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Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, Lecce, Italy

* miguel.mallo@uab.cat

Abstract

Background

There is a scarcity of long time-span and geographically wide research on the health status

of Corallium rubrum, including limited research on its historical ecology and carbon seques-

tration capacity.

Objectives

To reconstruct the temporal trends of the most reported C. rubrum population parameters in

the Northwestern Mediterranean Sea and to determine the changes in total carbon seques-

tration by this species.

Data sources

Quantitative and qualitative, academic and grey documents were collected from scientific

web browsers, scientific libraries, and requests to scientists.

Study eligibility criteria

Documents with original information of basal diameter, height and/or weight per colony, with

a depth limit of 60 m in the Catalan and Ligurian Seas were analyzed.

Synthesis methods

We calculated yearly average values of C. rubrum biometric parameters, as well as esti-

mated total weight, carbon flux, and carbon fixation in the structures of C. rubrum’s colonies.

Results

In both study areas, the values of the selected morphometric parameters for C. rubrum

decreased until the 1990s, then increased from the 2000s, with average values surpassing

the levels of the 1960s (Ligurian Sea) or reaching levels slightly lower than those of the
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1980s (Catalan Sea). The difference in carbon sequestered between the oldest (1960s:

Ligurian Sea; 1970s: Catalan Sea) and the lowest (1990s) biomass value of colonies is

nearly double.

Limitations

Quantitative data previous to the 1990s are very limited. Information on recent recovery

trends in C. rubrum parameters is concentrated in a few areas and biased towards colonies

in marine protected areas, with scarce quantitative information from colonies in other areas.

Conclusions

The halt in the C. rubrum decreasing trend coincided with the exhaustion of tree-like colo-

nies and the first recovery response due to effective protection measures in some areas.

Nevertheless, C. rubrum climate change mitigation capacity through carbon sequestration

can be drastically reduced from its potential in only a few decades.

Introduction

The coralligenous is one of the most biodiverse habitats of the Mediterranean Sea [1, 2]. This

community forms a complex 3D structure that serves as habitat, protection, and feeding area

for several species. Moreover, the community is dominated by benthic suspension feeders [3]

that strain suspended matter and food particles and fix the suspended particles into long-lived

structures, acting thus as carbon sinks [4]. The coralligenous’ structural complexity and the

different architecture of the ecosystem-engineering species allow for the development of a

large number of highly biodiverse systems that take advantage of the microenvironmental het-

erogeneity, in which irradiance, water motion, nutrient availability, and other environmental

factors highly vary [1, 3]. However, several factors are threatening this habitat, resulting in

some suspension feeding communities losing individuals or colonies [5–8]. Moreover, com-

pared to larger specimens, the younger (and smaller) ones possibly retain less carbon in their

structures [4, 9]. Biodiversity in this community is also decreasing; the habitat becomes more

homogenous and the 3D structures less common [9, 10], and thus less resilient to environmen-

tal changes [11, 12].

One of the most emblematic species in the coralligenous community is the red coral, Coral-
lium rubrum (CR) [3, 13]. Red coral is a long-living, slow-growing, sciaphilous, and heterotro-

phic cnidarian that increases the 3D complexity of its habitat. The arborescent structure of red

coral may serve as refuge for several organisms [13]. This anthozoan lives in cracks, crevices,

overhangs, and boulders between 7 and 1016 m depth [14–16]. A main feature of this passive

benthic suspension feeder is its calcium carbonate (CaCO3) skeleton, composed of annual

growth bands with an organic skeleton matrix [17]. The red coral captures detrital particulate

organic carbon (POC) and nano-, phyto- and zoo-plankton from the water column, from

which it obtains carbon and other nutrients. The biomineralization forms an axial skeleton

and the sclerites made of CaCO3 crystallize in the form of high-magnesium calcite and organic

matter [18]. This process contributes to the storage and biological removal of carbon from sea-

water [19].

Red coral has been harvested since ancient times, mainly for jewellery [13, 20, 21]. For the

jewellery industry, the most valuable pieces are the largest and more branched colonies, which
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are also the ones with higher reproductive potential [3, 9, 14, 22]. Reproduction in this organ-

ism is limited, as CR is a gonochoric internal brooder with low reproductive rates and limited

dispersal of its larvae, resulting in low genetic mixing [23, 24]. Such facts, added to its slow

recovery after a perturbation (the recovery process can last from several decades to centuries),

has resulted in most of the actual CR colonies being small in size [25–27]. Moreover, in several

regions this species is considered ‘ecologically extinct’ (unable to make its function in the eco-

system) [13, 28], the discovery of large long-lived non-perturbed colonies being nowadays an

exception [29, 30]. The extinction of red coral is of concern not only for the species itself, but

also for the potential effects on the entire habitat [13].

Very few studies have assessed the historical CR population structure and health status

(defined as the normal demographical, physiological and reproductive conditions of a popula-

tion that would allow perpetuation of future generations, avoiding local extinction [31])

through time. Moreover, the comparison of CR population structure and health status between

different areas and large periods of time remains scarcely reported [25, 32–34]. Historical ecol-

ogy can help trace and interpret the changes between ancient and current populations and eco-

systems and the potential drivers of these changes (e.g., biodiversity loss, acceleration of

biogeochemical cycles, presence of eutrophic areas, and loss of carbon retention in long-lived

structures) [35]. Studies covering wide regions and a large time-span (like those done with

other species and ecosystems, e.g., [36–42]) can shed light on CR’s temporal trends, which in

turn, may help us understand not only the species health status trends, but also the associated

loss of ecosystem services, including CR’s role as a carbon sink or as a habitat-forming species

[13].

In this study, we use historical data on CR biometric and population structure from two dif-

ferent NW Mediterranean regions, Catalan Sea and Ligurian Sea, to quantify CR population

changes. The analysis of temporal patterns in CR distribution and biometric parameters is

then used to provide an estimate of CR populations as potential carbon sinks.

Methodology

An extensive literature review was performed regarding the presence, demography, and bio-

metrics of CR in the Catalan Sea (including Côte Vermeille) and the Ligurian Sea regions.

Demographic and biometric parameters describe the characteristics of a population and serve

to determine the species’ health status. Our search included grey and academic literature and

documents that offered both quantitative and qualitative descriptions of CR’s health status.

Specifically, we did a research in the fields “Topic” (Web of Science) and “In the Title” (Google

Scholar) using the following keywords: “Corallium rubrum" OR "red coral" OR "coralligenous"

AND "Mediterranean" OR "Catalunya" OR "Catalonia" OR "Catalan" OR "Liguria". Addition-

ally, a systematic review of two scientific libraries, plus punctual research in several others, was

realized. Additional documents were obtained from our network of scientists working on the

topic. Finally, references cited in previously selected documents were also reviewed. Docu-

ments were reviewed if written in Catalan, Spanish, English, French, Italian, or Latin. The bib-

liographic research was not limited regarding the antiquity of a document and we considered

documents published up until September 2018. The oldest document found describes CR

from the 3rd century BP [43].

From a total of 84 pre-selected documents, 65 contained original data (new scientific

knowledge) on CR health status (Fig 1; S1 Table), 22 of them providing only qualitative

descriptions. The documents providing quantitative information on the most commonly stud-

ied parameters (i.e., basal diameter, height, and dry weight) were reviewed, resulting in 28 doc-

uments that included information on at least one of these parameters. Finally, 24 documents
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with comparable information were included in the meta-analysis (Fig 1). The number of docu-

ments selected during the various stages of the meta-analysis is shown in Fig 2.

We used the colony patch as sampling unit for this work. We consider a patch of red coral

as a distinct group of colonies, where the distance of colonies within the patch is substantially

lower than the distance of colonies between patches (CR usually follows a patchy distribution)

[14]. When the colony patch sampling unit was not possible, the nearest higher-resolution

available was used. For a given parameter, the yearly mean value was taken as the average of

Fig 1. Publication date and number of documents with original data on Corallium rubrum health status, by decade and study site. In grey the number

of documents in the Catalan Sea (including Côte Vermeille) and the Ligurian Sea: n = 65; in cross grids the documents selected for the analysis: n = 24.

https://doi.org/10.1371/journal.pone.0223802.g001
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the values for all the colony patches (or higher resolution) sampled in the same year. The maxi-

mum depth of CR used is 60 m, as the studies made below this depth are very scarce and

sparse, decreasing the consistency and precision of statistical comparisons [14, 44–47]. Some

documents (25%) did not indicate the sampling year, so we assumed collection was done one

year before the publication date. If the parameter was obtained during various years and only

an average value was provided, we assigned the result to the last year when samples were

reportedly collected (e.g., [15, 48]). Number of colonies used to estimate each parameter can

be found in S4 Table.

Fig 2. Selection of documents for inclusion in the meta-analysis.

https://doi.org/10.1371/journal.pone.0223802.g002
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Results obtained from random sampling were considered comparable, irrespectively of

whether data were obtained from quadrants or stations (e.g., [32, 49]), transect lines (e.g., [15,

45]), or covered the whole area (e.g., [48]). Studies excluding colonies < 2 mm basal diameter

or< 2 cm height were also considered comparable (e.g., [33]), as it is usually hard to do reli-

able analysis with such small sizes. Samples obtained through poaching were discarded from

the analysis [32, 50–52], since it is unknown whether they represent the natural population

accurately. Commercial samples were also discarded as they usually only include the largest

individuals (e.g., [44, 53]), and therefore are not representative.

We used all the available data in the literature from our study regions, plus off the Tuscany

region, to calculate additional parameters than those found in the literature. The additional

values were obtained using regression analysis for each pair of parameters previously selected

(Fig 3; See S1 Text, S1 Table, and S1 Fig). The following equations resulted from those regres-

sions:

y ¼ 0:875x � 0:655 ð1Þ

y = height (cm), x = basal diameter (mm), r2 = 0.651

y ¼ 0:453xþ 2:484 ð2Þ

y = height (cm), x = weight (g), r2 = 0.552

y ¼ 1:808x � 5:582 ð3Þ

y = weight (g), x = basal diameter (mm), r2 = 0.828

To test the percentage of error of the linear regression Eqs (1–3), we compared the parame-

ter values resulting from our calculations with experimental values obtained from the previous

literature research. We used the following formula:

%error ¼
calculated value � literature value

literature value

�
�
�
�

�
�
�
�� 100 ð4Þ

Formulas (1–3) have 26%, 24% and 47% of error respectively. The data points obtained

through formulas represent 40% of the total values used in this study.

To estimate CR biomass, we used the average dry weight values of each year multiplied by a

fixed and robust value of density in each region (the data with more replicates and statistically

sounder). The density values used are 114.68 colonies/m2 from the Catalan Sea [14] and

216.65 colonies/m2 from the Ligurian Sea [33]. We used a fixed density value as the values

obtained from the literature presented a high variability (S2 Fig), presumably from the use of

different methodologies and very diverse sample sizes, resulting in incomparable results. The

use of a mean fixed density value involves an estimate of the CR biomass for the selected sites,

as we do not take into account the spatial and temporal variability of CR’s density [30, 32].

The potential area where CR can live was estimated from the literature. We define “poten-

tial area” as the surface suitable for CR growth even if is not currently present in the area. In

both regions, we limited the extension of the potential areas to the locations where most CR is

found. For the Catalan Sea we used data from the three marine protected areas (MPAs): Cap

de Creus [54], Medes i Montgrı́ [55], and Cerbère-Banyuls [56]. For the Ligurian Sea we used

the data from Portofino (MPA since 1998) by Cánovas-Molina et al. (2016) [57].

To calculate the potential for carbon sequestration, we obtained the CR carbon ingestion

rate of detrital POC and phyto- and zoo-plankton from Tsounis et al. (2006) [58]. The carbon

ingestion from bacterioplankton was extracted from Picciano and Ferrier-Pagès (2007) [19].

Oxygen consumption at 16˚C was obtained from Previati et al. (2010) [59]. The value was

Corallium rubrum historical record and carbon sequestration capacity
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converted into respired carbon equivalents using the conversion factor 0.281 [60]. The estima-

tion of the number of polyps in a colony was done using the results of Santangelo et al. (2003)

[22]. The CR’s basal diameter growth rate was obtained from Bramanti et al. (2014) [49], using

0.241 and 0.237 mm y-1 for the Ligurian and Catalan Sea, respectively. We draw upon Coppari

(2015) [61] and use a relation of 5.82 mg cm-1 to convert the increase of growth to weight. Like

we did for the biometric parameters, we use the same fixed density values, not taking into

account the CR’s self-thinning processes [30]. To estimate the potential for carbon fixation we

only take into account the basal diameter growth. Due to lack of conclusive studies on the

topic, we do not consider the increase of total height in the colony, nor the branches. For that

reason, our results of carbon retention are expected to be underestimated.

Results

Biometric parameters analysis

Twelve documents provide qualitative information about CR’s health status for the Catalan

Sea: ten documents contain information about CR’s abundance, nine about location (geo-

graphical and/or bathymetric), two about size, one about diameter, and five about other

parameters. For the Ligurian Sea, ten documents providing qualitative information were

found. Size was reported in nine documents, location in nine, abundance in eight, weight in

two, and other parameters in four (S2 Table).

The qualitative data gathered during the literature review show that CR was exploited since

ancient times and from very shallow depths. For example, the illustrations of Tescione (1968)

[21] show people harvesting coral in apnea in the 18th century, suggesting that large branches

of CR were available at few meters depth in the Gulf of Naples. The text provided by Tescione

also shows that, as early as the 14th century there was a real concern about the use of the

ingegno and the intensive harvesting of the species. The following texts illustrate this concern:

“. . .the fear that coral reefs would soon be exhausted, since, by a royal edict of 1332–33, the

prohibition to fish for coral without the King’s permission between Cape Minerva and Capri, a

place very rich in coral, was renewed.”; “To face the threat of impoverishment of the sea-bot-

toms, because of the devastating action of the devices that were being used, the French tried

very hard to find better means of fishing, and the Academy of Marseilles, in 1876, announced

a useless competition with a prize for the inventor of a less ravaging device.” [21] (S2 Table).

Fig 3. Scatter plots of C. rubrum physiological parameters. Regression line equations: (1) height vs basal diameter, (2) height vs weight, and (3) weight vs basal

diameter. See S1 Text and S1 Table for the data source.

https://doi.org/10.1371/journal.pone.0223802.g003
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The reviewed literature also suggests that CR was more abundant before the publication of

the first studies with occupancy data. This is evident in the following texts: “. . .fishermen that

keep the ones that casually extract with the fish.” [62]; “. . .at the beach, thrown by the waves,

especially after storms. . .” [63]; “. . .the visions all the coral harvesters remember are about all

the rocky walls and caves completely crowded of flowered coral with its white polyps, and

from the big and abundant quantity and variety of fishes and lobsters, it is an inexplicable

wonder. . .” [64]; “. . .rapidly plunging into the water pulled out corals.” [21] (S2 Table).

Regarding quantitative data, 29% of the documents included in this study yield data coming

from grey literature, 37% from the scientific web browsers search, 46% from the scientific

libraries and the network of scientists, and 21% from the references in the pre-selected litera-

ture. The most represented region is the Catalan Sea, with 58% of the documents referring to

this area. The Ligurian Sea accounts for 50% of the documents. Two documents provide infor-

mation from both sides (S1 Table). All the studies from the Ligurian Sea were sampled in Por-

tofino, with the exception of the roman writer Gaius Julius Solinus (1895) [43], a document in

which the most specific location stated is “Liguria”. One third of the samples for the Catalan

Sea come from Cap de Creus, another third from Medes Islands and the Montgrı́ Coast, and

almost all the remainder from the Côte Vermeille. One study also includes samples from

Begur coast (S1 Table).

For both regions and for all parameters analysed, we find a “U” shaped distribution of the

data across time, best fitted by a 2nd degree polynomic function (Fig 4, S4 Table). The Catalan

Sea region contains more data points per year and more years of data than the Ligurian Sea. In

both regions, however, the 1990s mark a clear difference in the amount of data available, with

most of the data points belonging to the period 1990–2005. Overall, data for the analysed

parameters have increased more in the Ligurian Sea than in the Catalan Sea. The Ligurian Sea

also contains older data with several studies conducted during the first half of the 1960s. In

contrast the first study for the Catalan Sea was conducted in the late-1970s.

In the Catalan Sea, the values of the parameters observed experienced a decrease until the

1990s. These values remained low until the mid-2000s. After the mid-2000s, values started ris-

ing until the 2010s, when the value of the basal diameter reached the level of 1980s and the val-

ues of biomass and height reached levels slightly lower than those found in the 1980s. In the

case of the Ligurian Sea, we observe a decrease of the values of the parameters until the mid-

1990s˗2000s with a later increase, in which biomass and basal diamenter values surpassed the

values found in the 1960s, as well as some of the height measures found in the 1960s.

In 2009, the CR biomass from the Ligurian Sea reached 1401 g/m2, a value double that

reported in 1964 (749 g/m2). The CR biomass showed its lowest value in 1999: 433 g/m2. In the

Catalan Sea, biomass ranges from 1269 g/m2 in 1978 to an order of magnitude less, 113 g/m2

in 1992. From the 1990s, CR biomass levels in the Catalan Sea rise again reaching 503 g/m2 in

2013, although the value remains lower than the 1980s value: 636 g/m2 (Fig 4A).

In the studies of the Ligurian Sea, the values reported for basal diameter decrease from 5

mm in 1964 to 2.5 mm in 1994, then increasing and reaching a peak in 2008 (9.32 mm). The

most recent measure for basal diameter in the region dates from 2012 and is 6.53 mm, higher

than the values reported for the 1960s. However, with the exception of the value from 2008, all

other values for basal diameter remain below 7 mm. In the Catalan Sea, basal diameter values

decreased from 9.32 mm in 1978 to 2.92 mm in 1991 and then increased to the peak of 7.51

mm in 2011, thus reaching values similar to those found in the late-1970s1980s, with the

exception of the peak measured in 1978 (Fig 4B).

The oldest value for CR height from the Ligurian Sea dates from the 3rd century BP [43],

when its reported value was 15 cm. CR height values in the Ligurian Sea from the 1960s are

very variable (1962: 15 cm, 1964: 5.64, 4.88, and 4.77 cm), althougth there is an overall

Corallium rubrum historical record and carbon sequestration capacity
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decreasing trend, with a minimum value of 2.38 cm in 1994, and then a rise until the peak of

2008: 7.5 cm. Again, the most recent value is from 2012: 5.67 cm, higher than some of the

1960s values. In the Catalan Sea, CR height also decreases from 7.5 cm in 1978 to 2.16 cm in

1991. CR height value then increased to a peak of 4.44 cm in 2011. During the last decade, CR

height values were larger than the values reported for the 1990s (2.16–3.41 cm), but smaller

than the values reported at the end of 1970s1980s (Fig 4C).

Carbon sequestration capacity

The three MPAs in the Catalan Sea contain 173.34 ha potentially suitable for CR, which would

represent 1.99�108 colonies. The estimated carbon sink (carbon invested for growth) of those

colonies is 27,419 g C y-1, corresponding to 158 g C ha-1 y-1. For 2017, we estimate 8.94�105 kg

of CR with a carbon flux of 0.0135 kg C ha-1 y-1 (C flux = C ingestion–C respiration). The old-

est data available for the region, corresponding to 1978, estimate 2.20�106 kg of CR and 0.0129

kg C ha-1 y-1 of carbon flux. The year with the lowest biomass value, 1992, CR would have

1.95�105 kg in the region and a flux of 0.0071 kg C ha-1 y-1.

In the Ligurian Sea, the potential CR occupies 23.8 ha with 5.16�107 colonies. The poten-

tial colonies C sink accounts for 7,232 g C y-1, corresponding to 304 g C ha-1 y-1. The newest

data available from the Ligurian Sea, for 2012, result in the estimation of 3.33�105 kg of CR,

with a carbon flux of 0.0035 kg C ha-1 y-1. The oldest data available (1964) and the lowest

value (1999) result in 1.78�105 and 1.03�105 kg of coral, and a carbon flux of 0.0035 and

0.0018 kg C ha-1 y-1respectively.

Discussion

Our analyses indicate that variability in CR health status is mainly driven by the harvest inten-

sity and the presence of protection measures. These results, however, should be taken with

Fig 4. Corallium rubrum parameters by year sampled. (a) Biomass, (b) basal diameter, and (c) height. Dots correspond to the yearly average value of the parameter.

The number of data points used for the year averages are shown below each parameter graph. A data point consists in the value of the parameter from a colony patch (or

the closest higher-resolution if not available). Catalan Sea: black dots and bars and continuous curve. Ligurian Sea: white dots and bars and discontinuous curve. The

symbol (✰) placed on the Y axis of height corresponds to the year -300 BP for the Ligurian Sea.

https://doi.org/10.1371/journal.pone.0223802.g004
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caution as data from the last two decades might be biased since they mainly come from pro-

tected areas, leaving the recent CR health status in unprotected regions understudied. This

bias emphasizes the limitation in unravelling the detailed status of the living communties. Fur-

thermore, the low availability of quantitative pre-1990s data suggest caution in interpreting

trends during this time period.

Biometric parameters analysis

In the Mediterranean region, habitat degradation and exploitation are the main sources of bio-

diversity loss [65]. These impacts have been occurring since ancient times. For example,

coastal modification dates back to the Roman period and coastal exploitation was evidenced

by Aristotle (4th Century BP). Over the course of history, the Mediterranean Sea has faced an

increasing use of resources, as population living in its coastal areas has grown, maritime trade

has intensified, and the commercialization of sea-related products increased [65, 66, 38]. Thus,

the shallow water environment where CR can grow has been under pressure, with continuous

exploitation since antique periods [13, 21]. Moreover, both chronic and small or intermediate

disturbances, as well as sudden large disturbances, have gradually degraded this habitat [67].

In conclusion, CR pristine status before anthropogenic pressure is unknown, as the oldest data

available about CR’s health status in the Mediterranean Sea was recorded after the human

exploitation of the resource had already started, around 30,000 years ago [21, 68]. We can only

guess how the “red forests” of the Mediterranean were: possibly large spaces monopolized by

CR [69], a slow-growing but very competitive species in terms of space occupation [70].

In this study, the oldest quantitative data available regarding CR status, in the two study

regions [71, 72], report an ecosystem already affected by human uses (e.g., trawling, harvesting

with devices like the St. Andrew’s Cross or the ingegno, and/or selective harvesting by divers

[9, 13, 21, 64, 73–81]). Some older quantitative information is available for areas not analysed

in this study and/or for other health status parameters (e.g. [43, 82, 83]). Data for the regions

and the parameters specifically selected in this study are more abundant, and probably more

reliable, since the 1990s. Researchers have argued that data on CR harvesting is only reliable

from the late-1980s and early-1990s, given that the number of studies prior to these decades is

scarce and the oldest techniques to analyse the parameters might be less accurate [84].

Despite the absence of quantitative data, the qualitative data collected in this work suggests

that CR was larger, thicker, and had a greater biomass before the 1960s, since when quantita-

tive data became available. Our finding is in line with data from the FAO, which show a sharp

decline of 2/3 of the biomass harvested in only few years in the late-1970s [84]. Our result is

also consistent with information from the older commercial samples, which usually contain

data of the biggest, oldest and less perturbed specimens found in a coral population of a con-

crete area, as the harvesters seek for the best quality coral, with higher commercial value [64,

76, 81, 85, 86]. Indeed, such samples show the potential status of CR populations if they remain

unperturbed from decades to centuries [29]. For the Catalan Sea, a commercial sample col-

lected in 1962, at a depth between 25 to 35 m, and with an average of 16 mm in basal diameter

and 11.45 cm in height has been documented while the biggest specimens measured in that

sample were 15.5 cm tall, and with a basal diameter of 45 mm [25].

In the 1990s, in the two studied regions, the decreasing trend in CR basal diameter, height

and biomass stopped. Several reasons explain this shift: as commercial CR banks get exhausted,

the CR fishing decreased relative to previous decades and became stable [86, 87]. The number

of harvesting licenses given during this time also decreased [27, 88]. Harvesting of CR was

banned in Medes in 1963, and in Cerbère-Banyuls areas where CR cannot be extracted were

established in 1974, although they were only effectively implemented after 1981 [89].
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Moreover, CR health status parameters compiled in this study rise again in the 2000s, always a

bit earlier in the Ligurian Sea compared with the Catalan Sea. However, the CR recovery docu-

mented should be interpreted with caution, as it only reflects the community living at a maxi-

mum water depth of 60 m in two NW Mediterranean regions. But most importantly, the

majority of the data reported in this study comes from MPAs, where different levels of protec-

tion measures might positively affect the species’ health status. In Portofino, where all the data

of Liguria comes from, CR harvest was banned in 1999 [90]; in Medes islands CR cannot be

extracted since 1983, a ban that was then extended to the Montgrı́ Coast in 1992; Cap de Creus

has CR protected since 1998 for the partial and integral protected areas [91]; in the Cerbère-

Banyuls MPA the CR extraction is also banned since 1979 [92]. Therefore, the results pre-

sented here largely illustrate the health status of CR in areas protected since approximately two

decades ago, but they cannot be extended to non-protected areas.

However, despite protection, there is evidence that CR poaching has continued regularly in

the Catalan Sea [15, 27, 50–52]. Poaching in Liguria seems more sporadic [33], and the har-

vesting pre-protection less intense [49]. This seems logical as the Catalan Sea has CR of higher

quality for the jewellery industry, while that from Liguria is substantially affected by boring

sponges [45, 64, 76, 79, 93–96]. In sum, the poaching history and the coral quality might

explain why the biometric parameters of the Ligurian CR reached higher values than the ones

documented in the 1960s. Probably, the CR status reported in Portofino in the 2010s is similar

to how it was in the 1950s, just when intensive harvesting by scuba diving was about to

increase [33].

The literature suggests that CR from unprotected areas shows worse health status than the

CR in protected areas [15, 91, 92]. Despite such evidence, quantitative studies in non-protected

areas still remain scarce and are focused in a few places, althougth CR presence is known in

several other locations such as Llançà [75], l’Escala [97], Llafranch [98], Illes Formigues [64],

Blanes, Ametlla de Mar [99], Genoa Bay [71, 100], and La Spezia [100].

Even though available data is not enough to provide a full picture of the health status of CR

found deeper than 60 m, we can still hint at its actual ecological trend. The pioneering studies

with quantitative data from deep CR are Garcı́a-Rodrı́guez & Massó in 1984 [44] and Catta-

neo-Vietti et al. in 1994 [45], in the Catalan and Ligurian Seas respectively, both reaching up to

90 m depth. As the study in the Catalan Sea came from a commercial sample, we compare its

results with those from a study in the same area in 2002–2003 [14], only counting the

specimens� 7 mm of basal diameter and� 6 cm of height of the 2003 sample. A basal diame-

ter of 13.7 (1984) and 8.07, 10.31, and 10.34 mm (2003), and a height of 11.86 (1984) vs 8.11,

8.48, and 7.28 cm (2003) were recorded. The study of Liguria described samples of 7–9 mm

basal width and 10–15 cm tall, meanwhile 2012 samples in the same location had 8, 3, and 6

mm basal diameter and 7, 2.5, 3.2, and 5.1 cm of height [47]. These data, while scarce, seem to

suggest that deep corals have been suffering deterioration in recent decades. Such regression is

understandable as scuba diving technology improved, allowing deeper harvesting [13, 34, 64,

84], and deep corals remain unprotected by law. Deep coral banks have been historically

affected by trawling and trammel nets, but pristine status coral might still exist. Mazzarelli

(1915) found CR up to 19 cm tall and 22 mm of basal diameter width in the deep coral banks

off Sardinia in 1913 [82]. How close to the pristine size those measurements are will remain

unknown.

Carbon sequestration capacity

Studies like the one presented here are essential to highlight the importance of marine carbon

sinks, especially those represented by the animal forests of the seas [4]. The destruction of the
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living 3D structures in the benthos diminishes their carbon sequestration capacity by the lack

of sessile organisms capable to store it; this implies a loss of mitigation capacity against climate

change [37, 61, 101–103], which in turn will wreak future havoc on these habitats [102, 104–

106]. A drastic change in some coastal communities may be part of the positive feedback

resulting in climate change acceleration, organic pollution, or biodiversity loss [35]. CR has

proved to be vulnerable to climate change and ocean acidification. For example, in shallow

areas (0–40 m depth), CR has been affected by heat waves [107–112], and can be potentially

affected by ocean acidification, which affects the capacity to build its skeleton [113, 114].

In the present study, CR carbon retention capacity was estimated based on the CR data

available at different time periods from each study area. Calculations were done assuming that

CR extension coincides with the potential habitats it can grow from the locations where practi-

cally all the data comes from (Cap de Creus, Medes & Montgrı́, Cebère-Banyuls, and Porto-

fino). Furthermore, we assumed a fixed density value despite the fact that density can change

in space (location and depth), time, and due to its relation with colony size (self-thinning pro-

cess) [30, 32]. According to our calculations, since the 1990s until today, the potential carbon

retention capacity of CR has nearly doubled. Larger colonies have a larger gonadal output [9,

14, 22], a higher potential recruitment and a higher population stability in the face of perturba-

tions [49].

However, as mentioned, our results are biased towards protected areas, and are hardly

transferable to a wider context. For example, a similar calculation of the carbon retained by

Posidonia oceanica shows a 62 to 87% decrease with respect to data obtained before the 1960s

[37], a scenario that might reflect better the reality of the Mediterranean marine ecosystems.

Moreover, for our calculations, we decided to be conservative and only consider the CR diam-

eter growth of its base (i.e. the sequestered carbon in the growing rings of its main trunk),

based on the mean values observed in both areas [49]. CR branches grow much faster (linear

growth 1.5–2.5 mm y-1 [115]), for which the inclusion of the carbon stored in each branch in

our calculations might have resulted in a higher carbon storage result. If we consider that an

ancient red coral may had dozens of branches per colony, the number of sequestered carbon

may be exponentially higher compared to the present results.

Results from this work might suggest that CR experienced a dramatic decrease in a short

time period until the 1990s, when its carbon retention capacity reached its lowest point. The

potential coral weight and the carbon flux decreased nearly two-fold between the oldest and

the lowest biomass values separated only by 14 and 35 years in the Catalan and Ligurian Seas,

respectively. Such statement needs to be treated with caution due to the low availability of pre-

1990s data. CR carbon storage capacity is destrupted by the reduction of its distribution, size

and complexity (corals in the past having more branches and polyps and therefore larger

capacity to capture carbon and retain it as a structure). An example illustrates the importance

of CR distribution for carbon storage: the potential area where CR can grow in the entire Ligu-

rian Sea accounts for 130.9 ha, whereas the actual CR specimens have an extension of 6.31 ha,

only found in Portofino MPA [57]. This would account for a C flux of 0.0009 kg C ha-1 y-1 in

2012, notably smaller than the value extrapolated for the entire Ligurian Sea’s potential area

(0.0190 kg C ha-1 y-1).

These kinds of estimates of carbon flux and carbon sink are available in the literature for

different benthic systems, but they are still scarce for CR. For example, estimates for seagrass

meadows carbon sink gives 6,700 kg C ha-1 y-1 [103], for Paramuricea clavata and Eunicella
singularis 2,000 kg C ha-1 y-1 both, and for Leptogorgia sarmentosa 0.008 kg C ha-1 y-1 [116], all

of them substantially higher than our results (158 and 304 g C ha-1 y-1). Again, the difference

might be due to the fact that we only considered basal diameter growth. Regarding the C flux,

Coppari et al. (2019) [116] calculated 1,000 kg C ha-1 for P. clavata and E. singularis, and 0.02
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kg C ha-1 for L. sarmentosa, which is the closest species to CR in C flux magnitude (0.0135 and

0.0035 kg C ha-1 in this study).

Conclusions

This article provides a spatial and temporal assessment of CR’s health status, presenting new

understanding of past changes and its carbon sequestration capacity. The CR biometric

parameters, and therefore, the species’ health status is conditioned by its harvesting pressure

and protection measures that impacted its ecological history. In only two to three decades after

the establishment of the protected areas, CR reached levels of health similar to those docu-

mented in the 1960s (Ligurian Sea) or 1980s (Catalan Sea), suggesting that this protection mea-

sures are effective. However, the majority of CR locations remain unprotected and unstudied,

leaving no evidence of what would be the actual health status of such colonies. Therefore, to be

able to calculate Mediterranean-wide estimates, more quantitative studies about CR demo-

graphic and biometric parameters are needed, especially in unstudied locations where CR did

not benefit from protective measures. Regarding older CR biometric information, the French

Mediterranean coast has an important amount of pre-1990s data (e.g., [83, 117–123]) with sev-

eral pioneering studies on coralligenous systems (e.g., [124–131]). Meta-analyses of these data

could add to the CR trends obtained in this study and shed further light on its ecological

history.

The CR size and abundance conditionates its carbon sequestration capacity. Our results

suggest that both characteristics can be reduced within a few decades. Further studies on the

capacity of carbon retention of the different species present in the coralligenous and other hab-

itats (continental platform, deep water corals . . .) will help to assess the degree of importance

of this Mediterranean habitat in the carbon cycle and its climate change mitigation capacity. A

more accurate estimation of CR retention (considering the increase of total height and branch

lengths) is urgently needed to understand the importance of the marine animal forests as car-

bon sinks. The knowledge of their longer ecological trends also related to climate change miti-

gation and biodiversity conservation should improve a decision-making strategy for the

species conservation.
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conservació. Hereu B, Quinana X, editors. Càtedra d’ecosistemes litorals Mediterranis; 2013. p. 195.

56. Payrot J, Hartmann V, Cadène F. Plan de gestion 2015–2019 de la Reserve Naturelle Marine de

Cerbère-Banyuls, section A, diagnostic de la RNMCB: informations générales, environnement, biodi-
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