity between predictor variables. 

• Regularized logistic regression: This type of logistic regression is used when there 

is a large number of predictor variables or when some predictor variables are highly 
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correlated. Regularization methods such as L1 or L2 penalization are used to 

address this issue. 

• Logit with random parameters (mixed): it is a type of logistic regression that allows 

for the modeling of both fixed and random effects. Random parameters allow some 

predictor variables to be considered random and their effects could be estimated 

based on both the data and a probability distribution. This allows for the 

incorporation of within-group variation and can lead to more accurate predictions. 

It is also known as mixed-effects logistic regression. 

 

Mixed logit models are advanced categorical models that attempt to capture the 

effect of unobserved heterogeneity through the inclusion of random parameters. Therefore, 

mixed logit models are robust as they allow for the use of variables with both fixed and random 

effects, following some probability distribution.  

For example, making the age variable random parameters means that within an age 

range, the effects can change due to factors such as motorcycle driving experience, which was 

not observed, i.e., it is not in the model. However, from a Causal Inference perspective, these 

unmeasured variables can be confounding variables, which can lead to biased results. It should 

be noted that mixed logit models are capable of capturing these effects, but they do not 

completely remove the bias (GUNASEKARA; CARTER; BLAKELY, 2008). Nevertheless, 

the studies that used mixed models frequently do not systematize what causes unobserved 

heterogeneity and do not explain if the unobserved factors could cause confounding effects. 

Available studies generally use a single model to evaluate the effect of all factors, 

and they interpret the coefficients such as total effect. These coefficients are only partial effects 

and may be biased because of confounding or other reasons, which will be explained in the next 

sections. Moreover, the misinterpretation of the results is mentioned as “The Table 2 Fallacy” 

(WESTREICH; GREENLAND, 2013). Specifically, this fallacy refers to the practice of 

selecting variables or analyses based on their statistical significance, rather than on a priori 

hypotheses or theoretical considerations, which can lead to false conclusions and overinflated 

effect sizes. 

To prevent biases, it is important to utilize pre-existing knowledge, which could be 

usually represented by a conceptual model, as a basis for the analysis. This approach can 

facilitate the development of causal hypotheses and the identification of confounding variables. 

Table 1 shows some studies that used logit models in motorcycle crash severity analyses. 
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Table 1 – Logit studies in motorcycle crashes 

Authors Study Location Study Period Sample Size Model Used 
Main Factors Found to Influence Motorcycle Crash 

Severity 

Rahman et al. (2021) Dhaka 2006–2015 316 
Binary Logistic 

Regression 

Weekends, Rainy Season, Dawn and Night Periods, 
Non-Intersections, Straight and Flat Roads, Highways, 

Hit Pedestrian-type crashes, No Defect Motorcycles, 
Heavier Vehicles, No Helmets, Alcohol 

Li et al. (2021) California 2011-2016 322 
Latent Class-Ordered 

Probit 
Single-, Two-, and Multi-Vehicle Crashes 

Abdul Manan (2018) Malaysia 2010-2012 9,176 
Multinomial and 

mixed logit models  
curve road sections, no road markings, smooth, ruts and 

corrugation of road surface, and wee hours  
Geedipally, Turner, and Patil 

(2011a) 
Texas 2003-2008 48,871 Multinomial Logit Alcohol, Female Riders, Helmet Use, Old Riders 

Jones, Gurupackiam, and Walsh 
(2013) 

Alabama 2006-2010 Not Available Multinomial Logit Behaviors, Opponent Vehicles, Roadway Geometry 

Abrari Vajari et al. (2020) Australia 2006-2018 7,714 Multinomial Logit 
Old Motorcyclists, Weekends, Midnight/Early 

Morning, Rush Hours, Give-Way, Roundabouts, 
Uncontrolled Intersections 

Salum et al. (2019) Tanzania 2013-2016 784 Multinomial Logit 
Speeding, Alcohol, Horizontal Curves, Reckless 

Riding, Off-Peak, Violation, Riding Without a Helmet 
Eustace, Indupuru, and Hovey 

(2011) 
Ohio 2003-2007 21,914 Multinomial Probit 

Alcohol/Drugs, Speeding, Single-Vehicle Crashes, 

Segment Roadways 
Rifaat, Tay, and De Barros (2012) Calgary 2003-2005 466 Ordered Logit Frequent Curves, Alcohol, Speed 

Cunto and Ferreira (2017) Brazil 2004-2011 3,232 Ordered Logit Helmet Use, Old Riders 
Chung, Song, and Yoon (2014) Korea 2007-2009 792 Ordered Probit Heavy Vehicles, Violations, Nighttime, Speed 

Ijaz et al. (2021) Pakistan  2017-2019 8,770 
Random Parameter 

Logit model 
Weekdays, old riders, and heavy vehicle shock  

Pervez, Lee, and Huang (2021) Pakistan  2014-2015 28,894 
Random parameter 

logit model  
summer season, weekends, nighttime, elderly riders, 

heavy vehicles, and single-vehicle collisions  

Islam (2022) Florida 2012-2016 747 
Random Parameter 
Multinomial Logit 

Roadway Characteristics, Work-Zone Geometry, Urban 
Interstate, Large Shoulder Width, Work-Zone Types 

Salum et al. and Mannering (2019) Florida 2012-2016 1,058 
Random Parameters 
Multinomial Logit 

Temporal Instability in Risk Factors 

Se et al. (2021) Thailand 2016-2019 13,794 

Random Parameters 
Ordered Probit 

models with 
heterogeneity in 

means 

Male Riders, Improper Overtaking, Drowsiness, Four-
Lane or Wider Highway, Flush and Depressed Median, 

Road on a Slope, Weekend, Nighttime with Light, 
Hitting a Van/Minibus, Rear-Ending, Side-Swiping 
(Rural); Barrier-Median, Crashes between 18:00 and 

23:59, Hitting a Passenger Car (Urban) 

Source: developed by the author using multiple studies cited in Table 1.
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2.2 Review of efforts of conceptual models of motorcycle crashes 

 

One of the first representations of road crash generation is the Swiss Cheese (Figure 

2).  This represents a defense model that illustrates the chronological sequence of the crash and 

the possible gaps (“holes or latent error”) in defense layers. Swiss Cheese representation can 

also demonstrate the rise in of severity injuries. The defense layers (“slices of the cheese”) are 

represented by factors related to users, roads, vehicles, and speeds, and when one of these fails 

there are holes in this slide (REASON, 1997; WEGMAN; AARTS; BAX, 2008). For example, 

a failure in the design of a curve could lead a motorcycle to get off the road and collide with a 

tree. If the curve had been well-dimensioned, the crash could have been avoided. Alternatively, 

if the motorcyclist would be speeding less, he could avoid going off the road. 

 

Figure 2 – Swiss Cheese model 

 

Source: Wegman, Aarts and Bax (2008) adapted 

from Reason (1997). 

 

Chen et al. (2011) investigated speeding behavior and other factors using a theory 

of planned behavior (TBP) and the SEM approach. Figure 3 shows the proposed SEM structure 

to investigate psychological factors that affect speeding behavior. These factors were measured 

using indicators of a questionnaire applied to 277 riders of heavy motorcycles. Trinh and Linh 

(2018) used the same framework but related the intention of helmet use to speeding behavior.  
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Figure 3 – Speeding Behavior Framework 

 

Source: Chen et al. (2011). 

 

Wedagama (2015) studied the intentions of traffic violations and speeding of 

motorcyclists. The conceptual model (Figure 4) shows that personal characteristics influence 

perceptions and attitudes toward riding a motorcycle, which influences future traffic violations 

and speeding. The author used 300 questionnaires to test the representation. The results show 

that sensation-seeking and attitudes are significant, and male motorcyclists are more likely to 

be involved in sensation-seeking situations. 

 

Figure 4 – Wedagama’s framework 

 

Source: Wedagama (2015). 

 

Previous theoretical representations have primarily focused on the process of road 

crash occurrence. Studies that solely encompass the representation of the severity of the crash 

are rare, meaning that the crash has already occurred and what will be conceptually represented 

are the factors that decrease or increase the probability of the injury. Nevertheless, the process 

of creating this representation may utilize the results and methods proposed in the previous 

studies. For example, the characteristics of motorcyclists influence their risky behavior, such 

as adopting higher speeds, shorter braking distances, and the use of safety equipment. 
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Additionally, there are aspects of subjective norms, perceived attitudes, and others that are 

challenging to collect, and an SEM modeling approach may be utilized, which allows for the 

use of latent variables, better representing the causal process of crash severity involving 

motorcyclists. 

Nowadays, the Safe Systems approach is used in many countries as a framework to 

reduce the fatalities and serious injuries of crashes to zero, this approach is also related to Vision 

Zero. In the next section, it is presented the Safe System approach, on which the conceptual 

framework model of this dissertation is based.  

 

2.2.1 The Safe System approach and factors associated with severity in motorcyclist crashes 

 

The Vision Zero strategy was developed in 1997 in Sweden to minimize deaths and 

serious injuries in road crashes. The Safe System approach is based on the best practices of 

Swedish "Vision Zero" and prior knowledge of Reason's "Swiss Cheese" model (ETIKA, 2018; 

ITF, 2016; STIGSON, 2009).  

The Safe System approach is based on the following principles: i) road users are 

vulnerable to the energy of impact; ii) people make mistakes; iii) the responsibility is shared 

with designers, build management, and road users, and; iv) all parts of the system must be 

strengthened to multiply their effects (proactive approach) (ETIKA, 2018; ITF, 2016). 

The Safe System approach provides a holistic view of road safety and has five main 

cornerstones: Post-crash care, Roads, Speeds, Vehicles, and Users. The union of each part of 

the system works to reduce the injury risk. Therefore, if one part of the system fails, there should 

be other parts that provide protection (BAMBACH; MITCHELL, 2015; ETIKA, 2018; ITF, 

2016). 

There are efforts to develop conceptual models of Safe Systems. The Swedish 

Transport Agency represented the Safe System in another way (STIGSON; KRAFFT; 

TINGVALL, 2008). The model (Figure 5) describes the interactions of the three components 

(roads, vehicles, and road users) under Safe Speed to lead to safe road traffic. The model focuses 

on safe speed as the most important factor affecting the safety of road users. Furthermore, the 

representation is based on the tolerance of the impact on road users.  
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Figure 5 – Swedish Transport Agency’s Safe System Framework 

     

Source: Swedish Transport Agency (STIGSON; KRAFFT; TINGVALL, 2008). 

 

In Queensland representation, all elements of the Safe System work together to 

reduce crash severity. In other words, these elements determine the energy during the crash and 

the severity outcome (DEPARTMENT OF TRANSPORT AND MAIN ROADS, 2015). 

 

Figure 6 – Queensland’s Safe System Framework 

 

Source: Adapted from Department of Transport & Main 

Roads (2015). 

 

In conclusion, many factors affect the severity of motorcyclists in a crash. These 

factors are related to speeds, users, vehicles, roads, and the environment. The energy of impact 

and human tolerance are the two main factors that lead to fatal and severe injuries. The 

integrated approach implies that road, vehicle, and user factors act simultaneously on different 

levels to reduce the severity of the crash. The next section presents the factors that contribute 

to reducing the severity of motorcycle crashes. 
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2.2.1.1 Safe Speeds 

 

The fatal crash risk increases exponentially with speed. Furthermore, high speeds 

favor production mistakes by riders and drivers, creating scenarios that the rider does not have 

control over. The high speed contributes to the severity due to the kinetic energy (CAMERON; 

ELVIK, 2010; ELVIK; VAA, 2009; OECD, 2015; RIFAAT; TAY; DE BARROS, 2012). 

According to Jones, Gurupackiam, Walsh (2013) and Salum et al. (2019), speeding is 

associated with 1.3 to 3.0 times more likely to be fatal. 

Motorcyclists tend to adopt excessive and inappropriate speeds more than other 

vehicles. Motorcycles are smaller and have more acceleration capacity, allowing them to 

overtake high speeds and move better into traffic (OECD, 2015). Other factors that affect speed 

selection are i) Type of road: the speeds are higher and there are more speed violations on rural 

roads; ii) age: younger riders may be more likely to engage in riskier riding behavior, while 

older riders may have decreased physical abilities that can impact their ability to control a 

motorcycle; and, iii)  Network element: motorcyclists are three times more likely to speed than 

other vehicles (LARDELLI-CLARET et al., 2005; OECD, 2015; SE et al., 2021; WALTON; 

BUCHANAN, 2012). 

 

2.2.1.2 Safe Users factors 

 

Safe user factors frequently correlate with unsafe behaviors, including alcohol 

consumption and neglecting proper safety equipment. Moreover, the attributes of the 

motorcyclist contribute significantly to this dynamic. Acknowledging that speeding constitutes 

a perilous behavior is vital. Nevertheless, Safe System models have approached speed as an 

independent dimension of Safe Users (CREASER et al., 2009; OECD, 2015).  

The consumption of alcohol by motorcyclists is associated with an increased risk 

of fatal crashes (GEEDIPALLY; TURNER; PATIL, 2011b; LUNA et al., 1984; OECD, 2015; 

RAHMAN et al., 2021). Moreover, the effect on motorcyclists is greater than on other vehicles 

due to the complexity of riding (CREASER et al., 2009; OECD, 2015). Drink-driving is 

associated with risky behavior such as speeding, and not wearing a helmet (ALNAWMASI; 

MANNERING, 2019; OECD, 2015; PEEK-ASA; KRAUS, 1996; SODERSTROM et al., 

1993).  

Studies demonstrate that alcohol was present in 29% to 75% of motorcycle fatal 

crashes (ALNAWMASI; MANNERING, 2019; DRUMMER et al., 2004; HOLUBOWYCZ; 
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KLOEDEN; MCLEAN, 1994; OECD, 2015). Rahman et al. (2021) studied factors associated 

with motorcycle severity in Dhaka and found that alcohol use is associated with an increase of 

two times the odds of a fatal crash. Another study presents evidence linking the absence of 

motorcycle helmets in fatal motorcycle crashes to the use of alcohol, marijuana, and other drugs 

(ROSSHEIM et al., 2014). 

Crashes involving young men, crashes at nighttime, at weekends, and high speeds 

are associated with alcohol consumption (GEEDIPALLY; TURNER; PATIL, 2011a; 

HOLUBOWYCZ; KLOEDEN; MCLEAN, 1994; OECD, 2015; TOPOLŠEK; DRAGAN, 

2018). Furthermore, motorcyclists who are aware of the danger of alcohol are more likely to 

avoid speeding violations (TOPOLŠEK; DRAGAN, 2018). 

The consumption of drugs by motorcyclists is another factor that should not be 

ignored. Motorcyclists are affected in a stronger way than other vehicles, and the consumption 

is also higher. Moreover, there are associations between the drugs in crashes with other factors, 

such as age (young), gender (men), time of day (nighttime), and day of the week (weekends) 

(EUSTACE; INDUPURU; HOVEY, 2011; OECD, 2015). 

Younger riders often engage in more hazardous behaviors such as speeding and 

alcohol consumption (ALNAWMASI; MANNERING, 2019; OECD, 2015; PERVEZ; LEE; 

HUANG, 2021). In general, young motorcyclists have a higher crash risk because of their lack 

of experience and a propensity to adopt risky behaviors (CHESHAM; RUTTER; QUINE, 1993; 

JONES; GURUPACKIAM; WALSH, 2013; OECD, 2015; PERVEZ; LEE; HUANG, 2021).  

On the other hand, the increased vulnerability of older riders, often stemming from 

physical fragility, results in a 22% increase in the likelihood of severe crashes (CUNTO; 

FERREIRA, 2017; GEEDIPALLY; TURNER; PATIL, 2011a; IJAZ et al., 2021; OECD, 

2015). Therefore, the association between age and severity is not linear, varying across age 

ranges (ALNAWMASI; MANNERING, 2019). 

Another factor associated with age is experience. Experienced riders tend to have 

few crash risks. With more distance traveled, the motorcyclist has a lower risk per kilometer 

(MULLIN, 2000; OECD, 2015). Professional and experienced riders have a better hazard 

perception than novice and young riders (BELLET; BANET, 2012; OECD, 2015; WALI; 

KHATTAK; AHMAD, 2019). Nevertheless, more experienced motorcyclists do not fully imply 

that are safer because they could have greater self-confidence (TOPOLŠEK; DRAGAN, 2018). 

Furthermore, there is an increase in crash risk related to riders who do not hold a valid license 

(ISLAM, 2022; LARDELLI-CLARET et al., 2005; LIN et al., 2003; MAGAZZÙ; COMELLI; 

MARINONI, 2006; OECD, 2015; SMC, 2014). 



25 

 

 

In general, male riders are more likely to be involved in fatal crashes as compared 

to female riders. This has been attributed to the higher propensity observed for male riders to 

engage in risky behavior, such as speeding, racing, wheel spin, and “wheelies” while riding a 

motorcycle (ABRARI VAJARI et al., 2020; JONES; GURUPACKIAM; WALSH, 2013; 

PRIYANTHA WEDAGAMA; WISHART, 2019; SALUM et al., 2019; SE et al., 2021; 

THEOFILATOS; YANNIS, 2015).  

The use of protective equipment is the best way to prevent serious injury. The use 

of a quality helmet protects against head injuries significantly, reducing about 42% to 69% of 

fatal crashes (ELVIK; VAA, 2009; LIN; HWANG; KUO, 2001; OECD, 2015; SALUM et al., 

2019). Rahman et al. (2021) and Salum et al. (2019) found that helmet use reduces 0.5 to 0.6 

times the odds of a fatal crash. Other protective clothes are gloves, boots, jackets, airbags 

jackets, and pants. Motorcyclists who were wearing jackets, pants, or gloves were 20% to 60% 

less likely to be hospitalized (DE ROME et al., 2011; OECD, 2015). Other factors are 

fluorescent or bright clothing to improve visibility (OECD, 2015; WALI; KHATTAK; 

AHMAD, 2019). 

 

2.2.1.3 Safe Vehicles factors 

 

Mechanical deficiencies in motorcycles can increase the chances of severe crashes, 

with tire and brake issues manifesting in 12% of cases (RECHNITZER; HAWORTH; 

KOWADLO, 2000). Though safer motorcycle selection is a common practice among cautious 

riders, it is vital to acknowledge that motorcycles cannot alone confer complete protection 

during collisions (OECD, 2015).  

Despite motorcycle defects potentially leading to an increased likelihood of crashes, 

Rahman et al. (2021) found that crashes involving motorcycles without defects are three times 

more likely to be fatal (RAHMAN et al., 2021). On the other hand, another study found that 

the age of the vehicle is not associated with severity (GEEDIPALLY; TURNER; PATIL, 

2011b). 

The characteristics of the motorcycle can affect control and encourage risky 

behaviors. Larger engine sizes can cause likely more fatal and severe crashes (PAI, 2009; 

WASEEM; AHMED; SAEED, 2019). Nevertheless, other studies found no relation between 

severity and engine size (MÖLLER et al., 2020; NGUYEN-PHUOC et al., 2019). The type 

(sport, tourism, trail, etc.) can lead to a risk of crashes. Moreover, sport bikers are associated 
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with non-incapacitating injuries (ALNAWMASI; MANNERING, 2019; SAVOLAINEN et al., 

2011). The characteristics of the vehicle are related to the other motorcyclists' factors, such as 

their behavior (BJØRNSKAU; NÆVESTAD; AKHTAR, 2012; OECD, 2015; TEOH; 

CAMPBELL, 2010).  

Advanced Braking Systems (ABS) in motorcycles is a technology that improves 

the stability when braking for motorcyclists. ABS makes a positive contribution to safety, 

reducing possibly the risk of a crash or the severity. Studies show that this system could avoid 

about 25% of fatal crashes (OECD, 2015; RIZZI; STRANDROTH; TINGVALL, 2009; SMC, 

2014; TEOH, 2011). Other technologies are not available in third countries, such as motorcycle 

stability control, speed alert, curve and frontal collision warning, tire pressure monitoring, and 

e-Call (OECD, 2015). In general, newer and more expensive motorcycles have more safety-

enhancing technologies. 

 

2.2.1.4 Safe Roads factors 

 

Road factors are responsible for about 8% of crashes involving motorcyclists 

(OECD, 2015). Approximately 30% of crashes involving motorcyclists occur in or after a curve. 

Curves poorly dimensioned, with small radii, are more prone to crash risk and more severity 

(ACEM, 2009; EUSTACE; INDUPURU; HOVEY, 2011; GEEDIPALLY; TURNER; PATIL, 

2011a; RIFAAT; TAY; DE BARROS, 2012; SAVOLAINEN; MANNERING, 2007). Jones, 

Gurupackiam, and Walsh (2013) and Salum et al. (2019) found a twofold increase in fatality 

risk on curves as compared to straight-road segments because curves are associated with run-

off-road crashes. However, Rahman et al. (2021) contrarily reported an increase of 4 times in 

the chances of fatality crashes for straight road segments allegedly due to more opportunities 

for speeding as well as less riding focus in long straight stretches. 

About 1/3 of fatal motorcyclist crashes happen at junctions. The severity is higher 

in intersections for motorcyclists than for other road users (HÉRAN, 2017). Objects near 

intersections could reduce significantly visibility, making it more difficult to notice road users 

(OECD, 2015).  

Other studies show that intersections could decrease the probability of fatal crashes 

(GEEDIPALLY; TURNER; PATIL, 2011a; JONES; GURUPACKIAM; WALSH, 2013; 

SALUM et al., 2019; SAVOLAINEN; MANNERING, 2007). Rahman et al. (2021) and Li et 

al. (2021) found that intersections reduce 0.4 times the probability of fatal crashes than non-
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intersections. The authors argued that in intersections motorcyclists are more cautious and take 

lower speeds (LI et al., 2021; RAHMAN et al., 2021; ZAFRI et al., 2022).  

Other characteristics, such as lane width and number of lanes, are associated with 

injuries, varying their effect could be positive or negative depending on the model (FLASK; 

SCHNEIDER; LORD, 2014; ISLAM, 2022; LI et al., 2021; SE et al., 2021). Li et al. (2021) 

found that an increasing number of lanes is associated with a decrease in injury severity in 

single-crash vehicles and an increase in injury in two-vehicle crashes. 

The quality of road surface is another factor that could increase the risk of fatal 

crashes. The irregularities in the road can lead to a loss of stability and grip (ACEM, 2009; 

IHIE, 2010; OECD, 2015). However, studies show that good pavement-surface conditions 

increase the probability of high severity (about 3 times) (ABDUL MANAN et al., 2018; 

ABRARI VAJARI et al., 2020; GEEDIPALLY; TURNER; PATIL, 2011a; XIN et al., 2017). 

The authors argue that a good surface is associated with higher speeds. 

On the roadside, obstacles, such as vegetation and constructions, could increase the 

fatal crash risk because of compromised visibility (ACEM, 2009; XIN et al., 2017). Studies 

show that road barriers, like guard rails, increase the severity of motorcyclists. These contribute 

to 2% to 4% of motorcyclists fatalities (2-BE-SAFE, 2010; OECD, 2015).  

 

2.2.1.5 Environmental factors 

 

Environmental factors affect more the motorcyclist than other users because of the 

cognitive load required to control the motorcycle (ABRARI VAJARI et al., 2020; 

BLACKMAN; HAWORTH, 2013; CUNTO; FERREIRA, 2017; RAHMAN et al., 2021).  

Weekends are associated with an increase of fatality odds by 1.7 times, attributed to reduced 

traffic leading to higher chances for speeding. Furthermore, weekends correlate with increased 

alcohol and drug consumption (ABRARI VAJARI et al., 2020; JONES; GURUPACKIAM; 

WALSH, 2013; OECD, 2015; RAHMAN et al., 2021; SALUM et al., 2019). 

The role of lighting conditions is also discernible. Rahman et al. (2021) found an 

increase in the chances of fatal crashes (OR=5.3) in the morning (dawn) and in segments 

insufficiently illuminated during nighttime (OR=12.3) as compared to daylight. Li et al. (2021) 

also found a decline in critical injuries during daylight. Nighttime periods can be associated 

with factors such as low vehicular flow, speeding, and alcohol consumption. 
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 Water on the road reduces the skid resistance, causing more risky situations for the 

road user. Furthermore, rainy seasons are associated with problems such as fatigue, poor 

visibility, and malfunctioning vehicles (OECD, 2015; RAHMAN et al., 2021; SE et al., 2021). 

Rainy seasons are also associated with twice more probability of fatal crashes than summer 

seasons (RAHMAN et al., 2021). On another hand, other studies showed that clear weather 

increases the probability of fatal crashes (ABRARI VAJARI et al., 2020; JONES; 

GURUPACKIAM; WALSH, 2013; SAVOLAINEN; MANNERING, 2007; WASEEM; 

AHMED; SAEED, 2019). The authors argued that clear weather may lead to high-speed and 

risky behaviors. 

According to a study by Se et al. (2021), rural areas pose a higher risk for 

motorcyclists, with male riders, pillion riders, speeding, improper overtaking, and fatigue being 

significant determinants of severe and fatal injuries. The findings highlight the importance of 

safety education for motorcyclists, particularly in rural areas, to increase awareness of the risks 

of severe injuries. Additionally, increased enforcement efforts, such as reducing the number of 

unlicensed riders and providing more riding training for rural riders, may be effective strategies 

to reduce motorcycle-related injuries (SE et al., 2021). 

 

2.2.1.6 Crash specific factors 

 

Crash-specific factors are associated with another characteristic of the crash 

(RAHMAN et al., 2021), such as the type of collision (e.g., head-on collisions) and vehicles 

that the motorcycle collided with (e.g., heavy vehicles). The nature of collisions can have a 

significant impact on the resulting impact energy and severity. In instances where a motorcycle 

collides with another vehicle, the energy transferred during the collision can be substantial, 

leading to serious injuries or fatalities. When a heavy truck and a lighter motorcycle collide, the 

energy of the impact is greater than if both vehicles had been of similar mass. Additionally, if 

the collision occurs at a high speed, the energy of impact will be even greater. This can result 

in significant damage to both vehicles and potentially lead to severe or even fatal injuries 

(PERVEZ; LEE; HUANG, 2021; SE et al., 2021). 

Collisions involving heavy vehicles lead to a 34% rise in incapacitating injuries and 

a 14% elevation in fatality likelihood (CHUNG; SONG; YOON, 2014; PERVEZ; LEE; 

HUANG, 2021; SE et al., 2021). This result is also supported by Jones et al. (2013) who found 

a 5-fold fatality increase with heavy vehicles. Given that the vehicular masses are directly 
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proportional to the kinetic energy to be dissipated during a given crash, this variable is crucial 

to be considered in crash severity models. It is also important to highlight that for crashes 

involving at least two vehicles, vulnerable road users such as motorcyclists, might have higher 

chances of sustaining more severe injuries when large vehicles are involved due to vehicular 

height and width, which can significantly influence the first point of impact on the rider. 

More than one vehicle involved in the crash increases the probability of fatal injury 

(SE et al., 2021). Multi-vehicle crashes are almost 1.5 times and 2.0 times more likely to be 

fatal compared with minor and serious injuries respectively (ABRARI VAJARI et al., 2020).  

The angle of collision is another important factor that can greatly impact the 

severity of a collision. Head-on collisions will typically result in a more severe outcome 

compared to an angled collision (SALUM et al., 2019). Salum et al. (2019) showed that head-

on crashes increased 1.1, 2.0, and 2.4 times the chances of a fatal crash relative to severe 

injuries, minor injuries, and no injuries respectively (SALUM et al., 2019).  

 

2.2.2 Summary 

 

Figure 7 shows a summary of the main factors affecting the severity of motorcycle 

crashes. The previous research findings revealed a pronounced awareness of the intricate 

interrelationships among the elements contributing to the severity of road crashes. Moreover, a 

multitude of factors exhibited diverse effects, occasionally even contradictory, on the realm of 

road safety investigations. 

Nevertheless, the results obtained from these investigations may not consistently 

exhibit precision. This inconsistency can be attributed to the lack of a Causal Inference 

Approach. This specific approach holds significance due to its ability to mitigate the influence 

of confounding variables or unaccounted factors that could potentially distort the outcomes. A 

thorough understanding of these underlying principles, combined with the integration of causal 

inference methodologies in road safety studies, plays a pivotal role in bolstering the credibility 

and dependability of the acquired results. 
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Figure 7 – Factors that affect the severity of motorcycle crashes 

 

Source: The author. 

 

2.3 The paradigm of Causal Inference from the perspective of Road Safety 

 

Identifying the causes of crashes is crucial for developing action plans to reduce 

them (CUMMINGS, 2006; DUFOURNET et al., 2016). Randomized Controlled Trials (RCTs) 

are the traditional method for determining causal effects. Nevertheless, RCTs are rarely used in 

road safety, which typically relies on observational data (DAVIS, 2021). The traditional 

methods for modeling the severity or frequency of crashes can result in biased outcomes due to 

factors such as endogeneity and a data-driven approach1 (HAUER, 2010). To overcome these 

challenges, new approaches have emerged. 

Endogeneity refers to a situation in which an explanatory variable is correlated with 

the error term in a statistical model. This can happen due to various reasons, such as omitted 

variable bias, simultaneous causality (X causes Y but Y also causes X), or measurement error, 

as described by Wooldridge. However, sometimes endogeneity is used specifically to refer to 

simultaneous causality and measurement error is considered separately, particularly if it is 

assumed to be random, such as when individuals are equally likely to underestimate or 

overestimate their health status (GUNASEKARA; CARTER; BLAKELY, 2008). 

 
1A data-driven approach refers to a method of problem solving where decisions and insights are based primarily 

on the analysis of data and information. The main idea is to make decisions and predictions based on patterns and 

relationships found in the data, rather than relying solely on intuition or prior knowledge. 
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There are two main theories of Causal Inference, Rubin (1974) and Pearl (2009). 

Rubin's theory (1974), also known as the potential outcomes framework (PO), is based on the 

concept of counterfactuals. It defines a causal effect as the difference between what would have 

happened if an intervention had occurred, and what happened. Rubin's theory uses a model-

based approach and relies on the assumption of stable unit treatment value (SUTVA) and the 

ignorability of the treatment assignment mechanism. 

Pearl's theory (2009) is based on the concept of causal diagrams (also called 

Directed Acyclic Graphs or DAGs). It uses a graphical representation of variables and their 

relationships to identify and control for confounding factors, and to estimate causal effects. 

Pearl's theory (2009) also emphasizes the importance of understanding the underlying 

mechanisms that generate the data, and how these mechanisms affect the estimation of causal 

effects. 

In summary, Pearl's theory focuses on understanding the underlying causal 

mechanisms and uses the graphical representation (i.e., DAGs) to identify and control 

confounding, while Rubin's theory focuses on counterfactuals and uses a model-based approach 

to estimate causal effects. Both theories have their own set of assumptions and limitations and 

can be complementary in certain situations. 

For pedagogical purposes, this dissertation will initially elucidate Pearl's theory, 

which offers a more illustrative understanding of the Causal Inference approach. To gain a 

better understanding of Pearl's theory, the next section will provide examples of a confounder 

(with Simpson's Paradox), and the theory of DAGs. These concepts are essential to 

comprehending Pearl's causal inference framework and will help illustrate how confounding 

variables can impact study results, how seemingly contradictory conclusions can arise from the 

same data, and how DAGs can be used to represent causal relationships between variables.  

 

2.3.1 Pearl's theory and Directed Acyclic Graphs (DAGs) 

 

To exemplify Simpson’s Paradox (Simpson, 1951) look at this fictional example 

(Table 2). This example is based on the original Simpson study (1951), using the same numeric 

values. Nevertheless, this example was modified to represent a Road Safety study. It consists 

of roads with similar characteristics, differentiating from treatment (i.e. speed bump) and type 

(i.e. intersections and road segments). The number of fatal crashes was counted on sites and 

separated by type.  
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Table 2 – Simpson’s Paradox 

Group Treatment No treatment 

Intersections 81 out of 87 non-fatal (93%) 234 out of 270 non-fatal (87%) 

Road segments 192 out of 263 non-fatal (73%) 55 out of 80 non-fatal (69%) 

Total 273 out of 350 non-fatal (78%) 289 out of 350 non-fatal (83%)  
Source: Adapted from Pearl (2009). 

 

Intersections with treatment have more non-fatal crashes (93%) than no treatment 

(87%). In the same way, road segments have more chances to be safe as well with treatment 

(73% vs. 69%). Nevertheless, using the total (union of the groups) the chance to be safe is less 

with the treatment (78%) than without (83%). Therefore, if the type of entity is known, the 

treatment is effective (reduces fatalities). Nevertheless, if the type is not known, the treatment 

is ineffective. This illogical affirmation is called Sympson’s Paradox.  

Sympson’s Paradox occurs because of the causal mechanism. The road segments 

are more propensity to receive the treatment and the treatment is less effective in this group. 

Because of this, there is a “confounding” when the groups are joined.  

It is possible to calculate the total odds ratio2 of Table 2 using this equation: Odds 

ratio = (289/273) / (61/77) = 1.34. In other words, the sites with treatment have 1.34 more 

chances to have a fatal crash. This result is skewed because of the causal mechanism that causes 

endogeneity in the relationship between treatment and outcome. Therefore, it is necessary to 

control the confounder factor: “Type”. One way to control a confounder is to put it in a model, 

for example, a logit regression3. The result of this model, with treatment and type, is an odds 

ratio of 0.7 for the treatment (Table 3). This means that the treatment is efficient when the Type 

is controlled/made constant/adjusting. Therefore, this result is without bias and represents the 

causal effect in this example. 

 

Table 3 – ODDs and logit models (Y - fatal (1) and non-fatal (0))  

Variables Logit Model 01 - OR Logit Model 02 - OR 

Intercept 0.21 0.14 

Type (Road segments (1) and Intersections (0)) x 3.53 

Treatment (1), no treatment (0) 1.34 0.70 

x - variable not included in the model; OR - odds ratio 

Source: the author. 
  

 
2 Odds Ratio (OR) is a statistic that quantifies an association between variables. OR represents the odds that an 

outcome occurs in a group compared to another group.. 
3 In statistical software, use the fatal crashes as the outcome and the type and treatment as explicative variables: 

“P(fatal) = logit(Treatment + Type)”. The exponential coefficient of the treatment is the causal odds ratio. 



33 

 

 

A DAG has several properties to help find causal effects. The four main 

configurations in a DAG are chains, forks, colliders, and effect modification. The following 

sections will provide examples of each configuration using practical examples (with simulated 

data) from road safety. For the sake of clarity and understanding, 100 observations were used 

and the simulation was run 1000 times (Monte Carlo simulation) using linear regressions with 

normally distributed data. The simulations were developed based on the research by Siqueria 

(2020) and Lübke (2020). 

 

2.3.1.1 Chains and Mediation: direct and indirect effects 

 

To explain the chain structure (denoted as A →…→ B), a hypothetical example of 

crash severity was made, relating age, helmet use, and severity variables (Figure 8). Figure 8 

also shows a series of functions with hypothetical terms that describe these relationships. These 

functions and the DAG are part of Structural Causal Modeling (SCM).  

SCM is a framework for understanding and inferring causality from observational 

data. It uses mathematical models, known as structural equations, to represent the relationships 

between variables in a system. These equations define the causal structure of the system and 

specify how variables are affected by one another. SCM allows for the estimation of causal 

effects by controlling for confounding factors and making assumptions about the underlying 

mechanisms of the system (PEARL; GLYMOUR; JEWELL, 2016). 

Structural equations are functions of any type with non-parametric variables and 

random terms to determine statistically the value of variables. Random terms refer to variables 

or factors that are included in a statistical model but are not part of the primary causal 

relationship being studied. They are often included to account for sources of variation or noise 

in the data and are typically treated as random variables with a probability distribution (PEARL; 

GLYMOUR; JEWELL, 2016).  

The properties of this chain are that Helmet use and Severity are dependent. If the 

value of the Helmet use is known (e.g. 1), then it is possible to infer the value of Severity (close 

to -5). In the same way, Age and Helmet use are dependent. Therefore, Age and Severity are 

likely dependent (PEARL; GLYMOUR; JEWELL, 2016). 
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Figure 8 – Chains 

 

Structural Causal Modeling (1) 

Severity = -5 * Helmet use + N(0,1)* 

Helmet use = 2 * Age + N(0,1)* 

Age = N(5,2)* 

*N(m, sd) - normal distribution with mean equal to m and standard deviation equal to sd 

Source: the author. 

 

When the Helmet use is controlled, the Severity and Age are conditionally 

independent. There are three ways to control a variable, i.e., keep the variable constant. First, 

placing it in a model, such as regressions, in other words, systematizing the variable. Second, 

by statistically restricting its value, for example, limiting the Age only to a range (e.g., 50-64). 

Finally, restricting the value throughout a study, for example, the study was designed only to 

obtain data on older motorcyclists (SHIPLEY, 2000). 

It is possible to demonstrate how a chain works with simulation. When Helmet use 

is in the model (Model 02 - Table 4), the value of the Age is insignificant because the value of 

the Helmet use is constant. In other words, the chains are like an energy system, where the 

edges (links between nodes [variables]) are the wires and the energy is the causal effect. When 

the Helmet has been controlled, the connection between Age and Severity is closed, like a 

switch in the off condition (LÜBKE et al., 2020; PEARL; GLYMOUR; JEWELL, 2016; 

PEARL; MACKENZIE, 2018; SHIPLEY, 2000). 

 

Table 4 – Chains and Monte Carlo Simulation (Y - severity) 

Variables Linear Model 01 Linear Model 02 

Intercept 0.10* 0.04 

Age -10.02 -0.01* 

Helmet use x -5.00 

x - variable not included in the model; *not significant 

Source: the author.   
 

The conditional independence is also called the d-separation statement. D-

separation gives sufficient conditions for two variables (nodes) in a DAG to be independent 

upon conditioning on other variables (nodes). For example, Age is independent of Severity 

given Helmet, in mathematical language: Age ⊥ Severity | Helmet. Furthermore, d-separation 
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is the translation between the causal language and the statistic language (PEARL; GLYMOUR; 

JEWELL, 2016; SHIPLEY, 2000).  

In Figure 9 and SCM 2, Age indirectly affects the severity in the chain Age → 

Helmet use → Severity, and directly in Age → Severity. The total effect of Age in Severity is 

the sum of the two paths (ROBINS M. JAMES, 2020). The analysis of these paths is also known 

as mediation analysis (PEARL, 2019). The direct and indirect paths are also called front-door 

paths (PEARL; GLYMOUR; JEWELL, 2016; SHIPLEY, 2000). 

 

Figure 9 – Direct and indirect effects (mediation 

analysis) 

 

Structural Causal Modeling (2) 

Severity = -5 * Helmet use + 3 * Age + N(0,1) 

Helmet use = 2 * Age + N(0,1) 

Age = N(5,2) 

Source: the author. 

 

Using linear regression, it is possible to obtain the direct and total effect. When 

Helmet use is not in the model (Model 1 - Table 5), the β of the Age is the total effect. Therefore, 

in SCM 2 (Figure 9), the Severity = -5 * Helmet use + 3 * Age. When substituting the value of 

Helmet use = 2 * Age, the value of Severity = -10 * Age + 3 * Age, giving -7 * Age. When 

Helmet use is in the model (Model 2 - Table 5) the value is the direct effect of Age in Severity 

(= 3). The indirect effect is the total effect minus the direct effect (-7 - 3 = -10).  

The value of the direct effect is positive, and the total effect is negative. Therefore, 

it is important to know what is measured in each model. Generally, in road safety studies the 

modelers used all variables available in the databases in a single model (SONG; KOU; WANG, 

2021). In these cases, the βs or odds ratios obtained have the meaning of partial effect or 

association when controlled for the other variables (WOOLDRIDGE, 2013), however, 

researchers in most cases interpreted it as a total effect. This misinterpretation is called “the 

table 2 fallacy” (WESTREICH; GREENLAND, 2013). 
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Table 5 – Direct and indirect effects (Y - severity) 

Variables Linear Model 01 Linear Model 02 

Intercept 0.09* 0.00* 

Age -6.98 3.00 

Helmet x -5.00 

x - variable not included in the model; *not significant 

Source: The author. 

 

2.3.1.2 Forks: confounder factors and backdoor criterion 

 

A fork (A ← … ← C → … → B) transmits an association between A and B, but it 

is not causal (ROHRER, 2018). To demonstrate this structure a hypothetical example was made, 

where age influences both helmet use and Speed, denoted as Helmet use ← Age → Speed 

(Figure 10 and SCM 3). When the value of the Age increases both Speed and Helmet use 

increase too, creating a spurious correlation (PEARL; GLYMOUR; JEWELL, 2016). 

According to this DAG, Age and Helmet use and Age and Speed are dependent. 

Furthermore, Helmet use and Speed are likely dependent, because of the spurious correlation. 

Finally, Helmet use and Speed are independent, conditioning on Age (PEARL; GLYMOUR; 

JEWELL, 2016).  

 

Figure 10 – Forks 

 

Structural Causal Modeling (3) 

Speed = 5*Age + N(0,1) 

Helmet use = 2 * Age + N(0,1) 

Age = N(5,2) 

Source: The author. 

 

When Age is constant (e.g. 20), both equations (Speed and Helmet use) are equal 

to N(0,1) plus the constant (20). Therefore, the Speed and Helmet use are independent because 

the random terms are independent (assumption).  
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When Age is not in the model (Model 01 - Table 6), there is a spurious association 

(2.00) between Helmet use and Speed (this value is not in SCM 3). Nevertheless, when Age is 

in the model (Model 02 - Table 6), Helmet use and Speed are independent. The Age in this 

DAG is called a confounder factor because it confounds the relationship between Helmet use 

and Speed (LÜBKE et al., 2020; PEARL; GLYMOUR; JEWELL, 2016). 

 

Table 6 – Fork (Y - Speed) 

Variables Linear Model 01 Linear Model 02 

Intercept 5.04 0.02* 

Age x 5.00 

Helmet use 2.00 0.00* 

x - variable not included in the model; *not significant 

Source: The author. 
  

 

A path of variable (F) that is a causal ancestor of both other two variables (X and 

Y) is called the backdoor path (X ←...← F →...→ Y). The foundation of causal analysis is to 

block all backdoor paths (PEARL; GLYMOUR; JEWELL, 2016; SHIPLEY, 2000). This is 

also related to the terms confounding, do-calculus, endogeneity, omitted variable bias, 

ignorability assumption, and exchangeability. For details about these terms consult: 

(GUNASEKARA; CARTER; BLAKELY, 2008; PEARL, 2009; ROBINS M. JAMES, 2020; 

RUBIN, 1974). 

When all backdoors have been blocked, the relationship between the treatment and 

the outcome could be related to random assignment. Therefore, when all spurious paths are 

blocked, all directed paths are left unperturbed, and spurious paths are not created, then the 

causal effect can be calculated with a statistical test (PEARL; GLYMOUR; JEWELL, 2016; 

ROBINS M. JAMES, 2020). 

 

2.3.1.3 Colliders and selection bias 

 

Colliders or inverted forks have the structure A → … → C ← … ← B, this does 

not transmit association, but it can transmit if controlled (ROHRER, 2018). To demonstrate this 

structure a hypothetical example was made, where helmet use and Speed influence the severity, 

denoted as Helmet use → Severity ← Speed (Figure 11 and SCM 4). When the value of 

Severity is constant (e.g. 15), the values of Helmet use and Speed will be associated. For 
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example, if Helmet use is 1, Speed must be 4 for the final result to be 15. Therefore, is possible 

to infer the value of Speed (PEARL; GLYMOUR; JEWELL, 2016). 

If for some reason, the severity is controlled, for example, in a study that only 

collected fatal and severe injury crashes (selection bias). Therefore, the correlation between 

Helmet use and Speed will be not zero. The control of a collider variable creates a spurious 

association (ROBINS M. JAMES, 2020). 

 

Figure 11 – Collider 

 

Structural Causal Modeling (4) 

Speed = N(7,1) 

Helmet use = N(1,1) 

Severity = -5 * Helmet use + 5 * Speed + N(0,1) 

Source: The author. 

 

In SCM 4, Helmet use is independent of Speed. Hemet use and Severity are 

dependent because of the direct link. Speed and Severity are dependent, in the same way. 

Nevertheless, Helmet use and Speed are dependent when Severity is conditioned/controlled 

(PEARL; GLYMOUR; JEWELL, 2016). 

When Severity is not in the model (Model 1 - Table 7), there is not a spurious 

relation (0) between Helmet use and Speed. Nevertheless, when Severity is in the model (Model 

2 - Table 7), Helmet use and Speed are dependent (0.96). The Severity of this DAG is called a 

collider factor and causes spurious association when controlled (LÜBKE et al., 2020; PEARL; 

GLYMOUR; JEWELL, 2016). 

 

Table 7 – Collider (Y - Speed) 

Variables Linear Model 01 Linear Model 02 

Intercept 7.00 0.27 

Helmet use 0.00* 0.96 

Severity x 0.19 

x - variable not included in the model; *not significant 

Source: The author.  
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2.3.1.4 Effect modification 

 

When the effect of Helmet use in Severity varies between values of another variable 

(e.g., gender), it is called the effect modification or moderation (PEARL; GLYMOUR; 

JEWELL, 2016). A hypothetical example: helmets are more efficient for female motorcyclists. 

Gender does not affect (cause) either Severity or Helmet use, changing only the relationship 

between them (i.e., there is heterogeneity in the effect across levels of gender). It is possible to 

represent the modification effect using an arrow pointing towards the arrow between the 

variables (Figure 12) (LAUBACH et al., 2021). 

 

Figure 12 – Effect modification 

 

Structural Causal Modeling (5) 

Gender = Binom(1,0.5)* 

Helmet use = N(1,1) 

Severity = -2 * Helmet use - 1.5 * Helmet use * Gender + N(0,1) 

*Binom(size, prob) - binomial distribution with the number of trials equal to size 

and probability of success on each trial equal to prob. In other words, there are 

two levels (0 - men, 1 - women), and the probability is 50% for each. 

Source: The author. 

 

When the interaction between Helmet use and Gender is not in the model (Model 1 

- Table 8), there is not a spurious relation (-2.75 is the total effect) between Helmet use and 

Severity. Nevertheless, when Helmet use * Gender is in the model (Model 2 - Table 8), the 

coefficient of Helmet use (-2.0) is the effect in the men group (i.e., gender equals 0). 

Furthermore, the coefficient of interaction (-1.5) plus Helmet use (-2.0) is the effect (-3.5) in 

the women group (i.e., gender equals 1). Furthermore, all these values are causal effects. 

 

 

 

 



40 

 

 

Table 8 – Effect modification 

 

Variables Linear Model 01 Linear Model 02 

Intercept 0.00* 0.00* 

Helmet use -2.75 -2.00 

Helmet use * Gender x -1.50 
x - variable not included in the model; *not significant 

Source: The author. 

 

An effect modifier is different from a confounder. Confounders skew the 

relationship between the effect and the cause, while effect modifiers show different effects on 

the cause. Nevertheless, a variable can be both a confounder and an effect modifier if it affects 

the effect, the cause, and the relationship (LAUBACH et al., 2021; PEARL; GLYMOUR; 

JEWELL, 2016). 

 

2.3.1.5 DAGs in summary 

 

There are four conditions to have an association between two variables (X and Y). 

First, X causes Y, the directed link causes dependency (front-door paths). Second, similarly, Y 

causes X. Third, there is another variable (Z) that causes Y and X, creating a spurious 

correlation (backdoor paths). Finally, there is another variable (C) that was controlled (the value 

is constant), and C is caused by X and Y (i.e., C is a collider), then creating a spurious 

correlation (selection bias). The first and second conditions are causal, and the third and fourth 

are only associations (LAUBACH et al., 2021; PEARL; GLYMOUR; JEWELL, 2016).  

 

2.3.1.6 Models based on DAGs 

 

The estimation of coefficients of relationships and evaluating DAGs are crucial 

components of the Causal Inference of Pearl. These tasks can be achieved using various 

modeling techniques. The purpose of using a DAG in causal inference is to visually represent 

the relationships between the exposure and the outcome and to identify any confounding 

variables that may need to be adjusted in the analysis. The advantage of using DAGs is that 

they clearly show the different types of relationships, including direct and indirect effects, back-

door paths, and colliders.  

The Structural Causal Model (SCM) uses the graph theory, representing the causal 

hypotheses in a DAG where relationships of observed and unobserved variables can be 
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depicted. SCMs are a set of endogenous (V) and exogenous (U) variables4 linked by functions 

(F) (V = F(U)), and this causal mechanism is represented by a DAG (KLINE, 2015; PEARL; 

GLYMOUR; JEWELL, 2016). 

When the set of functions (F) is linear in its parameters, SCM could be associated 

with a Path Analysis (PA). PA is a method used to measure associations or causality of a DAG, 

using a unique estimation of F. In other words, the set of linear functions (F) is estimated at the 

same time. The goal of this estimation is to minimize the difference between the observed 

covariances (data) and the predicted by the causal model (estimated) (SHIPLEY, 2000). 

The estimation is usually realized using the maximum likelihood (ML). At this 

point, the PA differs from a simple multivariate regression, which is estimated using the least 

square. Furthermore, ML has some assumptions: endogenous variables are a numeric 

continuum, relationships are linear in the parameters, and the data follow multivariate normal 

(HOYLE, 2012; SHIPLEY, 2000).  

When the endogenous variables are categorical or ordinal, the use of ML as an 

estimator is not indicated. In this case, there are other estimators based on least squares. The 

most used are the diagonally weighted least squares (DWLS) and the weighted least squares 

with mean- and variance adjusted (WLSMV) (HOYLE, 2012). In these cases, the link between 

ordered/binary variables and others is the logit or probit functions.  

A DAG has a set of conditional probabilistic independencies (d-sep) that could be 

tested using the PA model or other techniques, such as conditional correlations (SHIPLEY, 

2000). The estimation of PA gives the relation between observed and estimated correlation 

matrices. These matrices will be different if the DAG is not consistent with observed data. 

Therefore, there are two principal metrics to evaluate a given model. The first is the test of 

hypotheses, in which the null hypothesis is that the two matrices are equal. The second is the 

Root Mean Square Error (RMSEA) which shows the difference between the two matrices. 

Acceptable values are p-value > 0.05 and RMSEA < 0.05 (SCHUMACKER; LOMAX, 2010). 

Nevertheless, the p-value is not recommended when there is a large sample size (400>) because 

this metric is sensitive to sample size (HAIR et al., 2009; SHIPLEY, 2000). Furthermore, it is 

possible to see the individual values of the residuals. Standardized residuals are like Z-scores, 

then values greater than 2.58 (99% confidence) indicate that a particular relationship is not well 

computed by the model (SCHUMACKER; LOMAX, 2010). 

 
4 Endogenous variables are those that are influenced by other variables in a system or model. On the other hand, 

exogenous variables are variables that are not influenced by other variables in the system, but rather affect the 

endogenous variables. 
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When there is an unobserved variable problem, latent variables can be used. A latent 

variable refers to an underlying factor that affects the relationship among observed variables 

but is not directly observed or measured. For example, a study may observe that helmet use is 

related to reduced fatalities in motorcycle crashes, but there may be other factors such as driver 

experience or road conditions that are not directly measured but could be influencing the 

relationship. In this case, driver experience and road conditions can be considered latent 

variables. To account for these latent variables, researchers may use statistical techniques such 

as Structural Equation Modeling (SEM), which uses other available variables to estimate latent 

variables (BROWN, 2015; HOYLE, 2012; NEWSOM, 2015). 

SEM is a collection of statistical techniques formed by two principal parts. First is 

the confirmatory factor analysis (CFA). CFA consists of measurement models, which are the 

relationships between the observed variables (indicators) and latent variables (factors). Second 

is the structural model, i.e., the relationship between the other variables that are not indicators 

(latent and other observed variables) (BROWN, 2015; HOYLE, 2012; NEWSOM, 2015). 

Figure 13 portrays the errors in measuring the variables (δ and ε). Latent variables 

are commonly denoted by circles or ellipses (ξ and η), while λ and γ represent the coefficients 

of the models. The error in estimating the relationship between the latent variables of the 

structural model is shown by ζ. Observed variables are usually represented by rectangles or 

squares. A statistical dependence is typically indicated by a directional arrow or path, where 

the variable at the tail of the arrow causes the variable at the point. A correlation between 

variables is denoted by a double-headed arrow. In the path structure shown in Figure 13, the 

models assume the structures presented in Equation 1 (AL-MAHAMEED et al., 2019; 

TORRES; XAVIER; CUNTO, 2020). 

 

                                     Figure 13 – SEM 

 

Source: Leen, Chungm and Son (2008). 



43 

 

 

 

              [𝑦
𝑥

] =  [A𝑦

0
   0

A𝑥
]   [η

ξ
] + [ε

δ
]                                  (1) 

 

The equation involves two column vectors (y and x) representing observed 

variables. The variables may have measurement errors, which are represented by ε and δ. 

Additionally, there are two coefficient matrices, Ay and Ax, which correspond to the latent 

indicators of observed variables. Equation 1 expresses the vector η that encompasses all the 

variables in the structural model (AL-MAHAMEED et al., 2019; TORRES; XAVIER; 

CUNTO, 2020). 

The vectors β and γ represent the estimated regression coefficients for the 

dependent and independent variables, respectively, while ζ is a vector of regression errors, and 

ξ is a vector of collected independent variables. Structural equation models are based on the 

assumption that the observed variables' variance-covariance matrix is a function of the model 

parameters. When the model is correctly specified, this variance-covariance matrix is 

equivalent to the population matrix (AL-MAHAMEED et al., 2019; TORRES; XAVIER; 

CUNTO, 2020). 

Studies that evaluated the injuries in motorcycle crashes using only PA analysis are 

rare  (LEE et al., 2017). Road safety studies of motorcyclists that used SEM usually applied 

questionnaires to find relationships among motorcyclists’ risky behavior, perception, and user 

characteristics variables (CHOU et al., 2022; GOH; LEONG; CHEAH, 2020; NADIMI et al., 

2021; ZIAKOPOULOS; NIKOLAOU; YANNIS, 2021). A study used SEM in a database of 

motorcycle crashes (KASHANI et al., 2020), and others used SEM with a focus on the severity 

of motorcyclists (HASANZADEH; ASGHARIJAFARABADI; SADEGHI-BAZARGANI, 

2020; LEE et al., 2017). 

Lee et al. (2017) developed a path analysis using a logit regression link to evaluate 

the effect of helmet use on the severity of motorcycle crashes. The results showed that helmets 

affected fatalities through other variables, such as the prevalence of head injuries, craniotomies, 

and complications. Helmet use reduces the rates of injuries by 34.5%. 

Kashanbi et al. (2020) studied crashes involving motorcyclists using SEM. They 

elaborated a latent variable called “accident size”, elaborated by Lee et al. (LEE et al., 2018). 

The accident size is measured by the number of injured individuals, the number of fatalities, 

and the number of vehicles involved and damaged. The data used is from Iran between 2011 

and 2018, containing 204,299 rural and urban traffic motorcycle crashes. The study showed 
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that the factors of motorcyclists and the road are important in mitigating the crash severity 

(KASHANI et al., 2020). 

Hasanzadeh, Asguarujafarabadi, and Sadeghi-bazargani (2018) used a SEM model 

with an artificial neural network to estimate the severity of motorcycle crashes in Iran. The 

authors found that marital status, education level, riding for fun, engine volume, dark hour 

riding, cell phone answering, and driving license are significant to the prediction 

(HASANZADEH; ASGHARIJAFARABADI; SADEGHI-BAZARGANI, 2020). 

None of the motorcycle studies reviewed utilizing SEM have shown any concern 

for Causal Inference theory. They neglect critical concepts like blocking back doors and remain 

indifferent to collider bias. Similarly, in the realm of road safety studies, these fundamental 

aspects are seldom given due consideration. Issues in crash databases, including missing data, 

balancing, and selection bias, tend to be overlooked in this domain as well. 

 

2.3.2 Rubin’s theory and Propensity Score (PS) approach 

 

Another approach employed for conducting causal inference is Rubin's causal 

model. This model relies on the Propensity Score (PS), a statistical method employed to 

equalize treatment groups in observational studies, particularly when group assignments are not 

random. The idea behind the PS approach is to estimate the probability of a subject receiving a 

certain treatment based on their observed characteristics, such as age, gender, socio-economic 

status, etc. The PS is calculated for each subject and then used to match or attribute weights to 

the subjects in the treatment and control groups so that they have similar distributions of 

observed characteristics. This helps to reduce the influence of confounding variables and 

improves the validity of the causal inferences. The use of PS can help to control for selection 

bias and increase the comparability of treatment and control groups, making it a useful tool for 

estimating the treatment effect in observational studies (SASIDHARAN; DONNELL, 2014). 

The results of models/approaches based on Pearl's and Rubin's theory are likely to 

yield similar outcomes if the model is well-specified, meaning that all confounding variables 

are properly controlled. However, PS models are typically used in situations where treatments 

are involved, such as cases where the effect being studied can be changed by an individual. In 

severity studies, variables like helmet use may be suitable as treatment variables, while others 

such as weather conditions may not be appropriate for the same purpose. Therefore, Pearl's 

approach, which utilizes SEM or other graphical models, can be more appropriate for estimating 

effects in severity studies. 
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Stating that the difference between the two approaches is that PS approaches lack a 

theoretical model is a false statement, as it is possible to use PS based on a DAG to estimate 

causal effects. However, PS models may not be as suitable as SEM, for example, when it comes 

to testing whether the DAG is appropriate for the data. SEM provides more robust tools for 

testing the adequacy of the DAG to the data, allowing for a more comprehensive assessment of 

fit and accuracy. 

 

2.3.3 Causal Inference on crash database issues 

 

Crash databases usually contain several issues that jeopardize causal inference. The 

issues could be selection bias, missing data, unbalanced data, omitted variables, underreporting 

crashes, and spatial/temporal dependency. The causal inference literature refers to the selection 

bias when a collider variable is controlled (ELWERT; WINSHIP, 2014; ROBINS M. JAMES, 

2020; SHIPLEY, 2000). The selection of individuals could occur because of various factors. 

First, the collider variable has its value constrained (e.g., if the severity is a collider, and the 

study uses only fatal crashes). Second, when the treatment is not chosen randomly (known as 

self-selection), which is quite common in before-after road safety studies. Finally, if the 

outcome variable has missing data, then restricting the individuals in the analysis may result in 

bias (LORD; QIN; GEEDIPALLY, 2021; ROBINS M. JAMES, 2020; WOOD, 2016).  

The imbalanced data in road crash databases is a result of the low number of cases 

reported for high-level injury severity, for instance. This imbalance can cause issues with 

modeling as the model will be heavily weighted towards the majority class. To handle this issue, 

there are methods such as oversampling and under-sampling. Oversampling replicates samples 

from minor classes, but this could lead to an overfit model. Under-sampling could eliminate 

most of the records, losing information (LANE; CLARKE; HENDER, 2012; TOPUZ; DELEN, 

2021).  

Omitted variable bias occurs when a relevant explanatory variable is not included 

in the model. This can lead to incorrect estimates of the effects of the included variables and 

bias in the results. For example, if the level of experience of a driver is omitted in a road crash 

model, this can lead to biased estimates of the effects of other factors such as helmet use. This 

is because the relationship between the included variables and the outcome (crash) may be 

confounded by the omitted variable, and therefore the estimates of their effects will not 

accurately reflect the true relationship. To avoid omitted variable bias in road safety studies, it 

is important to consider all relevant variables and include them in the analysis, either through 
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direct measurement or through the use of proxies/latent variables (YANG; WANG; DING, 

2019). 

Underreporting crash bias refers to the phenomenon where some road crashes are 

not recorded or reported in official data sources, leading to an incomplete and inaccurate 

representation of the true number and nature of crashes. This can have serious consequences 

for road safety research and decision-making, as it can lead to incorrect conclusions and 

ineffective interventions. To address this bias, it is important to use multiple data sources and 

to collect data through various methods, such as police reports, hospital records, and surveys, 

to obtain a more comprehensive and accurate understanding of road crashes. Underreporting 

crashes can occur when the crashes involve people who are unaware that road crashes should 

be reported, crashes without injuries, and crashes involving people who are affected by drugs 

or alcohol (LI, 2014). These cases could lead to a selection of individuals in the study, causing 

a selection bias. 

The spatial or temporal autocorrelation could also lead a biased results. Individuals 

who suffered the same crash or were on the same road could be correlated. To account for 

spatial autocorrelation, analysts often use spatial statistical models or apply spatial weighting 

methods to their data. Moran's I test is one method commonly used to assess the presence of 

spatial autocorrelation. The test can help identify clusters of crash occurrences in a given area 

and determine whether the crashes are randomly dispersed or spatially related (LI, 2014). 

Statistical models typically assume that observations are independent. However, 

spatial or temporal dependence can violate this assumption, leading to biased coefficients and 

underestimated standard errors, which in turn can result in an overestimation of the significance 

of traditional tests. Moreover, as Shipley (2016) points out, temporal dependence can reduce 

the amount of information in observed data, thereby giving rise to the concept of effective 

sample size.   
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3 METHOD 

 

The method of this dissertation is based on the studies of Siqueira (2020), Laubach 

et al. (2021), and Pearl (2021). Figure 14 shows the representation of the process for finding 

causal effects using observational data of crashes involving motorcyclists. 

 

Figure 14 – Method 

 

Source: The author. 

 

The approach of this dissertation starts with a theoretical example, where the main 

components of the causal inference theory are presented using simulated data. Secondly, the 

motorcycle crashes database is consolidated. Thirdly, a causal model is formulated based on 

prior knowledge. The structure of the causal model depends on the structure of the data as well. 

Therefore, the second and third steps are dependent. Finally, the testable implications of the 

causal model are evaluated using SEM and observational data.  

 

3.1 Theoretical example with simulated data 

 

Chapter 2 showed Pearl’s causal inference paradigm. To consolidate this 

knowledge in severity road safety studies, a theoretical example was developed using a DAG, 

which was used to understand the configurations (chains, forks, colliders, and modification) 

and their implications. This simplified and hypothetical example illustrates the difference 

between traditional and causal inference modeling in injury severity studies. 

Firstly, the relationships of interest are defined, and only these relationships will be 

analyzed. Secondly, backdoor paths and confounders are defined. These bias the relationship 

of interest. Finally, the SCM is defined, i.e., the functions that define each variable are 

described, then it is possible to simulate the data. The concept of simulations was partially 

inspired by the research conducted by Siqueira (2020) and Lübke (2020). 
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The simstudy package of the R language was used to simulate categorical data with 

logit links, with previously established coefficients and distributions. Each sample has 400 

observations and was simulated 500 times – Monte Carlo Simulation. Subsequently, the 

average coefficients were derived from the 500 simulations. For graphical models, where is not 

possible to obtain an average result, the data were simulated with 200,000 observations 

(400*500), which is equivalent to the previous simulation. 

Logit regressions and Structural Equation Modeling were used to compare 

traditional and causal approaches. These models are likely to have similar results if the model 

is well specified and the causal inference theory is used. 

 

3.2 Database of motorcycle crashes 

 

The motorcycle crash data was obtained from the Brazilian Federal Highway Police 

Department (PRF) from 2017 to 2019. There are databases separated by crashes, victims, and 

causes. The data were organized using the victims’ database, using only riders of motorcycles 

or other Powered-Two-Wheelers (PTW) users. The use of only the riders is because passengers 

are likely to be statistically dependent on riders. Therefore, these dependencies could create 

biased outputs in models because there is an assumption of independence of observations in 

most models.  

Only crashes involving two vehicles were used, since crashes involving only the 

motorcyclist or more than two vehicles may have different characteristics that need to be 

analyzed separately. The data underwent spatial filtering, focusing specifically on the state of 

Ceará. This approach was adopted to avoid potential spatial dependence issues that could arise 

from including all crashes in Brazil. Furthermore, the residuals of the final model were 

subjected to a Moran's I test to evaluate spatial dependence, as explained in the subsequent 

steps. 

The database contains information about the characteristics of crashes, vehicles, 

environments, and users. For example, there is information about the motorcyclists, such as age 

and gender, and the possible causes, filled out by the police, of the crash, e.g., alcohol use and 

speeding. The available variables need to be sufficient to close back doors and evaluate the 

causal hypotheses of interest. If any variable is needed and it is not available in the database, it 

is necessary to use some proxy or latent variable to represent it.  



49 

 

 

An exploratory analysis of the variables was elaborated. The association between 

the variables and the severity of the crash was depicted in a graph showing Pearson’s 

independence chi-square test. This test verifies the association between two categorical 

variables, showing the p-value (H0: there is no association, p > 0.05; H1: there is an association, 

p < 0.05) and the significant residuals. The significant level (usually 95%) was corrected using 

the size of the contingency table (dividing the level by the number of rows and the number of 

columns) because some tables are large and this could lead to misinterpretations 

(MACDONALD; GARDNER, 2000; SHARPE, 2015). 

The chi-square test assumes that the expected values are above five. If this 

assumption is false, Fisher's exact test was used in addition to the chi-square. Because the 

database is large, the p-value tends to be significant. Therefore, it was computed Cramer's V 

statistic which measures the force of the association of categorical variables, varying between 

zero and one. Values above 0.5 are considered a high association and values below 0.1 are 

considered a low association, but these values depend on the degrees of freedom. 

 

3.3 Formulation of the causal model 

 

To ascertain the factors contributing to the severity of motorcycle crashes, it is 

imperative to construct a comprehensive causal model that illustrates the underlying causal 

hypotheses. As highlighted by Siqueira in 2020, this causal model should be built upon a 

conceptual framework that synthesizes all existing knowledge about the phenomenon. Figure 

15 illustrates the systematic approach adopted in this dissertation for the development of this 

causal model. 

 

            Figure 15 – Formulation of the causal model 

 

Source: the author. 
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The initial phase involves the development of a conceptual model rooted in the 

principles of the Safe System approach and using an extensive literature review with a focus on 

showing the relationship between the factors and the severity of motorcycle crashes. The main 

goal of this stage is to identify the most important causal elements that could bias the results, 

such as potential confounders and colliders. Consequently, the conceptual model could aid in 

identifying potential biased paths. 

Due to the complex causal mechanisms of crashes, the second step allows the 

investigator to propose different causal hypotheses. This entails the definition of confounders 

and the determination of direct and indirect effects within the proposed causal model. For 

instance, within the conceptual model, one might explore specific relationships, such as the 

impact of alcohol consumption on crash severity or its influence on speeding behavior. 

Moreover, it is important to note that only relationships that can be adequately represented by 

the available databases are subjected to analysis. 

The third step entails the graphical representation of the causal hypotheses using a 

DAG. The causal model is a composite of the causality hypotheses and backdoor paths of the 

relationships of interest (associations). Variables within the causal model can be either 

observable or unobservable, often referred to as latent variables. These latent variables may be 

used to represent abstract concepts (e.g., safety perception) or variables that are challenging to 

be directly observed (e.g., impact energy in a traffic collision).  

It is crucial to emphasize that the conceptual model plays a pivotal role in 

constructing the DAG, as it encapsulates vital information about the interconnections among 

the variables of interest. This information is integral in distinguishing relationships that 

represent causal hypotheses (structural coefficients) from those intended to close backdoor 

pathways (regression coefficients). 

 

3.4 Evaluate and estimate the causal model 

 

The lavaan package of R was used to estimate the model. Because most variables 

used are categorical, the Weighted Least Squares with mean- and variance adjusted (WLSMV) 

estimator was used (BROWN, 2007). In this case, the link between ordered variables and others 

is the probit function.  

Four metrics were used to evaluate the model. The first is the test of hypotheses, in 

which the null hypothesis is that the observed and estimated correlation matrices are equal. A 
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p-value greater than 0.05 suggests a good fit, as it indicates that the observed data is likely to 

be observed under the hypothesized model. When dealing with large samples, even small 

deviations from the null hypothesis may result in significant p-values. This can lead to the 

potential overinterpretation of the significance of findings (HAIR et al., 2009). 

The second metric is the Root Mean Square Error (RMSEA) which shows the 

difference between data and estimated matrices. A lower RMSEA value indicates a better fit, 

with values below 0.05 or 0.08. The third and fourth metrics, the Comparative Fit Index (CFI) 

and the Tucker-Lewis Index (TLI) were used as additional goodness-of-fit measures. These 

indices assess the relative improvement in model fit by comparing the hypothesized model with 

a baseline model. CFI and TLI values close to 1 indicate a good fit, with values above 0.90 

generally considered acceptable (Hair et al., 2009). 

Standardized coefficients were utilized since they offer high interpretability and 

remain unaffected by scaling, allowing for meaningful comparisons between coefficient values. 

However, even if the causal model is supported by the data, the causal hypotheses are not fully 

confirmed due to the presence of multiple other DAGs that could also fit the same data. 

Nevertheless, the a priori formulated causal model retains its reliability compared to data-driven 

approaches. 

 

3.4.1 Spatial and Temporal dependence 

 

The models underwent a thorough evaluation by analyzing the residuals to detect 

any spatial and temporal dependencies. In the case of SEM with probit links, the residuals of 

endogenous variables were not readily available in R language libraries. Consequently, a 

custom function was developed to calculate the residuals, specifically the deviance residuals. 

For additional details, please refer to the GitHub repository: 

https://github.com/altanizio/deviance_resid_probit_ov_binary. 

Spatial dependence was assessed using Moran's I test, which involved testing the 

residuals of the final model. The concept of neighbors was defined as all points within a 1 km 

radius, considering the diverse locations of the crashes in the study. Various configurations 

were tested, but the 1 km radius was chosen as it provided the most favorable results by focusing 

on crashes that occurred on nearby roads. Additionally, alternative configurations produced 

similar outcomes, further supporting the selection of the 1 km radius (ANSELIN; IBNU 

SYABRI; YOUNGIHN KHO, 2006; CLIFF; ORD, 1973; MORAN, 1948).  

The null and alternative hypotheses for the Moran test are as follows: 
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• Null Hypothesis (H0): There is no spatial autocorrelation in the variable of 

interest. In other words, the values of the variable are randomly distributed 

across the spatial locations. 

• Alternative Hypothesis (H1): There is spatial autocorrelation in the variable 

of interest. This suggests that the values of the variable exhibit some degree 

of spatial clustering or spatial dependence, meaning that similar values tend 

to occur near each other. 

In addition to spatial dependence, the analysis also examined temporal dependence 

by including the month and year variables. The goal was to explore potential associations 

between the residuals and these temporal factors and identify any existing temporal patterns. 

To assess the relationship between the residuals and the year and month variables, Kruskal-

Wallis tests were conducted. The Kruskal-Wallis test is a non-parametric statistical test used to 

compare the median ranks of two or more independent groups. The null and alternative 

hypotheses for the Kruskal-Wallis test are as follows: 

• Null Hypothesis (H0): The median ranks of the groups are equal. In other 

words, there is no difference in the distribution of the variable of interest 

among the groups. 

• Alternative Hypothesis (H1): The median ranks of at least one group are 

different from the others. This suggests that there is a difference in the 

distribution of the variable of interest among the groups. 

Given the large sample size used in the models, which often leads to the rejection 

of null hypotheses, the analysis took into account the estimative of the Moran Test and the 

Effect Size of Kruskal-Wallis. These measures were analyzed to gain a better understanding of 

the significance and magnitude of the observed effects. 
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4 RESULTS 

 

The results are separated into three sections. The first section presents a theoretical 

example of the causal inference theory on road safety. The second section presents a conceptual 

model of motorcyclist severity based on the literature review of the Safe Systems approach. 

The third section provides a practical example of the causal inference theory based on the 

previous conceptual model using observational data from Brazilian highways. 

 

4.1 A theoretical example of the causal inference theory on Road Safety 

 

To better illustrate and clarify the causal inference process, this section describes a 

theoretical example of road safety. Figure 16 illustrates the relationship of interest, the effect of 

alcohol use on crash severity through speed, that will be applied as the baseline for the 

theoretical example.  

 

Figure 16 – The relationship of interest of the theoretical example 

 

Source: The author. 

 

Figure 17 presents a simplified conceptual model of the literature review, 

showcasing only some of the existing relationships. It should be noted that in subsequent 

sections, this conceptual model will be further explored. 

As seen in the previous chapters, studies found associations between alcohol use 

and risky behaviors. Risky behavior in the context of motorcycling can be characterized by the 

adoption of dangerous driving practices, such as operating a motorcycle while under the 

influence of alcohol, excessive speeds, and non-adherence to safety equipment protocols. This 

last one has a direct impact on the human body's ability to absorb part of the kinetic energy 

generated during an impact event, thereby increasing the likelihood of non-serious injuries. 

The risky behavior of motorcyclists is influenced by multiple factors, including the 

environment and individual characteristics of the riders. For example, rural areas and weekends 

have been shown to increase the likelihood of risky behaviors. Additionally, younger 
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motorcyclists tend to exhibit a higher frequency of risky behaviors compared to their older 

counterparts. 

 

Figure 17 – The simplified conceptual model 

 

Source: The author. 

 

Figure 18 shows a simplified DAG based on Figure 17. The Alcohol use → Speed 

→ Severity relationship (Figure 16) can be seen as having two backdoor paths, Location 

(Rural/Urban) and motorcyclist Age. Additionally, the effect of Alcohol on Speed varies 

between urban and rural areas, represented by the modifying effect. Relationships were 

previously formulated with assigned coefficients and functions in a pre-elaborated SCM. 

Therefore, this simplified example used only the motorcyclist's Age and crash Location as 

confounders to facilitate the understanding. The data were simulated using the simstudy 

package of R language. 

Age has three categories: 1, 2, and 3 (30%, 50%, and 20% of data, respectively). 

Category 1 was renamed to Age_18_30, representing motorcyclists between the ages of 18 and 

30. Similarly, Age_30_50 represents between 30 and 50, and Age_50 is above 50. These 

categories were chosen because studies found that age has a non-linear effect, given that old 

motorcyclists are more vulnerable and young are more prone to exhibit riskier behavior. 
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Figure 18 – DAG of the theoretical example 

 

Structural Causal Modeling (SCM) 

Age = categorical(0.3;0.5;0.2)  

Age_18_30 = binary(Age=1)  

Age_30_50 = binary(Age=2)  

Age_50 = binary(Age=3) 

Location = binary(0.5)  

Alcohol use = logit(Age_18_30 - Age_50 + Location)  

Speed = logit(Age_18_30 - Age_50  + 0.5*Location + 0.5*Alcohol + Location*Alcohol) 

Severity = logit(- Age_18_30  + Age_50 + Speed) 

Source: The author. 

 

Location is another confounder representing whether the crash was on a rural (1) or 

urban (0) road. This variable also is a modifier of the Alcohol and Speed relationship. In other 

words, besides the bias in the relationship of interest, the effect is different on rural and urban 

roads. Rural traffic crashes with alcohol use are more inclined to have speeding in this 

theoretical example. Using the SCM, on urban roads, i.e., if Location is equal to 0, the effect of 

Alcohol on Speed is 0.5. However, on rural roads (1), the effect is 0.5 plus 1 (modification 

effect). Both effects are causal and show the importance of investigating the effect in different 

strata of the population. For some strata, the treatment could have a positive effect, and for 

others a negative effect. This illustration demonstrates the causal inference process, where a 

conceptual model is transformed into a DAG representing relationships of interest and causal 

hypotheses. 

 

4.1.1 Simple logit models 

 

In this section, simple logit models were used to illustrate the characteristics of the 

DAG of Figure 18. For this purpose, Monte Carlo simulations were estimated using the 
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simulated data. Six logit models were estimated, varying the dependent and independent 

variables. 

Model 1 (Figure 19) demonstrates the overall (and indirect) impact of Alcohol use 

on Severity. There are six pathways connecting Alcohol use to Severity, but only one of these 

pathways is causal. To accurately determine the causal effect, it is necessary to include variables 

that can control the other five pathways. In this case, Location and Age must be incorporated 

into the model. The table within the figure presents the coefficient values from a logistic 

regression analysis, with the bolded coefficients representing the effects of interest. The other 

values in the models should not be considered as implying causality, as they are only used to 

control for confounding factors and are not representative of the main relationship of interest. 

 

Figure 19 – Model 1 

 

Source: The author. 

 

Incorporating Speed into the model can obstruct all pathways, including the causal 

pathway between Alcohol use and Severity. As a result, the causal effect may be significantly 

reduced or even disappear, as depicted in Figure 20. This highlights the importance of selecting 

variables carefully when determining the causal effect, as the inclusion of certain variables may 

distort the true relationship being analyzed. 
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Figure 20 – Model 2 

 

Source: The author. 

 

When a confounder, such as Age, is not controlled in the model, it can significantly 

impact the relationship being analyzed. In Model 3 (Figure 21), the absence of control for Age 

results in a skewed relationship between Alcohol use and Severity, with the coefficient value 

being -0.32. However, if Age were controlled (as in Model 2), the relationship would likely be 

closer to zero, given that Speed is also controlled in the model. Additionally, two biased 

pathways remain open in Model 3. The first pathway, Alcohol ← Age → Severity, represents a 

'backdoor' relationship, while the second pathway, Alcohol → Speed ← Age → Severity, 

involves a 'backdoor' relationship Speed ← Age → Severity and a collider relationship Alcohol 

→ Speed ← Age, which all contribute to a biased effect. It is important to remember that a 

collider (a variable that is influenced by two or more other variables) can transmit an association 

when it is controlled in the model. 

 

Figure 21 – Model 3 

 

Source: The author. 

 

Model 4 displays the direct effect of Alcohol consumption on Speed. By accounting for all 

confounding variables and ensuring that only the causal pathways are open, the coefficient 
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value in this model is in line with established SCMs, as demonstrated in Figure 18, approaching 

1. 

 

Figure 22 – Model 4 

 

Source: The author. 

 

Model 5 (Figure 23) illustrates the modification effect scenario. The interaction between 

Location and Alcohol use is included in the model, leading to a coefficient value of 0.51 for 

Alcohol and 1.05 for the interaction term Location*Alcohol. If Location is equal to 0 (rural 

areas), the effect of Alcohol use on Speed in these areas would be 0.51. In urban areas, the effect 

would be 0.51 + 1.05 = 1.56. The overall effect of Alcohol use is calculated as the average of 

these two values, resulting in (0.51 + 1.56)/2 = 1.04, which is close to the established effect of 

1 (Figure 18) and the effect found in Model 4 (Figure 22). 

 

Figure 23 – Model 5 

 

Source: The author. 

 

Model 6 (Figure 24) displays the causal effect of Speed on Severity. To accurately 

estimate this effect, it is necessary to control for the confounder Age. The variable Location 

does not need to be included in the model to evaluate the causal effect of Speed on Severity. 

The model contains four pathways, with one being the causal pathway. By controlling for Age 
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in the model, all biased pathways are blocked, leaving only the causal pathway open for 

evaluation. 

 

Figure 24 – Model 6 

 

Source: The author. 

 

4.1.2 Mixed logit models 

 

Recent studies used mixed logit and probit (random parameters) to find the effects 

of factors. These models allow a more generalized structure since it can include unobserved 

heterogeneity. To demonstrate the use of these models within the framework of causal inference 

(confounding and modification effect), Monte Carlo simulations were conducted using 

simulated data, with 500 iterations and 400 observations.  

The baseline model used was similar to Model 4 in the previous section. Model 7 

(Figure 25) shows a mixed logit model in which the Alcohol use coefficients are randomly 

generated following a Normal distribution. All backdoor paths are closed and the causal path is 

open, yielding the causal coefficients. The standardized deviation (sd) of the random 

coefficients is low, implying that most of the coefficients are close to an average of 0.95. A 

simple logit model was also estimated, producing a result of 0.91, which is similar to the 

previous one. The slight difference between the two results may be due to differences in the 

type of estimation and the specifications of the model. 
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Figure 25 – Model 7 

 

Source: The author. 

 

The next model (Figure 26) shows the impact of opening a backdoor path when 

using both random and traditional logit estimations. Both estimations exhibit bias. The mixed 

logit model has a low sd once more, and the mixed logit coefficient approaches the causal one. 

Nevertheless, relying solely on the mixed logit is insufficient to block the backdoor. Thus, it is 

crucial to incorporate causal theory to accurately evaluate the causal effect. 

 

Figure 26 – Model 8 

 

Source: The author. 

 

Model 9 (Figure 27) highlights another case of biased results, this time due to a 

different confounding variable, Location. The variable Location also has an effect modification 

on the relationship between Alcohol use and Speed, which may explain the higher standard 

deviation of the mixed model compared to other models. However, all coefficients in the model 

are biased and diverge from the true causal relationship. 
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Figure 27 – Model 9 

 

Source: The author. 

 

Figure 28 presents the results of the coefficients (per observation) of Alcohol use 

on Speed for the mixed logit models (Model 7 and Model 9). The biased model (Model 9) has 

an open backdoor, Alcohol use ← Location → Speed. In this scenario, there is an unobserved 

heterogeneity as the coefficients of Alcohol use on Speed display high variability. This 

variability occurs probably because the effect varies between individuals in rural and urban 

areas (Location). When the Location variable is included in the model, the Alcohol coefficient 

tends to converge to the overall value. Thus, while mixed models alone may not be sufficient 

to address endogeneity (confounding), they can provide insight into the unobserved 

heterogeneity caused by the modifying effect of the Location variable. 

 

Figure 28 – Results of Monte Carlo Simulation on SCM with logit links 

 

Source: The author. 
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4.1.3 Graphical models 

 

In this section, only one simulation was used because it is not possible to obtain 

average results from a graphical representation. To compensate for this, 200,000 observations 

were generated, equivalent to 400 times 500, to ensure reliable data. 

The graphical models or DAGs can be generated in two ways. The first is by using 

a theoretical model, where the relationships between variables are formulated based on previous 

knowledge and a review of the literature. The second method is by creating a DAG using 

observed data, for instance, by using Bayesian network methods. 

This section provides an example of a DAG that was created based on a review of 

the literature. The DAG can then be evaluated using observed data, such as through the use of 

Structural Equation Modeling (SEM). To fully understand how SEM models work, it is 

important to be familiar with the concept of d-separation. A DAG has a set of conditional 

probabilistic independencies that can be tested using SEM or other techniques, such as 

conditional correlations. 

D-separation statements describe all conditions under which variables are 

independent given other variables by a DAG. For instance, in the DAG shown in Figure 29, if 

Age and Speed are controlled, Alcohol use and Severity are independent (symbol “⊥”), as all 

paths between them are blocked (Alcohol use ⊥ Severity | Age, Speed).  

 

Figure 29 – DAG and d-sep 

 

Source: The author. 

 

If this conditional independence is not observed in the data, the DAG will not be 

consistent with the data. The set of d-separations in the previous DAG can be expressed as 

follows: 
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1) Age ⊥ Location: Age is independent of Location; 

2) Alcohol use ⊥ Severity | Age, Speed: Alcohol use is independent of Severity 

when Age and Speed are controlled; 

3) Location ⊥ Severity | Age, Speed: Location is independent of Severity when 

Age and Speed are controlled. 

 

One can explore the testable implications of the DAG by employing conditional 

correlations. In the case of categorical data, Chi-square tests provide a suitable analysis method. 

Table 9 presents the results obtained from the simulated data, which consisted of 200,000 

observations. Despite some of the p-values (H0: there is no association, p > 0.05; H1: there is 

an association, p < 0.05) being smaller than 0.05, indicating a not true statement and a potential 

inconsistency between the DAG and the data, the large sample size often leads to lower p-

values. Nonetheless, all the Root Mean Square Error of Approximation (RMSEA) values were 

less than 0.05, indicating a relatively good fit between the DAG and the data. An essential 

consideration is to acknowledge that the data used for analysis was generated based on the 

DAG, elucidating the complexities arising from working with large sample sizes. 

 

Table 9 – D-separation statements using chi-square tests 

d-sep rmsea χ2 df p.value rmsea 2.5% rmsea 97.5% 

Age ⊥ Location 0.001 2.54 2 0.28 0.000 0.006 

Alcohol ⊥ Severity | Age, Speed 0.007 17.28 6 0.01 0.000 0.022 

Location ⊥ Severity | Age, Speed 0.002 3.70 6 0.72 0.000 0.016 

Source: The author. 

 

The estimation of SEM provides the relationship between the observed and 

estimated correlation matrices of the endogenous5 variables in the model. If the DAG is not 

consistent with the observed data, meaning that the d-separation statements are not true, then 

the matrices will differ (SCHUMACKER; LOMAX, 2010). To evaluate the discrepancy, the 

RMSEA and p-value metrics can be used. 

Figure 30 illustrates an example of the estimated correlation matrices using 

simulated data. The model was estimated using the WLSMV and with probit link, utilizing the 

lavaan library. Figure 30 (c) displays the difference between the observed (a) and estimated (b) 

matrices, and it is expected that the values should be as close to zero as possible. 

 
5   Endogenous variables are those that are influenced by other variables in a system or model. On the other hand, exogenous 

variables are variables that are not influenced by other variables in the system, but rather affect the endogenous variables. 
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Figure 30 – Example of SEM, observed (a), estimated (b), and residues (c) matrix 

 

(a) 

 

(b) 

 

(c) 

Source: The author. 

 

The model's evaluation metrics, including a p-value of 0.00 and a RMSEA of 0.031 

[0.028, 0.033], suggest that the model is in line with the data, given that the RMSEA value falls 

below the threshold of 0.05. However, it is essential to highlight that this consistency does not 

necessarily imply that this is the only valid DAG for the data. There may be other DAGs that 

share the same d-separation statements and are also consistent with the data. 

The SEM can estimate both direct and indirect effects in a single estimation. In the 

example, the indirect effect of Alcohol use on Severity was calculated to be 0.103 [0.099, 

0.106]. This value differs by 0.19 from the previous logit model (Model 1 - Figure 19) because 

the SEM used a probit link instead of a logit link. Currently, the lavaan library in R does not 

support the estimation of models with logit links, only probit links.  

Furthermore, it is possible to use SEM with groups to generate two models 

simultaneously. For example, it is possible to create two models with distinct Locations (group 

1 is Urban and group 2 is Rural) and estimate both models at the same time. The effect of 

Alcohol use on Speed in group 1 was estimated to be 0.548 [0.533, 0.562] and in group 2 was 

estimated to be 1.179 [0.169, 0.189]. These values are close to the theoretical values of 0.5 for 

group 1 and 1.5 for group 2. This example demonstrates the usefulness of SEM models for 

causal analysis.  

 

4.1.4 Summary 

 

In this section, multiple models were utilized to demonstrate the process of making 

causal inferences based on observed data. The examples highlighted the difficulties that arise 

when all relevant variables are not included in the model, which is a common issue in road 
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safety studies that focus on the severity of crashes. The logit models can measure direct and 

indirect effects, but SEM is more robust. SEM allows for the simultaneous estimation of all 

relationships, and it is possible to use group analysis to measure the effects across different 

subpopulations in the data. 

It is important to be aware of database issues, such as temporal and spatial 

dependence and missing data before interpreting the coefficients as causal. When there is a 

problem of unobserved variables, latent variables can be employed to address this issue. A latent 

variable refers to a hidden factor that influences the relationship between observed variables 

but cannot be directly observed or measured. For instance, a study may observe that helmet use 

is associated with a decrease in motorcycle crash fatalities, but there may be other underlying 

factors such as driver skill or road conditions that are not directly measured but could be 

affecting the relationship. In this scenario, driver skill and road conditions can be considered 

latent variables. To account for these latent factors, researchers may apply statistical methods 

such as SEM, which leverages other available variables to reflect latent variables. 

 

4.2  A conceptual model of motorcyclist severity based on the Safe Systems 

 

The conceptual model presented in this dissertation is based on Chapter 2, which 

focuses on the Safe System approach. This representation considers crash energy and human 

tolerance as the main components of crash severity. Figure 31 shows the proposed 

interrelationships between factors and the dimensions of the Safe System. However, it should 

be noted that the model only represents the severity of a crash that has already occurred and 

does not take into account post-crash factors. 

This conceptual model representation of the impact of factors on the severity of 

crashes involving motorcyclists is based on a comprehensive review of existing literature. Some 

of these hypotheses will be tested using observed data in subsequent sections of this 

dissertation. 
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Figure 31 – Conceptual model of motorcyclist severity 

 

Source: the author. 

 

Human tolerance in a crash is shaped by the combination of the protective 

equipment worn and the characteristics of the motorcyclist. The crash energy, as a result of the 

interaction between mass and speed, is the most crucial factor that determines the fatal outcome 

of a crash. 

Safe motorcyclists typically use safer equipment that increases their tolerance to 

crash forces and reduces the severity. Certain characteristics of the motorcyclist, such as age, 

gender, education, experience, and riding license, have a direct impact on their tendency to 

engage in risky behaviors. In this study, risky behavior is defined as actions that increase the 

likelihood of crashes or the severity of injury in the event of a crash. Examples of such behaviors 

include speeding, riding under the influence, lane splitting, and not wearing protective gear. 

Furthermore, the motorcyclist’s characteristics can also have a direct impact on the 

motorcyclist's tolerance to crash forces, based on factors such as age, gender, and other 

individual characteristics. 

Additionally, there are also unobserved factors that can impact a motorcyclist's 

behavior, such as subjective norms, social influence, attitudes, and habits. These factors may 

not be directly observable, but they can have a significant impact on a motorcyclist's tendency 
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to engage in risky behaviors. This behavior is also influenced by the environment, such as 

weekends, rainy days, time of day, and location, among others. 

Safer motorcyclists often choose safer motorcycles. However, despite their efforts, 

the motorcycle itself is unable to provide complete protection to the rider in the event of a crash, 

as the rider is often ejected from the vehicle. 

Speed is interrelated with motorcyclist, motorcycle, road, and environmental 

factors. Safe motorcyclists tend to adopt lower speeds and exhibit behaviors that avoid 

dangerous situations, such as reckless overtaking. Vehicles with larger engines are often 

associated with higher speeds. The absence of an arrow linking Safe Roads to Safe Users stems 

from the hypothesis positing that risky behaviors are intrinsic to the users, rather than being 

instigated by the travel environment. 

The vehicles involved in the crash (such as a car, bus, truck, or motorcycle) and the 

collision type (such as frontal or rear) are related to the kinetic energy involved in the impact. 

It is worth noting that the environment and crash location (urban or rural) exert considerable 

influence on all the factors and relationships involved, as evidenced by previous studies 

mentioned in Chapter 2. To obtain more reliable results, it is important to study the effect of 

each causal hypothesis in different locations. 

 

4.3 A practical example of causal inference on Road Safety 

 

This section presents a practical example of the causal inference theory on road 

safety by using observational data from Brazilian highways. The purpose of this section is to 

establish a relationship of interest and formulate causal hypotheses between the independent 

variables and the outcome of road crashes. A causal model is crafted to estimate and assess the 

impact of diverse factors on road safety. Its primary purpose is to offer insights into the most 

critical contributors to road crashes and recommend potential interventions aimed at enhancing 

road safety. 

 

4.3.1 Relationship of interest and causal hypotheses 

 

The relationship between alcohol use and road safety was selected as a practical 

example of causal inference due to its ability to be tested using observational data from 

Brazilian highways. The first hypothesis is that ALCOHOL leads to SPEEDING (H1). 
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Subsequently, SPEEDING is a major factor affecting SEVERITY because of the impact energy 

(H2). 

The last hypothesis (H3) represents the direct relationship between ALCOHOL and 

SEVERITY. This hypothesis considers the various ways in which alcohol use can contribute to 

road crashes, such as failure to wear protective gear, loss of control while operating a vehicle, 

violation of traffic laws, etc. By examining the direct impact of ALCOHOL on SEVERITY, a 

comprehensive understanding of the role of alcohol use in road safety may be achieved. 

Furthermore, H1 and H2 may not fully represent the effect of ALCOHOL on road safety. As a 

result, H3 is a means of verifying the other impacts that alcohol use causes on severity, beyond 

excessive speed. 

Unfortunately, the reliability of the SPEEDING variable may be compromised as it 

relies on the subjective determination made by a police officer to assess whether a crash was 

caused by speeding. Consequently, this variable was not utilized, and instead, the measurement 

of the total effect of alcohol on Severity was chosen (T1 = H3 + H1*H2) (Figure 32).  

 

Figure 32 – The causal hypothesis 

 

Source: the author. 
 

4.3.2 Motorcyclist database 

 

The data were collected from the Brazilian Federal Highway Police Department 

(PRF) between 2017 and 2019 (1909 observations). Table 10 shows the variables that were 

collected and the respective groups to which they belong (motorcyclist characteristics, vehicle 

characteristics, speed, environmental, and specific factors), a brief description, and the 

percentage observed for each class. 

The data were selected to consider only crashes involving at least one motorcycle 

and one other vehicle. Additionally, the data only include crashes that occurred on the national 

highways (BRs) in the state of Ceará. The causal model, which includes the process of 

ALCOHOL → SEVERITY, and all the variables that influence this relationship, will be 

formulated in section 4.3.3. The following sections present only exploratory analyses of the 

variables and the construction of interrelationships in each group. 
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Table 10 – Variables used in the study 

Group Variables Levels Description Count (%) 

Safe users US_AGE age_18_30 
Riders between 18 
and 30 years old 

672 (38%) 

  age_30_50 
Riders between 30 
and 50 years old 

843 (48%) 

  age_50 
Rider over 50 years 

old 
232 (13%) 

 US_GEN female Female motorcyclist 115 (6.4%) 

  male Male motorcyclist 1,691 (94%) 

 ALCOHOL Yes 
One of the reasons for 
the crash was the use 

of alcohol 
167 (8.7%) 

 LACK_ATT Yes 

One of the reasons for 

the crash was the lack 
of attention 

1,035 (54%) 

 N_SAFE_DIST Yes 

One of the reasons for 
the crash was not 

keeping a safe 
distance 

261 (14%) 

 OVERTAK Yes 

One of the reasons for 
the crash was not 

making a safe 

overtaking 

38 (2.0%) 

 TRAF_RU_DIS Yes 

One of the reasons for 
the crash was 

disobedience of traffic 
rules 

421 (22%) 

Safe vehicles ENG_SIZE cc_150 
Engine size below 

150cc 
1,261 (73%) 

  cc_above_150 
Engine size above or 

equal  150cc 
477 (27%) 

 VCLE_AGE vehicle_age_2016 Other years 1,401 (82%) 

  vehicle_age_above_2016 
Vehicle made after 

2016 
313 (18%) 

 VCLE_PROB Yes 

One of the reasons for 

the crash was a 
mechanical defect in 

the vehicle 

48 (2.5%) 

Safe roads RD_TYPE curve 
Road with curve or 

roundabout 
164 (9.4%) 

  intersection Intersections of roads 123 (7.0%) 

  straight 

Straight roads, 
viaducts, tunnels, or 

bridges 
1,467 (84%) 

 RD_LANES double Double lanes 644 (34%) 

  multiple Multiple lanes 375 (20%) 

  simple Single lane 890 (47%) 

 RD_PROB Yes 

One of the reasons for 
the crash was 

problems on the road, 
visibility, or signaling 

89 (4.7%) 

Safe Speeds SPEEDING Yes 
One of the reasons for 

the crash was 
incompatible speed 

53 (2.8%) 

Environmental HR_NIGHT day Others 1,231 (64%) 

  night 
Between 06:00 pm 

and 05:00 am 
678 (36%) 

 HR_RUSH no_rush Others 1,199 (63%) 

  rush 
Between 07:00 am 

and 09:00 am, and 
710 (37%) 
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Group Variables Levels Description Count (%) 

between 05:00 pm and 
07:00 pm 

 LAND_USE rural Rural area 628 (33%) 

  urban Urban area 1,281 (67%) 

 WEATHER sunny 
Weather with clear 

sky or sun 
1,539 (82%) 

  cloudy Weather with fog 241 (13%) 

  rainy 
Weather with rain or 

drizzle 
93 (5.0%) 

 WEEKDAY workday Workday 1,315 (69%) 

  weekend Weekend 594 (31%) 

Specific VCLE_COLL car 

The vehicle that 
collided was a car or 

an SUV 
1,009 (54%) 

  heavy 

The vehicle that 

collided was a truck 
or a bus vehicle 

335 (18%) 

  light 
The vehicle/person 
that collided was a 
bike or a pedestrian 

199 (11%) 

  PTW 
The vehicle that 

collided was a PTW 
342 (18%) 

 COLL_TYPE frontal  Frontal collision  169 (8.9%) 

  others Rear collision 1740 (91,1%) 

Severity SEVERITY Minimal and Minor 
Minimal and Minor 

injury 
1180 (64,5%) 

  Major and Fatal Major and Fatal injury 636 (34,8%) 

* reference group  
Source: the author. 

 

4.3.2.1 Safe users 

 

Regarding the age (US_AGE) an initial exploratory analysis (Figure 33) showed 

that young motorcyclists (aged 18-30) had lower odds of being involved in a fatal crash 

(residual = -3), while older motorcyclists had higher odds (residual = 4.6). The Cramer's V and 

chi-square test revealed that this variable had a significative association with severity. As 

explained in the methodology, Cramer's V is a correlation coefficient that measures the strength 

of association between two categorical variables. 
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Figure 33 – Motorcycle age and Severity 

 

Source: The author. 

 

An analysis of the gender of motorcyclists (US_GEN) (Figure 34) indicated that 

female riders have lower odds of sustaining a minimal injury compared to male riders (residual 

= -2.9). However, there were no significant differences between male and female riders in other 

severity levels. The results of the Cramer's V and chi-square test showed that this variable had 

a statistically significant association with severity. 

 

Figure 34 – Motorcycle gender and Severity 

 

Source: The author. 

 

The characteristics of motorcyclists, such as US_GEN and US_AGE, play a crucial 

role in determining the severity of a crash. This is primarily because these characteristics are 

associated with two critical factors - Human tolerance and Risky behavior, as previously 
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defined. Human tolerance varies across different genders and age groups, which can affect the 

level of injury sustained in a crash. In the same vein, risky behaviors like speeding or driving 

under the influence are more likely to be prevalent within specific age and gender groups, 

increasing the probability of severe crashes. 

Risky behavior is a factor that is difficult to measure directly, as it is likely a “latent 

construct”. As explained before, a latent construct is a theoretical concept that is not directly 

measurable but can be measured indirectly by collecting data on related observable indicators. 

Therefore, in this dissertation, risky behavior was treated as a latent variable that could be 

measured using other variables in the dataset. 

The indicators used to measure the latent construct of Risky behavior in this study 

were lack of attention (LACK_ATT), failure to maintain a safe distance (N_SAFE_DIST),  

overtaking (OVERTAK), and disobedience of traffic rules (TRAF_RU_DIS). These factors are 

expected to be representative of the Risky behavior of motorcyclists. 

Another variable that is difficult to measure directly is the combination of 

Subjective norms, social influence, attitudes, and habits. While these can all contribute to 

motorcycle crash severity, they are more commonly associated with the field of social 

psychology and therefore the formulation is not within the scope of this dissertation. 

Another important point to consider is the reliability of the variable ALCOHOL as 

it is based solely on suspicion by the police officer who collected the crash data. Therefore, the 

issue of data collection could introduce bias into the results, despite the specification of the 

model taking all necessary precautions to estimate causal effects. 

Figure 35 illustrates all of the processes mentioned in this section. It is a visual 

representation that has been derived from the conceptual model presented earlier in this 

dissertation (Figure 31). 
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Figure 35 – Safe Users causal process with observed data 

 

Source: The author. 

 

4.3.2.2 Safe vehicles 

 

The age of a vehicle (VCLE_AGE) can provide important information about its 

safety features, including whether it has an Anti-lock Braking System (ABS) and other safety 

equipment. To capture this information, the VCLE_AGE was categorized into two categories: 

vehicles manufactured in or after 2016, when ABS became mandatory in Brazilian legislation, 

and vehicles manufactured before 2016. This classification can also reflect both the 

maintenance conditions (VCLE_PROB) and the presence of safety devices. VCLE_PROB is a 

variable recorded by the field agent to determine the motive of the crash was a problem in the 

vehicle.  

The speed adopted by motorcycle riders is likely to be linked to the engine of the 

motorcycle, and this factor could also be associated with risky behavior. The engine size of the 

motorcycles (ENG_SIZE) in the study is divided into two categories: engines with a size above 

or equal to 150cc (cubic centimeters) and engines below 150cc. The 150cc threshold was 

chosen because it is the most common engine size for motorcycles in Brazil. The Cramér’s V 

and Chi-square tests conducted on this variable showed an association with severity. The tests 

and graphs can be found in Appendix A. 

Figure 36 provides a visual representation of the proposed causal process of safe 

vehicles using the observed data. The two-point arrow (correlation) represents the relationship 

between variables, but it is not the primary focus of interest in this analysis. Therefore, it is not 

essential to establish whether the age of the motorcycle causes the engine size, the engine size 

causes vehicle problems, or whether there is another variable that causes both. However, it is 

important to note that these relationships could occur. 
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Figure 36 – Safe Vehicles causal process with observed data 

 

Source: The author. 

 

4.3.2.3 Safe Roads 

 

The nature of a road (RD_TYPE) can be classified into three types: curved, straight, 

or intersection. This classification has a significant impact on the behavior of motorcyclists on 

the road. For instance, on straight roads, motorcyclists are more likely to speed or overtake 

other vehicles. On curved roads, motorcyclists must exercise extra caution and take additional 

precautions while navigating to avoid exiting the road and potentially falling off their 

motorcycles. At intersections, the angle of collision can lead to higher impact energy, resulting 

in more severe crashes.  

The second variable to consider is the number of lanes on the road (RD_LANES), 

which can be classified as simple, double, or multiple lanes. It is important to note that the 

number of lanes on the road can affect the behavior of road users, with drivers on multiple lanes 

being more likely to engage in lane changes, overtaking, and speeding. 

The final variable is RD_PROB, which indicates whether any issues related to the 

road were identified as contributing factors to the crash by the agent in the field. This variable 

helps to understand the role that road conditions played in the occurrence of the crash. 

Figure 37 depicts the causal process underlying Safe Roads, using observed data. 

The figure includes variables such as RD_TYPE and RD_LANES. The variables in the figure 

are likely correlated, as indicated by the two-point arrows, but for this dissertation, these 

relationships are not the focus.  
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Figure 37 – Safe Roads causal process with observed data 

 

Source: The author. 

 

4.3.2.4 Safe Speeds 

 

The variable that represents speeding is affected by the behavior of the motorcycle 

and the use of alcohol. It indicates if the motorcycle was traveling at a high speed during the 

crash, as reported by the police officer. Nevertheless, the reliability of this variable may be 

compromised due to its dependence on the subjective judgment of the police officer in 

determining if speeding was the motive of the crash. Consequently, this variable was not 

considered in the analysis. It is worth noting that other variables could also present similar 

challenges; however, speed is comparatively less reliable since there is a higher propensity for 

false statements and limited availability of information data. 

On the other hand, the mass variable consists of characteristics related to the 

vehicles involved in the crash. Both speed and mass contribute to the crash energy, which is a 

factor in determining the severity of the collision (Figure 38).  

 

Figure 38 – Safe Speeds causal process with observed data 

 

Source: The author. 
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4.3.2.5 Environmental 

 

The time-related variables included night and rush hours. HR_NIGHT referred to 

crashes occurring between 6:00 PM and 5:00 AM and was associated with an increased 

incidence of speeding and alcohol use. Rush hours (HR_RUSH), occurring from 7:00 AM to 

9:00 AM and 5:00 PM to 7:00 PM, were also related to speed, though to a lesser degree due to 

increased traffic congestion, particularly in urban areas. The final time-related variable was 

whether the crash occurred on a weekday (WEEKDAY), which was also associated with an 

increased incidence of alcohol use and speeding. 

The WEATHER was categorized as sunny for clear or sunny conditions, cloudy for 

foggy conditions, and rainy for conditions with rain or drizzle. However, the relationship 

between rainy weather and crash severity is complex and may vary depending on local and road 

characteristics. 

The LAND_USE was classified into rural and urban areas and was used as a 

modifier variable in the analysis. The effects of all other variables were estimated separately 

for each group (i.e., rural and urban) using group modeling in SEM, as detailed in section 4.1.4. 

Figure 39 depicts the causal process using observed data. The environmental 

factors, including night hour, rush hour, weather, and weekday, are shown to influence the 

outcome variable. The two-point arrows between the hour night, hour rush, and weekday 

variables represent their likely correlations, which are not of interest in this dissertation. The 

land use variable was used as a moderator, allowing the effects of all other variables to be 

analyzed separately for rural and urban groups. 

 

Figure 39 – Environmental causal process with observed data 

 

Source: The author. 
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4.3.2.6 Specific factors 

 

The types of collision (COLL_TYPE) analyzed in this study were head-on and 

others. Head-on collisions are more likely to result in fatal outcomes, while other types of 

collisions, such as rear-end collisions, typically result in material damage with lower chances 

of fatalities. The vehicles involved in the collision (VCLE_COLL) were categorized as car, 

heavy, light, and PTW. Heavy vehicles included trucks and buses, light vehicles included bikes 

and pedestrians, PTW included motorcycles, and cars included all other vehicles. The type of 

vehicle and collision are closely related to the energy of the impact. 

Figure 40 depicts the causal process of specific factors using the observed data. The 

variables are likely correlated, as represented by the two-point arrows in the diagram. However, 

as these relationships are not of interest to this dissertation, they are not further analyzed. 

 

Figure 40 – Specific factors causal process with 

observed data 

 

Source: The author. 

 

4.3.2.7 Database issues 

 

The first type of issue that could lead to skewed results is temporal and spatial 

dependence. Moran's I test indicated a small spatial dependence with a test value of 0.145, 

which was significant. Nevertheless, other variables, such as LAND_USE (urban and rural), 

will be included in the model to try to account for this spatial relationship. The residual of the 

model in the following sections will be tested to verify if there is still spatial and temporal 

dependence. 

The last type of issue in data is missing data. There is a 2.2% rate of missing data, 

meaning that at least one value in one variable is missing. It was found that variables related to 

motorcycles have more missing data and appear to be related. Missing data related to US_AGE, 
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US_GEN, and SEVERITY may be interrelated. For instance, if US_AGE was not recorded, it is 

possible that SEVERITY and vehicle characteristics were not recorded either, indicating that 

these variables may be related. Although the missing data are few in this database, they could 

still potentially lead to biased coefficients in the next models. However, the extensive dataset 

size could enhance the reliability of the results. 

 

4.3.3 Formulation and estimate of the causal model 

 

The first part of SEM is the measurement model, which consists of the latent 

variables. In this study, the latent variables are Subjective Norms and Risk Behaviors. The 

second part is the structural model, which illustrates all the relationships between the exogenous 

and endogenous variables in this study. Estimating these two parts separately is recommended 

to ensure reliable results (BOLLEN, 1989; BOLLEN; BAULDRY, 2011; GRACE; BOLLEN, 

2008; HAIR et al., 2009; HOYLE, 2012; MORRISON; MORRISON; MCCUTCHEON, 2017). 

 

4.3.3.1 Measurement model 

 

Risk Behaviors can be assessed through the following indicators: LACK_ATT, 

N_SAFE_DIST, OVERTAK, and TRAF_RU_DIS. Initially, a positive correlation between 

these variables was expected, as they were assumed to adequately represent the latent variable. 

However, it has been observed that in most cases, the correlation between these variables is 

negative. This negative correlation suggests a potential issue with the database specification 

(Figure 41). 

One potential explanation for this observation is that police officers frequently 

select “overtaking” as the reason for a traffic violation without simultaneously indicating “lack 

of attention”, for example. This inconsistency presents difficulties in accurately assessing risk 

behaviors. As a result, it was decided to include only the TRAF_RU_DIS variable to represent 

Risk Behaviors. This choice was considered suitable since this variable captures a substantial 

portion of the user's problematic behavior, displaying a positive correlation with severity and 

alcohol use. 
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Figure 41 – Tetrachoric correlation among observed variables 

 

Source: The author. 

 

After analyzing the database, it was found that there were no observed variables 

suitable for representing the latent variable of Subjective Norm in the model. Consequently, the 

decision was made to exclude this factor from the analysis. Importantly, this exclusion does not 

introduce biased results for causal effects; it only impacts the relationship with Risk Behaviors. 

Figure 42 illustrates that the relationship between alcohol use and severity remains unbiased 

when Subjective Norms are not controlled (omitted from the model). However, the relationship 

between Risk Behaviors and ALCOHOL becomes biased, highlighting the significance of 

properly categorizing relationships and assessing the effects of including or excluding specific 

variables in the model. Therefore, in the analysis of the results, this particular relationship will 

not be considered due to the likelihood of bias. 
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Figure 42 – Subjective Norms relationships 

 

Source: The author. 

 

4.3.3.2 Structural model 

 

Adjustments were necessary to properly fit the model. Firstly, all endogenous 

variables (SEVERITY, ALCOHOL, ENG_SIZE, VCLE_AGE, TRAF_RU_DIS, and 

COLL_TYPE) were treated as binary variables (Table 10) with probit links. Secondly, the 

variable VCLE_PROB was excluded from the analysis due to convergence issues in the model, 

likely resulting from its high correlation with other variables in the study. However, the removal 

of this variable does not introduce bias, as the potential back-door effect it could have created 

can be mitigated by considering VCLE_AGE. Finally, all exogenous variables are freely 

estimated for correlation among them, adhering to the standard approach of SEM. 

Through iterative model fitting, it was identified that adjustments needed to be 

made to the model to estimate the impact of ALCOHOL on SEVERITY. However, it is crucial 

to acknowledge that continuously altering the causal model in this manner carries the potential 

risk of overfitting6. Despite this concern, all modifications made to the model were thoroughly 

justified. Moreover, these adjustments did not result in significant alterations to the fundamental 

causal structure, indicating a minimal likelihood of any adverse consequences. Table 11 

illustrates all the relationships within the causal model, with the operators "~" denoting 

regression and "~~" indicating correlation. 

 

 

 

 
6 Overfitting happens when a model becomes too focused on the training data and performs poorly when faced 

with new, unseen data. 
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Table 11 – Relationships in the Causal Model 

Effect Relationship Hypotheses 

T1 SEVERITY~ALCOHOL The total causal effect of alcohol use is greater injuries 

A1_AGE SEVERITY~US_AGE 
The age of a motorcyclist is associated with human vulnerability, which can lead 

to increased severity 

A1_GEN SEVERITY~US_GEN 
The gender of a motorcyclist is associated with human vulnerability, which can 

lead to increased severity 

A2_AGE ALCOHOL~US_AGE The age of a motorcyclist is associated with alcohol use 

A2_GEN ALCOHOL~US_GEN The gender of a motorcyclist is associated with alcohol use 

A3_AGE ENG_SIZE~US_AGE The age of a motorcyclist is associated with motorcycle characteristics 

A3_GEN ENG_SIZE~US_GEN The gender of a motorcyclist is associated with motorcycle characteristics 

A4_AGE VCLE_AGE~US_AGE The age of a motorcyclist is associated with motorcycle characteristics 

A4_GEN VCLE_AGE~US_GEN The gender of a motorcyclist is associated with motorcycle characteristics 

A5_AGE RISK_BEHAV~US_AGE The age of a motorcyclist is associated with risk behaviors 

A5_GEN RISK_BEHAV~US_GEN The gender of a motorcyclist is associated with risk behaviors 

A6 ALCOHOL~RISK_BEHAV 
The risk behaviors of a motorcyclist are associated with alcohol use, and this 

relationship is often influenced by subjective norms 

A7 SEVERITY~RISK_BEHAV The risk behaviors of a motorcyclist are  associated with severity 

A8 ALCOHOL~WEEKDAY Alcohol use is more commonly observed on weekends 

A9 ALCOHOL~HR_NIGHT Alcohol use is more commonly observed during nighttime hours 

A10 SEVERITY~WEEKDAY Weekends are associated with severity due to speeding 

A11 SEVERITY~HR_NIGHT 
Some drivers may be more prone to speeding during nighttime hours due to 

reduced traffic  

A12 SEVERITY~HR_RUSH Rush hours are associated with traffic congestion and slower driving speeds 

A13 SEVERITY~WEATHER Poor weather conditions can contribute to unsafe driving behaviors 

A14 SEVERITY~ENG_SIZE Motorcycle engine size is associated with higher speeds 

A15 SEVERITY~VCLE_AGE Motorcycle age size is associated with safe equipment 

A16 SEVERITY~RD_TYPE Road type is associated with the severity 

A17 SEVERITY~RD_LANES The number of lanes is associated with the severity 

A18 SEVERITY~RD_PROB Road problems are associated with the severity 

A19 COLL_TYPE~RD_TYPE The type of road can influence the nature of collisions between vehicles 

A20 COLL_TYPE~RD_LANES The number of lanes can influence the nature of collisions between vehicles 

A21 SEVERITY~COLL_TYPE 
The type of collision between two vehicles influences the energy of impact, 

which can result in more severe injuries 

A22 SEVERITY~VCLE_COLL 
The type of vehicle involved in a collision with a motorcycle influences the 

energy of the impact, which can result in more severe injuries 

C1 ENG_SIZE~~VCLE_AGE 
Engine size is also correlated with vehicle age due to factors beyond the rider's 

characteristics. For example, technological advancements and economic 
conditions 

U and R LAND_USE Moderation - The effects of the DAG vary beyond rural and urban areas 

Source: the author. 
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The model was estimated using data on motorcyclist crashes taking into account 

only valid observations and handling missing data through listwise deletion7. To enhance the 

analysis, a multigroup Structural Equation Modeling approach was employed, simultaneously 

estimating two models (Rural and Urban). This allowed for comparing estimations and 

obtaining improved Goodness-of-Fit measures. Additionally, the model utilized the weighted 

least squares mean and variance adjusted (WLSMV) estimator with a probit link between 

variables. The model was also able to estimate intercepts, facilitating the estimation of residuals. 

Moreover, all results were presented as standardized values, enabling easy comparison of the 

estimates (Figure 43). 

The model exhibits favorable performance based on key fit indices. The RMSEA 

value is found to be less than 0.05, indicating a good fit between the model and the observed 

data. Additionally, both the CFI and TLI exceed the recommended threshold of 0.90, further 

confirming the model's strong fit. The significance of the p-value aligns with expectations, 

considering the considerable sample size of over 400 observations. 

It is crucial to acknowledge that while there may exist alternative DAGs that yield 

a satisfactory fit to the data, the current model was specifically developed based on a well-

established theoretical framework. This theoretical foundation enhances its credibility and 

renders it more reliable compared to other competing DAGs.  

Currently, there is a lack of available functions in contemporary R language 

packages that allow for the computation of residuals for endogenous variables in SEM with 

probit links. To address this limitation, novel functions were developed, as outlined in the 

methodology section, to facilitate the calculation of these residuals. 

To evaluate the adequacy of the developed functions, rigorous testing was 

performed on the deviance residuals associated with all endogenous variables. These tests 

aimed to examine potential spatial and temporal dependence within the residuals, which could 

impact the reliability and validity of the model. The methodology section provides a detailed 

explanation of the methods employed in conducting these tests. 

The tests revealed the presence of statistically significant values; however, their 

effect sizes are found to be low, indicating their negligible impact. The significance of these p-

values may be attributed to the sample size, while the lower values of the statistics suggest that 

spatial or temporal dependence within this model is irrelevant. 

 

 
7 Listwise deletion is a method in statistics where cases with missing data in any of the variables of interest are 

completely excluded from the analysis, resulting in a reduced sample size. 
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Table 12 – Spatial and Temporal autocorrelation tests 

Endogenous 
Variable 

Moran's I test for spatial 
autocorrelation 

Kruskal-Wallis Rank Sum Test for temporal 
autocorrelation 

YEAR MONTH 

Rural Urban Rural Urban Rural Urban 

SEVERITY 0.03 (ns) 0.081 (***) 0.002 (ns) 0 (ns) -0.007 (ns) -0.001 (ns) 

ALCOHOL -0.043 (ns) 0.023 (.) -0.002 (ns) 0.003 (ns) 0.016 (.) -0.001 (ns) 

ENG_SIZE 0.046 (ns) -0.01 (ns) 0.003 (ns) 0.003 (.) -0.005 (ns) -0.001 (ns) 

VCLE_AGE 0.001 (ns) 0.005 (ns) 0.011 (*) 0.006 (*) -0.001 (ns) -0.004 (ns) 

TRAF_RU_DIS -0.001 (ns) 0.064 (***) 0.005 (ns) 0.004 (*) -0.004 (ns) 0.003 (ns) 

COLL_TYPE 0.071 (.) 0.075 (***) -0.003 (ns) -0.002 (ns) 0.007 (ns) 0.004 (ns) 

Legend: "ns" - Not significant (P ≥ 0.1); "." – Statistically significant at 90% (P < 0.1); "*" - Statistically 
significant at 95% (P < 0.05); "**" - Highly statistically significant (P < 0.01); "***" - Extremely statistically 
significant (P < 0.001) 

           Source: the author. 

 

It is important to recognize that the SEVERITY variable exhibits a Moran's I test 

value of 0.081, significantly lower than the previously obtained value without the model 

(0.145). This compelling result demonstrates the model's effectiveness in mitigating spatial 

dependence by incorporating other influential factors.
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Figure 43 – Causal Model 

 

Source: the author.
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4.3.3.3 Interpreting the results of the model 

 

It is important to highlight that the a priori formulated causal hypotheses of the 

model indicate that alcohol use increases the probability of speeding and not using safety 

equipment, thereby resulting in greater impact energy and reduced human tolerance.  

The relationship denoted as T1 represents the only causal effect in which all 

potential back doors have been closed. The DAG depicted in Figure 45 encompasses additional 

variables, notably road characteristics, specific factors, rush hours, and weather, none of which 

are designated to close back doors. Nevertheless, these variables serve the purpose of enhancing 

estimations and fostering comprehension of the analyzed phenomenon concerning road crashes 

involving motorcyclists. 

The study's findings highlight a substantial influence of alcohol (T1) on the severity 

of motorcycle crashes, especially in urban areas (0.18), where the effect was statistically 

significant at a 90% confidence level. These results suggest that alcohol has a more pronounced 

influence on the increase in crash severity in urban settings. A study on motorcycle rider 

severity yielded a similar result, where the driver of the striking vehicle with alcohol suspicion 

had a 0.79 probability (p-value = 0.08) of a fatal crash (RAHMAN et al., 2021). 

In rural areas, the effect was found to be insignificant in the model, contradicting 

findings from other studies (CZECH et al., 2010; LOWENSTEIN; KOZIOL-MCLAIN, 2001; 

TSUI et al., 2010; WUNDERSITZ; RAFTERY, 2017). However, a study revealed that alcohol 

intoxication does not exhibit a correlation with a higher occurrence of severe injury or mortality 

in road crashes. However, it does emerge as a prominent predictor for post-injury morbidity 

(SHIH et al., 2003).  

Some hypotheses could explain these results. Urban areas typically have higher 

population densities and more congested traffic conditions, which may amplify the 

consequences of impaired judgment and reduced reaction times caused by alcohol 

consumption. Additionally, the presence of numerous vehicles in urban environments could 

increase the likelihood and severity of collisions involving motorcyclists under the influence. 

Moreover, urban areas often feature complex road networks, including 

intersections, roundabouts, and multi-lane highways, which can pose greater challenges for 

intoxicated motorcyclists. Navigating through these intricate traffic patterns while impaired 

increases the risk of misjudgments and potentially severe crashes. 

Another important point to consider is the reliability of the variable ALCOHOL as 

it is based solely on suspicion by the police officer who collected the crash data. Therefore, the 
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issue of data collection could introduce bias into the results, despite the specification of the 

model taking all necessary precautions to estimate causal effects. 

The model uncovers noteworthy associations between the age of motorcyclists and 

their engagement in alcohol-related road crashes in urban areas (A2). Riders between the ages 

of 30 and 50 exhibit a higher propensity for alcohol consumption as compared to those aged 

between 18 and 30 years old. The findings also indicate that younger individuals are more likely 

to be associated with new motorcycles (A4) and those equipped with larger engines (A3). 

Conversely, the gender of motorcyclists does not display any significant direct associations 

with other variables in the study. 

Motorcyclists above 50 years old are directly associated with the severity of crashes 

(A1).  It is essential to clarify that this coefficient should not be interpreted as the total effect. 

The total effect is a culmination of all pathways through which the age variable influences 

severity. In this particular analysis, the direct effect measurement conveys the influence of age 

in addition to the effect of alcohol use (A2) and the inclination to choose safer vehicles (A3 and 

A4). Consequently, the direct effect uncovered may be indicative of human vulnerability. 

The analysis reveals a significant association between Risk Behavior (represented 

by TRAF_RU_DIS) and alcohol consumption (A6), with rural areas displaying a positive 

relationship, while urban areas exhibit a negative one. However, this association is influenced 

by the Subjective Norms variable as indicated by the measurement model discussed earlier 

(Figure 42). As a result, the interpretation of this association may lack coherence or 

meaningfulness. 

Crashes occurring during weekends presented a positive association with alcohol 

consumption in both rural and urban areas (A8). In rural areas, weekends have a limited but 

noticeable impact on the severity (A10). During nighttime hours, both rural and urban areas 

witness an increase in alcohol use (A9) and severity (A11). Several factors could be imagined 

to influence these results, including more access to alcohol consumption opportunities (open 

bars), especially during weekends, and reduced traffic flow, which can lead to higher instances 

of speeding.  

Recent advancements in motorcycle technology may have led to a notable trend: 

newer motorcycles are typically linked to lower severity (A15) in rural crashes, whereas 

motorcycles with larger engines tend to exhibit higher severity in urban areas (A14). The 

integration of safety-enhancing features like ABS (Anti-lock Braking System) in modern 

models required by recent improvements in vehicle regulation in Brazil is likely to play an 

important part in this positive safety aspect. On the other hand, motorcycles with larger engine 
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sizes often have a greater potential for achieving higher speeds, thereby increasing the severity 

of crashes. It is important to note that, the correlation found between the two variables 

highlights that newer motorcycles frequently feature larger engines (C1). This specific trend in 

the Brazilian market may reduce the real positive gains brought by the technological advances 

of motorcycle safety systems. 

Curves show a slight but limited association with a decrease in severity in rural 

areas (A16), potentially attributed to the reduced speed typically observed in these areas. 

However, curves are also associated with a higher risk of frontal collisions in rural areas (A19), 

which can amplify the impact energy and result in fatal crashes. When calculating the overall 

impact of curves on severity (A16 + A19 * A21), the effect is found to be statistically 

insignificant in both rural and urban areas (the analysis was performed using the R 

programming language). 

The results also confirmed the findings from several studies in terms of the type of 

crash and type of vehicle involved (JONES; GURUPACKIAM; WALSH, 2013; PERVEZ; 

LEE; HUANG, 2021; SE et al., 2021). Frontal crashes and crashes with heavy vehicles tended 

to result in higher severity, due to the increased energy of impact impact both from the 

combination of speeds and greater mass (A21 and A22).  

These effects are a subset of the analyzed variables, and other relationships could 

be examined using a similar approach. It is crucial to highlight the divergent results between 

urban and rural areas, as certain variables, such as vehicle age, are only significant in rural 

areas. This emphasizes the importance of conducting severity analyses considering the specific 

characteristics of each land-use type. Furthermore, most of the findings align with the literature 

presented in chapter two. However, it is important to note that the causal effect (T1) was 

analyzed more diligently, whereas the other relationships are associations and should be 

interpreted as such. 

It is crucial to acknowledge that while there may exist alternative DAGs that yield 

a satisfactory fit to the data, the current model was developed based on prior knowledge 

structured from the theoretical framework. This theoretical foundation enhances its credibility 

and reliability compared to other potential DAGs. 

The findings of this study exhibit notable distinctions from conventional 

approaches due to several compelling factors. Firstly, the outcomes obtained are characterized 

by reduced biases, attributed to the identification and control of confounding variables. This 

approach enabled the discernment of potentially biased effects, as the model inherently 
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recognizes a priori instances of effects influenced by latent factors (e.g., the bias of effect A6 

by subjective norms). 

Secondly, the use of SEM facilitated the exploration and estimation of relationships 

across multiple endogenous variables (Ys), thereby enhancing the comprehension of 

relationships within the Safe System approach. Thirdly, this modeling approach enabled a more 

conceptual differentiation between direct effects and total effects of variables. Thirdly, the 

causal model not only allows the examination of the underlying hypotheses through a DAG but 

also permits the capacity to validate the compatibility of observed data with a given conceptual 

model. Lastly, a model capable of simultaneously estimating two models, one for rural and 

another for urban areas, allows for direct comparisons between these estimations. This approach 

enhances the statistical power due to the larger sample size.  
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5 CONCLUSION AND FUTURE STUDIES 

 

The specific objectives of this dissertation were threefold. The first objective was 

to consolidate the knowledge of causal inference approaches in road safety studies concerning 

the severity of motorcyclist crashes. This was achieved by utilizing a theoretical example and 

simulated data, illustrating the relationship between alcohol use, speed, and severity. A DAG 

was established, considering various relationships, including back-door paths. Logit regression 

and graphical models were employed to determine the causal effects and demonstrate the 

practical application of these methods to observed crash data. The example illustrates the 

distinction between causal and traditional modeling methodologies, highlighting how causal 

modeling can effectively address the presence of open backdoors. In contrast, traditional 

modeling fails to distinguish between direct, indirect, and total effects, potentially leading to 

biased interpretations of coefficients. Nevertheless, traditional models remain valuable for 

identifying associations and uncovering potential relationships. 

The second objective of this dissertation was to propose a conceptual model based 

on the Safe System approach, targeting specifically the identification of causal hypotheses 

concerning the factors impacting the severity of motorcycle crashes. To accomplish this, an 

extensive literature review was conducted, with specific emphasis on the Safe System approach 

for motorcyclists. By conducting an in-depth analysis of numerous studies, this research 

explores potential relationships among factors influencing crash severity. The findings from 

this comprehensive review were then synthesized to develop a conceptual model, which played 

a pivotal role in constructing the causal model. The resulting conceptual model illustrates the 

intricate interconnections among variables associated with the severity of motorcycle crashes, 

grouped into six main categories: Safe Users, Safe Vehicles, Safe Roads, Crash Energy, 

Environmental, and Crash-specific factors. Notably, the model highlights that crash severity is 

primarily determined by two key factors: human tolerance and crash energy. 

The last objective of this study focused on examining causal hypotheses using 

motorcycle crash data obtained from federal highways in the state of Ceará-Brazil. The 

collected data underwent thorough processing and analysis, employing graphs and statistical 

tests. Despite encountering certain challenges, such as missing data and spatial dependence, it 

is important to note that these issues do not significantly impact the results. This is mainly due 

to the low effects found when the specific tests were performed in residuals of the final model. 

In contrast to traditional models, the causal model utilized in this context is founded 

on a theoretical framework, derived from comprehensive studies across diverse areas, to 
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propose relationships. By incorporating these aspects, the employed model enhances reliability 

compared to relying solely on a data-driven approach to uncover associations. Consequently, 

the causal model offers a more precise analysis. Additionally, the model effectively identifies 

relationships among variables, which is not a common focal point in traditional severity studies 

that only analyze the severity variable with others. 

The estimated causal model shows compatibility with the data, resulting in 

favorable metrics and confirming the consistency between the formulated DAG and the pre-

established theoretical model. The findings of the study underscore a significant relationship 

between alcohol consumption and the severity of motorcycle crashes, particularly in urban areas 

(with an effect size of 0.18). The results suggest that alcohol has a more pronounced impact on 

increasing crash severity in urban settings. Given the higher population densities and congested 

traffic conditions typical of urban areas, impaired judgment and reduced reaction times due to 

alcohol consumption may exacerbate the consequences of motorcycle crashes. 

In contrast to traditional models, the estimated model not only highlights 

relationships with severity but also uncovers other important factors. Particularly, it reveals a 

significant link between weekends and increased alcohol consumption in both rural and urban 

areas. While weekends have a limited but noticeable impact on alcohol-related issues in rural 

areas, nighttime hours witness a surge in alcohol use and severity in both settings. This increase 

can be attributed to factors such as easier access to open bars and reduced traffic congestion, 

which may lead to higher instances of speeding. 

Furthermore, the analysis unveiled notable disparities between rural and urban 

areas, as certain variables demonstrated significance exclusively within each setting. For 

instance, factors such as hour rush and vehicle age exhibited significance solely within urban 

areas, whereas road type emerged as a significant factor specifically in rural areas. These 

findings emphasize the importance of considering contextual factors when developing targeted 

interventions and policies to address road safety in different geographical areas. 

The initial causal hypothesis proposed that alcohol use might be linked to an 

increase in severity. The causal model was constructed on a theoretical framework, and all 

potential confounders were controlled for. Nevertheless, the findings only demonstrate a rise in 

severity in urban areas.  

It is crucial to recognize the limitations of this study, particularly in its 

representation of some of the variables driven by constraints posed by the available dataset. The 

variable representing speeding was coded in the database based on an on-site judgment made 

by the Police Officer and, therefore, was not used in this study. Risky behaviors were 
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represented by a surrogate variable named traffic violations, also reported by the officer 

attending the scene. This surrogate variable yielded a counterintuitive result mainly because the 

dataset was not able to adequately describe subjunctive norms variables. Furthermore, a 

potential bias coming from missing data was not tested. While this has to be acknowledged, 

this issue is likely to have a limited impact on the results due to the large sample size. Despite 

these limitations, employing causal approaches can lead to more reliable results compared to 

traditional ones. 

 For future studies, it is advisable to investigate data-related challenges by 

employing spatial models and methodologies to address missing data. This would enhance the 

overall robustness and accuracy of the analysis. Furthermore, the causal approach presented in 

this study should be extended to other scenarios, encompassing other vulnerable road users such 

as cyclists and pedestrians, to validate its applicability and utility in diverse contexts. 
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